# Public Review Draft MU1 and MU2 Engineering Design Report Cornwall Avenue Landfill Site Bellingham, Washington

December 7, 2017

Prepared for

Port of Bellingham Bellingham, Washington



Public Review Draft MU1 and MU2 Engineering Design Report Cornwall Avenue Landfill Site Bellingham, Washington

December 7, 2017

The material and data in this report were prepared under the supervision and direction of the undersigned.



Larry Beard, PE Principal



Kent Wiken, PE Project Engineer

## **TABLE OF CONTENTS**

|                                                      | <u>Page</u>     |
|------------------------------------------------------|-----------------|
| ENGINEER SIGNATURES                                  | ii              |
| 1.0 INTRODUCTION                                     | 1-1             |
| 1.1 Cleanup Action Goals                             | 1-1             |
| 1.2 Site Background                                  | 1-2             |
| 1.2.1 Site Description                               | 1-2             |
| 1.2.2 Site History                                   | 1-3             |
| 1.2.3 Site Investigation Background                  | 1-4             |
| 1.2.4 Geology and Hydrogeology                       | 1-5             |
| 1.2.5 Environmental Conditions                       | 1-6             |
| 2.0 MEDIA TO BE ADDRESSED AND CLEANUP STANDARDS      | 2-1             |
| 2.1 Soil                                             | 2-1             |
| 2.2 Groundwater                                      | 2-1             |
| 2.3 Sediment                                         | 2-1             |
| 2.4 Air                                              | 2-2             |
| 3.0 PLANNED CLEANUP ACTION                           | 3-1             |
| 3.1 Overview of the Final Cleanup Action             | 3-1             |
| 3.2 Engineering Justification for Design             | 3-3             |
| 3.2.1 Design Criteria                                | 3-3             |
| 3.2.2 Efficiency and Effectiveness of the Cleanup Ad | ction3-3        |
| 3.2.3 Compliance with Cleanup Standards              | 3-4             |
| 3.2.4 Controls to Prevent Hazardous Material Relea   | ases3-4         |
| 3.3 Permitting and Regulatory Requirements           | 3-4             |
| 3.4 Operation and Maintenance of the Cleanup Action  | 3-6             |
| 4.0 PRE-DESIGN INVESTIGATION RESULTS                 | 4-1             |
| 4.1 Surveying and Site Topography                    | 4-1             |
| 4.2 Landfill Gas Evaluation                          | 4-3             |
| 4.2.1 Landfill Gas Generation Modeling               | 4-4             |
| 4.2.2 Landfill Gas Monitoring                        | 4-4             |
| 4.2.3 Volatile Organic Compound and Methane Cor      | ncentrations4-5 |
| 4.2.4 Permitting Considerations                      | 4-6             |
| 4.2.5 Air Dispersion Modeling and Air Cleanup Stan   | dards4-7        |
| 4.2.6 Landfill Gas Evaluation Conclusions            | 4-8             |
| 4.3 Stabilized Sediment Testing                      | 4-9             |
| 4.3.1 Moisture-Density Relationships and Hydraulic   | Conductivity4-9 |
| 4.3.2 Material Conditioning Requirements for Place   | ement4-10       |

| 4.3.3    | Low-Permeability Soil Volume Available                       | 4-11 |
|----------|--------------------------------------------------------------|------|
| 4.3.4    | Cover Thickness Evaluation                                   | 4-11 |
| 4.4 Im   | ported Fill Early Action                                     | 4-12 |
| 4.5 Ee   | grass and Shoreline Habitat Survey                           | 4-14 |
| 4.6 Co   | astal Processes Modeling                                     | 4-14 |
| 4.6.1    | Design Wind Wave Storm Return Period                         | 4-15 |
| 4.6.2    | Sea Level Rise                                               | 4-15 |
| 4.6.3    | Tidal Data and Tide Elevation Design Criteria                | 4-16 |
| 4.6.4    | Wave/Erosion Modeling                                        | 4-16 |
| 4.6.5    | Tsunami                                                      | 4-17 |
| 4.7 See  | diment Quality (Bioassay) Testing                            | 4-18 |
| 4.8 Sto  | ormwater Evaluation                                          | 4-18 |
| 5.0 ENGI | NEERING DESIGN CONSIDERATIONS                                | 5-1  |
| 5.1 Sit  | e-specific Considerations Affecting Design, Construction, or |      |
| Ор       | eration of the Cleanup Action                                | 5-1  |
| 5.1.1    | Topography, Surface, and Subsurface Conditions               | 5-1  |
| 5.1.2    | Flooding                                                     | 5-2  |
| 5.1.3    | Seismic Activity                                             | 5-2  |
| 5.1.4    | Settlement                                                   | 5-2  |
| 5.1.5    | Slope Stability                                              | 5-3  |
| 5.1.5    | 5.1 Landfill Geometry Stability                              | 5-4  |
| 5.1.5    | 5.2 Landfill Cover Stability                                 | 5-4  |
| 5.1.6    | Weather (Temperature Extremes, Rain, Wind)                   | 5-4  |
| 5.1.7    | Existing and Future Site Use                                 | 5-5  |
| 5.1.8    | Future Sea Level Rise                                        | 5-5  |
| 5.1.9    | Local Planning and Development Considerations                | 5-5  |
| 5.1.10   | Permitting Requirements                                      | 5-6  |
| 5.1.11   | Public Access                                                | 5-6  |
| 5.1.12   | Coordination with RG Haley Site Cleanup                      | 5-ε  |
| 5.1.13   | Shoreline Erosion (Coastal Dynamics)                         | 5-7  |
| 5.1.14   | Intertidal/Subtidal Construction                             | 5-8  |
| 5.2 De   | sign Details                                                 | 5-8  |
| 5.2.1    | Upland Site Grading                                          | 5-8  |
| 5.2.2    | I.1 Estimated Settlement                                     | 5-9  |
| 5.2.2    | 1.2 Site Preparation                                         | 5-10 |
| 5.2.2    | I.3 Demolition                                               | 5-11 |
| 5.2.2    | 1.4 Waste Regrading                                          | 5-11 |
| 5.2.2    | L.5 Grading and Subgrade Preparation                         | 5-11 |
| 5.2.2    | Landfill Capping System                                      | 5-12 |
| 5 2 3    | 2.1 Landfill Gas Collection Laver and Vents                  | 5-12 |

| 5.2.2.2 Fill Soil                                                                      | 5-13 |
|----------------------------------------------------------------------------------------|------|
| 5.2.2.3 Low-permeability Soil Layer                                                    | 5-14 |
| 5.2.2.4 Geomembrane                                                                    | 5-14 |
| 5.2.2.5 Drainage Layer                                                                 | 5-16 |
| 5.2.2.6 Topsoil and Cover Soil Layer                                                   | 5-18 |
| 5.2.2.7 Cap Penetrations (Well, Utilities, Other)                                      | 5-18 |
| 5.2.3 Landfill Gas Control                                                             | 5-19 |
| 5.2.4 Stormwater and Erosion Management                                                | 5-21 |
| 5.2.4.1 Onsite Drainage                                                                | 5-21 |
| 5.2.4.2 Accommodation of Adjacent Properties                                           | 5-21 |
| 5.2.4.3 Stormwater Discharge                                                           | 5-21 |
| 5.2.4.4 Erosion Control                                                                | 5-22 |
| 5.2.5 Shoreline Stabilization System                                                   | 5-22 |
| 5.2.5.1 Size (Average Diameter) and Gradation of Required Shoreline Protection         |      |
| Materials                                                                              | 5-23 |
| 5.2.5.2 Elevation Range of Required Shoreline Protection Material                      | 5-23 |
| 5.2.5.3 Impacts to Eelgrass and Aquatic Habitat                                        | 5-23 |
| 5.2.5.4 Shoreline Grading                                                              | 5-24 |
| 5.2.5.5 Integration with Upland Cap                                                    | 5-24 |
| 5.2.5.6 Shoreline Sand Filter and Integrated Groundwater Monitoring System             | 5-25 |
| 5.2.5.7 Geotextile Separation Layer                                                    | 5-25 |
| 5.2.6 Thin Layer Sediment Cap                                                          | 5-25 |
| 5.0 CONSTRUCTION REQUIREMENTS                                                          | 6-1  |
| 6.1 Construction Sequencing/Coordination with RG Haley Site Cleanup                    | 6-1  |
| 6.1.1 Upland                                                                           | 6-1  |
| 6.1.2 Shoreline and In-water Work                                                      | 6-2  |
| 6.2 Construction Drawings and Specifications                                           | 6-2  |
| 6.3 Construction Quality Control/Quality Assurance                                     | 6-3  |
| 6.3.1 Upland                                                                           | 6-4  |
| 6.3.2 Shoreline/In-water                                                               | 6-4  |
| 6.3.3 Model Toxics Control Act Performance Monitoring                                  | 6-4  |
| 6.4 Control of Hazardous Materials, Accidental Discharges, and Construction Stormwater | 6-4  |
| 6.5 Health and Safety                                                                  | 6-5  |
| 6.5.1 Health and Safety during Construction                                            | 6-5  |
| 6.5.2 Long-term Health and Safety                                                      | 6-6  |
| 6.6 Construction Completion Report                                                     | 6-6  |
| 7.0 MONITORING, MAINTENANCE, AND OPERATIONS                                            | 7-1  |
| 7.1 Confirmation Monitoring                                                            | 7-1  |
| 7.1.1 Sediment Monitoring                                                              |      |
| 7.1.2 Groundwater Monitoring                                                           | 7-2  |

| 7.   | .1.3  | Landfill Gas Monitoring                                  | 7-2  |
|------|-------|----------------------------------------------------------|------|
| 7.   | .1.4  | Settlement Monitoring and Landfill Stability             | 7-2  |
| 7.2  | Site  | Inspection Requirements                                  | 7-2  |
| 7.   | .2.1  | Final Cover and Stormwater Management System Inspections | 7-2  |
| 7.   | .2.2  | Shoreline Protection Monitoring                          | 7-3  |
| 7.3  | Ins   | titutional Controls                                      | 7-3  |
| 7.4  | Coi   | ntingency Response Planning                              | 7-3  |
| 7.5  | Equ   | uipment and Material Specifications                      | 7-4  |
| 7.6  | Sta   | tus Reports and Record Keeping                           | 7-4  |
| 8.0  | PROJI | ECT SCHEDULE                                             | 8-1  |
| 9.0  | USE C | F THIS REPORT                                            | 9-1  |
| 10.0 | REFER | RENCES                                                   | 10-1 |

#### **FIGURES**

- Figure 1. Vicinity Map
- Figure 2. Current Site Conditions
- Figure 3. Cleanup Action Areas
- Figure 4. Landfill Gas Generation Estimate Cornwall Avenue Landfill
- Figure 5. Landfill Gas Monitoring Results Methane Concentration
- Figure 6. Existing Stormwater Features
- Figure 7. Settlement Monitoring (As of May 4, 2017)
- Figure 8. Site Grading Plan Below Cover
- Figure 9. Baseline Shoreline Protection Plan
- Figure 10. Alternative Shoreline Protection and Cover Plan
- Figure 11. Landfill Sections
- Figure 12. LFG Control System and Groundwater Monitoring Well Installation Details
- Figure 13. Landfill Gas Completion Details
- Figure 14. Cover Details
- Figure 15. Cover Details
- Figure 16. Shoreline Protection Details
- Figure 17. Shoreline Protection Details
- Figure 18. Shoreline Protection Details

#### **TABLES**

- Table 1-1. Site History
- Table 2-1. Air Cleanup Levels
- Table 4-1. Site Elevation of Other Datum
- Table 4-2. Total Mass of Volatile Organic Compounds
- Table 4-3. Estimated Sea Level Rise Sources
- Table 5-1. Soil Properties Used in Slope Stability Analyses
- Table 5-2. Earthwork Volumes for Site Grading
- Table 5-3. Cover System Design Drainage Layer

#### **APPENDICES**

#### Appendix A. Landfill Gas Design

- A.1 Landfill Gas Generation Modeling Report
- A.2 Landfill Gas Monitoring Probe Installation Logs
- A.3 Landfill Gas Monitoring Data
- A.4 Landfill Gas Emissions
- A.5 Landfill Gas Cleanup Levels
- A.6 Landfill Gas System Design

#### Appendix B. Upland Cover Design

- B.1 Boring and Test Pit Logs
- B.2 Geotechnical Testing on IPA Soil
- B.3 Landfill Stability Analysis
- B.4 Stormwater Management Design
- B.5 HELP Modeling
- Appendix C. Aquatic Cover Design
- Appendix D. Bioassay Testing Results
- Appendix E. Eelgrass and Habitat Report
- Appendix F. Hilton Avenue Soil Borrow Source
  - F.1 Hilton Avenue Soil Borrow Source Evaluation
  - F.2 Early Action Completion Report Hilton Avenue Soil Borrow Transfer to Cornwall Landfill Site
  - F.3 Preload Settlement Monitoring Results

#### Appendix G. Project Schedule

## LIST OF ABBREVIATIONS AND ACRONYMS

| AERMOD          | AMS/EPA Regulatory Model                            |
|-----------------|-----------------------------------------------------|
| AMS             | American Meteorological Society                     |
| ARAR            | applicable or relevant and appropriate requirements |
| ASIL            | acceptable source impact levels                     |
| ASTM            | ASTM International                                  |
| BBP             | butylbenzylphthalate                                |
| BE              | Biological Evaluation                               |
| BEP             | bis(2-ethylhexyl)phthalate                          |
| BGS             | below ground surface                                |
| BMC             | Bellingham Municipal Code                           |
| BMP             | best management practices                           |
| BNSF            | Burlington Northern Santa Fe                        |
| CAP             | Cleanup Action Plan                                 |
| cfm             | cubic feet per minute                               |
| CFR             | Code of Federal Regulation                          |
| CH <sub>4</sub> | methane                                             |
| CHE             | Coast & Harbor Engineering                          |
| City            | City of Bellingham                                  |
| CL              | cleanup level                                       |
| CLARC           | Cleanup Levels and Risk Calculation                 |
| cm/s            | centimeter per second                               |
| CQA             | construction quality assurance                      |
| CQC             | construction quality control                        |
| CO              | carbon monoxide                                     |
| CO <sub>2</sub> | carbon dioxide                                      |
| cPAH            | carcinogenic polycyclic aromatic hydrocarbon        |
| CSL             | cleanup screening level                             |
| CSZ             | Cascadia Subduction Zone                            |
| °F              | degrees Fahrenheit                                  |
| DNR             | . Washington State Department of Natural Resources  |
| ECB             | erosion control blanket                             |
| Ecology         |                                                     |
| EDR             | Engineering Design Report                           |
| EIS             | Environmental Impact Statement                      |
| ENR             | enhanced natural recovery                           |
| EPA             | US Environmental Protection Agency                  |
| ESA             | Endangered Species Act                              |
|                 |                                                     |

# LIST OF ABBREVIATIONS AND ACRONYMS (CONT.)

| ft                  | feet                                          |
|---------------------|-----------------------------------------------|
| ft <sup>2</sup>     | square feet                                   |
| g                   | gravity                                       |
| GP                  | Georgia Pacific                               |
| gpm                 | gallons per minute                            |
| GPS                 | global positioning system                     |
| H:V                 | horizontal to vertical                        |
| H <sub>2</sub> S    | hydrogen sulfide                              |
| HASP                | health and safety plan                        |
| HDPE                | high density polyethylene                     |
| HELP                | Hydrologic Evaluation of Landfill Performance |
| HPA                 | Hydraulic Project Approval                    |
| IBC                 | International Building Code                   |
| IHS                 | indicator hazardous substance                 |
| IPA                 | interim placement area                        |
| ISC                 | industrial source complex                     |
| JARPA               | Joint Aquatic Resource Permit Application     |
| LEL                 | lower explosive limit                         |
| LFG                 | landfill gas                                  |
| LIDAR               | light detection and ranging                   |
| LLDPE               | linear low density polyethylene               |
| m                   | meter                                         |
| m <sup>2</sup> /sec | square meters per second                      |
| MCE                 | maximum credible earthquake                   |
| MFS                 | Minimum Functional Standards                  |
| MHA                 | maximum horizontal acceleration               |
| MHW                 | mean high water                               |
| MHHW                | mean higher high water                        |
| MLW                 | mean low water                                |
| MLLW                | mean lower low water                          |
| mm                  | millimeter                                    |
| MMOP                | monitoring, maintenance, and operations plan  |
| MNR                 | monitored natural recovery                    |
| MSL                 | mean sea level                                |
| μg/m <sup>3</sup>   | micrograms per cubic meter                    |
| mg/kg               | milligrams per kilogram                       |
| mg/L                | milligrams per liter                          |
| MSW                 | municipal solid waste                         |

# LIST OF ABBREVIATIONS AND ACRONYMS (CONT.)

| MTCAModel Toxics Control A                            | ct |
|-------------------------------------------------------|----|
| MTL mean tidal lev                                    |    |
| MU management ur                                      |    |
| NAPLnonaqueous phase liqu                             |    |
| NOAA National Oceanic and Atmospheric Administration  |    |
| NPDES National Pollutant Discharge Elimination System |    |
| O <sub>2</sub> oxyge                                  |    |
| OSHAOccupational Safety and Health A                  |    |
| PAHpolycyclic aromatic hydrocarbo                     |    |
| PCBpolychlorinated biphen                             |    |
| PEpolyethyler                                         | •  |
| PGA peak ground acceleration                          |    |
| PLPpotentially liable par                             |    |
| Port                                                  | -  |
| ppm parts per millic                                  |    |
| PSEP Puget Sound Estuary Protoco                      |    |
| PVCpolyvinyl chloric                                  |    |
| RCRAResource Conservation and Recovery A              |    |
| RCW Revised Code of Washingto                         | n  |
| RI/FSremedial investigation/feasibility stud          | yk |
| RTKreal time kinet                                    | ic |
| SAP sampling and analysis pla                         | ın |
| SCOsediment cleanup objectiv                          | /e |
| SCUM II Sediment Cleanup User's Manual                | П  |
| Site Cornwall Avenue Landfill Sit                     | te |
| SLRsea level ris                                      | se |
| SMA Shoreline Management A                            | ct |
| SMSSediment Management Standard                       | sk |
| SQERsmall quantity emission rate                      | te |
| SRPEscrim-reinforced polyethyler                      | ıe |
| SVOCsemivolatile organic compour                      | ıd |
| SWPPPstormwater pollution prevention pla              | ın |
| TESC temporary erosion and sediment contr             | ol |
| TPHtotal petroleum hydrocarbon                        | าร |
| TRMturf reinforcing ma                                | at |
| US                                                    | es |
| USACE                                                 | rs |
| VOC volatile organic compour                          | ıd |

# LIST OF ABBREVIATIONS AND ACRONYMS (CONT.)

| WAC             | Washington Administrative Code                |
|-----------------|-----------------------------------------------|
| WDFW            | Washington Department of Fish & Wildlife      |
| WISHA           | Washington Industrial Safety and Health Act   |
| WQC             | water quality certification                   |
| WSDOT           | Washington State Department of Transportation |
| vd <sup>3</sup> | cubic yard                                    |

#### 1.0 INTRODUCTION

This engineering design report (EDR), prepared in accordance with Consent Decree 142025935, provides the preliminary engineering design for the final cleanup action of the Cornwall Avenue Landfill site (Site; Figures 1 and 2), including the basis of design for the primary design elements. The Site and adjoining cleanup site to the north (RG Haley Site) are to be developed in the future as a waterfront public park, and some of the design details outlined in this EDR may be modified as part of park design to be compatible with the habitat and land-use objectives identified in the Park Master plan (Anchor QEA, October 2014). Future modifications to the design will need to be submitted to and approved by Ecology before they can be implemented.

The EDR for the Site is based on the cleanup action plan (CAP) (Ecology 2014) and the Consent Decree between the Washington State Department of Ecology (Ecology) and the potentially liable parties, as follows:

Site Name: Cornwall Avenue Landfill

Site Location: South end of Cornwall Avenue, Bellingham, WA

Facility Site Identification No.: 2913

Consent Decree No: 14-2-02593-5

Effective Date of Consent Decree: December 1, 2014

Parties to the Consent Decree: Ecology, City of Bellingham (City), Port of Bellingham

(Port), Washington State Department of Natural

Resources (DNR)

Current Property Owner: City of Bellingham, Washington State

The Site is being cleaned up under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington (RCW), and the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC). The Site cleanup action is being conducted under a Consent Decree between Ecology, the Port, the City, and DNR. The Port, the City, and DNR have been identified as potentially liable parties (PLPs) for the Site.

The Site has been subdivided into three Management Units (MUs), which are discussed in Section 1.2. This EDR addresses the final cleanup action for MU-1 and MU-2. MU-3, the outermost MU in the aquatic portion of the Site, will be addressed at a later date under an amended CAP and CD. MU-1 addresses the upland portion of the Site. MU-2 addresses the aquatic portion of the Site to the outer limits of where Site-related refuse and wood waste have come to be located, and MU-3 addresses any impacts to marine sediment beyond the limits of MU-2. The Management Units are presented on Figure 3.

## 1.1 Cleanup Action Goals

The CAP describes the final cleanup action for the Site. The CAP requires that for MU-1, an upland cap with stormwater controls will be constructed with the goal to prevent direct contact with existing

contaminated fill, to prevent surface water infiltration through the contaminated fill, and to properly manage landfill gas (LFG). Standard construction methods and materials will be used to create the cover system required to achieve these goals. The design basis for the upland cover elements is provided in Section 5.0 of this report with design details provided on the referenced figures. Detailed design, including construction plans and specifications, will be developed based on this EDR. The overall goal of the Site cleanup action is to achieve containment and isolation of affected soil, refuse, and wood waste in perpetuity, and to prevent discharge of groundwater containing concentrations of hazardous substances that exceed the Site groundwater cleanup levels to surface water. Ecology has determined that the cleanup action in MU-1 complies with cleanup standards through containment, consistent with WAC 173-340-740(6)(f). Because the Cornwall Avenue Landfill and RG Haley sites partially overlap, this EDR is intended to accommodate the needs of both cleanups. Specific considerations and accommodations related to the RG Haley Site are discussed in subsequent sections of this EDR.

For MU-2, the primary goal of the shoreline protection/stabilization system is to prevent direct human and benthic organism contact with contaminated fill (refuse, wood waste), and protect the existing shoreline from erosion. Oceanographic engineering, including numerical modeling, was used to develop a shoreline protection system capable of resisting waves and currents, while minimizing impacts to aquatic habitat to the degree practicable.

Also for MU-2, the primary goal of the thin layer sediment cap is enhanced natural recovery (ENR) to accelerate natural recovery processes in the predominantly biologically active zone by providing a clean substrate overlying refuse and wood waste that extend beyond the limits of the shoreline protection system, within the predominantly biologically active zone for marine sediment (the upper 12 centimeters). The general plan is to place a thin layer of clean material from the edge of the shoreline stabilization system out to the edge of refuse/wood waste fill.

Habitat benefit and improved function will result from the cleanup action itself. Specific habitat related actions will be developed in coordination with permitting agencies during the detailed design and permitting process for the cleanup action.

## 1.2 Site Background

#### 1.2.1 Site Description

The Site is located south of downtown Bellingham, at the southern terminus of Cornwall Avenue, adjacent to Bellingham Bay. The Site is bordered to the east by an active rail line owned by Burlington Northern Santa Fe Railway Company (BNSF), and to the north by the RG Haley Site. The Site's location and current conditions are presented on Figures 1 and 2, respectively.

The Site extends across two separate properties, one owned by the City and the other consisting of Washington state lands administered by DNR, as shown on Figure 2 (Note: project north established

as the northeastern Cornwall property line). Property-related references in the CAP use the following conventions:

- DNR property or state land: The upland and in-water area owned by the State of Washington seaward of the Inner Harbor Line.
- Cornwall property: The fee-owned upland area formerly owned jointly by the Port and the City, and now owned solely by the City landward of the Inner Harbor Line.
- BNSF railway mainline: The upland area owned by BNSF.
- The Cornwall landfill, Cornwall Avenue Landfill, or the landfill: The area containing municipal refuse.

The Site is defined as the area containing refuse, the area containing wood waste within Cornwall property boundaries, the stabilized sediment piles imported as part of the interim action, imported soil fill piles, and the adjoining areas impacted by hazardous substance releases from the refuse or wood waste (see Figure 3). The Site's boundaries are described more specifically as follows:

- West and South Site Boundary: These aquatic boundaries will be set when MU-3 is defined based on regional background concentrations in sediment, as further described in Section 4.1.
- North Site Boundary: This boundary is set at the northern limit of refuse or impacts from refuse. Where refuse is absent, this boundary is established at the northern Cornwall property line.
- East Site Boundary: This boundary is set at the eastern edge of the wood waste fill, which
  generally coincides with the eastern Cornwall property line (i.e., where it adjoins the BNSF
  railway mainline).

The portion of the Site addressed by this CAP (MU-1 and MU-2) is approximately 25.8 acres in size, including about 12.6 acres of aquatic lands (MU-2) and 13.2 acres of uplands (MU-1). The aquatic lands and approximately 8.4 acres of the uplands are owned by Washington State and managed by DNR. The remaining 4.8 acres of the uplands are owned by the City. The inner harbor line represents the boundary between City-owned land and state-owned land at the Site. Property to the north of the Site is also owned by the City, and is part of the RG Haley MTCA Cleanup Site. BNSF owns the property east of the Site for the railway mainline.

Presently, the only significant features on the Site consist of a stormwater detention basin constructed in 2005 at the south end of the Site, the interim placement areas (IPAs) located in the western portion of the Site that store stabilized sediment from the interim action conducted in 2011 and 2012, and the early action fill soil placed on the eastern portion of the Site in June 2016 (see Figure 2). The Site is largely unpaved, with the exception of a section of asphalt road and discontinuous areas of unmaintained pavement in the northeastern portion of the Site.

#### 1.2.2 Site History

The area comprising the Site historically consisted of tide flat, with the shoreline generally corresponding with the bottom of the bluff area. Dating back from pre-history to the 19<sup>th</sup> century, the

Bellingham waterfront was traditionally occupied by ancestors of the present-day Lummi Nation and Nooksack Indian Tribe. The settlement and subsistence of communities throughout this region were similar in many ways, primarily in the seasonal cycle of congregation at winter villages. Winter villages were usually located along protected coastlines, where activities such as shellfish gathering and fishing could be pursued. European settlement took hold on Bellingham Bay during the 1850s and the Bellingham waterfront has since been primarily a shipping and industrial area. A summary of Site industrial history, including ownership and use, is provided in Table 1-1. Municipal landfill operations occurred at the Site from 1954 to 1965. The landfill was covered with a soil layer of variable thickness, and the shoreline was protected by various phases of informal slope armoring consisting of a variety of rock boulders and broken concrete. Since that time, significant shoreline erosion has occurred, resulting in exposure of landfill refuse at the shoreline surface and release and redistribution of landfill refuse onto the adjacent aquatic area. The toe of the refuse fill slope extends out into Bellingham Bay to some distance beyond the shoreline.

| Year      | Owner                                                                                  | Historical Activity/Operations                                                                          |
|-----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 1888-1946 |                                                                                        | Sawmill, log storage, wood debris disposal                                                              |
| 1946-1965 | Port of Bellingham (lease holder on state-owned portion)                               | See below                                                                                               |
| 1954-1962 | City of Bellingham (sublease on state-owned portion from Port)                         | Refuse disposal                                                                                         |
| 1962-1965 | American Fabricators (sublease on state-owned portion from Port)                       | Refuse disposal (leased land to the City for an extension of the landfill; landfill was closed in 1965) |
| 1971-1985 | Georgia Pacific West (leaseholder, including sublease on stateowned portion from Port) |                                                                                                         |
| 1985      | Georgia Pacific West                                                                   | Purchased portion of the Site from the Port ("fee-owned portion")                                       |
| 2005      | Port of Bellingham                                                                     | Repurchased "fee-owned portion" from Georgia Pacific West                                               |
| 2005      | City of Bellingham                                                                     | Purchased an ownership interest in the "fee-owned portion" from the Port                                |
| 2012      | City of Bellingham                                                                     | Acquired remaining "fee-owned portions" of the Site from the Port                                       |

Table 1-1. Site History

#### 1.2.3 Site Investigation Background

A number of environmental investigations were conducted at the Site prior to developing the CAP. The Site Remedial Investigation/Feasibility Study (RI/FS, Landau Associates 2013) identified the previous Site investigations. The exploration boring/test pit locations for these prior Site investigations are also provided on Figure 3. In 2015, Landau Associates conducted additional predesign investigations to support development of this EDR. The results of the pre-design investigations are provided in Section 4.0.

#### 1.2.4 Geology and Hydrogeology

The RI/FS provided a detailed description of the geology and hydrogeology of the Site. In summary:

- Bedrock underlies the entire Site at varying depths and consists of sandstone and carbonaceous shale of the Chuckanut Formation.
- Overlying the Chuckanut Formation beneath the Site and Bellingham Bay is glacial marine drift
  consisting of gray, silty clay with occasional gravel and marine shells. The top of the glacial
  marine drift ranges from 20 feet (ft) below ground surface (BGS) near the eastern edge of the
  landfill refuse to about 40 ft BGS near the existing shoreline. The thickness of the glacial
  marine drift varies from greater than 30 ft thick near the existing shoreline until it tapers out
  near the eastern extent of the refuse.
- Fine-grained sediments deposited in Bellingham Bay by the Nooksack River typically overlie the glacial marine drift. Boring logs indicate that this unit generally consists of green-gray silt, or green-gray silty clay and sandy silt. The silt deposited by the Nooksack River ranges in thickness from about 8 ft near the existing shoreline to near zero at the eastern edge of the refuse. The top of the Nooksack deposit is encountered at a depth of about 20 ft BGS near the eastern edge of the refuse and at a depth of about 30 ft BGS near the existing shoreline. The Nooksack deposit generally increases in thickness toward Bellingham Bay and becomes absent toward the northern and eastern portions of the Site. The Nooksack deposit represents the uppermost native deposit underlying the Site and Bellingham Bay.
- Sawdust and wood debris overlie the Nooksack deposit and the older units within the southwestern portion of the Site, and generally bounds the eastern edge of the refuse. Wood waste was encountered as shallow as 2 to 3 ft BGS east of the refuse and about 15 ft BGS within the southwestern portion of the Site.
- Landfill refuse overlies the wood waste within the southwestern portion of the Site and the Nooksack deposits or Chuckanut Formation within the northeastern portion of the Site. The refuse thickness generally increases toward Bellingham Bay, ranging in thickness from 0 to 40 ft at the eastern Site boundary to the existing shoreline, respectively. The top of the refuse was typically encountered between 2 and 5 ft BGS in the upland portion of the Site.
- Overlying the refuse is the landfill cover soil and traffic surfaces. The cover soil consists
  primarily of granular material (sand and gravel), wood debris, and occasional areas of cobble
  ballast.

There are three principal hydrostratigraphic units can be identified beneath the Site. The three units are described below from shallow to deep.

- The uppermost unit consists of the landfill refuse, sawdust, and wood debris, and other fill materials placed at and near the Site. Groundwater is first encountered in this unit.
- The second unit consists of fine-grained silts and clays of both the glacial marine drift and Nooksack deposits, which form the uppermost aquitard throughout most of the Site.
- The third unit is the sandstone of the Chuckanut Formation. This unit could act as an aquifer within portions of the formation that exhibit limited fracturing. The potential for saltwater intrusion from Bellingham Bay likely prohibits the shallow portions of the Chuckanut Formation from being a practicable source of potable water.

The depth to groundwater observed at the Site varied between 4 to 16 ft BGS during the supplemental RI activities and is shallower during the wet season. The saturated thickness of the uppermost hydrostratigraphic unit ranges from about 2 ft at the eastern edge of the Site to almost 30 ft at some locations along the shoreline in the southern portion of the Site. The saturated thickness of the uppermost hydrostratigraphic unit is generally thinner in the northern portion of the Site and thicker in the southern portion of the Site.

In the northern portion of the Site, adjacent to the RG Haley Site, groundwater flow is toward the southwest with a relatively steep hydraulic gradient (0.006 ft/ft) compared to the gradient in the southern portion of the Site (0.003 ft/ft). The higher hydraulic gradients in the northern portion of the Site correlate to an average saturated thickness of about 8 ft, while the flatter hydraulic gradient in the southern portion of the Site correlates to an average saturated thickness of about 23 ft. Thus, the variation in hydraulic gradient for these two areas is partially related to the variation in saturated thickness rather than variations in recharge and/or hydraulic conductivity.

#### 1.2.5 Environmental Conditions

The Site RI/FS identified the following constituents of potential concern and associated media:

- Refuse and wood waste in upland "soil" and in aquatic portions of the Site
- Metals and semivolatile organic compounds (SVOCs) in Site soil
- Metals and dioxins/furans in interim action stabilized sediment within the IPA stockpiles
- Metals, polychlorinated biphenyls (PCBs), fecal coliform, manganese, and ammonia in groundwater
- Methane and possibly volatile organic compounds (VOCs) in soil gas
- Metals, PCBs, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), bis(2ethylhexyl)phthalate (BEP), and butylbenzylphthalate (BBP) in sediment

The extent of the refuse and wood debris and the overlap area discussed previously associated with the RG Haley Site are shown on Figure 3.

These constituents of potential concern were further evaluated as part of the Site RI/FS process to eliminate those which did not exceed applicable cleanup levels or were not otherwise representative of Site conditions. Those that remained from this elimination process were identified as Indicator Hazardous Substances (IHSs) for the Site. The CAP identifies Site IHSs and their associated media as follows:

- Refuse, wood waste, existing cover soils, and interim action imported dredged sediment in the upland portion of the Site
- Refuse and wood debris in the aquatic portion of the Site
- Manganese and ammonia in Site groundwater
- Methane and possibly VOCs in soil gas

• Metals (cadmium, lead, copper, silver, zinc), PCBs, cPAHs, and BEP in marine sediment Petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and SVOCs in the overlap area resulting from releases from the RG Haley Site are not specifically addressed in the CAP. However, the cleanup action for the Site considered coordination of the cleanup activities for the two sites to ensure the selected Site cleanup action will not preclude future cleanup activities related to the RG Haley Site releases (see Section 5.1.12).

#### 2.0 MEDIA TO BE ADDRESSED AND CLEANUP STANDARDS

This section discusses the affected media at the Site including soil, groundwater, sediment, and air. Cleanup standards consist of: 1) cleanup levels (CLs) defined by regulatory criteria that are adequately protective of human health and the environment, and 2) the points of compliance at which the cleanup levels must be met. Cleanup levels for each media are presented in Table 2-1. The CLs presented in Table 2-1 for each media are the same as those presented in the CAP, except the CLs for air, which were developed after the CAP.

#### **2.1** Soil

Because of its nature as a waste material and inherent heterogeneity, the refuse at the Site is considered contaminated; other solid media in the upland portion of the Site, including wood waste, the existing Site cover soil, and the interim action stabilized marine sediment brought to the Site are also considered contaminated soil for the purposes of the cleanup action. The selected cleanup action addresses the contaminated soil/refuse/wood waste/interim action sediment through containment. Containment is defined herein as preventing direct contact with contaminated soil/waste and preventing surface water from infiltrating through the soil/waste. As a result, numeric soil CLs protective of direct contact, leaching to groundwater, and/or erosion have not been established. The point of compliance for soil, based on WAC 173-340-740(6), is throughout the Site, and soil cleanup standards will be achieved through containment.

#### 2.2 Groundwater

As discussed in the RI, Ecology has determined that Site groundwater is non-potable (Landau Associates 2013). Discharge to sediment and chemical volatilization are also not pathways of concern for this Site because the primary contaminants in groundwater have low sediment toxicity (ammonia and manganese), and volatile chemicals, if present, will be captured in a LFG collection system. Therefore, groundwater CLs protective of marine surface water are appropriate for the Site. The downgradient edge of the Site uplands, as close as technically possible to the point-of-entry of groundwater to Bellingham Bay, has been established as the point of compliance for Site groundwater.

#### 2.3 Sediment

The sediment CLs are based on the chemical criteria and Site-specific physical criteria for refuse and wood debris coverage considered protective of benthic organisms. The physical criteria for the sediment CLs consist of the following Site-specific criteria for refuse and wood debris in the aquatic environment that Ecology considers adequately protective of benthic organisms:

- No more than a 1 ft thickness of sediment where wood debris (e.g., sawdust or wood chips) constitutes greater than 50 percent of the sediment by volume
- No detectable refuse

• No less than 1 ft of clean sediment coverage over sediment that exceeds the above criteria for wood debris and refuse.

Additional testing (bioassays) was conducted during the pre-design investigation of the selected cleanup action to confirm the protectiveness of these physical criteria. The bioassay results are summarized in Section 4.7.

#### 2.4 Air

LFG is generated as a byproduct when buried refuse and wood waste decomposes at the Site. This gas is currently uncontrolled, and slowly migrates through the existing soil cover, ultimately ventilating to the atmosphere. Because the amount of waste at this landfill is relatively small, and due to its age, most of the decomposition has already occurred, and it is not anticipated that a large amount of LFG is being produced at this time. However, even small amounts of LFG must be provided a ventilation pathway so that it does not accumulate to concentrations that could cause safety or health risks.

LFG is primarily composed of methane and carbon dioxide, but also contains water vapor, odorous compounds, and typically trace levels of VOCs. The production of LFG decreases over time, as the source material (organic waste) is depleted through decomposition. As a result, the pre-design investigation was conducted to evaluate the quantity and quality of gas currently being produced, so an appropriate control system could be designed as part of the cleanup action.

Air quality standards for the Site include those established under the Northwest Clean Air Agency, which enforces the Clean Air Act (RCW 70.94) in this region of Washington State, in accordance with Chapter 173-460 WAC. In addition to these potential treatment and discharge regulatory criteria, generally discussed herein as air permitting considerations, cleanup standards were developed for this EDR, as discussed in the CAP.

The MTCA Method B air cleanup levels in Appendix A, Attachment A.5 (and summarized below in Table 2-1) were calculated using Ecology's standard formulas (equations 750-1 and 750-2) and default parameters presented in WAC 173-340-750, Cleanup Standards to Protect Air Quality. Toxicity data including reference doses and carcinogenic potency factors were used as specified in WAC 173-340-708 and provided by Ecology in the Cleanup Levels and Risk Calculation (CLARC) Master Spreadsheet, available through Ecology's CLARC website (Ecology website 2015). For constituents with both cancer and non-cancer risk types, the lower of the two criteria was selected for application at the Site.

Although MTCA allows adjustments to exposure parameters to match site-specific exposure expectations, the use of such adjustments would result in the calculated values being considered remediation levels instead of cleanup levels. As a result, the highly conservative default exposure parameters were used, which assume Site visitors would be present at the Site for 24 hours per day, 365 days per year, for the full time of exposure duration (6 years for non-cancer risks and 30 years for cancer risks). MTCA Method B air cleanup levels are adopted as numerical criteria, and the point of compliance is ambient air throughout the Site.

Table 2-1. Cleanup Levels

| Media       | Chemical Parameter                    | Cleanup Level   | Units             |
|-------------|---------------------------------------|-----------------|-------------------|
| Groundwater | Manganese                             | 0.1             | mg/L              |
|             | Ammonia                               | 0.35            | mg/L              |
| Sediment    | Cadmium                               | 1               | mg/kg             |
|             | Lead                                  | 21              | mg/kg             |
|             | cPAHs                                 | 0.016           | mg/kg             |
|             | PCBs                                  | 0.006           | mg/kg             |
|             | Copper                                | 390             | mg/kg             |
|             | Silver                                | 6.1             | mg/kg             |
|             | Zinc                                  | 410             | mg/kg             |
|             | bis(2-Ethylhexyl)phthalate            | 47 <sup>a</sup> | mg/kg             |
| Air         | Dichlorodifluoromethane (CFC 12)      | 4.57E+01        | μg/m <sup>3</sup> |
|             | Chloromethane                         | 4.11E+01        | μg/m <sup>3</sup> |
|             | 1,3-Butadiene                         | 8.33E-02        | μg/m³             |
|             | Bromomethane                          | 2.29E+00        | μg/m <sup>3</sup> |
|             | Chloroethane                          | 4.57E+03        | μg/m <sup>3</sup> |
|             | Acetonitrile                          | 2.74E+01        | μg/m <sup>3</sup> |
|             | Acrolein                              | 9.14E-03        | μg/m <sup>3</sup> |
|             | Acetone                               | 1.42E+04        | μg/m <sup>3</sup> |
|             | Trichlorofluoromethane                | 3.20E+02        | μg/m <sup>3</sup> |
|             | Acrylonitrile                         | 3.68E-02        |                   |
|             | 1,1-Dichloroethene                    |                 | μg/m <sup>3</sup> |
|             | · · · · · · · · · · · · · · · · · · · | 9.14E+01        | μg/m <sup>3</sup> |
|             | Methylene Chloride                    | 2.50E+02        | μg/m <sup>3</sup> |
|             | 3-Chloro-1-propene (Allyl Chloride)   | 4.17E-01        | μg/m <sup>3</sup> |
|             | Carbon Disulfide                      | 3.20E+02        | μg/m³             |
|             | 1,1-Dichloroethane                    | 1.56E+00        | μg/m <sup>3</sup> |
|             | Methyl tert-Butyl Ether               | 9.62E+00        | μg/m <sup>3</sup> |
|             | Vinyl Acetate                         | 9.14E+01        | μg/m <sup>3</sup> |
|             | 2-Butanone (MEK)                      | 2.29E+03        | μg/m³             |
|             | Ethyl Acetate                         | 3.20E+01        | μg/m³             |
|             | n-Hexane                              | 3.20E+02        | μg/m³             |
|             | Chloroform                            | 1.09E-01        | μg/m <sup>3</sup> |
|             | 1,2-Dichloroethane                    | 9.62E-02        | μg/m <sup>3</sup> |
|             | 1,1,1-Trichloroethane                 | 2.29E+03        | μg/m <sup>3</sup> |
|             | Benzene                               | 3.21E-01        | μg/m <sup>3</sup> |
|             | Carbon Tetrachloride                  | 4.17E-01        | μg/m <sup>3</sup> |
|             | Cyclohexane                           | 2.74E+03        | -                 |
|             | 1,2-Dichloropropane                   |                 | μg/m <sup>3</sup> |
|             | , , , , , , , , , , , , , , , , , , , | 2.50E-01        | μg/m <sup>3</sup> |
|             | Bromodichloromethane                  | 6.76E-02        | μg/m <sup>3</sup> |
|             | Trichloroethene                       | 3.70E-01        | μg/m <sup>3</sup> |
|             | 1,4-Dioxane                           | 5.00E-01        | μg/m <sup>3</sup> |
|             | Methyl Methacrylate                   | 3.20E+02        | μg/m³             |
|             | cis-1,3-Dichloropropene               | 6.25E-01        | μg/m³             |
|             | 4-Methyl-2-pentanone                  | 1.37E+03        | μg/m³             |
|             | 1,1,2-Trichloroethane                 | 9.14E-02        | μg/m³             |
|             | Toluene                               | 2.29E+03        | μg/m <sup>3</sup> |
|             | Dibromochloromethane                  | 9.26E-02        | μg/m <sup>3</sup> |
|             | 1,2-Dibromoethane                     | 4.17E-03        | μg/m <sup>3</sup> |
|             | Tetrachloroethene                     | 9.62E+00        | μg/m <sup>3</sup> |
|             | Chlorobenzene                         | 2.29E+01        | μg/m <sup>3</sup> |
|             | Ethylbenzene                          | 4.57E+02        | μg/m <sup>3</sup> |
|             | m,p-Xylenes                           | 4.57E+01        |                   |
|             |                                       |                 | μg/m <sup>3</sup> |
|             | Bromoform                             | 2.27E+00        | μg/m <sup>3</sup> |
|             | Styrene                               | 4.57E+02        | μg/m <sup>3</sup> |
|             | o-Xylene                              | 4.57E+01        | μg/m³             |

Table 2-1. Cleanup Levels

| Media | Chemical Parameter          | Cleanup Level | Units |
|-------|-----------------------------|---------------|-------|
| Air   | 1,1,2,2-Tetrachloroethane   | 4.31E-02      | μg/m³ |
|       | Cumene                      | 1.83E+02      | μg/m³ |
|       | n-Propylbenzene             | 4.57E+02      | μg/m³ |
|       | 1,2,4-Trimethylbenzene      | 3.20E+00      | μg/m³ |
|       | Benzyl Chloride             | 5.10E-02      | μg/m³ |
|       | 1,4-Dichlorobenzene         | 2.27E-01      | μg/m³ |
|       | 1,2-Dichlorobenzene         | 9.14E+01      | μg/m³ |
|       | 1,2-Dibromo-3-chloropropane | 4.17E-04      | μg/m³ |
|       | 1,2,4-Trichlorobenzene      | 9.14E-01      | μg/m³ |
|       | Naphthalene                 | 7.35E-02      | μg/m³ |
|       | Hexachlorobutadiene         | 1.14E-01      | μg/m³ |
|       | Vinyl Chloride              | 2.80E-01      | μg/m³ |

<sup>&</sup>lt;sup>a</sup> Based on carbon-normalized SMS SCO

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

μg/m³ = micrograms per cubic meter

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

PCBs = polychlorinated biphenyls

SCO = Sediment Cleanup Objective

SMS = Sediment Management Standards

Table 2-1 presents the air cleanup levels. MTCA does not provide cleanup levels for methane or landfill gas, because the reference doses and cancer potency factors necessary to calculate cleanup levels are not available. In lieu of cleanup levels, MTCA does establish an explicit upper bound, based on explosivity, for any air cleanup level that might be developed – "Standard Method B air cleanup levels shall not exceed ten percent (10%) of the lower explosive limit for any hazardous substance or mixture of hazardous substances" (WAC 173-340-750[3][b][iii]).

MTCA also invokes closure requirements under applicable landfill closure regulations, and establishes those under Chapter 173-304 WAC as the minimum. The following specific requirements from Chapter 173-304 WAC apply to the Cornwall Landfill (WAC 173-304-460[2][b][i]):

- The concentration of explosive gases cannot exceed 25 % of the lower explosive limit (LEL) in site structures. The LEL for methane is 5% by volume;
- The concentration of explosive gases cannot exceed the LEL in the subsurface at or beyond the property boundary.
- The concentration of explosive gases cannot exceed 100 ppmv of hydrocarbons (expressed as methane) in off-site structure

In addition to LFG and its typical constituents, some VOCs may be present in the subsurface due to releases of petroleum hydrocarbons at the adjacent RG Haley Cleanup Site. As discussed in Section 4.2.3, soil vapor characterization has been conducted, including in the area potentially impacted by RG Haley releases to evaluate the concentrations of VOCs present throughout the Site. The LFG control system will be designed to address these VOCs (if present) by providing capture, treatment if necessary, and ventilation of these gasses.

#### 3.0 PLANNED CLEANUP ACTION

## 3.1 Overview of the Final Cleanup Action

The final cleanup action will consist of construction of a landfill cover system over the upland area (MU-1) and shoreline protection and a thin-layer sediment cap over the in-water area (MU-2). The design of the MU-1 and MU-2 cover systems are shown on Figures 7 through 18, and the detailed description and design is provided in Section 5.0.

The MU-1 landfill cover system will consist of:

- Low Permeability Capping System, including (from the upper surface downward):
  - Topsoil a minimum 6-inch thickness of organic soil that will support grass growth. (The cleanup action plan [Ecology 2014], recommended at least a 1-ft-thick layer of topsoil underlain by a granular fill soil. After further review and design, it is determined that a 6-inch minimum thickness of organic topsoil over a thicker section sandy cover soil would be contribute to a better functioning cover system while providing enough thickness to support grass growth. A thinner topsoil section will be less compressible and degradable after construction, provide better protection of the underlying layers, and be less expensive to construct).
  - Cover soil a minimum 18-inch thickness of medium- to fine-grained sand to provide a thickened cover section to protect the underlying drainage and barrier layer.
  - Drainage layer a 200-mil (0.2 inch) nominal thickness drainage geocomposite consisting of a plastic geonet and geotubes or piping with non-woven geotextile heat bonded to both sides.
  - Geomembrane layer A 20-mil (0.02 inch) nominal thickness scrim-reinforced polyethylene liner material to act as part of a composite infiltration barrier to infiltration of rain/snowmelt to the underlying waste.
  - Low-permeability soil layer The fine-grained stabilized marine sediment stored at the Site as part of the 2011/2012 interim action will be placed and compacted to a minimum 2-ft thickness to form a composite infiltration barrier with the overlying geomembrane in direct contact with the upper surface.
  - LFG collection layer a 200-mil (0.2 inch) nominal thickness drainage geocomposite
    consisting of a plastic geonet and geotubes or piping with non-woven geotextile heat
    bonded to both sides to collect and convey LFG.
  - General fill imported soil, Site intertidal/shoreline rubble, and soil or sediment from the RG Haley Site, placed in compacted horizontal lifts then graded as needed to create adequate grades for stormwater surface drainage. Note that imported fill includes Hilton Avenue soil that was brought to the Site as approved by Ecology in 2016 as an interim action, and future clean fill soil that may be brought to the Site from offsite sources.
- Stormwater Management System, including:
  - Plugging in place the existing stormwater catch basins and piping in the northeast portion of the Site prior to grading/filling for cover construction.

- Grading to provide adequate surface drainage and prevent stormwater ponding.
- Constructing a lined drainage ditch around the north and east side of the landfill cover that discharges to Bellingham Bay at the current discharge point. The ditch liner system has been designed so that cover maintenance activities will not result in damage to the liner.
- Improving drainage along the BNSF property to reduce infiltration. The drainage improvement will be contingent on groundwater monitoring showing the need to reduce upgradient recharge.
- Landfill Gas Control, including:
  - The LFG collection layer noted above as part of the cover system to collect and convey gas that rises up to the cover system, and prevent the accumulation of gasses or buildup of pressure below the low-permeability layer.
  - Four landfill gas wells installed and screened into the underlying waste to allow LFG to migrate to the LFG collection system and provide subsurface pressure relief.
  - LFG header pipes and perforated collection pipes placed in trenches to collect LFG from the wells and LFG collection layer (noted in low permeability capping system above) and direct the collected gas to the vents.
  - Two passive LFG vents fitted with wind turbines on the top of the vent pipe.
  - The vents will be fitted with flush-mount vaults to allow future installation of granular activated carbon canisters if unacceptable odor levels are detected.

The MU-2 cleanup will consist of stabilizing and protecting the intertidal and shallow subtidal zone and placing a thin layer sediment cap within the deep subtidal portion of MU-2 beyond the limits of the shoreline protection system, and will include:

- Clearing the current intertidal zone of rubble and debris and placing this rubble with imported soil as general fill in the MU-1 area.
- Constructing a shoreline protection/stabilization system along the shoreline perimeter of the Site to disperse erosive currents and/or wave action along the south and west shorelines of the Site.
- Placing a 1-ft-thick sand filter layer consisting of well-graded sand and gravel on the intertidal slope as a filtration layer beneath the shoreline stabilization system. Additionally, the groundwater compliance monitoring wells will be integrated into the sand filter treatment layer to provide representative samples of groundwater as close as practicable to the groundwater/surface water interface.
- Placing a non-woven geotextile layer atop the sand filter layer to provide separation between
  the sand filter and the overlying stabilization material to ensure that the filter media is not
  eroded through the larger stabilization media pore spaces.
- Installing shoreline stabilization material 2 to 3 ft thick and ranging in size from sandy gravel to 1.5-ft-diameter (average size) boulders to dissipate wave energy along the shoreline.

 Placing a 6-inch-thick thin layer sand cap extending from the outer boundary of the shoreline stabilization system to the outer limit of Site refuse and wood debris to enhance natural recovery.

### 3.2 Engineering Justification for Design

The following sections present:

- Design criteria for the various components of the cleanup action
- A description of how cleanup effectiveness will be determined and cleanup standards will be complied with
- Identification of how the release of hazardous materials will be prevented
- How worker and public safety will be protected
- How hazardous materials generated as part of the cleanup action will be managed and disposed
- A description of Site-specific features that affect the conceptual design.

#### 3.2.1 Design Criteria

The general design criteria for this cleanup action are presented below:

- Erosion and sediment control regulations and requirements
- Allowable landfill settlement and minimum required cover system slopes
- Allowable soil slopes, including global and in-plane cover stability, under static and seismic loading
- Fill material physical and chemical characteristics appropriate for future Site use
- Required LFG controls to meet applicable air quality criteria for LFG emissions
- Finish grade and landscape stormwater controls required to meet design storm events
- Anticipated sea level rise, ocean currents, design storm wind/wave criteria used for shoreline protection design.

The development of the final cleanup action conceptual design addressing these design criteria are presented in Sections 4.0 and 5.0 in conjunction with supporting data and analyses.

#### 3.2.2 Efficiency and Effectiveness of the Cleanup Action

The selected cleanup action complies with the provisions of WAC 173-340-360. It will be protective of human health and the environment, comply with cleanup standards and applicable state and federal laws, and provide for compliance monitoring. Refuse, wood waste, soil, and sediment with hazardous substance concentrations that exceed CLs will be contained. Institutional controls will provide notification regarding the presence of residual contaminated soils, regulate the disturbance/management of those soils/sediment and the cleanup action components, and provide for long-term monitoring and stewardship of the cleanup action. As discussed above, the selected cleanup action is

also considered to use permanent solutions to the maximum extent practicable, and to provide for a reasonable restoration time frame.

#### 3.2.3 Compliance with Cleanup Standards

Site cleanup standards are anticipated to be achieved as long as the cleanup action is conducted in a manner that is consistent and in compliance with the CAP, accepted engineering practices, and the requirements specified in WAC 173-340-360.

#### 3.2.4 Controls to Prevent Hazardous Material Releases

The following controls will be implemented to prevent releases of hazardous materials during implementation of the cleanup action:

- Installation and maintenance of temporary erosion and sediment control (TESC) structures
  and best management practices (BMPs) during construction of the cleanup action. These
  controls and BMPs include wetting of soil, as necessary, during excavation, grading, and
  compaction to control dust; silt fencing; tire washing of haul trucks; applying crushed rock
  over exposed soil; and stormwater drainage to infiltration areas.
- Properly covering and securing loads during hauling operations.
- Properly decontaminating all heavy equipment that comes into contact with contaminated media prior to exiting the Site.
- Deploying floating oil and debris containment booms with silt curtains around active upland shoreline and in-water work (clearing, grading, and material placement).
- Other measures as needed to prevent the release of contaminated soil, groundwater, or marine sediment beyond the limits of the Site, and to achieve surface water quality standards established for in-water construction.

Additional construction means and methods to minimize contaminant releases are provided in Section 6.0.

## 3.3 Permitting and Regulatory Requirements

The cleanup construction for MU-1 will involve large quantities of earthwork and, therefore, require City construction-related permits (or the substantive requirements thereof). Prior to construction (during the construction plan stage), the Port will work with the City to confirm that the project meets substantive permit requirements. The cleanup has been designed to use the existing stormwater detention system and ditches during construction prior to discharge off of the Site. The Port or construction contractor will obtain a National Pollutant Discharge Elimination System (NPDES) construction stormwater permit for the construction of the cleanup action, including development of a construction Stormwater Pollution Prevention Plan (SWPPP) that provides specific procedures for stormwater management during cleanup of contaminated soil. Additionally, the project will need to comply with the substantive provisions of a City Shoreline Substantial Development Permit.

The cleanup construction for MU-2 will require in-water construction activities that are subject to review under state and federal permitting authorities. Permitting will require coordination with the United States (US) Army Corps of Engineers (USACE) and resource services, and preparation of a Joint Aquatics Resource Permit Application (JARPA) and a Biological Evaluation (BE). Early coordination with the state and federal resource services will be conducted to discuss the various project elements and the likely impacts of the project on marine habitat. This input will be used to refine the design and address any concerns of the resource services in the design prior to submitting the JARPA. It is anticipated that the in-water work will be conducted under a Nationwide 38 permit issued by the USACE and a Hydraulic Project Approval (HPA) issued by the Washington State Department of Fish and Wildlife (WDFW). The substantive requirements of the Section 401 Water Quality Certification (WQC) will also need to be met (substantive requirements achieved through coordination with Ecology). In accordance with MTCA, all cleanup actions conducted under MTCA shall comply with applicable state and federal laws (WAC 173-340-710[1]). MTCA defines applicable state and federal laws to include legally applicable or relevant and appropriate requirements (collectively referred to as the ARARs). For this cleanup action, these ARARs include:

- Washington Water Pollution Control Act and the following implementing regulation: Water
  Quality Standards for Surface Waters (Chapter 173-201A WAC) and Sediment Management
  Standard (SMS, Chapter 173-204 WAC). These regulations establish water quality standards
  for surface waters of the State of Washington consistent with public health and the
  propagation and protection of fish, shellfish, and wildlife. These standards were used to
  develop the appropriate stormwater BMPs for the Site.
- Washington State Clean Air Act of 1990: Through Chapter 70.94 RCW and the Air Quality Regulations of Chapter 173-460 WAC, Washington State will regulate emissions of toxic or hazardous air pollutants from this Site. It is anticipated that the Site emissions will be below the threshold criteria of these regulations due to the low levels of air pollutants expected from discharge of LFG.
- Minimum Functional Standards for Solid Waste Handling (MFS; Chapter 173-304 WAC): These regulations contain typical closure requirements that are relevant based on the waste disposal history of the Site. The current refuse regulations, Criteria for Municipal Solid Waste Landfills (Chapter 173-351 WAC), are not an ARAR for the Site because the current solid waste regulations specifically reference the MFS as the applicable regulations for landfills that did not accept waste after October 9, 1991 (WAC 173-351-010[2][b]).
- Resource Conservation and Recovery Act (RCRA), Subtitle C regulations and Washington Hazardous Waste Management Act (Chapter 70.105 RCW) and the following implementing regulation: Dangerous Waste Regulations (Chapter 173-303 WAC), to the extent that any hazardous wastes are discovered during the cleanup action. (These regulations may be applied in the overlap area with the RG Haley Cleanup Site for any listed wastes that are present related to RG Haley operations.) These regulations establish a comprehensive statewide framework for the planning, regulation, control, and management of dangerous waste. The regulation designates those solid wastes that are dangerous or extremely hazardous to the public health and environment. The management of excavated contaminated soil from the Site will be conducted in accordance with these regulations.

- Clean Water Act, with respect to water quality criteria for surface water (Bellingham Bay) and in-water work associated with dredging or sediment capping.
- Shoreline Management Act (SMA; Chapter 90.58 RCW and WAC 173-26-201) and City of Bellingham Shoreline Substantial Development Permit (Bellingham Municipal Code [BMC] Title 22): Establishes permitting and other requirements for substantial development occurring within waters of the US or within 200 ft of a shoreline, and requires that the activities in coastal zones be consistent with local regulations. In accordance with MTCA, cleanup projects being conducted under an enforceable order or consent decree are not required to obtain the shoreline permit; however, the cleanup must be conducted in accordance with the substantive requirements of the regulation.
- Hazardous Waste Operations (Chapter 296-843 WAC): Establishes safety requirements for workers providing investigation and cleanup operations at sites containing hazardous materials. These requirements will be applicable to onsite cleanup activities and will be addressed in a Site health and safety plan prepared specifically for these activities.
- Dredge and fill requirements under Chapter 320-330 of the Code of Federal Regulations (CFR) and Hydraulic Code Rules under Chapter 220-110 WAC.
- The Endangered Species Act (ESA), due to listing of Puget Sound Chinook and the potential listing of Coastal/Puget Sound bull trout.
- City of Bellingham Stormwater Requirements BMC Chapter 15.42.
- City Critical Areas Ordinance (BMC Chapter 16.55 Critical Areas).
- Major Grading Permit; City of Bellingham Grading Ordinance, BMC Chapter 16.70.

## 3.4 Operation and Maintenance of the Cleanup Action

Operation and maintenance is required for perpetuity due to containment being a primary element of the cleanup action. The cleanup action will be designed to minimize long-term operation and maintenance, and due to the passive nature of the cleanup action, significant operation and maintenance activities outside of long-term compliance monitoring are not anticipated. Post-construction operation and maintenance activities for the cleanup action are described in Section 7.0.

#### 4.0 PRE-DESIGN INVESTIGATION RESULTS

A number of pre-design characterization activities were completed to provide the necessary data and other information to design the final cleanup action for the Site. The pre-design characterization activities included:

- Land survey of the area boundaries, features, topography, and bathymetry
- LFG monitoring and modeling
- Evaluation of the physical properties of the stabilized marine sediment material placed on the Site as an interim action in 2011/2012
- Evaluation of the refuse cover thickness and refuse surface elevation
- Evaluation of the physical and chemical properties of soil to be imported to the Site for preloading and use as fill to achieve drainage grades for the landfill cover system
- Evaluation of the existing stormwater drainage conditions
- Bioassay testing to evaluate the protectiveness of accumulated marine sediment cover over refuse and wood waste in the aquatic portion of the Site
- Evaluation of eelgrass extent and shoreline habitat conditions.

The following sections describe the pre-design activities that were completed.

## 4.1 Surveying and Site Topography

Upland and aquatic areas of the Site were surveyed to support cleanup design activities. The upland and bathymetric surveys were combined to provide a 0.5-ft contour plan of the Site appropriate for design. The contour plan showing a 1-ft contour interval is shown on Figure 2 and used as the base plan for the remainder of the plan figures. The horizontal datum for the survey is NAD83 WA North Zone, and the vertical datum is mean lower low water (MLLW) for in-water permitting and related aquatic habitat evaluations. The City typically uses NAVD88 vertical datum, which will be used as the datum for preparation of construction documents. The relationships of the NAVD and MLLW datum to other relevant datums are provided in Table 4-1.

Table 4-1. Site Elevation of Other Datum

| Datum                                | NAVD 88(ft) | MLLW (ft) |
|--------------------------------------|-------------|-----------|
| Highest Observed Tide                | 9.93        | +10.42    |
| Mean Higher High Water Level (MHHW)  | 8.02        | +8.51     |
| Mean High Water (MHW)                | 7.30        | +7.79     |
| Mean Tidal Level (MTL)               | 4.58        | +5.07     |
| Mean Sea Level (MSL)                 | 4.46        | +4.95     |
| NGVD29 Datum                         | 3.91        | +4.40     |
| Mean Low Water (MLW)                 | 1.86        | +2.35     |
| NAVD88 Datum – Zero Elevation        | 0.00        | +0.49     |
| Mean Lower Low Water (MLLW) Datum    | -0.49       | 0.00      |
| City Datum – Zero Elevation          | -1.73       | -1.24     |
| Lowest Observable Tide               | -3.96       | -3.47     |
| Calculated Extremely Low Water Level | -4.99       | -4.50     |

The bathymetric survey was completed between January 19 and January 27, 2015 during high tide conditions to provide data as high in the intertidal zone as possible and thus maximize the overlap with the upland survey limits. The bathymetric survey:

- Followed USACE Class 1 specifications
- Included approximately 125 transects, 25 ft apart to produce ½-ft contour interval bathymetry
- Used real time kinetic (RTK) global positioning system (GPS) technology to obtain bathymetric data.

The upland survey included the following elements:

- A property boundary survey
- A 25-ft survey grid to produce ½-ft contour topography of uplands
- An intertidal shoreline during low tide to fill the gap in the upper intertidal area associated with the bathymetric survey
- IPA surface elevations at the same locations as the post-construction as-builts to estimate the amount of settlement that has occurred due to compression of the underlying refuse
- Existing perimeter berms
- Top of casing elevations for groundwater monitoring wells and ground surface for temporary gas monitoring points (shown on Figure 2) to a vertical accuracy of ±0.01 ft
- Pre-design characterization boring and test pit locations and elevations
- Existing outfall locations and elevations (if accessible), catch basins, swales, drainage features, culvert invert elevations, and subsurface conveyances
- Asphalt pavement limits, gravel roads, and slabs
- Existing City monuments and benchmarks
- Existing fencing.

The surveyor used high-precision 2013 light detection and ranging (LIDAR) data available from the City to enhance the ground-measured topography in areas that have little dynamic relief or excessive ground cover. The upland survey along the shoreline was conducted during extreme low tides to extend land surveying as far into the intertidal zone as practicable because land surveying provides a higher level of accuracy than bathymetric surveying techniques, particularly in very shallow water. Delineating the intertidal/upland interface was accomplished with additional measurements using side scan imaging which included the following to a +/-0.02 ft level of accuracy:

- Collecting additional measurements for steep slopes at the shoreline to more accurately delineate the intertidal/upland interface.
- Surveying the location and top elevation of erratics (e.g., boulders, construction debris) at the intertidal/upland interface and in the upper intertidal zone that extend into upland elevations.
- Collecting additional measurements or transects at the shoreline where rapid changes in shoreline alignment occurs (i.e., localized protrusions and depressions).

The Site is relatively flat, sloping gently downward to the southwest, with a surface elevation generally ranging from about 16 to 10 ft above MLLW. The slopes of the intertidal and shallow subtidal zones (above -10 ft MLLW) range from between about 5 Horizontal to 1 Vertical (5H:1V) to 10H:1V, and are generally within 100 to 200 ft of Site uplands. The deeper subtidal zone offshore from the Site has a relatively flat slope of about 20H:1V. Site topography and bathymetry information is shown on Figure 2.

Presently, the only significant features on the Site consist of the IPAs containing stabilized sediment placed in the 2011 and 2012 interim action, with a constructed perimeter berm and stormwater ditches. The stormwater ditches are connected to the stormwater detention basin constructed in 2005 at the south end of the Site following demolition of the Georgia Pacific (GP) warehouse. The Site is largely unpaved, with the exception of an asphalt road in the northeastern portion of the Site and asphalt pavement near the northern end of the former GP warehouse building in the northeastern portion of the Site. The ground surface contains some areas with sparse vegetation consisting of a variety of grasses and weeds that are occasionally mowed by Port maintenance personnel. Additionally, habitat features near the intertidal/upland interface were carefully surveyed by the project habitat biologist using GPS instruments to ensure that the upland/aquatic interface is accurately delineated for use in evaluating the gain/loss in aquatic habitat as a result of the final cleanup action. These habitat features are also shown on Figure 2.

#### 4.2 Landfill Gas Evaluation

A combination of field investigation and computer modeling was used to evaluate the quantity and quality of the LFG being generated at the Site. As part of this evaluation, Landau Associates developed a model of the LFG generation rate, conducted two phases of pre-design field investigation, and developed an air dispersion model using the results of the modeling and Site monitoring data. These data were then used to evaluate ambient air quality for potential impacts from the LFG being

exhausted through passive vents, determine air permitting considerations, evaluate potential exposures to LFG under future Site usage, and ultimately, to develop the conceptual design elements of the LFG control system. The complete discussion of the LFG evaluation, including additional details of the modeling and monitoring effort, is provided in Appendix A.

#### 4.2.1 Landfill Gas Generation Modeling

The production of LFG was estimated using the US Environmental Protection Agency's (EPA) LandGEM spreadsheet model – the industry standard approach for estimating LFG emissions for regulatory compliance, and a tool for LFG control system design. The estimate is based on the waste age, type, quantity of buried waste, and the subsurface environment.

LandGEM estimates the overall flow rate of LFG from a municipal solid waste landfill based on user input regarding the amount of waste buried, the year of burial, and other parameters developed by the EPA based on landfills across the US. Emissions factors used in the model are from the Compilation of Air Pollutant Emission Factors (AP-42). The model allows variation of parameters affecting the overall LFG production capacity of the waste (given infinite time), and the rate at which the LFG is released, which typically varies based on moisture content of the waste. Each of these variable parameters are constrained in the model to typically observed ranges.

Based on data collected during the RI and presented in the RI/FS report (Landau Associates 2013), approximately 94,000 cubic yards (yd³) of wood waste was buried at the Site between 1888 to 1946 and 201,000 yd³ of municipal solid waste was buried between 1953 to 1965. The model assumes these two types of waste were buried at constant rates during these periods of waste burial. The quantity of waste buried at the Site is relatively small in comparison to modern landfills, and additionally, because the waste is relatively old, it has likely already exhausted the majority of the original LFG producing potential. As shown graphically on Figure 4, the modeled LFG production rate estimates indicate an approximate average total LFG gas generation rate of less than 4.7 cubic feet per minute (cfm) for year 2015. Based on this low estimated rate of LFG production rate, a safety factor of greater than 2 will be applied to the production rate for design, and the capture and control system will be designed for an LFG flow rate of 10 cfm. The LFG generation modeling report is included as Appendix A, Attachment A.1.

#### 4.2.2 Landfill Gas Monitoring

LFG monitoring was conducted by installing soil vapor monitoring probes throughout the Site, evaluating LFG quality using a portable LFG analyzer, and conducting laboratory analyses on samples of LFG collected from the Site. This section discusses the field-analyzed parameters. Section 4.2.3 discusses the results of laboratory analyses.

Thirteen temporary LFG monitoring probes were installed in the locations shown on Figure 5. Installation logs are provided in Appendix A, Attachment A.2. Landfill gas monitoring was then conducted at these 13 probes, 4 existing landfill gas vents, and 13 existing groundwater monitoring

wells during two monitoring events (June 15, 2015 and August 7, 2015). LFG monitoring was conducted in accordance with the procedures presented in the Work Plan (Landau Associates 2015) during periods of declining barometric pressure. During the monitoring events, the parameters listed below were measured using field analyzers:

- Methane (CH<sub>4</sub>)
- Oxygen (O<sub>2</sub>)
- Carbon dioxide (CO<sub>2</sub>)
- Carbon monoxide (CO)
- Hydrogen sulfide (H₂S)
- Hydrogen Gas
- Static pressure
- Total VOCs by field measurement with photoionization detector.

Supplemental information was collected while conducting health and safety monitoring during the advancement of open borings (Section 4.3), and test pits (Section 4.4), using a lower explosive limit (LEL) meter. Monitoring results are tabulated in Appendix A, Attachment A.3.

Figure 5 presents the concentrations of methane detected during each of the monitoring events. As shown on the figure, the landfill continues to generate some quantity of LFG, evidenced by elevated levels of methane. As anticipated, the highest concentrations of methane were detected in areas where municipal solid waste (MSW) is buried, and lower concentrations were detected in areas where only wood waste is buried. Figure 5 shows a dashed green line separating the areas where these two types of waste are located. Although the concentration of LFG is low in some areas, the LFG collection system will extend throughout all areas of the Site. Based on the elevated concentrations of methane in areas with MSW, and because the degradation of MSW generates more LFG than the degradation of wood waste, additional LFG control in the form of subsurface passive extraction wells will be included in the design for this area.

#### 4.2.3 Volatile Organic Compound and Methane Concentrations

Landfill gas samples were collected during the two sampling events from a subset of the monitoring locations, including some sample locations in the area of the Site with potential overlapping contamination from the adjacent RG Haley Site. The samples were analyzed by an accredited laboratory using EPA Method TO-15 for a list of 75 VOCs. Detectable concentrations of VOCs were found throughout most of the Site. The VOCs detected are commonly found in LFG, although they are present at this landfill at relatively low concentrations in comparison to landfills with more recent disposal. For reference, the total mass of non-methane VOCs in recently closed landfill LFG is typically about 840 parts per million (ppm), normalized to hexane (EPA 2008). This is equivalent to approximately 3,000,000 micrograms per cubic meter ( $\mu$ g/m³), the unit of measurement in which the Cornwall VOC data are presented below in Table 4-2. The highest observed total VOC concentration in

Site LFG, expressed as the sum of all detected VOCs, was at LFG probe P-2, and was approximately  $12,000 \, \mu g/m^3$  – less than 0.5 percent of the concentration typically present in recently closed landfill LFG.

**Table 4-2. Total Mass of Volatile Organic Compounds** 

| Sample ID         | Sample Date | Cumulative Sum of VOCs (µg/m³) |
|-------------------|-------------|--------------------------------|
| CL-LFG-BACKGROUND | 6/15/2015   | 52                             |
| CL-LFG-MW-102     | 6/15/2015   | 2,000                          |
| CL-LFG-P-2        | 8/7/2015    | 11,736                         |
| CL-LFG-P-3        | 6/15/2015   | 2,263                          |
| CL-LFG-P-3        | 8/7/2015    | 755                            |
| CL-LFG-P-6        | 8/7/2015    | 5,599                          |
| CL-LFG-P-12       | 6/15/2015   | 4,781                          |
| CL-LFG-P-12       | 8/7/2015    | 1,444                          |
| CL-LFG-VENT-3     | 6/15/2015   | 1,138                          |
| CL-LFG-VENT-4     | 6/15/2015   | 714                            |

The concentrations of individual VOCs and methane are presented in Appendix A, Attachment A.3, Table A-3. As noted in the subsequent sections, these concentrations are applied to the total estimated LFG production rate to determine emissions for comparison to criteria for air permitting considerations. The concentrations of VOCs in ambient air are estimated through air dispersion modeling and compared to MTCA Method B air cleanup levels to evaluate human health risks through exposure to ambient air. These concentrations will be confirmed by collecting air samples at the LFG vents as part of compliance monitoring, to assess compliance with MTCA Method B air cleanup levels.

#### 4.2.4 Permitting Considerations

In Appendix A, Attachment A.4, an evaluation is presented to compare the maximum anticipated ambient air impacts to the applicable air quality standards in Chapter 173-460 WAC, Controls for New Sources of Toxic Air Pollutants. This regulation requires an evaluation of new sources of potential toxic air pollutants (in this case, the planned LFG control system) to determine if control technology is required to reduce emissions to protect air quality, human health, or safety.

Since new LFG vents will be constructed, it is necessary to evaluate emissions from the vents as if they are new sources of air contamination with respect to air quality. This evaluation is in addition to the assessment of MTCA cleanup standards discussed in Section 4.2.5. Chapter 173 460-080 WAC provides for a screening-level approach to demonstrating compliance with ambient air quality impact standards by comparison to several threshold criteria. These criteria are presented in WAC 173-460-150, and include *de minimis* values, small quantity emission rates (SQERs), and acceptable source impact levels (ASILs). *De minimis* values are evaluated on a the total mass of emissions per day or

annum, depending on the State's preferred averaging period which varies by specific compound. If the anticipated impacts are less than the *de minimis* values, no further evaluation is required. The SQERs are also mass-based emissions criteria. If the anticipated air emissions of toxic air pollutants are greater than the SQERs, additional evaluation (i.e., air modeling) must be conducted to determine if the estimated concentrations would exceed their respective ASIL values, which are concentration-based criteria. The ASILs, SQERs, and *de minimis* values are presented in in Appendix A, Attachment A.4 for comparison to Site data. Source emissions are compared to ASILs, SQERs, and *de minimis* values to determine whether further permitting considerations or implementation of treatment technology is necessary to meet Washington's air quality standards. For this evaluation, the maximum anticipated ambient air impact is based on using the highest concentration VOC data from the predesign investigation to estimate emissions at future LFG vents, including an assumption that nondetected compounds are present at the laboratory reporting limit.

As discussed in Appendix A, Attachment A.4, the emissions for all compounds were compared to and are well below all three criteria, including the lowest, the *de minimis* emission values. Being below the *de minimis* values indicates, according to WAC 173-460-020, "trivial levels of emissions that do not pose a threat to human health or the environment." Accordingly, the emissions are considered low enough that no air permit is required for this new source, and furthermore, air dispersion modeling would not be required for this new source to evaluate concentrations at specific receptor points; typical air permitting considerations would be concluded based on the evaluation. However, additional air dispersion modeling was conducted for this project, as discussed in the following section, to evaluate VOC concentrations at receptor locations within the Site for comparison to MTCA Method B air cleanup levels.

#### 4.2.5 Air Dispersion Modeling and Air Cleanup Standards

The American Meteorological Society (AMS)/EPA Regulatory Model (AERMOD) was used to estimate ambient VOC concentrations at a network of approximately 650 different receptor locations spaced equally throughout the Site. Similar to the approach for air permitting considerations, the highest concentrations of individual VOCs based on the data from the pre-design investigation were used to represent the future emissions at LFG vents, and non-detected compounds were assumed to be present at the TO-15 laboratory reporting limit.

Ambient air impacts were simulated from total VOC stack emissions using the Industrial Source Complex (ISC)-AERMOD View Version 8.1 and the most recent version of AERMOD (version 15181). AERMOD incorporates data from a variety of pre-processors to incorporate meteorological parameters (actual meteorological data from 2008 to 2012 used for input), terrain heights (Site topography after implementing the cleanup), and physical stack parameters (location, height, and diameter) to predict VOC concentrations throughout ambient air at the Site. A receptor grid was established to model potential impacts to ambient air from the LFG vents. The receptor grid network

consisted of a Cartesian flagpole receptor grid with 12.5-meter (m) spacing, placed at a height of 1.5 m above ground to approximate the human breathing zone.

The single receptor with the highest estimated concentration under the worst-case meteorological conditions affecting ground concentrations was used to represent ambient air conditions at the Site, and was compared to the MTCA Method B air cleanup levels in Appendix A, Attachment A.5.

Even with conservatively high assumptions regarding LFG generation, the presence and concentrations of toxic air pollutants, dispersion of LFG from the vent to the breathing zone, and cleanup levels based on highly conservative exposure parameters, the estimated concentrations of all compounds are well below cleanup levels throughout the Site, generally at least 2 orders of magnitude (100 times) below the cleanup levels. It is anticipated that the actual concentrations at the LFG vents will already be below the MTCA Method B cleanup levels before any dispersion due to the conservative assumptions used to develop the emissions estimates. Compliance monitoring will be conducted at the LFG vents to confirm the discharge already meets the cleanup levels or will be below the cleanup levels in the breathing zone.

This evaluation assumes that LFG will be ventilated through a two vent system design (discussed in Section 5.2.2.1), with vent heights a minimum of 12 ft above ground surface, and without the use of treatment prior to discharge. Based on these results, it was concluded that additional air treatment, such as carbon filtration, is not required for protection of air quality and human health. However, as discussed further in Section 5.0, the vents will be outfitted in a way that allows the addition of carbon filtration, in the event that odor control is necessary in the future. Carbon filtration can also be added if post-closure compliance monitoring demonstrates that the emissions are higher than anticipated, and treatment is needed to meet air cleanup levels prior to discharge.

#### 4.2.6 Landfill Gas Evaluation Conclusions

Based on the results of the evaluation discussed above and presented in Appendix A, the following conclusions are carried forward for consideration during development of the LFG control system design (Section 5.2.3):

- The LFG production rate was confirmed to be low. The design will be based on a flow of 10 cfm and it is assumed for the purposes of design that LFG is being produced throughout the Site. As a result, an LFG collection layer will be included throughout the Site, beneath the low-permeability layer of the landfill cover system.
- The highest production of LFG is in the areas where MSW is buried. As a result, subsurface collection will be provided in this area, using passive extraction wells to capture LFG where it is present at the highest concentrations, and to provide subsurface pressure relief to prevent the buildup of pressure that could promote lateral migration.
- Based on worst-case assumptions regarding emissions, no air permit will be required and no treatment technology is required to meet the air quality standards for new emissions sources.

Based on worst-case assumptions regarding emissions, and potential exposure to future Site
visitors, a vent height of 12 ft will be used to protect ambient air quality and meet MTCA air
cleanup standards. As previously noted, it is anticipated the actual emissions will be below
cleanup levels. Compliance monitoring will be conducted to confirm cleanup levels are
attained in accordance with Ecology's guidance document for establishing and evaluating air
cleanup standards under MTCA (Ecology 2005).

## 4.3 Stabilized Sediment Testing

The CAP specifies that the stabilized sediment in the IPA stockpiles will be excavated and reworked, spread across the Site cover area, and compacted into a minimum 2-ft-thick low-permeability soil layer to function as part of the landfill low permeability cap. Landau Associates collected representative samples and conducted geotechnical testing of the stabilized sediment to:

- Confirm the suitability of the material as the low-permeability soil layer component of the landfill cap
- Determine the level of construction effort that will be required to adequately process and compact this material for its intended use.

To accomplish this task, a track mounted drilling rig, travelling on mats and/or ramps to protect the IPA cover, mobilized to the top of the IPA stockpiles and advance eight borings (approximately 120 ft apart) at the locations shown on Figure 3. Thin-walled tube samples (3-inch diameter by 30-inches long) were recovered from the IPA stockpiles at the top surface and every 3 ft of depth, and preserved for laboratory testing. All penetrations and damage to the IPA cover were repaired with glued-in-place patches of the same geomembrane material that currently covers the IPA stabilized sediment stockpiles.

Logs were prepared for each boring to document the conditions observed during drilling, including the composition and the depth of the materials encountered, and are presented in Appendix B, Attachment B.1. Representative soil samples were tested in Landau Associates' geotechnical laboratory to determine the following:

- In-place moisture and density
- Atterberg Limits
- Grain-size distribution
- Moisture/density compaction curves
- Remolded permeability.

The results of the geotechnical testing on the stabilized sediment are summarized below and detailed test results are provided in Appendix B, Attachments B.1 and B.2.

## 4.3.1 Moisture-Density Relationships and Hydraulic Conductivity

Per the CAP (Ecology 2014), an approximate "two-foot thick layer of low-permeability soil will be installed beneath the scrim-reinforced liner to minimize stormwater infiltration into the underlying

refuse and wood debris. The fine-grained interim action sediment stored at the Site as part of the 2011/2012 interim action will be used for this purpose." The performance requirements of this low-permeability soil layer is defined in Section 9.4.1 of the RI/FS (Landau Associates 2013): "The soil would need to demonstrate permeability characteristics equivalent to a 2-ft-thick layer of soil with a hydraulic conductivity of  $1 \times 10^{-6}$  cm/s to meet the requirements for landfill closure under the MFS for solid waste handling (Chapter 173-304 WAC), which is considered an ARAR for the Site due to its historical use as a solid waste landfill."

In order to verify the hydraulic conductivity could be achieved by reworking the stabilized sediment in the IPA stockpiles, moisture density tests in conjunction with remolded permeability tests were performed to define the zone of acceptable compaction (EPA 1993a). The test results and zone of acceptable compaction are shown on Figure B-2.6 in Appendix B, Attachment B.2.

In summary, moisture density tests for both standard (ASTM International [ASTM] D698) and modified (ASTM D1557) proctor tests were first performed on stabilized sediment to determine the range of moisture content and compaction energy that would be required to rework the stabilized sediment into a stable barrier layer for the landfill cover system. Using the moisture density curves as a guide, cylindrical samples were remolded at varying moisture contents and density. These remolded samples were then tested for hydraulic conductivity using a flexible-wall permeameter (ASTM D5084). The moisture and density of the remolded samples were plotted on the moisture density curves, and those that had tested hydraulic conductivities less than 1x10-6 centimeters per second (cm/s) define the limits of the zone of acceptable compaction. It was concluded from testing that if the stabilized sediment from the IPA stockpiles was processed and compacted to be between 35 and 45 percent moisture by weight and to dry density greater than 72 pounds per cubic foot, the compacted soil would have a hydraulic conductivity less than 1x10-6 cm/s.

## 4.3.2 Material Conditioning Requirements for Placement

The geotechnical testing on the stabilized sediment in the IPA stockpiles revealed that the sediment in these piles is wetter and less dense than required by the zone of acceptable compaction (discussed in Section 4.3.1 above). Specifically, as provided in Appendix B, Attachment B.2, the *in situ* moisture content was found to range from 43.8 to 70.3 percent moisture by weight with an average of 17 samples at 63.8 percent moisture by weight. The dry unit weight was found to range from 54.7 to 67.6 pounds per cubic foot with an average of 17 samples at 59.1 pounds per cubic foot. In order for the stockpiled sediment to achieve the desired low hydraulic conductivity, the sediment will need to be processed to dry it to between 35 percent and 45 percent moisture. This will be achievable by spreading the soil in no more than 8-inch-thick loose lifts parallel to the subgrade (or compacted lift below it) and discing the material until it dries to the desired moisture content. By necessity, the construction would need to be conducted during summer months during sunny drier conditions.

Once the material has been dried to the desired moisture content range, it will require a higher energy-level of compaction to compact the material to over 72 pounds per cubic foot. Because the

material classifies as plastic/organic silt (Figure B-2.3), the compaction equipment should be a padfooted roller to knead and properly compact the capping material. While the material is being placed,
wood fragments or other sharp-edged debris that could cause damage to the overlying geomembrane
will be removed. The density, and resulting low hydraulic conductivity, is expected to be achieved
when the pad-footed compactor has made several passes over the sediment, and the feet of the
compactor have very little penetration into the compacted sediment (i.e. "walking out"). This process
of compaction will be repeated for each lift until the 2 ft minimum thickness, low-permeability layer
has been constructed. Once complete, the final surface will be smooth drum rolled or cut to finished
grade just prior to placing the overlying geomembrane. Verifying compacted density, moisture
content, and *in situ* hydraulic conductivity will be accomplished before covering the compacted lowpermeability soil layer. Construction Quality Assurance is discussed further in Section 6.3.

## 4.3.3 Low-Permeability Soil Volume Available

The survey conducted on the IPA stockpiles indicates there is approximately 38,600 yd³ of stabilized sediment available for use for the low-permeability soil layer. Considering that this volume will be dried back and compacted, it is expected that the volume available will be reduced to 35,000 to 36,000 yd³ of in-place compacted low-permeability soil. As discussed further in Section 5.2.2.3, this is expected to exceed the volume required for the soil cap. The remainder of the material will be placed as capping material to create a low-permeability cap in excess of 2 ft, thus improving the overall performance of the cap.

## 4.3.4 Cover Thickness Evaluation

Test pit excavations were excavated on June 11, 2015 using a backhoe to determine landfill cover thickness and waste surface elevation in areas of the Site not adequately characterized by previous explorations. A total of 22 test pits were excavated with the logged material descriptions tabulated on Figure B-1.10 in Appendix B, Attachment B.1. The locations of the test pits are shown on Figure 3.

Exploration logs from the test pits, LFG probe logs, and previous investigation boring logs were used to evaluate the thickness of the existing cover over the landfill refuse and wood waste and develop the grading plan for the upland capping system. Including the 22 test pits and other investigations, the existing cover and top of refuse elevation was measured at 90 points across the Site.

The purpose of the cover thickness evaluation was for grading design, or more specifically, to determine where cuts could occur in the existing ground surface to minimize encountering waste. Although it is valuable to know where the top of the waste is for geotechnical purposes, the soil cover is also presumed to be contaminated, given the long use of the property for industrial purposes, the unknown source of the cover fill, and the proximity of the RG Haley Site. The cover soil must therefore be managed in the same manner for protection of human health and the environment as any exposed waste (see Section 5.1.1).

The cover ranges in thickness from 0 to 10 ft thick with an average thickness of 2.9 ft. An approximate elevation contour map of the top of waste (refuse or wood waste) is shown on Figure 3. The top of waste elevation was estimated at each of the 90 points by subtracting the cover thickness from the ground elevation at the time of the investigation and contouring this data. The top of waste generally parallels the surface contours in the northern portion of the Site with deeper pockets of cover material in the southern areas of the Site.

## 4.4 Imported Fill Early Action

The Site is relatively flat. Per the MFS for solid waste handling (Chapter 173-304 WAC) the landfill cover must have sufficient slope to promote drainage off the cover system. The MFS requires that a minimum 2 percent slope be established and maintained throughout post-closure operation and maintenance of the landfill. This typically requires that steeper slopes be established at the time of landfill closure in anticipation of post-closure settlement that occurs due to decomposition of the waste and settlement due to consolidation from the weight of the closure cap.

As discussed in Section 5.2.1, up to 46,000 in-place yards of fill will be needed to establish Site grades required to establish and maintain at least a minimum 2 percent slope over the upland portion of the Site. As a result, a significant volume of import fill will be required to establish Site grades beneath the capping system. Placing the additional soil on the Site months or years in advance of the MU-1 cover construction would be beneficial in preloading the Site and minimizing the long-term settlement and depressions that could form in the constructed landfill cover.

The Port identified an offsite borrow source suitable for use as general fill at the Site. The soil was located on property owned by the Port along Hilton Avenue. The subject soil was originally intertidal deposits that were dredged to create the Port's Squalicum Inner Harbor in the early 1980s, and was originally placed to create the uplands where the Hotel Bellwether and restaurants are currently located. The soil was relocated to the Hilton Avenue location when the Hotel Bellwether subgrade parking garage was constructed in the late 1990s and when the Bellwether office buildings were constructed in the early 2000s. On October 26, 2015, Landau Associates conducted a test pit investigation to collect samples for geotechnical testing. The results of the geotechnical testing for the Hilton Avenue soil are provided in Appendix F, Attachment F.1a. In summary, the soil in the stockpile ranged from gravelly sand with silt to a sandy clay with gravel. Although the material is variable in composition, it was determined to be appropriate for use as general fill to establish Site grades.

Based on its original source and the analytical results for five soil samples collected from the material in advance of placement at the Hilton Avenue property as reported by GeoEngineers in 1998 and the original sediment quality characterization conducted prior to dredging completed by the USACE in 1976 (see Appendix F, Attachment F.1c), the soil was found to be uncontaminated based on comparison to applicable MTCA soil cleanup levels for the constituents tested. To confirm that the soil quality of the Hilton Avenue material would be acceptable for use as general fill at the Site, additional characterization of soil quality was conducted at Ecology's request.

On December 10, 2015, Landau Associates collected five vertically composited samples from the material for analytical testing. Samples were collected using direct-push sampling equipment, with exploration oversight and sampling by a Landau Associates environmental professional. A single composite sample representing the full thickness of the fill material was collected from each location. All samples were analyzed for total petroleum hydrocarbons (TPH) using the NWTPH-HCID method, with follow up for any TPH ranges that were detected. Samples were also tested for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc), SVOCs, and dioxins/furans.

Highly conservative exposure and migration pathways were used to develop the screening levels used to assess whether the soil is suitable for use on the Site. The potential exposure pathways considered in screening the data included direct contact (ingestion), protection of terrestrial and aquatic species, protection of marine sediment quality, and protection of groundwater in both unsaturated and saturated soil conditions, as presented in Appendix F, Table F.1b-1. The most protective of these values was used as the screening level for evaluation of soil quality. It should be noted that these screening levels consider exposure pathways that may not be applicable for the development of soil cleanup levels, but meeting these extremely conservative screening levels clearly demonstrates that the use of this soil for general fill at the Site does not pose a threat to human health or the environment.

As shown in Appendix F, Table F.1b-2, all detected constituents were below the screening levels, with only one exception. Copper was detected in one sample at a 40.7 milligrams per kilogram (mg/kg), a concentration slightly greater than the preliminary screening level of 36 mg/kg. However, because the highest copper concentration is less than 2 times the screening level, less than 10 percent of the copper data exceed the screening level, and the 95 percent upper confidence limit on the mean for the copper data is approximately 25 mg/kg, (well below the screening level), the soil is considered to meet the copper screening level.

Based on the laboratory analyses attached and discussed above, the material was considered by Ecology on March 2, 2016 (email from Mark Adams) to be suitable for reuse as fill material at the Site to establish grades beneath the impermeable cover system. The restriction to place the imported soil under the cover system is due to Ecology's opinion that because the material contains hazardous substances (but below MTCA cleanup levels) it is still classified a solid waste under WAC 173-350.

A contractor to the Port began transferring fill material from the stockpile on Hilton Avenue to the Site on June 1, 2016 and continued through June 28, 2016. Approximately 41,350 cubic yards of fill soil were moved from the Hilton Avenue site and placed in compacted lifts at the Site. Stockpile material was hauled to the Site with end dump truck and pups, placed in 8- to 12-inch-thick loose lifts, and compacted using a smooth drum roller. As shown on Figure 7, two distinct stockpiles were formed on the eastern portion of the Site, with a drainage ditch between them. The preloading of imported soil was accomplished by controlled placement of fill soil up to the grades shown on Figure 11 to preload the Site in excess of the proposed final grades of the landfill shown on Figure 10. Upon

completion of the stockpile import, the stockpiles were bladed and graded to provide adequate drainage, per the plans. The stockpiles were then seeded, fertilized, and covered with an erosion control blanket. The imported soil was brought to the Site as an early action to be used to preload the eastern portion of the Site and to provide the majority of the fill needed to establish future grades on the Site. The construction completion report for this early action is provided as Appendix F.2.

## 4.5 Eelgrass and Shoreline Habitat Survey

Grette Associates was subcontracted by Landau Associates to conduct a habitat survey of the Site to assess the existing aquatic and shoreline habitat conditions. The aquatic survey was focused on surveying for the presence of eelgrass (*Zostera marina*), macroalgae, substrates, and debris. The shoreline survey focused on the existing habitat conditions (primarily vegetation, slopes, and substrates) present between the aquatic and upland portions of the site. The existing habitat conditions provide the baseline environmental conditions and were utilized to assist with the design and permitting of the cleanup action. The complete Eelgrass and Shoreline Habitat Survey is provided as Appendix E.

In summary, the eelgrass survey was conducted using 44 transects perpendicular to the shoreline between June 29 and July 1, 2015, which was within the WDFW recommended survey window. Based on sampling, eelgrass presence along the shoreline was extremely variable and limited to a narrow strip of elevations (approximately -1 ft and -9 ft MHHW). Eelgrass was observed along 29 of the 44 transects and was separated into four distinct areas based on substrates, densities, areal coverage, and habitat conditions. The delineation resulted in a total of approximately 59,850 square feet (ft²; 1.4 acres) of eelgrass habitat within the proposed limits of the study area shown on Figure 2. Average eelgrass densities along the transects ranged from 15 to 176 turions per square meter, with an overall average density of 52 turions per square meter for the Site. In general, sea lettuce and rockweed were the dominant species present in the nearshore zone, with coverage ranging between 5 and 25 percent. In deeper waters, Turkish towel, sea lettuce, gracilaria, sargassum, and *laminaria spp.*, were common, with coverage generally less than 20 percent. A complete list of macroalgae species encountered during the Site survey is included in Appendix E.

Within the nearshore environment (0 to 100 ft from the MHHW), concrete rubble and debris were present on top of sand, gravel, and cobble. Pile stubs, wood waste, glass, metal, ceramic, and other debris were also common throughout this area. From 100 to 140 ft from the MHHW, substrates were predominated by sand and gravel with reduced amounts of rubble and debris. Beyond 140 ft from the MHHW, substrates were nearly 100 percent silt across the Site.

## 4.6 Coastal Processes Modeling

Coast & Harbor Engineering (CHE), a Division of Hatch Mott McDonald and a member of the Site design team, modelled the coastal processes and developed a preliminary level of design of the shoreline protection/stabilization system required for the Site cleanup action. CHE's full basis of

design report is provided as Appendix C. The coastal process modeling input data, assumptions, and design criteria used in the preliminary design are provided in Appendix C, and are summarized in the following sections. The shoreline protection design, based on the coastal modeling, is presented in Section 5.2.5.

## 4.6.1 Design Wind Wave Storm Return Period

A 100-year return period storm event was selected for analysis and numerical modeling of stability of the shoreline erosion protection system. Typically, shoreline erosion protection projects are designed to withstand wind-wave storm events with less intensity (25- or 50-year return period). Based on previous experience with the Whatcom Waterway (Port of Bellingham) and RG Haley (City of Bellingham) projects, and due to the requirement that the cleanup action remain stable under extreme events, a 100-year storm event was selected as the design wave storm criteria for designing the Site shoreline stabilization system.

#### 4.6.2 Sea Level Rise

Climate change predictions require that potential sea level rise (SLR) over time be considered in the design of the shoreline stabilization system. Several papers with respect to sea-level rise are recommended by the Ecology Climate Change web page (Ecology website 2016), and were considered when evaluating the potential SLR in Bellingham Bay. The SLR estimates which are most relevant to the Site are summarized in the table below.

Table 4-3. Estimated Sea Level Rise Sources

| Research                                                                                                                                                                                                                                                                                                                                                                    | Papers that Reference the Research                                                                                                                                             | Notes                                                                      | SLR                                                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Strauss, B. H., Ziemlinski, R., Weiss, J. L., & Overpeck, J. T. 2012. Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States, .Environmental Research Letters, 7(1), 014033.                                                                                                                               | Climate Central (2016) Sea level rise and coastal flood risk: Summary for Bellingham, WA, July 21, 2016                                                                        | Page 1, Uses<br>Surging Seas<br>Risk Finder<br>software to<br>predict SLR. | For Year 2050:<br>0.7 ft with<br>range of 0.3 to<br>1.3 ft<br>For Year 2100:<br>2.1 ft with<br>range of 0.9 to<br>4 ft |  |
| Mote, P., Petersen, A., Reeder, S., Shipman, H., and Whitely-Binder, L. 2008. Sea level Rise in the Coastal Waters of Washington State. A report by the University of Washington Climate Impacts Group and the Washington Department of Oceanography (Basis for several papers, some listed to the right, and used by the Intergovernmental Panel on Climate Change [IPCC]) | WSDOT, Climate Impacts Vulnerability<br>Assessment, November 2011                                                                                                              | Appendix A,<br>page 31 for<br>Puget Sound                                  | For year 2050:<br>6 inches with<br>range 1 to 18<br>inches;                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                             | National Wildlife Foundation, Climate<br>Change Effects in Marine and Coastal<br>Ecosystems, August 2011                                                                       | Page 76                                                                    | For Year 2100:<br>13 inches with<br>range 6 to 50<br>inches                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                             | Huppert, Moore, Dyson, Impacts of Climate<br>Change on the Coasts of Washington State,<br>Chapter 8 Washington Climate Change<br>Impacts Assessment, Climate Impactus<br>Group | Table 2                                                                    |                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                             | Department of Ecology, Preparing for a<br>Changing Climate: Washington State's<br>Integrated Climate Response Strategy,<br>Chapter 6 Oceans and Coastlines, April<br>2012      | Table 1                                                                    |                                                                                                                        |  |

| Research                                                                                                                                                                                                                                   | Papers that Reference the Research                                                                                                                                                                | Notes                                                                                                                             | SLR                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Glick, P., Clough, J., and Nunley, B.<br>2007. "Sea-level Rise And Coastal<br>Habitats In the Pacific Northwest, An<br>Analysis For Puget Sound,<br>Southwestern Washington, And<br>Northwestern Oregon". National<br>Wildlife Federation. | Ken Reeder, West Coast Relevant Sea Level<br>Rise Impact Models: A review to aid local<br>and regional planning, White Paper to<br>West Coast Governors Alliance on Ocean<br>Health, October 2011 | Page 10 – case<br>study including<br>for Puget<br>Sound using<br>Sea Level<br>Affecting<br>Marshes Model<br>(SLAMM)<br>prediction | For year 2025:<br>3 inches<br>For Year 2100:<br>27 to 78 inches |

A SLR of 2.4 ft over the next 100 years has been assumed for other cleanup sites in Bellingham Bay, and was the SLR value used in the Waterfront District Environmental Impact Statement (EIS) (Blumen Consulting Group, Inc. 2010). This SLR value of 2.4 ft is consistent with the above referenced literature developed for local and regional planners and engineers, and was therefore used for the Site cleanup design purposes.

It is acknowledged that SLR is a developing area of science and estimates are likely to be refined and revised over the coming years. Although a SLR value of 2.4 ft was assumed for design purposes, the design of the upland capping system in the shoreline area could easily be modified to accommodate much higher levels of SLR. The bench of the shoreline protection system could function as the base to extend the shoreline stabilization system up the adjacent 4H:1V upland slope an additional 5 ft of elevation. In other words, the design has a the flexibility to increase shoreline protection for up to 7.4 ft (or 88.8 inches) of SLR, which far exceeds all current predictions for SLR in Bellingham Bay.

## 4.6.3 Tidal Data and Tide Elevation Design Criteria

Two tide levels were used during modeling of wind/wave effects for engineering analysis and design of the shoreline stabilization system: Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW). MHHW tide elevation was used for design of stability of the upper part of the shoreline stabilization system assuming that the design storm were to occur during a MHHW tidal stage. MLLW tide elevation was used to design the lower part of the shoreline stabilization system assuming that the design storm occurred during a MLLW tidal stage. MHHW tide elevation was used in combination with the sea level rise increment (+2.4 ft) and storm wave height to design the upper elevation of the shoreline stabilization system.

## 4.6.4 Wave/Erosion Modeling

Wave conditions at the Site were the major controlling factor for the design of the coastal engineering element and the effect of tidal currents on design were found to be negligible. Therefore, detailed wave analysis and numerical modeling was performed to establish the wave conditions prior to the project (existing conditions) and upon construction of the proposed coastal elements (post-project conditions). Descriptions of the wave modeling as well as the basis of design for each coastal element are presented in Sections 2 and 3 of CHE's basis of design report in Appendix C.

#### 4.6.5 Tsunami

Tsunamis are waves that occur in open water bodies due to earthquakes or landslides. Per the Critical Areas Report for the interim action at the Cornwall site (Landau Associates 2011), a tsunami could be generated by a large earthquake in the Pacific Ocean basin. The DNR Division of Geology and Earth Resources and the National Oceanic and Atmospheric Administration (NOAA) have published estimates of tsunami inundation in the Bellingham Bay area based on modeling of ground deformations and waves that may be generated by a major Cascadia Subduction Zone (CSZ) earthquake. The results of the DNR and NOAA modeling study (Walsh et al. 2004) entitled "Tsunami Hazard Map of the Bellingham Area, Washington: Modeled Tsunami Inundation from a Cascadia Subduction Zone Earthquake" indicate that a magnitude 9.1 Cascadia Subduction Zone earthquake may result in a tsunami wave arriving approximately 2½ hours after the earthquake at a tide stage near mean high water (MHW) which might be expected to result in a depth of inundation in the zero to 0.5 meter range (depending, of course, on the specific location/elevation along the shoreline).

The CSZ earthquake event is assumed to be a 600-year recurrence level and is based on a 1700 A.D. CSZ earthquake that had an estimated magnitude 9. Because the CSZ earthquake epicenter is on the Washington coast, the tsunami created by this event would be attenuated by the numerous islands between Bellingham Bay and the Strait of Juan de Fuca. Similarly, a large earthquake in the Seattle fault zone or deeper crustal earthquakes (e.g., 2001 Nisqually earthquake) would likely be attenuated north of Everett, Washington, with additional dissipation of the tsunami as it travels north through the islands and reaches Bellingham Bay (Walsh, T., personal communication, 2016).

Three major faults were recently found and mapped north of Bellingham located near Birch Bay, Sandy Point, and Drayton Harbor Bellingham (WDNR 2014). These faults have been estimated to being capable of earthquake magnitudes of 6 to 6.5; however, the recurrence interval is estimated to be greater than 1,000 years, and no estimate of seafloor displacement for these faults or other kinematics has yet been established for these faults. The Washington Department of Natural Resources (WDNR; Walsh, T., personal communication, 2016), indicated that they will be modeling a 2,500-year recurrence interval for the CSZ, but will not have the results of predicted tsunami inundation from this larger event until August 2017. In absence of this data (and the recent finding of new faults north of Bellingham), the WDNR recommended adding a safety factor of 20 percent to the 2004 estimated 0.5-meter maximum inundation predicted for the Site. This yields maximum design tsunami inundation of 0.6 meters or 1.8 ft for the Site.

This predicted tsunami height for the Site would be accommodated by the additional shoreline protection placed for potential sea-level rise. Minor damage from an extreme tsunami event in the distant future after some sea level rise at the Site could occur at the upland part of the shoreline (above ordinary high water elevations) due to overtopping, and/or at the lower elevation of the project (cap material) due to bottom shear stresses. However, the elevation of the upland cap will rise rapidly from the shoreline and it is concluded that if a tsunami event occurs at the Site and damage to

the cap material does occur, repair of this damage would be similar to periodic maintenance repair. As a result, potential impacts from tsunami waves are not considered significant enough to require specific consideration in the design.

## 4.7 Sediment Quality (Bioassay) Testing

Five surface sediment samples were collected at the Site for bioassay testing. The samples were collected at the locations indicated on Figure 3. These sample locations were selected to evaluate sediment quality where at least 1 ft of sediment has been deposited by natural recovery over top of landfill refuse to evaluate whether the physical criteria established in the CAP is adequately protective of benthic organisms.

The samples were collected and processed on June 10, 2015 in accordance with the Pre-Design Investigation Work Plan (Landau Associates 2015), and submitted under chain of custody to Ramboll-Environ in Port Angeles, Washington, for evaluation. Three tests were conducted on the samples, following Puget Sound Estuary Protocols (PSEP), SMS criteria, and the Sediment Cleanup User's Manual II (SCUM II) guidance from Ecology. The three tests included a 10-day amphipod test using *E. estuaries*, a 20-day juvenile polychaete survival and growth test using *N. arenaceodentata*, and a larval development test using *M. galloprovincialis*. Sediment cleanup objectives (SCO) and cleanup screening levels (CSLs) are established by Ecology for each of the three tests. Each of the five Site samples passed all three tests at the SCO, the more conservative of the two established criteria. Additional details of the tests and results are provided in Appendix D.

## 4.8 Stormwater Evaluation

The existing stormwater features were mapped during the upland survey as shown on Figure 6. The existing stormwater features include the stormwater detention basin at the south end of the Site, drainage ditches, plugged stormwater catch basins at the north end of the Site, and an area that accumulates stormwater on the BNSF property near the northeast corner of the Site. There are two current or former stormwater discharge points on the Site which will be decommissioned during the construction-level design of the final cleanup action. These discharge points consist of 1) a former outfall near the northwest corner of the Site that previously discharged stormwater from the catch basins in the paved area at the north end of the Site associated with the former GP warehouse area (North Outfall), and 2) a 30-ft-wide dispersion structure discharging at the south end of the Site (South Outfall).

The condition and functionality of the North Outfall and associated stormwater system were evaluated during the RI/FS (Landau Associates 2013). The system was determined to be in poor condition with a number of plugged catch basins, and several areas of breaks and gaps in the concrete bell and spigot pipe based on a video survey of accessible portions of the system. The stormwater system was in too poor a condition to advance the video survey to the outfall. Although the outfall was not visible, observations during a heavy rainfall event indicated a significant upwelling of water

(estimated to be 30 gallons per minute [gpm], or greater) at the shoreline at the estimated location of the outfall, which was interpreted to potentially be the outfall location. The predesign investigation was intended to identify the North Outfall location so the outfall can be properly abandoned, repaired, or replaced during the final cleanup action. However, the main line extending from the outfall had been plugged or crushed, making it infeasible to locate the entire outfall line without significant potholing into existing waste to find the line for abandonment. The outfall and all other elements of the northern stormwater system associated with former GP operations are therefore planned to be located and abandoned as part of the final cleanup action.

The South Outfall is associated with the existing stormwater detention basin located on the south end of the Site. This basin was constructed by GP in 2004 when the former warehouse was demolished and the upland area was re-graded for drainage. The discharge system was permitted by the City under a grading permit under standards established at that time. This system was constructed with a 30-ft-long dispersion trench and level spreader to disperse the outfall into the quarry spalls and the shoreline riprap prior to reaching Bellingham Bay.

Landau Associates' pre-design Site stormwater evaluation conducted December 11, 2015 documented the following conditions:

- Site drainage during and after heavy rain events.
- No indication of the presence of the North Outfall based on inspection of the shoreline near
  the previously identified outfall location for indications of concentrated stormwater flow
  during a rain event coinciding with low tide. Unlike the observations during the RI in 2012,
  there were no indications of upwelling at the outfall location.
- The five catch basins that previously discharged the North Outfall were submerged in 4 to 10 inches of water indicating they were no longer functioning. Four of the catch basins are rectangular with 16-inch by 22-inch inner dimensions. Each catch basin has an 8-inch inside-diameter pipe with the invert located approximately 1.5 ft BGS inside the vault, and have varying degrees of sedimentation in the pipes. A previously unidentified round vault, CB-5, is 18 inches in diameter with a single 8-inch pipe extending west toward CB-3. These catch basins were cleaned out and backfilled with controlled density fill in May of 2016.
- There was no major puddling or pooling due to drainage run-on to the Site from the BNSF railroad. As shown on Figure 6, a small area of saturated ground was observed with small puddles less than 1 inch deep and less than 5 ft long.
- The reconnaissance of the BNSF railroad for a preliminary evaluation of stormwater conditions in the sump area and the west side of the railroad indicated that there is drainage via a 12inch-diameter culvert which discharges and infiltrates into an excavated depression (shown on Figure 6).
- The existing stormwater detention basin and South Outfall were observed and exhibited conditions consistent with previously obtained design drawings with some deterioration and debris on the drainage structures.

At the time of the pre-design field investigation, the lines leading to and from the catch basins were plugged with sediment, making video camera inspection of lines not possible to determine the open length.

The design of the stormwater controls for the final cleanup action is provided in Section 5.2.4.

## 5.0 ENGINEERING DESIGN CONSIDERATIONS

The following sections provide an overview of the Site cleanup design. As referenced herein, the engineering design of the cleanup follows generally accepted engineering practices to provide a cleanup design that is protective of human health and the environment.

# 5.1 Site-specific Considerations Affecting Design, Construction, or Operation of the Cleanup Action

## 5.1.1 Topography, Surface, and Subsurface Conditions

The Site topography, surface, and subsurface conditions are described in Sections 4.1 and 1.2.4, respectively. Topographic, surface, and subsurface conditions that were addressed in the design include:

- Shoreline erosion that has left a vertical cut bank 4 to 6 ft tall along the west side of the Site. Shoreline erosion is discussed further in Section 5.1.13.
- The upland portion of the Site is relatively flat and ponds water in places. Grading to improve drainage of stormwater from the landfill cover system will be required.
- The presence of compressible refuse and wood waste under the Site will allow the landfill cover system to settle if additional loading is applied. Potential settlement is discussed further in Section 5.1.4.
- The presence of refuse and wood waste below the Site surface generates LFG; the characterization of the LFG is discussed in Section 4.2.

Site conditions which will need to be considered during construction include:

- Staged construction to work around the IPA stockpiles and the proposed Hilton Avenue soil placement to minimize re-handling.
- Cleared trees and brush to be mixed in with the bottom 1 ft of fill soil needed to bring the final cover subgrade on the east side of the Site. Alternatively, the cleared vegetation could be mulched for offsite stockpiling and use.
- Grouting existing catch basins and abandoning the stormwater lines in place. Exposing and
  decommissioning the north outfall; the method of decommissioning will be determined in the
  field based on the configuration and condition of the outfall.
- The existing asphalt pavement will be ripped into broken pieces and left in place to be covered with the fill soil needed to bring the Site to final cover subgrade.
- Except for the Hilton Avenue fill imported to the site in 2016 (Section 4.4), all of the other
  existing fill at the Site, whether landfill waste, soil, wood debris, or demolition debris, and, the
  fill to be imported from the RG Haley Site, is and will be considered contaminated at
  concentrations above MTCA cleanup levels throughout. As such it must be managed as a
  contaminated media during construction using appropriate environmental protective
  measures and handling techniques.

There are no current Site topographic features that will impact the operation of the proposed Site cleanup action. The presence of LFG and the long-term functioning of the LFG venting system are addressed in the design.

## 5.1.2 Flooding

As shown in Appendix B.4, the Site has adequate onsite stormwater conveyances to drain to Bellingham Bay for storm events which exceed the 100-year design storm. The upland elevations are high enough to prevent the Site from being flooded by the high tide.

## 5.1.3 Seismic Activity

Landau Associates previously conducted a detailed seismic study of the Site for placement of the IPA stockpiles (Landau Associates 2011). The 2011 study presented seismic design parameters based on the 2009 version of the International Building Code (IBC). Appendix B, Attachment B.3 presents the evaluation of slope stability based on the updated seismic design parameters used in the 2012 IBC. As provided in Attachment B.3, the Sandy Point fault located approximately 15 km from the Site was used to determine mean horizontal acceleration and displacement. Location and distance from the Site were determined using the geologic map "Faults and Earthquakes in Washington State", (WDNR 2014) and the USGS Seismic Hazard Mapping Tool (USGS website 2016).

In accordance with the 2012 IBC, the design earthquake event is the peak ground acceleration (PGA) with a 2 percent probability of exceedance in 50 years (a 2,475-year return period event). The general 2014 USGS earthquake hazard maps for the area show a value of 0.4 to 0.8 times the acceleration due to gravity (g) for PGA. The PGA for the Site was determined to be of 0.408g (acceleration due to gravity) using the USGS Seismic Hazard Mapping Tools, considering interactive deaggregations for the continental US (printout of the analyses is included Appendix B.3). The result was compared to the information provided on the 2014 USGS earthquake hazard map and the more detailed Figure 1613.3.1(2) from the 2012 IBC provided by the USGS Seismic Hazard Mapping Tool. Figure 1613.3.1 shows maximum PGA (or maximum credible earthquake [MCE] acceleration) values of about 0.40 near the Site.

The PGA value of 0.408g was used in the seismic slope stability analyses discussed in Section 5.1.5 below. It should be noted that an earthquake event with a 2 percent probability of exceedance in 50 years is equal to an earthquake event with a 10 percent probability of exceedance in 250 years (or 90 percent probability of non-exceedance in 250 years) as defined in RCRA Subtitle D regulations for design of landfills.

#### 5.1.4 Settlement

The presence of compressible refuse and wood waste under the Site will allow the landfill cover system to settle if additional weight from soil fill or structures are applied. Previous Site investigations have encountered variable thickness of refuse, wood debris, and varying amounts of interbedded soil

across the Site making it infeasible to map the consistency of the waste. Post-construction settlement design due to the existing subsurface conditions is discussed in Section 5.2.1.1.

## 5.1.5 Slope Stability

The stability of the proposed landfill geometry considering the underlying refuse materials as well as the stability of the proposed landfill cover system were analyzed as detailed in Appendix B.3. For limit equilibrium analyses, the stability of a slope is typically expressed as the factor of safety against sliding, which is the ratio of forces resisting movement divided by the forces promoting movement. A factor of safety of 1.0 indicates a slope at equilibrium, while values greater than 1.0 indicate increased slope stability. EPA (1993b) recommends factor of safety for landfill design of at least 1.5 for static conditions and at least 1.3 for seismic conditions. Displacement analysis is performed if factors of safety are less than 1.3 for seismic conditions. If displacement of the cover are predicted to be less than 1 ft, the landfill slopes are considered stable under seismic conditions (Bray et al. 1998).

Soil properties used for the slope stability analyses are summarized in the table below. The shear strength properties of each soil unit were estimated using available laboratory test results presented in the Dames & Moore (1960) and Purnell & Associates (1985) geotechnical reports; Landau Associates testing of the stabilized sediment (Appendix B, Attachment B.2); Landau Associates' testing of the fill soil to be imported to the Site (Appendix F, Attachment F.1a); empirical correlations with representative field data; and our professional engineering judgment. Reasonably conservative shear strength parameters for landfill refuse were used in the analyses, based on strength values for municipal solid waste reported in a recent study (Bray et al. 1998). Sea level and groundwater was assumed at approximately 0 and 10 ft MLLW, respectively.

Table 5-1. Soil Properties Used in Slope Stability Analyses

| Soil Unit                                                                    | Total Unit<br>Weight (pounds<br>per cubic foot) | Effective Friction<br>Angle (φ, degrees) | Cohesion<br>(c, pounds per<br>square foot) |
|------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------------|
| Stabilized Sediment (proposed landfill cover layer)                          | 100                                             | 32                                       | 250                                        |
| Silty Gravel (existing landfill cover soil)                                  | 125                                             | 36                                       | -                                          |
| Gravelly sand with silt to a sandy clay with gravel (imported fill material) | 130                                             | 32                                       | 200                                        |
| Wood Debris, Sawdust, Sand & Silt                                            | 75                                              | 28                                       | -                                          |
| Landfill Refuse                                                              | 70                                              | 31                                       | 300                                        |
| Reworked Sediments & Nooksack<br>Deposits                                    | 80                                              | 28                                       | 150                                        |
| Glaciomarine Deposits                                                        | 125                                             | 32                                       | 150                                        |
| Chuckanut Formation                                                          | 130                                             | 45∞                                      | 1,000∞                                     |

A summary of the slope stability analysis is provided in the sections below.

## 5.1.5.1 Landfill Geometry Stability

The stability of the Site soil, refuse, and wood waste was evaluated under both static and seismic (pseudo-static) conditions. The stability analyses were conducted using the existing and planned profiles and limit equilibrium methods in the Rocscience computer software program SLIDE, Version 5 (Rocscience, Inc. 2005) and the results are provided in Appendix B, Attachment B.3. Based upon the conditions and assumptions noted above, the static factor of safety against slope instability is estimated to be greater than 3.0 and 3.4 for the east and west slopes, respectively.

For seismic (pseudo-static) slope stability analyses, a maximum horizontal acceleration (MHA) at the ground surface for the seismic event was calculated using Bray's seismic design procedure for solid waste landfills (Bray et al. 1998). The MHA calculation provided the lateral forces that would be experienced during a design earthquake with the PGA of 0.408g. Accordingly, a pseudo-static MHA of 0.26g determined using the Sandy Point Fault was used for the seismic slope stability analyses. Based upon the conditions and assumptions noted above, the factor of safety against seismically induced slope instability is estimated to be 1.4 and 1.1 for the proposed landfill cover profile on the east and west slopes, respectively, with predicted deformations (Makdisi and Seed 1977) less than 1 inch. Considering these factors of safety, and the yield acceleration of 0.4 g resulting in minimal displacement, the designed slope have acceptable factors of safety and allowable displacement when compared to the EPA recommendations discussed above.

## 5.1.5.2 Landfill Cover Stability

The stability of the cover system under saturated conditions and both static and under design seismic loading was confirmed using stability models developed by the Geosynthetic Research Institute (Soong and Koerner 1997). The cover stability analysis is provided in Appendix B, Attachment B.3. In summary, it was found that the cover system as proposed would be expected to have a factor of safety greater than 2.5 for static, saturated conditions and greater than 1.5 for design seismic conditions, which exceed the EPA minimum acceptable criteria.

## 5.1.6 Weather (Temperature Extremes, Rain, Wind)

The weather of Bellingham is the generally mild climate of the Pacific Northwest. Although not a specific design criteria, temperature and weather conditions may affect the health and safety of the construction workers; therefore, a Site-specific health and safety plan (HASP; discussed in Section 6.5) will be prepared by the contractor that will include provisions to address hydration and workers keeping cool within the confines of the Site if higher temperatures (i.e., above 80 degrees Fahrenheit [°F]) occur during construction. Cold temperatures will also impact the safety of the workers and will also be addressed in the contractor's HASP. Cold weather can affect backfilling of excavations; therefore, the placement of backfill will not be conducted while the temperature is below 35°F to avoid placing frozen soil. Accordingly, the frost depth to use in design of all buried pipe is greater than 1.5 ft (BMC Chapter 17.10.20 Section 117). The 24-hour, 25-year rain event for the design of the

landfill cover system (per current solid waste regulations) is 3.5 inches. The design of the stormwater controls for the Site cleanup is detailed in Section 5.2.4.

Hourly wind data measured at the Bellingham Airport meteorological station were used for the wave and shoreline protection design. The wind data measured at the Bellingham Airport station were compiled and processed for the period from 1948 to 2014. Wind statistical analysis and determination of wind design parameters were conducted based on long-term wind data from Bellingham Airport. Wind measurements representing one-minute duration were compiled and statistically processed for a period of 41 years (from 1973 to 2014). A 100-year return period wind speed from sector 190°-240° True North ranging from 49.9 to 58.1 miles per hour were selected for wave modeling and analysis (as discussed further in Section 5.2.4).

## 5.1.7 Existing and Future Site Use

The Site is currently vacant. Consistent with the Waterfront District Sub-Area Plan adopted by the Port and City in 2014, the City plans to use the Site for an open-space park with additional landscaping once the Site cleanup is completed. The City has completed the master plan for the planned park, currently referred to as Cornwall Beach Park (Anchor QEA 2014), although detailed park design had not commenced at the time this EDR was prepared. It is intended that the final cleanup action be designed and constructed such that it is compatible with and supports the intended final land use for the Site.

#### 5.1.8 Future Sea Level Rise

As noted in Section 4.6.2, the design is based on a potential future SLR of 2.4 ft due to predicted long-term climate change. It is acknowledged that predicting SLR is a developing science and that estimates will likely be refined over time. To address this, a bench and shoreline slope has been included in the shoreline protection design to allow a future increase in the elevation of the shoreline protection system if long term SLR is greater than the 2.4 ft currently estimated, as discussed further in Section 5.2.5.5.

## 5.1.9 Local Planning and Development Considerations

The property associated with the Site is located at the southern boundary of the Waterfront District redevelopment area and the Site is included in the planning for redevelopment as a public park and open space. Development of the park could include construction of buildings where indoor air quality will need to be considered. Redevelopment may also include roadways, parking lots, and areas of vegetation whose design and construction will need to be integrated with the containment element (i.e., capping) of the selected cleanup action.

Redevelopment is still in the planning stages, as discussed in Section 5.1.7, and detailed design and construction of the Site cleanup is anticipated to be implemented in advance of Cornwall Beach Park. However, depending on the timing of the design, permitting, and construction of the final cleanup

action and Cornwall Beach Park, it is possible that all or portions of the park could be constructed concurrently with the final cleanup action.

Effective implementation and compliance of the cleanup for the Site will be coordinated with ongoing and planned cleanup actions at neighboring sites and with the longer-term redevelopment strategy in the Site's vicinity. The coordination with the RG Haley Site cleanup is discussed in Section 5.1.12. The Site cleanup also has some overlap with the Whatcom Waterway site within MU-2. Because the selected remedy for the Whatcom Waterway cleanup site is monitored natural recovery (MNR) in the Site vicinity (under Consent Decree No. 07-2-02257-7), the Site cleanup action for the area of overlap (MU-2) is compatible with the Whatcom Waterway cleanup. Cleanup in MU-2 will include a shoreline stabilization system that will effectively cap the intertidal and shallow subtidal zone and a thin layer sand cap and ENR in the deep subtidal portion of MU-2, and as such, will not interfere with the Whatcom Waterway site cleanup action. In effect, the Site cleanup action will result in a shorter restoration timeframe in the area where Site and Whatcom Waterway cleanup actions overlap.

## **5.1.10** Permitting Requirements

Several permits or meeting the substantive requirements thereof will be required for construction of the Site cleanup. Section 3.3 identifies the permits and submittals that are expected to be required during permitting for the cleanup action.

#### 5.1.11 Public Access

The Site cleanup has been designed to protect human health and the environment, and as such, public access might be permissible once construction of the final cleanup action is complete at the discretion of the landowners. The Site has been designed as an open space with gradual slopes to accommodate planned future land use as a public park and associated habitat enhancement, and could function in that capacity following construction in advance of the City adding the additional amenities planned as part of Cornwall Beach Park. The LFG vents will be constructed in a manner that adequately protects the public from unacceptable exposure to LFG; the LFG collection lines will be underground and the LFG well head and valves will be in lockable vaults that are flush with the landfill cover surface as shown on Figure 8. The landfill cover and shoreline protection system will be durable for pedestrian traffic and recreational use. Physical barriers will be installed to prevent unauthorized motorized vehicular traffic on the Site.

## 5.1.12 Coordination with RG Haley Site Cleanup

The southern end of the RG Haley Site overlaps with the northern end of the Cornwall Site. The design of the cleanup in the overlap area needs to be coordinated to assure the cleanup objectives are met for both MTCA Sites. As shown on Figure 3, the upland extent of RG Haley Site cleanup areas extend over a significant part of the northern third of the Cornwall property. In addition, Cornwall landfill waste extends beneath the southwestern portion of the Haley property. Because of this overlap, the

cleanup actions implemented at the two sites will be coordinated to ensure successful remediation and long-term performance/compliance for both sites.

Although a final cleanup action has not yet been selected for the RG Haley Site, it is anticipated that each site will utilize similar remedial technologies within much of the overlap area, including low-permeability upland capping, stormwater management, sediment capping, and other engineering and institutional controls. Additionally, the sediment component of the RG Haley cleanup is anticipated to include sediment removal and consolidation of the excavated sediment within the upland low-permeability cap. Other cleanup elements expected to be included in the RG Haley final cleanup action, such as sediment capping, *in situ* solidification of soil, stormwater management, and soil gas venting (if needed) will require proactive coordination and the potential phasing of the cleanup actions for the two sites. It is anticipated that the Site and the RG Haley Site cleanup actions will be implemented as a single construction project, although certain cleanup elements for either site could be implemented separately, either prior to or following the primary construction phase. Site remedial design will identify specific cleanup components that will require coordination; however, examples of possible cleanup elements in the overlap area that will likely require coordination and/or sequencing include:

- Source control measures at the RG Haley Site such as upland soil/nonaqueous phase liquid (NAPL) solidification and stormwater controls will need to be completed before or in conjunction with construction of adjacent in-water portions of the RG Haley and Cornwall cleanup actions.
- Sediment removal included in the RG Haley cleanup action will need to be implemented using
  methods that minimize dispersal of contaminants and be implemented in advance of
  placement of the Site sand filter, shoreline stabilization system, and the thin layer sediment
  cap.
- Potential sediment capping (i.e., for contaminant attenuation) that may be part of the final cleanup action for the RG Haley Site will need to be implemented in advance of, or concurrent with, placement of the Site thin layer cap in MU-2.
- The RG Haley Site's groundwater remediation strategy may need to be implemented in the overlap area at the north end of the Site prior to final construction of the Site's MU-1 containment system in this area.

As discussed in Section 5.2.2 and shown on Figure 8, the northern portion of the Site cleanup is reserved for consolidation and containment of conditioned sediment and other materials removed from the in-water portion of the RG Haley Site. As such, the excavation and upland consolidation of the RG Haley sediment will need to occur in advance of completing the Site final cleanup action in this area.

## **5.1.13** Shoreline Erosion (Coastal Dynamics)

An evaluation of shoreline erosion was conducted for the RI/FS for the Site (Landau Associates 2013). Per section 4.1.3 of the RI/FS, shoreline erosion is estimated to have ranged from approximately 60 ft

at the southwestern corner of the landfill to 10 to 30 ft at the northern edge of the landfill between 1969 and 1994. Additional evaluations in 2007 and 2012 indicated that the shoreline has continued to erode during the subsequent years, indicating that the current shoreline is inadequately armored with concrete rubble, and that debris currently serves as non-engineered erosion protection for the Site shoreline. Because of the releases of hazardous substances caused by the significant and ongoing erosion of the shoreline, shoreline stabilization is considered a primary element of the Site cleanup action. Preliminary design of the shoreline stabilization system is provided in Section 5.2.5.

## 5.1.14 Intertidal/Subtidal Construction

Intertidal and subtidal construction will be required to install the shoreline stabilization system and thin layer sediment cap in MU-2. In-water construction has the potential to release hazardous substances to surface water and marine sediment. The potential for these releases needs to be considered in the design of the cleanup action and in the selection of engineering controls used during construction of in-water elements of the cleanup action. The primary design consideration to limit releases during in-water construction is to limit excavation in the aquatic portion of the Site that could expose currently contained refuse and wood waste to currents and wave action during construction. The engineering controls that would be implemented during construction will include BMPs typically applied to contaminated sediment cleanup projects (e.g., floating booms, silt curtains, warning buoys), as discussed in Section 6.0.

The timing of construction relative to tidal conditions also will be considered in minimizing impacts to surface water and sediment during in-water construction. It is anticipated that most in-water construction for the shoreline stabilization system can be constructed in the dry during low tide cycles to minimize material removal and placement through the water column.

## 5.2 Design Details

This section provides the Site cleanup action preliminary design based on the Site-specific considerations discussed in the previous section.

## 5.2.1 Upland Site Grading

The Site will require cuts along the shoreline and in the intertidal zone. The material from these cuts plus imported fill will be used to establish the Site upland grades required for stormwater drainage shown on Figure 8. The materials required for the upland low-permeability capping system to cover and protect the Site will then be placed on the graded surface, as shown on Figure 10. The surface grades were established based on minimum grades allowable to facilitate drainage of the cap and the MFS requirement that a minimum 2 percent grade be maintained in the long term for landfill closure. Estimated long-term settlement due to current and historical pre-loading in the western portion of the Site uplands and loadings from fill required to establish Site grades, and in consideration of potential future filling associated with the planned Cornwall Beach Park in the eastern portion of the Site uplands, resulted in an asymmetric grading plan with steeper slopes in the eastern portion of the

Site uplands, as discussed in the following section. This relatively flat grading plan will allow maintenance equipment adequate access to the Site.

The earthwork volumes required to grade the Site to the grades shown on Figures 8 and 10 are summarized in the following table:

**Approximate Fill Volume Approximate Cut Volume Site Grading Element** (in-place yd3) (in-place yd3) Remove intertidal rubble to the approximate MLLW elevation 1,800 1,700 5,200 4,500 Cut shoreline edge of landfill to top of waste Import Hilton Avenue borrow source soil to pre-load the Site 45,000 and to establish minimum drainage grades Consolidated Sediment from RG Haley Site, plus imported fill 15,000 as needed Totals 7,000 66,200

Table 5-2. Earthwork Volumes for Site Grading

#### **5.2.1.1** Estimated Settlement

Landfill refuse and wood debris are compressible and will settle due to additional weight placed on the material, biochemical decomposition, physiochemical change, and raveling of soil into voids (Sowers 1973). However, because the Cornwall Avenue Landfill refuse was deposited prior to 1965 (over 50 years ago) and LFG production is at *de minimus* quantities, it is concluded that biochemical decomposition (fermentation and decay, both anaerobic and aerobic), physiochemical change (corrosion, oxidation, combustion), and raveling of soil into voids is largely completed. Accordingly, further settlement over the refuse area will primarily occur from applying additional material weight above it. Similarly, wood waste was deposited during historical saw milling activities that pre-dated refuse placement, so the primary means of any future wood waste settlement would also be from the additional weight of the grading fill and landfill cover system.

The placement of the IPA stockpiles over the refuse in 2011/2012, and previous GP log decking operations in this area, effectively preloaded the refuse and wood waste in the western portion of the Site uplands. In summary, the settlement survey showed up to 1.5 ft of settlement under the weight of the 15 ft of soil placed in the IPA stockpiles, and indicated that the degree of settlement varied significantly, consistent with the significant variability in the consolidation and heterogeneity typical of solid waste landfills. Had the area not been previously preloaded by log decking associated with GP operations, it is anticipated that the settlement induced by the IPA stockpiles would be significantly greater. The existing IPA stockpile heights exceed the proposed height of the landfill cover over the entire refuse area. The Site will therefore be unloaded to construct the cover system in the western portion of the Site, effectively mitigating post-construction settlement, and allowing for use of the minimum MFS post-closure slopes of 2 percent in this portion of the Site uplands. Rebound is not

expected in municipal solid waste refuse because the Site has been preloaded by the IPA stockpiles since 2012 and was previously preloaded by the GP log decks.

The area to the east of the IPAs is underlain by varying thickness of wood debris. The pre-design investigation determined that the wood debris thickness in this area ranges from 0.5 to 8 ft. Based on up to about 15 ft of fill being located in this portion of the Site upland in association with placement of grading fill and the final cap, and the potential for placement of a similar height of fill as part of the Cornwall Beach Park and the R.G. Haley site cleanup, some settlement is expected in the eastern portion of the Site uplands. The preliminary design grades for drainage in this portion of the Site were established at 5 percent to accommodate settlement and maintain the minimum 2 percent grades required for long-term cap performance. Post-construction settlement would need to exceed 4.5 ft to reduce the proposed 5 percent slopes over this area to less than the minimum 2 percent slopes required for drainage. As discussed below, these grades may be reduced during final design depending on the timing of placement of general fill in this area and the results of ongoing settlement monitoring.

As shown on Figure 7, additional fill soil was added to the east side of the Site from the Port's Hilton Avenue property. Compacted fill was placed to elevations which exceed the proposed final elevations of the landfill cover and placement was completed on June 21, 2016. The location of settlement monitoring monuments and the total settlement due to the additional fill loading through May 2017 is also provided on Figure 7. As of May 4, 2017, nearly a year after placement, settlement at the 13 settlement monitoring monuments ranges from zero to 0.21 ft (2.5 inches) maximum. The placement of the fill has had a similar preloading effect as the IPA stockpiles and log decking that occurred in the western portion of the Site, and the construction of the landfill cap will actually unload a majority of the Site from the current IPA and soil stockpile loading. The settlement is continuing to be monitored; however, the minimal settlement to date may allow the final grades in the eastern portion of the Site uplands to be reduced from the 5 percent grades used in the preliminary design provided herein. Final grades will be developed during final design based on settlement data collected following the placement of the Hilton Avenue fill material in the eastern portion of the Site. The settlement monitoring monument locations are shown on Figure 7, with the settlement measurements at each of these monuments through May 4, 2017 presented in Appendix F, Figure F.3. A discussion of the monitoring to measure the settlement caused by the additional fill placed on the Site is also presented in Section 6.1.1.

### **5.2.1.2 Site Preparation**

All trees and brush will be cleared from the Site to spread evenly no more than 1-ft thick on the ground surface, and mixed with and/or filled over with the soil used to bring the Site to final cover subgrade elevations. Alternatively, the cleared vegetation could be mulched and used on site or off site if the vegetation is not intermixed with existing Site soil.

The rubble from the beach will be removed during low-tide events to the approximate MLLW elevation. The rubble will be brought to the upland portion of the Site to be incorporated in the lower level of soil needed to bring the Site to final cover subgrade. This material will be placed entirely under the landfill cover and above the groundwater table to avoid high pH runoff. The concrete rubble will be size-reduced to no larger than 2 ft on the longest dimension and mixed into the fill soil to alleviate voids. Special care will be needed in how and where the concrete rubble is placed to fill around the rubble with compacted soil, thereby reducing the potential for post-filling settlement.

#### 5.2.1.3 Demolition

Prior to importing fill to the Site in June 2016, the existing catch basins were cleaned out and filled with CDF. Prior to filling the north end of the Site, the septic tank (see Figure 2) will also be exposed, grouted to the ground surface and the conveyance lines will be abandoned in place. Using underground utility location technology, dye testing, and test pitting, an attempt will be made to locate the conveyance like at the North Outfall. If located, it will be exposed from the surface just east of the shoreline on the upland bank, cut, and plugged with a concrete/grout plug. The existing asphalt pavement will be ripped (to remove a potential barrier for upward migration of LFG) into broken pieces no larger than 4 ft on the largest dimension and left in place to be mixed with the soil needed to bring the Site to final cover subgrade.

## 5.2.1.4 Waste Regrading

The grading along the shoreline will require some soil and refuse excavation, relocation, and compaction of the excavated material in the interior of the Site uplands. The excavated soil and waste will be spread in a lift no thicker than 2 ft. Depending on the composition of the excavated material, it may be mixed with fill soils and compacted with appropriate compaction equipment.

Except for the fill imported to the Site in 2016 (Section 4.4), all of the other existing fill at the Site, whether landfill waste, soil, wood debris, or demolition debris is considered contaminated at concentrations above MTCA cleanup levels throughout. As such it must be managed as a contaminated media during construction using appropriate environmental protective measures and handling techniques.

## 5.2.1.5 Grading and Subgrade Preparation

Once excavated waste and clearing materials have been placed and compacted, fill soil will be placed and compacted to the grades discussed in Section 5.2.2.2. The placement of the regraded waste and clearing debris at the bottom of the fill soil, with the soil placement in controlled lifts to the final fill height, will minimize the post-construction differential settlement that could otherwise cause low spots and potential ponding.

## 5.2.2 Landfill Capping System

The landfill capping system will be constructed on the prepared subgrade fill and will consist of a LFG collection system overlain by a composite cover system that is designed to be relatively impermeable to the release of LFG and the infiltration of precipitation.

## 5.2.2.1 Landfill Gas Collection Layer and Vents

The LFG collection layer will be placed above the refuse or wood waste and grading fill and below the low-permeability layer. The purpose of this layer is to collect LFG that rises up through the landfill, and route the collected LFG to passive vents for controlled release to the atmosphere. For this project, it is not anticipated that sufficient pressure could accumulate to affect the overlying cover system layers or impact slope stability. Nevertheless, a LFG collection layer will be installed to prevent accumulation of LFG or pressures that could promote cap uplift or LFG migration.

The extent of the LFG collection layer is indicated on Figure 8, and is shown in section view as a component of the cover system on Figures 14 and 15.

Calculations of the required gas transmissivity of this layer are provided in Appendix A, Attachment A.6. Several materials were evaluated for construction of this layer, including rubblized concrete sourced from the shoreline of the Site, imported sand, and geocomposite materials. As discussed in Appendix A, a geocomposite material was selected for application based on its reliable effectiveness, ease of construction, and cost. The conceptual design is based on using a geocomposite material that incorporates interwoven 1-inch diameter tubing in the rolled product that would connect the collection layer to the ventilation system using only a very a limited amount of LFG header piping. Slight positive pressures within the LFG collection layer caused by LFG generation will result in a slow flow of LFG through the layer and out the ventilation system. When these internal pressures are not present at significant levels, the transmissive connection between the collection layer and the atmosphere will allow barometric pressure changes to promote airflow through the collection layer to promote diffusion and ventilation. This LFG collection layer will be extended over the entire upland portion of the Site to the shoreline. At the shoreline, the impermeable soil cover layer extends beyond the LFG collection layer to an anchor trench, creating a barrier to LFG discharge at the shoreline. Due to the low-permeability barrier created by the cap anchor trench, the low quantities of LFG being produced, the preferential flow path to the vent pipes created by high transmissivity within the LFG collection layer, and the air mixing caused by tidal fluctuation and wave action at the shoreline, little to no LFG is expected to be emitted from shoreline terminus of the LFG collection system.

Based on extensive coverage of the LFG capture layer, the additional subsurface pressure relief provided by the extraction wells, the general layout of the Site and surroundings, and the small quantity of LFG being generated at this time, there are minimal LFG migration concerns to the north or east. However, to the north, a soil vapor collection system will be installed as part of the RG Haley cleanup site which would capture LFG migration. As shown on Figure 8 and 15 (Detail Section 4), a

perimeter collection pipe and trench will be installed to capture LFG and prevent migration toward the east and the BNSF railroad right-of-way. The trench may need to be deeper than the minimum 2 ft shown to assure that it will adequately cut off gas migration eastward.

Additional elements of the LFG control system are discussed in Section 5.2.3.

#### **5.2.2.2** Fill Soil

Fill soil is required to construct the grades across the Site necessary for drainage. As discussed in Section 4.4, fill soil formerly located at Hilton Avenue on Port property was characterized for approval by Ecology to be imported as an early phase of the final cleanup action. Early placement of the majority of fill required was advantageous to pre-load the eastern portion of the Site prior to final grading of the subgrade and construction of the upland capping system. Fill placement occurred in June 2016, with the as-built contours shown on Figure 7. The construction report for the fill placement is provided as Appendix F.2.

The fill soil was placed in loose horizontal lifts not exceeding 12 inches. The fill soil was then compacted using a pad-footed roller or similar compaction equipment to a minimum density of 90 percent of the maximum dry density and a moisture content -2 to +4 percent of optimum moisture content as defined by the Modified Proctor compaction test (ASTM D1557). This process was repeated until the contours shown on Figure 7 were achieved. Once the fill soil reached final compacted elevations, the fill was smooth-graded and covered with seed and an erosion control blanket to prevent erosion.

As shown on Figure 8, the northern approximately 2.5 acres has been reserved for fill from the RG Haley Site cleanup. It is understood that this fill will consist primarily of stabilized sediment and incidental debris from the RG Haley cleanup action. The final quantity of fill from the RG Haley Site is yet to be determined, but is estimated to range from 10,000 to 18,000 yd³. A reasonable estimate of the volume needed within the RG Haley upland cleanup area for these materials is 15,000 in-place yd³, which is provided for at the north end of the Site, as shown on Figure 8. As with the other fill at the Site, the RG Haley material will be placed at the base of the fill and imported soil, if needed, to bring elevations up to the finish subgrade elevation to minimize differential settlement. If additional imported fill is needed, it will be tested at the source to confirm that it is not contaminated per WSDOT 9-03.21 (1) items 2 and 3, and the records of this testing along with the quantity supplied to the Site will be included in the construction report.

The volume provided for the RG Haley material (15,000 yd³) is based on the final capping system in this area being constructed using the cap planned for the RG Haley final cleanup action. The anticipated RG Haley cap differs from the Site cap in that it uses a single geomembrane liner low-permeability layer instead of a 2-ft-thick low-permeability soil layer in conjunction with a geomembrane. This provides 2 additional feet for placement of fill beneath the liner system, which is

incorporated into the 15, 000 yd<sup>3</sup> total. The integration of the Site and RG Haley capping systems is described is Section 6.1.

### 5.2.2.3 Low-permeability Soil Layer

As described in Section 4.3, the soil from the onsite IPA material has been tested to confirm that the stabilized sediment can achieve the hydraulic conductivity requirements for use as the low-permeability soil layer in the final cover system, but will need to be dried, reworked, and compacted to meet the permeability requirements. The construction methodologies required for the low-permeability soil layer are discussed in Section 4.3.2. Approximately 30,000 in-place yd³ are required to construct the 2-ft-thick compacted low-permeability soil layer across the landfill. This layer will not be constructed over the portion of the landfill that contains the RG Haley consolidated wastes. The transition of the low-permeability soil layer to the RG Haley Site is provided on Figure 14, Detail Section B.

#### 5.2.2.4 Geomembrane

Once the low-permeability soil layer has been constructed, construction quality assurance testing has been completed, and the grades have been verified by survey, a geomembrane liner will be installed directly on the surface of the low-permeability soil layer. Three options for the geomembrane liner were evaluated: the 20-mil thickness scrim-reinforced polyethylene (SRPE) material specified in the CAP and used to cover the IPAs, 30-mil thickness linear low density polyethylene (LLDPE), and 30-mil thickness polyvinyl chloride (PVC). According to research (Koerner 2011), the expected geomembrane service life varies with material type and thickness but is most impacted by exposure to direct sunlight. Increased temperature testing to accelerate aging has been conducted on buried high density polyethylene (HDPE) geomembrane over the last 25 years. This study was funded by the EPA, and because of the expense, did not include testing of other geomembrane types. This testing has concluded that will require approximately 500 years at 65 °F before the HDPE geomembrane is reduced to 50 percent of its original strength and elongation properties. The time it takes to reach 50 percent of the material strength and elongation properties is referred to its halflife. In contrast, testing of exposed HDPE geomembrane over the last 12 to 13 years has yielded an HDPE halflife of approximately 70 years due to exposure to UV rays. The buried geomembrane therefore is expected to last approximately seven times longer than exposed geomembrane.

Exposed aging testing has also been performed on 40-mil LLDPE, 30-mil PVC, and other geomembranes. Aging 40-mil LLDPE was found to have an exposed halflife of approximately 49 years, with 30-mil PVC having a halflife of 21 years (Koerner 2016). It was also verified that thicker geomembranes age slower than thinner ones. Applying the factor of 7 to the exposed halflife of 40-mil LLDPE and a proportional thickness deduction, the best available research indicates the buried 30-mil LLDPE would have a life expectancy of at least 257 years. Applying the factor of 7 to the exposed halflife of 30-mil PVC indicates the buried 30-mil PVC would have a life expectancy of at least at least 147 years. The SRPE has a much thinner 8-mil low density polyethylene (PE) layer on each side of the

scrim or 16-mil total. Applying the factor of 7 to the expose halflife of 40-mil LLDPE and a proportional thickness deduction, indicates the buried 20-mil SRPE would have a life expectancy of at least 137 years.

Based on the expected functional life of the buried geomembranes, all of the materials proposed are expected to last long enough for the landfill gas generation to reach *de minimus* quantities, after which the underlying 2-ft-thick low-permeability soil layer will provide the ageless barrier to infiltration of precipitation.

SRPE was selected as the preferred geomembrane for the Site cap in the CAP to protect from direct exposure to the low-permeability soil cap and will have adequate strain and seam strength properties for long-term survivability. LLDPE is considered an acceptable alternative to SRPE for this Site. PVC has somewhat poorer strain and weld strength properties than LLDPE and costs as much or more, so it was eliminated as a potential geomembrane material for the Site.

Because the uplands has already been preloaded, post construction settlement will be much less than for a typical landfill, so the strain properties and seam strength typically required for a landfill geomembrane cap are not as applicable for the Site geomembrane layer. SRPE has three-dimensional strain properties and seam strength which are considered adequate for its intended application as a component of a two-layer low-permeability system subject to the post-construction settlement anticipated for the Site cap.

The SRPE geomembrane would be brought to the Site in folded panels or rolls, carefully placed over the finished grade of the low-permeability liner such that there is direct contact with the underlying compacted soil with minimal wrinkles. Stringent QA/QC will be required to verify that the surface of the low permeability soil layer is smooth before placing the SRPE geomembrane. Once the geomembrane is placed, adjoining SRPE panels would be seamed together by glue. Glued seams can also be used for seaming to a dissimilar geomembrane that may be selected for the RG Haley cover system, with at least a 5 ft overlap of the RG Haley cover geomembrane over the SRPE as shown on Figure 14, Detail B.

Glued seams would be inspected for leaks using a vacuum box testing over the entire length of the seam. The vacuum box is common leak testing equipment for testing seams. The vacuum box consists of a long shallow box with a window as the top surface, and open base with a rubber or foam seal along the entire bottom edge of the box. The liner seam area to be tested is covered with a film of soapy water, the box would be pressed over the area, and a vacuum is applied to the inside space of the box. As a result of the applied suction, any leak in the seam will be observed by soap bubbles forming at the point of a leak in the seam. That leak point is marked for repair by re-gluing and testing again in the same way. This vacuum box testing would continue by overlapping the test areas along 100 percent of the seam.

LLDPE is the most commonly used geomembrane material for landfill liner systems. LLDPE has good three-dimensional strain properties and better long-term seam strength than SRPE because it can be welded together. In addition, if LLDPE geomembrane is used for the RG Haley AOC area cover system, it would be advantageous to use LLDPE for the Site in order to have stronger welded-seam connection with the geomembrane in that cover system. However, LLDPE may cost up to 50 percent more than SRPE depending on the fluctuating price of polyethylene resin (which is based on the price of oil). LLDPE has better performance properties, but are not considered necessary for the Site for the reasons discussed below.

If used, LLDPE panels would be deployed in rolls and seaming is accomplished using double-track fusion welding for LLDPE with extrusion welding used for patches and boots. The use of fusion and extrusion welding melt the plastic together such that the weld is stronger than the geomembrane itself. Welded seams are thus superior to glued seams in bond strength and long-term strength. Each welded seam, 100 percent of the length, would be tested for leakage using a vacuum box (as described above), air pressure, or spark testing. The double track weld allows the space between welds to be pressurized with air (up to 30 psi) after installation, and any drop in pressure over 5 minutes indicates a leak that needs to be found and repaired. Spark testing would be conducted by embedding a 24-gage copper wire in extrusion welds around areas that are not flat enough to use a vacuum box. Once the weld is complete, a low-amperage electric detector would be passed over the weld. Any spark arcing from the weld indicates a leak that needs to be repaired with additional extrusion welding. Typically every 500 ft, destructive sample across the welds are cut for strength testing, and the hole patched with additional geomembrane material. Once all panels, tests, and patches are confirmed to be complete, the geomembrane may be covered by the drainage layer.

Considering, the above discussion, either LLDPE or SRPE are anticipated to perform adequately as the geomembrane element of the upland capping system for the Site cleanup action. Because of its lower cost, SRPE remains the planned capping material, but LLDPE will be considered as an alternative capping membrane material during the construction bidding process and may be used instead of SRPE if practicable.

## 5.2.2.5 Drainage Layer

The drainage layer will consist of a drainage geocomposite rolled out and placed directly on the geomembrane. The preliminary design is based on a high density polyethylene (HDPE) geonet geocomposite with a geotextile heat bonded to both sides for a total thickness of approximately 0.2 inches. The geocomposite is specifically designed to transmit water while being compressed under load, with the in-plane flow capacity (transmissivity), specified for the application.

The geotextile to be heat-bonded to the geonet core will be designed to have the correct apparent opening size (ASTM 4751) to prevent intrusion of fines from the overlying cover soil layer and provide a friction layer against the underlying geomembrane. The geocomposite will also provide a protective cushion on the underlying geomembrane to help prevent post-construction damage to the

geomembrane. The geomembrane will be examined for tears and holes during the construction quality assurance prior to laying the geocomposite. Good construction quality assurance (CQA) would allow discovery and repair of tears during construction. This CQA and combination of low anticipated differential settlement, and adequate strength of the geomembrane and seams, will result in preventing migration of silt upwards from the low-permeability soil layer into the drainage layer.

In order to determine the quantity of water that may percolate into the drainage layer, 30 years of Bellingham weather data was inputted in the EPA Hydrologic Evaluation of Landfill Performance (HELP) model. This model determines from the quantity of rainwater/snowmelt on the cover the quantity that runs off, the quantity that percolates downward but is evapotranspirated, and the quantity that percolates downward and is taken away by the drainage layer. The 30 year model is used to incorporate historical large storm events, and consider long-term percolation fluctuations through the cover system. The HELP Model results are provided in Appendix B, Attachment B.5.

Once the HELP model was set up for a unit area of the landfill, the slope of the cover surface was input for those slopes presented in the preliminary design (2%, 5%, and 25%) and the drainage spacing for collection pipes was increased until the head on the geomembrane was no more than 1 ft. The collection pipes will be perforated 3-inch-diameter corrugated HDPE pipe, and will be sloped to intercept seepage from the geocomposite and convey the water for discharge at the landfill perimeter. The orientation and spacing of these proposed drainage pipes is shown on Figure 10. The connection of the geocomposite layer to the drainage pipes is shown on Detail A on Figure 14.

The drainage geocomposite will be confirmed to have the minimum transmissivity in the laboratory (ASTM D4716) of 1.1 x 10<sup>-3</sup> square meters per second (m²/sec) under a gradient of 0.02 and compressive load of 2,500 pounds. This transmissivity was derived from the minimum required transmissivity required for drainage and stability of 5 x10<sup>-4</sup> m²/sec, after partial plugging by applying the reduction factors for: 1) elastic and creep intrusion of the geotextile into the geonets core space under prolonged load, 2) long-term precipitation and chemical clogging of the geonets core space, and 3) root growth or other biologic clogging (see page 18 of Appendix B-3). The factors of safety were as recommended by Koerner (2005) (Table 4-2) for surface water drains for landfill covers. The test compressive load would allow up to 18 ft of additional fill soil to be placed on the cover system for future park landscaping, while still maintaining the minimum drainage capacity required. Research (Koerner 2005) based on interpolating lab test data suggests that the life expectancy for the geocomposite drainage layer under the loading and chemical breakdown of buried conditions is over 600 years. The maximum drainage pipe spacing is tabulated in Table 5-3 below.

Table 5-3. Cover System Design Drainage Layer

|                                                                                          | Drainage Pipe Spacing in Drain Layer (ft) |          |           |
|------------------------------------------------------------------------------------------|-------------------------------------------|----------|-----------|
| Cover Type above Geomembrane                                                             | 2% Slope                                  | 5% Slope | 25% Slope |
| 2-ft thick topsoil over geocomposite drain layer k = 10 cm/s (Cornwall Landfill Cover 2) | 70                                        | 140      | 665       |

With cover system drainage capacity confirmed, the drainage system proposed was input into the slope stability analysis to demonstrate that the saturated cover would be stable under both static and the design seismic conditions. A discussion of factor of safety and acceptable slope stability criteria is provided in Section 5.1.5.2.

## 5.2.2.6 Topsoil and Cover Soil Layer

The drainage layer will be covered by a minimum 2-ft thickness of cover soil. The top 6-inch thickness of the cover soil will consist of topsoil that is suitable to grow a good stand of grass. The purpose of the cover soil is to protect the underlying drainage geocomposite and geomembrane from weathering, puncture by surface activities, and to provide a layer for evapotranspirating percolated water using water uptake by an established stand of grass. As demonstrated in the HELP model (Appendix B, Attachment B.5), the cover soil layer will consist of a silty sand imported to the Site with a hydraulic conductivity less than 1 x10<sup>-3</sup> cm/s. The topsoil will be a silty sand loam specified to comply with the requirements of Washington State Department of Transportation (WSDOT) 9-14 Type C Topsoil including fertilizer to establish grass on the cover.

Fertilizer and other landscape chemical application rates will be specified in the construction documents and in future maintenance plans to prevent the application of excess fertilizers and chemicals that could leach into the drainage layer and discharge into the bay. The topsoil will be seeded with an appropriate grass seed mixture following installation and covered with a tackifier and or erosion control blanket as necessary to prevent erosion until the grass is established. Note that NPDES or City permitting requirements for drainage systems may require modification of the plan described herein to provide for additional retention or treatment of water discharging to the bay.

## 5.2.2.7 Cap Penetrations (Well, Utilities, Other)

Penetrations through the cover will include the proposed groundwater monitoring wells, LFG vent pipes, associated utility boxes, and may include other utilities, piers, and/or piles associated with subsequent construction of the City's Cornwall Beach Park. The penetrations will be cut through the cover system and once in place, the 2-ft-thick low-permeability soil layer will be restored over and around the penetration element (as applicable), compacting the low-permeability soil in 6-inch-thick lifts to within 2 inches of the penetration element. The remaining 2-inch annulus will then be filled with powdered bentonite to seal the low-permeability soil to the penetrating element. Next, the

geomembrane will be restored by placing a 6-inch-minimum width strip of the same geomembrane material centered over the cut (cap strip) and seaming it in place. Utility trenches and other liner features that need to be cut through the cover system must be reviewed and approved by an engineer to verify if a continuous geocomposite LFG collection layer and /or drainage layer also is required to be restored across the cut. Liner penetrations will have a fabricated "boot" consisting of the same type of geomembrane wrapped around the element a minimum 6 inches vertically and the skirt of the geomembrane extending out over the cover geomembrane a minimum of 6 inches from the penetration element. The top of the boot will be connected to the element using double hose clamps for pipe penetrations or bolted batten strips for larger structures. The top edge of the boot will be silicon sealed to the element and the skirt will be welded or heat bonded to the existing geomembrane. A typical liner penetration detail is shown on Figure 12.

#### 5.2.3 Landfill Gas Control

Landfill gas control will be accomplished by collecting LFG in the cover system or in LFG passive collection wells, and routing the collected gasses to a passive ventilation system. The layout of the LFG control system is provided on Figure 8, and conceptual design details are presented on Figures 12 and 13.

As discussed in Section 5.2.2.1, an LFG collection layer will be included in the cover system. This layer will extend throughout the entire upland Site to capture any rising gasses and provide a ventilation route for the gas to exit the subsurface in a controlled manner, preventing exposures. The preliminary design is based on using a transmissive collection system that combines geocomposite materials with integrated conveyance tubing to route LFG collected within the geocomposite to the header system. Quick-connect fittings are used to attach the integral tubing to pre-drilled holes in the header piping.

The LFG collection layer could also be effectively constructed using gravel and perforated PVC piping in trenches. However, the geocomposite system is anticipated to provide similar or improved transmissivity while also providing more effective conveyance with tighter pipe spacing, and more uniform coverage than would be achieved with a typical gravel and perforated piping approach. The use of the geocomposite system also reduces the trenching required to just main header trenches, limiting the potential to encounter buried waste during construction.

The LFG collection layer evaluated for this application is Draintube ™ by AFITEX-Texel, which incorporates flexible perforated piping into the geotextile layer. The piping will provide the primary means of conveyance of captured LFG to the header system and ultimately, the vents. The gas collection products are made from polypropylene, polyethylene, or high-density polyethylene, which are very stable compounds. Longevity is typically understood to be on the order of decades or centuries. Some theoretical and product-specific testing estimates the useful lifetime of the Draintube™ product to be 150 years (AFITEX-Texel 2017, CTT Group 2009, GEOROUTE Ingénierie 2014, SAGEOS 2008) based on tests of chemical fouling and oxidation. As a result, we anticipate the LFG

collection and conveyance layer will provide ventilation for many years after any measurable quantity of LFG is present.

A series of four passive collection wells will be installed in the areas of the Site containing refuse, to provide subsurface pressure relief. Although lateral migration has not been a concern in the past at this landfill, the additional overburden weight of fill soils and the cover system will restrict existing ventilation pathways, and increase subsurface pressures. To prevent this change in conditions from causing subsurface lateral gas migration, the passive collection wells will be installed into the refuse, where the greatest concentration of LFG was detected. The wells will extend to a depth just above the groundwater table and provide ventilation for gasses generated in this area. Well installation details, temporary completion details, and wellhead completion details are presented on Figures 12 and 13. The wellheads will be flush-mounted at the surface and will include an isolation valve and sampling port to support long-term operations and maintenance, and compliance monitoring.

Gasses collected in both the cover system and the passive collection wells will be routed through subsurface 2-inch-diameter HDPE SDR-11 LFG header piping to one of two passive vents located in the northeastern and southeastern portions of the Site. The landfill gas generation rate is very low and thus not anticipated to generate a significant quantity of condensation within the control system. Minor droplets that form in the piping are not expected to travel significantly due to the pipe perforations and pipe sloping which prevents sagging. The vents will be constructed of stainless 4-inch-diameter pipe with a round concrete base, and an effluent point 12 ft above ground surface, so that the release of LFG is at a controlled location where exposures are not anticipated and ambient air will not be affected. The vent pipe will be metal to provide a long service life, and stainless steel will be used to provide corrosion protection from external elements and the moisture condensing from the LFG. The vents will be outfitted with a wind-turbine at the head, which will rotate in blowing conditions to provide enhancement of advection and diffusion.

Each vent will also include a subsurface vault which can be used in the future, if needed, to add carbon filtration prior to ventilation. Carbon filtration is not required to meet MTCA cleanup standards based on current data, but including the vaults would allow it to be added in the future with minimal effort if nuisance odors become a concern, or if different LFG quality conditions are determined during compliance monitoring. Sampling ports will be installed in the piping within the vaults to facilitate compliance monitoring, including chemical composition and pressure measurements. The subsurface vaults will also contain a flame arrestor, a safety device that prevents a flame from traveling through the LFG control system. This will be included based on the potential for methane to occasionally be present in the LFG control system within the explosive limit, and the possibility of lightening striking the LFG vents.

## 5.2.4 Stormwater and Erosion Management

## 5.2.4.1 Onsite Drainage

As shown on Figure 10, the majority of the upland landfill cover is designed for stormwater to sheet flow and discharge into the rock/aggregate shoreline protection systems along Bellingham Bay. Water that percolates into the cover will be intercepted by a geocomposite drainage layer that is collected by underdrain lines. As shown on Figure 10, and detailed on Figures 14 and 15, the cover drainage layer underdrain pipes will also discharge to the shoreline protection and perimeter ditch systems. The slopes on the north and east sides of the landfill will sheet flow to a collection ditch which is sloped at 0.6 percent to discharge to Bellingham Bay at the southeast corner of the landfill at the existing South Outfall location which will remain. The ditch along the north and east sides of the Site is trapezoidal in shape, with a 4-ft bottom width. A subsurface underdrain pipe is located below the drainage ditch and will also discharge at the South Outfall location. This ditch underdrain will decrease the standing water and saturated conditions in the ditch within the soil cover required to protect the underlying geomembrane. This underdrain pipe is part of the cover system design and is discussed in section 5.2.2.5. The stormwater design and ditch sizing calculations are provided in Appendix B, Attachment B.4.

#### **5.2.4.2** Accommodation of Adjacent Properties

The ditch system will effectively prevent runoff to or run on from the BNSF property to the east and the RG Haley Site to the north. During post closure park development, landscaping may eventually require regrading and filling of the ditch system. If this occurs, cleanout structures for the subsurface underdrain pipes associated with the cover system would need to be preserved and extended to remain above grade. Alternative drainage systems including subsurface pipes, culverts, or other diversion structures may also need to be added depending on the final design of the park.

## **5.2.4.3** Stormwater Discharge

The MFS for design of landfills (WAC 173-304-460[3][iii]) requires that stormwater management be designed to accommodate a 24-hour, 25-year storm event, which represents an ARAR for the Site cleanup action. As detailed in Appendix B, Attachment B.4, this storm event (NOAA 1973) equates to a peak flow rate of 992 gpm and an average flow rate (over approximately 15 hours of storm runoff associated with the 24-hour, 25-year storm event) of approximately 85 gpm of stormwater into Bellingham Bay at the southeast discharge point. The peak velocity of the design storm in the channel was found to be 1.9 ft per second. It should be noted that the design flow depth is only 5.4 inches. The total depth of the collection ditch is 2 ft. As provided in the above referenced calculations, the ditch has the capacity to manage discharges greater than the 100-year storm. As shown on Figure 15, a turf reinforcing mat (TRM) will be placed in the ditch to prevent erosion during storm events. The TRM specified will be included in the construction-level design, considering the velocity expected for a 100-year storm event (Appendix B, Attachment B.4) calculations that indicate the 100-year storm will produce a ditch flow rate of 2.1 ft per second for a duration of 2 hours. As noted in Section 5.1.5.2 (Landfill Cover Stability), the sheet flow over the landfill cover system directly to the bay (areas that

do not drain to the ditch) has also been designed to withstand storm events that exceed the 24-hour, 100-year storm event.

#### 5.2.4.4 Erosion Control

Long-term, self-sustaining erosion control will be accomplished by establishing a good stand of grass on the landfill cover, placing rip rap at the stormwater ditch outlet, and shoreline protection rock/aggregate at the underdrain pipe outlet to Bellingham Bay. Temporary erosion and sediment controls (TESC) will be necessary during and after construction of the upland cover system until the grass is established. Best Management Practices (BMPs) to the TESC elements will be established during the detailed design phase, but will likely include the use of a biodegradable erosion control blanket (ECB) place on the seeded topsoil and a turf reinforcing mat (TRM) in the ditch bottom, as shown on Figure 15.

## 5.2.5 Shoreline Stabilization System

Shoreline protection using rock and aggregates will be required for the aquatic cover system to provide long-term protection against further erosion of the Site shoreline. CHE developed two shoreline protection alternatives. The first alternative (Baseline Alternative) uses a conventional heavy rock armor apron along the shoreline consistent with the conceptual shoreline stabilization system as presented in the Site CAP. The second alternative (Groin Alternative) includes the construction of a rock groin extending waterward from the shoreline near the southwest corner of the Site to reduce wave action and allow the use of smaller diameter materials to provide shoreline protection. The lateral boundaries of both protection alternatives are largely set, except near and extending southward from the pocket beach at the south end of the Site. The southern extent of the shoreline protection will be defined in the final design, and will provide a stable transition of the shoreline protection system into the existing rock protection and sediment in this area. Additional sediment quality characterization will be performed outside of the installed shoreline protection area as part of the evaluation of sediment quality for sediment management unit MU-3, which is not part of this cleanup action, following construction of the final cleanup action for sediment management unit MU-2.

Because the Groin Alternative allows the use of smaller size shoreline protection material, its construction would not cost more, and would likely cost less, than the Baseline Alternative. Because the smaller material sizing for the Groin Alternative provides better strata for aquatic habitat, it is the alternative chosen for the final cleanup action. However, both alternatives are presented below to illustrate the differences between the alternatives and the basis for identifying the Groin Alternative as the preferred shoreline stabilization system for the Site cleanup action.

The preliminary design for the shoreline stabilization system is presented below. Details regarding the modeling and design conducted to develop the preliminary design are provided in Appendix C.

## 5.2.5.1 Size (Average Diameter) and Gradation of Required Shoreline Protection Materials

Each of the shoreline protection areas (e.g. South revetment, sandy gravel revetment, gravel cobble revetment, north revetment and groin) were selected and designed to provide adequate project performance functions and meet the design criteria (including the ability to resist digging during beach play). Detailed sections of these shoreline protection elements with the average grain-size for the rock/aggregate within these areas are provided on Figure 9 for the Baseline Alternative and Figure 10 and Figures 16 through 18 for the Groin Alternative. For the Baseline Alternative, the heavy rock will have an average size of 1.9-ft diameter, 3- to 4-ft thick, extending 140 to 220 ft horizontally out into the bay. This heavy rock beach would be expensive and have poor habitat and aesthetic value. In comparison, the Groin Alternative will only require the heavy rock to build the groin and upper elevation portions of the south and very northern most shoreline. The groin will contain materials to the south of the groin and dissipate wave action to the north of the groin, allowing the majority of the shoreline protection rock size to be reduced to rounded cobbles and sandy gravel. This variable size shoreline protection would use less expensive materials and would visually blend in to the natural coastline better than the Baseline Alternative. The full gradation of the materials will require construction level design, and will be included on the construction plans and specifications.

## **5.2.5.2** Elevation Range of Required Shoreline Protection Material

As shown on Figure 9, the Baseline Alternative would require a heavy rock apron extending along the entire Site shoreline, extending out into the bay to elevation -5 ft MLLW from a top elevation of 13 ft MLLW and coarse gravel from -5 ft MLLW to -12 ft MLLW. The Groin Alternative shoreline stabilization system will have a top height of Elevation 12 ft MLLW along the entire shoreline. The shoreline protection extends downward to Elevation -12 ft MLLW on the north end and south beach area. As shown on Figure 10, north of the groin the shoreline protection is not required to extend as far out into the bay, the bottom elevation of the shoreline protection varying from approximately -1 ft to -6 ft MLLW. As noted in Section 5.2.5.5, the upland cover system has been designed such that additional shoreline protection elevation can be added up to Elevation 17 ft MLLW if needed in the future for potential SLR in excess of the 2.4 ft assumed for this design.

#### 5.2.5.3 Impacts to Eelgrass and Aquatic Habitat

The Baseline Alternative stabilization of the shoreline will require rock to be placed out over the entire limits of the existing eelgrass beds in the aquatic portion of the Site, covering approximately 59,850 ft<sup>2</sup> (1.4 acres) of eelgrass. The Groin Alternative will cover slightly less (59,000 ft<sup>2</sup>) of the eelgrass.

The preliminary design of the shoreline protection system will expand out into the bay causing a loss of aquatic habitat based on the change in location of the shoreline due to the placement of the shoreline protection system materials. Based on the MHHW elevation (8.51 ft MLLW), approximately

43,710 ft $^2$  (1.0 acre) of aquatic habitat will be lost. Based on the OHW elevation (9.5 ft MLLW) approximately 35,830 ft $^2$  (0.82 acre) of aquatic habitat will be lost.

The construction-level design may allow the reduction in the loss of aquatic habitat by refining the thickness of the shoreline stabilization system in the intertidal area. However, the loss of aquatic habitat cannot be entirely avoided. Specific habitat related actions to address the loss of aquatic habitat and the impact to existing eelgrass beds will be developed in coordination with the permitting agencies during detailed design and permitting for the cleanup action. Additionally, the shoreline protection system is designed to be compatible for post-cleanup habitat enhancements planned as part of the City park and identified in the Park Master Plan (Anchor QEA, October 2014, Section 4.4.1), the City of Bellingham Marine Nearshore Connectivity Study and WRIA 1 Nearshore and Estuarine Assessment and Restoration Prioritization Project Addendum 1.

Although the groin will generally improve aquatic habitat by allowing the use of smaller sized shoreline protection materials on the adjacent shoreline, it may create an impediment to juvenile salmon migration. Refinements to the groin design will be evaluated during detailed design and permitting of the cleanup action to minimize its potential impact to the migration of salmon and other potentially affected species. Potential refinements that will be considered include, but are not limited to, improving habitat function and establishing upland planting areas at the shoreline to support vegetation that will overhang the water.

## 5.2.5.4 Shoreline Grading

As shown on Figure 8, the existing rubble and debris on the shoreline surface will be removed prior to constructing the shoreline protection system. The removal of this material will be conducted in a manner that disturbs the underlying "beach" surface as little as possible to minimize the release of the underlying finer grained waste materials. This rubble and debris will be brought to the upland portion of the Site for use as fill under the grading fill and landfill cap. Once the debris is moved from the intertidal zone, the surface will be lightly smooth graded to form the subgrade for the shoreline protection system. The construction will likely be phased to clear and cover progressive sections of the shoreline to minimize the unprotected surface areas exposed to wave action.

### 5.2.5.5 Integration with Upland Cap

As shown on Figure 14, the geomembrane layer of the upland cap will be placed under the upper 2 ft of the shoreline protection system (10 ft MLLW to 12 ft MLLW) to secure the geomembrane cover to the shoreline and protect the toe of the upland slope. As shown in the details on Figure 9 for the Baseline Alternative and Figures 16 through 18 for the Groin Alternative, the top of the shoreline protection forms a bench that will be covered by a minimum 6-inch-thick layer of quarry spalls sloping toward the bay at 2 percent. This bench could be used in the future as a pedestrian pathway along the shoreline, or, with additional cover soil, could be used for riparian landscape/habitat plantings.

The bench could function as the base to extend the shoreline stabilization system up the adjacent 4H:1V upland slope at some point in the distant future if SLR were to exceed the predicted 2.4 ft used for the current design. The shoreline stabilization system could be extended up to Elevation 17 ft MLLW, an additional 5 ft of elevation, to protect against SLR and associated wind/wave impacts.

#### 5.2.5.6 Shoreline Sand Filter and Integrated Groundwater Monitoring System

Once the shoreline has been graded, a 1-ft-thick sand filter layer will be placed on the prepared shoreline subgrade as shown on Figures 11 and 12. The gradation of the filter material will be selected during detailed design but is anticipated to be a well graded sand and gravel to provide adequate function as a filtration layer and minimize the erosion potential of the material.

Five groundwater monitoring wells will be installed within this layer at the locations shown on Figure 8. The groundwater monitoring wells will consist of Schedule 80 polyvinyl chloride (PVC) pipe, and have prepacked silica sand screens extending from elevation 0 ft MLLW to +5 ft MLLW and will be completed in a lockable utility box in the Site uplands, as illustrated on Figure 12, Detail 3.

#### 5.2.5.7 Geotextile Separation Layer

A geotextile separation layer will be placed between the shoreline sand filter and the shoreline protection rock to inhibit scouring and washing away the sand filter through either bottom upwelling forces or surficial erosion through voids in the overlying cover material. The geotextile will be designed for the grain sizes selected during the construction plan and specification development, but will be selected for durability in a high-energy marine environment.

#### 5.2.6 Thin Layer Sediment Cap

As shown on Figure 10 and detailed on Figures 16 through 18, a thin (minimum 6 inch thick) layer of sediment will be placed from the toe of the shoreline stabilization system to the limits of the extent of Site refuse and wood waste. The thin layer sediment cap will consist of a fine-grained sand material placed on the existing sediment to enhance natural recovery of the sea bottom over the seaward extent of the landfill. A fine grained sand (average grainsize 0.6 millimeters [mm]) was selected based on the ability to enhance the growth of natural biota in this area. The sand could be obtained from either an upland commercial source or sediment from a maintenance dredging project.

## 6.0 CONSTRUCTION REQUIREMENTS

The following section outlines the general construction requirements that will be considered when developing the construction plans, specifications, and construction quality assurance (CQA) plan for the Site cleanup.

# 6.1 Construction Sequencing/Coordination with RG Haley Site Cleanup

Construction sequencing must be considered during development of the construction plans and specifications. The existing IPAs and the planned early action grading soil that will be present on the Site at the time of construction will limit the areas available for staging materials. In addition, the existing rubble from the shoreline will be brought to the upland areas and size reduced to create part of the fill for construction of the upland landfill cap. The Site cleanup for the RG Haley Site will include sediment removal and capping as well as upland *in situ* solidification in areas where the RG Haley Site overlaps the Cornwall Site. Sediment removal associated with the RG Haley Site will produce sediment and incidental waste that will be consolidated under the northern portion of the Site. The volume of sediment to be removed and consolidated is uncertain, but is estimated to range from approximately 10,000 yd³ to a maximum of 18,000 yd³. The grading plan shown on Figure 8, provides for approximately 15,000 yd³ of the RG Haley material. Once the volume is determined, the size of the area set aside for containment of the RG Haley material will be increased or decreased as needed to accommodate the actual volume.

All of these conditions and constraints will require that construction be carefully sequenced to ensure that materials are placed effectively and efficiently. Construction sequencing required to achieve the needs of both the RG Haley Site and the Site cleanup will be specified in the construction documents. Additionally, the contractor will be required to submit a detailed construction plan for review and approval that addresses sequencing for all major construction elements.

#### **6.1.1 Upland**

The cleanup includes constructing a cover system over the upland portion of the Site which requires import soil fill to the Site to create sufficient drainage grades for the Site cover system. As described in Section 4.4, the Port identified a suitable source of fill and imported it the site in June 2016. This early action of placing fill soil on the eastern portion of the Site months or years in advance of the landfill cover construction will provide beneficial preloading, which will minimize the long-term settlement potential and aid in minimizing depressions that could form over time in the cover system.

The low-permeability soil in the IPA area has preloaded the solid waste portion on the Site uplands since 2012, and should provide 5,000 to 6,000 yd<sup>3</sup> of soil beyond that required to construct the 2 ft thick low-permeability cap. This material will likely be used to thicken the cap beyond the required 2 ft, but could be used as subgrade fill if needed to achieve the required subgrade surface.

The settlement due to preloading has been monitored by:

- 1. Installing seven settlement monuments in advance of the fill placement adjacent to the fill areas, with one location between the two preload areas to approximate settlement within the preload areas.
- 2. Surveying the elevation of the survey monuments adjacent to the fill areas prior to fill placement, and on a monthly basis during filling until the filling is complete.
- 3. Installing an additional six survey monuments within the completed preload area fill within one week of completing the fill.
- 4. Surveying the elevation of the settlement monuments in the fill upon completion and surveying the fill monuments and monuments adjacent to the fill at two weeks after fill completion and at one month intervals for a year after that.
- 5. Plotting the settlement vs. time data for each monument location, and settlement profiles (provided in Appendix F, Figure F.3).

Settlement data collected in the preload area will be used to determine the preload requirements, if any, for the area to the north that will be filled with RG Haley sediment and possibly other fill sources to achieve the desired final Site grade.

The movement of large quantities of soil around the Site will require sequencing to construct the cap on the western side in order to move the IPA soil. As the IPA soil is moved out, the imported fill and cut from the Site can be controlled placed where the IPA stockpiles were removed.

#### 6.1.2 Shoreline and In-water Work

Work for construction of shoreline protection will be conducted during a time window allowed by the permit(s) for in-water work. The shoreline protection work will commence with construction of the sand filter layer, followed by the geotextile separation layer, armor stone (where applicable), and finer (sand/gravel to cobble) erosion protection layer. Because of the potential erodibility of the sand filter layer, the shoreline protection system will likely need to be constructed in discrete sections, progressing sequentially along the shoreline.

Placement of the thin layer sediment cap will occur after construction of all other aquatic elements of the project.

# 6.2 Construction Drawings and Specifications

Construction plans and specifications will be prepared under separate cover to detail the cleanup actions to be performed. The construction plans and specifications will be prepared in conformance with currently accepted engineering practice and WAC 173-340-400 (4)(b), and provide:

 A general description of the project that details the cleanup action, including work to be done, a summary of Site environmental conditions, a summary of design criteria, an existing facility map, adequate Site surveying, and a copy of permits and approvals.

- Detailed plans and specifications necessary for construction, construction materials storage, construction waste storage and management, utility locations within cleanup areas, surface drainage, materials, backfill, and change in grades.
- A description of construction impact controls (including dust, stormwater, traffic, and noise).
- Construction documentation including specific quality control tests such as soil density/in
  place compaction, moisture content, material gradation, subgrade strength, depth
  measurements, frequency of tests, and acceptable results.

Design modifications often occur during project permitting for in-water work. As a result, the design will only be developed to about a 30 percent level of design (sufficient to support JARPA preparation) in advance of progressing through a significant portion of the permitting process for in-water work, including coordination with the USACE, and consultation with federal and state resource agencies. Once permitting has progressed to the point where major design modifications are not anticipated, the preparation of construction drawings and specifications will commence.

# 6.3 Construction Quality Control/Quality Assurance

Day-to-day construction quality control (CQC) will be performed by the contractor, consistent with the requirements of the construction contract specifications for the cleanup action. There will be a CQA representative on site during construction to confirm that the work is being performed in accordance with the intent of the plans and specifications. Construction quality control will include the necessary elements to ensure that the provisions of the contaminated materials handling plan are being followed. In accordance with WAC 173 340 400(7)(b), all aspects of construction will be performed under the supervision of a professional engineer registered in the State of Washington or a qualified technician under the direct supervision of the project engineer.

A CQA plan will be prepared in conjunction with the construction plans and specifications. The plan includes the following monitoring parameters:

- Adequacy of construction submittals
- General construction methods and equipment
- Field engineering and survey methods
- Fill gradation, quality, and consistency
- Fill placement and compaction
- Geosynthetics testing including conformance testing, construction testing (non-destructive and destructive) and interface friction testing between the composite cover layers
- Suitability, quality, and installation of structural elements
- Stormwater runoff and erosion control measures
- Decontamination procedures
- Traffic control plan
- Contractor quality control methods and documentation

• As-built dimensions of completed work.

Specific quantitative measures and performance requirements will be established for each of the above CQC/CQA parameters and will be incorporated into the construction specifications and the CQA plan for the cleanup action.

## 6.3.1 Upland

Construction quality assurance for upland work will be provided under the supervision of an experienced geotechnical engineer with grade verification by a licensed professional land surveyor in the State of Washington. CQA testing will include compaction verification of fills and cover materials as soil is being placed, verification that geomembrane seams are 100 percent leak tested and representative destructive tests of the seams are taken to verify seam strength, verification that exposed grades and trenches are properly backfilled, and verifying TESCs are in place to control erosion.

#### 6.3.2 Shoreline/In-water

Construction quality assurance for shoreline and in-water work will be provided under the supervision of an experienced coastal engineer and will include regular conditional and progress bathymetric and topographic surveys. The quality control will ensure compliance of construction materials to that specified by the design, verification of excavation grades (where appropriate), elevations of the bedding layers, and grades of constructed shoreline protection materials. Monitoring of the constructed grades and adjacent shoreline will be conducted with regard to the construction plans and specifications, the permit requirements, and as required by the project engineer or Port.

### 6.3.3 Model Toxics Control Act Performance Monitoring

Performance monitoring to achieve MTCA cleanup standards for soil and sediment will be achieved through CQA activities during construction of the cleanup action to contain contaminated soil, solid and wood waste, and marine sediment. Some sediment monitoring may also be necessary outside the thin layer cap to evaluate whether cap placement has impacted adjoining sediment quality. Performance monitoring for groundwater will be achieved through post-construction groundwater quality monitoring at the shoreline wells installed during construction of the shoreline protection system. Compliance monitoring, including performance monitoring, is discussed in greater detail in Section 7.0.

# 6.4 Control of Hazardous Materials, Accidental Discharges, and Construction Stormwater

Procedures to control and, as appropriate, respond to spills will be incorporated into the construction plans and specifications. The materials most likely to be spilled during the Site cleanup action include equipment fuel and oil, or contaminated soil. Additionally, stormwater runoff has the potential to convey contaminated water and soil off the Site, and in-water construction has the potential to release hazardous substances and elevated turbidity to surface water. The contractor will prepare

construction, equipment decontamination, and stormwater management plans in accordance with requirements set forth in the plans and specifications that adequately address environmental protection measures. Additionally, project permits and/or substantive requirements will specify requirements for the monitoring and compliance of applicable water quality standards. The contractor will be required to perform work involving handling of the above materials in accordance with these plans and permit requirements. These plans will be subject to review and comment by the Port's CQA representative prior to initiating the work.

The contractor's project construction plan will describe the overall sequence and construction methods that will be used to complete the cleanup action. The plan will include detailed procedures for controlling, collecting, handling, and disposing of residual contaminated soil and debris, and any liquids generated during disposal operations. The equipment decontamination plan will provide design details for the contractor's equipment decontamination pad, including the pad dimensions; construction materials; and water collection, conveyance, and treatment systems. The contractor's stormwater management plan will provide construction details and operation procedures for collection, conveyance, and treatment and disposal of stormwater runoff, and for erosion and sediment control measures, as required to ensure that materials are properly managed and maintained within the Site boundary. The stormwater management plan will also address procedures for handling and storage of hazardous materials used for construction purposes (e.g., fuel, oil, etc.), and for prevention and, as appropriate, response to hazardous material spills or accidental discharges.

The shoreline protection system construction will be conducted with regard to BMPs and compliance with all permit requirements and water quality standards. The boundaries of the in-water construction zone will be defined by warning buoys or markers to preclude any risk to mariners. Information on the construction zone boundaries and warning to mariners may also be posted by the Coast Guard. If needed, gander booms or silt curtains will be installed prior to or during construction to minimize escape of debris, turbid water, and plume from the construction sites.

# 6.5 Health and Safety

Health and safety procedures that will be followed during the cleanup action are provided in this section.

#### 6.5.1 Health and Safety during Construction

The following design features will be implemented as part of the cleanup action to ensure the safety of Site workers and the public:

 Safety Fences – Temporary security fencing will be installed around the Site to allow unrestricted access to Site cleanup personnel while maintaining a secure perimeter around the Site. A detailed temporary fencing diagram will be provided on the construction plans. Additionally, safety fencing will be installed, as necessary, around open excavations to prevent unauthorized entry.  Excavation Safety – Any areas of an excavation that exceed 4 ft in depth will be sloped or benched to reduce the potential for sidewall collapse. Areas of an excavation that require worker entry (e.g., to perform confirmation sampling) will be accessed by appropriately sloped access ramps.

A project-specific HASP will be prepared by the Port's Engineer for use by the Port and its representatives. A HASP will also be prepared by the contractor for use by their workers before beginning work on the Site. The contractor's HASP will be at least as stringent as the Port's HASP. Each HASP will be required to satisfy the requirements of Ecology (per WAC 173-340 810); the Occupational Safety and Health Act (OSHA) of 1970 (29 U.S.C. Sec. 651 et seq.); and the Washington Industrial Safety and Health Act (WISHA) (Chapters 296-24, 296-62, and 296 155 WAC). All workers on the Site will be required to read and sign the applicable project HASP. A health and safety meeting will be conducted with the contractor, subcontractors, construction testing personnel, and appropriate Port employees before starting work at the Site and periodically during construction of the cleanup action.

#### 6.5.2 Long-term Health and Safety

Contaminated material will be contained at the Site and securely capped with the cover system that will allow public access on the Site for use as an open space park. Post-construction intrusive activities will be subject to a restrictive covenant that specifies how such activities need to be implemented to not compromise the integrity of the cleanup action and adequately protect worker health and safety.

## 6.6 Construction Completion Report

Upon completion of cleanup action construction, a construction completion report will be prepared in accordance with WAC 173-400 (6)(b). The construction completion report will include:

- 1. A statement that the construction has been performed under the oversight of a professional engineer in the State of Washington or by qualified technicians under their direct supervision.
- 2. A narrative describing the aspects of the work performed including construction techniques and materials used, items installed, and tests and measurements performed. The narrative will be supplemented with daily reports and photographs in the Appendices.
- 3. Results of the compliance monitoring (per section 7.0) with testing results and locations shown in the Appendices.
- 4. As-built drawings documenting the extent of excavation and grading performed at the Site, including the following details:
  - a. Existing site grades and locations and elevations of fills and cover system
  - b. Panel layout drawings for geomembranes and geocomposites
  - c. Location of LFG components and piping
  - d. Location of underdrain piping
  - e. Excavation elevations
  - f. Backfill material types and grades

- g. Location of existing utilities and location and elevation of all utility repairs and replacements
- h. Field changes of dimensions and details.
- 5. A Statement from the engineer, based on testing results and inspections, as to whether the cleanup action has been constructed in substantial compliance with the plans and specifications and related documents.

### 7.0 MONITORING, MAINTENANCE, AND OPERATIONS

MTCA requires confirmation monitoring for all cleanup actions, as described in WAC 173-340-410, and periodic reviews under WAC 173-340-420 to ensure the long-term integrity of the cleanup action. Long-term care and maintenance will also be necessary to insure the integrity of the Site cleanup after construction is complete. Both the monitoring and maintenance functions will be prescribed in a Monitoring, Maintenance, and Operations Plan (MMOP). A draft of this plan will be prepared concurrent with the construction-level documents, and will be finalized after construction is complete. This will allow some MMOP elements to be built as part of the main construction work, and also allow for modifying/finalizing the requirements in the MMOP based on as-built conditions. The MMOP will address the following topics, at a minimum:

- Confirmation Monitoring, as outlined in Section 7.1.
- Facility Inspections, as outlined in Section 7.2.
- Institutional Controls, as outlined in Section 7.3.
- Contingency Response Planning, as outlined in Section 7.4.
- Equipment Specifications and O&M, as outlined in Section 7.5
- Status Reports and Record Keeping, outlined in Section 7.6

Because the MMOP provisions are likely to be changed or reduced in the future in response to the monitoring data or other factors, the MMOP will be a living document. Typically a revision of the MMOP would occur during 5-year periodic reviews, but updates at other times are also possible.

# 7.1 Confirmation Monitoring

Confirmation monitoring is one of the three types of compliance monitoring required under MTCA – Protection, Performance, and Confirmation. Protection monitoring is concerned with human and environmental safety during construction, and was previously discussed in Sections 6.4 and 6.5. Performance monitoring is concerned with demonstrating that the constructed remedy meets cleanup standards, and was discussed in Section 6.3.3.

Confirmation monitoring is concerned with checking the long-term effectiveness of the remedy in meeting cleanup standards. Specific procedures, analytical parameters, and sampling locations and frequency for the confirmation monitoring will be presented in the MMOP. Similarly, the scope and timing of the inspection program, the institutional control provisions, and other aspects of long-term operations and maintenance monitoring will be established in the MMOP.

#### 7.1.1 Sediment Monitoring

Sediment monitoring will include physical monitoring to confirm the thickness and lateral extent of the thin layer cap, and sediment quality monitoring to evaluate the efficacy of the thin layer cap and possibly sediment quality beyond the limits of the thin layer cap (MU-3). The specific scope of the sediment confirmational monitoring will be established in the MMOP, and the methods and

procedures for sediment quality monitoring will be established in a SAP developed as an appendix to the MMOP.

#### 7.1.2 Groundwater Monitoring

The existing monitoring wells will be decommissioned in place in accordance with Ecology requirements. New groundwater monitoring wells shown on Figure 8 and Figure 12, Detail 3 will be installed along the shoreline within the sand filter layer under the shoreline protection system. New groundwater monitoring wells may also be installed in upland areas of the Site. While five well locations are shown on Figure 8, the actual number and location of shoreline and upland wells will be established during the detailed design. The monitoring wells will therefore be installed during construction of the shoreline protection system. The SAP will provide monitoring details including monitoring parameters, and the field and laboratory methodology used to ensure the quality of monitoring data is appropriate for assessing compliance.

### 7.1.3 Landfill Gas Monitoring

It is anticipated that LFG monitoring will be conducted at the vents and extraction wells just after construction, and on a set schedule thereafter for a period of time to be established in the MMOP. It is expected that the monitoring will confirm that the system effectively mitigates LFG, preventing accumulation of and unacceptable exposure to LFG. Details of the LFG monitoring program including procedures, schedule, and reporting will be developed in the MMOP and associated SAP.

#### 7.1.4 Settlement Monitoring and Landfill Stability

Surface elevations at the Site uplands will be surveyed by a professional land surveyor to evaluate whether landfill settlement is occurring at a rate that could interfere with the function of the landfill cover or stormwater management system. These interferences could be caused by differential settlement that changes the slope of the landfill surface or causes surface fissures. Although uniform settlement is unlikely to cause these interferences, it will be evaluated as a parameter to assess landfill stability in terms of settlement potential. Settlement surveys will be conducted on a set schedule in a manner and for a period of time to be established in the MMOPP. Periodic analyses of landfill stability may also be necessary if changes in surface elevation suggest the need for such an analysis.

# 7.2 Site Inspection Requirements

#### 7.2.1 Final Cover and Stormwater Management System Inspections

The final cover configuration is described in Section 5.0 of this document. After construction completion, the final cover and stormwater system will be inspected on a set schedule in a manner and for a period of time to be established in the MMOP. One possible scenario would include inspections monthly for the first year and after rainfall that exceeds two inches in a 24 hour period (24-hr, 2-year storm). The inspection could then be reduced to semiannually and after a rainfall that exceeds two inches in a 24-hour period thereafter for evidence of erosion, for cracking caused by

desiccation during the dry summer months, and for localized depressions such as those caused by differential settlement. Significant settlement is not anticipated based on preloading of the Site uplands. The cover will also be thoroughly inspected and repaired, as necessary, if significant erosion occurs at any time following construction of the cleanup action.

#### 7.2.2 Shoreline Protection Monitoring

The shoreline protection system will be inspected on a set schedule in a manner and for a period of time to be established in the MMOP. One possible scenarios would include annual inspections during the first 5 years after closure and following any major storm events with sustained high winds. The frequency of inspections could then be reviewed after the 5 years and, if warranted, reduced to a lesser frequency. Inspection will include, as a minimum, review of the conditions of the rocked surfaces, noting and repairing wash outs and conducting surveys to monitor settlement of the top of the shoreline protection, and adding more rock as necessary. Surveys will also need to be conducted during low tides at daylight hours, although the timing of low tides during winter months will limit the ability to observe the lower intertidal area.

#### 7.3 Institutional Controls

Institutional controls will apply to MU-1 and MU-2. These controls will be documented in the MMOP, and will also be documented in an environmental covenant for City-owned property and a separate legal mechanism for state-owned property (managed by DNR). The covenant will be filed with Whatcom County, will be binding on the property owner, and owner's successors and assignees, and will impose limits on property conveyance.

Institutional controls and environmental covenant provisions applicable to MU-1 will prevent activities that could compromise the integrity of the cleanup action (i.e., containment system) or otherwise result in unacceptable risks to human health or the environment. They will also prevent the use of groundwater for potable purposes and will place restrictions and management requirements on intrusive activities that could result in releases of hazardous substances or exposure of construction workers to contaminated media.

Institutional controls and environmental covenant provisions applicable to MU-2 will prevent damage to the shoreline stabilization system and the thin layer cap. Institutional controls will include prohibitions on activities that could damage or breach the shoreline stabilization system, such as shellfish collection, beach play (digging), or vessel anchoring.

# 7.4 Contingency Response Planning

The MMOP will include a description of processes for responding to emergencies, such as if the landfill cap or shoreline protection system is breached, exposing contaminated materials, or if the landfill gas collection system is compromised. The MMOP will describe the process for development

and review of the emergency action plan, coordination with relevant regulatory agencies, and implementation of the emergency action, including permitting and contracting.

# 7.5 Equipment and Material Specifications

The MMOP will also include a repository of information on the materials and equipment used in the cleanup action. This information will help with ongoing maintenance and with future repairs.

## 7.6 Status Reports and Record Keeping

Once the Site cleanup action construction is completed, reports summarizing the confirmational monitoring results, inspections, and repairs made will be submitted to Ecology for review on a frequency commensurate with the frequency of post-cleanup activities. It is anticipated that status reports may be submitted quarterly for the first year following construction, annually for an additional 4 years, and at a frequency determined in consultation with Ecology following the first 5 years. The actual reporting frequency and contents will be established in the MMOP.

The MMOP will also specify record-keeping requirements for Site inspections, modifications and upgrades to the constructed system, any repairs that are needed, and other aspects of maintaining the integrity of the contaminated fill containment and gas control systems.

# 8.0 PROJECT SCHEDULE

The proposed schedule for the Site cleanup action has been developed to meet the requirements of the Consent Decree. The schedule is provided in Appendix G. However, the timing and rate of remedial design and construction following finalization of the EDR may be revised in consultation with Ecology due to the current status of remedial action grant funding, coordination with the schedule for the RG Haley Site cleanup, and other factors. As a result, the schedule in Appendix G should be considered tentative and likely to be revised in the future.

#### 9.0 USE OF THIS REPORT

Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

#### 10.0 REFERENCES

AFIX-Texel. 2017. Main Project References, Semi-Permeable landfill cover.

Anchor QEA. 2014. *Cornwall Beach Park Master Plan Report*. Prepared for City of Bellingham Parks and Recreation Department. October.

Bray, J.D., Rathje, E.M., Augell, A.J. and Merry, S.M. 1998. "Simplified Seismic Design Procedure for Geosynthetic-Lined, Solid-Waste Landfills." *Geosynthetics International, Vol. 5, Nos 1-2*.

Blumen Consulting Group, Inc. 2010. Final Environmental Impact Statement, The Waterfront District Redevelopment Project (Formerly Known as New Whatcom). July.

Climate Central website. 2016. "Surging Seas Risk Finder". Available at:

http://riskfinder.climatecentral.org/place/bellingham.wa.us?comparisonType=place&forecastName=B asic&forecastType=NRC High&level=4&unit=ft#threat-forecast

Coastal Geologic Services. 2013. WRIA 1 Nearshore & Estuarine Assessment and Restoration Prioritization – Addendum 1. Available at:

https://www.cob.org/services/environment/restoration/pages/planning.aspx Prepared for City of Bellingham. December.

CTT Group. 2009. Evaluation of the applicability of Draintube as a drainage layer for Heap Leach Pads (Clogging potential). Prepared for Afitex Geosynthetics, Inc. July 20.

Dames & Moore. 1960. Report of Foundation Investigation, Proposed Site Development, Bloedel-Donovan Mill Site, Bellingham, Washington. December 19.

Ecology. 2014. *Cleanup Action Plan, Cornwall Avenue Landfill, Bellingham, Washington*. Prepared by Washington State Department of Ecology. October 10.

Ecology. 2012. Preparing for a Changing Climate: Washington State's Integrated Climate Response Strategy. Chapter 6, Oceans and Coastlines. Washington State Department of Ecology. April.

Ecology. 2005. Focus on Developing Air Cleanup Standards Under the Model Toxics Control Act. Available at: <a href="https://fortress.wa.gov/ecy/publications/publications/0109072.pdf">https://fortress.wa.gov/ecy/publications/publications/0109072.pdf</a>
Washington Data Department of Ecology Toxic Cleanup Program.

Ecology website. 2016. "Climate Change". Available at: http://www.ecy.wa.gov/climatechange/2012ccrs/coasts.htm

Ecology website. 2015. "Cleanup Levels and Risk Calculation (CLARC) web site". Available at: <a href="https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx">https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx</a>.

EPA. 2008. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. US Environmental Protection Agency Document EPA/600/R-08-116. September.

EPA. 1993a. *Technical Guidance Document – Quality Assurance and Quality Control for Waste Containment Facilities, Publication EPA/600/R-93/182*. US Environmental Protection Agency. September.

EPA. 1993b. *Solid Waste Disposal Facility Criteria Technical Manual, Publication EPA530-R-93-017.* US Environmental Protection Agency. November.

ESA. 2014. Final City of Bellingham Marine Nearshore Habitat Conectivity Study. Available at: <a href="https://www.cob.org/services/environment/restoration/pages/planning.aspx">https://www.cob.org/services/environment/restoration/pages/planning.aspx</a> Prepared for City of Bellingham. December.

GEOROUTE Ingénierie. 2014. Draintube 450 FT1 D20 fact sheet.

Glick, P., Clough, J., and Nunley, B. 2007. "Sea-level Rise And Coastal Habitats In the Pacific Northwest, An Analysis For Puget Sound, Southwestern Washington, And Northwestern Oregon". National Wildlife Federation.

Huppert, Daniel D., Amber Moore, and Karen Dyson. 2009. Washington Climate Change Impacts Assessment. Chapter 8: Impacts of Climate Change on the Coasts of Washington State. June.

Koerner, R.M. 2016. *Lifetime Predictions of Nonexposed and Exposed Geosynthetics*. GSI W-14 Webinar. Geosynthetic Institute, 475 Kedron Avenue, Folsom, PA. August 10.

Koerner, R.M. 2011. *Geomembrane Lifetime Prediction: Unexposed and Exposed Conditions*. GRI White Paper #6. Geosynthetic Institute, 475 Kedron Avenue, Folsom, PA. February 8.

Koerner, R.M. 2005, Designing with Geosynthetics, Fifth Edition, Prentice Hall, Inc., New Jersey.

Landau Associates. 2015. Work Plan, Pre-Design Characterization, Cornwall Avenue Landfill Site, Bellingham, Washington. April 30.

Landau Associates. 2013. FINAL Remedial Investigation/Feasibility Study, Cornwall Avenue Landfill, Bellingham, Washington. Prepared for Port of Bellingham, Bellingham, Washington. December 17.

Landau Associates. 2011. *Critical Area Report, Cornwall Avenue Landfill Interim Action Project, Port of Bellingham, Bellingham, Washington*. Prepared for Port of Bellingham, Bellingham, Washington. November 2.

Makdisi, F.I., and H.B. Seed. 1977. A Simplified Procedure for Estimating Earthquake-Induced Deformation in Dams and Embankments, Report EERC-77/19. Earthquake Engineering Research Center, University of California, Berkeley.

Mote, P., Petersen, A., Reeder, S., Shipman, H., and Whitely-Binder, L. 2008. *Sea level Rise in the Coastal Waters of Washington State*. A report by the University of Washington Climate Impacts Group and the Washington Department of Oceanography

National Wildlife Foundation. 2011. Climate Change Effects in Marine and Coastal Ecosystems. August.

NOAA. 1973. NOAA Atlas 2, Precipitation-Frequency Atlas of the Western United States, Volume IX-Washington. National Oceanic and Atmospheric Administration.

Purnell, W.D. & Associates. 1985. *Engineering Geology and Geotechnical Investigation, Tissue Warehouse Additions, Bellingham, Washington*. March 20.

Reeder, Ken. 2011. West Coast Relevant Sea Level Rise Impact Models: A review to aid local and regional planning. White paper to West Coast Governors Alliance on Ocean Health. October.

Rocscience, Inc. 2005. SLIDE Computer Slope Stability Program, Version 5.0. Manufactured by Rocscience, Inc.

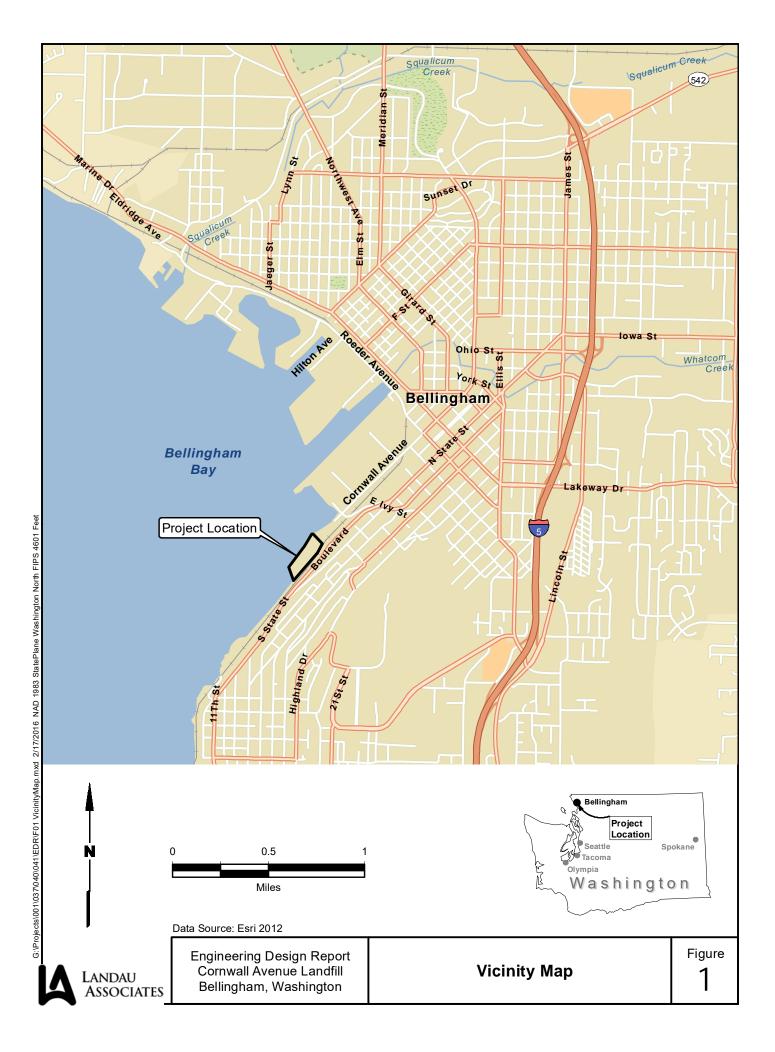
SAGEOS. 2008. Durability of Polypropylene Tubes "Draintubes". Prepared for Texel, Inc. June 2.

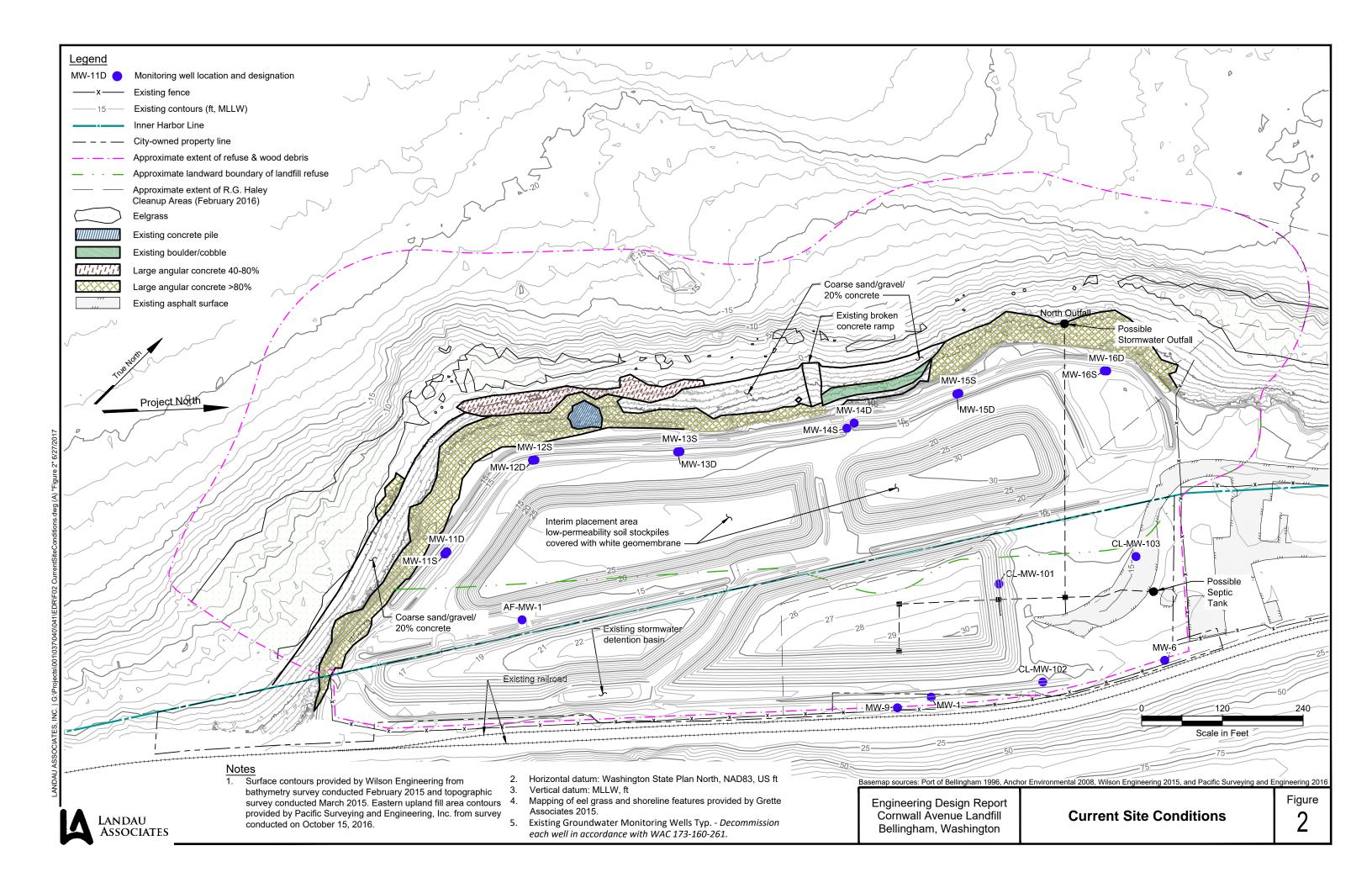
Soong, T.Y. and Koerner, R.M. 1997. *The Design of Drainage Systems Over Geosynthetically Lined Slopes, GRI Report Number 19*. Geosynthetics Research Institute, Drexel University. June 17.

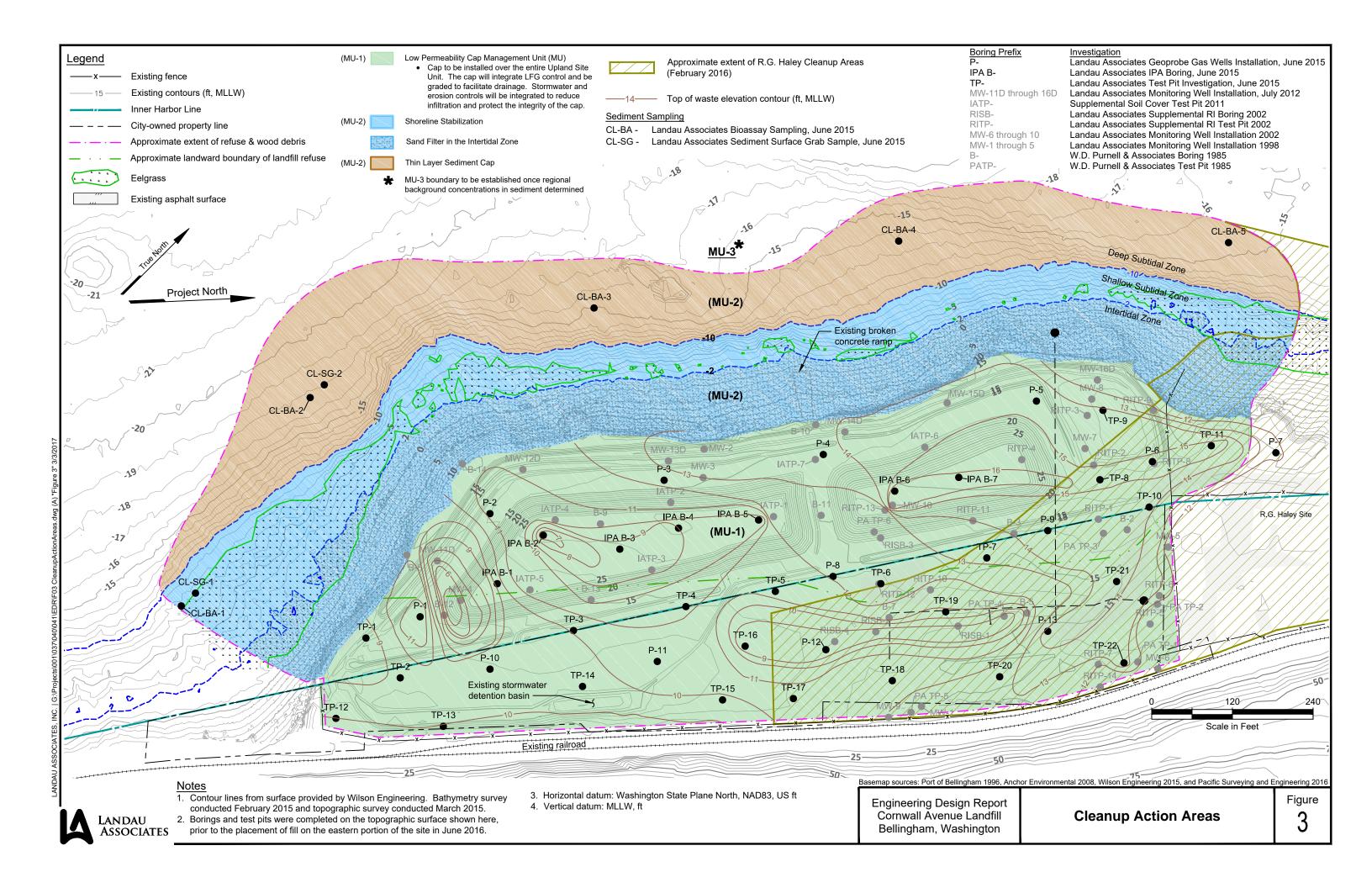
Sowers, G.F. 1973 "Settlement of waste disposal fills." *Proc. 3rd International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol.2.* pp. 207-210.

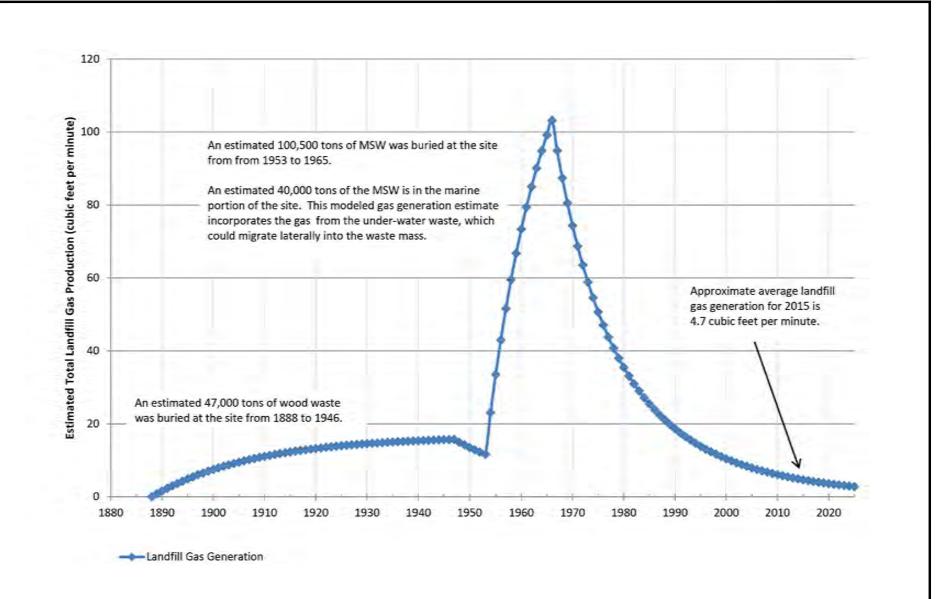
Strauss, B. H., Ziemlinski, R., Weiss, J. L., & Overpeck, J. T. 2012. *Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States*, Environmental Research Letters, 7(1), 014033.

USGS website. 2016. "U.S. Seismic Design Maps". Available at: https://earthquake.usgs.gov/hazards/designmaps/usdesign.php


Walsh, T. 2016. Personal communication (personal conversation with Kent Wiken, Landau Associates). Tim Walsh, Washington Department of Natural Resources. Re: Earthquakes and Tsunamis. August 9.


Walsh, T.J., V.V. Titov, A.J. Venturato, H.O. Mofjeld, and F.I. Gonzalez. 2004. *Tsunami Hazard Map of the Bellingham Area, Washington: Modeled Tsunami Inundation from a Cascadia Subduction Zone Earthquake*. Available at http://www.dnr.wa.gov/geology/pdf/ofr04-15.pdf. Washington State Department of Natural Resources, Division of Geology and Earth Resources, and National Oceanic and Atmospheric Administration. Open File Report 2004-15. June.

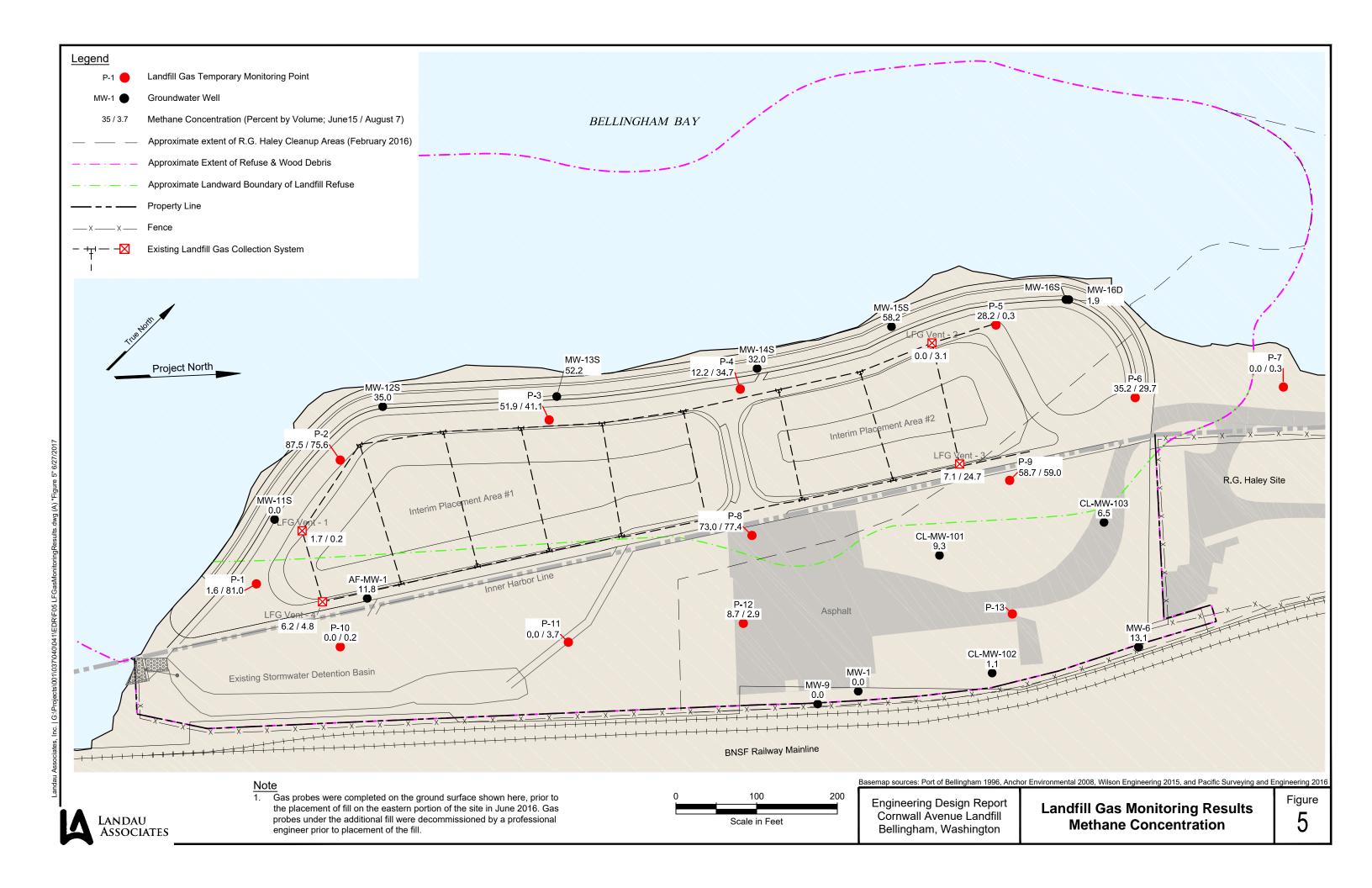

WDNR. 2014. Map: *Faults and Earthquakes in Washington State*. Washington Department of Natural Resources. Open File Report 2014-05.

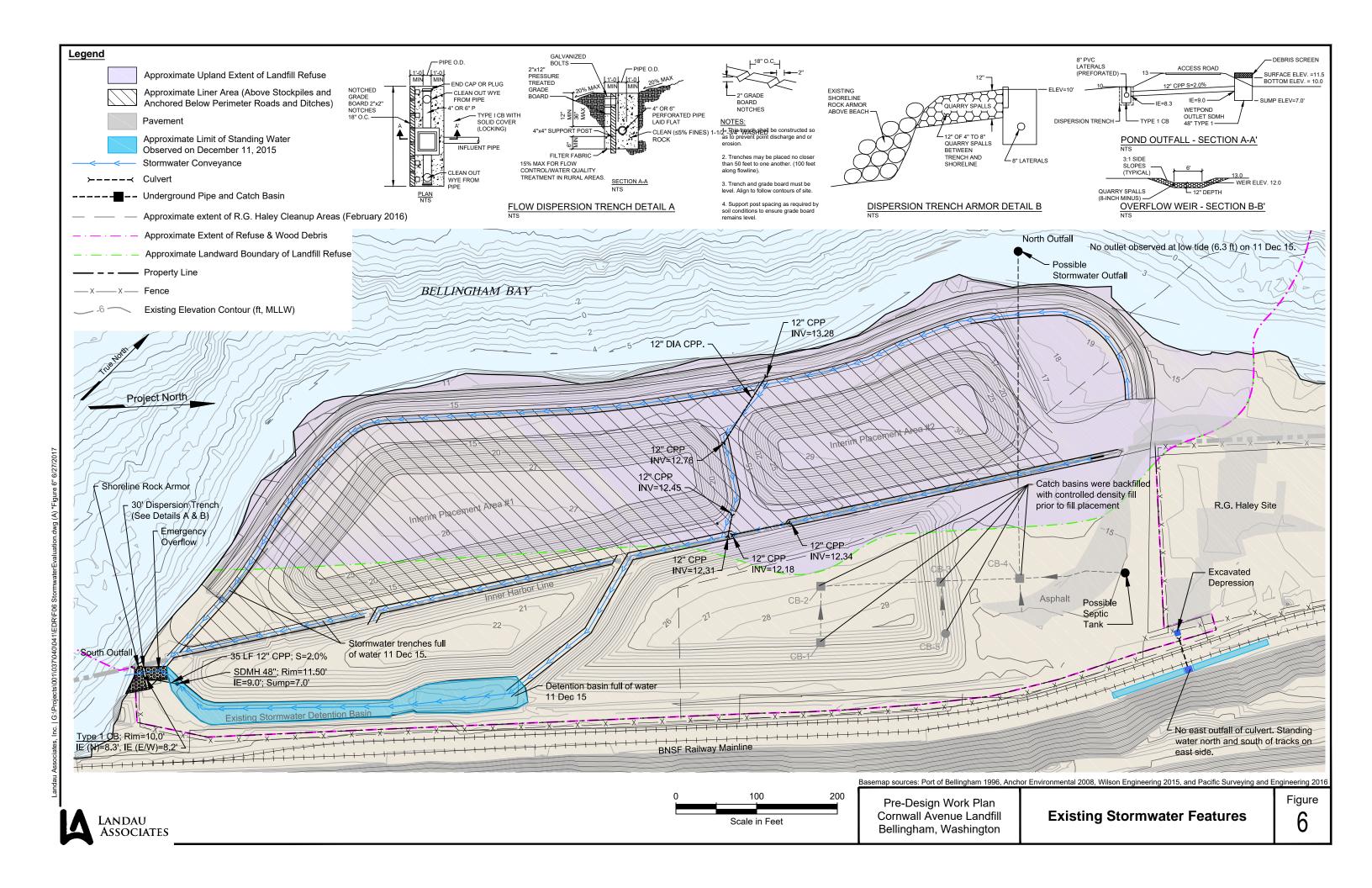

WSDOT. 2014. *Geotechnical Design Manual*. M 46-03.10. Washington State Department of Transportation, Environmental and Regional Operations Construction Division, Geotechnical Office. August.

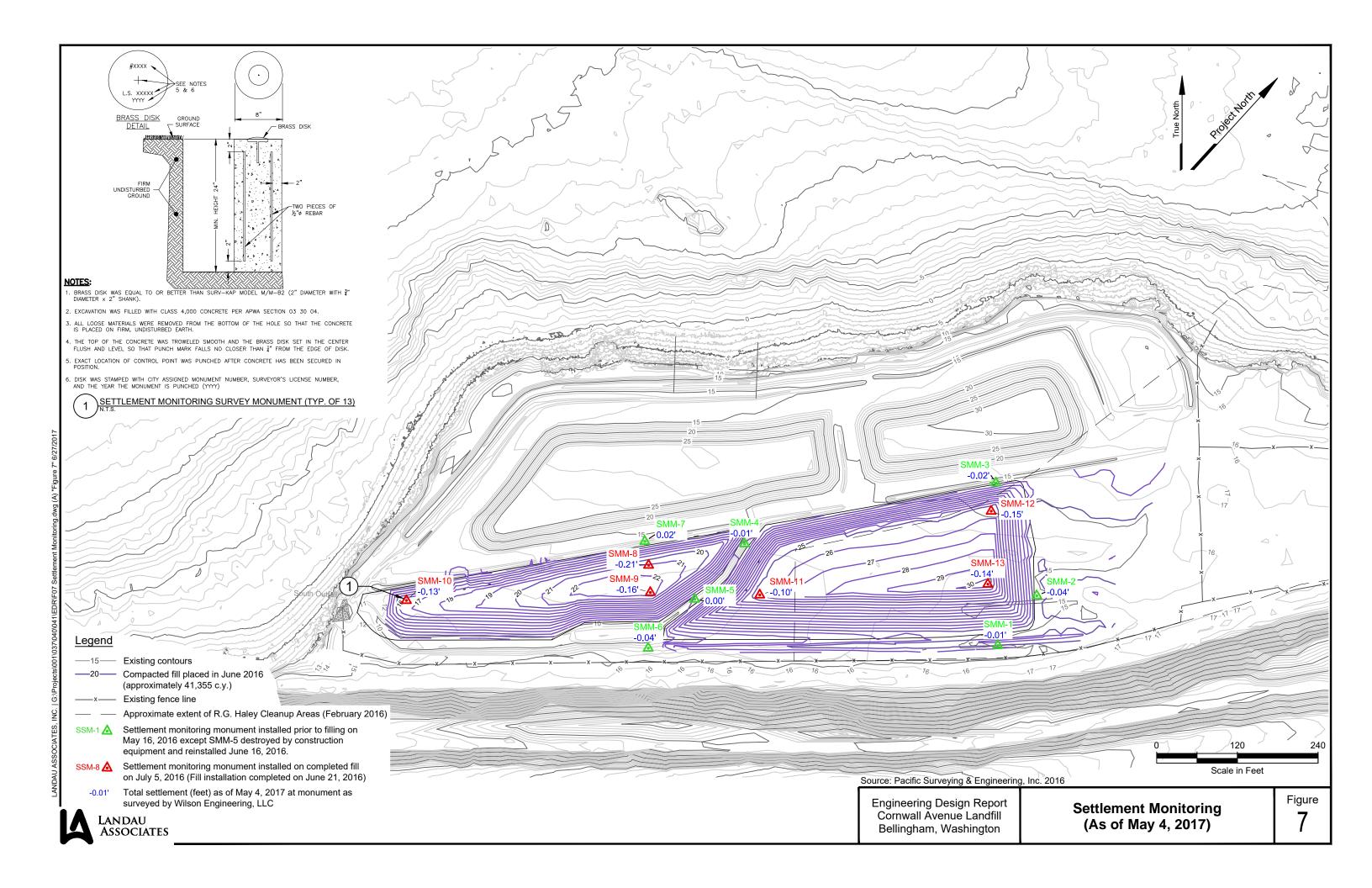
WSDOT. 2011. Climate Impacts Vulnerability Assessment. November.

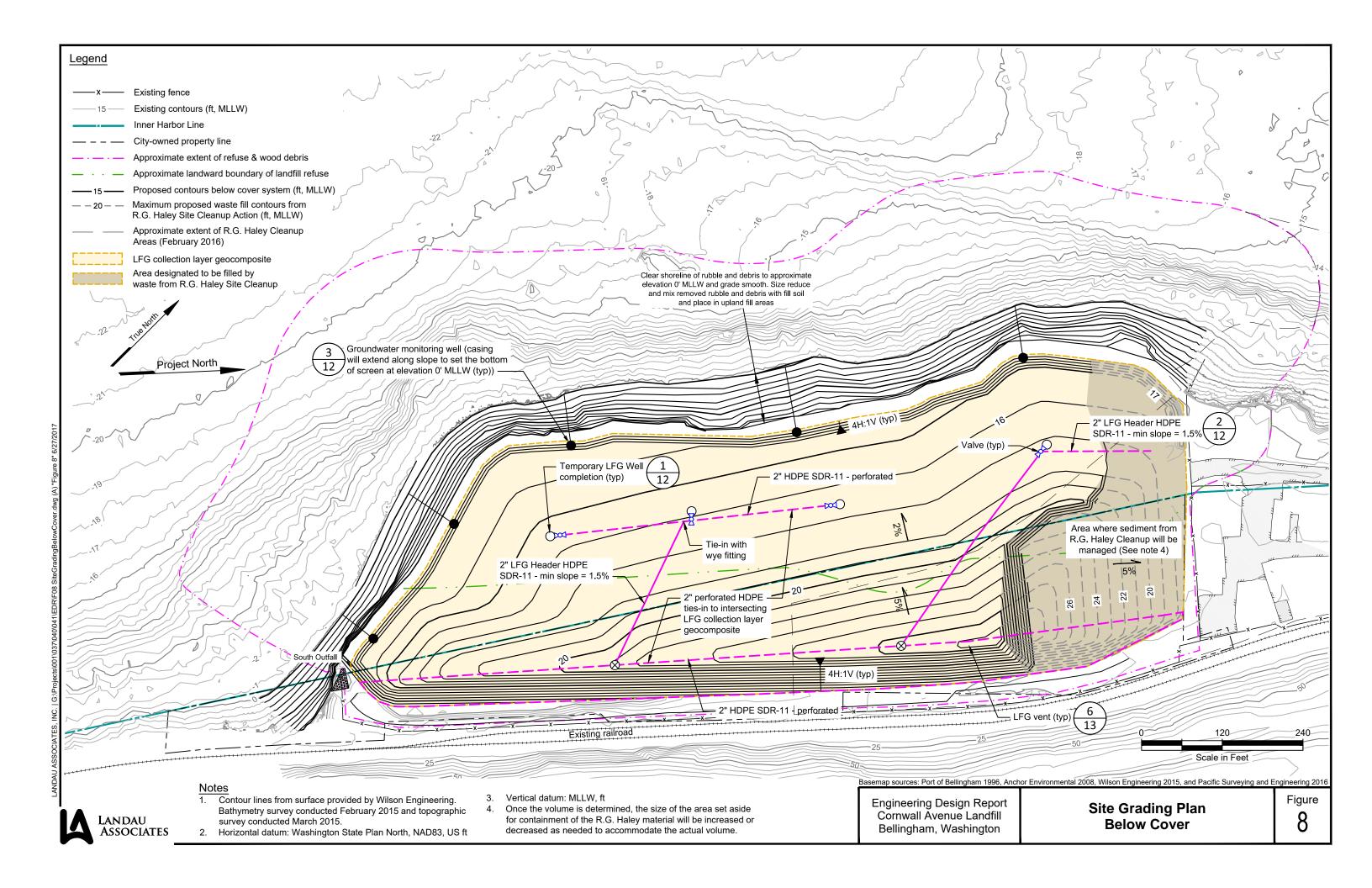


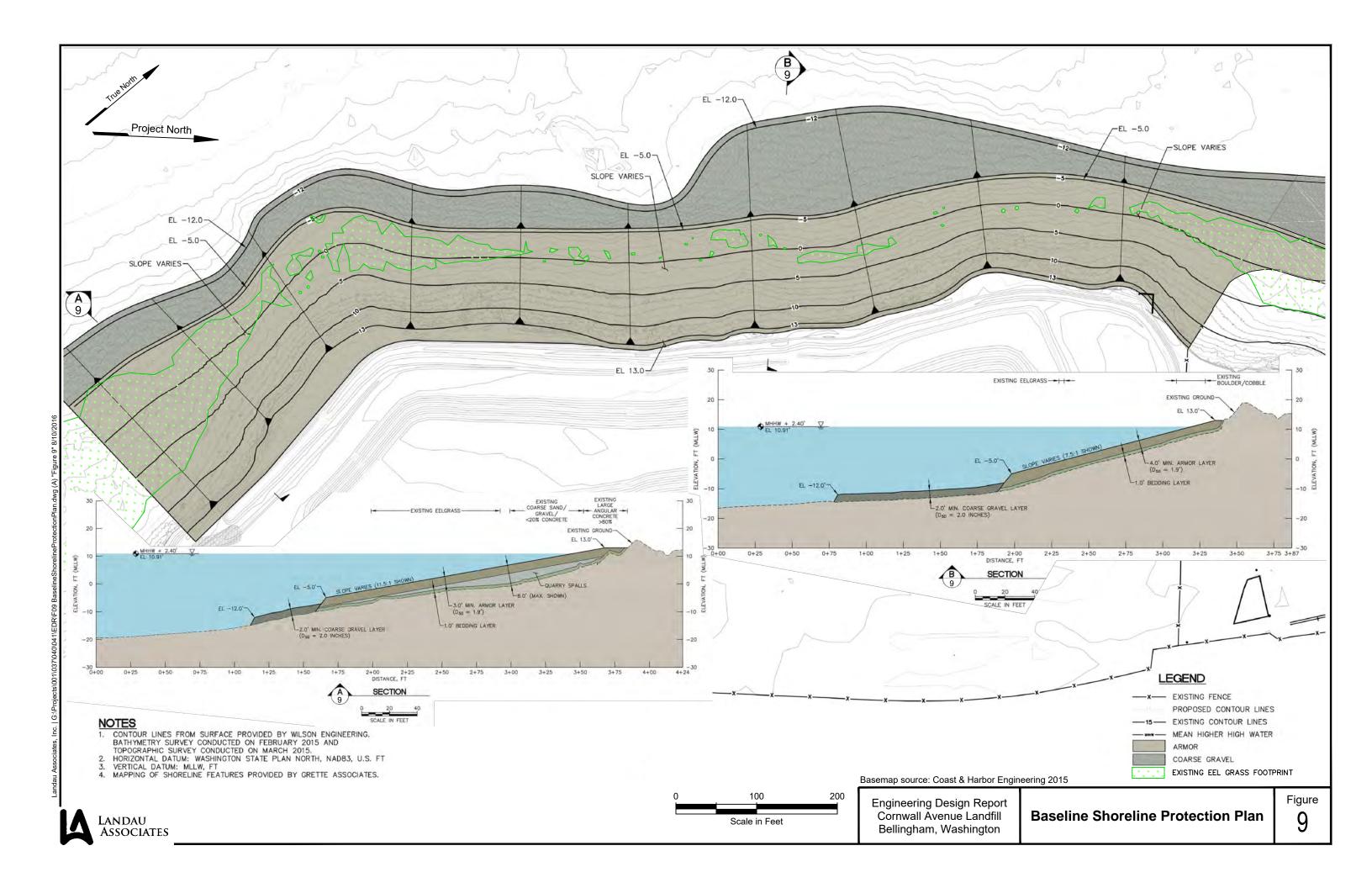


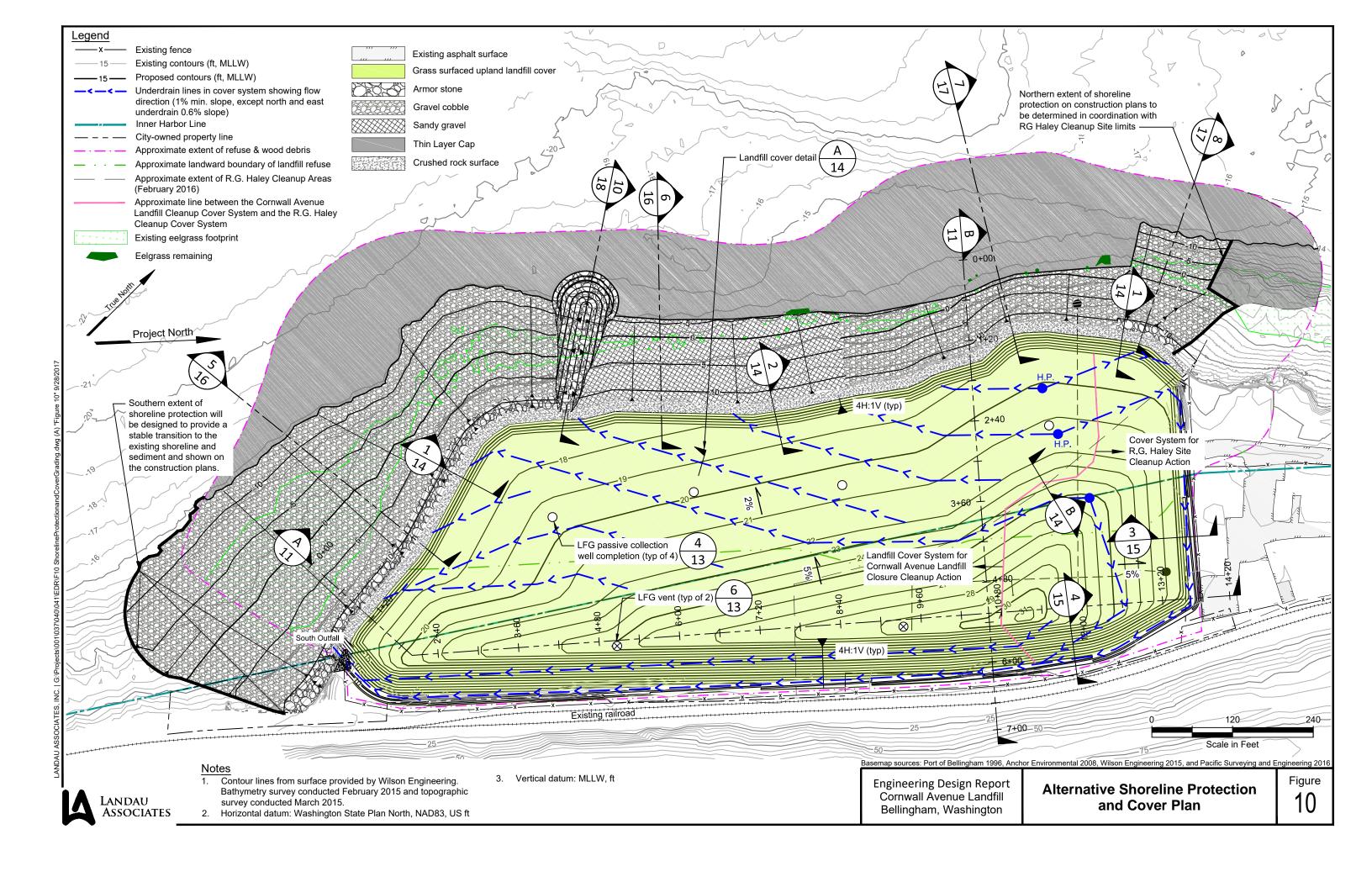


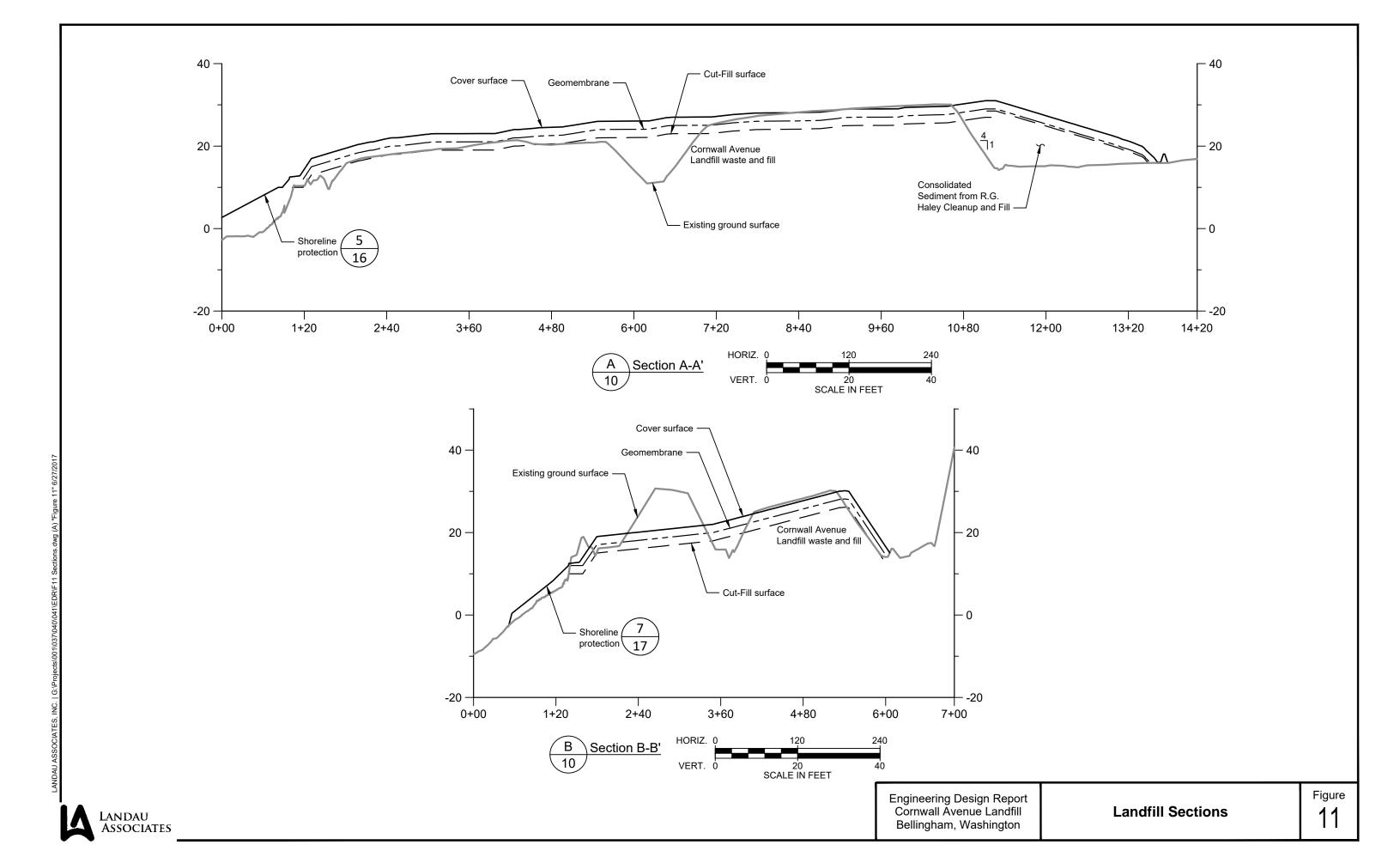



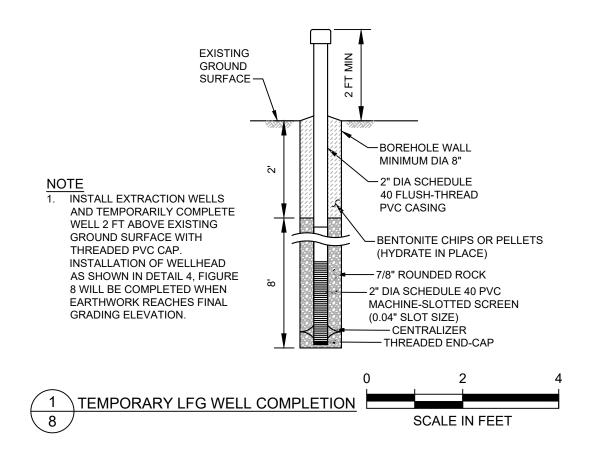



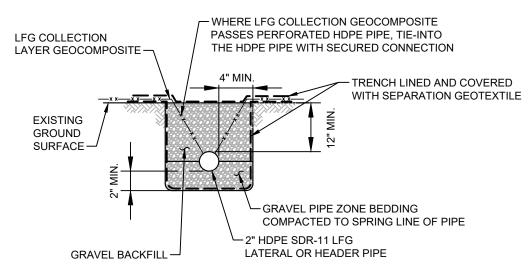


Engineering Design Report Cornwall Avenue Landfill Bellingham, Washington


Landfill Gas Generation Estimate Cornwall Avenue Landfill Figure /

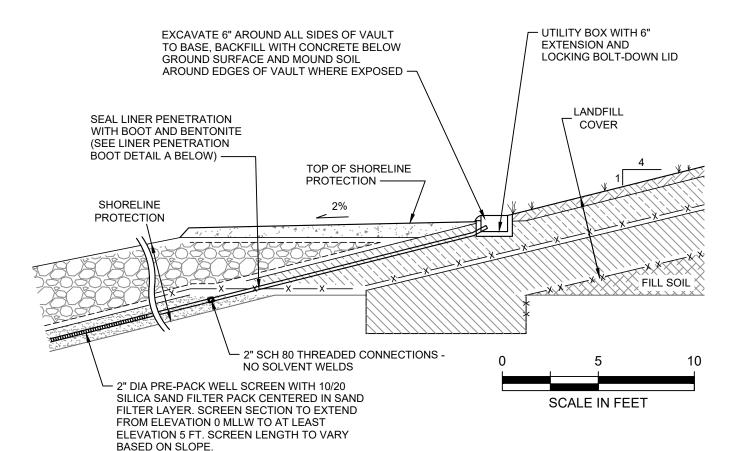


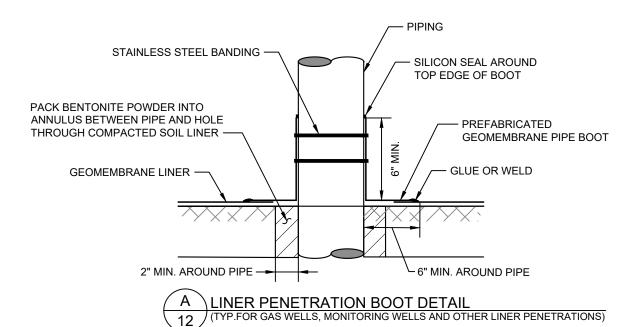



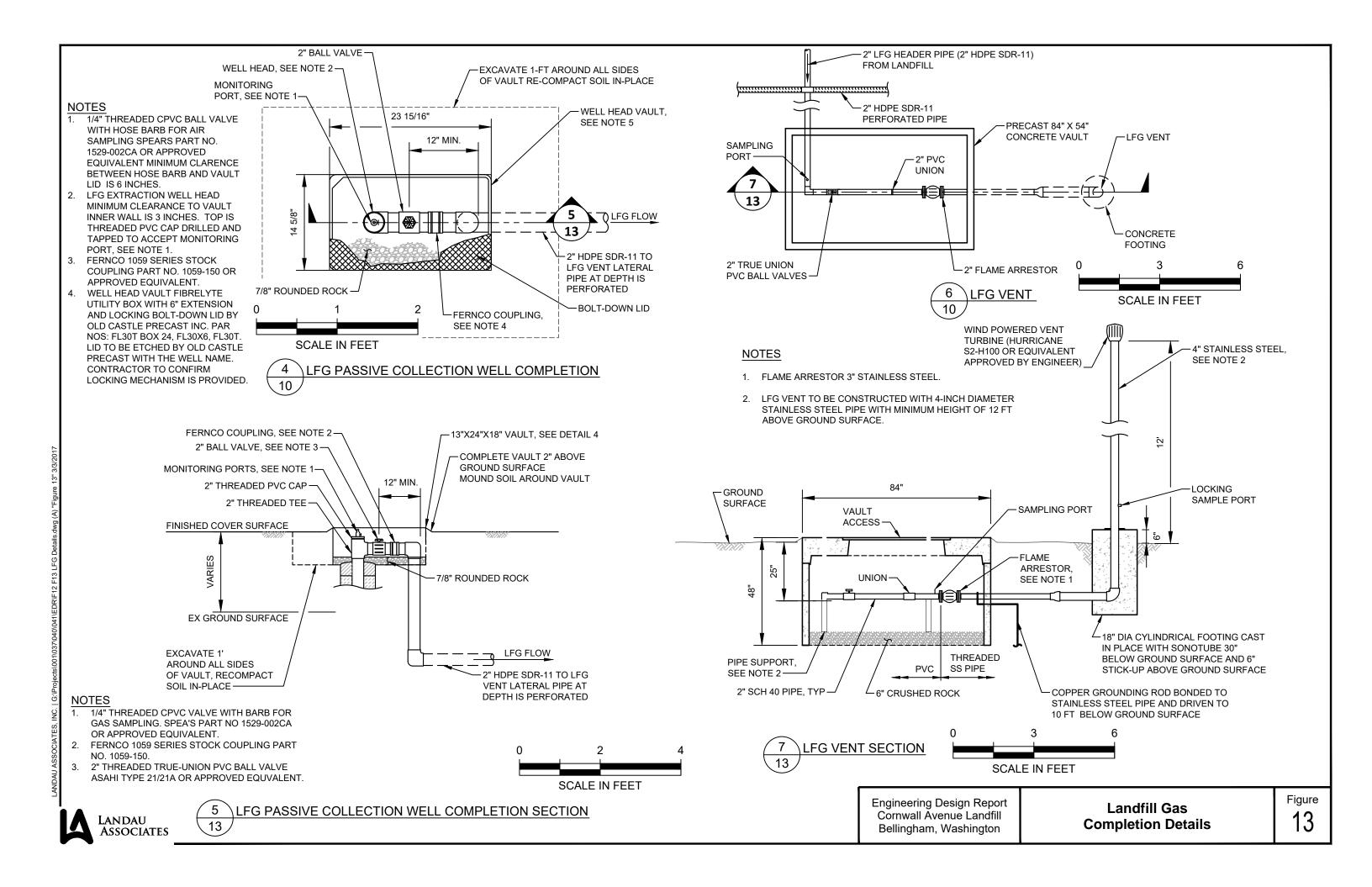


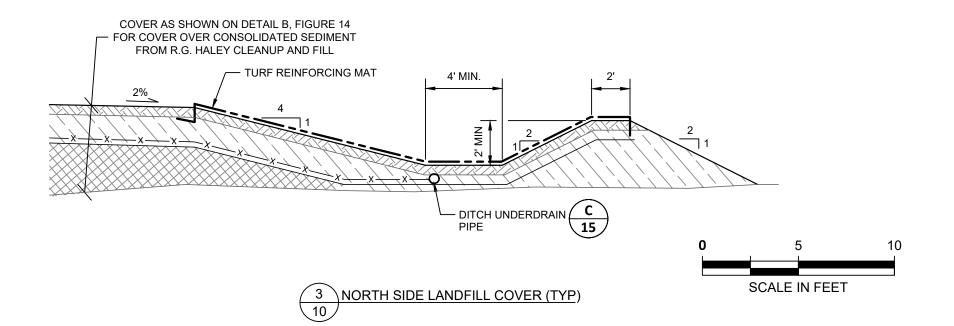



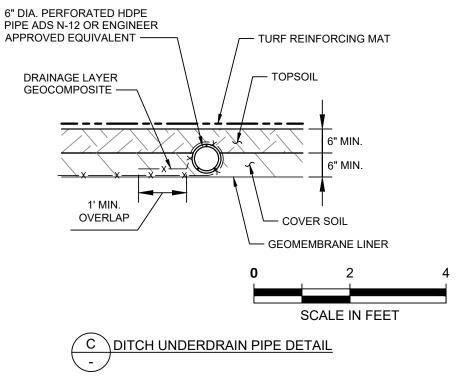


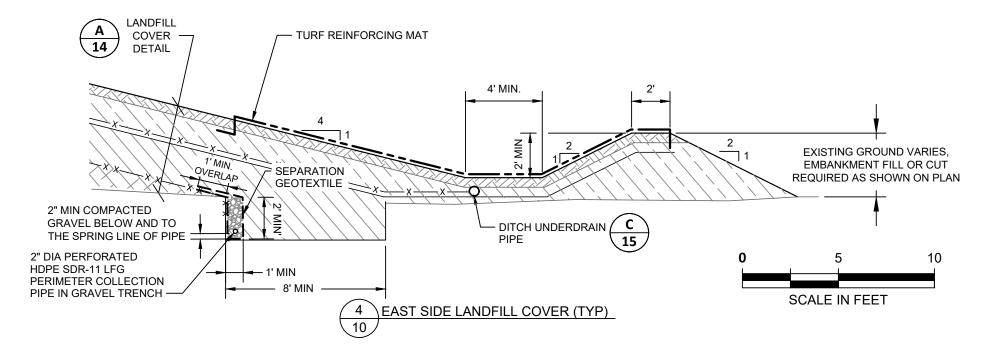





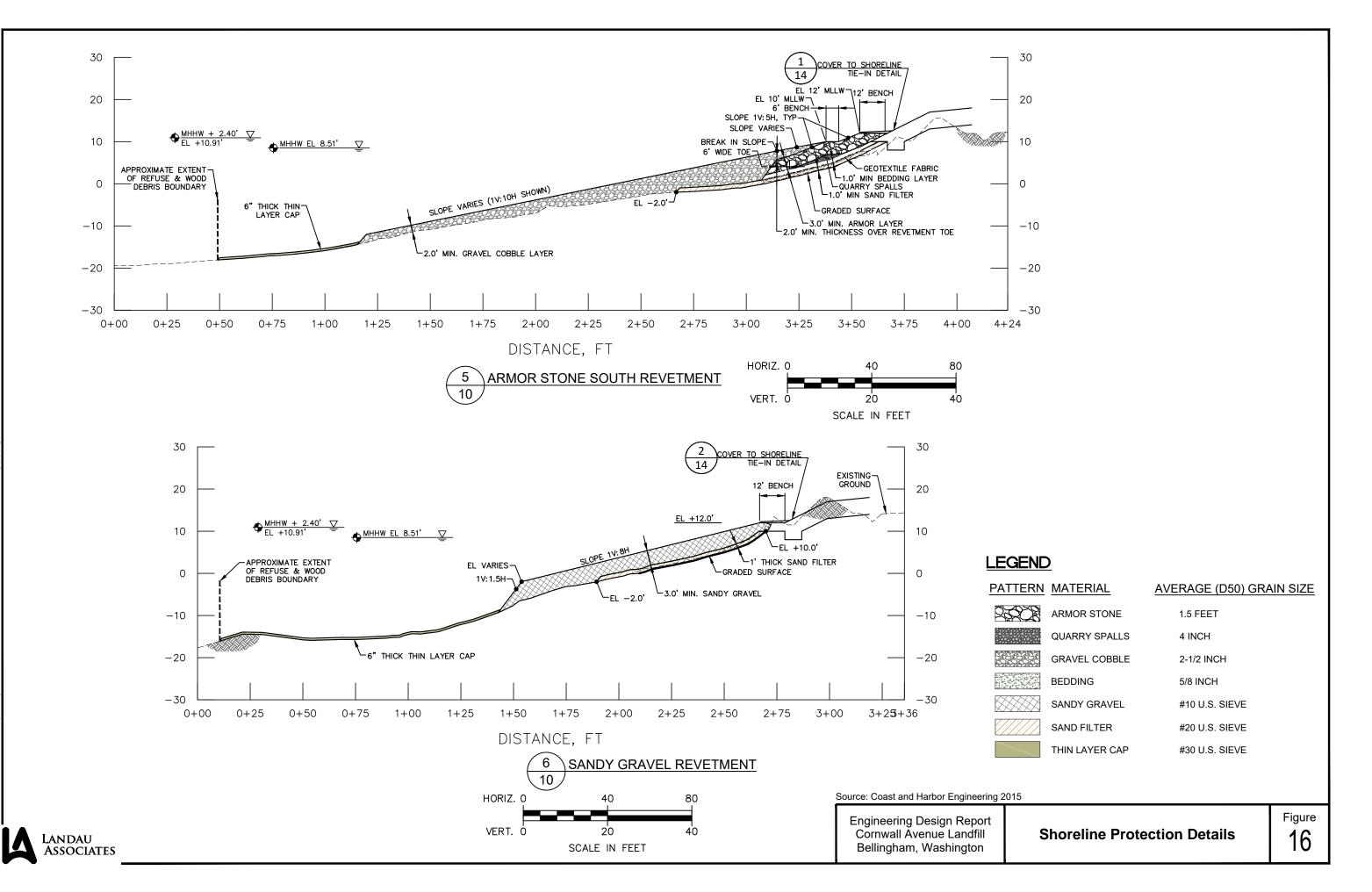



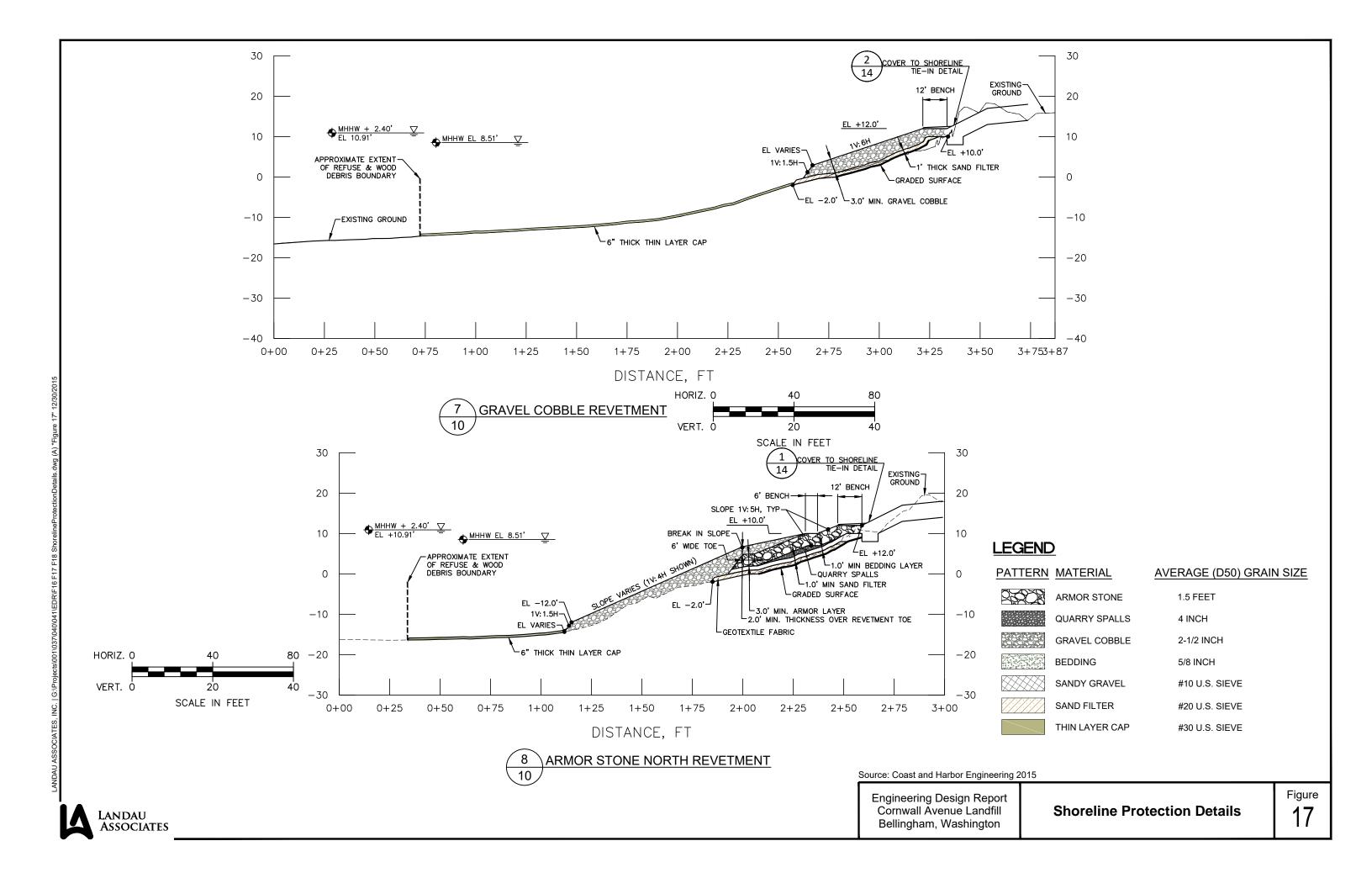



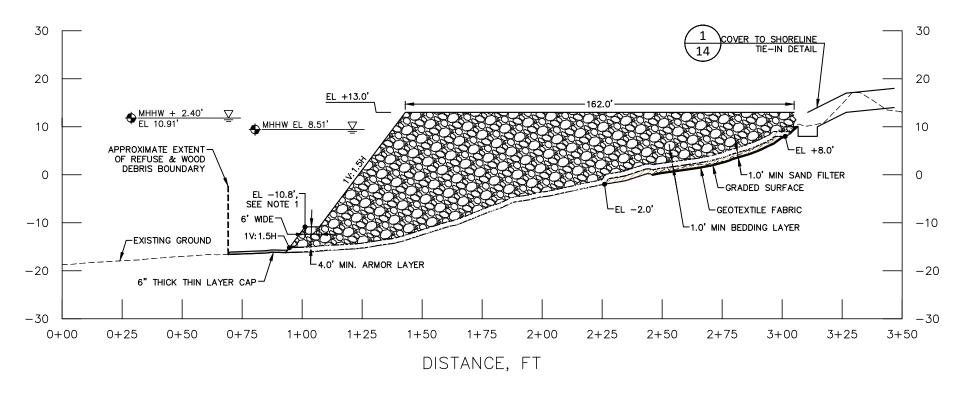


3 GROUNDWATER MONITORING WELL
8




Engineering Design Report Cornwall Avenue Landfill Bellingham, Washington LFG Control System and Groundwater Monitoring Well Installation Details

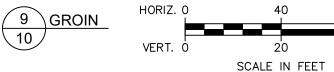





Engineering Design Report Cornwall Avenue Landfill Bellingham, Washington








# NOTE:

1. GROIN TOE PROTECTION DETAILS SHOWN ARE CONCEPTUAL AND SHALL BE DESIGNED IN CONSTRUCTION DRAWING PHASE.



# **LEGEND**

| <u>PATTERN</u> | MATERIAL          | <u>AVER</u> | AGE (D50) GRAIN SIZE |
|----------------|-------------------|-------------|----------------------|
|                | GROIN ARMOR STONE | 1.9         | 9 FEET               |
|                | QUARRY SPALLS     | 4           | INCH                 |
|                | GRAVEL COBBLE     | 2-          | 1/2 INCH             |
|                | BEDDING           | 5/          | 8 INCH               |
|                | SAND FILTER       | #2          | 0 U.S. SIEVE         |

THIN LAYER CAP

Source: Coast and Harbor Engineering 2015

Engineering Design Report Cornwall Avenue Landfill Bellingham, Washington

**Shoreline Protection Details** 

#30 U.S. SIEVE

# **Landfill Gas Design**

## **APPENDIX A**

## LANDFILL GAS CONTROL SYSTEM DESIGN

## **TABLE OF CONTENTS**

| _/ | ANDFILL GAS CONTROL SYSTEM DESIGN             | 1 |
|----|-----------------------------------------------|---|
|    | Landfill Gas Generation Modeling              | 1 |
|    | Modeling Approach                             |   |
|    | LFG Production Rate Modeling Results          |   |
|    | Landfill Gas Monitoring                       |   |
|    | Volatile Organic Compounds                    |   |
|    | Discussion of Results                         |   |
|    | Landfill Gas – Air Emissions Considerations   |   |
|    | Air Dispersion Modeling                       |   |
|    | Meteorological Data                           |   |
|    | Terrain Height Pre-Processing                 |   |
|    | Stack Emissions and Receptor Selection        |   |
|    | MTCA Method B Cleanup Standards               |   |
|    | Comparison to Cleanup Levels – Results        |   |
|    | ·                                             |   |
|    | Landfill Gas Control System – Design Elements |   |
|    | References                                    | 5 |

## **ATTACHMENTS**

| A.1 | Landfill Gas Generation Modeling Report         |
|-----|-------------------------------------------------|
| A.2 | Landfill Gas Monitoring Probe Installation Logs |
| A.3 | Landfill Gas Monitoring Data                    |
| A.4 | Landfill Gas Emissions                          |
| A.5 | Landfill Gas Cleanup Levels                     |
| A.6 | Landfill Gas System Design                      |
|     |                                                 |

### LANDFILL GAS CONTROL SYSTEM DESIGN

This appendix provides design-basis information for developing the landfill gas (LFG) collection and control system described in the Engineering Design Report (EDR). LFG control is a required component of this cleanup action, since the cleanup remedy includes constructing an impermeable cap over the upland portion of the Cornwall Avenue Landfill site (Site) which will affect the release of LFG from the subsurface municipal solid waste (MSW) and wood waste. In the current condition, LFG is generated as waste breaks down, and is able to slowly ventilate through the existing permeable soil cover. LFG can be explosive at higher concentrations when allowed to accumulate in confined spaces, and can pose a threat to human health if it contains volatile organic compounds (VOCs) at concentrations exceeding applicable regulatory criteria. After constructing an impermeable cap, the LFG must therefore be provided with a ventilation pathway, or it could potentially build up enough pressure during waste degradation to lift the cap or cause lateral migration. LFG must also be vented in a manner that does not pose an unacceptable risk to human health.

The design goals of the LFG control system design are the following:

- Prevent accumulation of LFG under the landfill cap by providing an LFG capture layer beneath the impermeable cover that is connected to the atmosphere.
- Provide internal pressure relief to reduce the potential for lateral migration
- Provide controlled release of LFG through engineered vents to prevent fugitive emissions
  where exposure is uncontrolled, and vent LFG in a manner that is adequately protective of
  human health.

As part of this evaluation, Landau Associates conducted two phases of pre-design field investigation, developed a model of the LFG generation rate, and created an air dispersion model to evaluate ambient air impacts that could be caused by the LFG being exhausted through passive vents. These data were used to develop the conceptual design elements of the LFG control system included in the EDR. The design provided in the EDR is considered conservatively protective by using worst-case input parameters regarding potential hazards and weather conditions that might affect human exposure.

Many of the elements included in the design would be considered excessive based on current property usage. However, because future property usage is planned as a public park, the LFG control system design will include several considerations intended to provide adequate protection for park visitors following completion of cleanup action construction.

The following sections describe the development of Site conditions relating to LFG production, gas quality, potential exposures, and design considerations.

# **Landfill Gas Generation Modeling**

This section summarizes the LFG production rate evaluation for the Site. The LFG production rate was estimated using the US Environmental Protection Agency's (EPA) LandGEM spreadsheet model – the industry standard approach for estimating LFG emissions for regulatory compliance, and a tool for LFG

control system design. The estimate is based on the waste age, type, quantity of buried waste, and the subsurface environment.

According to the Site Remedial Investigation and Feasibility Study Report (RI/FS; Landau Associates 2013), approximately 94,000 cubic yards (yd³) of wood waste was buried at the Site between 1888 to 1946 and 201,000 yd³ of refuse (MSW) was buried between 1953 to 1965. This is a relatively small quantity of waste in comparison to modern landfills. Additionally, the waste is relatively old and has likely already exhausted the majority of the original LFG producing potential.

## **Modeling Approach**

LandGEM is a spreadsheet based model prepared by EPA that estimates the overall flow rate of LFG from a MSW landfill based on user input regarding the amount of waste buried, the year of burial, and other parameters developed by EPA based on landfills across the US. Emissions factors used in the model are from the Compilation of Air Pollutant Emission Factors (AP-42; EPA 1998). The model allows variation of parameters affecting the overall LFG production capacity of the waste (given infinite time), and the rate at which the LFG is released – each constrained to typically observed ranges.

The total mass of waste is estimated based on the estimated volumes of buried MSW and wood waste, and typical waste density. Based on the reported years of operation for accepting MSW and wood waste, the total estimated buried mass of each component is separated into annual deposits. The model assumes a wood waste disposal rate of about 800 tons per year of acceptance and 4,700 tons per year of MSW; distributed in the upland portion of the landfill. Additionally, the model assumes approximately 3,100 tons per year of MSW was disposed in the marine portion of the Site.

The moisture content (saturated) of the solid waste buried under the marine portion of the Site was accounted for by adjusting the rate constant (k) to match that of a landfill with more than 40 annual inches of precipitation [k = 0.12 year<sup>-1</sup>, as referenced in EPA's Waste Reduction Model (WARM Version 13)], maximizing this variable parameter within the allowable range. Three individual modeling runs were executed so the parameters could be varied for three unique conditions: wood waste, MSW in the marine portion of the Site, and MSW in the upland portion of the Site. It is assumed for the purposes of modeling a worst-case scenario that LFG generated by decomposition of MSW in the marine portion of the Site would migrate laterally toward the uplands and require capture and control at that location. The modeling output for each of these scenarios is provided in Attachment A.1. The results are discussed below. Note that although LandGem can be used to estimate LFG emissions, site-specific data were developed through field investigation instead. As a result, the model output provided in Attachment A.1 does not include VOCs. The site-specific VOC data derived during field testing is discussed in the following section (Landfill Gas Monitoring: Volatile Organic Compounds).

### **LFG Production Rate Modeling Results**

The modeling results indicate an approximate total LFG gas generation rate of 4.7 cubic feet per minute (cfm) for year 2015, which includes the combined contributions of LFG generated from the

degradation of all wastes at the Site (cumulative gas generation contribution from wood waste in the uplands, MSW in the uplands, and MSW in the water). Figure A-1 in Attachment A.1 presents the generation curve developed by the combining the output from the three modeling scenarios discussed above. Based on this low estimated rate of LFG production, a safety factor of greater than 2 will be applied to the production rate for design, and the capture and control system will be designed for an LFG flow rate of 10 cfm.

## **Landfill Gas Monitoring**

Thirteen temporary LFG monitoring probes were installed throughout the Site. Installation logs are provided in Attachment A.2. LFG monitoring was conducted at these 13 probes, 4 existing landfill gas vents, and at 13 groundwater monitoring wells during 2 monitoring events as part of the pre-design investigation. The monitoring locations are shown on Figure A-2 in Attachment A.3. LFG monitoring was conducted in accordance with the procedures of the Pre-Design Investigation Work Plan (Landau Associates 2015). During the monitoring events, the following parameters were measured as presented in Tables A-1 (June 15, 2015 monitoring event) and A-2 (August 7, 2015 monitoring event) in Attachment A.3:

- Methane (CH<sub>4</sub>)
- Oxygen (O<sub>2</sub>)
- Carbon dioxide (CO<sub>2</sub>)
- Carbon monoxide (CO)
- Hydrogen sulfide (H<sub>2</sub>S)

- Hydrogen gas
- Static pressure
- Total VOCs by field-measurement with photoionization detector.

#### **Volatile Organic Compounds**

In addition to the field-analyzed parameters summarized above, LFG samples were collected during both events from a subset of the monitoring locations, and analyzed by an accredited laboratory using EPA Method TO-15 for a list of 75 VOCs. The tabulated VOC results are provided in Table A-3 along with the complete laboratory analytical reports in Attachment A.3.

#### Discussion of Results

The landfill continues to generate at least small quantities of LFG, as evidenced by elevated levels of methane and carbon dioxide, and depressed concentrations of oxygen. As anticipated, the highest concentrations of methane were detected in areas where MSW is buried, and lower concentrations were detected in areas where only wood waste is buried. Figure A-2 shows a dashed green line separating the areas where these two types of waste are located, and presents the concentrations of methane measured in the June and August 2015 monitoring events. The methane results indicate LFG control will be required throughout the landfill.

Other field-analyzed LFG parameters were also consistent with the general understanding of Site conditions and/or consistent with typically observed conditions at other aging landfills. Only trace levels of H<sub>2</sub>, CO, or H<sub>2</sub>S were observed. The most notable of these observations was a detection of 42 parts per million (ppm) H<sub>2</sub>S at existing LFG Vent 3 in June 2015. Static pressure measurements were low across the landfill, as expected, except for an anomalously-high measurement of 8.77 inches of water at monitoring probe P-12 in June 2015. Follow-up monitoring in August did not detect H<sub>2</sub>S in LFG Vent 3, and revealed no significant static pressure at probe P-12. Although concentrations of monitored parameters varied somewhat between the two monitoring events, the two events indicated generally similar conditions for the purposes of designing an appropriate LFG control system.

The results of VOC testing indicate there are detectable concentrations of VOCs throughout most of the Site. The VOCs detected are those typically associated with LFG, although they are present at relatively low concentrations in comparison to landfills with more recent deposits. For reference, the total mass of non-methane VOCs in LFG is typically about 840 ppm, normalized to hexane (EPA 2008). This is equivalent to approximately 3,000,000 micrograms per cubic meter (ug/m³), the unit of measurement in which the Cornwall VOC data are presented in Table A-3. The highest observed total VOC concentration expressed as the sum of all detected VOCs was at LFG probe P-2, and was approximately 12,000 ug/m³ – less than 0.5 percent of the concentration typically present in LFG. The low prevalence of VOCs in LFG at the Site provides further indication that LFG generation is relatively low. The results of VOC testing are used further in the evaluation below to determine if LFG emissions will require an air permit, and to determine if control technology is required for protection of human health and the environment prior to discharge.

### Landfill Gas - Air Emissions Considerations

Construction of the landfill cover system will include installation of new LFG vents so that LFG can discharge from the subsurface in a controlled manner, and not be trapped beneath the low-permeability cover. Although the emissions have been occurring for decades in an uncontrolled manner, installation of the vents requires an evaluation of these emissions as a new source. In order to evaluate whether an air permit (or substantive requirements thereof) will be required, an estimate was prepared of the total annual emissions for each of the 75 VOCs included in the TO-15 analysis. The sample location with the highest detected concentration for each VOC was applied to the total estimated flow of LFG to determine the maximum potential mass-based emissions on an hourly, daily, or annual basis. The safety factor applied to the LFG generation estimate discussed in the previous section is applied for evaluating and sizing system components and is also applied in evaluating maximum reasonable exposure scenarios later in this appendix, but is not used in evaluating pollutant emissions for air permitting considerations.

The estimated emissions of VOCs are presented in Table A-4 and compared to the ambient source impact levels (ASILs), small quantity emission rates (SQERs), and *de minimis* emission values presented

in Chapter 173-460 WAC (Controls for New Sources of Toxic Air Pollutants). Source emissions are compared to ASILs, SQERs, and *de minimis* values to determine whether further permitting considerations or implementing treatment technology prior to discharge is necessary. For this evaluation, the maximum anticipated ambient air impact is based on the highest concentration VOC data from the pre-design investigation being used to estimate emissions at future LFG vents, including an assumption that non-detected compounds are present at the reporting limit.

As indicated in the Table A-4, the estimated emissions for each compound are well below all regulatory criteria for air quality standards – based on both concentration and mass-based air emission rates. The emission rates were additionally below the *de minimis* quantities, which, according to WAC 173-460-020 indicates "trivial levels of emissions that do not pose a threat to human health or the environment." Accordingly, the emissions are considered low enough that no additional air dispersion modeling would be required to evaluate concentrations at receptor points and typical air permitting considerations would be concluded for a typical stationary source evaluation. However, additional air dispersion modeling was conducted for this project to evaluate the VOC concentrations at any receptor location within the Site to evaluate concentrations relative to Model Toxics Control Act (MTCA) cleanup levels for ambient air, as discussed in the following section.

## **Air Dispersion Modeling**

The American Meteorological Society (AMS)/EPA Regulatory Model (AERMOD) was used to estimate the maximum ambient VOC concentrations associated with LFG emissions at a network of approximately 650 different receptor locations spaced throughout the Site. Similar air dispersion modeling is typically used to evaluate air quality impacts at the property line surrounding a landfill. In this instance, the model was developed to estimate VOC concentrations at a network of receptors spaced throughout the interior of the Site using the worst-case emissions and weather conditions because of the planned future use of the Site as a City park. The modeling was conducted in general accordance with EPA's Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions (40 CFR Part 51).

Ambient air impacts were simulated from total VOC stack emissions using the Industrial Source Complex (ISC)-AERMOD View Version 8.1 interface provided by Lakes Environmental. This version of the Lakes Environmental software incorporates the most recent version of AERMOD (version 15181). AERMOD incorporates the data from a variety of pre-processors (described below) to process meteorological parameters, terrain heights, and stack emission estimates with physical emission point characteristics to predict potential impacts to ambient air from the LFG vents.

## **Meteorological Data**

Five years of surface meteorological data from Bellingham, Washington were used for this modeling analysis. Surface observation data from the National Weather Service (NWS) Bellingham International Airport Automated Surface Observing System (ASOS) station for each of the years between 2008 and 2012 were modeled to determine the worst-case case scenario (maximum modeled 1-hour impact).

Meteorological data from year 2008 was selected for the final analysis because they resulted in the highest potential impacts at any single receptor during the five year period.

The Bellingham airport meteorological tower is approximately 7 kilometers north of the Site. The 1-minute wind data from this ASOS station were processed with AERMINUTE (Version 11325) and supplemented into the surface data. This surface dataset was then processed in conjunction with concurrent twice daily upper air data collected at the NWS Quillayute, Washington observation station using the AERMET (Version 14134) preprocessor. Additionally, surface characteristics utilized in AERMET for the area surrounding the Bellingham airport meteorological tower were determined with the AERSURFACE (Version 13016) preprocessor using U.S. Geological Survey (USGS) National Land Cover Data.

## **Terrain Height Pre-Processing**

To model complex terrain, AERMOD incorporates elevation data using the AMS/EPA Regulatory Model Terrain Pre-processor (AERMAP). The receptor grid network consisted of a Cartesian flagpole receptor grid with 12.5-meter (m) spacing, placed at a height of 1.5 m above ground to approximate the human breathing zone.

Digital topographical data for the analysis region were obtained from the Web GIS website (www.webgis.com) and processed for use in AERMOD. The Shuttle Radar Topography Mission data used for this project have a resolution of approximately 30 m (1 arc-second).

This regional data was supplemented with the Site-specific terrain data, by incorporating the proposed final surface topography after constructing the landfill cap.

## Stack Emissions and Receptor Selection

For the purposes of exposure evaluation and comparison to MTCA cleanup levels, air emissions were estimated using the total estimated flow rate of 10 cfm LFG (4.6 cfm was scaled-up by a factor of safety of more than 2) and using the highest-detected concentrations of VOCs during the two predesign investigations. The LFG flow rate and VOC concentrations were incorporated into the model as mass-based emissions rates, and the total flow was divided between the two proposed vents. The vent stacks were modeled at 4 inches in diameter and two vent heights were used with individual modeling runs: 15 ft and 12 ft above the finished grade surface.

The single receptor with the greatest potential impact was selected to represent potential exposure at the Site.

## **MTCA Method B Cleanup Standards**

MTCA Method B criteria were calculated for both cancer and non-cancer risks for all VOCs with toxicology data available on the Washington State Department of Ecology's (Ecology's) CLARC database (Ecology website 2015). The calculated concentrations protective of both cancer and non-cancer risks are presented on Table A-5 in Attachment A.5. The lower of the two levels was selected

for application at the Site. Because the VOC data generated for this Site used test method TO-15, which reports a large suite of parameters (most of which were not detected), some compounds on Table A-5 do not have associated cleanup standards.

Ecology's standard formulas and default parameters were used in the calculations, without modification. As a conservative measure, we've retained the underlying assumption in Ecology's default parameters that park visitation would be 365 days per year, and that visitors could be at the park 24 hours a day. For acute, non-cancer risks, the cleanup levels are based on a child's bodyweight, 16 kilograms (kg), and an exposure duration of 6 years. For compounds with cancer risks, the cleanup levels are based on an adult's bodyweight, 70 kg, and exposure duration of 30 years. These assumptions are extremely conservative relative to actual exposure scenarios likely to occur at the Site.

## **Comparison to Cleanup Levels - Results**

Table A-6 in Attachment A.5 presents the maximum anticipated ambient air impacts and a comparison to the associated MTCA Method B cleanup levels. The ambient air impacts assume the worst-case emissions at two future LFG vents, the worst-case meteorological conditions affecting ground concentrations in the years between 2008 and 2012, and the single receptor out of 650 across the Site with the highest estimated exposure concentration.

As indicated on Table A-6, even with the conservatively high estimates of potential emissions and exposures, all compounds are well below cleanup levels, generally at least two orders of magnitude below, if LFG is released at the two vents indicated in the proposed design, with vent heights of 12 ft above ground surface. As a result, LFG emissions from the Site LFG system will not present an unacceptable risk to human health. It is anticipated that the actual concentrations at the LFG vents will already be below the Method B cleanup levels before any dispersion due to the conservative assumptions used to develop the emissions estimates. Compliance monitoring will be conducted at the LFG vents to confirm the discharge already meets the cleanup levels or will be below the cleanup levels in the breathing zone in accordance with Ecology's guidance document for establishing and evaluating air cleanup standards under MTCA (Ecology 2005).

# **Landfill Gas Control System - Design Elements**

Based on the analyses presented above, typical solid-waste design practices for passive collection of LFG will be used to control and mitigate LFG, as a component of the Site cleanup. Based on the low quantity of LFG being generated, an active LFG control system using blowers to extract LFG is not required. The design will include the following elements to meet the goals stated in the introduction to this appendix. The proposed design is presented in the EDR and additional design information is provided in Attachment A.6 to this appendix.

# Prevent accumulation of LFG under the landfill cap by providing an LFG capture layer beneath the impermeable cover that is connected to the atmosphere

This will be accomplished by including an LFG capture layer of geocomposite material below the impermeable layer. Several design alternatives were considered including the use of a gravel/sand layer, the use of crushed concrete (which could be manufactured from concrete debris during Site grading), or the use of a combination of geocomposite materials and conveyance piping. The use of geocomposite material provided the most economical alternative based on significant savings in installation costs during construction by eliminating most earthwork associated with alternative LFG collection systems (trenching and pipe installation).

The required transmissivity of this LFG capture layer was calculated based on equations developed by Thiel (Thiel 2005). Because LFG generation is low (assuming 10 cfm), the required transmissivity within this layer is 1.2 x 10<sup>-5</sup> square meters per second (m²/s), assuming a collection pipe spacing of 20 meters (twice the typical spacing). This specification is reported in hydraulic transmissivity (converted from gas), and includes a factor of safety of 2 to account for moisture and biofouling.

The geocomposite material evaluated for this application was Draintube™, by AFITEX-Texel, which combines standard perforated pipes and geosynthetic products into one roll-out material. The product incorporates an integrated conveyance tubing that exceeds the transmissivity requirement with a lower cost than the other alternatives considered. The integrated perforated piping has a large ventilation capacity and is the primary source of vapor transport to the headers, and ultimately, the vents. LAI has reviewed reference applications and confirmed this product has been used at over 1,000 projects world-wide including LFG capture and control at several dozen similar landfill projects; some here in the Pacific Northwest. A limited amount of additional earthwork and piping is required to connect the collection layer to the vents.

#### Provide internal pressure relief to reduce the potential for lateral migration

Internal pressure relief will be provided by the installation of four passive extraction wells that extend into the waste. In addition to the LFG layer discussed above, which captures LFG that has migrated upwards, these passive extraction wells will provide a ventilation pathway for LFG within the waste mass, to minimize landfill pressures that can cause lateral migration. Each of the four passive extraction wells will be focused in areas containing MSW where LFG generation is the greatest.

The passive wells will be connected through subsurface LFG lateral headers to the ventilation system and will include isolation valves and monitoring ports located in secure subsurface vaults.

# Provide controlled release of LFG through engineered vents, to prevent fugitive emissions where exposure is uncontrolled

LFG collected from the passive wells and from the LFG capture layer in the cover system will be routed through subsurface LFG header piping to two passive vents. During development of the conceptual design, alternative approaches included varying the number of vents and evaluating the addition of

ventilation assistance through the use of solar-powered fans and wind turbines. These additions to a passive ventilation system are useful to keep the collection system clear of LFG, but they are not powerful enough to provide active extraction of LFG from the subsurface. The inclusion of ventilation assistance was determined to be advantageous in minimizing the number of passive vents, although it should be noted that dispersion modeling and the exposure assessment was conducted without the additional convection or dispersion assistance from a solar powered blower or wind turbine. These are considered beneficial components to add to the vent stacks, but are not required elements of the design for regulatory purposes.

Based on lower capital cost and maintenance, the wind turbine was preferable to the solar assisted ventilation system evaluated. Wind turbines can provide a similar level of ventilation improvement at a small fraction of the cost and as a result, each of the 2 vents will be outfitted with a wind turbine at the head, which will rotate in the wind to enhance ventilation.

Each vent will also include a subsurface vault which can be used in the future, if needed, to add carbon filtration prior to ventilation. Carbon filtration is not required to meet MTCA cleanup standards based on current data, but including the vaults would allow it to be added in the future with minimal effort if different conditions are determined during compliance monitoring, or if nuisance odors become an issue. The subsurface vaults will also contain a flame arrestor, a safety device that prevents a flame from traveling through the LFG control system. This will be included based on the potential for methane to occasionally be present above the explosive limit, and the possibility of lightening striking the vents, since they will be elevated.

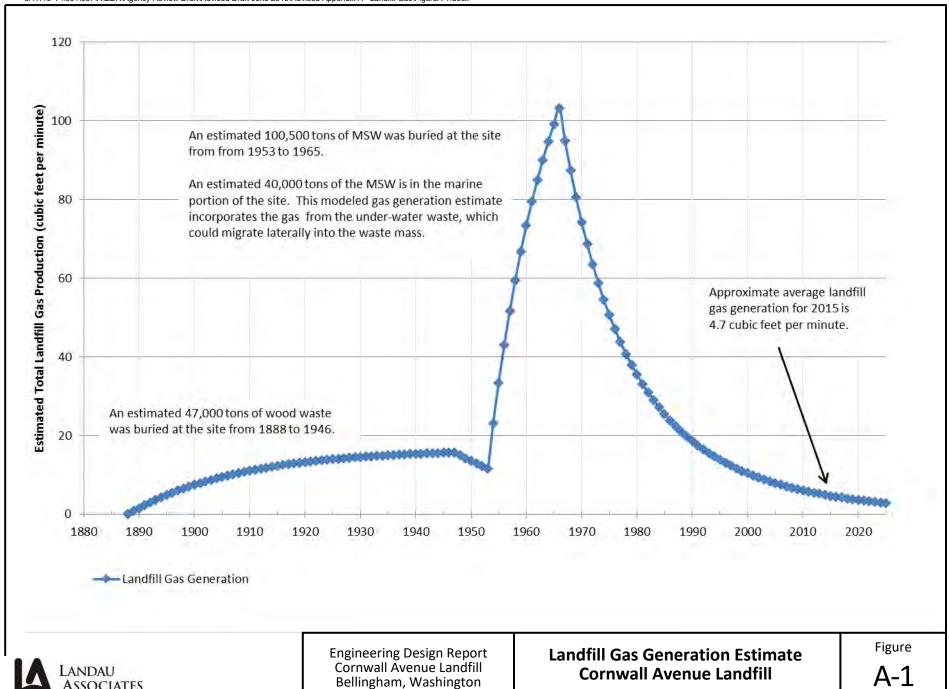
The vents will be constructed of stainless 4-inch-diameter pipe with a round concrete base, and an effluent point 12 ft above ground surface, so that the release of LFG is at a controlled location where exposures are not anticipated and ambient air will not be effected. The vent pipe will be metal to provide a long service life, and stainless steel will be used to provide corrosion protection from external elements and the moisture condensing from the LFG. The subsurface vault will be secured in concrete and will have a secure, spring-assisted metal access lid. The vent pipes could be integrated into light poles or other structures for aesthetic purposes during future Site use, if desired.

## References

Ecology. 2005. Focus on Developing Air Cleanup Standards Under the Model Toxics Control Act. Available at: <a href="https://fortress.wa.gov/ecy/publications/publications/0109072.pdf">https://fortress.wa.gov/ecy/publications/publications/0109072.pdf</a>
Washington Data Department of Ecology Toxic Cleanup Program.

Ecology website. 2015. "Cleanup Levels and Risk Calculation (CLARC) web site". Available at: https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx. Accessed on October 1.

EPA. 2008. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. US Environmental Protection Agency Document EPA/600/R-08-116. September.


EPA. 1998. Compilation of Air Pollutant Emission Factors, AP-42, Volume 1: Stationary Point and Area Sources, 5th ed., Supplement E, Chapter 2.4: Municipal Solid Waste Landfills. US Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park, NC. November.

Landau Associates. 2015. Work Plan, Pre-Design Characterization, Cornwall Avenue Landfill Site, Bellingham, Washington. April 30.

Landau Associates. 2013. FINAL Remedial Investigation/Feasibility Study, Cornwall Avenue Landfill, Bellingham, Washington. Prepared for Port of Bellingham, Bellingham, Washington. December 17.

Thiel, R.S. 2005. "Design Methodology for a Gas Pressure Relief Layer Below a Geomembrane Cover to Improve Slope Stability", *Geosynthetics International, Vol 23, Number 2*.

# **Landfill Gas Generation Modeling Report**





# **Summary Report**

Landfill Name or Identifier: Cornwall Ave - Wood Waste

Date: Friday, June 17, 2016

**Description/Comments:** 

#### About LandGEM:

First-Order Decomposition Rate Equation:

 $Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left( \frac{M_i}{10} \right) e^{-kt_{ij}}$ 

Where,

 $Q_{CH4}$  = annual methane generation in the year of the calculation ( $m^3$ /year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (year^{-1})$ 

 $L_0$  = potential methane generation capacity  $(m^3/Mg)$ 

 $M_i$  = mass of waste accepted in the  $i^{th}$  year (Mg)  $t_{ij}$  = age of the  $j^{th}$  section of waste mass  $M_i$  accepted in the  $i^{th}$  year ( $decimal\ years$ , e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

## **Input Review**

LANDFILL CHARACTERISTICS

Landfill Open Year1888Landfill Closure Year (with 80-year limit)1946Actual Closure Year (without limit)1946Have Model Calculate Closure Year?No

Waste Design Capacity megagrams

MODEL PARAMETERS

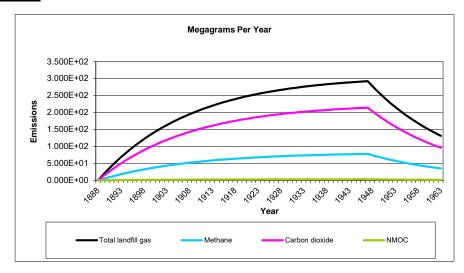
Methane Generation Rate, k  ${\bf 0.050}$   ${\it year}^{-1}$  Potential Methane Generation Capacity, L $_{\rm o}$   ${\bf 170}$   ${\it m}^3/{\it Mg}$ 

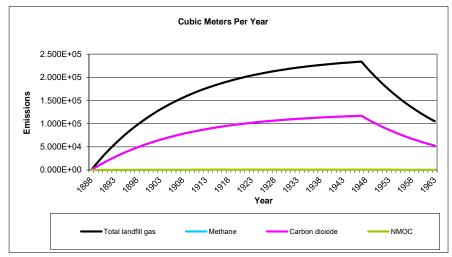
NMOC Concentration 4,000 ppmv as hexane
Methane Content 50 % by volume

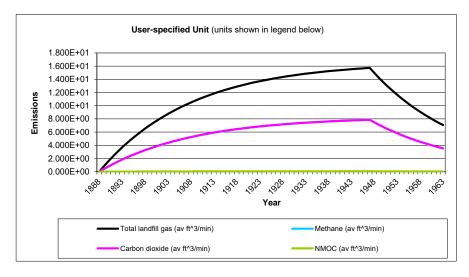
GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Total landfill gas
Gas / Pollutant #2: Methane
Gas / Pollutant #3: Carbon dioxide

Gas / Pollutant #4: NMOC


## WASTE ACCEPTANCE RATES


| Year | Waste Acc | cepted            | Waste-In-Place |              |  |
|------|-----------|-------------------|----------------|--------------|--|
| rear | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1888 | 725       | 797               | 0              | 0            |  |
| 1889 | 725       | 797               | 725            | 797          |  |
| 1890 | 725       | 797               | 1,449          | 1,594        |  |
| 1891 | 725       | 797               | 2,174          | 2,391        |  |
| 1892 | 725       | 797               | 2,898          | 3,188        |  |
| 1893 | 725       | 797               | 3,623          | 3,985        |  |
| 1894 | 725       | 797               | 4,347          | 4,782        |  |
| 1895 | 725       | 797               | 5,072          | 5,579        |  |
| 1896 | 725       | 797               | 5,796          | 6,376        |  |
| 1897 | 725       | 797               | 6,521          | 7,173        |  |
| 1898 | 725       | 797               | 7,245          | 7,970        |  |
| 1899 | 725       | 797               | 7,970          | 8,767        |  |
| 1900 | 725       | 797               | 8,695          | 9,564        |  |
| 1901 | 725       | 797               | 9,419          | 10,361       |  |
| 1902 | 725       | 797               | 10,144         | 11,158       |  |
| 1903 | 725       | 797               | 10,868         | 11,955       |  |
| 1904 | 725       | 797               | 11,593         | 12,752       |  |
| 1905 | 725       | 797               | 12,317         | 13,549       |  |
| 1906 | 725       | 797               | 13,042         | 14,346       |  |
| 1907 | 725       | 797               | 13,766         | 15,143       |  |
| 1908 | 725       | 797               | 14,491         | 15,940       |  |
| 1909 | 725       | 797               | 15,215         | 16,737       |  |
| 1910 | 725       | 797               | 15,940         | 17,534       |  |
| 1911 | 725       | 797               | 16,665         | 18,331       |  |
| 1912 | 725       | 797               | 17,389         | 19,128       |  |
| 1913 | 725       | 797               | 18,114         | 19,925       |  |
| 1914 | 725       | 797               | 18,838         | 20,722       |  |
| 1915 | 725       | 797               | 19,563         | 21,519       |  |
| 1916 | 725       | 797               | 20,287         | 22,316       |  |
| 1917 | 725       | 797               | 21,012         | 23,113       |  |
| 1918 | 725       | 797               | 21,736         | 23,910       |  |
| 1919 | 725       | 797               | 22,461         | 24,707       |  |
| 1920 | 725       | 797               | 23,185         | 25,504       |  |
| 1921 | 725       | 797               | 23,910         | 26,301       |  |
| 1922 | 725       | 797               | 24,635         | 27,098       |  |
| 1923 | 725       | 797               | 25,359         | 27,895       |  |
| 1924 | 725       | 797               | 26,084         | 28,692       |  |
| 1925 | 725       | 797               | 26,808         | 29,489       |  |
| 1926 | 725       | 797               | 27,533         | 30,286       |  |
| 1927 | 725       | 797               | 28,257         | 31,083       |  |


### WASTE ACCEPTANCE RATES (Continued)

|      | TE ACCEPTANCE RATES  Waste Acc | . ,               | Waste-In-Place |              |  |
|------|--------------------------------|-------------------|----------------|--------------|--|
| Year | (Mg/year)                      | (short tons/year) | (Mg)           | (short tons) |  |
| 1928 | 725                            | 797               | 28,982         | 31,880       |  |
| 1929 | 725                            | 797               | 29,706         | 32,677       |  |
| 1930 | 725                            | 797               | 30,431         | 33,474       |  |
| 1931 | 725                            | 797               | 31,155         | 34,271       |  |
| 1932 | 725                            | 797               | 31,880         | 35,068       |  |
| 1933 | 725                            | 797               | 32,605         | 35,865       |  |
| 1934 | 725                            | 797               | 33,329         | 36,662       |  |
| 1935 | 725                            | 797               | 34,054         | 37,459       |  |
| 1936 | 725                            | 797               | 34,778         | 38,256       |  |
| 1937 | 725                            | 797               | 35,503         | 39,053       |  |
| 1938 | 725                            | 797               | 36,227         | 39,850       |  |
| 1939 | 725                            | 797               | 36,952         | 40,647       |  |
| 1940 | 725                            | 797               | 37,676         | 41,444       |  |
| 1941 | 725                            | 797               | 38,401         | 42,241       |  |
| 1942 | 725                            | 797               | 39,125         | 43,038       |  |
| 1943 | 725                            | 797               | 39,850         | 43,835       |  |
| 1944 | 725                            | 797               | 40,575         | 44,632       |  |
| 1945 | 725                            | 797               | 41,299         | 45,429       |  |
| 1946 | 725                            | 797               | 42,024         | 46,226       |  |
| 1947 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1948 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1949 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1950 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1951 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1952 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1953 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1954 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1955 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1956 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1957 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1958 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1959 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1960 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1961 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1962 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1963 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1964 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1965 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1966 | 0                              | 0                 | 42,748         | 47,023       |  |
| 1967 | 0                              | 0                 | 42,748         | 47,023       |  |

## **Graphs**







## **Results**

| Year | Total landfill gas |           |               | Methane   |           |               |
|------|--------------------|-----------|---------------|-----------|-----------|---------------|
| rear | (Mg/year)          | (m³/year) | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |
| 1888 | 0                  | 0         | 0             | 0         | 0         | 0             |
| 1889 | 1.504E+01          | 1.204E+04 | 8.093E-01     | 4.018E+00 | 6.022E+03 | 4.046E-01     |
| 1890 | 2.935E+01          | 2.350E+04 | 1.579E+00     | 7.840E+00 | 1.175E+04 | 7.895E-01     |
| 1891 | 4.296E+01          | 3.440E+04 | 2.311E+00     | 1.147E+01 | 1.720E+04 | 1.156E+00     |
| 1892 | 5.591E+01          | 4.477E+04 | 3.008E+00     | 1.493E+01 | 2.238E+04 | 1.504E+00     |
| 1893 | 6.822E+01          | 5.463E+04 | 3.670E+00     | 1.822E+01 | 2.731E+04 | 1.835E+00     |
| 1894 | 7.993E+01          | 6.401E+04 | 4.301E+00     | 2.135E+01 | 3.200E+04 | 2.150E+00     |
| 1895 | 9.108E+01          | 7.293E+04 | 4.900E+00     | 2.433E+01 | 3.647E+04 | 2.450E+00     |
| 1896 | 1.017E+02          | 8.142E+04 | 5.470E+00     | 2.716E+01 | 4.071E+04 | 2.735E+00     |
| 1897 | 1.118E+02          | 8.949E+04 | 6.013E+00     | 2.985E+01 | 4.475E+04 | 3.006E+00     |
| 1898 | 1.214E+02          | 9.717E+04 | 6.529E+00     | 3.241E+01 | 4.859E+04 | 3.264E+00     |
| 1899 | 1.305E+02          | 1.045E+05 | 7.020E+00     | 3.485E+01 | 5.224E+04 | 3.510E+00     |
| 1900 | 1.392E+02          | 1.114E+05 | 7.487E+00     | 3.717E+01 | 5.571E+04 | 3.743E+00     |
| 1901 | 1.474E+02          | 1.180E+05 | 7.931E+00     | 3.937E+01 | 5.902E+04 | 3.965E+00     |
| 1902 | 1.553E+02          | 1.243E+05 | 8.353E+00     | 4.147E+01 | 6.216E+04 | 4.177E+00     |
| 1903 | 1.627E+02          | 1.303E+05 | 8.755E+00     | 4.347E+01 | 6.515E+04 | 4.378E+00     |
| 1904 | 1.698E+02          | 1.360E+05 | 9.137E+00     | 4.536E+01 | 6.800E+04 | 4.569E+00     |
| 1905 | 1.766E+02          | 1.414E+05 | 9.501E+00     | 4.717E+01 | 7.070E+04 | 4.751E+00     |
| 1906 | 1.830E+02          | 1.466E+05 | 9.847E+00     | 4.889E+01 | 7.328E+04 | 4.923E+00     |
| 1907 | 1.891E+02          | 1.515E+05 | 1.018E+01     | 5.052E+01 | 7.573E+04 | 5.088E+00     |
| 1908 | 1.950E+02          | 1.561E+05 | 1.049E+01     | 5.207E+01 | 7.805E+04 | 5.244E+00     |
| 1909 | 2.005E+02          | 1.605E+05 | 1.079E+01     | 5.355E+01 | 8.027E+04 | 5.393E+00     |
| 1910 | 2.058E+02          | 1.648E+05 | 1.107E+01     | 5.496E+01 | 8.238E+04 | 5.535E+00     |
| 1911 | 2.108E+02          | 1.688E+05 | 1.134E+01     | 5.630E+01 | 8.438E+04 | 5.670E+00     |
| 1912 | 2.155E+02          | 1.726E+05 | 1.160E+01     | 5.757E+01 | 8.629E+04 | 5.798E+00     |
| 1913 | 2.201E+02          | 1.762E+05 | 1.184E+01     | 5.878E+01 | 8.810E+04 | 5.920E+00     |
| 1914 | 2.244E+02          | 1.797E+05 | 1.207E+01     | 5.993E+01 | 8.983E+04 | 6.036E+00     |
| 1915 | 2.285E+02          | 1.829E+05 | 1.229E+01     | 6.102E+01 | 9.147E+04 | 6.146E+00     |
| 1916 | 2.324E+02          | 1.861E+05 | 1.250E+01     | 6.207E+01 | 9.303E+04 | 6.251E+00     |
| 1917 | 2.361E+02          | 1.890E+05 | 1.270E+01     | 6.306E+01 | 9.452E+04 | 6.351E+00     |
| 1918 | 2.396E+02          | 1.919E+05 | 1.289E+01     | 6.400E+01 | 9.593E+04 | 6.445E+00     |
| 1919 | 2.430E+02          | 1.945E+05 | 1.307E+01     | 6.490E+01 | 9.727E+04 | 6.536E+00     |
| 1920 | 2.461E+02          | 1.971E+05 | 1.324E+01     | 6.575E+01 | 9.855E+04 | 6.622E+00     |
| 1921 | 2.492E+02          | 1.995E+05 | 1.341E+01     | 6.656E+01 | 9.977E+04 | 6.703E+00     |
| 1922 | 2.521E+02          | 2.018E+05 | 1.356E+01     | 6.733E+01 | 1.009E+05 | 6.781E+00     |
| 1923 | 2.548E+02          | 2.040E+05 | 1.371E+01     | 6.806E+01 | 1.020E+05 | 6.855E+00     |
| 1924 | 2.574E+02          | 2.061E+05 | 1.385E+01     | 6.876E+01 | 1.031E+05 | 6.925E+00     |
| 1925 | 2.599E+02          | 2.081E+05 | 1.398E+01     | 6.943E+01 | 1.041E+05 | 6.992E+00     |
| 1926 | 2.623E+02          | 2.100E+05 | 1.411E+01     | 7.006E+01 | 1.050E+05 | 7.056E+00     |
| 1927 | 2.645E+02          | 2.118E+05 | 1.423E+01     | 7.066E+01 | 1.059E+05 | 7.116E+00     |
| 1928 | 2.667E+02          | 2.135E+05 | 1.435E+01     | 7.123E+01 | 1.068E+05 | 7.174E+00     |
| 1929 | 2.687E+02          | 2.152E+05 | 1.446E+01     | 7.177E+01 | 1.076E+05 | 7.229E+00     |
| 1930 | 2.706E+02          | 2.167E+05 | 1.456E+01     | 7.229E+01 | 1.084E+05 | 7.281E+00     |
| 1931 | 2.725E+02          | 2.182E+05 | 1.466E+01     | 7.278E+01 | 1.091E+05 | 7.330E+00     |
| 1932 | 2.742E+02          | 2.196E+05 | 1.475E+01     | 7.325E+01 | 1.098E+05 | 7.377E+00     |
| 1933 | 2.759E+02          | 2.209E+05 | 1.484E+01     | 7.370E+01 | 1.105E+05 | 7.422E+00     |
| 1934 | 2.775E+02          | 2.222E+05 | 1.493E+01     | 7.412E+01 | 1.111E+05 | 7.465E+00     |
| 1935 | 2.790E+02          | 2.234E+05 | 1.501E+01     | 7.452E+01 | 1.117E+05 | 7.505E+00     |
| 1936 | 2.804E+02          | 2.246E+05 | 1.509E+01     | 7.491E+01 | 1.123E+05 | 7.544E+00     |
| 1937 | 2.818E+02          | 2.257E+05 | 1.516E+01     | 7.527E+01 | 1.128E+05 | 7.581E+00     |

| V    | Total landfill gas |           |                        | Methane   |           |                        |
|------|--------------------|-----------|------------------------|-----------|-----------|------------------------|
| Year | (Mg/year)          | (m³/year) | (av ft^3/min)          | (Mg/year) | (m³/year) | (av ft^3/min)          |
| 1938 | 2.831E+02          | 2.267E+05 | 1.523E+01              | 7.562E+01 | 1.133E+05 | 7.616E+00              |
| 1939 | 2.843E+02          | 2.277E+05 | 1.530E+01              | 7.595E+01 | 1.138E+05 | 7.649E+00              |
| 1940 | 2.855E+02          | 2.286E+05 | 1.536E+01              | 7.626E+01 | 1.143E+05 | 7.680E+00              |
| 1941 | 2.866E+02          | 2.295E+05 | 1.542E+01              | 7.656E+01 | 1.148E+05 | 7.710E+00              |
| 1942 | 2.877E+02          | 2.304E+05 | 1.548E+01              | 7.684E+01 | 1.152E+05 | 7.739E+00              |
| 1943 | 2.887E+02          | 2.312E+05 | 1.553E+01              | 7.711E+01 | 1.156E+05 | 7.766E+00              |
| 1944 | 2.897E+02          | 2.319E+05 | 1.558E+01              | 7.737E+01 | 1.160E+05 | 7.792E+00              |
| 945  | 2.906E+02          | 2.327E+05 | 1.563E+01              | 7.761E+01 | 1.163E+05 | 7.817E+00              |
| 946  | 2.914E+02          | 2.334E+05 | 1.568E+01              | 7.785E+01 | 1.167E+05 | 7.840E+00              |
| 947  | 2.923E+02          | 2.340E+05 | 1.572E+01              | 7.807E+01 | 1.170E+05 | 7.862E+00              |
| 948  | 2.780E+02          | 2.226E+05 | 1.496E+01              | 7.426E+01 | 1.113E+05 | 7.479E+00              |
| 949  | 2.645E+02          | 2.118E+05 | 1.423E+01              | 7.064E+01 | 1.059E+05 | 7.114E+00              |
| 950  | 2.516E+02          | 2.014E+05 | 1.353E+01              | 6.719E+01 | 1.007E+05 | 6.767E+00              |
| 951  | 2.393E+02          | 1.916E+05 | 1.287E+01              | 6.392E+01 | 9.581E+04 | 6.437E+00              |
| 952  | 2.276E+02          | 1.823E+05 | 1.225E+01              | 6.080E+01 | 9.113E+04 | 6.123E+00              |
| 953  | 2.165E+02          | 1.734E+05 | 1.165E+01              | 5.783E+01 | 8.669E+04 | 5.825E+00              |
| 954  | 2.060E+02          | 1.649E+05 | 1.103E+01<br>1.108E+01 | 5.501E+01 | 8.246E+04 | 5.541E+00              |
| 955  | 1.959E+02          | 1.569E+05 | 1.054E+01              |           | 7.844E+04 | 5.270E+00              |
|      |                    |           |                        | 5.233E+01 |           |                        |
| 956  | 1.864E+02          | 1.492E+05 | 1.003E+01              | 4.978E+01 | 7.461E+04 | 5.013E+00              |
| 957  | 1.773E+02          | 1.419E+05 | 9.538E+00              | 4.735E+01 | 7.097E+04 | 4.769E+00              |
| 958  | 1.686E+02          | 1.350E+05 | 9.072E+00              | 4.504E+01 | 6.751E+04 | 4.536E+00              |
| 959  | 1.604E+02          | 1.284E+05 | 8.630E+00              | 4.284E+01 | 6.422E+04 | 4.315E+00              |
| 960  | 1.526E+02          | 1.222E+05 | 8.209E+00              | 4.076E+01 | 6.109E+04 | 4.105E+00              |
| 961  | 1.451E+02          | 1.162E+05 | 7.809E+00              | 3.877E+01 | 5.811E+04 | 3.904E+00              |
| 962  | 1.381E+02          | 1.106E+05 | 7.428E+00              | 3.688E+01 | 5.528E+04 | 3.714E+00              |
| 963  | 1.313E+02          | 1.052E+05 | 7.066E+00              | 3.508E+01 | 5.258E+04 | 3.533E+00              |
| 964  | 1.249E+02          | 1.000E+05 | 6.721E+00              | 3.337E+01 | 5.002E+04 | 3.361E+00              |
| 965  | 1.188E+02          | 9.515E+04 | 6.393E+00              | 3.174E+01 | 4.758E+04 | 3.197E+00              |
| 966  | 1.130E+02          | 9.051E+04 | 6.081E+00              | 3.019E+01 | 4.526E+04 | 3.041E+00              |
| 967  | 1.075E+02          | 8.610E+04 | 5.785E+00              | 2.872E+01 | 4.305E+04 | 2.892E+00              |
| 968  | 1.023E+02          | 8.190E+04 | 5.503E+00              | 2.732E+01 | 4.095E+04 | 2.751E+00              |
| 969  | 9.729E+01          | 7.790E+04 | 5.234E+00              | 2.599E+01 | 3.895E+04 | 2.617E+00              |
| 970  | 9.254E+01          | 7.410E+04 | 4.979E+00              | 2.472E+01 | 3.705E+04 | 2.490E+00              |
| 971  | 8.803E+01          | 7.049E+04 | 4.736E+00              | 2.351E+01 | 3.525E+04 | 2.368E+00              |
| 972  | 8.374E+01          | 6.705E+04 | 4.505E+00              | 2.237E+01 | 3.353E+04 | 2.253E+00              |
| 973  | 7.965E+01          | 6.378E+04 | 4.286E+00              | 2.128E+01 | 3.189E+04 | 2.143E+00              |
| 974  | 7.577E+01          | 6.067E+04 | 4.077E+00              | 2.024E+01 | 3.034E+04 | 2.038E+00              |
| 975  | 7.207E+01          | 5.771E+04 | 3.878E+00              | 1.925E+01 | 2.886E+04 | 1.939E+00              |
| 976  | 6.856E+01          | 5.490E+04 | 3.689E+00              | 1.831E+01 | 2.745E+04 | 1.844E+00              |
| 977  | 6.521E+01          | 5.222E+04 | 3.509E+00              | 1.742E+01 | 2.611E+04 | 1.754E+00              |
| 978  | 6.203E+01          | 4.967E+04 | 3.338E+00              | 1.657E+01 | 2.484E+04 | 1.669E+00              |
| 979  | 5.901E+01          | 4.725E+04 | 3.175E+00              | 1.576E+01 | 2.363E+04 | 1.587E+00              |
| 980  | 5.613E+01          | 4.495E+04 | 3.020E+00              | 1.499E+01 | 2.247E+04 | 1.510E+00              |
| 981  | 5.339E+01          | 4.275E+04 | 2.873E+00              | 1.426E+01 | 2.138E+04 | 1.436E+00              |
| 982  | 5.079E+01          | 4.067E+04 | 2.733E+00              | 1.357E+01 | 2.033E+04 | 1.366E+00              |
| 983  | 4.831E+01          | 3.869E+04 | 2.599E+00              | 1.290E+01 | 1.934E+04 | 1.300E+00              |
| 984  | 4.596E+01          | 3.680E+04 | 2.473E+00              | 1.228E+01 | 1.840E+04 | 1.236E+00              |
| 985  | 4.371E+01          | 3.500E+04 | 2.352E+00              | 1.168E+01 | 1.750E+04 | 1.176E+00              |
| 986  | 4.158E+01          | 3.330E+04 | 2.237E+00              | 1.111E+01 | 1.665E+04 | 1.119E+00              |
| 987  | 3.955E+01          | 3.167E+04 | 2.128E+00              | 1.057E+01 | 1.584E+04 | 1.064E+00              |
| 988  | 3.763E+01          | 3.013E+04 | 2.024E+00              | 1.005E+01 | 1.506E+04 | 1.004E+00<br>1.012E+00 |

| Year | Total landfill gas |           |               | Methane   |           |               |
|------|--------------------|-----------|---------------|-----------|-----------|---------------|
| rear | (Mg/year)          | (m³/year) | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |
| 1989 | 3.579E+01          | 2.866E+04 | 1.926E+00     | 9.560E+00 | 1.433E+04 | 9.628E-01     |
| 1990 | 3.404E+01          | 2.726E+04 | 1.832E+00     | 9.094E+00 | 1.363E+04 | 9.158E-01     |
| 1991 | 3.238E+01          | 2.593E+04 | 1.742E+00     | 8.650E+00 | 1.297E+04 | 8.712E-01     |
| 1992 | 3.080E+01          | 2.467E+04 | 1.657E+00     | 8.228E+00 | 1.233E+04 | 8.287E-01     |
| 1993 | 2.930E+01          | 2.346E+04 | 1.577E+00     | 7.827E+00 | 1.173E+04 | 7.883E-01     |
| 1994 | 2.787E+01          | 2.232E+04 | 1.500E+00     | 7.445E+00 | 1.116E+04 | 7.498E-01     |
| 1995 | 2.651E+01          | 2.123E+04 | 1.427E+00     | 7.082E+00 | 1.062E+04 | 7.133E-01     |
| 1996 | 2.522E+01          | 2.020E+04 | 1.357E+00     | 6.737E+00 | 1.010E+04 | 6.785E-01     |
| 1997 | 2.399E+01          | 1.921E+04 | 1.291E+00     | 6.408E+00 | 9.605E+03 | 6.454E-01     |
| 1998 | 2.282E+01          | 1.827E+04 | 1.228E+00     | 6.096E+00 | 9.137E+03 | 6.139E-01     |
| 1999 | 2.171E+01          | 1.738E+04 | 1.168E+00     | 5.798E+00 | 8.691E+03 | 5.840E-01     |
| 2000 | 2.065E+01          | 1.653E+04 | 1.111E+00     | 5.516E+00 | 8.267E+03 | 5.555E-01     |
| 2001 | 1.964E+01          | 1.573E+04 | 1.057E+00     | 5.247E+00 | 7.864E+03 | 5.284E-01     |
| 2002 | 1.868E+01          | 1.496E+04 | 1.005E+00     | 4.991E+00 | 7.481E+03 | 5.026E-01     |
| 2003 | 1.777E+01          | 1.423E+04 | 9.562E-01     | 4.747E+00 | 7.116E+03 | 4.781E-01     |
| 2004 | 1.691E+01          | 1.354E+04 | 9.096E-01     | 4.516E+00 | 6.769E+03 | 4.548E-01     |
| 2005 | 1.608E+01          | 1.288E+04 | 8.652E-01     | 4.296E+00 | 6.439E+03 | 4.326E-01     |
| 2006 | 1.530E+01          | 1.225E+04 | 8.230E-01     | 4.086E+00 | 6.125E+03 | 4.115E-01     |
| 2007 | 1.455E+01          | 1.165E+04 | 7.829E-01     | 3.887E+00 | 5.826E+03 | 3.914E-01     |
| 2008 | 1.384E+01          | 1.108E+04 | 7.447E-01     | 3.697E+00 | 5.542E+03 | 3.724E-01     |
| 2009 | 1.317E+01          | 1.054E+04 | 7.084E-01     | 3.517E+00 | 5.272E+03 | 3.542E-01     |
| 2010 | 1.252E+01          | 1.003E+04 | 6.738E-01     | 3.345E+00 | 5.014E+03 | 3.369E-01     |
| 2011 | 1.191E+01          | 9.540E+03 | 6.410E-01     | 3.182E+00 | 4.770E+03 | 3.205E-01     |
| 2012 | 1.133E+01          | 9.075E+03 | 6.097E-01     | 3.027E+00 | 4.537E+03 | 3.049E-01     |
| 2013 | 1.078E+01          | 8.632E+03 | 5.800E-01     | 2.879E+00 | 4.316E+03 | 2.900E-01     |
| 2014 | 1.025E+01          | 8.211E+03 | 5.517E-01     | 2.739E+00 | 4.105E+03 | 2.758E-01     |
| 2015 | 9.754E+00          | 7.811E+03 | 5.248E-01     | 2.605E+00 | 3.905E+03 | 2.624E-01     |
| 2016 | 9.278E+00          | 7.430E+03 | 4.992E-01     | 2.478E+00 | 3.715E+03 | 2.496E-01     |
| 2017 | 8.826E+00          | 7.067E+03 | 4.748E-01     | 2.357E+00 | 3.534E+03 | 2.374E-01     |
| 2018 | 8.395E+00          | 6.723E+03 | 4.517E-01     | 2.242E+00 | 3.361E+03 | 2.258E-01     |
| 2019 | 7.986E+00          | 6.395E+03 | 4.297E-01     | 2.133E+00 | 3.197E+03 | 2.148E-01     |
| 2020 | 7.596E+00          | 6.083E+03 | 4.087E-01     | 2.029E+00 | 3.041E+03 | 2.044E-01     |
| 2021 | 7.226E+00          | 5.786E+03 | 3.888E-01     | 1.930E+00 | 2.893E+03 | 1.944E-01     |
| 2022 | 6.874E+00          | 5.504E+03 | 3.698E-01     | 1.836E+00 | 2.752E+03 | 1.849E-01     |
| 2023 | 6.538E+00          | 5.236E+03 | 3.518E-01     | 1.746E+00 | 2.618E+03 | 1.759E-01     |
| 2024 | 6.219E+00          | 4.980E+03 | 3.346E-01     | 1.661E+00 | 2.490E+03 | 1.673E-01     |
| 2025 | 5.916E+00          | 4.737E+03 | 3.183E-01     | 1.580E+00 | 2.369E+03 | 1.592E-01     |
| 2026 | 5.628E+00          | 4.506E+03 | 3.028E-01     | 1.503E+00 | 2.253E+03 | 1.514E-01     |
| 2027 | 5.353E+00          | 4.287E+03 | 2.880E-01     | 1.430E+00 | 2.143E+03 | 1.440E-01     |
| 2028 | 5.092E+00          | 4.077E+03 | 2.740E-01     | 1.360E+00 | 2.039E+03 | 1.370E-01     |

| Year       | Carbon dioxide |                        |               | NMOC      |                        |                        |
|------------|----------------|------------------------|---------------|-----------|------------------------|------------------------|
|            | (Mg/year)      | (m³/year)              | (av ft^3/min) | (Mg/year) | (m³/year)              | (av ft^3/min)          |
| 888        | 0              | 0                      | 0             | 0         | 0                      | 0                      |
| 889        | 1.102E+01      | 6.022E+03              | 4.046E-01     | 1.727E-01 | 4.818E+01              | 3.237E-03              |
| 890        | 2.151E+01      | 1.175E+04              | 7.895E-01     | 3.370E-01 | 9.401E+01              | 6.316E-03              |
| 891        | 3.148E+01      | 1.720E+04              | 1.156E+00     | 4.932E-01 | 1.376E+02              | 9.245E-03              |
| 892        | 4.097E+01      | 2.238E+04              | 1.504E+00     | 6.419E-01 | 1.791E+02              | 1.203E-02              |
| 893        | 5.000E+01      | 2.731E+04              | 1.835E+00     | 7.832E-01 | 2.185E+02              | 1.468E-02              |
| 894        | 5.858E+01      | 3.200E+04              | 2.150E+00     | 9.177E-01 | 2.560E+02              | 1.720E-02              |
| 895        | 6.675E+01      | 3.647E+04              | 2.450E+00     | 1.046E+00 | 2.917E+02              | 1.960E-02              |
| 896        | 7.452E+01      | 4.071E+04              | 2.735E+00     | 1.167E+00 | 3.257E+02              | 2.188E-02              |
| 897        | 8.191E+01      | 4.475E+04              | 3.006E+00     | 1.283E+00 | 3.580E+02              | 2.405E-02              |
| 898        | 8.894E+01      | 4.859E+04              | 3.264E+00     | 1.393E+00 | 3.887E+02              | 2.612E-02              |
| 899        | 9.562E+01      | 5.224E+04              | 3.510E+00     | 1.498E+00 | 4.179E+02              | 2.808E-02              |
| 900        | 1.020E+02      | 5.571E+04              | 3.743E+00     | 1.598E+00 | 4.457E+02              | 2.995E-02              |
| 901        | 1.080E+02      | 5.902E+04              | 3.965E+00     | 1.692E+00 | 4.721E+02              | 3.172E-02              |
| 902        | 1.138E+02      | 6.216E+04              | 4.177E+00     | 1.783E+00 | 4.973E+02              | 3.341E-02              |
| 903        | 1.193E+02      | 6.515E+04              | 4.378E+00     | 1.868E+00 | 5.212E+02              | 3.502E-02              |
| 904        | 1.245E+02      | 6.800E+04              | 4.569E+00     | 1.950E+00 | 5.440E+02              | 3.655E-02              |
| 905        | 1.294E+02      | 7.070E+04              | 4.751E+00     | 2.027E+00 | 5.656E+02              | 3.800E-02              |
| 906        | 1.341E+02      | 7.328E+04              | 4.923E+00     | 2.101E+00 | 5.862E+02              | 3.939E-02              |
| 907        | 1.386E+02      | 7.573E+04              | 5.088E+00     | 2.171E+00 | 6.058E+02              | 4.070E-02              |
| 908        | 1.429E+02      | 7.805E+04              | 5.244E+00     | 2.238E+00 | 6.244E+02              | 4.196E-02              |
| 909        | 1.469E+02      | 8.027E+04              | 5.393E+00     | 2.302E+00 | 6.422E+02              | 4.315E-02              |
| 910        | 1.508E+02      | 8.238E+04              | 5.535E+00     | 2.362E+00 | 6.590E+02              | 4.428E-02              |
| 911        | 1.545E+02      | 8.438E+04              | 5.670E+00     | 2.420E+00 | 6.751E+02              | 4.536E-02              |
| 912        | 1.580E+02      | 8.629E+04              | 5.798E+00     | 2.474E+00 | 6.903E+02              | 4.638E-02              |
| 913        | 1.613E+02      | 8.810E+04              | 5.920E+00     | 2.526E+00 | 7.048E+02              | 4.736E-02              |
| 914        | 1.644E+02      | 8.983E+04              | 6.036E+00     | 2.576E+00 | 7.186E+02              | 4.828E-02              |
| 915        | 1.674E+02      | 9.147E+04              | 6.146E+00     | 2.623E+00 | 7.100E+02<br>7.318E+02 | 4.917E-02              |
| 916        | 1.703E+02      | 9.303E+04              | 6.251E+00     | 2.668E+00 | 7.442E+02              | 5.001E-02              |
| 917        | 1.730E+02      | 9.452E+04              | 6.351E+00     | 2.710E+00 | 7.561E+02              | 5.080E-02              |
| 918        | 1.756E+02      | 9.593E+04              | 6.445E+00     | 2.751E+00 | 7.674E+02              | 5.156E-02              |
| 919        | 1.781E+02      | 9.727E+04              | 6.536E+00     | 2.789E+00 | 7.782E+02              | 5.229E-02              |
| 920        | 1.804E+02      | 9.727E+04<br>9.855E+04 | 6.622E+00     | 2.826E+00 | 7.782E+02<br>7.884E+02 | 5.297E-02              |
| 920        | 1.826E+02      | 9.977E+04              | 6.703E+00     | 2.861E+00 | 7.981E+02              | 5.363E-02              |
| 922        | 1.847E+02      | 1.009E+05              | 6.781E+00     | 2.894E+00 | 8.074E+02              | 5.425E-02              |
| 923        | 1.868E+02      | 1.009E+05              | 6.855E+00     | 2.926E+00 | 8.162E+02              | 5.484E-02              |
| 923        | 1.887E+02      | 1.020E+05<br>1.031E+05 | 6.925E+00     | 2.956E+00 | 8.246E+02              | 5.464E-02<br>5.540E-02 |
|            |                |                        |               |           |                        |                        |
| 925<br>926 | 1.905E+02      | 1.041E+05              | 6.992E+00     | 2.984E+00 | 8.325E+02              | 5.594E-02<br>5.645E-02 |
| -          | 1.922E+02      | 1.050E+05              | 7.056E+00     | 3.011E+00 | 8.401E+02              |                        |
| 927        | 1.939E+02      | 1.059E+05              | 7.116E+00     | 3.037E+00 | 8.473E+02              | 5.693E-02              |
| 928        | 1.954E+02      | 1.068E+05              | 7.174E+00     | 3.062E+00 | 8.542E+02              | 5.739E-02              |
| 929        | 1.969E+02      | 1.076E+05              | 7.229E+00     | 3.085E+00 | 8.607E+02              | 5.783E-02              |
| 930        | 1.984E+02      | 1.084E+05              | 7.281E+00     | 3.107E+00 | 8.669E+02              | 5.825E-02              |
| 931        | 1.997E+02      | 1.091E+05              | 7.330E+00     | 3.128E+00 | 8.728E+02              | 5.864E-02              |
| 932        | 2.010E+02      | 1.098E+05              | 7.377E+00     | 3.149E+00 | 8.784E+02              | 5.902E-02              |
| 933        | 2.022E+02      | 1.105E+05              | 7.422E+00     | 3.168E+00 | 8.837E+02              | 5.938E-02              |
| 934        | 2.034E+02      | 1.111E+05              | 7.465E+00     | 3.186E+00 | 8.888E+02              | 5.972E-02              |
| 935        | 2.045E+02      | 1.117E+05              | 7.505E+00     | 3.203E+00 | 8.936E+02              | 6.004E-02              |
| 936        | 2.055E+02      | 1.123E+05              | 7.544E+00     | 3.220E+00 | 8.982E+02              | 6.035E-02              |
| 937        | 2.065E+02      | 1.128E+05              | 7.581E+00     | 3.235E+00 | 9.026E+02              | 6.065E-02              |

| Year         | Carbon dioxide |           |                        |                        | NMOC      |                        |  |
|--------------|----------------|-----------|------------------------|------------------------|-----------|------------------------|--|
| rear         | (Mg/year)      | (m³/year) | (av ft^3/min)          | (Mg/year)              | (m³/year) | (av ft^3/min)          |  |
| 1938         | 2.075E+02      | 1.133E+05 | 7.616E+00              | 3.250E+00              | 9.068E+02 | 6.093E-02              |  |
| 1939         | 2.084E+02      | 1.138E+05 | 7.649E+00              | 3.264E+00              | 9.107E+02 | 6.119E-02              |  |
| 1940         | 2.092E+02      | 1.143E+05 | 7.680E+00              | 3.278E+00              | 9.145E+02 | 6.144E-02              |  |
| 1941         | 2.101E+02      | 1.148E+05 | 7.710E+00              | 3.291E+00              | 9.181E+02 | 6.168E-02              |  |
| 1942         | 2.108E+02      | 1.152E+05 | 7.739E+00              | 3.303E+00              | 9.215E+02 | 6.191E-02              |  |
| 1943         | 2.116E+02      | 1.156E+05 | 7.766E+00              | 3.315E+00              | 9.247E+02 | 6.213E-02              |  |
| 1944         | 2.123E+02      | 1.160E+05 | 7.792E+00              | 3.326E+00              | 9.278E+02 | 6.234E-02              |  |
| 1945         | 2.130E+02      | 1.163E+05 | 7.817E+00              | 3.336E+00              | 9.307E+02 | 6.253E-02              |  |
| 1946         | 2.136E+02      | 1.167E+05 | 7.840E+00              | 3.346E+00              | 9.335E+02 | 6.272E-02              |  |
| 1947         | 2.142E+02      | 1.170E+05 | 7.862E+00              | 3.356E+00              | 9.361E+02 | 6.290E-02              |  |
| 1948         | 2.038E+02      | 1.113E+05 | 7.479E+00              | 3.192E+00              | 8.905E+02 | 5.983E-02              |  |
| 1949         | 1.938E+02      | 1.059E+05 | 7.114E+00              | 3.036E+00              | 8.471E+02 | 5.691E-02              |  |
| 1950         | 1.844E+02      | 1.007E+05 | 6.767E+00              | 2.888E+00              | 8.057E+02 | 5.414E-02              |  |
| 1951         | 1.754E+02      | 9.581E+04 | 6.437E+00              | 2.747E+00              | 7.664E+02 | 5.150E-02              |  |
| 1952         | 1.668E+02      | 9.113E+04 | 6.123E+00              | 2.613E+00              | 7.291E+02 | 4.899E-02              |  |
| 1953         | 1.587E+02      | 8.669E+04 | 5.825E+00              | 2.486E+00              | 6.935E+02 | 4.660E-02              |  |
| 1954         | 1.509E+02      | 8.246E+04 | 5.541E+00              | 2.365E+00              | 6.597E+02 | 4.432E-02              |  |
| 1955         | 1.436E+02      | 7.844E+04 | 5.270E+00              | 2.249E+00              | 6.275E+02 | 4.216E-02              |  |
| 1956         | 1.366E+02      | 7.461E+04 | 5.013E+00              | 2.140E+00              | 5.969E+02 | 4.011E-02              |  |
| 1957         | 1.299E+02      | 7.097E+04 | 4.769E+00              | 2.035E+00              | 5.678E+02 | 3.815E-02              |  |
| 1958         | 1.236E+02      | 6.751E+04 | 4.536E+00              | 1.936E+00              | 5.401E+02 | 3.629E-02              |  |
| 1959         | 1.176E+02      | 6.422E+04 | 4.315E+00              | 1.842E+00              | 5.138E+02 | 3.452E-02              |  |
| 1960         | 1.118E+02      | 6.109E+04 | 4.105E+00              | 1.752E+00              | 4.887E+02 | 3.284E-02              |  |
| 1961         | 1.064E+02      | 5.811E+04 | 3.904E+00              | 1.666E+00              | 4.649E+02 | 3.123E-02              |  |
| 1962         | 1.012E+02      | 5.528E+04 | 3.714E+00              | 1.585E+00              | 4.422E+02 | 2.971E-02              |  |
| 1963         | 9.625E+01      | 5.258E+04 | 3.533E+00              | 1.508E+00              | 4.206E+02 | 2.826E-02              |  |
| 1964         | 9.155E+01      | 5.002E+04 | 3.361E+00              | 1.434E+00              | 4.001E+02 | 2.688E-02              |  |
| 1965         | 8.709E+01      | 4.758E+04 | 3.197E+00              | 1.364E+00              | 3.806E+02 | 2.557E-02              |  |
| 1966         | 8.284E+01      | 4.526E+04 | 3.041E+00              | 1.298E+00              | 3.620E+02 | 2.433E-02              |  |
| 1967         | 7.880E+01      | 4.305E+04 | 2.892E+00              | 1.234E+00              | 3.444E+02 | 2.433L-02<br>2.314E-02 |  |
| 1968         | 7.496E+01      | 4.095E+04 | 2.751E+00              | 1.174E+00              | 3.276E+02 | 2.201E-02              |  |
| 1969         | 7.130E+01      | 3.895E+04 | 2.617E+00              | 1.174E+00<br>1.117E+00 | 3.116E+02 | 2.094E-02              |  |
| 1970         | 6.782E+01      | 3.705E+04 | 2.490E+00              | 1.062E+00              | 2.964E+02 | 1.992E-02              |  |
| 1971         | 6.452E+01      | 3.525E+04 | 2.490E+00<br>2.368E+00 | 1.011E+00              | 2.820E+02 | 1.894E-02              |  |
| 1972         | 6.137E+01      | 3.353E+04 | 2.253E+00              | 9.614E-01              | 2.682E+02 | 1.802E-02              |  |
| 1973         | 5.838E+01      | 3.189E+04 | 2.143E+00              | 9.145E-01              | 2.551E+02 | 1.714E-02              |  |
| 1974         | 5.553E+01      | 3.034E+04 | 2.038E+00              | 8.699E-01              | 2.427E+02 | 1.631E-02              |  |
| 1975         | 5.282E+01      |           |                        |                        |           |                        |  |
|              |                | 2.886E+04 | 1.939E+00              | 8.275E-01              | 2.309E+02 | 1.551E-02<br>1.475E-02 |  |
| 1976<br>1977 | 5.025E+01      | 2.745E+04 | 1.844E+00<br>1.754E+00 | 7.871E-01              | 2.196E+02 |                        |  |
|              | 4.779E+01      | 2.611E+04 |                        | 7.487E-01              | 2.089E+02 | 1.403E-02              |  |
| 1978         | 4.546E+01      | 2.484E+04 | 1.669E+00              | 7.122E-01              | 1.987E+02 | 1.335E-02              |  |
| 1979         | 4.325E+01      | 2.363E+04 | 1.587E+00              | 6.775E-01<br>6.444E-01 | 1.890E+02 | 1.270E-02              |  |
| 1980         | 4.114E+01      | 2.247E+04 | 1.510E+00              |                        | 1.798E+02 | 1.208E-02              |  |
| 1981         | 3.913E+01      | 2.138E+04 | 1.436E+00              | 6.130E-01              | 1.710E+02 | 1.149E-02              |  |
| 1982         | 3.722E+01      | 2.033E+04 | 1.366E+00              | 5.831E-01              | 1.627E+02 | 1.093E-02              |  |
| 1983         | 3.541E+01      | 1.934E+04 | 1.300E+00              | 5.547E-01              | 1.547E+02 | 1.040E-02              |  |
| 1984         | 3.368E+01      | 1.840E+04 | 1.236E+00              | 5.276E-01              | 1.472E+02 | 9.890E-03              |  |
| 1985         | 3.204E+01      | 1.750E+04 | 1.176E+00              | 5.019E-01              | 1.400E+02 | 9.408E-03              |  |
| 1986         | 3.048E+01      | 1.665E+04 | 1.119E+00              | 4.774E-01              | 1.332E+02 | 8.949E-03              |  |
| 1987         | 2.899E+01      | 1.584E+04 | 1.064E+00              | 4.541E-01              | 1.267E+02 | 8.513E-03              |  |
| 1988         | 2.758E+01      | 1.506E+04 | 1.012E+00              | 4.320E-01              | 1.205E+02 | 8.097E-03              |  |

| V    | Carbon dioxide |           |               | NMOC      |           |               |
|------|----------------|-----------|---------------|-----------|-----------|---------------|
| Year | (Mg/year)      | (m³/year) | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |
| 1989 | 2.623E+01      | 1.433E+04 | 9.628E-01     | 4.109E-01 | 1.146E+02 | 7.702E-03     |
| 1990 | 2.495E+01      | 1.363E+04 | 9.158E-01     | 3.909E-01 | 1.090E+02 | 7.327E-03     |
| 1991 | 2.373E+01      | 1.297E+04 | 8.712E-01     | 3.718E-01 | 1.037E+02 | 6.969E-03     |
| 1992 | 2.258E+01      | 1.233E+04 | 8.287E-01     | 3.537E-01 | 9.867E+01 | 6.630E-03     |
| 1993 | 2.148E+01      | 1.173E+04 | 7.883E-01     | 3.364E-01 | 9.386E+01 | 6.306E-03     |
| 1994 | 2.043E+01      | 1.116E+04 | 7.498E-01     | 3.200E-01 | 8.928E+01 | 5.999E-03     |
| 1995 | 1.943E+01      | 1.062E+04 | 7.133E-01     | 3.044E-01 | 8.493E+01 | 5.706E-03     |
| 1996 | 1.848E+01      | 1.010E+04 | 6.785E-01     | 2.896E-01 | 8.078E+01 | 5.428E-03     |
| 1997 | 1.758E+01      | 9.605E+03 | 6.454E-01     | 2.754E-01 | 7.684E+01 | 5.163E-03     |
| 1998 | 1.673E+01      | 9.137E+03 | 6.139E-01     | 2.620E-01 | 7.310E+01 | 4.911E-03     |
| 1999 | 1.591E+01      | 8.691E+03 | 5.840E-01     | 2.492E-01 | 6.953E+01 | 4.672E-03     |
| 2000 | 1.513E+01      | 8.267E+03 | 5.555E-01     | 2.371E-01 | 6.614E+01 | 4.444E-03     |
| 2001 | 1.440E+01      | 7.864E+03 | 5.284E-01     | 2.255E-01 | 6.291E+01 | 4.227E-03     |
| 2002 | 1.369E+01      | 7.481E+03 | 5.026E-01     | 2.145E-01 | 5.985E+01 | 4.021E-03     |
| 2003 | 1.303E+01      | 7.116E+03 | 4.781E-01     | 2.041E-01 | 5.693E+01 | 3.825E-03     |
| 2004 | 1.239E+01      | 6.769E+03 | 4.548E-01     | 1.941E-01 | 5.415E+01 | 3.638E-03     |
| 2005 | 1.179E+01      | 6.439E+03 | 4.326E-01     | 1.846E-01 | 5.151E+01 | 3.461E-03     |
| 2006 | 1.121E+01      | 6.125E+03 | 4.115E-01     | 1.756E-01 | 4.900E+01 | 3.292E-03     |
| 2007 | 1.066E+01      | 5.826E+03 | 3.914E-01     | 1.671E-01 | 4.661E+01 | 3.132E-03     |
| 2008 | 1.014E+01      | 5.542E+03 | 3.724E-01     | 1.589E-01 | 4.433E+01 | 2.979E-03     |
| 2009 | 9.650E+00      | 5.272E+03 | 3.542E-01     | 1.512E-01 | 4.217E+01 | 2.834E-03     |
| 2010 | 9.179E+00      | 5.014E+03 | 3.369E-01     | 1.438E-01 | 4.012E+01 | 2.695E-03     |
| 2011 | 8.731E+00      | 4.770E+03 | 3.205E-01     | 1.368E-01 | 3.816E+01 | 2.564E-03     |
| 2012 | 8.305E+00      | 4.537E+03 | 3.049E-01     | 1.301E-01 | 3.630E+01 | 2.439E-03     |
| 2013 | 7.900E+00      | 4.316E+03 | 2.900E-01     | 1.238E-01 | 3.453E+01 | 2.320E-03     |
| 2014 | 7.515E+00      | 4.105E+03 | 2.758E-01     | 1.177E-01 | 3.284E+01 | 2.207E-03     |
| 2015 | 7.149E+00      | 3.905E+03 | 2.624E-01     | 1.120E-01 | 3.124E+01 | 2.099E-03     |
| 2016 | 6.800E+00      | 3.715E+03 | 2.496E-01     | 1.065E-01 | 2.972E+01 | 1.997E-03     |
| 2017 | 6.468E+00      | 3.534E+03 | 2.374E-01     | 1.013E-01 | 2.827E+01 | 1.899E-03     |
| 2018 | 6.153E+00      | 3.361E+03 | 2.258E-01     | 9.639E-02 | 2.689E+01 | 1.807E-03     |
| 2019 | 5.853E+00      | 3.197E+03 | 2.148E-01     | 9.169E-02 | 2.558E+01 | 1.719E-03     |
| 2020 | 5.567E+00      | 3.041E+03 | 2.044E-01     | 8.722E-02 | 2.433E+01 | 1.635E-03     |
| 2021 | 5.296E+00      | 2.893E+03 | 1.944E-01     | 8.296E-02 | 2.314E+01 | 1.555E-03     |
| 2022 | 5.038E+00      | 2.752E+03 | 1.849E-01     | 7.892E-02 | 2.202E+01 | 1.479E-03     |
| 2023 | 4.792E+00      | 2.618E+03 | 1.759E-01     | 7.507E-02 | 2.094E+01 | 1.407E-03     |
| 2024 | 4.558E+00      | 2.490E+03 | 1.673E-01     | 7.141E-02 | 1.992E+01 | 1.338E-03     |
| 2025 | 4.336E+00      | 2.369E+03 | 1.592E-01     | 6.792E-02 | 1.895E+01 | 1.273E-03     |
| 2026 | 4.124E+00      | 2.253E+03 | 1.514E-01     | 6.461E-02 | 1.803E+01 | 1.211E-03     |
| 2027 | 3.923E+00      | 2.143E+03 | 1.440E-01     | 6.146E-02 | 1.715E+01 | 1.152E-03     |
| 2028 | 3.732E+00      | 2.039E+03 | 1.370E-01     | 5.846E-02 | 1.631E+01 | 1.096E-03     |



# **Summary Report**

Landfill Name or Identifier: Cornwall - Upland MSW

Date: Friday, June 17, 2016

**Description/Comments:** 

#### About LandGEM:

First-Order Decomposition Rate Equation:

 $Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left( \frac{M_i}{10} \right) e^{-kt_{ij}}$ 

Where,

 $Q_{CH4}$  = annual methane generation in the year of the calculation ( $m^3$ /year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year<sup>-1</sup>)

 $L_0$  = potential methane generation capacity  $(m^3/Mg)$ 

 $M_i$  = mass of waste accepted in the  $i^{th}$  year (Mg)  $t_{ij}$  = age of the  $j^{th}$  section of waste mass  $M_i$  accepted in the  $i^{th}$  year ( $decimal\ years$ , e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

## **Input Review**

LANDFILL CHARACTERISTICS

Landfill Open Year1953Landfill Closure Year (with 80-year limit)1965Actual Closure Year (without limit)1965Have Model Calculate Closure Year?No

Waste Design Capacity megagrams

MODEL PARAMETERS

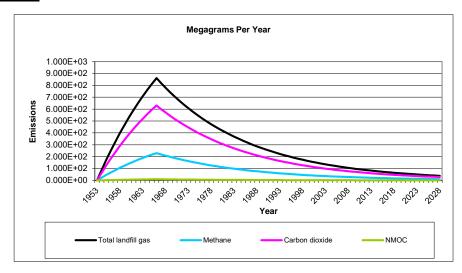
Methane Generation Rate, k  ${\bf 0.050}$   ${\it year}^{-1}$  Potential Methane Generation Capacity, L $_{\rm o}$   ${\bf 170}$   ${\it m}^3/{\it Mg}$ 

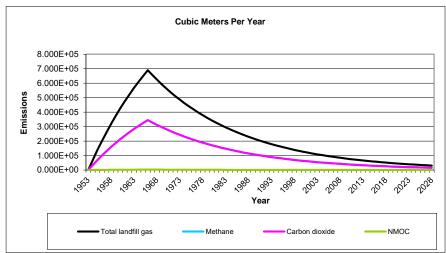
NMOC Concentration 4,000 ppmv as hexane
Methane Content 50 % by volume

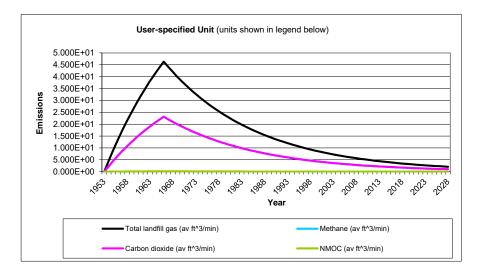
GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Total landfill gas
Gas / Pollutant #2: Methane
Gas / Pollutant #3: Carbon dioxide

Gas / Pollutant #4: NMOC


## WASTE ACCEPTANCE RATES


| Year | Waste Acc | cepted            | Waste-In-Place |              |  |
|------|-----------|-------------------|----------------|--------------|--|
| rear | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1953 | 4,231     | 4,654             | 0              | 0            |  |
| 1954 | 4,231     | 4,654             | 4,231          | 4,654        |  |
| 1955 | 4,231     | 4,654             | 8,462          | 9,308        |  |
| 1956 | 4,231     | 4,654             | 12,693         | 13,962       |  |
| 1957 | 4,231     | 4,654             | 16,924         | 18,616       |  |
| 1958 | 4,231     | 4,654             | 21,155         | 23,270       |  |
| 1959 | 4,231     | 4,654             | 25,385         | 27,924       |  |
| 1960 | 4,231     | 4,654             | 29,616         | 32,578       |  |
| 1961 | 4,231     | 4,654             | 33,847         | 37,232       |  |
| 1962 | 4,231     | 4,654             | 38,078         | 41,886       |  |
| 1963 | 4,231     | 4,654             | 42,309         | 46,540       |  |
| 1964 | 4,231     | 4,654             | 46,540         | 51,194       |  |
| 1965 | 4,231     | 4,654             | 50,771         | 55,848       |  |
| 1966 | 0         | 0                 | 55,002         | 60,502       |  |
| 1967 | 0         | 0                 | 55,002         | 60,502       |  |
| 1968 | 0         | 0                 | 55,002         | 60,502       |  |
| 1969 | 0         | 0                 | 55,002         | 60,502       |  |
| 1970 | 0         | 0                 | 55,002         | 60,502       |  |
| 1971 | 0         | 0                 | 55,002         | 60,502       |  |
| 1972 | 0         | 0                 | 55,002         | 60,502       |  |
| 1973 | 0         | 0                 | 55,002         | 60,502       |  |
| 1974 | 0         | 0                 | 55,002         | 60,502       |  |
| 1975 | 0         | 0                 | 55,002         | 60,502       |  |
| 1976 | 0         | 0                 | 55,002         | 60,502       |  |
| 1977 | 0         | 0                 | 55,002         | 60,502       |  |
| 1978 | 0         | 0                 | 55,002         | 60,502       |  |
| 1979 | 0         | 0                 | 55,002         | 60,502       |  |
| 1980 | 0         | 0                 | 55,002         | 60,502       |  |
| 1981 | 0         | 0                 | 55,002         | 60,502       |  |
| 1982 | 0         | 0                 | 55,002         | 60,502       |  |
| 1983 | 0         | 0                 | 55,002         | 60,502       |  |
| 1984 | 0         | 0                 | 55,002         | 60,502       |  |
| 1985 | 0         | 0                 | 55,002         | 60,502       |  |
| 1986 | 0         | 0                 | 55,002         | 60,502       |  |
| 1987 | 0         | 0                 | 55,002         | 60,502       |  |
| 1988 | 0         | 0                 | 55,002         | 60,502       |  |
| 1989 | 0         | 0                 | 55,002         | 60,502       |  |
| 1990 | 0         | 0                 | 55,002         | 60,502       |  |
| 1991 | 0         | 0                 | 55,002         | 60,502       |  |
| 1992 | 0         | 0                 | 55,002         | 60,502       |  |


### WASTE ACCEPTANCE RATES (Continued)

| Voor | Waste Acc | cepted            |        | In-Place     |
|------|-----------|-------------------|--------|--------------|
| Year | (Mg/year) | (short tons/year) | (Mg)   | (short tons) |
| 1993 | 0         | 0                 | 55,002 | 60,502       |
| 1994 | 0         | 0                 | 55,002 | 60,502       |
| 1995 | 0         | 0                 | 55,002 | 60,502       |
| 1996 | 0         | 0                 | 55,002 | 60,502       |
| 1997 | 0         | 0                 | 55,002 | 60,502       |
| 1998 | 0         | 0                 | 55,002 | 60,502       |
| 1999 | 0         | 0                 | 55,002 | 60,502       |
| 2000 | 0         | 0                 | 55,002 | 60,502       |
| 2001 | 0         | 0                 | 55,002 | 60,502       |
| 2002 | 0         | 0                 | 55,002 | 60,502       |
| 2003 | 0         | 0                 | 55,002 | 60,502       |
| 2004 | 0         | 0                 | 55,002 | 60,502       |
| 2005 | 0         | 0                 | 55,002 | 60,502       |
| 2006 | 0         | 0                 | 55,002 | 60,502       |
| 2007 | 0         | 0                 | 55,002 | 60,502       |
| 2008 | 0         | 0                 | 55,002 | 60,502       |
| 2009 | 0         | 0                 | 55,002 | 60,502       |
| 2010 | 0         | 0                 | 55,002 | 60,502       |
| 2011 | 0         | 0                 | 55,002 | 60,502       |
| 2012 | 0         | 0                 | 55,002 | 60,502       |
| 2013 | 0         | 0                 | 55,002 | 60,502       |
| 2014 | 0         | 0                 | 55,002 | 60,502       |
| 2015 | 0         | 0                 | 55,002 | 60,502       |
| 2016 | 0         | 0                 | 55,002 | 60,502       |
| 2017 | 0         | 0                 | 55,002 | 60,502       |
| 2018 | 0         | 0                 | 55,002 | 60,502       |
| 2019 | 0         | 0                 | 55,002 | 60,502       |
| 2020 | 0         | 0                 | 55,002 | 60,502       |
| 2021 | 0         | 0                 | 55,002 | 60,502       |
| 2022 | 0         | 0                 | 55,002 | 60,502       |
| 2023 | 0         | 0                 | 55,002 | 60,502       |
| 2024 | 0         | 0                 | 55,002 | 60,502       |
| 2025 | 0         | 0                 | 55,002 | 60,502       |
| 2026 | 0         | 0                 | 55,002 | 60,502       |
| 2027 | 0         | 0                 | 55,002 | 60,502       |
| 2028 | 0         | 0                 | 55,002 | 60,502       |
| 2029 | 0         | 0                 | 55,002 | 60,502       |
| 2030 | 0         | 0                 | 55,002 | 60,502       |
| 2031 | 0         | 0                 | 55,002 | 60,502       |
| 2032 | 0         | 0                 | 55,002 | 60,502       |

## **Graphs**







## **Results**

| Voor | Total landfill gas |           |                        | Methane   |           |               |
|------|--------------------|-----------|------------------------|-----------|-----------|---------------|
| Year | (Mg/year)          | (m³/year) | (av ft^3/min)          | (Mg/year) | (m³/year) | (av ft^3/min) |
| 1953 | 0                  | 0         | 0                      | 0         | 0         | 0             |
| 1954 | 8.783E+01          | 7.033E+04 | 4.726E+00              | 2.346E+01 | 3.517E+04 | 2.363E+00     |
| 1955 | 1.714E+02          | 1.372E+05 | 9.221E+00              | 4.578E+01 | 6.862E+04 | 4.610E+00     |
| 1956 | 2.509E+02          | 2.009E+05 | 1.350E+01              | 6.701E+01 | 1.004E+05 | 6.748E+00     |
| 1957 | 3.265E+02          | 2.614E+05 | 1.756E+01              | 8.720E+01 | 1.307E+05 | 8.782E+00     |
| 1958 | 3.984E+02          | 3.190E+05 | 2.143E+01              | 1.064E+02 | 1.595E+05 | 1.072E+01     |
| 1959 | 4.668E+02          | 3.738E+05 | 2.511E+01              | 1.247E+02 | 1.869E+05 | 1.256E+01     |
| 960  | 5.318E+02          | 4.259E+05 | 2.861E+01              | 1.421E+02 | 2.129E+05 | 1.431E+01     |
| 961  | 5.937E+02          | 4.754E+05 | 3.194E+01              | 1.586E+02 | 2.377E+05 | 1.597E+01     |
| 962  | 6.526E+02          | 5.226E+05 | 3.511E+01              | 1.743E+02 | 2.613E+05 | 1.756E+01     |
| 963  | 7.086E+02          | 5.674E+05 | 3.813E+01              | 1.893E+02 | 2.837E+05 | 1.906E+01     |
| 964  | 7.619E+02          | 6.101E+05 | 4.099E+01              | 2.035E+02 | 3.050E+05 | 2.050E+01     |
| 965  | 8.126E+02          | 6.507E+05 | 4.372E+01              | 2.170E+02 | 3.253E+05 | 2.186E+01     |
| 966  | 8.608E+02          | 6.893E+05 | 4.631E+01              | 2.299E+02 | 3.446E+05 | 2.316E+01     |
| 967  | 8.188E+02          | 6.556E+05 | 4.405E+01              | 2.187E+02 | 3.278E+05 | 2.203E+01     |
| 968  | 7.789E+02          | 6.237E+05 | 4.190E+01              | 2.080E+02 | 3.118E+05 | 2.095E+01     |
| 969  | 7.409E+02          | 5.933E+05 | 3.986E+01              | 1.979E+02 | 2.966E+05 | 1.993E+01     |
| 970  | 7.047E+02          | 5.643E+05 | 3.792E+01              | 1.882E+02 | 2.822E+05 | 1.896E+01     |
| 971  | 6.704E+02          | 5.368E+05 | 3.607E+01              | 1.791E+02 | 2.684E+05 | 1.803E+01     |
| 972  | 6.377E+02          | 5.106E+05 | 3.431E+01              | 1.703E+02 | 2.553E+05 | 1.715E+01     |
| 973  | 6.066E+02          | 4.857E+05 | 3.264E+01              | 1.620E+02 | 2.429E+05 | 1.632E+01     |
| 974  | 5.770E+02          | 4.620E+05 | 3.104E+01              | 1.541E+02 | 2.310E+05 | 1.552E+01     |
| 975  | 5.488E+02          | 4.395E+05 | 2.953E+01              | 1.466E+02 | 2.197E+05 | 1.476E+01     |
| 976  | 5.221E+02          | 4.181E+05 | 2.809E+01              | 1.395E+02 | 2.090E+05 | 1.404E+01     |
| 977  | 4.966E+02          | 3.977E+05 | 2.672E+01              | 1.327E+02 | 1.988E+05 | 1.336E+01     |
| 978  | 4.724E+02          | 3.783E+05 | 2.542E+01              | 1.262E+02 | 1.891E+05 | 1.271E+01     |
| 979  | 4.494E+02          | 3.598E+05 | 2.418E+01              | 1.200E+02 | 1.799E+05 | 1.209E+01     |
| 980  | 4.274E+02          | 3.423E+05 | 2.300E+01              | 1.142E+02 | 1.711E+05 | 1.150E+01     |
| 981  | 4.066E+02          | 3.425E+05 | 2.188E+01              | 1.086E+02 | 1.628E+05 | 1.094E+01     |
| 982  | 3.868E+02          | 3.097E+05 | 2.081E+01              | 1.033E+02 | 1.549E+05 | 1.040E+01     |
| 983  | 3.679E+02          | 2.946E+05 | 1.979E+01              | 9.827E+01 | 1.473E+05 | 9.897E+00     |
| 984  | 3.500E+02          | 2.802E+05 | 1.883E+01              | 9.348E+01 | 1.401E+05 | 9.414E+00     |
| 985  | 3.329E+02          | 2.666E+05 | 1.791E+01              | 8.892E+01 | 1.333E+05 | 8.955E+00     |
| 986  | 3.167E+02          | 2.536E+05 | 1.704E+01              | 8.458E+01 | 1.268E+05 | 8.519E+00     |
| 987  | 3.012E+02          | 2.412E+05 | 1.704E+01<br>1.621E+01 | 8.046E+01 | 1.206E+05 | 8.103E+00     |
|      |                    |           |                        |           |           |               |
| 988  | 2.865E+02          | 2.294E+05 | 1.542E+01              | 7.653E+01 | 1.147E+05 | 7.708E+00     |
| 989  | 2.726E+02          | 2.182E+05 | 1.466E+01              | 7.280E+01 | 1.091E+05 | 7.332E+00     |
| 990  | 2.593E+02          | 2.076E+05 | 1.395E+01              | 6.925E+01 | 1.038E+05 | 6.974E+00     |
| 991  | 2.466E+02          | 1.975E+05 | 1.327E+01              | 6.587E+01 | 9.874E+04 | 6.634E+00     |
| 992  | 2.346E+02          | 1.878E+05 | 1.262E+01              | 6.266E+01 | 9.392E+04 | 6.311E+00     |
| 993  | 2.231E+02          | 1.787E+05 | 1.201E+01              | 5.960E+01 | 8.934E+04 | 6.003E+00     |
| 994  | 2.123E+02          | 1.700E+05 | 1.142E+01              | 5.670E+01 | 8.498E+04 | 5.710E+00     |
| 995  | 2.019E+02          | 1.617E+05 | 1.086E+01              | 5.393E+01 | 8.084E+04 | 5.432E+00     |
| 996  | 1.921E+02          | 1.538E+05 | 1.033E+01              | 5.130E+01 | 7.690E+04 | 5.167E+00     |
| 997  | 1.827E+02          | 1.463E+05 | 9.830E+00              | 4.880E+01 | 7.315E+04 | 4.915E+00     |
| 998  | 1.738E+02          | 1.392E+05 | 9.350E+00              | 4.642E+01 | 6.958E+04 | 4.675E+00     |
| 999  | 1.653E+02          | 1.324E+05 | 8.894E+00              | 4.416E+01 | 6.619E+04 | 4.447E+00     |
| 000  | 1.572E+02          | 1.259E+05 | 8.460E+00              | 4.200E+01 | 6.296E+04 | 4.230E+00     |
| 2001 | 1.496E+02          | 1.198E+05 | 8.048E+00              | 3.995E+01 | 5.989E+04 | 4.024E+00     |
| 2002 | 1.423E+02          | 1.139E+05 | 7.655E+00              | 3.801E+01 | 5.697E+04 | 3.828E+00     |

| Year — | Total landfill gas     |                        |                        | Methane                |           |               |
|--------|------------------------|------------------------|------------------------|------------------------|-----------|---------------|
| rear   | (Mg/year)              | (m³/year)              | (av ft^3/min)          | (Mg/year)              | (m³/year) | (av ft^3/min) |
| 2003   | 1.353E+02              | 1.084E+05              | 7.282E+00              | 3.615E+01              | 5.419E+04 | 3.641E+00     |
| 2004   | 1.287E+02              | 1.031E+05              | 6.927E+00              | 3.439E+01              | 5.155E+04 | 3.463E+00     |
| 2005   | 1.225E+02              | 9.806E+04              | 6.589E+00              | 3.271E+01              | 4.903E+04 | 3.294E+00     |
| 2006   | 1.165E+02              | 9.328E+04              | 6.268E+00              | 3.112E+01              | 4.664E+04 | 3.134E+00     |
| 2007   | 1.108E+02              | 8.873E+04              | 5.962E+00              | 2.960E+01              | 4.437E+04 | 2.981E+00     |
| 2008   | 1.054E+02              | 8.440E+04              | 5.671E+00              | 2.816E+01              | 4.220E+04 | 2.836E+00     |
| 2009   | 1.003E+02              | 8.029E+04              | 5.395E+00              | 2.678E+01              | 4.014E+04 | 2.697E+00     |
| 010    | 9.538E+01              | 7.637E+04              | 5.131E+00              | 2.548E+01              | 3.819E+04 | 2.566E+00     |
| 011    | 9.072E+01              | 7.265E+04              | 4.881E+00              | 2.423E+01              | 3.632E+04 | 2.441E+00     |
| 012    | 8.630E+01              | 6.910E+04              | 4.643E+00              | 2.305E+01              | 3.455E+04 | 2.322E+00     |
| 013    | 8.209E+01              | 6.573E+04              | 4.417E+00              | 2.193E+01              | 3.287E+04 | 2.208E+00     |
| 014    | 7.809E+01              | 6.253E+04              | 4.201E+00              | 2.086E+01              | 3.126E+04 | 2.101E+00     |
| 015    | 7.428E+01              | 5.948E+04              | 3.996E+00              | 1.984E+01              | 2.974E+04 | 1.998E+00     |
| 016    | 7.066E+01              | 5.658E+04              | 3.801E+00              | 1.887E+01              | 2.829E+04 | 1.901E+00     |
| 017    | 6.721E+01              | 5.382E+04              | 3.616E+00              | 1.795E+01              | 2.691E+04 | 1.808E+00     |
| 018    | 6.393E+01              | 5.119E+04              | 3.440E+00              | 1.708E+01              | 2.560E+04 | 1.720E+00     |
| 019    | 6.081E+01              | 4.870E+04              | 3.272E+00              | 1.624E+01              | 2.435E+04 | 1.636E+00     |
| 020    | 5.785E+01              | 4.632E+04              | 3.112E+00              | 1.545E+01              | 2.316E+04 | 1.556E+00     |
| 020    | 5.503E+01              | 4.406E+04              | 2.961E+00              | 1.470E+01              | 2.203E+04 | 1.480E+00     |
| 021    | 5.234E+01              | 4.191E+04              | 2.816E+00              | 1.398E+01              | 2.096E+04 | 1.408E+00     |
| 023    | 4.979E+01              | 3.987E+04              | 2.679E+00              | 1.330E+01              | 1.993E+04 | 1.339E+00     |
| 023    | 4.736E+01              | 3.793E+04              | 2.548E+00              | 1.265E+01              | 1.896E+04 | 1.274E+00     |
| 024    | 4.730E+01<br>4.505E+01 | 3.608E+04              | 2.424E+00              | 1.203E+01<br>1.203E+01 | 1.804E+04 | 1.212E+00     |
| 026    |                        |                        |                        |                        |           | 1.153E+00     |
| 027    | 4.286E+01<br>4.076E+01 | 3.432E+04              | 2.306E+00              | 1.145E+01              | 1.716E+04 | 1.097E+00     |
|        |                        | 3.264E+04              | 2.193E+00              | 1.089E+01              | 1.632E+04 |               |
| 028    | 3.878E+01              | 3.105E+04<br>2.954E+04 | 2.086E+00<br>1.985E+00 | 1.036E+01<br>9.853E+00 | 1.553E+04 | 1.043E+00     |
| 029    | 3.689E+01              |                        |                        |                        | 1.477E+04 | 9.923E-01     |
| 030    | 3.509E+01              | 2.810E+04              | 1.888E+00              | 9.372E+00              | 1.405E+04 | 9.439E-01     |
| 031    | 3.338E+01              | 2.673E+04              | 1.796E+00              | 8.915E+00              | 1.336E+04 | 8.978E-01     |
| 032    | 3.175E+01              | 2.542E+04              | 1.708E+00              | 8.480E+00              | 1.271E+04 | 8.541E-01     |
| 033    | 3.020E+01              | 2.418E+04              | 1.625E+00              | 8.067E+00              | 1.209E+04 | 8.124E-01     |
| 034    | 2.873E+01              | 2.300E+04              | 1.546E+00              | 7.673E+00              | 1.150E+04 | 7.728E-01     |
| 035    | 2.733E+01              | 2.188E+04              | 1.470E+00              | 7.299E+00              | 1.094E+04 | 7.351E-01     |
| 036    | 2.599E+01              | 2.081E+04              | 1.398E+00              | 6.943E+00              | 1.041E+04 | 6.992E-01     |
| 037    | 2.473E+01              | 1.980E+04              | 1.330E+00              | 6.604E+00              | 9.899E+03 | 6.651E-01     |
| 038    | 2.352E+01              | 1.883E+04              | 1.265E+00              | 6.282E+00              | 9.417E+03 | 6.327E-01     |
| 039    | 2.237E+01              | 1.791E+04              | 1.204E+00              | 5.976E+00              | 8.957E+03 | 6.018E-01     |
| 040    | 2.128E+01              | 1.704E+04              | 1.145E+00              | 5.684E+00              | 8.520E+03 | 5.725E-01     |
| 041    | 2.024E+01              | 1.621E+04              | 1.089E+00              | 5.407E+00              | 8.105E+03 | 5.446E-01     |
| 042    | 1.926E+01              | 1.542E+04              | 1.036E+00              | 5.143E+00              | 7.710E+03 | 5.180E-01     |
| 043    | 1.832E+01              | 1.467E+04              | 9.855E-01              | 4.893E+00              | 7.334E+03 | 4.927E-01     |
| 044    | 1.742E+01              | 1.395E+04              | 9.374E-01              | 4.654E+00              | 6.976E+03 | 4.687E-01     |
| 045    | 1.657E+01              | 1.327E+04              | 8.917E-01              | 4.427E+00              | 6.636E+03 | 4.459E-01     |
| 046    | 1.577E+01              | 1.262E+04              | 8.482E-01              | 4.211E+00              | 6.312E+03 | 4.241E-01     |
| 047    | 1.500E+01              | 1.201E+04              | 8.069E-01              | 4.006E+00              | 6.004E+03 | 4.034E-01     |
| 048    | 1.427E+01              | 1.142E+04              | 7.675E-01              | 3.810E+00              | 5.711E+03 | 3.838E-01     |
| 049    | 1.357E+01              | 1.087E+04              | 7.301E-01              | 3.625E+00              | 5.433E+03 | 3.650E-01     |
| 050    | 1.291E+01              | 1.034E+04              | 6.945E-01              | 3.448E+00              | 5.168E+03 | 3.472E-01     |
| 051    | 1.228E+01              | 9.832E+03              | 6.606E-01              | 3.280E+00              | 4.916E+03 | 3.303E-01     |
| 052    | 1.168E+01              | 9.352E+03              | 6.284E-01              | 3.120E+00              | 4.676E+03 | 3.142E-01     |
| 053    | 1.111E+01              | 8.896E+03              | 5.977E-01              | 2.968E+00              | 4.448E+03 | 2.989E-01     |

| Year |           | Total landfill gas |               | Methane   |           |               |
|------|-----------|--------------------|---------------|-----------|-----------|---------------|
| rear | (Mg/year) | (m³/year)          | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |
| 2054 | 1.057E+01 | 8.462E+03          | 5.686E-01     | 2.823E+00 | 4.231E+03 | 2.843E-01     |
| 2055 | 1.005E+01 | 8.050E+03          | 5.409E-01     | 2.685E+00 | 4.025E+03 | 2.704E-01     |
| 2056 | 9.562E+00 | 7.657E+03          | 5.145E-01     | 2.554E+00 | 3.829E+03 | 2.572E-01     |
| 2057 | 9.096E+00 | 7.284E+03          | 4.894E-01     | 2.430E+00 | 3.642E+03 | 2.447E-01     |
| 2058 | 8.652E+00 | 6.928E+03          | 4.655E-01     | 2.311E+00 | 3.464E+03 | 2.328E-01     |
| 2059 | 8.230E+00 | 6.590E+03          | 4.428E-01     | 2.198E+00 | 3.295E+03 | 2.214E-01     |
| 2060 | 7.829E+00 | 6.269E+03          | 4.212E-01     | 2.091E+00 | 3.135E+03 | 2.106E-01     |
| 2061 | 7.447E+00 | 5.963E+03          | 4.007E-01     | 1.989E+00 | 2.982E+03 | 2.003E-01     |
| 2062 | 7.084E+00 | 5.672E+03          | 3.811E-01     | 1.892E+00 | 2.836E+03 | 1.906E-01     |
| 2063 | 6.738E+00 | 5.396E+03          | 3.625E-01     | 1.800E+00 | 2.698E+03 | 1.813E-01     |
| 2064 | 6.410E+00 | 5.133E+03          | 3.449E-01     | 1.712E+00 | 2.566E+03 | 1.724E-01     |
| 2065 | 6.097E+00 | 4.882E+03          | 3.280E-01     | 1.629E+00 | 2.441E+03 | 1.640E-01     |
| 2066 | 5.800E+00 | 4.644E+03          | 3.120E-01     | 1.549E+00 | 2.322E+03 | 1.560E-01     |
| 2067 | 5.517E+00 | 4.418E+03          | 2.968E-01     | 1.474E+00 | 2.209E+03 | 1.484E-01     |
| 2068 | 5.248E+00 | 4.202E+03          | 2.823E-01     | 1.402E+00 | 2.101E+03 | 1.412E-01     |
| 2069 | 4.992E+00 | 3.997E+03          | 2.686E-01     | 1.333E+00 | 1.999E+03 | 1.343E-01     |
| 2070 | 4.748E+00 | 3.802E+03          | 2.555E-01     | 1.268E+00 | 1.901E+03 | 1.277E-01     |
| 2071 | 4.517E+00 | 3.617E+03          | 2.430E-01     | 1.207E+00 | 1.808E+03 | 1.215E-01     |
| 2072 | 4.297E+00 | 3.441E+03          | 2.312E-01     | 1.148E+00 | 1.720E+03 | 1.156E-01     |
| 2073 | 4.087E+00 | 3.273E+03          | 2.199E-01     | 1.092E+00 | 1.636E+03 | 1.099E-01     |
| 2074 | 3.888E+00 | 3.113E+03          | 2.092E-01     | 1.038E+00 | 1.557E+03 | 1.046E-01     |
| 2075 | 3.698E+00 | 2.961E+03          | 1.990E-01     | 9.878E-01 | 1.481E+03 | 9.948E-02     |
| 2076 | 3.518E+00 | 2.817E+03          | 1.893E-01     | 9.396E-01 | 1.408E+03 | 9.463E-02     |
| 2077 | 3.346E+00 | 2.679E+03          | 1.800E-01     | 8.938E-01 | 1.340E+03 | 9.002E-02     |
| 2078 | 3.183E+00 | 2.549E+03          | 1.713E-01     | 8.502E-01 | 1.274E+03 | 8.563E-02     |
| 2079 | 3.028E+00 | 2.424E+03          | 1.629E-01     | 8.087E-01 | 1.212E+03 | 8.145E-02     |
| 2080 | 2.880E+00 | 2.306E+03          | 1.550E-01     | 7.693E-01 | 1.153E+03 | 7.748E-02     |
| 2081 | 2.740E+00 | 2.194E+03          | 1.474E-01     | 7.318E-01 | 1.097E+03 | 7.370E-02     |
| 2082 | 2.606E+00 | 2.087E+03          | 1.402E-01     | 6.961E-01 | 1.043E+03 | 7.011E-02     |
| 2083 | 2.479E+00 | 1.985E+03          | 1.334E-01     | 6.621E-01 | 9.925E+02 | 6.669E-02     |
| 2084 | 2.358E+00 | 1.888E+03          | 1.269E-01     | 6.299E-01 | 9.441E+02 | 6.343E-02     |
| 2085 | 2.243E+00 | 1.796E+03          | 1.207E-01     | 5.991E-01 | 8.981E+02 | 6.034E-02     |
| 2086 | 2.134E+00 | 1.709E+03          | 1.148E-01     | 5.699E-01 | 8.543E+02 | 5.740E-02     |
| 2087 | 2.030E+00 | 1.625E+03          | 1.092E-01     | 5.421E-01 | 8.126E+02 | 5.460E-02     |
| 2088 | 1.931E+00 | 1.546E+03          | 1.039E-01     | 5.157E-01 | 7.730E+02 | 5.194E-02     |
| 2089 | 1.836E+00 | 1.471E+03          | 9.880E-02     | 4.905E-01 | 7.353E+02 | 4.940E-02     |
| 2090 | 1.747E+00 | 1.399E+03          | 9.399E-02     | 4.666E-01 | 6.994E+02 | 4.699E-02     |
| 2091 | 1.662E+00 | 1.331E+03          | 8.940E-02     | 4.438E-01 | 6.653E+02 | 4.470E-02     |
| 2092 | 1.581E+00 | 1.266E+03          | 8.504E-02     | 4.222E-01 | 6.328E+02 | 4.252E-02     |
| 2093 | 1.504E+00 | 1.204E+03          | 8.089E-02     | 4.016E-01 | 6.020E+02 | 4.045E-02     |

| Year |                        | Carbon dioxide |                        | NMOC                   |                        |               |
|------|------------------------|----------------|------------------------|------------------------|------------------------|---------------|
|      | (Mg/year)              | (m³/year)      | (av ft^3/min)          | (Mg/year)              | (m³/year)              | (av ft^3/min) |
| 953  | 0                      | 0              | 0                      | 0                      | 0                      | 0             |
| 954  | 6.437E+01              | 3.517E+04      | 2.363E+00              | 1.008E+00              | 2.813E+02              | 1.890E-02     |
| 955  | 1.256E+02              | 6.862E+04      | 4.610E+00              | 1.968E+00              | 5.489E+02              | 3.688E-02     |
| 956  | 1.838E+02              | 1.004E+05      | 6.748E+00              | 2.880E+00              | 8.035E+02              | 5.399E-02     |
| 957  | 2.393E+02              | 1.307E+05      | 8.782E+00              | 3.748E+00              | 1.046E+03              | 7.026E-02     |
| 958  | 2.920E+02              | 1.595E+05      | 1.072E+01              | 4.574E+00              | 1.276E+03              | 8.573E-02     |
| 959  | 3.421E+02              | 1.869E+05      | 1.256E+01              | 5.359E+00              | 1.495E+03              | 1.005E-01     |
| 1960 | 3.898E+02              | 2.129E+05      | 1.431E+01              | 6.106E+00              | 1.703E+03              | 1.145E-01     |
| 1961 | 4.351E+02              | 2.377E+05      | 1.597E+01              | 6.817E+00              | 1.902E+03              | 1.278E-01     |
| 962  | 4.783E+02              | 2.613E+05      | 1.756E+01              | 7.493E+00              | 2.090E+03              | 1.404E-01     |
| 1963 | 5.193E+02              | 2.837E+05      | 1.906E+01              | 8.136E+00              | 2.270E+03              | 1.525E-01     |
| 1964 | 5.584E+02              | 3.050E+05      | 2.050E+01              | 8.747E+00              | 2.440E+03              | 1.640E-01     |
| 965  | 5.955E+02              | 3.253E+05      | 2.186E+01              | 9.329E+00              | 2.603E+03              | 1.749E-01     |
| 966  | 6.308E+02              | 3.446E+05      | 2.316E+01              | 9.883E+00              | 2.757E+03              | 1.852E-01     |
| 967  | 6.001E+02              | 3.278E+05      | 2.203E+01              | 9.401E+00              | 2.623E+03              | 1.762E-01     |
| 968  | 5.708E+02              | 3.118E+05      | 2.095E+01              | 8.942E+00              | 2.495E+03              | 1.676E-01     |
| 969  | 5.430E+02              | 2.966E+05      | 1.993E+01              | 8.506E+00              | 2.373E+03              | 1.594E-01     |
| 970  | 5.165E+02              | 2.822E+05      | 1.896E+01              | 8.091E+00              | 2.257E+03              | 1.517E-01     |
| 971  | 4.913E+02              | 2.684E+05      | 1.803E+01              | 7.697E+00              | 2.147E+03              | 1.443E-01     |
| 1972 | 4.673E+02              | 2.553E+05      | 1.715E+01              | 7.321E+00              | 2.042E+03              | 1.372E-01     |
| 973  | 4.445E+02              | 2.429E+05      | 1.632E+01              | 6.964E+00              | 1.943E+03              | 1.305E-01     |
| 1974 | 4.229E+02              | 2.310E+05      | 1.552E+01              | 6.624E+00              | 1.848E+03              | 1.242E-01     |
| 975  | 4.022E+02              | 2.197E+05      | 1.476E+01              | 6.301E+00              | 1.758E+03              | 1.181E-01     |
| 1976 | 3.826E+02              | 2.090E+05      | 1.476E+01              | 5.994E+00              | 1.672E+03              | 1.124E-01     |
| 1977 | 3.640E+02              | 1.988E+05      | 1.336E+01              | 5.702E+00              | 1.591E+03              | 1.069E-01     |
| 1978 | 3.462E+02              | 1.891E+05      | 1.271E+01              | 5.424E+00              | 1.513E+03              | 1.009E-01     |
| 1979 | 3.293E+02              | 1.799E+05      | 1.209E+01              | 5.159E+00              | 1.439E+03              | 9.671E-02     |
| 1980 | 3.133E+02              | 1.711E+05      | 1.150E+01              | 4.908E+00              | 1.369E+03              | 9.199E-02     |
| 1981 | 2.980E+02              | 1.628E+05      | 1.094E+01              | 4.668E+00              | 1.303E+03              | 8.750E-02     |
| 1982 | 2.835E+02              | 1.549E+05      | 1.040E+01              | 4.441E+00              | 1.239E+03              | 8.324E-02     |
| 983  | 2.696E+02              | 1.473E+05      | 9.897E+00              | 4.224E+00              | 1.178E+03              | 7.918E-02     |
| 1984 | 2.565E+02              | 1.401E+05      | 9.414E+00              | 4.018E+00              | 1.121E+03              | 7.532E-02     |
| 1985 | 2.440E+02              | 1.333E+05      | 8.955E+00              | 3.822E+00              | 1.066E+03              | 7.164E-02     |
| 1986 | 2.321E+02              | 1.268E+05      | 8.519E+00              | 3.636E+00              | 1.000E+03              | 6.815E-02     |
| 987  | 2.321E+02<br>2.208E+02 | 1.206E+05      | 8.103E+00              | 3.458E+00              | 9.648E+02              | 6.482E-02     |
| 988  | 2.100E+02              | 1.147E+05      | 7.708E+00              | 3.436E+00<br>3.290E+00 | 9.046E+02<br>9.177E+02 | 6.166E-02     |
| 989  | 1.997E+02              | 1.091E+05      | 7.706E+00<br>7.332E+00 | 3.129E+00              | 8.730E+02              |               |
|      |                        |                |                        |                        |                        | 5.866E-02     |
| 990  | 1.900E+02              | 1.038E+05      | 6.974E+00              | 2.977E+00              | 8.304E+02              | 5.579E-02     |
| 991  | 1.807E+02              | 9.874E+04      | 6.634E+00              | 2.831E+00              | 7.899E+02              | 5.307E-02     |
| 992  | 1.719E+02              | 9.392E+04      | 6.311E+00              | 2.693E+00              | 7.514E+02              | 5.049E-02     |
| 993  | 1.635E+02              | 8.934E+04      | 6.003E+00              | 2.562E+00              | 7.147E+02              | 4.802E-02     |
| 994  | 1.556E+02              | 8.498E+04      | 5.710E+00              | 2.437E+00              | 6.799E+02              | 4.568E-02     |
| 995  | 1.480E+02              | 8.084E+04      | 5.432E+00              | 2.318E+00              | 6.467E+02              | 4.345E-02     |
| 996  | 1.408E+02              | 7.690E+04      | 5.167E+00              | 2.205E+00              | 6.152E+02              | 4.133E-02     |
| 997  | 1.339E+02              | 7.315E+04      | 4.915E+00              | 2.098E+00              | 5.852E+02              | 3.932E-02     |
| 998  | 1.274E+02              | 6.958E+04      | 4.675E+00              | 1.995E+00              | 5.566E+02              | 3.740E-02     |
| 1999 | 1.212E+02              | 6.619E+04      | 4.447E+00              | 1.898E+00              | 5.295E+02              | 3.558E-02     |
| 2000 | 1.152E+02              | 6.296E+04      | 4.230E+00              | 1.805E+00              | 5.037E+02              | 3.384E-02     |
| 2001 | 1.096E+02              | 5.989E+04      | 4.024E+00              | 1.717E+00              | 4.791E+02              | 3.219E-02     |
| 2002 | 1.043E+02              | 5.697E+04      | 3.828E+00              | 1.634E+00              | 4.557E+02              | 3.062E-02     |

| Year | Carbon dioxide |                        |               | NMOC                   |           |               |
|------|----------------|------------------------|---------------|------------------------|-----------|---------------|
| rear | (Mg/year)      | (m³/year)              | (av ft^3/min) | (Mg/year)              | (m³/year) | (av ft^3/min) |
| 2003 | 9.919E+01      | 5.419E+04              | 3.641E+00     | 1.554E+00              | 4.335E+02 | 2.913E-02     |
| 2004 | 9.435E+01      | 5.155E+04              | 3.463E+00     | 1.478E+00              | 4.124E+02 | 2.771E-02     |
| 2005 | 8.975E+01      | 4.903E+04              | 3.294E+00     | 1.406E+00              | 3.923E+02 | 2.636E-02     |
| 2006 | 8.538E+01      | 4.664E+04              | 3.134E+00     | 1.337E+00              | 3.731E+02 | 2.507E-02     |
| 2007 | 8.121E+01      | 4.437E+04              | 2.981E+00     | 1.272E+00              | 3.549E+02 | 2.385E-02     |
| 2008 | 7.725E+01      | 4.220E+04              | 2.836E+00     | 1.210E+00              | 3.376E+02 | 2.268E-02     |
| 2009 | 7.348E+01      | 4.014E+04              | 2.697E+00     | 1.151E+00              | 3.212E+02 | 2.158E-02     |
| 2010 | 6.990E+01      | 3.819E+04              | 2.566E+00     | 1.095E+00              | 3.055E+02 | 2.053E-02     |
| 2011 | 6.649E+01      | 3.632E+04              | 2.441E+00     | 1.042E+00              | 2.906E+02 | 1.952E-02     |
| 2012 | 6.325E+01      | 3.455E+04              | 2.322E+00     | 9.908E-01              | 2.764E+02 | 1.857E-02     |
| 2013 | 6.016E+01      | 3.287E+04              | 2.208E+00     | 9.425E-01              | 2.629E+02 | 1.767E-02     |
| 2014 | 5.723E+01      | 3.126E+04              | 2.101E+00     | 8.965E-01              | 2.501E+02 | 1.681E-02     |
| 2015 | 5.444E+01      | 2.974E+04              | 1.998E+00     | 8.528E-01              | 2.379E+02 | 1.599E-02     |
| 2016 | 5.178E+01      | 2.829E+04              | 1.901E+00     | 8.112E-01              | 2.263E+02 | 1.521E-02     |
| 017  | 4.926E+01      | 2.691E+04              | 1.808E+00     | 7.716E-01              | 2.153E+02 | 1.446E-02     |
| 018  | 4.686E+01      | 2.560E+04              | 1.720E+00     | 7.710E-01<br>7.340E-01 | 2.048E+02 | 1.376E-02     |
| 019  | 4.457E+01      | 2.435E+04              | 1.636E+00     | 6.982E-01              | 1.948E+02 | 1.309E-02     |
|      |                |                        |               |                        |           |               |
| 020  | 4.240E+01      | 2.316E+04<br>2.203E+04 | 1.556E+00     | 6.642E-01              | 1.853E+02 | 1.245E-02     |
| 021  | 4.033E+01      |                        | 1.480E+00     | 6.318E-01              | 1.763E+02 | 1.184E-02     |
| 022  | 3.836E+01      | 2.096E+04              | 1.408E+00     | 6.010E-01              | 1.677E+02 | 1.126E-02     |
| 023  | 3.649E+01      | 1.993E+04              | 1.339E+00     | 5.716E-01              | 1.595E+02 | 1.072E-02     |
| 024  | 3.471E+01      | 1.896E+04              | 1.274E+00     | 5.438E-01              | 1.517E+02 | 1.019E-02     |
| 025  | 3.302E+01      | 1.804E+04              | 1.212E+00     | 5.172E-01              | 1.443E+02 | 9.696E-03     |
| 026  | 3.141E+01      | 1.716E+04              | 1.153E+00     | 4.920E-01              | 1.373E+02 | 9.223E-03     |
| 027  | 2.988E+01      | 1.632E+04              | 1.097E+00     | 4.680E-01              | 1.306E+02 | 8.773E-03     |
| 2028 | 2.842E+01      | 1.553E+04              | 1.043E+00     | 4.452E-01              | 1.242E+02 | 8.345E-03     |
| 2029 | 2.703E+01      | 1.477E+04              | 9.923E-01     | 4.235E-01              | 1.181E+02 | 7.938E-03     |
| 2030 | 2.571E+01      | 1.405E+04              | 9.439E-01     | 4.028E-01              | 1.124E+02 | 7.551E-03     |
| 2031 | 2.446E+01      | 1.336E+04              | 8.978E-01     | 3.832E-01              | 1.069E+02 | 7.183E-03     |
| 2032 | 2.327E+01      | 1.271E+04              | 8.541E-01     | 3.645E-01              | 1.017E+02 | 6.832E-03     |
| 2033 | 2.213E+01      | 1.209E+04              | 8.124E-01     | 3.467E-01              | 9.673E+01 | 6.499E-03     |
| 2034 | 2.105E+01      | 1.150E+04              | 7.728E-01     | 3.298E-01              | 9.201E+01 | 6.182E-03     |
| 035  | 2.003E+01      | 1.094E+04              | 7.351E-01     | 3.137E-01              | 8.752E+01 | 5.881E-03     |
| 036  | 1.905E+01      | 1.041E+04              | 6.992E-01     | 2.984E-01              | 8.326E+01 | 5.594E-03     |
| 037  | 1.812E+01      | 9.899E+03              | 6.651E-01     | 2.839E-01              | 7.920E+01 | 5.321E-03     |
| 038  | 1.724E+01      | 9.417E+03              | 6.327E-01     | 2.700E-01              | 7.533E+01 | 5.062E-03     |
| 039  | 1.640E+01      | 8.957E+03              | 6.018E-01     | 2.569E-01              | 7.166E+01 | 4.815E-03     |
| 040  | 1.560E+01      | 8.520E+03              | 5.725E-01     | 2.443E-01              | 6.816E+01 | 4.580E-03     |
| 2041 | 1.484E+01      | 8.105E+03              | 5.446E-01     | 2.324E-01              | 6.484E+01 | 4.357E-03     |
| 2042 | 1.411E+01      | 7.710E+03              | 5.180E-01     | 2.211E-01              | 6.168E+01 | 4.144E-03     |
| 043  | 1.342E+01      | 7.334E+03              | 4.927E-01     | 2.103E-01              | 5.867E+01 | 3.942E-03     |
| 044  | 1.277E+01      | 6.976E+03              | 4.687E-01     | 2.000E-01              | 5.581E+01 | 3.750E-03     |
| 045  | 1.215E+01      | 6.636E+03              | 4.459E-01     | 1.903E-01              | 5.309E+01 | 3.567E-03     |
| 046  | 1.155E+01      | 6.312E+03              | 4.241E-01     | 1.810E-01              | 5.050E+01 | 3.393E-03     |
| 047  | 1.099E+01      | 6.004E+03              | 4.034E-01     | 1.722E-01              | 4.803E+01 | 3.227E-03     |
| 2048 | 1.045E+01      | 5.711E+03              | 3.838E-01     | 1.638E-01              | 4.569E+01 | 3.070E-03     |
| 2049 | 9.945E+00      | 5.433E+03              | 3.650E-01     | 1.558E-01              | 4.346E+01 | 2.920E-03     |
| 2050 | 9.460E+00      | 5.455E+03              | 3.472E-01     | 1.482E-01              | 4.134E+01 | 2.778E-03     |
| 050  |                |                        |               |                        |           |               |
|      | 8.999E+00      | 4.916E+03              | 3.303E-01     | 1.410E-01<br>1.341E-01 | 3.933E+01 | 2.642E-03     |
| 2052 | 8.560E+00      | 4.676E+03              | 3.142E-01     |                        | 3.741E+01 | 2.514E-03     |
| 2053 | 8.142E+00      | 4.448E+03              | 2.989E-01     | 1.276E-01              | 3.558E+01 | 2.391E-03     |

| Vaar |           | Carbon dioxide |               |           | NMOC      |               |  |
|------|-----------|----------------|---------------|-----------|-----------|---------------|--|
| Year | (Mg/year) | (m³/year)      | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |  |
| 2054 | 7.745E+00 | 4.231E+03      | 2.843E-01     | 1.213E-01 | 3.385E+01 | 2.274E-03     |  |
| 2055 | 7.367E+00 | 4.025E+03      | 2.704E-01     | 1.154E-01 | 3.220E+01 | 2.163E-03     |  |
| 2056 | 7.008E+00 | 3.829E+03      | 2.572E-01     | 1.098E-01 | 3.063E+01 | 2.058E-03     |  |
| 2057 | 6.666E+00 | 3.642E+03      | 2.447E-01     | 1.044E-01 | 2.913E+01 | 1.958E-03     |  |
| 2058 | 6.341E+00 | 3.464E+03      | 2.328E-01     | 9.934E-02 | 2.771E+01 | 1.862E-03     |  |
| 2059 | 6.032E+00 | 3.295E+03      | 2.214E-01     | 9.449E-02 | 2.636E+01 | 1.771E-03     |  |
| 2060 | 5.738E+00 | 3.135E+03      | 2.106E-01     | 8.988E-02 | 2.508E+01 | 1.685E-03     |  |
| 2061 | 5.458E+00 | 2.982E+03      | 2.003E-01     | 8.550E-02 | 2.385E+01 | 1.603E-03     |  |
| 2062 | 5.192E+00 | 2.836E+03      | 1.906E-01     | 8.133E-02 | 2.269E+01 | 1.525E-03     |  |
| 2063 | 4.939E+00 | 2.698E+03      | 1.813E-01     | 7.736E-02 | 2.158E+01 | 1.450E-03     |  |
| 2064 | 4.698E+00 | 2.566E+03      | 1.724E-01     | 7.359E-02 | 2.053E+01 | 1.379E-03     |  |
| 2065 | 4.469E+00 | 2.441E+03      | 1.640E-01     | 7.000E-02 | 1.953E+01 | 1.312E-03     |  |
| 2066 | 4.251E+00 | 2.322E+03      | 1.560E-01     | 6.659E-02 | 1.858E+01 | 1.248E-03     |  |
| 2067 | 4.043E+00 | 2.209E+03      | 1.484E-01     | 6.334E-02 | 1.767E+01 | 1.187E-03     |  |
| 2068 | 3.846E+00 | 2.101E+03      | 1.412E-01     | 6.025E-02 | 1.681E+01 | 1.129E-03     |  |
| 2069 | 3.659E+00 | 1.999E+03      | 1.343E-01     | 5.731E-02 | 1.599E+01 | 1.074E-03     |  |
| 2070 | 3.480E+00 | 1.901E+03      | 1.277E-01     | 5.452E-02 | 1.521E+01 | 1.022E-03     |  |
| 2071 | 3.310E+00 | 1.808E+03      | 1.215E-01     | 5.186E-02 | 1.447E+01 | 9.721E-04     |  |
| 2072 | 3.149E+00 | 1.720E+03      | 1.156E-01     | 4.933E-02 | 1.376E+01 | 9.247E-04     |  |
| 2073 | 2.995E+00 | 1.636E+03      | 1.099E-01     | 4.692E-02 | 1.309E+01 | 8.796E-04     |  |
| 2074 | 2.849E+00 | 1.557E+03      | 1.046E-01     | 4.464E-02 | 1.245E+01 | 8.367E-04     |  |
| 2075 | 2.710E+00 | 1.481E+03      | 9.948E-02     | 4.246E-02 | 1.185E+01 | 7.959E-04     |  |
| 2076 | 2.578E+00 | 1.408E+03      | 9.463E-02     | 4.039E-02 | 1.127E+01 | 7.571E-04     |  |
| 2077 | 2.452E+00 | 1.340E+03      | 9.002E-02     | 3.842E-02 | 1.072E+01 | 7.201E-04     |  |
| 2078 | 2.333E+00 | 1.274E+03      | 8.563E-02     | 3.654E-02 | 1.020E+01 | 6.850E-04     |  |
| 2079 | 2.219E+00 | 1.212E+03      | 8.145E-02     | 3.476E-02 | 9.698E+00 | 6.516E-04     |  |
| 2080 | 2.111E+00 | 1.153E+03      | 7.748E-02     | 3.307E-02 | 9.225E+00 | 6.198E-04     |  |
| 2081 | 2.008E+00 | 1.097E+03      | 7.370E-02     | 3.145E-02 | 8.775E+00 | 5.896E-04     |  |
| 2082 | 1.910E+00 | 1.043E+03      | 7.011E-02     | 2.992E-02 | 8.347E+00 | 5.608E-04     |  |
| 2083 | 1.817E+00 | 9.925E+02      | 6.669E-02     | 2.846E-02 | 7.940E+00 | 5.335E-04     |  |
| 2084 | 1.728E+00 | 9.441E+02      | 6.343E-02     | 2.707E-02 | 7.553E+00 | 5.075E-04     |  |
| 2085 | 1.644E+00 | 8.981E+02      | 6.034E-02     | 2.575E-02 | 7.184E+00 | 4.827E-04     |  |
| 2086 | 1.564E+00 | 8.543E+02      | 5.740E-02     | 2.450E-02 | 6.834E+00 | 4.592E-04     |  |
| 2087 | 1.487E+00 | 8.126E+02      | 5.460E-02     | 2.330E-02 | 6.501E+00 | 4.368E-04     |  |
| 2088 | 1.415E+00 | 7.730E+02      | 5.194E-02     | 2.217E-02 | 6.184E+00 | 4.155E-04     |  |
| 2089 | 1.346E+00 | 7.353E+02      | 4.940E-02     | 2.108E-02 | 5.882E+00 | 3.952E-04     |  |
| 2090 | 1.280E+00 | 6.994E+02      | 4.699E-02     | 2.006E-02 | 5.595E+00 | 3.759E-04     |  |
| 2091 | 1.218E+00 | 6.653E+02      | 4.470E-02     | 1.908E-02 | 5.322E+00 | 3.576E-04     |  |
| 2092 | 1.158E+00 | 6.328E+02      | 4.252E-02     | 1.815E-02 | 5.063E+00 | 3.402E-04     |  |
| 2093 | 1.102E+00 | 6.020E+02      | 4.045E-02     | 1.726E-02 | 4.816E+00 | 3.236E-04     |  |



# **Summary Report**

Landfill Name or Identifier: Marine MSW - Bioreactor

Date: Friday, June 17, 2016

**Description/Comments:** 

### About LandGEM:

First-Order Decomposition Rate Equation:

 $Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left( \frac{M_i}{10} \right) e^{-kt_{ij}}$ 

Where,

 $Q_{CH4}$  = annual methane generation in the year of the calculation ( $m^3$ /year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $k = methane generation rate (year^{-1})$ 

 $L_0$  = potential methane generation capacity  $(m^3/Mg)$ 

 $M_i$  = mass of waste accepted in the  $i^{th}$  year (Mg)  $t_{ij}$  = age of the  $j^{th}$  section of waste mass  $M_i$  accepted in the  $i^{th}$  year ( $decimal\ years$ , e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

## **Input Review**

LANDFILL CHARACTERISTICS

Landfill Open Year1953Landfill Closure Year (with 80-year limit)1965Actual Closure Year (without limit)1965Have Model Calculate Closure Year?No

Waste Design Capacity megagrams

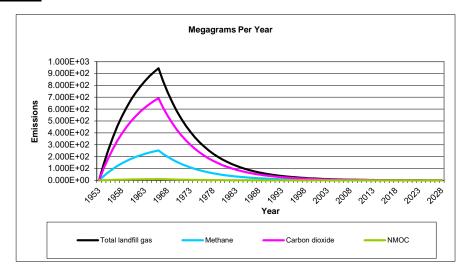
MODEL PARAMETERS

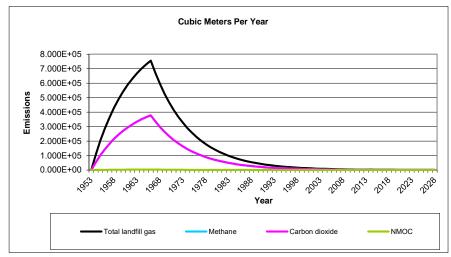
Methane Generation Rate, k 9.120  $year^{-1}$  Potential Methane Generation Capacity, L<sub>o</sub> 170  $m^3/Mg$  NMOC Concentration 4,000 ppmv as

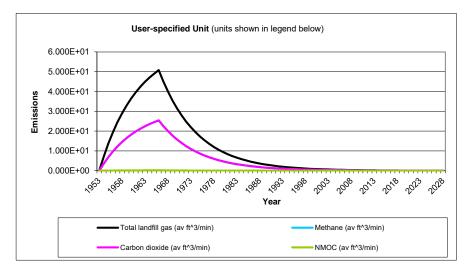
NMOC Concentration 4,000 ppmv as hexane
Methane Content 50 % by volume

GASES / POLLUTANTS SELECTED

Gas / Pollutant #1: Total landfill gas
Gas / Pollutant #2: Methane
Gas / Pollutant #3: Carbon dioxide
Gas / Pollutant #4: NMOC


## WASTE ACCEPTANCE RATES


| Year | Waste Acc | cepted            | Waste-In-Place |              |  |
|------|-----------|-------------------|----------------|--------------|--|
| rear | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1953 | 2,797     | 3,077             | 0              | 0            |  |
| 1954 | 2,797     | 3,077             | 2,797          | 3,077        |  |
| 1955 | 2,797     | 3,077             | 5,595          | 6,154        |  |
| 1956 | 2,797     | 3,077             | 8,392          | 9,231        |  |
| 1957 | 2,797     | 3,077             | 11,189         | 12,308       |  |
| 1958 | 2,797     | 3,077             | 13,986         | 15,385       |  |
| 1959 | 2,797     | 3,077             | 16,784         | 18,462       |  |
| 1960 | 2,797     | 3,077             | 19,581         | 21,539       |  |
| 1961 | 2,797     | 3,077             | 22,378         | 24,616       |  |
| 1962 | 2,797     | 3,077             | 25,175         | 27,693       |  |
| 1963 | 2,797     | 3,077             | 27,973         | 30,770       |  |
| 1964 | 2,797     | 3,077             | 30,770         | 33,847       |  |
| 1965 | 2,797     | 3,077             | 33,567         | 36,924       |  |
| 1966 | 0         | 0                 | 36,365         | 40,001       |  |
| 1967 | 0         | 0                 | 36,365         | 40,001       |  |
| 1968 | 0         | 0                 | 36,365         | 40,001       |  |
| 1969 | 0         | 0                 | 36,365         | 40,001       |  |
| 1970 | 0         | 0                 | 36,365         | 40,001       |  |
| 1971 | 0         | 0                 | 36,365         | 40,001       |  |
| 1972 | 0         | 0                 | 36,365         | 40,001       |  |
| 1973 | 0         | 0                 | 36,365         | 40,001       |  |
| 1974 | 0         | 0                 | 36,365         | 40,001       |  |
| 1975 | 0         | 0                 | 36,365         | 40,001       |  |
| 1976 | 0         | 0                 | 36,365         | 40,001       |  |
| 1977 | 0         | 0                 | 36,365         | 40,001       |  |
| 1978 | 0         | 0                 | 36,365         | 40,001       |  |
| 1979 | 0         | 0                 | 36,365         | 40,001       |  |
| 1980 | 0         | 0                 | 36,365         | 40,001       |  |
| 1981 | 0         | 0                 | 36,365         | 40,001       |  |
| 1982 | 0         | 0                 | 36,365         | 40,001       |  |
| 1983 | 0         | 0                 | 36,365         | 40,001       |  |
| 1984 | 0         | 0                 | 36,365         | 40,001       |  |
| 1985 | 0         | 0                 | 36,365         | 40,001       |  |
| 1986 | 0         | 0                 | 36,365         | 40,001       |  |
| 1987 | 0         | 0                 | 36,365         | 40,001       |  |
| 1988 | 0         | 0                 | 36,365         | 40,001       |  |
| 1989 | 0         | 0                 | 36,365         | 40,001       |  |
| 1990 | 0         | 0                 | 36,365         | 40,001       |  |
| 1991 | 0         | 0                 | 36,365         | 40,001       |  |
| 1992 | 0         | 0                 | 36,365         | 40,001       |  |


## WASTE ACCEPTANCE RATES (Continued)

| Voor | Waste Acc |                   | Waste-In-Place |              |  |
|------|-----------|-------------------|----------------|--------------|--|
| Year | (Mg/year) | (short tons/year) | (Mg)           | (short tons) |  |
| 1993 | 0         | 0                 | 36,365         | 40,001       |  |
| 1994 | 0         | 0                 | 36,365         | 40,001       |  |
| 1995 | 0         | 0                 | 36,365         | 40,001       |  |
| 1996 | 0         | 0                 | 36,365         | 40,001       |  |
| 1997 | 0         | 0                 | 36,365         | 40,001       |  |
| 1998 | 0         | 0                 | 36,365         | 40,001       |  |
| 1999 | 0         | 0                 | 36,365         | 40,001       |  |
| 2000 | 0         | 0                 | 36,365         | 40,001       |  |
| 2001 | 0         | 0                 | 36,365         | 40,001       |  |
| 2002 | 0         | 0                 | 36,365         | 40,001       |  |
| 2003 | 0         | 0                 | 36,365         | 40,001       |  |
| 2004 | 0         | 0                 | 36,365         | 40,001       |  |
| 2005 | 0         | 0                 | 36,365         | 40,001       |  |
| 2006 | 0         | 0                 | 36,365         | 40,001       |  |
| 2007 | 0         | 0                 | 36,365         | 40,001       |  |
| 2008 | 0         | 0                 | 36,365         | 40,001       |  |
| 2009 | 0         | 0                 | 36,365         | 40,001       |  |
| 2010 | 0         | 0                 | 36,365         | 40,001       |  |
| 2011 | 0         | 0                 | 36,365         | 40,001       |  |
| 2012 | 0         | 0                 | 36,365         | 40,001       |  |
| 2013 | 0         | 0                 | 36,365         | 40,001       |  |
| 2014 | 0         | 0                 | 36,365         | 40,001       |  |
| 2015 | 0         | 0                 | 36,365         | 40,001       |  |
| 2016 | 0         | 0                 | 36,365         | 40,001       |  |
| 2017 | 0         | 0                 | 36,365         | 40,001       |  |
| 2018 | 0         | 0                 | 36,365         | 40,001       |  |
| 2019 | 0         | 0                 | 36,365         | 40,001       |  |
| 2020 | 0         | 0                 | 36,365         | 40,001       |  |
| 2021 | 0         | 0                 | 36,365         | 40,001       |  |
| 2022 | 0         | 0                 | 36,365         | 40,001       |  |
| 2023 | 0         | 0                 | 36,365         | 40,001       |  |
| 2024 | 0         | 0                 | 36,365         | 40,001       |  |
| 2025 | 0         | 0                 | 36,365         | 40,001       |  |
| 2026 | 0         | 0                 | 36,365         | 40,001       |  |
| 2027 | 0         | 0                 | 36,365         | 40,001       |  |
| 2028 | 0         | 0                 | 36,365         | 40,001       |  |
| 2029 | 0         | 0                 | 36,365         | 40,001       |  |
| 2030 | 0         | 0                 | 36,365         | 40,001       |  |
| 2031 | 0         | 0                 | 36,365         | 40,001       |  |
| 2032 | 0         | 0                 | 36,365         | 40,001       |  |

### **Graphs**



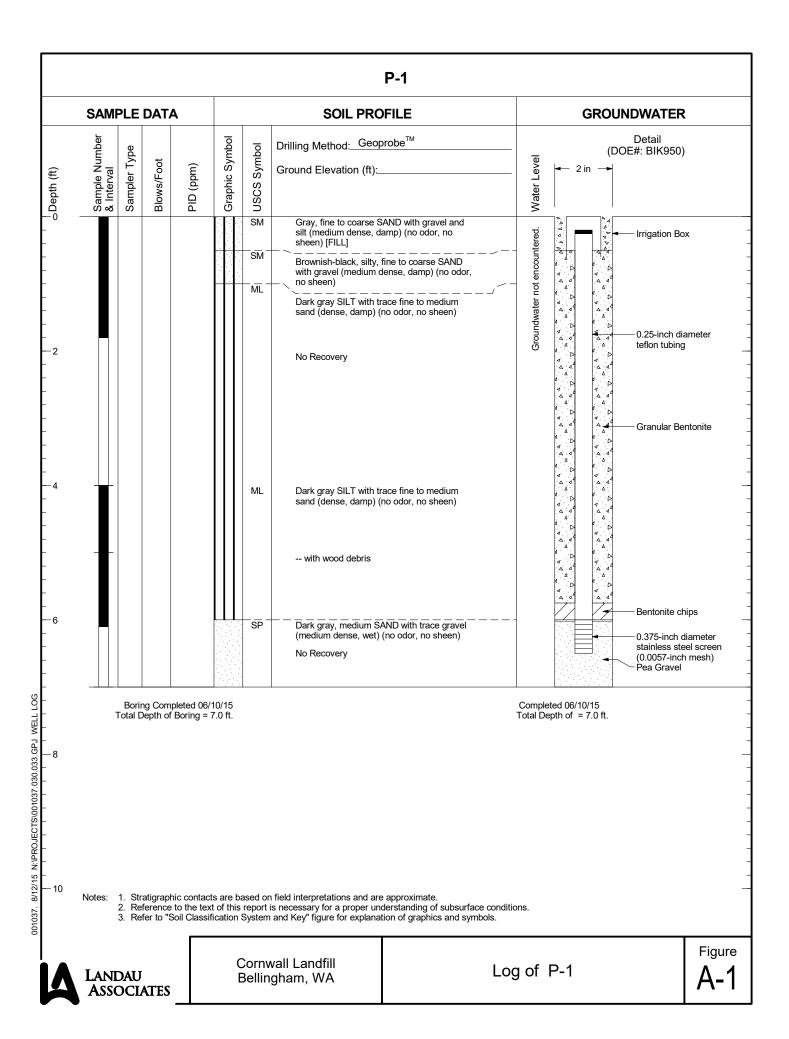


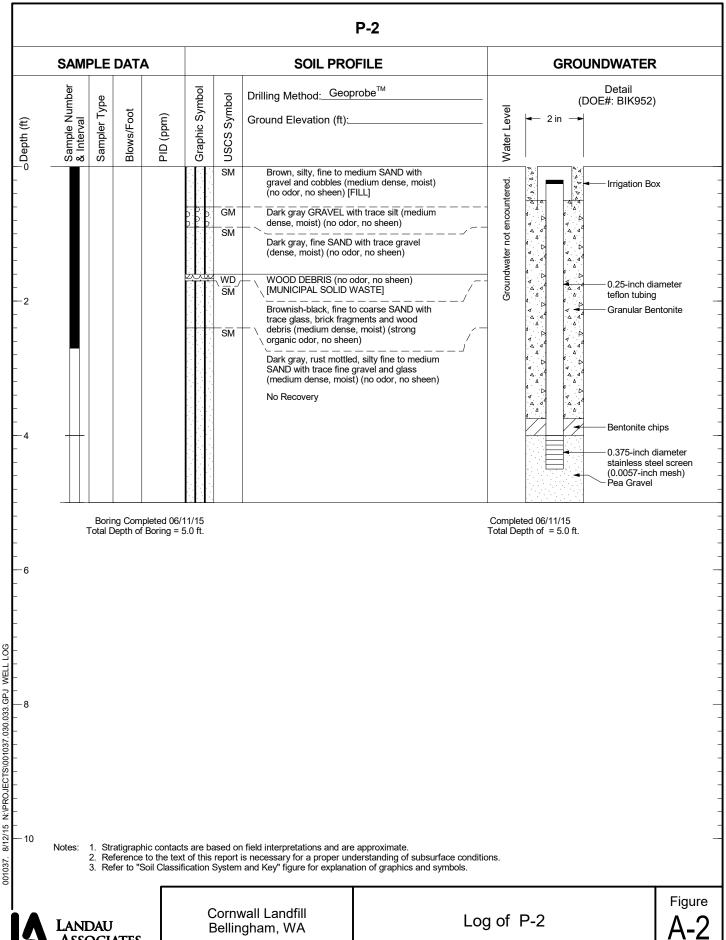


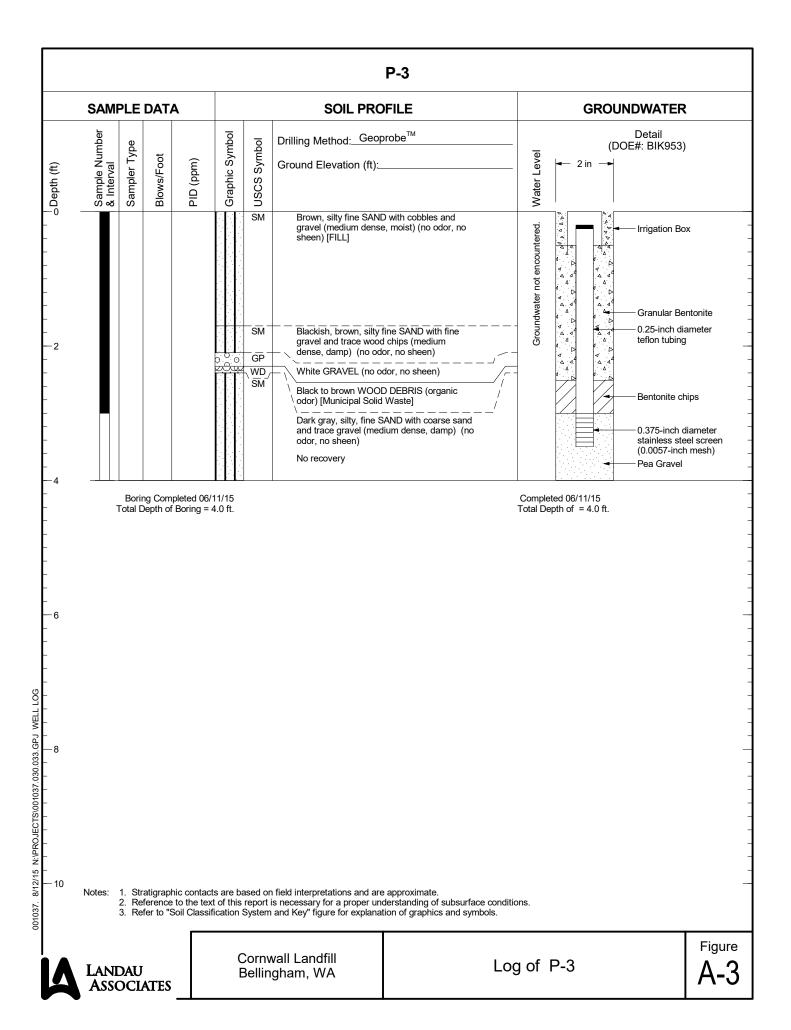
# **Results**

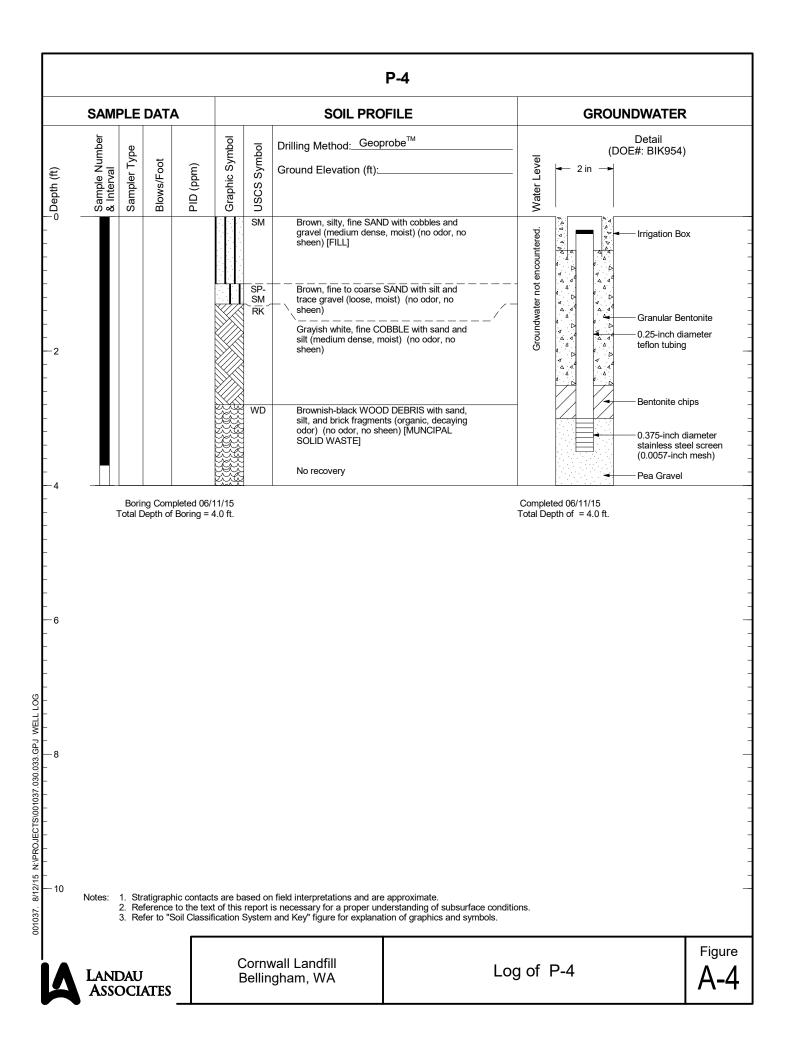
| Year |           | Total landfill gas     |               | Methane                |           |               |  |  |  |
|------|-----------|------------------------|---------------|------------------------|-----------|---------------|--|--|--|
| rear | (Mg/year) | (m³/year)              | (av ft^3/min) | (Mg/year)              | (m³/year) | (av ft^3/min) |  |  |  |
| 1953 | 0         | 0                      | 0             | 0                      | 0         | 0             |  |  |  |
| 1954 | 1.351E+02 | 1.082E+05              | 7.270E+00     | 3.609E+01              | 5.410E+04 | 3.635E+00     |  |  |  |
| 1955 | 2.550E+02 | 2.042E+05              | 1.372E+01     | 6.810E+01              | 1.021E+05 | 6.858E+00     |  |  |  |
| 1956 | 3.612E+02 | 2.893E+05              | 1.944E+01     | 9.649E+01              | 1.446E+05 | 9.718E+00     |  |  |  |
| 1957 | 4.555E+02 | 3.647E+05              | 2.451E+01     | 1.217E+02              | 1.824E+05 | 1.225E+01     |  |  |  |
| 1958 | 5.391E+02 | 4.317E+05              | 2.901E+01     | 1.440E+02              | 2.158E+05 | 1.450E+01     |  |  |  |
| 1959 | 6.133E+02 | 4.911E+05              | 3.299E+01     | 1.638E+02              | 2.455E+05 | 1.650E+01     |  |  |  |
| 1960 | 6.790E+02 | 5.437E+05              | 3.653E+01     | 1.814E+02              | 2.719E+05 | 1.827E+01     |  |  |  |
| 1961 | 7.374E+02 | 5.904E+05              | 3.967E+01     | 1.970E+02              | 2.952E+05 | 1.984E+01     |  |  |  |
| 1962 | 7.891E+02 | 6.319E+05              | 4.246E+01     | 2.108E+02              | 3.159E+05 | 2.123E+01     |  |  |  |
| 1963 | 8.350E+02 | 6.686E+05              | 4.492E+01     | 2.230E+02              | 3.343E+05 | 2.246E+01     |  |  |  |
| 1964 | 8.757E+02 | 7.012E+05              | 4.711E+01     | 2.339E+02              | 3.506E+05 | 2.356E+01     |  |  |  |
| 1965 | 9.118E+02 | 7.301E+05              | 4.906E+01     | 2.435E+02              | 3.651E+05 | 2.453E+01     |  |  |  |
| 1966 | 9.438E+02 | 7.557E+05              | 5.078E+01     | 2.521E+02              | 3.779E+05 | 2.539E+01     |  |  |  |
| 1967 | 8.371E+02 | 6.703E+05              | 4.504E+01     | 2.236E+02              | 3.351E+05 | 2.252E+01     |  |  |  |
| 1968 | 7.424E+02 | 5.945E+05              | 3.994E+01     | 1.983E+02              | 2.972E+05 | 1.997E+01     |  |  |  |
| 1969 | 6.585E+02 | 5.273E+05              | 3.543E+01     | 1.759E+02              | 2.636E+05 | 1.771E+01     |  |  |  |
| 1970 | 5.840E+02 | 4.676E+05              | 3.142E+01     | 1.560E+02              | 2.338E+05 | 1.571E+01     |  |  |  |
| 1971 | 5.180E+02 | 4.148E+05              | 2.787E+01     | 1.384E+02              | 2.074E+05 | 1.393E+01     |  |  |  |
| 1972 | 4.594E+02 | 3.679E+05              | 2.472E+01     | 1.227E+02              | 1.839E+05 | 1.236E+01     |  |  |  |
| 1973 | 4.074E+02 | 3.263E+05              | 2.192E+01     | 1.088E+02              | 1.631E+05 | 1.096E+01     |  |  |  |
| 1974 | 3.614E+02 | 2.894E+05              | 1.944E+01     | 9.652E+01              | 1.447E+05 | 9.721E+00     |  |  |  |
| 1975 | 3.205E+02 | 2.566E+05              | 1.724E+01     | 8.561E+01              | 1.283E+05 | 8.622E+00     |  |  |  |
| 1976 | 2.843E+02 | 2.276E+05              | 1.529E+01     | 7.593E+01              | 1.138E+05 | 7.647E+00     |  |  |  |
| 1977 | 2.521E+02 | 2.019E+05              | 1.356E+01     | 6.734E+01              | 1.009E+05 | 6.782E+00     |  |  |  |
| 1978 | 2.236E+02 | 1.791E+05              | 1.203E+01     | 5.973E+01              | 8.953E+04 | 6.015E+00     |  |  |  |
| 1979 | 1.983E+02 | 1.588E+05              | 1.067E+01     | 5.297E+01              | 7.940E+04 | 5.335E+00     |  |  |  |
| 1980 | 1.759E+02 | 1.408E+05              | 9.464E+00     | 4.698E+01              | 7.042E+04 | 4.732E+00     |  |  |  |
| 1981 | 1.560E+02 | 1.249E+05              | 8.393E+00     | 4.167E+01              | 6.246E+04 | 4.197E+00     |  |  |  |
| 1982 | 1.384E+02 | 1.108E+05              | 7.444E+00     | 3.696E+01              | 5.540E+04 | 3.722E+00     |  |  |  |
| 1983 | 1.227E+02 | 9.827E+04              | 6.603E+00     | 3.278E+01              | 4.913E+04 | 3.301E+00     |  |  |  |
| 1984 | 1.088E+02 | 8.716E+04              | 5.856E+00     | 2.907E+01              | 4.358E+04 | 2.928E+00     |  |  |  |
| 1985 | 9.653E+01 | 7.730E+04              | 5.194E+00     | 2.579E+01              | 3.865E+04 | 2.597E+00     |  |  |  |
| 1986 | 8.562E+01 | 6.856E+04              | 4.606E+00     | 2.287E+01              | 3.428E+04 | 2.303E+00     |  |  |  |
| 1987 | 7.594E+01 | 6.081E+04              | 4.086E+00     | 2.028E+01              | 3.040E+04 | 2.043E+00     |  |  |  |
| 1988 | 6.735E+01 | 5.393E+04              | 3.624E+00     | 1.799E+01              | 2.697E+04 | 1.812E+00     |  |  |  |
| 1989 | 5.973E+01 | 4.783E+04              | 3.214E+00     | 1.596E+01              | 2.392E+04 | 1.607E+00     |  |  |  |
| 1990 | 5.298E+01 | 4.242E+04              | 2.850E+00     | 1.415E+01              | 2.121E+04 | 1.425E+00     |  |  |  |
| 1991 | 4.699E+01 | 3.763E+04              | 2.528E+00     | 1.255E+01              | 1.881E+04 | 1.264E+00     |  |  |  |
| 1992 | 4.167E+01 | 3.337E+04              | 2.242E+00     | 1.113E+01              | 1.669E+04 | 1.121E+00     |  |  |  |
| 1993 | 3.696E+01 | 2.960E+04              | 1.989E+00     | 9.873E+00              | 1.480E+04 | 9.943E-01     |  |  |  |
| 1994 | 3.278E+01 | 2.625E+04              | 1.764E+00     | 8.757E+00              | 1.313E+04 | 8.819E-01     |  |  |  |
| 1995 | 2.908E+01 | 2.328E+04              | 1.564E+00     | 7.766E+00              | 1.164E+04 | 7.822E-01     |  |  |  |
| 1996 | 2.579E+01 | 2.065E+04              | 1.387E+00     | 6.888E+00              | 1.032E+04 | 6.937E-01     |  |  |  |
| 1997 | 2.287E+01 | 1.831E+04              | 1.231E+00     | 6.109E+00              | 9.157E+03 | 6.153E-01     |  |  |  |
| 1998 | 2.029E+01 | 1.624E+04              | 1.091E+00     | 5.418E+00              | 8.122E+03 | 5.457E-01     |  |  |  |
| 1999 | 1.799E+01 | 1.441E+04              | 9.680E-01     | 4.806E+00              | 7.203E+03 | 4.840E-01     |  |  |  |
| 2000 | 1.596E+01 | 1.278E+04              | 8.585E-01     | 4.262E+00              | 6.389E+03 | 4.293E-01     |  |  |  |
| 2001 | 1.415E+01 | 1.133E+04              | 7.614E-01     | 3.780E+00              | 5.666E+03 | 3.807E-01     |  |  |  |
| 2001 | 1.255E+01 | 1.135E+04<br>1.005E+04 | 6.753E-01     | 3.760E+00<br>3.353E+00 | 5.006E+03 | 3.377E-01     |  |  |  |

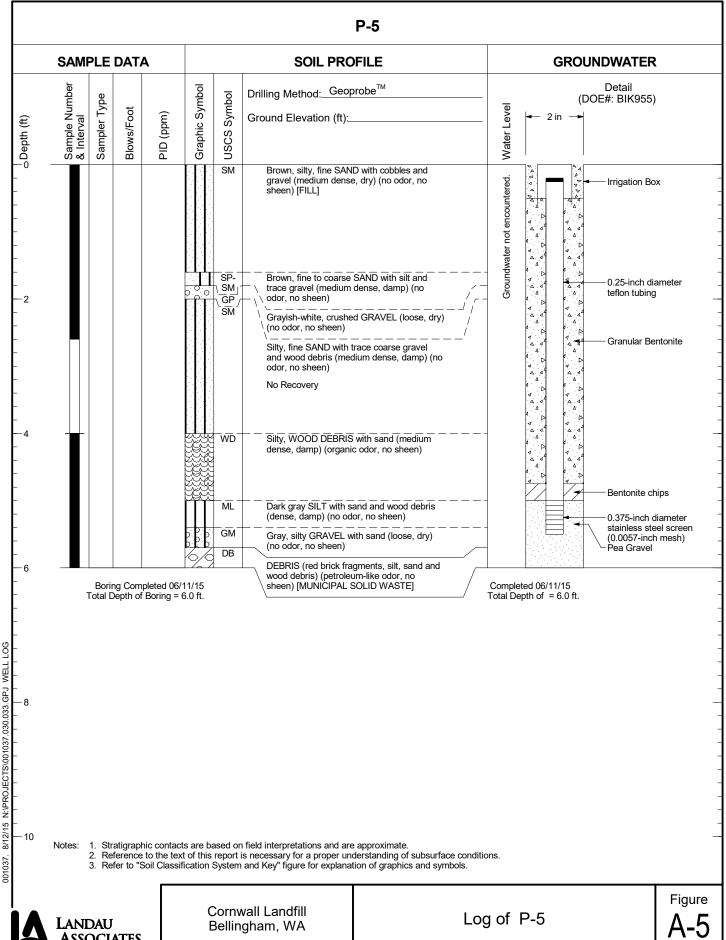
| Year |           | Total landfill gas |               | Methane   |           |               |  |  |  |
|------|-----------|--------------------|---------------|-----------|-----------|---------------|--|--|--|
| rear | (Mg/year) | (m³/year)          | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |  |  |  |
| 2003 | 1.113E+01 | 8.915E+03          | 5.990E-01     | 2.974E+00 | 4.457E+03 | 2.995E-01     |  |  |  |
| 2004 | 9.874E+00 | 7.907E+03          | 5.312E-01     | 2.637E+00 | 3.953E+03 | 2.656E-01     |  |  |  |
| 2005 | 8.757E+00 | 7.012E+03          | 4.712E-01     | 2.339E+00 | 3.506E+03 | 2.356E-01     |  |  |  |
| 2006 | 7.767E+00 | 6.220E+03          | 4.179E-01     | 2.075E+00 | 3.110E+03 | 2.089E-01     |  |  |  |
| 2007 | 6.889E+00 | 5.516E+03          | 3.706E-01     | 1.840E+00 | 2.758E+03 | 1.853E-01     |  |  |  |
| 2008 | 6.110E+00 | 4.892E+03          | 3.287E-01     | 1.632E+00 | 2.446E+03 | 1.644E-01     |  |  |  |
| 2009 | 5.419E+00 | 4.339E+03          | 2.916E-01     | 1.447E+00 | 2.170E+03 | 1.458E-01     |  |  |  |
| 2010 | 4.806E+00 | 3.849E+03          | 2.586E-01     | 1.284E+00 | 1.924E+03 | 1.293E-01     |  |  |  |
| 2011 | 4.263E+00 | 3.413E+03          | 2.293E-01     | 1.139E+00 | 1.707E+03 | 1.147E-01     |  |  |  |
| 2012 | 3.781E+00 | 3.027E+03          | 2.034E-01     | 1.010E+00 | 1.514E+03 | 1.017E-01     |  |  |  |
| 2013 | 3.353E+00 | 2.685E+03          | 1.804E-01     | 8.957E-01 | 1.343E+03 | 9.020E-02     |  |  |  |
| 2014 | 2.974E+00 | 2.381E+03          | 1.600E-01     | 7.944E-01 | 1.191E+03 | 8.000E-02     |  |  |  |
| 2015 | 2.638E+00 | 2.112E+03          | 1.419E-01     | 7.045E-01 | 1.056E+03 | 7.096E-02     |  |  |  |
| 2016 | 2.339E+00 | 1.873E+03          | 1.259E-01     | 6.249E-01 | 9.366E+02 | 6.293E-02     |  |  |  |
| 2017 | 2.075E+00 | 1.661E+03          | 1.116E-01     | 5.542E-01 | 8.307E+02 | 5.582E-02     |  |  |  |
| 2018 | 1.840E+00 | 1.474E+03          | 9.901E-02     | 4.915E-01 | 7.368E+02 | 4.950E-02     |  |  |  |
| 2019 | 1.632E+00 | 1.307E+03          | 8.781E-02     | 4.360E-01 | 6.535E+02 | 4.391E-02     |  |  |  |
| 2020 | 1.448E+00 | 1.159E+03          | 7.788E-02     | 3.867E-01 | 5.796E+02 | 3.894E-02     |  |  |  |
| 2021 | 1.284E+00 | 1.028E+03          | 6.908E-02     | 3.429E-01 | 5.140E+02 | 3.454E-02     |  |  |  |
| 2022 | 1.139E+00 | 9.118E+02          | 6.127E-02     | 3.042E-01 | 4.559E+02 | 3.063E-02     |  |  |  |
| 2023 | 1.010E+00 | 8.087E+02          | 5.434E-02     | 2.698E-01 | 4.044E+02 | 2.717E-02     |  |  |  |
| 2024 | 8.957E-01 | 7.173E+02          | 4.819E-02     | 2.393E-01 | 3.586E+02 | 2.410E-02     |  |  |  |
| 2025 | 7.944E-01 | 6.362E+02          | 4.274E-02     | 2.122E-01 | 3.181E+02 | 2.137E-02     |  |  |  |
| 2026 | 7.046E-01 | 5.642E+02          | 3.791E-02     | 1.882E-01 | 2.821E+02 | 1.895E-02     |  |  |  |
| 2027 | 6.249E-01 | 5.004E+02          | 3.362E-02     | 1.669E-01 | 2.502E+02 | 1.681E-02     |  |  |  |
| 2028 | 5.543E-01 | 4.438E+02          | 2.982E-02     | 1.481E-01 | 2.219E+02 | 1.491E-02     |  |  |  |
| 2029 | 4.916E-01 | 3.936E+02          | 2.645E-02     | 1.313E-01 | 1.968E+02 | 1.322E-02     |  |  |  |
| 2030 | 4.360E-01 | 3.491E+02          | 2.346E-02     | 1.165E-01 | 1.746E+02 | 1.173E-02     |  |  |  |
| 2031 | 3.867E-01 | 3.097E+02          | 2.081E-02     | 1.033E-01 | 1.548E+02 | 1.040E-02     |  |  |  |
| 2032 | 3.430E-01 | 2.746E+02          | 1.845E-02     | 9.161E-02 | 1.373E+02 | 9.226E-03     |  |  |  |
| 2033 | 3.042E-01 | 2.436E+02          | 1.637E-02     | 8.125E-02 | 1.218E+02 | 8.183E-03     |  |  |  |
| 2034 | 2.698E-01 | 2.160E+02          | 1.452E-02     | 7.206E-02 | 1.080E+02 | 7.258E-03     |  |  |  |
| 2035 | 2.393E-01 | 1.916E+02          | 1.287E-02     | 6.392E-02 | 9.580E+01 | 6.437E-03     |  |  |  |
| 2036 | 2.122E-01 | 1.699E+02          | 1.142E-02     | 5.669E-02 | 8.497E+01 | 5.709E-03     |  |  |  |
| 2037 | 1.882E-01 | 1.507E+02          | 1.013E-02     | 5.028E-02 | 7.536E+01 | 5.064E-03     |  |  |  |
| 2038 | 1.669E-01 | 1.337E+02          | 8.982E-03     | 4.459E-02 | 6.684E+01 | 4.491E-03     |  |  |  |
| 2039 | 1.481E-01 | 1.186E+02          | 7.966E-03     | 3.955E-02 | 5.928E+01 | 3.983E-03     |  |  |  |
| 2040 | 1.313E-01 | 1.052E+02          | 7.065E-03     | 3.508E-02 | 5.258E+01 | 3.533E-03     |  |  |  |
| 2041 | 1.165E-01 | 9.327E+01          | 6.266E-03     | 3.111E-02 | 4.663E+01 | 3.133E-03     |  |  |  |
| 2042 | 1.033E-01 | 8.272E+01          | 5.558E-03     | 2.759E-02 | 4.136E+01 | 2.779E-03     |  |  |  |
| 2043 | 9.162E-02 | 7.336E+01          | 4.929E-03     | 2.447E-02 | 3.668E+01 | 2.465E-03     |  |  |  |
| 2044 | 8.126E-02 | 6.507E+01          | 4.372E-03     | 2.171E-02 | 3.253E+01 | 2.186E-03     |  |  |  |
| 2045 | 7.207E-02 | 5.771E+01          | 3.878E-03     | 1.925E-02 | 2.886E+01 | 1.939E-03     |  |  |  |
| 2046 | 6.392E-02 | 5.118E+01          | 3.439E-03     | 1.707E-02 | 2.559E+01 | 1.720E-03     |  |  |  |
| 2047 | 5.669E-02 | 4.540E+01          | 3.050E-03     | 1.514E-02 | 2.270E+01 | 1.525E-03     |  |  |  |
| 2048 | 5.028E-02 | 4.026E+01          | 2.705E-03     | 1.343E-02 | 2.013E+01 | 1.353E-03     |  |  |  |
| 2049 | 4.460E-02 | 3.571E+01          | 2.399E-03     | 1.191E-02 | 1.786E+01 | 1.200E-03     |  |  |  |
| 2050 | 3.955E-02 | 3.167E+01          | 2.128E-03     | 1.057E-02 | 1.584E+01 | 1.064E-03     |  |  |  |
| 2051 | 3.508E-02 | 2.809E+01          | 1.887E-03     | 9.370E-03 | 1.405E+01 | 9.437E-04     |  |  |  |
| 2052 | 3.111E-02 | 2.491E+01          | 1.674E-03     | 8.311E-03 | 1.246E+01 | 8.370E-04     |  |  |  |
| 2053 | 2.760E-02 | 2.210E+01          | 1.485E-03     | 7.371E-03 | 1.105E+01 | 7.423E-04     |  |  |  |

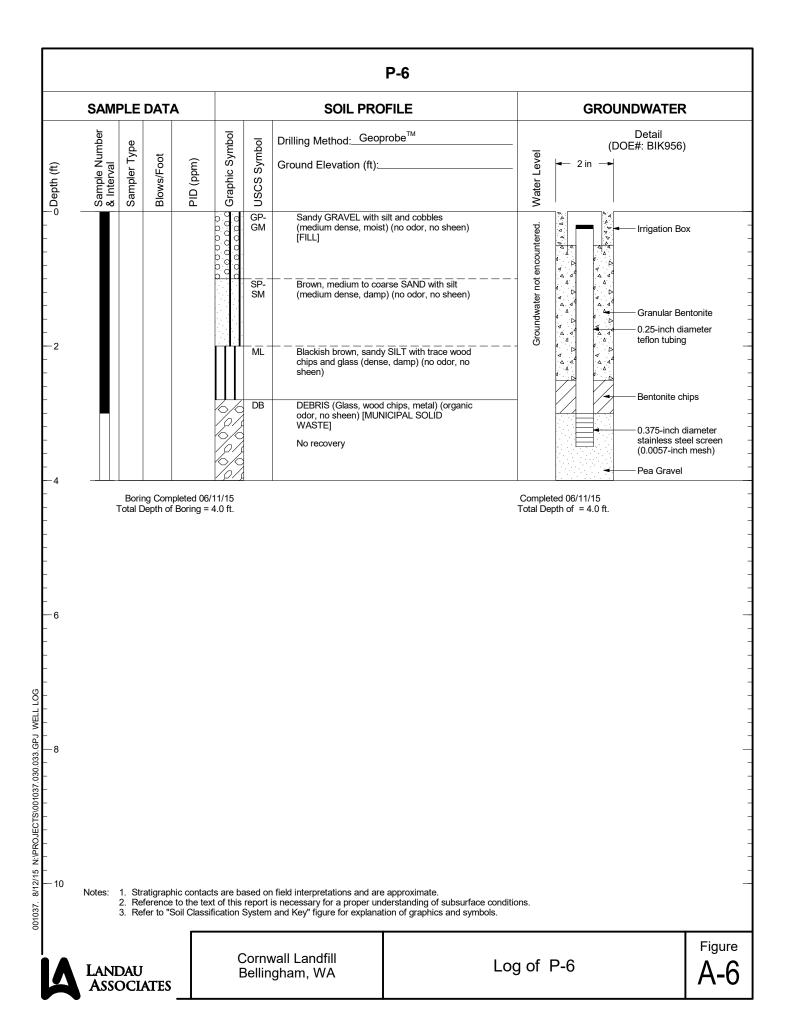

| Year |           | Total landfill gas |               |           | Methane   |               |  |  |  |  |
|------|-----------|--------------------|---------------|-----------|-----------|---------------|--|--|--|--|
| rear | (Mg/year) | (m³/year)          | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |  |  |  |  |
| 2054 | 2.447E-02 | 1.960E+01          | 1.317E-03     | 6.538E-03 | 9.799E+00 | 6.584E-04     |  |  |  |  |
| 2055 | 2.171E-02 | 1.738E+01          | 1.168E-03     | 5.798E-03 | 8.691E+00 | 5.840E-04     |  |  |  |  |
| 2056 | 1.925E-02 | 1.542E+01          | 1.036E-03     | 5.143E-03 | 7.708E+00 | 5.179E-04     |  |  |  |  |
| 2057 | 1.708E-02 | 1.367E+01          | 9.187E-04     | 4.561E-03 | 6.837E+00 | 4.594E-04     |  |  |  |  |
| 2058 | 1.514E-02 | 1.213E+01          | 8.148E-04     | 4.045E-03 | 6.064E+00 | 4.074E-04     |  |  |  |  |
| 2059 | 1.343E-02 | 1.076E+01          | 7.227E-04     | 3.588E-03 | 5.378E+00 | 3.613E-04     |  |  |  |  |
| 2060 | 1.191E-02 | 9.540E+00          | 6.410E-04     | 3.182E-03 | 4.770E+00 | 3.205E-04     |  |  |  |  |
| 2061 | 1.057E-02 | 8.461E+00          | 5.685E-04     | 2.822E-03 | 4.230E+00 | 2.842E-04     |  |  |  |  |
| 2062 | 9.371E-03 | 7.504E+00          | 5.042E-04     | 2.503E-03 | 3.752E+00 | 2.521E-04     |  |  |  |  |
| 2063 | 8.312E-03 | 6.656E+00          | 4.472E-04     | 2.220E-03 | 3.328E+00 | 2.236E-04     |  |  |  |  |
| 2064 | 7.372E-03 | 5.903E+00          | 3.966E-04     | 1.969E-03 | 2.951E+00 | 1.983E-04     |  |  |  |  |
| 2065 | 6.538E-03 | 5.235E+00          | 3.518E-04     | 1.746E-03 | 2.618E+00 | 1.759E-04     |  |  |  |  |
| 2066 | 5.799E-03 | 4.643E+00          | 3.120E-04     | 1.549E-03 | 2.322E+00 | 1.560E-04     |  |  |  |  |
| 2067 | 5.143E-03 | 4.118E+00          | 2.767E-04     | 1.374E-03 | 2.059E+00 | 1.384E-04     |  |  |  |  |
| 2068 | 4.561E-03 | 3.653E+00          | 2.454E-04     | 1.218E-03 | 1.826E+00 | 1.227E-04     |  |  |  |  |
| 2069 | 4.046E-03 | 3.240E+00          | 2.177E-04     | 1.081E-03 | 1.620E+00 | 1.088E-04     |  |  |  |  |
| 2070 | 3.588E-03 | 2.873E+00          | 1.931E-04     | 9.584E-04 | 1.437E+00 | 9.653E-05     |  |  |  |  |
| 2071 | 3.182E-03 | 2.548E+00          | 1.712E-04     | 8.501E-04 | 1.274E+00 | 8.561E-05     |  |  |  |  |
| 2072 | 2.823E-03 | 2.260E+00          | 1.519E-04     | 7.539E-04 | 1.130E+00 | 7.593E-05     |  |  |  |  |
| 2073 | 2.503E-03 | 2.005E+00          | 1.347E-04     | 6.687E-04 | 1.002E+00 | 6.734E-05     |  |  |  |  |
| 2074 | 2.220E-03 | 1.778E+00          | 1.195E-04     | 5.931E-04 | 8.890E-01 | 5.973E-05     |  |  |  |  |
| 2075 | 1.969E-03 | 1.577E+00          | 1.060E-04     | 5.260E-04 | 7.884E-01 | 5.298E-05     |  |  |  |  |
| 2076 | 1.747E-03 | 1.399E+00          | 9.397E-05     | 4.665E-04 | 6.993E-01 | 4.698E-05     |  |  |  |  |
| 2077 | 1.549E-03 | 1.240E+00          | 8.334E-05     | 4.138E-04 | 6.202E-01 | 4.167E-05     |  |  |  |  |
| 2078 | 1.374E-03 | 1.100E+00          | 7.392E-05     | 3.670E-04 | 5.501E-01 | 3.696E-05     |  |  |  |  |
| 2079 | 1.219E-03 | 9.757E-01          | 6.556E-05     | 3.255E-04 | 4.879E-01 | 3.278E-05     |  |  |  |  |
| 2080 | 1.081E-03 | 8.654E-01          | 5.815E-05     | 2.887E-04 | 4.327E-01 | 2.907E-05     |  |  |  |  |
| 2081 | 9.585E-04 | 7.675E-01          | 5.157E-05     | 2.560E-04 | 3.838E-01 | 2.579E-05     |  |  |  |  |
| 2082 | 8.501E-04 | 6.808E-01          | 4.574E-05     | 2.271E-04 | 3.404E-01 | 2.287E-05     |  |  |  |  |
| 2083 | 7.540E-04 | 6.038E-01          | 4.057E-05     | 2.014E-04 | 3.019E-01 | 2.028E-05     |  |  |  |  |
| 2084 | 6.687E-04 | 5.355E-01          | 3.598E-05     | 1.786E-04 | 2.677E-01 | 1.799E-05     |  |  |  |  |
| 2085 | 5.931E-04 | 4.749E-01          | 3.191E-05     | 1.584E-04 | 2.375E-01 | 1.596E-05     |  |  |  |  |
| 2086 | 5.261E-04 | 4.212E-01          | 2.830E-05     | 1.405E-04 | 2.106E-01 | 1.415E-05     |  |  |  |  |
| 2087 | 4.666E-04 | 3.736E-01          | 2.510E-05     | 1.246E-04 | 1.868E-01 | 1.255E-05     |  |  |  |  |
| 2088 | 4.138E-04 | 3.314E-01          | 2.226E-05     | 1.105E-04 | 1.657E-01 | 1.113E-05     |  |  |  |  |
| 2089 | 3.670E-04 | 2.939E-01          | 1.975E-05     | 9.803E-05 | 1.469E-01 | 9.873E-06     |  |  |  |  |
| 2090 | 3.255E-04 | 2.607E-01          | 1.751E-05     | 8.695E-05 | 1.303E-01 | 8.757E-06     |  |  |  |  |
| 2091 | 2.887E-04 | 2.312E-01          | 1.553E-05     | 7.712E-05 | 1.156E-01 | 7.767E-06     |  |  |  |  |
| 2092 | 2.561E-04 | 2.050E-01          | 1.378E-05     | 6.840E-05 | 1.025E-01 | 6.888E-06     |  |  |  |  |
| 2093 | 2.271E-04 | 1.819E-01          | 1.222E-05     | 6.066E-05 | 9.093E-02 | 6.109E-06     |  |  |  |  |

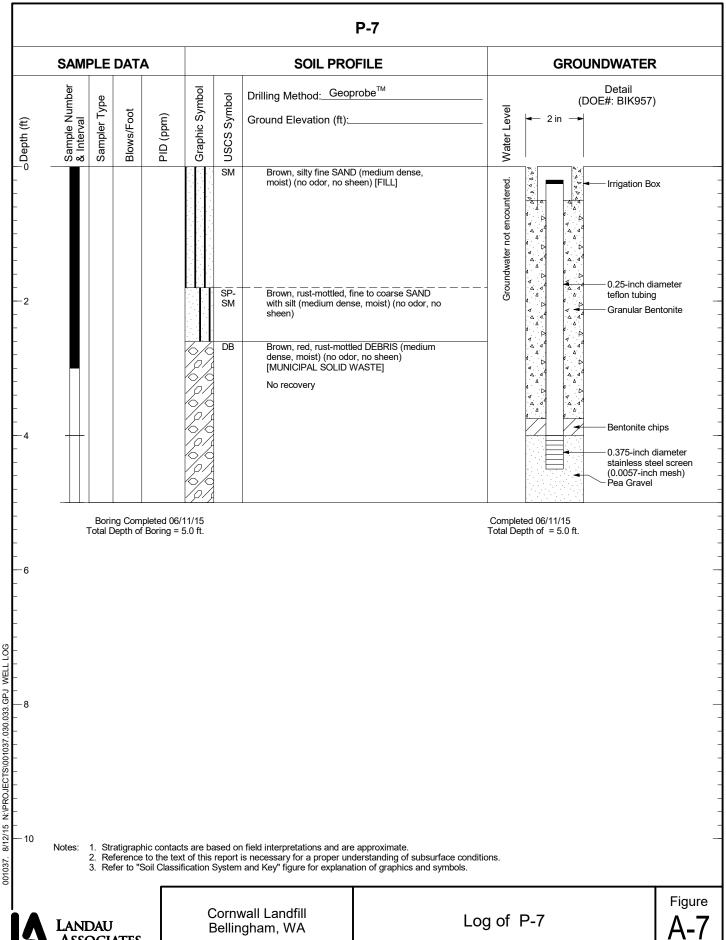

| Year |           | Carbon dioxide |               | NMOC                   |                        |                        |  |  |  |
|------|-----------|----------------|---------------|------------------------|------------------------|------------------------|--|--|--|
|      | (Mg/year) | (m³/year)      | (av ft^3/min) | (Mg/year)              | (m³/year)              | (av ft^3/min)          |  |  |  |
| 1953 | 0         | 0              | 0             | 0                      | 0                      | 0                      |  |  |  |
| 1954 | 9.902E+01 | 5.410E+04      | 3.635E+00     | 1.551E+00              | 4.328E+02              | 2.908E-02              |  |  |  |
| 1955 | 1.869E+02 | 1.021E+05      | 6.858E+00     | 2.927E+00              | 8.166E+02              | 5.487E-02              |  |  |  |
| 1956 | 2.647E+02 | 1.446E+05      | 9.718E+00     | 4.147E+00              | 1.157E+03              | 7.774E-02              |  |  |  |
| 1957 | 3.338E+02 | 1.824E+05      | 1.225E+01     | 5.230E+00              | 1.459E+03              | 9.803E-02              |  |  |  |
| 1958 | 3.951E+02 | 2.158E+05      | 1.450E+01     | 6.190E+00              | 1.727E+03              | 1.160E-01              |  |  |  |
| 1959 | 4.495E+02 | 2.455E+05      | 1.650E+01     | 7.041E+00              | 1.964E+03              | 1.320E-01              |  |  |  |
| 1960 | 4.977E+02 | 2.719E+05      | 1.827E+01     | 7.796E+00              | 2.175E+03              | 1.461E-01              |  |  |  |
| 1961 | 5.404E+02 | 2.952E+05      | 1.984E+01     | 8.466E+00              | 2.362E+03              | 1.587E-01              |  |  |  |
| 1962 | 5.783E+02 | 3.159E+05      | 2.123E+01     | 9.060E+00              | 2.527E+03              | 1.698E-01              |  |  |  |
| 1963 | 6.119E+02 | 3.343E+05      | 2.246E+01     | 9.586E+00              | 2.674E+03              | 1.797E-01              |  |  |  |
| 1964 | 6.418E+02 | 3.506E+05      | 2.356E+01     | 1.005E+01              | 2.805E+03              | 1.885E-01              |  |  |  |
| 1965 | 6.682E+02 | 3.651E+05      | 2.453E+01     | 1.047E+01              | 2.920E+03              | 1.962E-01              |  |  |  |
| 1966 | 6.917E+02 | 3.779E+05      | 2.539E+01     | 1.084E+01              | 3.023E+03              | 2.031E-01              |  |  |  |
| 1967 | 6.135E+02 | 3.351E+05      | 2.252E+01     | 9.610E+00              | 2.681E+03              | 1.801E-01              |  |  |  |
| 1968 | 5.441E+02 | 2.972E+05      | 1.997E+01     | 8.524E+00              | 2.378E+03              | 1.598E-01              |  |  |  |
| 1969 | 4.826E+02 | 2.636E+05      | 1.771E+01     | 7.560E+00              | 2.109E+03              | 1.417E-01              |  |  |  |
| 1970 | 4.280E+02 | 2.338E+05      | 1.571E+01     | 6.705E+00              | 1.871E+03              | 1.257E-01              |  |  |  |
| 1971 | 3.796E+02 | 2.074E+05      | 1.393E+01     | 5.947E+00              | 1.659E+03              | 1.115E-01              |  |  |  |
| 1972 | 3.367E+02 | 1.839E+05      | 1.236E+01     | 5.274E+00              | 1.471E+03              | 9.886E-02              |  |  |  |
| 1973 | 2.986E+02 | 1.631E+05      | 1.096E+01     | 4.678E+00              | 1.305E+03              | 8.769E-02              |  |  |  |
| 1974 | 2.648E+02 | 1.447E+05      | 9.721E+00     | 4.149E+00              | 1.157E+03              | 7.777E-02              |  |  |  |
| 1975 | 2.349E+02 | 1.283E+05      | 8.622E+00     | 3.680E+00              | 1.027E+03              | 6.898E-02              |  |  |  |
| 1976 | 2.083E+02 | 1.138E+05      | 7.647E+00     | 3.264E+00              | 9.105E+02              | 6.118E-02              |  |  |  |
| 1977 | 1.848E+02 | 1.009E+05      | 6.782E+00     | 2.895E+00              | 8.075E+02              | 5.426E-02              |  |  |  |
| 1978 | 1.639E+02 | 8.953E+04      | 6.015E+00     | 2.567E+00              | 7.162E+02              | 4.812E-02              |  |  |  |
| 1979 | 1.453E+02 | 7.940E+04      | 5.335E+00     | 2.277E+00              | 6.352E+02              | 4.268E-02              |  |  |  |
| 1980 | 1.289E+02 | 7.042E+04      | 4.732E+00     | 2.019E+00              | 5.634E+02              | 3.785E-02              |  |  |  |
| 1981 | 1.143E+02 | 6.246E+04      | 4.197E+00     | 1.791E+00              | 4.997E+02              | 3.357E-02              |  |  |  |
| 1982 | 1.014E+02 | 5.540E+04      | 3.722E+00     | 1.589E+00              | 4.432E+02              | 2.978E-02              |  |  |  |
| 1983 | 8.994E+01 | 4.913E+04      | 3.301E+00     | 1.409E+00              | 3.931E+02              | 2.641E-02              |  |  |  |
| 1984 | 7.977E+01 | 4.358E+04      | 2.928E+00     | 1.250E+00              | 3.486E+02              | 2.342E-02              |  |  |  |
| 1985 | 7.075E+01 | 3.865E+04      | 2.597E+00     | 1.108E+00              | 3.092E+02              | 2.078E-02              |  |  |  |
| 1986 | 6.275E+01 | 3.428E+04      | 2.303E+00     | 9.830E-01              | 2.742E+02              | 1.843E-02              |  |  |  |
| 1987 | 5.565E+01 | 3.040E+04      | 2.043E+00     | 8.718E-01              | 2.432E+02              | 1.634E-02              |  |  |  |
| 1988 | 4.936E+01 | 2.697E+04      | 1.812E+00     | 7.732E-01              | 2.157E+02              | 1.449E-02              |  |  |  |
| 1989 | 4.378E+01 | 2.392E+04      | 1.607E+00     | 6.858E-01              | 1.913E+02              | 1.286E-02              |  |  |  |
| 1990 | 3.883E+01 | 2.121E+04      | 1.425E+00     | 6.083E-01              | 1.697E+02              | 1.140E-02              |  |  |  |
| 1991 | 3.444E+01 | 1.881E+04      | 1.264E+00     | 5.395E-01              | 1.505E+02              | 1.011E-02              |  |  |  |
| 1992 | 3.054E+01 | 1.669E+04      | 1.121E+00     | 4.785E-01              | 1.335E+02              | 8.969E-03              |  |  |  |
| 1993 | 2.709E+01 | 1.480E+04      | 9.943E-01     | 4.244E-01              | 1.184E+02              | 7.955E-03              |  |  |  |
| 1994 | 2.403E+01 | 1.313E+04      | 8.819E-01     | 3.764E-01              | 1.050E+02              | 7.055E-03              |  |  |  |
| 1995 | 2.131E+01 | 1.164E+04      | 7.822E-01     | 3.338E-01              | 9.313E+01              | 6.257E-03              |  |  |  |
| 1996 | 1.890E+01 | 1.032E+04      | 6.937E-01     | 2.961E-01              | 8.260E+01              | 5.550E-03              |  |  |  |
| 1997 | 1.676E+01 | 9.157E+03      | 6.153E-01     | 2.626E-01              | 7.326E+01              | 4.922E-03              |  |  |  |
| 1998 | 1.487E+01 | 8.122E+03      | 5.457E-01     | 2.329E-01              | 6.497E+01              | 4.366E-03              |  |  |  |
| 1999 | 1.319E+01 | 7.203E+03      | 4.840E-01     | 2.066E-01              | 5.763E+01              | 3.872E-03              |  |  |  |
| 2000 | 1.169E+01 | 6.389E+03      | 4.293E-01     | 1.832E-01              | 5.111E+01              | 3.434E-03              |  |  |  |
| 2001 | 1.037E+01 | 5.666E+03      | 3.807E-01     | 1.625E-01              | 4.533E+01              | 3.434E-03<br>3.046E-03 |  |  |  |
| 2001 | 9.199E+00 | 5.006E+03      | 3.377E-01     | 1.625E-01<br>1.441E-01 | 4.535E+01<br>4.020E+01 | 2.701E-03              |  |  |  |

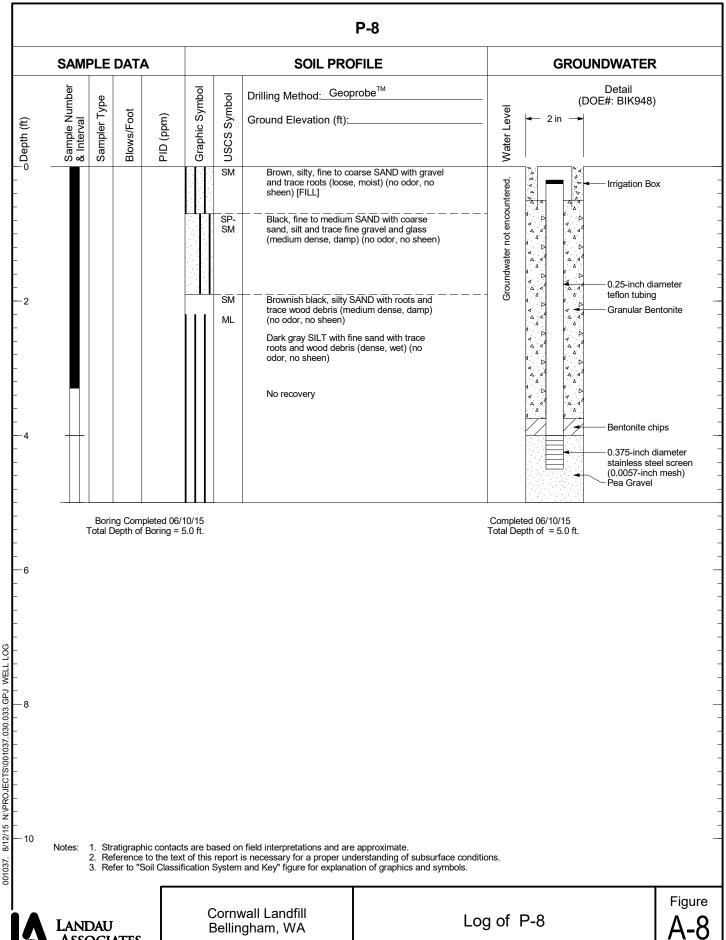

| Year |                        | Carbon dioxide |               | NMOC      |           |               |  |  |  |
|------|------------------------|----------------|---------------|-----------|-----------|---------------|--|--|--|
| rear | (Mg/year)              | (m³/year)      | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |  |  |  |
| 2003 | 8.159E+00              | 4.457E+03      | 2.995E-01     | 1.278E-01 | 3.566E+01 | 2.396E-03     |  |  |  |
| 2004 | 7.236E+00              | 3.953E+03      | 2.656E-01     | 1.134E-01 | 3.163E+01 | 2.125E-03     |  |  |  |
| 2005 | 6.418E+00              | 3.506E+03      | 2.356E-01     | 1.005E-01 | 2.805E+01 | 1.885E-03     |  |  |  |
| 2006 | 5.692E+00              | 3.110E+03      | 2.089E-01     | 8.917E-02 | 2.488E+01 | 1.672E-03     |  |  |  |
| 2007 | 5.049E+00              | 2.758E+03      | 1.853E-01     | 7.909E-02 | 2.206E+01 | 1.483E-03     |  |  |  |
| 2008 | 4.478E+00              | 2.446E+03      | 1.644E-01     | 7.015E-02 | 1.957E+01 | 1.315E-03     |  |  |  |
| 2009 | 3.971E+00              | 2.170E+03      | 1.458E-01     | 6.221E-02 | 1.736E+01 | 1.166E-03     |  |  |  |
| 2010 | 3.522E+00              | 1.924E+03      | 1.293E-01     | 5.518E-02 | 1.539E+01 | 1.034E-03     |  |  |  |
| 2011 | 3.124E+00              | 1.707E+03      | 1.147E-01     | 4.894E-02 | 1.365E+01 | 9.174E-04     |  |  |  |
| 2012 | 2.771E+00              | 1.514E+03      | 1.017E-01     | 4.341E-02 | 1.211E+01 | 8.136E-04     |  |  |  |
| 013  | 2.457E+00              | 1.343E+03      | 9.020E-02     | 3.850E-02 | 1.074E+01 | 7.216E-04     |  |  |  |
| 2014 | 2.180E+00              | 1.191E+03      | 8.000E-02     | 3.414E-02 | 9.526E+00 | 6.400E-04     |  |  |  |
| 015  | 1.933E+00              | 1.056E+03      | 7.096E-02     | 3.028E-02 | 8.448E+00 | 5.677E-04     |  |  |  |
| 016  | 1.715E+00              | 9.366E+02      | 6.293E-02     | 2.686E-02 | 7.493E+00 | 5.035E-04     |  |  |  |
| 017  | 1.521E+00              | 8.307E+02      | 5.582E-02     | 2.382E-02 | 6.646E+00 | 4.465E-04     |  |  |  |
| 018  | 1.349E+00              | 7.368E+02      | 4.950E-02     | 2.113E-02 | 5.894E+00 | 3.960E-04     |  |  |  |
| 019  | 1.196E+00              | 6.535E+02      | 4.391E-02     | 1.874E-02 | 5.228E+00 | 3.513E-04     |  |  |  |
| 020  | 1.061E+00              | 5.796E+02      | 3.894E-02     | 1.662E-02 | 4.637E+00 | 3.115E-04     |  |  |  |
| 020  |                        | 5.140E+02      |               |           | 4.112E+00 | 2.763E-04     |  |  |  |
| 022  | 9.409E-01<br>8.345E-01 |                | 3.454E-02     | 1.474E-02 | 3.647E+00 |               |  |  |  |
|      |                        | 4.559E+02      | 3.063E-02     | 1.307E-02 |           | 2.451E-04     |  |  |  |
| 023  | 7.402E-01              | 4.044E+02      | 2.717E-02     | 1.160E-02 | 3.235E+00 | 2.173E-04     |  |  |  |
| 024  | 6.565E-01              | 3.586E+02      | 2.410E-02     | 1.028E-02 | 2.869E+00 | 1.928E-04     |  |  |  |
| 025  | 5.822E-01              | 3.181E+02      | 2.137E-02     | 9.121E-03 | 2.545E+00 | 1.710E-04     |  |  |  |
| 026  | 5.164E-01              | 2.821E+02      | 1.895E-02     | 8.090E-03 | 2.257E+00 | 1.516E-04     |  |  |  |
| 027  | 4.580E-01              | 2.502E+02      | 1.681E-02     | 7.175E-03 | 2.002E+00 | 1.345E-04     |  |  |  |
| 028  | 4.062E-01              | 2.219E+02      | 1.491E-02     | 6.364E-03 | 1.775E+00 | 1.193E-04     |  |  |  |
| 029  | 3.603E-01              | 1.968E+02      | 1.322E-02     | 5.644E-03 | 1.575E+00 | 1.058E-04     |  |  |  |
| 030  | 3.195E-01              | 1.746E+02      | 1.173E-02     | 5.006E-03 | 1.397E+00 | 9.383E-05     |  |  |  |
| 031  | 2.834E-01              | 1.548E+02      | 1.040E-02     | 4.440E-03 | 1.239E+00 | 8.322E-05     |  |  |  |
| 032  | 2.514E-01              | 1.373E+02      | 9.226E-03     | 3.938E-03 | 1.099E+00 | 7.381E-05     |  |  |  |
| 033  | 2.229E-01              | 1.218E+02      | 8.183E-03     | 3.492E-03 | 9.743E-01 | 6.546E-05     |  |  |  |
| 034  | 1.977E-01              | 1.080E+02      | 7.258E-03     | 3.097E-03 | 8.641E-01 | 5.806E-05     |  |  |  |
| 035  | 1.754E-01              | 9.580E+01      | 6.437E-03     | 2.747E-03 | 7.664E-01 | 5.150E-05     |  |  |  |
| 036  | 1.555E-01              | 8.497E+01      | 5.709E-03     | 2.437E-03 | 6.798E-01 | 4.567E-05     |  |  |  |
| 037  | 1.379E-01              | 7.536E+01      | 5.064E-03     | 2.161E-03 | 6.029E-01 | 4.051E-05     |  |  |  |
| 038  | 1.224E-01              | 6.684E+01      | 4.491E-03     | 1.917E-03 | 5.347E-01 | 3.593E-05     |  |  |  |
| 039  | 1.085E-01              | 5.928E+01      | 3.983E-03     | 1.700E-03 | 4.743E-01 | 3.186E-05     |  |  |  |
| 040  | 9.624E-02              | 5.258E+01      | 3.533E-03     | 1.508E-03 | 4.206E-01 | 2.826E-05     |  |  |  |
| 041  | 8.536E-02              | 4.663E+01      | 3.133E-03     | 1.337E-03 | 3.731E-01 | 2.507E-05     |  |  |  |
| 042  | 7.571E-02              | 4.136E+01      | 2.779E-03     | 1.186E-03 | 3.309E-01 | 2.223E-05     |  |  |  |
| 043  | 6.715E-02              | 3.668E+01      | 2.465E-03     | 1.052E-03 | 2.935E-01 | 1.972E-05     |  |  |  |
| 044  | 5.955E-02              | 3.253E+01      | 2.186E-03     | 9.329E-04 | 2.603E-01 | 1.749E-05     |  |  |  |
| 045  | 5.282E-02              | 2.886E+01      | 1.939E-03     | 8.275E-04 | 2.308E-01 | 1.551E-05     |  |  |  |
| 046  | 4.685E-02              | 2.559E+01      | 1.720E-03     | 7.339E-04 | 2.047E-01 | 1.376E-05     |  |  |  |
| 047  | 4.155E-02              | 2.270E+01      | 1.525E-03     | 6.509E-04 | 1.816E-01 | 1.220E-05     |  |  |  |
| 048  | 3.685E-02              | 2.013E+01      | 1.353E-03     | 5.773E-04 | 1.611E-01 | 1.082E-05     |  |  |  |
| 049  | 3.268E-02              | 1.786E+01      | 1.200E-03     | 5.120E-04 | 1.428E-01 | 9.598E-06     |  |  |  |
| 050  | 2.899E-02              | 1.584E+01      | 1.064E-03     | 4.541E-04 | 1.267E-01 | 8.512E-06     |  |  |  |
| 051  | 2.571E-02              | 1.405E+01      | 9.437E-04     | 4.028E-04 | 1.124E-01 | 7.550E-06     |  |  |  |
| 052  | 2.280E-02              | 1.246E+01      | 8.370E-04     | 3.572E-04 | 9.966E-02 | 6.696E-06     |  |  |  |
| 053  | 2.022E-02              | 1.105E+01      | 7.423E-04     | 3.168E-04 | 8.839E-02 | 5.939E-06     |  |  |  |

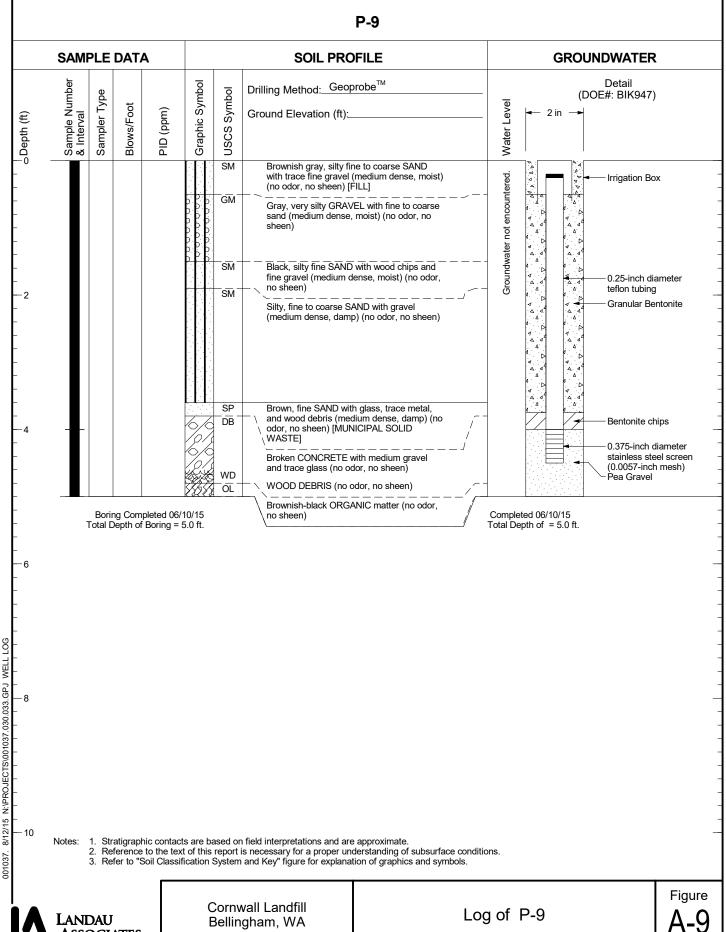

| V    |           | Carbon dioxide |               | NMOC      |           |               |  |  |  |
|------|-----------|----------------|---------------|-----------|-----------|---------------|--|--|--|
| Year | (Mg/year) | (m³/year)      | (av ft^3/min) | (Mg/year) | (m³/year) | (av ft^3/min) |  |  |  |
| 2054 | 1.794E-02 | 9.799E+00      | 6.584E-04     | 2.810E-04 | 7.839E-02 | 5.267E-06     |  |  |  |
| 2055 | 1.591E-02 | 8.691E+00      | 5.840E-04     | 2.492E-04 | 6.953E-02 | 4.672E-06     |  |  |  |
| 2056 | 1.411E-02 | 7.708E+00      | 5.179E-04     | 2.210E-04 | 6.167E-02 | 4.143E-06     |  |  |  |
| 2057 | 1.251E-02 | 6.837E+00      | 4.594E-04     | 1.960E-04 | 5.469E-02 | 3.675E-06     |  |  |  |
| 2058 | 1.110E-02 | 6.064E+00      | 4.074E-04     | 1.739E-04 | 4.851E-02 | 3.259E-06     |  |  |  |
| 2059 | 9.844E-03 | 5.378E+00      | 3.613E-04     | 1.542E-04 | 4.302E-02 | 2.891E-06     |  |  |  |
| 2060 | 8.731E-03 | 4.770E+00      | 3.205E-04     | 1.368E-04 | 3.816E-02 | 2.564E-06     |  |  |  |
| 2061 | 7.744E-03 | 4.230E+00      | 2.842E-04     | 1.213E-04 | 3.384E-02 | 2.274E-06     |  |  |  |
| 2062 | 6.868E-03 | 3.752E+00      | 2.521E-04     | 1.076E-04 | 3.002E-02 | 2.017E-06     |  |  |  |
| 2063 | 6.091E-03 | 3.328E+00      | 2.236E-04     | 9.543E-05 | 2.662E-02 | 1.789E-06     |  |  |  |
| 2064 | 5.403E-03 | 2.951E+00      | 1.983E-04     | 8.464E-05 | 2.361E-02 | 1.586E-06     |  |  |  |
| 2065 | 4.792E-03 | 2.618E+00      | 1.759E-04     | 7.506E-05 | 2.094E-02 | 1.407E-06     |  |  |  |
| 2066 | 4.250E-03 | 2.322E+00      | 1.560E-04     | 6.658E-05 | 1.857E-02 | 1.248E-06     |  |  |  |
| 2067 | 3.769E-03 | 2.059E+00      | 1.384E-04     | 5.905E-05 | 1.647E-02 | 1.107E-06     |  |  |  |
| 2068 | 3.343E-03 | 1.826E+00      | 1.227E-04     | 5.237E-05 | 1.461E-02 | 9.817E-07     |  |  |  |
| 2069 | 2.965E-03 | 1.620E+00      | 1.088E-04     | 4.645E-05 | 1.296E-02 | 8.707E-07     |  |  |  |
| 2070 | 2.630E-03 | 1.437E+00      | 9.653E-05     | 4.120E-05 | 1.149E-02 | 7.722E-07     |  |  |  |
| 2071 | 2.332E-03 | 1.274E+00      | 8.561E-05     | 3.654E-05 | 1.019E-02 | 6.849E-07     |  |  |  |
| 2072 | 2.069E-03 | 1.130E+00      | 7.593E-05     | 3.241E-05 | 9.041E-03 | 6.074E-07     |  |  |  |
| 2073 | 1.835E-03 | 1.002E+00      | 6.734E-05     | 2.874E-05 | 8.018E-03 | 5.388E-07     |  |  |  |
| 2074 | 1.627E-03 | 8.890E-01      | 5.973E-05     | 2.549E-05 | 7.112E-03 | 4.778E-07     |  |  |  |
| 2075 | 1.443E-03 | 7.884E-01      | 5.298E-05     | 2.261E-05 | 6.308E-03 | 4.238E-07     |  |  |  |
| 2076 | 1.280E-03 | 6.993E-01      | 4.698E-05     | 2.005E-05 | 5.594E-03 | 3.759E-07     |  |  |  |
| 2077 | 1.135E-03 | 6.202E-01      | 4.167E-05     | 1.778E-05 | 4.962E-03 | 3.334E-07     |  |  |  |
| 2078 | 1.007E-03 | 5.501E-01      | 3.696E-05     | 1.577E-05 | 4.401E-03 | 2.957E-07     |  |  |  |
| 2079 | 8.930E-04 | 4.879E-01      | 3.278E-05     | 1.399E-05 | 3.903E-03 | 2.622E-07     |  |  |  |
| 2080 | 7.921E-04 | 4.327E-01      | 2.907E-05     | 1.241E-05 | 3.462E-03 | 2.326E-07     |  |  |  |
| 2081 | 7.025E-04 | 3.838E-01      | 2.579E-05     | 1.100E-05 | 3.070E-03 | 2.063E-07     |  |  |  |
| 2082 | 6.231E-04 | 3.404E-01      | 2.287E-05     | 9.761E-06 | 2.723E-03 | 1.830E-07     |  |  |  |
| 2083 | 5.526E-04 | 3.019E-01      | 2.028E-05     | 8.657E-06 | 2.415E-03 | 1.623E-07     |  |  |  |
| 2084 | 4.901E-04 | 2.677E-01      | 1.799E-05     | 7.678E-06 | 2.142E-03 | 1.439E-07     |  |  |  |
| 2085 | 4.347E-04 | 2.375E-01      | 1.596E-05     | 6.810E-06 | 1.900E-03 | 1.276E-07     |  |  |  |
| 2086 | 3.855E-04 | 2.106E-01      | 1.415E-05     | 6.040E-06 | 1.685E-03 | 1.132E-07     |  |  |  |
| 2087 | 3.419E-04 | 1.868E-01      | 1.255E-05     | 5.357E-06 | 1.494E-03 | 1.004E-07     |  |  |  |
| 2088 | 3.033E-04 | 1.657E-01      | 1.113E-05     | 4.751E-06 | 1.325E-03 | 8.906E-08     |  |  |  |
| 2089 | 2.690E-04 | 1.469E-01      | 9.873E-06     | 4.214E-06 | 1.176E-03 | 7.899E-08     |  |  |  |
| 2090 | 2.386E-04 | 1.303E-01      | 8.757E-06     | 3.737E-06 | 1.043E-03 | 7.005E-08     |  |  |  |
| 2091 | 2.116E-04 | 1.156E-01      | 7.767E-06     | 3.315E-06 | 9.247E-04 | 6.213E-08     |  |  |  |
| 2092 | 1.877E-04 | 1.025E-01      | 6.888E-06     | 2.940E-06 | 8.202E-04 | 5.511E-08     |  |  |  |
| 2093 | 1.664E-04 | 9.093E-02      | 6.109E-06     | 2.607E-06 | 7.274E-04 | 4.887E-08     |  |  |  |

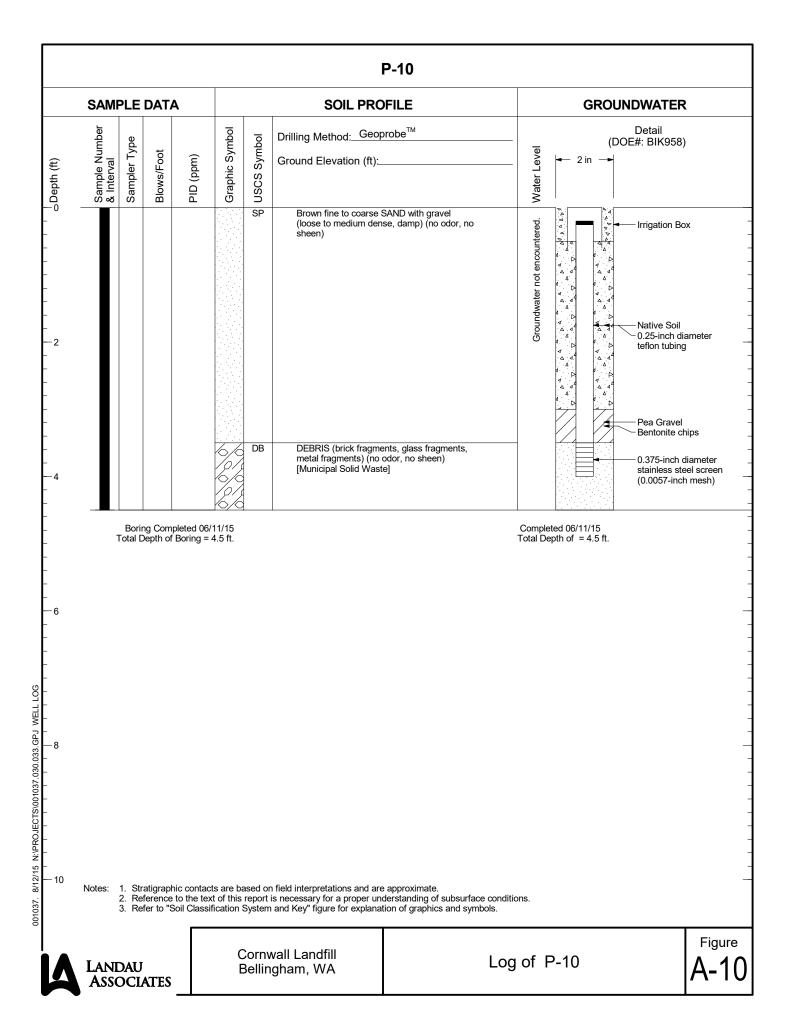

# **Landfill Gas Monitoring Probe Installation Logs**

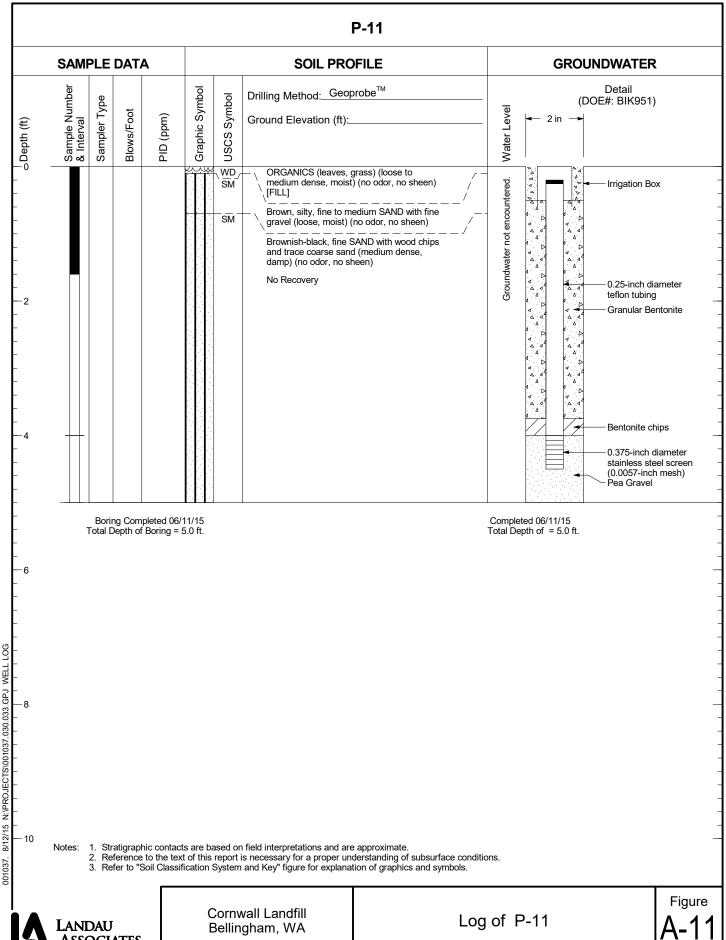


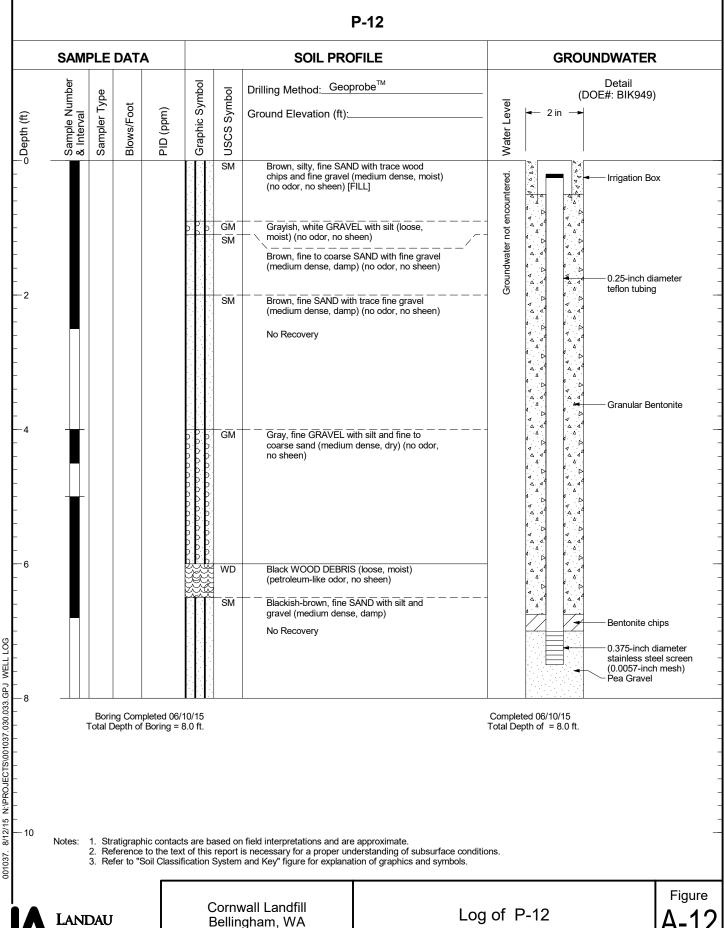



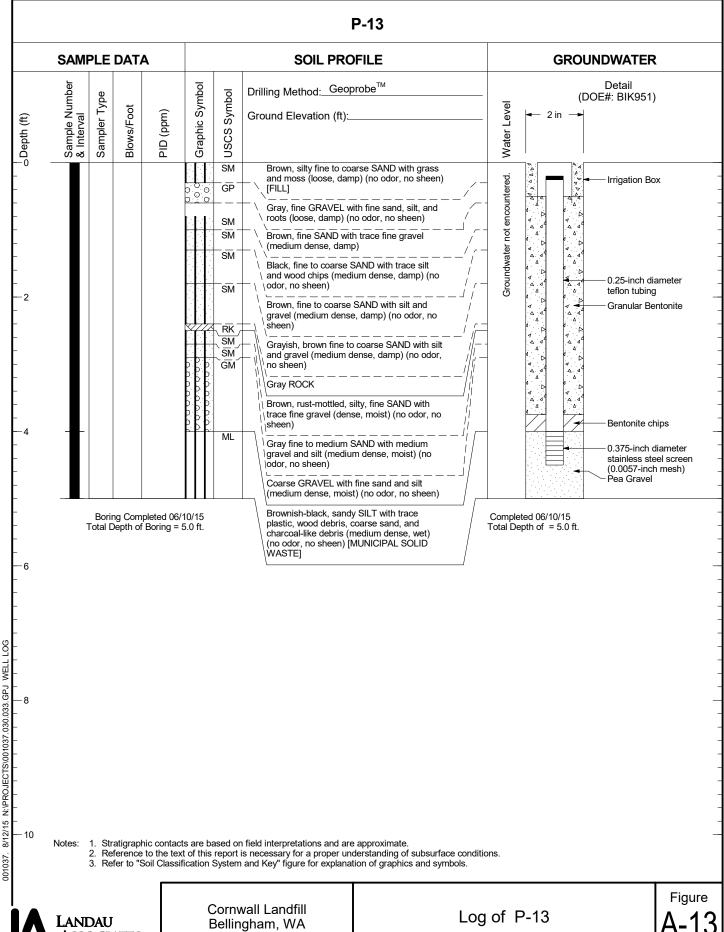












Bellingham, WA



# **Landfill Gas Monitoring Data**

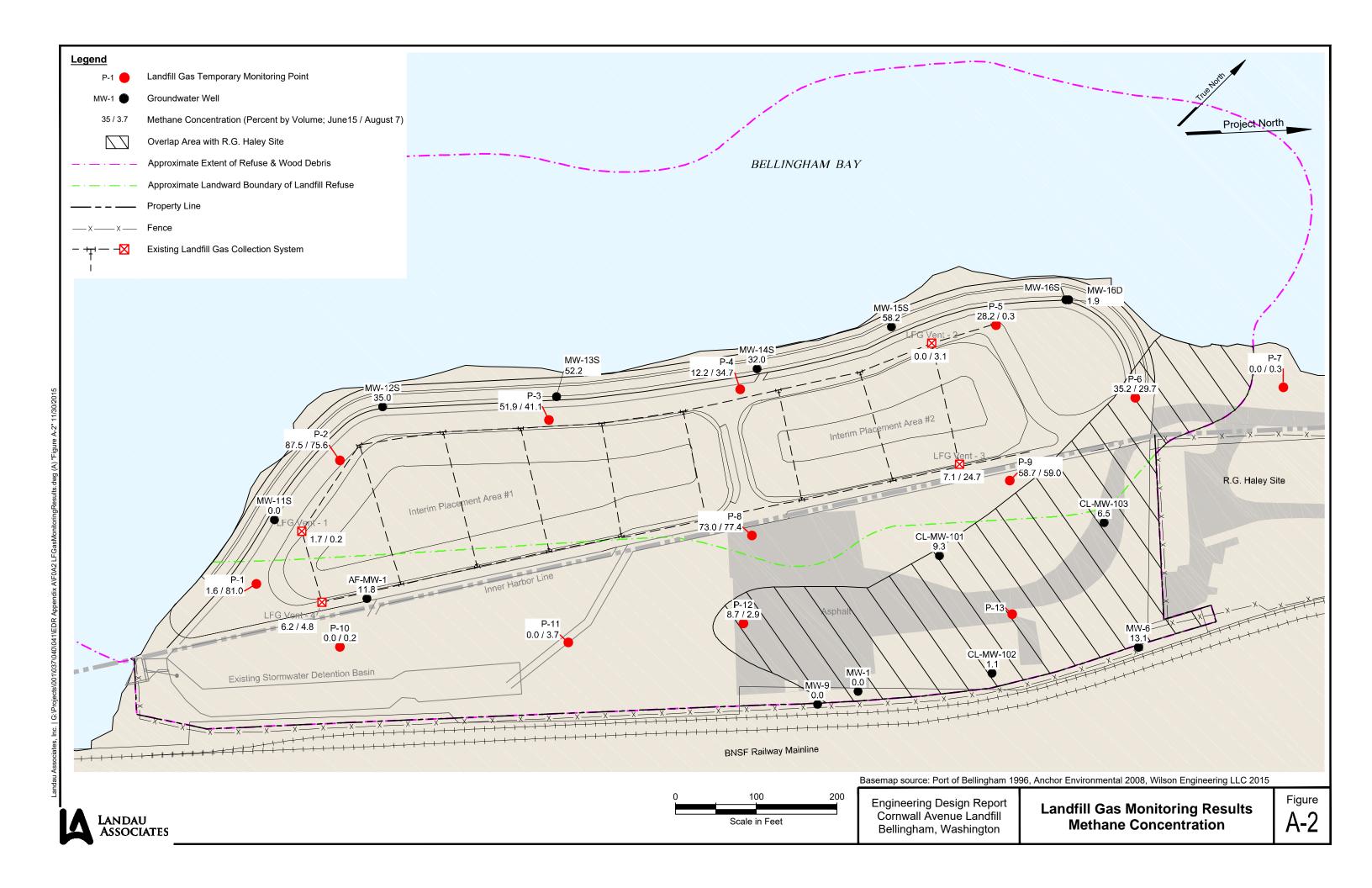



Table A-1
Landfill Gas Monitoring Data - June 15, 2015
Cornwall Avenue Landfill
Bellingham, Washington

| Location        | Date         | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | Balance (%) | H <sub>2</sub><br>(ppm) | CO<br>(ppm)     | H₂S<br>(ppm) | Static Pressure<br>(inches WC) | TO-15<br>(Y/N) | VOCs<br>(ppm) |
|-----------------|--------------|------------|------------------------|-----------------------|-------------|-------------------------|-----------------|--------------|--------------------------------|----------------|---------------|
| Groundwater I   | Monitoring V | /ells      |                        |                       |             |                         |                 |              |                                |                |               |
| AF-MW-1         | 6/15/2015    | 11.8       | 12.5                   | 00.1                  | 75.5        | low                     | 0               | 9            | 0.24                           | N              | 0             |
| CL-MW-101       | 6/15/2015    | 9.3        | 10.3                   | 00.4                  | 80.0        | low                     | 0               | 2            | 0.20                           | N              | 0             |
| CL-MW-102       | 6/15/2015    | 1.1        | 12.2                   | 00.4                  | 86.3        | low                     | 0               | 1            | 0.21                           | Υ              | 8.7           |
| CL-MW-103       | 6/15/2015    | 6.5        | 14.1                   | 00.3                  | 79.1        | low                     | 0               | 4            | 0.16                           | N              | 2.3           |
| MW-1            | 6/15/2015    | 0          | 13.3                   | 1.4                   | 85.2        | low                     | 0               | 0            | 0.21                           | N              | 0             |
| MW-11S          | 6/15/2015    | 0          | 4.3                    | 14.6                  | 81.0        | low                     | 0               | 0            | 0.25                           | N              | 0             |
| MW-12S          | 6/15/2015    | 35.0       | 6.2                    | 11.0                  | 48.9        | low                     | 0               | 1            | 0.34                           | N              | 0.9           |
| MW-13S          | 6/15/2015    | 52.2       | 11.3                   | 5.7                   | 30.3        | low                     | 0               | 0            | 0.35                           | N              | 0             |
| MW-14S          | 6/15/2015    | 32.0       | 18.2                   | 4.5                   | 45.1        | low                     | 0               | 1            | 0.24                           | N              | 0             |
| MW-15S          | 6/15/2015    | 58.2       | 16.9                   | 0                     | 24.1        | low                     | 0               | 6            | 0.24                           | N              | 2.0           |
| MW-16S          | 6/15/2015    | 1.9        | 10.1                   | 6.3                   | 81.8        | low                     | 17 <sup>a</sup> | 0            | 1.55                           | N              | 0.8           |
| MW-6            | 6/15/2015    | 13.1       | 6.9                    | 00.5                  | 79.6        | low                     | 0               | 4            | 0.16                           | N              | 0.9           |
| MW-9            | 6/15/2015    | 0          | 8.1                    | 11.3                  | 80.6        | low                     | 0               | 0            | 0.59                           | N              | 0             |
| Landfill Gas Ve | ents         |            |                        |                       |             |                         |                 |              |                                |                |               |
| VENT 1          | 6/15/2015    | 1.7        | 00.1                   | 19.8                  | 78.3        | low                     | 0               | 0            | 0.24                           | N              | 0             |
| VENT 2          | 6/15/2015    | 0          | 0                      | 20.4                  | 79.4        | low                     | 0               | 0            | 0.25                           | N              | 0             |
| VENT 3          | 6/15/2015    | 7.1        | 1.2                    | 16.5                  | 75.2        | low                     | 0               | 42           | 0.21                           | Υ              | 0             |
| VENT 4          | 6/15/2015    | 6.2        | 7.0                    | 9.0                   | 77.8        | low                     | 0               | 0            | 0.25                           | Υ              | 0             |

Table A-1
Landfill Gas Monitoring Data - June 15, 2015
Cornwall Avenue Landfill
Bellingham, Washington

| Location      | Date           | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | Balance (%) | H <sub>2</sub><br>(ppm) | CO<br>(ppm)    | H <sub>2</sub> S<br>(ppm) | Static Pressure<br>(inches WC) | TO-15<br>(Y/N) | VOCs<br>(ppm) |
|---------------|----------------|------------|------------------------|-----------------------|-------------|-------------------------|----------------|---------------------------|--------------------------------|----------------|---------------|
| Temporary Lai | ndfill Gas Pro | bes        |                        |                       |             |                         |                |                           |                                |                |               |
| P-1           | 6/15/2015      | 1.6        | 1.4                    | 19.4                  | 77.5        | low                     | 0              | 1                         | 0.25                           | N              | 0             |
| P-2           | 6/15/2015      | 87.5       | 12.3                   | 00.1                  | 00.2        | low                     | 0              | 1                         | 0.25                           | N              | 0             |
| P-3           | 6/15/2015      | 51.9       | 35.7                   | 1.6                   | 10.8        | low                     | 0              | 1                         | 4.79                           | Υ              | 0             |
| P-4           | 6/15/2015      | 12.2       | 15.2                   | 13.6                  | 59.4        | low                     | 0              | 0                         | 0.31                           | N              | 0             |
| P-5           | 6/15/2015      | 28.2       | 3.6                    | 15.3                  | 52.8        | low                     | 29             | 2                         | 0.75                           | N              | 0             |
| P-6           | 6/15/2015      | 35.2       | 19.3                   | 0                     | 45.4        | low                     | 0              | 0                         | 0.25                           | N              | 0.4           |
| P-7           | 6/15/2015      | 0          | 11.8                   | 4.2                   | 83.7        | low                     | 0              | 0                         | 0.24                           | N              | 0             |
| P-8           | 6/15/2015      | 73.0       | 10.2                   | 00.3                  | 16.6        | low                     | 0              | 0                         | 0.26                           | N              | 0             |
| P-9           | 6/15/2015      | 58.7       | 12.9                   | 0                     | 28.3        | low                     | 0              | 0                         | 0.18                           | N              | 0.9           |
| P-10          | 6/15/2015      | 0          | 12.2                   | 7.8                   | 80.0        | low                     | O <sub>p</sub> | 0                         | 0.24                           | N              | 0             |
| P-11          | 6/15/2015      | 0          | 9.7                    | 6.7                   | 83.5        | low                     | 0              | 0                         | 0.24                           | N              | 0             |
| P-12          | 6/15/2015      | 8.7        | 8.2                    | 00.2                  | 82.9        | low                     | 0              | 0                         | 8.77                           | Υ              | 1.8           |
| P-13          | 6/15/2015      | 0          | 12.0                   | 3.0                   | 85.1        | low                     | 0              | 0                         | 0.16                           | N              | 1.5           |

<sup>&</sup>lt;sup>a</sup> Peaked at 180 ppm.

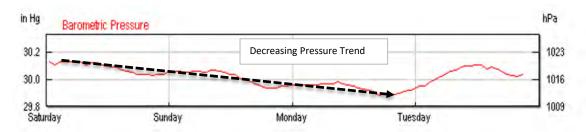
 $CH_4$  = methane

CO<sub>2</sub> = carbon dioxide

H<sub>2</sub> = hydrogen

H<sub>2</sub>S = hydrogen sulfide


N/A = not applicable.


O<sub>2</sub> = oxygen

ppm = parts per million

WC = water column

Y/N = yes/no





<sup>&</sup>lt;sup>b</sup> Peaked at 210 ppm.

Table A-2
Landfill Gas Monitoring Data - August 7, 2015
Cornwall Avenue Landfill
Bellingham, Washington

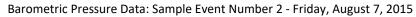
| Location        | Date               | Time<br>(in seconds) | Purge Volume | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | Balance (%) | H <sub>2</sub><br>(ppm) | CO<br>(ppm) | H₂S<br>(ppm) | Static Pressure<br>(inches WC) | TO-15<br>(Y/N) | VOCs<br>(ppm) |
|-----------------|--------------------|----------------------|--------------|------------|------------------------|-----------------------|-------------|-------------------------|-------------|--------------|--------------------------------|----------------|---------------|
| Landfill Gas Ve | Landfill Gas Vents |                      |              |            |                        |                       |             |                         |             |              |                                |                |               |
| VENT 1          | 8/7/2015           | 53                   | ~0.5817      | 0.2        | 0.4                    | 20.3                  | 79.1        | low                     | 0           | 0.0          | 0.01                           | N              | 4.3           |
| VENT 2          | 8/7/2015           | 50                   | 0.5817       | 3.1        | 0.5                    | 20.1                  | 76.3        | low                     | 0           | 0.0          | 0.03                           | N              | 3.0           |
| VENT 3          | 8/7/2015           | 50                   | 0.5817       | 24.7       | 8.3                    | 9.1                   | 57.9        | low                     | 0           | 0.0          | 0.01                           | N              | 0.0           |
| VENT 4          | 8/7/2015           | 81                   | 0.6103       | 4.8        | 10.7                   | 7.8                   | 76.7        | low                     | 0           | 0.0          | 0.03                           | N              | 2.0           |
| Temporary Lai   | ndfill Gas Pro     | obes                 |              |            |                        |                       |             |                         |             |              |                                |                |               |
| P-1             | 8/7/2015           | 80                   | N/A          | 81.0       | 10.7                   | 1.5                   | 6.8         | low                     | 0           | 0.0          | -1.01                          | N              | 0.0           |
| P-2             | 8/7/2015           | 111                  | N/A          | 75.6       | 7.9                    | 5.2                   | 11.3        | low                     | 5           | 2.8          | 0.13                           | Υ              | 0.0           |
| P-3             | 8/7/2015           | 67                   | N/A          | 41.1       | 39.8                   | 4.4                   | 14.6        | low                     | 0           | 0.0          | -0.04                          | Υ              | 0.7           |
| P-4             | 8/7/2015           | 108                  | N/A          | 34.7       | 24.4                   | 8.9                   | 32.0        | low                     | 0           | 0.0          | 0.08                           | N              | 0.1           |
| P-5             | 8/7/2015           | 53                   | N/A          | 0.3        | 0.1                    | 20.7                  | 79.0        | low                     | 0           | 0.0          | 0.07                           | N              | 0.1           |
| P-6             | 8/7/2015           | 60                   | N/A          | 29.7       | 19.8                   | 0.3                   | 50.3        | low                     | 0           | 0.0          | 0.02                           | Υ              | 0.0           |
| P-7             | 8/7/2015           | 53                   | N/A          | 0.3        | 12.0                   | 8.8                   | 78.9        | low                     | 0           | 0.0          | -0.02                          | N              | 5.7           |
| P-8             | 8/7/2015           | 93                   | N/A          | 77.4       | 14.0                   | 0.1                   | 8.5         | low                     | 0           | 0.0          | -0.02                          | N              | 0.2           |
| P-9             | 8/7/2015           | 160                  | N/A          | 59.0       | 17.3                   | 0.1                   | 23.7        | low                     | 0           | 4.5          | -0.01                          | N              | 0.8           |
| P-10            | 8/7/2015           | 55                   | N/A          | 0.2        | 12.1                   | 9.2                   | 78.5        | low                     | 0           | 0.0          | 0.02                           | N              | 10.0          |
| P-11            | 8/7/2015           | 63                   | N/A          | 3.7        | 6.5                    | 0.1                   | 89.8        | low                     | 0           | 0.0          | -0.01                          | N              | 0.0           |
| P-12            | 8/7/2015           | 45                   | N/A          | 2.9        | 14.6                   | 0.2                   | 82.3        | low                     | 0           | 3.8          | -0.01                          | Υ              | 6.4           |
| P-13            | 8/7/2015           | 80                   | N/A          | 0.00       | 9.6                    | 8.1                   | 82.3        | low                     | 0           | 0.0          | -0.04                          | N              | 0.0           |

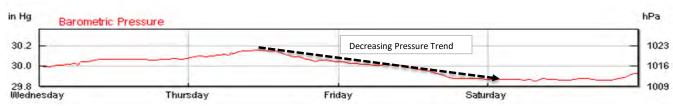
 $CH_4$  = methane

 $CO_2$  = carbon dioxide

H<sub>2</sub> = hydrogen

H<sub>2</sub>S = hydrogen sulfide


N/A = not applicable.


O<sub>2</sub> = oxygen

ppm = parts per million

WC = water column

Y/N = yes/no





### Table A-3 Landfill Gas Monitoring Data - TO-15 Analytical Results Cornwall Avenue Landfill Bellingham, Washington

| Sample ID, Laboratory ID, Sample Date, and Results |                                |                          |                       |                      |                        |                        |                      |                     |                   |                      |                      |
|----------------------------------------------------|--------------------------------|--------------------------|-----------------------|----------------------|------------------------|------------------------|----------------------|---------------------|-------------------|----------------------|----------------------|
|                                                    | AATCA AA AL A D                | CL-LFG-                  | CL-LFG-               | CL-LFG-              | CL-LFG-                | CL-LFG-                | CL-LFG-              | CL-LFG-             | CL-LFG-           | CL-LFG-              | CL-LFG-              |
| Analyte                                            | MTCA Method B<br>Cleanup Level | BACKGROUND               | MW-102                | P-2                  | P-3                    | P-3                    | P-6                  | P-12                | P-12              | VENT-3               | VENT-4               |
|                                                    | Cleanup Level                  | P1502473-001             | P1502473-006          | P1503343-03          | P1502473-003           | P1503343-04            | P1503343-01          | P1502473-004        | P1503343-02       | P1502473-005         | P1502473-002         |
|                                                    |                                | 6/15/2015                | 6/15/2015             | 8/7/2015             | 6/15/2015              | 8/7/2015               | 8/7/2015             | 6/15/2015           | 8/7/2015          | 6/15/2015            | 6/15/2015            |
| Volatiles (µg/m³)                                  |                                |                          |                       |                      |                        |                        |                      |                     |                   |                      |                      |
| EPA Method TO-15<br>Propene                        | No Criteria                    | 0.21 U                   | 6.9 U                 | 1300                 | 190                    | 120                    | 540                  | 84                  | <b>26</b> J1      | 6.5                  | 0.21 U               |
| Dichlorodifluoromethane                            |                                |                          |                       |                      |                        |                        |                      |                     |                   |                      |                      |
| (CFC 12)                                           | 45.71                          | 2.3                      | 8.4 U                 | <b>45</b> J1         | 1.3 U                  | 2.6 U                  | 54                   | 8.0 U               | 10 U              | 1.9                  | 1.0                  |
| Chloromethane                                      | 41.14                          | 0.22 U                   | 7.4 U                 | 15 U                 | 1.2 U                  | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | <b>0.33</b> J1       | <b>0.49</b> J1       |
| 1,2-Dichloro-1,1,2,2-                              | No Calenda                     | 0.28 U                   | 9.4 U                 | 440                  | 14                     | 2.9 U                  | 200                  | 8.9 U               | 12.11             | 0.20.11              | 0.20 11              |
| tetrafluoroethane (CFC 114)                        | No Criteria                    | 0.28 0                   | 9.4 0                 | 440                  | 14                     | 2.9 0                  | 200                  | 8.9 0               | 12 U              | 0.28 U               | <b>0.39</b> J1       |
| Vinyl chloride                                     | 0.28                           | NA                       | NA                    | 170                  | NA                     | NA                     | 150                  | NA                  | NA                | NA                   | NA                   |
| 1,3-Butadiene                                      | 0.08                           | 0.33 U                   | 11 U                  | 22 U                 | 1.7 U                  | 3.3 U                  | 20 U                 | 10 U                | 14 U              | 0.33 U               | 0.33 U               |
| Bromomethane                                       | 2.29                           | 0.28 U                   | 9.4 U                 | 19 U                 | 1.5 U                  | 2.9 U                  | 18 U                 | 8.9 U               | 12 U              | 0.28 U               | 0.28 U               |
| Chloroethane                                       | 4571.43                        | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | 0.25 U               | 0.25 U               |
| Ethanol<br>Acetonitrile                            | No Criteria<br>27.43           | <b>6.3</b> J1 0.27 U     | <b>270</b><br>8.9 U   | 79 U<br>18 U         | <b>79</b><br>1.4 U     | 12 U<br>2.7 U          | 74 U<br>17 U         | <b>860</b><br>8.5 U | 49 U<br>11 U      | 100<br>1.6           | <b>60</b><br>0.27 U  |
| Acrolein                                           | 0.01                           | 0.27 U                   | 8.4 U                 | 18 U                 | 1.4 U                  | 2.7 U                  | 16 U                 | 8.0 U               | 10 U              | 3.2                  | 0.27 U               |
| Acetone                                            | 14171.43                       | 7.5                      | 38 U                  | 76 U                 | 97                     | 12 U                   | 71 U                 | 200 J1              | 47 U              | 180                  | 40                   |
| Trichlorofluoromethane                             | 320.00                         | <b>1.3</b> J             | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | <b>1.4</b> J         | <b>0.66</b> J, J1    |
| 2-Propanol (Isopropyl Alcohol)                     | No Criteria                    | 0.63 U                   | 21 U                  | 42 U                 | <b>5.4</b> J1          | 6.3 U                  | 39 U                 | <b>56</b> J1        | 26 U              | <b>6.7</b> J1        | <b>5.8</b> J1        |
| Acrylonitrile                                      | 0.04                           | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | 0.25 U               | 0.25 U               |
| 1,1-Dichloroethene                                 | 91.43                          | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | 0.25 U               | 0.25 U               |
| Methylene Chloride<br>3-Chloro-1-propene           | 250.00                         | <b>0.41</b> J1           | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | <b>0.48</b> J1       | <b>0.39</b> J1       |
| (Allyl Chloride)                                   | 0.42                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Trichlorotrifluoroethane                           | No Criteria                    | <b>0.52</b> J1           | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | <b>0.53</b> J1       | 0.25 U               |
| Carbon Disulfide                                   | 320.00                         | 0.22 U                   | 8.6 J1                | 15 U                 | <b>29</b> J1           | <b>45</b> J1           | <b>20</b> J1         | <b>45</b> J1        | 9.2 U             | 4.9 J1               | <b>2.4</b> J1        |
| trans-1,2-Dichloroethene                           | No Criteria                    | 0.28 U                   | 9.4 U                 | 19 U                 | 1.5 U                  | 2.9 U                  | 18 U                 | 8.9 U               | 12 U              | 0.28 U               | 0.28 U               |
| 1,1-Dichloroethane                                 | 1.56                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Methyl tert-Butyl Ether                            | 9.62                           | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | 0.25 U               | 0.25 U               |
| Vinyl Acetate<br>2-Butanone (MEK)                  | 91.43<br>2285.71               | 0.97 U<br><b>0.65</b> J1 | 32 U<br>10 U          | 65 U<br>21 U         | 5.0 U<br><b>4.4</b> J1 | 9.8 U<br><b>3.4</b> J1 | 60 U<br>19 U         | 31 U<br>9.9 U       | 40 U<br>13 U      | 2.7 J1<br>42         | 0.96 U<br><b>14</b>  |
| cis-1,2-Dichloroethene                             | No Criteria                    | 0.85 J1<br>0.24 U        | 7.9 U                 | 21 U<br>24 J1        | 7.0                    | 3.2 J1                 | 25 J1                | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Ethyl Acetate                                      | 32.00                          | 1.4 J1                   | 17 U                  | 35 U                 | 2.7 U                  | 5.3 U                  | 61 J1                | 16 U                | 22 U              | 4.8                  | 3.0                  |
| n-Hexane                                           | 320.00                         | 0.79                     | 86                    | 5500                 | 450                    | 170                    | 1000                 | 84                  | 110               | 1.4                  | 25                   |
| Chloroform                                         | 0.11                           | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | <b>0.32</b> J1       | 10                   |
| Tetrahydrofuran (THF)                              | No Criteria                    | 0.30 U                   | 9.9 U                 | 20 U                 | 4.3                    | 3.0 U                  | 19 U                 | 9.4 U               | 12 U              | 280                  | 100                  |
| 1,2-Dichloroethane                                 | 0.10                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| 1,1,1-Trichloroethane                              | 2285.71                        | 0.25 U                   | 8.4 U                 | 17 U                 | 1.3 U                  | 2.6 U                  | 16 U                 | 8.0 U               | 10 U              | 0.25 U               | 0.25 U               |
| Benzene<br>Carbon Tetrachloride                    | 0.32<br>0.42                   | 0.61 J1<br>0.53 J, J1    | <b>12</b> J1<br>7.4 U | <b>60</b><br>15 U    | <b>120</b><br>1.2 U    | <b>16</b><br>2.3 U     | 100<br>14 U          | 7.5 U<br>7.1 U      | 9.9 U<br>9.2 U    | 2.8<br>0.55 J, J1    | <b>3.2</b><br>0.22 U |
| Cyclohexane                                        | 2742.86                        | 0.43 U                   | 51                    | 570                  | 180                    | 65                     | 850                  | 120                 | 130               | 4.5                  | 8.7                  |
| 1,2-Dichloropropane                                | 0.25                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Bromodichloromethane                               | 0.07                           | 0.22 U                   | 7.4 U                 | 15 U                 | 1.2 U                  | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | 0.22 U               | 0.22 U               |
| Trichloroethene                                    | 0.37                           | 0.21 U                   | 6.9 U                 | 14 U                 | <b>1.9</b> J1          | 2.1 U                  | 13 U                 | 6.6 U               | 8.6 U             | 0.21 U               | 0.21 U               |
| 1,4-Dioxane                                        | 0.50                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Methyl Methacrylate                                | 320.00<br>No Criteria          | 0.46 U<br><b>1.0</b>     | 15 U<br><b>210</b>    | 31 U<br><b>2000</b>  | 2.4 U<br><b>240</b>    | 4.7 U<br><b>74</b>     | 29 U<br><b>730</b>   | 15 U<br><b>26</b>   | 19 U<br><b>32</b> | 0.46 U<br><b>2.6</b> | 0.46 U<br><b>5.5</b> |
| n-Heptane<br>cis-1,3-Dichloropropene               | 0.63                           | 0.21 U                   | 6.9 U                 | 2000<br>14 U         | 1.1 U                  | 2.1 U                  | 13 U                 | 6.6 U               | 8.6 U             | 0.21 U               | 0.21 U               |
| 4-Methyl-2-pentanone                               | 1371.43                        | 0.24 U                   | 7.9 U                 | 16 U                 | 2.0 J1                 | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 1.8                  | 0.82                 |
| trans-1,3-Dichloropropene                          | No Criteria                    | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| 1,1,2-Trichloroethane                              | 0.09                           | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Toluene                                            | 2285.71                        | 5.6                      | 98                    | <b>36</b> J1         | 270                    | <b>3.4</b> J1          | <b>30</b> J1         | 190                 | 10 U              | 330                  | 280                  |
| 2-Hexanone                                         | No Criteria                    | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Dibromochloromethane 1,2-Dibromoethane             | 0.09                           | 0.24 U<br>0.24 U         | 7.9 U<br>7.9 U        | 16 U<br>16 U         | 1.2 U<br>1.2 U         | 2.4 U<br>2.4 U         | 15 U<br>15 U         | 7.5 U<br>7.5 U      | 9.9 U<br>9.9 U    | 0.24 U<br>0.24 U     | 0.24 U<br>0.24 U     |
| n-Butyl Acetate                                    | 0.0042<br>No Criteria          | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 7.7                  | 6.4                  |
| n-Octane                                           | No Criteria                    | 0.57 J1                  | 8.9 U                 | 220                  | 130                    | 29                     | 220                  | 8.5 U               | 11 U              | 4.3                  | 3.5                  |
| Tetrachloroethene                                  | 9.62                           | 0.21 U                   | 6.9 U                 | 14 U                 | 1.1 U                  | 2.1 U                  | 13 U                 | 6.6 U               | 8.6 U             | 0.21 U               | 0.21 U               |
| Chlorobenzene                                      | 22.86                          | 0.24 U                   | 7.9 U                 | 16 U                 | 1.2 U                  | 2.4 U                  | 15 U                 | 7.5 U               | 9.9 U             | 0.24 U               | 0.24 U               |
| Ethylbenzene                                       | 457.14                         | 1.1                      | 36                    | 16 J1                | 55                     | 2.5 J1                 | 15 U                 | 27                  | 9.9 U             | 32                   | 28                   |
| m,p-Xylenes<br>Bromoform                           | 45.71<br>2.27                  | <b>3.9</b><br>0.22 U     | <b>110</b><br>7.4 U   | <b>34</b> J1<br>15 U | <b>77</b><br>1.2 U     | <b>9.2</b> J1 2.3 U    | <b>34</b> J1<br>14 U | <b>55</b><br>7.1 U  | 18 U<br>9.2 U     | <b>49</b><br>0.22 U  | <b>43</b><br>0.22 U  |
| Styrene                                            | 457.14                         | 0.22 U                   | 7.4 U                 | 15 U                 | 2.6 J1                 | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | 2.7                  | 4.2                  |
| o-Xylene                                           | 45.71                          | 1.4                      | 33                    | <b>40</b> J1         | 51                     | 2.3 U                  | 28 J1                | 24                  | 21 J1             | 17                   | 16                   |
| n-Nonane                                           | No Criteria                    | 0.22 U                   | 7.4 U                 | 15 U                 | 61                     | 11                     | 160                  | 7.1 U               | 9.2 U             | 2.0                  | 1.9                  |
| 1,1,2,2-Tetrachloroethane                          | 0.04                           | 0.22 U                   | 7.4 U                 | 15 U                 | 1.2 U                  | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | 0.22 U               | 0.22 U               |
| Cumene                                             | 182.86                         | 0.22 U                   | 220                   | 58                   | 9.9                    | 2.3 U                  | 64                   | 230                 | 62                | 0.79                 | 1.6                  |
| alpha-Pinene                                       | No Criteria                    | 0.21 U                   | 6.9 U                 | 14 U                 | 50                     | 18                     | 250                  | 2,000               | 250               | 1.3                  | 1.3                  |
| n-Propylbenzene<br>4-Ethyltoluene                  | 457.14<br>No Criteria          | 0.24 U<br>0.30 J1        | <b>270</b><br>7.9 U   | 16 U<br>16 U         | <b>5.2</b><br>1.2 U    | 2.4 U<br>2.4 U         | 15 U<br>15 U         | <b>140</b><br>7.5 U | 9.9 U<br>9.9 U    | 2.4<br>3.6           | 2.6<br>3.7           |
| 1,3,5-Trimethylbenzene                             | No Criteria                    | 0.30 J1<br>0.30 J1       | 7.9 U<br><b>11</b> J1 | 16 U<br>17 J1        | 1.2 U                  | 2.4 U<br>3.1 J1        | 15 U<br>19 J1        | 7.5 U               | 9.9 U             | 3.5                  | 3.7                  |
| 1,2,4-Trimethylbenzene                             | 3.20                           | 0.98                     | 25 J1                 | 28 J1                | 29                     | 5.6 J1                 | 39 J1                | 17 J1               | 9.2 U             | 11                   | 13                   |
| Benzyl Chloride                                    | 0.05                           | 0.16 U                   | 5.4 U                 | 11 U                 | 0.85 U                 | 1.7 U                  | 10 U                 | 5.2 U               | 6.8 U             | 0.16 U               | 0.16 U               |
| 1,3-Dichlorobenzene                                | No Criteria                    | 0.22 U                   | 7.4 U                 | 15 U                 | <b>1.4</b> J1          | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | 1.3                  | 0.90                 |
| 1,4-Dichlorobenzene                                | 0.23                           | 0.21 U                   | 6.9 U                 | <b>32</b> J1         | 1.1 U                  | 2.1 U                  | 13 U                 | 6.6 U               | 8.6 U             | 0.21 U               | 0.21 U               |
| 1,2-Dichlorobenzene                                | 91.43                          | 0.22 U                   | 7.4 U                 | 15 U                 | 1.2 U                  | 2.3 U                  | 14 U                 | 7.1 U               | 9.2 U             | 0.22 U               | 0.22 U               |
| d-Limonene<br>1,2-Dibromo-3-chloropropane          | No Criteria<br>0.0004          | 0.21 U<br>0.15 U         | 6.9 U<br>4.9 U        | 14 U<br>9.8 U        | 18<br>0.77 U           | 2.1 U<br>1.5 U         | 13 U<br>9.2 U        | <b>150</b><br>4.7 U | 8.6 U<br>6.1 U    | 0.15 U               | 11<br>0.15 U         |
| 1,2,4-Trichlorobenzene                             | 0.0004                         | 0.15 U                   | 7.9 U                 | 9.8 U                | 1.2 U                  | 2.4 U                  | 9.2 U                | 7.5 U               | 9.9 U             | 0.15 U<br>0.24 U     | 0.13 U<br>0.24 U     |
| Naphthalene                                        | 0.07                           | 0.27 U                   | 8.9 U                 | 18 U                 | 2.7 J1                 | 2.7 U                  | 17 U                 | 8.5 U               | 11 U              | 0.49 J1              | 2.2                  |
| Hexachlorobutadiene                                | 0.11                           | 0.21 U                   | 6.9 U                 | 14 U                 | 1.1 U                  | 2.1 U                  | 13 U                 | 6.6 U               | 8.6 U             | 0.21 U               | 0.21 U               |
| Volatiles (μg/m³)<br>EPA Method TO-15 SIM          |                                |                          |                       |                      |                        |                        |                      |                     |                   |                      |                      |
| Vinyl Chloride                                     | 0.28                           | 0.011 U                  | 0.37 U                | NA                   | 0.68                   | <b>0.67</b> J          | NA                   | 0.36 U              | 1.5 U             | 0.061                | 0.039                |
| -                                                  |                                |                          |                       |                      |                        |                        | !                    |                     |                   |                      |                      |
| Cumulative Sum of VOCs                             |                                | 52                       | 2,000                 | 11,736               | 2,263                  | 755                    | 5,599                | 4,781               | 1,444             | 1,138                | 714                  |

Nondetected compound show the method detection limit (MDL) as the reporting limit. J = Indicates the analyte was positively identified; the associated numerical value is

U = Indicates the compound was not detected at the reported concentration.

Bold = Detected compound.

Blue Shading = Laboratory reporting limit is above cleanup level for ambient air.

Green Shading = Detected above cleanup level for ambient air.

NA = Not analyzed.

EPA = U.S. Environmental Protection Agency

 $\mu g/m^3$  = micrograms per cubic meter

SIM = selected ion monitoring

the approximate concentration of the analyte in the sample.

J1 = The result is an estimated concentration that is less than the MRL but greater than

or equal to the MDL.

U = Indicates the compound was not detected at the reported concentration.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

### LABORATORY REPORT

July 7, 2015

Anne Halvorsen Landau Associates, Inc. 130 2nd Ave. South Edmonds. WA 98020

RE: Cornwall LF / 001037.030.033

Dear Anne:

Enclosed are the results of the samples submitted to our laboratory on June 19, 2015. For your reference, these analyses have been assigned our service request number P1502473.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <a href="https://www.alsglobal.com">www.alsglobal.com</a>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Kate Aguilera

By Kate Aguilera at 3:26 pm, Jul 07, 2015

Project Manager



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

Client: Landau Associates, Inc. Service Request No: P1502473

Project: Cornwall LF / 001037.030.033

\_\_\_\_\_\_

### **CASE NARRATIVE**

The samples were received intact under chain of custody on June 19, 2015 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

### Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in SIM and SCAN mode in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation, however it is not part of the AIHA-LAP accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The minimum control criterion for propene analyzed on July 1, 2015 was outside the continuing calibration verification (CCV) method requirements. Since the method reporting check standard verified the instrument sensitivity and the compound in question was not detected in the sample, the quality is not significantly affected.

The spike recoveries of trichlorofluoromethane and carbon tetrachloride in the Laboratory Control Sample (LCS) analyzed on June 30, 2015 and the spike recoveries of bromomethane, trichlorofluoromethane and carbon tetrachloride in the Laboratory Control Sample (LCS) analyzed on July 1, 2015 were outside the Laboratory generated control criteria. The recovery errors equate to a potential high bias. However, the recoveries in question were within the method criteria, therefore the data quality is not significantly affected. No corrective action was taken.

The surrogate bromofluorobenzene was outside control criteria in the SIM analysis of the samples labeled "CL-LFG-P-12" and "CL-LFG-MW-102." This surrogate is not associated with the target analyte, therefore, results were not affected. No corrective action was taken.

The canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7270 www.alsglobal.com

### ALS Environmental - Simi Valley

### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

| <u></u>                   |                                                                                                          | ı                          |
|---------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| Agency                    | Web Site                                                                                                 | Number                     |
| AIHA                      | http://www.aihaaccreditedlabs.org                                                                        | 101661                     |
| Arizona DHS               | http://www.azdhs.gov/lab/license/env.htm                                                                 | AZ0694                     |
| DoD ELAP                  | http://www.pjlabs.com/search-accredited-labs                                                             | L14-2                      |
| Florida DOH<br>(NELAP)    | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                  | E871020                    |
| Maine DHHS                | http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/labcert.htm              | 2014025                    |
| Minnesota DOH<br>(NELAP)  | http://www.health.state.mn.us/accreditation                                                              | 876241                     |
| New Jersey DEP<br>(NELAP) | http://www.nj.gov/dep/oqa/                                                                               | CA009                      |
| New York DOH<br>(NELAP)   | http://www.wadsworth.org/labcert/elap/elap.html                                                          | 11221                      |
| Oregon PHD<br>(NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx | 4068-001                   |
| Pennsylvania DEP          | http://www.depweb.state.pa.us/labs                                                                       | 68-03307<br>(Registration) |
| Texas CEQ<br>(NELAP)      | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                            | T104704413-<br>14-5        |
| Utah DOH<br>(NELAP)       | http://www.health.utah.gov/lab/labimp/certification/index.html                                           | CA01627201<br>4-4          |
| Washington DOE            | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                           | C946                       |

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <a href="https://www.alsglobal.com">www.alsglobal.com</a>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

### ALS ENVIRONMENTAL

### DETAIL SUMMARY REPORT

Client: Landau Associates, Inc. Service Request: P1502473

Project ID: Cornwall LF / 001037.030.033

Date Received: 6/19/2015
Time Received: 10:00

| Time Received.    | 10.00        |        | Date      | Time      | Container | Pil    | Pfl    | 0-15 - VOC Cans | TO-15 - VOC SIM |  |
|-------------------|--------------|--------|-----------|-----------|-----------|--------|--------|-----------------|-----------------|--|
| Client Sample ID  | Lab Code     | Matrix | Collected | Collected | ID        | (psig) | (psig) | TO              | Ĺ               |  |
| CL-LFG-BACKGROUND | P1502473-001 | Air    | 6/15/2015 | 18:16     | AS00166   | -2.34  | 3.74   | X               | X               |  |
| CL-LFG-VENT-4     | P1502473-002 | Air    | 6/15/2015 | 18:28     | AS00840   | -2.37  | 3.55   | X               | X               |  |
| CL-LFG-P-3        | P1502473-003 | Air    | 6/15/2015 | 18:42     | AC01775   | -5.31  | 3.55   | X               | X               |  |
| CL-LFG-P-12       | P1502473-004 | Air    | 6/15/2015 | 18:55     | AS00490   | -1.46  | 3.93   | X               | X               |  |
| CL-LFG-VENT-3     | P1502473-005 | Air    | 6/15/2015 | 19:35     | AS00442   | -2.41  | 3.60   | X               | X               |  |
| CL-LFG-MW-102     | P1502473-006 | Air    | 6/15/2015 | 19:44     | AS00457   | -2.31  | 3.64   | X               | X               |  |

# Air - Chain of Custody Record & Analytical Service Request

Page

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

|                                                                                                                                                            |              |                   | Danie          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                           |                                               |                  |                 |           | T           | . 1           | V             |   |   | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I.   | <u> </u> |     | _            |                                                                                                                                  |                                         |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|------------------|-----------------|-----------|-------------|---------------|---------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|
| ALS Project No PLS82475                                                                                                                                    |              | 4                 |                | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments                                     | e.g. Actual<br>Preservative<br>or                                         | specific                                      | 1746/14110       | 6-              | " COOL    | 3           |               | . 1           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |          |     |              | Project Requirements<br>(MRLs, QAPP)                                                                                             |                                         | Cooler / Blank               |
| ALS Project                                                                                                                                                | 1            | Analysis Method   | 24             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.                                    </u> |                                                                           |                                               |                  |                 |           |             |               |               |   |   | A STATE OF THE PARTY OF THE PAR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.   |          |     |              | : (Circle)<br>ABSENT                                                                                                             | Time:                                   | Tipenti                      |
|                                                                                                                                                            | ALS Contact: | Analy             | 7/1            | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | و(5                                          | 1-(.                                                                      | T                                             | X,               |                 |           |             |               | >             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |     | * *          | Chain of Custody Seal: (Circle)                                                                                                  | Date: -                                 | Que/10/17)                   |
| Standard                                                                                                                                                   |              |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | K                                                                         | Sample                                        | 79               |                 |           |             | ŧ.,           | >             |   | * | - 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |     | (            | Chain of C                                                                                                                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                              |
| yes) please circle<br>y (25%) (10-Day-                                                                                                                     |              | 7                 | N              | Bove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>J</i> 4                                   | 3                                                                         | Canister<br>Epd Pressure                      | N                | 7 -             | -13       | 2-          | 11            | 10            | 2 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |     |              | 3                                                                                                                                | 0                                       | 1 MM 1008                    |
| Days (Surcharg<br>Day (35%) 5 Day                                                                                                                          |              | 4                 | 30.03          | 6 25 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                            | Kenando                                                                   | Canister<br>Start Pressure                    | -30              | -25             | -38       | -52         | -30           | -29           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ř.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,    |          |     |              | / No<br>Units:                                                                                                                   | Sup.                                    | 1/1                          |
| iuested Turnaround Time in Business Days (Surcharges) pleas <u>e circle.</u><br>ay (100%) 2 <u>p</u> ay (75%) 3 Dáy (50%) 4 Day (35%) 5 Day (25%) ¶o-Day-S | Section 1    | Juna all L        | \$0,450100     | tion SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | cohonie 7                                                                 | O 3±                                          | FC400905         | PCA 00620       | £C406330  |             | FC 00816      | FCACCOGES     |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ige. |          | . , |              | EDD required YES / Type:                                                                                                         | Received by: (Signature)                | Received by: (Signature)     |
| Requested Turnaround Time in Business Days (Surcharges) please circle. 1 Day (100%) 2 Day (75%) 3 Dấy (50%) 4 Day (35%) 5 Day (25%) (Q-Day-Standard        | Project Name | S                 | Project Number | P.O. # / Billing Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | ampler (Print & Sign)                                                     | Canister ID<br>(Bar code # -<br>AC, SC, etc.) | A500166          |                 | A501775   | A500490     |               |               |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '#%'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e.   |          |     | 47<br>47<br> |                                                                                                                                  | Time: CA30                              | Time:                        |
|                                                                                                                                                            |              |                   | 31             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | andoulingia                                                               | Time                                          | 30               | 28              | 8         | 90          | 30            | 30            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |     |              | Tier Levels - please select Tier III (Results + QC & Calibration Summaries) Tier IV (Date Validation Package) 10% Surcharge      | Date:/wis                               |                              |
| Sımı Valley, California 93065<br>Phone (805) 526-7161<br>Fax (805) 526-7270                                                                                |              | ħ                 |                | Kert Wilker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | ! [Ken@]                                                                  | Date                                          | 6/15/15          |                 | ·<br>     |             |               | >             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |     |              | please select<br>QC & Calibratio<br>dation Package)                                                                              |                                         |                              |
| Simi valley, California<br>Phone (805) 526-7161<br>Fax (805) 526-7270                                                                                      |              | 165 TAVE          | 020            | N. House, etc., in case, or the | Fax                                          | Com, Kw                                                                   | Laboratory<br>ID Number                       | 0                | <b>@</b>        | <u></u>   | <u>,</u>    | (S)           | P             |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |          |     |              | Report Tier Levels - please select Tier III (Results + QC & Calibration Summaries) Tier IV (Date Validation Package) 10% Surchar | Call                                    | 2044                         |
| (ALS)                                                                                                                                                      | (ý)          | 130 2nd Ave South | nonds, w.      | Project Manager Jeremy Davis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone 425) 778-0907                          | Email Address for Result Reporting Salawing, Com, Kuil Ken Blandowing Com | Client Sample ID                              | CL-17G-BACKGROWD | CL-1FG-VEW 1294 | CL-16-P-3 | CL-LFG-P-12 | CL-1FG-VEUT-3 | CL-LPG-MW-102 |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a de la composição de l |      |          |     |              | Repor                                                                                                                            | Relinquished by: (Signature)            | Relinquished by: (Signature) |

ý

Cooler / Blank Temperature

スなん

# ALS Environmental Sample Acceptance Check Form

|                                                                                                                                                                                                                                                                                                                                    | Landau Assoc                                                              | ciates, Inc.                   | ~ <b>~~~</b>        |                    |                    | Work order:           | P1502473        |            |           |              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|---------------------|--------------------|--------------------|-----------------------|-----------------|------------|-----------|--------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                    | Cornwall LF                                                               | 6/10/15                        |                     | ,                  | Data amamadı       | 6/10/15               | lar             | NNEL       | DE        |              |  |  |  |
| Sample(s) received on: 6/19/15 Date opened: 6/19/15 by: KKELPE                                                                                                                                                                                                                                                                     |                                                                           |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| ote: This form is used for all samples received by ALS. The use of this form for custody seals is strictly meant to indicate presence/absence and not as an indication of ompliance or nonconformity. Thermal preservation and pH will only be evaluated either at the request of the client and/or as required by the method/SOP. |                                                                           |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| omphanee                                                                                                                                                                                                                                                                                                                           | or noncomorning.                                                          | Thermal preservation and       | pii wili olily be e | varuated either at | the request of the | e enent and/or as req | uned by the mem | Yes        | <u>No</u> | N/A          |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                  | Were <b>sample containers</b> properly marked with client sample ID?      |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                  | Container(s) s                                                            | X                              |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                  | Did sample c                                                              | X                              |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                  | Were chain-o                                                              | X                              |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                  | Did <b>sample container labels</b> and/or tags agree with custody papers? |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 6                                                                                                                                                                                                                                                                                                                                  | Was sample volume received adequate for analysis?                         |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                  | Are samples v                                                             | vithin specified holding       | g times?            |                    |                    |                       |                 | X          |           |              |  |  |  |
| 8                                                                                                                                                                                                                                                                                                                                  | _                                                                         | emperature (thermal p          |                     | f cooler at rece   | eipt adhered t     | to?                   |                 |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | • • •                          | ,                   |                    | 1                  |                       |                 |            |           |              |  |  |  |
| 9                                                                                                                                                                                                                                                                                                                                  | Was a trip bla                                                            | ank received?                  |                     |                    |                    |                       |                 |            | X         |              |  |  |  |
| 10                                                                                                                                                                                                                                                                                                                                 | Were custody                                                              | seals on outside of co         | oler/Box?           |                    |                    |                       |                 | X          |           |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | •                                                                         | Location of seal(s)?           |                     | OX                 |                    |                       | Sealing Lid?    | X          |           |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | Were signatur                                                             | e and date included?           |                     |                    |                    |                       | _               | X          |           |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | Were seals intact?                                                        |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | Were custody                                                              | seals on outside of sar        | nple container      | ?                  |                    |                       |                 |            | X         |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | ,                                                                         | Location of seal(s)?           | _                   |                    |                    |                       | Sealing Lid?    |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | Were signatur                                                             | re and date included?          |                     |                    |                    |                       | _ 8             |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    | Were seals in                                                             |                                |                     |                    |                    |                       |                 |            |           | X            |  |  |  |
| 11                                                                                                                                                                                                                                                                                                                                 |                                                                           | ers have appropriate <b>pr</b> | eservation, a       | ecording to me     | ethod/SOP or       | Client specified      | information?    |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | ent indication that the s      |                     | _                  |                    |                       |                 |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | rials checked for presen       | _                   |                    |                    |                       |                 |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | nt/method/SOP require          |                     |                    | mnle nH and        | if necessary alter    | r it?           |            |           | $\boxtimes$  |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                 | Tubes:                                                                    | Are the tubes capp             | •                   |                    | mpic pri ana       | ii necessary arter    | 1 10.           |            |           | X            |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                 | Tubes.                                                                    |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 12                                                                                                                                                                                                                                                                                                                                 | Dadass.                                                                   | Do they contain m              |                     | 1 :440             |                    |                       |                 |            |           | X            |  |  |  |
| 13                                                                                                                                                                                                                                                                                                                                 | Badges:                                                                   | Are the badges pr              |                     |                    | 1 1                |                       |                 |            |           | X            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | Are dual bed badg              | es separated a      | ina inaiviauaii    | y capped and       | intact?               |                 |            | <u> </u>  |              |  |  |  |
| Lab                                                                                                                                                                                                                                                                                                                                | Sample ID                                                                 | Container                      | Required            | Received           | Adjusted           | VOA Headspace         | Recei           | ipt / Pres | ervation  | ı            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           | Description                    | pH *                | pН                 | pН                 | (Presence/Absence)    | )               | Commer     | ıts       |              |  |  |  |
| P1502473                                                                                                                                                                                                                                                                                                                           |                                                                           | 6.0 L Silonite Can             |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| 21502473                                                                                                                                                                                                                                                                                                                           |                                                                           | 6.0 L Silonite Can             |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| P1502473-003.01 6.0 L Ambient Can                                                                                                                                                                                                                                                                                                  |                                                                           |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| P1502473-004.01 6.0 L Silonite Can P1502473-005.01 6.0 L Silonite Can                                                                                                                                                                                                                                                              |                                                                           |                                |                     |                    |                    |                       | +               |            |           |              |  |  |  |
| P1502473                                                                                                                                                                                                                                                                                                                           |                                                                           | 6.0 L Silonite Can             |                     |                    |                    |                       | +               |            |           |              |  |  |  |
| 1002175                                                                                                                                                                                                                                                                                                                            | JU0.01                                                                    | L'onomic Cuii                  |                     |                    |                    |                       |                 |            |           |              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                    |                                                                           |                                |                     |                    |                    |                       |                 |            |           |              |  |  |  |
| Explair                                                                                                                                                                                                                                                                                                                            | any discrepanc                                                            | ies: (include lab sample l     | D numbers):         |                    |                    |                       |                 | ·          |           | <del>_</del> |  |  |  |

### ALS ENVIRONMENTAL

# RESULTS OF ANALYSIS Page 1 of 1

Client: Landau Associates, Inc. Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1502473

### Vinyl Chloride

Test Code: EPA TO-15 SIM

Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19

Analyst: Wida Ang

Date(s) Collected: 6/15/15

Date Received: 6/19/15

Sample Type: 6.0 L Summa Canister(s)

Date Analyzed: 7/2 - 7/6/15

Test Notes:

|                   |               | Injection | Canister |             |                        |            |                  |           |
|-------------------|---------------|-----------|----------|-------------|------------------------|------------|------------------|-----------|
| Client Sample ID  | ALS Sample ID | Volume    | Dilution | Result      | MRL MDL                | Result     | MRL MDL          | Data      |
|                   |               | Liter(s)  | Factor   | $\mu g/m^3$ | $\mu g/m^3  \mu g/m^3$ | ${f ppbV}$ | ppbV ppbV        | Qualifier |
| CL-LFG-BACKGROUND | P1502473-001  | 1.00      | 1.49     | ND          | 0.037 0.011            | ND         | 0.015 0.0044     | _         |
| CL-LFG-VENT-4     | P1502473-002  | 0.50      | 1.48     | 0.039       | 0.074 0.022            | 0.015      | $0.029 \ 0.0088$ | J         |
| CL-LFG-P-3        | P1502473-003  | 0.15      | 1.94     | 0.68        | 0.32 0.098             | 0.27       | 0.13 0.038       |           |
| CL-LFG-P-12       | P1502473-004  | 0.030     | 1.41     | ND          | 1.2 0.36               | ND         | 0.46 0.14        |           |
| CL-LFG-VENT-3     | P1502473-005  | 1.00      | 1.49     | 0.061       | 0.037 0.011            | 0.024      | 0.015 0.0044     |           |
| CL-LFG-MW-102     | P1502473-006  | 0.030     | 1.48     | ND          | 1.2 0.37               | ND         | 0.48 0.15        |           |
| Method Blank      | P150702-MB    | 1.00      | 1.00     | ND          | 0.025 0.0076           | ND         | 0.0098 0.0030    |           |
| Method Blank      | P150706-MB    | 1.00      | 1.00     | ND          | 0.025 0.0076           | ND         | 0.0098 0.0030    |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the laboratory method reporting limit; the associated numerical value is considered estimated.

### ALS ENVIRONMENTAL

# SURROGATE SPIKE RECOVERY RESULTS $\label{eq:page1} \textbf{Page 1 of 1}$

Client: Landau Associates, Inc. Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1502473

Date(s) Collected: 6/15/15

Test Code: EPA TO-15 SIM

Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19

Analyst: Wida Ang Date(s) Received: 6/19/15
Sample Type: 6.0 L Summa Canister(s) Date(s) Analyzed: 7/2 - 7/6/15

Test Notes:

|                    |               | 1,2-Dichloroethane-d4 | Toluene-d8 | Bromofluorobenzene |            |              |
|--------------------|---------------|-----------------------|------------|--------------------|------------|--------------|
| Client Sample ID   | ALS Sample ID | %                     | %          | %                  | Acceptance | Data         |
|                    |               | Recovered             | Recovered  | Recovered          | Limits     | Qualifier    |
| Method Blank       | P150702-MB    | 112                   | 111        | 86                 | 70-130     | _            |
| Method Blank       | P150706-MB    | 103                   | 107        | 95                 | 70-130     |              |
| Lab Control Sample | P150702-LCS   | 112                   | 105        | 92                 | 70-130     |              |
| Lab Control Sample | P150706-LCS   | 104                   | 103        | 97                 | 70-130     |              |
| CL-LFG-BACKGROUND  | P1502473-001  | 101                   | 109        | 106                | 70-130     |              |
| CL-LFG-VENT-4      | P1502473-002  | 99                    | 112        | 97                 | 70-130     |              |
| CL-LFG-P-3         | P1502473-003  | 96                    | 116        | 99                 | 70-130     |              |
| CL-LFG-P-12        | P1502473-004  | 98                    | 112        | 39                 | 70-130     | $\mathbf{S}$ |
| CL-LFG-VENT-3      | P1502473-005  | 98                    | 104        | 105                | 70-130     |              |
| CL-LFG-MW-102      | P1502473-006  | 100                   | 115        | 19                 | 70-130     | S            |

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

S = Surrogate recovery not within specified limits.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150702-LCS

Test Code: EPA TO-15 SIM Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19 Date Received: NA
Analyst: Wida Ang Date Analyzed: 7/2/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|         |                |              |        |            | ALS        |           |
|---------|----------------|--------------|--------|------------|------------|-----------|
| CAS#    | Compound       | Spike Amount | Result | % Recovery | Acceptance | Data      |
|         |                | $\mu g/m^3$  | μg/m³  |            | Limits     | Qualifier |
| 75-01-4 | Vinyl Chloride | 4.04         | 4.65   | 115        | 64-118     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150706-LCS

Test Code: EPA TO-15 SIM Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19 Date Received: NA
Analyst: Wida Ang Date Analyzed: 7/6/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|         |                |              |        |            | ALS        |           |
|---------|----------------|--------------|--------|------------|------------|-----------|
| CAS#    | Compound       | Spike Amount | Result | % Recovery | Acceptance | Data      |
|         |                | $\mu g/m^3$  | μg/m³  |            | Limits     | Qualifier |
| 75-01-4 | Vinyl Chloride | 4.04         | 4.55   | 113        | 64-118     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID:CL-LFG-BACKGROUNDALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P1502473-001

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AS00166

Initial Pressure (psig): -2.34 Final Pressure (psig): 3.74

Canister Dilution Factor: 1.49

| CAS#      | Compound                                             | Result | MRL   | MDL   | Result | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------|-------|--------|-------|-------|-----------|
|           |                                                      | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | ND     | 0.75  | 0.21  | ND     | 0.43  | 0.12  |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.3    | 0.75  | 0.25  | 0.47   | 0.15  | 0.051 |           |
| 74-87-3   | Chloromethane                                        | ND     | 0.75  | 0.22  | ND     | 0.36  | 0.11  |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.75  | 0.28  | ND     | 0.11  | 0.041 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.75  | 0.33  | ND     | 0.34  | 0.15  |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.75  | 0.28  | ND     | 0.19  | 0.073 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.75  | 0.25  | ND     | 0.28  | 0.096 |           |
| 64-17-5   | Ethanol                                              | 6.3    | 7.5   | 1.2   | 3.3    | 4.0   | 0.63  | J         |
| 75-05-8   | Acetonitrile                                         | ND     | 0.75  | 0.27  | ND     | 0.44  | 0.16  |           |
| 107-02-8  | Acrolein                                             | ND     | 3.0   | 0.25  | ND     | 1.3   | 0.11  |           |
| 67-64-1   | Acetone                                              | 7.5    | 7.5   | 1.1   | 3.1    | 3.1   | 0.48  |           |
| 75-69-4   | Trichlorofluoromethane                               | 1.3    | 0.75  | 0.25  | 0.24   | 0.13  | 0.045 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND     | 7.5   | 0.63  | ND     | 3.0   | 0.25  |           |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.75  | 0.25  | ND     | 0.34  | 0.12  |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.75  | 0.25  | ND     | 0.19  | 0.064 |           |
| 75-09-2   | Methylene Chloride                                   | 0.41   | 0.75  | 0.25  | 0.12   | 0.21  | 0.073 | J         |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.75  | 0.24  | ND     | 0.24  | 0.076 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.52   | 0.75  | 0.25  | 0.068  | 0.097 | 0.033 | J         |
| 75-15-0   | Carbon Disulfide                                     | ND     | 7.5   | 0.22  | ND     | 2.4   | 0.072 |           |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.75  | 0.28  | ND     | 0.19  | 0.071 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.75  | 0.24  | ND     | 0.18  | 0.059 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.75  | 0.25  | ND     | 0.21  | 0.070 |           |
| 108-05-4  | Vinyl Acetate                                        | ND     | 7.5   | 0.97  | ND     | 2.1   | 0.28  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | 0.65   | 7.5   | 0.31  | 0.22   | 2.5   | 0.11  | J         |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.
Client Sample ID: CL-LFG-BACKGROUND

Client Sample ID:CL-LFG-BACKGROUNDALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P1502473-001

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AS00166

Initial Pressure (psig): -2.34 Final Pressure (psig): 3.74

Canister Dilution Factor: 1.49

| CAS#       | Compound                  | Result | MRL         | MDL         | Result | MRL   | MDL   | Data      |
|------------|---------------------------|--------|-------------|-------------|--------|-------|-------|-----------|
|            |                           | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 0.75        | 0.24        | ND     | 0.19  | 0.060 |           |
| 141-78-6   | Ethyl Acetate             | 1.4    | 1.5         | 0.52        | 0.39   | 0.41  | 0.14  | J         |
| 110-54-3   | n-Hexane                  | 0.79   | 0.75        | 0.22        | 0.22   | 0.21  | 0.063 |           |
| 67-66-3    | Chloroform                | ND     | 0.75        | 0.25        | ND     | 0.15  | 0.052 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 0.75        | 0.30        | ND     | 0.25  | 0.10  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 0.75        | 0.24        | ND     | 0.18  | 0.059 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 0.75        | 0.25        | ND     | 0.14  | 0.046 |           |
| 71-43-2    | Benzene                   | 0.61   | 0.75        | 0.24        | 0.19   | 0.23  | 0.075 | J         |
| 56-23-5    | Carbon Tetrachloride      | 0.53   | 0.75        | 0.22        | 0.084  | 0.12  | 0.036 | J         |
| 110-82-7   | Cyclohexane               | ND     | 1.5         | 0.43        | ND     | 0.43  | 0.13  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 0.75        | 0.24        | ND     | 0.16  | 0.052 |           |
| 75-27-4    | Bromodichloromethane      | ND     | 0.75        | 0.22        | ND     | 0.11  | 0.033 |           |
| 79-01-6    | Trichloroethene           | ND     | 0.75        | 0.21        | ND     | 0.14  | 0.039 |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 0.75        | 0.24        | ND     | 0.21  | 0.066 |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 1.5         | 0.46        | ND     | 0.36  | 0.11  |           |
| 142-82-5   | n-Heptane                 | 1.0    | 0.75        | 0.25        | 0.25   | 0.18  | 0.062 |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 0.75        | 0.21        | ND     | 0.16  | 0.046 |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 0.75        | 0.24        | ND     | 0.18  | 0.058 |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 0.75        | 0.24        | ND     | 0.16  | 0.053 |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 0.75        | 0.24        | ND     | 0.14  | 0.044 |           |
| 108-88-3   | Toluene                   | 5.6    | 0.75        | 0.25        | 1.5    | 0.20  | 0.067 |           |
| 591-78-6   | 2-Hexanone                | ND     | 0.75        | 0.24        | ND     | 0.18  | 0.058 |           |
| 124-48-1   | Dibromochloromethane      | ND     | 0.75        | 0.24        | ND     | 0.087 | 0.028 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 0.75        | 0.24        | ND     | 0.097 | 0.031 |           |
| 123-86-4   | n-Butyl Acetate           | ND     | 0.75        | 0.24        | ND     | 0.16  | 0.050 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID:CL-LFG-BACKGROUNDALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P1502473-001

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Container ID: AS00166

Initial Pressure (psig): -2.34 Final Pressure (psig): 3.74

Canister Dilution Factor: 1.49

|             |                             | Result      | MRL         | MDL         | Result     | MRL   | MDL   | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|------------|-------|-------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | 0.57        | 0.75        | 0.27        | 0.12       | 0.16  | 0.057 | J         |
| 127-18-4    | Tetrachloroethene           | ND          | 0.75        | 0.21        | ND         | 0.11  | 0.031 |           |
| 108-90-7    | Chlorobenzene               | ND          | 0.75        | 0.24        | ND         | 0.16  | 0.052 |           |
| 100-41-4    | Ethylbenzene                | 1.1         | 0.75        | 0.24        | 0.24       | 0.17  | 0.055 |           |
| 179601-23-1 | m,p-Xylenes                 | 3.9         | 1.5         | 0.45        | 0.90       | 0.34  | 0.10  |           |
| 75-25-2     | Bromoform                   | ND          | 0.75        | 0.22        | ND         | 0.072 | 0.022 |           |
| 100-42-5    | Styrene                     | ND          | 0.75        | 0.22        | ND         | 0.18  | 0.053 |           |
| 95-47-6     | o-Xylene                    | 1.4         | 0.75        | 0.22        | 0.31       | 0.17  | 0.051 |           |
| 111-84-2    | n-Nonane                    | ND          | 0.75        | 0.22        | ND         | 0.14  | 0.043 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.75        | 0.22        | ND         | 0.11  | 0.033 |           |
| 98-82-8     | Cumene                      | ND          | 0.75        | 0.22        | ND         | 0.15  | 0.045 |           |
| 80-56-8     | alpha-Pinene                | ND          | 0.75        | 0.21        | ND         | 0.13  | 0.037 |           |
| 103-65-1    | n-Propylbenzene             | ND          | 0.75        | 0.24        | ND         | 0.15  | 0.049 |           |
| 622-96-8    | 4-Ethyltoluene              | 0.30        | 0.75        | 0.24        | 0.061      | 0.15  | 0.049 | J         |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 0.30        | 0.75        | 0.24        | 0.062      | 0.15  | 0.049 | J         |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 0.98        | 0.75        | 0.22        | 0.20       | 0.15  | 0.045 |           |
| 100-44-7    | Benzyl Chloride             | ND          | 0.75        | 0.16        | ND         | 0.14  | 0.032 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 0.75        | 0.22        | ND         | 0.12  | 0.037 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.75        | 0.21        | ND         | 0.12  | 0.035 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.75        | 0.22        | ND         | 0.12  | 0.037 |           |
| 5989-27-5   | d-Limonene                  | ND          | 0.75        | 0.21        | ND         | 0.13  | 0.037 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.75        | 0.15        | ND         | 0.077 | 0.015 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.75        | 0.24        | ND         | 0.10  | 0.032 |           |
| 91-20-3     | Naphthalene                 | ND          | 0.75        | 0.27        | ND         | 0.14  | 0.051 |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.75        | 0.21        | ND         | 0.070 | 0.020 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-4 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-002

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: 0.050 Liter(s)

Container ID: AS00840

Initial Pressure (psig): -2.37 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.48

| CAS#      | Compound                                             | Result | MRL         | MDL         | Result     | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------------|-------------|------------|-------|-------|-----------|
|           |                                                      | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | ND     | 0.74        | 0.21        | ND         | 0.43  | 0.12  |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 1.0    | 0.74        | 0.25        | 0.21       | 0.15  | 0.051 |           |
| 74-87-3   | Chloromethane                                        | 0.49   | 0.74        | 0.22        | 0.24       | 0.36  | 0.11  | J         |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | 0.39   | 0.74        | 0.28        | 0.055      | 0.11  | 0.040 | J         |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.74        | 0.33        | ND         | 0.33  | 0.15  |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.74        | 0.28        | ND         | 0.19  | 0.072 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.74        | 0.25        | ND         | 0.28  | 0.095 |           |
| 64-17-5   | Ethanol                                              | 60     | 7.4         | 1.2         | 32         | 3.9   | 0.63  |           |
| 75-05-8   | Acetonitrile                                         | ND     | 0.74        | 0.27        | ND         | 0.44  | 0.16  |           |
| 107-02-8  | Acrolein                                             | ND     | 3.0         | 0.25        | ND         | 1.3   | 0.11  |           |
| 67-64-1   | Acetone                                              | 40     | 7.4         | 1.1         | 17         | 3.1   | 0.48  |           |
| 75-69-4   | Trichlorofluoromethane                               | 0.66   | 0.74        | 0.25        | 0.12       | 0.13  | 0.045 | J         |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 5.8    | 7.4         | 0.62        | 2.3        | 3.0   | 0.25  | J         |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.74        | 0.25        | ND         | 0.34  | 0.12  |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.74        | 0.25        | ND         | 0.19  | 0.063 |           |
| 75-09-2   | Methylene Chloride                                   | 0.39   | 0.74        | 0.25        | 0.11       | 0.21  | 0.072 | J         |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.74        | 0.24        | ND         | 0.24  | 0.076 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND     | 0.74        | 0.25        | ND         | 0.097 | 0.033 |           |
| 75-15-0   | Carbon Disulfide                                     | 2.4    | 7.4         | 0.22        | 0.79       | 2.4   | 0.071 | J         |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.74        | 0.28        | ND         | 0.19  | 0.071 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.74        | 0.24        | ND         | 0.18  | 0.059 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.74        | 0.25        | ND         | 0.21  | 0.070 |           |
| 108-05-4  | Vinyl Acetate                                        | ND     | 7.4         | 0.96        | ND         | 2.1   | 0.27  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | 14     | 7.4         | 0.31        | 4.9        | 2.5   | 0.11  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-4 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-002

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: 0.050 Liter(s)

Container ID: AS00840

Initial Pressure (psig): -2.37 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.48

| CAS#       | Compound                  | Result | MRL         | MDL         | Result | MRL   | MDL   | Data      |
|------------|---------------------------|--------|-------------|-------------|--------|-------|-------|-----------|
|            |                           | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 0.74        | 0.24        | ND     | 0.19  | 0.060 |           |
| 141-78-6   | Ethyl Acetate             | 3.0    | 1.5         | 0.52        | 0.82   | 0.41  | 0.14  |           |
| 110-54-3   | n-Hexane                  | 25     | 0.74        | 0.22        | 7.1    | 0.21  | 0.063 |           |
| 67-66-3    | Chloroform                | 10     | 0.74        | 0.25        | 2.0    | 0.15  | 0.052 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | 100    | 0.74        | 0.30        | 35     | 0.25  | 0.10  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 0.74        | 0.24        | ND     | 0.18  | 0.059 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 0.74        | 0.25        | ND     | 0.14  | 0.046 |           |
| 71-43-2    | Benzene                   | 3.2    | 0.74        | 0.24        | 1.0    | 0.23  | 0.074 |           |
| 56-23-5    | Carbon Tetrachloride      | ND     | 0.74        | 0.22        | ND     | 0.12  | 0.035 |           |
| 110-82-7   | Cyclohexane               | 8.7    | 1.5         | 0.43        | 2.5    | 0.43  | 0.12  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 0.74        | 0.24        | ND     | 0.16  | 0.051 |           |
| 75-27-4    | Bromodichloromethane      | ND     | 0.74        | 0.22        | ND     | 0.11  | 0.033 |           |
| 79-01-6    | Trichloroethene           | ND     | 0.74        | 0.21        | ND     | 0.14  | 0.039 |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 0.74        | 0.24        | ND     | 0.21  | 0.066 |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 1.5         | 0.46        | ND     | 0.36  | 0.11  |           |
| 142-82-5   | n-Heptane                 | 5.5    | 0.74        | 0.25        | 1.3    | 0.18  | 0.061 |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 0.74        | 0.21        | ND     | 0.16  | 0.046 |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 0.82   | 0.74        | 0.24        | 0.20   | 0.18  | 0.058 |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 0.74        | 0.24        | ND     | 0.16  | 0.052 |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 0.74        | 0.24        | ND     | 0.14  | 0.043 |           |
| 108-88-3   | Toluene                   | 280    | 15          | 5.0         | 73     | 3.9   | 1.3   | D         |
| 591-78-6   | 2-Hexanone                | ND     | 0.74        | 0.24        | ND     | 0.18  | 0.058 |           |
| 124-48-1   | Dibromochloromethane      | ND     | 0.74        | 0.24        | ND     | 0.087 | 0.028 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 0.74        | 0.24        | ND     | 0.096 | 0.031 |           |
| 123-86-4   | n-Butyl Acetate           | 6.4    | 0.74        | 0.24        | 1.3    | 0.16  | 0.050 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. D = The reported result is from a dilution.

z increpenses resum is nem w whomen

## RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-4 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-002

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: 0.050 Liter(s)

Container ID: AS00840

Initial Pressure (psig): -2.37 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.48

|             |                             | Result      | MRL         | MDL         | Result     | MRL   | MDL <b>Data</b> |
|-------------|-----------------------------|-------------|-------------|-------------|------------|-------|-----------------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV Qualifier  |
| 111-65-9    | n-Octane                    | 3.5         | 0.74        | 0.27        | 0.75       | 0.16  | 0.057           |
| 127-18-4    | Tetrachloroethene           | ND          | 0.74        | 0.21        | ND         | 0.11  | 0.031           |
| 108-90-7    | Chlorobenzene               | ND          | 0.74        | 0.24        | ND         | 0.16  | 0.051           |
| 100-41-4    | Ethylbenzene                | 28          | 0.74        | 0.24        | 6.5        | 0.17  | 0.055           |
| 179601-23-1 | m,p-Xylenes                 | 43          | 1.5         | 0.44        | 9.9        | 0.34  | 0.10            |
| 75-25-2     | Bromoform                   | ND          | 0.74        | 0.22        | ND         | 0.072 | 0.021           |
| 100-42-5    | Styrene                     | 4.2         | 0.74        | 0.22        | 0.98       | 0.17  | 0.052           |
| 95-47-6     | o-Xylene                    | 16          | 0.74        | 0.22        | 3.6        | 0.17  | 0.051           |
| 111-84-2    | n-Nonane                    | 1.9         | 0.74        | 0.22        | 0.36       | 0.14  | 0.042           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.74        | 0.22        | ND         | 0.11  | 0.032           |
| 98-82-8     | Cumene                      | 1.6         | 0.74        | 0.22        | 0.33       | 0.15  | 0.045           |
| 80-56-8     | alpha-Pinene                | 1.3         | 0.74        | 0.21        | 0.23       | 0.13  | 0.037           |
| 103-65-1    | n-Propylbenzene             | 2.6         | 0.74        | 0.24        | 0.52       | 0.15  | 0.048           |
| 622-96-8    | 4-Ethyltoluene              | 3.7         | 0.74        | 0.24        | 0.76       | 0.15  | 0.048           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 3.6         | 0.74        | 0.24        | 0.74       | 0.15  | 0.048           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 13          | 0.74        | 0.22        | 2.7        | 0.15  | 0.045           |
| 100-44-7    | Benzyl Chloride             | ND          | 0.74        | 0.16        | ND         | 0.14  | 0.031           |
| 541-73-1    | 1,3-Dichlorobenzene         | 0.90        | 0.74        | 0.22        | 0.15       | 0.12  | 0.037           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.74        | 0.21        | ND         | 0.12  | 0.034           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.74        | 0.22        | ND         | 0.12  | 0.037           |
| 5989-27-5   | d-Limonene                  | 11          | 0.74        | 0.21        | 2.0        | 0.13  | 0.037           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.74        | 0.15        | ND         | 0.077 | 0.015           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.74        | 0.24        | ND         | 0.10  | 0.032           |
| 91-20-3     | Naphthalene                 | 2.2         | 0.74        | 0.27        | 0.41       | 0.14  | 0.051           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.74        | 0.21        | ND         | 0.069 | 0.019           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

### RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-003

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.25 Liter(s)

Test Notes:

Container ID: AC01775

Initial Pressure (psig): -5.31 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.94

| CAS#      | Compound                                             | Result    | MRL   | MDL         | Result | MRL  | MDL  | Data      |
|-----------|------------------------------------------------------|-----------|-------|-------------|--------|------|------|-----------|
| -         |                                                      | μg/m³     | μg/m³ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 115-07-1  | Propene                                              | 190       | 3.9   | 1.1         | 110    | 2.3  | 0.63 |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND        | 3.9   | 1.3         | ND     | 0.78 | 0.27 |           |
| 74-87-3   | Chloromethane                                        | ND        | 3.9   | 1.2         | ND     | 1.9  | 0.56 |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | 14        | 3.9   | 1.5         | 2.0    | 0.56 | 0.21 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND        | 3.9   | 1.7         | ND     | 1.8  | 0.77 |           |
| 74-83-9   | Bromomethane                                         | ND        | 3.9   | 1.5         | ND     | 1.0  | 0.38 |           |
| 75-00-3   | Chloroethane                                         | ND        | 3.9   | 1.3         | ND     | 1.5  | 0.50 |           |
| 64-17-5   | Ethanol                                              | <b>79</b> | 39    | 6.2         | 42     | 21   | 3.3  |           |
| 75-05-8   | Acetonitrile                                         | ND        | 3.9   | 1.4         | ND     | 2.3  | 0.83 |           |
| 107-02-8  | Acrolein                                             | ND        | 16    | 1.3         | ND     | 6.8  | 0.58 |           |
| 67-64-1   | Acetone                                              | 97        | 39    | 6.0         | 41     | 16   | 2.5  |           |
| 75-69-4   | Trichlorofluoromethane                               | ND        | 3.9   | 1.3         | ND     | 0.69 | 0.23 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 5.4       | 39    | 3.3         | 2.2    | 16   | 1.3  | J         |
| 107-13-1  | Acrylonitrile                                        | ND        | 3.9   | 1.3         | ND     | 1.8  | 0.61 |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND        | 3.9   | 1.3         | ND     | 0.98 | 0.33 |           |
| 75-09-2   | Methylene Chloride                                   | ND        | 3.9   | 1.3         | ND     | 1.1  | 0.38 |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND        | 3.9   | 1.2         | ND     | 1.2  | 0.40 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND        | 3.9   | 1.3         | ND     | 0.51 | 0.17 |           |
| 75-15-0   | Carbon Disulfide                                     | 29        | 39    | 1.2         | 9.4    | 12   | 0.37 | J         |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND        | 3.9   | 1.5         | ND     | 0.98 | 0.37 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND        | 3.9   | 1.2         | ND     | 0.96 | 0.31 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND        | 3.9   | 1.3         | ND     | 1.1  | 0.37 |           |
| 108-05-4  | Vinyl Acetate                                        | ND        | 39    | 5.0         | ND     | 11   | 1.4  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | 4.4       | 39    | 1.6         | 1.5    | 13   | 0.55 | J         |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-003

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.25 Liter(s)

Test Notes:

Container ID: AC01775

Initial Pressure (psig): -5.31 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.94

| CAS#       | Compound                  | Result<br>µg/m³ | $\begin{array}{c} MRL \\ \mu g/m^3 \end{array}$ | $MDL \ \mu g/m^3$ | Result<br>ppbV | MRL<br>ppbV | MDL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|-------------------------------------------------|-------------------|----------------|-------------|-------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | 7.0             | 3.9                                             | 1.2               | 1.8            | 0.98        | 0.31        | Qualifier         |
| 141-78-6   | Ethyl Acetate             | ND              | 7.8                                             | 2.7               | ND             | 2.2         | 0.75        |                   |
| 110-54-3   | n-Hexane                  | 450             | 3.9                                             | 1.2               | 130            | 1.1         | 0.33        |                   |
| 67-66-3    | Chloroform                | ND              | 3.9                                             | 1.3               | ND             | 0.79        | 0.27        |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | 4.3             | 3.9                                             | 1.6               | 1.5            | 1.3         | 0.53        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 3.9                                             | 1.2               | ND             | 0.96        | 0.31        |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 3.9                                             | 1.3               | ND             | 0.71        | 0.24        |                   |
| 71-43-2    | Benzene                   | 120             | 3.9                                             | 1.2               | 38             | 1.2         | 0.39        |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 3.9                                             | 1.2               | ND             | 0.62        | 0.19        |                   |
| 110-82-7   | Cyclohexane               | 180             | 7.8                                             | 2.3               | 52             | 2.3         | 0.65        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 3.9                                             | 1.2               | ND             | 0.84        | 0.27        |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 3.9                                             | 1.2               | ND             | 0.58        | 0.17        |                   |
| 79-01-6    | Trichloroethene           | 1.9             | 3.9                                             | 1.1               | 0.36           | 0.72        | 0.20        | J                 |
| 123-91-1   | 1,4-Dioxane               | ND              | 3.9                                             | 1.2               | ND             | 1.1         | 0.34        |                   |
| 80-62-6    | Methyl Methacrylate       | ND              | 7.8                                             | 2.4               | ND             | 1.9         | 0.59        |                   |
| 142-82-5   | n-Heptane                 | 240             | 3.9                                             | 1.3               | 59             | 0.95        | 0.32        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 3.9                                             | 1.1               | ND             | 0.85        | 0.24        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | 2.0             | 3.9                                             | 1.2               | 0.48           | 0.95        | 0.30        | J                 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND              | 3.9                                             | 1.2               | ND             | 0.85        | 0.27        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 3.9                                             | 1.2               | ND             | 0.71        | 0.23        |                   |
| 108-88-3   | Toluene                   | 270             | 3.9                                             | 1.3               | 72             | 1.0         | 0.35        | _                 |
| 591-78-6   | 2-Hexanone                | ND              | 3.9                                             | 1.2               | ND             | 0.95        | 0.30        |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 3.9                                             | 1.2               | ND             | 0.46        | 0.15        |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 3.9                                             | 1.2               | ND             | 0.51        | 0.16        |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 3.9                                             | 1.2               | ND             | 0.82        | 0.26        |                   |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

P1502473\_TO15\_1507061036\_SC.xls - Sample (3)

## RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-003

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.25 Liter(s)

Test Notes:

Container ID: AC01775

Initial Pressure (psig): -5.31 Final Pressure (psig): 3.55

Canister Dilution Factor: 1.94

|             |                             | Result      | MRL         | MDL         | Result          | MRL  | MDL   | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|-----------------|------|-------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | $\mathbf{ppbV}$ | ppbV | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | 130         | 3.9         | 1.4         | 27              | 0.83 | 0.30  |           |
| 127-18-4    | Tetrachloroethene           | ND          | 3.9         | 1.1         | ND              | 0.57 | 0.16  |           |
| 108-90-7    | Chlorobenzene               | ND          | 3.9         | 1.2         | ND              | 0.84 | 0.27  |           |
| 100-41-4    | Ethylbenzene                | 55          | 3.9         | 1.2         | 13              | 0.89 | 0.29  |           |
| 179601-23-1 | m,p-Xylenes                 | 77          | 7.8         | 2.3         | 18              | 1.8  | 0.54  |           |
| 75-25-2     | Bromoform                   | ND          | 3.9         | 1.2         | ND              | 0.38 | 0.11  |           |
| 100-42-5    | Styrene                     | 2.6         | 3.9         | 1.2         | 0.60            | 0.91 | 0.27  | J         |
| 95-47-6     | o-Xylene                    | 51          | 3.9         | 1.2         | 12              | 0.89 | 0.27  |           |
| 111-84-2    | n-Nonane                    | 61          | 3.9         | 1.2         | 12              | 0.74 | 0.22  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 3.9         | 1.2         | ND              | 0.57 | 0.17  |           |
| 98-82-8     | Cumene                      | 9.9         | 3.9         | 1.2         | 2.0             | 0.79 | 0.24  |           |
| 80-56-8     | alpha-Pinene                | 50          | 3.9         | 1.1         | 9.0             | 0.70 | 0.20  |           |
| 103-65-1    | n-Propylbenzene             | 5.2         | 3.9         | 1.2         | 1.1             | 0.79 | 0.25  |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 3.9         | 1.2         | ND              | 0.79 | 0.25  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 16          | 3.9         | 1.2         | 3.3             | 0.79 | 0.25  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 29          | 3.9         | 1.2         | 5.9             | 0.79 | 0.24  |           |
| 100-44-7    | Benzyl Chloride             | ND          | 3.9         | 0.85        | ND              | 0.75 | 0.16  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 1.4         | 3.9         | 1.2         | 0.23            | 0.65 | 0.19  | J         |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 3.9         | 1.1         | ND              | 0.65 | 0.18  |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 3.9         | 1.2         | ND              | 0.65 | 0.19  |           |
| 5989-27-5   | d-Limonene                  | 18          | 3.9         | 1.1         | 3.3             | 0.70 | 0.20  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 3.9         | 0.77        | ND              | 0.40 | 0.080 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 3.9         | 1.2         | ND              | 0.52 | 0.17  |           |
| 91-20-3     | Naphthalene                 | 2.7         | 3.9         | 1.4         | 0.51            | 0.74 | 0.27  | J         |
| 87-68-3     | Hexachlorobutadiene         | ND          | 3.9         | 1.1         | ND              | 0.36 | 0.10  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

### RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-004

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00490

Initial Pressure (psig): -1.46 Final Pressure (psig): 3.93

Canister Dilution Factor: 1.41

| CAS#      | Compound                                             | Result      | MRL                    | MDL          | Result     | MRL        | MDL         | Data      |
|-----------|------------------------------------------------------|-------------|------------------------|--------------|------------|------------|-------------|-----------|
| 115-07-1  | Propene                                              | μg/m³<br>84 | $\frac{\mu g/m^3}{24}$ | μg/m³<br>6.6 | ppbV<br>49 | ppbV<br>14 | ppbV<br>3.8 | Qualifier |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND          | 24                     | 8.0          | ND         | 4.8        | 1.6         |           |
| 74-87-3   | Chloromethane                                        | ND          | 24                     | 7.1          | ND         | 11         | 3.4         |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND          | 24                     | 8.9          | ND         | 3.4        | 1.3         |           |
| 106-99-0  | 1,3-Butadiene                                        | ND          | 24                     | 10           | ND         | 11         | 4.7         |           |
| 74-83-9   | Bromomethane                                         | ND          | 24                     | 8.9          | ND         | 6.1        | 2.3         |           |
| 75-00-3   | Chloroethane                                         | ND          | 24                     | 8.0          | ND         | 8.9        | 3.0         |           |
| 64-17-5   | Ethanol                                              | 860         | 240                    | 38           | 460        | 120        | 20          |           |
| 75-05-8   | Acetonitrile                                         | ND          | 24                     | 8.5          | ND         | 14         | 5.0         |           |
| 107-02-8  | Acrolein                                             | ND          | 94                     | 8.0          | ND         | 41         | 3.5         |           |
| 67-64-1   | Acetone                                              | 200         | 240                    | 36           | 83         | 99         | 15          | J         |
| 75-69-4   | Trichlorofluoromethane                               | ND          | 24                     | 8.0          | ND         | 4.2        | 1.4         |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 56          | 240                    | 20           | 23         | 96         | 8.0         | J         |
| 107-13-1  | Acrylonitrile                                        | ND          | 24                     | 8.0          | ND         | 11         | 3.7         |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND          | 24                     | 8.0          | ND         | 5.9        | 2.0         |           |
| 75-09-2   | Methylene Chloride                                   | ND          | 24                     | 8.0          | ND         | 6.8        | 2.3         |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND          | 24                     | 7.5          | ND         | 7.5        | 2.4         |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND          | 24                     | 8.0          | ND         | 3.1        | 1.0         |           |
| 75-15-0   | Carbon Disulfide                                     | 45          | 240                    | 7.1          | 14         | 75         | 2.3         | J         |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND          | 24                     | 8.9          | ND         | 5.9        | 2.3         |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND          | 24                     | 7.5          | ND         | 5.8        | 1.9         |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND          | 24                     | 8.0          | ND         | 6.5        | 2.2         |           |
| 108-05-4  | Vinyl Acetate                                        | ND          | 240                    | 31           | ND         | 67         | 8.7         |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND          | 240                    | 9.9          | ND         | 80         | 3.3         |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-004

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00490

Initial Pressure (psig): -1.46 Final Pressure (psig): 3.93

Canister Dilution Factor: 1.41

| CAS#       | Compound                  | Result<br>μg/m³ | MRL<br>μg/m³ | $\begin{array}{c} MDL \\ \mu g/m^3 \end{array}$ | Result<br>ppbV | MRL<br>ppbV | MDL<br>ppbV ( | Data<br>Qualifier |
|------------|---------------------------|-----------------|--------------|-------------------------------------------------|----------------|-------------|---------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 24           | 7.5                                             | ND             | 5.9         | 1.9           |                   |
| 141-78-6   | Ethyl Acetate             | ND              | 47           | 16                                              | ND             | 13          | 4.6           |                   |
| 110-54-3   | n-Hexane                  | 84              | 24           | 7.1                                             | 24             | 6.7         | 2.0           |                   |
| 67-66-3    | Chloroform                | ND              | 24           | 8.0                                             | ND             | 4.8         | 1.6           |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | ND              | 24           | 9.4                                             | ND             | 8.0         | 3.2           |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 24           | 7.5                                             | ND             | 5.8         | 1.9           |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 24           | 8.0                                             | ND             | 4.3         | 1.5           |                   |
| 71-43-2    | Benzene                   | ND              | 24           | 7.5                                             | ND             | 7.4         | 2.4           |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 24           | 7.1                                             | ND             | 3.7         | 1.1           |                   |
| 110-82-7   | Cyclohexane               | 120             | 47           | 14                                              | 35             | 14          | 4.0           |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 24           | 7.5                                             | ND             | 5.1         | 1.6           |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 24           | 7.1                                             | ND             | 3.5         | 1.1           |                   |
| 79-01-6    | Trichloroethene           | ND              | 24           | 6.6                                             | ND             | 4.4         | 1.2           |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 24           | 7.5                                             | ND             | 6.5         | 2.1           |                   |
| 80-62-6    | Methyl Methacrylate       | ND              | 47           | 15                                              | ND             | 11          | 3.6           |                   |
| 142-82-5   | n-Heptane                 | 26              | 24           | 8.0                                             | 6.3            | 5.7         | 2.0           |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 24           | 6.6                                             | ND             | 5.2         | 1.4           |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 24           | 7.5                                             | ND             | 5.7         | 1.8           |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND              | 24           | 7.5                                             | ND             | 5.2         | 1.7           |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 24           | 7.5                                             | ND             | 4.3         | 1.4           |                   |
| 108-88-3   | Toluene                   | 190             | 24           | 8.0                                             | 51             | 6.2         | 2.1           |                   |
| 591-78-6   | 2-Hexanone                | ND              | 24           | 7.5                                             | ND             | 5.7         | 1.8           |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 24           | 7.5                                             | ND             | 2.8         | 0.88          |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 24           | 7.5                                             | ND             | 3.1         | 0.98          |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 24           | 7.5                                             | ND             | 4.9         | 1.6           |                   |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

## RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-004

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00490

Initial Pressure (psig): -1.46 Final Pressure (psig): 3.93

Canister Dilution Factor: 1.41

|             |                             | Result | MRL         | MDL         | Result     | MRL  | MDL  | Data      |
|-------------|-----------------------------|--------|-------------|-------------|------------|------|------|-----------|
| CAS#        | Compound                    | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 24          | 8.5         | ND         | 5.0  | 1.8  |           |
| 127-18-4    | Tetrachloroethene           | ND     | 24          | 6.6         | ND         | 3.5  | 0.97 |           |
| 108-90-7    | Chlorobenzene               | ND     | 24          | 7.5         | ND         | 5.1  | 1.6  |           |
| 100-41-4    | Ethylbenzene                | 27     | 24          | 7.5         | 6.3        | 5.4  | 1.7  |           |
| 179601-23-1 | m,p-Xylenes                 | 55     | 47          | 14          | 13         | 11   | 3.2  |           |
| 75-25-2     | Bromoform                   | ND     | 24          | 7.1         | ND         | 2.3  | 0.68 |           |
| 100-42-5    | Styrene                     | ND     | 24          | 7.1         | ND         | 5.5  | 1.7  |           |
| 95-47-6     | o-Xylene                    | 24     | 24          | 7.1         | 5.4        | 5.4  | 1.6  |           |
| 111-84-2    | n-Nonane                    | ND     | 24          | 7.1         | ND         | 4.5  | 1.3  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 24          | 7.1         | ND         | 3.4  | 1.0  |           |
| 98-82-8     | Cumene                      | 230    | 24          | 7.1         | 47         | 4.8  | 1.4  |           |
| 80-56-8     | alpha-Pinene                | 2,000  | 24          | 6.6         | 360        | 4.2  | 1.2  |           |
| 103-65-1    | n-Propylbenzene             | 140    | 24          | 7.5         | 28         | 4.8  | 1.5  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 24          | 7.5         | ND         | 4.8  | 1.5  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 24          | 7.5         | ND         | 4.8  | 1.5  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 17     | 24          | 7.1         | 3.4        | 4.8  | 1.4  | J         |
| 100-44-7    | Benzyl Chloride             | ND     | 24          | 5.2         | ND         | 4.5  | 1.0  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 24          | 7.1         | ND         | 3.9  | 1.2  |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 24          | 6.6         | ND         | 3.9  | 1.1  |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 24          | 7.1         | ND         | 3.9  | 1.2  |           |
| 5989-27-5   | d-Limonene                  | 150    | 24          | 6.6         | 27         | 4.2  | 1.2  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 24          | 4.7         | ND         | 2.4  | 0.48 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 24          | 7.5         | ND         | 3.2  | 1.0  |           |
| 91-20-3     | Naphthalene                 | ND     | 24          | 8.5         | ND         | 4.5  | 1.6  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 24          | 6.6         | ND         | 2.2  | 0.62 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-005

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30 - 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes: 0.050 Liter(s)

Test Notes: 0.050 Liter(s)

Container ID: AS00442

Initial Pressure (psig): -2.41 Final Pressure (psig): 3.60

Canister Dilution Factor: 1.49

| CAS#      | Compound                                             | Result | MRL   | MDL   | Result | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------|-------|--------|-------|-------|-----------|
|           |                                                      | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | 6.5    | 0.75  | 0.21  | 3.8    | 0.43  | 0.12  |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 1.9    | 0.75  | 0.25  | 0.39   | 0.15  | 0.051 |           |
| 74-87-3   | Chloromethane                                        | 0.33   | 0.75  | 0.22  | 0.16   | 0.36  | 0.11  | J         |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.75  | 0.28  | ND     | 0.11  | 0.041 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.75  | 0.33  | ND     | 0.34  | 0.15  |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.75  | 0.28  | ND     | 0.19  | 0.073 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.75  | 0.25  | ND     | 0.28  | 0.096 |           |
| 64-17-5   | Ethanol                                              | 100    | 7.5   | 1.2   | 55     | 4.0   | 0.63  |           |
| 75-05-8   | Acetonitrile                                         | 1.6    | 0.75  | 0.27  | 0.97   | 0.44  | 0.16  |           |
| 107-02-8  | Acrolein                                             | 3.2    | 3.0   | 0.25  | 1.4    | 1.3   | 0.11  |           |
| 67-64-1   | Acetone                                              | 180    | 7.5   | 1.1   | 75     | 3.1   | 0.48  |           |
| 75-69-4   | Trichlorofluoromethane                               | 1.4    | 0.75  | 0.25  | 0.24   | 0.13  | 0.045 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 6.7    | 7.5   | 0.63  | 2.7    | 3.0   | 0.25  | J         |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.75  | 0.25  | ND     | 0.34  | 0.12  |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.75  | 0.25  | ND     | 0.19  | 0.064 |           |
| 75-09-2   | Methylene Chloride                                   | 0.48   | 0.75  | 0.25  | 0.14   | 0.21  | 0.073 | J         |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.75  | 0.24  | ND     | 0.24  | 0.076 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.53   | 0.75  | 0.25  | 0.069  | 0.097 | 0.033 | J         |
| 75-15-0   | Carbon Disulfide                                     | 4.9    | 7.5   | 0.22  | 1.6    | 2.4   | 0.072 | J         |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.75  | 0.28  | ND     | 0.19  | 0.071 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.75  | 0.24  | ND     | 0.18  | 0.059 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.75  | 0.25  | ND     | 0.21  | 0.070 |           |
| 108-05-4  | Vinyl Acetate                                        | 2.7    | 7.5   | 0.97  | 0.77   | 2.1   | 0.28  | J         |
| 78-93-3   | 2-Butanone (MEK)                                     | 42     | 7.5   | 0.31  | 14     | 2.5   | 0.11  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-005

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15

Applyot: Wide Apg. Pote Applyod: 6/30, 7/1/1

Analyst: Wida Ang Date Analyzed: 6/30 - 7/1/15
Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)
Test Notes: 0.050 Liter(s)

Container ID: AS00442

Initial Pressure (psig): -2.41 Final Pressure (psig): 3.60

Canister Dilution Factor: 1.49

| CAS#       | Compound                  | Result | MRL         | MDL         | Result | MRL   | MDL   | Data      |
|------------|---------------------------|--------|-------------|-------------|--------|-------|-------|-----------|
|            |                           | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 0.75        | 0.24        | ND     | 0.19  | 0.060 |           |
| 141-78-6   | Ethyl Acetate             | 4.8    | 1.5         | 0.52        | 1.3    | 0.41  | 0.14  |           |
| 110-54-3   | n-Hexane                  | 1.4    | 0.75        | 0.22        | 0.38   | 0.21  | 0.063 |           |
| 67-66-3    | Chloroform                | 0.32   | 0.75        | 0.25        | 0.066  | 0.15  | 0.052 | J         |
| 109-99-9   | Tetrahydrofuran (THF)     | 280    | 15          | 6.0         | 94     | 5.1   | 2.0   | D         |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 0.75        | 0.24        | ND     | 0.18  | 0.059 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 0.75        | 0.25        | ND     | 0.14  | 0.046 |           |
| 71-43-2    | Benzene                   | 2.8    | 0.75        | 0.24        | 0.88   | 0.23  | 0.075 |           |
| 56-23-5    | Carbon Tetrachloride      | 0.55   | 0.75        | 0.22        | 0.088  | 0.12  | 0.036 | J         |
| 110-82-7   | Cyclohexane               | 4.5    | 1.5         | 0.43        | 1.3    | 0.43  | 0.13  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 0.75        | 0.24        | ND     | 0.16  | 0.052 |           |
| 75-27-4    | Bromodichloromethane      | ND     | 0.75        | 0.22        | ND     | 0.11  | 0.033 |           |
| 79-01-6    | Trichloroethene           | ND     | 0.75        | 0.21        | ND     | 0.14  | 0.039 |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 0.75        | 0.24        | ND     | 0.21  | 0.066 |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 1.5         | 0.46        | ND     | 0.36  | 0.11  |           |
| 142-82-5   | n-Heptane                 | 2.6    | 0.75        | 0.25        | 0.63   | 0.18  | 0.062 |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 0.75        | 0.21        | ND     | 0.16  | 0.046 |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 1.8    | 0.75        | 0.24        | 0.43   | 0.18  | 0.058 |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 0.75        | 0.24        | ND     | 0.16  | 0.053 |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 0.75        | 0.24        | ND     | 0.14  | 0.044 |           |
| 108-88-3   | Toluene                   | 330    | 15          | 5.1         | 87     | 4.0   | 1.3   | D         |
| 591-78-6   | 2-Hexanone                | ND     | 0.75        | 0.24        | ND     | 0.18  | 0.058 |           |
| 124-48-1   | Dibromochloromethane      | ND     | 0.75        | 0.24        | ND     | 0.087 | 0.028 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 0.75        | 0.24        | ND     | 0.097 | 0.031 |           |
| 123-86-4   | n-Butyl Acetate           | 7.7    | 0.75        | 0.24        | 1.6    | 0.16  | 0.050 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

D = The reported result is from a dilution.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-VENT-3 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-005

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 6/30 - 7/1/19

Analyst: Wida Ang Date Analyzed: 6/30 - 7/1/15
Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

0.050 Liter(s)

Container ID: AS00442

Initial Pressure (psig): -2.41 Final Pressure (psig): 3.60

Canister Dilution Factor: 1.49

|             |                             | Result | MRL         | MDL         | Result     | MRL   | MDL   | Data      |
|-------------|-----------------------------|--------|-------------|-------------|------------|-------|-------|-----------|
| CAS#        | Compound                    | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | 4.3    | 0.75        | 0.27        | 0.92       | 0.16  | 0.057 |           |
| 127-18-4    | Tetrachloroethene           | ND     | 0.75        | 0.21        | ND         | 0.11  | 0.031 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.75        | 0.24        | ND         | 0.16  | 0.052 |           |
| 100-41-4    | Ethylbenzene                | 32     | 0.75        | 0.24        | 7.4        | 0.17  | 0.055 |           |
| 179601-23-1 | m,p-Xylenes                 | 49     | 1.5         | 0.45        | 11         | 0.34  | 0.10  |           |
| 75-25-2     | Bromoform                   | ND     | 0.75        | 0.22        | ND         | 0.072 | 0.022 |           |
| 100-42-5    | Styrene                     | 2.7    | 0.75        | 0.22        | 0.64       | 0.18  | 0.053 |           |
| 95-47-6     | o-Xylene                    | 17     | 0.75        | 0.22        | 3.9        | 0.17  | 0.051 |           |
| 111-84-2    | n-Nonane                    | 2.0    | 0.75        | 0.22        | 0.38       | 0.14  | 0.043 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.75        | 0.22        | ND         | 0.11  | 0.033 |           |
| 98-82-8     | Cumene                      | 0.79   | 0.75        | 0.22        | 0.16       | 0.15  | 0.045 |           |
| 80-56-8     | alpha-Pinene                | 1.3    | 0.75        | 0.21        | 0.23       | 0.13  | 0.037 |           |
| 103-65-1    | n-Propylbenzene             | 2.4    | 0.75        | 0.24        | 0.48       | 0.15  | 0.049 |           |
| 622-96-8    | 4-Ethyltoluene              | 3.6    | 0.75        | 0.24        | 0.74       | 0.15  | 0.049 |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 3.3    | 0.75        | 0.24        | 0.68       | 0.15  | 0.049 |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 11     | 0.75        | 0.22        | 2.3        | 0.15  | 0.045 |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.75        | 0.16        | ND         | 0.14  | 0.032 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 1.3    | 0.75        | 0.22        | 0.21       | 0.12  | 0.037 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.75        | 0.21        | ND         | 0.12  | 0.035 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.75        | 0.22        | ND         | 0.12  | 0.037 |           |
| 5989-27-5   | d-Limonene                  | 10     | 0.75        | 0.21        | 1.8        | 0.13  | 0.037 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.75        | 0.15        | ND         | 0.077 | 0.015 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.75        | 0.24        | ND         | 0.10  | 0.032 |           |
| 91-20-3     | Naphthalene                 | 0.49   | 0.75        | 0.27        | 0.094      | 0.14  | 0.051 | J         |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.75        | 0.21        | ND         | 0.070 | 0.020 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-MW-102 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-006

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00457

Initial Pressure (psig): -2.31 Final Pressure (psig): 3.64

Canister Dilution Factor: 1.48

| CAS#      | Compound                            | Result              | MRL                    | MDL                     | Result     | MRL        | MDL         | Data           |
|-----------|-------------------------------------|---------------------|------------------------|-------------------------|------------|------------|-------------|----------------|
| 115-07-1  | Propene                             | μ <b>g/m³</b><br>ND | $\frac{\mu g/m^3}{25}$ | $\frac{\mu g/m^3}{6.9}$ | ppbV<br>ND | ppbV<br>14 | ppbV<br>4.0 | Qualifier<br>V |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | ND<br>ND            | 25                     | 8.4                     | ND<br>ND   | 5.0        | 1.7         | •              |
|           |                                     |                     |                        |                         |            |            |             |                |
| 74-87-3   | Chloromethane                       | ND                  | 25                     | 7.4                     | ND         | 12         | 3.6         |                |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-               | ND                  | 25                     | 9.4                     | ND         | 3.5        |             |                |
|           | tetrafluoroethane (CFC 114)         |                     |                        |                         |            |            | 1.3         |                |
| 106-99-0  | 1,3-Butadiene                       | ND                  | 25                     | 11                      | ND         | 11         | 4.9         |                |
| 74-83-9   | Bromomethane                        | ND                  | 25                     | 9.4                     | ND         | 6.4        | 2.4         |                |
| 75-00-3   | Chloroethane                        | ND                  | 25                     | 8.4                     | ND         | 9.4        | 3.2         |                |
| 64-17-5   | Ethanol                             | 270                 | 250                    | 39                      | 140        | 130        | 21          |                |
| 75-05-8   | Acetonitrile                        | ND                  | 25                     | 8.9                     | ND         | 15         | 5.3         |                |
| 107-02-8  | Acrolein                            | ND                  | 99                     | 8.4                     | ND         | 43         | 3.7         |                |
| 67-64-1   | Acetone                             | ND                  | 250                    | 38                      | ND         | 100        | 16          |                |
| 75-69-4   | Trichlorofluoromethane              | ND                  | 25                     | 8.4                     | ND         | 4.4        | 1.5         |                |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND                  | 250                    | 21                      | ND         | 100        | 8.4         |                |
| 107-13-1  | Acrylonitrile                       | ND                  | 25                     | 8.4                     | ND         | 11         | 3.9         |                |
| 75-35-4   | 1,1-Dichloroethene                  | ND                  | 25                     | 8.4                     | ND         | 6.2        | 2.1         |                |
| 75-09-2   | Methylene Chloride                  | ND                  | 25                     | 8.4                     | ND         | 7.1        | 2.4         |                |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND                  | 25                     | 7.9                     | ND         | 7.9        | 2.5         |                |
| 76-13-1   | Trichlorotrifluoroethane            | ND                  | 25                     | 8.4                     | ND         | 3.2        | 1.1         |                |
| 75-15-0   | Carbon Disulfide                    | 8.6                 | 250                    | 7.4                     | 2.8        | 79         | 2.4         | J              |
| 156-60-5  | trans-1,2-Dichloroethene            | ND                  | 25                     | 9.4                     | ND         | 6.2        | 2.4         |                |
| 75-34-3   | 1,1-Dichloroethane                  | ND                  | 25                     | 7.9                     | ND         | 6.1        | 2.0         |                |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND                  | 25                     | 8.4                     | ND         | 6.8        | 2.3         |                |
| 108-05-4  | Vinyl Acetate                       | ND                  | 250                    | 32                      | ND         | 70         | 9.1         |                |
| 78-93-3   | 2-Butanone (MEK)                    | ND                  | 250                    | 10                      | ND         | 84         | 3.5         |                |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased low) the specified limits for this compound.

## RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-MW-102 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-006

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00457

Initial Pressure (psig): -2.31 Final Pressure (psig): 3.64

Canister Dilution Factor: 1.48

| CAS#       | Compound                  | Result | MRL   | MDL         | Result | MRL  | MDL  | Data      |
|------------|---------------------------|--------|-------|-------------|--------|------|------|-----------|
|            |                           | μg/m³  | μg/m³ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 25    | 7.9         | ND     | 6.2  | 2.0  |           |
| 141-78-6   | Ethyl Acetate             | ND     | 49    | 17          | ND     | 14   | 4.8  |           |
| 110-54-3   | n-Hexane                  | 86     | 25    | 7.4         | 24     | 7.0  | 2.1  |           |
| 67-66-3    | Chloroform                | ND     | 25    | 8.4         | ND     | 5.1  | 1.7  |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 25    | 9.9         | ND     | 8.4  | 3.3  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 25    | 7.9         | ND     | 6.1  | 2.0  |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 25    | 8.4         | ND     | 4.5  | 1.5  |           |
| 71-43-2    | Benzene                   | 12     | 25    | 7.9         | 3.8    | 7.7  | 2.5  | J         |
| 56-23-5    | Carbon Tetrachloride      | ND     | 25    | 7.4         | ND     | 3.9  | 1.2  |           |
| 110-82-7   | Cyclohexane               | 51     | 49    | 14          | 15     | 14   | 4.2  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 25    | 7.9         | ND     | 5.3  | 1.7  |           |
| 75-27-4    | Bromodichloromethane      | ND     | 25    | 7.4         | ND     | 3.7  | 1.1  |           |
| 79-01-6    | Trichloroethene           | ND     | 25    | 6.9         | ND     | 4.6  | 1.3  |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 25    | 7.9         | ND     | 6.8  | 2.2  |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 49    | 15          | ND     | 12   | 3.7  |           |
| 142-82-5   | n-Heptane                 | 210    | 25    | 8.4         | 51     | 6.0  | 2.0  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 25    | 6.9         | ND     | 5.4  | 1.5  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 25    | 7.9         | ND     | 6.0  | 1.9  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 25    | 7.9         | ND     | 5.4  | 1.7  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 25    | 7.9         | ND     | 4.5  | 1.4  |           |
| 108-88-3   | Toluene                   | 98     | 25    | 8.4         | 26     | 6.5  | 2.2  |           |
| 591-78-6   | 2-Hexanone                | ND     | 25    | 7.9         | ND     | 6.0  | 1.9  |           |
| 124-48-1   | Dibromochloromethane      | ND     | 25    | 7.9         | ND     | 2.9  | 0.93 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 25    | 7.9         | ND     | 3.2  | 1.0  |           |
| 123-86-4   | n-Butyl Acetate           | ND     | 25    | 7.9         | ND     | 5.2  | 1.7  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-MW-102 ALS Project ID: P1502473
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1502473-006

Test Code: EPA TO-15 Date Collected: 6/15/15
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: 6/19/15
Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.030 Liter(s)

Test Notes:

Container ID: AS00457

Initial Pressure (psig): -2.31 Final Pressure (psig): 3.64

Canister Dilution Factor: 1.48

|             |                             | Result      | MRL         | MDL         | Result     | MRL  | MDL  | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|------------|------|------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | ND          | 25          | 8.9         | ND         | 5.3  | 1.9  |           |
| 127-18-4    | Tetrachloroethene           | ND          | 25          | 6.9         | ND         | 3.6  | 1.0  |           |
| 108-90-7    | Chlorobenzene               | ND          | 25          | 7.9         | ND         | 5.4  | 1.7  |           |
| 100-41-4    | Ethylbenzene                | 36          | 25          | 7.9         | 8.3        | 5.7  | 1.8  |           |
| 179601-23-1 | m,p-Xylenes                 | 110         | 49          | 15          | 26         | 11   | 3.4  |           |
| 75-25-2     | Bromoform                   | ND          | 25          | 7.4         | ND         | 2.4  | 0.72 |           |
| 100-42-5    | Styrene                     | ND          | 25          | 7.4         | ND         | 5.8  | 1.7  |           |
| 95-47-6     | o-Xylene                    | 33          | 25          | 7.4         | 7.6        | 5.7  | 1.7  |           |
| 111-84-2    | n-Nonane                    | ND          | 25          | 7.4         | ND         | 4.7  | 1.4  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 25          | 7.4         | ND         | 3.6  | 1.1  |           |
| 98-82-8     | Cumene                      | 220         | 25          | 7.4         | 45         | 5.0  | 1.5  |           |
| 80-56-8     | alpha-Pinene                | ND          | 25          | 6.9         | ND         | 4.4  | 1.2  |           |
| 103-65-1    | n-Propylbenzene             | 270         | 25          | 7.9         | 54         | 5.0  | 1.6  |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 25          | 7.9         | ND         | 5.0  | 1.6  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 11          | 25          | 7.9         | 2.3        | 5.0  | 1.6  | J         |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 25          | 25          | 7.4         | 5.0        | 5.0  | 1.5  | J         |
| 100-44-7    | Benzyl Chloride             | ND          | 25          | 5.4         | ND         | 4.8  | 1.0  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 25          | 7.4         | ND         | 4.1  | 1.2  |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 25          | 6.9         | ND         | 4.1  | 1.1  |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 25          | 7.4         | ND         | 4.1  | 1.2  |           |
| 5989-27-5   | d-Limonene                  | ND          | 25          | 6.9         | ND         | 4.4  | 1.2  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 25          | 4.9         | ND         | 2.6  | 0.51 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 25          | 7.9         | ND         | 3.3  | 1.1  |           |
| 91-20-3     | Naphthalene                 | ND          | 25          | 8.9         | ND         | 4.7  | 1.7  |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 25          | 6.9         | ND         | 2.3  | 0.65 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1502473

ALS Sample ID: P150630-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#      | Compound                                             | Result | MRL   | MDL         | Result | MRL   | MDL <b>Data</b>       |
|-----------|------------------------------------------------------|--------|-------|-------------|--------|-------|-----------------------|
|           |                                                      | μg/m³  | μg/m³ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV <b>Qualifier</b> |
| 115-07-1  | Propene                                              | ND     | 0.50  | 0.14        | ND     | 0.29  | 0.081                 |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND     | 0.50  | 0.17        | ND     | 0.10  | 0.034                 |
| 74-87-3   | Chloromethane                                        | ND     | 0.50  | 0.15        | ND     | 0.24  | 0.073                 |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.50  | 0.19        | ND     | 0.072 | 0.027                 |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.50  | 0.22        | ND     | 0.23  | 0.099                 |
| 74-83-9   | Bromomethane                                         | ND     | 0.50  | 0.19        | ND     | 0.13  | 0.049                 |
| 75-00-3   | Chloroethane                                         | ND     | 0.50  | 0.17        | ND     | 0.19  | 0.064                 |
| 64-17-5   | Ethanol                                              | ND     | 5.0   | 0.80        | ND     | 2.7   | 0.42                  |
| 75-05-8   | Acetonitrile                                         | ND     | 0.50  | 0.18        | ND     | 0.30  | 0.11                  |
| 107-02-8  | Acrolein                                             | ND     | 2.0   | 0.17        | ND     | 0.87  | 0.074                 |
| 67-64-1   | Acetone                                              | ND     | 5.0   | 0.77        | ND     | 2.1   | 0.32                  |
| 75-69-4   | Trichlorofluoromethane                               | ND     | 0.50  | 0.17        | ND     | 0.089 | 0.030                 |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND     | 5.0   | 0.42        | ND     | 2.0   | 0.17                  |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.50  | 0.17        | ND     | 0.23  | 0.078                 |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.50  | 0.17        | ND     | 0.13  | 0.043                 |
| 75-09-2   | Methylene Chloride                                   | ND     | 0.50  | 0.17        | ND     | 0.14  | 0.049                 |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.50  | 0.16        | ND     | 0.16  | 0.051                 |
| 76-13-1   | Trichlorotrifluoroethane                             | ND     | 0.50  | 0.17        | ND     | 0.065 | 0.022                 |
| 75-15-0   | Carbon Disulfide                                     | ND     | 5.0   | 0.15        | ND     | 1.6   | 0.048                 |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.50  | 0.19        | ND     | 0.13  | 0.048                 |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.50  | 0.16        | ND     | 0.12  | 0.040                 |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.50  | 0.17        | ND     | 0.14  | 0.047                 |
| 108-05-4  | Vinyl Acetate                                        | ND     | 5.0   | 0.65        | ND     | 1.4   | 0.18                  |
| 78-93-3   | 2-Butanone (MEK)                                     | ND     | 5.0   | 0.21        | ND     | 1.7   | 0.071                 |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P150630-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#       | Compound                  | Result      | MRL         | MDL         | Result     | MRL   | MDL <b>Data</b> |
|------------|---------------------------|-------------|-------------|-------------|------------|-------|-----------------|
|            |                           | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV Qualifier  |
| 156-59-2   | cis-1,2-Dichloroethene    | ND          | 0.50        | 0.16        | ND         | 0.13  | 0.040           |
| 141-78-6   | Ethyl Acetate             | ND          | 1.0         | 0.35        | ND         | 0.28  | 0.097           |
| 110-54-3   | n-Hexane                  | ND          | 0.50        | 0.15        | ND         | 0.14  | 0.043           |
| 67-66-3    | Chloroform                | ND          | 0.50        | 0.17        | ND         | 0.10  | 0.035           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND          | 0.50        | 0.20        | ND         | 0.17  | 0.068           |
| 107-06-2   | 1,2-Dichloroethane        | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.040           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND          | 0.50        | 0.17        | ND         | 0.092 | 0.031           |
| 71-43-2    | Benzene                   | ND          | 0.50        | 0.16        | ND         | 0.16  | 0.050           |
| 56-23-5    | Carbon Tetrachloride      | ND          | 0.50        | 0.15        | ND         | 0.080 | 0.024           |
| 110-82-7   | Cyclohexane               | ND          | 1.0         | 0.29        | ND         | 0.29  | 0.084           |
| 78-87-5    | 1,2-Dichloropropane       | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 75-27-4    | Bromodichloromethane      | ND          | 0.50        | 0.15        | ND         | 0.075 | 0.022           |
| 79-01-6    | Trichloroethene           | ND          | 0.50        | 0.14        | ND         | 0.093 | 0.026           |
| 123-91-1   | 1,4-Dioxane               | ND          | 0.50        | 0.16        | ND         | 0.14  | 0.044           |
| 80-62-6    | Methyl Methacrylate       | ND          | 1.0         | 0.31        | ND         | 0.24  | 0.076           |
| 142-82-5   | n-Heptane                 | ND          | 0.50        | 0.17        | ND         | 0.12  | 0.041           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND          | 0.50        | 0.14        | ND         | 0.11  | 0.031           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND          | 0.50        | 0.16        | ND         | 0.092 | 0.029           |
| 108-88-3   | Toluene                   | ND          | 0.50        | 0.17        | ND         | 0.13  | 0.045           |
| 591-78-6   | 2-Hexanone                | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 124-48-1   | Dibromochloromethane      | ND          | 0.50        | 0.16        | ND         | 0.059 | 0.019           |
| 106-93-4   | 1,2-Dibromoethane         | ND          | 0.50        | 0.16        | ND         | 0.065 | 0.021           |
| 123-86-4   | n-Butyl Acetate           | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.034           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

### RESULTS OF ANALYSIS Page 3 of 3

**Client:** Landau Associates, Inc.

Client Sample ID: Method Blank ALS Project ID: P1502473 Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P150630-MB

Test Code: EPA TO-15

Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

|             |                             | Result      | MRL         | MDL         | Result | MRL   | MDL <b>Dat</b>    | ta   |
|-------------|-----------------------------|-------------|-------------|-------------|--------|-------|-------------------|------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV <b>Quali</b> | fier |
| 111-65-9    | n-Octane                    | ND          | 0.50        | 0.18        | ND     | 0.11  | 0.039             |      |
| 127-18-4    | Tetrachloroethene           | ND          | 0.50        | 0.14        | ND     | 0.074 | 0.021             |      |
| 108-90-7    | Chlorobenzene               | ND          | 0.50        | 0.16        | ND     | 0.11  | 0.035             |      |
| 100-41-4    | Ethylbenzene                | ND          | 0.50        | 0.16        | ND     | 0.12  | 0.037             |      |
| 179601-23-1 | m,p-Xylenes                 | ND          | 1.0         | 0.30        | ND     | 0.23  | 0.069             |      |
| 75-25-2     | Bromoform                   | ND          | 0.50        | 0.15        | ND     | 0.048 | 0.015             |      |
| 100-42-5    | Styrene                     | ND          | 0.50        | 0.15        | ND     | 0.12  | 0.035             |      |
| 95-47-6     | o-Xylene                    | ND          | 0.50        | 0.15        | ND     | 0.12  | 0.035             |      |
| 111-84-2    | n-Nonane                    | ND          | 0.50        | 0.15        | ND     | 0.095 | 0.029             |      |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.50        | 0.15        | ND     | 0.073 | 0.022             |      |
| 98-82-8     | Cumene                      | ND          | 0.50        | 0.15        | ND     | 0.10  | 0.031             |      |
| 80-56-8     | alpha-Pinene                | ND          | 0.50        | 0.14        | ND     | 0.090 | 0.025             |      |
| 103-65-1    | n-Propylbenzene             | ND          | 0.50        | 0.16        | ND     | 0.10  | 0.033             |      |
| 622-96-8    | 4-Ethyltoluene              | ND          | 0.50        | 0.16        | ND     | 0.10  | 0.033             |      |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND          | 0.50        | 0.16        | ND     | 0.10  | 0.033             |      |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND          | 0.50        | 0.15        | ND     | 0.10  | 0.031             |      |
| 100-44-7    | Benzyl Chloride             | ND          | 0.50        | 0.11        | ND     | 0.097 | 0.021             |      |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND     | 0.083 | 0.025             |      |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.50        | 0.14        | ND     | 0.083 | 0.023             |      |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND     | 0.083 | 0.025             |      |
| 5989-27-5   | d-Limonene                  | ND          | 0.50        | 0.14        | ND     | 0.090 | 0.025             |      |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.50        | 0.099       | ND     | 0.052 | 0.010             |      |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.50        | 0.16        | ND     | 0.067 | 0.022             |      |
| 91-20-3     | Naphthalene                 | ND          | 0.50        | 0.18        | ND     | 0.095 | 0.034             |      |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.50        | 0.14        | ND     | 0.047 | 0.013             |      |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150701-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA

Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#      | Compound                                             | Result | MRL         | MDL         | Result | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------------|-------------|--------|-------|-------|-----------|
|           |                                                      | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | 0.36   | 0.50        | 0.14        | 0.21   | 0.29  | 0.081 | J, V      |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND     | 0.50        | 0.17        | ND     | 0.10  | 0.034 |           |
| 74-87-3   | Chloromethane                                        | ND     | 0.50        | 0.15        | ND     | 0.24  | 0.073 |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.50        | 0.19        | ND     | 0.072 | 0.027 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.50        | 0.22        | ND     | 0.23  | 0.099 |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.50        | 0.19        | ND     | 0.13  | 0.049 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.50        | 0.17        | ND     | 0.19  | 0.064 |           |
| 64-17-5   | Ethanol                                              | ND     | 5.0         | 0.80        | ND     | 2.7   | 0.42  |           |
| 75-05-8   | Acetonitrile                                         | ND     | 0.50        | 0.18        | ND     | 0.30  | 0.11  |           |
| 107-02-8  | Acrolein                                             | ND     | 2.0         | 0.17        | ND     | 0.87  | 0.074 |           |
| 67-64-1   | Acetone                                              | ND     | 5.0         | 0.77        | ND     | 2.1   | 0.32  |           |
| 75-69-4   | Trichlorofluoromethane                               | ND     | 0.50        | 0.17        | ND     | 0.089 | 0.030 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND     | 5.0         | 0.42        | ND     | 2.0   | 0.17  |           |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.50        | 0.17        | ND     | 0.23  | 0.078 |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.50        | 0.17        | ND     | 0.13  | 0.043 |           |
| 75-09-2   | Methylene Chloride                                   | 0.26   | 0.50        | 0.17        | 0.074  | 0.14  | 0.049 | J         |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.50        | 0.16        | ND     | 0.16  | 0.051 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND     | 0.50        | 0.17        | ND     | 0.065 | 0.022 |           |
| 75-15-0   | Carbon Disulfide                                     | ND     | 5.0         | 0.15        | ND     | 1.6   | 0.048 |           |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.50        | 0.19        | ND     | 0.13  | 0.048 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.50        | 0.16        | ND     | 0.12  | 0.040 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.50        | 0.17        | ND     | 0.14  | 0.047 |           |
| 108-05-4  | Vinyl Acetate                                        | ND     | 5.0         | 0.65        | ND     | 1.4   | 0.18  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND     | 5.0         | 0.21        | ND     | 1.7   | 0.071 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

V = The continuing calibration verification standard was outside (biased low) the specified limits for this compound.

# RESULTS OF ANALYSIS Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P150701-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA

Analyst: Wida Ang Date Analyzed: 7/1/15
Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#       | Compound                  | Result      | MRL         | MDL         | Result     | MRL   | MDL <b>Data</b> |
|------------|---------------------------|-------------|-------------|-------------|------------|-------|-----------------|
|            |                           | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV Qualifier  |
| 156-59-2   | cis-1,2-Dichloroethene    | ND          | 0.50        | 0.16        | ND         | 0.13  | 0.040           |
| 141-78-6   | Ethyl Acetate             | ND          | 1.0         | 0.35        | ND         | 0.28  | 0.097           |
| 110-54-3   | n-Hexane                  | ND          | 0.50        | 0.15        | ND         | 0.14  | 0.043           |
| 67-66-3    | Chloroform                | ND          | 0.50        | 0.17        | ND         | 0.10  | 0.035           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND          | 0.50        | 0.20        | ND         | 0.17  | 0.068           |
| 107-06-2   | 1,2-Dichloroethane        | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.040           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND          | 0.50        | 0.17        | ND         | 0.092 | 0.031           |
| 71-43-2    | Benzene                   | ND          | 0.50        | 0.16        | ND         | 0.16  | 0.050           |
| 56-23-5    | Carbon Tetrachloride      | ND          | 0.50        | 0.15        | ND         | 0.080 | 0.024           |
| 110-82-7   | Cyclohexane               | ND          | 1.0         | 0.29        | ND         | 0.29  | 0.084           |
| 78-87-5    | 1,2-Dichloropropane       | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 75-27-4    | Bromodichloromethane      | ND          | 0.50        | 0.15        | ND         | 0.075 | 0.022           |
| 79-01-6    | Trichloroethene           | ND          | 0.50        | 0.14        | ND         | 0.093 | 0.026           |
| 123-91-1   | 1,4-Dioxane               | ND          | 0.50        | 0.16        | ND         | 0.14  | 0.044           |
| 80-62-6    | Methyl Methacrylate       | ND          | 1.0         | 0.31        | ND         | 0.24  | 0.076           |
| 142-82-5   | n-Heptane                 | ND          | 0.50        | 0.17        | ND         | 0.12  | 0.041           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND          | 0.50        | 0.14        | ND         | 0.11  | 0.031           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND          | 0.50        | 0.16        | ND         | 0.092 | 0.029           |
| 108-88-3   | Toluene                   | ND          | 0.50        | 0.17        | ND         | 0.13  | 0.045           |
| 591-78-6   | 2-Hexanone                | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 124-48-1   | Dibromochloromethane      | ND          | 0.50        | 0.16        | ND         | 0.059 | 0.019           |
| 106-93-4   | 1,2-Dibromoethane         | ND          | 0.50        | 0.16        | ND         | 0.065 | 0.021           |
| 123-86-4   | n-Butyl Acetate           | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.034           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

### RESULTS OF ANALYSIS Page 3 of 3

**Client:** Landau Associates, Inc.

Client Sample ID: Method Blank ALS Project ID: P1502473 Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P150701-MB

Test Code: EPA TO-15

Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

|             |                             | Result      | MRL         | MDL         | Result     | MRL   | MDL <b>Data</b> |
|-------------|-----------------------------|-------------|-------------|-------------|------------|-------|-----------------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV Qualifier  |
| 111-65-9    | n-Octane                    | ND          | 0.50        | 0.18        | ND         | 0.11  | 0.039           |
| 127-18-4    | Tetrachloroethene           | ND          | 0.50        | 0.14        | ND         | 0.074 | 0.021           |
| 108-90-7    | Chlorobenzene               | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 100-41-4    | Ethylbenzene                | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.037           |
| 179601-23-1 | m,p-Xylenes                 | ND          | 1.0         | 0.30        | ND         | 0.23  | 0.069           |
| 75-25-2     | Bromoform                   | ND          | 0.50        | 0.15        | ND         | 0.048 | 0.015           |
| 100-42-5    | Styrene                     | ND          | 0.50        | 0.15        | ND         | 0.12  | 0.035           |
| 95-47-6     | o-Xylene                    | ND          | 0.50        | 0.15        | ND         | 0.12  | 0.035           |
| 111-84-2    | n-Nonane                    | ND          | 0.50        | 0.15        | ND         | 0.095 | 0.029           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.50        | 0.15        | ND         | 0.073 | 0.022           |
| 98-82-8     | Cumene                      | ND          | 0.50        | 0.15        | ND         | 0.10  | 0.031           |
| 80-56-8     | alpha-Pinene                | ND          | 0.50        | 0.14        | ND         | 0.090 | 0.025           |
| 103-65-1    | n-Propylbenzene             | ND          | 0.50        | 0.16        | ND         | 0.10  | 0.033           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 0.50        | 0.16        | ND         | 0.10  | 0.033           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND          | 0.50        | 0.16        | ND         | 0.10  | 0.033           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND          | 0.50        | 0.15        | ND         | 0.10  | 0.031           |
| 100-44-7    | Benzyl Chloride             | ND          | 0.50        | 0.11        | ND         | 0.097 | 0.021           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND         | 0.083 | 0.025           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.50        | 0.14        | ND         | 0.083 | 0.023           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND         | 0.083 | 0.025           |
| 5989-27-5   | d-Limonene                  | ND          | 0.50        | 0.14        | ND         | 0.090 | 0.025           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.50        | 0.099       | ND         | 0.052 | 0.010           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.50        | 0.16        | ND         | 0.067 | 0.022           |
| 91-20-3     | Naphthalene                 | ND          | 0.50        | 0.18        | ND         | 0.095 | 0.034           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.50        | 0.14        | ND         | 0.047 | 0.013           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# SURROGATE SPIKE RECOVERY RESULTS $\label{eq:page1} \textbf{Page 1 of 1}$

Client: Landau Associates, Inc. Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1502473

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date(s) Collected: 6/15/15

Analyst: Wida Ang Date(s) Received: 6/19/15

Sample Type: 6.0 L Silonite Canister(s) Date(s) Analyzed: 6/30 - 7/1/15

Test Notes:

| Client Sample ID   | ALS Sample ID | 1,2-Dichloroethane-d4 Percent Recovered | Toluene-d8 Percent Recovered | Bromofluorobenzene Percent Recovered | Acceptance<br>Limits | Data<br>Oualifier |
|--------------------|---------------|-----------------------------------------|------------------------------|--------------------------------------|----------------------|-------------------|
| Method Blank       | P150630-MB    | 124                                     | 94                           | 101                                  | 70-130               |                   |
| Method Blank       | P150701-MB    | 120                                     | 94                           | 101                                  | 70-130               |                   |
| Lab Control Sample | P150630-LCS   | 122                                     | 92                           | 103                                  | 70-130               |                   |
| Lab Control Sample | P150701-LCS   | 122                                     | 93                           | 103                                  | 70-130               |                   |
| CL-LFG-BACKGROUND  | P1502473-001  | 115                                     | 95                           | 98                                   | 70-130               |                   |
| CL-LFG-VENT-4      | P1502473-002  | 113                                     | 93                           | 99                                   | 70-130               |                   |
| CL-LFG-P-3         | P1502473-003  | 115                                     | 87                           | 89                                   | 70-130               |                   |
| CL-LFG-P-12        | P1502473-004  | 116                                     | 85                           | 89                                   | 70-130               |                   |
| CL-LFG-VENT-3      | P1502473-005  | 113                                     | 92                           | 99                                   | 70-130               |                   |
| CL-LFG-MW-102      | P1502473-006  | 119                                     | 73                           | 81                                   | 70-130               |                   |

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150630-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|           |                                     |              |        |            | ALS        |           |
|-----------|-------------------------------------|--------------|--------|------------|------------|-----------|
| CAS#      | Compound                            | Spike Amount | Result | % Recovery | Acceptance | Data      |
|           |                                     | $\mu g/m^3$  | μg/m³  |            | Limits     | Qualifier |
| 115-07-1  | Propene                             | 200          | 151    | 76         | 50-128     |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 204          | 207    | 101        | 66-117     |           |
| 74-87-3   | Chloromethane                       | 198          | 166    | 84         | 51-133     |           |
| 76.14.2   | 1,2-Dichloro-1,1,2,2-               |              |        | 100        | (5.117     |           |
| 76-14-2   | tetrafluoroethane (CFC 114)         | 206          | 205    | 100        | 65-117     |           |
| 106-99-0  | 1,3-Butadiene                       | 214          | 208    | 97         | 65-132     |           |
| 74-83-9   | Bromomethane                        | 202          | 229    | 113        | 62-114     |           |
| 75-00-3   | Chloroethane                        | 202          | 202    | 100        | 64-122     |           |
| 64-17-5   | Ethanol                             | 1,020        | 906    | 89         | 57-131     |           |
| 75-05-8   | Acetonitrile                        | 204          | 168    | 82         | 52-135     |           |
| 107-02-8  | Acrolein                            | 214          | 216    | 101        | 64-124     |           |
| 67-64-1   | Acetone                             | 1,080        | 905    | 84         | 60-113     |           |
| 75-69-4   | Trichlorofluoromethane              | 198          | 250    | 126        | 64-112     | ${f L}$   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 420          | 404    | 96         | 62-129     |           |
| 107-13-1  | Acrylonitrile                       | 208          | 181    | 87         | 69-133     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 214          | 198    | 93         | 70-114     |           |
| 75-09-2   | Methylene Chloride                  | 216          | 196    | 91         | 63-103     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 218          | 192    | 88         | 57-135     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 216          | 209    | 97         | 69-116     |           |
| 75-15-0   | Carbon Disulfide                    | 196          | 199    | 102        | 66-118     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 212          | 215    | 101        | 69-123     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 208          | 209    | 100        | 65-118     | ·         |
| 1634-04-4 | Methyl tert-Butyl Ether             | 212          | 212    | 100        | 57-125     |           |
| 108-05-4  | Vinyl Acetate                       | 1,020        | 901    | 88         | 69-131     |           |
| 78-93-3   | 2-Butanone (MEK)                    | 216          | 192    | 89         | 63-121     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly. L = Laboratory control sample recovery outside the specified limits, results may be biased high.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150630-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA

Analyst: Wida Ang Date Analyzed: 6/30/15
Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|            |                           |              |             |            | ALS        |           |
|------------|---------------------------|--------------|-------------|------------|------------|-----------|
| CAS#       | Compound                  | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|            | _                         | $\mu g/m^3$  | $\mu g/m^3$ | -          | Limits     | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 214          | 215         | 100        | 69-119     |           |
| 141-78-6   | Ethyl Acetate             | 428          | 336         | 79         | 65-129     |           |
| 110-54-3   | n-Hexane                  | 210          | 158         | 75         | 55-116     |           |
| 67-66-3    | Chloroform                | 216          | 224         | 104        | 68-111     |           |
| 109-99-9   | Tetrahydrofuran (THF)     | 206          | 196         | 95         | 69-120     |           |
| 107-06-2   | 1,2-Dichloroethane        | 210          | 244         | 116        | 67-117     |           |
| 71-55-6    | 1,1,1-Trichloroethane     | 208          | 236         | 113        | 74-116     |           |
| 71-43-2    | Benzene                   | 220          | 184         | 84         | 61-109     |           |
| 56-23-5    | Carbon Tetrachloride      | 214          | 278         | 130        | 76-120     | ${f L}$   |
| 110-82-7   | Cyclohexane               | 422          | 360         | 85         | 72-115     |           |
| 78-87-5    | 1,2-Dichloropropane       | 212          | 195         | 92         | 67-119     |           |
| 75-27-4    | Bromodichloromethane      | 216          | 238         | 110        | 78-124     |           |
| 79-01-6    | Trichloroethene           | 208          | 199         | 96         | 69-115     |           |
| 123-91-1   | 1,4-Dioxane               | 218          | 188         | 86         | 69-127     |           |
| 80-62-6    | Methyl Methacrylate       | 420          | 394         | 94         | 76-128     |           |
| 142-82-5   | n-Heptane                 | 214          | 193         | 90         | 66-118     |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | 226          | 224         | 99         | 77-124     |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 218          | 206         | 94         | 66-134     |           |
| 10061-02-6 | trans-1,3-Dichloropropene | 216          | 235         | 109        | 80-130     |           |
| 79-00-5    | 1,1,2-Trichloroethane     | 212          | 207         | 98         | 75-119     |           |
| 108-88-3   | Toluene                   | 212          | 173         | 82         | 68-114     |           |
| 591-78-6   | 2-Hexanone                | 222          | 185         | 83         | 60-136     |           |
| 124-48-1   | Dibromochloromethane      | 220          | 223         | 101        | 75-132     |           |
| 106-93-4   | 1,2-Dibromoethane         | 216          | 199         | 92         | 72-122     |           |
| 123-86-4   | n-Butyl Acetate           | 224          | 194         | 87         | 60-137     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly. L = Laboratory control sample recovery outside the specified limits, results may be biased high.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150630-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA
Analyst: Wida Ang Date Analyzed: 6/30/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|             |                             |              |             |            | ALS        |           |
|-------------|-----------------------------|--------------|-------------|------------|------------|-----------|
| CAS#        | Compound                    | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|             | _                           | $\mu g/m^3$  | $\mu g/m^3$ | -          | Limits     | Qualifier |
| 111-65-9    | n-Octane                    | 208          | 169         | 81         | 66-120     |           |
| 127-18-4    | Tetrachloroethene           | 198          | 176         | 89         | 67-120     |           |
| 108-90-7    | Chlorobenzene               | 216          | 183         | 85         | 69-114     |           |
| 100-41-4    | Ethylbenzene                | 212          | 186         | 88         | 71-117     |           |
| 179601-23-1 | m,p-Xylenes                 | 420          | 375         | 89         | 71-118     |           |
| 75-25-2     | Bromoform                   | 216          | 242         | 112        | 76-149     |           |
| 100-42-5    | Styrene                     | 218          | 184         | 84         | 71-128     |           |
| 95-47-6     | o-Xylene                    | 206          | 183         | 89         | 72-118     |           |
| 111-84-2    | n-Nonane                    | 204          | 169         | 83         | 63-123     |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 202          | 179         | 89         | 73-124     |           |
| 98-82-8     | Cumene                      | 204          | 181         | 89         | 71-118     |           |
| 80-56-8     | alpha-Pinene                | 208          | 184         | 88         | 71-123     |           |
| 103-65-1    | n-Propylbenzene             | 202          | 177         | 88         | 71-120     |           |
| 622-96-8    | 4-Ethyltoluene              | 212          | 190         | 90         | 71-121     |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 212          | 193         | 91         | 72-121     |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 210          | 190         | 90         | 71-122     |           |
| 100-44-7    | Benzyl Chloride             | 218          | 224         | 103        | 79-143     |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 218          | 193         | 89         | 67-121     |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 212          | 186         | 88         | 68-121     |           |
| 95-50-1     | 1,2-Dichlorobenzene         | 214          | 190         | 89         | 68-121     |           |
| 5989-27-5   | d-Limonene                  | 210          | 186         | 89         | 69-137     |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 206          | 221         | 107        | 73-145     |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 210          | 203         | 97         | 60-135     |           |
| 91-20-3     | Naphthalene                 | 196          | 198         | 101        | 63-142     |           |
| 87-68-3     | Hexachlorobutadiene         | 214          | 216         | 101        | 65-127     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150701-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA
Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|           |                                     |              |             |            | ALS        |           |
|-----------|-------------------------------------|--------------|-------------|------------|------------|-----------|
| CAS#      | Compound                            | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|           |                                     | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 115-07-1  | Propene                             | 200          | 151         | 76         | 50-128     | _         |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 204          | 204         | 100        | 66-117     |           |
| 74-87-3   | Chloromethane                       | 198          | 150         | 76         | 51-133     |           |
| 76.14.2   | 1,2-Dichloro-1,1,2,2-               |              |             | 102        | (5.117     |           |
| 76-14-2   | tetrafluoroethane (CFC 114)         | 206          | 210         | 102        | 65-117     |           |
| 106-99-0  | 1,3-Butadiene                       | 214          | 222         | 104        | 65-132     |           |
| 74-83-9   | Bromomethane                        | 202          | 245         | 121        | 62-114     | L         |
| 75-00-3   | Chloroethane                        | 202          | 204         | 101        | 64-122     |           |
| 64-17-5   | Ethanol                             | 1,020        | 896         | 88         | 57-131     |           |
| 75-05-8   | Acetonitrile                        | 204          | 166         | 81         | 52-135     |           |
| 107-02-8  | Acrolein                            | 214          | 214         | 100        | 64-124     |           |
| 67-64-1   | Acetone                             | 1,080        | 902         | 84         | 60-113     |           |
| 75-69-4   | Trichlorofluoromethane              | 198          | 248         | 125        | 64-112     | ${f L}$   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 420          | 399         | 95         | 62-129     |           |
| 107-13-1  | Acrylonitrile                       | 208          | 177         | 85         | 69-133     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 214          | 196         | 92         | 70-114     |           |
| 75-09-2   | Methylene Chloride                  | 216          | 196         | 91         | 63-103     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 218          | 188         | 86         | 57-135     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 216          | 209         | 97         | 69-116     |           |
| 75-15-0   | Carbon Disulfide                    | 196          | 198         | 101        | 66-118     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 212          | 213         | 100        | 69-123     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 208          | 206         | 99         | 65-118     |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | 212          | 212         | 100        | 57-125     |           |
| 108-05-4  | Vinyl Acetate                       | 1,020        | 898         | 88         | 69-131     |           |
| 78-93-3   | 2-Butanone (MEK)                    | 216          | 188         | 87         | 63-121     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly. L = Laboratory control sample recovery outside the specified limits, results may be biased high.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1502473Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150701-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA

Analyst: Wida Ang Date Analyzed: 7/1/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

| CAS#       | Compound                  | Spike Amount<br>μg/m³ | Result<br>μg/m³ | % Recovery | ALS Acceptance Limits | Data<br>Qualifier |
|------------|---------------------------|-----------------------|-----------------|------------|-----------------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | 214                   | 213             | 100        | 69-119                |                   |
| 141-78-6   | Ethyl Acetate             | 428                   | 340             | <b>79</b>  | 65-129                |                   |
| 110-54-3   | n-Hexane                  | 210                   | 159             | 76         | 55-116                |                   |
| 67-66-3    | Chloroform                | 216                   | 222             | 103        | 68-111                |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | 206                   | 193             | 94         | 69-120                |                   |
| 107-06-2   | 1,2-Dichloroethane        | 210                   | 242             | 115        | 67-117                |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | 208                   | 234             | 113        | 74-116                |                   |
| 71-43-2    | Benzene                   | 220                   | 180             | 82         | 61-109                |                   |
| 56-23-5    | Carbon Tetrachloride      | 214                   | 272             | 127        | 76-120                | ${f L}$           |
| 110-82-7   | Cyclohexane               | 422                   | 360             | 85         | 72-115                |                   |
| 78-87-5    | 1,2-Dichloropropane       | 212                   | 194             | 92         | 67-119                |                   |
| 75-27-4    | Bromodichloromethane      | 216                   | 237             | 110        | 78-124                |                   |
| 79-01-6    | Trichloroethene           | 208                   | 197             | 95         | 69-115                |                   |
| 123-91-1   | 1,4-Dioxane               | 218                   | 186             | 85         | 69-127                |                   |
| 80-62-6    | Methyl Methacrylate       | 420                   | 392             | 93         | 76-128                |                   |
| 142-82-5   | n-Heptane                 | 214                   | 189             | 88         | 66-118                |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | 226                   | 223             | 99         | 77-124                |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | 218                   | 202             | 93         | 66-134                |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | 216                   | 231             | 107        | 80-130                |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | 212                   | 202             | 95         | 75-119                |                   |
| 108-88-3   | Toluene                   | 212                   | 171             | 81         | 68-114                |                   |
| 591-78-6   | 2-Hexanone                | 222                   | 184             | 83         | 60-136                |                   |
| 124-48-1   | Dibromochloromethane      | 220                   | 218             | 99         | 75-132                |                   |
| 106-93-4   | 1,2-Dibromoethane         | 216                   | 196             | 91         | 72-122                |                   |
| 123-86-4   | n-Butyl Acetate           | 224                   | 192             | 86         | 60-137                |                   |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly. L = Laboratory control sample recovery outside the specified limits, results may be biased high.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1502473

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150701-LCS

Test Code: EPA TO-15 Date Collected: NA Instrument ID: Tekmar AUTOCAN/Agilent 5973inert/6890N/MS8 Date Received: NA

Analyst: Wida Ang Date Analyzed: 7/1/15
Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

| CAS#        | Compound                    | Spike Amount<br>µg/m³ | Result<br>μg/m³ | % Recovery | ALS Acceptance Limits | Data<br>Qualifier |
|-------------|-----------------------------|-----------------------|-----------------|------------|-----------------------|-------------------|
| 111-65-9    | n-Octane                    | 208                   | 167             | 80         | 66-120                |                   |
| 127-18-4    | Tetrachloroethene           | 198                   | 172             | 87         | 67-120                |                   |
| 108-90-7    | Chlorobenzene               | 216                   | 180             | 83         | 69-114                |                   |
| 100-41-4    | Ethylbenzene                | 212                   | 184             | 87         | 71-117                |                   |
| 179601-23-1 | m,p-Xylenes                 | 420                   | 369             | 88         | 71-118                |                   |
| 75-25-2     | Bromoform                   | 216                   | 237             | 110        | 76-149                |                   |
| 100-42-5    | Styrene                     | 218                   | 181             | 83         | 71-128                |                   |
| 95-47-6     | o-Xylene                    | 206                   | 180             | 87         | 72-118                |                   |
| 111-84-2    | n-Nonane                    | 204                   | 167             | 82         | 63-123                |                   |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 202                   | 175             | 87         | 73-124                |                   |
| 98-82-8     | Cumene                      | 204                   | 178             | 87         | 71-118                | _                 |
| 80-56-8     | alpha-Pinene                | 208                   | 180             | 87         | 71-123                |                   |
| 103-65-1    | n-Propylbenzene             | 202                   | 173             | 86         | 71-120                |                   |
| 622-96-8    | 4-Ethyltoluene              | 212                   | 186             | 88         | 71-121                |                   |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 212                   | 187             | 88         | 72-121                |                   |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 210                   | 186             | 89         | 71-122                |                   |
| 100-44-7    | Benzyl Chloride             | 218                   | 218             | 100        | 79-143                |                   |
| 541-73-1    | 1,3-Dichlorobenzene         | 218                   | 188             | 86         | 67-121                |                   |
| 106-46-7    | 1,4-Dichlorobenzene         | 212                   | 182             | 86         | 68-121                |                   |
| 95-50-1     | 1,2-Dichlorobenzene         | 214                   | 185             | 86         | 68-121                |                   |
| 5989-27-5   | d-Limonene                  | 210                   | 182             | 87         | 69-137                |                   |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 206                   | 213             | 103        | 73-145                |                   |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 210                   | 196             | 93         | 60-135                |                   |
| 91-20-3     | Naphthalene                 | 196                   | 192             | 98         | 63-142                |                   |
| 87-68-3     | Hexachlorobutadiene         | 214                   | 208             | 97         | 65-127                |                   |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

#### LABORATORY REPORT

August 27, 2015

Jeremy Davis Landau Associates, Inc. 130 2nd Ave. South Edmonds. WA 98020

RE: Cornwall LF / 001037.030.033

Dear Jeremy:

Enclosed are the results of the samples submitted to our laboratory on August 13, 2015. For your reference, these analyses have been assigned our service request number P1503343.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <a href="https://www.alsglobal.com">www.alsglobal.com</a>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

By Kate Aguilera at 9:46 am, Aug 27, 2015

Kate Aguilera Project Manager



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270

www.alsglobal.com

Client: Landau Associates, Inc.

Project: Cornwall LF / 001037.030.033

Service Request No: P1503343

#### **CASE NARRATIVE**

The samples were received intact under chain of custody on August 13, 2015 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

#### Volatile Organic Compound Analysis

The samples were analyzed in Scan and SIM mode for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation, however it is not part of the AIHA-LAP accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The Bromofluorobenzene surrogate spike recovery in the SIM analysis for sample CL-LFG-P-12 (P1503343-002) was outside control criteria. However, this surrogate is not associated with Vinyl Chloride, therefore the result was not affected. No corrective action was necessary.

The canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161

F: +1 805 526 7270 www.alsqlobal.com

### ALS Environmental - Simi Valley

#### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

| Agency                    | Web Site                                                                                                 | Number                     |
|---------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|
| AIHA                      | http://www.aihaaccreditedlabs.org                                                                        | 101661                     |
| Arizona DHS               | http://www.azdhs.gov/lab/license/env.htm                                                                 | AZ0694                     |
| DoD ELAP                  | http://www.pjlabs.com/search-accredited-labs                                                             | L14-2                      |
| Florida DOH<br>(NELAP)    | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                  | E871020                    |
| Maine DHHS                | http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-<br>services/labcert/labcert.htm          | 2014025                    |
| Minnesota DOH<br>(NELAP)  | http://www.health.state.mn.us/accreditation                                                              | 876241                     |
| New Jersey DEP<br>(NELAP) | http://www.nj.gov/dep/oqa/                                                                               | CA009                      |
| New York DOH<br>(NELAP)   | http://www.wadsworth.org/labcert/elap/elap.html                                                          | 11221                      |
| Oregon PHD<br>(NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx | 4068-001                   |
| Pennsylvania DEP          | http://www.depweb.state.pa.us/labs                                                                       | 68-03307<br>(Registration) |
| Texas CEQ<br>(NELAP)      | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                            | T104704413-<br>15-6        |
| Utah DOH<br>(NELAP)       | http://www.health.utah.gov/lab/labimp/certification/index.html                                           | CA01627201<br>5-5          |
| Washington DOE            | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                           | C946                       |

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <a href="https://www.alsglobal.com">www.alsglobal.com</a>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

## DETAIL SUMMARY REPORT

Client: Service Request: P1503343 Landau Associates, Inc.

Project ID: Cornwall LF / 001037.030.033

Date Received: 8/13/2015 Time Received: 08:50

| Time received.   | 00.50        |        | Date      | Time      | Container | Pi1    | Pfl    | 0-15 - VOC Cans |
|------------------|--------------|--------|-----------|-----------|-----------|--------|--------|-----------------|
| Client Sample ID | Lab Code     | Matrix | Collected | Collected | ID        | (psig) | (psig) | 0 0             |
| CL-LFG-P-6       | P1503343-001 | Air    | 8/7/2015  | 15:55     | AC01169   | -1.50  | 3.70   | X               |
| CL-LFG-P-12      | P1503343-002 | Air    | 8/7/2015  | 16:09     | AC01300   | -2.68  | 3.80   | X X             |
| CL-LFG-P-2       | P1503343-003 | Air    | 8/7/2015  | 16:12     | AS00615   | -2.32  | 3.72   | X               |
| CL-LFG-P-3       | P1503343-004 | Air    | 8/7/2015  | 16:28     | AS00820   | -2.62  | 3.50   | X X             |

# Air - Chain of Custody Record & Analytical Service Request

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270

Preservative (olfact) 7171 Comments Ame <u>8</u> 1555/1628 1530/1555 Project Requirements e.g. Actualor かくし /かんの instructions specific (MRLs, QAPP) V 539 1548/ ALS Trip PUTOS 3 Time: Analysis Method ABSENT Chain of Custody Seal: (Circle) ALS Contact: (31 WZS) S1-Q1 Date: A 7 X 10 7 79 b Sample Volume Requested Turnaround Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10-Day-Standard -3.75 1-5,56 -4,72 End Pressure "Hg/psig 45.61 SAME AS ABOVE 001037.030.033 ASCOCIS | FCA01002 -29.90 Canister Start Pressure FC40071 -27.85 AC01300 FCA01003 -29.89 ASO0820 FC400831 -29.96 Units: Cornwall LF ž EDD required XES / Stephanie Renando Flow Controller ID (Bar code # - FC #) Received by: (Slg P.O. # / Billing Information Aco1169 Sampler (Print & Sign) Canister ID (Bar code # -AC, SC, etc.) Project Number Project Name Time: Travis Opendaning C. Com, Kluiken Dlindaving Com Tier III (Results + QC & Calibration Summaries) Tier IV (Date Validation Package) 10% Surcharge Collected 25 30 8 51/=/8 Report Tier Levels - please select 8/2/13 14/15 8/4/8 Collected Kent Wiken Laboratory ID Number Company Name & Address (Reporting Information) LANDAN ASSOCIATES Edmonds, wA 98020 130 2nd Ave. South CL-1FG-P-12 4089-84E(57H) Tier I - Results (Default in not specified). Jeremy Davis 1 クノートでーアーク C--1-64-1-3 Email Address for Result Reporting Tier II (Results + QC Summaries Relinquished by: (Signature) 🖊 Client Sample ID Project Manager

Cooler / Blank Temperature

128.58 1-188.58

Received by: (Signature)

Relinquished by: (Signature)

## ALS Environmental Sample Acceptance Check Form

| Client:    | Landau Assoc                                                                            | ciates, Inc.                                       |                  |                        | _            | Work order:                       | P1503343     |                     |             |                       |
|------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|------------------|------------------------|--------------|-----------------------------------|--------------|---------------------|-------------|-----------------------|
| Project:   | Cornwall LF                                                                             | 001037.030.033                                     |                  |                        |              |                                   |              |                     |             |                       |
| Sample(    | s) received on:                                                                         | 8/13/15                                            |                  |                        | Date opened: | 8/13/15                           | by:          | ADAV                | ID          |                       |
|            |                                                                                         | samples received by ALS.  Thermal preservation and |                  |                        | -            | =                                 |              | od/SOP.             |             |                       |
| 1          | _                                                                                       | containers properly n                              | narked with cl   | ient sample ID         | ?            |                                   |              | <u>Yes</u><br>⊠     | <u>No</u> □ | <u>N/A</u>            |
| 2          | Container(s) s                                                                          | supplied by ALS?                                   |                  |                        |              |                                   |              | X                   |             |                       |
| 3          | Did sample c                                                                            | ontainers arrive in go                             | od condition?    |                        |              |                                   |              | X                   |             |                       |
| 4          | Were chain-o                                                                            | f-custody papers used                              | l and filled out | ?                      |              |                                   |              | X                   |             |                       |
| 5          | Did sample c                                                                            | ontainer labels and/or                             | r tags agree wi  | th custody pap         | ers?         |                                   |              | X                   |             |                       |
| 6          | Was sample v                                                                            | volume received adequ                              | ate for analys   | is?                    |              |                                   |              | X                   |             |                       |
| 7          | =                                                                                       | vithin specified holdin                            | _                |                        |              |                                   |              | ⊠                   |             |                       |
| 8          | 8 Was proper <b>temperature</b> (thermal preservation) of cooler at receipt adhered to? |                                                    |                  |                        |              |                                   |              |                     |             | X                     |
| 9          | Was a <b>trip bl</b>                                                                    | ank received?                                      |                  |                        |              |                                   |              |                     | X           |                       |
| 10         | _                                                                                       | seals on outside of co                             | ooler/Box?       |                        |              |                                   |              |                     | X           |                       |
|            | -                                                                                       | Location of seal(s)?                               |                  |                        |              |                                   | Sealing Lid? |                     |             | X                     |
|            | Were signatur                                                                           | e and date included?                               |                  |                        |              |                                   | _            |                     |             | X                     |
|            | Were seals in                                                                           | tact?                                              |                  |                        |              |                                   |              |                     |             | X                     |
|            | Were custody                                                                            | seals on outside of sa                             | mple containe    | r?                     |              |                                   |              |                     |             | X                     |
|            |                                                                                         | Location of seal(s)?                               |                  |                        |              |                                   | Sealing Lid? |                     |             | X                     |
|            | Were signatur                                                                           | e and date included?                               |                  |                        |              |                                   |              |                     |             | X                     |
|            | Were seals in                                                                           | tact?                                              |                  |                        |              |                                   |              |                     |             | X                     |
| 11         | Do containe                                                                             | ers have appropriate p                             | reservation, a   | ccording to me         | ethod/SOP or | Client specified                  | information? |                     |             | $\times$              |
|            | Is there a clie                                                                         | ent indication that the s                          | submitted samp   | ples are <b>pH</b> pro | eserved?     |                                   |              |                     |             | X                     |
|            | Were <b>VOA v</b>                                                                       | <u>rials</u> checked for prese                     | nce/absence o    | f air bubbles?         |              |                                   |              |                     |             | X                     |
|            | Does the clier                                                                          | nt/method/SOP require                              | that the analy   | st check the sa        | mple pH and  | if necessary alte                 | er it?       |                     |             | X                     |
| 12         | <b>Tubes:</b>                                                                           | Are the tubes cap                                  | ped and intact?  | ?                      |              |                                   |              |                     |             | X                     |
|            |                                                                                         | Do they contain n                                  | noisture?        |                        |              |                                   |              |                     |             | X                     |
| 13         | Badges:                                                                                 | Are the badges pr                                  |                  | l and intact?          |              |                                   |              |                     |             | X                     |
|            |                                                                                         | Are dual bed bad                                   |                  |                        | y capped and | intact?                           |              |                     |             | X                     |
| Lab        | Sample ID                                                                               | Container<br>Description                           | Required pH *    | Received<br>pH         | Adjusted pH  | VOA Headspac<br>(Presence/Absence |              | ipt / Pres<br>Comme |             | <del>''''''''''</del> |
| 21503343   |                                                                                         | 6.0 L Ambient Can                                  |                  |                        |              |                                   |              |                     |             |                       |
| 21503343   |                                                                                         | 6.0 L Ambient Can                                  |                  |                        |              |                                   |              |                     |             |                       |
| P1503343   |                                                                                         | 6.0 L Silonite Can                                 |                  |                        |              |                                   |              |                     |             |                       |
| P1503343   | 3-004.01                                                                                | 6.0 L Silonite Can                                 |                  |                        |              |                                   |              |                     |             |                       |
|            |                                                                                         |                                                    |                  |                        |              |                                   |              |                     |             |                       |
|            |                                                                                         |                                                    |                  |                        |              |                                   |              |                     |             |                       |
|            |                                                                                         |                                                    |                  |                        |              |                                   |              |                     |             |                       |
| -          |                                                                                         | ies: (include lab sample                           |                  |                        |              |                                   |              |                     |             |                       |
| Sample -00 | 11 is labeled CL                                                                        | -LFG-P-12 and listed CI                            | L-LFG-6 on the   | COC.                   |              |                                   |              |                     |             |                       |

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-6 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-001

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID: AC01169

Initial Pressure (psig): -1.50 Final Pressure (psig): 3.70

Canister Dilution Factor: 1.39

| CAS#      | Compound                                             | Result      | MRL         | MDL         | Result                                     | MRL  | MDL  | Data      |
|-----------|------------------------------------------------------|-------------|-------------|-------------|--------------------------------------------|------|------|-----------|
|           |                                                      | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | $\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$ | ppbV | ppbV | Qualifier |
| 115-07-1  | Propene                                              | 540         | 46          | 13          | 320                                        | 27   | 7.5  |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 54          | 46          | 16          | 11                                         | 9.4  | 3.2  |           |
| 74-87-3   | Chloromethane                                        | ND          | 46          | 14          | ND                                         | 22   | 6.7  |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | 200         | 46          | 18          | 29                                         | 6.6  | 2.5  |           |
| 75-01-4   | Vinyl Chloride                                       | 150         | 46          | 16          | 58                                         | 18   | 6.2  |           |
| 106-99-0  | 1,3-Butadiene                                        | ND          | 46          | 20          | ND                                         | 21   | 9.2  |           |
| 74-83-9   | Bromomethane                                         | ND          | 46          | 18          | ND                                         | 12   | 4.5  |           |
| 75-00-3   | Chloroethane                                         | ND          | 46          | 16          | ND                                         | 18   | 6.0  |           |
| 64-17-5   | Ethanol                                              | ND          | 460         | 74          | ND                                         | 250  | 39   |           |
| 75-05-8   | Acetonitrile                                         | ND          | 46          | 17          | ND                                         | 28   | 9.9  |           |
| 107-02-8  | Acrolein                                             | ND          | 190         | 16          | ND                                         | 81   | 6.9  |           |
| 67-64-1   | Acetone                                              | ND          | 460         | 71          | ND                                         | 200  | 30   |           |
| 75-69-4   | Trichlorofluoromethane                               | ND          | 46          | 16          | ND                                         | 8.2  | 2.8  |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND          | 460         | 39          | ND                                         | 190  | 16   |           |
| 107-13-1  | Acrylonitrile                                        | ND          | 46          | 16          | ND                                         | 21   | 7.3  |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND          | 46          | 16          | ND                                         | 12   | 4.0  |           |
| 75-09-2   | Methylene Chloride                                   | ND          | 46          | 16          | ND                                         | 13   | 4.5  |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND          | 46          | 15          | ND                                         | 15   | 4.7  |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND          | 46          | 16          | ND                                         | 6.0  | 2.1  |           |
| 75-15-0   | Carbon Disulfide                                     | 20          | 460         | 14          | 6.3                                        | 150  | 4.5  | J, B      |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND          | 46          | 18          | ND                                         | 12   | 4.4  |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND          | 46          | 15          | ND                                         | 11   | 3.7  |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND          | 46          | 16          | ND                                         | 13   | 4.4  |           |
| 108-05-4  | Vinyl Acetate                                        | ND          | 460         | 60          | ND                                         | 130  | 17   |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND          | 460         | 19          | ND                                         | 160  | 6.6  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

B = Analyte detected in both the sample and associated method blank.

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-6 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-001

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID: AC01169

Initial Pressure (psig): -1.50 Final Pressure (psig): 3.70

Canister Dilution Factor: 1.39

| CAS#       | Compound                  | Result | MRL   | MDL   | Result | MRL  | MDL  | Data |
|------------|---------------------------|--------|-------|-------|--------|------|------|------|
|            |                           | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV | ppbV |      |
| 156-59-2   | cis-1,2-Dichloroethene    | 25     | 46    | 15    | 6.3    | 12   | 3.7  | J    |
| 141-78-6   | Ethyl Acetate             | 61     | 93    | 32    | 17     | 26   | 9.0  | J    |
| 110-54-3   | n-Hexane                  | 1,000  | 46    | 14    | 290    | 13   | 3.9  |      |
| 67-66-3    | Chloroform                | ND     | 46    | 16    | ND     | 9.5  | 3.2  |      |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 46    | 19    | ND     | 16   | 6.3  |      |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 46    | 15    | ND     | 11   | 3.7  |      |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 46    | 16    | ND     | 8.5  | 2.9  |      |
| 71-43-2    | Benzene                   | 100    | 46    | 15    | 32     | 15   | 4.6  |      |
| 56-23-5    | Carbon Tetrachloride      | ND     | 46    | 14    | ND     | 7.4  | 2.2  |      |
| 110-82-7   | Cyclohexane               | 850    | 93    | 27    | 250    | 27   | 7.8  |      |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 46    | 15    | ND     | 10   | 3.2  |      |
| 75-27-4    | Bromodichloromethane      | ND     | 46    | 14    | ND     | 6.9  | 2.1  |      |
| 79-01-6    | Trichloroethene           | ND     | 46    | 13    | ND     | 8.6  | 2.4  |      |
| 123-91-1   | 1,4-Dioxane               | ND     | 46    | 15    | ND     | 13   | 4.1  |      |
| 80-62-6    | Methyl Methacrylate       | ND     | 93    | 29    | ND     | 23   | 7.0  |      |
| 142-82-5   | n-Heptane                 | 730    | 46    | 16    | 180    | 11   | 3.8  |      |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 46    | 13    | ND     | 10   | 2.9  |      |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 46    | 15    | ND     | 11   | 3.6  |      |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 46    | 15    | ND     | 10   | 3.3  |      |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 46    | 15    | ND     | 8.5  | 2.7  |      |
| 108-88-3   | Toluene                   | 30     | 46    | 16    | 8.1    | 12   | 4.2  | J    |
| 591-78-6   | 2-Hexanone                | ND     | 46    | 15    | ND     | 11   | 3.6  |      |
| 124-48-1   | Dibromochloromethane      | ND     | 46    | 15    | ND     | 5.4  | 1.7  |      |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 46    | 15    | ND     | 6.0  | 1.9  |      |
| 123-86-4   | n-Butyl Acetate           | ND     | 46    | 15    | ND     | 9.8  | 3.1  |      |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-6 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-001

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID: AC01169

Initial Pressure (psig): -1.50 Final Pressure (psig): 3.70

Canister Dilution Factor: 1.39

|             |                             | Result      | MRL         | MDL         | Result | MRL  | MDL  | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|--------|------|------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | 220         | 46          | 17          | 47     | 9.9  | 3.6  |           |
| 127-18-4    | Tetrachloroethene           | ND          | 46          | 13          | ND     | 6.8  | 1.9  |           |
| 108-90-7    | Chlorobenzene               | ND          | 46          | 15          | ND     | 10   | 3.2  |           |
| 100-41-4    | Ethylbenzene                | ND          | 46          | 15          | ND     | 11   | 3.4  |           |
| 179601-23-1 | m,p-Xylenes                 | 34          | 93          | 28          | 7.9    | 21   | 6.4  | J         |
| 75-25-2     | Bromoform                   | ND          | 46          | 14          | ND     | 4.5  | 1.3  | _         |
| 100-42-5    | Styrene                     | ND          | 46          | 14          | ND     | 11   | 3.3  |           |
| 95-47-6     | o-Xylene                    | 28          | 46          | 14          | 6.6    | 11   | 3.2  | J         |
| 111-84-2    | n-Nonane                    | 160         | 46          | 14          | 30     | 8.8  | 2.7  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 46          | 14          | ND     | 6.7  | 2.0  |           |
| 98-82-8     | Cumene                      | 64          | 46          | 14          | 13     | 9.4  | 2.8  |           |
| 80-56-8     | alpha-Pinene                | 250         | 46          | 13          | 45     | 8.3  | 2.3  |           |
| 103-65-1    | n-Propylbenzene             | ND          | 46          | 15          | ND     | 9.4  | 3.0  |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 46          | 15          | ND     | 9.4  | 3.0  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 19          | 46          | 15          | 4.0    | 9.4  | 3.0  | J         |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 39          | 46          | 14          | 7.9    | 9.4  | 2.8  | J         |
| 100-44-7    | Benzyl Chloride             | ND          | 46          | 10          | ND     | 9.0  | 2.0  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 46          | 14          | ND     | 7.7  | 2.3  |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 46          | 13          | ND     | 7.7  | 2.2  |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 46          | 14          | ND     | 7.7  | 2.3  |           |
| 5989-27-5   | d-Limonene                  | ND          | 46          | 13          | ND     | 8.3  | 2.3  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 46          | 9.2         | ND     | 4.8  | 0.95 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 46          | 15          | ND     | 6.2  | 2.0  |           |
| 91-20-3     | Naphthalene                 | ND          | 46          | 17          | ND     | 8.8  | 3.2  |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 46          | 13          | ND     | 4.3  | 1.2  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1503343-002

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.025 Liter(s)

Test Notes:

Container ID: AC01300

Initial Pressure (psig): -2.68 Final Pressure (psig): 3.80

Canister Dilution Factor: 1.54

| CAS#      | Compound                                             | Result            | MRL   | MDL   | Result | MRL  | MDL  | Data |
|-----------|------------------------------------------------------|-------------------|-------|-------|--------|------|------|------|
| 115.07.1  | n.                                                   | μg/m <sup>3</sup> | μg/m³ | μg/m³ | ppbV   | ppbV | ppbV |      |
| 115-07-1  | Propene                                              | 26                | 31    | 8.6   | 15     | 18   | 5.0  | J    |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND                | 31    | 10    | ND     | 6.2  | 2.1  |      |
| 74-87-3   | Chloromethane                                        | ND                | 31    | 9.2   | ND     | 15   | 4.5  |      |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND                | 31    | 12    | ND     | 4.4  | 1.7  |      |
| 106-99-0  | 1,3-Butadiene                                        | ND                | 31    | 14    | ND     | 14   | 6.1  |      |
| 74-83-9   | Bromomethane                                         | ND                | 31    | 12    | ND     | 7.9  | 3.0  |      |
| 75-00-3   | Chloroethane                                         | ND                | 31    | 10    | ND     | 12   | 4.0  |      |
| 64-17-5   | Ethanol                                              | ND                | 310   | 49    | ND     | 160  | 26   |      |
| 75-05-8   | Acetonitrile                                         | ND                | 31    | 11    | ND     | 18   | 6.6  |      |
| 107-02-8  | Acrolein                                             | ND                | 120   | 10    | ND     | 54   | 4.6  |      |
| 67-64-1   | Acetone                                              | ND                | 310   | 47    | ND     | 130  | 20   |      |
| 75-69-4   | Trichlorofluoromethane                               | ND                | 31    | 10    | ND     | 5.5  | 1.9  |      |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND                | 310   | 26    | ND     | 130  | 11   |      |
| 107-13-1  | Acrylonitrile                                        | ND                | 31    | 10    | ND     | 14   | 4.8  |      |
| 75-35-4   | 1,1-Dichloroethene                                   | ND                | 31    | 10    | ND     | 7.8  | 2.6  |      |
| 75-09-2   | Methylene Chloride                                   | ND                | 31    | 10    | ND     | 8.9  | 3.0  |      |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND                | 31    | 9.9   | ND     | 9.8  | 3.2  |      |
| 76-13-1   | Trichlorotrifluoroethane                             | ND                | 31    | 10    | ND     | 4.0  | 1.4  |      |
| 75-15-0   | Carbon Disulfide                                     | ND                | 310   | 9.2   | ND     | 99   | 3.0  |      |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND                | 31    | 12    | ND     | 7.8  | 3.0  |      |
| 75-34-3   | 1,1-Dichloroethane                                   | ND                | 31    | 9.9   | ND     | 7.6  | 2.4  |      |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND                | 31    | 10    | ND     | 8.5  | 2.9  |      |
| 108-05-4  | Vinyl Acetate                                        | ND                | 310   | 40    | ND     | 88   | 11   |      |
| 78-93-3   | 2-Butanone (MEK)                                     | ND                | 310   | 13    | ND     | 100  | 4.4  |      |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1503343-002

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.025 Liter(s)

Test Notes:

Container ID: AC01300

Initial Pressure (psig): -2.68 Final Pressure (psig): 3.80

Canister Dilution Factor: 1.54

| CAS#       | Compound                  | Result<br>μg/m³ | $\frac{MRL}{\mu g/m^3}$ | $\begin{array}{c} MDL \\ \mu g/m^3 \end{array}$ | Result<br>ppbV | MRL<br>ppbV | MDL<br>ppbV | Data<br>Qualifier |
|------------|---------------------------|-----------------|-------------------------|-------------------------------------------------|----------------|-------------|-------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | ND              | 31                      | 9.9                                             | ND             | 7.8         | 2.5         |                   |
| 141-78-6   | Ethyl Acetate             | ND              | 62                      | 22                                              | ND             | 17          | 6.0         |                   |
| 110-54-3   | n-Hexane                  | 110             | 31                      | 9.2                                             | 31             | 8.7         | 2.6         |                   |
| 67-66-3    | Chloroform                | ND              | 31                      | 10                                              | ND             | 6.3         | 2.1         |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | ND              | 31                      | 12                                              | ND             | 10          | 4.2         |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND              | 31                      | 9.9                                             | ND             | 7.6         | 2.4         |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND              | 31                      | 10                                              | ND             | 5.6         | 1.9         |                   |
| 71-43-2    | Benzene                   | ND              | 31                      | 9.9                                             | ND             | 9.6         | 3.1         |                   |
| 56-23-5    | Carbon Tetrachloride      | ND              | 31                      | 9.2                                             | ND             | 4.9         | 1.5         |                   |
| 110-82-7   | Cyclohexane               | 130             | 62                      | 18                                              | 38             | 18          | 5.2         |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND              | 31                      | 9.9                                             | ND             | 6.7         | 2.1         |                   |
| 75-27-4    | Bromodichloromethane      | ND              | 31                      | 9.2                                             | ND             | 4.6         | 1.4         |                   |
| 79-01-6    | Trichloroethene           | ND              | 31                      | 8.6                                             | ND             | 5.7         | 1.6         |                   |
| 123-91-1   | 1,4-Dioxane               | ND              | 31                      | 9.9                                             | ND             | 8.6         | 2.7         |                   |
| 80-62-6    | Methyl Methacrylate       | ND              | 62                      | 19                                              | ND             | 15          | 4.7         |                   |
| 142-82-5   | n-Heptane                 | 32              | 31                      | 10                                              | 7.8            | 7.5         | 2.6         |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND              | 31                      | 8.6                                             | ND             | 6.8         | 1.9         |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND              | 31                      | 9.9                                             | ND             | 7.5         | 2.4         |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND              | 31                      | 9.9                                             | ND             | 6.8         | 2.2         |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND              | 31                      | 9.9                                             | ND             | 5.6         | 1.8         |                   |
| 108-88-3   | Toluene                   | ND              | 31                      | 10                                              | ND             | 8.2         | 2.8         |                   |
| 591-78-6   | 2-Hexanone                | ND              | 31                      | 9.9                                             | ND             | 7.5         | 2.4         |                   |
| 124-48-1   | Dibromochloromethane      | ND              | 31                      | 9.9                                             | ND             | 3.6         | 1.2         |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND              | 31                      | 9.9                                             | ND             | 4.0         | 1.3         |                   |
| 123-86-4   | n-Butyl Acetate           | ND              | 31                      | 9.9                                             | ND             | 6.5         | 2.1         |                   |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-12 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1503343-002

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.025 Liter(s)

Test Notes:

Container ID: AC01300

Initial Pressure (psig): -2.68 Final Pressure (psig): 3.80

Canister Dilution Factor: 1.54

|             |                             | Result | MRL         | MDL         | Result | MRL  | MDL  | Data      |
|-------------|-----------------------------|--------|-------------|-------------|--------|------|------|-----------|
| CAS#        | Compound                    | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 31          | 11          | ND     | 6.6  | 2.4  |           |
| 127-18-4    | Tetrachloroethene           | ND     | 31          | 8.6         | ND     | 4.5  | 1.3  |           |
| 108-90-7    | Chlorobenzene               | ND     | 31          | 9.9         | ND     | 6.7  | 2.1  |           |
| 100-41-4    | Ethylbenzene                | ND     | 31          | 9.9         | ND     | 7.1  | 2.3  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 62          | 18          | ND     | 14   | 4.3  |           |
| 75-25-2     | Bromoform                   | ND     | 31          | 9.2         | ND     | 3.0  | 0.89 |           |
| 100-42-5    | Styrene                     | ND     | 31          | 9.2         | ND     | 7.2  | 2.2  |           |
| 95-47-6     | o-Xylene                    | 21     | 31          | 9.2         | 4.8    | 7.1  | 2.1  | J         |
| 111-84-2    | n-Nonane                    | ND     | 31          | 9.2         | ND     | 5.9  | 1.8  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 31          | 9.2         | ND     | 4.5  | 1.3  |           |
| 98-82-8     | Cumene                      | 62     | 31          | 9.2         | 13     | 6.3  | 1.9  |           |
| 80-56-8     | alpha-Pinene                | 250    | 31          | 8.6         | 44     | 5.5  | 1.5  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 31          | 9.9         | ND     | 6.3  | 2.0  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 31          | 9.9         | ND     | 6.3  | 2.0  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 31          | 9.9         | ND     | 6.3  | 2.0  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 31          | 9.2         | ND     | 6.3  | 1.9  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 31          | 6.8         | ND     | 6.0  | 1.3  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 31          | 9.2         | ND     | 5.1  | 1.5  |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 31          | 8.6         | ND     | 5.1  | 1.4  |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 31          | 9.2         | ND     | 5.1  | 1.5  |           |
| 5989-27-5   | d-Limonene                  | ND     | 31          | 8.6         | ND     | 5.5  | 1.5  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 31          | 6.1         | ND     | 3.2  | 0.63 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 31          | 9.9         | ND     | 4.2  | 1.3  |           |
| 91-20-3     | Naphthalene                 | ND     | 31          | 11          | ND     | 5.9  | 2.1  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 31          | 8.6         | ND     | 2.9  | 0.81 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-2 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-003

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID: AS00615

Initial Pressure (psig): -2.32 Final Pressure (psig): 3.72

Canister Dilution Factor: 1.49

| CAS#      | Compound                                             | Result      | MRL         | MDL         | Result     | MRL  | MDL  | Data      |
|-----------|------------------------------------------------------|-------------|-------------|-------------|------------|------|------|-----------|
|           | _                                                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV | ppbV | Qualifier |
| 115-07-1  | Propene                                              | 1,300       | 50          | 14          | 730        | 29   | 8.1  |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 45          | 50          | 17          | 9.1        | 10   | 3.4  | J         |
| 74-87-3   | Chloromethane                                        | ND          | 50          | 15          | ND         | 24   | 7.2  |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | 440         | 50          | 19          | 62         | 7.1  | 2.7  |           |
| 75-01-4   | Vinyl Chloride                                       | 170         | 50          | 17          | 65         | 19   | 6.6  |           |
| 106-99-0  | 1,3-Butadiene                                        | ND          | 50          | 22          | ND         | 22   | 9.9  |           |
| 74-83-9   | Bromomethane                                         | ND          | 50          | 19          | ND         | 13   | 4.9  |           |
| 75-00-3   | Chloroethane                                         | ND          | 50          | 17          | ND         | 19   | 6.4  |           |
| 64-17-5   | Ethanol                                              | ND          | 500         | 79          | ND         | 260  | 42   |           |
| 75-05-8   | Acetonitrile                                         | ND          | 50          | 18          | ND         | 30   | 11   |           |
| 107-02-8  | Acrolein                                             | ND          | 200         | 17          | ND         | 87   | 7.4  |           |
| 67-64-1   | Acetone                                              | ND          | 500         | 76          | ND         | 210  | 32   |           |
| 75-69-4   | Trichlorofluoromethane                               | ND          | 50          | 17          | ND         | 8.8  | 3.0  |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND          | 500         | 42          | ND         | 200  | 17   |           |
| 107-13-1  | Acrylonitrile                                        | ND          | 50          | 17          | ND         | 23   | 7.8  |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND          | 50          | 17          | ND         | 13   | 4.3  |           |
| 75-09-2   | Methylene Chloride                                   | ND          | 50          | 17          | ND         | 14   | 4.9  |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND          | 50          | 16          | ND         | 16   | 5.1  |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND          | 50          | 17          | ND         | 6.5  | 2.2  |           |
| 75-15-0   | Carbon Disulfide                                     | ND          | 500         | 15          | ND         | 160  | 4.8  |           |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND          | 50          | 19          | ND         | 13   | 4.8  |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND          | 50          | 16          | ND         | 12   | 3.9  |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND          | 50          | 17          | ND         | 14   | 4.7  |           |
| 108-05-4  | Vinyl Acetate                                        | ND          | 500         | 65          | ND         | 140  | 18   |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND          | 500         | 21          | ND         | 170  | 7.1  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-2 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-003

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Container ID: AS00615

Initial Pressure (psig): -2.32 Final Pressure (psig): 3.72

Canister Dilution Factor: 1.49

| CAS#       | Compound                  | Result | MRL         | MDL         | Result | MRL  | MDL  | Data      |
|------------|---------------------------|--------|-------------|-------------|--------|------|------|-----------|
|            |                           | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 24     | 50          | 16          | 6.2    | 13   | 4.0  | J         |
| 141-78-6   | Ethyl Acetate             | ND     | 99          | 35          | ND     | 28   | 9.7  |           |
| 110-54-3   | n-Hexane                  | 5,500  | 50          | 15          | 1,600  | 14   | 4.2  |           |
| 67-66-3    | Chloroform                | ND     | 50          | 17          | ND     | 10   | 3.5  |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 50          | 20          | ND     | 17   | 6.7  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 50          | 16          | ND     | 12   | 3.9  |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 50          | 17          | ND     | 9.1  | 3.1  |           |
| 71-43-2    | Benzene                   | 60     | 50          | 16          | 19     | 16   | 5.0  |           |
| 56-23-5    | Carbon Tetrachloride      | ND     | 50          | 15          | ND     | 7.9  | 2.4  |           |
| 110-82-7   | Cyclohexane               | 570    | 99          | 29          | 170    | 29   | 8.4  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 50          | 16          | ND     | 11   | 3.4  |           |
| 75-27-4    | Bromodichloromethane      | ND     | 50          | 15          | ND     | 7.4  | 2.2  |           |
| 79-01-6    | Trichloroethene           | ND     | 50          | 14          | ND     | 9.2  | 2.6  |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 50          | 16          | ND     | 14   | 4.4  |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 99          | 31          | ND     | 24   | 7.5  |           |
| 142-82-5   | n-Heptane                 | 2,000  | 50          | 17          | 480    | 12   | 4.1  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 50          | 14          | ND     | 11   | 3.1  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 50          | 16          | ND     | 12   | 3.9  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 50          | 16          | ND     | 11   | 3.5  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 50          | 16          | ND     | 9.1  | 2.9  |           |
| 108-88-3   | Toluene                   | 36     | 50          | 17          | 9.5    | 13   | 4.5  | J         |
| 591-78-6   | 2-Hexanone                | ND     | 50          | 16          | ND     | 12   | 3.9  |           |
| 124-48-1   | Dibromochloromethane      | ND     | 50          | 16          | ND     | 5.8  | 1.9  |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 50          | 16          | ND     | 6.5  | 2.1  |           |
| 123-86-4   | n-Butyl Acetate           | ND     | 50          | 16          | ND     | 10   | 3.3  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS Page 3 of 3

Landau Associates, Inc.

Client Sample ID: CL-LFG-P-2 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-003

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.015 Liter(s)

Test Notes:

Client:

Container ID: AS00615

Initial Pressure (psig): -2.32 Final Pressure (psig): 3.72

Canister Dilution Factor: 1.49

|             |                             | Result      | MRL         | MDL         | Result     | MRL  | MDL  | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|------------|------|------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | 220         | 50          | 18          | 47         | 11   | 3.8  |           |
| 127-18-4    | Tetrachloroethene           | ND          | 50          | 14          | ND         | 7.3  | 2.1  |           |
| 108-90-7    | Chlorobenzene               | ND          | 50          | 16          | ND         | 11   | 3.5  |           |
| 100-41-4    | Ethylbenzene                | 16          | 50          | 16          | 3.7        | 11   | 3.7  | J         |
| 179601-23-1 | m,p-Xylenes                 | 34          | 99          | 30          | 7.8        | 23   | 6.9  | J         |
| 75-25-2     | Bromoform                   | ND          | 50          | 15          | ND         | 4.8  | 1.4  |           |
| 100-42-5    | Styrene                     | ND          | 50          | 15          | ND         | 12   | 3.5  |           |
| 95-47-6     | o-Xylene                    | 40          | 50          | 15          | 9.3        | 11   | 3.4  | J         |
| 111-84-2    | n-Nonane                    | ND          | 50          | 15          | ND         | 9.5  | 2.8  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 50          | 15          | ND         | 7.2  | 2.2  |           |
| 98-82-8     | Cumene                      | 58          | 50          | 15          | 12         | 10   | 3.0  |           |
| 80-56-8     | alpha-Pinene                | ND          | 50          | 14          | ND         | 8.9  | 2.5  |           |
| 103-65-1    | n-Propylbenzene             | ND          | 50          | 16          | ND         | 10   | 3.2  |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 50          | 16          | ND         | 10   | 3.2  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 17          | 50          | 16          | 3.4        | 10   | 3.2  | J         |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 28          | 50          | 15          | 5.7        | 10   | 3.0  | J         |
| 100-44-7    | Benzyl Chloride             | ND          | 50          | 11          | ND         | 9.6  | 2.1  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 50          | 15          | ND         | 8.3  | 2.5  |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 32          | 50          | 14          | 5.4        | 8.3  | 2.3  | J         |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 50          | 15          | ND         | 8.3  | 2.5  |           |
| 5989-27-5   | d-Limonene                  | ND          | 50          | 14          | ND         | 8.9  | 2.5  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 50          | 9.8         | ND         | 5.1  | 1.0  |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 50          | 16          | ND         | 6.7  | 2.1  |           |
| 91-20-3     | Naphthalene                 | ND          | 50          | 18          | ND         | 9.5  | 3.4  |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 50          | 14          | ND         | 4.7  | 1.3  |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-004

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 Liter(s)

Test Notes:

Container ID: AS00820

Initial Pressure (psig): -2.62 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.51

| CAS#      | Compound                                             | Result<br>µg/m³ | MRL          | MDL                     | Result     | MRL         | MDL         | Data<br>Qualifier |
|-----------|------------------------------------------------------|-----------------|--------------|-------------------------|------------|-------------|-------------|-------------------|
| 115-07-1  | Propene                                              | μg/m²<br>120    | μg/m³<br>7.6 | $\frac{\mu g/m^3}{2.1}$ | ppbV<br>67 | ppbV<br>4.4 | ppbV<br>1.2 | Quanner           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND              | 7.6          | 2.6                     | ND         | 1.5         | 0.52        |                   |
| 74-87-3   | Chloromethane                                        | ND              | 7.6          | 2.3                     | ND         | 3.7         | 1.1         |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND              | 7.6          | 2.9                     | ND         | 1.1         | 0.41        |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND              | 7.6          | 3.3                     | ND         | 3.4         | 1.5         |                   |
| 74-83-9   | Bromomethane                                         | ND              | 7.6          | 2.9                     | ND         | 1.9         | 0.74        |                   |
| 75-00-3   | Chloroethane                                         | ND              | 7.6          | 2.6                     | ND         | 2.9         | 0.97        |                   |
| 64-17-5   | Ethanol                                              | ND              | 76           | 12                      | ND         | 40          | 6.4         |                   |
| 75-05-8   | Acetonitrile                                         | ND              | 7.6          | 2.7                     | ND         | 4.5         | 1.6         |                   |
| 107-02-8  | Acrolein                                             | ND              | 30           | 2.6                     | ND         | 13          | 1.1         |                   |
| 67-64-1   | Acetone                                              | ND              | 76           | 12                      | ND         | 32          | 4.9         |                   |
| 75-69-4   | Trichlorofluoromethane                               | ND              | 7.6          | 2.6                     | ND         | 1.3         | 0.46        |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND              | 76           | 6.3                     | ND         | 31          | 2.6         |                   |
| 107-13-1  | Acrylonitrile                                        | ND              | 7.6          | 2.6                     | ND         | 3.5         | 1.2         |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND              | 7.6          | 2.6                     | ND         | 1.9         | 0.65        |                   |
| 75-09-2   | Methylene Chloride                                   | ND              | 7.6          | 2.6                     | ND         | 2.2         | 0.74        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND              | 7.6          | 2.4                     | ND         | 2.4         | 0.77        |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | ND              | 7.6          | 2.6                     | ND         | 0.99        | 0.34        |                   |
| 75-15-0   | Carbon Disulfide                                     | 45              | 76           | 2.3                     | 14         | 24          | 0.73        | J                 |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND              | 7.6          | 2.9                     | ND         | 1.9         | 0.72        |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND              | 7.6          | 2.4                     | ND         | 1.9         | 0.60        |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND              | 7.6          | 2.6                     | ND         | 2.1         | 0.71        |                   |
| 108-05-4  | Vinyl Acetate                                        | ND              | 76           | 9.8                     | ND         | 21          | 2.8         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | 3.4             | 76           | 3.2                     | 1.1        | 26          | 1.1         | J                 |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033
ALS Sample ID: P1503343-004

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 Liter(s)

Test Notes:

Container ID: AS00820

Initial Pressure (psig): -2.62 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.51

| CAS#       | Compound                  | Result | MRL   | MDL   | Result | MRL  | MDL  | Data      |
|------------|---------------------------|--------|-------|-------|--------|------|------|-----------|
|            |                           | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV | ppbV | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 3.2    | 7.6   | 2.4   | 0.80   | 1.9  | 0.61 | J         |
| 141-78-6   | Ethyl Acetate             | ND     | 15    | 5.3   | ND     | 4.2  | 1.5  |           |
| 110-54-3   | n-Hexane                  | 170    | 7.6   | 2.3   | 47     | 2.1  | 0.64 |           |
| 67-66-3    | Chloroform                | ND     | 7.6   | 2.6   | ND     | 1.5  | 0.53 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 7.6   | 3.0   | ND     | 2.6  | 1.0  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 7.6   | 2.4   | ND     | 1.9  | 0.60 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 7.6   | 2.6   | ND     | 1.4  | 0.47 |           |
| 71-43-2    | Benzene                   | 16     | 7.6   | 2.4   | 5.0    | 2.4  | 0.76 |           |
| 56-23-5    | Carbon Tetrachloride      | ND     | 7.6   | 2.3   | ND     | 1.2  | 0.36 |           |
| 110-82-7   | Cyclohexane               | 65     | 15    | 4.4   | 19     | 4.4  | 1.3  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 7.6   | 2.4   | ND     | 1.6  | 0.52 |           |
| 75-27-4    | Bromodichloromethane      | ND     | 7.6   | 2.3   | ND     | 1.1  | 0.34 |           |
| 79-01-6    | Trichloroethene           | ND     | 7.6   | 2.1   | ND     | 1.4  | 0.39 |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 7.6   | 2.4   | ND     | 2.1  | 0.67 |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 15    | 4.7   | ND     | 3.7  | 1.1  |           |
| 142-82-5   | n-Heptane                 | 74     | 7.6   | 2.6   | 18     | 1.8  | 0.63 |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 7.6   | 2.1   | ND     | 1.7  | 0.47 |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 7.6   | 2.4   | ND     | 1.8  | 0.59 |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 7.6   | 2.4   | ND     | 1.7  | 0.53 |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 7.6   | 2.4   | ND     | 1.4  | 0.44 |           |
| 108-88-3   | Toluene                   | 3.4    | 7.6   | 2.6   | 0.90   | 2.0  | 0.68 | J         |
| 591-78-6   | 2-Hexanone                | ND     | 7.6   | 2.4   | ND     | 1.8  | 0.59 |           |
| 124-48-1   | Dibromochloromethane      | ND     | 7.6   | 2.4   | ND     | 0.89 | 0.28 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 7.6   | 2.4   | ND     | 0.98 | 0.31 |           |
| 123-86-4   | n-Butyl Acetate           | ND     | 7.6   | 2.4   | ND     | 1.6  | 0.51 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: CL-LFG-P-3 ALS Project ID: P1503343
Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P1503343-004

Test Code: EPA TO-15 Date Collected: 8/7/15
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: 8/13/15
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Silonite Canister Volume(s) Analyzed: 0.10 Liter(s)

Test Notes:

Container ID: AS00820

Initial Pressure (psig): -2.62 Final Pressure (psig): 3.50

Canister Dilution Factor: 1.51

|             |                             | Result | MRL         | MDL         | Result | MRL  | MDL  | Data      |
|-------------|-----------------------------|--------|-------------|-------------|--------|------|------|-----------|
| CAS#        | Compound                    | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV | ppbV | Qualifier |
| 111-65-9    | n-Octane                    | 29     | 7.6         | 2.7         | 6.2    | 1.6  | 0.58 |           |
| 127-18-4    | Tetrachloroethene           | ND     | 7.6         | 2.1         | ND     | 1.1  | 0.31 |           |
| 108-90-7    | Chlorobenzene               | ND     | 7.6         | 2.4         | ND     | 1.6  | 0.52 |           |
| 100-41-4    | Ethylbenzene                | 2.5    | 7.6         | 2.4         | 0.57   | 1.7  | 0.56 | J         |
| 179601-23-1 | m,p-Xylenes                 | 9.2    | 15          | 4.5         | 2.1    | 3.5  | 1.0  | J         |
| 75-25-2     | Bromoform                   | ND     | 7.6         | 2.3         | ND     | 0.73 | 0.22 | _         |
| 100-42-5    | Styrene                     | ND     | 7.6         | 2.3         | ND     | 1.8  | 0.53 |           |
| 95-47-6     | o-Xylene                    | ND     | 7.6         | 2.3         | ND     | 1.7  | 0.52 |           |
| 111-84-2    | n-Nonane                    | 11     | 7.6         | 2.3         | 2.0    | 1.4  | 0.43 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 7.6         | 2.3         | ND     | 1.1  | 0.33 |           |
| 98-82-8     | Cumene                      | ND     | 7.6         | 2.3         | ND     | 1.5  | 0.46 |           |
| 80-56-8     | alpha-Pinene                | 18     | 7.6         | 2.1         | 3.2    | 1.4  | 0.38 |           |
| 103-65-1    | n-Propylbenzene             | ND     | 7.6         | 2.4         | ND     | 1.5  | 0.49 |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 7.6         | 2.4         | ND     | 1.5  | 0.49 |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 3.1    | 7.6         | 2.4         | 0.63   | 1.5  | 0.49 | J         |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 5.6    | 7.6         | 2.3         | 1.1    | 1.5  | 0.46 | J         |
| 100-44-7    | Benzyl Chloride             | ND     | 7.6         | 1.7         | ND     | 1.5  | 0.32 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 7.6         | 2.3         | ND     | 1.3  | 0.38 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 7.6         | 2.1         | ND     | 1.3  | 0.35 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 7.6         | 2.3         | ND     | 1.3  | 0.38 |           |
| 5989-27-5   | d-Limonene                  | ND     | 7.6         | 2.1         | ND     | 1.4  | 0.38 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 7.6         | 1.5         | ND     | 0.78 | 0.15 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 7.6         | 2.4         | ND     | 1.0  | 0.33 |           |
| 91-20-3     | Naphthalene                 | ND     | 7.6         | 2.7         | ND     | 1.4  | 0.52 |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 7.6         | 2.1         | ND     | 0.71 | 0.20 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: P1503343

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150819-ME

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150819-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#      | Compound                                             | Result | MRL   | MDL   | Result | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------|-------|--------|-------|-------|-----------|
|           |                                                      | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | ND     | 0.50  | 0.14  | ND     | 0.29  | 0.081 |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND     | 0.50  | 0.17  | ND     | 0.10  | 0.034 |           |
| 74-87-3   | Chloromethane                                        | ND     | 0.50  | 0.15  | ND     | 0.24  | 0.073 |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.50  | 0.19  | ND     | 0.072 | 0.027 |           |
| 75-01-4   | Vinyl Chloride                                       | ND     | 0.50  | 0.17  | ND     | 0.20  | 0.067 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.50  | 0.22  | ND     | 0.23  | 0.099 |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.50  | 0.19  | ND     | 0.13  | 0.049 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.50  | 0.17  | ND     | 0.19  | 0.064 |           |
| 64-17-5   | Ethanol                                              | ND     | 5.0   | 0.80  | ND     | 2.7   | 0.42  |           |
| 75-05-8   | Acetonitrile                                         | ND     | 0.50  | 0.18  | ND     | 0.30  | 0.11  |           |
| 107-02-8  | Acrolein                                             | ND     | 2.0   | 0.17  | ND     | 0.87  | 0.074 |           |
| 67-64-1   | Acetone                                              | ND     | 5.0   | 0.77  | ND     | 2.1   | 0.32  |           |
| 75-69-4   | Trichlorofluoromethane                               | ND     | 0.50  | 0.17  | ND     | 0.089 | 0.030 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND     | 5.0   | 0.42  | ND     | 2.0   | 0.17  |           |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.50  | 0.17  | ND     | 0.23  | 0.078 |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.50  | 0.17  | ND     | 0.13  | 0.043 |           |
| 75-09-2   | Methylene Chloride                                   | ND     | 0.50  | 0.17  | ND     | 0.14  | 0.049 |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.50  | 0.16  | ND     | 0.16  | 0.051 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND     | 0.50  | 0.17  | ND     | 0.065 | 0.022 |           |
| 75-15-0   | Carbon Disulfide                                     | 0.28   | 5.0   | 0.15  | 0.090  | 1.6   | 0.048 | J         |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.50  | 0.19  | ND     | 0.13  | 0.048 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.50  | 0.16  | ND     | 0.12  | 0.040 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.50  | 0.17  | ND     | 0.14  | 0.047 |           |
| 108-05-4  | Vinyl Acetate                                        | ND     | 5.0   | 0.65  | ND     | 1.4   | 0.18  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND     | 5.0   | 0.21  | ND     | 1.7   | 0.071 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

ALS Project ID: P1503343

Client Project ID: Cornwall LF / 001037.030.033 ALS Sample ID: P150819-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#       | Compound                  | Result      | MRL         | MDL         | Result | MRL   | MDL <b>Data</b> | a          |
|------------|---------------------------|-------------|-------------|-------------|--------|-------|-----------------|------------|
|            |                           | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV  | ppbV Qualif     | <u>ier</u> |
| 156-59-2   | cis-1,2-Dichloroethene    | ND          | 0.50        | 0.16        | ND     | 0.13  | 0.040           |            |
| 141-78-6   | Ethyl Acetate             | ND          | 1.0         | 0.35        | ND     | 0.28  | 0.097           |            |
| 110-54-3   | n-Hexane                  | ND          | 0.50        | 0.15        | ND     | 0.14  | 0.043           |            |
| 67-66-3    | Chloroform                | ND          | 0.50        | 0.17        | ND     | 0.10  | 0.035           |            |
| 109-99-9   | Tetrahydrofuran (THF)     | ND          | 0.50        | 0.20        | ND     | 0.17  | 0.068           |            |
| 107-06-2   | 1,2-Dichloroethane        | ND          | 0.50        | 0.16        | ND     | 0.12  | 0.040           |            |
| 71-55-6    | 1,1,1-Trichloroethane     | ND          | 0.50        | 0.17        | ND     | 0.092 | 0.031           |            |
| 71-43-2    | Benzene                   | ND          | 0.50        | 0.16        | ND     | 0.16  | 0.050           |            |
| 56-23-5    | Carbon Tetrachloride      | ND          | 0.50        | 0.15        | ND     | 0.080 | 0.024           |            |
| 110-82-7   | Cyclohexane               | ND          | 1.0         | 0.29        | ND     | 0.29  | 0.084           |            |
| 78-87-5    | 1,2-Dichloropropane       | ND          | 0.50        | 0.16        | ND     | 0.11  | 0.035           |            |
| 75-27-4    | Bromodichloromethane      | ND          | 0.50        | 0.15        | ND     | 0.075 | 0.022           |            |
| 79-01-6    | Trichloroethene           | ND          | 0.50        | 0.14        | ND     | 0.093 | 0.026           |            |
| 123-91-1   | 1,4-Dioxane               | ND          | 0.50        | 0.16        | ND     | 0.14  | 0.044           |            |
| 80-62-6    | Methyl Methacrylate       | ND          | 1.0         | 0.31        | ND     | 0.24  | 0.076           |            |
| 142-82-5   | n-Heptane                 | ND          | 0.50        | 0.17        | ND     | 0.12  | 0.041           |            |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND          | 0.50        | 0.14        | ND     | 0.11  | 0.031           |            |
| 108-10-1   | 4-Methyl-2-pentanone      | ND          | 0.50        | 0.16        | ND     | 0.12  | 0.039           |            |
| 10061-02-6 | trans-1,3-Dichloropropene | ND          | 0.50        | 0.16        | ND     | 0.11  | 0.035           |            |
| 79-00-5    | 1,1,2-Trichloroethane     | ND          | 0.50        | 0.16        | ND     | 0.092 | 0.029           |            |
| 108-88-3   | Toluene                   | ND          | 0.50        | 0.17        | ND     | 0.13  | 0.045           |            |
| 591-78-6   | 2-Hexanone                | ND          | 0.50        | 0.16        | ND     | 0.12  | 0.039           |            |
| 124-48-1   | Dibromochloromethane      | ND          | 0.50        | 0.16        | ND     | 0.059 | 0.019           |            |
| 106-93-4   | 1,2-Dibromoethane         | ND          | 0.50        | 0.16        | ND     | 0.065 | 0.021           |            |
| 123-86-4   | n-Butyl Acetate           | ND          | 0.50        | 0.16        | ND     | 0.11  | 0.034           |            |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

ALS Sample ID: P150819-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

|             |                             | Result      | MRL         | MDL         | Result                                     | MRL   | MDL   | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|--------------------------------------------|-------|-------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | $\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$ | ppbV  | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND          | 0.50        | 0.18        | ND                                         | 0.11  | 0.039 |           |
| 127-18-4    | Tetrachloroethene           | ND          | 0.50        | 0.14        | ND                                         | 0.074 | 0.021 |           |
| 108-90-7    | Chlorobenzene               | ND          | 0.50        | 0.16        | ND                                         | 0.11  | 0.035 |           |
| 100-41-4    | Ethylbenzene                | ND          | 0.50        | 0.16        | ND                                         | 0.12  | 0.037 |           |
| 179601-23-1 | m,p-Xylenes                 | ND          | 1.0         | 0.30        | ND                                         | 0.23  | 0.069 |           |
| 75-25-2     | Bromoform                   | ND          | 0.50        | 0.15        | ND                                         | 0.048 | 0.015 |           |
| 100-42-5    | Styrene                     | ND          | 0.50        | 0.15        | ND                                         | 0.12  | 0.035 |           |
| 95-47-6     | o-Xylene                    | ND          | 0.50        | 0.15        | ND                                         | 0.12  | 0.035 |           |
| 111-84-2    | n-Nonane                    | ND          | 0.50        | 0.15        | ND                                         | 0.095 | 0.029 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.50        | 0.15        | ND                                         | 0.073 | 0.022 |           |
| 98-82-8     | Cumene                      | ND          | 0.50        | 0.15        | ND                                         | 0.10  | 0.031 |           |
| 80-56-8     | alpha-Pinene                | ND          | 0.50        | 0.14        | ND                                         | 0.090 | 0.025 |           |
| 103-65-1    | n-Propylbenzene             | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND          | 0.50        | 0.15        | ND                                         | 0.10  | 0.031 |           |
| 100-44-7    | Benzyl Chloride             | ND          | 0.50        | 0.11        | ND                                         | 0.097 | 0.021 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND                                         | 0.083 | 0.025 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.50        | 0.14        | ND                                         | 0.083 | 0.023 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND                                         | 0.083 | 0.025 |           |
| 5989-27-5   | d-Limonene                  | ND          | 0.50        | 0.14        | ND                                         | 0.090 | 0.025 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.50        | 0.099       | ND                                         | 0.052 | 0.010 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.50        | 0.16        | ND                                         | 0.067 | 0.022 |           |
| 91-20-3     | Naphthalene                 | ND          | 0.50        | 0.18        | ND                                         | 0.095 | 0.034 |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.50        | 0.14        | ND                                         | 0.047 | 0.013 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

ALS Sample ID: P150820-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#      | Compound                                             | Result | MRL   | MDL   | Result | MRL   | MDL   | Data      |
|-----------|------------------------------------------------------|--------|-------|-------|--------|-------|-------|-----------|
| 115.07.1  | D                                                    | μg/m³  | μg/m³ | μg/m³ | ppbV   | ppbV  | ppbV  | Qualifier |
| 115-07-1  | Propene                                              | ND     | 0.50  | 0.14  | ND     | 0.29  | 0.081 |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | ND     | 0.50  | 0.17  | ND     | 0.10  | 0.034 |           |
| 74-87-3   | Chloromethane                                        | ND     | 0.50  | 0.15  | ND     | 0.24  | 0.073 |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.50  | 0.19  | ND     | 0.072 | 0.027 |           |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.50  | 0.22  | ND     | 0.23  | 0.099 |           |
| 74-83-9   | Bromomethane                                         | ND     | 0.50  | 0.19  | ND     | 0.13  | 0.049 |           |
| 75-00-3   | Chloroethane                                         | ND     | 0.50  | 0.17  | ND     | 0.19  | 0.064 |           |
| 64-17-5   | Ethanol                                              | ND     | 5.0   | 0.80  | ND     | 2.7   | 0.42  |           |
| 75-05-8   | Acetonitrile                                         | ND     | 0.50  | 0.18  | ND     | 0.30  | 0.11  |           |
| 107-02-8  | Acrolein                                             | ND     | 2.0   | 0.17  | ND     | 0.87  | 0.074 |           |
| 67-64-1   | Acetone                                              | 0.85   | 5.0   | 0.77  | 0.36   | 2.1   | 0.32  | J         |
| 75-69-4   | Trichlorofluoromethane                               | ND     | 0.50  | 0.17  | ND     | 0.089 | 0.030 |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND     | 5.0   | 0.42  | ND     | 2.0   | 0.17  |           |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.50  | 0.17  | ND     | 0.23  | 0.078 |           |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.50  | 0.17  | ND     | 0.13  | 0.043 |           |
| 75-09-2   | Methylene Chloride                                   | ND     | 0.50  | 0.17  | ND     | 0.14  | 0.049 |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.50  | 0.16  | ND     | 0.16  | 0.051 |           |
| 76-13-1   | Trichlorotrifluoroethane                             | ND     | 0.50  | 0.17  | ND     | 0.065 | 0.022 |           |
| 75-15-0   | Carbon Disulfide                                     | ND     | 5.0   | 0.15  | ND     | 1.6   | 0.048 |           |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.50  | 0.19  | ND     | 0.13  | 0.048 |           |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.50  | 0.16  | ND     | 0.12  | 0.040 |           |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.50  | 0.17  | ND     | 0.14  | 0.047 |           |
| 108-05-4  | Vinyl Acetate                                        | ND     | 5.0   | 0.65  | ND     | 1.4   | 0.18  |           |
| 78-93-3   | 2-Butanone (MEK)                                     | ND     | 5.0   | 0.21  | ND     | 1.7   | 0.071 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: P1503343

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150820-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA

Analyst: Wida Ang Date Analyzed: 8/20/15
Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

| CAS#       | Compound                  | Result      | MRL         | MDL         | Result     | MRL   | MDL <b>Data</b> |
|------------|---------------------------|-------------|-------------|-------------|------------|-------|-----------------|
|            |                           | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | ${f ppbV}$ | ppbV  | ppbV Qualifier  |
| 156-59-2   | cis-1,2-Dichloroethene    | ND          | 0.50        | 0.16        | ND         | 0.13  | 0.040           |
| 141-78-6   | Ethyl Acetate             | ND          | 1.0         | 0.35        | ND         | 0.28  | 0.097           |
| 110-54-3   | n-Hexane                  | ND          | 0.50        | 0.15        | ND         | 0.14  | 0.043           |
| 67-66-3    | Chloroform                | ND          | 0.50        | 0.17        | ND         | 0.10  | 0.035           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND          | 0.50        | 0.20        | ND         | 0.17  | 0.068           |
| 107-06-2   | 1,2-Dichloroethane        | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.040           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND          | 0.50        | 0.17        | ND         | 0.092 | 0.031           |
| 71-43-2    | Benzene                   | ND          | 0.50        | 0.16        | ND         | 0.16  | 0.050           |
| 56-23-5    | Carbon Tetrachloride      | ND          | 0.50        | 0.15        | ND         | 0.080 | 0.024           |
| 110-82-7   | Cyclohexane               | ND          | 1.0         | 0.29        | ND         | 0.29  | 0.084           |
| 78-87-5    | 1,2-Dichloropropane       | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 75-27-4    | Bromodichloromethane      | ND          | 0.50        | 0.15        | ND         | 0.075 | 0.022           |
| 79-01-6    | Trichloroethene           | ND          | 0.50        | 0.14        | ND         | 0.093 | 0.026           |
| 123-91-1   | 1,4-Dioxane               | ND          | 0.50        | 0.16        | ND         | 0.14  | 0.044           |
| 80-62-6    | Methyl Methacrylate       | ND          | 1.0         | 0.31        | ND         | 0.24  | 0.076           |
| 142-82-5   | n-Heptane                 | ND          | 0.50        | 0.17        | ND         | 0.12  | 0.041           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND          | 0.50        | 0.14        | ND         | 0.11  | 0.031           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.035           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND          | 0.50        | 0.16        | ND         | 0.092 | 0.029           |
| 108-88-3   | Toluene                   | ND          | 0.50        | 0.17        | ND         | 0.13  | 0.045           |
| 591-78-6   | 2-Hexanone                | ND          | 0.50        | 0.16        | ND         | 0.12  | 0.039           |
| 124-48-1   | Dibromochloromethane      | ND          | 0.50        | 0.16        | ND         | 0.059 | 0.019           |
| 106-93-4   | 1,2-Dibromoethane         | ND          | 0.50        | 0.16        | ND         | 0.065 | 0.021           |
| 123-86-4   | n-Butyl Acetate           | ND          | 0.50        | 0.16        | ND         | 0.11  | 0.034           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# RESULTS OF ANALYSIS Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: Method Blank

Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

ALS Sample ID: P150820-MB

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA

Analyst: Wida Ang Date Analyzed: 8/20/15
Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 1.00 Liter(s)

Test Notes:

Canister Dilution Factor: 1.00

|             |                             | Result      | MRL         | MDL         | Result                                     | MRL   | MDL   | Data      |
|-------------|-----------------------------|-------------|-------------|-------------|--------------------------------------------|-------|-------|-----------|
| CAS#        | Compound                    | $\mu g/m^3$ | $\mu g/m^3$ | $\mu g/m^3$ | $\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{V}$ | ppbV  | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND          | 0.50        | 0.18        | ND                                         | 0.11  | 0.039 |           |
| 127-18-4    | Tetrachloroethene           | ND          | 0.50        | 0.14        | ND                                         | 0.074 | 0.021 |           |
| 108-90-7    | Chlorobenzene               | ND          | 0.50        | 0.16        | ND                                         | 0.11  | 0.035 |           |
| 100-41-4    | Ethylbenzene                | ND          | 0.50        | 0.16        | ND                                         | 0.12  | 0.037 |           |
| 179601-23-1 | m,p-Xylenes                 | ND          | 1.0         | 0.30        | ND                                         | 0.23  | 0.069 |           |
| 75-25-2     | Bromoform                   | ND          | 0.50        | 0.15        | ND                                         | 0.048 | 0.015 |           |
| 100-42-5    | Styrene                     | ND          | 0.50        | 0.15        | ND                                         | 0.12  | 0.035 |           |
| 95-47-6     | o-Xylene                    | ND          | 0.50        | 0.15        | ND                                         | 0.12  | 0.035 |           |
| 111-84-2    | n-Nonane                    | ND          | 0.50        | 0.15        | ND                                         | 0.095 | 0.029 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND          | 0.50        | 0.15        | ND                                         | 0.073 | 0.022 |           |
| 98-82-8     | Cumene                      | ND          | 0.50        | 0.15        | ND                                         | 0.10  | 0.031 |           |
| 80-56-8     | alpha-Pinene                | ND          | 0.50        | 0.14        | ND                                         | 0.090 | 0.025 |           |
| 103-65-1    | n-Propylbenzene             | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 622-96-8    | 4-Ethyltoluene              | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND          | 0.50        | 0.16        | ND                                         | 0.10  | 0.033 |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND          | 0.50        | 0.15        | ND                                         | 0.10  | 0.031 |           |
| 100-44-7    | Benzyl Chloride             | ND          | 0.50        | 0.11        | ND                                         | 0.097 | 0.021 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND                                         | 0.083 | 0.025 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND          | 0.50        | 0.14        | ND                                         | 0.083 | 0.023 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND          | 0.50        | 0.15        | ND                                         | 0.083 | 0.025 |           |
| 5989-27-5   | d-Limonene                  | ND          | 0.50        | 0.14        | ND                                         | 0.090 | 0.025 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND          | 0.50        | 0.099       | ND                                         | 0.052 | 0.010 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND          | 0.50        | 0.16        | ND                                         | 0.067 | 0.022 |           |
| 91-20-3     | Naphthalene                 | ND          | 0.50        | 0.18        | ND                                         | 0.095 | 0.034 |           |
| 87-68-3     | Hexachlorobutadiene         | ND          | 0.50        | 0.14        | ND                                         | 0.047 | 0.013 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

# SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client: Landau Associates, Inc.
Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

Test Code: EPA TO-15

Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date(s) Collected: 8/7/15
Analyst: Wida Ang Date(s) Received: 8/13/15

Sample Type: 6.0 L Summa Canister(s) Date(s) Analyzed: 8/19 - 8/20/15

Test Notes:

|                    |               | 1,2-Dichloroethane-d4 | Toluene-d8 | Bromofluorobenzene |            |           |
|--------------------|---------------|-----------------------|------------|--------------------|------------|-----------|
| Client Sample ID   | ALS Sample ID | Percent               | Percent    | Percent            | Acceptance | Data      |
|                    |               | Recovered             | Recovered  | Recovered          | Limits     | Qualifier |
| Method Blank       | P150819-MB    | 104                   | 100        | 95                 | 70-130     |           |
| Method Blank       | P150820-MB    | 107                   | 100        | 89                 | 70-130     |           |
| Lab Control Sample | P150819-LCS   | 106                   | 99         | 97                 | 70-130     |           |
| Lab Control Sample | P150820-LCS   | 107                   | 98         | 93                 | 70-130     |           |
| CL-LFG-P-6         | P1503343-001  | 108                   | 84         | 89                 | 70-130     |           |
| CL-LFG-P-12        | P1503343-002  | 106                   | 77         | 83                 | 70-130     |           |
| CL-LFG-P-2         | P1503343-003  | 107                   | 92         | 94                 | 70-130     |           |
| CL-LFG-P-3         | P1503343-004  | 108                   | 99         | 92                 | 70-130     |           |

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

## LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1503343Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150819-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|           |                                     |              |             |            | ALS        |           |
|-----------|-------------------------------------|--------------|-------------|------------|------------|-----------|
| CAS#      | Compound                            | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|           |                                     | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 115-07-1  | Propene                             | 196          | 160         | 82         | 50-128     |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 188          | 185         | 98         | 66-117     |           |
| 74-87-3   | Chloromethane                       | 200          | 188         | 94         | 51-133     |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-               |              |             | 105        | 65-117     |           |
|           | tetrafluoroethane (CFC 114)         | 204          | 214         |            |            |           |
| 75-01-4   | Vinyl Chloride                      | 200          | 224         | 112        | 61-127     |           |
| 106-99-0  | 1,3-Butadiene                       | 206          | 196         | 95         | 65-132     |           |
| 74-83-9   | Bromomethane                        | 202          | 197         | 98         | 62-114     |           |
| 75-00-3   | Chloroethane                        | 200          | 192         | 96         | 64-122     |           |
| 64-17-5   | Ethanol                             | 998          | 1040        | 104        | 57-131     |           |
| 75-05-8   | Acetonitrile                        | 212          | 174         | 82         | 52-135     |           |
| 107-02-8  | Acrolein                            | 214          | 174         | 81         | 64-124     |           |
| 67-64-1   | Acetone                             | 1,080        | 1150        | 106        | 60-113     |           |
| 75-69-4   | Trichlorofluoromethane              | 216          | 183         | 85         | 64-112     |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 418          | 428         | 102        | 62-129     |           |
| 107-13-1  | Acrylonitrile                       | 212          | 208         | 98         | 69-133     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 216          | 205         | 95         | 70-114     |           |
| 75-09-2   | Methylene Chloride                  | 222          | 200         | 90         | 63-103     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 218          | 196         | 90         | 57-135     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 220          | 197         | 90         | 69-116     |           |
| 75-15-0   | Carbon Disulfide                    | 210          | 176         | 84         | 66-118     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 210          | 203         | 97         | 69-123     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 212          | 205         | 97         | 65-118     |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | 216          | 195         | 90         | 57-125     |           |
| 108-05-4  | Vinyl Acetate                       | 1,040        | 1070        | 103        | 69-131     |           |
| 78-93-3   | 2-Butanone (MEK)                    | 220          | 215         | 98         | 63-121     |           |

## LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Date Analyzed: 8/19/15

Client: Landau Associates, Inc.

Wida Ang

Client Sample ID:Lab Control SampleALS Project ID: P1503343Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150819-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

Analyst:

|            |                           |              |             |            | ALS        |           |
|------------|---------------------------|--------------|-------------|------------|------------|-----------|
| CAS#       | Compound                  | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|            |                           | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 218          | 217         | 100        | 69-119     |           |
| 141-78-6   | Ethyl Acetate             | 428          | 512         | 120        | 65-129     |           |
| 110-54-3   | n-Hexane                  | 212          | 220         | 104        | 55-116     |           |
| 67-66-3    | Chloroform                | 224          | 222         | 99         | 68-111     |           |
| 109-99-9   | Tetrahydrofuran (THF)     | 220          | 215         | 98         | 69-120     |           |
| 107-06-2   | 1,2-Dichloroethane        | 214          | 214         | 100        | 67-117     |           |
| 71-55-6    | 1,1,1-Trichloroethane     | 210          | 196         | 93         | 74-116     |           |
| 71-43-2    | Benzene                   | 226          | 211         | 93         | 61-109     |           |
| 56-23-5    | Carbon Tetrachloride      | 230          | 207         | 90         | 76-120     |           |
| 110-82-7   | Cyclohexane               | 424          | 440         | 104        | 72-115     |           |
| 78-87-5    | 1,2-Dichloropropane       | 216          | 215         | 100        | 67-119     |           |
| 75-27-4    | Bromodichloromethane      | 218          | 219         | 100        | 78-124     |           |
| 79-01-6    | Trichloroethene           | 216          | 203         | 94         | 69-115     |           |
| 123-91-1   | 1,4-Dioxane               | 210          | 219         | 104        | 69-127     |           |
| 80-62-6    | Methyl Methacrylate       | 422          | 416         | 99         | 76-128     |           |
| 142-82-5   | n-Heptane                 | 216          | 210         | 97         | 66-118     |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | 208          | 207         | 100        | 77-124     |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 220          | 215         | 98         | 66-134     |           |
| 10061-02-6 | trans-1,3-Dichloropropene | 210          | 210         | 100        | 80-130     |           |
| 79-00-5    | 1,1,2-Trichloroethane     | 216          | 212         | 98         | 75-119     |           |
| 108-88-3   | Toluene                   | 218          | 202         | 93         | 68-114     |           |
| 591-78-6   | 2-Hexanone                | 220          | 199         | 90         | 60-136     |           |
| 124-48-1   | Dibromochloromethane      | 220          | 210         | 95         | 75-132     |           |
| 106-93-4   | 1,2-Dibromoethane         | 218          | 209         | 96         | 72-122     |           |
| 123-86-4   | n-Butyl Acetate           | 226          | 198         | 88         | 60-137     |           |

# LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1503343

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150819-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/19/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|             |                             |              |             |            | ALS        |           |
|-------------|-----------------------------|--------------|-------------|------------|------------|-----------|
| CAS#        | Compound                    | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|             |                             | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 111-65-9    | n-Octane                    | 210          | 194         | 92         | 66-120     |           |
| 127-18-4    | Tetrachloroethene           | 202          | 178         | 88         | 67-120     |           |
| 108-90-7    | Chlorobenzene               | 220          | 208         | 95         | 69-114     |           |
| 100-41-4    | Ethylbenzene                | 218          | 215         | 99         | 71-117     |           |
| 179601-23-1 | m,p-Xylenes                 | 428          | 443         | 104        | 71-118     |           |
| 75-25-2     | Bromoform                   | 228          | 209         | 92         | 76-149     |           |
| 100-42-5    | Styrene                     | 222          | 218         | 98         | 71-128     |           |
| 95-47-6     | o-Xylene                    | 210          | 218         | 104        | 72-118     |           |
| 111-84-2    | n-Nonane                    | 204          | 204         | 100        | 63-123     |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 210          | 222         | 106        | 73-124     |           |
| 98-82-8     | Cumene                      | 208          | 206         | 99         | 71-118     |           |
| 80-56-8     | alpha-Pinene                | 212          | 201         | 95         | 71-123     |           |
| 103-65-1    | n-Propylbenzene             | 204          | 217         | 106        | 71-120     |           |
| 622-96-8    | 4-Ethyltoluene              | 214          | 229         | 107        | 71-121     |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 214          | 224         | 105        | 72-121     |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 218          | 257         | 118        | 71-122     |           |
| 100-44-7    | Benzyl Chloride             | 220          | 235         | 107        | 79-143     |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 228          | 245         | 107        | 67-121     |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 208          | 228         | 110        | 68-121     |           |
| 95-50-1     | 1,2-Dichlorobenzene         | 220          | 243         | 110        | 68-121     |           |
| 5989-27-5   | d-Limonene                  | 210          | 213         | 101        | 69-137     |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 218          | 207         | 95         | 73-145     |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 230          | 210         | 91         | 60-135     |           |
| 91-20-3     | Naphthalene                 | 218          | 222         | 102        | 63-142     |           |
| 87-68-3     | Hexachlorobutadiene         | 230          | 206         | 90         | 65-127     |           |

## LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1503343Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150820-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|           |                                     |              |             |            | ALS        |           |
|-----------|-------------------------------------|--------------|-------------|------------|------------|-----------|
| CAS#      | Compound                            | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|           |                                     | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 115-07-1  | Propene                             | 196          | 163         | 83         | 50-128     |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 188          | 183         | 97         | 66-117     |           |
| 74-87-3   | Chloromethane                       | 200          | 223         | 112        | 51-133     |           |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-               |              |             | 105        | 65-117     |           |
| 70-14-2   | tetrafluoroethane (CFC 114)         | 204          | 214         | 103        | 03-117     |           |
| 106-99-0  | 1,3-Butadiene                       | 206          | 205         | 100        | 65-132     |           |
| 74-83-9   | Bromomethane                        | 202          | 203         | 100        | 62-114     |           |
| 75-00-3   | Chloroethane                        | 200          | 193         | 97         | 64-122     |           |
| 64-17-5   | Ethanol                             | 998          | 1060        | 106        | 57-131     |           |
| 75-05-8   | Acetonitrile                        | 212          | 178         | 84         | 52-135     |           |
| 107-02-8  | Acrolein                            | 214          | 176         | 82         | 64-124     |           |
| 67-64-1   | Acetone                             | 1,080        | 1160        | 107        | 60-113     | _         |
| 75-69-4   | Trichlorofluoromethane              | 216          | 180         | 83         | 64-112     |           |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 418          | 450         | 108        | 62-129     |           |
| 107-13-1  | Acrylonitrile                       | 212          | 210         | 99         | 69-133     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 216          | 203         | 94         | 70-114     |           |
| 75-09-2   | Methylene Chloride                  | 222          | 199         | 90         | 63-103     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 218          | 198         | 91         | 57-135     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 220          | 191         | 87         | 69-116     |           |
| 75-15-0   | Carbon Disulfide                    | 210          | 176         | 84         | 66-118     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 210          | 204         | 97         | 69-123     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 212          | 205         | 97         | 65-118     |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | 216          | 196         | 91         | 57-125     |           |
| 108-05-4  | Vinyl Acetate                       | 1,040        | 1060        | 102        | 69-131     |           |
| 78-93-3   | 2-Butanone (MEK)                    | 220          | 214         | 97         | 63-121     |           |

## LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1503343Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150820-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|            |                           |              |             |            | ALS        |           |
|------------|---------------------------|--------------|-------------|------------|------------|-----------|
| CAS#       | Compound                  | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|            | _                         | $\mu g/m^3$  | $\mu g/m^3$ | -          | Limits     | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 218          | 218         | 100        | 69-119     |           |
| 141-78-6   | Ethyl Acetate             | 428          | 517         | 121        | 65-129     |           |
| 110-54-3   | n-Hexane                  | 212          | 225         | 106        | 55-116     |           |
| 67-66-3    | Chloroform                | 224          | 220         | 98         | 68-111     |           |
| 109-99-9   | Tetrahydrofuran (THF)     | 220          | 214         | 97         | 69-120     |           |
| 107-06-2   | 1,2-Dichloroethane        | 214          | 212         | 99         | 67-117     |           |
| 71-55-6    | 1,1,1-Trichloroethane     | 210          | 193         | 92         | 74-116     |           |
| 71-43-2    | Benzene                   | 226          | 211         | 93         | 61-109     |           |
| 56-23-5    | Carbon Tetrachloride      | 230          | 203         | 88         | 76-120     |           |
| 110-82-7   | Cyclohexane               | 424          | 442         | 104        | 72-115     |           |
| 78-87-5    | 1,2-Dichloropropane       | 216          | 216         | 100        | 67-119     |           |
| 75-27-4    | Bromodichloromethane      | 218          | 216         | 99         | 78-124     |           |
| 79-01-6    | Trichloroethene           | 216          | 198         | 92         | 69-115     |           |
| 123-91-1   | 1,4-Dioxane               | 210          | 218         | 104        | 69-127     |           |
| 80-62-6    | Methyl Methacrylate       | 422          | 408         | 97         | 76-128     |           |
| 142-82-5   | n-Heptane                 | 216          | 211         | 98         | 66-118     | _         |
| 10061-01-5 | cis-1,3-Dichloropropene   | 208          | 206         | 99         | 77-124     |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 220          | 215         | 98         | 66-134     |           |
| 10061-02-6 | trans-1,3-Dichloropropene | 210          | 208         | 99         | 80-130     |           |
| 79-00-5    | 1,1,2-Trichloroethane     | 216          | 208         | 96         | 75-119     |           |
| 108-88-3   | Toluene                   | 218          | 199         | 91         | 68-114     |           |
| 591-78-6   | 2-Hexanone                | 220          | 198         | 90         | 60-136     |           |
| 124-48-1   | Dibromochloromethane      | 220          | 204         | 93         | 75-132     |           |
| 106-93-4   | 1,2-Dibromoethane         | 218          | 202         | 93         | 72-122     |           |
| 123-86-4   | n-Butyl Acetate           | 226          | 198         | 88         | 60-137     |           |

## LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client: Landau Associates, Inc.

Client Sample ID:Lab Control SampleALS Project ID: P1503343Client Project ID:Cornwall LF / 001037.030.033ALS Sample ID: P150820-LCS

Test Code: EPA TO-15 Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|             |                             |              |             |            | ALS        |           |
|-------------|-----------------------------|--------------|-------------|------------|------------|-----------|
| CAS#        | Compound                    | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|             |                             | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 111-65-9    | n-Octane                    | 210          | 194         | 92         | 66-120     |           |
| 127-18-4    | Tetrachloroethene           | 202          | 170         | 84         | 67-120     |           |
| 108-90-7    | Chlorobenzene               | 220          | 203         | 92         | 69-114     |           |
| 100-41-4    | Ethylbenzene                | 218          | 209         | 96         | 71-117     |           |
| 179601-23-1 | m,p-Xylenes                 | 428          | 434         | 101        | 71-118     |           |
| 75-25-2     | Bromoform                   | 228          | 197         | 86         | 76-149     |           |
| 100-42-5    | Styrene                     | 222          | 210         | 95         | 71-128     |           |
| 95-47-6     | o-Xylene                    | 210          | 212         | 101        | 72-118     |           |
| 111-84-2    | n-Nonane                    | 204          | 205         | 100        | 63-123     |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 210          | 217         | 103        | 73-124     |           |
| 98-82-8     | Cumene                      | 208          | 200         | 96         | 71-118     |           |
| 80-56-8     | alpha-Pinene                | 212          | 196         | 92         | 71-123     |           |
| 103-65-1    | n-Propylbenzene             | 204          | 210         | 103        | 71-120     |           |
| 622-96-8    | 4-Ethyltoluene              | 214          | 217         | 101        | 71-121     |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 214          | 215         | 100        | 72-121     |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 218          | 250         | 115        | 71-122     |           |
| 100-44-7    | Benzyl Chloride             | 220          | 226         | 103        | 79-143     |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 228          | 232         | 102        | 67-121     |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 208          | 218         | 105        | 68-121     |           |
| 95-50-1     | 1,2-Dichlorobenzene         | 220          | 233         | 106        | 68-121     |           |
| 5989-27-5   | d-Limonene                  | 210          | 208         | 99         | 69-137     |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 218          | 194         | 89         | 73-145     |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 230          | 197         | 86         | 60-135     |           |
| 91-20-3     | Naphthalene                 | 218          | 212         | 97         | 63-142     |           |
| 87-68-3     | Hexachlorobutadiene         | 230          | 191         | 83         | 65-127     |           |

£A 7/28/15

Method Path: I:\MS13\METHODS\
Method File: R13072715.M
Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
Last Update: Tue Jul 28 09:12:05 2015
Response Via: Initial Calibration

71508.D Calibration Files

| =0727                        |         |                       |       |            |      |       |                |                     |                    |       |          |         |                           |           |                       |           |           |           |           |       |       |           |                    |       |       |       |       |          |             |             |                    |                       |          |                  |       |                    |        |           |
|------------------------------|---------|-----------------------|-------|------------|------|-------|----------------|---------------------|--------------------|-------|----------|---------|---------------------------|-----------|-----------------------|-----------|-----------|-----------|-----------|-------|-------|-----------|--------------------|-------|-------|-------|-------|----------|-------------|-------------|--------------------|-----------------------|----------|------------------|-------|--------------------|--------|-----------|
| 25                           |         |                       |       |            |      |       |                |                     |                    |       |          |         |                           |           |                       |           |           |           |           |       |       |           |                    |       |       |       |       |          |             |             |                    |                       |          |                  |       |                    |        |           |
| 5.0 =07271507.D              | %RSD    | 1<br>1<br>1<br>1<br>1 | 9     | 4.4        | Ŋ    | 7     | 0              | ų, c                | ν α                | . 77  | . 7      | 0.0     | N <                       | ۲ C       | , rd                  | ω.        | Н.        | 0.8       | ω.        | ζ.    | 9.    | 0         | 5.22               | 0     | Ŋ     | 4.    | م ا   | ٠.       | 7           | 7 L         | Ú.                 | i u                   | . 4.     |                  | . 7   | 8.42               | 4.     | . 7       |
| 506.D                        | Avg     |                       | .40   | .86        | . 92 | .61   | . 03           | 44.                 | ν α                |       | .39      | . 85    | 19.                       | 0 00      | . 62                  | . 27      | .99       | .37       | . 75      | .26   | . 24  | 80<br>90  | 4.076              | .37   | .86   | . 72  | . 23  | . 44     | . 03        | 4, 6        | , 6<br>0           | о п                   | . 69     |                  | .40   | 0.151              | .01    | .35       |
| =07271                       | 100     | <br>                  | 1.62  | 2.57       | 1.24 | 1.52  | 1.85           | 1.36                | 0 1 0              | 0.80  | 2.13     | 0.78    | 0.71                      | 1 0       | 1.62                  | 1.25      | 1.62      | 1.22      | 1.62      | 1.28  | 4.57  | J . 76    | 3.612              | 0.26  | 0.85  | 1.63  | 1.04  | 0.35     | 1.65        | 20.7        | 1.54<br>0.0        | )<br>)<br>)<br>)<br>) | 1.56     |                  | 0.38  | 0.123              | 0.69   | 0.35      |
| 1.0                          | 20      | <br>                  | 1.50  | 2.79       | 1.67 | 1.60  | 1.96           | 1.47                | D . 0              | 0.87  | 2.18     | 0.80    | 0.87                      |           | 1.67                  | 1.29      | 2.65      | 1.28      | 1.68      | 1.31  | 4.94  | L.86      | 3.914              | 0.32  | 0.89  | 1.73  | 1.25  | 0.44     | 1.90        | 2 . L       | 1.<br>0.0          | 1 64                  | 1.68     | 1                | 0.40  | 0.147              | 0.89   | 0.37      |
| 71505.D                      | 25      |                       | 1.41  | 2.90       | 1.87 | 1.64  | 2.03           | 1.50                | 1.7.7              | 06.0  | 2.25     | 0.81    | 0.91                      | 2 . 0     | 1.71                  | 1.31      | 3.15      | 1.32      | 1.72      | 1.32  | 5.15  | L. 43     | 3 2.351<br>2 4.071 | 0.35  | 0.90  | 1.80  | 1.35  | 0.48     | 2.03        | 7.70        | 1.57               | ο· Γ<br>αν            | 1.75     | 1<br>1<br>1<br>1 | 0.42  | 0.160              | 0.97   | 0.38      |
| 40=072                       | 5.0     |                       | 1.42  | 2.93       | 1.90 | 1.67  | 2.04           | 1.45                | 1.76               | 0.89  | 2.24     | 0.77    | 0.94                      | 7.0       | 1.67                  | 1.28      | 3.12      | 1.32      | 1.68      | 1.29  | 5.15  | 1.91      | 7 4 057            | 0.32  | 0.89  | 1.76  | 1.31  | 0.47     | 2.06        | 7.75        | . d<br>. d         | <br>                  | 1.73     | !<br>!<br>!      | 0.41  | 2 0.159<br>5 0.248 | 0.97   | 0.36      |
| о О.                         | ٥٠٦     |                       | 1.21  | 2.99       | 2.11 | 1.68  | 2.12           | 1.49                | 1.3/               | 0.91  | 2.45     | 0.81    | 0.98                      | # C       | 1.68                  | 1.30      | 3.40      | 1.43      | 1.73      | 1.30  | 5.39  | L. 94     | 2 4 15             | 0.31  | 0.89  | 1.76  | 1.31  | 0.46     | 2. II       | 7.30        | 79.1               | <br><br>              | 1.75     |                  | 0.41  | 6 0.163            | 0.99   | 0.36      |
| 271504                       | 0.40    | i B                   | 1.42  | 3.00       | 2.10 | 1.65  | 2.10           | 1.46                | . 52               | 0.89  | 2.51     | 0.91    | 0.98                      | , w       | 1.68                  | 1.32      | 3.40      | 1.64      | 1.75      | 1.30  | 5.75  | L. 94     | 5 4 297            | 0.33  | 0.84  | 1.77  | 1.29  | 0.47     | 2.20        | 00.7        | ا 0<br>0<br>0<br>0 | 7.00                  | 1.79     |                  | 0.41  | 3 0.156            | 1.04   | 0.35      |
| .20=072                      | 0.20    |                       | 1.22  | 2.86       | 2.11 | 1.59  | 2.07           | 1.42                | 7 L.25             | 0.86  | 2.43     | 0.85    | 0.96                      | 3 . 7 .   | 1.50                  | . 23      | 3.33      |           | . 76      | 1.19  | 5.69  | 1.87      | 7 4 15             | 0.30  | 0.81  | 1.71  | 1.23  | 0.47     | 2. L3       | 7.70        | η.<br>Ο α          | <br>                  | 1.68     | !<br>!<br>!      | 0.40  | 7 0.153            | 1.04   | 0.32      |
| 3.D<br>0.D                   | 0.10    |                       | 1.40  | 2.87       | 2.09 | 1.65  | 2.04           | 1.36                | 7 0.97             | 0.88  | 2.45     | 0.89    | у<br>1 С                  | 7         | 1.57                  | 7 1.27    | .25       |           | 0 1.953   | 1.16  | 7     | L.84      | 200                | 0.31  | 0.76  | 1.71  | 1.21  | 0.43     |             | 7. N        | . d<br>. d         | )<br>)<br>)<br>)<br>) | . 69     | 1                | 0.41  | 8 0.157            | 1.26   | 0.34      |
| 7271503<br>727151            | 0.08    |                       | .42   | .86        | . 14 | . 52  | 90.            | .43                 | 2 o                | 8     | .90      | .01     | 0                         | H         | 4,                    | 21        |           |           | . 1.88(   | .16   | Ċ     | 4.        | 4.7.4              |       | .87   | . 63  | 1.13  | . 4<br>0 | 4. T. C.    | 0.7         | О.<br>1. П         |                       | 1.60     |                  | 0.39  | 0.13               | .26    | . 32      |
| 2.D 0.10=07<br>9.D 100 =07   | nd      | <br>chloromethan      | ene   | Ę          | Φ    | 1     | Vinyl Chloride | utadiene<br>motboso | metname<br>oethane |       | nitrile  | ein     | Acetone<br>Triablesefluer | nanol (Ts | pamer (fr<br>onitrile | ichloroet | hyl-2-Pro | lene Chlo | oro-1-pro | :     | d     | -1,2-Dich | Methyl tert-Bu.    |       |       |       | the   | Acetate  | Hexane      | (           | ,z-Dichioroec      | tert-But              | ichloroe | robenz           | nlor  | Acetat             | ne     | n Tetrach |
| racion<br>0727150<br>0727150 | Compoun | Bromochl              | Prope | Dichlorodi |      | 1,2-D | Vinyl          | 1,3-Butad           | Chloroet           | Ethan | Acetonit | Acrolei | Aceto                     | 2 - DYC:  | Acryl                 | 1,1-D     | 2-Met     | Methy     | 3-Ch1     | Trich | Carbo | rans      | I, I-D<br>Methv    | Vinyl | 2-But | cis-1 | Diiso | ETUYT    | n-Hexane    | <b>-1</b> C | 1,4-D.             | 五つことの日子               | 1,2-D:   | 1.4-D            | 1,1,1 | Isopropyl /        | Benzen | Carbon    |
| 7 II II<br>7 80<br>7 10      |         | I R                   | H     | E          | H    | E     | E 1            | E⊣ E                | ⊣ [-               | · [   | E        | H       | ⊟ E                       | ٠ E-      | 4 E-4                 | H         | H         | H         | E         | E⊣    | E⊣ E  | H E       | <b>⊢</b> [⊢        | H     | ₽     | E     | E E   | H (      | <u></u> ⊣ E | ⊣ C         | υ E-               | ⊣ [                   | - E-1    | F                | H     | E4 E-              | F 1    | EH.       |
| 50.                          |         | - (T                  | 2     | 3)         | 4    | 2     | 9              | ( c                 | 0 0                | 10)   | 11)      | 12)     | 13)                       | - I       | 16)                   |           | Н         | 19)       | 20)       | 21)   | 22)   | 2 0       | 25                 | 26)   | 27)   | 28)   | 29)   | 30)      | 3.1.)       | 0 0         | 200                | )<br>(                | 36)      |                  |       | 39)                |        |           |

Page: 1

Path : I:\MS13\METHODS'

Method

Page: 3

|                                                                     |                                                 | 25.91                                                   | 14.03                                                          | 10.81                                                         | 6.25                                                                      | 14.39                                                            | 10.45                                                                        |
|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|
| <pre>Method Path : I:\MS13\METHODS\ Method File : R13072715.M</pre> | : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) | Naphthalene 2.012 3.752 3.887 4.124 3.546 2.463 3.297 2 | ne 1.308 1.237 1.258 1.369 1.289 1.316 1.395 1.190 0.808 1.241 | 1 0.616 0.595 0.649 0.706 0.719 0.754 0.817 0.793 0.689 0.704 | Cyclohexanone 0.699 0.863 0.815 0.829 0.824 0.840 0.854 0.822 0.764 0.812 | sene 2.154 2.363 2.316 2.479 2.557 2.626 2.592 2.182 1.552 2.313 | n-Butylbenzene 2.226 2.293 2.318 2.439 2.663 2.723 2.759 2.494 1.991 2.434 1 |
| Method<br>Method                                                    | Title                                           | 95) T                                                   | 1 (96                                                          | 97) T                                                         | 1 (86                                                                     | 1 (66                                                            | 100) T                                                                       |

(#) = Out of Range

Data File : I:\MS13\DATA\2015 08\19\08191501.D Vial: 16 Acq On : 19 Aug 2015 00:48 Sample : CCV R13081915 25ng Misc : S29-08101501/S29-07311501 (8/28) Operator: WA/NL Inst : MS13

Quant Time: Aug 19 11:02:25 2015

Quant Method: I:\MS13\METHODS\R13072715.M Quant Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update: Tue Jul 28 09:12:05 2015 Response via: Initial Calibration

DataAcq Meth:TO15.M

LH 8/20/15

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Min. RRF

Max. RRF Dev: 30% Max. Rel. Area: 200%

|                                                                                  | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AvgRF                                                                                                                                                                                      | CCRF                                                                                                                                                                                                  | %Dev Area% Dev(min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 IR 2 TT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT                                      | Bromochloromethane (IS1) Propene Dichlorodifluoromethane (CF Chloromethane 1,2-Dichloro-1,1,2,2-tetraf Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Acetonitrile Acrolein Acetone Trichlorofluoromethane 2-Propanol (Isopropanol) Acrylonitrile 1,1-Dichloroethene 2-Methyl-2-Propanol (tert-B Methylene Chloride 3-Chloro-1-propene (Allyl C Trichlorotrifluoroethane Carbon Disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether Vinyl Acetate 2-Butanone (MEK) cis-1,2-Dichloroethene Diisopropyl Ether Ethyl Acetate n-Hexane Chloroform 1,2-Dichloroethane-d4(SS1) | 1.000 1.407 2.868 1.920 1.618 2.034 1.444 1.283 0.989 0.889 0.852 0.918 2.568 2.5682 1.626 1.278 2.994 1.372 1.755 1.260 5.240 1.864 2.297 4.076 0.860 1.726 1.239 0.440 2.039 2.245 1.609 | 1.000 1.120 2.972 2.255 1.825 2.365 1.701 1.374 1.004 0.970 2.170 0.799 1.021 2.581 3.077 1.708 1.290 3.489 1.330 1.640 1.227 5.314 1.913 2.331 3.917 0.390 0.903 1.816 1.433 0.548 2.194 2.376 1.697 | 0.0 57 -0.01 20.4 45# -0.01 -3.6 58 -0.01 -17.4 69 -0.01 -12.8 63 -0.01 -16.3 66 -0.01 -17.8 65 -0.01 -7.1 60 -0.01 -1.5 57 -0.01 -1.5 57 -0.02 -2.5 61 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.2 63 -0.02 -11.4 7 66 -0.02 -5.0 57 -0.01 -0.9 56 0.00 -16.5 63 -0.02 -1.4 59 -0.01 -2.6 53 -0.01 -1.4 59 -0.01 -2.6 55 -0.01 -1.5 57 0.00 -1.5 57 0.00 -1.5 57 -0.01 -2.6 56 -0.01 -1.5 57 0.00 -1.5 57 -0.01 -2.6 56 -0.01 -1.5 57 0.00 -1.5 57 -0.01 -2.6 56 -0.01 -1.5 57 -0.01 -2.6 56 -0.01 -1.5 57 -0.01 -2.6 56 -0.01 -1.5 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 -5.0 57 -0.01 |
| 34 T<br>35 T<br>36 T                                                             | Tetrahydrofuran (THF)<br>Ethyl tert-Butyl Ether<br>1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.836<br>1.597<br>1.695                                                                                                                                                                    | 0.861<br>1.616<br>1.783                                                                                                                                                                               | -3.0 56 -0.01<br>-1.2 55 -0.01<br>-5.2 58 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37 IR 38 T 40 T 41 T 42 T 43 T 44 T 45 T 46 T 47 T 48 T 50 T 51 T 52 T 53 T 54 T | 1,4-Difluorobenzene (IS2) 1,1,1-Trichloroethane Isopropyl Acetate 1-Butanol Benzene Carbon Tetrachloride Cyclohexane tert-Amyl Methyl Ether 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane 2,2,4-Trimethylpentane (Iso Methyl Methacrylate n-Heptane cis-1,3-Dichloropropene 4-Methyl-2-pentanone trans-1,3-Dichloropropene 1,1,2-Trichloroethane                                                                                                                                                                                                                                            | 1.000<br>0.408<br>0.151<br>0.219<br>1.018<br>0.355<br>0.380<br>0.769<br>0.242<br>0.345<br>0.296<br>0.206<br>1.009<br>0.106<br>0.249<br>0.401<br>0.220<br>0.365<br>0.249                    | 1.000<br>0.404<br>0.178<br>0.287<br>1.028<br>0.368<br>0.417<br>0.756<br>0.251<br>0.370<br>0.305<br>0.219<br>1.048<br>0.112<br>0.255<br>0.427<br>0.237<br>0.389<br>0.259                               | 0.0 58 -0.01<br>1.0 55 -0.01<br>-17.9 65 -0.01<br>-31.1# 66 -0.01<br>-1.0 61 0.00<br>-3.7 55 0.00<br>-9.7 60 0.00<br>1.7 57 -0.01<br>-3.7 58 -0.01<br>-7.2 58 -0.01<br>-7.2 58 -0.01<br>-6.3 57 0.00<br>-3.9 58 -0.01<br>-6.3 57 0.00<br>-3.9 58 -0.01<br>-5.7 55 0.00<br>-2.4 57 0.00<br>-6.5 57 -0.01<br>-7.7 59 -0.01<br>-6.6 56 0.00<br>-4.0 57 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Data File : I:\MS13\DATA\2015 08\19\08191501.D Vial: 16 Operator: WA/NL Acq On : 19 Aug 2015 00:48 Sample : CCV R13081915 25ng Inst : MS13

Misc : S29-08101501/S29-07311501 (8/28)

Quant Time: Aug 19 11:02:25 2015

Quant Method : I:\MS13\METHODS\R13072715.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue Jul 28 09:12:05 2015
Response via : Initial Calibration

DataAcq Meth:TO15.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200%

|                                              | Compound                                                                                                                                        | AvgRF                                                       | CCRF                                                        | %Dev Are                                                | ea% Dev(min)                                                                     |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| 56 IR                                        | Chlorobenzene-d5 (IS3) Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethene    | 1.000                                                       | 1.000                                                       | 0.0                                                     | 60 -0.01                                                                         |
| 57 S                                         |                                                                                                                                                 | 2.318                                                       | 2.278                                                       | 1.7                                                     | 59 -0.01                                                                         |
| 58 T                                         |                                                                                                                                                 | 2.583                                                       | 2.545                                                       | 1.5                                                     | 57 -0.01                                                                         |
| 59 T                                         |                                                                                                                                                 | 1.275                                                       | 1.310                                                       | -2.7                                                    | 60 -0.01                                                                         |
| 60 T                                         |                                                                                                                                                 | 0.737                                                       | 0.757                                                       | -2.7                                                    | 55 -0.01                                                                         |
| 61 T                                         |                                                                                                                                                 | 0.712                                                       | 0.726                                                       | -2.0                                                    | 56 -0.01                                                                         |
| 62 T                                         |                                                                                                                                                 | 1.352                                                       | 1.416                                                       | -4.7                                                    | 60 -0.01                                                                         |
| 63 T                                         |                                                                                                                                                 | 0.542                                                       | 0.527                                                       | 2.8                                                     | 58 -0.01                                                                         |
| 64 T                                         |                                                                                                                                                 | 0.846                                                       | 0.805                                                       | 4.8                                                     | 53 -0.01                                                                         |
| 65 T                                         | Chlorobenzene Ethylbenzene m- & p-Xylenes Bromoform Styrene o-Xylene                                                                            | 1.707                                                       | 1.708                                                       | -0.1                                                    | 55 -0.01                                                                         |
| 66 T                                         |                                                                                                                                                 | 2.836                                                       | 2.962                                                       | -4.4                                                    | 58 -0.01                                                                         |
| 67 T                                         |                                                                                                                                                 | 2.317                                                       | 2.537                                                       | -9.5                                                    | 61 -0.01                                                                         |
| 68 T                                         |                                                                                                                                                 | 0.679                                                       | 0.736                                                       | -8.4                                                    | 55 -0.01                                                                         |
| 69 T                                         |                                                                                                                                                 | 1.740                                                       | 1.846                                                       | -6.1                                                    | 56 -0.01                                                                         |
| 70 T                                         |                                                                                                                                                 | 2.376                                                       | 2.611                                                       | -9.9                                                    | 60 -0.01                                                                         |
| 71 T 72 T 73 S 74 T 75 T 76 T 77 T           | n-Nonane 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene 3-Ethyltoluene                                  | 1.167<br>1.126<br>1.007<br>3.016<br>1.504<br>3.561<br>2.935 | 1.222<br>1.290<br>1.011<br>3.220<br>1.518<br>3.994<br>3.236 | -4.7<br>-14.6<br>-0.4<br>-6.8<br>-0.9<br>-12.2<br>-10.3 | 61 -0.01<br>63 -0.01<br>59 -0.01<br>59 -0.01<br>55 -0.02<br>62 -0.01<br>61 -0.02 |
| 78 T                                         | 4-Ethyltoluene 1,3,5-Trimethylbenzene alpha-Methylstyrene 2-Ethyltoluene 1,2,4-Trimethylbenzene n-Decane                                        | 2.736                                                       | 3.102                                                       | -13.4                                                   | 59 -0.01                                                                         |
| 79 T                                         |                                                                                                                                                 | 2.433                                                       | 2.708                                                       | -11.3                                                   | 60 -0.01                                                                         |
| 80 T                                         |                                                                                                                                                 | 1.361                                                       | 1.421                                                       | -4.4                                                    | 54 -0.01                                                                         |
| 81 T                                         |                                                                                                                                                 | 2.829                                                       | 3.196                                                       | -13.0                                                   | 61 -0.02                                                                         |
| 82 T                                         |                                                                                                                                                 | 2.371                                                       | 2.983                                                       | -25.8                                                   | 66 -0.02                                                                         |
| 83 T                                         |                                                                                                                                                 | 1.301                                                       | 1.474                                                       | -13.3                                                   | 64 -0.01                                                                         |
| 84 T                                         | Benzyl Chloride 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene 4-Isopropyltoluene (p-Cymen 1,2,3-Trimethylbenzene 1,2-Dichlorobenzene | 2.040                                                       | 2.474                                                       | -21.3                                                   | 60 -0.01                                                                         |
| 85 T                                         |                                                                                                                                                 | 1.415                                                       | 1.649                                                       | -16.5                                                   | 58 -0.01                                                                         |
| 86 T                                         |                                                                                                                                                 | 1.450                                                       | 1.657                                                       | -14.3                                                   | 57 -0.02                                                                         |
| 87 T                                         |                                                                                                                                                 | 3.176                                                       | 3.587                                                       | -12.9                                                   | 61 -0.01                                                                         |
| 88 T                                         |                                                                                                                                                 | 2.954                                                       | 3.673                                                       | -24.3                                                   | 66 -0.01                                                                         |
| 89 T                                         |                                                                                                                                                 | 2.456                                                       | 3.121                                                       | -27.1                                                   | 66 -0.02                                                                         |
| 90 T                                         |                                                                                                                                                 | 1.384                                                       | 1.646                                                       | -18.9                                                   | 60 -0.01                                                                         |
| 91 T<br>92 T<br>93 T<br>94 T<br>95 T<br>96 T | <pre>d-Limonene 1,2-Dibromo-3-Chloropropane n-Undecane 1,2,4-Trichlorobenzene Naphthalene n-Dodecane</pre>                                      | 0.876<br>0.563<br>1.335<br>1.133<br>3.297                   | 1.019<br>0.615<br>1.514<br>1.189<br>4.149<br>1.527          | -16.3<br>-9.2<br>-13.4<br>-4.9<br>-25.8<br>-23.0        | 61 -0.02<br>55 -0.01<br>62 -0.01<br>54 -0.02<br>60 -0.02<br>65 -0.02             |
| 97 T                                         | Hexachlorobutadiene Cyclohexanone tert-Butylbenzene n-Butylbenzene                                                                              | 0.704                                                       | 0.718                                                       | -2.0                                                    | 53 -0.02                                                                         |
| 98 T                                         |                                                                                                                                                 | 0.812                                                       | 0.866                                                       | -6.7                                                    | 61 -0.01                                                                         |
| 99 T                                         |                                                                                                                                                 | 2.313                                                       | 2.819                                                       | -21.9                                                   | 65 -0.01                                                                         |
| 100 T                                        |                                                                                                                                                 | 2.434                                                       | 2.907                                                       | -19.4                                                   | 63 -0.02                                                                         |

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

Data File: I:\MS13\DATA\2015 08\20\08201501.D

Acq On : 20 Aug 2015 4:35 Operator: WA/NL

: CCV R13082015 25ng Sample

Misc : S29-08101501/S29-07311501 (8/28)

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 20 07:18:38 2015

Quant Method : I:\MS13\METHODS\R13072715.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update : Tue Jul 28 09:12:05 2015
Response via : Initial Calibration

DataAcq Meth: TO15.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

|              | Compound                                          | AvgRF          |                |              |          | Dev(min)       |
|--------------|---------------------------------------------------|----------------|----------------|--------------|----------|----------------|
| 1 TD         | Dyomoghloyomothano (TC1)                          |                |                | 0.0          |          |                |
| 1 IR<br>2 T  | Bromochloromethane (IS1) Propene                  | 1.000<br>1.407 | 1.000<br>1.261 | 10.4         | 57<br>51 | -0.01<br>0.00  |
| 3 T          | Dichlorodifluoromethane (CF                       | 2.868          | 3.007          | -4.8         | 59       | 0.00           |
| 4 T          | Chloromethane                                     | 1.920          | 2.318          | -20.7        | 71       | -0.01          |
| 5 T          | 1,2-Dichloro-1,1,2,2-tetraf                       | 1.618          | 1.834          | -13.3        | 64       | -0.01          |
| 6 T          | Vinyl Chloride                                    | 2.034          | 2.426          | -19.3        | 68       | 0.00           |
| 7 T          | 1,3-Butadiene                                     | 1.444          | 1.816          | -25.8        | 69       | -0.01          |
| 8 T          | Bromomethane                                      | 1.283          | 1.577          | -22.9        | 70       | -0.01          |
| 9 T          | Chloroethane                                      | 0.989          | 1.034          | -4.6         | 59       | 0.00           |
| 10 T         | Ethanol                                           | 0.880          | 1.001          | -13.7        | 63       | -0.02          |
| 11 T         | Acetonitrile                                      | 2.398          | 2.252          | 6.1          | 57       | -0.02          |
| 12 T         | Acrolein                                          | 0.852          | 0.827          | 2.9          | 58       | -0.01          |
| 13 T         | Acetone                                           | 0.918          | 1.045          | -13.8        | 65       | -0.01          |
| 14 T         | Trichlorofluoromethane                            | 2.568          | 2.587          | -0.7         | 56       | -0.01          |
| 15 T         | 2-Propanol (Isopropanol)                          | 2.682          | 3.146          | -17.3        | 68       | -0.01          |
| 16 T         | Acrylonitrile                                     | 1.626          | 1.742          | -7.1         | 58       | -0.01          |
| 17 T<br>18 T | 1,1-Dichloroethene                                | 1.278          | 1.286          | -0.6         | 56       | 0.00           |
| 18 T<br>19 T | 2-Methyl-2-Propanol (tert-B<br>Methylene Chloride | 2.994<br>1.372 | 3.517<br>1.342 | -17.5<br>2.2 | 64<br>58 | -0.01          |
| 20 T         | 3-Chloro-1-propene (Allyl C                       | 1.755          | 1.702          | 3.0          | 57       | -0.01<br>0.00  |
| 20 T         | Trichlorotrifluoroethane                          | 1.260          | 1.206          | 4.3          | 52       | -0.01          |
| 22 T         | Carbon Disulfide                                  | 5.240          | 5.303          | -1.2         | 59       | -0.01          |
| 23 T         | trans-1,2-Dichloroethene                          | 1.864          | 1.947          | -4.5         | 58       | -0.01          |
| 24 T         | 1,1-Dichloroethane                                | 2.297          | 2.370          | -3.2         | 58       | 0.00           |
| 25 T         | Methyl tert-Butyl Ether                           | 4.076          | 3.958          | 2.9          | 56       | -0.01          |
| 26 T         | Vinyl Acetate                                     | 0.316          | 0.389          | -23.1        | 63       | 0.00           |
| 27 T         | 2-Butanone (MEK)                                  | 0.860          | 0.900          | -4.7         | 57       | -0.01          |
| 28 T         | cis-1,2-Dichloroethene                            | 1.726          | 1.832          | -6.1         | 58       | -0.01          |
| 29 T         | Diisopropyl Ether                                 | 1.239          | 1.447          | -16.8        | 61       | -0.01          |
| 30 T         | Ethyl Acetate                                     | 0.440          | 0.558          | -26.8        | 66       | -0.01          |
| 31 T         | n-Hexane                                          | 2.039          | 2.240          | -9.9         | 63       | 0.00           |
| 32 T         | Chloroform                                        | 2.245          | 2.379          | -6.0         | 60       | -0.01          |
| 33 S         | 1,2-Dichloroethane-d4(SS1)                        | 1.609          | 1.726          | -7.3         | 63       | -0.01          |
| 34 T         | Tetrahydrofuran (THF)                             | 0.836          | 0.864          | -3.3         | 56       | -0.01          |
| 35 T<br>36 T | Ethyl tert-Butyl Ether                            | 1.597          | 1.626          | -1.8         | 55       | -0.01          |
| 36 1         | 1,2-Dichloroethane                                | 1.695          | 1.795          | -5.9         | 59       | -0.01          |
| 37 IR        | 1,4-Difluorobenzene (IS2)                         | 1.000          | 1.000          | 0.0          | 58       | -0.01          |
| 38 T         | 1,1,1-Trichloroethane                             | 0.408          | 0.400          | 2.0          | 55       | -0.01          |
| 39 T         | Isopropyl Acetate                                 | 0.151          | 0.180          | -19.2        | 66       | -0.01          |
| 40 T         | 1-Butanol                                         | 0.219          | 0.289          | -32.0#       | 68       | -0.01          |
| 41 T         | Benzene                                           | 1.018          | 1.023          | -0.5         | 61       | -0.01          |
| 42 T         | Carbon Tetrachloride                              | 0.355          | 0.362          | -2.0         | 55       | 0.00           |
| 43 T         | Cyclohexane                                       | 0.380          | 0.419          | -10.3        | 60       | 0.00           |
| 44 T         | tert-Amyl Methyl Ether                            | 0.769          | 0.757          | 1.6          | 57       |                |
| 45 T         | 1,2-Dichloropropane                               | 0.242          | 0.254          | -5.0         | 59       | -0.01          |
| 46 T         | Bromodichloromethane                              | 0.345          | 0.369          | -7.0         | 59       | -0.01          |
| 47 T         | Trichloroethene                                   | 0.296          | 0.303          | -2.4         | 55       | -0.01          |
| 48 T<br>49 T | 1,4-Dioxane<br>2,2,4-Trimethylpentane (Iso        | 0.206<br>1.009 | 0.221<br>1.063 | -7.3<br>-5.4 | 58<br>59 | 0.00           |
| 50 T         | Methyl Methacrylate                               | 0.106          | 0.111          | -3.4<br>-4.7 | 56       | -0.01<br>-0.01 |
| 50 T         | n-Heptane                                         | 0.108          | 0.257          | -4.7         | 58       | -0.01          |
| 52 T         | cis-1,3-Dichloropropene                           | 0.401          | 0.427          | -6.5         | 58       | -0.01          |
| 53 T         | 4-Methyl-2-pentanone                              | 0.220          | 0.240          | -9.1         | 60       | -0.01          |
| 54 T         | trans-1,3-Dichloropropene                         | 0.365          | 0.390          | -6.8         | 56       | 0.00           |
|              | ,                                                 |                |                |              |          |                |

10A 8/21/15

Data File: I:\MS13\DATA\2015 08\20\08201501.D

Acq On : 20 Aug 2015 4:35 Operator: WA/NL

: CCV R13082015 25ng Sample

: S29-08101501/S29-07311501 (8/28) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 20 07:18:38 2015

Quant Method: I:\MS13\METHODS\R13072715.M

Quant Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)

QLast Update: Tue Jul 28 09:12:05 2015

Response via: Initial Calibration

DataAcq Meth:TO15.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

|                                       | Compound                                                                                         | AvgRF                                     | CCRF                                      | %Dev Area%                                          |                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------|
| 55 T                                  | 1,1,2-Trichloroethane                                                                            | 0.249                                     | 0.256                                     | -2.8 56                                             |                                  |
| 56 II<br>57 S<br>58 T<br>59 T<br>60 T | Toluene-d8 (SS2) Toluene 2-Hexanone Dibromochloromethane                                         | 1.000<br>2.318<br>2.583<br>1.275<br>0.737 | 1.000<br>2.282<br>2.521<br>1.331<br>0.744 | 0.0 60<br>1.6 60<br>2.4 57<br>-4.4 62<br>-0.9 54    | -0.01<br>-0.01<br>-0.01<br>-0.01 |
| 61 T<br>62 T<br>63 T<br>64 T          | 1,2-Dibromoethane n-Butyl Acetate n-Octane Tetrachloroethene                                     | 0.712<br>1.352<br>0.542<br>0.846          | 0.718<br>1.442<br>0.532<br>0.786          | -0.8 56<br>-6.7 62<br>1.8 59<br>7.1 52              | -0.02<br>-0.01<br>-0.01          |
| 65 T<br>66 T<br>67 T<br>68 T          | Chlorobenzene Ethylbenzene m- & p-Xylenes Bromoform                                              | 1.707<br>2.836<br>2.317<br>0.679          | 1.691<br>2.923<br>2.505<br>0.713          | 0.9 55<br>-3.1 58<br>-8.1 60<br>-5.0 54             | -0.02<br>-0.02<br>-0.01          |
| 69 T<br>70 T<br>71 T<br>72 T          | Styrene o-Xylene n-Nonane 1,1,2,2-Tetrachloroethane                                              | 1.740<br>2.376<br>1.167<br>1.126          | 1.802<br>2.574<br>1.233<br>1.273          | -3.6 55<br>-8.3 60<br>-5.7 62<br>-13.1 62           | -0.01<br>-0.02<br>-0.01          |
| 73 S<br>74 T<br>75 T<br>76 T<br>77 T  | Bromofluorobenzene (SS3) Cumene alpha-Pinene n-Propylbenzene 3-Ethyltoluene                      | 1.007<br>3.016<br>1.504<br>3.561<br>2.935 | 0.967<br>3.145<br>1.543<br>3.898<br>3.191 | 4.0 57<br>-4.3 58<br>-2.6 56<br>-9.5 60<br>-8.7 60  | -0.01<br>-0.02<br>-0.01          |
| 77 T<br>78 T<br>79 T<br>80 T<br>81 T  | 4-Ethyltoluene<br>1,3,5-Trimethylbenzene<br>alpha-Methylstyrene<br>2-Ethyltoluene                | 2.935<br>2.736<br>2.433<br>1.361<br>2.829 | 2.981<br>2.631<br>1.388<br>3.099          | -8.7 60<br>-9.0 57<br>-8.1 58<br>-2.0 54<br>-9.5 59 | -0.02<br>-0.01<br>-0.02          |
| 82 T<br>83 T<br>84 T<br>85 T          | 1,2,4-Trimethylbenzene n-Decane Benzyl Chloride 1,3-Dichlorobenzene                              | 2.371<br>1.301<br>2.040<br>1.415          | 2.938<br>1.455<br>2.453<br>1.588          | -23.9 65<br>-11.8 64<br>-20.2 60<br>-12.2 56        | -0.02<br>-0.02<br>-0.01          |
| 86 T<br>87 T<br>88 T<br>89 T          | 1,4-Dichlorobenzene<br>sec-Butylbenzene<br>4-Isopropyltoluene (p-Cymen<br>1,2,3-Trimethylbenzene | 1.450<br>3.176<br>2.954                   | 1.597<br>3.498<br>3.596<br>3.074          | -10.1 55<br>-10.1 60<br>-21.7 65<br>-25.2 66        | -0.02<br>-0.01<br>-0.02          |
| 90 T<br>91 T<br>92 T<br>93 T          | <pre>1,2-Dichlorobenzene d-Limonene 1,2-Dibromo-3-Chloropropane n-Undecane</pre>                 | 1.384<br>0.876<br>0.563<br>1.335          | 1.599<br>1.025<br>0.583<br>1.490          | -15.5 58<br>-17.0 62<br>-3.6 52<br>-11.6 62         | -0.02<br>-0.01                   |
| 94 T<br>95 T<br>96 T<br>97 T          | 1,2,4-Trichlorobenzene<br>Naphthalene<br>n-Dodecane<br>Hexachlorobutadiene                       | 1.133<br>3.297<br>1.241<br>0.704          | 1.131<br>3.997<br>1.507<br>0.683          | 3.0 50                                              | -0.02<br>-0.02<br>-0.02          |
| 98 T<br>99 T<br>100 T                 | Cyclohexanone tert-Butylbenzene n-Butylbenzene                                                   | 0.812<br>2.313<br>2.434                   | 2.763<br>2.824                            | -19.5 64<br>-16.0 62                                | -0.01<br>-0.02                   |

(#) = Out of Range SPCC's out = 0 CCC's out = 0

# RESULTS OF ANALYSIS Page 1 of 1

Client: Landau Associates, Inc. Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

## Vinyl Chloride

Test Code: EPA TO-15 SIM

Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19 Date(s) Collected: 8/7/15
Analyst: Wida Ang Date Received: 8/13/15
Sample Type: 6.0 L Summa Canister(s) Date Analyzed: 8/20/15

Test Notes:

|                  | I             | njection | Canister |        |             |             |        |        |        |           |
|------------------|---------------|----------|----------|--------|-------------|-------------|--------|--------|--------|-----------|
| Client Sample ID | ALS Sample ID | Volume   | Dilution | Result | MRL         | MDL         | Result | MRL    | MDL    | Data      |
|                  | ]             | Liter(s) | Factor   | μg/m³  | $\mu g/m^3$ | $\mu g/m^3$ | ppbV   | ppbV   | ppbV   | Qualifier |
| CL-LFG-P-12      | P1503343-002  | 0.025    | 1.54     | ND     | 1.5         | 0.47        | ND     | 0.60   | 0.18   |           |
| CL-LFG-P-3       | P1503343-004  | 0.050    | 1.51     | 0.67   | 0.76        | 0.23        | 0.26   | 0.30   | 0.090  | J         |
| Method Blank     | P150820-MB    | 1.00     | 1.00     | ND     | 0.025       | 0.0076      | ND     | 0.0098 | 0.0030 |           |

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The analyte was positively identified below the laboratory method reporting limit; the associated numerical value is considered estimated.

#### ALS ENVIRONMENTAL

### SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client: Landau Associates, Inc. Client Project ID: Cornwall LF / 001037.030.033

ALS Project ID: P1503343

Test Code: EPA TO-15 SIM

Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19 Date(s) Collected: 8/7/15

Analyst: Wida Ang Date(s) Received: 8/13/15

Sample Type: 6.0 L Summa Canister(s) Date(s) Analyzed: 8/20/15

Test Notes:

|                    |               | 1,2-Dichloroethane-d4 | Toluene-d8 | Bromofluorobenzene |            |              |
|--------------------|---------------|-----------------------|------------|--------------------|------------|--------------|
| Client Sample ID   | ALS Sample ID | 0/0                   | %          | %                  | Acceptance | Data         |
|                    |               | Recovered             | Recovered  | Recovered          | Limits     | Qualifier    |
| Method Blank       | P150820-MB    | 105                   | 104        | 99                 | 70-130     |              |
| Lab Control Sample | P150820-LCS   | 104                   | 99         | 107                | 70-130     |              |
| CL-LFG-P-12        | P1503343-002  | 105                   | 110        | 42                 | 70-130     | $\mathbf{S}$ |
| CL-LFG-P-3         | P1503343-004  | 105                   | 106        | 106                | 70-130     |              |

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery. S = Surrogate recovery not within specified limits.

#### **ALS ENVIRONMENTAL**

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Landau Associates, Inc.

Client Sample ID: Lab Control Sample

ALS Project ID: P1503343

Client Project ID: Cornwall LF / 001037.030.033

ALS Sample ID: P150820-LCS

Test Code: EPA TO-15 SIM Date Collected: NA
Instrument ID: Tekmar AUTOCAN/Agilent 5973N/HP6890A/MS19 Date Received: NA
Analyst: Wida Ang Date Analyzed: 8/20/15

Sample Type: 6.0 L Summa Canister Volume(s) Analyzed: 0.125 Liter(s)

Test Notes:

|         |                |              |             |            | ALS        |           |
|---------|----------------|--------------|-------------|------------|------------|-----------|
| CAS#    | Compound       | Spike Amount | Result      | % Recovery | Acceptance | Data      |
|         |                | $\mu g/m^3$  | $\mu g/m^3$ |            | Limits     | Qualifier |
| 75-01-4 | Vinyl Chloride | 4.00         | 3.39        | 85         | 64-118     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Method Path: I:\MS19\METHODS\
Method File: S19071415.M
Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
Last Update: Wed Jul 15 07:17:15 2015
Response Via: Initial Calibration

| 0K =07141514.D      |
|---------------------|
| 20K =07141513.D 50K |
| 10K =07141512.D 2   |
|                     |

| 5000=07141511.D        |                       | 107 7/15/15                              |           |
|------------------------|-----------------------|------------------------------------------|-----------|
| 7141510.D              | %RSD                  |                                          | 5.2       |
| 2000=0                 | Avg                   | 00000000000000000000000000000000000000   | 5.23      |
| .509.D                 | 50K                   |                                          | 90.9      |
| =07141                 | 20K                   | 2022                                     | 5.83      |
| 200                    | 10K                   |                                          | .05       |
| 1516.D                 | 5000                  |                                          | .91       |
| =0714                  | 2000                  | 100m04000044044m4444                     | 5.00      |
| D 100                  | 500                   |                                          | 4.78      |
| 41507.<br>41514.       | 100                   |                                          | 5.70      |
| 0 =071<br>0K =071      | 50                    | 1                                        | 3.91      |
| о.<br>С С              | 20                    | 10000000000   mg                         | 4.10      |
| 141506<br>141513       | 10                    |                                          | 99        |
| 20 =071<br>20K =071    | 1<br>1<br>1<br>1<br>1 | ı α· · · · · · · · · · · · · · · · · · · | ō.        |
| 7141505.D<br>7141512.D | Compound              | - A-4                                    | m,p-Xyler |
| =071, $K = 071$        | U 1<br>1<br>1         |                                          |           |
| 10                     | 1                     |                                          |           |

Method

Page:

#### Evaluate Continuing Calibration Report

Data File: I:\MS19\DATA\2015 08\20\08201503.D

Acq On : 20 Aug 2015 4:30 Sample : CCV S19082015 500pg Operator: WA

Misc : S29-06231506/S29-07311512 (8/28) ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 20 08:39:28 2015

Quant Method: I:\MS19\METHODS\S19071415.M
Quant Title: EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS)
QLast Update: Wed Jul 15 07:17:15 2015
Response via: Initial Calibration

DataAcq Meth:T015SIM.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 200% WH 8/20/15

|                                                                                                              | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AvgRF                                                                                                                                                                                                       | CCRF                                                                                                                                                                                               | %Dev Area% Dev(min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 I 2 TT 3 TT 5 TT 7 TT 8 9 TT 12 TT 13 TT 14 TT 15 TT 18 19 20 TT 18 19 21 TT 22 TT 22 TT 24 TT             | Bromochloromethane (IS1) Dichlorodifluoromethane (CF Chloromethane 1,2-Dichloro,1,1,2,2-tetrac Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Acrolein Acetone Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride Trichlorotrifluoroethane trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert-Butyl Ether cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane-d4 (SS1) 1,2-Dichloroethane 1,1,1-Trichloroethane Benzene Carbon Tetrachloride | 1.000<br>2.848<br>0.698<br>3.241<br>2.695<br>1.640<br>1.109<br>0.786<br>0.750<br>2.228<br>1.138<br>1.251<br>1.119<br>1.226<br>2.097<br>3.581<br>1.276<br>2.363<br>1.790<br>1.653<br>2.080<br>4.855<br>1.849 | 1.000<br>2.674<br>0.672<br>2.690<br>2.407<br>1.670<br>1.026<br>0.789<br>0.789<br>0.831<br>2.051<br>1.077<br>1.126<br>1.064<br>1.148<br>2.022<br>3.194<br>1.174<br>2.065<br>1.615<br>1.615<br>1.616 | 0.0 123 0.00 6.1 115 0.00 3.7 115 0.01 17.0 102 0.01 10.7 109 0.01 -1.8 132 0.02 7.5 118 0.01 -0.4 125 0.01 8.7 126 0.01 -10.8 153 0.01 7.9 116 0.00 5.4 120 0.00 10.0 118 0.00 4.9 124 0.00 6.4 124 0.00 3.6 120 0.00 10.8 114 0.00 8.0 116 0.00 12.6 114 0.00 -3.4 123 0.00 2.3 120 0.00 8.5 116 0.00 4.3 126 0.00 12.5 116 0.00                                                                                                                                                                                                                     |
| 25 I<br>26 T<br>27 T<br>28 T<br>29 T<br>30 T<br>31 T<br>32 T<br>33 S<br>34 T<br>35 T<br>36 T<br>37 T         | 1,4-Difluorobenzene (IS2) 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,4-Dioxane cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Toluene-d8 (SS2) Toluene Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene                                                                                                                                                                                                             | 1.000<br>0.219<br>0.327<br>0.274<br>0.190<br>0.349<br>0.311<br>0.193<br>0.924<br>0.990<br>0.246<br>0.250<br>0.275                                                                                           | 1.000<br>0.209<br>0.297<br>0.244<br>0.165<br>0.307<br>0.273<br>0.175<br>0.918<br>0.850<br>0.223<br>0.223<br>0.254                                                                                  | 0.0 124 0.00 4.6 123 0.00 9.2 120 0.00 10.9 120 0.00 13.2 120 0.01 12.0 120 0.00 9.3 119 0.00 0.6 124 0.00 14.1 119 0.00 9.3 124 0.00 12.0 119 0.00 7.6 128 0.00                                                                                                                                                                                                                                                                                                                                                                                       |
| 38 I<br>39 T<br>40 T<br>41 T<br>42 T<br>43 T<br>44 T<br>45 S<br>46 T<br>47 T<br>48 T<br>50 T<br>51 T<br>52 T | Chlorobenzene-d5 (IS3) Chlorobenzene Ethylbenzene m,p-Xylene Styrene o-Xylene 1,1,2,2-Tetrachloroethane Bromofluorobenzene (SS3) 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Naphthalene                                                                                                                                                            | 1.000<br>3.858<br>6.446<br>5.237<br>3.594<br>2.632<br>2.466<br>2.098<br>5.437<br>5.785<br>3.278<br>3.294<br>3.261<br>0.772<br>1.918<br>7.808                                                                | 1.000<br>3.337<br>5.451<br>4.306<br>2.985<br>2.214<br>2.178<br>2.263<br>4.648<br>4.645<br>2.725<br>2.733<br>2.684<br>0.840<br>1.571<br>5.489                                                       | 0.0       129       0.00         13.5       120       0.00         15.4       120       0.00         17.8       116       0.00         16.9       119       0.00         15.9       118       0.00         11.7       120       0.00         -7.9       144       0.00         14.5       119       0.00         19.7       118       0.00         16.9       122       0.00         17.0       123       0.00         17.7       125       0.00         -8.8       140       0.00         18.1       127       0.00         29.7       110       0.00 |

#### Evaluate Continuing Calibration Report

Data File: I:\MS19\DATA\2015 08\20\08201503.D

Acq On : 20 Aug 2015 4:30 Operator: WA

Sample : CCV S19082015 500pg

: S29-06231506/S29-07311512 (8/28) Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Aug 20 08:39:28 2015

Quant Method: I:\MS19\METHODS\S19071415.M

Quant Title : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) QLast Update : Wed Jul 15 07:17:15 2015

Response via: Initial Calibration

DataAcq Meth:TO15SIM.M

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 200%

| Compound                 | AvgRF | CCRF  | %Dev Area% Dev(min) |
|--------------------------|-------|-------|---------------------|
| 54 T Hexachlorobutadiene | 1.182 | 1.103 | 6.7 144 0.00        |
|                          |       |       |                     |

(#) = Out of Range SPCC's out = 0 CCC's out = 0

### **Landfill Gas Emissions**

#### Table A-4 **Landfill Gas Emissions Cornwall Avenue Landfill** Bellingham, Washington

|                                                 | Averaging       | ASIL             | SQER<br>(lb/averaging | De Minimis<br>(lb/averaging | WAC Regulatory<br>Action (Report/ | Emissions Rate              |                             | Breathing Zone- Maximum            |
|-------------------------------------------------|-----------------|------------------|-----------------------|-----------------------------|-----------------------------------|-----------------------------|-----------------------------|------------------------------------|
|                                                 | Period          | (μg/m3)          | period)               | period)                     | Model?)                           | Maximum <sup>a</sup>        | Average <sup>b</sup>        | Ambient Concentration <sup>c</sup> |
| Chemical                                        |                 |                  | WAC 173-460           | TAPs                        |                                   | (lb/day)                    | (lb/year)                   | (μg/m³)                            |
| Propene  Dishlaradifluoromethana (CCC 13)       | 24-hr           | 3000             | 394                   | 19.7                        | no                                | 5.44E-04                    | 3.86E-02                    | 4.88E-02                           |
| Dichlorodifluoromethane (CFC 12) Chloromethane  | 24 br           | 90               | 11.0                  | 0.501                       | not regulated                     | 2.26E-05                    | 2.25E-03                    | 2.03E-03                           |
| 1,2-Dichloro-1,1,2,2-                           | 24-hr           | 90               | 11.8                  | 0.591                       | no                                | 6.28E-06                    | 9.69E-04                    | 5.63E-04                           |
| tetrafluoroethane (CFC 114)                     |                 |                  |                       |                             | not regulated                     | 1.84E-04                    | 1.17E-02                    | 1.65E-02                           |
| 1,3-Butadiene                                   | year            | 0.00588          | 1.13                  | 0.0564                      | no                                | 9.21E-06                    | 1.40E-03                    | 8.26E-04                           |
| Bromomethane                                    | 24-hr           | 5                | 0.657                 | 0.0629                      | no                                | 7.96E-06                    | 1.23E-03                    | 7.13E-04                           |
| Chloroethane                                    | 24-hr           | 30000            | 3940                  | 197                         | no                                | 7.12E-06                    | 1.08E-03                    | 6.38E-04                           |
| Ethanol<br>Acetonitrile                         |                 | 60               | 11500                 | 576                         | not regulated                     | 3.60E-04<br>7.54E-06        | 2.69E-02<br><b>1.18E-03</b> | 3.23E-02<br>6.76E-04               |
| Acrolein                                        | year<br>24-hr   | 0.06             | 0.00789               | 0.000394                    | no<br>no                          | 7.54E-06<br>7.12E-06        | 1.13E-03                    | 6.38E-04                           |
| Acetone                                         | 24              | 0.00             | 0.00703               | 0.000334                    | not regulated                     | 8.38E-05                    | 1.29E-02                    | 7.51E-03                           |
| Trichlorofluoromethane                          |                 |                  |                       |                             | not regulated                     | 7.12E-06                    | 1.11E-03                    | 6.38E-04                           |
| 2-Propanol (Isopropyl Alcohol)                  | 1-hr            | 3200             | 7.01                  | 0.35                        | no                                | 2.35E-05                    | 3.54E-03                    | 2.10E-03                           |
| Acrylonitrile                                   | year            | 0.00345          | 0.662                 | 0.0331                      | no                                | 7.12E-06                    | 1.08E-03                    | 6.38E-04                           |
| 1,1-Dichloroethene                              | 24-hr           | 200              | 26.3                  | 1.31                        | no                                | 7.12E-06                    | 1.08E-03                    | 6.38E-04                           |
| Methylene Chloride                              | year            | 1                | 192                   | 9.59                        | no                                | 7.12E-06                    | 1.09E-03                    | 6.38E-04                           |
| 3-Chloro-1-propene (Allyl Chloride)             | year            | 0.167            | 32                    | 1.6                         | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Trichlorotrifluoroethane<br>Carbon Disulfide    | 24.5            | 200              | 405                   | 5.26                        | not regulated                     | 7.12E-06                    | 1.09E-03                    | 6.38E-04                           |
| trans-1,2-Dichloroethene                        | 24-hr           | 800              | 105                   | 5.26                        | no                                | 1.88E-05                    | 3.04E-03                    | 1.69E-03                           |
| 1,1-Dichloroethane                              | year            | 0.625            | 120                   | 6                           | not regulated<br>no               | 7.96E-06<br>6.70E-06        | 1.23E-03<br>1.03E-03        | 7.13E-04<br>6.01E-04               |
| Methyl tert-Butyl Ether                         | year            | 3.85             | 739                   | 36.9                        | no                                | 7.12E-06                    | 1.03E-03<br>1.08E-03        | 6.38E-04                           |
| Vinyl Acetate                                   | 24-hr           | 200              | 26.3                  | 1.31                        | no                                | 2.72E-05                    | 4.19E-03                    | 2.44E-03                           |
| 2-Butanone (MEK)                                | 24-hr           | 5000             | 657                   | 32.9                        | no                                | 1.76E-05                    | 2.32E-03                    | 1.58E-03                           |
| cis-1,2-Dichloroethene                          |                 |                  |                       |                             | not regulated                     | 1.05E-05                    | 1.44E-03                    | 9.39E-04                           |
| Ethyl Acetate                                   |                 |                  |                       |                             | not regulated                     | 2.55E-05                    | 2.83E-03                    | 2.29E-03                           |
| n-Hexane                                        | 24-hr           | 700              | 92                    | 4.6                         | no                                | 2.30E-03                    | 1.26E-01                    | 2.07E-01                           |
| Chloroform                                      | year            | 0.0435           | 8.35                  | 0.417                       | no                                | 7.12E-06                    | 1.25E-03                    | 6.38E-04                           |
| Tetrahydrofuran (THF)                           |                 |                  |                       |                             | not regulated                     | 1.17E-04                    | 7.77E-03                    | 1.05E-02                           |
| 1,2-Dichloroethane                              | year            | 0.0385           | 7.39                  | 0.369                       | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| 1,1,1-Trichloroethane Benzene                   | 24-hr           | 1000             | 131                   | 6.57                        | no                                | 7.12E-06                    | 1.08E-03                    | 6.38E-04                           |
| Carbon Tetrachloride                            | year<br>year    | 0.0345<br>0.0238 | 6.62<br>4.57          | 0.331<br>0.228              | no<br>no                          | 5.03E-05<br>6.28E-06        | 5.63E-03<br>9.68E-04        | 4.51E-03<br>5.63E-04               |
| Cyclohexane                                     | 24-hr           | 6000             | 789                   | 39.4                        | no                                | 3.56E-04                    | 3.36E-02                    | 3.19E-02                           |
| 1,2-Dichloropropane                             | year            | 0.1              | 19.2                  | 0.959                       | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Bromodichloromethane                            | year            | 0.027            | 5.18                  | 0.259                       | no                                | 6.28E-06                    | 9.62E-04                    | 5.63E-04                           |
| Trichloroethene                                 | year            | 0.5              | 95.9                  | 4.8                         | no                                | 5.86E-06                    | 9.09E-04                    | 5.26E-04                           |
| 1,4-Dioxane                                     | year            | 0.13             | 24.9                  | 1.25                        | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Methyl Methacrylate                             | 24-hr           | 700              | 92                    | 4.6                         | no                                | 1.30E-05                    | 1.99E-03                    | 1.16E-03                           |
| n-Heptane                                       |                 |                  |                       |                             | not regulated                     | 8.38E-04                    | 5.64E-02                    | 7.51E-02                           |
| cis-1,3-Dichloropropene                         | year            | 0.0625           | 12                    | 0.6                         | no                                | 5.86E-06                    | 8.95E-04                    | 5.26E-04                           |
| 4-Methyl-2-pentanone                            | 24-hr           | 3000             | 394                   | 19.7                        | no                                | 6.70E-06                    | 1.08E-03                    | 6.01E-04                           |
| trans-1,3-Dichloropropene 1,1,2-Trichloroethane | voor            | 0.0625           | 12                    | 0.6                         | not regulated                     | 6.70E-06<br>6.70E-06        | 1.03E-03<br>1.03E-03        | 6.01E-04<br>6.01E-04               |
| Toluene                                         | year<br>24-hr   | 5000             | 657                   | 32.9                        | no<br>no                          | 1.38E-04                    | 2.12E-02                    | 1.24E-02                           |
| 2-Hexanone                                      | 24              | 3000             | 037                   | 32.3                        | not regulated                     | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Dibromochloromethane                            | year            | 0.037            | 7.1                   | 0.355                       | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| 1,2-Dibromoethane                               | year            | 0.0141           | 2.71                  | 0.135                       | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| n-Butyl Acetate                                 |                 |                  |                       |                             | not regulated                     | 6.70E-06                    | 1.26E-03                    | 6.01E-04                           |
| n-Octane                                        |                 |                  |                       |                             | not regulated                     | 9.21E-05                    | 1.08E-02                    | 8.26E-03                           |
| Tetrachloroethene                               | year            | 0.169            | 32.4                  | 1.62                        | no                                | 5.86E-06                    | 8.95E-04                    | 5.26E-04                           |
| Chlorobenzene                                   | 24-hr           | 1000             | 131                   | 6.57                        | no                                | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Ethylbenzene<br>m n Yvlanas                     | year            | 0.4              | 76.8                  | 3.84                        | no                                | 2.30E-05                    | 3.76E-03                    | 2.07E-03                           |
| m,p-Xylenes<br>Bromoform                        | ,,,,,,,,        | 0.000            | 174                   | 0 77                        | not regulated                     | 4.61E-05                    | 7.29E-03                    | 4.13E-03                           |
| Styrene                                         | year<br>24-hr   | 0.909<br>900     | 174<br>118            | 8.72<br>5.91                | no<br>no                          | 6.28E-06<br><b>6.28E-06</b> | <b>9.62E-04</b><br>1.10E-03 | 5.63E-04<br>5.63E-04               |
| o-Xylene                                        | 24-111<br>24-hr | 221              | 29                    | 1.45                        | no                                | 2.14E-05                    | 3.95E-03                    | 1.91E-03                           |
| n-Nonane                                        |                 |                  |                       | ]                           | not regulated                     | 6.70E-05                    | 4.66E-03                    | 6.01E-03                           |
| 1,1,2,2-Tetrachloroethane                       | year            | 0.0172           | 3.3                   | 0.165                       | no                                | 6.28E-06                    | 9.62E-04                    | 5.63E-04                           |
| Cumene                                          | 24-hr           | 400              | 52.6                  | 2.63                        | no                                | 9.63E-05                    | 1.10E-02                    | 8.64E-03                           |
| alpha-Pinene                                    |                 |                  |                       |                             | not regulated                     | 8.38E-04                    | 4.40E-02                    | 7.51E-02                           |
| n-Propylbenzene                                 |                 |                  |                       |                             | not regulated                     | 1.13E-04                    | 7.87E-03                    | 1.01E-02                           |
| 4-Ethyltoluene                                  |                 |                  |                       |                             | not regulated                     | 6.70E-06                    | 1.14E-03                    | 6.01E-04                           |
| 1,3,5-Trimethylbenzene                          |                 |                  |                       |                             | not regulated                     | 7.96E-06                    | 1.54E-03                    | 7.13E-04                           |
| 1,2,4-Trimethylbenzene Benzyl Chloride          | ,               | 0.0204           | 2.04                  | 0.400                       | not regulated                     | 1.63E-05                    | 3.00E-03                    | 1.46E-03                           |
| 1,3-Dichlorobenzene                             | year            | 0.0204           | 3.91                  | 0.196                       | no<br>not regulated               | 4.61E-06<br>6.28E-06        | <b>7.01E-04</b><br>9.95E-04 | 4.13E-04<br>5.63E-04               |
| 1,4-Dichlorobenzene                             | year            | 0.0909           | 17.4                  | 0.872                       | not regulated<br>no               | 6.28E-06<br>1.34E-05        | 9.95E-04<br><b>1.20E-03</b> | 5.63E-04<br>1.20E-03               |
| 1,2-Dichlorobenzene                             | year            | 0.0303           | ±7. <del>7</del>      | 0.072                       | not regulated                     | 6.28E-06                    | 9.62E-04                    | 5.63E-04                           |
| d-Limonene                                      |                 |                  |                       |                             | not regulated                     | 6.28E-05                    | 3.97E-03                    | 5.63E-03                           |
| 1,2-Dibromo-3-chloropropane                     | year            | 0.000526         | 0.101                 | 0.00505                     | no                                | 4.10E-06                    | 6.33E-04                    | 3.68E-04                           |
| 1,2,4-Trichlorobenzene                          |                 |                  |                       |                             | not regulated                     | 6.70E-06                    | 1.03E-03                    | 6.01E-04                           |
| Naphthalene                                     | year            | 0.0294           | 5.64                  | 0.282                       | no                                | 7.54E-06                    | 1.21E-03                    | 6.76E-04                           |
| Hexachlorobutadiene                             | year            | 0.0455           | 8.73                  | 0.437                       | no                                | 5.86E-06                    | 8.95E-04                    | 5.3E-04                            |
| Vinyl Chloride                                  | year            | 0.0128           | 2.46                  | 0.123                       | no                                | 7.12E-05                    | 5.50E-03                    | 6.4E-03                            |

<sup>(</sup>a) Maximum emissions rate calculated by applying the maximum detected concentration (each individual compound) to the entire LFG flow rate.

Emissions rates shown in  $\mbox{\bf bold}$  for comparison to applicable averaging period.

ASIL = Ambient Source Impact Level CAS = Chemical Abstracts Service

lb = pound

 $\mu g/m^3 = micrograms per cubic meter$ SQER = Small Quantity Emissions Rate TAPs = Toxic Air Pollutants

WAC = Washington Administrative Code

<sup>(</sup>b) Average annual emissions rate calcuated using average detected concentrations for each compound  $% \left( x\right) =\left( x\right) +\left( x\right)$ 

<sup>(</sup>c) Maximum estimated breathing zone concentration provided for comparison to  $\ensuremath{\mathsf{ASILs}}$ 

## **Landfill Gas Cleanup Levels**

# Table A-5 Development of MTCA Method B Cleanup Levels for Landfill Gas Cornwall Avenue Landfill Bellingham, Washington

|                                             | Air Method B Non-Cancer | Air Method B Cancer | RfDi Inhalation Reference<br>Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CPFi Inhalation Cancer Potenc |
|---------------------------------------------|-------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Chemical Parameter                          | (μg/m³)                 | (μg/m³)             | (mg/kg-day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (kg-day/mg)                   |
| Propene                                     | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Dichlorodifluoromethane (CFC 12)            | 4.57E+01                |                     | 2.86E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Chloromethane<br>1,2-Dichloro-1,1,2,2-      | 4.11E+01                |                     | 2.57E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| tetrafluoroethane (CFC 114)                 | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1.3-Butadiene                               | 9.14E-01                | 8.33E-02            | 5.71E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.50E-01                      |
| Bromomethane                                | 2.29E+00                | 0.002 02            | 1.43E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.552 52                      |
| Chloroethane                                | 4.57E+03                |                     | 2.86E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Ethanol                                     | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Acetonitrile                                | 2.74E+01                |                     | 1.71E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Acrolein                                    | 9.14E-03                |                     | 5.71E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Acetone                                     | 1.42E+04                |                     | 8.86E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Trichlorofluoromethane                      | 3.20E+02                |                     | 2.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 2-Propanol (Isopropyl Alcohol)              | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Acrylonitrile                               | 9.14E-01                | 3.68E-02            | 5.71E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.38E-01                      |
| 1,1-Dichloroethene                          | 9.14E+01                |                     | 5.71E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Methylene Chloride                          | 2.74E+02                | 2.50E+02            | 1.71E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.50E-01                      |
| 3-Chloro-1-propene (Allyl Chloride)         | 4.57E-01                | 4.17E-01            | 2.86E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10E-02                      |
| Trichlorotrifluoroethane                    | not listed              |                     | 2 005 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                             |
| Carbon Disulfide                            | 3.20E+02                |                     | 2.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                             |
| trans-1,2-Dichloroethene 1.1-Dichloroethane | not listed              | 1.56E+00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.60E-03                      |
| ,                                           | 1.37E+03                | 9.62E+00            | 8.57E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.10E-04                      |
| Methyl tert-Butyl Ether  Vinyl Acetate      | 9.14E+01                | J.U2ETUU            | 5.71E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1UE-U4                      |
| 2-Butanone (MEK)                            | 2.29E+03                |                     | 1.43E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                             |
| cis-1,2-Dichloroethene                      | not listed              |                     | 1.432100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Ethyl Acetate                               | 3.20E+01                |                     | 2.00E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| n-Hexane                                    | 3.20E+02                |                     | 2.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Chloroform                                  | 4.48E+01                | 1.09E-01            | 2.80E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.05E-02                      |
| Tetrahydrofuran (THF)                       | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,2-Dichloroethane                          | 3.20E+00                | 9.62E-02            | 2.00E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.10E-02                      |
| 1,1,1-Trichloroethane                       | 2.29E+03                |                     | 1.43E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Benzene                                     | 1.37E+01                | 3.21E-01            | 8.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.73E-02                      |
| Carbon Tetrachloride                        | 4.57E+01                | 4.17E-01            | 2.86E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10E-01                      |
| Cyclohexane                                 | 2.74E+03                |                     | 1.71E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 1,2-Dichloropropane                         | 1.83E+00                | 2.50E-01            | 1.14E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.50E-02                      |
| Bromodichloromethane                        |                         | 6.76E-02            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.30E-01                      |
| Trichloroethene                             | 9.14E-01                | 3.70E-01            | 5.71E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Guidance                      |
| 1,4-Dioxane                                 | 1.37E+01                | 5.00E-01            | 8.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.75E-02                      |
| Methyl Methacrylate                         | 3.20E+02                |                     | 2.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| n-Heptane                                   | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| cis-1,3-Dichloropropene                     | 9.14E+00                | 6.25E-01            | 5.71E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.40E-02                      |
| 4-Methyl-2-pentanone                        | 1.37E+03                |                     | 8.57E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| trans-1,3-Dichloropropene                   | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,1,2-Trichloroethane                       | 9.14E-02                | 1.56E-01            | 5.71E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.60E-02                      |
| Toluene                                     | 2.29E+03                |                     | 1.43E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 2-Hexanone                                  | not listed              | 0.205.02            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.455.03                      |
| Dibromochloromethane                        | 4.115.00                | 9.26E-02            | 2.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.45E-02                      |
| 1,2-Dibromoethane                           | 4.11E+00<br>not listed  | 4.17E-03            | 2.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10E+00                      |
| n-Butyl Acetate<br>n-Octane                 | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Tetrachloroethene                           | 1.83E+01                | 9.62E+00            | 1.14E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.10E-04                      |
| Chlorobenzene                               | 2.29E+01                | J.UZLTUU            | 1.14E-02<br>1.43E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J.10L-04                      |
| Ethylbenzene                                | 4.57E+02                |                     | 2.86E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| m,p-Xylenes                                 | 4.57E+01                |                     | 2.86E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Bromoform                                   |                         | 2.27E+00            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.85E-01                      |
| Styrene                                     | 4.57E+02                |                     | 2.86E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| o-Xylene                                    | 4.57E+01                |                     | 2.86E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                             |
| n-Nonane                                    | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,1,2,2-Tetrachloroethane                   |                         | 4.31E-02            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.30E-01                      |
| Cumene                                      | 1.83E+02                |                     | 1.14E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| alpha-Pinene                                | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| n-Propylbenzene                             | 4.57E+02                |                     | 2.86E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 4-Ethyltoluene                              | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,3,5-Trimethylbenzene                      | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,2,4-Trimethylbenzene                      | 3.20E+00                |                     | 2.00E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| Benzyl Chloride                             | 4.57E-01                | 5.10E-02            | 2.86E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.72E-01                      |
| 1,3-Dichlorobenzene                         | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,4-Dichlorobenzene                         | 3.66E+02                | 2.27E-01            | 2.29E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.85E-02                      |
| 1,2-Dichlorobenzene                         | 9.14E+01                |                     | 5.71E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                             |
| d-Limonene                                  | not listed              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 1,2-Dibromo-3-chloropropane                 | 9.14E-02                | 4.17E-04            | 5.71E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.10E+01                      |
| 1,2,4-Trichlorobenzene                      | 9.14E-01                | 7.255.00            | 5.71E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.405.04                      |
| Naphthalene  Hexachlorobutadiene            | 1.37E+00                | 7.35E-02            | 8.57E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.19E-01<br>7.70E-02          |
|                                             |                         | 1.14E-01            | T. Control of the Con | . /./UE-UZ                    |

#### Table A-5

### Development of MTCA Method B Cleanup Levels for Landfill Gas Cornwall Avenue Landfill Bellingham, Washington

| Average Body Weight (ABW) Ecology Default, non-cancer (kg)      | 16       |
|-----------------------------------------------------------------|----------|
| Unit Conversion Factor (1,000 ug/mg)                            | 1000     |
| Breathing Rate (BR) Ecology Default (m3/day)                    | 10       |
| Inhalation Absorption Fraction (ABS) Ecology Default (unitless) | 1.0      |
| Hazard Quotient (unitless)                                      | 1        |
| Averaging Time (years)                                          | 6        |
| Exposure Duration (years)                                       | 6        |
| Exposure Frequency (unitless) (a)                               | 1.00     |
| ation 750-2 (Method B Air Cleanup Levels (cancer)               |          |
| Maximum Cancer Risk Level                                       | 1.00E-06 |
| ABW (kg)                                                        | 70       |
| Averaging Time (years)                                          | 75       |
| Unit Conversion Factor (1,000 ug/mg)                            | 1000     |
| Breathing Rate (BR) Ecology Default (m3/day)                    | 20       |
| Inhalation Absorption Fraction (ABS) Ecology Default (unitless) | 1.0      |
| Exposure Duration (years)                                       | 30       |
|                                                                 |          |

[Equation 750-1]

Non-Cancer

Air cleanup level (ug/m<sup>3</sup>) =  $\frac{RfD \times ABW \times UCF \times}{HQ \times AT}$  $BR \times ABS \times ED \times EF$ 

[Equation 750-2]

Carcinogens

Air cleanup level (ug/m<sup>3</sup>) =  $\frac{RISK \times ABW \times AT \times UCF}{CPF \times BR \times ABS \times ED \times EF}$ 

ABS = inhalation absorption fraction

ABW = average body weight

BR = breathing rate

CPFi = Carcinogenic Potency Factor

m3/day = cubic meters per day

Ecology = Washington State Department of Ecology EPA = US Environmental Protection Agency kg = kilogram

kg-day/mg = kilograms per day per milligram

ug/m3 = micrograms per cubic meter

ug/mg = micrograms per milligram

mg/kg-day = milligrams per kilogram per day

RfDi = Reference Dose

# Table A-6 Landfill Gas Emissions Comparison to Cleanup Levels Cornwall Avenue Landfill Bellingham, Washington

|                                                 |                      | <u> </u>                |                            |                               |
|-------------------------------------------------|----------------------|-------------------------|----------------------------|-------------------------------|
|                                                 | EMISSION RATE        |                         |                            |                               |
|                                                 | EIVIISSION KATE      | Breathing Zone- Maximum |                            |                               |
|                                                 |                      | Ambient Concentration   |                            |                               |
|                                                 | MAX                  | 5 cfm (each vent)       | Method B Cleanup Level     | Breathing Zone Concentration  |
| Chemical                                        | (lb/hr)              | (μg/m3)                 | (μg/m³)                    | Above Cleanup Level? (Yes/No) |
| VOLATILES (lb/hr)<br>EPA Method TO-15           |                      |                         |                            |                               |
| Propene                                         | 2.27E-05             | 4.9E-02                 | No Criteria                | No                            |
| Dichlorodifluoromethane (CFC 12)                | 9.42E-07             | 2.0E-03                 | 4.57E+01                   | No                            |
| Chloromethane                                   | 2.62E-07             | 5.6E-04                 | 4.11E+01                   | No                            |
| 1,2-Dichloro-1,1,2,2-                           |                      |                         |                            |                               |
| tetrafluoroethane (CFC 114)<br>1,3-Butadiene    | 7.68E-06<br>3.84E-07 | 1.7E-02<br>8.3E-04      | No Criteria<br>8.33E-02    | No<br>No                      |
| Bromomethane                                    | 3.32E-07             | 7.1E-04                 | 2.29E+00                   | No                            |
| Chloroethane                                    | 2.97E-07             | 6.4E-04                 | 4.57E+03                   | No                            |
| Ethanol                                         | 1.50E-05             | 3.2E-02                 | No Criteria                | No                            |
| Acetonitrile                                    | 3.14E-07             | 6.8E-04                 | 2.74E+01                   | No                            |
| Acrolein                                        | 2.97E-07             | 6.4E-04                 | 9.14E-03                   | No                            |
| Acetone                                         | 3.49E-06             | 7.5E-03                 | 1.42E+04                   | No                            |
| Trichlorofluoromethane                          | 2.97E-07             | 6.4E-04                 | 3.20E+02                   | No                            |
| 2-Propanol (Isopropyl Alcohol)<br>Acrylonitrile | 9.77E-07<br>2.97E-07 | 2.1E-03<br>6.4E-04      | No Criteria<br>3.68E-02    | No<br>No                      |
| 1,1-Dichloroethene                              | 2.97E-07             | 6.4E-04                 | 9.14E+01                   | No                            |
| Methylene Chloride                              | 2.97E-07             | 6.4E-04                 | 2.50E+02                   | No                            |
| 3-Chloro-1-propene (Allyl Chloride)             | 2.79E-07             | 6.0E-04                 | 4.17E-01                   | No                            |
| Trichlorotrifluoroethane                        | 2.97E-07             | 6.4E-04                 | No Criteria                | No                            |
| Carbon Disulfide                                | 7.85E-07             | 1.7E-03                 | 3.20E+02                   | No                            |
| trans-1,2-Dichloroethene                        | 3.32E-07             | 7.1E-04                 | No Criteria                | No                            |
| 1,1-Dichloroethane                              | 2.79E-07             | 6.0E-04                 | 1.56E+00                   | No                            |
| Methyl tert-Butyl Ether<br>Vinyl Acetate        | 2.97E-07<br>1.13E-06 | 6.4E-04<br>2.4E-03      | 9.62E+00<br>9.14E+01       | No<br>No                      |
| 2-Butanone (MEK)                                | 7.33E-07             | 1.6E-03                 | 2.29E+03                   | No                            |
| cis-1,2-Dichloroethene                          | 4.36E-07             | 9.4E-04                 | No Criteria                | No                            |
| Ethyl Acetate                                   | 1.06E-06             | 2.3E-03                 | 3.20E+01                   | No                            |
| n-Hexane                                        | 9.60E-05             | 2.1E-01                 | 3.20E+02                   | No                            |
| Chloroform                                      | 2.97E-07             | 6.4E-04                 | 1.09E-01                   | No                            |
| Tetrahydrofuran (THF)                           | 4.89E-06             | 1.1E-02                 | No Criteria                | No                            |
| 1,2-Dichloroethane<br>1,1,1-Trichloroethane     | 2.79E-07<br>2.97E-07 | 6.0E-04<br>6.4E-04      | 9.62E-02<br>2.29E+03       | No<br>No                      |
| Benzene                                         | 2.09E-06             | 4.5E-03                 | 3.21E-01                   | No                            |
| Carbon Tetrachloride                            | 2.62E-07             | 5.6E-04                 | 4.17E-01                   | No                            |
| Cyclohexane                                     | 1.48E-05             | 3.2E-02                 | 2.74E+03                   | No                            |
| 1,2-Dichloropropane                             | 2.79E-07             | 6.0E-04                 | 2.50E-01                   | No                            |
| Bromodichloromethane                            | 2.62E-07             | 5.6E-04                 | 6.76E-02                   | No                            |
| Trichloroethene<br>1,4-Dioxane                  | 2.44E-07<br>2.79E-07 | 5.3E-04<br>6.0E-04      | 3.70E-01<br>5.00E-01       | No<br>No                      |
| Methyl Methacrylate                             | 5.41E-07             | 1.2E-03                 | 3.20E+02                   | No                            |
| n-Heptane                                       | 3.49E-05             | 7.5E-02                 | No Criteria                | No                            |
| cis-1,3-Dichloropropene                         | 2.44E-07             | 5.3E-04                 | 6.25E-01                   | No                            |
| 4-Methyl-2-pentanone                            | 2.79E-07             | 6.0E-04                 | 1.37E+03                   | No                            |
| trans-1,3-Dichloropropene                       | 2.79E-07             | 6.0E-04                 | No Criteria                | No                            |
| 1,1,2-Trichloroethane                           | 2.79E-07<br>5.76E-06 | 6.0E-04<br>1.2E-02      | 9.14E-02<br>2.29E+03       | No<br>No                      |
| Toluene<br>2-Hexanone                           | 2.79E-07             | 6.0E-04                 | No Criteria                | No                            |
| Dibromochloromethane                            | 2.79E-07             | 6.0E-04                 | 9.26E-02                   | No                            |
| 1,2-Dibromoethane                               | 2.79E-07             | 6.0E-04                 | 4.17E-03                   | No                            |
| n-Butyl Acetate                                 | 2.79E-07             | 6.0E-04                 | No Criteria                | No                            |
| n-Octane                                        | 3.84E-06             | 8.3E-03                 | No Criteria                | No                            |
| Tetrachloroethene                               | 2.44E-07             | 5.3E-04                 | 9.62E+00                   | No                            |
| Chlorobenzene                                   | 2.79E-07             | 6.0E-04                 | 2.29E+01                   | No                            |
| Ethylbenzene<br>m,p-Xylenes                     | 9.60E-07<br>1.92E-06 | 2.1E-03<br>4.1E-03      | 4.57E+02<br>4.57E+01       | No<br>No                      |
| Bromoform                                       | 2.62E-07             | 5.6E-04                 | 2.27E+00                   | No                            |
| Styrene                                         | 2.62E-07             | 5.6E-04                 | 4.57E+02                   | No                            |
| o-Xylene                                        | 8.90E-07             | 1.9E-03                 | 4.57E+01                   | No                            |
| n-Nonane                                        | 2.79E-06             | 6.0E-03                 | No Criteria                | No                            |
| 1,1,2,2-Tetrachloroethane                       | 2.62E-07             | 5.6E-04                 | 4.31E-02                   | No                            |
| Cumene                                          | 4.01E-06             | 8.6E-03                 | 1.83E+02                   | No                            |
| alpha-Pinene                                    | 3.49E-05<br>4.71E-06 | 7.5E-02<br>1.0E-02      | No Criteria<br>4.57E+02    | No<br>No                      |
| n-Propylbenzene<br>4-Ethyltoluene               | 4.71E-06<br>2.79E-07 | 1.0E-02<br>6.0E-04      | 4.57E+02<br>No Criteria    | No<br>No                      |
| 1,3,5-Trimethylbenzene                          | 3.32E-07             | 7.1E-04                 | No Criteria<br>No Criteria | No                            |
| 1,2,4-Trimethylbenzene                          | 6.81E-07             | 1.5E-03                 | 3.20E+00                   | No                            |
| Benzyl Chloride                                 | 1.92E-07             | 4.1E-04                 | 5.10E-02                   | No                            |
| 1,3-Dichlorobenzene                             | 2.62E-07             | 5.6E-04                 | No Criteria                | No                            |
| 1,4-Dichlorobenzene                             | 5.58E-07             | 1.2E-03                 | 2.27E-01                   | No                            |
| 1,2-Dichlorobenzene                             | 2.62E-07             | 5.6E-04                 | 9.14E+01                   | No<br>No                      |
| d-Limonene 1,2-Dibromo-3-chloropropane          | 2.62E-06<br>1.71E-07 | 5.6E-03<br>3.7E-04      | No Criteria<br>4.17E-04    | No<br>No                      |
| 1,2,4-Trichlorobenzene                          | 2.79E-07             | 6.0E-04                 | 9.14E-01                   | No                            |
| Naphthalene                                     | 3.14E-07             | 6.8E-04                 | 7.35E-02                   | No                            |
| Hexachlorobutadiene                             | 2.44E-07             | 5.3E-04                 | 1.14E-01                   | No                            |
| Vinyl Chloride                                  | 2.97E-06             | 6.4E-03                 | 2.80E-01                   | No                            |

EPA = US Environmental Protection Agency

lb/hr = pounds per hour

 $\mu g/m3$  = micrograms per cubic meter

## **Landfill Gas System Design**

Edmonds WA 98020 Phone: (425) 778-0907 Fax: (425) 778-6409

JOB NO. 0001037.030.031 JOB NAME Cornwall Ave Landfill

SUBJECT Landfill Gas Control

CALC BY 10/14/2015 IMD DATE CHK BY KWW DATE 12/30/2015

**Design Elements** 

1 Cover System: LFG Collection Layer

2 Passive LFG Collection Well

3 LFG Vent

1b Materials of Construction

1a Transmissivity

#### 1 Cover System: LFG Collection Laver

LFG collection layer will be a component of the cover system, designed to prevent the accumulation of LFG below the impermeable cover system to unsafe or unhealthy concentrations. This layer will be included across the entire Landfill, over both wood waste and MSW.

#### 1a Calculate required transmissivity of LFG collection layer (Thiel 1998)

$$\theta_{gas} = \frac{(surface\ flux)(\mathit{LFG}\ density)}{(\max\ allowable\ pressure)} \frac{(pipe\ spacing)^2}{8}$$

\* Per LandGem model (See attachment A.1), LFG production is approximately 4.6 cubic feet per minute (cfm); design assumption will be 10 cfm.

10 cfm 0.004716667 m<sup>3</sup>/s 44,515.9 m<sup>2</sup> 11 acres

125 N/m<sup>2</sup>

\* LFG collection layer will be approximately 11 acres in area

 $q_s = \frac{flow}{area}$ 1.1E-07 m<sup>3</sup>/[m<sup>2</sup>\*s]

\* Typical LFG collection layer design includes capture layer, and conveyance pipe to route the captured LFG to vents. Typical pipe spacing is 10 meters. However, based on the very low LFG production and very low surface flux, calculations will assume pipe spacing of 20 meters.

Pipe Spacing = > 20 m

\* LFG density = 12.8 N/m3

\* Maximum allowable pressure:

Surface Flux = >

Typical maximum pressure is based on protecting cover system from lift that would destabilize slopes.

For this landfill, a lower, more conservative maximum pressure is selected to limit accumulation and pressure buildup that might cause lateral migration.

Maximum Allowable Pressure = > 0.5 inches of water column

Minimum Gas Transmissivity = > 5.4E-07 m<sup>2</sup>/s

\* Multiply by 10 to approximate hydraulic conductivity (to match standard specifications for materials)

\* Multiply by 2 for factor of safety to account for biofouling and moisture.

Minimum Hydraulic Transmissivity = > 1.1E-05 m<sup>2</sup>/s

#### 1b LFG Collection Layer: Materials of Construction

#### Concrete Rubble:

Concrete is available at the site that could be broken up and used as transmissive material.

The volume of available concrete is not sufficient to cover the entire 11 acres.

The volume of available concrete could be used to backfill trenches across the surface of the landfill, below the impermeable cover.

However, the cost of processing the concrete and constructing the trenches would be higher than using an imported material.

Additionally, LFG collection and conveyance typically avoids using calcareous media due to potential corrosivity reactions.

Sand

Conservatively assuming sand has a hydraulic conductivity of 1.0E-04, approximately 0.12 meters (4.7 inches) of sand would provide an adequate collection layer.

#### Geocomposite:

Geocomposite products are readily available that could be used for the LFG collection layer, which meet the minimum hydraulic conductivity specification. These products could be rolled-out across the surface so have a reasonable installation cost, and some products have integrated conveyance tubing built into the product that could eliminate the need for additional trenching/piping.

#### 2 Passive LFG Collection Wells

Four LFG collection wells will be installed into the subsurface of the landfill to provide internal pressure relief in areas where MSW is buried. The collection wells will be constructed to a depth just above the groundwater level. The wells will be completed in flush-mounted subsurface vaults with sampling ports and isolation valves. LFG collected in these wells will be routed directly to the LFG vents through 2-inch SDR-11 HDPE piping. Well construction details reflect the anticipated LFG flow rates, and are sized smaller than typical LFG extraction wells.

#### 3 LFG Vents

Two LFG vents will be installed to provide a controlled release of LFG to the atmosphere. Based on the estimated LFP production rates (See A.1), analysis of LFG at the Site (See A.3), dispersion modeling (see A.4), and the cleanup levels developed for protection of human-health breathing ambient air at the Site (See A.5), the vent height will be 12 ft above ground surface, and no treatment of the LFG is required. A wind-powered turbine will be installed at the head of each vent to enhance flow through the LFG collection layer. A subsurface vault will be installed at each vent location which can be used in the future to provide carbon filtration if needed for odor control.

Thiel, R.S. "Design Methodology for a Gas Pressure Relief Layer Below a Geomembrane Cover to Improve Slope Stability", Geosynthetics International, Vol Sources: 23, Number 2., 2005

### **Upland Cover Design**

Appendix B contains the following Attachments which are referenced in the Text:

- B.1 Boring and Test Pit Logs
- B.2 Geotechnical Testing on IPA Soil
- B.3 Landfill Stability Analysis
- B.4 Stormwater Management Design
  - B.4a Hydrology
  - B.4b Hydraulics
- B.5 HELP Model

## **Boring and Test Pit Logs**

#### Soil Classification System

#### **MAJOR DIVISIONS**

#### **USCS** GRAPHIC LETTER SYMBOL SYMBOL (1)

#### **TYPICAL DESCRIPTIONS** (2)(3)

| DIVISIONS                                         |                                            |                                        | STWIDGE 3 | INDOL | DESCRIPTIONS                                                                                                   |  |
|---------------------------------------------------|--------------------------------------------|----------------------------------------|-----------|-------|----------------------------------------------------------------------------------------------------------------|--|
|                                                   | GRAVEL AND                                 | CLEAN GRAVEL                           | 00000     | GW    | Well-graded gravel; gravel/sand mixture(s); little or no fines                                                 |  |
| SOIL<br>rial is<br>size)                          | GRAVELLY SOIL                              | (Little or no fines)                   | 00000     | GP    | Poorly graded gravel; gravel/sand mixture(s); little or no fines                                               |  |
| □ # # U                                           | (More than 50% of coarse fraction retained | GRAVEL WITH FINES                      |           | GM    | Silty gravel; gravel/sand/silt mixture(s)                                                                      |  |
| RAINE<br>1% of ma<br>200 sie                      | on No. 4 sieve)                            | (Appreciable amount of fines)          |           | GC    | Clayey gravel; gravel/sand/clay mixture(s)                                                                     |  |
| _ 요 양 <b>으</b>                                    | SAND AND                                   | CLEAN SAND                             |           | SW    | Well-graded sand; gravelly sand; little or no fines                                                            |  |
| SSE<br>thar<br>than                               | SANDY SOIL                                 | (Little or no fines)                   |           | SP    | Poorly graded sand; gravelly sand; little or no fines                                                          |  |
| COARSE-<br>(More than<br>larger than N            | (More than 50% of coarse fraction passed   | SAND WITH FINES (Appreciable amount of |           | SM    | Silty sand; sand/silt mixture(s)                                                                               |  |
| Ω ∈ <u> α</u>                                     | through No. 4 sieve)                       | fines)                                 |           | SC    | Clayey sand; sand/clay mixture(s)                                                                              |  |
| SOIL of than ize)                                 | SII T A                                    | ND CLAY                                |           | ML    | Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity |  |
| ED SC<br>50% of<br>naller th                      |                                            |                                        |           | CL    | Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay                   |  |
| Z ⊑ F Si                                          | (Liquia limi                               | t less than 50)                        |           | OL    | Organic silt; organic, silty clay of low plasticity                                                            |  |
| RAIN<br>e than<br>al is sn<br>200 sie             | SILTA                                      | ND CLAY                                | ШШШ       | MH    | Inorganic silt; micaceous or diatomaceous fine sand                                                            |  |
| INE-GRAI<br>(More tha<br>material is<br>No. 200 s |                                            |                                        |           | СН    | Inorganic clay of high plasticity; fat clay                                                                    |  |
| FINE<br>(M                                        | (Liquid limit (                            | greater than 50)                       |           | ОН    | Organic clay of medium to high plasticity; organic silt                                                        |  |
|                                                   | HIGHLY OF                                  | RGANIC SOIL                            |           | PT    | Peat; humus; swamp soil with high organic content                                                              |  |

**OTHER MATERIALS** 

#### **GRAPHIC LETTER** SYMBOL SYMBOL

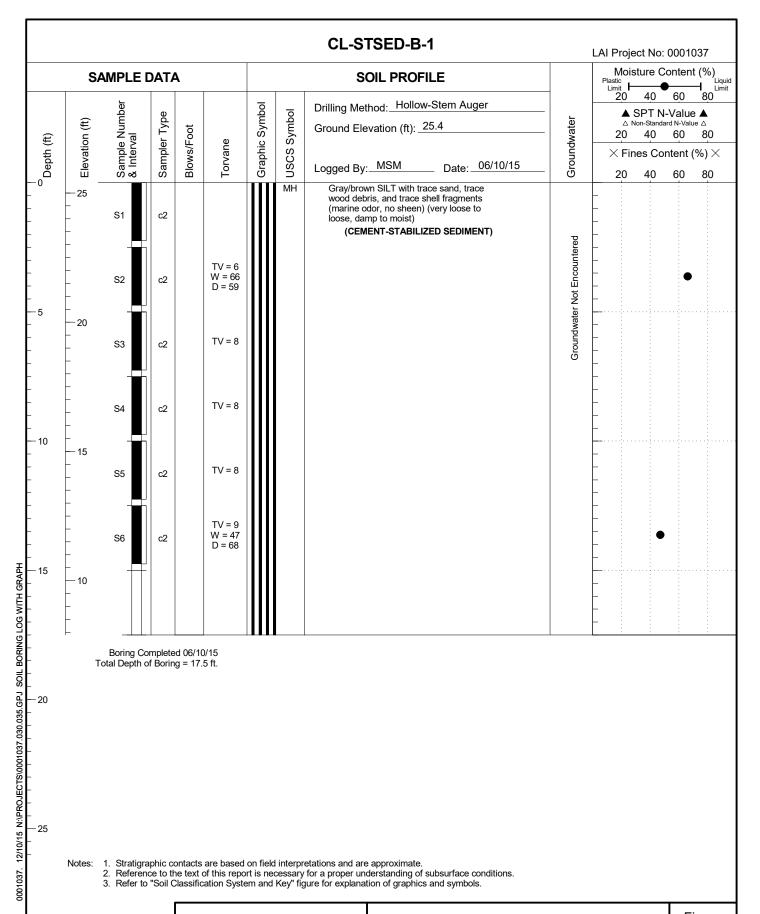
#### TYPICAL DESCRIPTIONS

| PAVEMENT | AC or PC  | Asphalt concrete pavement or Portland cement pavement |
|----------|-----------|-------------------------------------------------------|
| ROCK     | RK        | Rock (See Rock Classification)                        |
| WOOD     | WD WD     | Wood, lumber, wood chips                              |
| DEBRIS   | 6/6/6/ DB | Construction debris, garbage                          |

- Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
  - 2. Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
  - 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

 $\label{eq:primary constituent:} Secondary Constituents: $ > 50\% - "GRAVEL," "SAND," "SILT," "CLAY," etc. $ > 30\% and $ \leq 50\% - "very gravelly," "very sandy," "very silty," etc. $ > 15\% and $ \leq 30\% - "gravelly," "sandy," "silty," etc. $ < 5\% and $ \leq 15\% - "with gravel," "with sand," "with silt," etc. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with gravel," "with trace gravel," "with trace gravel," "with trace gravel," "with trace gravel," "with gravel," "$ 

4. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating conditions, field tests, and laboratory tests, as appropriate.

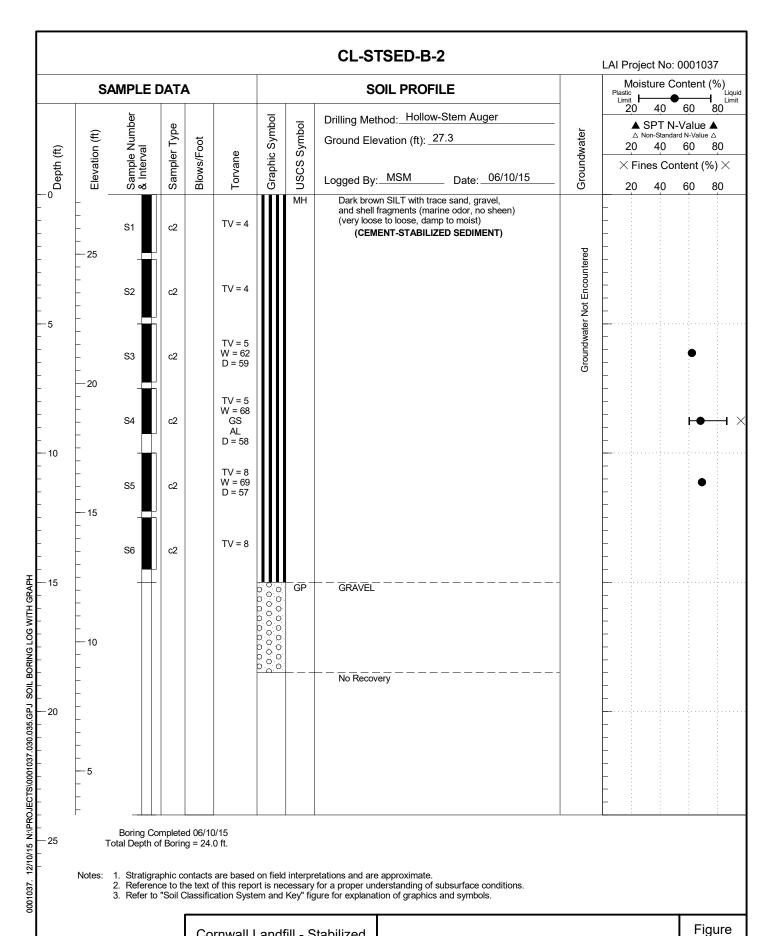

#### Drilling and Sampling Key Field and Lab Test Data SAMPLER TYPE SAMPLE NUMBER & INTERVAL Code Description Code Description 3.25-inch O.D., 2.42-inch I.D. Split Spoon PP = 1.0Pocket Penetrometer, tsf b 2.00-inch O.D., 1.50-inch I.D. Split Spoon Sample Identification Number TV = 0.5Torvane, tsf Shelby Tube PID = 100 Photoionization Detector VOC screening, ppm С Recovery Depth Interval Moisture Content, % d Grab Sample W = 10Single-Tube Core Barrel D = 120Dry Density, pcf Sample Depth Interval Double-Tube Core Barrel -200 = 60 Material smaller than No. 200 sieve, % 2.50-inch O.D., 2.00-inch I.D. WSDOT GS Grain Size - See separate figure for data Portion of Sample Retained 3.00-inch O.D., 2.375-inch I.D. Mod. California ALAtterberg Limits - See separate figure for data for Archive or Analysis Other - See text if applicable GT Other Geotechnical Testing 300-lb Hammer, 30-inch Drop Chemical Analysis 1 CA 2 140-lb Hammer, 30-inch Drop Groundwater Pushed Approximate water level at time of drilling (ATD) Vibrocore (Rotosonic/Geoprobe) Approximate water level at time other than ATD Other - See text if applicable



Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Soil Classification System and Key

Figure

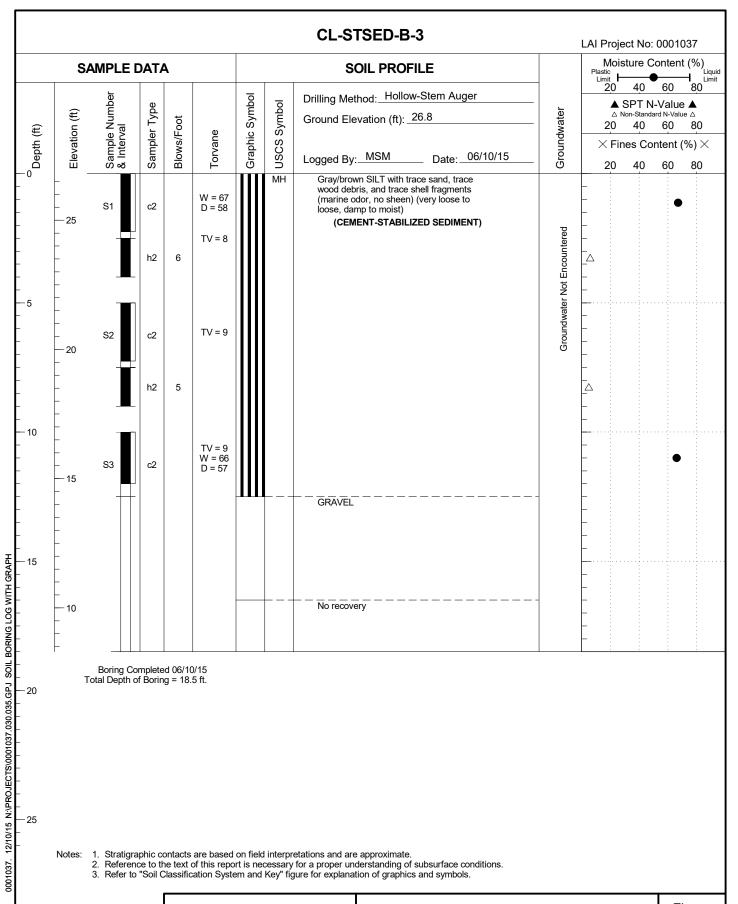





Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Log of Boring CL-STSED-B-1

Figure B-1.2

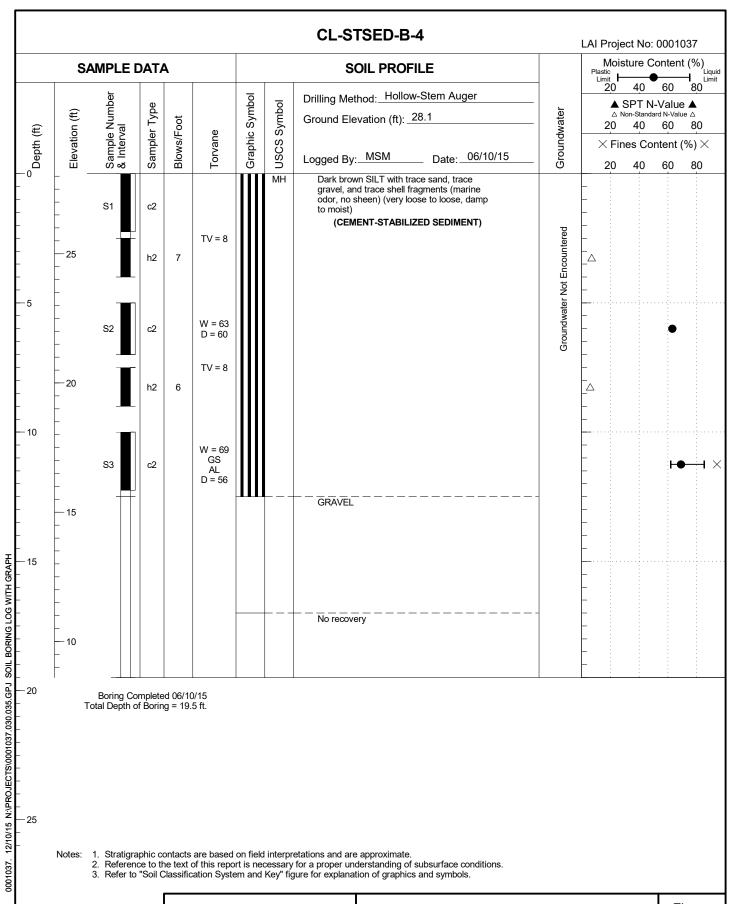





Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Log of Boring CL-STSED-B-2

B-1.3

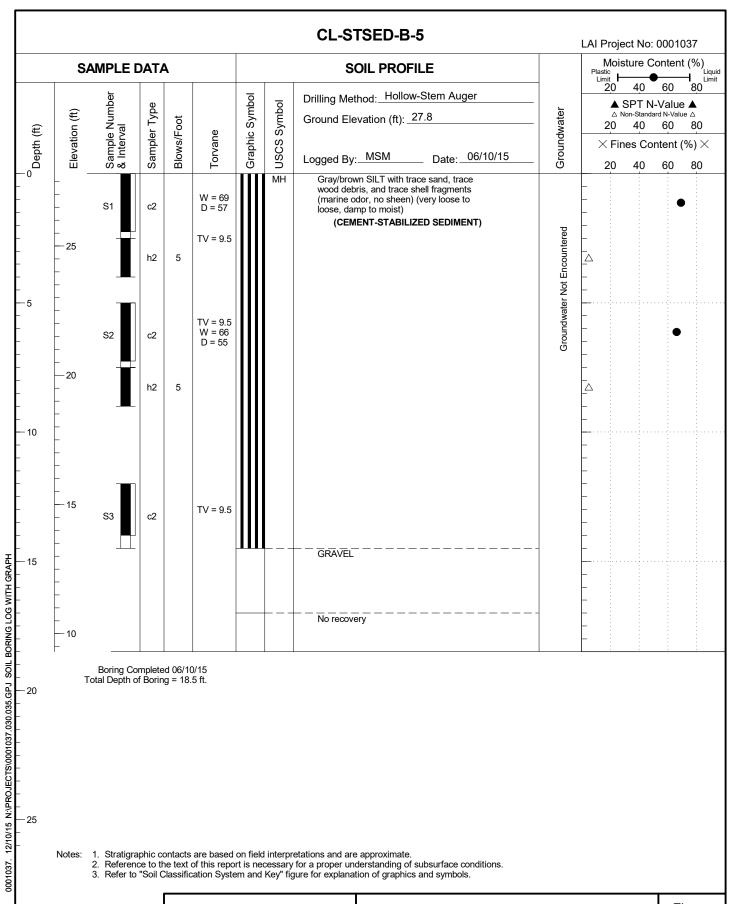



LANDAU ASSOCIATES

Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Log of Boring CL-STSED-B-3

Figure B-1.4

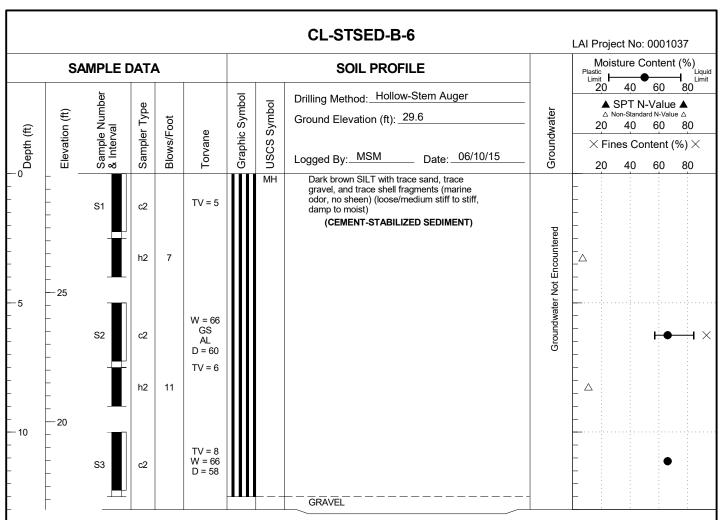



LANDAU ASSOCIATES

Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Log of Boring CL-STSED-B-4

Figure B-1.5




LANDAU ASSOCIATES

Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Log of Boring CL-STSED-B-5

Figure B-1.6



Boring Completed 06/10/15 Total Depth of Boring = 13.0 ft.

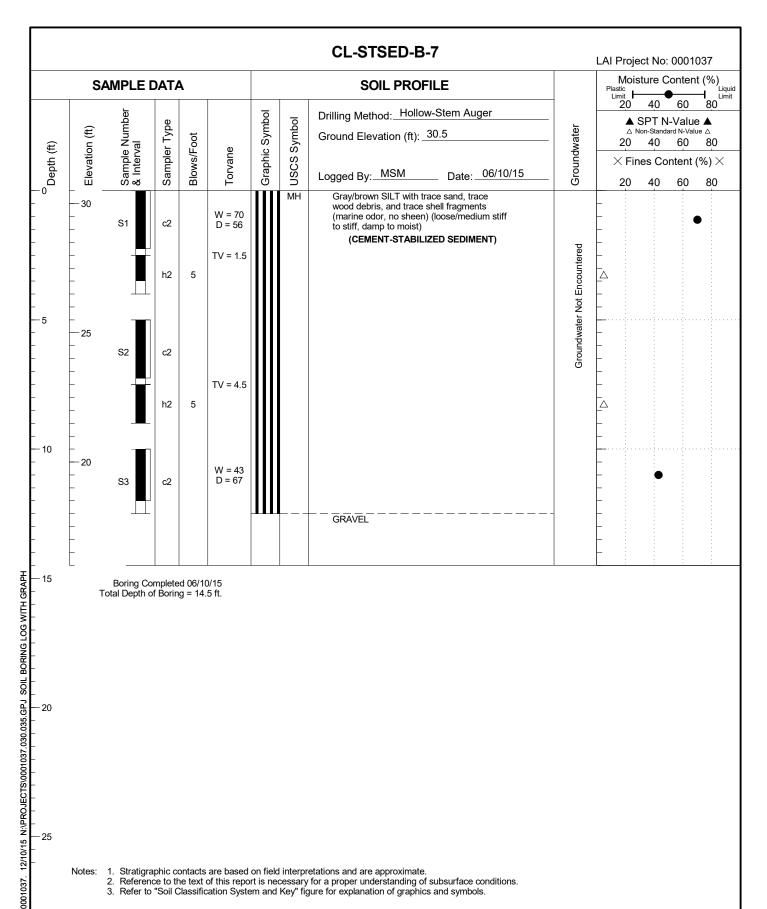
-20

SOIL BORING LOG WITH GRAPH

-25

0001037. 12/10/15 N:\PROJECTS\0001037.030.035.GPJ

Stratigraphic contacts are based on field interpretations and are approximate. Notes:


Reference to the text of this report is necessary for a proper understanding of subsurface conditions. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.



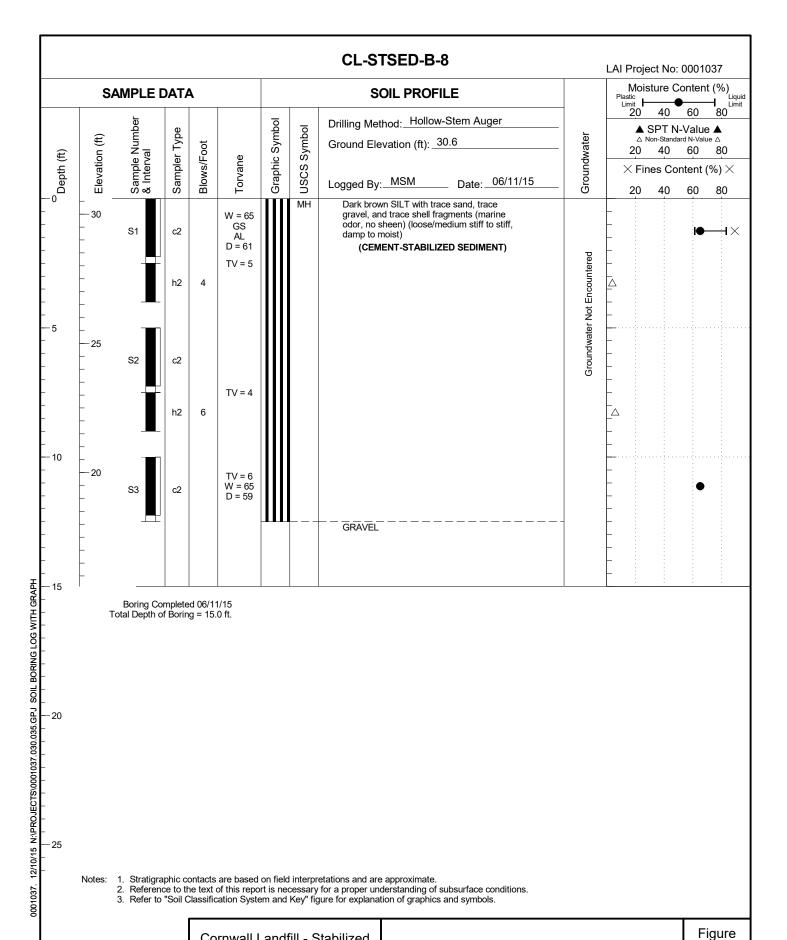
Cornwall Landfill - Stabilized **Sediment Borings** Bellingham, Washington

Log of Boring CL-STSED-B-6

Figure



Stratigraphic contacts are based on field interpretations and are approximate. Notes:


Reference to the text of this report is necessary for a proper understanding of subsurface conditions. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.



Cornwall Landfill - Stabilized **Sediment Borings** Bellingham, Washington

Log of Boring CL-STSED-B-7

Figure





Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

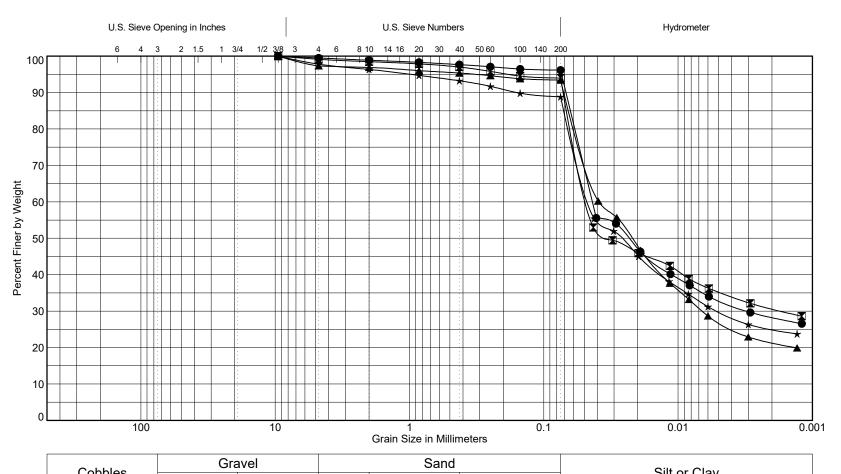
Log of Boring CL-STSED-B-8

3-1.9

#### CORNWALL AVENUE LANDFILL TEST PIT EXCAVATIONS JUNE 11, 2015

| Location | Northing | Easting  | Cover<br>thickness<br>(ft) | Surface<br>Elevation<br>(ft MLLW) | Top of<br>Waste<br>Elevation | Cover Soil                                                             | Underlying Waste Material                                               |
|----------|----------|----------|----------------------------|-----------------------------------|------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| TP-1     | 638233.9 | 1239280  | 3                          | 11.6                              | 8.6                          | Brown, well graded gravelly sand                                       | Wood debris, with old paper and rubber gasket material mixed in         |
| TP-2     | 638228.1 | 1239358  | 2.5                        | 11.9                              | 9.4                          | Brown well graded gravelly sand                                        | Wood debris                                                             |
| TP-3     | 638459.9 | 1239490  | 3.6                        | 13.3                              | 9.4                          | Brown well graded gravelly sand to 2 ft underlain by gray dense gravel | Demolition debris, rebar, concrete rubble, an demolished metal pipe     |
| TP-4     | 638603.3 | 1239584  | 2.2                        | 13.6                              | 11.4                         | Gray sandy gravel                                                      | Demolition and wood debris, concrete rubble with rebar                  |
| TP-5     | 638713.3 | 1239662  | 2                          | 13.2                              | 11.2                         | Brown well graded gravelly sand                                        | Demolition debris, wire and plastic                                     |
| TP-6     | 638832.3 | 1239764  | 1                          | 13.9                              | 12.9                         | Gray sandy gravel                                                      | Demolition debris, brick, plastic, metal pieces                         |
| TP-7     | 638970.8 | 1239849  | 2.2                        | 15.3                              | 13.1                         | Gray brown, well graded gravelly sand                                  | Demolition debris, concrete rubble, metal pieces                        |
| TP-8     | 639171.9 | 1239885  | 1.5                        | 17.2                              | 15.7                         | Gray gravel and cobbles                                                | Wood debris                                                             |
| TP-9     | 639248.1 | 1239816  | 5.5                        | 19.4                              | 13.9                         | Brown well graded gravelly sand                                        | Demolition debris, brick, plastic, metal pieces                         |
| TP-10    | 639194.9 | 1239966  | 2.3                        | 16.3                              | 14                           | Gray well graded gravelly sand                                         | Demolition debris, wire and plastic                                     |
| TP-11    | 639324.7 | 1239967  | 1.1                        | 17                                | 15.9                         | Brown, well graded gravelly sand                                       | Demolition debris, glass, plastic, and metal pieces                     |
| TP-12    | 638117.9 | 12393330 | 2.3                        | 12.3                              | 10                           | Brown gravelly sand with trace cobbles                                 | Wood debris                                                             |
| TP-13    | 638222.4 | 1239454  | 1.7                        | 11.9                              | 10.2                         | Dark brown to black fine to medium grained sand with organics          | Wood debris and asphalt pieces                                          |
| TP-14    | 638410.7 | 1239559  | 1.7                        | 11.5                              | 9.8                          | Brown well graded gravelly sand                                        | Demolition and wood debris, including plastic pipe, and concrete pieces |
| TP-15    | 638543.8 | 1239720  | 3.1                        | 12.9                              | 9.8                          | Brown well graded gravelly sand                                        | Demolition debris, with brick and charred wood pieces                   |
| TP-16    | 638624   | 1239687  | 3.6                        | 12.4                              | 8.8                          | Brown well graded gravelly sand                                        | Wood debris with pieces of plastic                                      |
| TP-17    | 638619.6 | 1239793  | 3.1                        | 13.6                              |                              | Brown well graded gravelly sand                                        | Wood debris, with charred wood pieces                                   |
| TP-18    | 638742.4 | 1239878  | 2.4                        | 14.2                              | 11.8                         | Asphalt 0.3 ft thick underlain by gray sandy gravel and silt           | Demolition debris, with brick and glass, petroleum-<br>like odor        |
| TP-19    | 638871   | 1239862  | 3                          | 14.1                              | 11.1                         | Brown to gray gravelly sand with cobbles                               | Wood debris with pieces of concrete                                     |
| TP-20    | 638859.4 | 1239987  | 1.6                        | 14.4                              | 12.8                         | Gray well graded gravelly sand                                         | Wood debris with pieces of metal and glass                              |
| TP-21    | 639082.5 | 1240010  | 0.8                        | 14.6                              | 13.8                         | Asphalt 0.75 feet thick                                                | Demolition debris, with brick, plywood and charred wood pieces          |
| TP-22    | 639004.7 | 1240103  | 3                          | 16.4                              | 13.4                         | Gray brown, sandy gravel                                               | Demolition debris, brick pieces                                         |

LANDAU ASSOCIATES Figure B-1.10


## **Geotechnical Testing on IPA Soil**



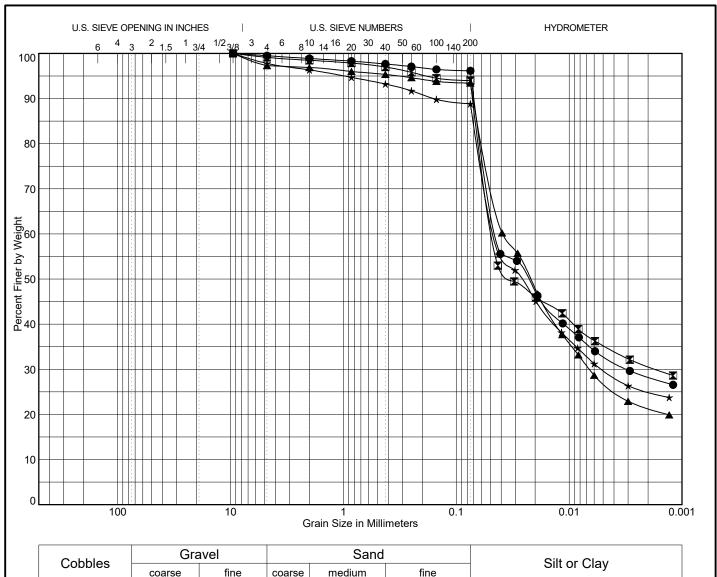
### Laboratory Program Summary

| Project Name:   | ject Name: Cornwall Landfill - Stabilized Sediment BoringsProject Number: 0001037 |                           |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|
| Site Location:  | Bellingham, Washington                                                            | Date: 7/16/15             |  |  |  |  |  |  |  |
| Client/Owner: _ | Port of Bellingham                                                                | Landau Rep.: DSB          |  |  |  |  |  |  |  |
| Report Results  | to: KWW                                                                           | Date Results Due: 7/16/15 |  |  |  |  |  |  |  |

| Excludation Depth Jab Solecimen Miciety Print Pr |      |    |      |      |                    |     |    |     |  |    |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------|------|--------------------|-----|----|-----|--|----|----------|
| CL-STSED-B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5  | S2 | 66.5 | 59.5 |                    |     |    |     |  |    |          |
| CL-STSED-B-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.5 | S6 | 46.8 | 67.6 |                    |     |    |     |  |    |          |
| CL-STSED-B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0  | S3 | 62.1 | 59.0 |                    |     |    |     |  |    | standard |
| CL-STSED-B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5  | S4 | 67.6 | 58.0 | PI = 26<br>PL = 60 | Yes | 96 | Yes |  | МН | modified |
| CL-STSED-B-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S5 | 68.7 | 56.9 |                    |     |    |     |  |    |          |
| CL-STSED-B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0  | S1 | 67.2 | 57.9 |                    |     |    |     |  |    |          |
| CL-STSED-B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S3 | 65.8 | 57.2 |                    |     |    |     |  |    |          |
| CL-STSED-B-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0  | S2 | 63.1 | 59.6 |                    |     |    |     |  |    |          |
| CL-STSED-B-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S3 | 68.6 | 55.7 | PI = 23<br>PL = 62 | Yes | 94 | Yes |  | МН |          |
| CL-STSED-B-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0  | S1 | 68.7 | 57.0 |                    |     |    |     |  |    |          |
| CL-STSED-B-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0  | S2 | 66.2 | 54.7 |                    |     |    |     |  |    |          |
| CL-STSED-B-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0  | S2 | 65.5 | 60.1 | PI = 27<br>PL = 57 | Yes | 93 | Yes |  | МН |          |
| CL-STSED-B-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S3 | 65.7 | 57.9 |                    |     |    |     |  |    |          |
| CL-STSED-B-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0  | S1 | 70.3 | 56.0 |                    |     |    |     |  |    |          |
| CL-STSED-B-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S3 | 43.2 | 66.8 |                    |     |    |     |  |    |          |
| CL-STSED-B-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0  | S1 | 64.6 | 61.1 | PI = 22<br>PL = 61 | Yes | 89 | Yes |  | МН |          |
| CL-STSED-B-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.0 | S3 | 64.8 | 59.4 |                    |     |    |     |  |    |          |



| Cobbles | Gra    | avel |        | Sand   |      | Silt or Clay |
|---------|--------|------|--------|--------|------|--------------|
| Copples | Coarse | Fine | Coarse | Medium | Fine | Silt of Clay |
|         |        |      |        |        |      |              |


| Symbol   | Exploration<br>Number | Sample<br>Number | Depth<br>(ft) | Natural<br>Moisture (%) | Soil Description                           | Unified Soil<br>Classification |
|----------|-----------------------|------------------|---------------|-------------------------|--------------------------------------------|--------------------------------|
| •        | CL-STSED-B-2          | S4               | 7.5           | 68                      | Dark brown SILT with trace sand and gravel | MH                             |
|          | CL-STSED-B-4          | S3               | 10.0          | 69                      | Dark brown SILT with trace sand and gravel | MH                             |
| <b>A</b> | CL-STSED-B-6          | S2               | 5.0           | 66                      | Dark Brown SILT with trace sand and gravel | MH                             |
| *        | CL-STSED-B-           | S S1             | 0             | 65                      | Dark brown SILT with sand and trace gravel | MH                             |



Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

**Grain Size Distribution** 

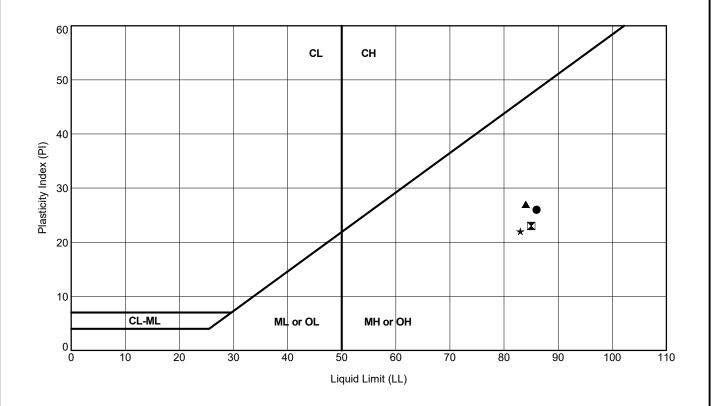
Figure **3-2**.1



| Cobbles | Gra    | avel |        | Sand   |      | Silt or Clay |  |
|---------|--------|------|--------|--------|------|--------------|--|
| Cobbles | coarse | fine | coarse | medium | fine | Silt or Clay |  |
|         |        |      |        |        |      |              |  |

| 2              | Point Depth    | Classification                                   | LL | PL | PΙ | $C_{c}$ | $C_{u}$ |
|----------------|----------------|--------------------------------------------------|----|----|----|---------|---------|
| ZE V           | ● CL-STSED-B-  | 2Dark brown SILT with trace sand and gravel (MH) | 86 | 60 | 26 |         |         |
| N N            | CL-STSE100-B-  | Dark brown SILT with trace sand and gravel (MH)  | 85 | 62 | 23 |         |         |
| <del>2</del> 5 | ▲ CL-STSED5-B- | Dark Brown SILT with trace sand and gravel (MH)  | 84 | 57 | 27 |         |         |
| GP.            | ★ CL-STSED-B-  | 8Dark brown SILT with sand and trace gravel (MH) | 83 | 61 | 22 |         |         |
| .035           |                |                                                  |    |    |    |         |         |

| SL              |          |                |                  |                                                                                                      |                |                  |             |     |         |   |     |     |    |                |      |
|-----------------|----------|----------------|------------------|------------------------------------------------------------------------------------------------------|----------------|------------------|-------------|-----|---------|---|-----|-----|----|----------------|------|
| W/STATS         | Р        | oint Depth     |                  |                                                                                                      | (              | Classificati     | on          |     |         |   | LL  | PL  | PΙ | C <sub>c</sub> | Cu   |
| SIZE M          | •        | CL-STSED-B-    | 2Dark browr      | 86                                                                                                   | 60             | 26               |             |     |         |   |     |     |    |                |      |
|                 | ×        | CL-STSE100-1B- | 85               | 62                                                                                                   | 23             |                  |             |     |         |   |     |     |    |                |      |
| GRAIN           | <b>A</b> | CL-STSED:B-    | 6Dark Browi      |                                                                                                      | 84             | 57               | 27          |     |         |   |     |     |    |                |      |
| .GPJ            | *        | CL-STSED-B-    | 83               | 61                                                                                                   | 22             |                  |             |     |         |   |     |     |    |                |      |
| 0.035           |          |                |                  |                                                                                                      |                |                  |             |     |         |   |     |     |    |                |      |
| 037.030.035.    | Р        | oint Depth     | % Fine<br>Gravel |                                                                                                      | Coarse<br>Sand | % Medium<br>Sand | ı % F<br>Sa |     | % Fines |   |     |     |    |                |      |
| _               | •        | CL-STSED-B-    | 2 9.5            | 0.044                                                                                                | 0.023          | 0.003            |             | 0.0 | 0.5     | ( | 0.6 | 1.2 | 1. | .5             | 96.1 |
| TS\0            | ×        | CL-STSE100-1B- | 4 9.5            | 0.047                                                                                                | 0.032          | 0.002            |             | 0.0 | 0.9     | ( | 0.6 | 1.5 | 3. | .0             | 94.0 |
| OJEC            | ▲        | CL-STSED:B-    | 6 9.5            | 0.039                                                                                                | 0.022          | 0.007            |             | 0.0 | 2.7     | ( | 0.4 | 1.5 | 1. | .9             | 93.4 |
| N:\PROJECTS\000 | *        | CL-STSED-B-    | 8 9.5            | 0.046                                                                                                | 0.027          | 0.005            |             | 0.0 | 2.2     | • | 1.4 | 3.1 | 4. | .4             | 88.8 |
| 2/10/15         |          |                |                  |                                                                                                      |                |                  |             |     |         |   |     |     |    |                |      |
| 0001037. 12/10  |          |                |                  | To be well graded: 1 < C <sub>c</sub> < 3 and C <sub>u</sub> > 4 for GW or C <sub>u</sub> > 6 for SW |                |                  |             |     |         |   |     |     |    |                |      |

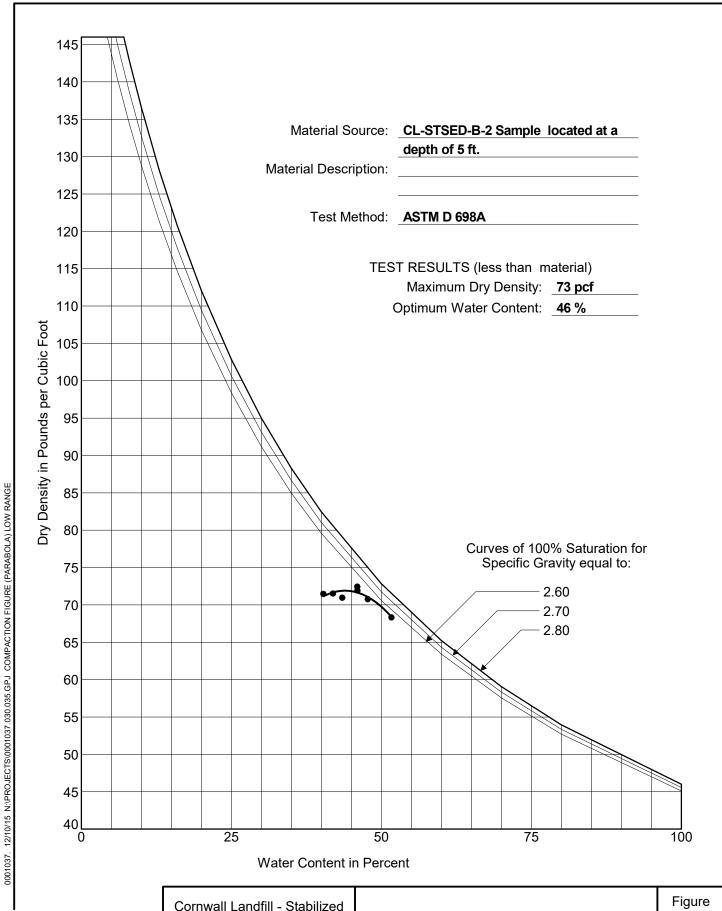



Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Grain Size Test Data

Figure



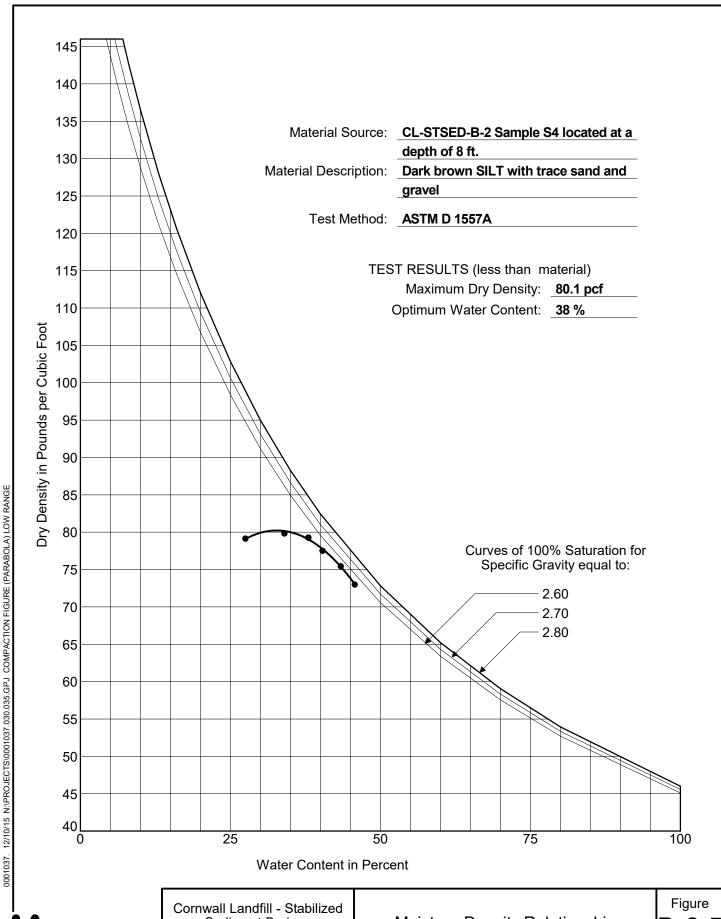



### ATTERBERG LIMIT TEST RESULTS

| Symbol   | Exploration<br>Number | Sample<br>Number | Depth<br>(ft) | Liquid<br>Limit<br>(%) | Plastic<br>Limit<br>(%) | Plasticity<br>Index<br>(%) | Natural<br>Moisture<br>(%) | Soil Description                           | Unified Soil<br>Classification |
|----------|-----------------------|------------------|---------------|------------------------|-------------------------|----------------------------|----------------------------|--------------------------------------------|--------------------------------|
| •        | CL-STSED-B-2          | S4               | 7.5           | 86                     | 60                      | 26                         | 68                         | Dark brown SILT with trace sand and gravel | MH                             |
|          | CL-STSED-B-4          | S3               | 10.0          | 85                     | 62                      | 23                         | 69                         | Dark brown SILT with trace sand and gravel | MH                             |
| <b>A</b> | CL-STSED-B-6          | S2               | 5.0           | 84                     | 57                      | 27                         | 66                         | Dark Brown SILT with trace sand and gravel | MH                             |
| *        | CL-STSED-B-8          | S1               | 0             | 83                     | 61                      | 22                         | 65                         | Dark brown SILT with sand and trace gravel | MH                             |

ASTM D 4318 Test Method








Cornwall Landfill - Stabilized Sediment Borings Bellingham, Washington

Moisture-Density Relationship

B-2.4





### HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER (ASTM Designation D 5084-90)

| Project    | Cornwall Ave Landfill Cover | Proj. No.  | 1037.0 | 30.035 |                     |
|------------|-----------------------------|------------|--------|--------|---------------------|
| Boring No. | ASTM D 698 97.7% MaxDD      | Tested by  | CTM    | On     | Jun 30-July 1, 2015 |
| Sample No. | 1                           | Comp by    |        | On     |                     |
| Depth (ft) | Triax Cell #I               | Checked by |        | On     |                     |

WATER CONTENT DATA:

#### SPECIMEN DATA:

|          | Before Test | After Test |  |  |
|----------|-------------|------------|--|--|
| Pan No.  |             |            |  |  |
| Wet+Tare | 282.62      | 707.95     |  |  |
| Dry+Tare | 252.58      | 568.80     |  |  |
| Tare     | 187.20      | 296.26     |  |  |
| WC, %    | 45.9        | 51.1       |  |  |

#### DESCRIPTION:

Grey SILT with fine sand, trace coarse sand and shell fragments

|                  | Imp. Units |      | SI Units |
|------------------|------------|------|----------|
| Height, in       | 4.603      | cm   | 11.692   |
| Diameter, in     | 2.046      | cm^2 | 5.197    |
| Wet Weight, g    | 414        |      |          |
| Volume, in3      | 15.13      |      |          |
| Area, in2        | 3.288      | cm   | 21.211   |
| Wet Unit Wt, pcf | 104.216    |      |          |
| Dry Unit Wt, pcf | 71.4       |      |          |

| Specific Gravity | Assumed | Measured | = | 2.7 |
|------------------|---------|----------|---|-----|
| B-Coefficient =  | 0.96    |          | • |     |

#### ASTM D 5084 CONSTANT HEAD METHOD (METHOD A)

k = Q/iA

Q = volumetric throughput, cm^3 per second, between the current and previous reading

i= hydraulic gradient across the specimen; i.e. the ratio of head-loss across the sample and the sample length, 1psi = 27.69in of head

A = cross-sectional area of the specimen, cm^2

#### **MEASURED DATA:**

|       | Elaps  | ed Time        | Temp    | Pre               | ssure R           | dgs*       | Ві         | urette Ro  | dgs        |  | Head Loss | Effective         | Stresses          | Cal    | culated Flo | w Volume | s       | Gradient | k        |
|-------|--------|----------------|---------|-------------------|-------------------|------------|------------|------------|------------|--|-----------|-------------------|-------------------|--------|-------------|----------|---------|----------|----------|
|       |        |                | T       | P <sub>cell</sub> | P <sub>head</sub> | Ptail      | $V_{cell}$ | $V_{head}$ | $V_{tail}$ |  | h         | σ' <sub>max</sub> | σ' <sub>min</sub> | Inflow | Outflow     | Storage  | Cumul.  | (i)      |          |
| day   | hr     | min            | (°C)    | (psi)             | (psi)             | (psi)      | (cm3)      | (cm3)      | (cm3)      |  | (in)      | (psi)             | (psi)             | (cm3)  | (cm3)       | (cm3)    | Volume  |          | (cm/sec) |
| 1     |        | 0              |         | 64.02             | 61.30             | 56.50      | 17.10      | 0.00       | 10.00      |  | 132.927   | 7.5               | 2.7               |        |             |          | 0       | 28.9     |          |
| 1     |        | 5              |         | 64.02             | 61.30             | 56.50      | 17.10      | 0.30       | 9.72       |  | 132.927   | 7.5               | 2.7               | 0.3    | 0.3         | 0.0      | 0.2900  | 28.9     | 1.6E-06  |
| 1     |        | 15             |         | 64.02             | 61.20             | 56.50      | 17.10      | 0.78       | 9.24       |  | 130.158   | 7.5               | 2.8               | 0.5    | 0.5         | 0.0      | 0.7700  | 28.3     | 1.3E-06  |
| 1     |        | 30             |         | 64.02             | 61.20             | 56.60      | 17.10      | 1.47       | 8.53       |  | 127.389   | 7.4               | 2.8               | 0.7    | 0.7         | 0.0      | 1.4700  | 27.7     | 1.3E-06  |
| 1     |        | 60             |         | 64.02             | 61.10             | 56.60      | 17.10      | 2.78       | 7.23       |  | 124.619   | 7.4               | 2.9               | 1.3    | 1.3         | 0.0      | 2.7750  | 27.1     | 1.2E-06  |
| 1     |        | 140            |         | 64.02             | 60.70             | 56.70      | 17.10      | 5.90       | 4.10       |  | 110.773   | 7.3               | 3.3               | 3.1    | 3.1         | 0.0      | 5.9000  | 24.1     | 1.2E-06  |
|       |        | stop           | resum   | e test fo         | or overn          | ight run d | on exterr  | nal burre  | ttes       |  |           |                   |                   |        |             |          |         |          |          |
| 2     |        | 0              |         | 64.07             | 61.00             | 56.30      | 17.10      | 0.00       | 306.00     |  | 130.158   | 7.8               | 3.1               |        |             |          | 0.0000  | 28.3     |          |
| 2     |        | 1018           |         | 63.89             | 61.00             | 56.30      | 17.10      | 42.50      | 263.77     |  | 130.158   | 7.6               | 2.9               | 42.5   | 42.2        | 0.3      | 42.3650 | 28.3     | 1.2E-06  |
|       |        | stop           | resum   | e test fo         | or day ru         | ın on sm   | all (inter | nal) burr  | ettes      |  |           |                   |                   |        |             |          |         |          |          |
| 2     |        | 0              |         | 63.90             | 61.20             | 56.30      | 17.10      | 0.00       | 10.00      |  | 135.696   | 7.6               | 2.7               |        |             |          | 0.0000  | 29.5     |          |
| 2     |        | 8              |         | 63.90             | 61.20             | 56.30      | 17.10      | 0.38       | 9.62       |  | 135.696   | 7.6               | 2.7               | 0.4    | 0.4         | 0.0      | 0.3800  | 29.5     | 1.3E-06  |
| 2     |        | 19             |         | 63.89             | 61.20             | 56.30      | 17.10      | 0.84       | 9.14       |  | 135.696   | 7.6               | 2.7               | 0.5    | 0.5         | 0.0      | 0.8500  | 29.5     | 1.1E-06  |
| 2     |        | 39             |         | 63.88             | 61.00             | 56.40      | 17.10      | 1.63       | 8.34       |  | 127.389   | 7.5               | 2.9               | 0.8    | 8.0         | 0.0      | 1.6450  | 27.7     | 1.1E-06  |
| 2     |        | 70             |         | 63.88             | 61.00             | 56.40      | 17.10      | 2.83       | 7.12       |  | 127.389   | 7.5               | 2.9               | 1.2    | 1.2         | 0.0      | 2.8550  | 27.7     | 1.1E-06  |
| 2     |        | 130            |         | 63.88             | 60.80             | 56.60      | 17.10      | 4.90       | 5.04       |  | 116.311   | 7.3               | 3.1               | 2.1    | 2.1         | 0.0      | 4.9300  | 25.3     | 1.0E-06  |
| 2     |        | 208            |         | 63.87             | 60.60             | 57.10      | 17.10      | 7.62       | 2.32       |  | 96.926    | 6.8               | 3.3               | 2.7    | 2.7         | 0.0      | 7.6500  | 21.1     | 1.2E-06  |
|       |        | stop           |         |                   |                   |            |            |            |            |  |           |                   |                   |        |             |          |         |          |          |
| *Pres | sure r | eadings for he | eadwate | er and t          | ailwater          | from pre   | essure tra | ansduce    | r          |  |           |                   |                   |        |             |          |         |          |          |

#### HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER (ASTM Designation D 5084-90)

| Project    | Cornwall Ave Landfill Cover | Proj. No.  | 1037.0 | 30.035 |                |
|------------|-----------------------------|------------|--------|--------|----------------|
| Boring No. | ASTM D 1557 93.1% MaxDD     | Tested by  | CTM    | On     | July 1-2, 2015 |
| Sample No. | 2                           | Comp by    |        | On     |                |
| Depth (ft) | Triax Cell #II              | Checked by |        | On     |                |

WATER CONTENT DATA:

#### SPECIMEN DATA:

| () [ | ньк | INIFOR | MATIO | и. |
|------|-----|--------|-------|----|

|          | Before Test | After Test |
|----------|-------------|------------|
| Pan No.  |             |            |
| Wet+Tare | 335.89      | 672.92     |
| Dry+Tare | 289.56      | 551.27     |
| Tare     | 187.18      | 292.78     |
| WC, %    | 45.3        | 47.1       |

| 335.89 | 672.92 |
|--------|--------|
| 289.56 | 551.27 |
| 187.18 | 292.78 |
| 45.3   | 47.1   |

#### DESCRIPTION:

Grey SILT with fine sand, trace coarse sand and shell fragments

|                  | Imp. Units |      | SI Units |
|------------------|------------|------|----------|
| Height, in       | 4.2240     | cm   | 10.7290  |
| Diameter, in     | 2.0383     | cm^2 | 5.1773   |
| Wet Weight, g    | 380.9      |      |          |
| Volume, in3      | 13.8       |      |          |
| Area, in2        | 3.26307    | cm   | 21.05201 |
| Wet Unit Wt, pcf | 105.278    |      |          |
| Dry Unit Wt, pcf | 72.5       |      |          |

| Specific Gravity | ✓ Assumed | Measured | = |  |
|------------------|-----------|----------|---|--|
| B-Coefficient =  | 0.97      | NOTE:    |   |  |

#### ASTM D 5084 CONSTANT HEAD METHOD (METHOD A)

k = Q/iA

Q = volumetric throughput, cm^3 per second, between the current and previous reading

i= hydraulic gradient across the specimen; i.e. the ratio of head-loss across the sample and the sample length, 1psi = 27.69in of head

A = cross-sectional area of the specimen, cm^2

#### MEASURED DATA:

|       | Rea    | d Time         | Temp    | Pre               | ssure R           | dgs*      | Bu           | rette Ro          | lgs        |   |   | Head Loss | Effective         | Stresses          | C      | Calculated F | low Volume | es      | Gradient | k        |
|-------|--------|----------------|---------|-------------------|-------------------|-----------|--------------|-------------------|------------|---|---|-----------|-------------------|-------------------|--------|--------------|------------|---------|----------|----------|
|       |        | Ti             | Т       | P <sub>cell</sub> | P <sub>head</sub> | Ptail     | $V_{cell}$   | V <sub>head</sub> | $V_{tail}$ |   |   | h         | σ' <sub>max</sub> | σ' <sub>min</sub> | Inflow | Outflow      | Storage    | Cumul.  | (i)      |          |
| day   | hr     | min            | (°C)    | (psi)             | (psi)             | (psi)     | (cm3)        | (cm3)             | (cm3)      |   |   | (in)      | (psi)             | (psi)             | (cm3)  | (cm3)        | (cm3)      | Volume  |          | (cm/sec) |
| 1     |        | 0              |         | 63.87             | 61.20             | 56.40     | 17.10        | 0.00              | 10.00      |   |   | 132.927   | 7.5               | 2.7               |        |              |            | 0       | 31.5     |          |
| 1     |        | 32             |         | 63.87             | 61.00             | 56.30     | 17.10        | 0.96              | 9.16       |   |   | 130.158   | 7.6               | 2.9               | 1.0    | 8.0          | 0.1        | 0.9000  | 30.8     | 7.1E-07  |
| 1     |        | 64             |         | 63.87             | 60.80             | 56.20     | 17.10        | 1.81              | 8.21       |   |   | 127.389   | 7.7               | 3.1               | 0.9    | 0.9          | -0.1       | 1.8000  | 30.2     | 7.3E-07  |
| 1     |        | 100            |         | 63.87             | 60.70             | 56.30     | 17.10        | 2.78              | 7.27       |   |   | 121.850   | 7.6               | 3.2               | 1.0    | 0.9          | 0.0        | 2.7550  | 28.8     | 7.1E-07  |
| 1     |        | 144            |         | 63.87             | 60.60             | 56.30     | 17.10        | 3.88              | 6.18       |   |   | 119.081   | 7.6               | 3.3               | 1.1    | 1.1          | 0.0        | 3.8500  | 28.2     | 6.9E-07  |
|       |        |                |         |                   |                   |           |              |                   |            |   |   |           |                   |                   |        |              |            |         |          |          |
|       |        | stop           | resum   | e test fo         | r overni          | ght run o | n externa    | al burrett        | es         |   |   |           |                   |                   |        |              |            |         |          |          |
| 2     |        | 0              |         | 63.87             | 60.90             | 56.10     | 17.10        | 0.00              | 306.00     |   |   | 132.927   | 7.8               | 3.0               |        |              |            | 0.0000  | 31.5     |          |
| 2     |        | 1020           |         | 63.80             | 60.80             | 56.10     | 17.10        | 27.54             | 279.07     |   |   | 130.158   | 7.7               | 3.0               | 27.5   | 26.9         | 0.6        | 27.2340 | 30.8     | 6.8E-07  |
|       |        | stop           | resum   | e test fo         | r day ru          | n on sma  | all (interna | al) burre         | ttes       |   |   |           |                   |                   |        |              |            |         |          |          |
| 2     |        | 0              |         | 63.80             | 60.90             | 56.20     | 17.10        | 0.00              | 10.00      |   |   | 130.158   | 7.6               | 2.9               |        |              |            | 0.0000  | 30.8     |          |
| 2     |        | 6              |         | 63.80             | 60.90             | 56.20     | 17.10        | 0.19              | 9.83       |   |   | 130.158   | 7.6               | 2.9               | 0.2    | 0.2          | 0.0        | 0.1800  | 30.8     | 7.7E-07  |
| 2     |        | 126            |         | 63.79             | 60.70             | 56.30     | 17.10        | 3.03              | 6.98       |   |   | 121.850   | 7.5               | 3.1               | 2.8    | 2.9          | 0.0        | 3.0250  | 28.8     | 6.3E-07  |
| 2     |        | 235            |         | 63.78             | 60.50             | 56.50     | 17.10        | 5.40              | 4.60       |   |   | 110.773   | 7.3               | 3.3               | 2.4    | 2.4          | 0.0        | 5.4000  | 26.2     | 6.3E-07  |
| 2     |        | 360            |         | 63.78             | 60.20             | 56.60     | 17.10        | 7.92              | 2.10       | • | , | 99.695    | 7.2               | 3.6               | 2.5    | 2.5          | 0.0        | 7.9100  | 23.6     | 6.4E-07  |
|       |        | stop           |         |                   |                   |           |              |                   |            | • | , |           |                   |                   |        |              |            |         |          |          |
| 3     |        | 0              |         | 68.06             | 60.70             | 55.90     | 17.10        | 0.00              | 306.00     | • | , | 132.927   | 12.2              | 7.4               | 0.0    |              |            | 0.0000  | 31.5     |          |
| 3     |        | 2805           |         | 67.96             | 60.40             | 55.80     | 17.10        | 44.68             | 261.32     | • | , | 127.389   | 12.2              | 7.6               | 44.7   | 44.7         | 0.0        | 44.6760 | 30.2     | 4.1E-07  |
| *Pres | sure r | eadings for he | eadwate | er and ta         | ilwater f         | rom pres  | sure trar    | nsducer           |            | • |   |           |                   |                   |        |              |            |         |          |          |

### HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER (ASTM Designation D 5084-90)

SI Units

10.3683

Project Cornwall Ave Landfill Cover Proj. No. 1037.030.035 Boring No. o 76 PCF target density (76.5 ac Tested by On 7/16/2015 Sample No. Comp by On 3 Triax Cell #I On Depth (ft) Checked by

WATER CONTENT DATA:

#### SPECIMEN DATA:

Height, in

Dry Unit Wt, pcf

|          | Before Test | After Test |
|----------|-------------|------------|
| Pan No.  | d-11        | D-6        |
| Wet+Tare | 402.46      | 627.20     |
| Dry+Tare | 346.83      | 511.20     |
| Tare     | 187.21      | 246.45     |
| WC, %    | 34.9        | 43.8       |

| ,                |         |     |          |
|------------------|---------|-----|----------|
| Diameter, in     | 2.0290  | cm2 | 5.1537   |
| Wet Weight, g    | 363.98  |     |          |
| Volume, in3      | 13.2    |     |          |
| Area, in2        | 3.23336 | cm  | 20.86034 |
| Wet Unit Wt, pcf | 105.1   |     |          |

77.9

Imp. Units

4.0820

Specific Gravity Assumed Measured = 2.7

B-Coefficient = 0.97 NOTE:

DESCRIPTION:

Grey SILT with fine sand, trace coarse sand and shell fragments

#### ASTM D 5084 CONSTANT HEAD METHOD (METHOD A)

k = Q/iA

Q = volumetric throughput, cm<sup>3</sup> per second, between the current and previous reading

i= hydraulic gradient across the specimen; i.e. the ratio of head-loss across the sample and the sample length, 1psi = 27.69in of head

A = cross-sectional area of the specimen, cm<sup>2</sup>

#### MEASURED DATA:

| 0.00<br>0.50<br>1.50 | (°C) 6         | (psi)<br>69.12<br>69.14                              | (psi)<br>66.30<br>66.20                             | Ptail<br>(psi)<br>62.50<br>62.60                                     | V <sub>cell</sub><br>(cm3)<br>20.40<br>20.40                                                          | V <sub>head</sub> (cm3) 0.00                                                                                                      | V <sub>tail</sub> (cm3) 10.00                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                               | h<br>(in)                                                                                                                                                                                                        | σ' <sub>max</sub><br>(psi)                                | σ' <sub>min</sub><br>(psi)                                                                                                                                                                                                                                 | Inflow<br>(cm3)                                           | Outflow<br>(cm3)                                                                                                                                                                                                                                                                             | Storage (cm3)                                             | Cumul.<br>Volume                                      | (i)                                                                                                                                                                                                                                                                                                                                         | (cm/sec)                                              |
|----------------------|----------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 0.00<br>0.50<br>1.50 | (              | 69.12 (69.14 (                                       | 66.30 (<br>66.20 (                                  | 62.50                                                                | 20.40                                                                                                 | 0.00                                                                                                                              |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                               | (in)                                                                                                                                                                                                             | (psi)                                                     | (psi)                                                                                                                                                                                                                                                      | (cm3)                                                     | (cm3)                                                                                                                                                                                                                                                                                        | (cm3)                                                     | Volume                                                |                                                                                                                                                                                                                                                                                                                                             | (cm/sec)                                              |
| 0.50<br>1.50         | (              | 69.14                                                | 66.20                                               |                                                                      |                                                                                                       |                                                                                                                                   | 10.00                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                           |                                                                                                                                                                                                                                                            |                                                           |                                                                                                                                                                                                                                                                                              |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                             | ,                                                     |
| 1.50                 | (              |                                                      |                                                     | 62.60                                                                | 20.40                                                                                                 |                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 105.234                                                                                                                                                                                                          | 6.6                                                       | 2.8                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                              |                                                           | 0                                                     | 25.8                                                                                                                                                                                                                                                                                                                                        |                                                       |
|                      |                | 69.12                                                | 00 00                                               |                                                                      | _0.⊤0                                                                                                 | 1.22                                                                                                                              | 8.80                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 99.695                                                                                                                                                                                                           | 6.5                                                       | 2.9                                                                                                                                                                                                                                                        | 1.2                                                       | 1.2                                                                                                                                                                                                                                                                                          | 0.0                                                       | 1.2100                                                | 24.4                                                                                                                                                                                                                                                                                                                                        | 1.3E-06                                               |
| r                    |                |                                                      | 00.00                                               | 62.70                                                                | 20.60                                                                                                 | 3.39                                                                                                                              | 6.61                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 91.387                                                                                                                                                                                                           | 6.4                                                       | 3.1                                                                                                                                                                                                                                                        | 2.2                                                       | 2.2                                                                                                                                                                                                                                                                                          | 0.0                                                       | 3.3900                                                | 22.4                                                                                                                                                                                                                                                                                                                                        | 1.2E-06                                               |
|                      | resume         | test for                                             | overnig                                             | ht run c                                                             | on exterr                                                                                             | nal burre                                                                                                                         | ettes                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                           |                                                                                                                                                                                                                                                            |                                                           |                                                                                                                                                                                                                                                                                              |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                       |
| 4.00                 | 6              | 69.12                                                | 66.30                                               | 62.40                                                                | 20.60                                                                                                 | 0.00                                                                                                                              | 306.00                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 108.003                                                                                                                                                                                                          | 6.7                                                       | 2.8                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                              |                                                           | 0.0000                                                | 26.5                                                                                                                                                                                                                                                                                                                                        |                                                       |
| 9.47                 | 6              | 69.03                                                | 66.00                                               | 62.40                                                                |                                                                                                       | 35.50                                                                                                                             | 270.50                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 99.695                                                                                                                                                                                                           | 6.6                                                       | 3.0                                                                                                                                                                                                                                                        | 35.5                                                      | 35.5                                                                                                                                                                                                                                                                                         | 0.0                                                       | 35.4960                                               | 24.4                                                                                                                                                                                                                                                                                                                                        | 1.2E-06                                               |
| r                    | resume         | test for                                             | day run                                             | on sma                                                               | all (interr                                                                                           | nal) burr                                                                                                                         | ettes                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                           |                                                                                                                                                                                                                                                            |                                                           |                                                                                                                                                                                                                                                                                              |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                       |
| 4.00                 | 6              | 69.04                                                | 66.30                                               | 62.40                                                                | 21.80                                                                                                 | 0.00                                                                                                                              | 10.00                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 108.003                                                                                                                                                                                                          | 6.6                                                       | 2.7                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                              |                                                           | 0.0000                                                | 26.5                                                                                                                                                                                                                                                                                                                                        |                                                       |
| 7.17                 | 6              | 69.02                                                | 65.70                                               | 62.80                                                                | 21.70                                                                                                 | 6.27                                                                                                                              | 3.73                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 80.310                                                                                                                                                                                                           | 6.2                                                       | 3.3                                                                                                                                                                                                                                                        | 6.3                                                       | 6.3                                                                                                                                                                                                                                                                                          | 0.0                                                       | 6.2700                                                | 19.7                                                                                                                                                                                                                                                                                                                                        | 1.1E-06                                               |
| 9.37                 | 6              | 69.01                                                | 65.50                                               | 63.00                                                                | 21.70                                                                                                 | 9.72                                                                                                                              | 0.29                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                               | 69.233                                                                                                                                                                                                           | 6.0                                                       | 3.5                                                                                                                                                                                                                                                        | 3.5                                                       | 3.4                                                                                                                                                                                                                                                                                          | 0.0                                                       | 9.7150                                                | 17.0                                                                                                                                                                                                                                                                                                                                        | 1.1E-06                                               |
|                      |                |                                                      |                                                     |                                                                      |                                                                                                       |                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                  |                                                           |                                                                                                                                                                                                                                                            |                                                           |                                                                                                                                                                                                                                                                                              |                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                             |                                                       |
| 4.<br>7.<br>9.       | 00<br>17<br>37 | resume<br>00 (17 (17 (17 (17 (17 (17 (17 (17 (17 (17 | resume test for<br>00 69.04<br>17 69.02<br>37 69.01 | resume test for day rur 00 69.04 66.30 17 69.02 65.70 37 69.01 65.50 | resume test for day run on sm<br>00 69.04 66.30 62.40<br>17 69.02 65.70 62.80<br>37 69.01 65.50 63.00 | resume test for day run on small (inter<br>00 69.04 66.30 62.40 21.80<br>17 69.02 65.70 62.80 21.70<br>37 69.01 65.50 63.00 21.70 | resume test for day run on small (internal) burn<br>00 69.04 66.30 62.40 21.80 0.00<br>17 69.02 65.70 62.80 21.70 6.27 | resume test for day run on small (internal) burrettes 00   69.04   66.30   62.40   21.80   0.00   10.00 17   69.02   65.70   62.80   21.70   6.27   3.73 37   69.01   65.50   63.00   21.70   9.72   0.29 | resume test for day run on small (internal) burrettes 00   69.04   66.30   62.40   21.80   0.00   10.00   17   69.02   65.70   62.80   21.70   6.27   3.73   37   69.01   65.50   63.00   21.70   9.72   0.29 | resume test for day run on small (internal) burrettes  00   69.04   66.30   62.40   21.80   0.00   10.00    17   69.02   65.70   62.80   21.70   6.27   3.73    37   69.01   65.50   63.00   21.70   9.72   0.29 | resume test for day run on small (internal) burrettes  00 | resume test for day run on small (internal) burrettes  00   69.04   66.30   62.40   21.80   0.00   10.00   108.003   6.6  17   69.02   65.70   62.80   21.70   6.27   3.73   80.310   6.2  37   69.01   65.50   63.00   21.70   9.72   0.29   69.233   6.0 | resume test for day run on small (internal) burrettes  00 | resume test for day run on small (internal) burrettes  00   69.04   66.30   62.40   21.80   0.00   10.00   108.003   6.6   2.7    17   69.02   65.70   62.80   21.70   6.27   3.73   80.310   6.2   3.3   6.3    37   69.01   65.50   63.00   21.70   9.72   0.29   69.233   6.0   3.5   3.5 | resume test for day run on small (internal) burrettes  00 | resume test for day run on small (internal) burrettes | resume test for day run on small (internal) burrettes  00   69.04   66.30   62.40   21.80   0.00   10.00   108.003   6.6   2.7   0.0000  17   69.02   65.70   62.80   21.70   6.27   3.73   80.310   6.2   3.3   6.3   6.3   0.0   6.2700  37   69.01   65.50   63.00   21.70   9.72   0.29   69.233   6.0   3.5   3.5   3.4   0.0   9.7150 | resume test for day run on small (internal) burrettes |

# HYDRAULIC CONDUCTIVITY OF SATURATED POROUS MATERIALS USING A FLEXIBLE WALL PERMEAMETER (ASTM Designation D 5084-90)

Cornwall Ave Landfill Cover 1037.030.035 Project Proj. No. Boring No. o 73 PCF target density (75.1 ac Tested by CTM On 7/16/2015 On Sample No. 4 Comp by Depth (ft) Triax Cell #II Checked by On

WATER CONTENT DATA:

#### SPECIMEN DATA:

| 0 | THER | INFO | RMA | TION: |
|---|------|------|-----|-------|
|   |      |      |     |       |

|          | Before Test | After Test |
|----------|-------------|------------|
| Pan No.  | k8          | D-8        |
| Wet+Tare | 562.18      | 610.41     |
| Dry+Tare | 453.97      | 494.02     |
| Tare     | 195.69      | 245.81     |
| WC, %    | 41.9        | 46.9       |

#### DESCRIPTION:

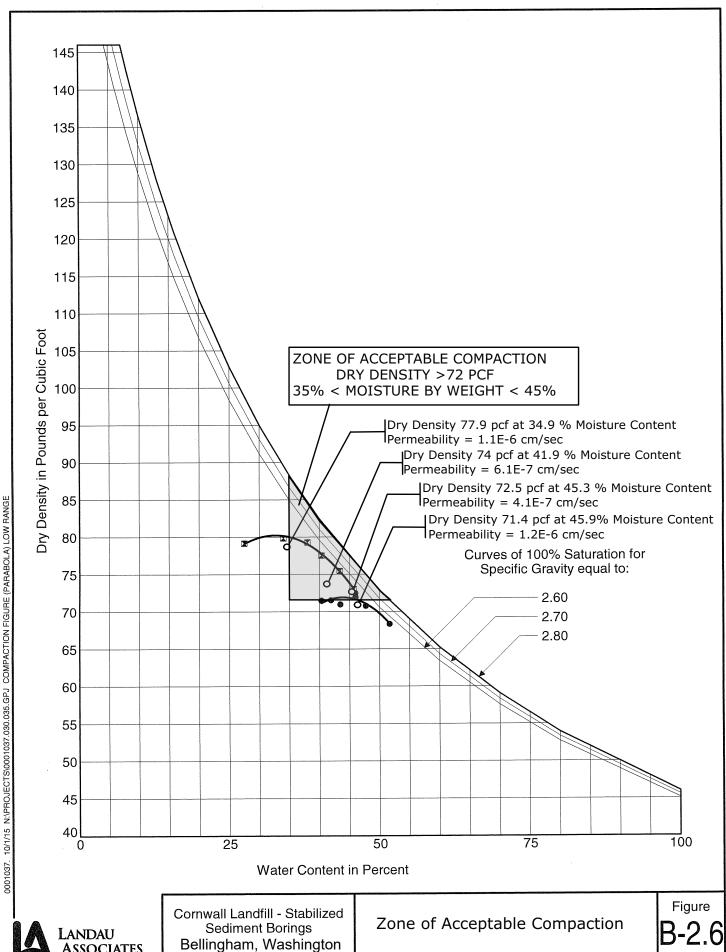
Grey SILT with fine sand, trace coarse sand and shell fragments

|                  | Imp. Units |      | SI Units |
|------------------|------------|------|----------|
| Height, in       | 4.0820     | cm   | 10.3683  |
| Diameter, in     | 2.0290     | cm^2 | 5.1537   |
| Wet Weight, g    | 363.98     |      |          |
| Volume, in3      | 13.2       |      |          |
| Area, in2        | 3.23336    | cm   | 20.86034 |
| Wet Unit Wt, pcf | 105.1      |      |          |
| Dry Unit Wt, pcf | 74.0       |      |          |

| Specific Gravity | ✓ Assumed | Measured | = | 2.7 |
|------------------|-----------|----------|---|-----|
| B-Coefficient =  | 0.97      | NOTE:    | • |     |

#### ASTM D 5084 CONSTANT HEAD METHOD (METHOD A)

k = Q/iA


Q = volumetric throughput, cm^3 per second, between the current and previous reading

i= hydraulic gradient across the specimen; i.e. the ratio of head-loss across the sample and the sample length, 1psi = 27.69in of head

A = cross-sectional area of the specimen, cm<sup>2</sup>

#### **MEASURED DATA:**

|       | Rea    | d Time         | Temp    | Pre               | ssure R           | dgs*       | В          | urette Rd  | lgs        |  | Head Loss | Effective         | Stresses          | Ca     | lculated F | low Volume | es       | Gradient | k        |
|-------|--------|----------------|---------|-------------------|-------------------|------------|------------|------------|------------|--|-----------|-------------------|-------------------|--------|------------|------------|----------|----------|----------|
|       |        |                | T       | P <sub>cell</sub> | $P_{\text{head}}$ | Ptail      | $V_{cell}$ | $V_{head}$ | $V_{tail}$ |  | h         | σ' <sub>max</sub> | σ' <sub>min</sub> | Inflow | Outflow    | Storage    | Cumul.   | (i)      |          |
| day   | hr     | min            | (°C)    | (psi)             | (psi)             | (psi)      | (cm3)      | (cm3)      | (cm3)      |  | (in)      | (psi)             | (psi)             | (cm3)  | (cm3)      | (cm3)      | Volume   |          | (cm/sec) |
| 1     |        | 0              |         | 68.82             | 66.10             | 61.30      | 6.00       | 0.04       | 9.96       |  | 132.927   | 7.5               | 2.7               |        |            |            | 0        | 32.6     |          |
| 1     |        | 1              |         | 68.82             | 66.10             | 61.30      | 6.20       | 0.05       | 9.86       |  | 132.927   | 7.5               | 2.7               | 0.0    | 0.1        | -0.1       | 0.0550   | 32.6     | 1.3E-06  |
| 1     |        | 5              |         | 68.82             | 66.10             | 61.30      | 6.30       | 0.24       | 9.68       |  | 132.927   | 7.5               | 2.7               | 0.2    | 0.2        | 0.0        | 0.2400   | 32.6     | 1.1E-06  |
| 1     |        | 68             |         | 68.81             | 65.80             | 61.40      | 6.20       | 2.38       | 7.52       |  | 121.850   | 7.4               | 3.0               | 2.1    | 2.2        | 0.0        | 2.3900   | 29.9     | 8.7E-07  |
|       |        | stop           | resum   | e test fo         | or overn          | ight run ( | on exterr  | nal burret | tes        |  |           |                   |                   |        |            |            |          |          |          |
| 1     |        | 0              |         | 68.82             | 66.00             | 61.30      | 6.30       | 0.00       | 306.00     |  | 130.158   | 7.5               | 2.8               |        |            |            | 0.0000   | 31.9     |          |
| 1     |        | 932            |         | 68.81             | 66.00             | 61.30      | 6.50       | 30.60      | 278.46     |  | 130.158   | 7.5               | 2.8               | 30.6   | 27.5       | 3.1        | 29.0700  | 31.9     | 7.8E-07  |
| 1     |        | 1442           |         | 68.78             | 65.90             | 61.30      | 6.60       | 45.90      | 264.69     |  | 127.389   | 7.5               | 2.9               | 15.3   | 13.8       | 1.5        | 43.6050  | 31.2     | 7.2E-07  |
| 2     |        | 2363           |         | 68.72             | 65.80             | 61.40      | 6.70       | 70.69      | 241.74     |  | 121.850   | 7.3               | 2.9               | 24.8   | 23.0       | 1.8        | 67.4730  | 29.9     | 6.8E-07  |
| 2     |        | 2760           |         | 68.72             | 65.80             | 61.40      | 6.80       | 81.09      | 232.25     |  | 121.850   | 7.3               | 2.9               | 10.4   | 9.5        | 0.9        | 77.4180  | 29.9     | 6.7E-07  |
| 3     |        | 3846           |         | 68.72             | 65.80             | 61.40      | 6.80       | 105.88     | 207.47     |  | 121.850   | 7.3               | 2.9               | 24.8   | 24.8       | 0.0        | 102.2040 | 29.9     | 6.1E-07  |
|       |        | stop           |         |                   |                   |            |            |            |            |  |           |                   |                   |        |            |            |          |          |          |
| *Pres | sure r | eadings for he | eadwate | er and t          | ailwater          | from pre   | essure tra | ansducer   |            |  |           |                   |                   |        |            |            |          |          |          |



**ASSOCIATES** 

# **Landfill Stability Analysis**



Edmonds, WA. 98020 Phone: (425) 778-0907 Fax: (425) 778-6409

130 2nd Avenue South

JOB NO. 1037 JOB NAME Cornwall Ave Landfill

CE

SUBJECT Slope Stability CHK BY SZW & KWW

CALC BY

DATE DATE 12/15/2015 9/29/2017

#### **Problem Statement:**

Determine that the proposed slopes and upland cover system proposed for the Cornwall Avenue landfill closure will have acceptable factors of safety considering static, saturated cover, and earthquake conditions

#### Requirements

- \* Design the cover system and slopes to have a factor of safety of greater than 1.25 for static, saturated conditions (WSDOT criteria) and more than 1.1 for seismic events with a predicted displacement of less than 3 feet (Typical landfill design criteria per Mikdasi and Seed, 1973)
- \* In accordance with the 2012 IBC, evaluate design earthquake event with a 2 percent probability of exceedance in 50 years (a 2,475-year return period event) this is equivalent to a ninety percent or greater probability that the acceleration will not be exceeded in two hundred fifty years, which is current landfill design criteria established by the EPA and Washington Department of Ecology.

#### Assumptions

Finished Landfill Slopes ranging from 2 percent to 25% as shown on EDR figures

Soil Properties Used in Slope Stability Analyses (derived from previous geotechnical studies at the site, Appendix B.2 and H.1)

| Soil Unit                                                                    | Total Unit Weight (pounds per cubic foot) | Effective<br>Friction<br>Angle (φ,<br>degrees) | Cohesion<br>(c, pounds<br>per square<br>foot) |
|------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------|
| Stabilized Sediment (proposed<br>landfill low permeability cover<br>layer)   | 100                                       | 32                                             | 250                                           |
| Silty Gravel (proposed landfill cover soil)                                  | 125                                       | 36                                             | -                                             |
| Interface Strength between soil and geosynthetics                            | NA                                        | 30                                             | -                                             |
| Gravelly sand with silt to a sandy clay with gravel (imported fill material) | 130                                       | 32                                             | 200                                           |
| Wood Debris, Sawdust, Sand & Silt                                            | 75                                        | 28                                             | -                                             |
| Landfill Refuse                                                              | 70                                        | 31                                             | 300                                           |
| Reworked Sediments & Nooksack<br>Deposits                                    | 80                                        | 28                                             | 150                                           |
| Glaciomarine Deposits                                                        | 125                                       | 32                                             | 150                                           |
| Chuckanut Formation                                                          | 130                                       | 45                                             | 1,000                                         |

From top to bottom, the proposed cover system above the fill will consists of:

- LFG collection layer geocomposite
- 24-inch thick cover soil layer, assumed maximum average

vertical hydraulic conductivity

- = 1 x 10-6 cm/sec
- · Geomembrane liner
- Drainage Geocomposite
- 24-inch-thick cover soil including top 6-inch thickness

topsoil

Rainfall Event (US Dept. of Commerce, NOAA Atlas 2, Volume IX, 1973) 6-Hr, 25-yr Precipitation = 1.65 inches **Runoff Coefficient** 0.35 (WSDOT Hydraulics Manual Figure 2-4.2) Design Earthquake 0.408g the peak ground acceleration (PGA)

#### References

- 1. Bray, J.D., Rathje, E.M., Augell, A.J. and Merry, S.M., Simplified Seismic Design Procedure for Geosynthetic-Lined, Solid-Waste Landfills, Geosynthetics International 1998, Vol. 5, Nos 1-2
- 2. Makdisi, F.I., and H.B. Seed. 1977. A Simplified Procedure for Estimating Earthquake-Induced Deformation in Dams and Embankments, Report EERC-77/19. Earthquake Engineering Research Center, University of California, Berkeley.
- 3. Rocscience, Inc. 2005. SLIDE Computer Slope Stability Program, Version 5.0. Manufactured by Rocscience, Inc.

4. Soong, T.Y. and Koerner, R.M. 1997. The Design of Drainage Systems Over Geosynthetically Lined Slopes, GRI Report Number 19. Geosynthetics Research Institute. Drexel University. June 17.

#### Solution

A computer slope stability program, SLIDE version 5.0 (Rocscience Inc. 2005), was used to determine the factors of safety under both the existing and proposed conditions. SLIDE evaluates the stability of circular and non-circular failure surfaces in soil or rock using vertical slice limit equilibrium methods. For this application, the simplified Bishop's method of slices was used. This method estimates slope stability by assuming numerous failure surfaces and calculates the forces that would cause slope movement (driving forces) and the forces resisting slope movement (resisting forces) for each selected failure surface. The ratio of resisting force to driving force for a given failure surface is referred to as the factor of safety (FOS). SLIDE uses a searching routine to determine the critical failure surfaces (i.e., those surfaces with the lowest FOS) for a given slope.

#### A. Evaluation of global stability of proposed landfill slopes

- 1. Create a cross section through the highest point in the landfill with steepest slopes based on proposed contours and subsurface conditions determined in the RI/FS.
- 2. Using the SLIDE computer program, search for potential circular failure surface with the lowest factor of safety assuming static saturated cover conditions.

Lowest FOS found East Slope 3.039
Lowest FOS found West Slope 3.414

- 3. Per Reference 1. simulate the worst conditions, assume the cover system is at or close to saturation, and apply a psuedostatic seismic acceleration to horizontal active forces in the stability analyses.
- 4. Vary the psuedostatic seismic acceleration until the stability analyses reaches a factor of safety of 1.0. The seismic acceleration at which this occurs is called the yield acceleration, ky for the slope condition modeled.

Using the SLIDE version 5.0 ky = .44 to achieve FOS = 1.0 for east slope ky = .29 to achieve FOS = 1.0 for west slope

5. From Reference 1, figure 2(a), determine the maximum horizontal acceleration (MHA) for the earthquake magnitude and distance of the event from the site. The design earthquake applicable to this site is:

Sandy Point Fault (Reverse Fault)
Distance to Site: ~15km
Historic Magnitude: 6-6.5
From Figure 2(a): MHA = 0.20 \* 1.3 = 0.26g

6. Estimate the frequency content of the mean period, Tm , of the event using Reference 1, figure 2(b).

From Figure 2(b): Tm = 0.49 sec

7. Estimate the duration, D5-95 , of the event using Reference 1, figure (2c).

From Figure 2(c): D5-95 = 11 sec

8. Estimate the average height of the waste, H, under the cover system

East slope: H= 15 feet (4.6 m) West Slope: H = 32 feet (9.75 m)

9. Estimate the shear wave velocity through municipal solid waste, Vs, from Reference 1, Figure 3 using the average height determined in step 8

East Slope: 175 m/s West Slope: 195 m/s

10. Estimate the fundamental period of the waste, Ts, as Ts = 4H/Vs

East Slope: Ts = (4 \* 4.6) / 175 = Ts = .11 secWest Slope: Ts = (4 \* 9.75) / 195 = Ts = .20 sec

11. Determine the nonlinear response factor, NRF, for the site using the table on Reference 1, figure 6.

NRF = 1.13

12. Estimate the maximum horizontal earthquake acceleration at the top of the waste, MHEAtop , using Figure 8 and the 16th probability of exceedance line, MHEAtop (upper) and the median line, . MHEAtop(median)

East Slope: Ts / Tm = 0.11 / .49 = .22 West Slope: Ts / Tm = 0.20 / .49 = .41

From Figure 8:

East Slope: MHEAtop (upper) / [(MHArock)(NRF) = 2.2

MHEAtop (median) / [(MHArock)(NRF) = 2.0

West Slope: MHEAtop (upper) / [(MHArock)(NRF) = 1.81

MHEAtop (median) / [(MHArock)(NRF) = 1.50]

East Slope: MHEAtop (upper) = 2.2 \* 1.13 \* .26 = MHEAtop (upper) = 0.65

MHEAtop (median) = 2.0 \* 1.13 \* .26 = MHEAtop (upper) = 0.59

West Slope: MHEAtop (upper) = 1.81 \* 1.13 \* .26 = MHEAtop (upper) = 0.53

13. For this design procedure, the MHEAtop is set equal to the maximum anticipated horizontal acceleration of the cover system, kmax. Divide the yield acceleration, ky, (from step 4) by the MHEAtop values in step 10 to get a range of ky/kmax.

East Slope: ky/ kmax (upper) = .44 / .65= ky/ kmax (upper) = .68

ky/kmax (median) = .44 / .59 = ky/kmax (median) = .75

West Slope: ky/ kmax (upper) = .29/ .53 = ky/ kmax (upper) = .55

ky/kmax (median) = .29 / .44 = ky/kmax (median) = .66

14. Enter the Reference 2, figure with the ky/ kmax values from step 13 and the design earthquake magnitude (from step 5) to determine the range in predicted horizontal displacement of the cover system after the design earthquake. Predicted displacements less than 1 foot (300mm) are generally considered acceptable. For cover systems displacement as much as 3 feet may be acceptable as the cover is easily repaired.

East Slope Predicted Displacements: 0.2 to 4 cm West Slope Predicted Displacements: 0.3 to 11 cm

#### B. Evaluation of the Stability of the Proposed Cover System

1. Using the EPA Hydrologic Evaluation of Landfill Performance (HELP) model, determine the maximum drainage length, L, (meters) for the drainage layer from review of the maximum distance between cross-slope collection ditches or berms.

**HELP Model Results Attached** 

Cover Slope (%) Maximum
Collection
Pipe Spacing
(ft)
2 70
5 145
25 665

- 2. Per Reference 4, evaluate the cover stability (veneer stability) for the steepest final cover slope proposed (25%). The following text describes the equations used in the attached spreadsheet.
- 3. Using the assumed runoff coefficient, RC, determine the theoretical percolation, PERC, through the erosion layer assuming the 25-yr, 6-hr precipitation event occurs over one hour (P) using the following equation (which assumes the erosion layer is already at field capacity)

$$PERC = P(1-RC)$$
 (Ref 4, eq 20)

where:

P = probable maximum hourly precipitation (mm)

RC = runoff coefficient

4. Using the theoretical percolation and the assumed vertical hydraulic conductivity of the erosion layer, determine the Design Percolation Rate through the erosion layer using the following equations:

PERC = as calculated When PERC < kv

where: kv = is the average vertical hydraulic conductivity of the cover soil

- 5. Determine the hydraulic gradient, i, (assume equal to the slope)
- $\textbf{6. Determine the flux required, } \textbf{q}_{\text{reqd}}, \text{ (or rate of percolation per unit width times the drainage length) using the following equation:}$

$$q_{regd} = (PERC/1000) \times L(\cos b) \times w$$
 (m3/hour) (Ref 4, eq 22)

where: b = slope angle

w = unit width (m)

- $7. \ \, \text{Select a hydraulic conductivity of the drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissivity of Geocomposite/thickness of drainage layer}, \, k_{\text{h}} = \text{Transmissionage layer}$
- 8. Determine the allowable flux (or allowable flow rate through the layer) using the following equation:

$$q_{allow} = k_h i A$$

where: A = Unit width \* drainage layer thickness

 $9. \ \ Determine if the drainage layer capacity, DLC, \ is exceeded using the following equation:$ 

$$DLC = (q_{allow}/q_{reqd})$$
 (Ref 4, eq 23)

- 10. If the drainage layer capacity is exceeded, increase kh until the drainage layer is at or near the capacity required.
- 11. Determine the average height of the water in the drainage layer, havg, using the following equation:

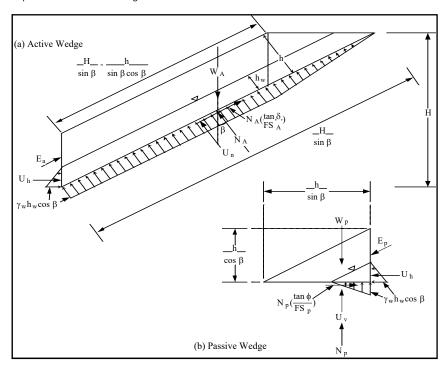
$$h_{avg} = (q_{reqd}/3,600)/(k_h^* i)$$
 (Ref 4, eq 24)

when DLC < 1.0

$$h_{avg} = \{ [(q_{reqd}/(3600*i)] - [h_d(k_h - k_v)] \} / k_v$$
 (Ref 4, eq 26)

where:

h<sub>d</sub> = the thickness of the drainage layer (m)


12. Determine the parallel submergence ratio, PSR,  $\,$  using the following equation:

where:

h<sub>el</sub> = thickness of the erosion layer (m)

- 13. If the PSR>1, Increase kh or the thickness of the drainage layer and return to step 8 or decrease the drainage length of the slope and return to step 3.

  Decreasing the drainage length will require placement of a cross-slope perforated collection pipe or collection berm
- 14. Determine the average dry unit weight, Ydry , and saturated unit weights, Ysat'd of the cover soils and drainage layer above the barrier soil layer.
- 15. Determine the stability of the slope using seepage forces with parallel to the slope seepage buildup and determine the Factor of safety using force equilibrium as shown following:



where the Factor of Safety, FS = 
$$\frac{-b + \sqrt{b - 4ac}}{2a}$$

where:

 $a = W_A(\sin\beta)(\cos\beta) - U_h(\cos^2\beta) + U_h$ 

b= -  $W_A(\sin^2\beta)(\tan \phi)$  +  $U_h(\cos\beta)(\sin\beta)(\tan \phi)$  -  $N_A(\cos\beta)(\tan \delta)$  -  $(W_{P-})$ 

 $U_V$ )(tan  $\phi$ )

 $c = N_A(sin\beta)(tan \delta)(tan \phi)$ 

in which

 $W_A = \{ \gamma_{dry} \ (h-h_w)[2Hcos\beta-(h+h_w)] \ + \ \gamma_{sat'd} \ (h_w)(2Hcos\beta-h_w) \} / sin \ 2\beta$ 

 $U_h = [\gamma_w (h_w)^2]/2$ 

 $N_A = W_A (\cos\beta) + U_h(\sin\beta) - U_n$ 

 $U_n = \left[ \gamma_w \ (h_w) \ (cos\beta) (2Hcos\beta - h_w) \right] / \ sin \ 2\beta$ 

 $W_P = [\gamma_{dry} (h^2-h_w^2) + \gamma_{sat'd}(h_w^2)]/ \sin 2\beta$ 

 $U_V = U_h (\cot \beta)$ 

- 16. If the factor of safety is less than 1.3, Increase kh or the thickness of the drainage layer and return to step 8 or decrease the drainage length of the slope and return to step 3. Decreasing the drainage length will require placement of a cross-slope perforated collection pipe or collection berm.
- 17. To simulate the worst conditions, assume the drainage layer is at or close to saturation, and apply a psuedostatic seismic acceleration to horizontal active forces in the stability analyses. The yield acceleration of the cover system is provided on the attached spreadsheet. The displacement analysis is included in step A. Evaluation of global stability of proposed slopes above.

#### Conclusions:

- 1. The proposed slopes have acceptable factors of safety during static and earthquake conditions.
- 2. The proposed cover system as designed is expected to have acceptable stability during static, high intensity rain events, and during an earthquake.

#### Sensitivity analysis for Rainfaill Intensity on 4H:1V (steepest) slope

The Factor of safety (FOS) decreased to 1.26 for the proposed 4H:1V slope with 24-hour, 100-year rainfall, but the stability of the flatter slopes proposed was not affected by increased rain fall assumptions. The FOS for the 4H:1V slope is slightly less than the minimum FOS of 1.3 accepted for saturated slope conditions.

| Rainfall (inches) | FOS  | Storm event                                               |
|-------------------|------|-----------------------------------------------------------|
|                   | 1.65 | 2.74 25 yr , 6 hr storm (design storm recommended by GRI) |
|                   | 2    | 2.74 100 yr, 6 hr storm                                   |
|                   | 3    | 2.73 25 yr, 24 hr storm                                   |
|                   | 3.75 | 2.73 100 yr, 24 hr storm                                  |

Adding an underdrain collection pipe to shorten the drainage path within the geocomposite drainage layer to less than 30 feet (per the revised calculations). increased the FOS to 2.73 minimum during the 24-hour, 100-year storm and larger precipitation events.

# **Stormwater Management Design**

# Hydrology



130 2nd Avenue South Edmonds, WA. 98020

Phone: (425) 778-0907 Fax: (425) 778-6409

| JOB NO.  | 1037                  |      |  |
|----------|-----------------------|------|--|
| JOB NAME | Cornwall Ave Landfill |      |  |
| SUBJECT  | Hydrology Analysis    |      |  |
| CALC BY  | ALB                   | DATE |  |

CALC BY ALB DATE 10/13/2014
CHK BY KWW DATE 12/30/2015

#### **Problem Statement**

\*Determine the hydrology of the closed landfill, the final grading of the landfill divides the landfill into two catchments: a southern catchment that discharges to a channel via sheet flow and a northern catchment that sheet flows to the shoreline

#### Requirements

- \* WAC 173-304-460(3)(iv) requires the runoff control system from active landfills to be able to collect and control at least the water volume resulting from a twenty-four hour, twenty-five year storm
- \*For long-term maintenance the runoff shall not exceed a velocity of 5 ft/sec or a standing water height of 2 feet
- \* Single storm event modeling will be used to determine the velocity
- \*Continuous simulation modelling of the site was not performed as there is not anticipated to be large amounts of changes to impervious surfaces, stormwater flow regimes. Additionally there is not any onsite storage of stormwater in ponds or other site specific BMPs that require design.

#### **Assumptions**

- \* 2-Year 24 hour Isopluvial Storm 20 tenths of an inch
- \* 10-Year 24 hour Isopluvial Storm 30 tenths of an inch
- \* 25-Year 24 hour Isopluvial Storm 35 tenths of an inch
- \* 100-Year 24 hour Isopluvial storm 40 tenths of an inch
- \* Area of the southern catchment contains a hillside (steep 4:1 slope) 71,455 sq. ft (from CAD)
- \* Area of the southern catchment with 5% slope 54,360 sq. ft (from CAD)
- \* Area of ditch in southern catchment 44,500 sq. ft (from CAD)
- \* Length of ditch in southern catchment 1650 ft (from CAD)
- \* Width of ditch in southern catchment 4ft on bottom with a 4:1 side slope and a 2:1 side slope (from CAD)
- \* Slope of ditch in southern catchment 0.5% (from CAD)
- \* Slope of hillside in southern catchment 25%
- \* Ditch and hillside in southern catchment will be covered with grass
- \* Northern catchment has three regimes: a 5% slope regime, a 2% slope regime, and a shoreline
- \* Northern catchment 5% slope regime has an area of 2.3 acres, 2 % slope regime has an area of 5 acres, and the shoreline regime has an area of 2.7 acres (from CAD)
- \* The northern catchment shoreline area has a slope of 4:1
- \* Northern catchment areas will be covered in grass with the exception of the shoreline areas that will be covered in rock

#### References

- \* WSDOT Hydraulics Manual 1997
- $^{*}$  Western Washington Isopluvial Maps. SWMM Volume III Hydrological Analysis December 2014
- \* HYDROCAD Report Southern Catchment PDF
- \* HYDROCAD Report Northern Catchment PDF

#### Solutions

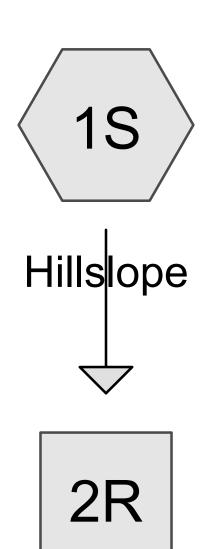
#### SOUTHERN CATCHMENT

The southern catchment and channel were modelled using HYDROCAD and the above assumptions

The maximum velocities and depths of the channel were calculated for the following events:

|              |                     |                 | HYDROCAD Southern |
|--------------|---------------------|-----------------|-------------------|
|              | Maximum Channel     | Maximum Channel | Catchment Page    |
| Return Event | Velocity (feet/sec) | Height (ft)     | Reference         |
| 2-year       | 1.15                | 0.18            | Page 5 and 9      |
| 10-year      | 1.71                | 0.37            | Page 10 and 14    |
| 25-year      | 1.92                | 0.45            | Page 15 and 19    |
| 100-vear     | 2.09                | 0.53            | Page 20 and 24    |

#### **NORTHERN CATCHMENT**


The northern catchment was modeled in HYDROCAD using the above assumptions

The maximum velocities of each of the three regimes as well as the runoff depth were calculated for the following events:

|              |                     |                     |                  |              | HYDROCAD       |
|--------------|---------------------|---------------------|------------------|--------------|----------------|
|              |                     |                     | Maximum Velocity | Maximum      | Northern       |
|              | Maximum Velocity    | Maximum Velocity    | Shoreline Area   | Runoff Depth | Catchment Page |
| Return Event | 5% Slope (feet/sec) | 2% Slope (feet/sec) | (feet/sec)       | (ft)         | Reference      |
| 2-year       | 0.22                | 0.16                | 0.17             | 0.042        | Page 2         |
| 10-year      | 0.22                | 0.16                | 0.17             | 0.1          | Page 4         |
| 25-year      | 0.22                | 0.16                | 0.17             | 0.13         | Page 6         |
| 100-year     | 0.22                | 0.16                | 0.17             | 0.16         | Page 8         |

#### Summary

<sup>\*</sup> Based on the assumed areas and slopes neither the southern or northern catchment exceed a maximum velocity of 5 feet/sec or a standing water depth of 2 feet in the 2, 10, 25, and 100 year 24 hour events



chanel









Prepared by Landau Associates, Printed 12/17/2015 HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Prepared by Landau Associates
HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Printed 12/17/2015 Page 2

# **Area Listing (all nodes)**

| 2.800   | 79 | TOTAL AREA                         |  |
|---------|----|------------------------------------|--|
| 2.800   | 79 | <50% Grass cover, Poor, HSG B (1S) |  |
| (acres) |    | (subcatchment-numbers)             |  |
| Area    | CN | Description                        |  |

Prepared by Landau Associates
HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Printed 12/17/2015 Page 3

# Soil Listing (all nodes)

| Area    | Soil  | Subcatchment |
|---------|-------|--------------|
| (acres) | Group | Numbers      |
| 0.000   | HSG A |              |
| 2.800   | HSG B | 1S           |
| 0.000   | HSG C |              |
| 0.000   | HSG D |              |
| 0.000   | Other |              |
| 2.800   |       | TOTAL AREA   |

Prepared by Landau Associates
HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Printed 12/17/2015

Page 4

# **Ground Covers (all nodes)**

| HSG-A   | HSG-B                 | HSG-C                 | HSG-D                 | Other (acres)         | Total                 | Ground                 | Subcatchment |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|--------------|
| (acres) | (acres)               | (acres)               | (acres)               |                       | (acres)               | Cover                  | Numbers      |
| 0.000   | 2.800<br><b>2.800</b> | 0.000<br><b>0.000</b> | 0.000<br><b>0.000</b> | 0.000<br><b>0.000</b> | 2.800<br><b>2.800</b> | <50% Grass cover, Poor | 1S           |

Type II 24-hr 2-Year Rainfall=2.00"

Prepared by Landau Associates

Printed 12/17/2015

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Hillslope Runoff Area = 2.800 ac 0.00% Impervious Runoff Depth = 0.52"

Flow Length=60' Slope=0.2500 '/' Tc=3.0 min CN=79 Runoff=2.78 cfs 0.122 af

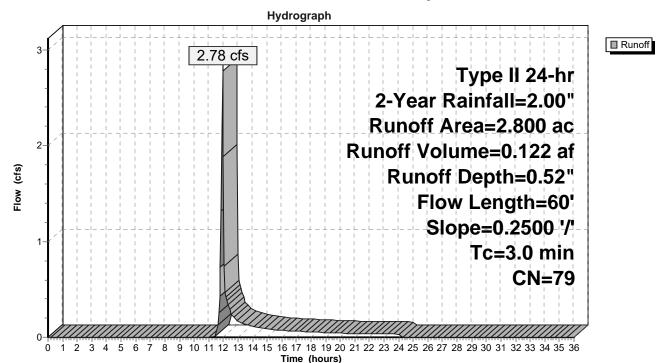
Reach 2R: chanel Avg. Flow Depth=0.18' Max Vel=1.15 fps Inflow=2.78 cfs 0.122 af

n=0.030 L=1,650.0' S=0.0061 '/' Capacity=86.91 cfs Outflow=0.96 cfs 0.122 af

Total Runoff Area = 2.800 ac Runoff Volume = 0.122 af Average Runoff Depth = 0.52" 100.00% Pervious = 2.800 ac 0.00% Impervious = 0.000 ac

Page 6

## **Summary for Subcatchment 1S: Hillslope**


[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.78 cfs @ 11.94 hrs, Volume= 0.122 af, Depth= 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.00"

|   | Area                                   | (ac) C           | N Desc           | cription             |                   |                             |          |           |   |
|---|----------------------------------------|------------------|------------------|----------------------|-------------------|-----------------------------|----------|-----------|---|
| _ | 2.800 79 <50% Grass cover, Poor, HSG B |                  |                  |                      |                   |                             |          |           |   |
|   | 2.                                     | 800              | 100.             | 00% Pervi            | ous Area          |                             |          |           |   |
|   | Tc<br>(min)                            | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                 |          |           |   |
|   | 3.0                                    | 60               | 0.2500           | 0.33                 |                   | Sheet Flow,<br>Grass: Short | n= 0.150 | P2= 2.00" | _ |

## **Subcatchment 1S: Hillslope**



Runoff

(cfs)

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 7

# **Hydrograph for Subcatchment 1S: Hillslope**

| Time Precip. Excess Runoff                       | Time           | Precip.      | Excess       |
|--------------------------------------------------|----------------|--------------|--------------|
|                                                  | hours)         | (inches)     | (inches)     |
| 0.00 0.00 0.00 0.00                              | 26.50          | 2.00         | 0.52         |
| 0.50 0.01 0.00 0.00                              | 27.00          | 2.00         | 0.52         |
| 1.00 0.02 0.00 0.00                              | 27.50          | 2.00         | 0.52         |
| 1.50 0.03 0.00 0.00                              | 28.00          | 2.00         | 0.52         |
| 2.00 0.04 0.00 0.00                              | 28.50          | 2.00         | 0.52         |
| 2.50                                             | 29.00<br>29.50 | 2.00         | 0.52<br>0.52 |
| 3.00 0.07 0.00 0.00<br>3.50 0.08 0.00 0.00       | 30.00          | 2.00<br>2.00 | 0.52         |
| 4.00 0.10 0.00 0.00                              | 30.50          | 2.00         | 0.52         |
| 4.50 0.11 0.00 0.00                              | 31.00          | 2.00         | 0.52         |
| 5.00 0.13 0.00 0.00                              | 31.50          | 2.00         | 0.52         |
| 5.50 0.14 0.00 0.00                              | 32.00          | 2.00         | 0.52         |
| 6.00 0.16 0.00 0.00                              | 32.50          | 2.00         | 0.52         |
| 6.50 0.18 0.00 0.00                              | 33.00          | 2.00         | 0.52         |
| 7.00 0.20 0.00 0.00                              | 33.50          | 2.00         | 0.52         |
| 7.50 0.22 0.00 0.00                              | 34.00          | 2.00         | 0.52         |
| 8.00 0.24 0.00 0.00                              | 34.50          | 2.00         | 0.52         |
| 8.50 0.26 0.00 0.00                              | 35.00          | 2.00         | 0.52         |
| 9.00 0.29 0.00 0.00                              | 35.50          | 2.00         | 0.52         |
| 9.50 0.33 0.00 0.00                              | 36.00          | 2.00         | 0.52         |
| 10.00 0.36 0.00 0.00                             |                |              |              |
| 10.50                                            |                |              |              |
| 11.50 0.57 0.00 <b>0.01</b>                      |                |              |              |
| 12.00 1.33 0.18 <b>1.88</b>                      |                |              |              |
| 12.50 1.47 0.24 0.25                             |                |              |              |
| 13.00 1.54 0.28 0.17                             |                |              |              |
| 13.50 1.60 0.31 0.13                             |                |              |              |
| 14.00 1.64 0.33 0.11                             |                |              |              |
| 14.50 1.68 0.34 0.10                             |                |              |              |
| 15.00 1.71 0.36 0.09                             |                |              |              |
| 15.50 1.74 0.38 0.08                             |                |              |              |
| 16.00 1.76 0.39 0.07                             |                |              |              |
| 16.50 1.78 0.40 0.07                             |                |              |              |
| 17.00 1.80 0.41 0.06                             |                |              |              |
| 17.50 1.82 0.42 0.06<br>18.00 1.84 0.43 0.06     |                |              |              |
| 18.50 1.86 0.44 0.05                             |                |              |              |
| 19.00 1.88 0.45 0.05                             |                |              |              |
| 19.50 1.89 0.46 0.05                             |                |              |              |
| 20.00 1.90 0.47 0.04                             |                |              |              |
| 20.50 1.92 0.47 0.04                             |                |              |              |
| 21.00 1.93 0.48 0.04                             |                |              |              |
| 21.50 1.94 0.49 0.04                             |                |              |              |
| 22.00 1.95 0.50 0.04                             |                |              |              |
| 22.50 1.97 0.50 0.04                             |                |              |              |
| 23.00 1.98 0.51 0.04                             |                |              |              |
| 23.50 1.99 0.52 0.04                             |                |              |              |
| 24.00 <b>2.00 0.52</b> 0.04 24.50 2.00 0.52 0.00 |                |              |              |
| 24.50                                            |                |              |              |
| 25.50 2.00 0.52 0.00<br>25.50 2.00 0.52 0.00     |                |              |              |
| 26.00 2.00 0.52 0.00                             |                |              |              |

Printed 12/17/2015 Page 8

■ Inflow

Outflow

## **Summary for Reach 2R: chanel**

Inflow Area = 2.800 ac, 0.00% Impervious, Inflow Depth = 0.52" for 2-Year event

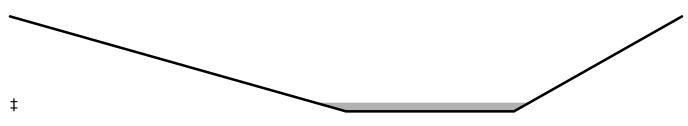
Inflow = 2.78 cfs @ 11.94 hrs, Volume= 0.122 af

Outflow = 0.96 cfs @ 12.45 hrs, Volume= 0.122 af, Atten= 65%, Lag= 30.4 min

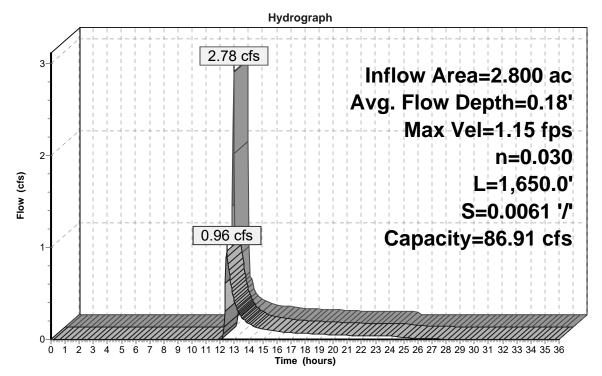
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.15 fps, Min. Travel Time= 24.0 min Avg. Velocity = 0.38 fps, Avg. Travel Time= 71.6 min

Peak Storage= 1,382 cf @ 12.05 hrs Average Depth at Peak Storage= 0.18'


Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 86.91 cfs

4.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 4.0 2.0 '/' Top Width= 16.00'

Length= 1,650.0' Slope= 0.0061 '/'

Inlet Invert= 18.00', Outlet Invert= 8.00'



### Reach 2R: chanel



Page 9

# Hydrograph for Reach 2R: chanel

| Time           | Inflow       | Storage      | Elevation      | Outflow      |
|----------------|--------------|--------------|----------------|--------------|
| (hours)        | (cfs)        | (cubic-feet) | (feet)         | (cfs)        |
| 0.00           | 0.00         | 0            | 18.00          | 0.00         |
| 1.00           | 0.00         | 0            | 18.00          | 0.00         |
| 2.00           | 0.00         | 0            | 18.00          | 0.00         |
| 3.00           | 0.00         | Ő            | 18.00          | 0.00         |
| 4.00           | 0.00         | 0            | 18.00          | 0.00         |
| 5.00           | 0.00         | 0            | 18.00          | 0.00         |
| 6.00           | 0.00         | 0            | 18.00          | 0.00         |
| 7.00           | 0.00         | 0            | 18.00          | 0.00         |
| 8.00           | 0.00         | 0            | 18.00          | 0.00         |
| 9.00           | 0.00         | 0            | 18.00          | 0.00         |
| 10.00          | 0.00         | 0            | 18.00          | 0.00         |
| 11.00          | 0.00         | 0            | 18.00          | 0.00         |
| 12.00          | 1.88         | 1,313        | 18.18          | 0.00         |
| 13.00          | 0.17         | 607          | 18.09          | 0.41         |
| 14.00          | 0.11         | 408          | 18.06          | 0.17         |
| 15.00          | 0.09         | 332          | 18.05          | 0.11         |
| 16.00          | 0.07         | 289          | 18.04          | 0.09         |
| 17.00          | 0.06         | 261          | 18.04          | 0.07         |
| 18.00          | 0.06         | 242          | 18.04          | 0.06         |
| 19.00          | 0.05         | 222          | 18.03          | 0.06         |
| 20.00          | 0.04         | 202          | 18.03          | 0.05         |
| 21.00          | 0.04         | 189          | 18.03          | 0.04         |
| 22.00          | 0.04         | 183          | 18.03          | 0.04         |
| 23.00          | 0.04         | 178          | 18.03          | 0.04         |
| 24.00          | 0.04         | 174          | 18.03          | 0.04         |
| 25.00<br>26.00 | 0.00<br>0.00 | 94<br>51     | 18.01<br>18.01 | 0.02<br>0.01 |
| 27.00          | 0.00         | 28           | 18.00          | 0.01         |
| 28.00          | 0.00         | 15           | 18.00          | 0.00         |
| 29.00          | 0.00         | 8            | 18.00          | 0.00         |
| 30.00          | 0.00         | 4            | 18.00          | 0.00         |
| 31.00          | 0.00         | 2            | 18.00          | 0.00         |
| 32.00          | 0.00         | 1            | 18.00          | 0.00         |
| 33.00          | 0.00         | 1            | 18.00          | 0.00         |
| 34.00          | 0.00         | Ö            | 18.00          | 0.00         |
| 35.00          | 0.00         | Ö            | 18.00          | 0.00         |
| 36.00          | 0.00         | 0            | 18.00          | 0.00         |
|                |              |              |                |              |

Type II 24-hr 10-Year Rainfall=3.00"

Prepared by Landau Associates

Printed 12/17/2015

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 10

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Hillslope Runoff Area=2.800 ac 0.00% Impervious Runoff Depth=1.19"

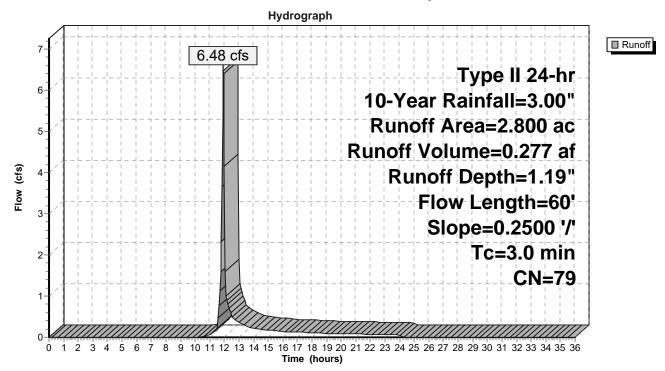
Flow Length=60' Slope=0.2500 '/' Tc=3.0 min CN=79 Runoff=6.48 cfs 0.277 af

**Reach 2R: chanel** Avg. Flow Depth=0.37' Max Vel=1.71 fps Inflow=6.48 cfs 0.277 af

n=0.030 L=1,650.0' S=0.0061 '/' Capacity=86.91 cfs Outflow=3.17 cfs 0.277 af

Total Runoff Area = 2.800 ac Runoff Volume = 0.277 af Average Runoff Depth = 1.19" 100.00% Pervious = 2.800 ac 0.00% Impervious = 0.000 ac

## **Summary for Subcatchment 1S: Hillslope**


[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.48 cfs @ 11.94 hrs, Volume= 0.277 af, Depth= 1.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.00"

|   | Area                                   | (ac) C           | N Desc           | cription             |                   |                             |          |           |   |
|---|----------------------------------------|------------------|------------------|----------------------|-------------------|-----------------------------|----------|-----------|---|
| _ | 2.800 79 <50% Grass cover, Poor, HSG B |                  |                  |                      |                   |                             |          |           |   |
|   | 2.                                     | 800              | 100.             | 00% Pervi            | ous Area          |                             |          |           |   |
|   | Tc<br>(min)                            | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                 |          |           |   |
|   | 3.0                                    | 60               | 0.2500           | 0.33                 |                   | Sheet Flow,<br>Grass: Short | n= 0.150 | P2= 2.00" | _ |

## **Subcatchment 1S: Hillslope**



Runoff (<u>cfs)</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 12

# Hydrograph for Subcatchment 1S: Hillslope

|                |              |              |              | _       |          |          |
|----------------|--------------|--------------|--------------|---------|----------|----------|
| Time           | Precip.      | Excess       | Runoff       | Time    | Precip.  | Excess   |
| (hours)        | (inches)     | (inches)     | (cfs)        | (hours) | (inches) | (inches) |
| 0.00           | 0.00         | 0.00         | 0.00         | 26.50   | 3.00     | 1.19     |
| 0.50           | 0.02         | 0.00         | 0.00         | 27.00   | 3.00     | 1.19     |
| 1.00           | 0.03         | 0.00         | 0.00         | 27.50   | 3.00     | 1.19     |
| 1.50           | 0.05         | 0.00         | 0.00         | 28.00   | 3.00     | 1.19     |
| 2.00           | 0.07         | 0.00         | 0.00         | 28.50   | 3.00     | 1.19     |
| 2.50           | 0.08         | 0.00         | 0.00         | 29.00   | 3.00     | 1.19     |
| 3.00           | 0.10         | 0.00         | 0.00         | 29.50   | 3.00     | 1.19     |
| 3.50           | 0.12         | 0.00         | 0.00         | 30.00   | 3.00     | 1.19     |
| 4.00           | 0.14         | 0.00         | 0.00         | 30.50   | 3.00     | 1.19     |
| 4.50           | 0.17         | 0.00         | 0.00         | 31.00   | 3.00     | 1.19     |
| 5.00           | 0.19         | 0.00         | 0.00         | 31.50   | 3.00     | 1.19     |
| 5.50           | 0.21         | 0.00         | 0.00         | 32.00   | 3.00     | 1.19     |
| 6.00           | 0.24         | 0.00         | 0.00         | 32.50   | 3.00     | 1.19     |
| 6.50           | 0.27         | 0.00         | 0.00         | 33.00   | 3.00     | 1.19     |
| 7.00           | 0.30         | 0.00         | 0.00         | 33.50   | 3.00     | 1.19     |
| 7.50           | 0.33         | 0.00         | 0.00         | 34.00   | 3.00     | 1.19     |
| 8.00           | 0.36         | 0.00         | 0.00         | 34.50   | 3.00     | 1.19     |
| 8.50           | 0.40         | 0.00         | 0.00         | 35.00   | 3.00     | 1.19     |
| 9.00           | 0.44         | 0.00         | 0.00         | 35.50   | 3.00     | 1.19     |
| 9.50           | 0.49         | 0.00         | 0.00         | 36.00   | 3.00     | 1.19     |
| 10.00          | 0.54         | 0.00         | 0.00         |         |          |          |
| 10.50          | 0.61         | 0.00         | 0.02         |         |          |          |
| 11.00          | 0.71         | 0.01         | 0.07         |         |          |          |
| 11.50          | 0.85         | 0.03         | 0.19         |         |          |          |
| 12.00          | 1.99         | 0.52         | 4.16         |         |          |          |
| 12.50          | 2.20         | 0.65         | 0.51         |         |          |          |
| 13.00          | 2.32         | 0.72         | 0.34         |         |          |          |
| 13.50          | 2.40         | 0.77         | 0.27         |         |          |          |
| 14.00          | 2.46         | 0.81         | 0.21         |         |          |          |
| 14.50          | 2.51         | 0.85         | 0.19         |         |          |          |
| 15.00          | 2.56         | 0.88         | 0.17         |         |          |          |
| 15.50          | 2.60         | 0.91         | 0.16         |         |          |          |
| 16.00          | 2.64         | 0.93         | 0.14         |         |          |          |
| 16.50          | 2.67         | 0.96         | 0.13         |         |          |          |
| 17.00          | 2.71         | 0.98         | 0.12         |         |          |          |
| 17.50          | 2.74<br>2.76 | 1.00<br>1.02 | 0.11<br>0.11 |         |          |          |
| 18.00<br>18.50 | 2.79         | 1.02         | 0.11         |         |          |          |
| 19.00          | 2.79         | 1.04         | 0.10         |         |          |          |
| 19.50          | 2.84         | 1.03         | 0.09         |         |          |          |
| 20.00          | 2.86         | 1.08         | 0.08         |         |          |          |
| 20.50          | 2.88         | 1.10         | 0.08         |         |          |          |
| 21.00          | 2.89         | 1.11         | 0.08         |         |          |          |
| 21.50          | 2.91         | 1.13         | 0.08         |         |          |          |
| 22.00          | 2.93         | 1.14         | 0.07         |         |          |          |
| 22.50          | 2.95         | 1.15         | 0.07         |         |          |          |
| 23.00          | 2.97         | 1.16         | 0.07         |         |          |          |
| 23.50          | 2.98         | 1.18         | 0.07         |         |          |          |
| 24.00          | 3.00         | 1.19         | 0.07         |         |          |          |
| 24.50          | 3.00         | 1.19         | 0.00         |         |          |          |
| 25.00          | 3.00         | 1.19         | 0.00         |         |          |          |
| 25.50          | 3.00         | 1.19         | 0.00         |         |          |          |
| 26.00          | 3.00         | 1.19         | 0.00         |         |          |          |
|                |              |              |              | I       |          |          |

Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Printed 12/17/2015 Page 13

Inflow

Outflow

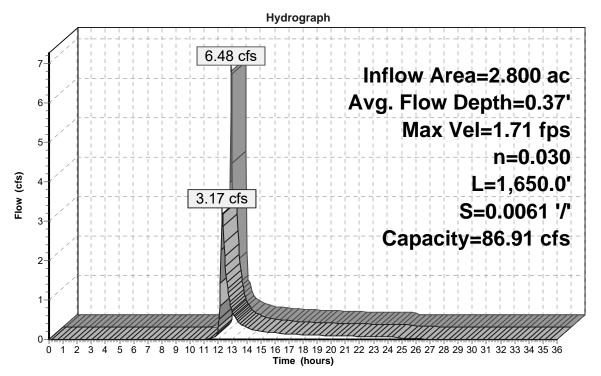
## **Summary for Reach 2R: chanel**

Inflow Area = 2.800 ac, 0.00% Impervious, Inflow Depth = 1.19" for 10-Year event

Inflow = 6.48 cfs @ 11.94 hrs, Volume= 0.277 af

Outflow = 3.17 cfs @ 12.29 hrs, Volume= 0.277 af, Atten= 51%, Lag= 21.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs


Max. Velocity= 1.71 fps, Min. Travel Time= 16.0 min Avg. Velocity = 0.45 fps, Avg. Travel Time= 61.5 min

Peak Storage= 3,136 cf @ 12.02 hrs Average Depth at Peak Storage= 0.37' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 86.91 cfs

4.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 4.0 2.0 '/' Top Width= 16.00' Length= 1,650.0' Slope= 0.0061 '/' Inlet Invert= 18.00', Outlet Invert= 8.00'



### Reach 2R: chanel



Page 14

# Hydrograph for Reach 2R: chanel

| Time            | Inflow          | Ctorogo              | Clayation        | Outflow       |
|-----------------|-----------------|----------------------|------------------|---------------|
| Time<br>(hours) | Inflow<br>(cfs) | Storage (cubic-feet) | Elevation (feet) | Outflow (cfs) |
| 0.00            | 0.00            | (Cubic-leet)<br>0    | 18.00            | 0.00          |
| 1.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 2.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 3.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 4.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 5.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 6.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 7.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 8.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 9.00            | 0.00            | 0                    | 18.00            | 0.00          |
| 10.00           | 0.00            | 0                    | 18.00            | 0.00          |
| 11.00           | <b>0.07</b>     | 81                   | 18.01            | 0.00          |
| 12.00           | 4.16            | 3,100                | 18.37            | 0.31          |
| 13.00           | 0.34            | 912                  | 18.13            | 0.69          |
| 14.00           | 0.21            | 604                  | 18.09            | 0.30          |
| 15.00           | 0.17            | 496                  | 18.07            | 0.30          |
| 16.00           | 0.14            | 430                  | 18.06            | 0.16          |
| 17.00           | 0.12            | 388                  | 18.06            | 0.14          |
| 18.00           | 0.11            | 358                  | 18.05            | 0.12          |
| 19.00           | 0.09            | 330                  | 18.05            | 0.11          |
| 20.00           | 0.08            | 301                  | 18.04            | 0.09          |
| 21.00           | 0.08            | 284                  | 18.04            | 0.08          |
| 22.00           | 0.07            | 277                  | 18.04            | 0.08          |
| 23.00           | 0.07            | 271                  | 18.04            | 0.07          |
| 24.00           | 0.07            | 265                  | 18.04            | 0.07          |
| 25.00           | 0.00            | 127                  | 18.02            | 0.03          |
| 26.00           | 0.00            | 69                   | 18.01            | 0.01          |
| 27.00           | 0.00            | 37                   | 18.01            | 0.01          |
| 28.00           | 0.00            | 20                   | 18.00            | 0.00          |
| 29.00           | 0.00            | 11                   | 18.00            | 0.00          |
| 30.00           | 0.00            | 6                    | 18.00            | 0.00          |
| 31.00           | 0.00            | 3                    | 18.00            | 0.00          |
| 32.00           | 0.00            | 2                    | 18.00            | 0.00          |
| 33.00           | 0.00            | 1                    | 18.00            | 0.00          |
| 34.00           | 0.00            | 1                    | 18.00            | 0.00          |
| 35.00           | 0.00            | 0                    | 18.00            | 0.00          |
| 36.00           | 0.00            | 0                    | 18.00            | 0.00          |
|                 |                 |                      |                  |               |

Type II 24-hr 25-Year Rainfall=3.50"

Prepared by Landau Associates

Printed 12/17/2015

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 15

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Hillslope Runoff Area = 2.800 ac 0.00% Impervious Runoff Depth = 1.57"

Flow Length=60' Slope=0.2500 '/' Tc=3.0 min CN=79 Runoff=8.51 cfs 0.365 af

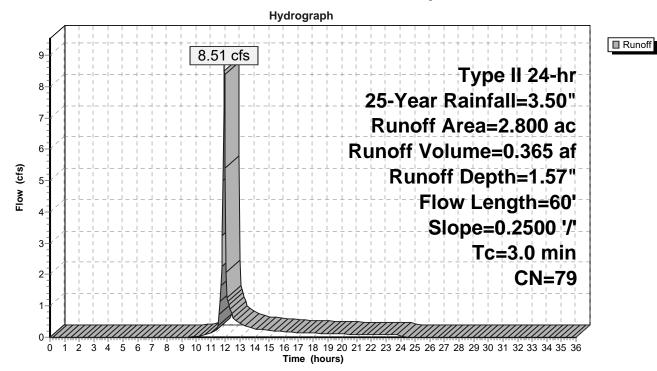
**Reach 2R: chanel** Avg. Flow Depth=0.45' Max Vel=1.92 fps Inflow=8.51 cfs 0.365 af

n=0.030 L=1,650.0' S=0.0061 '/' Capacity=86.91 cfs Outflow=4.58 cfs 0.365 af

Total Runoff Area = 2.800 ac Runoff Volume = 0.365 af Average Runoff Depth = 1.57" 100.00% Pervious = 2.800 ac 0.00% Impervious = 0.000 ac

Page 16

## **Summary for Subcatchment 1S: Hillslope**


[49] Hint: Tc<2dt may require smaller dt

Runoff = 8.51 cfs @ 11.94 hrs, Volume= 0.365 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Year Rainfall=3.50"

| _ | Area                                   | (ac) C           | N Desc           | cription             |                   |                             |          |           |  |  |
|---|----------------------------------------|------------------|------------------|----------------------|-------------------|-----------------------------|----------|-----------|--|--|
| _ | 2.800 79 <50% Grass cover, Poor, HSG B |                  |                  |                      |                   |                             |          |           |  |  |
|   | 2.800 100.00% Pervious Area            |                  |                  |                      |                   |                             |          |           |  |  |
| _ | Tc<br>(min)                            | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                 |          |           |  |  |
|   | 3.0                                    | 60               | 0.2500           | 0.33                 |                   | Sheet Flow,<br>Grass: Short | n= 0.150 | P2= 2.00" |  |  |

## **Subcatchment 1S: Hillslope**



Runoff

(cfs)

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

Page 17

# **Hydrograph for Subcatchment 1S: Hillslope**

| Time           | Precip.          | Excess              | Runoff       | Time           | Precip.      | Excess       |
|----------------|------------------|---------------------|--------------|----------------|--------------|--------------|
| (hours)        | (inches)         | (inches)            | (cfs)        | (hours)        | (inches)     | (inches)     |
| 0.00           | 0.00             | 0.00                | 0.00         | 26.50          | 3.50         | 1.57         |
| 0.50           | 0.02             | 0.00                | 0.00         | 27.00          | 3.50         | 1.57         |
| 1.00           | 0.04             | 0.00                | 0.00         | 27.50          | 3.50         | 1.57         |
| 1.50           | 0.06             | 0.00                | 0.00         | 28.00          | 3.50         | 1.57         |
| 2.00<br>2.50   | 0.08<br>0.10     | 0.00                | 0.00<br>0.00 | 28.50<br>29.00 | 3.50<br>3.50 | 1.57<br>1.57 |
| 3.00           | 0.10             | 0.00                | 0.00         | 29.50          | 3.50         | 1.57         |
| 3.50           | 0.12             | 0.00                | 0.00         | 30.00          | 3.50         | 1.57         |
| 4.00           | 0.17             | 0.00                | 0.00         | 30.50          | 3.50         | 1.57         |
| 4.50           | 0.19             | 0.00                | 0.00         | 31.00          | 3.50         | 1.57         |
| 5.00           | 0.22             | 0.00                | 0.00         | 31.50          | 3.50         | 1.57         |
| 5.50           | 0.25             | 0.00                | 0.00         | 32.00          | 3.50         | 1.57         |
| 6.00           | 0.28             | 0.00                | 0.00         | 32.50          | 3.50         | 1.57         |
| 6.50           | 0.31             | 0.00                | 0.00         | 33.00          | 3.50         | 1.57         |
| 7.00           | 0.35             | 0.00                | 0.00         | 33.50          | 3.50         | 1.57         |
| 7.50           | 0.38<br>0.42     | 0.00<br>0.00        | 0.00         | 34.00          | 3.50         | 1.57<br>1.57 |
| 8.00<br>8.50   | 0.42             | 0.00                | 0.00<br>0.00 | 34.50<br>35.00 | 3.50<br>3.50 | 1.57         |
| 9.00           | 0.40             | 0.00                | 0.00         | 35.50          | 3.50         | 1.57         |
| 9.50           | 0.57             | 0.00                | 0.01         | 36.00          | 3.50         | 1.57         |
| 10.00          | 0.63             | 0.00                | 0.03         | 00.00          | 0.00         |              |
| 10.50          | 0.71             | 0.01                | 0.06         |                |              |              |
| 11.00          | 0.82             | 0.03                | 0.13         |                |              |              |
| 11.50          | 0.99             | 0.07                | 0.30         |                |              |              |
| 12.00          | 2.32             | 0.72                | 5.39         |                |              |              |
| 12.50          | 2.57             | 0.89                | 0.65         |                |              |              |
| 13.00<br>13.50 | 2.70<br>2.80     | 0.98<br>1.04        | 0.44<br>0.34 |                |              |              |
| 14.00          | 2.87             | 1.04                | 0.34         |                |              |              |
| 14.50          | 2.93             | 1.14                | 0.24         |                |              |              |
| 15.00          | 2.99             | 1.18                | 0.22         |                |              |              |
| 15.50          | 3.04             | 1.22                | 0.19         |                |              |              |
| 16.00          | 3.08             | 1.25                | 0.17         |                |              |              |
| 16.50          | 3.12             | 1.28                | 0.16         |                |              |              |
| 17.00          | 3.16             | 1.30                | 0.15         |                |              |              |
| 17.50          | 3.19             | 1.33                | 0.14         |                |              |              |
| 18.00<br>18.50 | 3.22             | 1.35                | 0.13         |                |              |              |
| 19.00          | 3.25<br>3.28     | 1.38<br>1.40        | 0.13<br>0.12 |                |              |              |
| 19.50          | 3.20             | 1.40                | 0.12         |                |              |              |
| 20.00          | 3.33             | 1.44                | 0.10         |                |              |              |
| 20.50          | 3.35             | 1.45                | 0.10         |                |              |              |
| 21.00          | 3.38             | 1.47                | 0.09         |                |              |              |
| 21.50          | 3.40             | 1.49                | 0.09         |                |              |              |
| 22.00          | 3.42             | 1.50                | 0.09         |                |              |              |
| 22.50          | 3.44             | 1.52                | 0.09         |                |              |              |
| 23.00          | 3.46             | 1.54                | 0.09         |                |              |              |
| 23.50          | 3.48             | 1.55                | 0.09         |                |              |              |
| 24.00<br>24.50 | <b>3.50</b> 3.50 | <b>1.57</b><br>1.57 | 0.08<br>0.00 |                |              |              |
| 25.00          | 3.50             | 1.57                | 0.00         |                |              |              |
| 25.50          | 3.50             | 1.57                | 0.00         |                |              |              |
| 26.00          | 3.50             | 1.57                | 0.00         |                |              |              |

Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 18

■ Inflow

Outflow

## **Summary for Reach 2R: chanel**

Inflow Area = 2.800 ac, 0.00% Impervious, Inflow Depth = 1.57" for 25-Year event

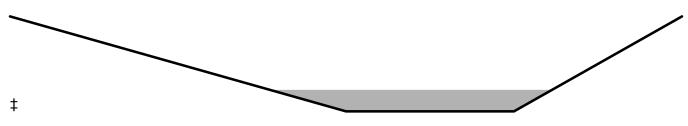
Inflow = 8.51 cfs @ 11.94 hrs, Volume= 0.365 af

Outflow = 4.58 cfs @ 12.26 hrs, Volume= 0.365 af, Atten= 46%, Lag= 19.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.92 fps, Min. Travel Time= 14.3 min Avg. Velocity = 0.47 fps, Avg. Travel Time= 58.1 min

Peak Storage= 4,002 cf @ 12.01 hrs Average Depth at Peak Storage= 0.45'


Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 86.91 cfs

4.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding


Side Slope Z-value= 4.0 2.0 '/' Top Width= 16.00'

Length= 1,650.0' Slope= 0.0061 '/'

Inlet Invert= 18.00', Outlet Invert= 8.00'



### Reach 2R: chanel



Page 19

# Hydrograph for Reach 2R: chanel

| <b>-</b> |        | 01           | - ·       | 0.45    |
|----------|--------|--------------|-----------|---------|
| Time     | Inflow | Storage      | Elevation | Outflow |
| (hours)  | (cfs)  | (cubic-feet) | (feet)    | (cfs)   |
| 0.00     | 0.00   | 0            | 18.00     | 0.00    |
| 1.00     | 0.00   | 0            | 18.00     | 0.00    |
| 2.00     | 0.00   | 0            | 18.00     | 0.00    |
| 3.00     | 0.00   | 0            | 18.00     | 0.00    |
| 4.00     | 0.00   | 0            | 18.00     | 0.00    |
| 5.00     | 0.00   | 0            | 18.00     | 0.00    |
| 6.00     | 0.00   | 0            | 18.00     | 0.00    |
| 7.00     | 0.00   | 0            | 18.00     | 0.00    |
| 8.00     | 0.00   | 0            | 18.00     | 0.00    |
| 9.00     | 0.00   | 0            | 18.00     | 0.00    |
| 10.00    | 0.03   | 29           | 18.00     | 0.00    |
| 11.00    | 0.13   | 200          | 18.03     | 0.02    |
| 12.00    | 5.39   | 3,979        | 18.45     | 0.74    |
| 13.00    | 0.44   | 1,042        | 18.14     | 0.82    |
| 14.00    | 0.27   | 691          | 18.10     | 0.37    |
| 15.00    | 0.22   | 569          | 18.08     | 0.25    |
| 16.00    | 0.17   | 493          | 18.07     | 0.20    |
| 17.00    | 0.15   | 443          | 18.06     | 0.17    |
| 18.00    | 0.13   | 412          | 18.06     | 0.15    |
| 19.00    | 0.12   | 380          | 18.06     | 0.13    |
| 20.00    | 0.10   | 344          | 18.05     | 0.11    |
| 21.00    | 0.09   | 323          | 18.05     | 0.10    |
| 22.00    | 0.09   | 314          | 18.05     | 0.09    |
| 23.00    | 0.09   | 306          | 18.04     | 0.09    |
| 24.00    | 0.08   | 299          | 18.04     | 0.09    |
| 25.00    | 0.00   | 137          | 18.02     | 0.03    |
| 26.00    | 0.00   | 74           | 18.01     | 0.01    |
| 27.00    | 0.00   | 40           | 18.01     | 0.01    |
| 28.00    | 0.00   | 22           | 18.00     | 0.00    |
| 29.00    | 0.00   | 12           | 18.00     | 0.00    |
| 30.00    | 0.00   | 6            | 18.00     | 0.00    |
| 31.00    | 0.00   | 3            | 18.00     | 0.00    |
| 32.00    | 0.00   | 2            | 18.00     | 0.00    |
| 33.00    | 0.00   | 1            | 18.00     | 0.00    |
| 34.00    | 0.00   | 1            | 18.00     | 0.00    |
| 35.00    | 0.00   | 0            | 18.00     | 0.00    |
| 36.00    | 0.00   | 0            | 18.00     | 0.00    |
|          |        |              |           |         |

Type II 24-hr 100-Year Rainfall=4.00" Printed 12/17/2015

Prepared by Landau Associates
HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 20

Time span=0.00-36.00 hrs, dt=0.05 hrs, 721 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Hillslope Runoff Area = 2.800 ac 0.00% Impervious Runoff Depth = 1.96"

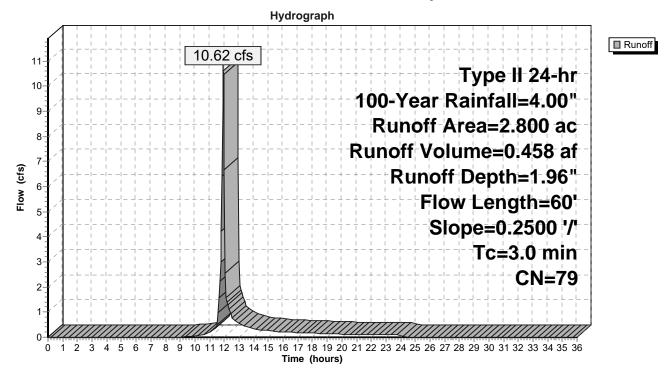
Flow Length=60' Slope=0.2500 '/' Tc=3.0 min CN=79 Runoff=10.62 cfs 0.458 af

**Reach 2R: chanel**Avg. Flow Depth=0.53' Max Vel=2.09 fps Inflow=10.62 cfs 0.458 af n=0.030 L=1,650.0' S=0.0061 '/' Capacity=86.91 cfs Outflow=5.94 cfs 0.458 af

Total Runoff Area = 2.800 ac Runoff Volume = 0.458 af Average Runoff Depth = 1.96" 100.00% Pervious = 2.800 ac 0.00% Impervious = 0.000 ac

Page 21

## **Summary for Subcatchment 1S: Hillslope**


[49] Hint: Tc<2dt may require smaller dt

Runoff = 10.62 cfs @ 11.94 hrs, Volume= 0.458 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.00"

|   | Area                                   | (ac) C           | N Desc           | cription             |                   |                             |          |           |   |
|---|----------------------------------------|------------------|------------------|----------------------|-------------------|-----------------------------|----------|-----------|---|
| _ | 2.800 79 <50% Grass cover, Poor, HSG B |                  |                  |                      |                   |                             |          |           |   |
|   | 2.                                     | 800              | 100.             | 00% Pervi            | ous Area          |                             |          |           |   |
|   | Tc<br>(min)                            | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                 |          |           |   |
|   | 3.0                                    | 60               | 0.2500           | 0.33                 |                   | Sheet Flow,<br>Grass: Short | n= 0.150 | P2= 2.00" | _ |

## **Subcatchment 1S: Hillslope**



Page 22

# Hydrograph for Subcatchment 1S: Hillslope

|                | ъ.                  | _                   | D " l           |
|----------------|---------------------|---------------------|-----------------|
| Time (hours)   | Precip. (inches)    | Excess (inches)     | Runoff<br>(cfs) |
| 0.00           | 0.00                | 0.00                | 0.00            |
| 0.50           | 0.02                | 0.00                | 0.00            |
| 1.00           | 0.04                | 0.00                | 0.00            |
| 1.50<br>2.00   | 0.06<br>0.09        | 0.00<br>0.00        | 0.00<br>0.00    |
| 2.50           | 0.03                | 0.00                | 0.00            |
| 3.00           | 0.14                | 0.00                | 0.00            |
| 3.50           | 0.16                | 0.00                | 0.00            |
| 4.00<br>4.50   | 0.19<br>0.22        | 0.00<br>0.00        | 0.00<br>0.00    |
| 5.00           | 0.25                | 0.00                | 0.00            |
| 5.50           | 0.28                | 0.00                | 0.00            |
| 6.00<br>6.50   | 0.32<br>0.36        | 0.00<br>0.00        | 0.00<br>0.00    |
| 7.00           | 0.40                | 0.00                | 0.00            |
| 7.50           | 0.44                | 0.00                | 0.00            |
| 8.00           | 0.48                | 0.00<br>0.00        | 0.00            |
| 8.50<br>9.00   | 0.53<br>0.59        | 0.00                | 0.00<br>0.01    |
| 9.50           | 0.65                | 0.01                | 0.03            |
| 10.00          | 0.72                | 0.01                | 0.06            |
| 10.50<br>11.00 | 0.82<br>0.94        | 0.03<br>0.05        | 0.10<br>0.19    |
| 11.50          | 1.13                | 0.11                | 0.43            |
| 12.00          | 2.65                | 0.94                | 6.66            |
| 12.50<br>13.00 | 2.94<br>3.09        | 1.14<br>1.25        | 0.80<br>0.53    |
| 13.50          | 3.20                | 1.33                | 0.41            |
| 14.00          | 3.28                | 1.40                | 0.32            |
| 14.50          | 3.35                | 1.45                | 0.29            |
| 15.00<br>15.50 | 3.41<br>3.47        | 1.50<br>1.54        | 0.26<br>0.23    |
| 16.00          | 3.52                | 1.58                | 0.20            |
| 16.50          | 3.56                | 1.62                | 0.19            |
| 17.00<br>17.50 | 3.61<br>3.65        | 1.65<br>1.68        | 0.18<br>0.17    |
| 18.00          | 3.68                | 1.71                | 0.16            |
| 18.50          | 3.72                | 1.74                | 0.15            |
| 19.00<br>19.50 | 3.75<br>3.78        | 1.76<br>1.79        | 0.14<br>0.13    |
| 20.00          | 3.81                | 1.81                | 0.13            |
| 20.50          | 3.83                | 1.83                | 0.12            |
| 21.00<br>21.50 | 3.86<br>3.88        | 1.85<br>1.87        | 0.11<br>0.11    |
| 22.00          | 3.91                | 1.89                | 0.11            |
| 22.50          | 3.93                | 1.91                | 0.11            |
| 23.00          | 3.95                | 1.93                | 0.11            |
| 23.50<br>24.00 | 3.98<br><b>4.00</b> | 1.95<br><b>1.96</b> | 0.10<br>0.10    |
| 24.50          | 4.00                | 1.96                | 0.00            |
| 25.00          | 4.00                | 1.96                | 0.00            |
| 25.50<br>26.00 | 4.00<br>4.00        | 1.96<br>1.96        | 0.00<br>0.00    |

| Time    | Precip.  | Excess   | Runoff |
|---------|----------|----------|--------|
| (hours) | (inches) | (inches) | (cfs)  |
| 26.50   | 4.00     | 1.96     | 0.00   |
| 27.00   | 4.00     | 1.96     | 0.00   |
| 27.50   | 4.00     | 1.96     | 0.00   |
| 28.00   | 4.00     | 1.96     | 0.00   |
| 28.50   | 4.00     | 1.96     | 0.00   |
| 29.00   | 4.00     | 1.96     | 0.00   |
| 29.50   | 4.00     | 1.96     | 0.00   |
| 30.00   | 4.00     | 1.96     | 0.00   |
| 30.50   | 4.00     | 1.96     | 0.00   |
| 31.00   | 4.00     | 1.96     | 0.00   |
| 31.50   | 4.00     | 1.96     | 0.00   |
| 32.00   | 4.00     | 1.96     | 0.00   |
| 32.50   | 4.00     | 1.96     | 0.00   |
| 33.00   | 4.00     | 1.96     | 0.00   |
| 33.50   | 4.00     | 1.96     | 0.00   |
| 34.00   | 4.00     | 1.96     | 0.00   |
| 34.50   | 4.00     | 1.96     | 0.00   |
| 35.00   | 4.00     | 1.96     | 0.00   |
| 35.50   | 4.00     | 1.96     | 0.00   |
| 36.00   | 4.00     | 1.96     | 0.00   |
|         |          |          |        |

Printed 12/17/2015 Page 23

## HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

## **Summary for Reach 2R: chanel**

Inflow Area = 2.800 ac. 0.00% Impervious, Inflow Depth = 1.96" for 100-Year event

Inflow 10.62 cfs @ 11.94 hrs, Volume= 0.458 af

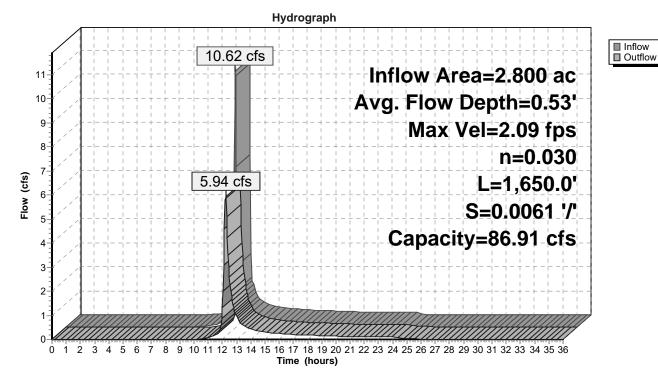
Outflow 5.94 cfs @ 12.23 hrs, Volume= 0.458 af, Atten= 44%, Lag= 17.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.09 fps, Min. Travel Time= 13.1 min Avg. Velocity = 0.50 fps, Avg. Travel Time= 55.4 min


Peak Storage= 4,851 cf @ 12.01 hrs Average Depth at Peak Storage= 0.53'

Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 86.91 cfs


4.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding

Side Slope Z-value= 4.0 2.0 '/' Top Width= 16.00' Length= 1,650.0' Slope= 0.0061 '/'

Inlet Invert= 18.00', Outlet Invert= 8.00'



### Reach 2R: chanel

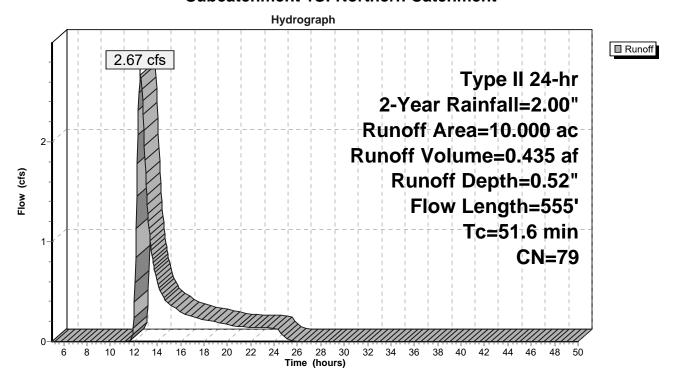


Page 24

# Hydrograph for Reach 2R: chanel

| <del></del> - |        | 0.1          |           | 0 15    |
|---------------|--------|--------------|-----------|---------|
| Time          | Inflow | Storage      | Elevation | Outflow |
| (hours)       | (cfs)  | (cubic-feet) | (feet)    | (cfs)   |
| 0.00          | 0.00   | 0            | 18.00     | 0.00    |
| 1.00          | 0.00   | 0            | 18.00     | 0.00    |
| 2.00          | 0.00   | 0            | 18.00     | 0.00    |
| 3.00          | 0.00   | 0            | 18.00     | 0.00    |
| 4.00          | 0.00   | 0            | 18.00     | 0.00    |
| 5.00          | 0.00   | 0            | 18.00     | 0.00    |
| 6.00          | 0.00   | 0            | 18.00     | 0.00    |
| 7.00          | 0.00   | 0            | 18.00     | 0.00    |
| 8.00          | 0.00   | 0            | 18.00     | 0.00    |
| 9.00          | 0.01   | 9            | 18.00     | 0.00    |
| 10.00         | 0.06   | 95           | 18.01     | 0.01    |
| 11.00         | 0.19   | 326          | 18.05     | 0.07    |
| 12.00         | 6.66   | 4,838        | 18.53     | 1.30    |
| 13.00         | 0.53   | 1,162        | 18.16     | 0.94    |
| 14.00         | 0.32   | 773          | 18.11     | 0.43    |
| 15.00         | 0.26   | 638          | 18.09     | 0.30    |
| 16.00         | 0.20   | 553          | 18.08     | 0.24    |
| 17.00         | 0.18   | 496          | 18.07     | 0.20    |
| 18.00         | 0.16   | 459          | 18.07     | 0.18    |
| 19.00         | 0.14   | 424          | 18.06     | 0.15    |
| 20.00         | 0.12   | 386          | 18.06     | 0.13    |
| 21.00         | 0.11   | 361          | 18.05     | 0.12    |
| 22.00         | 0.11   | 350          | 18.05     | 0.11    |
| 23.00         | 0.11   | 342          | 18.05     | 0.11    |
| 24.00         | 0.10   | 333          | 18.05     | 0.10    |
| 25.00         | 0.00   | 146          | 18.02     | 0.04    |
| 26.00         | 0.00   | 79           | 18.01     | 0.02    |
| 27.00         | 0.00   | 43           | 18.01     | 0.01    |
| 28.00         | 0.00   | 23           | 18.00     | 0.00    |
| 29.00         | 0.00   | 12           | 18.00     | 0.00    |
| 30.00         | 0.00   | 7            | 18.00     | 0.00    |
| 31.00         | 0.00   | 4            | 18.00     | 0.00    |
| 32.00         | 0.00   | 2            | 18.00     | 0.00    |
| 33.00         | 0.00   | 1            | 18.00     | 0.00    |
| 34.00         | 0.00   | 1            | 18.00     | 0.00    |
| 35.00         | 0.00   | 0            | 18.00     | 0.00    |
| 36.00         | 0.00   | 0            | 18.00     | 0.00    |
|               |        |              |           |         |

Page 1


# **Summary for Subcatchment 1S: Northern Catchment**

Runoff = 2.67 cfs @ 12.57 hrs, Volume= 0.435 af, Depth= 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr 2-Year Rainfall=2.00"

| _ | Area  | (ac) ( | CN Des  | cription   |          |                                   |
|---|-------|--------|---------|------------|----------|-----------------------------------|
| * | 2.    | 300    | 79 5%   | Slope      |          |                                   |
| * | 5.    | 000    |         | Slope      |          |                                   |
| * | 2.    | 700    |         | reline     |          |                                   |
|   | 10.   | 000    | 79 Wei  | ghted Aver | age      |                                   |
|   | 10.   | 000    |         | .00% Pervi |          |                                   |
|   |       |        |         |            |          |                                   |
|   | Tc    | Length | Slope   | Velocity   | Capacity | Description                       |
|   | (min) | (feet) | (ft/ft) | (ft/sec)   | (cfs)    |                                   |
|   | 14.1  | 185    | 0.0500  | 0.22       |          | Sheet Flow, 5 %                   |
|   |       |        |         |            |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 25.8  | 250    | 0.0200  | 0.16       |          | Sheet Flow, 2%                    |
|   |       |        |         |            |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 11.7  | 120    | 0.2500  | 0.17       |          | Sheet Flow, Shoreline             |
|   |       |        |         |            |          | Grass: Bermuda n= 0.410 P2= 2.00" |
|   | 51.6  | 555    | Total   |            |          |                                   |

# **Subcatchment 1S: Northern Catchment**



Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 2

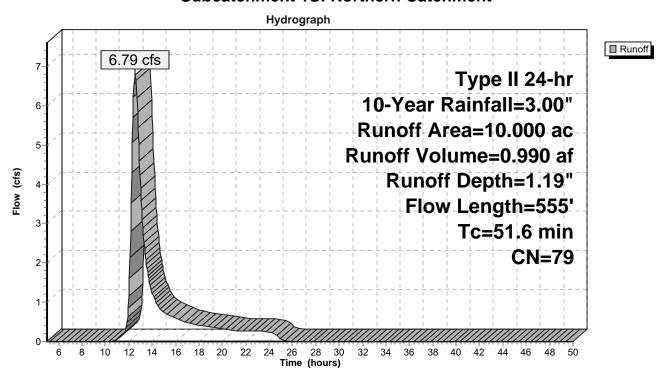
# **Hydrograph for Subcatchment 1S: Northern Catchment**

| Time           | Precip.      | Excess       | Runoff | Time    | Precip.  | Excess   | Runoff |
|----------------|--------------|--------------|--------|---------|----------|----------|--------|
| (hours)        | (inches)     | (inches)     | (cfs)  | (hours) | (inches) | (inches) | (cfs)  |
| 5.00           | 0.13         | 0.00         | 0.00   | 31.50   | 2.00     | 0.52     | 0.00   |
| 5.50           | 0.14         | 0.00         | 0.00   | 32.00   | 2.00     | 0.52     | 0.00   |
| 6.00           | 0.16         | 0.00         | 0.00   | 32.50   | 2.00     | 0.52     | 0.00   |
| 6.50           | 0.18         | 0.00         | 0.00   | 33.00   | 2.00     | 0.52     | 0.00   |
| 7.00           | 0.20         | 0.00         | 0.00   | 33.50   | 2.00     | 0.52     | 0.00   |
| 7.50           | 0.22         | 0.00         | 0.00   | 34.00   | 2.00     | 0.52     | 0.00   |
| 8.00           | 0.24         | 0.00         | 0.00   | 34.50   | 2.00     | 0.52     | 0.00   |
| 8.50           | 0.26         | 0.00         | 0.00   | 35.00   | 2.00     | 0.52     | 0.00   |
| 9.00           | 0.29         | 0.00         | 0.00   | 35.50   | 2.00     | 0.52     | 0.00   |
| 9.50           | 0.33         | 0.00         | 0.00   | 36.00   | 2.00     | 0.52     | 0.00   |
| 10.00          | 0.36         | 0.00         | 0.00   | 36.50   | 2.00     | 0.52     | 0.00   |
| 10.50          | 0.41         | 0.00         | 0.00   | 37.00   | 2.00     | 0.52     | 0.00   |
| 11.00          | 0.47         | 0.00         | 0.00   | 37.50   | 2.00     | 0.52     | 0.00   |
| 11.50          | 0.57         | 0.00         | 0.00   | 38.00   | 2.00     | 0.52     | 0.00   |
| 12.00          | 1.33         | 0.18         | 0.24   | 38.50   | 2.00     | 0.52     | 0.00   |
| 12.50          | 1.47         | 0.24         | 2.61   | 39.00   | 2.00     | 0.52     | 0.00   |
| 13.00          | 1.54         | 0.28         | 1.68   | 39.50   | 2.00     | 0.52     | 0.00   |
| 13.50          | 1.60         | 0.31         | 0.91   | 40.00   | 2.00     | 0.52     | 0.00   |
| 14.00          | 1.64         | 0.33         | 0.60   | 40.50   | 2.00     | 0.52     | 0.00   |
| 14.50          | 1.68         | 0.34         | 0.45   | 41.00   | 2.00     | 0.52     | 0.00   |
| 15.00          | 1.71         | 0.36         | 0.37   | 41.50   | 2.00     | 0.52     | 0.00   |
| 15.50          | 1.74         | 0.38         | 0.33   | 42.00   | 2.00     | 0.52     | 0.00   |
| 16.00          | 1.76         | 0.39         | 0.30   | 42.50   | 2.00     | 0.52     | 0.00   |
| 16.50          | 1.78         | 0.40         | 0.27   | 43.00   | 2.00     | 0.52     | 0.00   |
| 17.00          | 1.80         | 0.41         | 0.25   | 43.50   | 2.00     | 0.52     | 0.00   |
| 17.50          | 1.82         | 0.42         | 0.23   | 44.00   | 2.00     | 0.52     | 0.00   |
| 18.00          | 1.84         | 0.43         | 0.22   | 44.50   | 2.00     | 0.52     | 0.00   |
| 18.50          | 1.86         | 0.44         | 0.21   | 45.00   | 2.00     | 0.52     | 0.00   |
| 19.00          | 1.88         | 0.45         | 0.20   | 45.50   | 2.00     | 0.52     | 0.00   |
| 19.50          | 1.89         | 0.46         | 0.18   | 46.00   | 2.00     | 0.52     | 0.00   |
| 20.00          | 1.90         | 0.47         | 0.17   | 46.50   | 2.00     | 0.52     | 0.00   |
| 20.50          | 1.92         | 0.47         | 0.16   | 47.00   | 2.00     | 0.52     | 0.00   |
| 21.00          | 1.93         | 0.48         | 0.15   | 47.50   | 2.00     | 0.52     | 0.00   |
| 21.50          | 1.94         | 0.49         | 0.15   | 48.00   | 2.00     | 0.52     | 0.00   |
| 22.00          | 1.95         | 0.50         | 0.14   | 48.50   | 2.00     | 0.52     | 0.00   |
| 22.50          | 1.97         | 0.50         | 0.14   | 49.00   | 2.00     | 0.52     | 0.00   |
| 23.00          | 1.98         | 0.51         | 0.14   | 49.50   | 2.00     | 0.52     | 0.00   |
| 23.50          | 1.99         | 0.52         | 0.14   | 50.00   | 2.00     | 0.52     | 0.00   |
| 24.00          | 2.00         | 0.52         | 0.13   |         |          |          |        |
| 24.50          | 2.00         | 0.52         | 0.10   |         |          |          |        |
| 25.00          | 2.00         | 0.52         | 0.03   |         |          |          |        |
| 25.50          | 2.00         | 0.52         | 0.01   |         |          |          |        |
| 26.00          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 26.50          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 27.00          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 27.50          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 28.00          | 2.00         | 0.52<br>0.52 | 0.00   |         |          |          |        |
| 28.50<br>29.00 | 2.00<br>2.00 | 0.52         | 0.00   |         |          |          |        |
| 29.50          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 30.00          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 30.50          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 31.00          | 2.00         | 0.52         | 0.00   |         |          |          |        |
| 51.00          | 2.00         | 0.02         | 0.00   |         |          |          |        |

Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 3


# **Summary for Subcatchment 1S: Northern Catchment**

Runoff = 6.79 cfs @ 12.54 hrs, Volume= 0.990 af, Depth= 1.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr 10-Year Rainfall=3.00"

|   | Area  | (ac) C | N Des   | cription  |          |                                   |
|---|-------|--------|---------|-----------|----------|-----------------------------------|
| * | 2.    | 300    | 79 5% 3 | Slope     |          |                                   |
| * | 5.    | 000    | 79 2% 3 | Slope     |          |                                   |
| * | 2.    | 700    |         | reline    |          |                                   |
|   | 10.   | 000    | 79 Wei  | hted Aver | age      |                                   |
|   | 10.   | 000    |         | 00% Pervi |          |                                   |
|   |       |        |         |           |          |                                   |
|   | Tc    | Length | Slope   | Velocity  | Capacity | Description                       |
|   | (min) | (feet) | (ft/ft) | (ft/sec)  | (cfs)    | ·                                 |
|   | 14.1  | 185    | 0.0500  | 0.22      |          | Sheet Flow, 5 %                   |
|   |       |        |         |           |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 25.8  | 250    | 0.0200  | 0.16      |          | Sheet Flow, 2%                    |
|   |       |        |         |           |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 11.7  | 120    | 0.2500  | 0.17      |          | Sheet Flow, Shoreline             |
|   |       |        |         |           |          | Grass: Bermuda n= 0.410 P2= 2.00" |
| - | 51.6  | 555    | Total   |           |          |                                   |

# **Subcatchment 1S: Northern Catchment**



Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 4

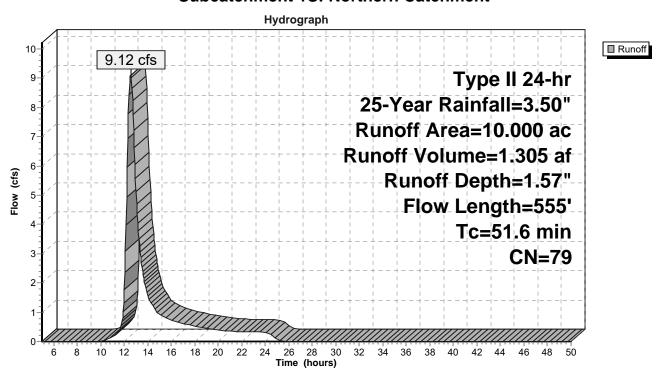
# **Hydrograph for Subcatchment 1S: Northern Catchment**

| Time           | Precip.      | Excess       | Runoff       | Time           | Precip.      | Excess       | Runoff       |
|----------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|
| (hours)        | (inches)     | (inches)     | (cfs)        | (hours)        | (inches)     | (inches)     | (cfs)        |
| 5.00           | 0.19         | 0.00         | 0.00         | 31.50          | 3.00         | 1.19         | 0.00         |
| 5.50           | 0.21         | 0.00         | 0.00         | 32.00          | 3.00         | 1.19         | 0.00         |
| 6.00           | 0.24         | 0.00         | 0.00         | 32.50          | 3.00         | 1.19         | 0.00         |
| 6.50           | 0.27         | 0.00         | 0.00         | 33.00          | 3.00         | 1.19         | 0.00         |
| 7.00           | 0.30         | 0.00         | 0.00         | 33.50          | 3.00         | 1.19         | 0.00         |
| 7.50           | 0.33         | 0.00         | 0.00         | 34.00          | 3.00         | 1.19         | 0.00         |
| 8.00           | 0.36         | 0.00         | 0.00         | 34.50          | 3.00         | 1.19         | 0.00         |
| 8.50           | 0.40         | 0.00         | 0.00         | 35.00          | 3.00         | 1.19         | 0.00         |
| 9.00           | 0.44         | 0.00         | 0.00         | 35.50          | 3.00         | 1.19         | 0.00         |
| 9.50           | 0.49         | 0.00         | 0.00         | 36.00          | 3.00         | 1.19         | 0.00         |
| 10.00          | 0.54         | 0.00         | 0.00         | 36.50          | 3.00         | 1.19         | 0.00         |
| 10.50          | 0.61         | 0.00         | 0.01         | 37.00          | 3.00         | 1.19         | 0.00         |
| 11.00          | 0.71         | 0.01         | 0.05         | 37.50          | 3.00         | 1.19         | 0.00         |
| 11.50<br>12.00 | 0.85<br>1.99 | 0.03<br>0.52 | 0.18<br>1.17 | 38.00<br>38.50 | 3.00<br>3.00 | 1.19<br>1.19 | 0.00<br>0.00 |
| 12.50          | 2.20         | 0.52         | 6.73         | 39.00          | 3.00         | 1.19         | 0.00         |
| 13.00          | 2.32         | 0.03         | 3.90         | 39.50          | 3.00         | 1.19         | 0.00         |
| 13.50          | 2.40         | 0.72         | 1.97         | 40.00          | 3.00         | 1.19         | 0.00         |
| 14.00          | 2.46         | 0.81         | 1.24         | 40.50          | 3.00         | 1.19         | 0.00         |
| 14.50          | 2.51         | 0.85         | 0.91         | 41.00          | 3.00         | 1.19         | 0.00         |
| 15.00          | 2.56         | 0.88         | 0.74         | 41.50          | 3.00         | 1.19         | 0.00         |
| 15.50          | 2.60         | 0.91         | 0.66         | 42.00          | 3.00         | 1.19         | 0.00         |
| 16.00          | 2.64         | 0.93         | 0.59         | 42.50          | 3.00         | 1.19         | 0.00         |
| 16.50          | 2.67         | 0.96         | 0.52         | 43.00          | 3.00         | 1.19         | 0.00         |
| 17.00          | 2.71         | 0.98         | 0.48         | 43.50          | 3.00         | 1.19         | 0.00         |
| 17.50          | 2.74         | 1.00         | 0.45         | 44.00          | 3.00         | 1.19         | 0.00         |
| 18.00          | 2.76         | 1.02         | 0.42         | 44.50          | 3.00         | 1.19         | 0.00         |
| 18.50          | 2.79         | 1.04         | 0.40         | 45.00          | 3.00         | 1.19         | 0.00         |
| 19.00<br>19.50 | 2.81<br>2.84 | 1.05<br>1.07 | 0.37<br>0.35 | 45.50<br>46.00 | 3.00<br>3.00 | 1.19<br>1.19 | 0.00         |
| 20.00          | 2.86         | 1.07         | 0.35         | 46.50          | 3.00         | 1.19         | 0.00<br>0.00 |
| 20.50          | 2.88         | 1.10         | 0.32         | 47.00          | 3.00         | 1.19         | 0.00         |
| 21.00          | 2.89         | 1.11         | 0.28         | 47.50          | 3.00         | 1.19         | 0.00         |
| 21.50          | 2.91         | 1.13         | 0.28         | 48.00          | 3.00         | 1.19         | 0.00         |
| 22.00          | 2.93         | 1.14         | 0.27         | 48.50          | 3.00         | 1.19         | 0.00         |
| 22.50          | 2.95         | 1.15         | 0.27         | 49.00          | 3.00         | 1.19         | 0.00         |
| 23.00          | 2.97         | 1.16         | 0.26         | 49.50          | 3.00         | 1.19         | 0.00         |
| 23.50          | 2.98         | 1.18         | 0.26         | 50.00          | 3.00         | 1.19         | 0.00         |
| 24.00          | 3.00         | 1.19         | 0.25         |                |              |              |              |
| 24.50          | 3.00         | 1.19         | 0.20         |                |              |              |              |
| 25.00          | 3.00         | 1.19         | 0.06         |                |              |              |              |
| 25.50          | 3.00         | 1.19         | 0.01         |                |              |              |              |
| 26.00          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 26.50          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 27.00<br>27.50 | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 28.00          | 3.00<br>3.00 | 1.19<br>1.19 | 0.00<br>0.00 |                |              |              |              |
| 28.50          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 29.00          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 29.50          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 30.00          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 30.50          | 3.00         | 1.19         | 0.00         |                |              |              |              |
| 31.00          | 3.00         | 1.19         | 0.00         |                |              |              |              |
|                |              |              | I            |                |              |              |              |

Prepared by Landau Associates

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 5


# **Summary for Subcatchment 1S: Northern Catchment**

Runoff = 9.12 cfs @ 12.53 hrs, Volume= 1.305 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr 25-Year Rainfall=3.50"

|   | Area        | (ac) C           | N Des            | cription                |                   |                                                                                           |
|---|-------------|------------------|------------------|-------------------------|-------------------|-------------------------------------------------------------------------------------------|
| * | 2.          | 300              | 79 5% 5          | Slope                   |                   |                                                                                           |
| * | 5.          |                  |                  | Slope                   |                   |                                                                                           |
| * | _           |                  |                  | reline                  |                   |                                                                                           |
|   | _           | 000<br>000       |                  | ghted Aver<br>00% Pervi |                   |                                                                                           |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec)    | Capacity<br>(cfs) | Description                                                                               |
|   | 14.1        | 185              | 0.0500           | 0.22                    |                   | Sheet Flow, 5 %                                                                           |
|   | 25.8        | 250              | 0.0200           | 0.16                    |                   | Grass: Short n= 0.150 P2= 2.00"  Sheet Flow, 2%                                           |
|   | 11.7        | 120              | 0.2500           | 0.17                    |                   | Grass: Short n= 0.150 P2= 2.00"  Sheet Flow, Shoreline  Grass: Bermuda n= 0.410 P2= 2.00" |
| _ | 51.6        | 555              | Total            |                         |                   |                                                                                           |

# **Subcatchment 1S: Northern Catchment**



Prepared by Landau Associates

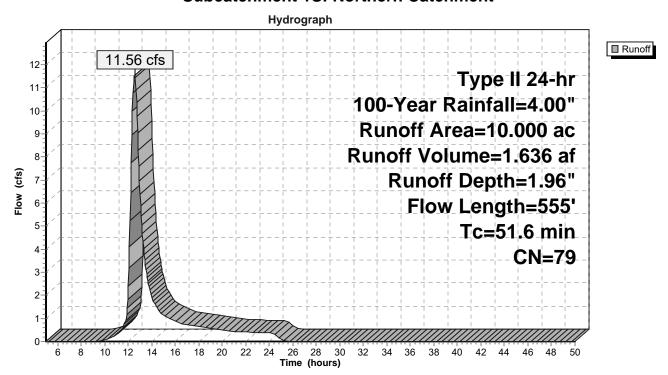
Printed 12/14/2015 Page 6

HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

# **Hydrograph for Subcatchment 1S: Northern Catchment**

| Timo           | Drooin           | Evenen          | Runoff              | Timo            | Drooin           | Evenes          | Dunoff          |
|----------------|------------------|-----------------|---------------------|-----------------|------------------|-----------------|-----------------|
| Time (hours)   | Precip. (inches) | Excess (inches) | (cfs)               | Time<br>(hours) | Precip. (inches) | Excess (inches) | Runoff<br>(cfs) |
| 5.00           | 0.22             | 0.00            | 0.00                | 31.50           | 3.50             | 1.57            | 0.00            |
| 5.50           | 0.25             | 0.00            | 0.00                | 32.00           | 3.50             | 1.57            | 0.00            |
| 6.00           | 0.28             | 0.00            | 0.00                | 32.50           | 3.50             | 1.57            | 0.00            |
| 6.50           | 0.31             | 0.00            | 0.00                | 33.00           | 3.50             | 1.57            | 0.00            |
| 7.00           | 0.35             | 0.00            | 0.00                | 33.50           | 3.50             | 1.57            | 0.00            |
| 7.50           | 0.38             | 0.00            | 0.00                | 34.00           | 3.50             | 1.57            | 0.00            |
| 8.00           | 0.42             | 0.00            | 0.00                | 34.50           | 3.50             | 1.57            | 0.00            |
| 8.50           | 0.46             | 0.00            | 0.00                | 35.00           | 3.50             | 1.57            | 0.00            |
| 9.00           | 0.51             | 0.00            | 0.00                | 35.50           | 3.50             | 1.57            | 0.00            |
| 9.50           | 0.57             | 0.00            | 0.00                | 36.00           | 3.50             | 1.57            | 0.00            |
| 10.00          | 0.63             | 0.00            | 0.02                | 36.50           | 3.50             | 1.57            | 0.00            |
| 10.50          | 0.71             | 0.01            | 0.07                | 37.00           | 3.50             | 1.57            | 0.00            |
| 11.00          | 0.82             | 0.03            | 0.16                | 37.50           | 3.50             | 1.57            | 0.00            |
| 11.50          | 0.99             | 0.07            | 0.36                | 38.00           | 3.50             | 1.57            | 0.00            |
| 12.00<br>12.50 | 2.32<br>2.57     | 0.72<br>0.89    | 1.76<br><b>9.06</b> | 38.50<br>39.00  | 3.50<br>3.50     | 1.57<br>1.57    | 0.00<br>0.00    |
| 13.00          | 2.70             | 0.89            | 5.11                | 39.50           | 3.50             | 1.57            | 0.00            |
| 13.50          | 2.80             | 1.04            | 2.53                | 40.00           | 3.50             | 1.57            | 0.00            |
| 14.00          | 2.87             | 1.09            | 1.58                | 40.50           | 3.50             | 1.57            | 0.00            |
| 14.50          | 2.93             | 1.14            | 1.15                | 41.00           | 3.50             | 1.57            | 0.00            |
| 15.00          | 2.99             | 1.18            | 0.94                | 41.50           | 3.50             | 1.57            | 0.00            |
| 15.50          | 3.04             | 1.22            | 0.83                | 42.00           | 3.50             | 1.57            | 0.00            |
| 16.00          | 3.08             | 1.25            | 0.74                | 42.50           | 3.50             | 1.57            | 0.00            |
| 16.50          | 3.12             | 1.28            | 0.65                | 43.00           | 3.50             | 1.57            | 0.00            |
| 17.00          | 3.16             | 1.30            | 0.60                | 43.50           | 3.50             | 1.57            | 0.00            |
| 17.50          | 3.19             | 1.33            | 0.56                | 44.00           | 3.50             | 1.57            | 0.00            |
| 18.00          | 3.22             | 1.35            | 0.53                | 44.50           | 3.50             | 1.57            | 0.00            |
| 18.50          | 3.25             | 1.38            | 0.50                | 45.00           | 3.50             | 1.57            | 0.00            |
| 19.00          | 3.28             | 1.40            | 0.47                | 45.50           | 3.50             | 1.57            | 0.00            |
| 19.50          | 3.31             | 1.42<br>1.44    | 0.43                | 46.00           | 3.50             | 1.57<br>1.57    | 0.00            |
| 20.00<br>20.50 | 3.33<br>3.35     | 1.44            | 0.40<br>0.37        | 46.50<br>47.00  | 3.50<br>3.50     | 1.57            | 0.00<br>0.00    |
| 21.00          | 3.38             | 1.45            | 0.37                | 47.50           | 3.50             | 1.57            | 0.00            |
| 21.50          | 3.40             | 1.47            | 0.34                | 48.00           | 3.50             | 1.57            | 0.00            |
| 22.00          | 3.42             | 1.50            | 0.34                | 48.50           | 3.50             | 1.57            | 0.00            |
| 22.50          | 3.44             | 1.52            | 0.33                | 49.00           | 3.50             | 1.57            | 0.00            |
| 23.00          | 3.46             | 1.54            | 0.32                | 49.50           | 3.50             | 1.57            | 0.00            |
| 23.50          | 3.48             | 1.55            | 0.32                | 50.00           | 3.50             | 1.57            | 0.00            |
| 24.00          | 3.50             | 1.57            | 0.31                |                 |                  |                 |                 |
| 24.50          | 3.50             | 1.57            | 0.24                |                 |                  |                 |                 |
| 25.00          | 3.50             | 1.57            | 0.07                |                 |                  |                 |                 |
| 25.50          | 3.50             | 1.57            | 0.02                |                 |                  |                 |                 |
| 26.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 26.50          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 27.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 27.50          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 28.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 28.50<br>29.00 | 3.50<br>3.50     | 1.57<br>1.57    | 0.00<br>0.00        |                 |                  |                 |                 |
| 29.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 30.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 30.50          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
| 31.00          | 3.50             | 1.57            | 0.00                |                 |                  |                 |                 |
|                |                  |                 |                     |                 |                  |                 |                 |

Page 7


# **Summary for Subcatchment 1S: Northern Catchment**

Runoff = 11.56 cfs @ 12.53 hrs, Volume= 1.636 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-50.00 hrs, dt= 0.05 hrs Type II 24-hr 100-Year Rainfall=4.00"

|   | Area  | (ac) C | N Des   | cription  |          |                                   |
|---|-------|--------|---------|-----------|----------|-----------------------------------|
| * | 2.    | 300    | 79 5% 3 | Slope     |          |                                   |
| * | 5.    | 000    | 79 2% 3 | Slope     |          |                                   |
| * | 2.    | 700    | 79 Sho  | reline    |          |                                   |
|   | 10.   | 000    | 79 Wei  | hted Aver | age      |                                   |
|   | 10.   | 000    | 100.    | 00% Pervi | ous Area |                                   |
|   |       |        |         |           |          |                                   |
|   | Тс    | Length | Slope   | Velocity  | Capacity | Description                       |
|   | (min) | (feet) | (ft/ft) | (ft/sec)  | (cfs)    |                                   |
|   | 14.1  | 185    | 0.0500  | 0.22      |          | Sheet Flow, 5 %                   |
|   |       |        |         |           |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 25.8  | 250    | 0.0200  | 0.16      |          | Sheet Flow, 2%                    |
|   |       |        |         |           |          | Grass: Short n= 0.150 P2= 2.00"   |
|   | 11.7  | 120    | 0.2500  | 0.17      |          | Sheet Flow, Shoreline             |
|   |       |        |         |           |          | Grass: Bermuda n= 0.410 P2= 2.00" |
|   | 51.6  | 555    | Total   |           |          |                                   |

# **Subcatchment 1S: Northern Catchment**



Prepared by Landau Associates
HydroCAD® 10.00-15 s/n 09098 © 2015 HydroCAD Software Solutions LLC

Page 8

# **Hydrograph for Subcatchment 1S: Northern Catchment**

| (cfs)   (inches) (inches) (inches) (cfs)   (5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time    | Precip. | Excess   | Runoff | Time  | Precip. | Excess   | Runoff |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------|-------|---------|----------|--------|
| 5.50         0.29         0.00         0.00         32.00         4.00         1.96         0.00           6.00         0.32         0.00         0.00         33.50         4.00         1.96         0.00           7.00         0.40         0.00         0.00         33.50         4.00         1.96         0.00           7.50         0.44         0.00         0.00         34.00         4.00         1.96         0.00           8.00         0.48         0.00         0.00         34.50         4.00         1.96         0.00           8.50         0.53         0.00         0.00         35.50         4.00         1.96         0.00           9.50         0.65         0.01         0.03         36.00         4.00         1.96         0.00           10.00         0.72         0.01         0.08         36.50         4.00         1.96         0.00           10.00         0.72         0.01         0.08         36.50         4.00         1.96         0.00           11.50         1.13         0.11         0.57         38.00         4.00         1.96         0.00           11.50         1.13         0.11                                                                                               | (hours) |         | (inches) |        |       |         | (inches) |        |
| 6.00 0.32 0.00 0.00 32.50 4.00 1.96 0.00 6.50 0.36 0.00 0.00 33.50 4.00 1.96 0.00 7.00 0.40 0.00 0.00 33.50 4.00 1.96 0.00 7.50 0.44 0.00 0.00 0.00 33.50 4.00 1.96 0.00 8.00 0.48 0.00 0.00 34.50 4.00 1.96 0.00 8.50 0.53 0.00 0.00 35.50 4.00 1.96 0.00 9.00 0.59 0.00 0.00 35.50 4.00 1.96 0.00 1.00 0.72 0.01 0.08 36.00 4.00 1.96 0.00 1.00 0.72 0.01 0.08 36.50 4.00 1.96 0.00 11.00 0.72 0.01 0.08 36.50 4.00 1.96 0.00 11.50 0.82 0.03 0.16 37.00 4.00 1.96 0.00 11.50 0.82 0.03 0.16 37.50 4.00 1.96 0.00 11.50 0.94 0.05 0.30 37.50 4.00 1.96 0.00 11.50 1.13 0.11 0.57 38.00 4.00 1.96 0.00 11.50 1.33 0.11 0.57 38.00 4.00 1.96 0.00 11.50 1.33 0.11 0.57 38.00 4.00 1.96 0.00 11.50 1.30 0.30 37.50 4.00 1.96 0.00 11.50 0.32 37.50 4.00 1.96 0.00 11.50 0.33 37.50 4.00 1.96 0.00 11.50 0.33 37.50 4.00 1.96 0.00 11.50 0.33 37.50 4.00 1.96 0.00 11.50 0.33 37.50 4.00 1.96 0.00 11.50 0.33 37.50 4.00 1.96 0.00 11.50 0.32 37.50 4.00 1.96 0.00 11.50 0.32 37.50 4.00 1.96 0.00 11.50 0.32 1.25 6.37 39.50 4.00 1.96 0.00 11.50 0.32 1.40 1.93 40.50 4.00 1.96 0.00 11.50 0.32 1.40 1.93 40.50 4.00 1.96 0.00 11.50 0.341 1.50 1.13 1.15 1.13 1.15 1.10 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.15                               |         |         |          | 0.00   |       |         |          |        |
| 6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 9.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
| 10.00         0.72         0.01         0.08         36.50         4.00         1.96         0.00           10.50         0.82         0.03         0.16         37.00         4.00         1.96         0.00           11.00         0.94         0.05         0.30         37.50         4.00         1.96         0.00           11.50         1.13         0.11         0.57         38.00         4.00         1.96         0.00           12.50         2.94         1.14         11.51         39.00         4.00         1.96         0.00           12.50         2.94         1.14         11.51         39.00         4.00         1.96         0.00           13.00         3.09         1.25         6.37         39.50         4.00         1.96         0.00           13.50         3.20         1.33         3.12         40.00         4.00         1.96         0.00           14.50         3.25         1.45         1.40         41.00         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           15.50         3.56         1.62 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |         |         |          |        |       |         |          |        |
| 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |          |        |       |         |          |        |
| 11.00         0.94         0.05         0.30         37.50         4.00         1.96         0.00           11.50         1.13         0.11         0.57         38.00         4.00         1.96         0.00           12.00         2.65         0.94         1.14         11.51         38.50         4.00         1.96         0.00           12.50         2.94         1.14         11.51         39.90         4.00         1.96         0.00           13.50         3.09         1.25         6.37         39.50         4.00         1.96         0.00           14.00         3.28         1.40         1.93         40.50         4.00         1.96         0.00           14.50         3.35         1.45         1.40         41.00         4.00         1.96         0.00           14.50         3.341         1.50         1.13         41.50         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           15.50         3.65         1.62         0.79         43.00         4.00         1.96         0.00           17.50         3.65<                                                                                    |         |         |          |        |       |         |          |        |
| 11.50         1.13         0.11         0.57         38.00         4.00         1.96         0.00           12.50         2.94         1.14         11.51         38.50         4.00         1.96         0.00           13.00         3.09         1.25         6.37         39.50         4.00         1.96         0.00           13.50         3.20         1.33         3.12         40.00         4.00         1.96         0.00           14.00         3.28         1.40         1.93         40.50         4.00         1.96         0.00           14.50         3.35         1.45         1.40         41.00         4.00         1.96         0.00           15.00         3.41         1.50         1.13         41.50         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.50         4.00         1.96         0.00           16.50         3.56         1.62         0.79         43.00         4.00         1.96         0.00           17.50         3.68         1.62 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>       |         |         |          |        |       |         |          |        |
| 12.00         2.65         0.94         2.41         38.50         4.00         1.96         0.00           12.50         2.94         1.14         11.51         39.00         4.00         1.96         0.00           13.00         3.09         1.25         6.37         39.50         4.00         1.96         0.00           14.00         3.28         1.40         1.93         40.50         4.00         1.96         0.00           14.50         3.35         1.45         1.40         41.00         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           16.00         3.52         1.58         0.89         42.50         4.00         1.96         0.00            17.50         3.61         1.62         0.79         43.50         4.00         1.96         0.00           17.50         3.65         1.68 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> |         |         |          |        |       |         |          |        |
| 12.50         2.94         1.14         11.51         39.00         4.00         1.96         0.00           13.50         3.09         1.25         6.37         39.50         4.00         1.96         0.00           13.50         3.20         1.33         3.12         40.00         4.00         1.96         0.00           14.00         3.28         1.40         1.93         40.50         4.00         1.96         0.00           14.50         3.35         1.45         1.40         41.00         4.00         1.96         0.00           15.50         3.41         1.50         1.13         41.50         4.00         1.96         0.00           15.50         3.47         1.54         1.00         42.00         4.00         1.96         0.00           16.50         3.56         1.62         0.79         43.00         4.00         1.96         0.00           17.50         3.65         1.62         0.79         43.00         4.00         1.96         0.00           17.50         3.65         1.62         0.79         43.00         4.00         1.96         0.00           17.50         3.65         1.62 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>       |         |         |          |        |       |         |          |        |
| 13.00       3.09       1.25       6.37       39.50       4.00       1.96       0.00         13.50       3.20       1.33       3.12       40.00       4.00       1.96       0.00         14.00       3.28       1.40       1.93       40.50       4.00       1.96       0.00         14.50       3.35       1.45       1.40       41.00       4.00       1.96       0.00         15.00       3.41       1.50       1.13       41.50       4.00       1.96       0.00         15.50       3.47       1.54       1.00       42.00       4.00       1.96       0.00         16.00       3.52       1.58       0.89       42.50       4.00       1.96       0.00         16.50       3.56       1.62       0.79       43.00       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.50       3.7                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 14.00       3.28       1.40       1.93       40.50       4.00       1.96       0.00         14.50       3.35       1.45       1.40       41.00       4.00       1.96       0.00         15.00       3.41       1.50       1.13       41.50       4.00       1.96       0.00         15.50       3.47       1.54       1.00       42.00       4.00       1.96       0.00         16.00       3.52       1.58       0.89       42.50       4.00       1.96       0.00         16.50       3.56       1.62       0.79       43.00       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         21.50       3.8                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 14.50       3.35       1.45       1.40       41.00       4.00       1.96       0.00         15.00       3.41       1.50       1.13       41.50       4.00       1.96       0.00         15.50       3.47       1.54       1.00       42.00       4.00       1.96       0.00         16.00       3.52       1.58       0.89       42.50       4.00       1.96       0.00         16.50       3.56       1.62       0.79       43.00       4.00       1.96       0.00         17.00       3.61       1.65       0.72       43.50       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.50       3.83       1.81       0.48       46.50       4.00       1.96       0.00         21.50       3.8                                                                                                                                                                            | 13.50   | 3.20    |          |        | 40.00 |         |          |        |
| 15.00       3.41       1.50       1.13       41.50       4.00       1.96       0.00         15.50       3.47       1.54       1.00       42.00       4.00       1.96       0.00         16.50       3.52       1.58       0.89       42.50       4.00       1.96       0.00         17.00       3.61       1.65       0.72       43.00       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.50       4.00       1.96       0.00         21.50       3.8                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 15.50       3.47       1.54       1.00       42.00       4.00       1.96       0.00         16.00       3.52       1.58       0.89       42.50       4.00       1.96       0.00         16.50       3.56       1.65       0.72       43.00       4.00       1.96       0.00         17.00       3.61       1.65       0.72       43.50       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         22.00       3.9                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 16.00       3.52       1.58       0.89       42.50       4.00       1.96       0.00         16.50       3.56       1.62       0.79       43.00       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.50       4.00       1.96       0.00         23.50       3.9                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 16.50       3.56       1.62       0.79       43.00       4.00       1.96       0.00         17.00       3.61       1.65       0.72       43.50       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.50       3.9                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 17.00       3.61       1.65       0.72       43.50       4.00       1.96       0.00         17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.50       3.9                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 17.50       3.65       1.68       0.67       44.00       4.00       1.96       0.00         18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.50       4.0                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 18.00       3.68       1.71       0.63       44.50       4.00       1.96       0.00         18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         25.50       4.0                                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 18.50       3.72       1.74       0.60       45.00       4.00       1.96       0.00         19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.50       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.50       4.00       1.96       0.02         25.50       4.00       1.96       0.00         27.50                                                                                                                                                                                    |         |         |          |        |       |         |          |        |
| 19.00       3.75       1.76       0.56       45.50       4.00       1.96       0.00         19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.50       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.50       4.00       1.96       0.02         25.50       4.00       1.96       0.00         27.50                                                                                                                                                                                    |         |         |          |        |       |         |          |        |
| 19.50       3.78       1.79       0.52       46.00       4.00       1.96       0.00         20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.50       4.00       1.96       0.29         25.50       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00      <                                                                                                                                                                                         |         |         |          |        |       |         |          |        |
| 20.00       3.81       1.81       0.48       46.50       4.00       1.96       0.00         20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.29       25.00       4.00       1.96       0.00         25.50       4.00       1.96       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00<                                                                                                                                                            |         |         |          |        |       |         |          |        |
| 20.50       3.83       1.83       0.44       47.00       4.00       1.96       0.00         21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.00       0.29       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                               |         |         |          |        |       |         |          |        |
| 21.00       3.86       1.85       0.42       47.50       4.00       1.96       0.00         21.50       3.88       1.87       0.41       48.00       4.00       1.96       0.00         22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                        |         |         |          |        |       |         |          |        |
| 22.00       3.91       1.89       0.40       48.50       4.00       1.96       0.00         22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                                          | 21.00   |         |          |        | 47.50 | 4.00    |          |        |
| 22.50       3.93       1.91       0.39       49.00       4.00       1.96       0.00         23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.29       0.29       0.29       0.29       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                                   | 21.50   |         |          | 0.41   | 48.00 | 4.00    |          | 0.00   |
| 23.00       3.95       1.93       0.39       49.50       4.00       1.96       0.00         23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.29       0.29       0.29       0.29       0.29       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                            |         |         |          |        |       |         |          |        |
| 23.50       3.98       1.95       0.38       50.00       4.00       1.96       0.00         24.00       4.00       1.96       0.37       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29       0.29                                                                                                     |         |         |          |        |       |         |          |        |
| 24.00       4.00       1.96       0.37         24.50       4.00       1.96       0.29         25.00       4.00       1.96       0.09         25.50       4.00       1.96       0.02         26.00       4.00       1.96       0.00         26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         29.00       4.00       1.96       0.00         29.50       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |          |        |       |         |          |        |
| 24.50       4.00       1.96       0.29         25.00       4.00       1.96       0.09         25.50       4.00       1.96       0.02         26.00       4.00       1.96       0.00         26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         28.50       4.00       1.96       0.00         29.00       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |         |          |        | 50.00 | 4.00    | 1.96     | 0.00   |
| 25.00       4.00       1.96       0.09         25.50       4.00       1.96       0.02         26.00       4.00       1.96       0.00         26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         28.50       4.00       1.96       0.00         29.00       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |        |       |         |          |        |
| 25.50       4.00       1.96       0.02         26.00       4.00       1.96       0.00         26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         28.50       4.00       1.96       0.00         29.00       4.00       1.96       0.00         29.50       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |        |       |         |          |        |
| 26.00       4.00       1.96       0.00         26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         28.50       4.00       1.96       0.00         29.00       4.00       1.96       0.00         29.50       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |          |        |       |         |          |        |
| 26.50       4.00       1.96       0.00         27.00       4.00       1.96       0.00         27.50       4.00       1.96       0.00         28.00       4.00       1.96       0.00         28.50       4.00       1.96       0.00         29.00       4.00       1.96       0.00         29.50       4.00       1.96       0.00         30.00       4.00       1.96       0.00         30.50       4.00       1.96       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |         |          |        |       |         |          |        |
| 27.00     4.00     1.96     0.00       27.50     4.00     1.96     0.00       28.00     4.00     1.96     0.00       28.50     4.00     1.96     0.00       29.00     4.00     1.96     0.00       29.50     4.00     1.96     0.00       30.00     4.00     1.96     0.00       30.50     4.00     1.96     0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |          |        |       |         |          |        |
| 27.50     4.00     1.96     0.00       28.00     4.00     1.96     0.00       28.50     4.00     1.96     0.00       29.00     4.00     1.96     0.00       29.50     4.00     1.96     0.00       30.00     4.00     1.96     0.00       30.50     4.00     1.96     0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |          |        |       |         |          |        |
| 28.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |          |        |       |         |          |        |
| 28.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |          |        |       |         |          |        |
| 29.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |          |        |       |         |          |        |
| 30.00 4.00 1.96 0.00<br>30.50 4.00 1.96 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.00   |         |          |        |       |         |          |        |
| 30.50 4.00 1.96 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |          |        |       |         |          |        |
| 31.00 4.00 1.96 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |          |        |       |         |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.00   | 4.00    | 1.96     | 0.00   |       |         |          |        |

# **Hydraulics**



130 2nd Avenue South Edmonds, WA. 98020

Phone: (425) 778-0907 Fax: (425) 778-6409

JOB NO. 1037

JOB NAME Cornwall Ave Landfill

SUBJECT Sizing Storm drainage ditch Rational Method

CALC BY ALB
CHK BY KWW

DATE DATE 10/13/2014 12/30/2015

#### **Problem Statement:**

Calculate the 10-year, 25-year and 100-year, 24-hour flows for the closed landfill discharging to the ditch on the southwest perimeter trench using the Rational Method

#### Requirements

- \* WAC 173-304-460(3)(iv) requires the runoff control system from active landfills to be able to collect and control at least the water volume resulting from a twenty-four hour, twenty-five year storm
- \* The stormwater collection trench on the southwest perimeter of the site receives water from south of the crest on the proposed cover and no offsite run-on.
- \* The trench is sized large enough to accommodate onsite flows from the 25-year, 24 hour storm with a maximum velocity of 5ft/sec and a maximum height of 2 feet
- \*Continuous simulation modelling of the site was not performed as there is not anticipated to be large amounts of changes to impervious surfaces, stormwater flow regimes. Additionally there is not any onsite storage of stormwater in ponds or other site specific BMPs that require design.

#### Assumptions:

- \* 2-Year 24 hour Isopluvial Storm 20 tenths of an inch
- \* 10-Year 24 hour Isopluvial Storm 30 tenths of an inch
- \* 25-Year 24 hour Isopluvial Storm 35 tenths of an inch
- \* 100-Year 24 hour Isopluvial storm 40 tenths of an inch
- \* Area of hillside (steep) 69,661 sq. ft (from CAD)
- \* Area of sloping into ditch south side 2,221 sq. ft (from CAD)
- \* Area of ditch 17,250 sq. ft (from CAD)
- \* Length of ditch 1228 ft (from CAD)
- \* Slope of ditch 0.5% (from CAD)
- \* Slope of hillside 33%
- \* Ditch and hillside will be covered with grass
- \* Use WSDOT Hydraulics Manual 1997 for guidance related to single event storm calculations

| Drainage Basin Areas:                     | A (acres) |          |          |  |
|-------------------------------------------|-----------|----------|----------|--|
| 1. Drainage Area                          |           | 2.1      |          |  |
| Steep Sloped Grass                        |           | 1.6      |          |  |
| Shallow Sloped Grass                      |           | 0.1      |          |  |
| Grassy Swale                              |           | 0.4      |          |  |
| Per Figure 2-4.2 WSDOT Hydraulics Manual: |           | <u>C</u> |          |  |
| Runoff Coefficient (C)                    | 10-year   | 25-year  | 100-year |  |
| Steep Sloped Grass (Lawns, Heavy Soil     |           |          |          |  |
| -Hilly)                                   | 0.35      | 0.39     | 0.48     |  |
| Shallow Sloped Grass (Side Shoulders-     |           |          |          |  |
| Rolling)                                  | 0.25      | 0.28     | 0.31     |  |
| Grassy Swale (grass shoulders-flat)       | 0.25      | 0.28     | 0.31     |  |

Note: According to the Manual, coefficients presented in Figure 2-4.2 are applicable for peak storms of 10-year or less frequency. To apply to a 25-year frequency, increase by 10 percent. To apply to a 100-year frequency, increase by 25 percent. The values above have been increased from the values presented in Table 4.7.1 accordingly. Values should not be increased above 0.90.

Per Figujre 2-4.4A of WSDOT Hydraulics Manual for Bellingham:

| Rainfall Coefficient | <u>m</u> | <u>n</u> |
|----------------------|----------|----------|
| 10-Year              | 167      | 0.559    |
| 25-year              | 201      | 0.562    |
| 100-year             | 251      | 0.565    |

Per TableFigure 2-4.3 of the WSDOT Hydrualics Manual (English Units):

# **Ground Cover Coefficient**

k = 420 Short Pasture grass or Lawn 900 Small roadside ditch w/grass

Note: k values shown represent the ground cover types included in the longest flow path only.

| Flow Path:                        |                 | <u>L</u> |    |
|-----------------------------------|-----------------|----------|----|
| <ol> <li>Drainage Area</li> </ol> |                 | 1288     | ft |
|                                   | Length of Slope | 60       | ft |
|                                   | Length of ditch | 1228     | ft |

#### **Equations**

#### Rational Method:

Q = CIA

where:

Q = runoff, in cubic feet per second (cfs)

C = runoff coefficient

I = rainfall intensity in inches per hour (in/hr)

A = contributing area, in acres (ac)

 $I = m / (Tc)^n$ 

where:

I = rainfall intensity, in in/hr

Tc = time of concentration, in minutes (min) m and n = rainfall intensity coefficients

#### Time of Concentration (Tc):

Tc = Tt1+Tt2+...+Ttn

 $Tt = L / [k * (S^0.5)] \text{ or } Tt = (L^1.5) / [k * (dH^0.5)]$ 

Where:

Tc = time of concentration, in min

Tt = travel time of flow segment, in min

L = length of segment, in feet (ft)

k = ground cover coefficient, in ft/min

S = slope of segment, in ft/ft

dH = change in elevation of segment, in ft

Note: The Tc value used should never be less than 5 minutes per the manual

#### Solution

# Solve for Tc using Tt = $(L^1.5) / [k * (dH^0.5)]$ :

|              |          | dH<br>ft               | L<br>ft                | Tt<br>minutes            | Tc<br>minutes | Tc > 5?   |
|--------------|----------|------------------------|------------------------|--------------------------|---------------|-----------|
| 1.           | Hillside | 17.0                   | 60                     | 0.151                    |               |           |
|              | ditch    | 5.0                    | 1228                   | 1.778                    |               |           |
|              |          |                        |                        | Total                    | 1.93          | No; use 5 |
| Solve for I: | I=       | <u>10-year</u><br>67.9 | <u>25-year</u><br>81.4 | <u>100-year</u><br>101.1 |               |           |

#### Conclusion

#### Calculate Flows:

1. Drainage to Ditch

|         | <u> 10-year</u> | <u>25-year</u> | <u>100-year</u> |       | <u> 10-year</u> | <u>25-year</u> | <u> 100-year</u> |
|---------|-----------------|----------------|-----------------|-------|-----------------|----------------|------------------|
| Q (cfs) | 47              | 61             | 94              | C*A = | 0.7             | 0.8            | 0.9              |
| Q (gpm) | 20880           | 27511          | 42028           |       |                 |                |                  |



130 2nd Avenue South Edmonds, WA. 98020

Phone: (425) 778-0907 Fax: (425) 778-6409

JOB NO. 1037

JOB NAME Cornwall Ave Landfill

SUBJECT Sizing Storm drainage ditch Rational Method

CALC BY ALB
CHK BY KWW

DATE DATE 10/13/2014 12/30/2015

#### **Problem Statement:**

Calculate the 10-year, 25-year and 100-year, 24-hour flows for the closed landfill discharging to the ditch on the southwest perimeter trench using the Rational Method

#### Requirements

- \* WAC 173-304-460(3)(iv) requires the runoff control system from active landfills to be able to collect and control at least the water volume resulting from a twenty-four hour, twenty-five year storm
- \* The stormwater collection trench on the southwest perimeter of the site receives water from south of the crest on the proposed cover and no offsite run-on.
- \* The trench is sized large enough to accommodate onsite flows from the 25-year, 24 hour storm with a maximum velocity of 5ft/sec and a maximum height of 2 feet
- \*Continuous simulation modelling of the site was not performed as there is not anticipated to be large amounts of changes to impervious surfaces, stormwater flow regimes. Additionally there is not any onsite storage of stormwater in ponds or other site specific BMPs that require design.

#### Assumptions:

- \* 2-Year 24 hour Isopluvial Storm 20 tenths of an inch
- \* 10-Year 24 hour Isopluvial Storm 30 tenths of an inch
- \* 25-Year 24 hour Isopluvial Storm 35 tenths of an inch
- \* 100-Year 24 hour Isopluvial storm 40 tenths of an inch
- \* Area of hillside (steep) 69,661 sq. ft (from CAD)
- \* Area of sloping into ditch south side 2,221 sq. ft (from CAD)
- \* Area of ditch 17,250 sq. ft (from CAD)
- \* Length of ditch 1228 ft (from CAD)
- \* Slope of ditch 0.5% (from CAD)
- \* Slope of hillside 33%
- \* Ditch and hillside will be covered with grass
- \* Use WSDOT Hydraulics Manual 1997 for guidance related to single event storm calculations

| Drainage Basin Areas:                     | A (acres) |          |          |  |  |
|-------------------------------------------|-----------|----------|----------|--|--|
| 1. Drainage Area                          | 2.1       |          |          |  |  |
| Steep Sloped Grass                        |           | 1.6      |          |  |  |
| Shallow Sloped Grass                      |           | 0.1      |          |  |  |
| Grassy Swale                              | 0.4       |          |          |  |  |
| Per Figure 2-4.2 WSDOT Hydraulics Manual: |           | <u>C</u> |          |  |  |
| Runoff Coefficient (C)                    | 10-year   | 25-year  | 100-year |  |  |
| Steep Sloped Grass (Lawns, Heavy Soil     |           |          |          |  |  |
| -Hilly)                                   | 0.35      | 0.39     | 0.48     |  |  |
| Shallow Sloped Grass (Side Shoulders-     |           |          |          |  |  |
| Rolling)                                  | 0.25      | 0.28     | 0.31     |  |  |
| Grassy Swale (grass shoulders-flat)       | 0.25      | 0.28     | 0.31     |  |  |

Note: According to the Manual, coefficients presented in Figure 2-4.2 are applicable for peak storms of 10-year or less frequency. To apply to a 25-year frequency, increase by 10 percent. To apply to a 100-year frequency, increase by 25 percent. The values above have been increased from the values presented in Table 4.7.1 accordingly. Values should not be increased above 0.90.

Per Figujre 2-4.4A of WSDOT Hydraulics Manual for Bellingham:

| Rainfall Coefficient | <u>m</u> | <u>n</u> |
|----------------------|----------|----------|
| 10-Year              | 167      | 0.559    |
| 25-year              | 201      | 0.562    |
| 100-year             | 251      | 0.565    |

Per TableFigure 2-4.3 of the WSDOT Hydrualics Manual (English Units):

# **Ground Cover Coefficient**

k = 420 Short Pasture grass or Lawn 900 Small roadside ditch w/grass

Note: k values shown represent the ground cover types included in the longest flow path only.

| Flow Path:                        |                 | <u>L</u> |    |
|-----------------------------------|-----------------|----------|----|
| <ol> <li>Drainage Area</li> </ol> |                 | 1288     | ft |
|                                   | Length of Slope | 60       | ft |
|                                   | Length of ditch | 1228     | ft |

#### **Equations**

#### Rational Method:

Q = CIA

where:

Q = runoff, in cubic feet per second (cfs)

C = runoff coefficient

I = rainfall intensity in inches per hour (in/hr)

A = contributing area, in acres (ac)

 $I = m / (Tc)^n$ 

where:

I = rainfall intensity, in in/hr

Tc = time of concentration, in minutes (min) m and n = rainfall intensity coefficients

#### Time of Concentration (Tc):

Tc = Tt1+Tt2+...+Ttn

 $Tt = L / [k * (S^0.5)] \text{ or } Tt = (L^1.5) / [k * (dH^0.5)]$ 

Where:

Tc = time of concentration, in min

Tt = travel time of flow segment, in min

L = length of segment, in feet (ft)

k = ground cover coefficient, in ft/min

S = slope of segment, in ft/ft

dH = change in elevation of segment, in ft

Note: The Tc value used should never be less than 5 minutes per the manual

#### Solution

# Solve for Tc using Tt = $(L^1.5) / [k * (dH^0.5)]$ :

|              |          | dH<br>ft               | L<br>ft                | Tt<br>minutes            | Tc<br>minutes | Tc > 5?   |
|--------------|----------|------------------------|------------------------|--------------------------|---------------|-----------|
| 1.           | Hillside | 17.0                   | 60                     | 0.151                    |               |           |
|              | ditch    | 5.0                    | 1228                   | 1.778                    |               |           |
|              |          |                        |                        | Total                    | 1.93          | No; use 5 |
| Solve for I: | I=       | <u>10-year</u><br>67.9 | <u>25-year</u><br>81.4 | <u>100-year</u><br>101.1 |               |           |

#### Conclusion

#### Calculate Flows:

1. Drainage to Ditch

|         | <u> 10-year</u> | <u>25-year</u> | <u>100-year</u> |       | <u> 10-year</u> | <u>25-year</u> | <u> 100-year</u> |
|---------|-----------------|----------------|-----------------|-------|-----------------|----------------|------------------|
| Q (cfs) | 47              | 61             | 94              | C*A = | 0.7             | 0.8            | 0.9              |
| Q (gpm) | 20880           | 27511          | 42028           |       |                 |                |                  |

# **HELP Model**

| **    | **                                              |    |   |
|-------|-------------------------------------------------|----|---|
| **    | **                                              |    |   |
| **    | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE   |    | * |
| **    | HELP MODEL VERSION 3.07 (1 November 1997) **    |    |   |
| **    | DEVELOPED BY ENVIRONMENTAL LABORATORY           | ** |   |
| **    | USAE WATERWAYS EXPERIMENT STATION **            |    |   |
| **    | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY |    |   |
| **    | **                                              |    |   |
| **    | **                                              |    |   |
| ***** | ****************                                |    |   |
| ***** | ***************                                 |    |   |

PRECIPITATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather1.dat TEMPERATURE DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\VHELP22\data\P5110.VHP\\_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_390838.inp OUTPUT DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\O\_390838.prt

TIME: 14:54 DATE: 10/16/2015

TITLE: Cornwall Avenue Landfill Cover Two Percent

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 5

THICKNESS = 60.96 CM
POROSITY = 0.4570 VOL/VOL
FIELD CAPACITY = 0.1310 VOL/VOL
WILTING POINT = 0.0580 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.1443 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

INITIAL SOIL WATER CONTENT = 0.0139 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC SLOPE = 2.00 PERCENT DRAINAGE LENGTH = 21.3 METERS

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 41

THICKNESS = 0.10 CM
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.200000000000E-11 CM/SEC
FML PINHOLE DENSITY = 7.41 HOLES/HECTARE
FML INSTALLATION DEFECTS = 2.47 HOLES/HECTARE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 23

THICKNESS = 60.96 CM
POROSITY = 0.4610 VOL/VOL
FIELD CAPACITY = 0.3600 VOL/VOL
WILTING POINT = 0.2030 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4610 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000000000E-05 CM/SEC

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 9
THICKNESS = 91.44 CM
POROSITY = 0.5010 VOL/VOL
FIELD CAPACITY = 0.2840 VOL/VOL
WILTING POINT = 0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2838 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.190000425600E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 5 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 91. METERS.

SCS RUNOFF CURVE NUMBER = 55.07
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 2.0234 HECTARES
EVAPORATIVE ZONE DEPTH = 61.0 CM
INITIAL WATER IN EVAPORATIVE ZONE = 8.794 CM

UPPER LIMIT OF EVAPORATIVE STORAGE = 27.859 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 3.536 CM INITIAL SNOW WATER = 0.000 CM INITIAL WATER IN LAYER MATERIALS = 62.857 CM TOTAL INITIAL WATER = 62.857 CM TOTAL SUBSURFACE INFLOW = 0.00 MM/YR

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Bellingham WA

STATION LATITUDE = 48.74 DEGREES

MAXIMUM LEAF AREA INDEX = 2.00

START OF GROWING SEASON (JULIAN DATE) = 126

END OF GROWING SEASON (JULIAN DATE) = 287

EVAPORATIVE ZONE DEPTH = 24.0 INCHES

AVERAGE ANNUAL WIND SPEED = 9.10 MPH

AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 75.00 %

AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 %

AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 70.00 %

AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 79.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/ | AUG M | AR/SEP | APR/OC | CT  | MAY/NOV | JUN/DEC |
|---------|------|-------|--------|--------|-----|---------|---------|
|         |      |       |        |        | -   |         |         |
| 3.00    | 3.00 | 3.00  | 3.00   | 3.00   | 3.0 | 00      |         |
| 3.00    | 3.00 | 3.00  | 3.00   | 3.00   | 3.0 | 00      |         |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/A | UG MA | AR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|-------|-------|--------|---------|---------|---------|
|         |       |       |        |         |         |         |
| 39.10   | 42.80 | 44.20 | 48.70  | 55.00   | 60.20   |         |
| 64.80   | 64.10 | 60.00 | 52.50  | 44.80   | 41.00   |         |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA AND STATION LATITUDE = 48.74 DEGREES

MONTHLY TOTALS (IN INCHES) FOR YEAR 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

-----

PRECIPITATION 4.21 4.67 8.91 0.71 1.72 3.49 0.52 1.27 4.80 1.97 5.01 2.04

RUNOFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EVAPOTRANSPIRATION 0.398 0.630 2.045 1.670 1.615 2.573 1.692 0.424 2.043 1.218 0.597 0.673

LATERAL DRAINAGE COLLECTED 4.1921 4.1934 6.0724 1.6812 0.2280 1.3425 FROM LAYER 2 0.4347 0.1450 0.8606 1.3827 2.8200 0.9872

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)

------

AVERAGE DAILY HEAD ON 0.008 0.009 0.012 0.003 0.000 0.003 TOP OF LAYER 3 0.001 0.000 0.002 0.003 0.006 0.002

STD. DEVIATION OF DAILY 0.006 0.013 0.015 0.005 0.000 0.003 HEAD ON TOP OF LAYER 3 0.002 0.001 0.003 0.003 0.005 0.001

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### ANNUAL TOTALS FOR YEAR 30

INCHES CU. FEET PERCENT

PRECIPITATION 39.32 713642.445 100.00

RUNOFF 0.000 0.000 0.00

EVAPOTRANSPIRATION 15.581 282788.671 39.63

DRAINAGE COLLECTED FROM LAYER 2 24.3399 441759.493 61.90

PERC./LEAKAGE THROUGH LAYER 4 0.000041 0.751 0.00

AVG. HEAD ON TOP OF LAYER 3 0.0042

PERC./LEAKAGE THROUGH LAYER 5 0.000000 0.000 0.00

CHANGE IN WATER STORAGE -0.601 -10905.708 -1.53

SOIL WATER AT START OF YEAR 27.216 493956.494

SOIL WATER AT END OF YEAR 26.615 483050.786

SNOW WATER AT START OF YEAR 0.000 0.000 0.000

SNOW WATER AT END OF YEAR 0.000 0.000 0.000

ANNUAL WATER BUDGET BALANCE 0.0000 -0.011 0.00

#### AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

.....

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

#### **PRECIPITATION**

-----

TOTALS 2.83 2.23 2.75 2.93 2.38 3.16 3.90 2.74 3.44 3.05 2.93 2.13

STD. DEVIATIONS 1.61 1.91 1.89 1.96 1.64 3.69 2.66 3.08 2.58 2.12 1.63 1.48

#### **RUNOFF**

-----

TOTALS 0.001 0.001 0.000 0.002 0.000 0.055 0.011 0.008 0.013 0.006 0.000 0.000

STD. DEVIATIONS 0.003 0.004 0.000 0.011 0.000 0.272 0.040 0.030 0.069 0.034 0.000 0.000

#### **EVAPOTRANSPIRATION**

-----

TOTALS 0.678 0.896 1.576 1.924 1.958 2.662 3.430 2.060 1.390 0.944 0.577 0.526

STD. DEVIATIONS 0.179 0.182 0.328 0.657 1.007 0.641 1.612 1.368 0.864 0.275 0.140 0.125

#### LATERAL DRAINAGE COLLECTED FROM LAYER 2

-----

TOTALS 1.6091 1.8545 1.4393 1.1977 0.6507 1.2849 1.2311 0.9186 0.8956 1.3275 1.5488 1.7394

STD. DEVIATIONS 1.1918 1.5803 1.5253 1.2975 0.6314 1.9329 1.5443 1.1989 0.8614 1.4161 1.0222 1.4064

### PERCOLATION/LEAKAGE THROUGH LAYER 4

-----

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

#### PERCOLATION/LEAKAGE THROUGH LAYER 5

-----

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

AVERAGES OF MONTHE! AVERAGED BAILT TIL

#### DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 0.0040 0.0065 0.0029 0.0049 0.0013 0.0239 0.0063 0.0050 0.0043 0.0091 0.0032 0.0037

STD. DEVIATIONS 0.0050 0.0125 0.0030 0.0150 0.0013 0.1030 0.0179 0.0145 0.0131 0.0375 0.0021 0.0036

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

INCHES CU. FEET PERCENT

PRECIPITATION 34.48 ( 7.624) 625756.0 100.00

RUNOFF 0.096 ( 0.2924) 1743.31 0.279

EVAPOTRANSPIRATION 18.622 ( 3.0290) 337983.15 54.012

LATERAL DRAINAGE COLLECTED 15.69727 ( 5.39770) 284899.268 45.52881 FROM LAYER 2

PERCOLATION/LEAKAGE THROUGH 0.00005 ( 0.00004) 0.841 0.00013 LAYER 4

AVERAGE HEAD ON TOP 0.006 ( 0.010)

OF LAYER 3

PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.000 0.00000 LAYER 5

CHANGE IN WATER STORAGE 0.062 ( 0.9617) 1130.29 0.181

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30 and their dates (DDDYYYY)

(INCHES) (CU. FT.)

PRECIPITATION 8.41 152638.17304 1660023

RUNOFF 1.489 27017.77067 1660023

DRAINAGE COLLECTED FROM LAYER 2 3.84424 69771.46049 1670023

PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000088 1.59204 1670023

AVERAGE HEAD ON TOP OF LAYER 3 9.760

MAXIMUM HEAD ON TOP OF LAYER 3 11.694

LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) 35.1 FEET

PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000000 0.00000 0

SNOW WATER 3.33 60442.8075 210028

MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4168

MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0580

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering

<sup>\*\*\*</sup> Maximum heads are computed using McEnroe's equations. \*\*\*

| Vol. 119, No. 2, March 1993, pp. 262-270. |         |                |  |  |  |  |  |  |  |
|-------------------------------------------|---------|----------------|--|--|--|--|--|--|--|
| *******                                   | ******  | ************** |  |  |  |  |  |  |  |
| FINAL WATER STORAGE AT END OF YEAR 30     |         |                |  |  |  |  |  |  |  |
| LAYER                                     | (INCH   | ES) (VOL/VOL)  |  |  |  |  |  |  |  |
| 1                                         | 5.3248  | 0.2219         |  |  |  |  |  |  |  |
| 2                                         | 0.0071  | 0.0360         |  |  |  |  |  |  |  |
| 3                                         | 0.0000  | 0.0000         |  |  |  |  |  |  |  |
| 4                                         | 11.0640 | 0.4610         |  |  |  |  |  |  |  |
| 5                                         | 10.2191 | 0.2839         |  |  |  |  |  |  |  |
| SNOW W                                    | ATER    | 0.000          |  |  |  |  |  |  |  |
| *******                                   | *****   | ***********    |  |  |  |  |  |  |  |

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

\*\*

PRECIPITATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather1.dat TEMPERATURE DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\VHELP22\data\P5110.VHP\\_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_390838.inp OUTPUT DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\O\_390838.prt

TIME: 15: 3 DATE: 10/16/2015

TITLE: Cornwall Avenue Landfill Cover Five Percent

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 5

THICKNESS = 60.96 CM
POROSITY = 0.4570 VOL/VOL
FIELD CAPACITY = 0.1310 VOL/VOL
WILTING POINT = 0.0580 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.1441 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

INITIAL SOIL WATER CONTENT = 0.0132 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.000000000 CM/SEC SLOPE = 5.00 PERCENT DRAINAGE LENGTH = 42.7 METERS

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 41

THICKNESS = 0.10 CM
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.200000000000E-11 CM/SEC
FML PINHOLE DENSITY = 7.41 HOLES/HECTARE
FML INSTALLATION DEFECTS = 2.47 HOLES/HECTARE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 23

THICKNESS = 60.96 CM
POROSITY = 0.4610 VOL/VOL
FIELD CAPACITY = 0.3600 VOL/VOL
WILTING POINT = 0.2030 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4610 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000000000E-05 CM/SEC

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 9
THICKNESS = 91.44 CM
POROSITY = 0.5010 VOL/VOL
FIELD CAPACITY = 0.2840 VOL/VOL
WILTING POINT = 0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2838 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.190000425600E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 5 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 91. METERS.

SCS RUNOFF CURVE NUMBER = 56.66
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 2.0234 HECTARES
EVAPORATIVE ZONE DEPTH = 61.0 CM
INITIAL WATER IN EVAPORATIVE ZONE = 8.784 CM

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Bellingham WA

STATION LATITUDE = 48.74 DEGREES

MAXIMUM LEAF AREA INDEX = 2.00

START OF GROWING SEASON (JULIAN DATE) = 126

END OF GROWING SEASON (JULIAN DATE) = 287

EVAPORATIVE ZONE DEPTH = 24.0 INCHES

AVERAGE ANNUAL WIND SPEED = 9.10 MPH

AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 75.00 %

AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 %

AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 70.00 %

AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 79.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/ | AUG M | IAR/SEP | APR/OC | CT N | MAY/NOV | JUN/DEC |
|---------|------|-------|---------|--------|------|---------|---------|
|         |      |       |         |        | -    |         |         |
| 3.00    | 3.00 | 3.00  | 3.00    | 3.00   | 3.00 |         |         |
| 3.00    | 3.00 | 3.00  | 3.00    | 3.00   | 3.00 |         |         |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/A | UG MA | AR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|-------|-------|--------|---------|---------|---------|
|         |       |       |        |         |         |         |
| 39.10   | 42.80 | 44.20 | 48.70  | 55.00   | 60.20   |         |
| 64.80   | 64.10 | 60.00 | 52.50  | 44.80   | 41.00   |         |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA AND STATION LATITUDE = 48.74 DEGREES

MONTHLY TOTALS (IN INCHES) FOR YEAR 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

------ ------

PRECIPITATION 4.21 4.67 8.91 0.71 1.72 3.49 0.52 1.27 4.80 1.97 5.01 2.04

RUNOFF 0.000 0.000 0.000 0.000 0.000 0.000

 $0.000 \quad 0.000 \quad 0.000 \quad 0.000 \quad 0.000$ 

EVAPOTRANSPIRATION 0.404 0.635 2.052 1.674 1.616 2.563 1.666 0.389 2.023 1.224 0.600 0.677

LATERAL DRAINAGE COLLECTED 4.1801 4.1910 6.0529 1.6954 0.2278 1.3493 FROM LAYER 2 0.4623 0.2070 0.8494 1.3859 2.8091 0.9843

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 4

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

# MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)

AVERAGE DAILY HEAD ON 0.007 0.007 0.010 0.003 0.000 0.002 TOP OF LAYER 3 0.001 0.000 0.001 0.002 0.005 0.002

STD. DEVIATION OF DAILY 0.005 0.010 0.012 0.004 0.000 0.003 HEAD ON TOP OF LAYER 3 0.002 0.001 0.002 0.003 0.003 0.001

#### ANNUAL TOTALS FOR YEAR 30

INCHES CU. FEET PERCENT

-----PRECIPITATION 39.32 713642.445 100.00

RUNOFF 0.000 0.000 0.00

**EVAPOTRANSPIRATION** 15.522 281724.435 39.48

DRAINAGE COLLECTED FROM LAYER 2 24.3946 442752.516 62.04

PERC./LEAKAGE THROUGH LAYER 4 0.000037 0.679 0.00

AVG. HEAD ON TOP OF LAYER 3 0.0033

PERC./LEAKAGE THROUGH LAYER 5 0.000000 0.000 0.00

CHANGE IN WATER STORAGE -0.597 -10834.495 -1.52

SOIL WATER AT START OF YEAR 27.215 493944.308

SOIL WATER AT END OF YEAR 26.618 483109.813

SNOW WATER AT START OF YEAR 0.000 0.000 0.00

SNOW WATER AT END OF YEAR 0.000 0.000 0.00

ANNUAL WATER BUDGET BALANCE 0.0000 -0.011 0.00

# AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

-----

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

**PRECIPITATION** 

-----

TOTALS 2.83 2.23 2.75 2.93 2.38 3.16 3.90 2.74 3.44 3.05 2.93 2.13

STD. DEVIATIONS 1.61 1.91 1.89 1.96 1.64 3.69 2.66 3.08 2.58 2.12 1.63 1.48

**RUNOFF** 

----

TOTALS 0.002 0.002 0.000 0.003 0.000 0.065 0.016 0.012 0.016 0.008 0.000 0.000

STD. DEVIATIONS 0.006 0.011 0.000 0.018 0.000 0.307 0.054 0.042 0.087 0.045 0.000 0.000

#### **EVAPOTRANSPIRATION**

-----

TOTALS 0.657 0.863 1.564 1.931 1.956 2.647 3.377 1.968 1.360 0.924 0.560 0.503

STD. DEVIATIONS 0.173 0.199 0.318 0.616 0.996 0.657 1.607 1.354 0.871 0.283 0.148 0.139

#### LATERAL DRAINAGE COLLECTED FROM LAYER 2

-----

TOTALS 1.5835 1.8643 1.4306 1.2208 0.6605 1.2216 1.3175 0.9869 1.0340 1.3802 1.6076 1.6751

STD. DEVIATIONS 1.1099 1.5884 1.5440 1.2959 0.6317 1.7847 1.4929 1.1739 0.8697 1.4345 1.0559 1.2684

# PERCOLATION/LEAKAGE THROUGH LAYER 4

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

#### PERCOLATION/LEAKAGE THROUGH LAYER 5

\_\_\_\_\_

\_\_\_\_\_

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

#### DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 0.0025 0.0045 0.0023 0.0032 0.0011 0.0191 0.0029 0.0027 0.0030 0.0063 0.0027 0.0027

STD. DEVIATIONS 0.0018 0.0067 0.0025 0.0079 0.0010 0.0917 0.0056 0.0072 0.0081 0.0242 0.0017 0.0020

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

INCHES CU. FEET PERCENT

PRECIPITATION 34.48 ( 7.624) 625756.0 100.00

**RUNOFF** 0.123 ( 0.3387) 2234.33 0.357

EVAPOTRANSPIRATION 18.310 ( 3.0149) 332310.95 53.106

LATERAL DRAINAGE COLLECTED 15.98250 ( 5.28862) 290076.059 46.35610 FROM LAYER 2

PERCOLATION/LEAKAGE THROUGH 0.00004 (0.00003) 0.716 0.00011

LAYER 4

AVERAGE HEAD ON TOP 0.004 ( 0.008)

OF LAYER 3

PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.000 0.00000

LAYER 5

CHANGE IN WATER STORAGE 0.063 ( 0.8704) 1134.68 0.181

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30 and their dates (DDDYYYY)

(INCHES) (CU. FT.)

-----

**PRECIPITATION** 8.41 152638.17304 1660023

**RUNOFF** 1.682 30518.89474 1660023

DRAINAGE COLLECTED FROM LAYER 2 3.59013 65159.37752 1670023

PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000077 1.39656 1670023

AVERAGE HEAD ON TOP OF LAYER 3 8.543

MAXIMUM HEAD ON TOP OF LAYER 3 11.886

LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) 31.6 FEET

PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000000 0.00000 0

**SNOW WATER** 3.33 60442.8075 210028

MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4055

MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0580

\*\*\* Maximum heads are computed using McEnroe's equations. \*\*\*

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| HELP Output for Cornwall Cover System 5% Slope |                                       |                                                |  |  |  |  |  |
|------------------------------------------------|---------------------------------------|------------------------------------------------|--|--|--|--|--|
|                                                |                                       |                                                |  |  |  |  |  |
| ************************                       |                                       |                                                |  |  |  |  |  |
|                                                |                                       |                                                |  |  |  |  |  |
|                                                |                                       |                                                |  |  |  |  |  |
| <br>****************                           | ******                                | ************                                   |  |  |  |  |  |
| FINAL WATER STORAGE AT END OF YEAR 30          |                                       |                                                |  |  |  |  |  |
|                                                | LAYER (INCHES) (VOL/VOL)              |                                                |  |  |  |  |  |
| LAYER                                          | (INCHE                                | S) (VOL/VOL)                                   |  |  |  |  |  |
|                                                | (INCHE<br><br>5.3292                  | <del></del>                                    |  |  |  |  |  |
|                                                |                                       | 0.2221                                         |  |  |  |  |  |
| 1                                              | 5.3292                                | 0.2221<br>0.0308                               |  |  |  |  |  |
| 1 2 3                                          | 5.3292                                | 0.2221<br>0.0308<br>0.0000                     |  |  |  |  |  |
| 1 2 3                                          | 5.3292<br>0.0061<br>0.0000            | 0.2221<br>0.0308<br>0.0000<br>0.4610           |  |  |  |  |  |
| 1<br>2<br>3<br>4<br>5                          | 5.3292<br>0.0061<br>0.0000<br>11.0640 | 0.2221<br>0.0308<br>0.0000<br>0.4610<br>0.2839 |  |  |  |  |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

PRECIPITATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather1.dat TEMPERATURE DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\\_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\VHELP22\data\P5110.VHP\\_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\I\_390838.inp OUTPUT DATA FILE: C:\WHI\VHELP22\data\P5110.VHP\O\_390838.prt

TIME: 15: 8 DATE: 10/16/2015

TITLE: Cornwall Avenue Landfill Cover Twenty-Five Percent

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 5

THICKNESS = 60.96 CM
POROSITY = 0.4570 VOL/VOL
FIELD CAPACITY = 0.1310 VOL/VOL
WILTING POINT = 0.0580 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.1441 VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

INITIAL SOIL WATER CONTENT = 0.0132 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC SLOPE = 25.00 PERCENT DRAINAGE LENGTH = 202.7 METERS

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 41

THICKNESS = 0.10 CM
POROSITY = 0.0000 VOL/VOL
FIELD CAPACITY = 0.0000 VOL/VOL
WILTING POINT = 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.200000000000E-11 CM/SEC
FML PINHOLE DENSITY = 7.41 HOLES/HECTARE
FML INSTALLATION DEFECTS = 2.47 HOLES/HECTARE
FML PLACEMENT QUALITY = 3 - GOOD

LAYER 4

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 23

THICKNESS = 60.96 CM
POROSITY = 0.4610 VOL/VOL
FIELD CAPACITY = 0.3600 VOL/VOL
WILTING POINT = 0.2030 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.4610 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.100000000000E-05 CM/SEC

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER

MATERIAL TEXTURE NUMBER 9
THICKNESS = 91.44 CM
POROSITY = 0.5010 VOL/VOL
FIELD CAPACITY = 0.2840 VOL/VOL
WILTING POINT = 0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT = 0.2838 VOL/VOL
EFFECTIVE SAT. HYD. COND. = 0.190000425600E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 5 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 91. METERS.

SCS RUNOFF CURVE NUMBER = 59.31
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT
AREA PROJECTED ON HORIZONTAL PLANE = 2.0234 HECTARES
EVAPORATIVE ZONE DEPTH = 61.0 CM
INITIAL WATER IN EVAPORATIVE ZONE = 8.784 CM

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Bellingham WA

STATION LATITUDE = 48.74 DEGREES

MAXIMUM LEAF AREA INDEX = 2.00

START OF GROWING SEASON (JULIAN DATE) = 126

END OF GROWING SEASON (JULIAN DATE) = 287

EVAPORATIVE ZONE DEPTH = 24.0 INCHES

AVERAGE ANNUAL WIND SPEED = 9.10 MPH

AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 75.00 %

AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 69.00 %

AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 70.00 %

AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 79.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | JAN/JUL FEB/AUG |      | AR/SEP | APR/OCT |     | MAY/NOV | JUN/DEC |
|---------|-----------------|------|--------|---------|-----|---------|---------|
|         |                 |      |        |         | -   |         |         |
| 3.00    | 3.00            | 3.00 | 3.00   | 3.00    | 3.0 | 00      |         |
| 3.00    | 3.00            | 3.00 | 3.00   | 3.00    | 3.0 | 00      |         |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AL | JG MA | R/SEP     | APR/OCT | MAY/NOV | JUN/DEC |
|---------|--------|-------|-----------|---------|---------|---------|
|         | 42.80  | 44.20 | <br>48.70 | 55.00   | 60.20   |         |
|         | 64.10  | 60.00 | 52.50     |         | 41.00   |         |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Bellingham WA AND STATION LATITUDE = 48.74 DEGREES

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

MONTHLY TOTALS (IN INCHES) FOR YEAR 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

PRECIPITATION 4.21 4.67 8.91 0.71 1.72 3.49 0.52 1.27 4.80 1.97 5.01 2.04

Page **3** of **7** 

RUNOFF 0.000 0.000 0.000 0.000 0.000 0.000  $0.000 \quad 0.000 \quad 0.000 \quad 0.000 \quad 0.000$ 

0.406 0.637 2.054 1.675 1.616 2.572 EVAPOTRANSPIRATION 1.657 0.407 2.028 1.224 0.600 0.676

LATERAL DRAINAGE COLLECTED 4.1769 4.1892 6.0502 1.6954 0.2277 1.3267 FROM LAYER 2 0.4835 0.1593 0.8741 1.3864 2.8098 0.9846

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 4

PERCOLATION/LEAKAGE THROUGH 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 LAYER 5 0.0000 0.0000 0.0000 0.0000 0.0000

MONTHLY SUMMARIES FOR DAILY HEADS (INCHES)

\_\_\_\_\_

AVERAGE DAILY HEAD ON 0.007 0.007 0.010 0.003 0.000 0.002 TOP OF LAYER 3 0.001 0.000 0.001 0.002 0.005 0.002

STD. DEVIATION OF DAILY 0.005 0.010 0.012 0.004 0.000 0.003 HEAD ON TOP OF LAYER 3 0.002 0.001 0.002 0.003 0.003 0.001

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### ANNUAL TOTALS FOR YEAR 30

INCHES CU. FEET PERCENT

PRECIPITATION 39.32 713642.445 100.00

**RUNOFF** 0.000 0.000 0.00

EVAPOTRANSPIRATION 15.551 282252.159 39.55

DRAINAGE COLLECTED FROM LAYER 2 24.3639 442195.207 61.96

PERC./LEAKAGE THROUGH LAYER 4 0.000038 0.682 0.00

AVG. HEAD ON TOP OF LAYER 3 0.0034

PERC./LEAKAGE THROUGH LAYER 5 0.000000 0.000 0.00

CHANGE IN WATER STORAGE -0.595 -10804.910 -1.51

SOIL WATER AT START OF YEAR 27.214 493915.569

SOIL WATER AT END OF YEAR 26.618 483110.658

SNOW WATER AT START OF YEAR 0.000 0.000 0.00

SNOW WATER AT END OF YEAR 0.000 0.000 0.00

ANNUAL WATER BUDGET BALANCE 0.0000 -0.011 0.00

#### AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

#### PRECIPITATION

.\_\_\_\_

TOTALS 2.83 2.23 2.75 2.93 2.38 3.16 3.90 2.74 3.44 3.05 2.93 2.13

STD. DEVIATIONS 1.61 1.91 1.89 1.96 1.64 3.69 2.66 3.08 2.58 2.12 1.63 1.48

#### **RUNOFF**

----

TOTALS 0.005 0.004 0.000 0.006 0.000 0.084 0.026 0.019 0.021 0.012 0.000 0.000

STD. DEVIATIONS 0.017 0.022 0.000 0.031 0.000 0.362 0.084 0.066 0.111 0.066 0.001 0.000

#### **EVAPOTRANSPIRATION**

\_\_\_\_

TOTALS 0.636 0.847 1.549 1.931 1.957 2.644 3.392 1.980 1.363 0.911 0.549 0.486

STD. DEVIATIONS 0.188 0.205 0.313 0.620 0.990 0.662 1.636 1.365 0.859 0.286 0.153 0.150

#### LATERAL DRAINAGE COLLECTED FROM LAYER 2

-----

TOTALS 1.6109 1.8791 1.4415 1.2235 0.6607 1.2097 1.2896 0.9704 1.0319 1.3870 1.6090 1.6800

STD. DEVIATIONS 1.1371 1.6220 1.5535 1.2884 0.6404 1.7396 1.4595 1.1500 0.8687 1.4168 1.0323 1.3351

# PERCOLATION/LEAKAGE THROUGH LAYER 4

-----

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

#### PERCOLATION/LEAKAGE THROUGH LAYER 5

-----

-----

TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)

------

#### DAILY AVERAGE HEAD ON TOP OF LAYER 3

AVERAGES 0.0026 0.0044 0.0023 0.0032 0.0011 0.0167 0.0026 0.0024 0.0028 0.0052 0.0027 0.0027

STD. DEVIATIONS 0.0018 0.0063 0.0025 0.0079 0.0010 0.0788 0.0049 0.0056 0.0066 0.0179 0.0017 0.0021

| HELP Output for Cornwall Cover System 25% Slope                                 |
|---------------------------------------------------------------------------------|
| ********                                                                        |
|                                                                                 |
| ***************************************                                         |
| AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30                |
| INCHES CU. FEET PERCENT                                                         |
| PRECIPITATION 34.48 ( 7.624) 625756.0 100.00                                    |
| RUNOFF 0.177 ( 0.4188) 3213.87 0.514                                            |
| EVAPOTRANSPIRATION 18.245 ( 3.0213) 331136.58 52.918                            |
| LATERAL DRAINAGE COLLECTED 15.99323 ( 5.24106) 290270.862 46.38723 FROM LAYER 2 |
| PERCOLATION/LEAKAGE THROUGH 0.00004 ( 0.00002) 0.696 0.00011 LAYER 4            |
| AVERAGE HEAD ON TOP 0.004 ( 0.007)<br>OF LAYER 3                                |
| PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.000 0.00000 LAYER 5            |
| CHANGE IN WATER STORAGE 0.063 ( 0.7877) 1134.70 0.181                           |
| ***************************************                                         |
|                                                                                 |
|                                                                                 |
| PEAK DAILY VALUES FOR YEARS 1 THROUGH 30 and their dates (DDDYYYY)              |
| (INCHES) (CU. FT.)                                                              |
| PRECIPITATION 8.41 152638.17304 1660023                                         |
| RUNOFF 1.971 35771.96338 1660023                                                |
| DRAINAGE COLLECTED FROM LAYER 2 3.34046 60627.95770 1670023                     |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 0.000066 1.19434 1670023                    |
| AVERAGE HEAD ON TOP OF LAYER 3 7.277                                            |
| MAXIMUM HEAD ON TOP OF LAYER 3 11.975                                           |
| LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) 0.0 FEET              |
| PERCOLATION/LEAKAGE THROUGH LAYER 5 0.000000 0.00000 0                          |
| SNOW WATER 3.33 60442.8075 210028                                               |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.3943                                        |
| MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0580                                        |
| *** Maximum heads are computed using McEnroe's equations. ***                   |
|                                                                                 |

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas

### HELP Output for Cornwall Cover System 25% Slope

|         |          |        | onmental Engineering<br>1993, pp. 262-270. | I     |
|---------|----------|--------|--------------------------------------------|-------|
| ******* | ******   | ****** | *******                                    | ***** |
|         |          |        |                                            |       |
|         |          |        |                                            |       |
|         | ******   | ****** | *******                                    | ***** |
| FINAL W | ATER STO | ORAGE  | AT END OF YEAR                             | 30    |
| LAYER   | (INCH    | ES)    | (VOL/VOL)                                  |       |
| 1       | 5.3293   | 0.2    | 221                                        |       |
| 2       | 0.0061   | 0.0    | 310                                        |       |
| 3       | 0.0000   | 0.0    | 000                                        |       |
| 4       | 11.0640  | 0.4    | 1610                                       |       |
| 5       | 10.2189  | 0.2    | 2839                                       |       |
| SNOW W  | ATER     | 0.000  |                                            |       |
| ******  | ******   | ****** | *******                                    | ***** |

## **Aquatic Cover Design**

# DRAFT Basis of Design Report Cornwall Cleanup Site



## Draft Basis of Design Report CORNWALL CLEANUP SITE

Prepared for:

Port of Bellingham

This document summarizes the basis of design for preliminary level design of the Cornwall Avenue Landfill Cleanup Project and is being released for the purpose of review, under the authority of Vladimir Shepsis, Ph.D., P.E. This document is not to be used for purposes of permitting, final engineering design, or for construction documents.

Prepared by:

Vladimir Shepsis, PhD, PE Principal Coastal Engineer



110 James Street, Suite 101 Edmonds, WA 98020 Ph 425 778.6733 Fax 425 778.6883

### **TABLE OF CONTENTS**

| 1.           | Introdu                               | action1                                                                                                                                                                                                                |
|--------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.           | Wave                                  | Analysis2                                                                                                                                                                                                              |
|              | 2.1.                                  | Methodology2                                                                                                                                                                                                           |
|              | 2.2.                                  | Results                                                                                                                                                                                                                |
| 3.           | Design                                | 5                                                                                                                                                                                                                      |
|              | 3.1.                                  | Rock Groin5                                                                                                                                                                                                            |
|              | 3.2.                                  | South Gravel Cobble Beach with Revetment                                                                                                                                                                               |
|              | 3.3.                                  | Sandy Gravel Beach9                                                                                                                                                                                                    |
|              | 3.4.                                  | North Gravel Cobble Beach with Revetment                                                                                                                                                                               |
|              | 3.5.                                  | Thin Sediment Cap Layer13                                                                                                                                                                                              |
| 4.           | Constr                                | uction                                                                                                                                                                                                                 |
|              | 4.1.                                  | Construction sequencing for shoreline and in-water work                                                                                                                                                                |
|              | 4.2.                                  | Construction quality assurance monitoring                                                                                                                                                                              |
| 5.           | Refere                                | nces                                                                                                                                                                                                                   |
|              |                                       |                                                                                                                                                                                                                        |
| <b>FIGUE</b> | RES                                   |                                                                                                                                                                                                                        |
| Figure       | (b)                                   | view of preliminary design of project coastal engineering elements: (a) rock groin; south cobble gravel beach with revetment; (c) sandy gravel beach; (d) north bble gravel beach with revetment; and (e) sediment cap |
|              | <ol> <li>SWA</li> <li>Exam</li> </ol> | AN Wave modeling bathymetry grids: (a) large and (b) nested3 mple wave modeling outputs in Bellingham Bay; wave heights over modeling                                                                                  |
| Figure       | 4. Exar                               | main during design storms from different directions                                                                                                                                                                    |
| _            | lay                                   | alts of nearshore wave modeling for (a) existing conditions and (b to f) various outs of groin(s)6                                                                                                                     |
|              |                                       | gitudinal cross-section of rock groin                                                                                                                                                                                  |
|              | 8. Repi                               | resentative type of material that may be used for construction of south gravel bble beach                                                                                                                              |
|              | 9. Typi                               | cal cross-section of sandy-gravel beach10                                                                                                                                                                              |
|              | bea                                   | presentative type of material that may be used for construction of sandy gravel ach at this part of shoreline                                                                                                          |
| Figure       | 11. Tvi                               | pical cross-section of north gravel cobble beach with revetment                                                                                                                                                        |



# DRAFT Basis of Design Report Cornwall Cleanup Site

#### 1. Introduction

This technical report summarizes the engineering basis of design that was used by Coast & Harbor Engineering (CHE), a Division of Hatch Mott McDonald for the preliminary level of design of the Cornwall Avenue Landfill Cleanup Project. Prior to the preliminary design, CHE developed and coordinated with the Project Team comprised of the Port of Bellingham (Port), Landau Associates (Landau), and CHE, a technical memorandum (CHE 2015) to establish the environmental data and assumptions utilized to develop design criteria for the preliminary design. Refer to (CHE 2015) for details regarding the input data, assumptions, as well as design criteria that was used in the preliminary design (see Attachment A).

As requested by the Project Team, CHE developed two shoreline protection measure alternatives: (a) Alt 1 (hereafter referred to as *baseline alternative*); and (b) Alt 2 (hereafter referred to as *rock groin alternative*). A site plan and cross-sections were developed for both alternatives and were presented to the Port and the Project Team. Two sets of drawings for these alternatives are presented in Attachments B and C, respectively.

Upon presentation of the two alternatives, the *rock groin alternative* was selected as the preferred alternative by the Port. This technical report focuses on engineering aspects of the preliminary design of the coastal engineering elements for the *rock groin alternative*. Figure 1 is a plan view of the preliminary design that shows the locations and extension of the coastal elements of the project. These elements include: (a) rock groin; (b) south gravel cobble beach with revetment; (c) sandy gravel beach; (d) north gravel cobble beach with revetment; and (e) sediment cap. Each of these elements were selected and designed to provide adequate project performance functions (see Section 3) and meet the design criteria defined and established in CHE 2015. Please note that wave conditions at the project site were the major controlling factor for the design of the coastal engineering elements; the tidal currents were found to be negligible. Therefore, detailed wave analysis and numerical modeling was performed to establish the wave conditions prior to the project (existing conditions) and upon construction of the proposed coastal elements (post-project conditions). Descriptions of the wave modeling as well as the basis of design for each individual coastal element are presented in Sections 2 and 3.

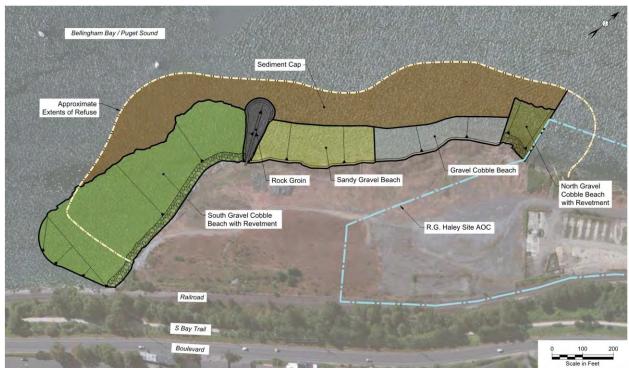



Figure 1. Plan view of preliminary design of project coastal engineering elements: (a) rock groin; (b) south cobble gravel beach with revetment; (c) sandy gravel beach; (d) north cobble gravel beach with revetment; and (e) sediment cap

#### 2. Wave Analysis

#### 2.1. Methodology

Wave conditions at the project site were developed based on numerical modeling of wind-wave generation for the design wind speeds from south to west. Wave modeling was conducted using the two-dimensional (2-D) Simulating Waves Nearshore Model (SWAN 40.72, Delft Technical University, 2008) in steady state mode. SWAN simulates growth of waves by wind and accounts for shoaling, refraction, diffraction, and bottom damping of waves as they approach the shoreline. The numerical model SWAN was applied to a regional (large) as well as a local (nested) domain to simulate wind-wave growth and propagation for the design wind from the directions 180° through 330° TN for water levels ranging from MLLW to MHHW + 2.4 ft.

The SWAN modeling results for the critical wind direction cases were extracted near the project site and applied as a boundary condition for a nearshore model of the immediate project vicinity. Two nearshore models of HWAVE (Zheleznyak *et al.* 2009) and SWASH (Delft 2010) were utilized to simulate the interaction of waves with the bottom and groin structure for existing and proposed project features.

The SWAN wave modeling numerical grid was built using the bathymetry data from various sources and provided project topography data (CHE 2015). Figure 2 shows the model bathymetry for the large and nested modeling grids.

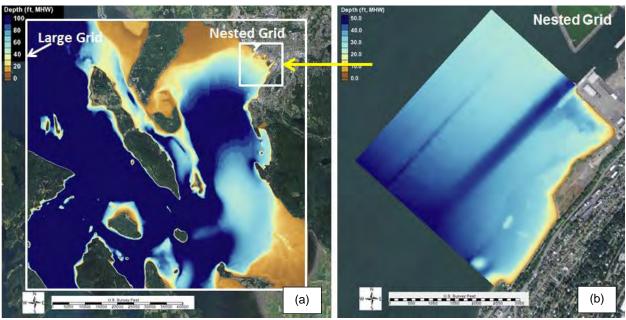



Figure 2. SWAN Wave modeling bathymetry grids: (a) large and (b) nested

#### 2.2. Results

Modeling was conducted for the design storm event (100-year return period storm) approaching from all wave generation directions in the sector between 180 and 300 degrees following established design criteria (see CHE 2015). A few example modeling results for existing conditions for Bellingham Bay and a zoomed-in view at the project site are shown in Figures 3 and 4, respectively.

The figure shows a distribution (field) of significant wave heights during the design storm for various wind directions over the nested modeling domain in color format. The wave modeling outputs in terms of significant wave heights were used as the basis for comparison and optimization of various project element components.

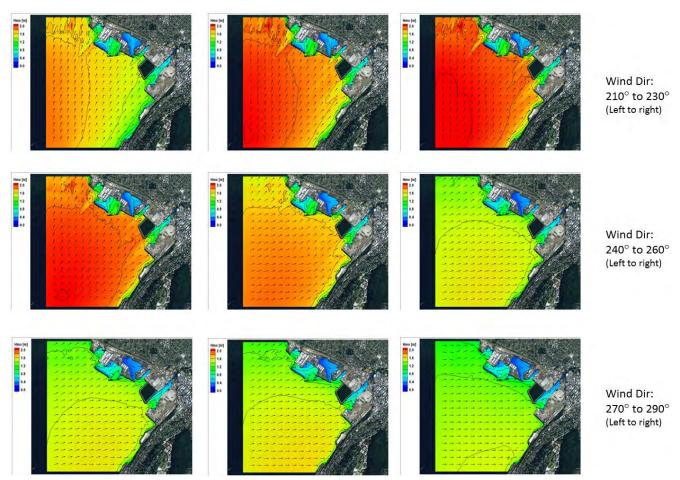



Figure 3. Example wave modeling outputs in Bellingham Bay; wave heights over modeling domain during design storms from different directions

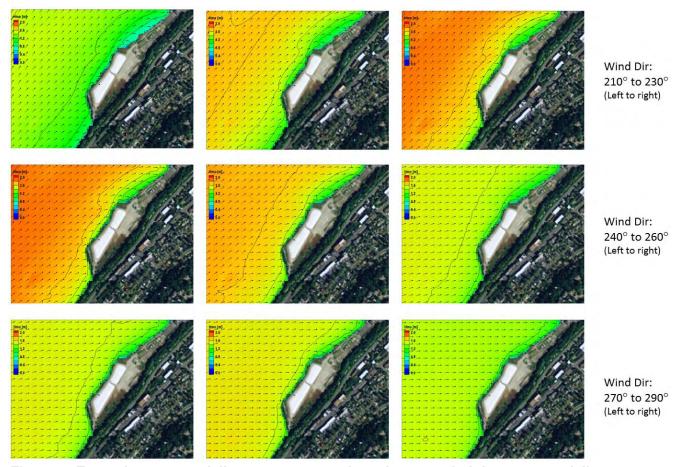



Figure 4. Example wave modeling outputs at project site; wave heights over modeling domain during design storms from different directions

#### 3. Design

#### 3.1. Rock Groin

The rock groin was designed to provide the following functions:

- Wave sheltering for the northern shoreline.
- Minimize size of material for shoreline protection north of the groin.
- Minimize down-drift (northward) loss of the beach material from the south gravel beach.

To meet these functions, the rock groin alignment and cross-sectional dimensions were determined using numerical wave modeling.

Upon completion of modeling of existing conditions, the featured rock groin was built into the modeling grid and modeling was conducted for various locations and configurations of the rock groin to identify the optimal location and configuration to meet the desired functions. Figure 5 shows example wave modeling results for testing a groin for the project conditions (one of the groin alterations), and shows a field of wave heights in the project domain.

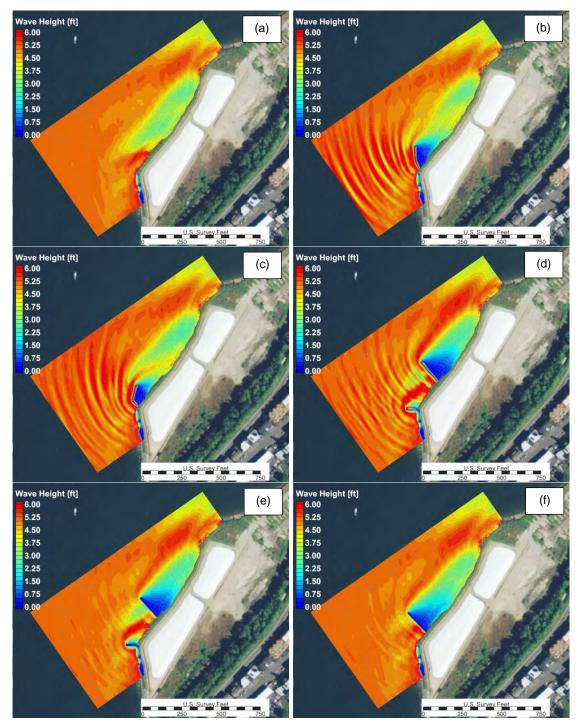



Figure 5. Results of nearshore wave modeling for (a) existing conditions and (b to f) various layouts of groin(s)

Figure 5 shows that for this particular groin location and configuration, the sheltered wave area extends approximately 600 ft north of the groin. Upon completion of the wave modeling, the optimal location and configuration of the groin was selected, as shown in plan view in Figure 1 and in a longitudinal cross-section in Figure 6.

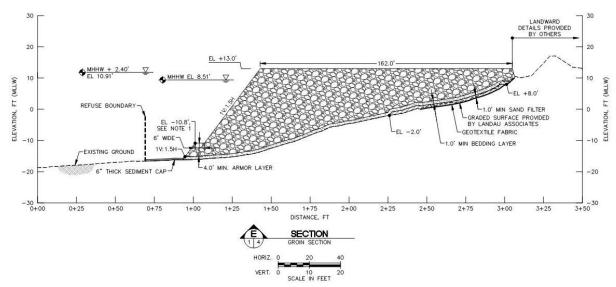



Figure 6. Longitudinal cross-section of rock groin

The figure shows that the groin extends to a water depth of approximately -15 ft MLLW with a total length of approximately 162 ft. Crest elevation of the groin was designed at an elevation of +13 ft MLLW. The groin was built on top of the bedding layer with a minimum thickness of 1 ft. This bedding layer is underlain by filter fabric to inhibit scouring and washing away fine particles of sediment from the bottom by upwelling forces.

The groin was designed with a launch-type of toe protection. Crest elevation of the toe is at elevation of -10.8 ft MLLW. The side slope of the groin and toe protection was designed at 1V:1.5H. The design width of the groin crest is at +6 ft. Special geotechnical analysis will be required at the next phase of the design to estimate possible long-term and short-term subsidence of the groin and to incorporate this subsidence into the final design (if required).

Armor rock for the groin was sized using standard methods for stability against the 100-year design wave occurring at the design high tide elevation. This rock size was determined as a median weight ( $W_{50}$ ) of 1,138 pounds with corresponding median diameter ( $D_{50}$ ) of approximately 1.9 ft.

#### 3.2. South Gravel Cobble Beach with Revetment

The south gravel cobble beach with revetment was designed to provide the following functions:

- Protect the southern reach of shoreline and bottom slope from erosion and exposure to direct wave impact.
- Develop a stable beach of dynamic equilibrium with substrate potential for habitat enhancement.

The south gravel cobble beach would be formed in a setting similar to a pocket beach located between two hard points: the southernmost boundary of the project and the

groin. This area is subjected to direct impact from the largest waves approaching the project site from the southwest. Currently, the capacity for sediment containment in the area is minimal due to the narrow width of the beach and the pattern of wave diffraction at the southern corner of the landfill. Upon construction of the groin and placement of a sufficient thickness of gravel cobble beach material, the pattern of wave diffraction will change and increase the sediment containment capacity in the area.

The upper part of the south gravel cobble beach is designed to be protected by armor revetment. This revetment was designed to account for possible uncertainties in performance of the gravel cobble beach and to ensure that even during the most extreme event the landfill shoreline will not erode. Figure 7 shows a typical cross-section of the south gravel cobble beach with revetment.

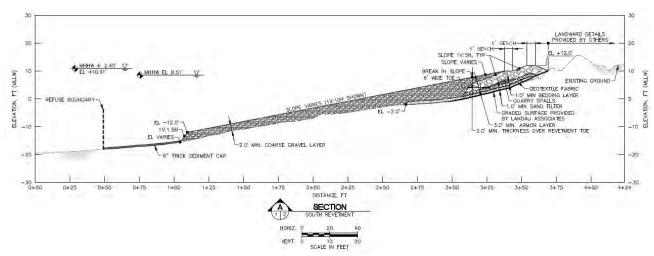



Figure 7. Typical cross-section of south gravel cobble beach with revetment

The figure shows that the beach is designed with a slope of 1V:10H, which is slightly flatter than typical coarse gravel beaches in the Puget Sound area. The flatter beach was designed considering significant exposure of this reach of shoreline to wave impact in order to provide more flexibility to possible adjustments in the profile. It is expected that parts of the profile, specifically in the wave-breaking zone, would armor itself by steepening and accumulating a larger size of cobbles. Lower elevations in the profile, typically below the elevation of breaking waves, would form a finer beach with a flatter slope. In designing this beach with a flat slope, we also accounted for the fact that there is no universal engineering methodology for coarse gravel beach design. There is always certain risk that design beach parameters (based on available engineering methodology) would differ from that occurring in reality. A flatter beach mitigates this risk by allowing more natural adjustment without exposure of the native bottom.

The type and size of beach material was selected to maintain a stable beach in dynamic equilibrium; preclude direct wave impact on the bottom; and enhance habitat capacity. Upon analysis of stability and using data from other similar projects in the

Puget Sound area, gravel cobble beach material with a diameter of  $D_{50} = 2.5''$  is recommended. Figure 8 shows a photograph with representative type of material that may be used for construction of the south gravel cobble beach.



Figure 8. Representative type of material that may be used for construction of south gravel cobble beach

The revetment at this part of the shoreline was designed at the upper part of the beach from elevation +12 ft, MLLW to approximately 2 ft, MLLW. The revetment will protect the upper shoreline from wave overtopping and runup. At the southernmost part of the project, the revetment will be keyed into the existing upper part of the shoreline. The extension and details of key revetment elements will be developed during the next phase of the design.

The revetment was designed to follow the existing configuration of the slope and to minimize volumes of cut and fill. However, a minimal volume of quarry spalls is still required and was used for design to develop the appropriate grades (slopes) for placement of armor rock. Similar to the groin structure, the revetment is sitting on the bedding layer underlain by filter fabric. Armor rock for the revetment was preliminary sized using standard methods for stability against the 100-year design wave occurring at the design high tide elevation. This rock size was determined as a median weight  $(W_{50})$  of 563 pounds with corresponding median diameter  $(D_{50})$  of approximately 1.5 ft.

#### 3.3. Sandy Gravel Beach

The sandy gravel beach was designed to provide the following functions:

- Protect the shoreline and bottom slope on the north side of the groin from erosion and exposure to direct wave impact.
- Develop a stable beach of dynamic equilibrium with substrate potential for habitat enhancement.

The sandy gravel beach was designed in the area sheltered by the groin from waves approaching from the southwest direction and extends approximately 600 ft to the north (from the groin). Figure 9 shows a typical design cross-section for this beach.

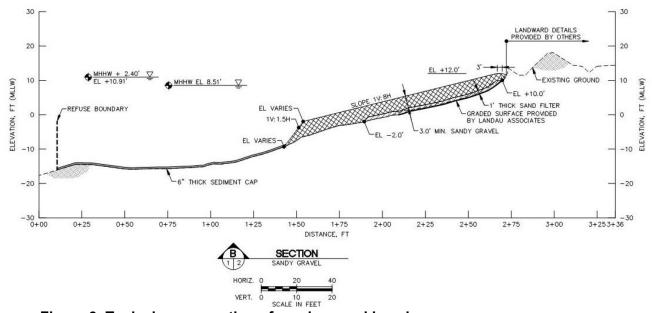



Figure 9. Typical cross-section of sandy-gravel beach

The figure shows that the beach is designed at a slope of 1V:8 H that corresponds to typical mixed sand and gravel (MSG) beaches observed in Puget Sound. Beach placement would occur from an elevation of +12 ft MLLW to a variable elevation (-10 ft MLLW or higher, depending on bottom slope configuration). It is expected that some redistribution of beach material up/down the slope and along the shoreline would occur during the first couple of storms to achieve conditions of dynamic equilibrium. The thickness of the beach material layer was designed at 3 ft thick to allow for such an adjustment with no risk of exposing the native bottom to wave impact.

Material for the sand-gravel beach was selected to meet the performance functions and to address variability of wave hydrodynamic conditions along the north (north of the groin) stretch of shoreline. Based on the results of wave modeling (See Figure 1), wave impact is significantly reduced in the area adjacent to the groin from the north due to a sheltering effect. Further to the north, the sheltering effect gradually diminishes, and eventually beach material along this northern stretch of shoreline would diversify in accordance with wave hydrodynamic conditions. A fine sediment beach (mostly fine to medium sand) will most likely form on the north side of the groin. This beach would extend further to the north to the coarser sandy-gravel beach, and finally at the transition to the next element of the project, the cobble gravel beach,

it would be mostly gravel material. In order to meet this diversity, material for the sandy gravel beach was designed from a relatively wide range of fine-grained and gravelly sediment of  $D_{50} = 0.08$ ". Figure 10 shows a photograph demonstrating the representative type of material that may be used for construction of the sandy gravel beach at this part of the shoreline.



Figure 10. Representative type of material that may be used for construction of sandy gravel beach at this part of shoreline

#### 3.4. North Gravel Cobble Beach with Revetment

The north gravel cobble beach with revetment was designed to provide the following functions:

- Protect the northern reach of shoreline and bottom slope from erosion and exposure to direct wave impact.
- Develop potential for future habitat enhancement.

As shown by the results of numerical modeling, the proposed groin is capable of sheltering wave conditions along a significant stretch of the project shoreline (approximately 600 ft) in the lee side (north side of the groin) for most extreme waves coming from the southwest. However, the model also shows that the most northern stretch of the project shoreline (approximately 100 ft) would still be subjected to direct (not attenuated) wave impact and would need to be protected against possible wave erosion.

The extensive revetment structure was designed along this northern area of the project to ensure there is no erosion of this portion of the vulnerable shoreline. Similar to the south cobble-gravel beach with revetment, this stretch of shoreline was designed to protect the upper slope of the shoreline from elevation +12 ft, MLLW to approximately 2 ft, MLLW. The revetment was designed to follow the existing configuration of the slope and to minimize volumes of cut and fill. However, a minimal volume of quarry spalls is still required and was used for design to develop the appropriate grades (slopes) for placement of armor rock.

It should be noted that due to a change in alignment at this most northern part of the project area the shoreline extends slightly seaward, forming a landform feature similar to a headland. The revetment structure and north gravel cobble beach were designed to account for and enhance this headland effect, and use this effect to form a more stable beach on the north side of the revetment. For this purpose, the toe of the revetment was designed with a minimum width of 6 ft. During detailed design, the width of the toe should be revised to maximize the headland effect and provide more stability for the shoreline stretch adjacent to the north beach. Also, thickness of materials will be revised to minimize seaward relocation of the MHHW line.

As specified by the design criteria (CHE 2015), the revetment structure is sitting on the bedding layer underlain by filter fabric. Armor stone for the revetment was preliminary sized using standard methods for stability against the 100-year design wave occurring at the design high tide elevation. This rock size was determined as a median weight ( $W_{50}$ ) of 563 pounds with corresponding median diameter ( $D_{50}$ ) of approximately 1.5 ft.

The gravel cobble beach was designed to cover the toe of the revetment and extends to elevation of -15 ft, MLLW. Figure 11 shows a typical cross-section of the north gravel cobble beach with revetment.

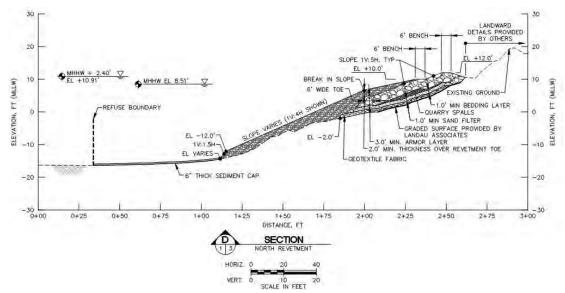



Figure 11. Typical cross-section of north gravel cobble beach with revetment

The figure shows that the beach is designed at a variable slope of 1V:4H to 1V:6H, which is slightly steeper than typical coarse gravel beaches in the Puget Sound area. The beach was designed with the understanding that a stretch of this gravel-cobble material would be sacrificed to provide sorting and natural forming of a cobble armor layer at the toe of the revetment. Some of this sacrificial material would migrate further to the north to form a transition between the Cornwall and R.G. Haley Site. Some of that material would migrate to deeper water and provide protection to sand cap material. It is also likely that some of the sacrificial material would settle at the south, forming a transition between the sandy-gravel beach and revetment. Due to the complexity of the littoral and morphologic processes at this area, it is difficult to accurately predict the behavior of the gravel-cobble material to be placed at this part of shoreline. However, based on observation from other projects in Puget Sound, it is expected that eventually a dynamically stable shoreline would be developed at the toe of the revetment and at transitions to the north and south from this revetment.

The type and size of beach material was selected to meet the above-discussed performance functions: maintain a stable beach in dynamic equilibrium; preclude direct wave impact on the bottom; and enhance habitat capacity. The selected type of material is similar to that designed for the north gravel cobble beach. The diameter of this material is  $D_{50} = 2.5$ ". The representative material is shown in Figure 10 above.

#### 3.5. Thin Sediment Cap Layer

A non-engineered thin (minimum 6-inch thick) sediment cap layer has been designed on the bottom slope of the shoreline seaward from the shoreline erosion protection measures to the approximate extent of refuse material. The thin layer sediment cap will consist of a fine-grained sand layer placed on the existing sediment to enhance natural recovery of the sea bottom over the seaward extent of the landfill. The grain-size was selected based on resistance to the tractive forces of the tidal currents and the ability to enhance the growth of the natural biota in this area.

One of the project design criteria was placement of a thin (minimum 6-inch thick) sediment cap layer on the bottom slope seaward from the shoreline erosion protection measures. The thin sediment cap layer's seaward boundary was defined by the approximate extent of refuse material and was provided by the Project Team (see CHE 2015).

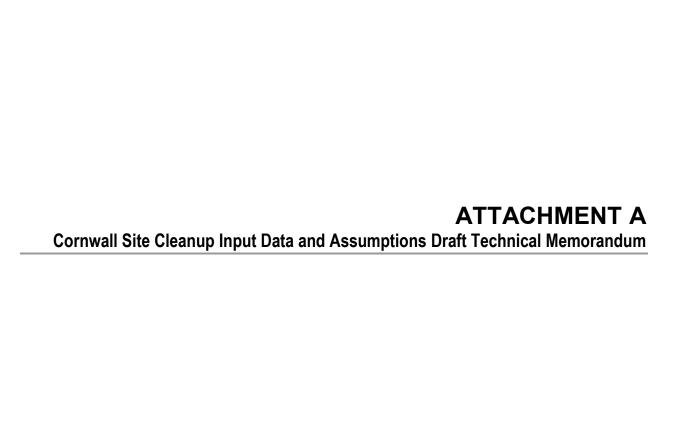
The sediment cap layer does not function as an erosion protection measure and in general was not required to be designed to withstand the eroding forces of currents and wave impact during a 100-year design storm event. The material for sand cap is recommended at  $D_{50} = 0.5$  mm. More specific recommendations for sand cap material placement will be developed during the next phase of design.

#### 4. Construction

The shoreline protection construction work will be conducted with regard to Best Management Practice (BMP) to comply with all permit requirements and water quality standards. The boundaries of the in-water construction zone will be defined by warning buoys or markers to preclude any risk to mariners. Information on the construction zone

boundaries and warning to mariners may also be posted by the Coast Guard. If needed, gander booms or silt curtains will be installed prior to or during construction to minimize escape of debris, turbid water, and plume from the construction sites.

#### 4.1. Construction sequencing for shoreline and in-water work


Work for construction of shoreline protection will be conducted during a time window allowed by the permit for in-water work. The shoreline protection work will commence with construction of the groin and revetment. Once the groin and revetment are constructed, placement of gravel-cobble and gavel sand beaches will occur. Placement of a sand cap will occur after construction of all other coastal elements of the project and completion of a pre-sand cap survey.

#### 4.2. Construction quality assurance monitoring

Construction quality control (likely to be required) will be provided by supervision of work by an experienced Coastal Engineer and upon conducting regular conditional and progress bathymetric and topographic surveys. The quality control will ensure compliance of construction materials to that specified by the design, verification of excavation grades (where appropriate), elevations of the bedding layers, and grades of constructed shoreline protection. Monitoring of the constructed grades and adjacent shoreline will be conducted with regard to the permit requirements and if required by the Project Owner. If required, a detailed monitoring program will be developed and coordinated with the Project Team and controlling agencies. Long-term monitoring of rock settlement along the groin and revetment may be conducted to ensure clearance of the rock settlement is designed properly.

#### 5. References

- CHE. 2015. Cornwall Site Cleanup Input Data and Assumptions. Document No: 349297.01 Rev: C. Draft Technical Memorandum.
- Delft University. 2008. Simulating Waves Nearshore Model, SWAN 40.72, Delft Technical University.
- Delft. 2010. "SWASH USER MANUAL." User's Manual. Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section.
- Maynord, S. 1998. "Appendix A: Armor Layer Design for the Guidance for In-Situ Subaqueous Capping of Contaminated Sediment." EPA 905-B96-004, Great Lakes National Program Office, Chicago, IL.
- Vanoni, V.A. 1975. Sedimentation Engineering. ASCE Manuals and Reports on Engineering Practice No. 54, 730 pp.
- Zheleznyak, M., Demchenko, R. and Kolomiets, P. 2009. "Spectral Hyperbolic Wave Transformation Model, Version 1.0." User's Manual.





# Draft Technical Memorandum Cornwall Cleanup Site Input Data and Assumptions

This document was developed to coordinate with the Port of Bellingham and Project Team on the data and assumptions to be used by Coast & Harbor Engineering, a Division of Hatch Mott MacDonald (CHE) for coastal engineering and preliminary design of the Cornwall Cleanup Site. CHE established the project design criteria, presented in Section 2, based on requirements and constraints provided by the Project Team as well as standard engineering practice.

#### 1. Project Data

#### 1.1. Wind Data

Hourly wind data measured at the Bellingham Airport meteorological station were used for the analysis. The wind data measured at the Bellingham Airport station was compiled and processed for the period from 1948 to 2014. Wind statistical analysis and determination of wind design parameters were conducted based on long-term wind data from Bellingham Airport. The location of the wind measuring station relative to the project site is shown in Figure 1. Wind measurements representing one-minute duration were compiled and statistically processed for a period of 41 years (from 1973 to 2014). A 100-year return period wind speed from sector 190°-240° T.N. was selected for wave modeling and analysis, as discussed further in Section 2.1. Wind speeds during this storm from different directions are depicted in Table 1.

#### 1.2. Bathymetry and Topography

The following datasets of bathymetry and topography data are available and have been used for analysis and engineering:

- Port Townsend Digital Elevation Model (DEM) developed by NOAA, 2011-02-07. The spatial resolution of the DEM is 1/3 arc-second (approximately 10 meters). The DEM dataset was used further to develop a large wave modeling domain to simulate wave generation and propagation to the project site.
- Nearshore bathymetry and upland topography surveys conducted by Wilson
  Engineering in February and March of 2015. The nearshore bathymetry data were
  further used for construction of a nested modeling domain to simulate detailed
  wave transformation at the nearshore areas and to investigate interaction of waves
  with the existing and proposed project features.

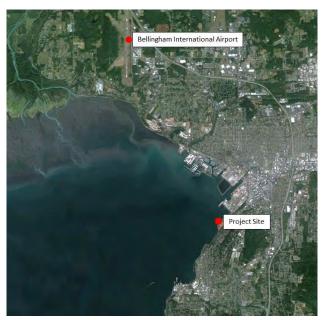



Figure 1. Project site location and Bellingham International Airport wind station

**Table 1. Design Wind Speed by Direction** 

| Return<br>Period | Sector Wind Speed (mph) |      |      |      |      |      |
|------------------|-------------------------|------|------|------|------|------|
| (Year)           | 190                     | 200  | 210  | 220  | 230  | 240  |
| 100              | 54.2                    | 55.7 | 49.9 | 55.5 | 58.1 | 57.8 |

#### 2. Project Design Criteria

#### 2.1. Design Wind-wave Storm Event

A 100-year return period storm event was selected for analysis and numerical modeling of stability of the shoreline erosion protection features. Please note that there are not any generally acceptable standards (engineering or regulatory) identified to select the design storm event criteria for nearshore cleanup projects. Typically, shoreline erosion protection projects have been designed to withstand wind-wave storm events with a 25- or 50-year return period. Based on previous experience with the Whatcom Waterway (Port of Bellingham) and R.G. Haley (City of Bellingham) projects and to maintain methodologic consistency, CHE selected a 100-year storm event as the design wave storm criteria for the Cornwall Cleanup project.

#### 2.2. Sea Level Rise

Future climate change predictions have required the design to consider potential sea-level rise (SLR) over time. The SLR assumption for this site is 2.4 ft, consistent with the SLR cited in the RI/FS. This value is consistent with the SLR assumed for other cleanup sites in Bellingham Bay, and was the SLR value used in the Waterfront District EIS. It should be noted that an assumed SLR value of 2.4 ft is significantly greater than values being assumed for major marine infrastructure projects in Puget

Sound. For example, the Mukilteo multimodal project uses a SLR design criteria = 1.08 ft and the Elliot Bay (Seattle Waterfront) Seawall Replacement Project has used a medium estimate of SLR of 1.65 ft. It is acknowledged that predicting SLR is a developing topic and that estimates will likely be refined over time. The design has been performed in a way to allow modifications due to additional SLR.

#### 2.3. Tidal Data and Tide Elevation Design Criteria

Standard tide elevations (1981-2001 Epoch) in Bellingham Bay relative to MLLW and NAVD88 datums are depicted in Table 2. MLLW is assumed to be the project datum.

Two tide levels were used for engineering analysis and design: Mean Higher High Water (MHHW) and Mean Lower Low Water (MLLW). MHHW tide elevation will be used for design of stability of the upper part of the shoreline, while MLLW tide elevation will be used to ensure stability of the project elements at the lower part of the profile. MHHW tide elevation will be used in combination with the sea level rise increment (+ 2.4 ft).

**Table 2. Bellingham Bay Tidal Elevations** 

| Description                   | Datum  | MLLW<br>[ft] | NAVD88<br>[ft] |
|-------------------------------|--------|--------------|----------------|
| Highest Observed Tide         | H.O.T. | 10.42        | 9.94           |
| Mean Higher-High Water        | MHHW   | 8.51         | 8.03           |
| Mean High Water               | MHW    | 7.79         | 7.31           |
| Mean Tide Level               | MTL    | 5.07         | 4.59           |
| Mean Sea Level                | MSL    | 4.95         | 4.47           |
| Mean Low Water                | MLW    | 2.35         | 1.87           |
| North American Vertical Datum | NAVD   | 0.48         | 0              |
| Mean Lower-Low Water          | MLLW   | 0            | -0.48          |

#### 2.4. Tsunami

Tsunami waves occur in water bodies due to earthquakes or landslides. Per the Critical Areas Report for the interim action at the Cornwall site (Landau Associates, 2011), a tsunami could be generated by a large earthquake in the Pacific Ocean basin. The Department of Natural Resources (DNR) Division of Geology and Earth Resources and the National Oceanic and Atmospheric Administration (NOAA) have published estimates of tsunami inundation in the Bellingham Bay area based on modeling of ground deformations and waves that may be generated by a major Cascadia Subduction Zone (CSZ) earthquake. The results of the DNR and NOAA modeling study (Walsh *et al.* 2004) entitled "Tsunami Hazard Map of the Bellingham Area, Washington: Modeled Tsunami Inundation from a Cascadia Subduction Zone Earthquake" indicate that a magnitude 9.1 Cascadia Subduction Zone earthquake may result in a tsunami wave arriving approximately 2 ½ hours after the earthquake at a tide stage near mean high water (MHW) which might be expected to result in a depth

of inundation in the "knee-high or less" range (depending, of course, on the specific location/elevation along the shoreline).

Additionally, upland and submarine landslides flowing into northern Puget Sound or Bellingham Bay, as well as certain types of movements on crustal faults that might extend under Puget Sound and adjacent areas, could potentially create tsunami waves in Bellingham Bay that would arrive earlier than one from a Cascadia Subduction Zone earthquake. However, these types of features and events and associated risks are not yet well studied.

Based on knowledge of tsunami wave hydrodynamics, it appears that damage from an extreme tsunami event at the project site may occur at the upland part (above ordinary high water elevations) due to overtopping, and/or at the lower elevation of the project due to bottom shear stresses. It is concluded that if a tsunami event occurs at the Site and if damage to the cap or erosion protection material ensues, then repair of this damage would be equivalent to the maintenance repair work. No tsunami criteria were assumed for design of the Cornwall Cleanup project.

#### 2.5. Project Boundary

The project boundary was provided by the Project Team and is defined by the approximate extents of refuse as well as the R.G. Haley Site AOC, as shown in Figure 2.



Figure 2. Project site boundary defined by approximate extents of refuse and R.G. Haley Site AOC

#### 2.6. Design Criteria for Erosion Protection and Cap Material

Major assumptions used as design criteria for erosion protection and cap material are presented below:

- Excavation of the upland or bottom slope of the landfill is only allowed under the condition that the bottom of the excavation is above the "graded surface" provided by Landau Associates. No other excavation is considered as part of designing shoreline protection and capping elements for the project. This implies that post-project ground and bottom slope elevations will be modified (increased) relative to existing conditions) to accommodate shoreline protection and cap material features. Details of erosion protection measures (material thickness and elevations) will be revised at the detailed design phase to minimize impact to aquatic habitat and to seaward relocation of MHHW line.
- A one-foot thick sand filter layer is required for the entire shoreline at the site between an upper elevation of +8 ft to a lower elevation of -2 ft, MLLW, as shown schematically in Figure 3.

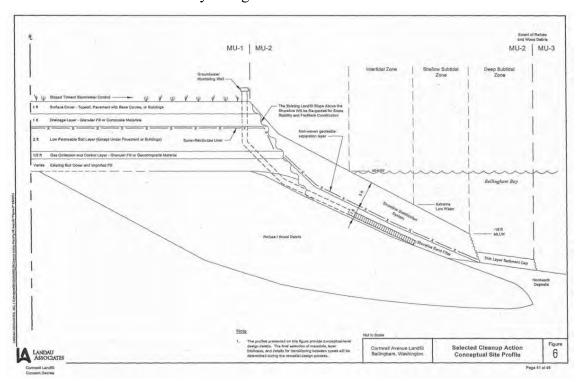


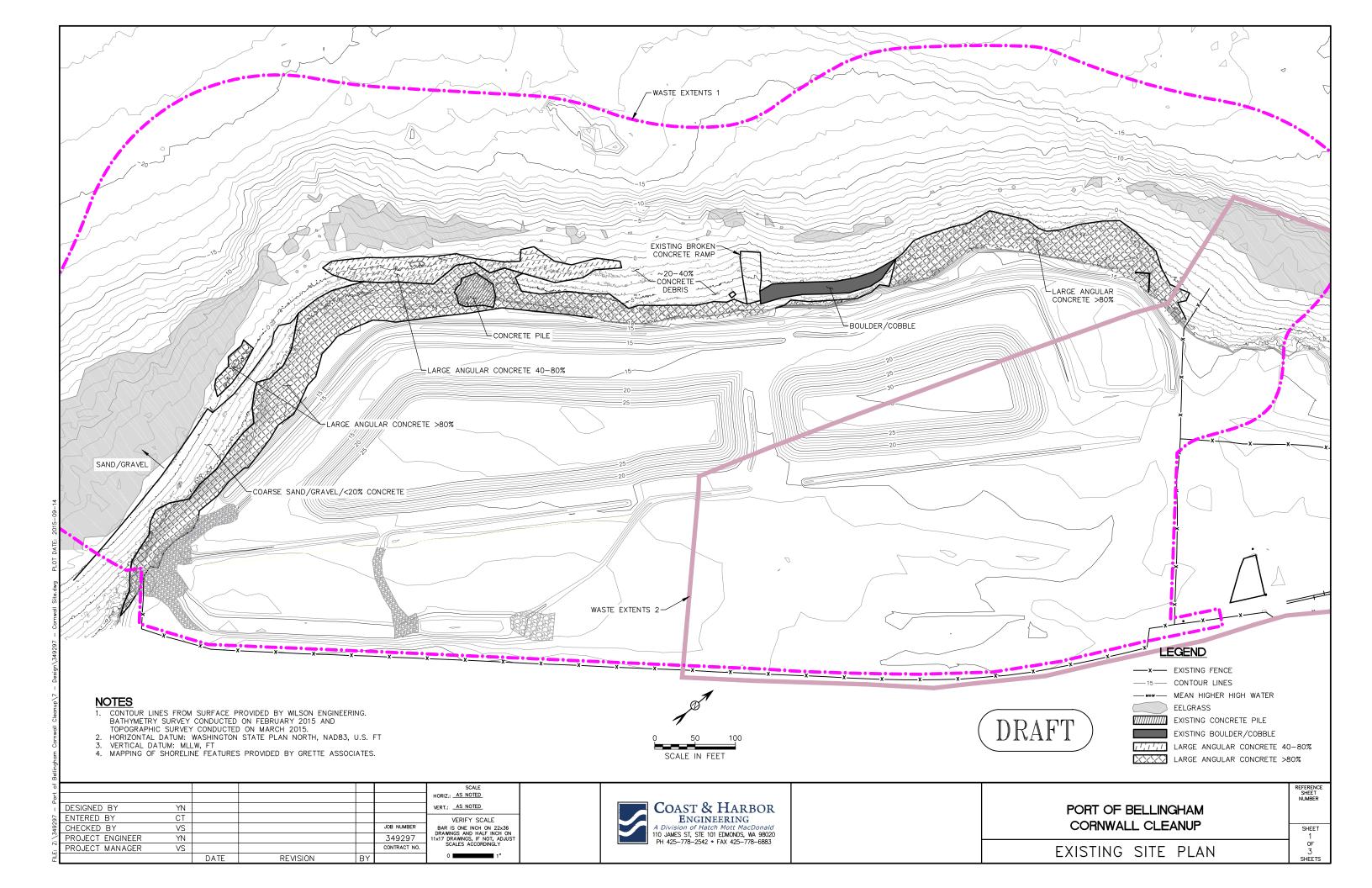

Figure 3. Selected Cleanup Action Conceptual Site Profile (Landau Associates 2015)

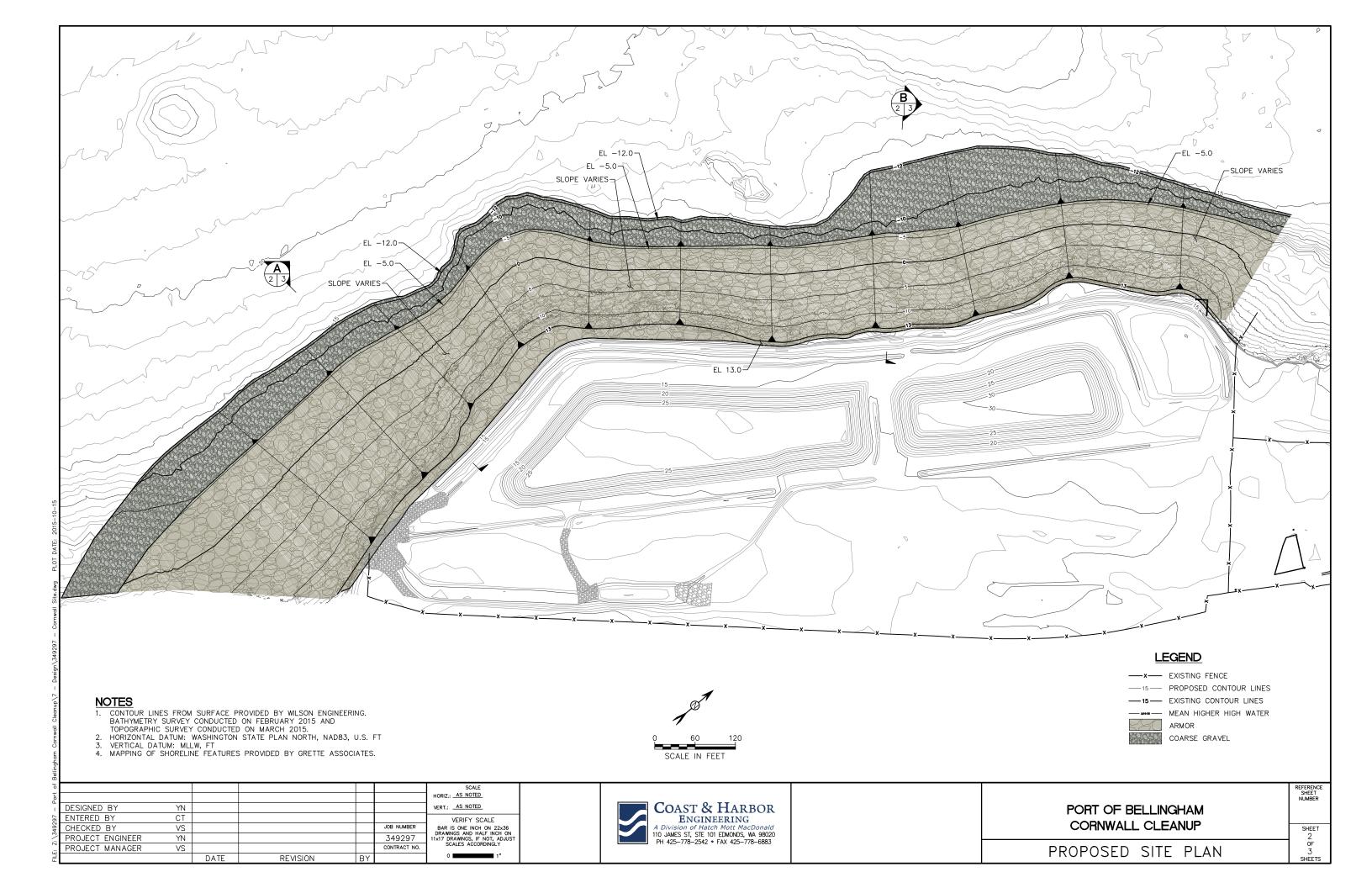
- A non-engineered minimum six-inch thick "thin layer sediment cap" is required to be placed on top of the existing shoreline in areas where no shoreline protection measure is proposed (see Figure 3). This thin layer sediment cap should extend seaward to the refuse extent, as provided by Landau Associates.
- Stability of the bottom sediment and erosion protection measure material will be analyzed to meet the wave design criteria (see Section 2.1) and tidal current

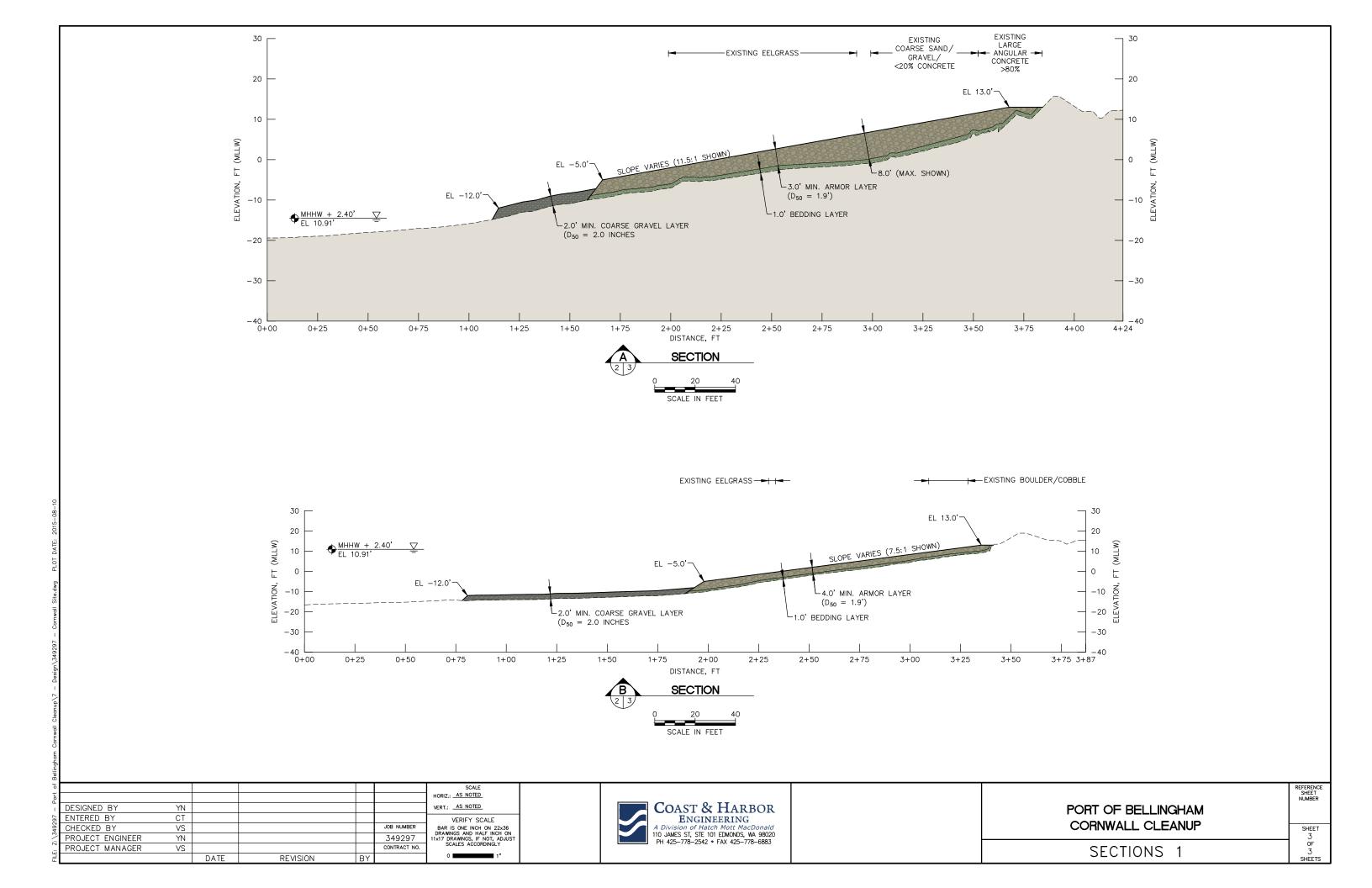
velocities (where needed). Based on the data and knowledge from the previous Whatcom Waterway Cleanup project study, tidal current velocities at the project site are small. However, additional investigation will be conducted to determine if bottom shear stress from the tidal current velocities is critical for the design of the thin cap layer design.

- The rock size for the cap material and shoreline erosion protection measures will be determined using a static stability (no movement) assumption. This assumption means that the capping material (rock material) will be designed to be immobile during the design storm event.
- Dynamic stability criteria will be applied for a cap that is designed from material other than rock (gravel, cobble, sand). Dynamic stability criteria assumes some natural movement and sorting of sediment under wave impact until a natural armoring layer is developed from the coarser fraction of sediment. This criteria also assumes that during natural movement and sorting of the capping layer no exposure of native bottom material can occur.

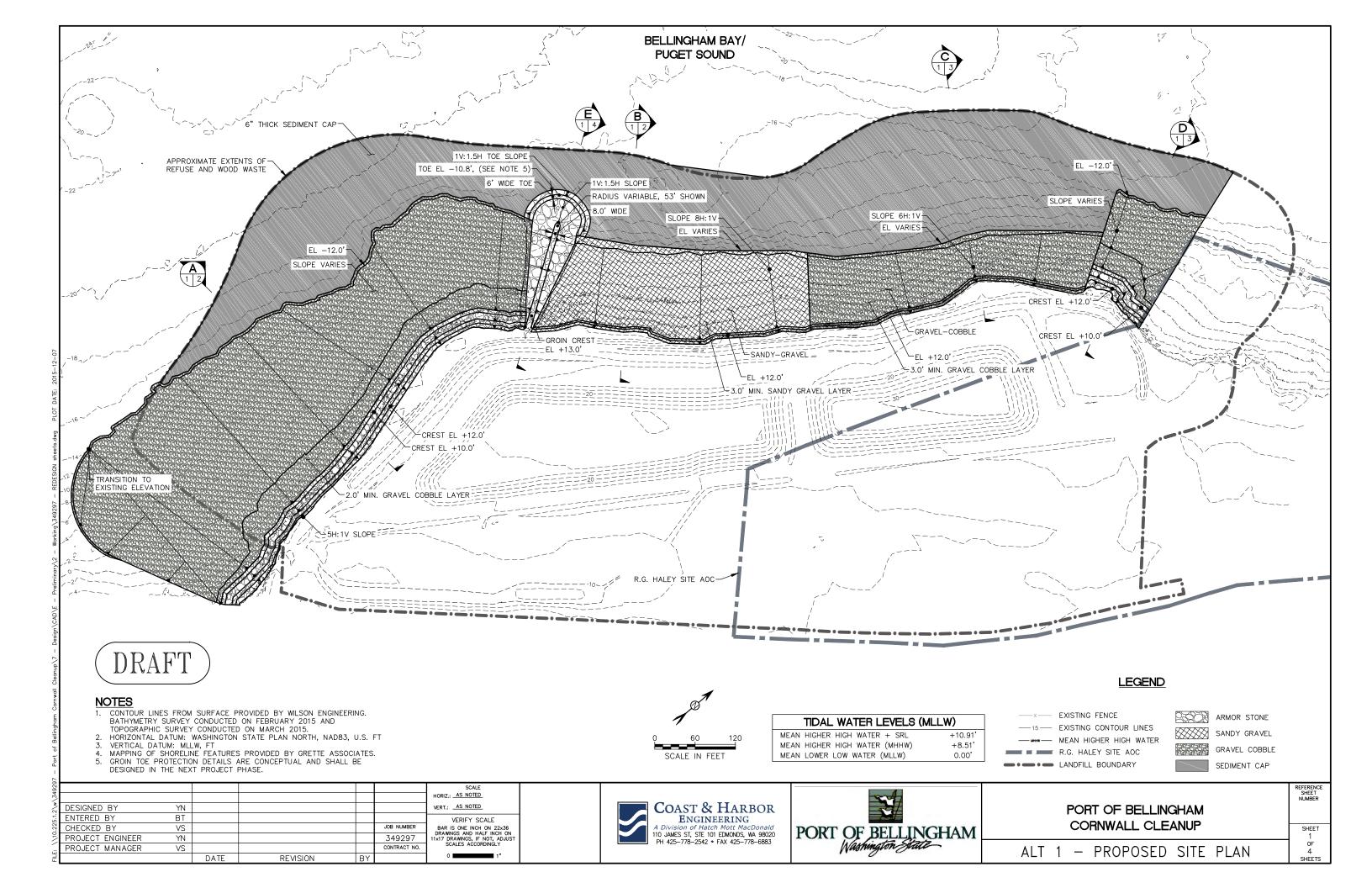
#### 2.7. Transitions

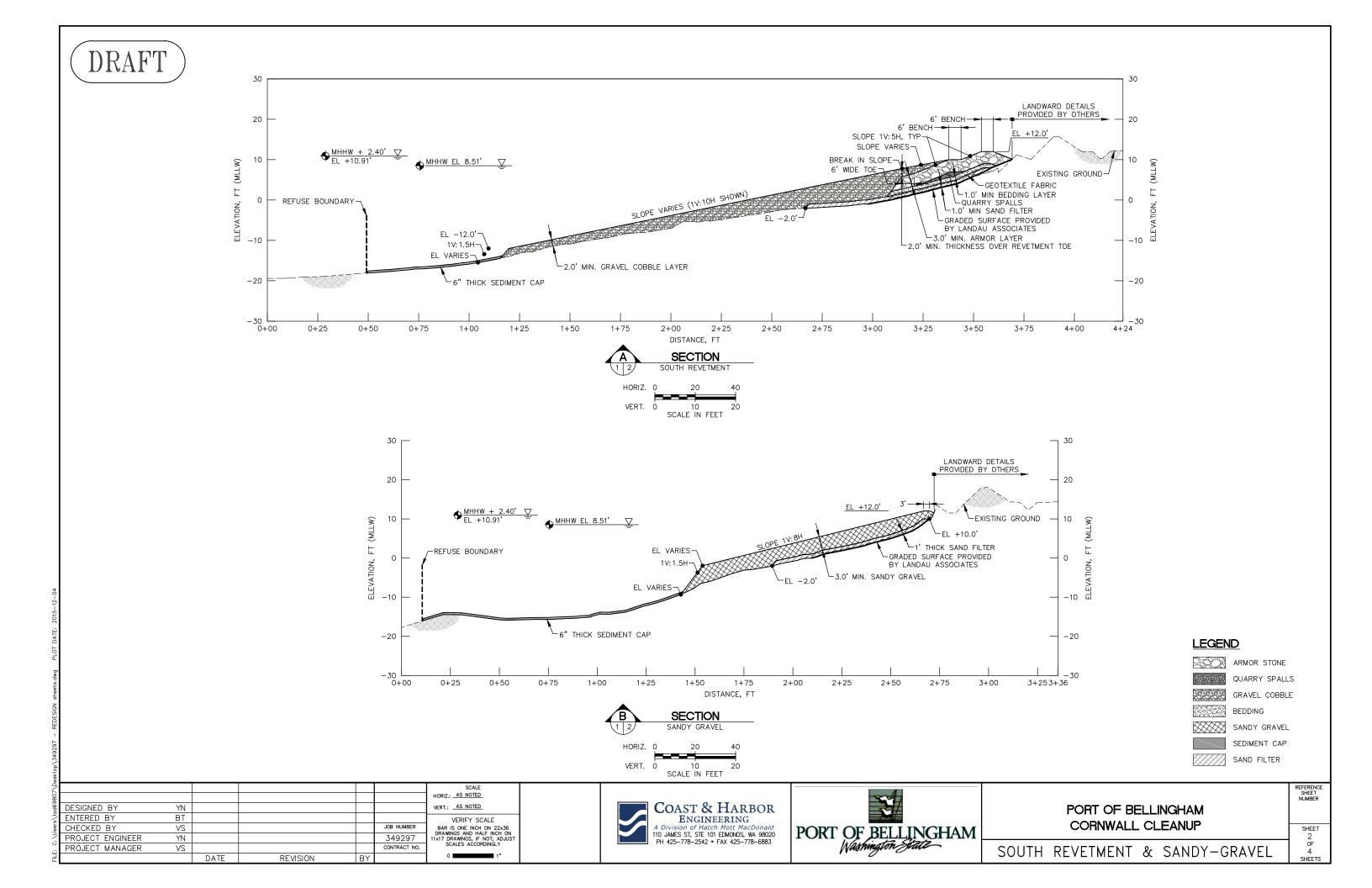

Details of the transitions (between the coastal engineering elements and transitions to the existing shoreline) were presented only at the preliminary level of design and will need to be refined during the next phases of design.

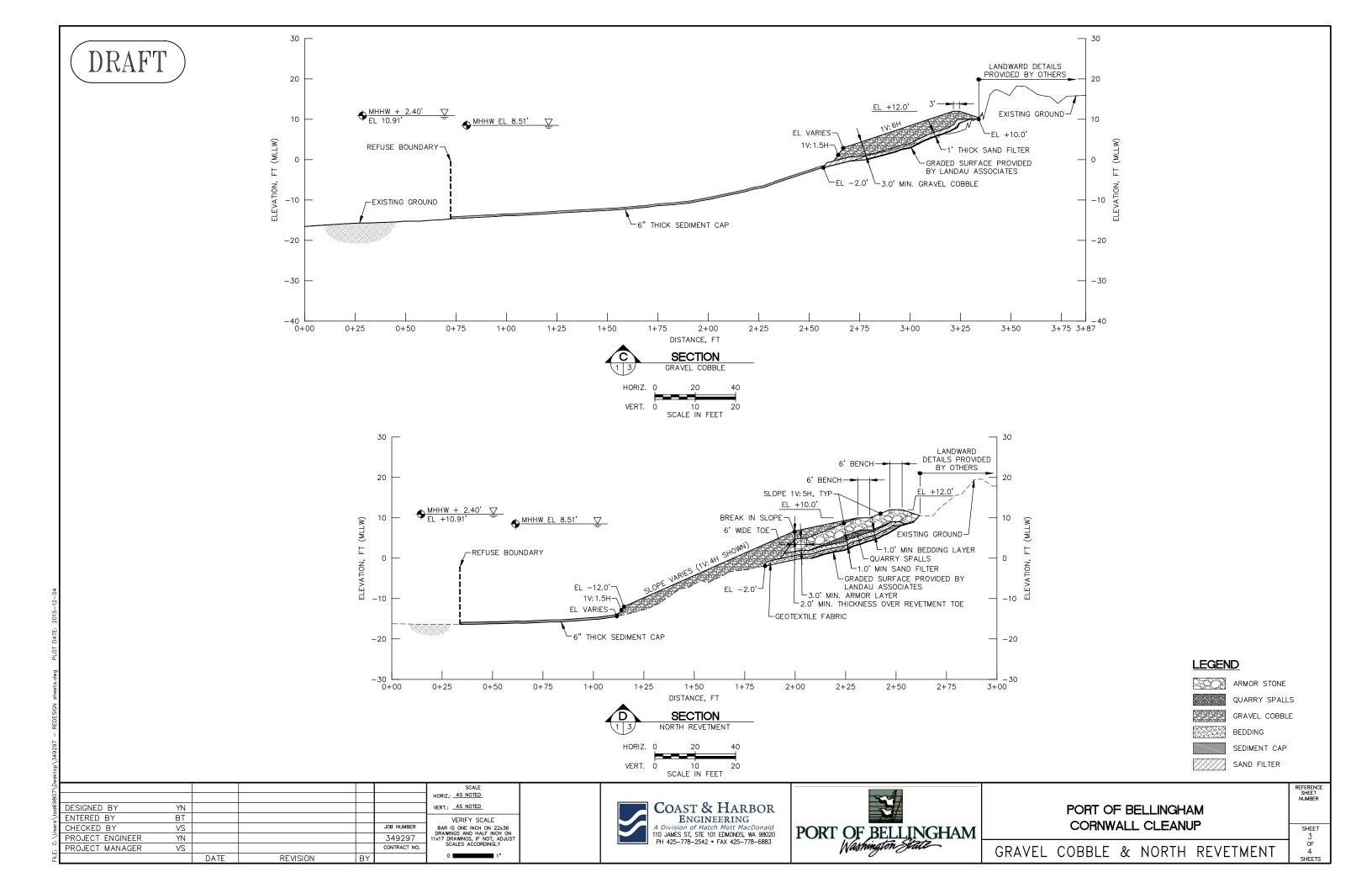

#### 3. Reference


Landau Associates. 2015. Cornwall Avenue Landfill Cleanup Action Conceptual Site Profile.

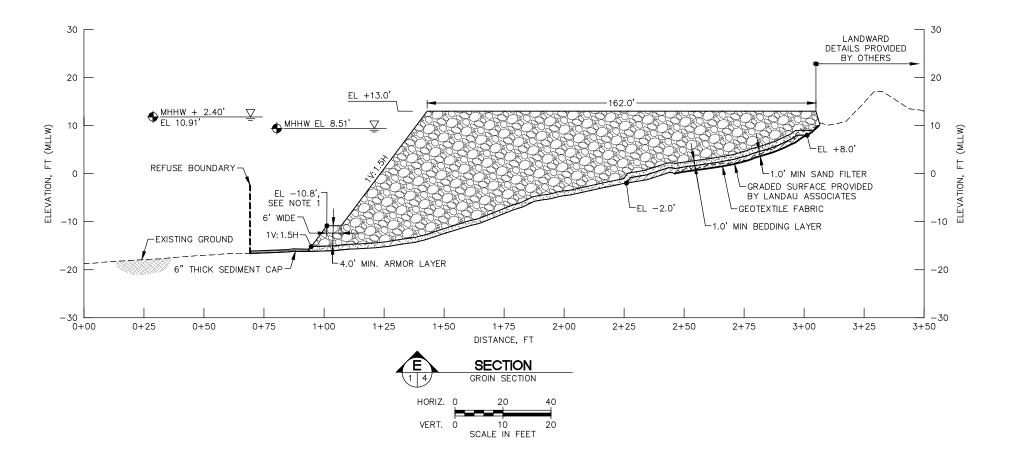
### **ATTACHMENT B**


**Baseline Alternative Design Drawings** 












(DRAFT)



#### **NOTES**

. GROIN TOE PROTECTION DETAILS ARE CONCEPTUAL AND SHALL BE DESIGNED IN THE NEXT PROJECT PHASE.

| 549    |                  |    |      |          |    |              | HORIZ.: AS NOTED                                            |
|--------|------------------|----|------|----------|----|--------------|-------------------------------------------------------------|
| /w/z   | DESIGNED BY      | YN |      |          |    |              | VERT.: AS NOTED                                             |
| 5.1.   | ENTERED BY       | ВТ |      |          |    |              | VERIFY SCALE                                                |
| \IO.22 | CHECKED BY       | VS |      |          |    | JOB NUMBER   | BAR IS ONE INCH ON 22x36                                    |
| 2      | PROJECT ENGINEER | YN |      |          |    | 349297       | DRAWINGS AND HALF INCH ON<br>11x17 DRAWINGS, IF NOT, ADJUST |
|        | PROJECT MANAGER  | VS |      |          |    | CONTRACT NO. | SCALES ACCORDINGLY                                          |
| FILE:  |                  |    | DATE | REVISION | BY |              | 0 1"                                                        |





### PORT OF BELLINGHAM CORNWALL CLEANUP

JP SHEET
4
0F
4
SHEETS

ARMOR STONE
QUARRY SPALLS

GRAVEL COBBLE

BEDDING

SEDIMENT CAP

SAND FILTER

-----

GROIN

### **Bioassay Testing Results**

#### **APPENDIX D**

#### SEDIMENT BIOASSAY RESULTS

#### **TABLE OF CONTENTS**

|                             | Page |
|-----------------------------|------|
| SUMMARY OF BIOASSAY RESULTS | D-1  |
| Data Quality Verification   | D-1  |
| References                  | D-2  |

#### **FIGURE**

Figure D-1. Sample Locations

#### **ATTACHMENT**

Attachment D.1 Biological Testing Results, Cornwall Avenue Landfill Site, Bellingham, WA. Ramboll Environ Report ID 081815.01. August 18, 2015.

#### SUMMARY OF BIOASSAY RESULTS

Five surface sediment samples were collected at the Cornwall Avenue Landfill cleanup site (Site) for bioassay testing. The samples were collected at the locations indicated on Figure D-1. These sample locations were selected to evaluate sediment conditions where at least 1 foot (ft) of sediment has been deposited by natural recovery over top of landfill refuse. The samples were collected and processed on June 10, 2015 in accordance with the Pre-Design Investigation Work Plan (Landau Associates 2015), and submitted under chain of custody to Ramboll-Environ in Port Angeles, Washington, for evaluation.

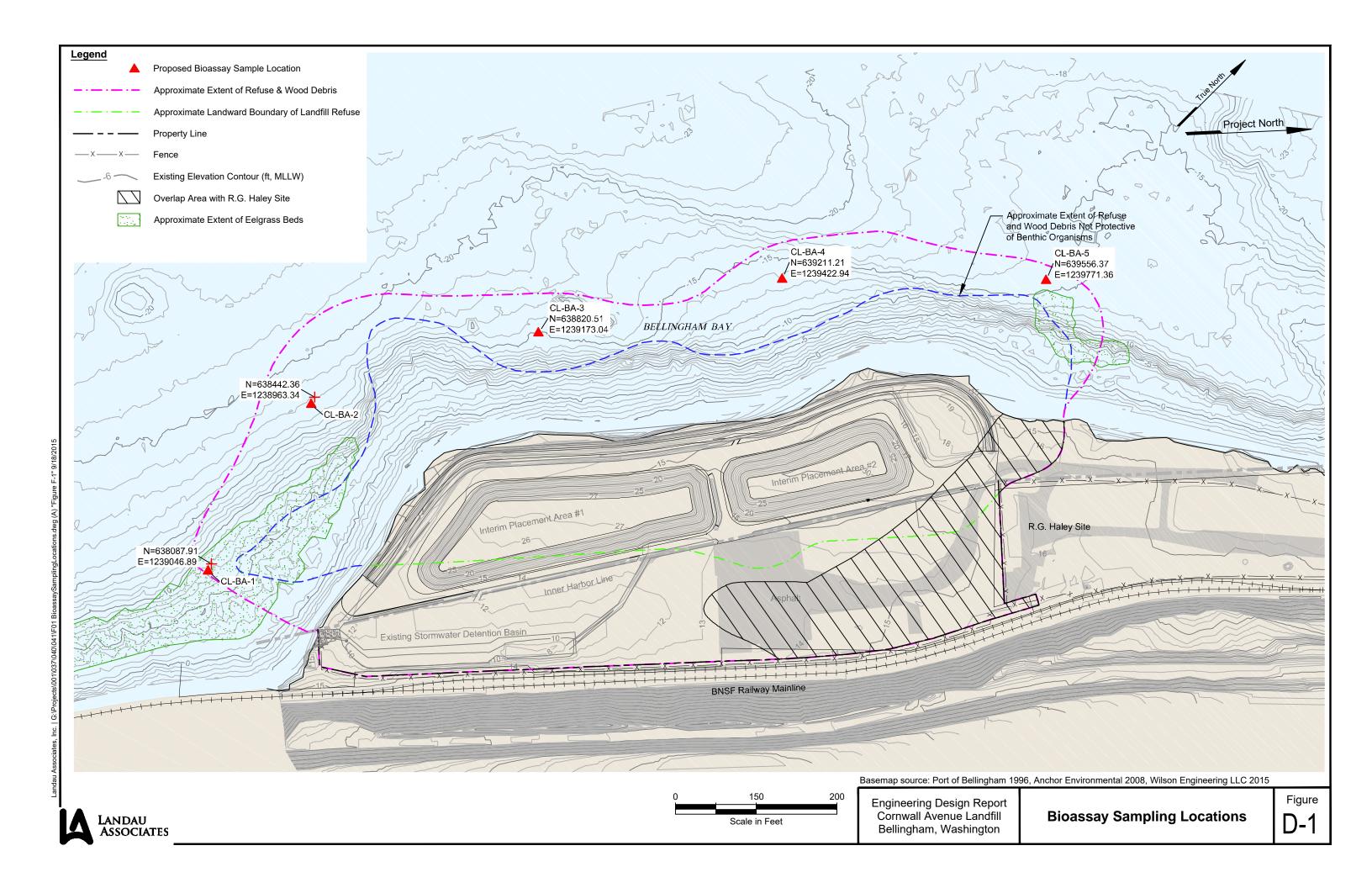
The testing consisted of introducing marine biota to the sediment samples under closely controlled and monitored conditions, and evaluating whether observed impacts were within acceptable ranges as compared to the biota subjected to uncontaminated control (reference) samples. Three tests were conducted on the samples, following Puget Sound Estuary Protocols (PSEP), Sediment Management Standard (SMS) criteria, and the Sediment Cleanup User's Manual II (SCUM II) guidance from the Washington State Department of Ecology. The three tests included a 10-day amphipod test using *E. estuaries*, a 20-day juvenile polychaete survival and growth test using *N. arenaceodentata*, and a larval development test using *M. galloprovincialis*.

The reference samples were collected from two stations in Carr Inlet on June 19, 2015. These sample locations were selected based on providing uncontaminated sediment for test control. Two samples were required instead of one in order to provide a range of grain-sizes similar to those observed in the samples collected at the Site.

Sediment cleanup objectives (SCO) and cleanup screening levels (CSLs) are established by the Washington State Department of Ecology for each of the three tests. Each of the five Site samples passed all three tests at the SCO, the more conservative of the two established criteria. Additional details of the tests and results are provided in the attached laboratory report from Ramboll Environ.

#### **Data Quality Verification**

The reported laboratory procedures were reviewed for compliance with applicable guidance or critiera from PSEP, SCUM II, and updates from the Sediment Management Annual Review Meetings (SMARM). The following bullets summarize the results of the data quality verification.


- Appropriate laboratory procedures followed the applicable guidance.
- All tests were conducted within the required 8-week holding time.
- All hand entered data was reviewed for data entry errors and corrected if necessary. A
  minimum of 10 percent of all calculations and data sorting were reviewed for errors.
- Review counts were performed on any apparent outliers.

- All water quality parameters were maintianed within acceptable limits through the duration of the 10-day ampphipod test, with minor deviations in temperature and salinity. These deviations are not anticipated to affect the results.
- All water quality parameters were withing acceptable limits through the duration of the 20day juvenile polychaete bioassay test with the exception of salinity. Salinity was recorded slightly above the target range but well within tolerance limits for the test organism. This deviation is not anticipated to affect results.

Bioassay results appear to be usable as reported, without modification or additional qualification.

#### References

Landau Associates. 2015. Work Plan, Pre-Design Characterization, Cornwall Avenue Landfill Site, Bellingham, Washington. Prepared for Port of Bellingham. April 30.



## Biological Testing Results, Cornwall Avenue Landfill Site, Bellingham, WA. Ramboll Environ Report ID 081815.01. August 18, 2015



# BIOLOGICAL TESTING RESULTS CORNWALL AVENUE LANDFILL SITE BELLINGHAM, WA

Prepared for: Landau Associates Edmonds, WA

On behalf of: Port of Bellingham Bellingham, WA

Prepared by: Ramboll Environ US Corporation 4770 NE View Dr. PO Box 216 Port Gamble, Washington 98364

Client Contract Reference: Project Number 0001037.030.036

Ramboll Environ Report ID: 081815.01

Submittal Date: August 18, 2015





#### **Contents**

| 1 I  | NTRODUCTION                                        | 1  |
|------|----------------------------------------------------|----|
| 2 M  | ETHODS                                             | 1  |
| 2.1  | SAMPLE COLLECTION SAMPLE AND ANIMAL RECEIPT        |    |
| 2.2  | SAMPLE GRAIN SIZE AND REFERENCE COMPARISON         |    |
| 2.3  | ULTRA-VIOLET LIGHT EXPOSURE                        |    |
| 2.4  | 10-DAY AMPHIPOD BIOASSAY                           | 3  |
| 2.5  | 20-DAY JUVENILE POLYCHAETE BIOASSAY                |    |
| 2.6  | LARVAL DEVELOPMENTAL BIOASSAY                      | 5  |
| 2.7  | DATA ANALYSIS AND QA/QC                            | 6  |
| 3 RI | ESULTS                                             | 7  |
| 3.1  | 10-DAY AMPHIPOD BIOASSAY                           |    |
| 3.2  | 20-DAY JUVENILE POLYCHAETE BIOASSAY                | 12 |
| 3.3  | LARVAL DEVELOPMENT BIOASSAY                        | 17 |
| 4 D  | SCUSSION                                           | 21 |
| 4.1  | AMPHIPOD TEST SUITABILITY DETERMINATION            | 21 |
| 4.2  | JUVENILE POLYCHAETE TEST SUITABILITY DETERMINATION | 23 |
| 4.3  | LARVAL TEST SUITABILITY DETERMINATION              | 25 |
| 5 SL | JMMARY                                             | 27 |
| 6 RE | FERENCES                                           | 28 |





#### **Tables**

| Table 2-1. Sample and Reference Grain Size Comparison                 | 2  |
|-----------------------------------------------------------------------|----|
| Table 3-1. Test Results for Echaustorius estuarius.                   | 8  |
| Table 3-2. Water Quality Summary for Echaustorius estuarius           |    |
| Table 3-3. Ammonia Summary for Echaustorius estuarius.                |    |
| Table 3-4. Sulfide Summary for Echaustorius estuarius.                | 10 |
| Table 3-5.Test Condition Summary for Enhaustorius estuarius.          | 11 |
| Table 3-6. Test Results for Neanthes arenaceodentata.                 | 13 |
| Table 3-7. Water Quality Summary for Neanthes arenaceodentata         | 14 |
| Table 3-8. Ammonia Summary for Neanthes arenaceodentata.              | 14 |
| Table 3-9. Sulfide Summary for Neanthes arenaceodentata               | 15 |
| Table 3-10. Test Condition Summary for Neanthes are naceodentata      | 16 |
| Table 3-11. Test Results for Mytilus galloprovincialis.               | 18 |
| Table 3-12. Water Quality Summary for Mytilus galloprovincialis       | 19 |
| Table 3-13. Ammonia and Sulfide Summary for Mytilus galloprovincialis | 19 |
| Table 3-14. Test Condition Summary for Mytilus galloprovincialis.     | 20 |
| Table 4-1. SMS Comparison for Echaustorius estuarius                  | 21 |
| Table 4-2. DMMP Comparison for Echaustorius estuarius.                | 22 |
| Table 4-3. SMS Comparison for Neanthes are naceodentata               | 23 |
| Table 4-4. DMMP Comparison for Neanthes arenaceodentata               | 24 |
| Table 4-5. SMS Comparison for Mytilus galloprovincialis               | 25 |
| Table 4-6. DMMP Comparison for Mytilus galloprovincialis.             | 26 |
| Table 5-1. Summary of SMS Evaluation.                                 | 27 |
| Table 5-2. Summary of DMMP Evaluation                                 | 27 |



#### **ACRONYMS AND ABBREVIATIONS**

AFDW: Ash-free dry weight

ARI: Analytical Resources, Inc., Tukwila, WA

cm: Centimeter

CSL: Cleanup Screening Level

°C: Degrees Celsius

EC<sub>50</sub>: Effective Concentration that results in a 50% reduction in a sub-lethal endpoint

q: Grams

LC<sub>50</sub>: Lethal Concentration that results in a 50% reduction in survival

L: Liter

µm: Micrometer mg: Milligram

mg/L: Milligrams per liter

mL: Milliliter mm: Millimeter

NELAP: National Environmental Laboratory Accreditation Program

NOEC: No Observed Effect Concentration

ppt: parts per thousand

PSEP: Puget Sound Estuary Protocols (PSEP 1995)

SCO: Sediment Cleanup Objective
SMS: Sediment Management Standards
SOP: Standard operation procedure

SSAPA: Sediment Sampling and Analysis Plan Appendix (SSAPA; Ecology 2008)

SMARM: Sediment Management Annual Review Meeting

UIA: Un-ionized ammonia

USACE: United States Army Corps of Engineers

USEPA: United States Environmental Protection Agency

WA: Washington State

WAC: Washington Administrative Code

WDOE: Washington (State) Department of Ecology



All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Ramboll Environ is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated.

Brian Hester

Brian Hester

Laboratory Director

#### 1 INTRODUCTION

Ramboll Environ conducted biological toxicity testing with sediment samples collected by Landau Associates, Inc. as part of a pre-design investigation being performed at the Cornwall Avenue Landfill Site in Bellingham, Washington. Sediments were evaluated for biological effects following guidance provided by the Washington State Department of Ecology (WDOE) Sediment Management Standards (SMS) under the Washington Administrative Code (WAC) 173-204-315. This report presents the results of the toxicity testing portion of the Cornwall Avenue sediment investigation.

#### 2 METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual II (SCUM II; Ecology 2015), and the various updates presented during the Annual Sediment Management Review meetings (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the juvenile polychaete survival and growth test, and the benthic larval development test.

#### 2.1 Sample Collection Sample and Animal Receipt

Five test sediments were collected on June 10, 2015 and were received at Ramboll Environ on June 11, 2015. Reference sediments from two stations within Carr Inlet, WA were collected by Ramboll Environ on June 19, 2015 and received on the same day. Sediment samples were stored in a walk-in cold room at  $4 \pm 2^{\circ}$ C in the dark. The test sediment was not sieved prior to testing. All tests were conducted within the eight week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. Animals were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (Neanthes were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Dave Gutoff in San Diego, CA. Broodstock were held in unfiltered seawater at 16°C prior to spawning.

Native *Eohaustorius* sediment from Yaquina Bay, Oregon was also provided by Northwest Aquatic Sciences for use as control sediment treatments for the amphipod and juvenile polychaete tests.

#### 2.2 Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments. The percent fines value is defined as the amount of sediment that passes through a 62.5-µm sieve, expressed as a percentage of the total sample analyzed. This is also the sum of the silt and clay fraction of sediment. Wet-sieve grain size results for the reference sample was conducted in the field (at the time of collection) by Ramboll Environ. The percent-fines determination of the project sediments are summarized in Table 2-1.

Table 2-1. Sample and Reference Grain Size Comparison.

| Treatment         | Percent Fines <sup>1</sup> | Treatment Compared To: |
|-------------------|----------------------------|------------------------|
| CR1 (Reference)   | 48%                        |                        |
| CARR02(Reference) | 82%                        |                        |
| CL-BA-1           | 48%                        | CR1                    |
| CL-BA-2           | 74%                        | CARR02                 |
| CL-BA-3           | 76%                        | CARR02                 |
| CL-BA-4           | 72%                        | CARR02                 |
| CL-BA-5           | 75%                        | CARR02                 |

<sup>1</sup> Wet sieve results

Project sample CL-BA-1 was compared to the reference "CR1" (48% fines) for the purposes of evaluating the sediment under the sediment management standards. All remaining project samples were compared to the reference "CARR02" (82% fines).

#### 2.3 Ultra-Violet Light Exposure

Test sediment samples were exposed to ultra-violet (UV) light during the entire test exposure. The UV light regime followed guidance provided by Appendix C of SCUM II (Ecology 2015). UV light was provided by fluorescent light ballast containing one Duro-Test Vita-Lite® (40W, 5500°K, 91 CRI) fluorescent bulb and one standard fluorescent bulb (Phillips F40CW). The UV bulbs were placed within 12" above the sediment surface. All test chambers in the UV exposures were left uncovered to prevent any UV loss. Tests were conducted on water-tables to ensure that the additional lighting did not alter water temperatures in the test chambers. In all other respects, the methods followed the standard testing protocols are summarized below.

#### 2.4 10-day Amphipod Bioassay

The 10-day acute toxicity test with *E. estuarius* was initiated on June 26, 2015. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S<sup>2-</sup> were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen: ≥5.1 mg/L

pH: 7 - 9 units

Temperature:  $15 \pm 1^{\circ}C$ 

Salinity:  $28 \pm 1ppt$ 

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

#### 2.5 20-day Juvenile Polychaete Bioassay

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on July 2, 2015. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure overlying and interstitial ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S<sup>2-</sup> were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were:

Dissolved Oxygen: ≥4.6 mg/L

pH: 7 - 9 units

Temperature:  $20 \pm 1^{\circ}C$ 

Salinity:  $28 \pm 2 \text{ ppt}$ 

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber, and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of TetraMarin® (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a dessicator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours in order to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to correct for the influence of sediment grain size differences between treatments. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

#### 2.6 Larval Developmental Bioassay

Test sediment was evaluated using the larval benthic toxicity test with the mussel, M. galloprovincialis. The mussel larval test was initiated on July 15, 2015. The control and reference sediment were tested with the test treatments. To prepare the test exposures, 18 g ( $\pm 1$  g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45- $\mu$ m filtered seawater. Six replicate chambers were prepared for the test treatment, reference sediment, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs are transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2 (test termination). Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S<sup>-2</sup> were monitored using a HACH DR/2800V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen: ≥5.0 mg/L

pH: 7 - 9 units

Temperature:  $16 \pm 1^{\circ}$ C

Salinity:  $28 \pm 1ppt$ 

The development test was conducted as a static test without aeration. The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At termination, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped

prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early stage larvae.

A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to ammonia concentrations that would possibly be present in the sediments.

#### 2.7 Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the normalized combined mortality and abnormality endpoint was used to evaluate the test sediment. This was based on the number of normal larvae in each treatment and reference sample divided by the mean number of normal larvae in the control replicates, as defined in the SCUM II guidance document (Ecology 2015).

For SMS suitability determinations, comparisons were made according SCUM II (Ecology 2015) and Fox et al. (1998). For DMMP suitability determinations, comparisons were made according to the USACE User's Manual (USACE 2013). Data reported as percent mortality or survival were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

#### 3 RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix A and statistical analyses are provided in Appendix B.

#### 3.1 10-day Amphipod Bioassay

The bioassay test with *E. estuarius* was validated with 3% mortality in the native sediment control, which met the performance criterion of ≤10% mortality. This result indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference treatments CR1 and CARR02 were 2% and 1%, respectively, which met the performance criteria (<25% mortality) and indicated that the reference sediment was acceptable for suitability determination. Mean mortality in the project samples ranged from 2% to 19%. All endpoint results are summarized in Table 3-1.

Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-2, Table 3-3, Table 3-4, and Table 3-5.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of minor deviations in temperature and salinity. Temperature was recorded slightly above the targeted range of  $15\pm1^{\circ}$ C on Day 5 (Max value 17.4°C). The temperature control system was adjusted upon discovery and temperatures returned to the targeted range for the duration of the test. Salinity was recorded slightly above the recommended range of  $28\pm1$  ppt (Max: 30 ppt), this salinity was still well within the tolerance range for this species. These deviations would not be expected to affect the significance of the test results.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The  $LC_{50}$  value was well within control chart limits ( $\pm 2$  standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

Ammonia concentrations observed in the *E. estuarius* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-3; compare to NOEC of 132 mg/L). Values were also below the published threshold concentration of 15 mg/L total ammonia (Barton 2002). Therefore ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments. Initial sulfide concentrations in interstitial water were below 0.3 mg/L and would not be expected to contribute to toxicity.

Table 3-2. Test Results for Echaustorius estuarius.

| Treatment   | Replicate | Number    | Number           | Percentage | Mean Pe  | ercentage | Standard  |  |  |
|-------------|-----------|-----------|------------------|------------|----------|-----------|-----------|--|--|
| Tradition 1 | Replicate | Initiated | Surviving        | Survival   | Survival | Mortality | Deviation |  |  |
|             | 1         | 20        | 19               | 95         |          |           |           |  |  |
|             | 2         | 20        | 20               | 100        |          |           |           |  |  |
| Control     | 3         | 20        | 19               | 95         | 97       | 3         | 2.7       |  |  |
|             | 4         | 20        | 20               | 100        |          | 3 2.7     |           |  |  |
|             | 5         | 20        | 19               | 95         |          |           |           |  |  |
|             | 1         | 20        | 20               | 100        |          |           | 1 3       |  |  |
| 654         | 2         | 20        | 20               | 100        |          |           |           |  |  |
| CR1         | 3         | 20        | 20               | 100        | 98       | 2         | 2.7       |  |  |
| (Reference) | 4         | 20        | 19               | 95         |          |           |           |  |  |
|             | 5         | 20        | 19               | 95         |          |           |           |  |  |
|             | 1         | 20        | 19               | 95         |          |           |           |  |  |
| CARRAS      | 2         | 20        | 20               | 100        |          |           |           |  |  |
| CARRO2      | 3         | 20        | 20               | 100        | 99       | 1         | 2.2       |  |  |
| (Reference) | 4         | 20        | 20 100<br>20 100 |            |          |           |           |  |  |
| 4-          | 5         | 20        | 20               | 100        |          |           |           |  |  |
|             | 1         | 20        | 19               | 95         |          |           |           |  |  |
|             | 2         | 20        | 20               | 100        |          |           |           |  |  |
| CL-BA-1     | 3         | 20        | 20               | 100        | 98       | 2         | 2.7       |  |  |
|             | 4         | 20        | 19               | 95         |          |           | 2.7       |  |  |
|             | 5         | 20        | 20               | 100        |          |           |           |  |  |
|             | 1         | 20        | 18               | 90         |          |           |           |  |  |
|             | 2         | 20        | 16               | 80         | 85       |           |           |  |  |
| CL-BA-2     | 3         | 20        | 17               | 85         |          | 15        | 5.0       |  |  |
|             | 4         | 20        | 16               | 80         |          |           |           |  |  |
|             | 5         | 20        | 18               | 90         |          |           |           |  |  |
|             | 1         | 20        | 15               | 75         |          |           |           |  |  |
|             | 2         | 20        | 18               | 90         |          |           |           |  |  |
| CL-BA-3     | 3         | 20        | 15               | 75         | 81       | 19        | 8.2       |  |  |
|             | 4         | 20        | 15               | 75         |          |           |           |  |  |
|             | 5         | 20        | 18               | 90         |          |           |           |  |  |
|             | 1         | 20        | 19               | 95         |          |           | -         |  |  |
|             | 2         | 20        | 17               | 85         |          |           |           |  |  |
| CL-BA-4     | 3         | 20        | 19               | 95         | 93       | 7         | 5.7       |  |  |
|             | 4         | 20        | 18               | 90         |          |           |           |  |  |
|             | 5         | 20        | 20               | 100        |          |           |           |  |  |
|             | 1         | 20        | 18               | 90         |          |           |           |  |  |
|             | 2         | 20        | 18               | 90         |          |           |           |  |  |
| CL-BA-5     | 3         |           | 14               | 8.2        |          |           |           |  |  |
|             | 4         | 20        | 15               | 75         |          |           |           |  |  |
|             | 5         | 20        | 16               | 80         |          |           |           |  |  |

Table 3-3. Water Quality Summary for Echaustorius estuarius.

| Treatment             | Dissolved Oxygen<br>(mg/L) |     |     | Temperature (°C) |      | Salinity (ppt) |      |     | pH (units) |      |     |     |
|-----------------------|----------------------------|-----|-----|------------------|------|----------------|------|-----|------------|------|-----|-----|
|                       | Mean                       | Min | Max | Mean             | Min  | Max            | Mean | Min | Max        | Mean | Min | Max |
| Control               | 8.3                        | 7.8 | 9.7 | 15.6             | 14.6 | 17.3           | 28   | 28  | 29         | 8.0  | 7.9 | 8.1 |
| CR1<br>(Reference)    | 8.2                        | 7.8 | 8.5 | 15.6             | 14.6 | 17.4           | 29   | 28  | 30         | 8.1  | 7.9 | 8.4 |
| CARR02<br>(Reference) | 8.1                        | 7.8 | 8.4 | 15.7             | 14.7 | 17.3           | 29   | 28  | 30         | 8.0  | 7.9 | 8.2 |
| CL-BA-1               | 8.3                        | 7.9 | 8.5 | 15.6             | 14.8 | 17.2           | 28   | 28  | 30         | 8.2  | 8.0 | 9.0 |
| CL-BA-2               | 8.2                        | 7.9 | 8.6 | 15.6             | 14.8 | 17.3           | 29   | 28  | 30         | 8.2  | 8.0 | 8.8 |
| CL-BA-3               | 8.2                        | 7.9 | 8.4 | 15.6             | 14.8 | 17.4           | 29   | 28  | 30         | 8.3  | 8.0 | 8.8 |
| CL-BA-4               | 8.2                        | 7.9 | 8.6 | 15.6             | 14.7 | 17.2           | 28   | 28  | 29         | 8.3  | 7.9 | 8.9 |
| CL-BA-5               | 8.2                        | 7.6 | 8.6 | 15.6             | 14.6 | 17.2           | 28   | 28  | 29         | 8.3  | 7.9 | 9.1 |

Table 3-4. Ammonia Summary for Echaustorius estuarius.

| Treatment             |       | Ammonia<br>- Total) | Interstitial Ammonia<br>(mg/L Total) |        |  |  |
|-----------------------|-------|---------------------|--------------------------------------|--------|--|--|
|                       | Day 0 | Day 10              | Day 0                                | Day 10 |  |  |
| Control               | 0.203 | 0.528               | 0.0977                               | 0.0765 |  |  |
| CR1<br>(Reference)    | 0.159 | 0.00                | 2.16                                 | 0.317  |  |  |
| CARR02<br>(Reference) | 0.126 | 0.0116              | 1.35                                 | 0.474  |  |  |
| CL-BA-1               | 0.112 | 0.0022              | 1.27                                 | 0.107  |  |  |
| CL-BA-2               | 0.778 | 0.0140              | 6.48                                 | 0.811  |  |  |
| CL-BA-3               | 0.757 | 0.00                | 4.16                                 | 0.771  |  |  |
| CL-BA-4               | 0.512 | 0.356               | 2.26                                 | 1.71   |  |  |
| CL-BA-5               | 0.279 | 0.127               | 4.57                                 | 1.01   |  |  |

NOEC (concurrent reference-toxicant test derived) = 132 mg/L

Table 3-5. Sulfide Summary for Echaustorius estuarius.

| Treatment             |       | g Sulfides<br>g/L) | Interstitial Sulfides<br>(mg/L) |        |  |  |
|-----------------------|-------|--------------------|---------------------------------|--------|--|--|
|                       | Day 0 | Day 10             | Day 0                           | Day 10 |  |  |
| Control               | 0.000 | 0.016              | ND                              | ND     |  |  |
| CR1<br>(Reference)    | 0.000 | 0.016              | 0.000                           | 0.074  |  |  |
| CARR02<br>(Reference) | 0.000 | 0.028              | 0.000                           | 0.150  |  |  |
| CL-BA-1               | 0.000 | 0.016              | 0.050                           | 0.049  |  |  |
| CL-BA-2               | 0.000 | 0.043              | 0.047                           | 0.077  |  |  |
| CL-BA-3               | 0.001 | 0.018              | 0.000                           | 0.058  |  |  |
| CL-BA-4               | 0.019 | 0.060              | 0.028                           | 0.091  |  |  |
| CL-BA-5               | 0.035 | 0.034              | 0.049                           | 0.050  |  |  |

ND – no data; insufficient volume for analysis.

Table 3-6.Test Condition Summary for Echaustorius estuarius.

| Test C                                          | onditions: PSEP E. estuarius                                                           |                                                  |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Sample Identification                           |                                                                                        | )2, CL-BA-1, CL-BA-2,<br>BA-4, CL-BA-5           |  |
| Date sampled                                    |                                                                                        | 0, 2015                                          |  |
| Date received                                   |                                                                                        | 1, 2015                                          |  |
| Test dates                                      |                                                                                        | July 6, 2015                                     |  |
| Sample storage conditions                       |                                                                                        | dark                                             |  |
| Days of holding Recommended: ≤8 weeks (56 days) |                                                                                        | Days                                             |  |
| Source of control sediment                      | Yaquina                                                                                | Bay, OR                                          |  |
| Test Species                                    |                                                                                        | tuarius                                          |  |
| Supplier                                        | Northwestern Aquatic                                                                   | Sciences, Newport, OR                            |  |
| Date acquired                                   |                                                                                        | 5, 2015                                          |  |
| Age class                                       |                                                                                        | , 3-5 mm                                         |  |
| Test Procedures                                 |                                                                                        | SMARM revisions                                  |  |
| Test location                                   |                                                                                        | t Gamble Laboratory                              |  |
| Test type/duration                              |                                                                                        | y static                                         |  |
| Control water                                   |                                                                                        | water, 0.45µm filtered                           |  |
| Test dissolved oxygen                           | Recommended: > 5.1 mg/L                                                                | Achieved: 7.8 – 9.7 mg/l                         |  |
| Test temperature                                | Recommended: 15 ± 1 °C                                                                 | Achieved: 14.6 – 17.4 °C                         |  |
| Test Salinity                                   | Recommended: 28 ± 1 ppt                                                                | Achieved: 28 - 30 ppt                            |  |
| Test pH                                         | Recommended: 7 - 9                                                                     | Achieved: 7.9 – 9.1                              |  |
| Control Performance Standard SMS, DMMP          | Recommended:<br>Control ≤ 10% mortality                                                | Achieved: 3%; Pass                               |  |
| Reference Performance Standard<br>SMS<br>DMMP   | Recommended: Reference ≤ 25% mortality Reference ≤ 20% mortality (relative to Control) | Achieved: 2%, 1%; Pass<br>Achieved: -1%;-2% Pass |  |
| Reference Toxicant LC50 (total ammonia)         | LC50 = 19                                                                              | 97.1 mg/L                                        |  |
| Mean; Acceptable Range<br>(total ammonia)       | 133.0; 38.9                                                                            | - 227.1 mg/L                                     |  |
| NOEC (total ammonia)                            | 132                                                                                    | mg/L                                             |  |
| NOEC (unionized ammonia)                        | 1.578                                                                                  | mg /L                                            |  |
| Test Lighting                                   |                                                                                        | spectrum lighting per<br>Appendix C              |  |
| Test chamber                                    |                                                                                        | ss Chamber                                       |  |
| Replicates/treatment                            |                                                                                        | ed for WQ measurements t the test)               |  |
| Organisms/replicate                             | 2                                                                                      |                                                  |  |
| Exposure volume                                 | 175 mL sedimen                                                                         | t/ 775 mL water                                  |  |
| Feeding                                         | No                                                                                     |                                                  |  |
| Water renewal                                   | No                                                                                     | ne                                               |  |
| Deviations from Test Protocol                   | Temperature                                                                            | and salinity                                     |  |

#### 3.2 20-day Juvenile Polychaete Bioassay

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control sediment was 0.731 mg/ind/day (dry weight) and 0.436 mg/ind/day (AFDW). These values fall within the test acceptability criteria of ≤10% mean mortality and ≥0.38 mg/ind/day mean individual growth (Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 3-6. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-7, Table 3-8, Table 3-9, and Table 3-10

Mean mortality in the two reference treatments were 0% and 4%, meeting the reference performance standard of  $\leq$ 10% (Ecology 2015; USACE 2015). Mean individual growth for the reference treatments (CR1 and CARR02) were 0.677 and 0.650 mg/ind/day (dry weight) and 0.472 and 0.463 mg/ind/day (AFDW). When compared to the control, MIG expressed as dry weight met the reference performance standard of  $\geq$ 80%.

Mortality in all project sediments was 0%. Mean individual growth (as dry weight) in the test treatments ranged from 0.618 to 0.758 mg/ind/day. Mean individual growth in the AFDW assessment, which removes variability caused by gut contents, ranged from 0.476 to 0.586 mg/ind/day as AFDW. The observed mean growth in the project sediments was greater than or similar to the respective endpoints for the reference treatments in all cases.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The  $LC_{50}$  value was well within control chart limits ( $\pm 2$  standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

All water quality parameters were within the acceptable limits throughout the duration of the test with the exception of salinity. Salinity was recorded slightly above the targeted range, but remained well within the tolerance range for this test organism.

Ammonia concentrations observed in the *N. arenaceodentata* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-8; compare to NOEC of 140 mg/L). Initial sulfide concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for all samples.

Table 3-7. Test Results for Neanthes arenaceodentata.

|             |     | Number    |           | Mean             | Ti            | ndividua | l Growt    | h (mg/in | id/day) |            |  |
|-------------|-----|-----------|-----------|------------------|---------------|----------|------------|----------|---------|------------|--|
| Treatment   | Rep | Initiated | Survivors | Mortality<br>(%) | Dry<br>Weight | Mean     | Std<br>Dev | AFDW     | Mean    | Std<br>Dev |  |
|             | 1   | 5         | 5         |                  | 0.668         |          |            | 0.438    |         |            |  |
|             | 2   | 5         | 5         |                  | 0.683         | ]        |            | 0.371    | 0.436   |            |  |
| Control     | 3   | 5         | 5         | 0                | 0.585         | 0.731    | 0.126      | 0.412    |         | 0.054      |  |
|             | 4   | 5         | .5        |                  | 0.820         | ]        |            | 0.445    |         |            |  |
|             | 5   | 5         | 5         |                  | 0.899         | ]        |            | 0.517    |         |            |  |
|             | 1   | 5         | - 5       |                  | 0.573         |          |            | 0.394    |         |            |  |
| CD4         | 2   | 5         | 5         |                  | 0.655         |          |            | 0.463    | 7       |            |  |
| CR1         | 3   | 5         | 5         | 0                | 0.824         | 0.677    | 0.091      | 0.578    | 0.472   | 0.067      |  |
| (Reference) | 4   | 5         | 5         |                  | 0.654         |          |            | 0.446    | 1       |            |  |
|             | 5   | 5         | 5         |                  | 0.680         |          |            | 0.479    | 1       |            |  |
| 7           | 1   | 5         | 5         |                  | 0.635         |          |            | 0.437    |         |            |  |
| CARROR      | 2   | 5         | 4         |                  | 0.864         |          |            | 0.576    |         |            |  |
| CARR02      | 3   | 5         | 5         | 4                | 0.615         | 0.650    | 0.126      | 0.482    | 0.463   | 0.080      |  |
| (Reference) | 4   | 5         | 5         |                  | 0.530         |          |            | 0.354    |         |            |  |
|             | 5   | 5         | 5         |                  | 0.604         |          |            |          | 0.466   |            |  |
|             | 1   | 5         | 5         |                  | 0.642         |          |            | 0.503    |         |            |  |
|             | 2   | 5         | 5         |                  | 0.545         |          | 0.435      | 35       |         |            |  |
| CL-BA-1     | 3.  | 5         | 5         | 0                | 0.603         | 0.618    | 0.080      | 0.515    | 0.502   | 0.058      |  |
|             | 4   | 5         | 5         |                  | 0.556         |          |            | 0.469    | 1       |            |  |
|             | 5   | 5         | 5         |                  | 0.743         |          |            | 0.589    | 1       |            |  |
|             | 1   | 5         | 5         |                  | 0.587         |          |            | 0.458    |         |            |  |
|             | 2 ' | 5         | 5         |                  | 0.732         |          |            | 0.565    |         |            |  |
| CL-BA-2     | 3   | 5         | 5         | 0                | 0.705         | 0.655    | 0.097      | 0.539    | 0.515   | 0.068      |  |
|             | 4   | 5         | 5         |                  | 0.731         |          |            | 0.585    |         |            |  |
|             | 5   | _ 5       | 5         |                  | 0.518         |          | l i        | 0.430    | 1 1     |            |  |
|             | 1   | 5         | 5         |                  | 0.803         |          |            | 0.617    |         |            |  |
|             | 2   | 5         | 5         |                  | 0.788         |          |            | 0.596    | 1 1     |            |  |
| CL-BA-3     | 3   | -5        | 5         | 0                | 0.831         | 0.758    | 0.074      | 0.604    | 0.586   | 0.040      |  |
|             | 4   | 5         | 5         |                  | 0.647         |          | Ì          | 0.515    | 1       |            |  |
|             | 5   | 5         | 5         |                  | 0.720         |          | 1          | 0.598    | 1       |            |  |
|             | 1   | 5         | 5         |                  | 0.655         |          |            | 0.510    |         |            |  |
|             | 2   | 5         | 5         |                  | 0.810         |          |            | 0.610    | 1       |            |  |
| CL-BA-4     | 3   | 5         | 5         | 0                | 0.704         | 0.642    | 0.146      | 0.522    | 0.476   | 0.105      |  |
|             | 4   | 5         | 5         |                  | 0.485         |          |            | 0.368    | 1       |            |  |
|             | 5   | 5         | 5         |                  | 0.468         |          |            | 0.371    | 1       |            |  |
|             | 1   | 5         | 5         |                  | 0.760         |          |            | 0.586    |         |            |  |
|             | 2   | 5         | 5         |                  | 0.535         |          |            | 0.442    | 1       | 0.055      |  |
| CL-BA-5     | 3   | 5         | 5         | 0                | 0.727         | 0.679    | 0.087      | 0.544    | 0.531   |            |  |
|             | 4   | 5         | 5         |                  | 0.700         |          |            | 0.563    |         |            |  |
|             | 5   | 5         | 5         |                  | 0.672         |          |            | 0.521    |         |            |  |

Table 3-8. Water Quality Summary for Neanthes arenaceodentata.

| Treatment             | Dissolved Oxygen (mg/L) |     |     | Temp | Temperature (°C) |      | Salinity (ppt) |     |     | pH (units) |     |     |
|-----------------------|-------------------------|-----|-----|------|------------------|------|----------------|-----|-----|------------|-----|-----|
|                       | Mean                    | Min | Max | Mean | Min              | Max  | Mean           | Min | Max | Mean       | Min | Max |
| Control               | 7.3                     | 5.6 | 7.8 | 20.4 | 19.2             | 21.0 | 29             | 28  | 30  | 7.9        | 7.6 | 8.0 |
| CR1<br>(Reference)    | 7.4                     | 6.6 | 8.0 | 20.5 | 19.3             | 21.0 | 29             | 28  | 30  | 8.0        | 7.6 | 8.3 |
| CARR02<br>(Reference) | 7.4                     | 6.8 | 8.0 | 20.4 | 19.0             | 21.0 | 29             | 28  | 30  | 8.1        | 7.8 | 8.3 |
| CL-BA-1               | 7.5                     | 7.3 | 7.7 | 20.1 | 19.0             | 20.7 | 30             | 28  | 31  | 8.3        | 7.9 | 8.5 |
| CL-BA-2               | 7.5                     | 6.2 | 8.8 | 20.5 | 19.1             | 21.2 | 29             | 28  | 30  | 8.3        | 7.7 | 8.6 |
| CL-BA-3               | 7.5                     | 6.8 | 8.0 | 20.5 | 19.1             | 21.0 | 29             | 28  | 30  | 8.2        | 7.6 | 8.4 |
| CL-BA-4               | 7.3                     | 6.8 | 7.6 | 20.5 | 19.2             | 21.0 | 29             | 28  | 30  | 8.2        | 7.8 | 8.5 |
| CL-BA-5               | 7.3                     | 6.9 | 7.6 | 20.5 | 19.2             | 21.0 | 29             | 28  | 30  | 8.2        | 7.8 | 8.4 |

Table 3-9. Ammonia Summary for Neanthes arenaceodentata.

| Treatment             | 100   | Ammonia<br>. Total) | Interstitial Ammonia<br>(mg/L Total) |        |  |  |
|-----------------------|-------|---------------------|--------------------------------------|--------|--|--|
|                       | Day 0 | Day 20              | Day 0                                | Day 20 |  |  |
| Control               | 0.210 | 0.844               | 0.367                                | 0.767  |  |  |
| CR1<br>(Reference)    | 0.247 | 0.408               | 2.94                                 | 0.557  |  |  |
| CARR02<br>(Reference) | 0.392 | 0.254               | ND                                   | 0.307  |  |  |
| CL-BA-1               | 0.409 | 0.231               | 1.85                                 | 0.280  |  |  |
| CL-BA-2               | 1.32  | 0.183               | 3.89                                 | 0.262  |  |  |
| CL-BA-3               | 1.53  | 0.142               | 3.52                                 | 0.215  |  |  |
| CL-BA-4               | 1.11  | 0.551               | 1.22                                 | 1.02   |  |  |
| CL-BA-5               | 0.972 | 0.386               | 3.98                                 | 0.220  |  |  |

ND - no data; insufficient volume for analysis.

BOLD= Exceeds NOEC (concurrent reference-toxicant test derived) of 140 mg/L

Table 3-10. Sulfide Summary for Neanthes arenaceodentata.

| Treatment             | TAU TO STATE OF THE PARTY OF TH | g Sulfides<br>. Total) | Interstitial Sulfides<br>(mg/L Total) |        |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|--------|--|
|                       | Day 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day 20                 | Day 0                                 | Day 20 |  |
| Control               | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                  | ND                                    | ND     |  |
| CR1<br>(Reference)    | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013                  | 0.038                                 | 0.028  |  |
| CARR02<br>(Reference) | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.015                  | 0.038                                 | 0.039  |  |
| CL-BA-1               | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.025                  | 0.059                                 | 0.021  |  |
| CL-BA-2               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.084                  | 0.103                                 | 0.015  |  |
| CL-BA-3               | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.072                  | 0.060                                 | 0.026  |  |
| CL-BA-4               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.034                  | 0.095                                 | 0.026  |  |
| CL-BA-5               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.052                  | 0.088                                 | 0.021  |  |

ND - no data; insufficient volume for analysis.

Table 3-11. Test Condition Summary for Neanthes arenaceodentata.

| restigo                                   | inditions: PSEP N. arenaceodentata                                              |                                                 |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Sample Identification                     | Control, CR1, CARRO2,                                                           |                                                 |  |  |  |  |  |
| Date sampled                              | CL-BA-3, CL-BA June 10,                                                         |                                                 |  |  |  |  |  |
| Date received                             | June 11,                                                                        |                                                 |  |  |  |  |  |
| Test dates                                | July 2 - 22, 2015                                                               |                                                 |  |  |  |  |  |
| Sample storage conditions                 | 4°C, dark                                                                       |                                                 |  |  |  |  |  |
| Days of holding                           | 4 0, 02                                                                         | II K                                            |  |  |  |  |  |
| Recommended: ≤8 weeks (56 days)           | 22 Days                                                                         |                                                 |  |  |  |  |  |
| Source of control sediment                | Yaquina Bay, OR                                                                 |                                                 |  |  |  |  |  |
| Test Species                              | N. arenaceo                                                                     |                                                 |  |  |  |  |  |
| Supplier                                  | Aquatic Toxicolo                                                                |                                                 |  |  |  |  |  |
| Date acquired                             | July 1, 2                                                                       |                                                 |  |  |  |  |  |
| Age class                                 | Juvenile; 17 - 19 Day:                                                          |                                                 |  |  |  |  |  |
| Test Procedures                           | PSEP 1995 with SM                                                               | ARM revisions                                   |  |  |  |  |  |
| Test location                             | Ramboll Environ Port G                                                          |                                                 |  |  |  |  |  |
| Test type/duration                        | 20-Day static                                                                   |                                                 |  |  |  |  |  |
| Control water                             | North Hood Canal seawa                                                          | ter, 0.45µm filtered                            |  |  |  |  |  |
| Test dissolved oxygen                     | Recommended: > 4.6 mg/L                                                         | Achieved: 5.6 - 8.8 mg/l                        |  |  |  |  |  |
| Test temperature                          | Recommended: 20 ± 1 °C                                                          | Achieved: 19.0 - 21.2 °C                        |  |  |  |  |  |
| Test Salinity                             | Recommended: 28 ± 2 ppt                                                         | Achieved: 28 - 31 ppt                           |  |  |  |  |  |
| Test pH                                   | Recommended: 7 - 9                                                              | Achieved: 7.6 - 8.6                             |  |  |  |  |  |
| Initial biomass                           | Recommended: 0.5 - 1.0 mg<br>Minimum: 0.25 mg                                   | 0.786 mg; Acceptable                            |  |  |  |  |  |
| Control Performance Standard              | Recommended: Control ≤ 10% mortality                                            | Achieved: 0% Pass                               |  |  |  |  |  |
| Control renormance Standard               | Recommended: ≥ 0.72 mg/ind/day<br>Minimum: ≥ 0.38 mg/ind/day<br>(as Dry Weight) | Achieved:<br>0.731 mg/ind/day; Pass             |  |  |  |  |  |
| Reference performance standard            | Recommended: Mortality ≤20%  MIGReference/MIGcontrol ≥ 80%                      | CR1: 0%; Pass CARR02: 4%; Pass CR1: 92.6%; Pass |  |  |  |  |  |
| Reference Toxicant LC <sub>50</sub>       | 151056                                                                          | CARRO2: 88.9%; Pass                             |  |  |  |  |  |
| (total ammonia)                           | LC <sub>50</sub> = 185.6                                                        | nig/L                                           |  |  |  |  |  |
| Mean; Acceptable Range<br>(total ammonia) | 142.0; 50.5 - 2                                                                 | 33.5 mg/L                                       |  |  |  |  |  |
| NOEC (total ammonia)                      | 140 mg                                                                          | /L                                              |  |  |  |  |  |
| NOEC (unionized ammonia)                  | 1.402 mg                                                                        |                                                 |  |  |  |  |  |
| Test Lighting                             | Continuous with full spe<br>SCUM II App                                         | ctrum lighting per                              |  |  |  |  |  |
| Test chamber                              | 1-Liter Glass C                                                                 |                                                 |  |  |  |  |  |
| Replicates/treatment                      | 5 + 2 surro<br>(one used for WQ measureme                                       | gates                                           |  |  |  |  |  |
| Organisms/replicate                       | (one used for wy measureme                                                      | no unoughout the test)                          |  |  |  |  |  |
| Exposure volume                           | 175 mL sediment/ 7                                                              | 775 cal water                                   |  |  |  |  |  |
| Feeding                                   | ·                                                                               |                                                 |  |  |  |  |  |
| Water renewal                             | 40 mg/jar every other day (8r                                                   |                                                 |  |  |  |  |  |
| Deviations from Test Protocol             | Water renewed every third day (1/3                                              | volume of exposure chamber                      |  |  |  |  |  |

#### 3.3 Larval Development Bioassay

The larval development test with *M. galloprovincialis* was validated by 94.8% normalized combined normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value was within the SMS acceptability criteria of ≥70%. A summary of the test results for all samples is shown in Table 3-11. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-12, Table 3-13, and Table 3-14.

Mean control-normalized normal survival of the reference sediments were 77.0% (CR1) and 67.6% (CARR02, which met the reference acceptability criteria of 65% mean control-normalized normal survival (relative). Mean control-normalized survival in the test treatments ranged from 56.4% to 80.1%. The test mean chamber stocking density (measured at test initiation) was 26.8 embryos/mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The  $LC_{50}$  value was well within control chart limits ( $\pm 2$  standard deviations from the laboratory historical mean). Therefore the test organisms used in this study were of similar sensitivity to those previously tested at Ramboll Environ.

All water quality parameters were within the acceptable limits throughout the duration of the test.

Ammonia concentrations observed in the *M. galloprovincialis* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-13; compare to NOEC of 2.77 mg/L). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments.

Table 3-12. Test Results for Mytilus galloprovincialis.

| Treatment   | Rep | Number<br>Normal | Number<br>Abnormal | Mean #<br>Normal | Normalized Combined Normal Survivorship (%)1,2 | Mean Combined<br>Normal<br>Survivership<br>(%) | Std. Dev |
|-------------|-----|------------------|--------------------|------------------|------------------------------------------------|------------------------------------------------|----------|
|             | 1   | 256              | 14                 |                  | 95.5                                           |                                                |          |
|             | 2   | 269              | 12                 |                  | 100.0                                          |                                                |          |
| Control     | 3   | 243              | 12                 | 255.6            | 90.7                                           | 94.8                                           | 5.5      |
|             | 4   | 235              | 15                 |                  | 87.7                                           |                                                | - 111    |
|             | 5   | 275              | 21                 |                  | 100.0                                          |                                                |          |
|             | 1   | 209              | 7                  |                  | 81.8                                           |                                                |          |
|             | 2   | 313              | 19                 |                  | 100.0                                          |                                                |          |
| CR1         | 3   | 175              | 11                 | 208.2            | 68.5                                           | 77.0                                           | 14.3     |
| (Reference) | 4   | 177              | 11                 |                  | 69.2                                           | 1                                              |          |
|             | 5   | 167              | 15                 | x T              | 65.3                                           |                                                |          |
|             | 1   | 173              | 13                 |                  | 67.7                                           |                                                |          |
|             | 2   | 198              | 9                  |                  | 77.5                                           |                                                |          |
| CARRO2      | 3   | 165              | 7                  | 172.8 64.6       | 67.6                                           | 5.7                                            |          |
| (Reference) | 4   | 163              | 10                 |                  | 63.8                                           |                                                |          |
|             | 5   | 165              | 9                  | 3                | 64.6                                           | 1                                              |          |
| CL-BA-1     | 1   | 209              | 11                 |                  | 81.8                                           |                                                |          |
|             | 2   | 185              | 26                 |                  | 72.4                                           |                                                |          |
|             | 3   | 171              | 12                 | 190.0            | 66.9                                           | 74.3                                           | 6.1      |
|             | 4   | 203              | 17                 |                  | 79.4                                           |                                                |          |
|             | 5   | 182              | 17                 |                  | 71.2                                           |                                                |          |
|             | 1   | 215              | 8                  |                  | 84.1                                           | 80.1                                           |          |
|             | 2   | 166              | 8                  |                  | 64.9                                           |                                                |          |
| CL-BA-2     | 3   | 200              | 12                 | 218.6            | 78.2                                           |                                                | 13.2     |
|             | 4   | 325              | 18                 |                  | 100.0                                          |                                                |          |
|             | 5   | 187              | 19                 |                  | 73.2                                           |                                                |          |
|             | 1   | 163              | 23                 |                  | 63.8                                           |                                                |          |
|             | 2   | 113              | 41                 |                  | 44.2                                           |                                                |          |
| CL-BA-3     | 3   | 133              | 28                 | 144.2            | 52.0                                           | 56.4                                           | 8.8      |
|             | 4   | 144              | 30                 |                  | 56.3                                           |                                                |          |
|             | 5   | 168              | 32                 |                  | 65.7                                           |                                                |          |
|             | 1   | 253              | 21                 |                  | 99.0                                           | R                                              | _        |
|             | 2   | 172              | 12                 |                  | 67.3                                           |                                                |          |
| CL-BA-4     | 3   | 150              | 14                 | 176.8            | 58.7                                           | 69.2                                           | 17.5     |
|             | 4   | 140              | 17                 |                  | 54.8                                           |                                                |          |
|             | 5   | 169              | 16                 |                  | 66.1                                           |                                                |          |
|             | 1   | 156              | 26                 |                  | 61.0                                           |                                                |          |
|             | 2   | 154              | 39                 |                  | 60.3                                           |                                                |          |
| CL-BA-5     | 3   | 180              | 34                 | 155.0            | 70.4                                           | 60.6                                           | 9.1      |
|             | 4   | 118              | 36                 |                  | 46.2                                           | 33.0                                           |          |
|             | 5   | 167              | 24                 |                  | 65.3                                           |                                                |          |

<sup>&</sup>lt;sup>1</sup> Control normality normalized to stocking density (268).
<sup>2</sup> Reference and treatment normal survivorship are normalized to the mean Control normality (255.6).

Table 3-13. Water Quality Summary for Mytilus galloprovincialis.

| Treatment             | Dissolved Oxygen (mg/L) |     | Temperature (°C) |      | Salinity (ppt) |      | pH (units) |     |     |      |     |     |
|-----------------------|-------------------------|-----|------------------|------|----------------|------|------------|-----|-----|------|-----|-----|
|                       | Mean                    | Min | Max              | Mean | Min            | Max  | Mean       | Min | Max | Mean | Min | Max |
| Control               | 7.4                     | 6.8 | 7.8              | 16.2 | 15.5           | 17.0 | 28         | 28  | 28  | 7.6  | 7.2 | 7.9 |
| CR1<br>(Reference)    | 6.7                     | 6.4 | 7.1              | 16.9 | 16.7           | 17.0 | 28         | 27  | 28  | 7.8  | 7.7 | 7.8 |
| CARR02<br>(Reference) | 6.7                     | 6.4 | 6.9              | 16.9 | 16.7           | 17.0 | 28         | 27  | 28  | 7.8  | 7.8 | 7.9 |
| CL-BA-1               | 6.4                     | 6.2 | 6.6              | 16.8 | 16.7           | 16.9 | 28         | 27  | 28  | 7.8  | 7.8 | 7.8 |
| CL-BA-2               | 6.7                     | 6.4 | 7.1              | 16.7 | 16.2           | 17.0 | 27         | 27  | 28  | 7.7  | 7.7 | 7.8 |
| CL-BA-3               | 6.7                     | 6.5 | 6.9              | 16.8 | 16.6           | 16.9 | 28         | 27  | 28  | 7.7  | 7.7 | 7.8 |
| CL-BA-4               | 6.2                     | 5.7 | 7.0              | 16.7 | 16.6           | 16.9 | 28         | 28  | 28  | 7.7  | 7.7 | 7.8 |
| CL-BA-5               | 6.1                     | 5.5 | 6.4              | 16.6 | 15.9           | 17.0 | 28         | 27  | 28  | 7.7  | 7.7 | 7.8 |

Table 3-14. Ammonia and Sulfide Summary for Mytilus galioprovincialis.

| Treatment             |        | g Ammonia<br>'L Total) | Overlying Sulfides (mg/L Total) |               |  |
|-----------------------|--------|------------------------|---------------------------------|---------------|--|
|                       | Day 0  | Final (Day 2)          | Day 0                           | Final (Day 2) |  |
| Control               | 0.128  | 0.00                   | 0.006                           | 0.001         |  |
| CR1<br>(Reference)    | 0.0397 | 0.00                   | 0.099                           | 0.042         |  |
| CARR02<br>(Reference) | 0.0385 | 0.00                   | 0.099                           | 0.014         |  |
| CL-BA-1               | 0.0337 | 0.0202                 | 0.082                           | 0.015         |  |
| CL-BA-2               | 0.0578 | 0.141                  | 0.072                           | 0.010         |  |
| CL-BA-3               | 0.0661 | 0.0936                 | 0.054                           | 0.022         |  |
| CL-BA-4               | 0.0866 | 0.237                  | 0.062                           | 0.069         |  |
| CL-BA-5               | 0.0906 | 0.0702                 | 0.004                           | 0.032         |  |

NOEC (concurrent reference-toxicant test derived) = 2.77 mg/L

Table 3-15. Test Condition Summary for Mytilus galloprovincialis.

| Test Cond                                           | itions: PSEP M. galloprovincia                                   | lis                                      |
|-----------------------------------------------------|------------------------------------------------------------------|------------------------------------------|
| Sample Identification                               | Control, CR1, CARRO2<br>CL-BA-3, CL-B                            | •                                        |
| Date sampled                                        | June 10                                                          |                                          |
| Date received                                       | June 11                                                          | ·                                        |
| Test dates                                          | July 15 -                                                        |                                          |
| Sample storage conditions                           | 4°C, (                                                           |                                          |
| Holding time<br>Recommended: < 8 weeks (56 days)    | 35 D                                                             |                                          |
| Test Species                                        | M. gallopn                                                       | ovincialis                               |
| Supplier                                            | Dave Gutoff, S                                                   | an Diego, CA                             |
| Date acquired                                       | July14,                                                          | 2015                                     |
| Age class                                           | <2-h old                                                         | embryos                                  |
| Test Procedures                                     | PSEP 1995 with S                                                 | MARM revisions                           |
| Test location                                       | Ramboll Environ Port                                             | Gamble Laboratory                        |
| Test type/duration                                  | 48-60 Hour static tes                                            | t (Actual: 48 hours)                     |
| Control water                                       | North Hood Canal sea v                                           | vater, 0.45µm filtered                   |
| Test dissolved oxygen                               | Recommended: > 5.0 mg/L                                          | Achieved: 5.5 - 7.8 mg/L                 |
| Test temperature                                    | Recommended: 16 ± 1 °C                                           | Achieved: 15.5 – 17.0 °C                 |
| Test Salinity                                       | Recommended: 28 ± 1 ppt                                          | Achieved: 27 – 28 ppt                    |
| Test pH                                             | Recommended: 7 - 9                                               | Achieved: 7.2 - 7.9                      |
| Stocking Density                                    | Recommended: 20 - 40<br>embryos/mL                               | Achieved: 26.8 embryos/ml                |
| Control performance standard                        | Recommended:<br>Control normal survival ≥ 70%                    | Achieved: 94.8%, Pass                    |
| Reference performance standard                      | Recommended: Reference normal survival relative to control ≥ 65% | Achieved: 81.2% (CR1);<br>71.3% (CARR02) |
| Reference Toxicant LC <sub>50</sub> (total ammonia) | LC <sub>50</sub> = 3.                                            | 9 mg/L                                   |
| Mean; Acceptable Range<br>(total ammonia)           | 5.5; 0.5 - 1                                                     | .0.5 mg/L                                |
| NOEC (total ammonia)                                | 2.77 n                                                           | ng/L                                     |
| NOEC (unionized ammonia)                            | 0.063 r                                                          | ng /L                                    |
| Test Lighting                                       | 14hr Light / 10hr Dark; with<br>SCUM II Ap                       |                                          |
| Test chamber                                        | 1-Liter Glass                                                    | Chamber                                  |
| Replicates/treatment                                | 5 + 1 surrogate (used for WQ n                                   | neasurements throughout the              |
| Exposure volume                                     | 18 g sediment/                                                   |                                          |
| Feeding                                             | non                                                              |                                          |
| Water renewal                                       | non                                                              |                                          |
| Deviations from Test Protocol                       | Salin                                                            |                                          |

#### 4 DISCUSSION

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology's Sediment Cleanup User's Manual II (SCUM II; Ecology 2015). Comparisons were made for each treatment against the reference sample. Two numerical comparisons were made under SMS, the Sediment Cleanup Objective (SCO) and the Cleanup Screening Level (CSL).

Additional data is included below summarizing the test results evaluated under the Dredged Material Management Program (DMMP) criteria. As with SMS, the biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison); however some differences exist between the two programs. The DMMP criteria are taken from the Dredged Material Evaluation and Disposal Procedures for nondispersive disposal sites (USACE 2015). Suitability was determined using a combination of test results, with 2-hit failures requiring a sample to fail 2-hit criteria in more than one bioassay. If a sample fails the 1-hit criteria for any bioassay, it is not considered suitable for disposal at a proposed disposal site.

#### 4.1 Amphipod Test Suitability Determination

Under the SMS program, a treatment will fail SCO if mean mortality in the test sediment is >25% and the difference is statistically significant ( $p \le 0.05$ ). Treatments fail the CSL if mean mortality in the test treatment >30% relative to the reference sediment and the difference is statistically significant.

Project sediments from the Cornwall Avenue Site do not fail the SCO and CSL criteria for the amphipod test as shown in Table 4-1.

Table 4-16. SMS Comparison for Echaustorius estuarius.

| Treatment | Mean<br>Mortality<br>(%) | Compared<br>To: | Statistically<br>More than<br>Reference? | Mortality Comparison to Reference MT-MR (%) | Fails<br>SCO? <sup>1</sup><br>> 25 % | Fails<br>CSL? <sup>2</sup><br>> 30 % |
|-----------|--------------------------|-----------------|------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|
| Control   | 3                        |                 |                                          |                                             |                                      |                                      |
| CR1       | 2                        |                 |                                          |                                             |                                      |                                      |
| CARR02    | 1                        |                 |                                          |                                             |                                      |                                      |
| CL-BA-1   | 2                        | CR1             | No                                       | 0                                           | No                                   | No                                   |
| CL-BA-2   | 15                       | CARR02          | Yes                                      | 14                                          | No                                   | No                                   |
| CL-BA-3   | 19                       | CARR02          | Yes                                      | 18                                          | No                                   | No                                   |
| CL-BA-4   | 7                        | CARR02          | Yes                                      | 6                                           | No                                   | No                                   |
| CL-BA-5   | 14                       | CARR02          | Yes                                      | 13                                          | No                                   | No                                   |

<sup>1</sup>SCO: Statistical Significance and MT >25%

<sup>2</sup>CSL: Statistical Significance and MT-MR >30%

 $M_T$  = Treatment Mortality

M<sub>R</sub> = Reference Mortality

TBD = To be determined

Under the DMMP program, a test treatment will fail the 2-Hit criteria if mean mortality in the test treatment is >20% relative to the control sediment and the difference is statistically significant. Treatments will fail the 1-Hit criteria when the 2-Hit conditions are met and if the mean mortality in the test treatment is >30% the mean mortality in the appropriate reference sediment.

Project sediments from the Cornwall Avenue Site do not exceed the 1-Hit and 2-Hit criteria for *E. estuarius* (Table 4-2).

Table 4-17, DMMP Comparison for Eohaustorius estuarius.

| Treatment | Mean<br>Mortality<br>(%) | Compared<br>To: | Statistically<br>More than<br>Associated<br>Reference? | Mortality Comparison to Reference M <sub>T</sub> -M <sub>R</sub> (%) | Mortality<br>Comparison<br>to Control<br>Mr-Mc (%) | Fails 2-<br>Hit<br>Rule? <sup>1</sup> | Fails 1-<br>Hit<br>Rule? <sup>2</sup> |
|-----------|--------------------------|-----------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------------|
| Control   | 3                        |                 |                                                        |                                                                      |                                                    |                                       |                                       |
| CR1       | 2                        |                 |                                                        |                                                                      |                                                    |                                       |                                       |
| CARR02    | 1                        |                 |                                                        |                                                                      |                                                    |                                       |                                       |
| CL-BA-1   | 2                        | CR1             | No                                                     | 0                                                                    | -1                                                 | No                                    | No                                    |
| CL-BA-2   | 15                       | CARR02          | Yes                                                    | 14                                                                   | 12                                                 | No                                    | No                                    |
| CL-BA-3   | 19                       | CARR02          | Yes                                                    | 18                                                                   | 16                                                 | No                                    | No                                    |
| CL-BA-4   | 7                        | CARR02          | Yes                                                    | 6                                                                    | 4                                                  | No .                                  | No                                    |
| CL-BA-5   | 14                       | CARR02          | Yes                                                    | 13                                                                   | 11                                                 | No                                    | No                                    |

<sup>12-</sup>Hit Criteria: M<sub>1</sub>-M<sub>C</sub> >20% and Statistical Significance

 $<sup>^21</sup>$ -Hit Criteria: M<sub>T</sub>-M<sub>C</sub> >20% and Statistical Significance (M<sub>T</sub> vs M<sub>R</sub>) and M<sub>T</sub>-M<sub>R</sub> >30%

M<sub>T</sub> = Treatment Mortality

M<sub>C</sub> = Control Mortality

M<sub>R</sub> = Reference Mortality

TBD = To be determined

#### 4.2 Juvenile Polychaete Test Suitability Determination

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG). A test treatment fails SCO criteria if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is <70% that of the reference. The treatments will fail CSL criteria if MIG is significantly lower than the reference treatment and is <50% that of the treatment.

Project sediments from the Cornwall Avenue Site do not fail the SCO and CSL criteria when evaluated on the dry weight and AFDW basis (Table 4-3).

Table 4-18. SMS Comparison for Neanthes arenaceodentata.

| Treatment | MIG<br>(mg/ind/day) | Comparison<br>To: | Statistically<br>Less than<br>Reference? | MIG Relative<br>to Reference<br>MIG <sub>T/</sub> MIG <sub>R</sub> | Fails<br>SCO? <sup>1</sup><br>< 70% | Fails<br>CSL? <sup>2</sup><br>< 50% |
|-----------|---------------------|-------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------------|
|           |                     |                   | Ory Weight                               |                                                                    |                                     |                                     |
| Control   | 0.731               |                   |                                          |                                                                    |                                     |                                     |
| CR1       | 0.677               |                   |                                          |                                                                    |                                     |                                     |
| CARR02    | 0.650               |                   |                                          |                                                                    |                                     |                                     |
| CL-BA-1   | 0.618               | CR1               | No                                       | 91                                                                 | No                                  | No                                  |
| CL-BA-2   | 0.655               | CARR02            | No                                       | 101                                                                | No                                  | No                                  |
| CL-BA-3   | 0.758               | CARR02            | No                                       | 117                                                                | No                                  | No                                  |
| CL-BA-4   | 0.624               | CARR02            | No                                       | 96                                                                 | No                                  | No                                  |
| CL-BA-5   | 0.679               | CARR02            | No                                       | 105                                                                | No                                  | No                                  |
|           |                     | Ash-F             | ree Dry Weigh                            | t                                                                  |                                     |                                     |
| Control   | 0.436               |                   |                                          |                                                                    |                                     |                                     |
| CR1       | 0.472               |                   |                                          |                                                                    |                                     |                                     |
| CARR02    | 0.463               |                   |                                          |                                                                    |                                     |                                     |
| CL-BA-1   | 0.502               | CR1               | No                                       | 106                                                                | No                                  | No                                  |
| CL-BA-2   | 0.515               | CARR02            | No                                       | 111                                                                | No                                  | No                                  |
| CL-BA-3   | 0.586               | CARR02            | No                                       | 127                                                                | No                                  | No                                  |
| CL-BA-4   | 0.476               | CARR02            | No                                       | 103                                                                | No                                  | No                                  |
| CL-BA-5   | 0.531               | CARR02            | No                                       | 115                                                                | No                                  | No                                  |

<sup>1</sup>SCO: Statistical Significance and MIG<sub>T</sub>/MIG<sub>R</sub> <70%

<sup>2</sup>CSL: Statistical Significance and MIG<sub>T</sub>/MIG<sub>R</sub> <50%

MIG<sub>T</sub> = Treatment Mean Individual Growth

MIGR = Reference Mean Individual Growth

Under DMMP guidelines, juvenile polychaete test treatments fail to meet the 2-Hit criteria when the mean individual growth rate (MIG) in the test sediment is less than 80% of the MIG in the control, is less than 70% of the MIG in the reference sediment, and the comparison to reference sediment is statistically significant. Test treatments fail to meet 1-Hit criteria when the mean individual growth rate (MIG) in the test sediment is less than 80% of MIG in the control, is less than 50% of the MIG in the reference sediment, and the comparison to reference sediment is statistically significant ( $p \le 0.05$ ).

Project sediments from the Cornwall Avenue Site passed the 1-Hit and 2-Hit criteria when compared to the reference and control sediments in both dry weight and ash free dry weight comparisons (Table 4-4).

Table 4-19. DMMP Comparison for Neanthes arenaceodentata.

| Treatment | MIG<br>(mg/ind/day) | Statistically<br>Less than<br>Reference? | MIG Relative<br>to Control<br>MIG <sub>T/</sub> MIG <sub>C</sub><br>(%) | MIG Relative<br>to Reference<br>MIGT/MIGR<br>(%) | Fails 2-Hit<br>Rule?¹ | Falls 1-Hit<br>Rule? <sup>2</sup> |
|-----------|---------------------|------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------------------|
|           |                     |                                          | Dry Weight                                                              |                                                  |                       |                                   |
| Control   | 0.731               |                                          |                                                                         |                                                  |                       |                                   |
| CR1       | 0.677               |                                          |                                                                         |                                                  |                       |                                   |
| CARR02    | 0.650               |                                          |                                                                         |                                                  |                       |                                   |
| CL-BA-1   | 0.618               | CR1; No                                  | 85                                                                      | 91                                               | No .                  | No                                |
| CL-BA-2   | 0.655               | CARR02;No                                | 90                                                                      | 101                                              | No                    | No                                |
| CL-BA-3   | 0.758               | CARR02;No                                | 104                                                                     | 117                                              | No                    | No                                |
| CL-BA-4   | 0.624               | CARR02;No                                | 85                                                                      | 96                                               | No                    | No                                |
| CL-BA-5   | 0.679               | CARR02;No                                | 105                                                                     | 105                                              | No                    | No                                |
|           |                     | Ash-                                     | Free Dry Weigl                                                          | ht                                               |                       |                                   |
| Control   | 0.436               |                                          |                                                                         |                                                  |                       |                                   |
| CR1       | 0.472               |                                          |                                                                         |                                                  |                       |                                   |
| CARR02    | 0.463               |                                          |                                                                         |                                                  |                       |                                   |
| CL-BA-1   | 0.502               | CR1; No                                  | 106                                                                     | 106                                              | No                    | No                                |
| CL-BA-2   | 0.515               | CARR02;No                                | 109                                                                     | 111                                              | No                    | No                                |
| CL-BA-3   | 0.586               | CARR02;No                                | 124                                                                     | 127                                              | No                    | No                                |
| CL-BA-4   | 0.476               | CARR02;No                                | 101                                                                     | 103                                              | No                    | No                                |
| CL-BA-5   | 0.531               | CARR02;No                                | 113                                                                     | 115                                              | No                    | No                                |

<sup>&</sup>lt;sup>1</sup>2-Hit Criteria: MIG<sub>T</sub>/MIG<sub>C</sub> <80% and Statistical Significance (MIG<sub>T</sub> vs MIG<sub>R</sub>) and MIG<sub>T</sub>/MIG<sub>R</sub> <70%

<sup>&</sup>lt;sup>2</sup>1-Hit Criteria: MIG<sub>T</sub>/MIG<sub>C</sub> <80% and Statistical Significance (MIG<sub>T</sub> vs MIG<sub>R</sub>) and MIG<sub>T</sub>/MIG<sub>R</sub> <50%

MIG<sub>T</sub> = Treatment Mean Individual Growth

MIG<sub>R</sub> = Reference Mean Individual Growth

MIGc = Control Mean Individual Growth

#### 4.3 Larval Test Suitability Determination

Larval test treatments fail SCO criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 85% of the normal development in the reference after normalizing to the control. Treatments fail CSL criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 70% of the normal development in the reference after normalizing to the control.

Project sediments from the Cornwall Avenue Site do not fail the SCO and CSL criteria for larval development (Table 4-5).

Table 4-20. SMS Comparison for Mytilus galloprovincialis.

| Treatment | Mean<br>Normal<br>Survival<br>(%) <sup>4</sup> | Mean<br>Number<br>Normal | Compared<br>To: | Statistically Less than Reference? (CARR-REF) | Normal Survival Comparison to Reference (Nx-Nx)/Nd[%] | Falls<br>SGO? <sup>2</sup><br>><br>15% | Falls<br>CSL? <sup>3</sup><br>><br>30% |
|-----------|------------------------------------------------|--------------------------|-----------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|
| Control   | 94.8                                           | 256                      | 1               |                                               |                                                       |                                        |                                        |
| CR1       | 77.0                                           | 208                      |                 | 1                                             |                                                       |                                        |                                        |
| CARR02    | 67.6                                           | 173                      |                 |                                               |                                                       |                                        |                                        |
| CL-BA-1   | 74.3                                           | 190                      | CR1             | No                                            | 7                                                     | No                                     | No                                     |
| CL-BA-2   | 80.1                                           | 219                      | CARR02          | No                                            | -18                                                   | No                                     | No                                     |
| CL-BA-3   | 56.4                                           | 144                      | CARR02          | Yes                                           | 11                                                    | No                                     | No                                     |
| CL-BA-4   | 69.2                                           | 177                      | CARR02          | No                                            | -2                                                    | No                                     | No                                     |
| CL-BA-5   | 60.6                                           | 155                      | CARR02          | Yes                                           | 7                                                     | No                                     | No                                     |

¹ Control data is normalized to the stocking density; reference and project treatments are normalized to the control

 $<sup>^2</sup>$  SCO: Statistical Significance and (N<sub>R</sub>-N<sub>T</sub>)/N<sub>C</sub> > 0.15

 $<sup>^3</sup>$  CSL: Statistical Significance and  $(N_R-N_T)/N_C > 0.30$ 

N<sub>T</sub> =Treatment Mean Number Normal

N<sub>R</sub> =Reference Mean Number Normal

Larval test treatments fail the DMMP 2-Hit criteria if the percentage of normal larvae (normalized to control) in the test treatment is less than 80% and is significantly lower ( $p \le 0.1$ ) than that of the reference. Treatments fail the 1-Hit criteria when the 2-Hit criteria are met and the normalized larval development in the reference minus the normalized larval development in the test treatment is greater than 30%.

Samples CL-BA-3 and CL-BA-5 fail the 2-Hit criteria for larval development (Table 4-6).

Table 4-21. DMMP Comparison for Mytilus galloprovincialis.

| Treatment | Mean<br>Normal<br>Survival<br>(%) <sup>1</sup> | Mean<br>Number<br>Normal | N₁/Nc<br>⊲80%? | Statistically<br>Less than<br>Reference? | Normal Survival Companison to Reference (Nr/Nc-Nr/Nc[%]) | Fails<br>2-Hit<br>Rule? <sup>2</sup> | Fails 1-<br>Hit<br>Rule? <sup>3</sup> |
|-----------|------------------------------------------------|--------------------------|----------------|------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------|
| Control   | 94.8                                           | 256                      |                |                                          |                                                          |                                      |                                       |
| CR1       | 77.0                                           | 208                      |                |                                          |                                                          |                                      |                                       |
| CARR02    | 67.6                                           | 173                      |                |                                          |                                                          |                                      |                                       |
| CL-BA-1   | 74.3                                           | 190                      | 74.3%;Yes      | CR1; No                                  | 7.1                                                      | No                                   | No                                    |
| CL-BA-2   | 80.1                                           | 219                      | 85.5%;No       | CARR02;No                                | -17.9                                                    | No                                   | No                                    |
| CL-BA-3   | 56.4                                           | 144                      | 56.4%;Yes      | CARR02;Yes                               | 11.2                                                     | Yes                                  | , No                                  |
| CL-BA-4   | 69.2                                           | 177                      | 69.2%;Yes      | CARR02;No                                | -1.6                                                     | No                                   | No                                    |
| CL-BA-5   | 60.6                                           | 155                      | 60.6%Yes       | CARR02;Yes                               | 6.7                                                      | Yes                                  | No                                    |

<sup>&</sup>lt;sup>1</sup> Control data is normalized to the stocking density; reference and project treatments are normalized to the control

 $<sup>^2</sup>$  2-Hit Criteria:  $N_T/N_C$  <80% and Statistical Significance ( $N_T$  vs  $N_R$ )

 $<sup>^3</sup>$  1-Hit Criteria:  $N_T/N_C$  <80% and Statistical Significance (N  $_T$  vs  $N_R)$  and  $N_R/N_C$  –  $N_T/N_C$  >30%

 $N_T$  = Treatment Mean Number Normal  $N_R$  = Reference Mean Number Normal

#### 5 SUMMARY

A summary of the biological tests conducted on the Cornwal Avenue Site sediments evaluated under both the SMS sediment quality criteria (Table 5-1) and DMMP suitability (Table 5-2) are provided below.

All project samples pass the SCO and CSL performance criteria for all tests performed on the Cornwall Avenue Site sediments (Table 5-1).

Two samples exceeded the 2-Hit criteria for larval test performance under the DMMP program; however, the lack of additional 2-Hit failures for the other two PSEP bioassays suggest that the samples pass the DDMP criteria for acceptable disposal.

Table 5-22. Summary of SMS Evaluation.

| Treatment   | Sedimer  | it Cleanup Obj | ectives | Cleanup Screening Levels |            |        |  |  |
|-------------|----------|----------------|---------|--------------------------|------------|--------|--|--|
| I realthent | Amphipod | Polychaete     | Larval  | Amphipod                 | Polychaete | Larval |  |  |
| CL-BA-1     | Pass     | Pass           | Pass    | Pass                     | Pass       | Pass   |  |  |
| CL-BA-2     | Pass     | Pass           | Pass    | Pass                     | Pass       | Pass   |  |  |
| CL-BA-3     | Pass     | Pass           | Pass    | Pass                     | Pass       | Pass   |  |  |
| CL-BA-4     | Pass     | Pass           | Pass    | Pass                     | Pass       | Pass   |  |  |
| CL-BA-5     | Pass     | Pass           | Pass    | Pass                     | Pass       | Pass   |  |  |

Table 5-23. Summary of DMMP Evaluation.

| Tunning   |          | 2-Hit      |        |          | Overall    |        |               |  |
|-----------|----------|------------|--------|----------|------------|--------|---------------|--|
| Treatment | Amphipod | Polychaete | Larval | Amphipod | Polychaete | Larval | Determination |  |
| CL-BA-1   | Pass     | Pass       | Pass   | Pass     | Pass       | Pass   | Pass          |  |
| CL-BA-2   | Pass     | Pass       | Pass   | Pass     | Pass       | Pass   | Pass          |  |
| CL-BA-3   | Pass     | Pass       | Fail   | Pass     | Pass       | Pass   | Pass          |  |
| CL-BA-4   | Pass     | Pass       | Pass   | Pass     | Pass       | Pass   | Pass          |  |
| CL-BA-5   | Pass     | Pass       | Fail   | Pass     | Pass       | Pass   | Pass          |  |

#### 6 REFERENCES

- CETIS. 2012. CETIS™ Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- Lee, D.R. 1980. Reference toxicants in quality control of aquatic bioassays: Aquatic invertebrate bioassays. In Buikema AL Jr, Cairns J Jr, eds, Proceedings, 2nd Annual Symposium on Aquatic Toxicology. STP 715. American Society for Testing and Materials, Philadelphia, PA, pp 188–199.
- USEPA/USACE. 1991. Evaluation of Dredged Material Proposed for Ocean Disposal Testing Manual (Green Book). EPA-503/8-91-001. February 1991.
- USEPA/USACE. 1992. Guidance for Performing Tests on Dredged Material Proposed for Ocean Disposal. U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers, New York Division. New York, New York. December 1992.
- USEPA/USACE. 1994. Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods. EPA 600/R-94/025. June 1994.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Testing Manual. EPA 823-B-98-004. February 1998.

## **Eelgrass and Habitat Report**

### PORT OF BELLINGHAM

### CORNWALL AVENUE LANDFILL SITE: EELGRASS AND SHORELINE HABITAT SURVEY

#### PREPARED FOR:

LANDAU ASSOCIATES 130 2ND AVENUE SOUTH EDMONDS, WA 98020 (425) 778-0907

#### PREPARED BY:

GRETTE ASSOCIATES<sup>LLC</sup>
151 SOUTH WORTHEN, SUITE 101
WENATCHEE, WASHINGTON 98801
(509) 663-6300

2102 North  $30^{TH}$ , Suite A Tacoma, Washington 98403 (253) 573-9300

November 2015



#### TABLE OF CONTENTS

| 1  | INTRODUCTION                     |                                                                                         | 1               |
|----|----------------------------------|-----------------------------------------------------------------------------------------|-----------------|
| 2  | Eelgrass and Macroalgae Su       | urvey                                                                                   | 3               |
|    | 2.1 Introduction                 |                                                                                         | 3               |
|    |                                  |                                                                                         |                 |
|    | 2.3 RESULTS                      |                                                                                         | 6               |
| 3  | Shoreline Habitat Survey         |                                                                                         | 13              |
|    | 3.1 Methods                      |                                                                                         | 13              |
|    | 3.2 Results                      |                                                                                         |                 |
| Fi | Goure 1. Vicinity man (images    | LIST OF FIGURES  © Google 2015)                                                         | 2               |
|    |                                  | ect locations                                                                           |                 |
|    | Figure 3. Delineated eelgrass ha | abitat and shoreline features (eelgrass areas                                           | are labeled for |
|    | purposes of discussion           | n); Grette Associates 2015                                                              | 12              |
|    |                                  | LIST OF TABLES                                                                          |                 |
|    | •                                | elgrass (turions/m²) Along Survey Transects<br>Encountered at the Cornwall Avenue Landf |                 |

#### LIST OF PHOTOGRAPHS

Photograph 1. Flat upland terrace with weedy grasses and forbs growing along shoreline berm with a stormwater ditch immediately landward. Consistent along entire shoreline.

Photograph 2. Flat upland terrace with weedy grasses and forbs growing along shoreline berm with a stormwater ditch immediately landward. Consistent along entire shoreline.

Photograph 3. Vegetated berm immediately landward of the MHHW dominated by upland weedy species. Vegetated berm transitions quickly into the shoreline dominated by concrete debris.

Photograph 4. Weedy grasses and forbs and extensive coverage of angular concrete between the upland and the MHHW in the southern portion of the Site.

Photograph 5. Steep transition from upland to MHHW, with dense stand of Himalayan blackberry within the middle of the Site.

Photograph 6. Weedy grasses and forbs and extensive coverage of angular concrete between the upland and the MHHW along the southern extent of the Site.

Photograph 7. Steep transition from the upland to the MHHW, with dense stands of Himalayan blackberry and extensive coverage of angular concrete

Photograph 8. Extensive coverage of angular concrete below the MHHW within the middle of the Site.

Photograph 9. Extensive coverage of angular concrete below the MHHW within the middle of the Site.

Photograph 10. Increasing amounts of cobble and gravel in the substrates along the nearshore margin in the southern portion of the Site.

Photograph 11. Increasing amounts of cobble and gravel in the substrates along the nearshore margin in the northern portion of the Site.

Photograph 12. Glass and debris amongst cobble and gravel along the nearshore margin in the northern portion of the Site.

#### **APPENDICES**

Appendix A: Eelgrass Survey Data Sheets

#### 1 INTRODUCTION

The Cornwall Avenue Landfill Site (Site) is located along the waterfront of the City of Bellingham between Boulevard Park and the former Georgia Pacific pulp mill (Figure 1). The Site is approximately 16.5 acres (13 acres upland and 3.5 acres aquatic) and was historically utilized for sawmill operations, log storage, warehousing, and as a municipal solid waste landfill. The current configuration of the Site (uplands and aquatic acreage) was significantly modified between 1950-1965, when approximately 10 acres of aquatic habitat was filled during the Sites use for a municipal waste disposal. The landfill was covered with a non-engineered soil cover and over the years the refuse has impacted site soils, groundwater, and sediments with hazardous substances.

In 2014, the Washington Department of Ecology (Ecology) entered into a Consent Decree with the Port of Bellingham (Port), the City of Bellingham (City), and the Washington State Department of Natural Resources (DNR) for the Site final cleanup action. The final cleanup action addresses the upland and shoreline/aquatic portions of the Site in order to protect human health and the environment from hazardous substances on the Site. Cleanup activities will include the placement of an low permeability cap on the upland portion of the Site to prevent rain and other water from passing through the landfill waste and leaching chemicals into Bellingham Bay, installing a shoreline protection system in the aquatic portion of the Site to prevent further erosion of solid waste from eroding into Bellingham Bay, and a thin layer cap in the deeper subtidal portion of the Site to accelerate natural recovery of sediment quality. Following the cleanup, a waterfront park will be developed on the Site that will offer recreation, waterfront access, and enhanced wildlife habitat.

In support of this cleanup action, Grette Associates was contracted by Landau Associates to conduct a habitat survey of the Site to assess the existing aquatic and shoreline habitat conditions. The aquatic survey was focused on surveying for the presence of eelgrass (*Zostera marina*), macroalgae, substrates, and debris. The shoreline survey focused on the existing habitat conditions (primarily vegetation, slopes, and substrates) present between the aquatic and upland portions of the site. The existing habitat conditions will provide baseline environmental conditions and will be utilized to assist with the design and permitting of the cleanup action.

This Report has been prepared to describe the monitoring activities and the results of the habitat survey conducted at the Cornwall Avenue Landfill Site as part of the pre-design for the Cornwall Avenue Landfill Cleanup. The information within this report will update and expand on previously collected information and will provide the level of detail required to support remedial design and permitting.

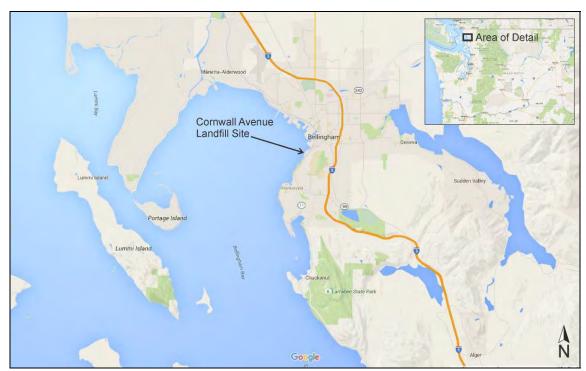



Figure 1. Vicinity map (images © Google 2015)

#### 2 EELGRASS AND MACROALGAE SURVEY

#### 2.1 Introduction

Due to the fact that this project will occur within the intertidal and shallow sub-tidal environments and in an area where eelgrass is known to occur, an eelgrass survey was required. The survey will assist in the design of the proposed project and will help minimize and estimate the potential impacts of the project on the eelgrass habitat. The eelgrass survey was designed to assess the areal coverage of eelgrass, estimate the total number of turions present on the site, delineate the edges of eelgrass habitat, and collect information on macroalgae, debris, and substrates.

#### 2.2 METHODS

Since eelgrass was known to occur on the Site, the survey methodology was based on the WDFW Preliminary/Intermediate Eelgrass/Macroalgae Habitat Survey Guidelines. The proposed eelgrass survey applied a combination of the two guidelines and was consistent with modifications previously approved by WDFW. As part of the survey the entire approximately 1,750 lineal feet of the Site shoreline was surveyed. Prior to the field effort, approximately 44 transects were established extending roughly perpendicular to the mean higher high water (MHHW) elevation at the shoreline. The transects were spaced about 40 ft apart (except four transects that were located at a shared origin; 31a-d) and extended from the MHHW out to a depth greater than -15 ft MHHW (Figure 2). Based on previous eelgrass delineations at the Site and adjacent to the Site, eelgrass is not expected to occur below -15 ft MHHW and as a result the transects were each approximately 300 ft in length. Each transect was defined by anchoring a 300-ft fiberglass tape measure at the MHHW and extending it out 300 ft perpendicular to shore. Transect start points were marked using a differential global positioning system (dGPS); individual sampling points and transect end points were not marked. Along each transect, the presence of eelgrass was recorded and flagged for later surveying. The edge was either flagged by diver deploying a buoy for the tender boat to survey in using dGPS or was surveyed in by walking the eelgrass boundary during low tide. For all eelgrass encountered along the transects, the entire edge of the eelgrass bed was completely surveyed. The delineation mapped the entire extent of eelgrass on the Site.

Along each transect, sampling occurred at the MHHW (0 ft) and at 20-ft increments out to 300 ft (for a total of 16 sampling locations per transect). At each sampling point, three plots were sampled every 20 ft for eelgrass presence and density. When low tide allowed, a portion of the sampling was conducted on foot; all inundated portions of the transects were surveyed by divers. Relative to the transect line, turion density were measured by placing a 0.25 m² quadrat at the 2, 6 and 10 o'clock position relative to north. The number of turions within the quadrat while in each of the three positions was recorded, noting the general condition, approximate blade length and presence of reproductive turions. Each measurement represented the total eelgrass turion counts within the quadrat. These samples were then converted to turion density per m² by multiplying each count by four. An average density for each sampling location was calculated by adding

the three densities and dividing by three. Total turion count was determined by multiplying average density (within the eelgrass beds) by total area (acres) of eelgrass.

In addition to the presence of eelgrass, the survey also collected information on the existing substrates, debris, and macroalgae presence and coverage. This information was collected in detail within the sample plots (20 ft spacing along transects) as well as general notes were collected along the entire transects.

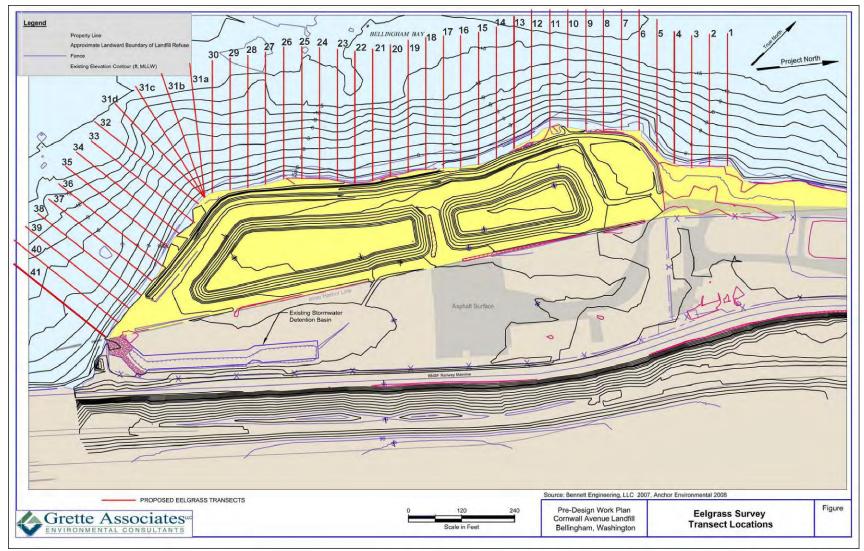



Figure 2. Eelgrass survey transect locations

#### 2.3 RESULTS

The eelgrass survey was conducted between June 29 and July 1, 2015, which was within the WDFW recommended survey window. Based on sampling, eelgrass presence along the shoreline was extremely variable and limited to a narrow strip of elevations (approximately -1 ft and -9 ft MHHW). Eelgrass was observed along 29 of the 44 transects (Table 1) and was separated into four (4) distinct areas based on substrates, densities, areal coverage, and habitat conditions (Figure 3). The delineation resulted in a total of approximately 59,850 sq ft (1.4 acres) of eelgrass habitat within the proposed limits of the study area shown on Figure 3. Average eelgrass densities along the transects ranged from 15 to 176 turions per m², with an overall average density of 52 turions per m² for the Site. In general, sea lettuce and rockweed were the dominant species present in the nearshore zone, with coverage ranging between 5 and 25 percent. In deeper waters Turkish towel, sea lettuce, gracilaria, sargassum, and laminaria spp., were common, with coverage generally less than 20 percent. A complete list of macroalgae species encountered during the Site survey is included in Table 3. Field data sheets are provided in Appendix A.

As stated above, the eelgrass habitat on the Site was divided up into four (4) distinct areas (A, B, C, and D) based on eelgrass coverage and habitat conditions. Area A is located at the northern portion of the Site and encompasses approximately 250 linear feet of shoreline. Eelgrass is present within a narrow band from approximately -2 ft to -8 ft MHHW. This eelgrass is connected to a larger bed that continues to the north of the Site (outside of the project footprint). Within Area A there is approximately 9,750 sq ft of eelgrass habitat. Average turion densities along the transects ranged from 24 to 60 turions per m² with an average density of 44 turions per m². Overall, the estimated number of turions within Area A is approximately 39,820. Eelgrass within this area was in good condition and turion lengths ranged from 4 to 6 ft tall. Few reproductive shoots were observed within this area.

Substrates from approximately 0 ft MHHW to the landward edge of the eelgrass bed within Area A consists of bricks, cobble, and gravel, while substrates within the eelgrass bed were dominated by silt and coarse sand. The majority of the eelgrass was devoid of debris (woody, glass, or concrete); less than 10 percent. Substrates above 0 ft MHHW is discussed in Section 3. Waterward of the eelgrass beds the substrates were dominated by silt; however, towards the waterward edge of the eelgrass wood debris was observed. Woody debris observed included old pile, cut logs (large and small), and bark (large and small pieces). The larger woody debris was located at the surface while the small bark was present up to 6 inches below the surface. Overall the wood debris was observed to a distance of approximately 180 to 220 ft waterward of the MHHW. Debris coverage within this area was less 40 percent. Beyond that distance substrates were dominated by silt with little if any debris or vegetation (likely due to the soft substrates and extremely high turbidity; less than 2 ft visibility).

Macroalgae presence and coverage varied significantly within the eelgrass bed in Area A. The majority of the eelgrass bed was devoid of macroalgae, which is likely due to the lack of hard surfaces. Macroalgae present within the eelgrass beds was dominated

sargassum (Sargassum spp), seagrass laver (Smithora naiadum), and sea lettuce (Ulva lactuca) and coverage was less than 25 percent in all areas, with many areas less than 10 percent. No macroalgae was observed waterward of the eelgrass beds. Landward of the eelgrass bed sea lettuce and rockweed (Fucus gardneri) were the only macrolagae present. Macroalgae coverage landward of the eelgrass beds was sparse and the maximum coverage was 25 percent from the edge of the eelgrass bed to MHWW.

Area B is located at the south of Area A and encompasses approximately 730 linear feet of shoreline. The majority of the area consists of sparse eelgrass patches between -2 and -6 ft MHHW. A total of 22 eelgrass patches were observed within this area and the distance between patches is too far for the beds to be functioning as a single larger bed. Of the 22 patches only 5 of them were located along the survey transects. However, due to low tides and excellent visibility the eelgrass patches between the transects were easily observed and delineated. Within Area B there is approximately 2,520 sq ft of eelgrass habitat. Average turion densities along the transects ranged from 21 to 176 turions per m<sup>2</sup> with an average density of 61 turions per m<sup>2</sup>. This average density is somewhat misrepresentative of the eelgrass within this area due to the fact that the average density is driven by the one sample plot with a high turion count (176 turions per m<sup>2</sup>). Densities were also recorded for each of the eelgrass patches located between the patches along the transects. Densities within these patches were similar to the densities along the transects (except for the 176 turions) and ranged between 18 to 65 turions per m<sup>2</sup>. Overall, the conservative estimate for the number of turions within Area B is approximately 14,274 (based on the conservative 61 turions per m<sup>2</sup>). Eelgrass within this area was in good condition and turion lengths ranged from 4-6 ft tall. Few reproductive shoots were observed within this area.

Substrates from approximately 0 ft MHHW to the landward edge of the eelgrass bed within Area B consists of bricks, concrete rubble (large and small) cobble, and gravel (up to 0 ft MHHW) while substrates within the eelgrass bed was dominated by coarse sand, silt, and cobble. The majority of the eelgrass patches were devoid of debris (woody, glass, or concrete); however towards the waterward edge of the eelgrass wood debris became more prevalent (between 100-140 ft from the MHHW). Substrates above 0 ft MHHW will be discussed in Section 3. Waterward of the eelgrass beds the substrates were dominated by silt and debris (wood, glass, and porcelain). Wood debris waterward of the eelgrass consisted of both cut logs (large and small) and bark (large and small pieces). As with Area A, the larger woody debris was located at the surface while the small bark was present up to 6 inches below the surface. Woody debris extended out to 300 ft on some of the transects (low coverage  $\sim$ 5%); however, the heavier wood debris (15-20 percent coverage) terminated between 220 to 260 ft waterward of the MHHW. In addition to the woody debris, there was a high coverage of other debris (metal, glass, and porcelain) between 80 to 160 ft waterward of the MHHW in the majority of the area. The presence of debris waterward of the eelgrass patches has no impact on the presence of eelgrass due to the soft substrates and poor visibility.

Macroalgae presence and coverage varied significantly within the eelgrass bed. The majority of the eelgrass bed was devoid of macroalgae (average coverage less than 35 percent); however, within some of the patches macroalgae coverage was approximately

75 percent. Macroalgae within the eelgrass patches was dominated by sea lettuce. Other species present consisted of sargassum, laminaria, Turkish towel (*Chondracanthus exasperates*) and Gracilaria (*Gracilaria* spp). Macroalgae was observed to approximately 80 to 140 ft waterward of the MHHW. In areas devoid of eelgrass, macroalgae covered approximately 40-50 percent of the area between approximately -2 ft to approximately -8 ft below the MHHW, with the dominant species being ulva. Macrolagae landward of approximately -2 ft MHHW (all the way to the MHHW) was dominated by ulva and fucus and coverage was between 20-25 percent.

Area C is located south of Area B and encompasses approximately 330 linear feet of shoreline. Eelgrass is present within a band from approximately -2 ft to -8 ft MHHW. Eelgrass within this area consists of a large bed and several smaller patches in the southern portion of the area. The eelgrass bed is approximately 65 feet wide at the southern end and gradually tapers down to 0 ft wide at the northern end of the area. Additionally, there are several smaller patches to the south of this large bed. Within Area C there is approximately 8,800 sq ft of eelgrass habitat. Average turion densities along the transects ranged from 15 to 105 turions per m<sup>2</sup> with an average density of 46 turions per m<sup>2</sup>. Overall, the estimated number of turions within Area C is approximately 37,582. Eelgrass within this area was in good conditions and turion lengths ranged from 4 to 6 ft tall. Few reproductive shoots were observed within this area.

Substrates from approximately 0 ft MHHW to the landward edge of the eelgrass bed within Area C consists of concrete debris (large), cobble, and boulder (up to -1 to 0 ft MHHW) while substrates within the eelgrass bed was dominated by coarse sand and cobble. The majority of the eelgrass was devoid of debris (woody, glass, or concrete). Substrates above 0 ft MHHW will be discussed in Section 3. Waterward of the eelgrass beds the substrates were dominated by silt. However, towards the waterward edge of the eelgrass wood and glass debris was observed. Woody debris observed included old piles, cut logs (large and small), and bark (large and small pieces) and glass debris consists of bottles. Overall debris was observed from between 140 to 300 ft waterward of the MHHW with coverage ranging from 0-15 percent cover for woody debris to up to 75 percent cover by glass debris. The coverage by debris varied significantly within the area and overall coverage was less than 35 percent for the entire area.

Macroalgae presence and coverage varied significantly within the eelgrass bed. The majority of the eelgrass bed was devoid of macroalgae, which is likely due to the lack of hard surfaces. Macroalgae present within the eelgrass bed was dominated sargassum, seagrass laver, and sea lettuce with an areal coverage less than 25 percent in the majority of the areas. Macroalgae on average extended approximately 120-160 ft from the MHHW; however, in a few areas the macroalgae extended to approximately 200 ft waterward of the MHWW. In these areas the macroalgae in the deeper waters was dominated by laminaria. Macroalgae observed landward of the eelgrass bed was dominated by sea lettuce and rockweed with an average coverage less than 30 percent.

Area D is located at the southern portion of the Site and encompasses approximately 430 linear feet of shoreline. A large eelgrass bed was present along the entire shoreline. The eelgrass bed was approximately 165 ft wide at the southern edge of the property and the

bed tapers to a width of 10 ft wide at the northern end of Area D. The eelgrass bed is approximately located between elevations -1 ft to -9 ft MHHW. The eelgrass narrows at the northern portion of this area due to increased slopes, substrates, and increased energy. There is a small gap between the eelgrass bed in Areas D and C, which is large enough to consider the beds separate. Within Area D there is approximately 38,790 sq ft of eelgrass habitat. Average turion densities along the transects ranged from 45 to 75 turions per m<sup>2</sup> with an average density of 58 turions per m<sup>2</sup>. Overall, the estimated number of turions within Area D is approximately 208,974. Eelgrass within this area was in good conditions and turion lengths ranged from 4 to 6 ft tall. Numerous reproductive shoots were observed within this area.

Substrates from approximately 0 ft MHHW to the landward edge of the eelgrass bed within Area D consists of coarse sand and gravel that gradually transition into boulders and angular concrete (landward of 0 ft MHHW). Within the eelgrass bed the substrates transition from coarse sand and silt to silt with coarse sand at approximately -5 ft MHHW. The majority of the eelgrass was devoid of debris (woody, glass, or concrete); however, woody debris (logs) that was present appeared to be random and not associated with the historic use of the property. Within this area only sparse woody debris was observed. The level of concrete debris within the eelgrass elevations increased towards the northern portion of this area, along with the presence of glass and porcelain. Immediately waterward of 0 ft MHHW, substrates are dominated by coarse sand with some gravel and cobble and the substrates above 0 ft MHHW will be discussed in Section 3. Waterward of the eelgrass beds the substrates were dominated by silt.

Macroalgae presence and coverage varied significantly within the eelgrass bed. In the entire southern portion of the area, macroalgae was absent from the eelgrass bed and waterward of the eelgrass bed. Macroalgae was present landward of the eelgrass bed, but it was primarily limited to below ~+4 ft MHHW. Macroalgae landward of the eelgrass bed was dominated by sea lettuce and rockweed with coverages that ranged from 10 to 75 percent. Macroalgae presence increased at the upper elevations where rockweed was the dominant species (maximum of 20 percent coverage). Along the most northern transect of this area the coverage by macroalgae species increased significantly. This appeared to be in response to an increase in substrate size. The majority of the macroalgae was anchored to the existing concrete debris. Macroalgae present within this area (from ~+4 ft to -9 ft MHHW was dominated by sea lettuce, gracilaria, and sargassum. Macroalgae coverage ranged between 10-50 percent.

Overall, the survey indicated that approximately 59,850 sq ft of eelgrass was present within the Site. Based on an average turion density of 52 turions per m<sup>2</sup>, it is estimated that the Site contains approximately 300,650 turions. Sampling documented a mix of man-made debris and natural substrates across the Site. Within the nearshore environment (0 to 100 feet from the MHHW), concrete rubble and debris were present on top of sand, gravel, and cobble. Pile stubs, wood waste, glass, metal, ceramic, and other debris were also common throughout this area. From 100 to 140 feet from the MHHW, substrates were predominated by sand and gravel with reduced amounts of rubble and debris. Beyond 140 feet from the MHHW, substrates were nearly 100 percent silt across the Site.

Table 1. Average Density of Eelgrass (turions/m<sup>2</sup>) Along Survey Transects

| Table 1. A | ivera | ge Dei | isity of | Leigi | ass (tu |     |     |     |     |     |     | HW (ft) |     |     |     |     |         |
|------------|-------|--------|----------|-------|---------|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|---------|
| Transect   | 0     | 20     | 40       | 60    | 80      | 100 | 120 | 140 | 160 | 180 | 200 | 220     | 240 | 260 | 280 | 300 | Average |
| 1          |       |        |          | 29    | 137     | 81  | 36  | 17  |     |     |     |         |     |     |     |     | 60      |
| 2          |       |        |          |       |         | 59  | 57  | 39  | 31  |     |     |         |     |     |     |     | 46      |
| 3          |       |        |          |       |         |     |     | 68  | 25  |     |     |         |     |     |     |     | 47      |
| 4          |       |        |          |       |         |     | 43  | 39  | 15  |     |     |         |     |     |     |     | 32      |
| 5          |       |        |          |       |         |     | 27  | 21  |     |     |     |         |     |     |     |     | 24      |
| 6          |       |        |          |       | 59      | 53  |     |     |     |     |     |         |     |     |     |     | 56      |
| 7          |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 8          |       |        |          |       |         | 24  |     |     |     |     |     |         |     |     |     |     | 24      |
| 9          |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 10         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 11         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 12         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 13         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 14         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 15         |       |        |          |       | 176     |     |     |     |     |     |     |         |     |     |     |     | 176     |
| 16         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 17         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 18         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 19         |       |        |          |       |         |     | 21  |     |     |     |     |         |     |     |     |     | 21      |
| 20         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 21         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 22         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 23         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 24         |       |        |          |       |         | 32  |     |     |     |     |     |         |     |     |     |     | 32      |
| 25         |       |        |          |       |         | 52  |     |     |     |     |     |         |     |     |     |     | 52      |
| 26         |       |        |          |       |         |     |     |     |     |     |     |         |     |     |     |     |         |
| 27         |       |        |          |       | 19      | 97  |     |     |     |     |     |         |     |     |     |     | 58      |
| 28         |       |        |          |       |         | 52  |     |     |     |     |     |         |     |     |     |     | 52      |
| 29         |       |        |          |       | 104     | 105 | 1   | 3   |     |     |     |         |     |     |     |     | 105     |
| 30         |       |        |          |       | 76      | 85  | 32  |     |     |     |     |         |     |     |     |     | 24      |
| 31a        |       |        |          |       |         |     |     | 43  |     |     |     |         |     |     |     |     | 43      |
| 31b        |       |        |          |       |         | 9   | 20  |     |     |     |     |         |     |     |     |     | 15      |
| 31c        |       |        |          |       |         | 3   | 37  |     | 19  |     |     |         |     |     |     |     | 15      |

|          |                                     |    |    |     |     |     | Appro | ximate | Dista | nce fro | m MH | HW (ft) |     |     |     |     |         |
|----------|-------------------------------------|----|----|-----|-----|-----|-------|--------|-------|---------|------|---------|-----|-----|-----|-----|---------|
| Transect | 0                                   | 20 | 40 | 60  | 80  | 100 | 120   | 140    | 160   | 180     | 200  | 220     | 240 | 260 | 280 | 300 | Average |
| 31d      |                                     |    |    |     | 9   | 120 | 55    | 41     |       |         |      |         |     |     |     |     | 56      |
| 32       |                                     |    |    |     |     | 80  | 37    |        |       |         |      |         |     |     |     |     | 59      |
| 33       |                                     |    |    |     |     | 1   | 77    | 45     |       |         |      |         |     |     |     |     | 61      |
| 34       |                                     |    |    |     |     | 88  | 85    | 61     | 64    | 4       |      |         |     |     |     |     | 75      |
| 35       |                                     |    |    |     | 1   | 60  | 43    | 7      |       |         |      |         |     |     |     |     | 51      |
| 36       |                                     |    |    |     | 92  | 79  | 39    | 17     |       |         |      |         |     |     |     |     | 57      |
| 37       |                                     |    |    | 4   | 59  | 81  | 63    | 47     | 55    | 25      |      |         |     |     |     |     | 55      |
| 38       |                                     |    |    |     |     | 69  | 43    | 87     | 27    | 27      | 16   | 5       |     |     |     |     | 45      |
| 39       |                                     |    |    | 4   | 49  | 80  | 100   | 31     | 28    | 37      | 37   |         |     |     |     |     | 52      |
| 40       |                                     |    |    | 112 | 93  | 93  | 13    | 56     | 57    | 55      | 8    |         |     |     |     |     | 69      |
| 41       |                                     |    |    | 61  | 144 | 56  | 39    | 17     | 67    | 32      | 28   |         |     |     |     |     | 56      |
|          | Average Turion Density for the Site |    |    |     |     |     |       |        |       |         | 52   |         |     |     |     |     |         |

Note: blank cells indicate that no eelgrass was present

Table 2. Common Macroalgae Encountered at the Cornwall Avenue Landfill Site

| Species                    | Common Name             |
|----------------------------|-------------------------|
| Chondracanthus exasperatus | Turkish Towel           |
| Fucus gardneri             | Rockweed                |
| Gracilaria spp.            | Gracilaria              |
| Laminaria spp.             | Laminaria               |
| Sargassum spp.             | Sargassum               |
| Smithora naiadum           | Seagrass Laver          |
| Cladophora sericea         | Filamentous Green Algae |
| Ulva lactuca               | Sea Lettuce             |
| Ceramium spp.              | Ceramium                |
| Mazzaella splendens        | Iridescent seaweed      |

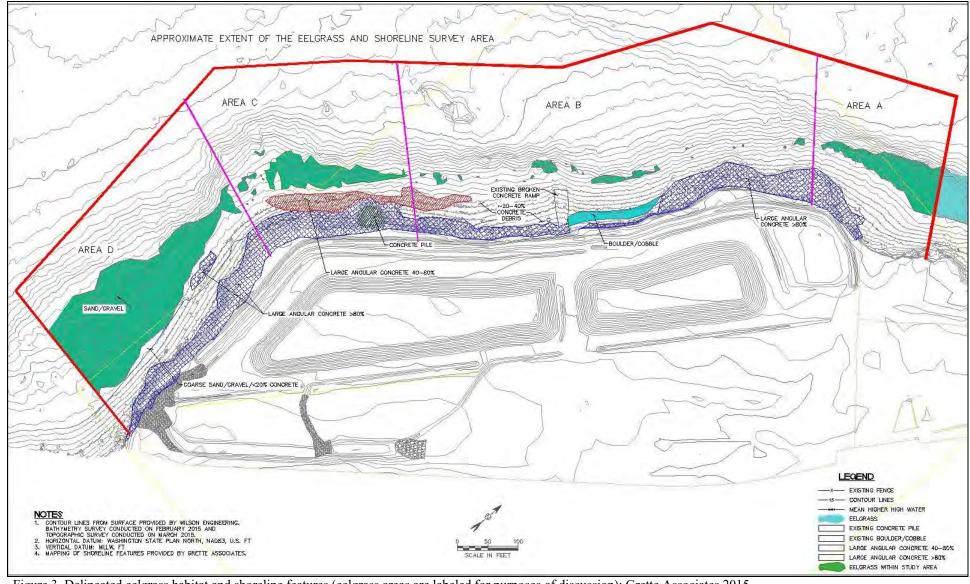



Figure 3. Delineated eelgrass habitat and shoreline features (eelgrass areas are labeled for purposes of discussion); Grette Associates 2015.

#### 3 SHORELINE HABITAT SURVEY

#### 3.1 METHODS

Grette Associates also conducted a shoreline survey to assess the existing habitat conditions the functions along the entire Cornwall shoreline. The survey focused on the existing substrates, debris, vegetation, and slopes. This survey consisted of biologists walking the shoreline, noting habitat structures, substrate and vegetation. For the purpose of recording and reporting, the shoreline was separated into sections with similar habitat attributes. Biologists collected qualitative data documenting the distribution of vegetation along each section of shoreline. Substrate characteristics, along with any other significant habitat features, were also qualitatively documented. The existing substrates and debris along the shoreline was delineated and mapped. This effort was coordinated with the eelgrass survey in order to ensure that the entire Site was surveyed.

#### 3.2 RESULTS

The shoreline survey was conducted on May 19, 2015. Shoreline features are shown in Figure 3 above. The topography of the Site is generally consistent throughout, with a flat upland terrace that transitions abruptly to a steeply-sloped embankment leading down to the MHHW. A berm and a storm water ditch are present surrounding the edge of the upland terrace. The area landward of the MHHW is vegetated primarily by weedy grasses and forbs, and includes dense stands of Himalayan blackberry. Below the MHHW, the shoreline slopes moderately waterward. This area is covered with man-made materials, generally large, angular concrete that transition to more natural substrates around +2 ft MHHW (large angular concrete to boulders, cobble, gravel, and sand). Substantial amounts of debris, including glass, brick, metal, and wood waste are also present within this zone.

The upland and shoreline habitats present on the Site are extremely similar and provide little variability. The upland portions of the Site have been significantly altered as part of the historic use and the initial cleanup actions on the Site. The majority of the upland is flat with little vegetation. There are two large stockpiles of material covered with plastic liner over them. The Site has been graded and stormwater ditches have been constructed to control storm water runoff from the Site. The majority of the upland is unvegetated. The entire upland portion of the Site is surrounded by an earthen berm with a 2H:1V slope on the landward side and a storm water ditch. The entire berm (landward, top and waterward sides) is vegetated by upland grasses and weedy species (dominated by blackberry and thistle). There are no native trees or shrubs on the Site. The slope of the waterward side of the berm is variable. Along the majority of the northern portion of the Site the vegetated berm extends to a nearly vertical slope located at approximately +10 ft MHHW. The vertical slope is a result of the presence of larger boulder and concrete debris. Along the majority of the southern portion of the Site there is a narrow flat area located immediately waterward of the berm. Waterward of this flat the shoreline is steeply sloped and consists of concrete debris (large angular concrete, concrete pile, etc.).

Overall, the shoreline waterward of the berm is characterized by a heavily armored shoreline, which is present above the MHHW and extends waterward below the MHHW. Armoring consists of large concrete debris (primarily angular and variable in size) or boulders. These larger substrates extend from above the MHHW down to between +6 ft to +2 ft MHHW. The exceptions to this are an approximately 175-ft long swath north of the existing concrete ramp and the northern 125 ft on the survey area. Within these areas there is a steep shoreline bank (consists of either fine substrates or boulder/concrete); however, these substrates only extend to approximately 10 ft MHHW. These are the only areas where large concrete debris and of boulders/cobbles don't dominate the shoreline.

As stated above the majority of the upper portion of the shoreline is very consistent (large substrates) and is providing little if any habitat variability. The main habitat variability on the Site occurs below these larger substrates (below approximately +6 and +2 ft MHHW) and is separated into four distinct sections. This habitat area extends down to approximately 0 ft MHHW (below this elevation habitat/substrates were described in the eelgrass section).

The first area is located in the northern portion of the survey area, which is one of the areas that do not have a heavily armored shoreline slope. This area covers approximately 140 ft of the shoreline. From the uplands, there is a nearly vertical slope to just below approximately +12 ft MHHW that consists of finer substrates. The remainder of the shoreline between approximately +12 ft and 0 ft MHHW is very uniform in slope and substrates. Substrates within this area are dominated by debris (smaller angular concrete, bricks, and glass) with small areas of gravel and cobble. Average coverage by debris is greater than 65% with some areas completely (100%) covered. Slopes within this area are gradual and range from 5-15H:1V. The coverage of the shoreline by debris starts to decrease at approximately +2 ft MHHW and then eventually tapers off to less than 5 percent around 0 ft MHHW. Macroalgae coverage within this area is sparse covering less than 20 percent of the entire area. Macroalgae is dominated by ulva and rockweed, with rockweed dominating the upper elevations.

The second area is located directly south of the first area and encompasses approximately 715 linear feet of shoreline. Again this area is located waterward of the heavily armored portion of the shoreline, which is steeply sloped and is located between approximately +8 ft and 0ft MHHW. This area is gradually sloped (between 5-15H-1V) with moderate sized substrates in the upper elevations tapering down to coarse sand and gravel at 0 ft MHHW. Substrates in the upper elevations are dominated by rounded boulder and cobble, angular concrete debris, gravel, and coarse sand. Overall coverage by debris (angular concrete, bricks, glass, metal, etc) is between 20-40 percent, with some areas nearly 100 percent). Substrates within this area are pretty uniformly distributed; however, there are smaller patches where a specific substrate type dominates nearly 100 percent of the shoreline. One example is the area dominated by rounded boulder and cobble. There are also areas dominated by debris, like the existing concrete ramp. Other features along the shoreline include large concrete boxes, cut piles, and rounded logs. Macroalgae within this area is dominated by ulva and rockweed, with rockweed dominating the upper elevations. The larger substrates provide a large number of attachment sites; however, macroalgae covers ranges between 25-50 percent, with some areas ranging up to 85 percent. Other macroalgae species present includes laminaria, iridescent seaweed, filamentous green algae, seagrass laver, sargassum, gracilaria, and turkish towel.

The third area is located directly south of the second area and encompasses approximately 400 linear feet of shoreline. Again this area is located waterward of the heavily armored portion of the shoreline, which in this area extends down to +4 ft to +2 ft MHHW. This area is the heaviest armored portion of the shoreline. Below the heavily armored portion of the shoreline, which consists of large angular concrete (slabs) and even long concrete piles, the substrates are dominated by smaller angular concrete. Concrete debris in this portion of the area extends to below 0 ft MHHW and is dominated by smaller concrete slabs. Substrates within this area are pretty uniformly distributed. Concrete debris is covering between 40-80 percent of the shoreline. The reminder of the area consists of smaller debris (brick, glass, smaller concrete), gravel and cobble. Slopes within the area below the heavily armored portion of the shoreline are approximately 5H:1V. Macroalgae within this area averages between 10 and 40 percent with an overall coverage of approximately 20 percent. As with the remainder of the shoreline the upper elevations are dominated by rockweed and ulva dominates the lower elevations. Other macroalgae species present includes laminaria, filamentous green algae, sargassum, and gracilaria.

The final area is located in the southern portion of the site and encompasses approximately 415 lineal feet of shoreline. Above approximately +6 ft MHHW, the shoreline consists of large angular concrete. Below approximately + 6 ft MHHW, down to approximately -1 ft to -2 ft MHHW, the shoreline is gradually sloped and the substrates are dominated by coarse sand, shell hash, and cobble. The slopes of the shoreline below the large steeply sloped angular concrete are approximately 8H:1V. There are sparse pieces of concrete debris and boulders; however, for the most part the substrates are dominated by smaller material. There is also a small patch of concrete debris just below 0 ft MHHW. Within this area the size of substrates and the presence of angular concrete increases from the south to the north. Macroalgae is located both within the larger substrates and within the areas with coarse sand and gravel and in both areas the species are dominated by sea lettuce and rockweed. Average macroalgae coverage within each of these areas is less than 25 percent.

# PORT OF BELLINGHAM CORNWALL AVENUE LANDFILL SITE: EELGRASS AND SHORELINE HABITAT SURVEY

**PHOTOGRAPHS** 



Photograph 3. Flat upland terrace with weedy grasses and forbs growing along shoreline berm with a stormwater ditch immediately landward. Consistent along entire shoreline.

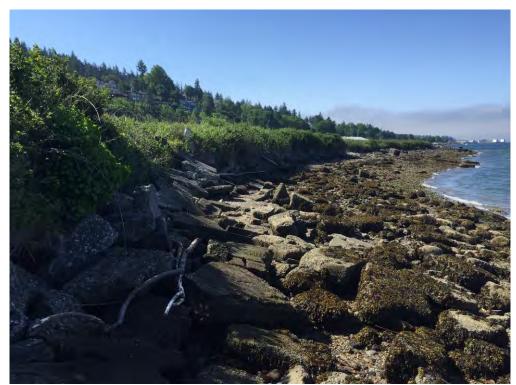


Photograph 2. Flat upland terrace with weedy grasses and forbs growing along shoreline berm with a stormwater ditch immediately landward. Consistent along entire shoreline.



Photograph 3. Vegetated berm immediately landward of the MHHW dominated by upland weedy species. Vegetated berm transitions quickly into the shoreline dominated by concrete debris.




Photograph 4. Weedy grasses and forbs and extensive coverage of angular concrete between the upland and the MHHW in the southern portion of the Site.



Photograph 5. Steep transition from upland to MHHW, with dense stand of Himalayan blackberry within the middle of the Site.



Photograph 6. Weedy grasses and forbs and extensive coverage of angular concrete between the upland and the MHHW along the southern extent of the Site.



Photograph 7. Steep transition from the upland to the MHHW, with dense stands of Himalayan blackberry and extensive coverage of angular concrete



Photograph 8. Extensive coverage of angular concrete below the MHHW within the middle of the Site.



Photograph 9. Extensive coverage of angular concrete below the MHHW within the middle of the Site.



Photograph 10. Increasing amounts of cobble and gravel in the substrates along the nearshore margin in the southern portion of the Site.



Photograph 11. Increasing amounts of cobble and gravel in the substrates along the nearshore margin in the northern portion of the Site.



Photograph 12. Glass and debris amongst cobble and gravel along the nearshore margin in the northern portion of the Site.

## PORT OF BELLINGHAM CORNWALL AVENUE LANDFILL SITE: EELGRASS AND SHORELINE HABITAT SURVEY

APPENDIX A: EELGRASS SURVEY DATA SHEETS



**Location:** Cornwall Avenue Landfill **Eelgrass and Macroalgae Survey** 

| Date: 7/1/15 | Time: | Variable | Transect: 1 |
|--------------|-------|----------|-------------|

Observer: MI Tide: Variable Datasheet: 1 of 1

| Distance | Eelgrass<br>Begin/End | 2  | 6  | 10 | Macroalgae           | Substrate  | Other             |
|----------|-----------------------|----|----|----|----------------------|------------|-------------------|
| 0        | -                     | 0  | 0  | 0  | <u>-</u>             | 6, 4       | glass, pile stubs |
| 20       | -                     | 0  | 0  | 0  | Ulva: 20%            | 6, 4, 2    | glass             |
| 40       | -                     | 0  | 0  | 0  | Ulva: 25%            | 4, 2       | glass             |
| 60       | Starts @ 60 ft        | 12 | 6  | 4  | Ulva: 10%            | 2, 4       | -                 |
| 80       |                       | 42 | 26 | 35 | Cer: 10%, Smith: 10% | 2, 4       | -                 |
| 100      |                       | 18 | 24 | 19 | Sarg: 5%, Smith: 10% | 2, 4, 6, 8 | -                 |
| 120      |                       | 13 | 9  | 5  | Smith: 30%           | 0, 2, 4, 6 | -                 |
| 140      | Ends @ 145<br>ft      | 6  | 0  | 7  | Smith: 20%           | 0, 4, 8    | -                 |
| 160      |                       | 0  | 0  | 0  | -                    | 0, 4, 8    | sea star          |
| 180      | -                     | 0  | 0  | 0  | -                    | 0, 8       | -                 |
| 200      | -                     | 0  | 0  | 0  | -                    | 0, 8       | -                 |
| 220      | -                     | 0  | 0  | 0  | -                    | 0          | -                 |
| 240      | -                     | 0  | 0  | 0  | -                    | 0          | -                 |
| 260      | -                     | 0  | 0  | 0  | -                    | 0          | -                 |
| 280      | -                     | 0  | 0  | 0  | -                    | 0          | -                 |
| 300      | -                     | 0  | 0  | 0  | -                    | 0          | -                 |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

#### Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>7/1/15</u> | Time:_ | <u>Variable</u> | Transect:_2 |
|---------------------|--------|-----------------|-------------|
|---------------------|--------|-----------------|-------------|

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | _                     | <u>Tur</u> | ion Coı | <u>unts</u> |                     |           |                                                     |
|----------|-----------------------|------------|---------|-------------|---------------------|-----------|-----------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6       | 10          | Macroalgae          | Substrate | Other                                               |
| 0        | -                     | 0          | 0       | 0           | -                   | 6, 4, 2   | pile stubs, glass                                   |
| 20       | -                     | 0          | 0       | 0           | Ulva: 5%            | 6, 4, 2   | pile stubs, glass                                   |
| 40       | -                     | 0          | 0       | 0           | Ulva: 5%            | 6, 4, 2   | glass                                               |
| 60       |                       | 0          | 0       | 0           | Ulva: 10%           | 6, 4, 2   | glass                                               |
| 80       | Starts @ 86<br>ft     | 0          | 0       | 0           | Ulva: 10%           | 4, 6, 2   | -                                                   |
| 100      |                       | 15         | 7       | 22          | Cer: 10%            | 0, 2, 4   | -                                                   |
| 120      |                       | 13         | 19      | 11          | Smith: 20%          | 0, 2, 4   | -                                                   |
| 140      |                       | 7          | 12      | 10          | Smith: 20%          | 0, 2      | -                                                   |
| 160      |                       | 7          | 11      | 5           | Lam: 5%, Smith: 20% | 0, 2      | -                                                   |
| 180      | Ends @ 164<br>ft      | 0          | 0       | 0           | -                   | 0, 8      | wood debris, large concrete anchor<br>block @181 ft |
| 200      | -                     | 0          | 0       | 0           | -                   | 0, 8      | wood debris on surface                              |
| 220      | -                     | 0          | 0       | 0           | -                   | 0         | -                                                   |
| 240      | -                     | 0          | 0       | 0           | -                   | 0         | -                                                   |
| 260      | -                     | 0          | 0       | 0           | -                   | 0         | -                                                   |
| 280      | -                     | 0          | 0       | 0           | -                   | 0         | -                                                   |
| 300      | -                     | 0          | 0       | 0           | -                   | 0         | -                                                   |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

#### Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>7/1/15</u> | Time: <u>Variable</u> | Transect: 3       |
|---------------------|-----------------------|-------------------|
| Observer: LL        | Tide: Variable        | Datasheet: 1 of 1 |

| <u>Turion Counts</u> |                       |    |    |    |            |                             | •                                                         |
|----------------------|-----------------------|----|----|----|------------|-----------------------------|-----------------------------------------------------------|
| Distance             | Eelgrass<br>Begin/End | 2  | 6  | 10 | Macroalgae | Substrate                   | Other                                                     |
| 0                    | -                     | 0  | 0  | 0  | -          | 6, 3                        | rusty metal (25%)                                         |
| 20                   | -                     | 0  | 0  | 0  | -          | pile, 5, 4, 3               | -                                                         |
| 40                   | -                     | 0  | 0  | 0  | -          | 7, 4, 3                     | -                                                         |
| 60                   | -                     | 0  | 0  | 0  | -          | 3 , 7, 6, 4                 | -                                                         |
| 80                   | -                     | 0  | 0  | 0  | Ulva: 5%   | 7, 4, 3                     | glass (10%)                                               |
| 100                  | -                     | 0  | 0  | 0  | Ulva: 10%  | 7, 4, 3<br>4, 0, 7, 8 (cut  | glass (5 %)                                               |
| 120                  | Start<br>@ 109 ft     | 0  | 0  | 0  | -          | 4, 0, 7, 8 (cut<br>pile), 1 | -                                                         |
| 140                  | -                     | 18 | 20 | 13 | -          | 0, 8 (cut pile), 1          | -                                                         |
| 160                  | End<br>@ 156 ft       | 9  | 4  | 6  | -          | 0, 8 (cut pile), 1          | -                                                         |
| 180                  | -                     | 0  | 0  | 0  | -          | 1, 0, 8                     | wood debris (bark) present within 1 - 2 inches of surface |
| 200                  | -                     | 0  | 0  | 0  | -          | 1, 0, 8                     | wood debris (bark) present within 1 - 2 inches of surface |
| 220                  | -                     | 0  | 0  | 0  | -          | 0                           | ~206 ft = end of wood debris (bark)                       |
| 240                  | -                     | 0  | 0  | 0  | -          | 0                           | -                                                         |
| 260                  | -                     | 0  | 0  | 0  | -          | 0                           |                                                           |
| 280                  | -                     | 0  | 0  | 0  | -          | 0                           | -                                                         |
| 200                  |                       | 0  | 0  | 0  |            | 0                           |                                                           |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

#### Macroalgae Key:

 $\textbf{Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Control (Laminaria (Lam)); Control (Lam)); Contro$ 

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: 7/1/15 | Time: <u>Variable</u> | Transect: 4       |
|--------------|-----------------------|-------------------|
| Observer: LL | Tide: Variable        | Datasheet: 1 of 1 |

| <u>Turion Counts</u> |                       |   |    |    |            |           | -                                                        |
|----------------------|-----------------------|---|----|----|------------|-----------|----------------------------------------------------------|
| Distance             | Eelgrass<br>Begin/End | 2 | 6  | 10 | Macroalgae | Substrate | Other                                                    |
| 0                    | -                     | 0 | 0  | 0  | -          | 2, 3      | -                                                        |
| 20                   | -                     | 0 | 0  | 0  | -          | 3, 7      | glass (10%)                                              |
| 40                   | -                     | 0 | 0  | 0  | -          | 7, 3      | glass (20%)                                              |
| 60                   | -                     | 0 | 0  | 0  | Ulva: 5%   | 7, 3      | glass (5%)                                               |
| 80                   | -                     | 0 | 0  | 0  | Ulva: 10%  | 4, 3, 7   | -                                                        |
| 100                  | -                     | 0 | 0  | 0  | Ulva: 15%  | 4, 3, 7   | -                                                        |
| 120                  | Start<br>@ 107 ft     | 7 | 14 | 11 | Ulva: 5%   | 0, 4, 8   | wood debris at surface                                   |
| 140                  |                       | 9 | 16 | 4  | -          | 0, 4, 8   | wood debris at surface                                   |
| 160                  | End @<br>155 ft       | 6 | 7  | 4  | -          | 0, 4, 8   | wood debris at surface                                   |
| 180                  | -                     | 0 | 0  | 0  | -          | 0, 8      | large wood on surface and wood debris just below surface |
| 200                  | -                     | 0 | 0  | 0  | -          | 0, 8      | wood debris [bark] (10%) mostly below inch of silt       |
| 220                  | -                     | 0 | 0  | 0  | -          | 0, 8      | wood debris on surface; ends ~226 ft                     |
| 240                  | -                     | 0 | 0  | 0  | -          | 0         | -                                                        |
| 260                  | -                     | 0 | 0  | 0  | -          | 0         | -                                                        |
| 280                  | -                     | 0 | 0  | 0  | -          | 0         | -                                                        |
| 300                  |                       | 0 | 0  | 0  |            | 0         |                                                          |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>7/1/15</u> | Time:_ | <u>Variable</u> | Transect:_ | <u>5</u> |
|---------------------|--------|-----------------|------------|----------|
|                     |        | _               |            |          |

Observer: <u>LL</u> \_\_\_ of \_\_1\_

|          |                       | <u>Tur</u> | ion Co | <u>unts</u> |            |            |                               |
|----------|-----------------------|------------|--------|-------------|------------|------------|-------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae | Substrate  | Other                         |
| 0        | -                     | 0          | 0      | 0           | -          | 6, 3, 2, 4 | -                             |
| 20       | -                     | 0          | 0      | 0           | Fucus: 10% | 3, 6, 8    | -                             |
| 40       | -                     | 0          | 0      | 0           | Fucus: 25% | 3, 6, 7    | -                             |
| 60       | -                     | 0          | 0      | 0           | -          | 3, 7       | -                             |
| 80       | -                     | 0          | 0      | 0           | Ulva: 25%  | 4, 3, 7    | -                             |
| 100      | -                     | 0          | 0      | 0           | Ulva: 25%  | 4, 3, 7, 6 | -                             |
| 120      | Start @<br>103 ft     | 6          | 12     | 8           | -          | 0, 8       | wood debris (bark) at surface |
| 140      | End<br>@ 126 ft       | 9          | 14     | 2           | -          | 0, 7, 8    | wood debris (bark) at surface |
| 160      | -                     | 0          | 0      | 0           | -          | 0, 8       | wood debris (bark) at surface |
| 180      | -                     | 0          | 0      | 0           | -          | 0, 8       | wood debris (bark) at surface |
| 200      | -                     | 0          | 0      | 0           | -          | 0, 8       | wood debris (bark) at surface |
| 220      | -                     | 0          | 0      | 0           | -          | 0, 8       | wood debris (bark) at surface |
| 240      | -                     | 0          | 0      | 0           | -          | 0          | -                             |
| 260      | -                     | 0          | 0      | 0           | -          | 0          | -                             |
| 280      | -                     | 0          | 0      | 0           | -          | 0          | -                             |
| 300      | -                     | 0          | 0      | 0           | -          | 0          | -                             |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>7/1/15</u> | Time: <u>Variable</u> | Transect: 6       | _ |
|---------------------|-----------------------|-------------------|---|
| Observer: JS        | Tide: Variable        | Datasheet: 1 of 1 |   |

|          | ,                     | <u>Tur</u> | ion Co | <u>unts</u> |              |           |               |
|----------|-----------------------|------------|--------|-------------|--------------|-----------|---------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae   | Substrate | Other         |
| 0        | -                     | 0          | 0      | 0           | -            | 6         | -             |
| 20       | -                     | 0          | 0      | 0           | Chond 15%    | 6         | old wood pile |
| 40       | -                     | 0          | 0      | 0           | Ulva: 5%     | 3, 4, 1   | -             |
| 60       | -                     | 0          | 0      | 0           | Ulva: 10%    | 2, 4      | barnacles     |
| 80       | Start<br>@ 80 ft      | 32         | 0      | 12          | -            | 2, 4      | barnacles     |
| 100      | End<br>@ 99 ft        | 40         | 0      | 0           | -            | 2, 0      | -             |
| 120      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 140      | -                     | 0          | 0      | 0           | -            | 0         | sea star      |
| 160      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 180      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 200      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 220      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 240      | -                     | 0          | 0      | 0           | -            | 0         | -             |
| 260      | -                     | 0          | 0      | 0           | <u>-</u>     | 0         | -             |
| 280      | -                     | 0          | 0      | 0           | <del>-</del> | 0         | -             |
| 300      | _                     | 0          | 0      | 0           | _            | 0         | _             |

**NOTES:** Began survey at 300 ft; swam towards shore; Transect 6 runs across the tip of eelgrass bed which extends approximately 6 ft towards Transect. Eelgrass 4 to 6 ft tall; 15 % epiphytes

#### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

#### Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>7/1/15</u> | Time: <u>Variable</u> _ | Transect: 7       |  |
|---------------------|-------------------------|-------------------|--|
| Observer: JS        | Tide: Variable          | Datasheet: 1 of 1 |  |

|          |                       | <u>Tur</u> | ion Co | unts |                   |           | -                      |
|----------|-----------------------|------------|--------|------|-------------------|-----------|------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10   | Macroalgae        | Substrate | Other                  |
| 0        | -                     | 0          | 0      | 0    | -                 | 6, 7      | -                      |
| 20       | -                     | 0          | 0      | 0    | -                 | 6, 7      | -                      |
| 40       | -                     | 0          | 0      | 0    | Ulva: 1% Chond 5% | 6, 5, 3   | mussels, barnacles     |
| 60       | -                     | 0          | 0      | 0    | Ulva: 10%         | 3, 4      | barnacles              |
| 80       | ı                     | 0          | 0      | 0    | Ulva: 1%          | 4         | barnacles              |
| 100      | ı                     | 0          | 0      | 0    | Ulva: 1%          | 0, 2, 4   | -                      |
| 120      | -                     | 0          | 0      | 0    | -                 | 0, 8      | Wood debris on surface |
| 140      | ı                     | 0          | 0      | 0    | -                 | 0,8       | Wood debris on surface |
| 160      | 1                     | 0          | 0      | 0    | -                 | 0,8       | Wood debris on surface |
| 180      | ı                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 200      | ı                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 220      | ı                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 240      | ı                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 260      | -                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 280      | ı                     | 0          | 0      | 0    | -                 | 0         | -                      |
| 300      | _                     | 0          | 0      | 0    | _                 | 0         | _                      |

NOTES: Began survey at 300 ft; swam towards shore. Eelgrass 4 to 6 ft tall; 20 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:



Date: 7/1/15 Time: Variable Transect: 8

Observer: <u>LL</u> Tide: <u>Variable</u> Datasheet: \_1\_ of \_1\_

#### **Turion Counts Eelgrass** Distance Begin/End Macroalgae Substrate Other 6, 7 6, 7 Fucus: 10% 6, 7 Ulva: 2% 2, 3 Patch Ulva: 25% 3, 4 @ 97 ft Patch @ 107-110 ft Ulva: 50% 0, 2, 4 0, 2, 4 0, 2, 4, 8 Wood debris on surface 0, 8 Wood debris on surface 0, 8 Wood debris on surface 0, 8 Wood debris on surface

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroaldae Kev



**Eelgrass and Macroalgae Survey** 

| Date: 6/29/15 | Time: <u>Variable</u> | Transect:_9       |  |
|---------------|-----------------------|-------------------|--|
| Observer: MI  | Tide: Variable        | Datasheet: 1 of 1 |  |

|          |                       | Tur | ion Co | unts |                               |           |                        |
|----------|-----------------------|-----|--------|------|-------------------------------|-----------|------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10   | Macroalgae                    | Substrate | Other                  |
| 0        | -                     | 0   | 0      | 0    | -                             | 6         |                        |
| 20       | -                     | 0   | 0      | 0    | Fucus: 10%                    | 6, 3      |                        |
| 40       | -                     | 0   | 0      | 0    | Ulva: 25%, Fucus: 10%         | 4, 3, 2   |                        |
| 60       | -                     | 0   | 0      | 0    | Ulva: 25%, Fil. Green:<br>10% | 4, 3, 2   |                        |
| 80       | -                     | 0   | 0      | 0    | Ulva: 25%                     | 2, 4      |                        |
| 100      | -                     | 0   | 0      | 0    | Lam: 10%, Ulva: 20%           | 2, 4, 8   | Wood debris on surface |
| 120      | -                     | 0   | 0      | 0    | Ulva: 20%                     | 0, 8      | Wood debris on surface |
| 140      | -                     | 0   | 0      | 0    | -                             | 0, 8      | Wood debris on surface |
| 160      | -                     | 0   | 0      | 0    | -                             | 0, 8      | Wood debris on surface |
| 180      | -                     | 0   | 0      | 0    | -                             | 0, 8      | Wood debris on surface |
| 200      | -                     | 0   | 0      | 0    | -                             | 0         |                        |
| 220      | -                     | 0   | 0      | 0    | -                             | 0         |                        |
| 240      | -                     | 0   | 0      | 0    | -                             | 0         |                        |
| 260      | 1                     | 0   | 0      | 0    | -                             | 0         |                        |
| 280      | -                     | 0   | 0      | 0    | -                             | 0         |                        |
| 300      | _                     | 0   | 0      | 0    | _                             | 0         |                        |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



**Eelgrass and Macroalgae Survey** 

| Date: 6/29/15 | Time: Variab | ole Transect: 10 |  |
|---------------|--------------|------------------|--|

Observer: <u>LL</u> \_\_\_ of \_\_1\_ of \_\_1\_

|          | -                     | Tur | ion Co | <u>unts</u> | _                         |                              |                                                      |
|----------|-----------------------|-----|--------|-------------|---------------------------|------------------------------|------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10          | Macroalgae                | Substrate                    | Other                                                |
| 0        | -                     | 0   | 0      | 0           | -                         | 6                            | -                                                    |
| 20       | -                     | 0   | 0      | 0           | Fucus: 5%                 | 6, 3                         | mussels                                              |
| 40       | -                     | 0   | 0      | 0           | Ulva: 15%, Fucus: 10%     | 2, 3, 4<br>2 (20%), 3 (40%), | barnacles                                            |
| 60       | -                     | 0   | 0      | 0           | Ulva: 25%, Fil. Green: 5% | 2 (20%), 3 (40%),<br>4 (40%) | -                                                    |
| 80       | -                     | 0   | 0      | 0           | Ulva: 10%                 | 2 (50%), 4 (50%)             | -                                                    |
| 100      | -                     | 0   | 0      | 0           | Lam: 5%, Ulva: 10%        | 2, 4 (40%)                   | -                                                    |
| 120      | -                     | 0   | 0      | 0           | -                         | 0, 8, 7                      | 117 ft begin wood debris on surface and brick debris |
| 140      | -                     | 0   | 0      | 0           | -                         | 0, 8, 7                      | 135ft end brick debris                               |
| 160      | -                     | 0   | 0      | 0           | -                         | 0, 8, 7                      | Wood debris on surface                               |
| 180      | -                     | 0   | 0      | 0           | -                         | 0, 8, 7                      | Wood debris on surface                               |
| 200      | -                     | 0   | 0      | 0           | -                         | 0                            | -                                                    |
| 220      | -                     | 0   | 0      | 0           | -                         | 0                            | -                                                    |
| 240      | -                     | 0   | 0      | 0           | -                         | 0                            | -                                                    |
| 260      | -                     | 0   | 0      | 0           |                           | 0                            |                                                      |
| 280      | -                     | 0   | 0      | 0           | -                         | 0                            | -                                                    |
| 300      | -                     | 0   | 0      | 0           | -                         | 0                            | -                                                    |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



\_\_\_\_\_\_

|          |                       | Tur | ion Co | unts | -                                |                  |                           |
|----------|-----------------------|-----|--------|------|----------------------------------|------------------|---------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10   | Macroalgae                       | Substrate        | Other                     |
| 0        | -                     | 0   | 0      | 0    | -                                | 2, 3, 6          | -                         |
| 20       | -                     | 0   | 0      | 0    | -                                | 6                | -                         |
| 40       | -                     | 0   | 0      | 0    | Ulva: 40%, Fucus: 30%            | 6                | mussels, barnacles        |
| 60       | -                     | 0   | 0      | 0    | Ulva: 30%, Cer: 10%              | 6, 7, 4, 2       | glass, barnacles          |
| 80       | -                     | 0   | 0      | 0    | Lam: 5%, Sarg: 30%,<br>Ulva: 10% | 6, 4, 1, 2       | Dungeness Crab            |
| 100      | -                     | 0   | 0      | 0    | Ulva:5%, Lam 5%                  | 4, 2, 0, 1, 6, 7 | Concrete and brick debris |
| 120      | -                     | 0   | 0      | 0    | -                                | 0, 2, 1, 4, 6, 7 | Concrete and brick debris |
| 140      | -                     | 0   | 0      | 0    | -                                | 0, 2, 6, 7       | Concrete and brick debris |
| 160      | -                     | 0   | 0      | 0    | -                                | 0, 2, 8          | wood waste on surface     |
| 180      | -                     | 0   | 0      | 0    | -                                | 0, 8             | wood waste on surface     |
| 200      | -                     | 0   | 0      | 0    | -                                | 0, 8             | wood waste on surface     |
| 220      | -                     | 0   | 0      | 0    | -                                | 0, 8             | wood waste on surface     |
| 240      | -                     | 0   | 0      | 0    | -                                | 0                | -                         |
| 260      | -                     | 0   | 0      | 0    | -                                | 0                | -                         |
| 280      | -                     | 0   | 0      | 0    | -                                | 0                | -                         |
| 300      |                       | 0   | 0      | 0    |                                  | 0                |                           |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

## Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



0, 8

0, 8

0, 8

0, 8

0,8

wood waste (bark) on surface and within

3 inches of surface

wood waste (bark) on surface and within

3 inches of surface

wood waste (bark) on surface and within

3 inches of surface wood waste (bark) on surface and within

3 inches of surface

wood waste (bark) on surface

**Location:** Cornwall Avenue Landfill **Eelgrass and Macroalgae Survey** 

| Date: 6/29/15 | Time: Variable_ | Transect:_12      |
|---------------|-----------------|-------------------|
| Observer: LL  | Tide: Variable  | Datasheet: 1 of 1 |

Turion Counts **Eelgrass** Substrate Distance Begin/End Macroalgae Other Fucus: 50% 3, 6 Fucus: 40%, Ulva: 10% Ulva: 15%, Irid: 5% 4, 3, 2, 6 Ulva: 20%, Sarg: 15% 2, 4, 6 2, 4, 6 2, 4, 6 concrete and brick rubble wood waste (bark) on surface and within 0, 8 3 inches of surface

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8) Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7)

# Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/29/15 | Time: | Variable | Transect: | 13 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer:\_MI\_\_\_\_ Tide:\_Variable\_ Datasheet:\_\_1\_\_ of \_\_1\_\_

|          | ·                     | Tur | ion Co | <u>unts</u> | -                               |               |                                                     |
|----------|-----------------------|-----|--------|-------------|---------------------------------|---------------|-----------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10          | Macroalgae                      | Substrate     | Other                                               |
| 0        | -                     | 0   | 0      | 0           | -                               | 6, 4          |                                                     |
| 20       | -                     | 0   | 0      | 0           | Fucus: 30%                      | 6, 4, 7       |                                                     |
| 40       | -                     | 0   | 0      | 0           | Fucus: 25%                      | 5, 7          |                                                     |
| 60       | -                     | 0   | 0      | 0           | Ulva: 50%, Fucus: 10%           | 4, 1, 6       | high level of surface glass                         |
| 80       | -                     | 0   | 0      | 0           | Ulva: 40%, Cer: 5%              | 4, 2, 1, 6    | bay pipefish, barnacles, surf perch                 |
| 100      | -                     | 0   | 0      | 0           | Ulva: 10%, Grac: 2%,<br>Lam: 5% | 4, 1, 2, 7, 8 | Wood waste on surface. Dungeness and Red rock crab. |
| 120      | -                     | 0   | 0      | 0           | Lam: 40%, Ulva: 5%              | 4, 2, 0, 8    | Wood waste on surface. Red rock crab                |
| 140      | -                     | 0   | 0      | 0           | -                               | 0, 2, 8       | Wood waste on surface.                              |
| 160      | -                     | 0   | 0      | 0           | -                               | 0, 2          | -                                                   |
| 180      | -                     | 0   | 0      | 0           | -                               | 0, 2, 8       | Wood waste on surface.                              |
| 200      | -                     | 0   | 0      | 0           | -                               | 0, 2, 8       | Wood waste on surface.                              |
| 220      | -                     | 0   | 0      | 0           | -                               | 0, 2          | -                                                   |
| 240      | -                     | 0   | 0      | 0           | -                               | 0, 2, 8       | Wood waste on surface.                              |
| 260      | -                     | 0   | 0      | 0           | -                               | 0, 2          | -                                                   |
| 280      | -                     | 0   | 0      | 0           | -                               | 0, 2          | -                                                   |
| 300      | -                     | 0   | 0      | 0           | -                               | 0, 2          | -                                                   |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:



Date: 6/29/15 Time: Variable Transect: 14

Observer: <u>LL</u> \_\_\_ of \_\_1\_ of \_\_1\_

|          |                       | <u>Tur</u> | ion Cοι | <u>unts</u> |                                   |                                      |                                                            |
|----------|-----------------------|------------|---------|-------------|-----------------------------------|--------------------------------------|------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6       | 10          | Macroalgae                        | Substrate                            | Other                                                      |
| 0        | -                     | 0          | 0       | 0           | -                                 | 6                                    | -                                                          |
| 20       | -                     | 0          | 0       | 0           | Fucus: 40%                        | 6, 3                                 | -                                                          |
| 40       | -                     | 0          | 0       | 0           | Fucus: 20%                        | 6, 3                                 | -                                                          |
| 60       | -                     | 0          | 0       | 0           | Ulva: 20%                         | 7 (10%), 4 (75%),<br>3 (5%), 2 (10%) | -                                                          |
| 80       | -                     | 0          | 0       | 0           | Cer: 25%, Ulva: 35%               | 4 (60%), 2                           | -                                                          |
| 100      | -                     | 0          | 0       | 0           | Ulva: 10%, Sarg: 10%,<br>Lam: 20% | 2, 4 (25%)                           | -                                                          |
| 120      | -                     | 0          | 0       | 0           | Sarg: 15%                         | 0, 4 (25%)                           | -                                                          |
| 140      | -                     | 0          | 0       | 0           | macro ends @ 136 ft               | 0                                    | woody debris (bark) ~5 -10% at surface within top 2 inches |
| 160      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 180      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 200      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 220      | -                     | 0          | 0       | 0           | -                                 | 0                                    | 230 ft: large log                                          |
| 240      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 260      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 280      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |
| 300      | -                     | 0          | 0       | 0           | -                                 | 0                                    | -                                                          |

NOTES: eelgrass: 8-89 ft southside ~1 ft to 6 ft (3x6), 3-4 ft tall, epiphytes 30%, 14/12/9 per 1/4 m2; N 81-84 ft (3x3) 2-4 ft tall, 0-3 ft, epi 30%, 64 turions; 81 ft S 2x6 ft, 17 per 1/4 m2, 15 per 1/4 m2.

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/29/15 | Time: | Variable | Transect: 15 |
|---------------|-------|----------|--------------|
|               |       |          |              |

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | ·                        | Tur | ion Co | <u>unts</u> |                       |            |                                                                              |
|----------|--------------------------|-----|--------|-------------|-----------------------|------------|------------------------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End    | 2   | 6      | 10          | Macroalgae            | Substrate  | Other                                                                        |
| 0        | -                        | 0   | 0      | 0           | -                     | 6, 3       |                                                                              |
| 20       | -                        | 0   | 0      | 0           | Fucus: 30%            | 6, 3       |                                                                              |
| 40       | -                        | 0   | 0      | 0           | Fucus: 20%, Ulva: 10% | 6, 4, 1    | glass, metal stake, surf perch                                               |
| 60       | -                        | 0   | 0      | 0           | Ulva: 10%             | 4, 1, 2, 7 | barnacles, dung. Crab                                                        |
| 80       | Patch at<br>79 and 96 ft | 45  | 25     | 62          | Smith: 75%, Sarg: 10% | 4, 1, 2    | band of eelgrass ~15 ft wide extends<br>south. Sea star, gunnels, surf perch |
| 100      | -                        | 0   | 0      | 0           | Lam: 10%, Ulva: 5%    | 4, 1, 2    | -                                                                            |
| 120      | -                        | 0   | 0      | 0           | Ulva: 5%              | 4, 1, 2, 8 | wood waste on surface                                                        |
| 140      | -                        | 0   | 0      | 0           | -                     | 0, 2, 8    | wood waste on surface                                                        |
| 160      | -                        | 0   | 0      | 0           | -                     | 0, 8       | wood waste on surface                                                        |
| 180      | -                        | 0   | 0      | 0           | -                     | 0          |                                                                              |
| 200      | -                        | 0   | 0      | 0           | -                     | 0, 8       | wood waste on surface                                                        |
| 220      | -                        | 0   | 0      | 0           | -                     | 0, 8       | wood waste on surface                                                        |
| 240      | -                        | 0   | 0      | 0           | -                     | 0, 8       | wood waste on surface                                                        |
| 260      | -                        | 0   | 0      | 0           | -                     | 0          |                                                                              |
| 280      | -                        | 0   | 0      | 0           | -                     | 0          |                                                                              |
| 300      | _                        | 0   | 0      | 0           | _                     | 0          |                                                                              |

 300
 0
 0
 0

 NOTES:
 Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7)

# Macroalgae Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8) Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



| <br>0/00/45 | <b>—</b> · | ., | _ |  |
|-------------|------------|----|---|--|

Date: 6/29/15 Time: Variable Transect: 16

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_1\_ of \_\_1\_

#### **Turion Counts Eelgrass** Distance Begin/End Macroalgae Substrate Other Fucus: 30% 4, 6, 3, 5 Fucus: 5% Ulva: 5% 4, 3, 2, 6 glass (5%) 82 - 93 ft Ulva: 60% 4, 6, 2 0, 2, 4, 8 wood waste on surface 0, 4, 7, 8 wood waste on surface 0, 8 wood waste on surface 0,8 wood waste on surface 0, 8 wood waste on surface

**NOTES:** eelgrass both sides of tape from 82-93 ft: band extends to Transect 17; North side: 2/6/10, 21/18/20; South side: 26/28/14; eelgrass ~5 ft tall, <5% silt, coarse sand, 30-40% cobble. Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/29/15</u> | Time: <u>Variable</u> _ | Transect:_17 |
|----------------------|-------------------------|--------------|
|----------------------|-------------------------|--------------|

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                   |            |                                                         |
|----------|-----------------------|------------|--------|-------------|---------------------|------------|---------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae          | Substrate  | Other                                                   |
| 0        | -                     | 0          | 0      | 0           | -                   | 1, 6       |                                                         |
| 20       | -                     | 0          | 0      | 0           | Fucus: 10%          | 5, 6, 4    |                                                         |
| 40       | -                     | 0          | 0      | 0           | Fucus: 20%          | 5, 6, 7, 4 | broken glass, barnacles                                 |
| 60       | -                     | 0          | 0      | 0           | Ulva: 5%            | 6, 7, 4, 1 | glass, barnacles. 14 turion patch 5 ft<br>North @ 75 ft |
| 80       | 82 (3 ft S)           | 0          | 0      | 0           | Ulva: 75%, Cer: 10% | 4, 2, 1    | barnacles                                               |
| 100      | 93 ft                 | 0          | 0      | 0           | Lam: 5%, Ulva: 5%   | 0, 2       | red rock crab                                           |
| 120      | -                     | 0          | 0      | 0           | -                   | 0, 1, 8    | shell (<5%), glass and wood waste on surface            |
| 140      | -                     | 0          | 0      | 0           | -                   | 0, 2, 8    | very large log, partially buried @ 132 ft               |
| 160      | -                     | 0          | 0      | 0           | -                   | 0, 8       | wood waste on surface                                   |
| 180      | -                     | 0          | 0      | 0           | -                   | 0, 8       | wood waste on surface                                   |
| 200      | -                     | 0          | 0      | 0           | -                   | 0          | -                                                       |
| 220      | -                     | 0          | 0      | 0           | -                   | 0, 8       | wood waste on surface                                   |
| 240      | -                     | 0          | 0      | 0           | -                   | 0, 8       | wood waste on surface                                   |
| 260      | -                     | 0          | 0      | 0           | -                   | 0          | -                                                       |
| 280      | -                     | 0          | 0      | 0           | -                   | 0          |                                                         |
| 300      | -                     | 0          | 0      | 0           | -                   | 0          | -                                                       |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:

 $\label{thm:continuous} \mbox{Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Cardinaria (Lam); Cardinaria (La$ 

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



Date: 6/29/15 Time: <u>Variable</u> Transect: 18

Observer: <u>LL</u> \_\_\_\_ of \_\_1\_

|          |                         | <u>Tur</u> | ion Cou | <u>unts</u> | -                   |                              |                                                |
|----------|-------------------------|------------|---------|-------------|---------------------|------------------------------|------------------------------------------------|
| Distance | Eelgrass<br>Begin/End   | 2          | 6       | 10          | Macroalgae          | Substrate                    | Other                                          |
| 0        | -                       | 0          | 0       | 0           | -                   | 1, 6, 4                      |                                                |
| 20       | -                       | 0          | 0       | 0           | -                   | 3, 5                         |                                                |
| 40       | -                       | 0          | 0       | 0           | Fucus: 15%          | 6 (80%), 3 (15%)             | glass (5%)                                     |
| 60       | -                       | 0          | 0       | 0           | -                   | 3 (30%), 2 (10%),<br>4 (40%) | glass (50%)                                    |
| 80       | -                       | 0          | 0       | 0           | Ulva: 15%, Cer: 70% | 4 (75%), 3 (10%),<br>2       |                                                |
| 100      | -                       | 0          | 0       | 0           | Ulva: 10%           | 0, 2                         |                                                |
| 120      | Patch at 106-<br>118 ft | s          | ee belo | W           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in. depth  |
| 140      | -                       | 0          | 0       | 0           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in. depth  |
| 160      | -                       | 0          | 0       | 0           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in.  depth |
| 180      | -                       | 0          | 0       | 0           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in. depth  |
| 200      | -                       | 0          | 0       | 0           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in. depth  |
| 220      | -                       | 0          | 0       | 0           | -                   | 0, 8                         | Wood debris [bark] on surface to ~2 in. depth  |
| 240      | -                       | 0          | 0       | 0           | -                   | 0                            | ·                                              |
| 260      | -                       | 0          | 0       | 0           | -                   | 0                            |                                                |
| 280      | -                       | 0          | 0       | 0           | -                   | 0                            |                                                |
| 300      |                         | 0          | 0       | 0           |                     | 0                            |                                                |

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:



Date: 6/29/15 Time: Variable Transect: 19

Observer: MI Tide: Variable Datasheet: 1 of 1

#### **Turion Counts Eelgrass** Distance Begin/End 2 6 10 Macroalgae Substrate Other 0 0 0 6/asphalt, 1 0 20 0 0 0 3, 4 4, 1, 5, 7, 6 0 0 0 40 Fucus: 25% glass 60 0 0 0 Ulva: 25%, Fucus: 25% 5, 4, 6 glass, mussels, barnacles barnacles, starry flounder, 80 0 0 0 Ulva: 65% 4, 5 Ulva: 30%, Lam: 20%, dense eelgrass band btwen 103-113 ft. Start 100 103 ft 0 0 0 Cer: 25% 0, 2 Surf perch. Sparse eelgrass btwn 113-End 120 122 ft 10 0 Lam: 25%, Sarg: 40% 0, 2, 6 large concrete chunk @ 123 ft 140 0 0 0 0 4, 1 end @ 156 ft 0, 8 0 0 160 0 Wood debris on surface 180 0 0 0 0, 8 Wood debris on surface 200 0 0 0, 8 0 Wood debris on surface 220 0 0 0 0,8 Wood debris on surface 0 240 0 0 260 0 0 0 0 280 0 0 0 0 300 0 0

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



# **Eelgrass and Macroalgae Survey**

| Date: <u>6/29/15</u> Time: <u>Variable</u> _ Transect:_20 | Date: <u>6/29/15</u> | Time: <u>Variable</u> | Transect:_20 |  |
|-----------------------------------------------------------|----------------------|-----------------------|--------------|--|
|-----------------------------------------------------------|----------------------|-----------------------|--------------|--|

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_1\_ of \_\_1\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                     |            |                                |
|----------|-----------------------|------------|--------|-------------|-----------------------|------------|--------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae            | Substrate  | Other                          |
| 0        | -                     | 0          | 0      | 0           | -                     | 6, asphalt | -                              |
| 20       | -                     | 0          | 0      | 0           | -                     | 6, asphalt | -                              |
| 40       | -                     | 0          | 0      | 0           | -                     | 3, 6, 4    | -                              |
| 60       | -                     | 0          | 0      | 0           | -                     | 4, 3       | -                              |
| 80       | -                     | 0          | 0      | 0           | Ulva: 60%             | 4, 6, 3    | metal debris (10%)             |
| 100      | -                     | 0          | 0      | 0           | Sarg: 25%, Ulva: 100% | 0, 2       | -                              |
| 120      | -                     | 0          | 0      | 0           | -                     | 0, 2, 8    | woody debris (logs and planks) |
| 140      | -                     | 0          | 0      | 0           | -                     | 0, 2       | -                              |
| 160      | -                     | 0          | 0      | 0           | -                     | 0, 8       | Wood debris on surface (bark)  |
| 180      | -                     | 0          | 0      | 0           | -                     | 0, 8       | Wood debris on surface (bark)  |
| 200      | -                     | 0          | 0      | 0           | -                     | 0, 8       | Wood debris on surface (bark)  |
| 220      | -                     | 0          | 0      | 0           | -                     | 0          |                                |
| 240      | -                     | 0          | 0      | 0           | -                     | 0          |                                |
| 260      | -                     | 0          | 0      | 0           | -                     | 0          |                                |
| 280      | -                     | 0          | 0      | 0           | -                     | 0          |                                |
| 300      | -                     | 0          | 0      | 0           | -                     | 0          |                                |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8) Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 21 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_\_1\_\_ of \_\_1\_\_

|          |                       | Tur | ion Co | unts |                       |                                              |                              |
|----------|-----------------------|-----|--------|------|-----------------------|----------------------------------------------|------------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10   | Macroalgae            | Substrate                                    | Other                        |
| 0        | -                     | 0   | 0      | 0    | -                     | 6/asphalt, 3                                 | -                            |
| 20       | -                     | 0   | 0      | 0    | -                     | 3, 6/asphalt                                 | -                            |
| 40       | -                     | 0   | 0      | 0    | Fucus: 20%            | 3, 6/asphalt                                 | -                            |
| 60       | -                     | 0   | 0      | 0    | Fucus: 10%, Ulva: 10% | 6 (10%), 3 (40%),                            |                              |
| 80       | -                     | 0   | 0      | 0    | -                     | 4 (50%)<br>6/7 (30%), 4<br>(30%), 3 (30%), 2 | -                            |
| 100      | -                     | 0   | 0      | 0    | Ulva: 30%, Cer: 10%   | 0, 2                                         | -                            |
| 120      | -                     | 0   | 0      | 0    | Sarg: 40%, Ulva: 10%  | 0, 2                                         | -                            |
| 140      | -                     | 0   | 0      | 0    | -                     | 0                                            | -                            |
| 160      | -                     | 0   | 0      | 0    | _                     | 0, 8                                         | wood waste (bark) on surface |
| 180      | -                     | 0   | 0      | 0    | _                     | 0, 8                                         | wood waste (bark) on surface |
| 200      | -                     | 0   | 0      | 0    | _                     | 0, 8                                         | wood waste (bark) on surface |
| 220      | -                     | 0   | 0      | 0    | _                     | 0, 8                                         | wood waste (bark) on surface |
| 240      | -                     | 0   | 0      | 0    | _                     | 0                                            | mood made (sam) on camaco    |
| 260      | -                     | 0   | 0      | 0    | _                     | 0                                            |                              |
| 280      | -                     | 0   | 0      | 0    | _                     | 0                                            |                              |
| 300      | -                     | 0   | 0      | 0    | -                     | 0                                            |                              |

NOTES: Eelgrass 115 N 18 ft (3x3) 61 turions; 100 S (1x3) 10 turions. Eelgrass 4 to 6 ft tall; 15 % epiphytes

## Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 22 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: MI Tide: Variable Datasheet: 1 of 1

|          |                       | <u>Tur</u> | ion Co | <u>unts</u> |                      |                |                                           |
|----------|-----------------------|------------|--------|-------------|----------------------|----------------|-------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae           | Substrate      | Other                                     |
| 0        | -                     | 0          | 0      | 0           | -                    | 1, 6           | -                                         |
| 20       | -                     | 0          | 0      | 0           | -                    | 1, 6, 3        | -                                         |
| 40       | -                     | 0          | 0      | 0           | Fucus: 10%           | 3, 4, 6        | barnacles, mussels                        |
| 60       | -                     | 0          | 0      | 0           | Fucus: 5%, Ulva: 1%  | 3, 4, 6        | barnacles, mussels, wood waste            |
| 80       | -                     | 0          | 0      | 0           | Fucus: 5%, Ulva: 40% | 6, 4, 1, 7     | glass, ceramic                            |
| 100      | -                     | 0          | 0      | 0           | Ulva: 50%, Cer: 30%  | 0, 2           | glass                                     |
| 120      | -                     | 0          | 0      | 0           | Sarg: 10%, Ulva: 20% | 0, 2           | pisaster                                  |
| 140      | -                     | 0          | 0      | 0           | Lam: 10%, Sarg: 10%  | 0, 2           | starry flounder, dung. Crab, metal ladder |
| 160      | -                     | 0          | 0      | 0           | -                    | 0, 1, 2, glass | dung. Crab, sea star                      |
| 180      | -                     | 0          | 0      | 0           | -                    | 0, 1, glass    | 4, 1 end @ 177 ft; old bottles @ 175 ft   |
| 200      | -                     | 0          | 0      | 0           | -                    | 0, 8           | Wood debris on surface                    |
| 220      | -                     | 0          | 0      | 0           | -                    | 0, 8           | Wood debris on surface                    |
| 240      | -                     | 0          | 0      | 0           | -                    | 0, 8           | Wood debris on surface                    |
| 260      | -                     | 0          | 0      | 0           | -                    | 0              | -                                         |
| 280      | -                     | 0          | 0      | 0           | -                    | 0              | -                                         |
| 300      | -                     | 0          | 0      | 0           | -                    | 0              | -                                         |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8) Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time:_ | <u>Variable</u> | Transect: | 23 |
|----------------------|--------|-----------------|-----------|----|
|----------------------|--------|-----------------|-----------|----|

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_1\_ of \_\_1\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                                 |             |                                             |
|----------|-----------------------|------------|--------|-------------|-----------------------------------|-------------|---------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae                        | Substrate   | Other                                       |
| 0        | -                     | 0          | 0      | 0           | -                                 | 4, 3, 2     | -                                           |
| 20       | -                     | 0          | 0      | 0           | -                                 | 6, 3        | barnacles                                   |
| 40       | -                     | 0          | 0      | 0           | Fucus: 5%                         | 3, 6        | wood waste on surface                       |
| 60       | -                     | 0          | 0      | 0           | Fucus: 5%, Ulva: 10%              | 3, 6        | barnacles, mussels                          |
| 80       | -                     | 0          | 0      | 0           | Ulva: 10%, Fucus: 15%             | 2, 6, 7     | -                                           |
| 100      | -                     | 0          | 0      | 0           | Ulva: 10%                         | 0, 2, glass | -                                           |
| 120      | -                     | 0          | 0      | 0           | Ulva: 10%, Sarg: 15%,<br>Cer: 10% | 0, 2        | -                                           |
| 140      | -                     | 0          | 0      | 0           | -                                 | 0, 2        | -                                           |
| 160      | -                     | 0          | 0      | 0           | -                                 | 0, 8        | wood waste on surface                       |
| 180      | -                     | 0          | 0      | 0           | -                                 | 0, 8        | Wood debris on surface and within ~2 inches |
| 200      | -                     | 0          | 0      | 0           | -                                 | 0, 8        | Wood debris on surface and within ~2 inches |
| 220      | -                     | 0          | 0      | 0           | -                                 | 0, 8        | Wood debris on surface and within ~2 inches |
| 240      | -                     | 0          | 0      | 0           | -                                 | 0           | -                                           |
| 260      | -                     | 0          | 0      | 0           | -                                 | 0           | -                                           |
| 280      | -                     | 0          | 0      | 0           | -                                 | 0           | -                                           |
| 300      | -                     | 0          | 0      | 0           | -                                 | 0           | -                                           |

<u>NOTES:</u> eelgrass @ 117, 6 ft N (1x1) 7 turions; patches to N 107-117; 2 ft N @ 109 ft 3 turion; patches to S 100-110 ft (~20 ft S). Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 24 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | -                           | <u>Tur</u> | ion Co | <u>unts</u> | -                                                  |                         |                                                                     |
|----------|-----------------------------|------------|--------|-------------|----------------------------------------------------|-------------------------|---------------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End       | 2          | 6      | 10          | Macroalgae                                         | Substrate               | Other                                                               |
| 0        | -                           | 0          | 0      | 0           | -                                                  | 6                       | -                                                                   |
| 20       | -                           | 0          | 0      | 0           | -                                                  | 6, 3                    | <del>-</del>                                                        |
| 40       | -                           | 0          | 0      | 0           | Fucus                                              | 4, 3, 1                 | barnacles, mussels                                                  |
| 60       | -                           | 0          | 0      | 0           | Ulva: 30%, Fucus: 10%                              | 5, 3                    | barnacles, mussels                                                  |
| 80       | Start @ 88 ft<br>(~10 ft S) | 0          | 0      | 0           | Cer: 20%, Ulva: 30%                                | 4, 1, 2                 | -                                                                   |
| 100      | End<br>@ 100 ft             | 7          | 5      | 12          | Sarg: 10%, Smith: 30%,<br>Ulva: 10%, Lam: 5%, Cer: | 0, 2, glass,<br>ceramic | High level of glass and ceramic debris (coffee cup, plates, etc)    |
| 120      | -                           | 0          | 0      | 0           | Lam: 20%, Sarg: 10%,<br>Ulva: 5%                   | 0                       | gunnels; small eelgrass patch btwn 105-<br>110 ft: 22 turions total |
| 140      | -                           | 0          | 0      | 0           | Lam: 2%                                            | 0                       | 1 turion @136 ft, sea stars                                         |
| 160      | -                           | 0          | 0      | 0           | -                                                  | 0, 8, metal, glass      | High level of metal, glass debris.<br>Visibility <1 ft at ~160 ft   |
| 180      | -                           | 0          | 0      | 0           | -                                                  | 0, 8, metal, glass      | High level of metal, glass debris.<br>Visibility <1 ft at ∼160 ft   |
| 200      | -                           | 0          | 0      | 0           | -                                                  | 0, 8                    | Wood debris on surface. Visibility <1 ft at ~160 ft                 |
| 220      | -                           | 0          | 0      | 0           | -                                                  | 0, 8                    | Wood debris on surface. Visibility <1 ft<br>at ~160 ft              |
| 240      | -                           | 0          | 0      | 0           | -                                                  | 0, 8                    | Wood debris on surface. Visibility <1 ft<br>at ~160 ft              |
| 260      | -                           | 0          | 0      | 0           | -                                                  | 0                       | Visibility <1 ft at ∼160 ft                                         |
| 280      | -                           | 0          | 0      | 0           | -                                                  | 0                       | Visibility <1 ft at ∼160 ft                                         |
| 300      | -                           | 0          | 0      | 0           | -                                                  | 0                       | Visibility <1 ft at ∼160 ft                                         |

**NOTES:** eelgrass 121-131 ft N 4-26 ft more patches to N. 8/12/9 per 1/4 m2 4 - 5 ft tall w/ 30% epi and Repro; 113 ft 5-6 ft 10/16/4 3-4 ft tal; 1 patch further S ~30 ft; 103-112 ft N 2 ft - 10ft 30% epi 4-5 ft tall, Repro 211/17/20. Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time:_ | Variable | Transect: | 25 |
|---------------|--------|----------|-----------|----|
|               |        |          |           |    |

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_\_1\_\_ of \_\_1\_\_

|          | ·                     | <u>Tur</u> | ion Co | <u>unts</u> | _                    |             |                                                      |
|----------|-----------------------|------------|--------|-------------|----------------------|-------------|------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae           | Substrate   | Other                                                |
| 0        | -                     | 0          | 0      | 0           | -                    | 6           | -                                                    |
| 20       | -                     | 0          | 0      | 0           | -                    | 6, 4, 1     | barnacles                                            |
| 40       | -                     | 0          | 0      | 0           | -                    | 3, 1, 4     | barnacles                                            |
| 60       | -                     | 0          | 0      | 0           | Ulva: 30%, Fucus: 1% | 3, 1, 4     | barnacles                                            |
| 80       | -                     | 0          | 0      | 0           | Ulva: 70%            | 6           | barnacles                                            |
| 100      | Start<br>@ 98 ft      | 14         | 9      | 16          | Lam: 5%, Ulva: 10%   | 0, 2        | -                                                    |
| 120      | End<br>@ 112 ft       | 0          | 0      | 0           | -                    | 0, 2        | -                                                    |
| 140      | -                     | 0          | 0      | 0           | -                    | 0, 2        | -                                                    |
| 160      | -                     | 0          | 0      | 0           | -                    | 0, 2, glass | glass on surface and within 2 inches of surface      |
| 180      | -                     | 0          | 0      | 0           | -                    | 0, 8, glass | wood waste (5%), glass                               |
| 200      | -                     | 0          | 0      | 0           | -                    | 0, 8        | wood waste on surface and within 2 inches of surface |
| 220      | -                     | 0          | 0      | 0           | -                    | 0, 8        | wood waste on surface and within 2 inches of surface |
| 240      | -                     | 0          | 0      | 0           | -                    | 0, 8        | wood waste on surface and within 2 inches of surface |
| 260      | -                     | 0          | 0      | 0           | -                    | 0           |                                                      |
| 280      | -                     | 0          | 0      | 0           | -                    | 0           | -                                                    |
| 300      | -                     | 0          | 0      | 0           | -                    | 0           |                                                      |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time:_ | <u>Variable</u> | Transect:_ | 26 |
|----------------------|--------|-----------------|------------|----|
|----------------------|--------|-----------------|------------|----|

Observer: MI \_\_\_\_ Tide: Variable \_ Datasheet: \_\_1\_\_ of \_\_1\_\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                               |            |                                                                    |
|----------|-----------------------|------------|--------|-------------|---------------------------------|------------|--------------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae                      | Substrate  | Other                                                              |
| 0        | -                     | 0          | 0      | 0           | -                               | 6          | -                                                                  |
| 20       | -                     | 0          | 0      | 0           | -                               | 6, 4       | barnacles                                                          |
| 40       | -                     | 0          | 0      | 0           | Fucus: 5%                       | 3, 1, 5    | mussels, barnacles                                                 |
| 60       | -                     | 0          | 0      | 0           | Ulva: 25%                       | 6, 5, 1, 3 | mussels, barnacles                                                 |
| 80       | -                     | 0          | 0      | 0           | Cer: 20%, Ulva: 30%             | 4, 6, 1, 2 | Patch betwen 92 and 96 ft (44 turions)                             |
| 100      | -                     | 0          | 0      | 0           | Ulva: 20%, Lam: 10%             | 0, 2       | Small patches between 86-90 ft, 6-10 ft<br>S of transect           |
| 120      | -                     | 0          | 0      | 0           | Sarg: 10%, Lam: 5%,<br>Grac: 5% | 0, 2       | Patch @ 105 ft (14 turions)                                        |
| 140      | -                     | 0          | 0      | 0           | -                               | 0, glass   | Heavy glass                                                        |
| 160      | -                     | 0          | 0      | 0           | -                               | 0, 8       | Heavy glass. <1 ft visibility after 154 ft. Wood debris on surface |
| 180      | -                     | 0          | 0      | 0           | -                               | 0, 8       | <1 ft visibility after 154 ft. Wood debris on surface              |
| 200      | -                     | 0          | 0      | 0           | -                               | 0, 8       | <1 ft visibility after 154 ft. Wood debris on surface              |
| 220      | -                     | 0          | 0      | 0           | -                               | 0, 8       | <1 ft visibility after 154 ft. Wood debris on surface              |
| 240      | -                     | 0          | 0      | 0           | -                               | 0, 8       | <1 ft visibility after 154 ft. Wood debris on surface              |
| 260      | -                     | 0          | 0      | 0           | -                               | 0          | -                                                                  |
| 280      | -                     | 0          | 0      | 0           | -                               | 0          | -                                                                  |
| 300      | -                     | 0          | 0      | 0           | -                               | 0          | _                                                                  |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time:Variat | <u>ole_</u> Transect:_ <u>27</u> | ,<br> |
|----------------------|-------------|----------------------------------|-------|
|----------------------|-------------|----------------------------------|-------|

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | Ī                     | <u>Tur</u> | ion Cou | <u>ınts</u> | _                               |                                |                                                  |
|----------|-----------------------|------------|---------|-------------|---------------------------------|--------------------------------|--------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6       | 10          | Macroalgae                      | Substrate                      | Other                                            |
| 0        | -                     | 0          | 0       | 0           | -                               | 6                              | -                                                |
| 20       | -                     | 0          | 0       | 0           | Chond: 5%                       | 6, 3, 4                        | barnacles, mussels                               |
| 40       | -                     | 0          | 0       | 0           | Ulva: 5%, Fucus: 5%             | 6, 1, 3                        | -                                                |
| 60       | -                     | 0          | 0       | 0           | Ulva: 20%                       | 6, 4                           | -                                                |
| 80       | Starts<br>@ 80 ft     | 0          | 0       | 14          | Sarg: 20%, Lam: 5%, Cer:<br>10% | 4, 2, 1                        | Patch @ 80 ft (14 turions)                       |
| 100      | Ends<br>@ 104 ft      | 8          | 38      | 27          | Sarg: 20%, Lam: 10%, Ulva: 5%   | 0, 2                           | -                                                |
| 120      | -                     | 0          | 0       | 0           | Sarg: 5%                        | 0, 2, 8, glass                 | Wood waste and glass on surface starts at 107 ft |
| 140      | -                     | 0          | 0       | 0           | -                               | 0, 2, glass,<br>metal, ceramic | metal, ceramic, and glass debris                 |
| 160      | -                     | 0          | 0       | 0           | -                               | 0, 8, glass                    | wood waste, cans, glass                          |
| 180      | -                     | 0          | 0       | 0           | -                               | 0, 8                           | Wood debris on surface                           |
| 200      | -                     | 0          | 0       | 0           | -                               | 0, 8                           | Wood debris on surface                           |
| 220      | -                     | 0          | 0       | 0           | -                               | 0                              | Wood debris on surface                           |
| 240      | -                     | 0          | 0       | 0           | -                               | 0                              | -                                                |
| 260      | -                     | 0          | 0       | 0           | -                               | 0, 8                           | Wood debris on surface                           |
| 280      | -                     | 0          | 0       | 0           | -                               | 0                              | -                                                |
| 300      | -                     | 0          | 0       | 0           | -                               | 0                              | -                                                |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

Macroalgae Key:

 $\label{thm:continuous} \mbox{Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus); Cardinaria (Lam); Cardinaria (La$ 

 $Ceramium\ (Cer);\ Chondracanthus\ exasperatus\ (Chond);\ Mazzaella\ splendens\ (Mazz);\ Cladophora\ sericea\ (Clad)$ 



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time:_ | <u>Variable</u> | Transect:_ | 28 |
|----------------------|--------|-----------------|------------|----|
|----------------------|--------|-----------------|------------|----|

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_1\_ of \_\_1\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | •                     |             |                                      |
|----------|-----------------------|------------|--------|-------------|-----------------------|-------------|--------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae            | Substrate   | Other                                |
| 0        | -                     | 0          | 0      | 0           | -                     | 6           | -                                    |
| 20       | -                     | 0          | 0      | 0           | Fucus: 10%            | 6, 3        | barnacles                            |
| 40       | -                     | 0          | 0      | 0           | Fucus: 10%, Ulva: 5%  | 6, 3        | barnacles, mussels                   |
| 60       | -                     | 0          | 0      | 0           | Ulva: 10%, Fucus: 20% | 6, 4, 3     | -                                    |
| 80       | Start<br>@ 84 ft      | 0          | 0      | 0           | Ulva: 15%             | 6, 4, 4     | -                                    |
| 100      | -                     | 14         | 25     | 0           | -                     | 0, 2        | -                                    |
| 120      | End @<br>104 ft       | 0          | 0      | 0           | -                     | 0, 2        |                                      |
| 140      | -                     | 0          | 0      | 0           | -                     | 0, 2, glass | heavy glass                          |
| 160      | -                     | 0          | 0      | 0           | -                     | 0, glass    | Wood debris on surface               |
| 180      | -                     | 0          | 0      | 0           | -                     | 0, 8, glass | Wood debris on surface. Heavy glass. |
| 200      | -                     | 0          | 0      | 0           | -                     | 0, 8        | Wood debris on surface               |
| 220      | -                     | 0          | 0      | 0           | -                     | 0, 8        | Wood debris on surface               |
| 240      | -                     | 0          | 0      | 0           | -                     | 0           | -                                    |
| 260      | -                     | 0          | 0      | 0           | -                     | 0           | -                                    |
| 280      | -                     | 0          | 0      | 0           | -                     | 0           | -                                    |
| 300      | -                     | 0          | 0      | 0           | -                     | 0           | -                                    |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

## Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 29 |
|---------------|-------|----------|-----------|----|
|               |       |          | _         |    |

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | -                     | <u>Tur</u> | ion Coı | <u>unts</u> |                     |                |                                      |
|----------|-----------------------|------------|---------|-------------|---------------------|----------------|--------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6       | 10          | Macroalgae          | Substrate      | Other                                |
| 0        | -                     | 0          | 0       | 0           | -                   | 6              | -                                    |
| 20       | -                     | 0          | 0       | 0           | -                   | 6, 4           | barnacles                            |
| 40       | -                     | 0          | 0       | 0           | Ulva: 5%, Fucus: 5% | 3, 6           | barnacles, mussels                   |
| 60       | -                     | 0          | 0       | 0           | Ulva: 30%           | 6, 4, 2, glass | sparse glass                         |
| 80       | Start<br>@ 76 ft      | 32         | 27      | 19          | Smith: 30%          | 4, 2, 6        | dense eelgrass                       |
| 100      |                       | 38         | 19      | 22          | Smith: 30%, Lam: 5% | 4, 2, 1        | reprod.                              |
| 120      | End @<br>115 ft       | 1          | 0       | 0           | -                   | 4, 2, 1, 0     | -                                    |
| 140      | -                     | 2          | 0       | 0           | -                   | 0, glass       | heavy glass                          |
| 160      | -                     | 0          | 0       | 0           | -                   | 0, 8, glass    | Wood debris on surface. Heavy glass. |
| 180      | -                     | 0          | 0       | 0           | -                   | 0, 8, glass    | Wood debris on surface. Heavy glass. |
| 200      | -                     | 0          | 0       | 0           | -                   | 0, 8           | Wood debris on surface               |
| 220      | -                     | 0          | 0       | 0           | -                   | 0, 8           | Wood debris on surface               |
| 240      | -                     | 0          | 0       | 0           | -                   | 0, 8           | Wood debris on surface               |
| 260      | -                     | 0          | 0       | 0           | -                   | 0              | -                                    |
| 280      | -                     | 0          | 0       | 0           | -                   | 0              | -                                    |
| 300      | -                     | 0          | 0       | 0           | -                   | 0              | -                                    |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

## Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time:               | Variable | Transect: | 30          |
|---------------|---------------------|----------|-----------|-------------|
| <u></u>       | · · · · · · · - · - |          |           | <del></del> |

Observer: MI \_\_\_\_ Tide: Variable \_ Datasheet: \_\_1\_\_ of \_\_1\_\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                               |                |                                          |
|----------|-----------------------|------------|--------|-------------|---------------------------------|----------------|------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae                      | Substrate      | Other                                    |
| 0        | -                     | 0          | 0      | 0           | -                               | 6              | -                                        |
| 20       | -                     | 0          | 0      | 0           | Chond: 5%, Fucus: 5%            | 6              | barnacles                                |
| 40       | -                     | 0          | 0      | 0           | Ulva: 10%, Fucus: 10%           | 6, 3, 4        | barnacles, mussels                       |
| 60       | -                     | 0          | 0      | 0           | Ulva: 40%                       | 6, 4, 3        | -                                        |
| 80       | Start<br>@ 78 ft      | 19         | 24     | 14          | Ulva: 10%                       | 4, 1, 2        | poor visibility                          |
| 100      | End @<br>117 ft       | 12         | 30     | 22          | Lam: 10%, Ulva: 5%,<br>Sarg: 5% | 4, 2, 1        | surf perch                               |
| 120      | Band @<br>120-124 ft  | 9          | 10     | 5           | Sarg: 20%, Ulva: 5%             | 2, 4, 1, glass | Manmade debirs and glass starts @ 114 ft |
| 140      | -                     | 0          | 0      | 0           | Cer: 5%                         | 2, 1, 4, glass | Manmade debirs and glass starts @ 114 ft |
| 160      | -                     | 0          | 0      | 0           | -                               | 0, glass       | Manmade debirs and glass                 |
| 180      | -                     | 0          | 0      | 0           | -                               | 0, glass       | Manmade debirs and glass                 |
| 200      | -                     | 0          | 0      | 0           | -                               | 0, 8           | Manmade debirs and glass                 |
| 220      | -                     | 0          | 0      | 0           | -                               | 0, 8           | Wood debris on surface                   |
| 240      | -                     | 0          | 0      | 0           | -                               | 0, 9           | Wood debris on surface                   |
| 260      | -                     | 0          | 0      | 0           | -                               | 0              | -                                        |
| 280      | -                     | 0          | 0      | 0           | -                               | 0              | -                                        |
| 300      | -                     | 0          | 0      | 0           | -                               | 0              | -                                        |

NOTES: Eelgrass 4 to 6 ft tall; 10 % epiphytes

## Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



Date: 6/30/15 Time: Variable Transect: 31a

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | -                     | Tur | ion Cou | unts |                       |                            |                                                         |
|----------|-----------------------|-----|---------|------|-----------------------|----------------------------|---------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6       | 10   | Macroalgae            | Substrate                  | Other                                                   |
| 0        | -                     | 0   | 0       | 0    | -                     | 6                          | -                                                       |
| 20       | -                     | 0   | 0       | 0    | -                     | 6, 4                       | -                                                       |
| 40       | -                     | 0   | 0       | 0    | Fucus: 20%, Ulva: 5%  | 6                          | mussels, barnacles                                      |
| 60       | -                     | 0   | 0       | 0    | Fucus: 10%, Ulva: 10% | 6, 1, 5, 2, glass          | glass shards, plastic debris                            |
| 80       | -                     | 0   | 0       | 0    | -                     | 5, 4, 1, 8, glass          | glass, plastic, wood waste                              |
| 100      | -                     | 0   | 0       | 0    | Ulva: 80%             | 0, 2, glass                | forks, glass                                            |
| 120      | -                     | 0   | 0       | 0    | Ulva: 80%, Cer 5%     | 0, 2                       | large overlapping concrete slabs btwn<br>110 and 118 ft |
| 140      | Start @<br>131 ft     | 10  | 15      | 7    | Ulva: 10%, Sarg: 10%  | 0, 2                       | -                                                       |
| 160      | End<br>@ 153 ft       | 0   | 0       | 0    | -                     | 0, 2, cermaic plates, wood | Broken plates and wood debris                           |
| 180      | -                     | 0   | 0       | 0    | -                     | 0, 1                       | red rock crab, dung. Crab, shells                       |
| 200      | -                     | 0   | 0       | 0    | -                     | 0, 8, glass                | Bottles and wood debris on surface                      |
| 220      | -                     | 0   | 0       | 0    | -                     | 0, glass                   | bottles                                                 |
| 240      | -                     | 0   | 0       | 0    | -                     | 0, glass                   | bottles                                                 |
| 260      | -                     | 0   | 0       | 0    | -                     | 0, 8, glass                | Bottles and wood debris on surface                      |
| 280      | -                     | 0   | 0       | 0    | -                     | 0                          | -                                                       |
| 300      | -                     | 0   | 0       | 0    | -                     | 0, glass                   | bottles                                                 |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time: Variable_ | Transect: 31b |  |
|----------------------|-----------------|---------------|--|
|----------------------|-----------------|---------------|--|

Observer: MI Tide: Variable Datasheet: 1 of 1

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | _                                      |                  |                                                                            |
|----------|-----------------------|------------|--------|-------------|----------------------------------------|------------------|----------------------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae                             | Substrate        | Other                                                                      |
| 0        | -                     | 0          | 0      | 0           | -                                      | 6                | -                                                                          |
| 20       | -                     | 0          | 0      | 0           | Fucus: 10%                             | 6, 5             | barnacles                                                                  |
| 40       | -                     | 0          | 0      | 0           | Fucus: 25%, Ulva: 5%                   | 6, 1, 4, glass   | glass shards                                                               |
| 60       | -                     | 0          | 0      | 0           | Ulva: 30%                              | 4, 1, 8, glass   | glass shards, wood debris. Shiner<br>surfperch                             |
| 80       | -                     | 0          | 0      | 0           | Ulva: 60%, Cer: 15%                    | 4, 1, 2, 7       | plastic bags, debris                                                       |
| 100      | Start<br>@ 100 ft     | 7          | 0      | 0           | Ulva: 40%, Lam: 5%, Cer: 20%, Sarg: 5% | 0, 2             | Patch @ 90 ft (4 turions) and Patch @ 100 ft (7 turions)                   |
| 120      | End @<br>115 ft       | 10         | 0      | 5           | Ulva: 25%, Cer: 10%                    | 0, 2, glass      | 25 sq ft patch @ 114 (~150 turions).<br>Small patches between 100 -129 ft. |
| 140      | -                     | 0          | 0      | 0           | Grac: 10%, Sarg: 20%,<br>Lam: 20%      | 0, 2, glass      | Sparse patches between 125-129 ft.                                         |
| 160      | -                     | 0          | 0      | 0           | Sarg: 20%                              | 0, 2, 8, glass   | Bottles and wood debris on surface.                                        |
| 180      | -                     | 0          | 0      | 0           | -                                      | 0, 8, ceramic    | Wood and ceramic debris on surface.                                        |
| 200      | -                     | 0          | 0      | 0           | -                                      | 0, 8, 6, ceramic | Ceramic, concrete and wood debris on surface.                              |
| 220      | -                     | 0          | 0      | 0           | <u>-</u>                               | 0, 8, 6, ceramic | Ceramic, concrete and wood debris on surface.                              |
| 240      | -                     | 0          | 0      | 0           | <u>-</u>                               | 0, 8, 6, ceramic | Ceramic, concrete and wood debris on surface.                              |
| 260      | -                     | 0          | 0      | 0           | <u>-</u>                               | 0, 8, 6, ceramic | Ceramic, concrete and wood debris on surface.                              |
| 280      | -                     | 0          | 0      | 0           | <u>-</u>                               | 3                | -                                                                          |
| 300      | -                     | 0          | 0      | 0           | -                                      | 0, 8, 6, ceramic | Ceramic, concrete and wood debris on surface.                              |

NOTES: Eelgrass 4 to 6 ft tall; 20 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15        | Time:   | Variable | Transect: | 31c |  |
|----------------------|---------|----------|-----------|-----|--|
| Date. <u>0/00/10</u> | THITIC. | Variable | Hanscot.  | 010 |  |

Observer: <u>JS</u> Tide: <u>Variable</u> Datasheet: <u>1</u> of <u>1</u>

|          | -                          | Tur | ion Coı | unts |                                 |           |                                     |
|----------|----------------------------|-----|---------|------|---------------------------------|-----------|-------------------------------------|
| Distance | Eelgrass<br>Begin/End      | 2   | 6       | 10   | Macroalgae                      | Substrate | Other                               |
| 0        | -                          | 0   | 0       | 0    | -                               | 6         | -                                   |
| 20       | -                          | 0   | 0       | 0    | Fucus: 15%                      | 6         | -                                   |
| 40       |                            | 0   | 0       | 0    | Fucus: 15%                      | 6, 3, 1   | -                                   |
| 60       | -                          | 0   | 0       | 0    | Ulva: 70%, Lam: 10%             | 4, 1, 6   | -                                   |
| 80       | -                          | 0   | 0       | 0    | Ulva: 70%, Lam: 10%             | 4, 1, 6   | -                                   |
| 100      | Sparse patch<br>@ 84-97 ft | 0   | 2       | 0    | Ulva: 15%, Sarg: 5%,<br>Lam: 5% | 0, 2      | -                                   |
| 120      | Start<br>@ 122 ft          | 6   | 14      | 8    | Ulva: 10%                       | 0, 2      | dung. Crab                          |
| 140      |                            | 0   | 0       | 0    | Sarg: 5%, Ulva: 10%             | 0, 2      | Sparse eelgrass bed                 |
| 160      | End<br>@ 160 ft            | 0   | 0       | 14   | -                               | 0, 2      | -                                   |
| 180      | -                          | 0   | 0       | 0    | -                               | 0         | -                                   |
| 200      | -                          | 0   | 0       | 0    | -                               | 0         | -                                   |
| 220      | -                          | 0   | 0       | 0    | -                               | 0, 6, 8   | Wood and concrete debris on surface |
| 240      | -                          | 0   | 0       | 0    | -                               | 0, 6, 9   | Wood and concrete debris on surface |
| 260      | -                          | 0   | 0       | 0    | -                               | 0         | -                                   |
| 280      | -                          | 0   | 0       | 0    | -                               | 0, 6, 9   | Wood and concrete debris on surface |
| 300      | -                          | 0   | 0       | 0    | -                               | 0         | -                                   |

NOTES: Began survey @ 300 ft, swam towards shore. Eelgrass 4 to 6 ft tall; 15 % epiphytes

### Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

 $Ceramium\ (Cer);\ Chondracanthus\ exasperatus\ (Chond);\ Mazzaella\ splendens\ (Mazz);\ Cladophora\ sericea\ (Clad)$ 



Date: 6/30/15 Time: Variable Transect: 31d Bearing 290

Observer: <u>JS</u> Tide: <u>Variable</u> Datasheet: 1 of \_\_1\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> |                                  |            |                        |
|----------|-----------------------|------------|--------|-------------|----------------------------------|------------|------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae                       | Substrate  | Other                  |
| 0        | -                     | 0          | 0      | 0           | -                                | 6          | -                      |
| 20       | -                     | 0          | 0      | 0           | Fucus: 30%                       | 6          | -                      |
| 40       | -                     | 0          | 0      | 0           | Fucus: 10%                       | 6, 3       | mussels, barnacles     |
| 60       | -                     | 0          | 0      | 0           | Ulva: 30%                        | 6, 7, 4, 1 | -                      |
| 80       | Start @ 74 ft         | 6          | 0      | 1           | Ulva: 30%, Sarg: 5%              | 0, 2, 1, 4 | -                      |
| 100      |                       | 28         | 30     | 32          | -                                | 0, 2       | -                      |
| 120      |                       | 25         | 14     | 2           | Ulva: 10%                        | 0, 2       | -                      |
| 140      |                       | 12         | 1      | 18          | Grac: 10%, Lam: 10%,<br>Ulva: 5% | 0, 2       | -                      |
| 160      | End @ 145 ft          | 0          | 0      | 0           | Lam: 5%                          | 0          | -                      |
| 180      | -                     | 0          | 0      | 0           | Lam: 5%                          | 0, 8       | Wood debris on surface |
| 200      | -                     | 0          | 0      | 0           | Lam: 5%                          | 0          | -                      |
| 220      | -                     | 0          | 0      | 0           | -                                | 0, 8       | Wood debris on surface |
| 240      | -                     | 0          | 0      | 0           | -                                | 0, 8       | Wood debris on surface |
| 260      | -                     | 0          | 0      | 0           | -                                | 0          | -                      |
| 280      | -                     | 0          | 0      | 0           | -                                | 0          | -                      |
| 300      | -                     | 0          | 0      | 0           | -                                | 0          | -                      |

NOTES: Began survey @ 300 ft, swam towards shore, Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time: <u>Variable</u> | Transect: 32 |
|----------------------|-----------------------|--------------|
|----------------------|-----------------------|--------------|

Observer: MI Tide: Variable Datasheet: 1 of 1

|          |                       | <u>Tur</u> | ion Co | <u>unts</u> | •                   |                             |                                                                 |
|----------|-----------------------|------------|--------|-------------|---------------------|-----------------------------|-----------------------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae          | Substrate                   | Other                                                           |
| 0        | -                     | 0          | 0      | 0           | -                   | 6                           | -                                                               |
| 20       | -                     | 0          | 0      | 0           | Fucus: 35%          | 6, 5                        | glass shards                                                    |
| 40       | -                     | 0          | 0      | 0           | Fucus: 25%          | 5, 6, 1                     | -                                                               |
| 60       | -                     | 0          | 0      | 0           | Ulva: 40%           | 4, 1, 6, glass              | glass shards                                                    |
| 80       | -                     | 0          | 0      | 0           | Ulva: 30%, Cer 20%  | 5, 4, 1, 2,<br>glass, metal | Glass and metal debris                                          |
| 100      | Start @ 94 ft         | 34         | 12     | 14          | Sarg 30%, Ulva: 10% | 0, 2                        | Patch @ 90 ft (6 turions). Large concrete block in eelgrass     |
| 120      | End @<br>117 ft       | 12         | 7      | 9           | Grac 5%, Ulva: 10%  | 0, 2                        | surf perch, small boulders, gunnels, sea<br>star, red rock crab |
| 140      | -                     | 0          | 0      | 0           | Ulva: 5%, Sarg 5%   | 0, 2                        | flounder                                                        |
| 160      | -                     | 0          | 0      | 0           | Ulva: 2%            | 0, 8, glass                 | Glass and wood debris on surface                                |
| 180      | -                     | 0          | 0      | 0           | -                   | 0, 8, glass                 | Glass and wood debris on surface                                |
| 200      | -                     | 0          | 0      | 0           | -                   | 0, 8, glass                 | Sparse glass and wood debris on surface                         |
| 220      | -                     | 0          | 0      | 0           | -                   | 0, 8, glass                 | Sparse glass and wood debris on surface                         |
| 240      | -                     | 0          | 0      | 0           | -                   | 0, 8, glass                 | Sparse glass and wood debris on surface                         |
| 260      | -                     | 0          | 0      | 0           | -                   | 0, glass                    | Sparse glass on surface                                         |
| 280      | -                     | 0          | 0      | 0           | -                   | 0, glass                    | Sparse glass on surface                                         |
| 300      | -                     | 0          | 0      | 0           | -                   | 0, glass                    | Sparse glass on surface                                         |

NOTES: Eelgrass 4 to 6 ft tall; 15 % epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: 33 |  |
|---------------|-------|----------|--------------|--|

Observer: JS \_\_\_\_ Tide: Variable \_\_ Datasheet: \_\_1\_\_ of \_\_1\_\_

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | -                       |           |                        |
|----------|-----------------------|------------|--------|-------------|-------------------------|-----------|------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae              | Substrate | Other                  |
| 0        | -                     | 0          | 0      | 0           | -                       | 6, 5      | -                      |
| 20       | -                     | 0          | 0      | 0           | Fucus: 25%              | 6, 1, 4   | glass shards           |
| 40       | -                     | 0          | 0      | 0           | Fucus: 5%               | 3, 1      | -                      |
| 60       | -                     | 0          | 0      | 0           | Ulva: 10%               | 4, 3, 5   | mussels, barnacles     |
| 80       | -                     | 0          | 0      | 0           | Ulva: 75%               | 4, 1, 6   | -                      |
| 100      | Start @<br>101 ft     | 1          | 0      | 0           | Ulva: 5%, Laminaria: 5% | 0, 2, 5   | purple sea star        |
| 120      |                       | 24         | 16     | 18          | -                       | 0, 2      | -                      |
| 140      | End<br>@ 148 ft       | 12         | 12     | 10          | -                       | 0, 2      | -                      |
| 160      | -                     | 0          | 0      | 0           | -                       | 0         | -                      |
| 180      | -                     | 0          | 0      | 0           | -                       | 0, 8      | Wood debris on surface |
| 200      | -                     | 0          | 0      | 0           | -                       | 0         | -                      |
| 220      | -                     | 0          | 0      | 0           | -                       | 0         |                        |
| 240      | -                     | 0          | 0      | 0           | -                       | 0, 8      | Wood debris on surface |
| 260      | -                     | 0          | 0      | 0           | -                       | 0         |                        |
| 280      | -                     | 0          | 0      | 0           | -                       | 0         |                        |
| 300      | -                     | 0          | 0      | 0           | -                       | 0         |                        |

NOTES: Began survey at 300 ft; swam towards shore. eelgrass 4-6 ft tall, ~10-15% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key



**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time: | Variable | Transect: | 34 |
|----------------------|-------|----------|-----------|----|
|                      |       |          |           |    |

Observer: <u>JS</u> Tide: <u>Variable</u> Datasheet: \_1\_ of \_1\_

|          | •                     | <u>Tur</u> | ion Co | <u>unts</u> | -                    |             |                           |
|----------|-----------------------|------------|--------|-------------|----------------------|-------------|---------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae           | Substrate   | Other                     |
| 0        | -                     | 0          | 0      | 0           | -                    | 6, 8        | pile stubs                |
| 20       | -                     | 0          | 0      | 0           | Fucus: 20%, Ulva: 5% | 1, 5, glass | glass shards, rubber hose |
| 40       | -                     | 0          | 0      | 0           | Fucus: 5%, Ulva: 10% | 3, 1        | mussels, oysters          |
| 60       | -                     | 0          | 0      | 0           | Ulva: 60%            | 6           | barnacles, mussels        |
| 80       | -                     | 0          | 0      | 0           | Ulva: 70%            | 2, 4        | -                         |
| 100      | Start<br>@ 87 ft      | 22         | 24     | 20          | -                    | 0, 2        | -                         |
| 120      |                       | 18         | 26     | 20          | -                    | 0, 2        | -                         |
| 140      |                       | 16         | 14     | 16          | -                    | 0, 2        | -                         |
| 160      | End @<br>153 ft       | 16         | 18     | 14          | -                    | 0, 2        | -                         |
| 180      | -                     | 1          | 1      | 1           | -                    | 0           | -                         |
| 200      | -                     | 0          | 0      | 0           | -                    | 0           | -                         |
| 220      | -                     | 0          | 0      | 0           | -                    | 0, 8        | Wood debris on surface    |
| 240      | -                     | 0          | 0      | 0           | -                    | 0           | -                         |
| 260      | -                     | 0          | 0      | 0           | -                    | 0,8         | Wood debris on surface    |
| 280      | -                     | 0          | 0      | 0           | -                    | 0           | -                         |
| 300      | -                     | 0          | 0      | 0           | -                    | 0           | -                         |

NOTES: Began survey at 300 ft; swam towards shore. eelgrass 4-6 ft tall, ~10-15% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time:_ | Variable | Transect: | 35 |
|---------------|--------|----------|-----------|----|
|               |        |          |           |    |

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_\_1\_ of \_\_1\_

|          | -                     | Tur | ion Co | <u>unts</u> | •          |                |                          |
|----------|-----------------------|-----|--------|-------------|------------|----------------|--------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10          | Macroalgae | Substrate      | Other                    |
| 0        | -                     | 0   | 0      | 0           | Fucus: 20% | 6, 8           | pile stubs               |
| 20       | -                     | 0   | 0      | 0           | Fucus: 30% | 6, 1, 4, glass | glass shards, pile stubs |
| 40       | -                     | 0   | 0      | 0           | Ulva: 20%  | 3, 4, 6        |                          |
| 60       | Start @<br>77 ft      | 0   | 0      | 0           | Ulva: 80%  | 6, 3           |                          |
| 80       |                       | 0   | 1      | 0           | Ulva: 10%  | 4, 3, 6, 1, 2  |                          |
| 100      |                       | 17  | 16     | 12          | <u>-</u>   | 0, 2           | Reproductives            |
| 120      |                       | 8   | 17     | 7           | -          | 0, 2           |                          |
| 140      | End @<br>155 ft       | 4   | 0      | 1           | -          | 0, 2           |                          |
| 160      |                       | 0   | 0      | 0           | -          | 0              |                          |
| 180      | -                     | 0   | 0      | 0           | -          | 0, 8           | Wood debris on surface   |
| 200      | -                     | 0   | 0      | 0           | -          | 0              |                          |
| 220      | -                     | 0   | 0      | 0           | -          | 0, 8           | Wood debris on surface   |
| 240      | -                     | 0   | 0      | 0           | -          | 0, 8           | Wood debris on surface   |
| 260      | -                     | 0   | 0      | 0           | -          | 0, 8           | Wood debris on surface   |
| 280      | -                     | 0   | 0      | 0           | -          | 0              |                          |
| 300      | -                     | 0   | 0      | 0           | -          | 0              |                          |

NOTES: Eelgrass 4 to 5 ft tall; ~10% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 36 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_\_1\_ of \_\_1\_\_

|          |                       | Tur | ion Co | <u>unts</u> |            |            |                             |
|----------|-----------------------|-----|--------|-------------|------------|------------|-----------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 6      | 10          | Macroalgae | Substrate  | Other                       |
| 0        | -                     | 0   | 0      | 0           | -          | 5, 6, 8    | pile stub, sparse barnacles |
| 20       | -                     | 0   | 0      | 0           | Ulva: 5%   | 2, 4, 6, 1 | -                           |
| 40       | -                     | 0   | 0      | 0           | Ulva: 15%  | 3, 6, 1, 2 | -                           |
| 60       | -                     | 0   | 0      | 0           | Ulva: 25%  | 4, 6, 3, 1 | -                           |
| 80       | Start @<br>77 ft      | 19  | 28     | 22          | -          | 2, 1       | -                           |
| 100      | -                     | 26  | 19     | 14          | -          | 0, 2       | Reproductives               |
| 120      | -                     | 8   | 12     | 9           | -          | 0, 2       | Reproductives               |
| 140      | End @<br>144 ft       | 5   | 6      | 2           | -          | 0, 2       | -                           |
| 160      | -                     | 0   | 0      | 0           | -          | 0          | -                           |
| 180      | -                     | 0   | 0      | 0           | _          | 0, 8       | Wood debris on surface      |
| 200      | -                     | 0   | 0      | 0           | -          | 0, 8       | Wood debris on surface      |
| 220      | -                     | 0   | 0      | 0           | -          | 0          | -                           |
| 240      | -                     | 0   | 0      | 0           | -          | 0, 8       | Wood debris on surface      |
| 260      | -                     | 0   | 0      | 0           | -          | 0          | -                           |
| 280      | -                     | 0   | 0      | 0           | -          | 0          | -                           |
| 300      | -                     | 0   | 0      | 0           | -          | 0          | -                           |

NOTES: Eelgrass 4 to 6 ft tall; 5 to 10% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

# Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

Ceramium (Cer); Chondracanthus exasperatus (Chond); Mazzaella splendens (Mazz); Cladophora sericea (Clad)



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | ime: Va | riable Tr | ransect: 3 | २७ |
|---------------|---------|-----------|------------|----|

Observer: <u>LL</u> \_\_\_\_ Tide: <u>Variable</u> Datasheet: \_1\_ of \_\_1\_

#### **Turion Counts Eelgrass** Distance Begin/End Macroalgae Substrate Other Fucus: 25% 5, 6, 7, glass glass shards Ulva: 10%, Fucus: 5% 4, 1, 6, 5 6, 4, 1 Ulva: 10% Start 57 ft Ulva: 15% 2, 0, 1, 4 2, 0, 1 Ulva: 10% 0, 2 0, 2 Repro 0, 2 0, 2 End @ 187 ft 0,8 Wood debris on surface 0, 8 Wood debris on surface 0, 8 Wood debris on surface

NOTES: Eelgrass 4 to 6 ft tall; 5 to 10% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)

### Macroalgae Key:

Ulva lactuca (Ulva); Smithora naiadum (Smith); Sargassum spp (Sarg); Laminaria (Lam); Gracilaria (Grac); Fucus gardneri (Fucus);

 $Ceramium\ (Cer);\ Chondracanthus\ exasperatus\ (Chond);\ Mazzaella\ splendens\ (Mazz);\ Cladophora\ sericea\ (Clad)$ 



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 38 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: <u>JS</u> Tide: <u>Variable</u> Datasheet: <u>1</u> of <u>1</u>

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> |            |            |              |
|----------|-----------------------|------------|--------|-------------|------------|------------|--------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae | Substrate  | Other        |
| 0        | -                     | 0          | 0      | 0           | Fucus: 15% | 6, 5       | -            |
| 20       | -                     | 0          | 0      | 0           | Fucus: 5%  | 6, 4, 2, 1 | <del>-</del> |
| 40       | -                     | 0          | 0      | 0           | -          | 2, 3       | <del>-</del> |
| 60       | -                     | 0          | 0      | 0           | -          | 2, 3       | -            |
| 80       | Start @<br>65 ft      | 0          | 0      | 0           | -          | 2          | <del>-</del> |
| 100      |                       | 25         | 27     | 0           | -          | 0, 2       | -            |
| 120      |                       | 10         | 12     | 10          | -          | 0, 2       | -            |
| 140      |                       | 20         | 22     | 23          | -          | 0, 2       | -            |
| 160      |                       | 7          | 8      | 5           | -          | 0, 2       | -            |
| 180      |                       | 10         | 6      | 4           | -          | 0, 2       | -            |
| 200      | End @<br>217 ft       | 12         | 0      | 0           | -          | 0, 2       | -            |
| 220      |                       | 12         | 0      | 0           |            | 0          | -            |
| 240      |                       | 12         | 0      | 0           |            | 0          | -            |
| 260      |                       | 12         | 0      | 0           |            | 0          | -            |
| 280      |                       | 12         | 0      | 0           |            | 0          | -            |
| 300      |                       | 12         | 0      | 0           |            | 0          | -            |

NOTES: eelgrass 4-6 ft tall, ~10-15% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: | 39 |
|---------------|-------|----------|-----------|----|
|               |       |          |           |    |

Observer: <u>JS</u> Tide: <u>Variable</u> Datasheet: <u>1</u> of <u>1</u>

|          | -                     | <u>Tur</u> | ion Co | <u>unts</u> | •          |                |                                                   |
|----------|-----------------------|------------|--------|-------------|------------|----------------|---------------------------------------------------|
| Distance | Eelgrass<br>Begin/End | 2          | 6      | 10          | Macroalgae | Substrate      | Other                                             |
| 0        | -                     | 0          | 0      | 0           | Fucus: 30% | 6, 5           | barnacles, shells                                 |
| 20       | -                     | 0          | 0      | 0           | -          | 4, 2, 1, glass | glass                                             |
| 40       | -                     | 0          | 0      | 0           | -          | 4, 1, 2        |                                                   |
| 60       | -                     | 2          | 0      | 1           | -          | 0, 2           | -                                                 |
| 80       | Start @<br>74 ft      | 12         | 10     | 15          | -          | 0, 2           | -                                                 |
| 100      |                       | 20         | 20     | 20          | -          | 0, 2           | -                                                 |
| 120      |                       | 30         | 20     | 25          | -          | 0, 2           | -                                                 |
| 140      |                       | 7          | 10     | 6           | -          | 0, 2           | -                                                 |
| 160      |                       | 8          | 7      | 6           | -          | 0, 2           | -                                                 |
| 180      |                       | 10         | 8      | 10          | -          | 2, 0, 8        | Wood debris on surface                            |
| 200      |                       | 10         | 8      | 10          | -          | 0, 2           | Less than 1 ft visibility                         |
| 220      |                       | 10         | 8      | 10          |            | 0, 2           | -                                                 |
| 240      |                       | 10         | 8      | 10          |            | 0, 2, 8        | Wood debris on surface. Less than 1 ft visibility |
| 260      |                       | 10         | 8      | 10          |            | 0, 2, 8        | Wood debris on surface. Less than 1 ft visibility |
| 280      |                       | 10         | 8      | 10          |            | 0, 2           | -                                                 |
| 300      |                       | 10         | 8      | 10          |            | 0, 2           | -                                                 |

NOTES: eelgrass 4-6 ft tall, ~10-15% epiphytes

# Substrate Key:

Silt (0); Shell Hash (1); Sand (2); Gravel (3); Cobble (4); Boulder (5); Concrete Rubble/Debris (6); Bricks (7); Wood waste (8)



Location: Cornwall Avenue Landfill

**Eelgrass and Macroalgae Survey** 

| Date: <u>6/30/15</u> | Time:Variable_ | Transect: 40 |  |
|----------------------|----------------|--------------|--|
|----------------------|----------------|--------------|--|

Observer: <u>LL</u> Tide: <u>Variable</u> Datasheet: \_1\_ of \_1\_

|                                    |                  | Tur | ion Co | unts |            |                             |                                     |  |
|------------------------------------|------------------|-----|--------|------|------------|-----------------------------|-------------------------------------|--|
| Eelgrass Distance Begin/End 2 6 10 |                  |     |        |      | Macroalgae | Substrate                   | Other                               |  |
| 0                                  | -                | 0   | 0      | 0    | Fucus: 30% | 5, 6                        | barnacles                           |  |
| 20                                 | -                | 0   | 0      | 0    | Fucus: 10% | 4, 1, 6<br>4 (50%), 2, SF   | -                                   |  |
| 40                                 | -                | 0   | 0      | 0    | -          | (30%)                       | -                                   |  |
| 60                                 | Start<br>@ 54 ft | 32  | 27     | 25   | -          | firm silty sand, SF<br>(5%) | Reproductives                       |  |
| 80                                 |                  | 29  | 17     | 24   | -          | firm silty sand, SF<br>(5%) | Reproductives                       |  |
| 100                                |                  | 24  | 27     | 19   | -          | 0, 2                        | -                                   |  |
| 120                                |                  | 4   | 2      | 4    | -          | 0, 2, 8                     | Wood debris on surface (large bark) |  |
| 140                                |                  | 11  | 19     | 12   | -          | 0, 2                        | Reproductives                       |  |
| 160                                |                  | 12  | 17     | 14   | Ulva: 10%  | 0, 2                        | -                                   |  |
| 180                                |                  | 14  | 8      | 19   | -          | 0, 2                        | -                                   |  |
| 200                                | End<br>@ 214 ft  | 2   | 3      | 1    | -          | 0, 2                        | Wood debris on surface (large bark) |  |
| 220                                | -                | 0   | 0      | 0    | -          | 0, 2                        | -                                   |  |
| 240                                | -                | 0   | 0      | 0    | -          | 0, 8                        | Wood debris on surface (large bark) |  |
| 260                                | -                | 0   | 0      | 0    | -          | 0, 8                        | Wood debris on surface (large bark) |  |
| 280                                | -                | 0   | 0      | 0    | -          | 0                           | -                                   |  |
| 300                                | #VALUE!          | 0   | 0      | 0    | -          | 0                           | -                                   |  |

NOTES: Eelgrass 4 to 6 ft tall; ~10% epiphytes.



Location: Cornwall Avenue Landfill

**Eelgrass and Macroalgae Survey** 

| Date: 6/30/15 | Time: | Variable | Transect: 41 |
|---------------|-------|----------|--------------|
|               |       |          |              |

Observer: <u>LL</u> Tide: <u>Variable</u> Datasheet: \_\_1\_ of \_\_1\_

|          |                       | Tur | ion Co | <u>unts</u> |            |                         |                        |
|----------|-----------------------|-----|--------|-------------|------------|-------------------------|------------------------|
| Distance | Eelgrass<br>Begin/End | 2   | 2 6    |             | Macroalgae | Substrate               | Other                  |
| 0        | -                     | 0   | 0      | 0           | Fucus: 20% | 5, 6                    | barnacles              |
| 20       | -                     | 0   | 0      | 0           | Ulva: 10%  | Ulva: 10% 5, 6, 4, 1, 2 |                        |
| 40       | -                     | 0   | 0      | 0           | Ulva: 10%  | 0, 2, 1                 | -                      |
| 60       | Start @<br>52 ft      | 18  | 14     | 14          | -          | 0, 2, 1                 | -                      |
| 80       | -                     | 42  | 29     | 37          | -          | 0, 2, 1                 | -                      |
| 100      | -                     | 19  | 11     | 12          | -          | 0, 2                    | -                      |
| 120      | -                     | 9   | 11     | 9           | -          | 0, 2                    | -                      |
| 140      | -                     | 4   | 6      | 3           | -          | 0, 2, 8                 | Wood debris on surface |
| 160      | -                     | 17  | 14     | 19          | -          | 0, 2                    | -                      |
| 180      | -                     | 6   | 4      | 14          | -          | 0, 2, 8                 | Wood debris on surface |
| 200      | End<br>@ 218 ft       | 4   | 6      | 11          | -          | 0                       | -                      |
| 220      | -                     | 0   | 0      | 0           | -          | 0, 8                    | Wood debris on surface |
| 240      | -                     | 0   | 0      | 0           | -          | 0, 9                    | Wood debris on surface |
| 260      | -                     | 0   | 0      | 0           | -          | 0                       | -                      |
| 280      | -                     | 0   | 0      | 0           | -          | 0                       | -                      |
| 300      | -                     | 0   | 0      | 0           | -          | 0, 8                    | Wood debris on surface |

NOTES: eelgrass 4-6 ft tall, ~10-15% epiphytes

## **Hilton Avenue Soil Borrow Source**

#### **APPENDIX F**

#### HILTON AVENUE SOIL BORROW SOURCE

#### TABLE OF CONTENTS

| Introduction         | 1 |
|----------------------|---|
| Hilton Avenue Soil   | 2 |
| Geotechnical Testing | 2 |
| Chemical Analysis    | 3 |

#### **ATTACHMENTS**

#### F.1 Hilton Avenue Soil Borrow Source Evaluation

#### F.1a Geotechnical Testing

Figure F.1a-1 Hilton Avenue Soil Stockpile Volume Exhibit Figures F.1a-2 to F.1a-5 Soil Classification System and Log of Test Pits

Figure F.1a-6 Soil Plasticity
Figure F.1a-7 Grain Size

Figures F.1a-8 and F.1a-9 Moisture-Density Relationship

#### F.1b Chemical Analysis - 2015

Figure F.1b-1 Composite Sample Boring Locations

Figures F.1b -2 to F.1b -6 Hilton Avenue Soil Characterization Boring Logs

Table F.1b -1 PSLs for Determination of Analytical Methods

Table F.1b -2 Hilton Avenue Soil Analytical Results

#### F.1c Chemical Analysis – Historical Data

Table F.1c-3 1998 Analytical Results – Hilton Avenue Soil Samples

Environmental Site Assessment – Squalicum Peninsula Project, GeoEngineers, November 1998

Dredging and Sediment Analysis, US Army Corp of Engineers, July 1976

- F.2 Early Action Completion Report Hilton Avenue Soil Borrow Transfer to Cornwall Landfill Site
- F.3 Preload Settlement Monitoring Results

#### Introduction

The Cornwall Avenue Landfill Site (Site) is relatively flat in its current condition. An engineered landfill cover system is being designed for the Site, as described in the Engineering Design Report. Per the Minimum Functional Standards (MFS) for solid waste handling (Chapter 173-304 WAC), a landfill cover

must have sufficient slope to promote drainage off the cover system. The MFS requires that a minimum 2 percent slope be established and maintained throughout post-closure operation and maintenance of the landfill. This typically requires that steeper slopes be established at the time of landfill closure in anticipation of post-closure settlement that occurs due to decomposition of the waste and settlement due to consolidation from the weight of the closure cap.

As discussed in the EDR, up to 46,000 in-place cubic yards of fill will be required to establish Site design grades and maintain at least a minimum 2 percent slope over the upland portion of the Site. This is a significant volume of fill which is not available on Site and must be imported. Placing the additional soil at the Site months or years in advance of the landfill cover construction would provide beneficial preloading, which would minimize the long-term settlement potential and aid in preventing depressions that could form over time in the landfill cover.

The Port identified an offsite borrow source to provide general fill at the Site. The source of soil was located on property owned by the Port, along Hilton Avenue in Bellingham, Washington. The following sections provide an evaluation of the geotechnical and environmental suitability of this source of fill.

#### **Hilton Avenue Soil**

The subject soil was originally intertidal sediment that was dredged from the Bellingham waterfront to create the Port's Squalicum Inner Harbor in the early 1980s. The material was used to create the uplands where the Hotel Bellwether and restaurants are currently located. Then, in the late 1990s and early 2000s, the soil was relocated to its current Hilton Avenue location during construction of the Hotel Bellwether subgrade parking garage and the Bellwether office buildings. Figure F.2-1 shows the current location of the soil stockpile, and presents surveyed elevation contours that were used to assess the volume of soil available. Based on the elevation survey, conducted in October 2015 by Wilson Engineering, there appears to be sufficient soil available to approximately meet the fill requirements to establish the subgrade elevations required in advance of placing the final cover system for the Site cleanup action.

## **Geotechnical Testing**

On October 26, 2015, Landau Associates conducted a test pit investigation to collect samples for geotechnical testing. The location of the test pits (with prefix HATP) are shown on Figure F.1-1. The soil was evaluated based on the following criteria:

F-2

- Manual classification (Unified Soil Classification System and ASTM 2487 and 2488)
  - See Figures F.1-2 to F.1-5
- Plasticity (Atterberg limit test by ASTM 4318)
  - See Figure F.1-6
- Grain size evaluation by sieve analysis
  - See Figure F.1-7

- Moisture-density relationship by ASTM D 1557C and ASTM D 4718
  - See Figures F.1-8 and F.1-9.

The results of these geotechnical tests are provided as Attachment F.1. In summary, the visual classification and laboratory testing indicate the soil in the stockpile is of variable composition, ranging from gravelly sand with silt to sandy clay with gravel. Although clay is present, based on the plasticity and moisture-density testing, the soil is considered appropriate for use as general fill to establish Site grades.

#### **Chemical Analysis**

The soil has been characterized by laboratory analysis on three occasions. The latest of these characterizations was conducted by Landau Associates in 2015. The material was previously evaluated by GeoEngineers in 1998 during an environmental site assessment.

On December 10, 2015, Landau Associates collected five vertically composited samples from the material for analytical testing from the locations shown on Figure F.2-1. The samples were retrieved using direct-push sampling equipment, with exploration oversight and sample collection by a Landau Associates environmental professional. A single composite sample representing the full thickness of the fill material was collected from each location. Soil characterization boring logs were prepared during the investigation, which are provided in Figures F.2-2 to F.2-6.

The chemical testing parameters were developed in cooperation with the Washington State Department of Ecology (Ecology), to determine if the soil has been contaminated based on its location in a waterfront area that was historically used for industrial purposes. All samples were analyzed for total petroleum hydrocarbons (TPH) using method NWTPH-HCID, with follow up analysis for any TPH ranges that were detected. Samples were also tested for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, and zinc), semivolatile organic compounds (SVOCs), total organic carbon, and dioxins/furans.

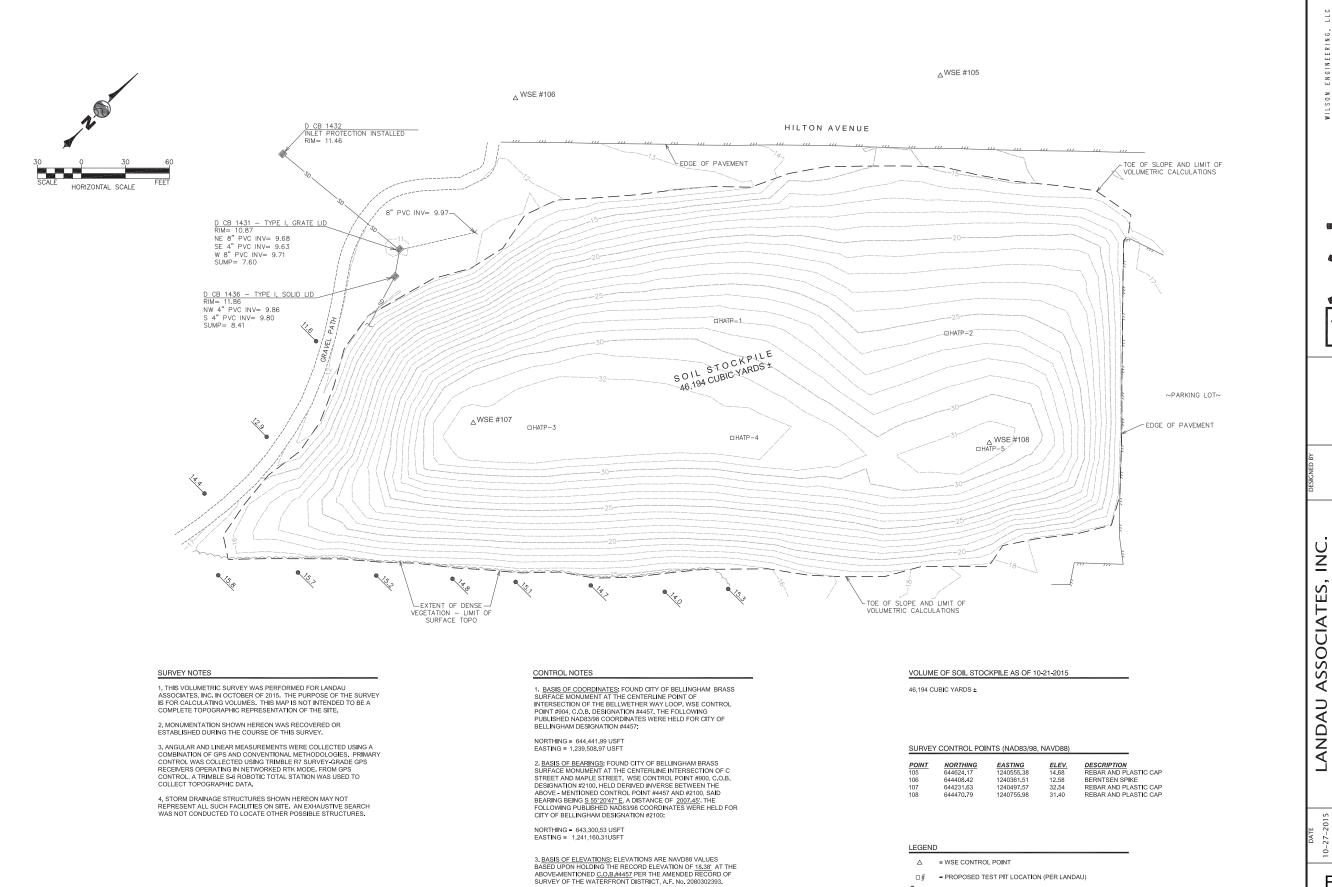
Highly conservative exposure and migration pathways were used to develop the screening levels used to assess whether the soil is suitable for use on the Site. As shown in Table F.2-1, the potential exposure pathways considered in screening the data included direct contact (ingestion), protection of terrestrial species, protection of marine sediment quality, and protection of groundwater in both unsaturated and saturated soil conditions. The most protective of these values was used as the screening level for evaluation of soil quality. It should be noted that these screening levels consider exposure pathways that may not be applicable for the development of soil cleanup levels, but meeting these extremely conservative screening levels clearly demonstrates that the use of this soil for general fill at the Site does not pose a threat to human health of the environment.

The analytical results for the composite samples are presented in Table F.2-2. As shown in the table, all detected constituents were below the screening levels, with only one exception. Copper was

F-3

detected in one sample at a 40.7 milligrams per kilogram (mg/kg), a concentration slightly greater than the preliminary screening level of 36 mg/kg. However, because the highest copper concentration is less than 2 times the screening level, less than 10 percent of the copper data exceed the screening level, and the 95 percent upper confidence limit on the mean for the copper data is approximately 25 mg/kg, (well below the screening level), the soil is considered to meet the copper screening level.

As noted above, the soil quality was also evaluated in 1998. Analytical data from the 1998 evaluation is provided in Table F.2-3, and the two associated reports are provided as attachment F.2.b for reference. As shown in Table F.2-3, no volatile organic compounds (VOCs), SVOCs, or polychlorinated biphenyls (PCBs) were detected. One sample out of the 5 analyzed in 1998 for mercury had a detectable concentration of mercury (0.105 mg/kg), which is greater than the screening level of 0.07 mg/kg. Mercury was below the screening level in each of the 5 samples analyzed in 2015. Because the single detection of mercury in 1998 is less than 2 times the screening level, less than 10 percent of the mercury data exceed the screening level, and the 95 percent upper confidence limit on the mean for mercury including all 16 analytical results available is approximately 0.05 mg/kg (well below the screening level), the soil is considered to meet the mercury screening level.


Sediment data from a US Army Corps of Engineers study in 1976 was also reviewed and is attached. We considered these data as background information indicative of the generally good soil/sediment quality, but not directly representative of Hilton Avenue soil because it was associated with a much larger dredge area than the area from which the Hilton soil originated. The 1976 data should be considered as no longer representative of the mixed fill (because they represent the upper surface of the sediment prior to dredging and mixing), and subject to the provisions of WAC 273-340-360(2)(g), which allows mixing under certain circumstances.

#### Conclusion

Based on the laboratory analyses attached and the considerations discussed above, the use of the Hilton Avenue soil at the Site was approved as an early action by Ecology on March 2, 2016 for reuse as fill material at the Site to establish grades beneath the impermeable cover system. The fill was transferred and placed on the Cornwall Avenue Landfill Site from June 1 through June 28, 2016. The early action completion report for importing and placing the fil on the Cornwall Landfill Site is provided as Appendix F.3.

## **Hilton Avenue Soil Borrow Source Evaluation**

# **Geotechnical Testing**



WILSON ENGINEERING, 1 8 0 5 D U P O N T STRE B E L L I N G H A M, W A 9 8 2 (360) 733-6100 • FAX (360) 647-

Z ш **M** z G **0 ....** Z

RB CKED

AVENUE SOIL STOCKPILE VOLUME EXHIBIT

LANDAU HILTON

AS SHOWN JOB NUMBER 2015–008X

Figure F.1a-1

= SPOT ELEVATION (TYP)

#### Soil Classification System

#### **MAJOR DIVISIONS**

#### **USCS** GRAPHIC LETTER SYMBOL SYMBOL (1)

#### **TYPICAL DESCRIPTIONS** (2)(3)

|                                                                       | DIVISIONS                                  |                                        | STWIDGE 3 | INDOL | DESCRIPTIONS                                                                                                   |
|-----------------------------------------------------------------------|--------------------------------------------|----------------------------------------|-----------|-------|----------------------------------------------------------------------------------------------------------------|
|                                                                       | GRAVEL AND                                 | CLEAN GRAVEL                           | 0 0 0 0 0 | GW    | Well-graded gravel; gravel/sand mixture(s); little or no fines                                                 |
| AINED SOIL of material is 200 sieve size)                             | GRAVELLY SOIL                              | (Little or no fines)                   |           | GP    | Poorly graded gravel; gravel/sand mixture(s); little or no fines                                               |
| ED (nater                                                             | (More than 50% of coarse fraction retained | GRAVEL WITH FINES                      |           | GM    | Silty gravel; gravel/sand/silt mixture(s)                                                                      |
| -GRAINED<br>50% of mat<br>No. 200 siev                                | on No. 4 sieve)                            | (Appreciable amount of fines)          |           | GC    | Clayey gravel; gravel/sand/clay mixture(s)                                                                     |
| -GRA                                                                  | SAND AND                                   | CLEAN SAND                             |           | SW    | Well-graded sand; gravelly sand; little or no fines                                                            |
| SSE-<br>than<br>than                                                  | SANDY SOIL                                 | (Little or no fines)                   |           | SP    | Poorly graded sand; gravelly sand; little or no fines                                                          |
| COARSE-<br>(More than<br>larger than I                                | (More than 50% of coarse fraction passed   | SAND WITH FINES (Appreciable amount of |           | SM    | Silty sand; sand/silt mixture(s)                                                                               |
| $O = \overline{a}$                                                    | through No. 4 sieve)                       | fines)                                 |           | SC    | Clayey sand; sand/clay mixture(s)                                                                              |
| SOIL of the than ize)                                                 | SILTA                                      | ND CLAY                                |           | ML    | Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity |
| ED SC<br>50% of<br>naller th                                          |                                            |                                        |           | CL    | Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay                   |
| INED SOIL an 50% of smaller than sieve size)                          | (Liquia ilmi)                              | less than 50)                          |           | OL    | Organic silt; organic, silty clay of low plasticity                                                            |
| RAIN<br>e than<br>al is sn<br>200 sie                                 | SII T A                                    | ND CLAY                                | ШШШ       | МН    | Inorganic silt; micaceous or diatomaceous fine sand                                                            |
| FINE-GRAINED<br>(More than 50%<br>material is smalle<br>No. 200 sieve |                                            |                                        |           | СН    | Inorganic clay of high plasticity; fat clay                                                                    |
| ⊥<br>E<br>E                                                           | (Liquia limit ç                            | greater than 50)                       |           | ОН    | Organic clay of medium to high plasticity; organic silt                                                        |
|                                                                       | HIGHLY OF                                  | RGANIC SOIL                            |           | PT    | Peat; humus; swamp soil with high organic content                                                              |

**OTHER MATERIALS** 

#### **GRAPHIC LETTER** SYMBOL SYMBOL

#### TYPICAL DESCRIPTIONS

| PAVEMENT | AC or PC  | Asphalt concrete pavement or Portland cement pavement |  |  |  |
|----------|-----------|-------------------------------------------------------|--|--|--|
| ROCK     | RK        | Rock (See Rock Classification)                        |  |  |  |
| WOOD     | WD WD     | Wood, lumber, wood chips                              |  |  |  |
| DEBRIS   | 6/6/6/ DB | Construction debris, garbage                          |  |  |  |

- Notes: 1. USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
  - 2. Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
  - 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

 $\label{eq:primary constituent:} Secondary Constituents: $ > 50\% - "GRAVEL," "SAND," "SILT," "CLAY," etc. $ > 30\% and $ \leq 50\% - "very gravelly," "very sandy," "very silty," etc. $ > 15\% and $ \leq 30\% - "gravelly," "sandy," "silty," etc. $ < 5\% and $ \leq 15\% - "with gravel," "with sand," "with silt," etc. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with trace gravel," "with trace sand," "with trace silt," etc., or not noted. $ < 5\% - "with gravel," "with trace gravel," "with trace gravel," "with trace gravel," "with trace gravel," "with gravel," "$ 

4. Soil density or consistency descriptions are based on judgement using a combination of sampler penetration blow counts, drilling or excavating conditions, field tests, and laboratory tests, as appropriate.

#### Drilling and Sampling Key Field and Lab Test Data SAMPLER TYPE SAMPLE NUMBER & INTERVAL Code Description Code Description 3.25-inch O.D., 2.42-inch I.D. Split Spoon PP = 1.0Pocket Penetrometer, tsf b 2.00-inch O.D., 1.50-inch I.D. Split Spoon Sample Identification Number TV = 0.5Torvane, tsf Shelby Tube PID = 100 Photoionization Detector VOC screening, ppm С Recovery Depth Interval Moisture Content, % d Grab Sample W = 10Single-Tube Core Barrel D = 120Dry Density, pcf Sample Depth Interval Double-Tube Core Barrel -200 = 60 Material smaller than No. 200 sieve, % 2.50-inch O.D., 2.00-inch I.D. WSDOT GS Grain Size - See separate figure for data Portion of Sample Retained 3.00-inch O.D., 2.375-inch I.D. Mod. California ALAtterberg Limits - See separate figure for data for Archive or Analysis Other - See text if applicable GT Other Geotechnical Testing 300-lb Hammer, 30-inch Drop Chemical Analysis 1 CA 2 140-lb Hammer, 30-inch Drop Groundwater Pushed Approximate water level at time of drilling (ATD) Vibrocore (Rotosonic/Geoprobe) Approximate water level at time other than ATD Other - See text if applicable



Hilton Avenue Stockpile Bellingham, WA

Soil Classification System and Key

Figure F.1a-2

#### HATP-1 **SAMPLE DATA SOIL PROFILE GROUNDWATER** Excavation Method: \_\_Tracked Excavator Sample Number & Interval Graphic Symbol **USCS Symbol** Sampler Type Elevation (ft) Ground Elevation (ft): 28.0 ODepth (ft) **Test Data** DSB Logged By: S-1 DB Grass and Brown silty SAND with roots SW-25 Brown silty fine to medium sand with gravel and trace shells Groundwater not encountered. SC S-2 W = 25- 20 W = 17 Gray CLAY with sand and gravel 10 GS CL Gray sandy CLAY with gravel AL - 15 Gray clayey SAND with gravel and shells 15 Test Pit Completed 10/26/15 Total Depth of Test Pit = 17.0 ft. -20 25 -30 - 35 HATP-2

|              | SAM | PLE C                    | ATA          | A             |                |                | SOIL PROFILE                                                                                                                                                                                                                                           | GROUNDWATER                  |  |  |  |
|--------------|-----|--------------------------|--------------|---------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| 0 Depth (ft) | 20  | Sample Number & Interval | Sampler Type | A Test Data   | Graphic Symbol | DB SW-SM CL SW | Excavation Method: Tracked Excavator  Ground Elevation (ft): 26.0  Logged By: DSB  Grass and Brown silty SAND with gravel and shells  Brown silty gravelly fine to medium SAND  Gray gravelly sandy CLAY  Brown medium SAND with gravel and trace silt | Groundwater not encountered. |  |  |  |
| 15           |     |                          |              | eted 10/26/15 |                |                |                                                                                                                                                                                                                                                        | -                            |  |  |  |

Total Depth of Test Pit = 13.0 ft.

1. Stratigraphic contacts are based on field interpretations and are approximate. Notes:

2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions.

3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.

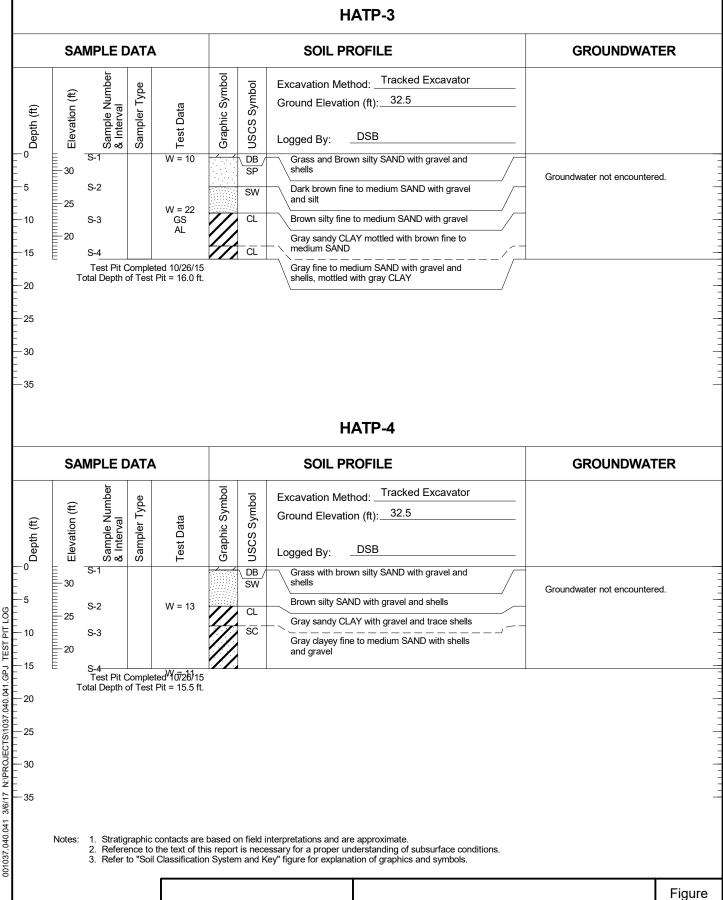


N:\PROJECTS\1037.040.041.GPJ TEST PIT LOG

001037.040.041 3/6/17

-20

- 25


-30

-35

Hilton Avenue Stockpile Bellingham, WA

Log of Test Pits

Figure F.1a-3



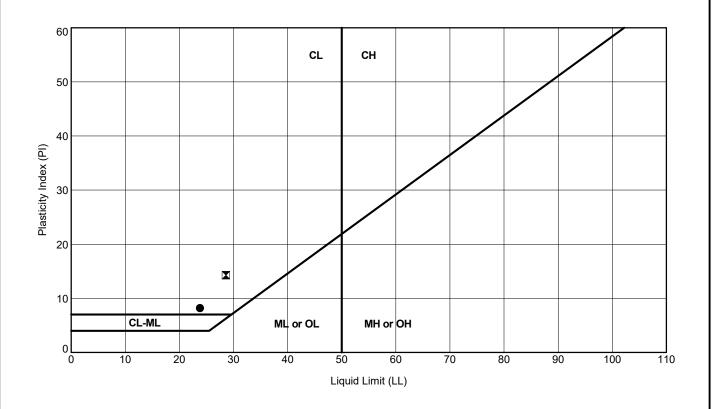
LANDAU ASSOCIATES

Hilton Avenue Stockpile Bellingham, WA

Log of Test Pits

F.1a-4

001037.040.041 3/6/17 N:\PROJECTS\1037.040.041.GPJ TEST PIT LOG

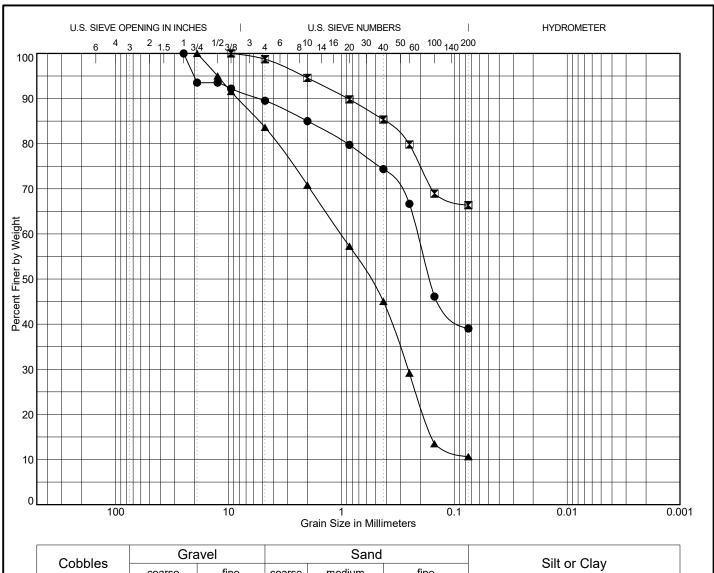

1. Stratigraphic contacts are based on field interpretations and are approximate. Notes:

2. Reference to the text of this report is necessary for a proper understanding of subsurface conditions.

3. Refer to "Soil Classification System and Key" figure for explanation of graphics and symbols.








### ATTERBERG LIMIT TEST RESULTS

| Symbol | Exploration<br>Number | Sample<br>Number | Depth<br>(ft) | Liquid<br>Limit<br>(%) | Plastic<br>Limit<br>(%) | Plasticity<br>Index<br>(%) | Natural<br>Moisture<br>(%) | Soil Description             | Unified Soil<br>Classification |
|--------|-----------------------|------------------|---------------|------------------------|-------------------------|----------------------------|----------------------------|------------------------------|--------------------------------|
| •      | HATP-1                |                  | 10.0          | 24                     | 16                      | 8                          | 17                         | Clayey SAND with gravel      | SC                             |
| ×      | HATP-3                |                  | 10.0          | 29                     | 14                      | 15                         | 22                         | Sandy CLAY with trace gravel | CL                             |

ASTM D 4318 Test Method





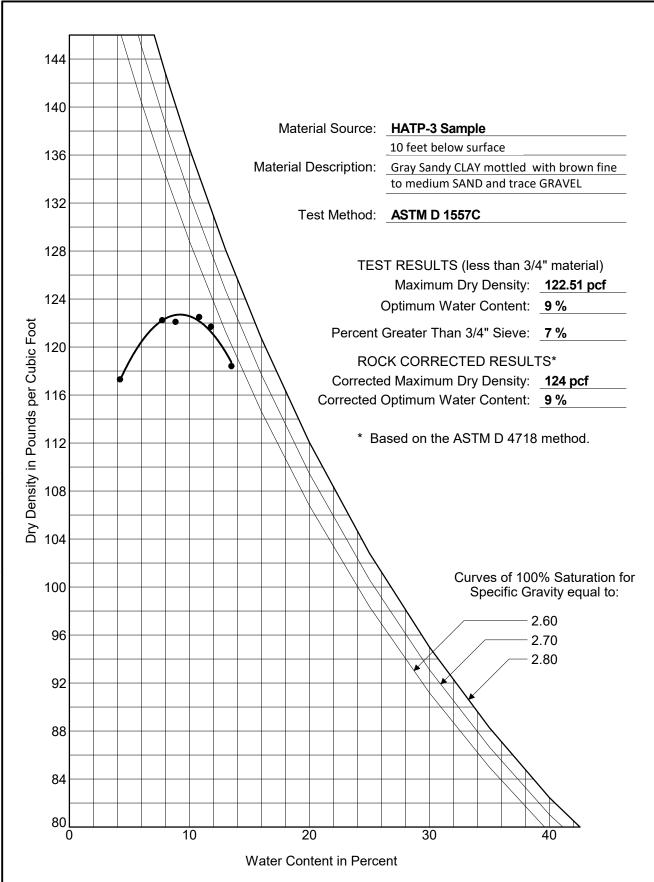
| Cobbles | Gra    | avel |        | Sand   |      | Silt or Clav |
|---------|--------|------|--------|--------|------|--------------|
| Copples | coarse | fine | coarse | medium | fine | Silt of Clay |

|   |             |                                   |                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                         |
|---|-------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Р | oint Depth  | Classification                    | LL                                                                                                                               | PL                                                                                                                               | PI                                                                                                                                                                                                                                                                   | C <sub>c</sub>                                                                                                                                                                                            | C <sub>u</sub>                                                                                                                                                                                                                                                                                            |
| • | HATP-1 10.0 | Clayey SAND with gravel (SC)      | 24                                                                                                                               | 16                                                                                                                               | 8                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| M | HATP-3 10.0 | Sandy CLAY with trace gravel (CL) | 29                                                                                                                               | 14                                                                                                                               | 15                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
| ▲ | HATP-5 5.0  | Gravelly SAND with silt (SW)      |                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                      | 15.70                                                                                                                                                                                                                                                                                                     |
|   |             |                                   |                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|   |             |                                   |                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |
|   | -           | ■ HATP-3 10.0                     | HATP-1 10.0 Clayey SAND with gravel (SC)  HATP-3 10.0 Sandy CLAY with trace gravel (CL)  HATP-5 5.0 Gravelly SAND with silt (SW) | HATP-1 10.0 Clayey SAND with gravel (SC)  HATP-3 10.0 Sandy CLAY with trace gravel (CL)  HATP-5 5.0 Gravelly SAND with silt (SW) | ▶ HATP-1 10.0       Clayey SAND with gravel (SC)       24       16         ▶ HATP-3 10.0       Sandy CLAY with trace gravel (CL)       29       14         ▶ HATP-5 5.0       Gravelly SAND with silt (SW)           ▶ HATP-5 5.0       Gravelly SAND with silt (SW) | ▶ HATP-1 10.0 Clayey SAND with gravel (SC)       24       16       8         ■ HATP-3 10.0 Sandy CLAY with trace gravel (CL)       29       14       15         ■ HATP-5 5.0 Gravelly SAND with silt (SW) | ▶ HATP-1 10.0       Clayey SAND with gravel (SC)       24       16       8         ■ HATP-3 10.0       Sandy CLAY with trace gravel (CL)       29       14       15         ■ HATP-5 5.0       Gravelly SAND with silt (SW)       1.02         ■ HATP-5 5.0       Gravelly SAND with silt (SW)       1.02 |

| 037.0              | Р | oint Depth  | D <sub>100</sub> | D <sub>60</sub> | D <sub>50</sub> | D <sub>30</sub> | D <sub>10</sub> | %Coarse<br>Gravel | % Fine<br>Gravel | % Coarse<br>Sand | % Medium<br>Sand | % Fine<br>Sand | % Fines |  |
|--------------------|---|-------------|------------------|-----------------|-----------------|-----------------|-----------------|-------------------|------------------|------------------|------------------|----------------|---------|--|
| N:\PROJECTS\1037.( | • | HATP-1 10.0 | 25               | 0.212           | 0.165           |                 |                 | 6.5               | 4.0              | 4.5              | 10.6             | 35.3           | 39.0    |  |
| OJEC               | × | HATP-3 10.0 | 9.5              |                 |                 |                 |                 | 0.0               | 1.3              | 4.1              | 9.2              | 19.0           | 66.4    |  |
| N:\PR              | ▲ | HATP-5 5.0  | 19               | 1.01            | 0.563           | 0.257           |                 | 0.0               | 16.4             | 12.8             | 25.8             | 34.4           | 10.6    |  |
| 0/16               |   |             |                  |                 |                 |                 |                 |                   |                  |                  |                  |                |         |  |
| 2/10               |   |             |                  |                 |                 |                 |                 |                   |                  |                  |                  |                |         |  |

 $C_c = D_{30}^2/(D_{60}^* D_{10})$  $C_u = D_{60}/D_{10}$ 

To be well graded:  $1 < C_c < 3$  and  $C_u > 4$  for GW or  $C_u > 6$  for SW

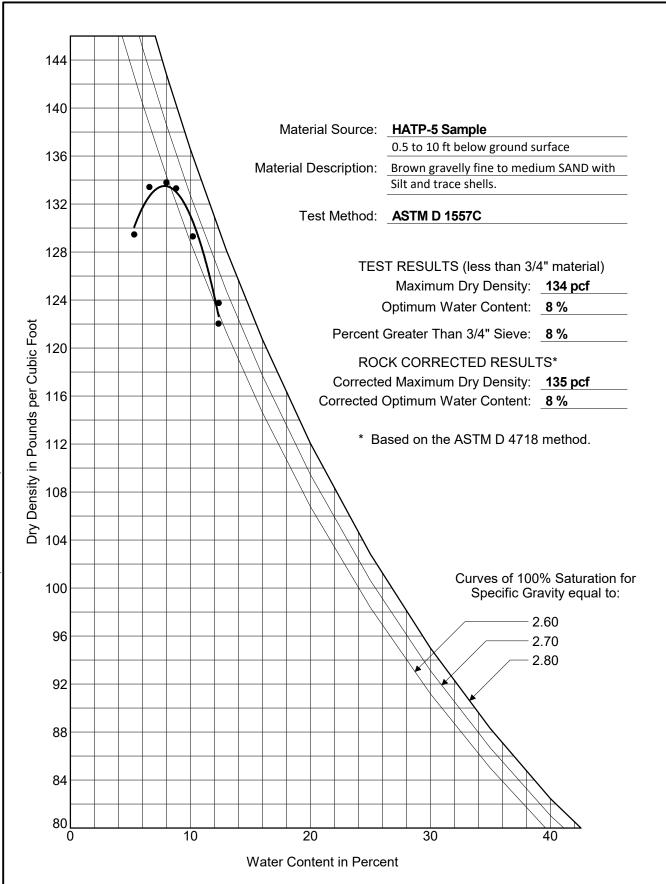



001037.040.041

Hilton Avenue Stockpile Bellingham, WA

Grain Size Test Data

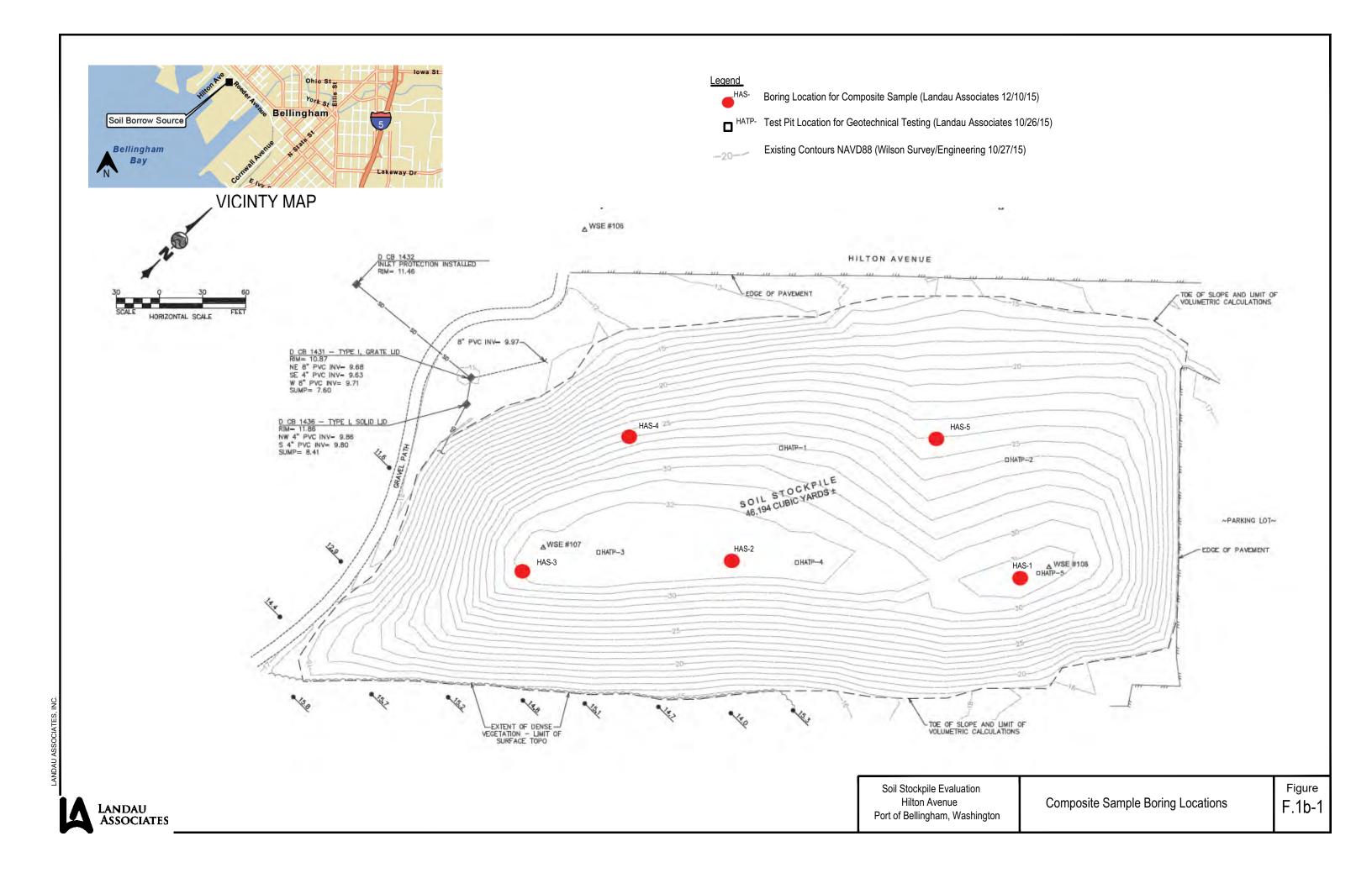
Figure F.1a-7

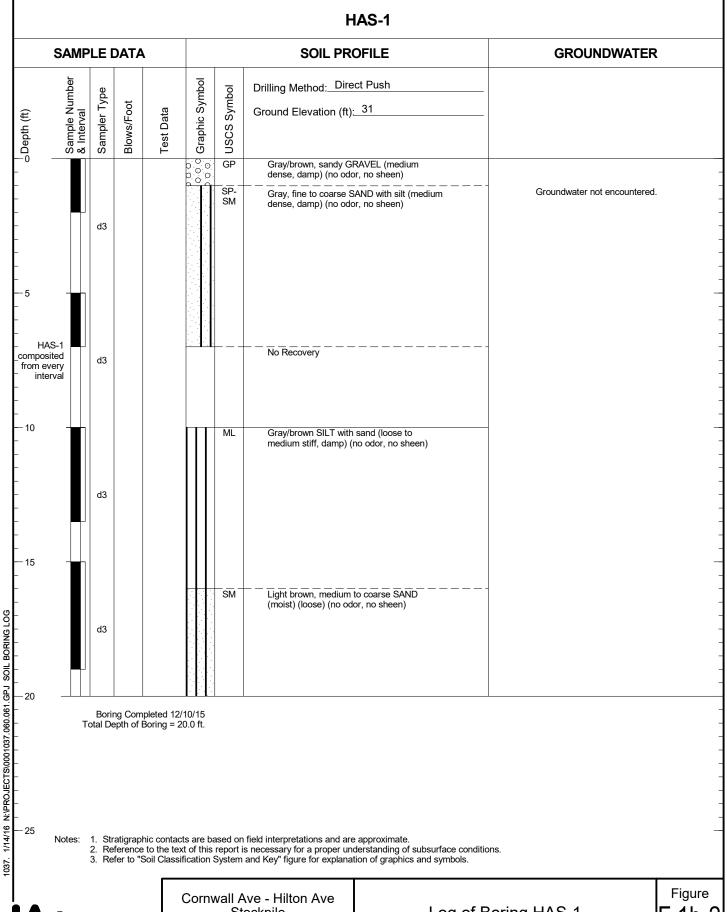





Hilton Avenue Stockpile Bellingham, WA

Moisture-Density Relationship

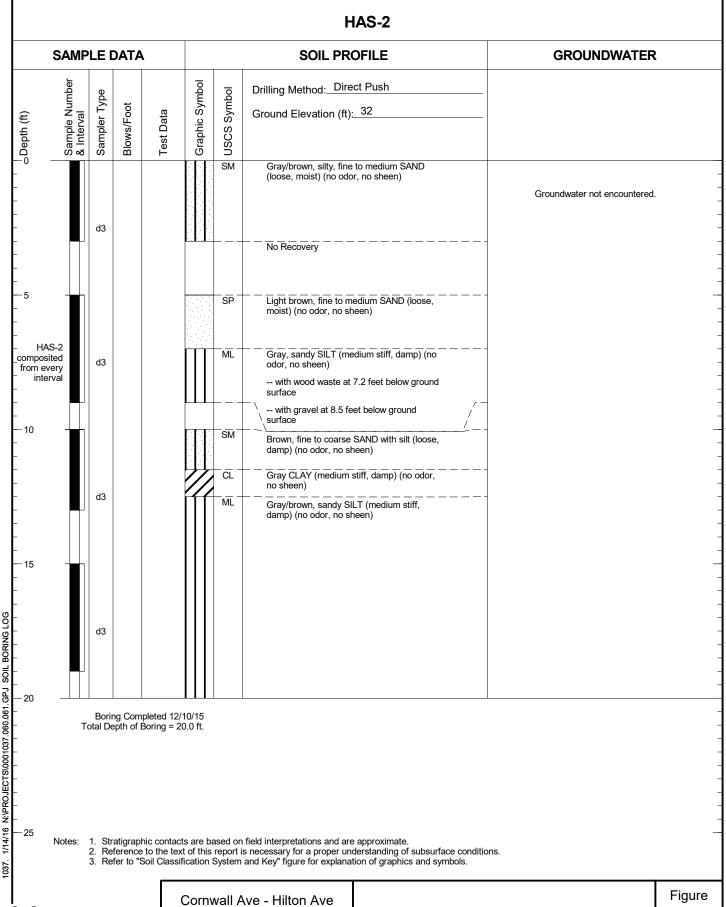

Figure F.1a-8






001037.040.041 2/10/16 N:PROJECTS/1037.040.041.GPJ COMPACTION FIGURE (PARABOLA WITH POINTS)

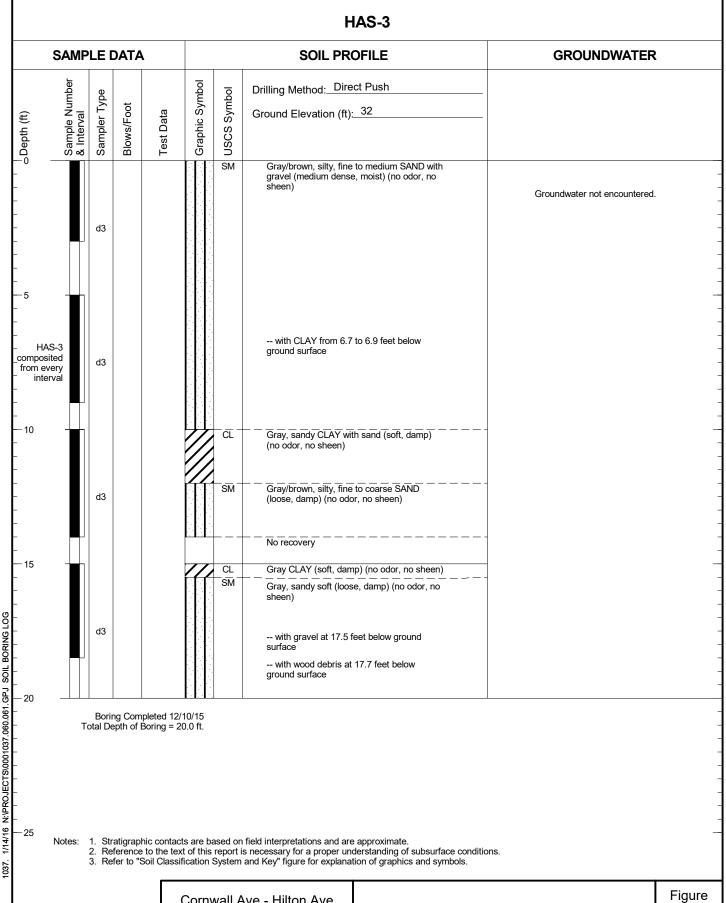
## **Chemical Analysis – 2015**







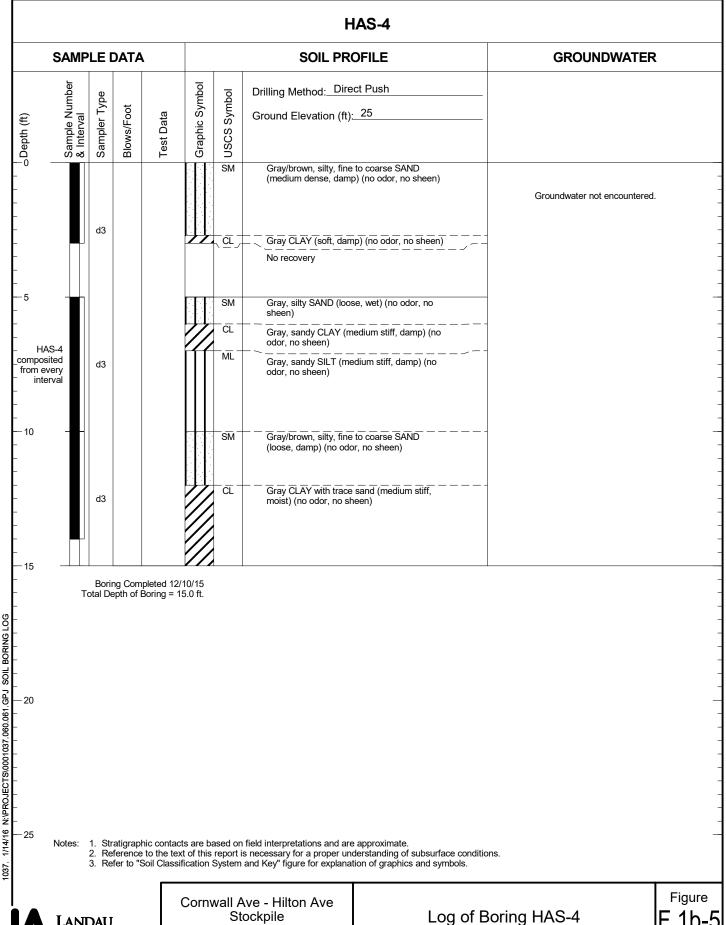

Cornwall Ave - Hilton Ave Stockpile Bellingham, Washington


Log of Boring HAS-1

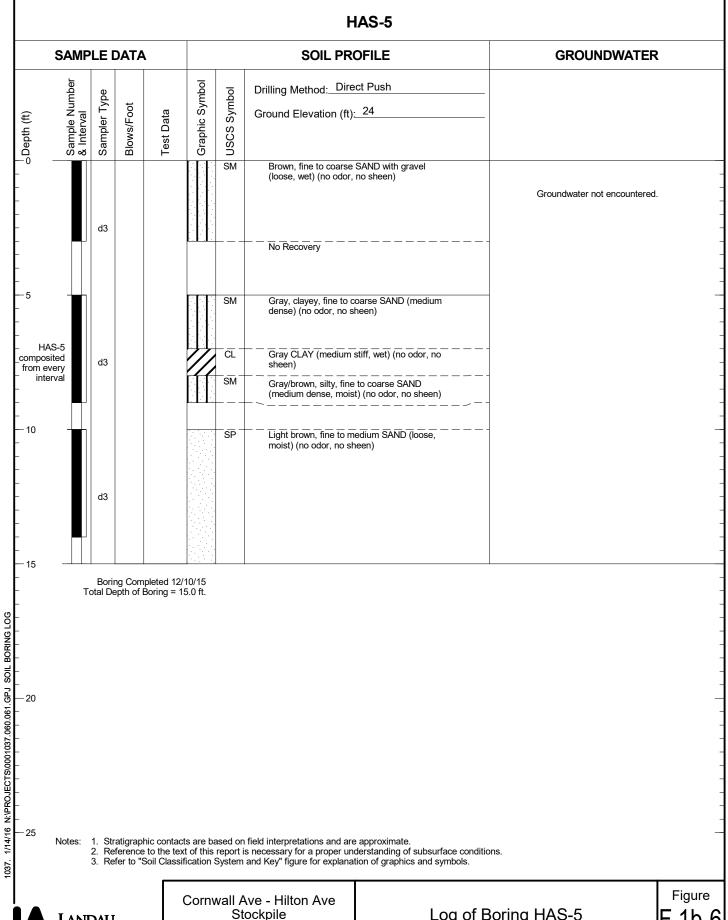


LANDAU ASSOCIATES

Cornwall Ave - Hilton Ave Stockpile Bellingham, Washington


Log of Boring HAS-2






Cornwall Ave - Hilton Ave Stockpile Bellingham, Washington

Log of Boring HAS-3



LANDAU **ASSOCIATES**  Bellingham, Washington





Stockpile Bellingham, Washington

Log of Boring HAS-5

# Table F.1b-1 Preliminary Screening Levels for Determination of Analytical Method Hilton Avenue Soil Characterization for Cornwall Avenue Landfill Bellingham, Washington

|                                                          |              | Soil, Method B, Most-Restrictive Standard Formula Value, Direct Contact (ingestion only), Unrestricted Land Use (mg/kg) <sup>a,b</sup> | Soil Protective of<br>Terrestrial Species<br>(mg/kg) <sup>c</sup> | Marine Sediment Dry<br>Weight Equivalent<br>SQS<br>(mg/kg) | Unsaturated Soil Concentration Protective of Leachability to Groundwater for Unrestricted Land Use (mg/kg) <sup>d</sup> | Saturated Soil Concentration Protective of Leachability to Groundwater for Unrestricted Land Use (mg/kg) <sup>d</sup> | Natural Background<br>Concentrations <sup>e</sup> | Laboratory<br>Reporting<br>Limit <sup>j</sup> | Preliminary Screening<br>Level for Determination<br>of Analytical Method | Rationale for<br>Preliminary<br>Screening Level | Proposed Analytical<br>Method |
|----------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|-------------------------------|
| otal Petroleum Hydrocarbons                              |              | (mB)                                                                                                                                   | (TEE)                                                             | (SQS)                                                      | (gwl-u)                                                                                                                 | (gwl-s)                                                                                                               | (back)                                            | PQL                                           |                                                                          |                                                 |                               |
| Diesel Range Hydrocarbons                                | 68334-30-5   | ¥                                                                                                                                      | 200                                                               |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 25                                            | 200                                                                      | TEE                                             | TPH-HCID/TPH-Dx               |
| Oil Range Hydrocarbons                                   | TPH-Oil      | ¥                                                                                                                                      | 200                                                               |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 100                                           |                                                                          |                                                 | TPH-HCID/TPH-Dx               |
| eavy Metals                                              | 1711-011     | Ŧ                                                                                                                                      |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 100                                           |                                                                          |                                                 | TETI-LICID/TETI-DX            |
| •                                                        | 7440.20.2    | 0.67                                                                                                                                   | 10                                                                | F.7                                                        | 0.20                                                                                                                    | 0.015                                                                                                                 | 20                                                | 0.5                                           | 20 <sup>f</sup>                                                          | la a al c                                       | EDA C010C                     |
| Arsenic                                                  | 7440-38-2    | 0.67                                                                                                                                   | 10                                                                | 57                                                         | 0.29                                                                                                                    | 0.015                                                                                                                 | 20                                                | 0.5                                           |                                                                          | back                                            | EPA 6010C                     |
| Chromium (Total)                                         | 7440-47-3    |                                                                                                                                        | 42                                                                | 260                                                        |                                                                                                                         |                                                                                                                       | 48                                                | 0.5                                           | 48 <sup>f</sup>                                                          | back                                            | EPA 6010C                     |
| Copper                                                   | 7440-50-8    | 3,200                                                                                                                                  | 50                                                                | 390                                                        | 1.1                                                                                                                     | 0.053                                                                                                                 | 36                                                | 0.2                                           | 36 <sup>f</sup>                                                          | back                                            | EPA 6010C                     |
| Lead                                                     | 7439-92-1    |                                                                                                                                        | 50                                                                | 450                                                        | 1600                                                                                                                    | 81                                                                                                                    | 24                                                | 0.1                                           | 50                                                                       | TEE                                             | EPA 6010C                     |
| Mercury <sup>g</sup>                                     | 7439-97-6    |                                                                                                                                        | 0.1                                                               | 0.41                                                       | 0.026                                                                                                                   | 0.0013                                                                                                                | 0.07                                              | 0.025                                         | 0.07 <sup>f</sup>                                                        | back                                            | EPA 7471A                     |
| Zinc                                                     | 7440-66-6    | 24,000                                                                                                                                 | 86                                                                | 410                                                        | 100                                                                                                                     | 5                                                                                                                     | 85                                                | 1                                             | 85 <sup>f</sup>                                                          | back                                            | EPA 6010C                     |
| olycyclic Aromatic Hydrocarbons (PAHs)                   | 7440-00-0    | 24,000                                                                                                                                 |                                                                   | 410                                                        | 100                                                                                                                     | <u> </u>                                                                                                              | 85                                                | •                                             | 03                                                                       | Dack                                            | LI A 0010C                    |
| Anthracene                                               | 120-12-7     | 24,000                                                                                                                                 |                                                                   | 0.96                                                       | 47                                                                                                                      | 2.3                                                                                                                   |                                                   | 0.005                                         | 0.96                                                                     | SQS                                             | EPA 8270D                     |
| Benzo(g,h,i)perylene                                     | 191-24-2     | 24,000                                                                                                                                 |                                                                   | 0.67                                                       | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.005                                         | 0.67                                                                     | SQS                                             | EPA 8270D                     |
| Fluoranthene                                             | 206-44-0     | 3,200                                                                                                                                  |                                                                   | 1.7                                                        | 34                                                                                                                      | 1.7                                                                                                                   |                                                   | 0.005                                         | 1.7                                                                      | SQS / gwl-s                                     | EPA 8270D                     |
| Fluorene                                                 | 86-73-7      | 3,200                                                                                                                                  | 30                                                                | 0.54                                                       | 4.9                                                                                                                     | 0.25                                                                                                                  |                                                   | 0.005                                         | 0.25                                                                     | gwl-s                                           | EPA 8270D                     |
| Phenanthrene                                             | 85-01-8      | 3,200                                                                                                                                  |                                                                   | 1.5                                                        | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.005                                         | 1.5                                                                      | SQS                                             | EPA 8270D                     |
| Pyrene                                                   | 129-00-0     | 2,400                                                                                                                                  |                                                                   | 2.6                                                        | 220                                                                                                                     | 11                                                                                                                    |                                                   | 0.005                                         | 2.6                                                                      | SQS                                             | EPA 8270D                     |
| 1-Methylnaphthalene                                      | 90-12-0      | 35                                                                                                                                     |                                                                   |                                                            | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.005                                         | 35                                                                       | mB                                              | EPA 8270D                     |
| 2-Methylnaphthalene                                      | 91-57-6      | 320                                                                                                                                    |                                                                   | 0.67                                                       | 7.9                                                                                                                     | 0.4                                                                                                                   |                                                   | 0.005                                         | 0.4                                                                      | gwl-s                                           | EPA 8270D                     |
| Naphthalene <sup>g</sup>                                 | 91-20-3      | 1,600                                                                                                                                  |                                                                   | 2.1                                                        | 21                                                                                                                      | 1.1                                                                                                                   |                                                   | 0.005                                         | 1.1                                                                      | gwl-s                                           | EPA 8270D                     |
| Benz(a)anthracene                                        | 56-55-3      | 1.4                                                                                                                                    |                                                                   | 1.3                                                        | 0.76                                                                                                                    | 0.038                                                                                                                 |                                                   | 0.005                                         | 0.038                                                                    | gwl-s                                           | EPA 8270D                     |
| Benzo(b)fluoranthene                                     | 205-99-2     | 1.4                                                                                                                                    |                                                                   | 3.2                                                        | 2.5                                                                                                                     | 0.13                                                                                                                  |                                                   | 0.005                                         | 0.13                                                                     | gwl-s                                           | EPA 8270D                     |
| Benzo(k)fluoranthene                                     | 207-08-9     | 14                                                                                                                                     |                                                                   | 3.2                                                        | 3.3                                                                                                                     | 0.17                                                                                                                  |                                                   | 0.005                                         | 0.17                                                                     | gwl-s                                           | EPA 8270D                     |
| Chrysene                                                 | 218-01-9     | 140                                                                                                                                    |                                                                   | 1.4                                                        | 2.6                                                                                                                     | 0.13                                                                                                                  |                                                   | 0.005                                         | 0.13                                                                     | gwl-s                                           | EPA 8270D                     |
| ther Semi-Volatile Organics                              |              |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   |                                               | 0.10                                                                     | g s                                             |                               |
| 2,4-Dimethylphenol                                       | 105-67-9     | 1,600                                                                                                                                  |                                                                   | 0.029                                                      | 150                                                                                                                     | 7.50                                                                                                                  |                                                   | 0.05                                          | 0.05                                                                     | PQL                                             | EPA 8270D                     |
| 2-Methylphenol                                           | 95-48-7      | 4,000                                                                                                                                  |                                                                   | 0.063                                                      | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.02                                          | 0.063                                                                    | SQS                                             | EPA 8270D                     |
| ther Semi-Volatile Organics (continued)                  |              |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   |                                               |                                                                          |                                                 |                               |
| 4-Methylphenol                                           | 106-44-5     | 400                                                                                                                                    |                                                                   | 0.67                                                       | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.02                                          | 0.67                                                                     | SQS                                             | EPA 8270D                     |
| Benzoic acid                                             | 65-85-0      | 320,000                                                                                                                                |                                                                   | 0.65                                                       | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.2                                           | 0.65                                                                     | SQS                                             | EPA 8270D                     |
| Dibenzofuran                                             | 132-64-9     | 80                                                                                                                                     |                                                                   | 0.54                                                       | 3.1                                                                                                                     | 0.16                                                                                                                  |                                                   | 0.02                                          | 0.16                                                                     | gwl-s                                           | EPA 8270D                     |
| Diethyl phthalate                                        | 84-66-2      | 64,000                                                                                                                                 | 100                                                               | 0.2                                                        | 13                                                                                                                      | 0.69                                                                                                                  |                                                   | 0.02                                          | 0.20                                                                     | SQS                                             | EPA 8270D                     |
| Dimethyl phthalate                                       | 131-11-3     |                                                                                                                                        | 200                                                               | 0.071                                                      | N/A                                                                                                                     | N/A                                                                                                                   |                                                   | 0.02                                          | 0.071                                                                    | SQS                                             | EPA 8270D                     |
| Pentachlorophenol                                        | 87-86-5      | 2.5                                                                                                                                    | 3                                                                 | 0.36                                                       | 1.3                                                                                                                     | 0.065                                                                                                                 |                                                   | 0.1                                           | 0.1                                                                      | PQL                                             | EPA 8270D                     |
| Phenol                                                   | 108-95-2     | 24,000                                                                                                                                 | 30                                                                | 0.42                                                       | 3000                                                                                                                    | 180                                                                                                                   |                                                   | 0.03                                          | 0.42                                                                     | SQS                                             | EPA 8270D                     |
| Retene                                                   | 483-65-8     |                                                                                                                                        |                                                                   | N/A                                                        | N/A                                                                                                                     | N/A                                                                                                                   |                                                   |                                               |                                                                          |                                                 | EPA 8270D                     |
| ioxins/Furans                                            |              |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   |                                               |                                                                          |                                                 |                               |
| 1,2,3,4,6,7,8-HpCDD                                      | 35822-46-9   |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 0.000001                                      |                                                                          |                                                 | EPA 1613                      |
| OCDD                                                     | 3268-87-9    |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 0.00001                                       |                                                                          |                                                 | EPA 1613                      |
| Chlorinated dibenzo-p-dioxins (total) (TEQ) <sup>i</sup> |              |                                                                                                                                        | 0.000002                                                          |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 0.000001                                      | 0.000002                                                                 | TEE                                             | EPA 1613                      |
| OCDF                                                     | 39001-02-0   |                                                                                                                                        |                                                                   |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 0.000002                                      |                                                                          |                                                 | EPA 1613                      |
| Chlorinated dibenzofurans (total) (TEQ)                  |              |                                                                                                                                        | 0.000002                                                          |                                                            |                                                                                                                         |                                                                                                                       |                                                   | 0.000001                                      | 0.000002                                                                 | TEE                                             | EPA 1613                      |
| Summed Dioxin/Furan TEQ                                  | 2,3,7,8 TCDD | 0.000011                                                                                                                               |                                                                   |                                                            |                                                                                                                         |                                                                                                                       | 0.0000052 <sup>J</sup>                            | 0.000001                                      | 0.000011                                                                 | mB                                              | EPA 1613                      |

#### Preliminary Screening Level for Determination of Analytical Method Hilton Avenue Soil Characterization for Cornwall Avenue Landfill Bellingham, Washington

#### Numerical Criteria Notes:

Blank cells are intentional.

- a Values taken from Ecology's CLARC Database May 15, 2012; except as noted.
- b Method B values are most restrictive of carcinogenic or non-carcinogenic values presented in Ecology's CLARC Database, pulled on May 15, 2012.
- c Most stringent criterion for plants, soil biota, or wildlife in WAC 173-340-900 Table 749-3. For sites that qualify for a simplified TEE evaluation, use Table 749-2.
- d Calculated values from 3-phase model, per MTCA Equation 747-1, with groundwater value (Cw) as most stringent value from groundwater screening level process (Table 1), and Dilution Factor =
- e Values are from Ecology's Natural Background Soil Metals Concentrations in Washington State (Ecology 1994).
- f Adjusted to compensate for natural background concentrations.
- g Analyte has the potential to contaminate indoor air to unacceptable levels via the vapor intrusion pathway, per Table B-1 (Appendix B) of Ecology's Guidance for Evaluation of Soil Vapor Intrusion (Ecology 2009). Consult with Ecology, as a site-specific vapor intrusion evaluation may be necessary.
- h Value based on total benzofluoranthenes.
- i Calculated using avian and mammalian TEQs (World Health Organization 2005) Toxic Equivalency Factors used for calculation of dioxin/furan TEQ (van den Berg et al. 2006).
- j Value from Dave Bradley's Natural Background for Dioxins/Furans in Washington Soils—Technical Memorandum #8 (Ecology 2010).
- j PQLs derived from the Harris Avenue Shipyard RI/FS Screening Level Workbook
- ¥ Cleanup level can be calculated using volatile petroleum hydrocarbon (VPH) and extractable petroleum hydrocarbon (EPH) data, per WAC 173-340-700(8)(ii).

#### Abbreviations:

- CAS Chemical Abstracts Service.
- CLARC Cleanup Levels and Risk Calculation.
- Ecology Washington State Department of Ecology.
- HpCDD Heptachlorodibenzo-p-dioxin.
- MTCA Model Toxics Control Act.
- OCDD Octachlorodibenzo-p-dioxin.
- OCDF Octachlorodibenzofuran.
- TEE Terrestrial ecological evaluation.
- TEF Toxic equivalency factor.
- TEQ Toxic equivalent quantity.
- TPH Total petroleum hydrocarbons.
- USEPA U.S. Environmental Protection Agency.

WAC Washington Administrative Code.

#### Table F.1b-2 Hilton Avenue Soil Analytical Results - Detections Cornwall Avenue Landfill Bellingham, Washington

|                                       |                        | Sample Location, Laboratory ID, Sample Date, and Results |                |             |                |                |
|---------------------------------------|------------------------|----------------------------------------------------------|----------------|-------------|----------------|----------------|
|                                       | Screening Level        | HAS-1                                                    | HAS-2          | HAS-3       | HAS-4          | HAS-5          |
| Analyte                               | Protective of Most     | ASM9A                                                    | ASM9B          | ASM9C       | ASM9D          | ASM9E          |
|                                       | Stringent Potential    | 10332961001                                              | 10332961002    | 10332961003 | 10332961004    | 10332961005    |
|                                       | Pathway <sup>b</sup>   | 12/10/2015                                               | 12/10/2015     | 12/10/2015  | 12/10/2015     | 12/10/2015     |
| Total Organic Carbon (%) Plumb, :     | 1981                   |                                                          |                |             |                |                |
| Total Organic Carbon                  |                        | <b>0.69</b> J                                            | <b>0.933</b> J | 1.93 J      | <b>0.979</b> J | <b>0.759</b> J |
| Total Metals (mg/kg) EPA-6010C/       | EPA-7471A              |                                                          |                |             |                |                |
| Arsenic                               | 20                     | 10 U                                                     | 6              | 6           | 6              | 6              |
| Chromium                              | 48                     | <b>46</b> J                                              | 26.8           | 29.5        | 30.8           | 22.7           |
| Copper                                | 36                     | <b>40.7</b> J                                            | 19.1           | 21.4        | 22.6           | 28.0           |
| Lead                                  | 50                     | 6 U                                                      | 2              | 3           | 3              | 28             |
| Mercury                               | 0.07                   | 0.03                                                     | 0.03           | 0.04        | 0.04           | 0.02           |
| Zinc                                  | 85                     | <b>73</b> J                                              | 39             | 43          | 49             | 83             |
| Total Petroleum Hydrocarbons (m       | ng/kg)                 |                                                          |                |             |                |                |
| NWTPH-Dx                              | 16/ 16/                |                                                          |                |             |                |                |
| Diesel-range organics                 | 200                    | NA                                                       | NA             | NA          | NA             | 29             |
| Oil-range organics                    |                        | NA                                                       | NA NA          | NA          | NA NA          | 170            |
|                                       | ( (1 ) 011100=05       | NA.                                                      | IVA            | 146         | N/A            | 170            |
| Semivolatile Organic Compounds Phenol | (ug/kg) SW8270D<br>420 | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| 2-Methylphenol                        | 63                     | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| 4-Methylphenol                        | 670                    | 19 U                                                     | 20             | 27          | 30 U           | 110 U          |
| 2,4-Dimethylphenol                    | 50                     | 95 U                                                     | 94 U           | 95 U        | 98 U           | 560 U          |
| Benzoic Acid                          | 650                    | 210                                                      | 190 U          | 190 U       | 260            | 1100 U         |
| Naphthalene                           | 1,100                  | 23                                                       | 43             | 48          | 91             | 110 U          |
| 2-Methylnaphthalene                   | 400                    | 33                                                       | 66             | 68          | 130            | 110 U          |
| Dimethylphthalate                     | 71                     | 24                                                       | 39             | 57          | 20 U           | 110 U          |
| Dibenzofuran                          | 160                    | 19                                                       | 36             | 38          | 63             | 110 U          |
| Diethylphthalate                      | 200                    | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| Fluorene                              | 250                    | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| Pentachlorophenol                     | 100                    | 95 U                                                     | 94 U           | 95 U        | 98 U           | 560 U          |
| Phenanthrene                          | 1,500                  | 23                                                       | 28             | 30          | 40             | 110 U          |
| Anthracene                            | 960                    | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| Fluoranthene                          | 1,700                  | 19 U                                                     | 19             | 19          | 20             | 110 U          |
| Pyrene                                | 2,600                  | 19 U                                                     | 21             | 19 U        | 29             | 110 U          |
| Benzo(a)anthracene                    | 38                     | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| Chrysene                              | 130                    | 19 U                                                     | 19 U           | 19 U        | 20 U           | 110 U          |
| Benzo(g,h,i)perylene                  | 670                    | 28                                                       | 19 U           | 19 U        | 24             | 110 U          |
| Retene                                |                        | 130                                                      | 250            | 320         | 370            | 330            |
| 1-Methylnaphthalene                   | 35,000                 | 28                                                       | 55             | 60          | 120            | 110 U          |
| Total Benzofluoranthenes              | 150°                   | 38 U                                                     | 38 U           | 38 U        | 39 U           | 220 U          |
| Dioxins/Furans (ng/kg) EPA 1613       |                        |                                                          |                |             |                |                |
| 1,2,3,4,6,7,8-HpCDD                   |                        | 10                                                       | 7.7            | 12          | 8.6            | 38             |
| OCDF                                  |                        | 10 U                                                     | 10 U           | 10 U        | 10 U           | 16             |
| OCDD                                  |                        | 140                                                      | 79             | 140         | 90             | 380            |
| Total TCDD                            | 2                      | 1 U                                                      | 1 U            | 1 U         | 1 U            | 1.6            |
| Total PeCDF                           |                        | 5 U                                                      | 5 U            | 5 U         | 5 U            | 5.3            |
| Total HpCDF                           |                        | 5 U                                                      | 5 U            | 5 U         | 5 U            | 11             |
| Total HpCDD                           |                        | 27                                                       | 24             | 34          | 26             | 70             |
| 2,3,7,8 TCDD TEQ                      | 11                     | 0.24                                                     | 0.16           | 0.25        | 0.18           | 0.78           |

<sup>&</sup>lt;sup>a</sup> Preliminary screening level developed to determine the required laboratory reporting limits.

Blue shading = Exceedance of screening level protective of groundwater.

EPA = US Environmental Protection Agency

ug/kg = micrograms per kilogram mg/kg = milligrams per kilogram

ng/kg = nanograms per kilogram

NA = not analyzed

TEQ = toxicity equivalent

<sup>&</sup>lt;sup>b</sup> Soil screening levels based on potential pathways identified by Ecology. Includes consideration of direct contact, terrestrial ecological exposure, marine sediment, and protection of groundwater for unsaturated and saturated soil

 $<sup>^{\</sup>rm c}$  Screening value based on average of Benzo(b)fluoranthene and Benzo(k)fluoranthene

U = Indicates the compound was not detected at the reported concentration.

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. Bold = Detected compound.

## **Chemical Analysis – Historical Data**

|                                    |                    | Sample Location, Lab ID, and Sample Date |            |            |            |            |  |  |
|------------------------------------|--------------------|------------------------------------------|------------|------------|------------|------------|--|--|
| Aughts                             | Screening          | TP-1                                     | TP-2       | TP-3       | TP-4       | TP-5       |  |  |
| Analyte                            | Level <sup>a</sup> | B809044-01                               | B809044-02 | B809044-03 | B809044-04 | B809044-05 |  |  |
|                                    |                    | 9/1/1998                                 | 9/1/1998   | 9/1/1998   | 9/1/1998   | 9/1/1998   |  |  |
| TOTAL METALS (mg/kg)               |                    |                                          |            |            |            |            |  |  |
| EPA Method 6020/7471A              |                    |                                          |            |            |            |            |  |  |
| Antimony                           |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Arsenic                            | 20 <sup>b</sup>    | 2.60                                     | 2.15       | 2.25       | 2.60       | 2.22       |  |  |
| Beryllium                          |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Cadmium                            |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Chromium                           | 48 <sup>c</sup>    | 13.3                                     | 16.5       | 11.2       | 14.0       | 17.5       |  |  |
| Copper                             | 36 <sup>c</sup>    | 11.3                                     | 11.3       | 17.2       | 8.43       | 13.4       |  |  |
| Lead                               | 250 <sup>b</sup>   | 2.77                                     | 2.80       | 1.69       | 1.97       | 2.25       |  |  |
| Nickel                             | 48 <sup>c</sup>    | 15.2                                     | 16.2       | 11.4       | 12.1       | 38.8       |  |  |
| Selenium                           |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Silver                             |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Thallium                           |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| Zinc                               | 85 <sup>c</sup>    | 25.7                                     | 27.4       | 20.1       | 21.7       | 23.6       |  |  |
| Mercury                            | 2 <sup>b</sup>     | 0.100 U                                  | 0.100 U    | 0.105      | 0.100 U    | 0.100 U    |  |  |
| CONVENTIONALS                      |                    |                                          |            |            |            |            |  |  |
| Cyanide (total) (mg/kg; EPA 9010B) |                    | 0.500 U                                  | 0.500 U    | 0.500 U    | 0.500 U    | 0.500 U    |  |  |
| PCBs (ug/kg)                       |                    |                                          |            |            |            |            |  |  |
| EPA Method 8082                    |                    |                                          |            |            |            |            |  |  |
| Aroclor 1016                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1221                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1232                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1242                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1248                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1254                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1260                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1262                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |
| Aroclor 1268                       |                    | 50.0 U                                   | 50.0 U     | 50.0 U     | 50.0 U     | 50.0 U     |  |  |

|                                         |           | Sample Location, Lab ID, and Sample Date |                    |            |                    |            |  |  |
|-----------------------------------------|-----------|------------------------------------------|--------------------|------------|--------------------|------------|--|--|
|                                         | Screening | TP-1                                     | TP-2               | TP-3       | TP-4               | TP-5       |  |  |
| Analyte                                 | Level     | B809044-01                               | B809044-02         | B809044-03 | B809044-04         | B809044-05 |  |  |
|                                         | Level     | 9/1/1998                                 | 9/1/1998           | 9/1/1998   | 9/1/1998           | 9/1/1998   |  |  |
| VOLATILES (mg/kg)                       | i         |                                          |                    |            |                    |            |  |  |
| EPA Method 8260B                        |           |                                          |                    |            |                    |            |  |  |
| Acetone                                 |           | 2.00 U                                   | 2.00 U             | 2.00 U     | 2.00 U             | 2.00 U     |  |  |
| Benzene                                 |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Bromodichloromethane                    |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Bromoform                               |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Bromomethane                            |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 2-Butanone                              |           | 2.00 U                                   | 2.00 U             | 2.00 U     | 2.00 U             | 2.00 U     |  |  |
| Carbon disulfide                        |           | 0.100 U                                  | 0.100 U            | 0.100 U    |                    | 0.100 U    |  |  |
| Carbon disumde  Carbon tetrachloride    |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U<br>0.100 U | 0.100 U    |  |  |
| Chlorobenzene                           |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
|                                         |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Chloroethane<br>Chloroform              |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
|                                         |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.500 U    |  |  |
| Chloromethane Dibromochloromethane      |           |                                          |                    |            |                    |            |  |  |
|                                         |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,2-Dichlorobenzene                     |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,3-Dichlorobenzene 1.4-Dichlorobenzene |           | 0.100 U                                  | 0.100 U<br>0.100 U | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| ,                                       |           | 0.100 U                                  |                    | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,1-Dichloroethane                      |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,2-Dichloroethane                      |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,1-Dichloroethene                      |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| cis-1,2-Dichloroethene                  |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| trans-1,2-Dichloroethene                |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,2-Dichloropropane                     |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| cis-1,3-Dichloropropene                 |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| trans-1,3-Dichloropropene               |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Ethylbenzene                            |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 2-Hexanone                              |           | 2.00 U                                   | 2.00 U             | 2.00 U     | 2.00 U             | 2.00 U     |  |  |
| Methylene chloride                      |           | 1.00 U                                   | 1.00 U             | 1.00 U     | 1.00 U             | 1.00 U     |  |  |
| 4-Methyl-2-pentanone                    |           | 2.00 U                                   | 2.00 U             | 2.00 U     | 2.00 U             | 2.00 U     |  |  |
| Styrene                                 |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,1,2,2-Tetrachloroethane               |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Tetrachloroethene                       |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Toluene                                 |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,1,1-Trichloroethane                   |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| 1,1,2-Trichloroethane                   |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Trichloroethene                         |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Vinyl chloride                          |           | 0.100 U                                  | 0.100 U            | 0.100 U    | 0.100 U            | 0.100 U    |  |  |
| Xylenes (total)                         |           | 0.400 U                                  | 0.400 U            | 0.400 U    | 0.400 U            | 0.400 U    |  |  |

|                                      |                    | Sample Location, Lab ID, and Sample Date |                    |                    |                    |                    |  |  |
|--------------------------------------|--------------------|------------------------------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| Amalista                             | Screening          | TP-1 TP-2 TP-3 TP-4 TP-                  |                    |                    |                    |                    |  |  |
| Analyte                              | Level <sup>a</sup> | B809044-01                               | B809044-02         | B809044-03         | B809044-04         | B809044-05         |  |  |
|                                      |                    | 9/1/1998                                 | 9/1/1998           | 9/1/1998           | 9/1/1998           | 9/1/1998           |  |  |
| SEMIVOLATILES (mg/kg)                |                    |                                          |                    |                    |                    |                    |  |  |
| EPA Method 8270C                     |                    |                                          |                    |                    |                    |                    |  |  |
| Acenaphthene                         |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Acenaphthylene                       |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Aniline                              |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Anthracene                           |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzoic acid                         |                    | 0.500 U                                  | 0.500 U            | 0.500 U            | 0.500 U            | 0.500 U            |  |  |
| Benzo(a)anthracene                   |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzo(b)fluoranthene                 |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzo(k)fluoranthene                 |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzo(g,h,i)perylene                 |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzo(a)pyrene                       |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Benzyl alcohol                       |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Bis(2-chloroethoxy)methane           |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Bis(2-chloroethyl)ether              |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Bis(2-chloroisopropyl)ether          |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Bis(2-ethylhexyl)phthalate           |                    | 0.500 U                                  | 0.500 U            | 0.500 U            | 0.500 U            | 0.500 U            |  |  |
| 4-Bromophenyl phenyl ether           |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Butyl benzyl phthalate               |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Carbazole                            |                    | 0.500 U                                  | 0.500 U            | 0.500 U            | 0.500 U            | 0.500 U            |  |  |
| 4-Chloroaniline                      |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 2-Chloronaphthalene                  |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 4-Chloro-3-methyphenol               |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 2-Chlorophenol                       |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 4-Chlorophenyl phenyl ether          |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Chrysene                             |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Dibenz(a,h)anthracene                |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Dibenzofuran                         |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Di-n-butyl phthalate                 |                    | 0.500 U                                  | 0.500 U            | 0.500 U            | 0.500 U            | 0.500 U            |  |  |
| 1,3-Dichlorobenzene                  |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 1,4-Dichlorobenzene                  |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 1,2-Dichlorobenzene                  |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 3,3'-Dichlorobenzidine               |                    | 5.00 U                                   | 5.00 U             | 5.00 U             | 5.00 U             | 5.00 U             |  |  |
| 2.4-Dichlorophenol                   |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Diethyl phthalate                    |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| 2,4-Dimethylphenol                   |                    |                                          |                    |                    |                    |                    |  |  |
| Dimethyl phthalate                   |                    | 0.100 U<br>0.100 U                       | 0.100 U<br>0.100 U | 0.100 U<br>0.100 U | 0.100 U<br>0.100 U | 0.100 U<br>0.100 U |  |  |
| 4,6-Dinitro-2-methylphenol           |                    | 0.500 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.500 U            |  |  |
| , , , ,                              |                    |                                          |                    |                    |                    |                    |  |  |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene |                    | 0.500 U<br>0.100 U                       | 0.500 U<br>0.100 U | 0.500 U<br>0.100 U | 0.500 U<br>0.100 U | 0.500 U<br>0.100 U |  |  |
| •                                    |                    | 0.100 U                                  |                    |                    | 0.100 U            |                    |  |  |
| 2,6-Dinitrotoluene                   |                    |                                          | 0.100 U            | 0.100 U            |                    | 0.100 U            |  |  |
| Di-n-octyl phthalate                 |                    | 0.500 U                                  | 0.500 U            | 0.500 U            | 0.500 U            | 0.500 U            |  |  |
| Fluoranthene                         |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Fluorene                             |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Hexachlorobenzene                    |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Hexachlorobutadiene                  |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |
| Hexachlorocyclopentadiene            |                    | 0.100 U                                  | 0.100 U            | 0.100 U            | 0.100 U            | 0.100 U            |  |  |

| Analyta                   | Screening          | TP-1       | TP-2       | TP-3       | TP-4       | TP-5       |
|---------------------------|--------------------|------------|------------|------------|------------|------------|
| Analyte                   | Level <sup>a</sup> | B809044-01 | B809044-02 | B809044-03 | B809044-04 | B809044-05 |
|                           |                    | 9/1/1998   | 9/1/1998   | 9/1/1998   | 9/1/1998   | 9/1/1998   |
| Hexachloroethane          |                    | 0.100 U    |
| Indeno(1,2,3-cd)pyrene    |                    | 0.100 U    |
| Isophorone                |                    | 0.100 U    |
| 2-Methylnaphthalene       |                    | 0.100 U    |
| 2-Methylphenol            |                    | 0.100 U    |
| 3&4-Methylphenol          |                    | 0.100 U    |
| Naphthalene               |                    | 0.100 U    |
| 2-Nitroaniline            |                    | 0.500 U    |
| 3-Nitroaniline            |                    | 0.500 U    |
| 4-Nitroaniline            |                    | 0.500 U    |
| Nitrobenzene              |                    | 0.100 U    |
| 2-Nitrophenol             |                    | 0.100 U    |
| 4-Nitrophenol             |                    | 0.500 U    |
| N-Nitrosodiphenylamine    |                    | 0.200 U    |
| N-Nitrosodi-n-propylamine |                    | 0.100 U    |
| Pentachlorophenol         |                    | 0.500 U    |
| Phenanthrene              |                    | 0.100 U    |
| Phenol                    |                    | 0.100 U    |
| Pyrene                    |                    | 0.100 U    |
| 1,2,4-Trichlorobenzene    |                    | 0.100 U    |
| 2,4,5-Trichlorophenol     |                    | 0.500 U    |
| 2,4,6-Trichlorophenol     |                    | 0.100 U    |

#### **Footnotes**

 $\mbox{\bf U}$  = Indicates the compound was not detected at the reported concentration.

Bold = Detected compound.

Box = Exceedance of screening level.

EPA = US Environmental Protection Agency

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyls

 $<sup>^{\</sup>rm a}$  Screening levels only developed for detected constituents. , and based on MTCA Method A

b Method A cleanup level for unrestricted site use

<sup>&</sup>lt;sup>c</sup> Natural background

Environmental Site Assessment Squalicum Peninsula Project GeoEngineers, November 1998

Report

Environmental Site Assessment
Proposed Squalicum Peninsula Project
Bellingham, Washington

November 24, 1998

For

Port of Bellingham



#### November 24, 1998

Consulting Engineers and Geoscientists Offices in Washington, Oregon, and Alaska

Port of Bellingham P.O. Box 1677 Bellingham, Washington 98227-1677

Attention: Adam Fulton

We are pleased to submit three copies of our report entitled "Environmental Site Assessment, Proposed Squalicum Peninsula Project, Bellingham, Washington." Our environmental services were completed in general accordance with our standard agreement with the Port of Bellingham dated September 2, 1998. Results of the chemical analytical testing were previously forwarded to the Port in our memorandum dated September 23, 1998.

We appreciate the opportunity to provide environmental services for the proposed project. Please call if you have any questions regarding this report.

Yours very truly, GeoEngineers, Inc.

J. Robert Gordon, P.E.

Principal

REC:JRG:dam 030702402R.doc

File No. 0307-024-02-5150

### **TABLE OF CONTENTS**

|                                                    | <u>Page No.</u>   |
|----------------------------------------------------|-------------------|
| INTRODUCTION                                       | 1                 |
| SCOPE                                              | 1                 |
| REVIEW OF AVAILABLE INFORMATION                    | 2                 |
| GENERAL                                            | 2                 |
| SEDIMENT QUALITY DATA REVIEW - WHATCOM WATERWAY    | 2                 |
| USCG BELLINGHAM RELOCATION                         | 3                 |
| SITE CONDITIONS                                    | 4                 |
| GENERAL                                            | 4                 |
| SURFACE CONDITIONS                                 | 4                 |
| SUBSURFACE CONDITIONS  General                     | 5<br>5            |
| Geotechnical Explorations                          | 5<br>5            |
| ESA Explorations                                   | 6                 |
| CHEMICAL TESTING                                   | 6                 |
| SOIL CLEANUP CRITERIA                              | 6                 |
| ANALYTICAL RESULTS                                 | 6                 |
| CONCLUSIONS                                        | 7                 |
| LIMITATIONS                                        | 7                 |
| TABLES SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS | <u>Table No.</u>  |
|                                                    | •                 |
| FIGURES                                            | Figure No.        |
| VICINITY MAP<br>SITE PLAN                          | 1<br>2            |
| APPENDICIES                                        | Page No.          |
| APPENDIX A                                         | A-1               |
| FIELD EXPLORATIONS AND SOIL SAMPLING PROGRAM       |                   |
| FIELD SCREENING OF SOIL SAMPLES                    | A-1               |
| APPENDIX A - FIGURES                               | Figure No.        |
| SOIL CLASSIFICATION SYSTEM                         | A-1               |
| KEY OF BORING LOG SYMBOLS                          | A-2               |
| LOG OF TEST PIT<br>LOG OF BORING                   | A-3A-4<br>A-5A-14 |
|                                                    | , , V.,, , IT     |

### TABLE OF CONTENTS (CONTINUED)

| ATTACHMENT B                   | B-1      |
|--------------------------------|----------|
| CHEMICAL ANALYTICAL PROGRAM    | B-1      |
| ANALYTICAL METHODS             | B-1      |
| ANALYTICAL DATA REVIEW         | B-1      |
| ANALYTICAL DATA REVIEW SUMMARY | B-1      |
| CHEMICAL ANALYTICAL DATA       | B-2 B-47 |

# REPORT ENVIRONMENTAL SITE ASSESSMENT PROPOSED SQUALICUM PENINSULA PROJECT BELLINGHAM, WASHINGTON

### INTRODUCTION

This report presents the results of our environmental site assessment services for the proposed Squalicum Peninsula Project to be located in Bellingham, Washington. The site is located along Bellingham Bay as shown in the Vicinity Map, Figure 1.

The site is located on the Squalicum Peninsula at the western terminus of Thomas Glen Drive in the northeast quarter of Section 25, Township 38 North, Range 2 East. The Squalicum Peninsula was constructed by placing a sand and gravel dike around the perimeter of what is now the peninsula and placing dredge spoils from the surrounding area into the enclosed area. The Squalicum Peninsula Project will consist of three buildings with a single, continuous underground parking garage. At the time of our environmental study, the footprint of the parking garage had a proposed footprint of approximately 100,000 square feet in the configuration shown in the Site Plan, Figure 2. At the time of this study, it was envisioned that the parking garage floor elevation would be approximately 12 feet, which is about 6 feet below existing grades. Approximately 25,000 cubic yards of soil will be excavated, of which half will be kept on site for landscaping berms and the other half will be exported off-site to as yet undetermined sites. We understand the Port and/or the excavation contractor may identify specific disposal sites.

### SCOPE

It has been confirmed through various studies that some Bellingham Bay sediments are contaminated from previous historical industrial and/or commercial activities. Because of the concern for contaminated materials being present within the dredge fill soils that were used to create the peninsula, the Port of Bellingham (POB) requested these environmental site assessment services to evaluate potential environmental liabilities with off-site disposal of the soils for the proposed Squalicum Peninsula Project. Our specific scope of services that were performed based on discussions with POB staff is outlined below:

- 1. Obtain and review available information from the POB, including the U.S. Coast Guard (USCG) environmental report and reports related to the cleanup of Bellingham Bay and Bellingham Bay Demonstration Project.
- 2. Perform a visual evaluation of potential contamination of the fill soil samples obtained during our concurrent geotechnical exploration for the proposed Squalicum Peninsula Project.
- 3. Excavate five test pits within the proposed parking garage excavation with a backhoe subcontracted to GEI.
- 4. Visually evaluate the fill soils encountered within the test pits to the proposed basement elevation for the presence of potential contamination and collect one composite soil sample from each test pit for chemical analytical testing.

1

- 5. Conduct field screening on portions of each soil sample for evidence of contamination using visual, water sheen and headspace vapor screening methods.
- 6. Submit one soil sample from each test pit for chemical analysis of WTPH-HCID (Washington total petroleum hydrocarbons hydrocarbon identification) and Priority Pollutants, including: polychlorinated biphenyls (PCBs) by EPA Method 8082, volatile organic compounds (VOCs) by EPA Method 8240, semivolatile organic compounds (SVOCs) by EPA Method 8270, cyanide and priority pollutant metals by various EPA methods.
- 7. Evaluate our field observations and the analytical results with respect to environmental and regulatory concerns, including Model Toxics Control Act (MTCA) Method A cleanup levels. The metals will also be compared to "typical background levels."
- 8. Coordinate results with the POB and provide preliminary results as soon as information is available.
- 9. Prepare a written report that summarizes the results and our conclusions.

### REVIEW OF AVAILABLE INFORMATION

### **GENERAL**

Historical information obtained from the Port of Bellingham indicates that no development or site uses occurred prior to the construction of the peninsula and the site has no known history of potential environmental conditions. The Squalicum Peninsula was created in the early 1980s by placing dredge spoils within perimeter dikes during dredging of the I & J waterway for a Corps of Engineers project. The I & J Waterway is located on the southeast side of the peninsula. The marina on the northwest side of the site was constructed after the peninsula was completed.

### SEDIMENT QUALITY DATA REVIEW - WHATCOM WATERWAY

The following two reports were reviewed to obtain information regarding sediment quality in the I &J Waterway and to evaluate whether dredged fill at the site may be contaminated:

- "Draft Remedial Investigation Report, Whatcom Waterway, Bellingham, Washington," prepared by Hart Crowser for Georgia-Pacific West, Inc., dated May 7, 1996
- "Final Remedial Investigation/Feasibility Study Work Plan, Whatcom Waterway Site, Bellingham, Washington," prepared by Hart Crowser, for Georgia-Pacific West, Inc., dated September 3, 1997.

The reports contained a review of sediment data from 17 samples collected in the I & J Waterway prior to 1996 and 16 samples collected in 1996 as part of the Georgia Pacific remedial investigation (RI). The data were reviewed and evaluated for potential contaminants with respect to MTCA Method A, B and C Cleanup levels.

The chemical analytical data generally indicates that mercury is the primary chemical of concern in the I & J Waterway. The Georgia Pacific (GP) plant located south of the Whatcom Creek Waterway (Figure 1) is the likely source of the mercury contamination. Other chemical compounds were either not detected or were detected at concentrations less than MTCA cleanup levels. The chemical data is summarized below:

- Mercury concentrations ranged from 0.07 to 6.7 milligrams per kilogram (mg/kg) in the 33 samples. The MTCA Method A cleanup level for mercury is 1.0 mg/kg. Concentrations of mercury detected in 8 of 33 samples exceeded the cleanup level.
- Bis (2-ethylhexl)phthlate was detected in two samples at concentrations less than the MTCA Method C cleanup level.
- 2,4- Dimethylphenol was detected in three samples at concentrations less than the MTCA Method C cleanup level.
- 4-methylphenol was detected in two samples. Cleanup levels have not been established for 4-methylphenol.
- 2-methylphenol was detected in two samples. Cleanup levels have not been established for 2-methylphenol.
- Phenol was detected in two samples at concentrations less than the MTCA Method C cleanup level.
- Acenaphthene was detected in one sample at concentrations less than the MTCA Method C cleanup level.

Hart Crowser concluded that in general, mercury concentrations in surface sediments were significantly less than concentrations detected at depth reflecting the implementation of source controls by GP beginning in the early 1970s, and associated sediment natural recovery.

Sediment transport was likely very different prior to construction of the Squalicum Peninsula and it is difficult to interpret what the sediment quality of the I & J Waterway may have been at the time the dredging and subsequent creation of the peninsula occurred. However, mercury concentrations in sediment at some locations in the I & J Waterway are currently greater than MTCA cleanup levels and it is possible that material dredged from the waterway in the 1980s contained similar mercury concentrations.

Concentrations of organic compounds detected in sediment samples collected from the I & J waterway were generally well below Method B and C cleanup levels. It is our opinion that organic compounds are not chemicals of concern in dredge fill at the Peninsula.

Based on review of the RI and existing sediment data, we conclude that the selected suite of chemical analytical tests is adequate for the determination of environmental soil conditions at the subject site.

### **USCG BELLINGHAM RELOCATION**

Other information obtained from the POB was contained in a USCG letter report titled "Results of Test Pit Sampling, USCG Station Bellingham Relocation, Contract No. DTCG50-94-D0643R10, TC No. 0908-01, prepared by Tetra Tech, Inc., dated April 17, 1996. The Coast Guard site is located along the same side of the I & J Waterway to the east of the subject site. Therefore, this site is also comprised of similar dredged soils. The consultant completed five test pits and submitted soil samples for chemical analysis. The data were reviewed based on the laboratory reporting limits, MTCA Methods A and Method B cleanup levels, as appropriate. The results of the laboratory testing is summarized below:

- Organopesticides and PCBs were analyzed in accordance with EPA Method 8081. No compounds were detected greater than the laboratory reporting limits.
- VOC analyses were conducted in accordance with EPA Method 8240. A concentration of 1.1 mg/kg of 2-butanone (also known as methyl ethyl ketone or MEK) was detected in three test pits. This concentration is less than the MTCA Method B soil cleanup. No other VOCs were detected greater than laboratory reporting limits.
- Polynuclear Aromatic Hydrocarbons (PAHs) were analyzed in accordance with EPA
  Method 8310. Concentrations of chrysene ranging from 0.013 to 0.59 mg/kg were detected
  in the five test pit samples. These concentrations are less than the MTCA Method A cleanup
  level. No other PAHs were detected at concentrations greater than the laboratory reporting
  limits.
- Metals arsenic, cadmium, chromium, and lead were analyzed by EPA Method 6010.
   Chromium was detected from 12 to 19 mg/kg in all five samples. These concentrations are less than the MTCA Method A cleanup level. No other metals were detected at concentrations greater than the laboratory reporting limits. Mercury was not detected at or above the detection limit of 0.05 mg/kg.
- TPH were analyzed according to the Washington Hydrocarbon Identification Method WTPH-HCID. The presence of heavy oil was identified in one sample. This sample and two other samples were analyzed for the presence of heavy oil range hydrocarbons using Washington Method WTPH-D/Extended with no TPH detected at concentrations greater than the laboratory reporting limits using this confirmation analysis.

Detection of the chemicals 2-butanone, chrysene, heavy oil and the metal chromium were identified in some of the samples collected by Tetra Tech. None of the concentrations detected were greater than pertinent state cleanup levels. This information is consistent with previous sampling results, although potential sources of the chemical compounds identified were not speculated in the report.

### SITE CONDITIONS

### **GENERAL**

Historical conditions as provided to us were discussed previously. Information available suggests that the site has no history of development other than Squalicum Peninsula which was constructed in the early 1980s. Development on the western end of the peninsula has been limited to a restaurant located north of the project site, pavement, utilities and other infrastructure for the peninsula.

### SURFACE CONDITIONS

We performed a site surface reconnaissance during test pit exploration on September 1, 1998. The site is generally flat with no improvements. Vegetation consists of mostly grass and weeds. As stated previously, the only other development in the immediate vicinity is a restaurant to the north with marina moorage facilities located north of the restaurant. An existing USCG facility is

located on the Peninsula to the east, on the north side of Thomas Glen Drive, closer to Roeder Avenue. A new USCG facility is under construction along the I&J Waterway, east of the site.

The land mass on the other side of the I&J Waterway is also man made, likely a combination of dredge material and land-based filling operations. Several commercial and industrial facilities are located in that area, a Georgia Pacific lagoon and a closed landfill. Additional environmental studies are available regarding the landfill site. Based on our knowledge of the area, it appears unlikely that the landfill has impacted Squalicum Peninsula.

## SUBSURFACE CONDITIONS General

GeoEngineers has performed subsurface explorations several times at the site at the request of the Port of Bellingham or other members of the Squalicum Peninsula Project design team. At three different times, explorations were accomplished for geotechnical purposes. In addition, specific explorations were conducted for this environmental study. A summary of our observations is presented below.

### **Geotechnical Explorations**

We excavated four test pits on the peninsula in April 1998 to install temporary piezometers to measure ground water levels. The results are discussed in our memorandum to the POB dated April 29, 1998. The test pits were excavated to depths ranging from 11 to 14 feet below the existing ground surface. Two test pits were located within or close to the proposed parking garage footprint. Dredge sand was encountered in both test pits to depths ranging from 11 to 13 feet. Soft silt was encountered toward the bottom of these test pits. Ground water was observed in all the test pits and measured from 9 to slightly over 11 feet below the existing ground surface.

Three test pits were excavated on the Peninsula in August 1997 north of the proposed parking garage to evaluate subsurface conditions for a proposed stormwater infiltration system. The results are discussed in our memorandum to Wilson Engineering dated August 7, 1997. The test pits were completed to depths of 8 to 11 feet. Below a surficial layer of gravel approximately one foot thick, gray fine sand with silt, occasional gravel and trace sea shells was encountered to the bottom of all three test pits at depths of 8 to 12 feet. Occasional clay clasts were encountered from near surface to a maximum depth of 3 feet in two test pits. Groundwater was encountered at an approximate depth of 10 feet below ground surface in the deeper test pit.

We completed ten test borings in August 1998 to evaluate subsurface conditions for geotechnical design considerations for the proposed parking garage. The geotechnical report is being completed concurrently with this ESA report. The approximate locations of the borings are shown in Figure 2. Seven of the borings are located within the proposed footprint for the parking garage. The borings were completed to depths ranging between 29 and 49 feet below the existing ground surface. The borings are included in Appendix A after the test pit logs for this ESA. Primarily dredge sand was encountered to an approximate depth of 18 feet. In several of the borings, a layer of soft clay was encountered from 7 to 10 feet deep. This is also likely dredged

material. Ground water was observed between 10.5 and 15 feet below the ground surface during drilling operations.

None of these explorations were accomplished for environmental purposes. However, we did not observe evidence of subsurface contamination during the exploration procedures. We also observed all the samples obtained from the test borings. We did not observe evidence of contamination when visually evaluating the samples for our geotechnical laboratory program.

### **ESA Explorations**

Potential contamination was evaluated for this ESA by visually evaluating the subsurface conditions, performing field screening on all soil samples obtained from the test pits and submitting one soil sample from each test pit for chemical analytical testing. Five test pits were accomplished within the proposed parking garage footprint on September 1, 1998. Details regarding the exploration and field screening programs are presented in Appendix A. Details regarding the chemical analytical program including the quality assurance/quality control (QA/QC) are presented in Appendix B. The analytical data from the laboratory are presented in Appendix B. Standard EPA analytical methodologies were used for the analyses. Results from our field observations and the chemical testing are discussed individually below and a summary of the metals data is presented in Table 1.

The subsurface conditions were very consistent at all the test pit locations and consistent with previous explorations. Fine to medium sand with a trace of silt, occasional shells and silt clasts (dredge material) was encountered in each test pit to the depth explored at 6 feet. No visual evidence of contamination was observed in any of the test pits for this ESA nor in any of the geotechnical explorations. Soil samples were obtained at 2, 4 and 6 feet of depth in all the test pits. No unusual soil colors or textures were observed in the soil samples, although a significant odor was present in some of the original mudline deposits. This is not unusual. No significant sheen was observed in any of the soil samples during water sheen screening.

### CHEMICAL TESTING

### **SOIL CLEANUP CRITERIA**

MTCA establishes requirements for assessment and cleanup of upland contaminated sites. The regulations that enforce MTCA are included in WAC (Washington Administrative Code) 173-340. MTCA provides three methods (Methods A, B and C) for establishing cleanup levels for soil and ground water. Method A is intended to be used for sites where the cleanup action may be routine or involve relatively few hazardous substances. Method A cleanup levels are specified in the tables of WAC 173-340-720 and -740. These cleanup levels are appropriate for determining whether upland disposal of fill soils would present a regulatory concern.

### ANALYTICAL RESULTS

The suite of chemical testing is described in the "Scope" section of this report. The individual analytes are indicated on the laboratory reports in Appendix B. No petroleum

hydrocarbons, PCBs, VOCs, SVOCs, were detected in any of the samples. Cyanide was not detected.

No concentrations of metals were detected greater than the MTCA Method A cleanup level. No metals were detected at concentrations greater than typical Puget Sound soils, with the exception of one mercury sample at a concentration of 0.105 mg/kg. This value is only slightly greater than the published background concentration of 0.07 mg/kg, and significantly less than the cleanup level of 1.0 mg/kg.

### **CONCLUSIONS**

We did not observe field evidence of subsurface contamination while performing the test pits at the site nor any of the geotechnical explorations at the site. The chemical analytical results did not disclose any contaminants above pertinent cleanup levels or metals significantly above Puget Sound background levels. While it must be recognized that subsurface contamination could be present within the fill soils in areas not tested, we did not observe indications of contamination based on our field explorations and chemical analytical testing. We conclude that the results of our research and testing indicate a very low likelihood of contamination greater than MTCA Method A cleanup levels in the dredge sand to the depth explored. The results also indicate that the dredge sand encountered is suitable for upland disposal as an unregulated fill material as proposed by the Port of Bellingham.

Some of the sediments in the area have had mercury contamination greater than the MTCA Method A cleanup level. We are not aware of detailed dredging information in the area or sediment transport accumulations in the area. It is possible that some of the original sediments could be contaminated with mercury. The dredging could have mixed these sediments throughout the dredged material within the Peninsula such that the concentrations are well below cleanup levels. However, if discrete areas of these historical surficial sediments were able to accumulate within the Peninsula during the dredging operations, isolated areas of contamination could be present. The historical sediments would be expected to consist of organic and inorganic fine-grained silts and clays, not the sands encountered to the proposed foundation elevation for the parking garage. If a significant quantity of fine-grained sediments will be excavated and disposed and there is a concern regarding contamination, these materials could be evaluated by submitting samples for mercury testing only.

### **LIMITATIONS**

This report has been prepared for use by the Port of Bellingham. This report may be made available to regulatory agencies, parties who may receive soils excavated from the subject site, and other agents for the Port of Bellingham. The report is not intended for use by others and the information contained herein is not applicable to other sites.

The findings and conclusions in this report are based on the above-described data. GeoEngineers has relied upon information provided by others regarding historical conditions and sampling procedures. This report provides information regarding the targeted sampling and

testing but does not provide definitive information with regard to additional contamination, past uses, operations or incidents at the site. A potential always exists for areas of contamination that were not identified during this study.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.



We appreciate the opportunity to provide these services to you on this project. If you have any questions regarding this report or if we can provide additional services, please call.

Respectfully submitted,

GeoEngineers, Inc.

Robert E. Curtis Staff Geologist

J. Robert Gordon, P.E.

Principal

REC::JRG:dam

DOCUMENT ID: 030702402R.doc

Copyright<sup>©</sup> 1998 by GeoEngineers, Inc. All rights reserved.

TABLE 1

# SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS<sup>1</sup>

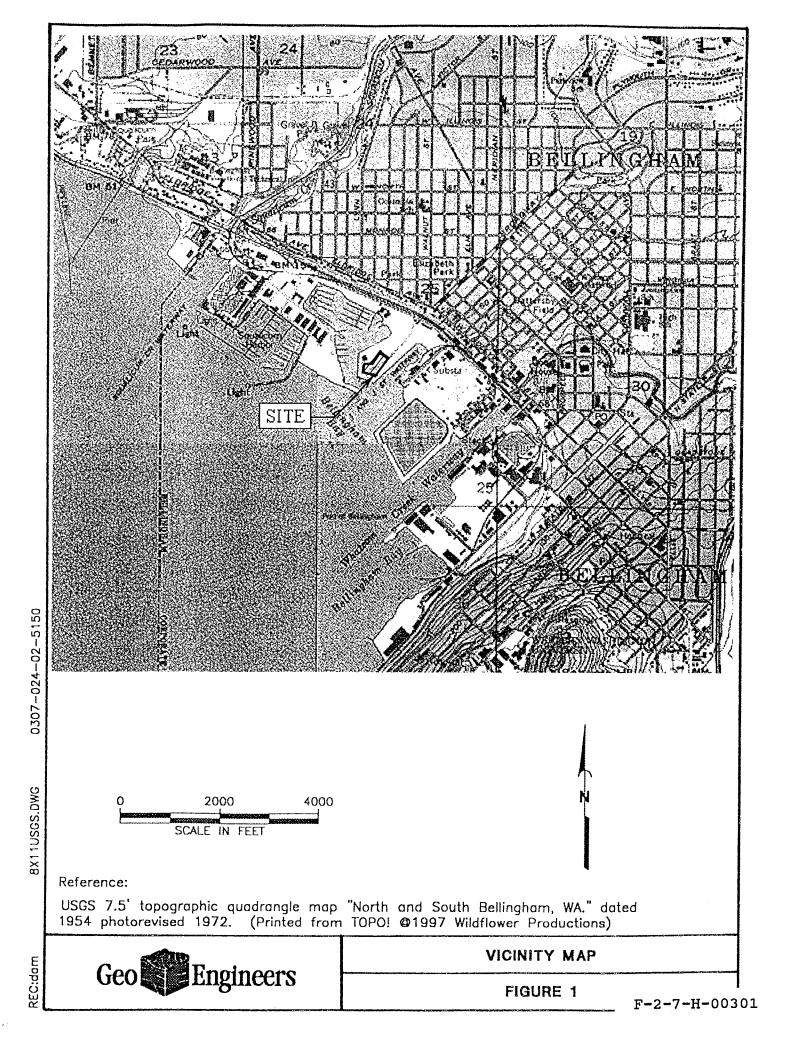
|                                                   |    | _      |        |        |        |        |                              |                                        |
|---------------------------------------------------|----|--------|--------|--------|--------|--------|------------------------------|----------------------------------------|
|                                                   | £  | QN     | Q.     | 0.105  | S      | Q.     | 1.0                          | 0.07                                   |
|                                                   | Zn | 25.7   | 27.4   | 20.1   | 21.7   | 23.6   | ٧N                           | 85                                     |
|                                                   | F  | an     | QN     | ΩN     | QN     | Q      | ΝA                           | ΝA                                     |
|                                                   | Ag | αN     | QN     | ΩN     | Q      | QN     | ΑN                           | NA                                     |
| <u>s</u> 3                                        | Se | DN     | QN     | QN     | QN     | ΩN     | ΑN                           | ΑN                                     |
| nt Meta<br>)                                      | Z  | 15.2   | 16.2   | 11.4   | 12.1   | 38.8   | ΑN                           | 48                                     |
| Priority Pollutant Metals <sup>3</sup><br>(mg/kg) | Pb | 2.77   | 2.80   | 1.69   | 1.97   | 2.25   | 250                          | 24                                     |
| iority P                                          | Cu | 11.3   | 11.3   | 17.2   | 8.43   | 13.4   | ΑN                           | 36                                     |
| Ph                                                | ပ် | 13.3   | 16.5   | 11.2   | 14.0   | 17.5   | 100                          | 48                                     |
|                                                   | ည  | ΩN     | ND     | ND     | ND     | ND     | 2                            | 1.0                                    |
|                                                   | Be | ΩN     | ND     | ND     | ND     | ND     | ۸A                           | 9.0                                    |
|                                                   | As | 2.60   | 2.15   | 2.25   | 2.60   | 2.22   | 20                           | 7                                      |
|                                                   | Sb | ΩN     | ND     | ΔN     | ND     | ΔN     | NA                           | ΑN                                     |
| Date<br>Sampled                                   |    | 9/1/98 | 9/1/98 | 9/1/98 | 9/1/98 | 9/1/98 | MTCA Method A Cleanup Levels | Average Puget Sound Soils <sup>4</sup> |
| Test Pit<br>Number <sup>2</sup>                   |    | TP-1   | TP-2   | TP-3   | TP-4   | TP-5   | MTCA Metho                   | Average Puge                           |

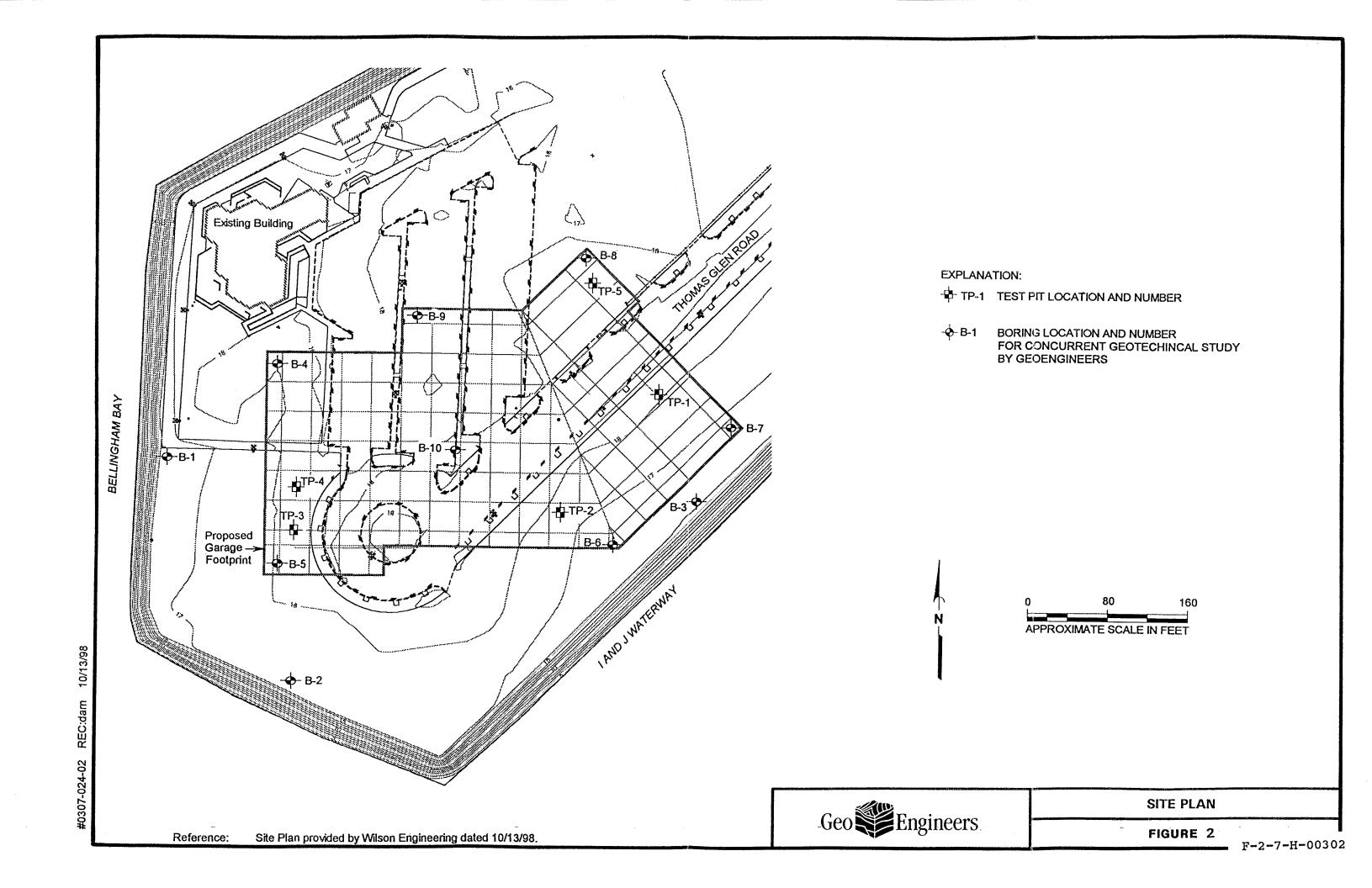
<sup>1</sup>Chemical analysis conducted by North Creek Analytical of Bothell, WA. Laboratory report presented in Appendix B.

Approximate test pit location shown in Figure 2.

<sup>3</sup> Priority Pollutant Metals by EPA Method 6020; Hg by EPA Method 7471A,

"Average Puget Sound concentrations from "Natural Background Soll Metals Concentrations in Washington State," Washington State Department of Ecology Publication #94-115, October 1994, Table 1.


mg/kg = milligrams per kilogram


ND = not detected

MTCA = Model Toxics Control Act

NA = not applicable

Document ID: 030702402T1.XLS





### APPENDIX A

Geo Engineers

### **APPENDIX A**

### FIELD EXPLORATIONS AND SOIL SAMPLING PROGRAM

The main purposes of the field exploration program for this study were to observe representative subsurface conditions within the fill at the site and to obtain soil samples for chemical testing. This was accomplished by excavating five test pits on September 1, 1998 at the approximate locations shown in Figure 2. The test pits were excavated to a depth of 6 feet, which is to the finished floor elevation at the time of our study. A geologist from our staff located the test pits, evaluated and classified the soils encountered, and prepared a detailed log of each test pit. Soils encountered were classified visually in general accordance with ASTM D-2488-83, which is described in Figure A-1. A key to the boring log symbols is presented in Figure 2. The test pit logs are provided in Figures A-3 and A-4. The test borings from the geotechnical exploration program for the proposed Squalicum Peninsula Project are presented in Figures A-5 through A-14.

Discrete soil samples were collected from each test pit at depths of 2, 4 and 6 feet. The samples were composited in the field into one sample as representative of the soil profile during excavation. The soil samples were collected using a stainless steel spoon and mixed in a stainless steel bowl. The soil sampling equipment and bowl were decontaminated between samples. The soil samples were placed in glass sample jars provided by the analytical laboratory and kept cool prior to and during transport to North Creek Analytical in Bothell, Washington. Information noted on the sample labels included the job number, test pit number, sample number and sampling date. Chain-of-custody records were maintained.

Analytical results and conclusions are discussed in the text and the results of the metals testing is summarized in Table 1. Details regarding the chemical analytical program and the laboratory reports are presented in Appendix B.

### FIELD SCREENING OF SOIL SAMPLES

Our field representatives conducted field screening on all soil samples obtained from the test pits. Field screening results are used as a general guideline to delineate areas of possible petroleum-related contamination. In addition, screening results are used to aid in the selection of soil samples for chemical analysis. The field screening methods used include visual examination and water sheen screening. The field screening results did not indicate a significant potential presence of contamination.

Visual screening consists of inspecting the soil for stains indicative of fuel-related and some other contaminants. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Sheen screening and headspace screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in water and observing the water surface for signs of sheen. No sheens were evident during field screening.

### SOIL CLASSIFICATION SYSTEM

| MAJOR DIVISIONS                                                 |                                                                   |                      | GROUP<br>SYMBOL | GROUP NAME                                |
|-----------------------------------------------------------------|-------------------------------------------------------------------|----------------------|-----------------|-------------------------------------------|
|                                                                 | GRAVEL                                                            | CLEAN GRAVEL         | GW              | WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL |
| COARSE GRAINED SOILS  More Than 50% Retained on No. 200 Sieve   | More Than 50%<br>of Coarse Fraction<br>Retained<br>on No. 4 Sieve |                      | GP              | POORLY-GRADED GRAVEL                      |
|                                                                 |                                                                   | GRAVEL<br>WITH FINES | GM              | SILTY GRAVEL                              |
|                                                                 |                                                                   |                      | GC              | CLAYEY GRAVEL                             |
|                                                                 | SAND<br>More Than 50%<br>of Coarse Fraction                       | CLEAN SAND           | SW              | WELL-GRADED SAND, FINE TO COARSE SAND     |
|                                                                 |                                                                   |                      | SP              | POORLY-GRADED SAND                        |
|                                                                 |                                                                   | SAND                 | SM              | SILTY SAND                                |
|                                                                 | Passes<br>No. 4 Sieve                                             | WITH FINES           | SC              | CLAYEY SAND                               |
| GRAINED SOILS Liqu Less More Than 50% Passes No. 200 Sieve Liqu | SILT AND CLAY                                                     | INORGANIC            | ML              | SILT                                      |
|                                                                 |                                                                   |                      | CL              | CLAY                                      |
|                                                                 | Liquid Limit<br>Less Than 50                                      | ORGANIC              | OL              | ORGANIC SILT, ORGANIC CLAY                |
|                                                                 |                                                                   | INORGANIC            | мн              | SILT OF HIGH PLASTICITY, ELASTIC SILT     |
|                                                                 |                                                                   |                      | СН              | CLAY OF HIGH PLASTICITY, FAT CLAY         |
|                                                                 |                                                                   | ORGANIC              | ОН              | ORGANIC CLAY, ORGANIC SILT                |
| HIGHLY ORGANIC SOILS                                            |                                                                   |                      | PT              | PEAT                                      |

### NOTES:

- Field classification is based on visual examination of soil in general accordance with ASTM D2488-90.
- Soil classification using laboratory tests is based on ASTM D2487-90.
- Descriptions of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and/or test data.

### SOIL MOISTURE MODIFIERS:

Dry - Absence of moisture, dusty, dry to the touch

Moist - Damp, but no visible water

Wet - Visible free water or saturated, usually soil is

obtained from below water table



### LABORATORY TESTS:

CA Chemical Analysis

### FIELD SCREENING TESTS:

Headspace vapor concentration data given in parts per million

Sheen classification system:

NS No Visible Sheen

SS Slight Sheen

MS Moderate Sheen

HS Heavy Sheen

NT Not Tested

### SOIL GRAPH:

SM Soil Group Symbol (See Note 2)

Distinct Contact Between Soil Strata

Gradual or Approximate Location of Change Between Soil Strata

7 Water Level

Bottom of Boring

### BLOW COUNT/SAMPLE DATA:

Blows required to drive a 2.4-inch I.D. split-barrel sampler 12 inches or other indicated distances using a 300-pound hammer falling 30 inches.

12 🛭

22

17

Location of relatively undisturbed sample

Location of disturbed sample

Location of sampling attempt with no recovery

Blows required to drive a 1.5-inch I.D. (SPT) split-barrel sampler 12 inches or other indicated distances using a 140-pound hammer falling 30 inches.

26 [[]

Location of sample obtained in general accordance with Standard Penetration Test (ASTM D 1586) procedures

Location of SPT sampling attempt with no recovery

Location of grab sample

"P" indicates sampler pushed with weight of hammer or against weight of drill rig.

### NOTES:

- 1. The reader must refer to the discussion in the report text, the Key to Boring Log Symbols and the exploration logs for a proper understanding of subsurface conditions.
- 2. Soil classification system is summarized in Figure A-1.



**KEY TO BORING LOG SYMBOLS** 

GEI 121-90 Rev. 2/94

### **LOG OF TEST PIT**

|                                         |                                        | LOG OF TEST TH                                                                                                                                                      |
|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH BELOW<br>GROUND SURFACE<br>(FEET) | SOIL GROUP<br>CLASSIFICATION<br>SYMBOL | DESCRIPTION                                                                                                                                                         |
|                                         |                                        | TEST PIT TP-1                                                                                                                                                       |
| 0.0 - 6.0                               | SP                                     | Gray fine to medium sand with trace of silt and occasional gravel (loose to medium sense, moist)(fill)  Note: Occasional silt lenses mixed in at various elevations |
|                                         |                                        | Test pit completed at 6.0 feet on 9/1/98 No ground water seepage observed                                                                                           |
|                                         |                                        | Slight caving observed full depth                                                                                                                                   |
|                                         |                                        | Composite soil samples obtained from 2.0, 4.0 and 6.0 feet                                                                                                          |
|                                         |                                        | TEST PIT TP-2                                                                                                                                                       |
| 0.0 - 6.0                               | SP                                     | Gray fine to medium sand with trace of silt, shells and coarse sand (loose to medium dense, moist)(fill)                                                            |
|                                         |                                        | Note: Occasional silt lenses mixed in at various elevations                                                                                                         |
|                                         |                                        | Test pit completed at 6.0 feet on 9/1/98                                                                                                                            |
|                                         |                                        | No ground water seepage observed                                                                                                                                    |
|                                         |                                        | Slight caving observed full depth                                                                                                                                   |
|                                         |                                        | Composite soil samples obtained from 2.0, 4.0 and 6.0 feet                                                                                                          |
|                                         |                                        | TEST PIT TP-3                                                                                                                                                       |
| 0.0 - 6.0                               | SP                                     | Gray fine to medium sand with trace of silt, coarse sand and shells (loose to medium dense, moist)(fill)                                                            |
|                                         |                                        | Note: Occasional clay/silt lenses at various elevations                                                                                                             |
|                                         |                                        | Test pit completed at 6.0 feet on 9/1/98                                                                                                                            |
|                                         |                                        | No ground water seepage observed                                                                                                                                    |
|                                         |                                        | No caving observed                                                                                                                                                  |
|                                         |                                        | Composite soil samples obtained from 2.0, 4.0 and 6.0 feet                                                                                                          |

THE DEPTHS OF THE TEST PIT LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE TEST PIT AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT

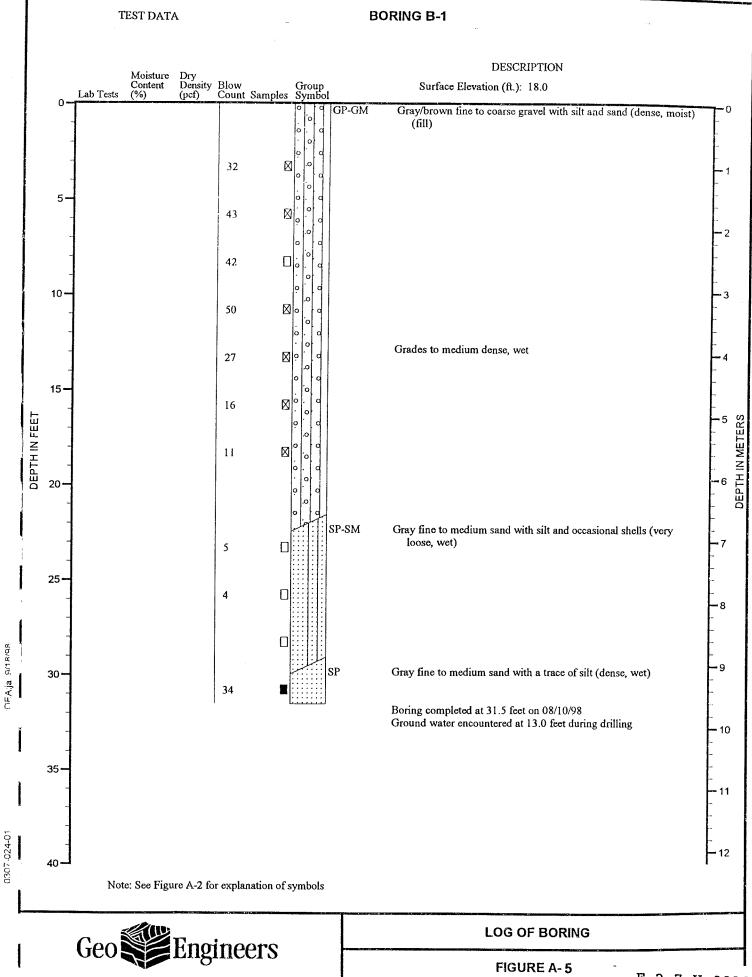


**LOG OF TEST PIT** 

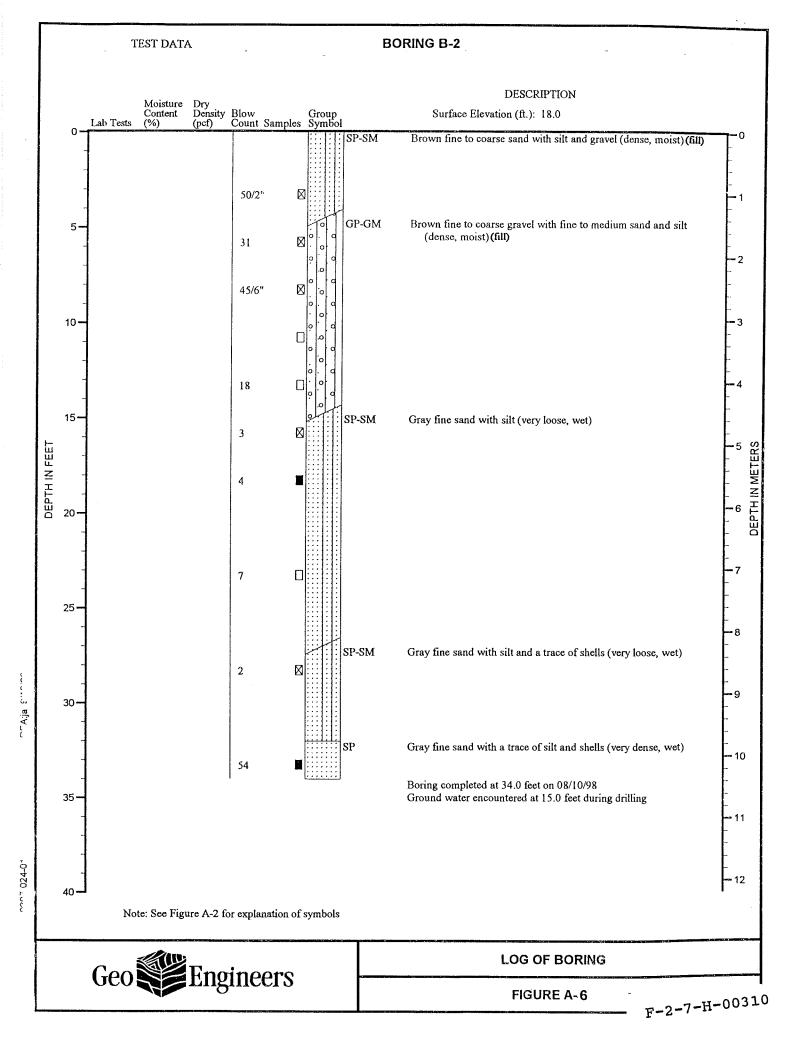
FIGURE A-3

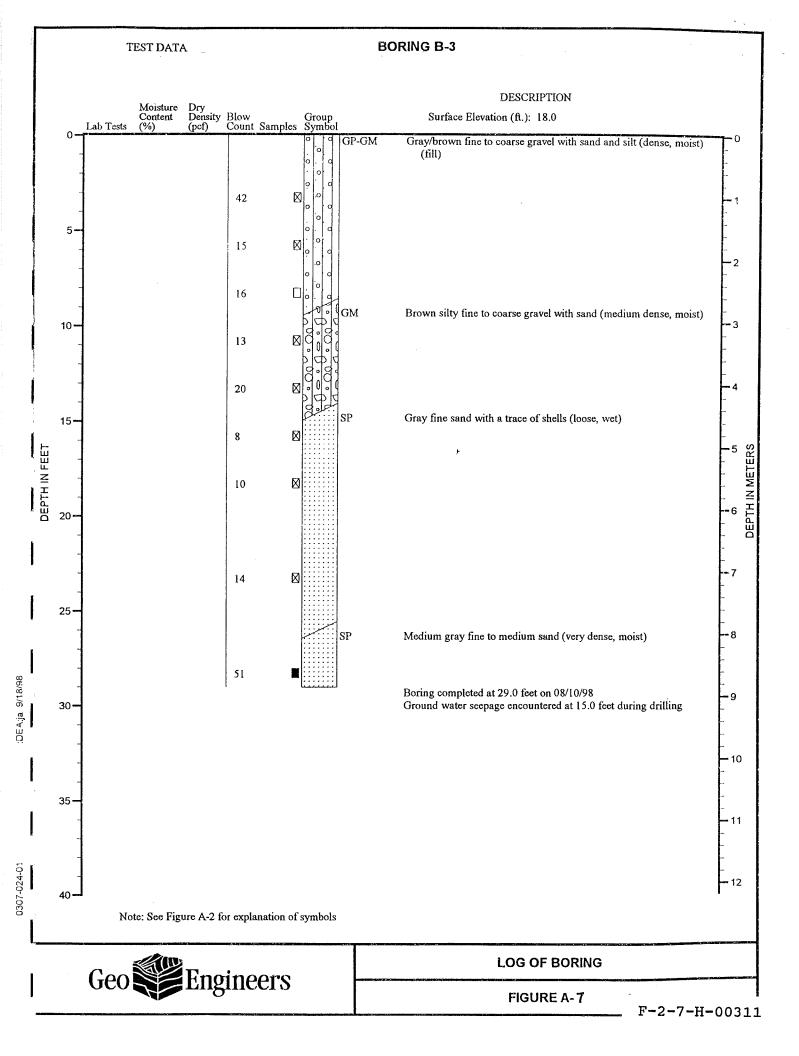
### LOG OF TEST PIT

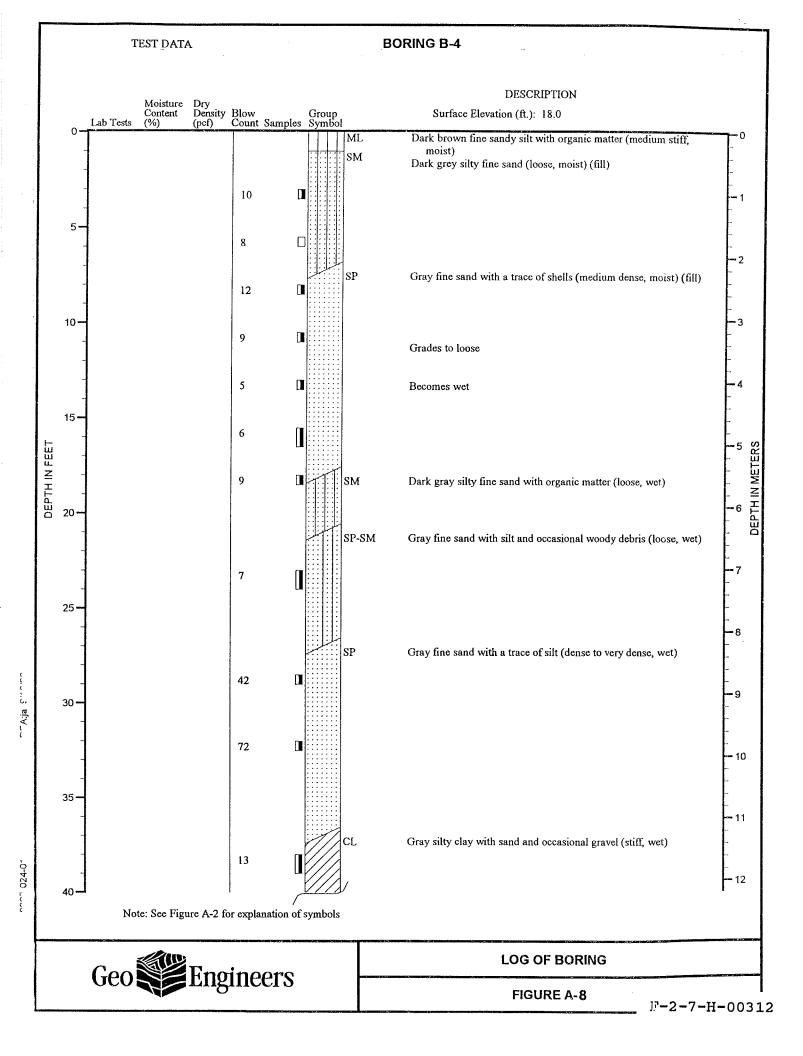
|  |                                         |                                        | LOG OF TEST FIT                                                                                 |  |  |
|--|-----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
|  | DEPTH BELOW<br>GROUND SURFACE<br>(FEET) | SOIL GROUP<br>CLASSIFICATION<br>SYMBOL | DESCRIPTION                                                                                     |  |  |
|  |                                         |                                        | TEST PIT TP-4                                                                                   |  |  |
|  | 0.0 - 6.0                               | SP                                     | Gray fine to medium sand with trace of silt, coarse sand and shells (medium dense, moist)(fill) |  |  |
|  |                                         |                                        | Note: Occasional silt/clay lenses at various elevations                                         |  |  |
|  |                                         |                                        | Test pit completed at 6.0 feet on 9/1/98                                                        |  |  |
|  |                                         |                                        | No ground water seepage observed                                                                |  |  |
|  |                                         |                                        | No caving observed                                                                              |  |  |
|  |                                         |                                        | Composite soil samples obtained at 2.0, 4.0 and 6.0 feet                                        |  |  |
|  |                                         |                                        | MIXOR NAVI SID 5                                                                                |  |  |
|  | 0.0.00                                  | CD.                                    | TEST PIT TP-5                                                                                   |  |  |
|  | 0.0 - 6.0                               | SP                                     | Gray fine to medium sand with trace of silt, coarse sand and shells (medium dense, moist)(fill) |  |  |
|  |                                         |                                        | Note: Occasional clay/silt lenses/balls at various elevations                                   |  |  |
|  |                                         |                                        | Test pit completed at 6.0 feet on 9/1/98                                                        |  |  |
|  |                                         |                                        | No ground water seepage observed                                                                |  |  |
|  |                                         |                                        | No caving observed                                                                              |  |  |
|  |                                         |                                        |                                                                                                 |  |  |

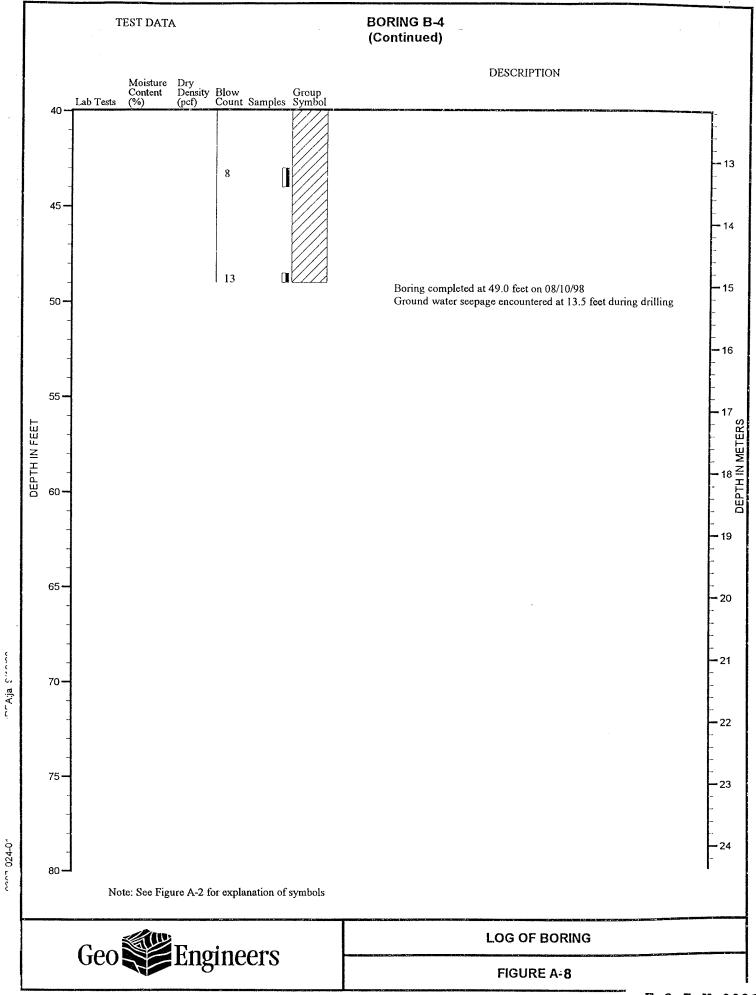

Composite soil samples obtained at 2.0, 4.0 and 6.0 feet

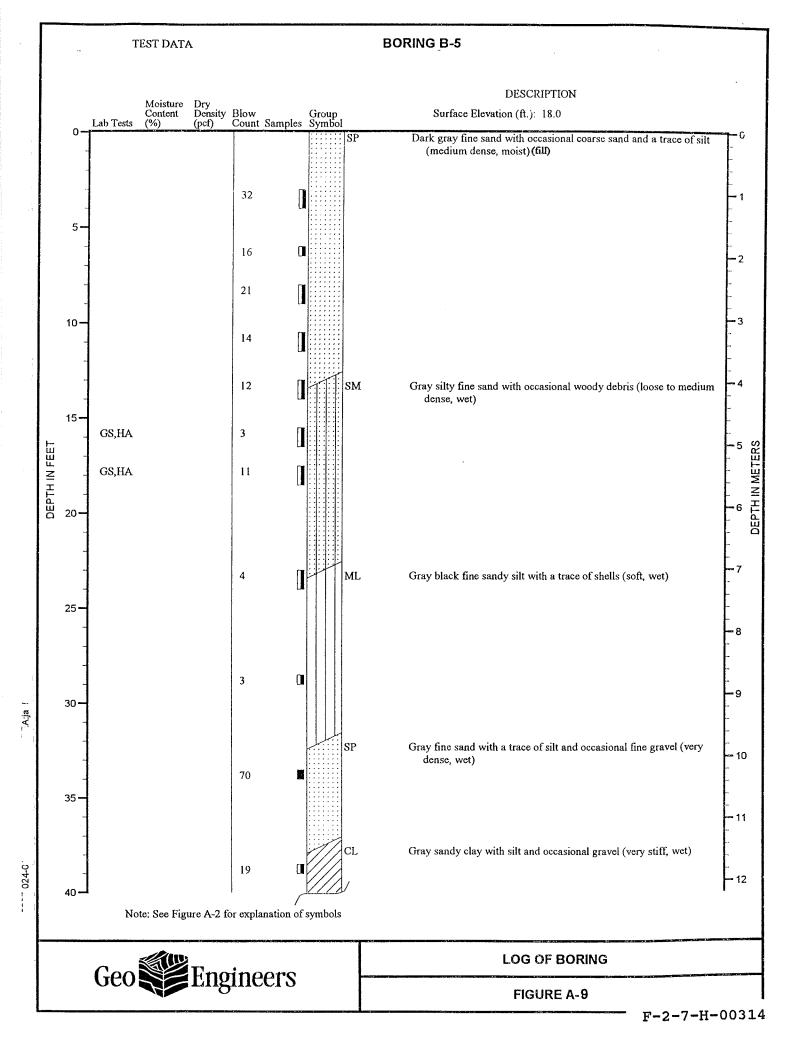
THE DEPTHS OF THE TEST PIT LOGS, ALTHOUGH SHOWN TO 0.1 FOOT, ARE BASED ON AN AVERAGE OF MEASUREMENTS ACROSS THE TEST PIT AND SHOULD BE CONSIDERED ACCURATE TO 0.5 FOOT

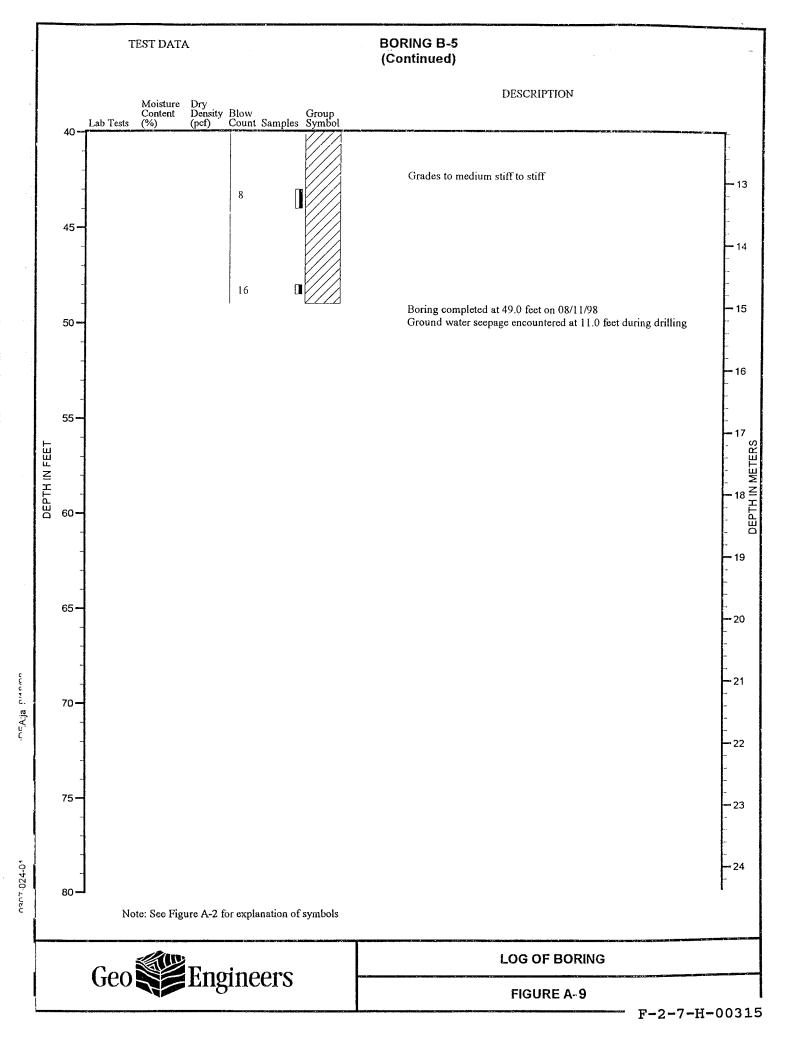


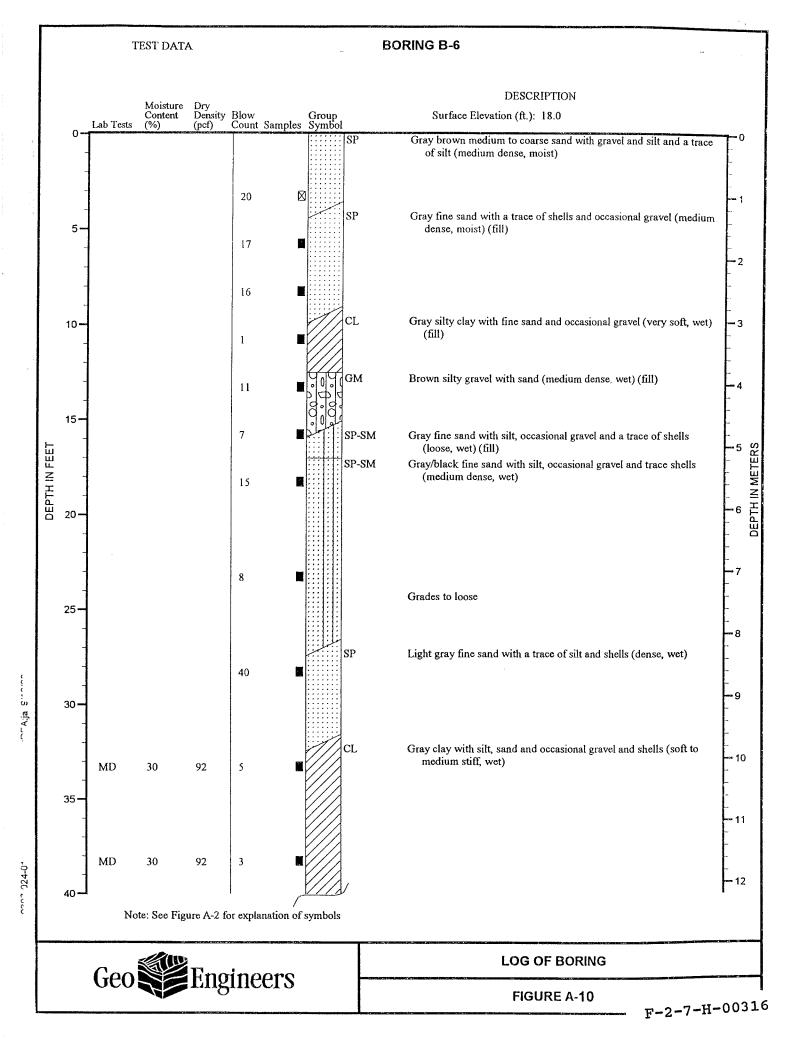


LOG OF TEST PIT

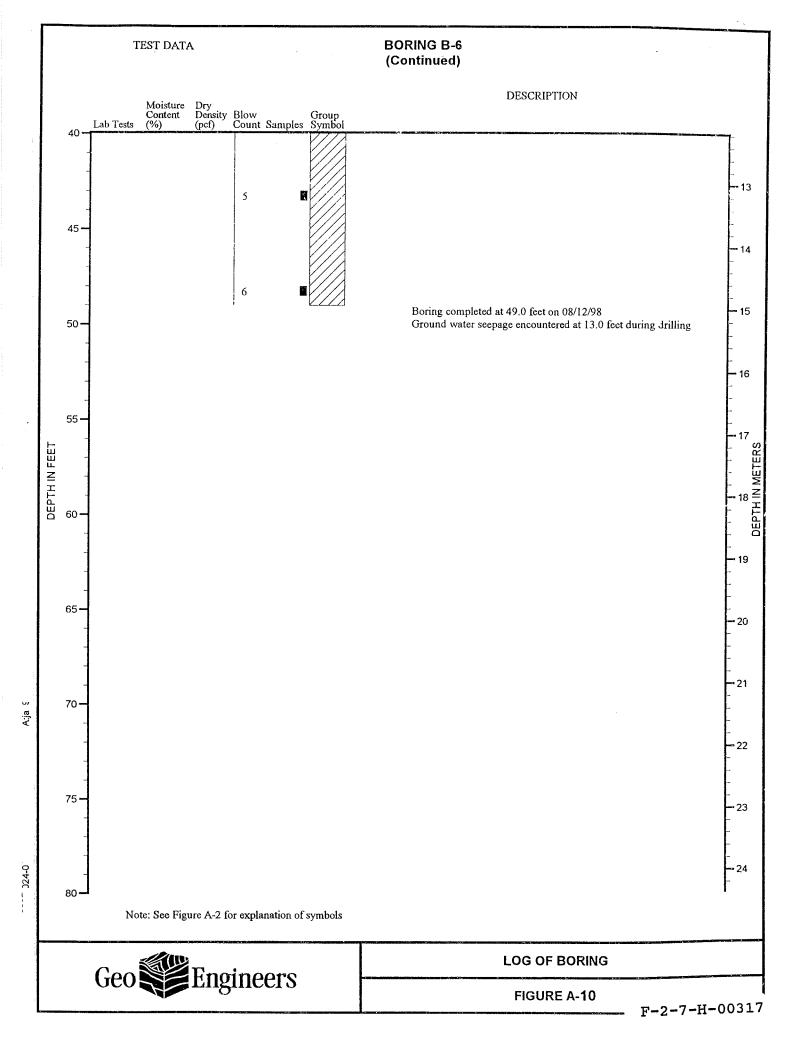

FIGURE A-4

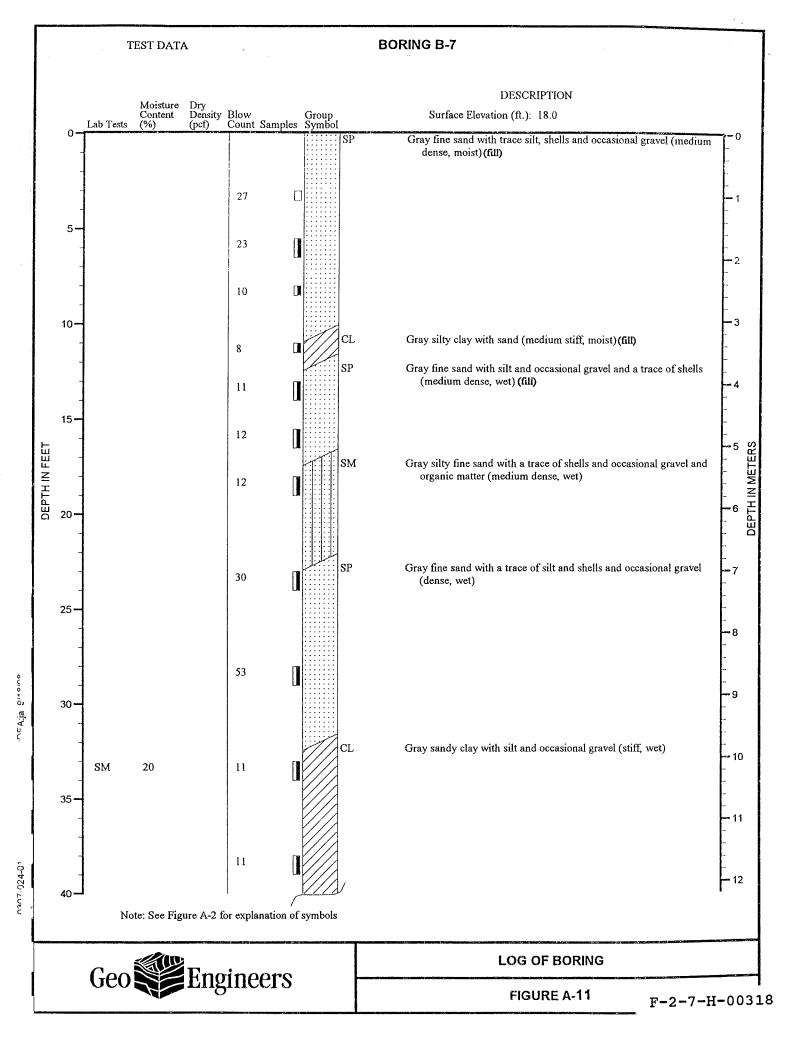


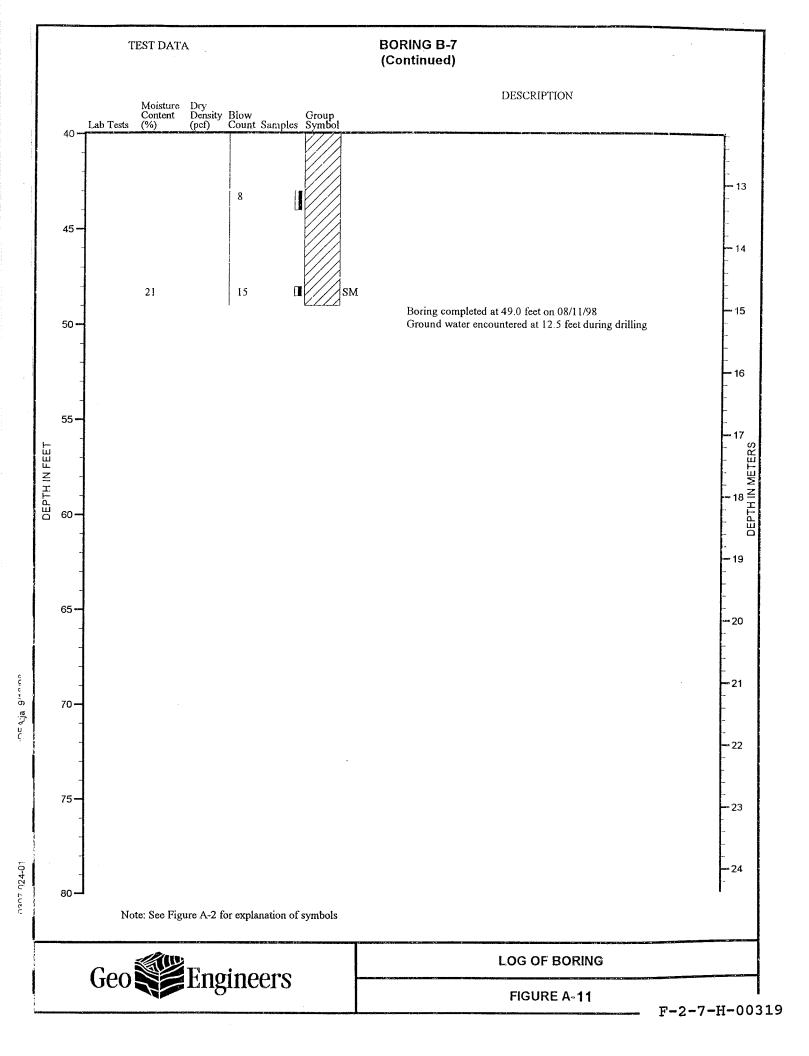


DEAja 9/18/98

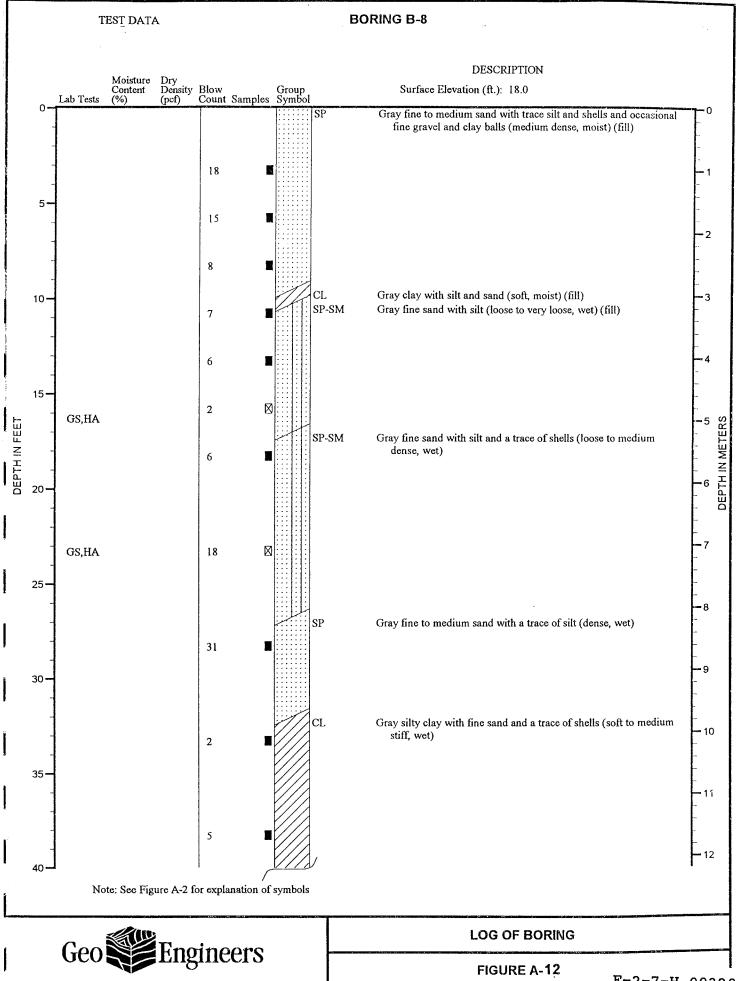


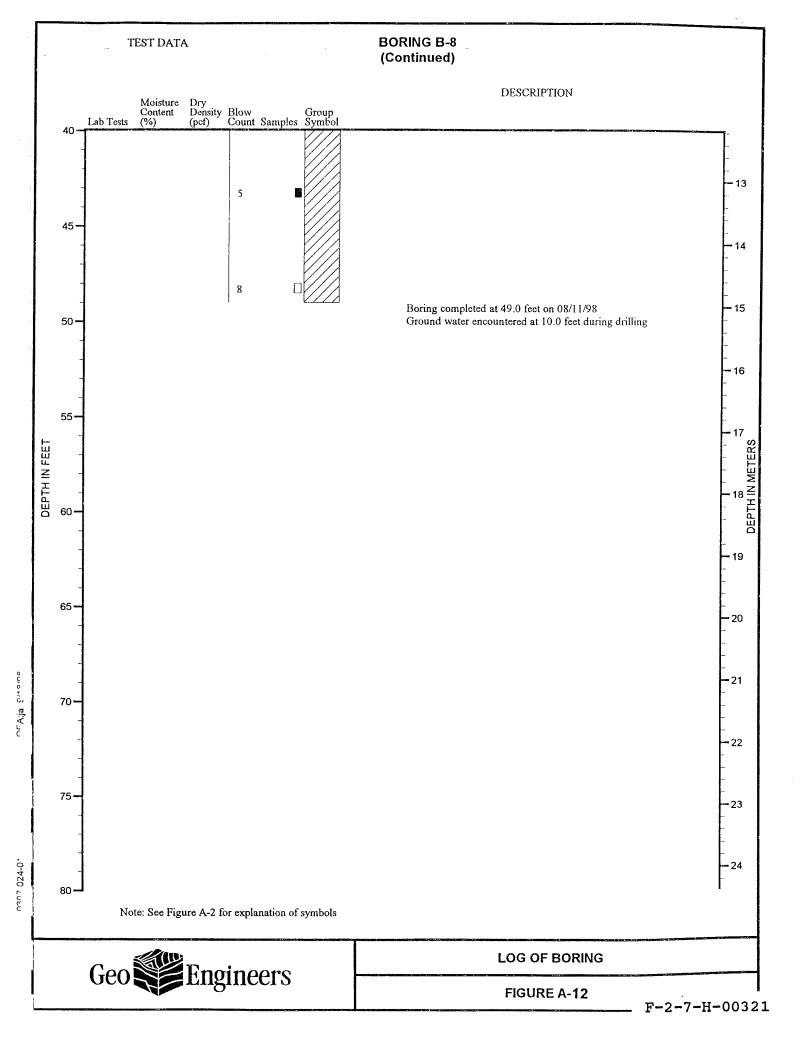



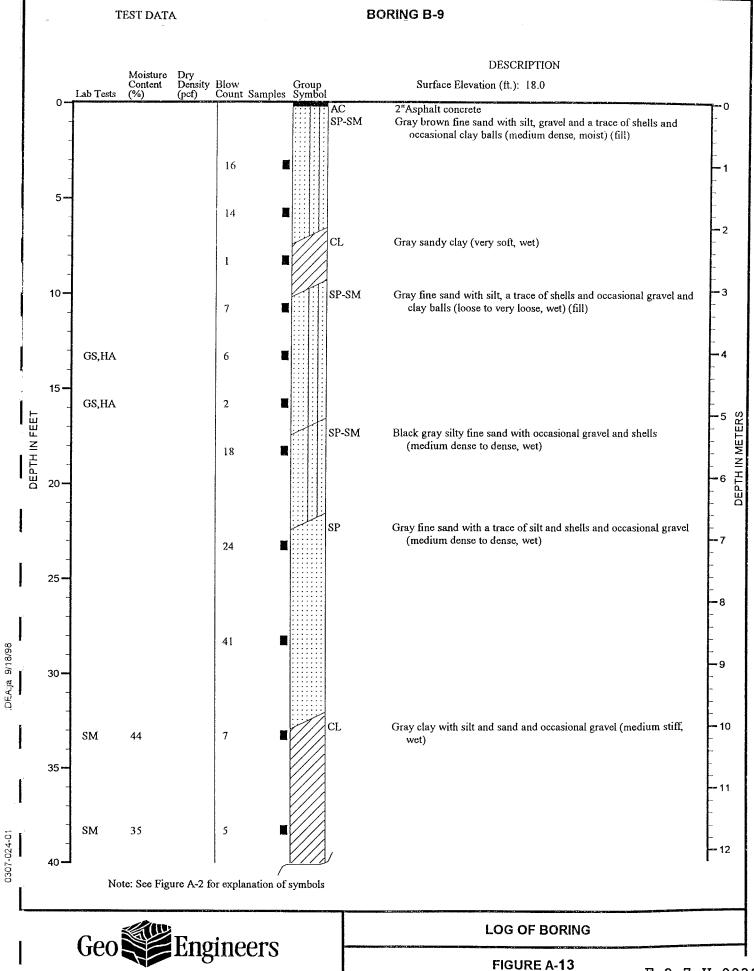



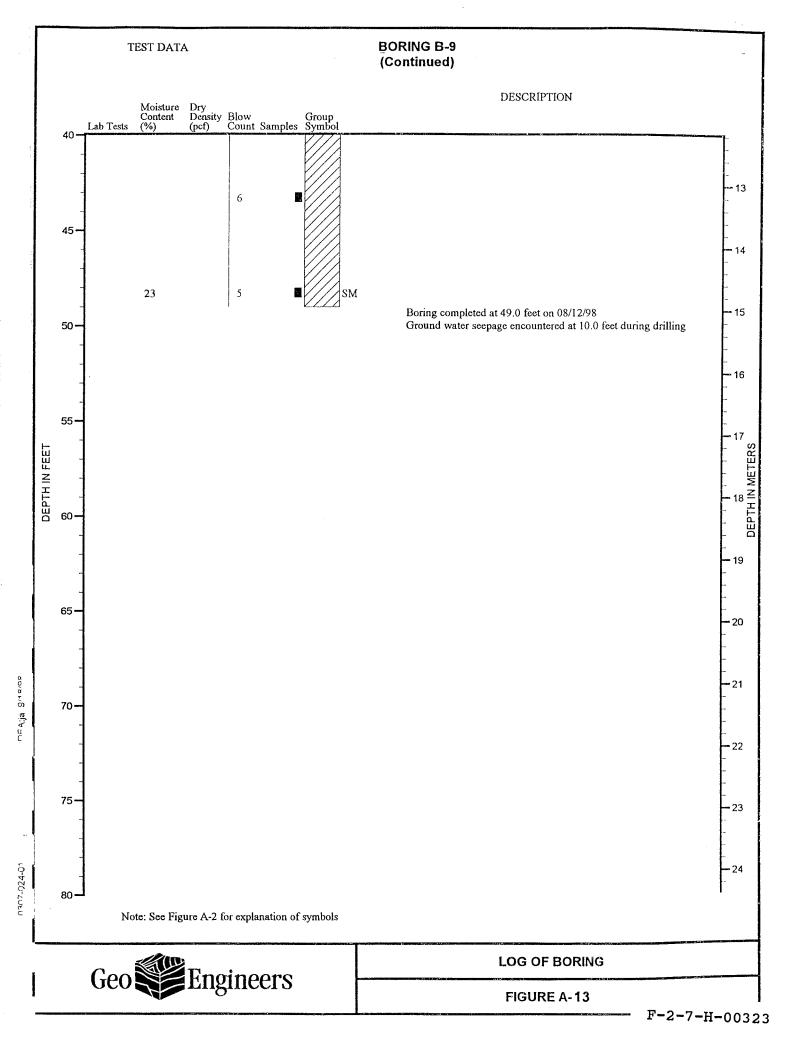



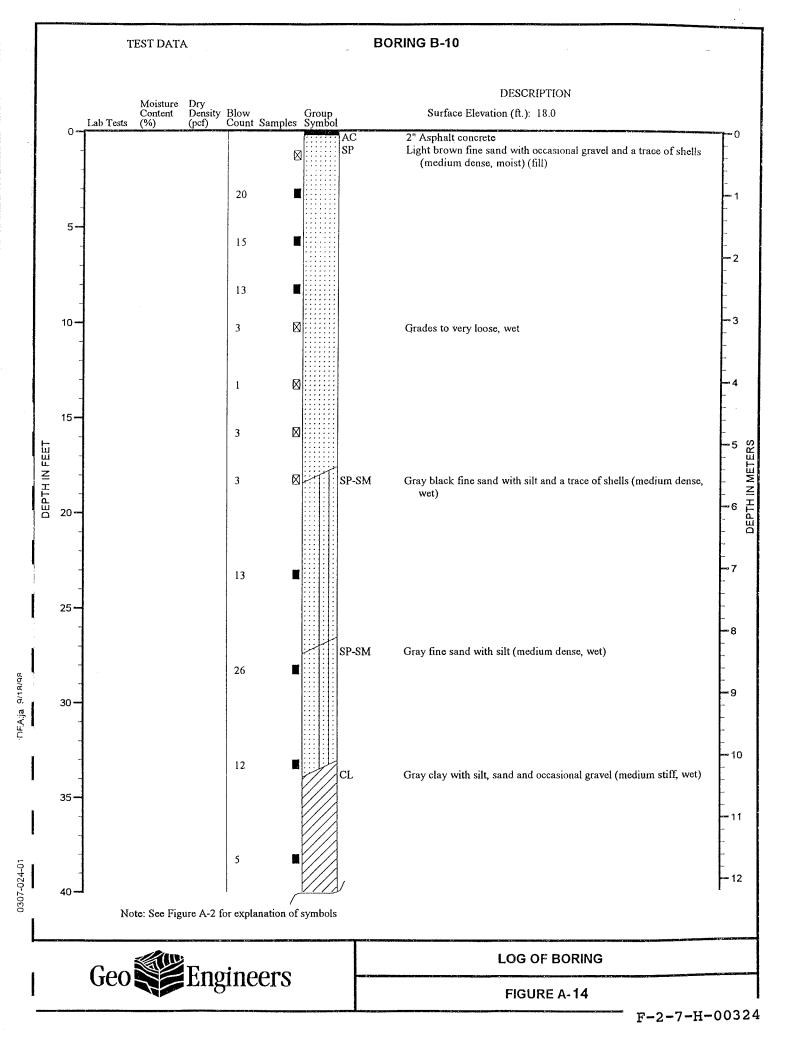


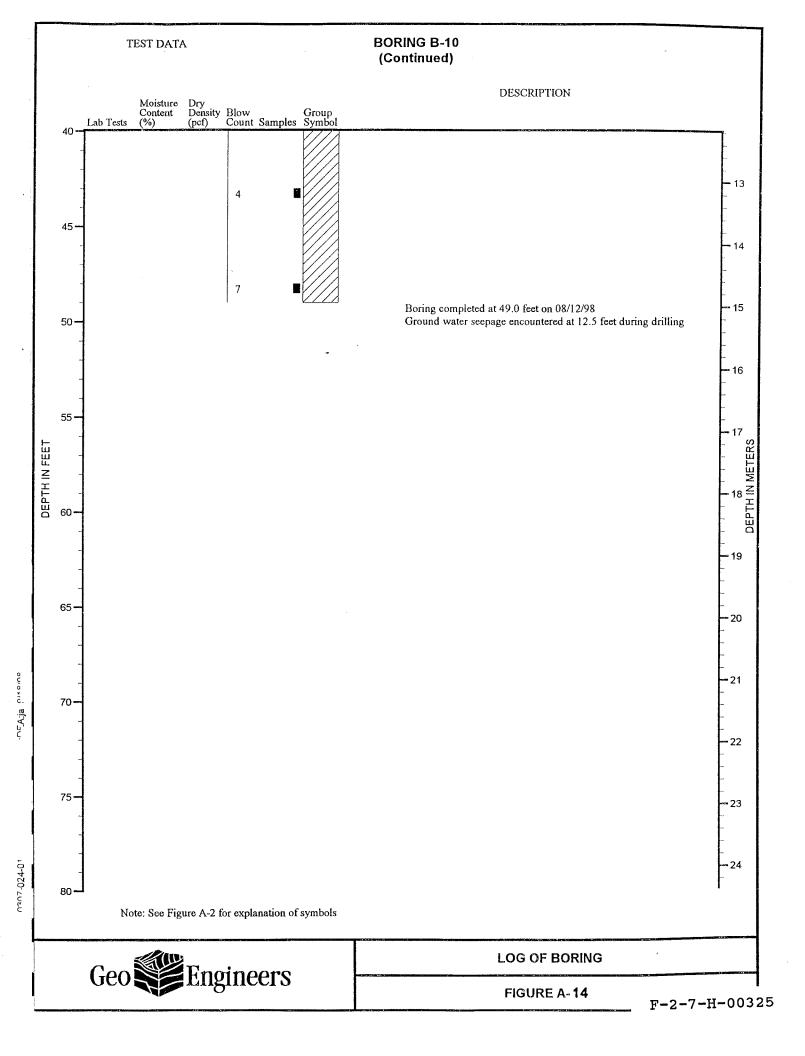




DEA:ja 9/18/98


0307-024-01











# APPENDIX B

#### ATTACHMENT B

# CHEMICAL ANALYTICAL PROGRAM ANALYTICAL METHODS

Chain-of-custody procedures were followed during the transport of the field samples to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory QA/QC (quality assurance/quality control) records are included in this attachment. The analytical results are also summarized in the text and tables of this report.

#### ANALYTICAL DATA REVIEW

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals are included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. No additional data review was performed on the analytical results and QA/QC.

#### **ANALYTICAL DATA REVIEW SUMMARY**

Some minor data quality exceptions were documented by the laboratory. The laboratory concludes that the exceptions do not compromise the integrity of the data. We conclude that the data is acceptable for use in interpreting the conclusions in this report.



# GeoEngineers

SEP 24 1998

BOTHELL = (425) 420-9200 = FAX 420-9210

SPOKANE = (509) 924-9200 = FAX 924-9290

ORTLAND (503) 906-9200 FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St.

Bellingham, WA 98225

FILE # 0307.02

Project: Port of Bellingham
Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

# ANALYTICAL REPORT FOR SAMPLES:

| Sample Description | Laboratory Sample Number | Sample Matrix | Date Sampled |
|--------------------|--------------------------|---------------|--------------|
| TP-I               | B809044-01               | Soil          | 9/1/98       |
| TP-2               | B809044-02               | Soil          | 9/1/98       |
| TP-3               | B809044-03               | Soil          | 9/1/98       |
| TP-4               | B809044-04               | Soil          | 9/1/98       |
| TP-5               | B809044-05               | Soil          | 9/1/98       |

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

eo Engineers - Bellingham 600 Dupont St.

Project: Port of Bellingham Project Number:

0307-024-02

Sampled: 9/1/98

Received: 9/2/98

Bellingham, WA 98225

Project Manager: Jay Gordon Reported: 9/21/98 11:40

# Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

|                    | Batch        | Date     | Date                      | Specific             | Reporting |            |                |        |
|--------------------|--------------|----------|---------------------------|----------------------|-----------|------------|----------------|--------|
| Analyte            | Number       | Prepared | Analyzed                  | Method               | Limit     | Result     | Units          | Notes* |
| D 1                |              |          | nanag                     | 44.01                |           |            | C - :1         |        |
| P-1 Antimony       | 0980239      | 9/8/98   | <u>B8090</u> 4<br>9/10/98 | 44-01<br>EPA 6020    | 0.500     | NID        | Soil           |        |
| Arsenic            | 0700237      | 7/0/70   | 9/10/90                   | EPA 6020             | 0.500     | ND<br>2.00 | mg/kg dry<br>" |        |
|                    | 11           | **       | "                         |                      |           | 2.60       | п              |        |
| eryllium<br>admium | 11           | 1f       | **                        | EPA 6020             | 0.500     | ND         | "              |        |
| Chromium           | u            | **       | *1                        | EPA 6020<br>EPA 6020 | 0.500     | ND         | n              |        |
|                    | B            | ıt       | н                         |                      | 0.500     | 13.3       | "              |        |
| Copper             | "            | **       | 11                        | EPA 6020             | 0.500     | 11.3       |                |        |
| ead                | "            | н        | ir .                      | EPA 6020             | 0.500     | 2.77       |                |        |
| rvickel            |              | **       |                           | EPA 6020             | 0.500     | 15.2       |                |        |
| Selenium           | "            | "        | "                         | EPA 6020             | 0.500     | ND         | "              |        |
| ilver              |              | "        | "                         | EPA 6020             | 0.500     | ND         | "              |        |
| hallium            | "            | **       | "                         | EPA 6020             | 0.500     | ND         |                |        |
| Zinc               |              |          |                           | EPA 6020             | 5.00      | 25.7       | 10             |        |
| ` lercury          | 0980262      | 9/9/98   | "                         | EPA 7471A            | 0.100     | ND         | "              |        |
| <u>1P-2</u>        |              |          | B80904                    | 14-02                |           |            | Soil           |        |
| Antimony           | 0980239      | 9/8/98   | 9/10/98                   | EPA 6020             | 0.500     | ND         | mg/kg dry      |        |
| rsenic             | rt .         | 11       | н                         | EPA 6020             | 0.500     | 2.15       | "              |        |
| eryllium           | 0            | 11       |                           | EPA 6020             | 0.500     | ND         | n              |        |
| Cadmium            | **           | н        |                           | EPA 6020             | 0.500     | ND         | **             |        |
| hromium            | ij.          | H        | н                         | EPA 6020             | 0.500     | 16.5       | **             |        |
| opper              | tt.          | 11       |                           | EPA 6020             | 0.500     | 11.3       | **             |        |
| Lead               | ıt           | ti       | **                        | EPA 6020             | 0.500     | 2.80       | ••             |        |
| Nickel             | tt           | tr       | **                        | EPA 6020             | 0.500     | 16.2       | **             |        |
| elenium            | b            | n .      | ••                        | EPA 6020             | 0.500     | ND         | **             |        |
| Lilver             | 11           | #1       | **                        | EPA 6020             | 0.500     | ND         | н              |        |
| Thallium           | "            | It.      | "                         | EPA 6020             | 0.500     | ND         | п              |        |
| inc                | **           | u        |                           | EPA 6020             | 5.00      | 27.4       | u              |        |
| lercury            | 0980262      | 9/9/98   | "                         | EPA 7471A            | 0.100     | ND         | II.            |        |
| т <u>р-3</u>       |              |          | B80904                    | 14.03                |           |            | <u>Soil</u>    |        |
| ntimony            | 0980239      | 9/8/98   | 9/10/98                   | EPA 6020             | 0.500     | ND         | mg/kg dry      |        |
| arsenic            | U98U239<br>" | 9/0/90   | 9/10/98                   |                      | 0.500     |            | mg/kg ury      |        |
| Beryllium          | rt .         | er       | и                         | EPA 6020<br>EPA 6020 | 0.500     | 2.25       | **             |        |
| admium             | **           | 11       | **                        |                      |           | ND<br>ND   | 11             |        |
| hromium            | **           | It       | n                         | EPA 6020             | 0.500     | ND         | it.            |        |
|                    |              | tt       | 17                        | EPA 6020             | 0.500     | 11.2       | u.             |        |
| Copper             | **           |          | .,                        | EPA 6020             | 0.500     | 17.2       | "              |        |
| ' ead              | **           | "        | "                         | EPA 6020             | 0.500     | 1.69       |                |        |
| ickel              | **           | **       | **                        | EPA 6020             | 0.500     | 11.4       | 11             |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02 Project Manager: Jay Gordon

Received: 9/2/98

Bellingham, WA 98225 Project Manager:

Reported: 9/21/98 11:40

#### Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

|                  | Batch   | Date     | Date     | Specific                              | Reporting     | <del></del>        |             |        |
|------------------|---------|----------|----------|---------------------------------------|---------------|--------------------|-------------|--------|
| Analyte          | Number  | Prepared | Analyzed | Method                                | Limit         | Result             | Units       | Notes* |
|                  |         |          |          | · · · · · · · · · · · · · · · · · · · |               |                    | T-1         |        |
| TP-3 (continued) |         |          | B8090    |                                       |               |                    | <u>Soil</u> |        |
| Selenium         | 0980239 | 9/8/98   | 9/10/98  | EPA 6020                              | 0.500         | ND                 | mg/kg dry   |        |
| Silver           | Ħ       | 11       | *1       | EPA 6020                              | 0.500         | ND                 | "           |        |
| Thallium         | #       | **       | ••       | EPA 6020                              | 0.500         | ND                 | **          |        |
| Zinc             | **      | п        | "        | EPA 6020                              | 5.00          | 20.1               | н           |        |
| Mercury          | 0980262 | 9/9/98   | 11       | EPA 7471A                             | 0.100         | 0.105              | "           |        |
| TP-4             |         |          | B80904   | 14-04                                 |               |                    | Soil        |        |
| Antimony         | 0980239 | 9/8/98   | 9/10/98  | EPA 6020                              | 0.500         | ND                 | mg/kg dry   |        |
| Arsenic          | "       | n        | **       | EPA 6020                              | 0.500         | 2.60               | "           |        |
| Beryllium        | "       | "        | 11       | EPA 6020                              | 0.500         | ND                 | 11          |        |
| Cadmium          | tr.     | **       | **       | EPA 6020                              | 0.500         | ND                 | <b>51</b>   |        |
| Chromium         | **      | "        | 11       | EPA 6020                              | 0.500         | 14.0               | и           |        |
| Copper           | ,"      | 11       | n        | EPA 6020                              | 0.500         | 8.43               | n           |        |
| Lead             | re .    | **       | u        | EPA 6020                              | 0.500         | 1.97               | tt          |        |
| Nickel           | **      | tt       | н        | EPA 6020                              | 0.500         | 12.1               | 11          |        |
| Selenium         | 11      | H        | **       | EPA 6020                              | 0.500         | ND                 | n           |        |
| Silver           | tt      | 11       | "        | EPA 6020                              | 0.500         | ND                 | н           |        |
| Thallium         | н       | 11       | ii .     | EPA 6020                              | 0.500         | ND                 | n           |        |
| Zinc             | 71      | "        | н        | EPA 6020                              | 5.00          | 21.7               | "           |        |
| Mercury          | 0980262 | 9/9/98   | 11       | EPA 7471A                             | 0.100         | ND                 | н           |        |
| <u>TP-5</u>      |         |          | B80904   | 4-05                                  |               |                    | <u>Soil</u> |        |
| Antimony         | 0980239 | 9/8/98   | 9/10/98  | EPA 6020                              | 0.500         | ND                 | mg/kg dry   |        |
| Arsenic          | **      | "        | ii.      | EPA 6020                              | 0.500         | 2.22               | "           |        |
| Beryllium        | 11      | "        | "        | EPA 6020                              | 0.500         | ND                 | ır          |        |
| Cadmium          | 11      | It       | **       | EPA 6020                              | 0.500         | ND                 | **          |        |
| Chromium         | n       | ··       | "        | EPA 6020                              | 0.500         | 17.5               | **          |        |
| Copper           | **      | n        | "        | EPA 6020                              | 0.500         | 13.4               | **          |        |
| Lead             | H       | n        |          | EPA 6020                              | 0.500         | 2.25               | n           |        |
| Nickel           | 11      | "        | "        | EPA 6020                              | 0.500         | 38.8               | rt          |        |
| Selenium         | 11      | u        | n        | EPA 6020                              | 0.500         | ND                 | **          |        |
| Silver           | **      | ··       | "        | EPA 6020                              | 0.500         | ND                 | tt          |        |
| Thallium         |         |          |          |                                       |               |                    |             |        |
| rnamum           | "       | н        |          | EPA 6020                              | 0.500         | ND                 | If          |        |
| Zinc             | "       | н        | "        | EPA 6020<br>EPA 6020                  | 0.500<br>5.00 | ND<br><b>23.</b> 6 | 11          |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL **4** (425) 420-9200 **FAX** 420-9210 SPOKANE **6** (509) 924-9200 **FAX** 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham | 600 Dupont St.

Bellingham, WA 98225

Project: Port of Bellingham
Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

|                | Batch   | Date     | Date          | Surrogate    | Reporting |          |                |        |
|----------------|---------|----------|---------------|--------------|-----------|----------|----------------|--------|
| Analyte        | Number  | Prepared | Analyzed      | Limits       | Limit     | Result   | Units          | Notes* |
| <u>ΓΡ-1</u>    |         |          | B80904        | 14_01        |           |          | Soil           |        |
| Aroclor 1016   | 0980088 | 9/3/98   | 9/4/98        | 44-01        | 50.0      | ND       |                |        |
| Aroclor 1221   | "       | "        | "             |              | 50.0      | ND<br>ND | ug/kg dry<br>" |        |
| Aroclor 1232   | n       | н        | 10            |              | 50.0      | ND       | 11             |        |
| Aroclor 1242   | 11      | **       | •             |              | 50.0      |          |                |        |
| Aroclor 1248   | н       | ,,       | **            |              |           | ND       | n.             |        |
| Aroclor 1254   | 15      | **       |               |              | 50.0      | ND       | "              |        |
| Aroclor 1260   | **      | **       | 41            |              | 50.0      | ND       | ,,             |        |
|                | "       | **       | н             |              | 50.0      | ND       |                |        |
| Aroclor 1262   |         |          |               |              | 50.0      | ND       | "              |        |
| Aroclor 1268   |         | ···      |               |              | 50.0      | ND       |                |        |
| Surrogate: TCX | "       | "        | "             | 40.0-130     |           | 96.4     | %              |        |
| <u>TP-2</u>    |         |          | <u>B80904</u> | 14-02        |           |          | Soil           |        |
| \roclor 1016   | 0980088 | 9/3/98   | 9/17/98       |              | 50.0      | ND       | ug/kg dry      |        |
| vroclor 1221   | II .    | н        | **            |              | 50.0      | ND       | "              |        |
| Aroclor 1232   | · ·     | #        | #1            |              | 50.0      | ND       | **             |        |
| Aroclor 1242   | "       | "        | **            |              | 50.0      | ND       | **             |        |
| vroclor 1248   | 11      | "        | Ħ             |              | 50.0      | ND       | **             |        |
| roclor 1254    | Ħ       | "        |               |              | 50.0      | ND       | 11             |        |
| Aroclor 1260   | 11      | **       | ,,            |              | 50.0      | ND       | **             |        |
| roclor 1262    |         | 11       | н             |              | 50.0      | ND       | н              |        |
| roclor 1268    | et      | **       | н             |              | 50.0      | ND       | **             |        |
| Surrogate: TCX | "       | "        | n .           | 40.0-130     | 30.0      | 84.8     | %              |        |
| <u>'P-3</u>    |         |          | D0000         | 4.03         |           |          |                |        |
| r-5            | 000000  | 0/2/00   | <u>B80904</u> | <u>14-03</u> | ***       |          | <u>Soil</u>    |        |
|                | 0980088 | 9/3/98   | 9/17/98       |              | 50.0      | ND       | ug/kg dry<br>" |        |
| Aroclor 1221   |         | **       |               |              | 50.0      | ND       |                |        |
| roclor 1232    | .,      | **       | "             |              | 50.0      | ND       | 11             |        |
| croclor 1242   | **      |          |               |              | 50.0      | ND       | 41             |        |
| Aroclor 1248   |         | 11       | 11            |              | 50.0      | ND       | 11             |        |
| Aroclor 1254   | "       | 11       | **            |              | 50.0      | ND       | **             |        |
| roclor 1260    | п       | **       | 11            |              | 50.0      | ND       | н              |        |
| Aroclor 1262   | 11      | 11       | **            |              | 50.0      | ND       | 11             |        |
| Aroclor 1268   |         |          |               |              | 50.0      | ND       | **             |        |
| urrogate: TCX  | ,,      | ,        | "             | 40.0-130     |           | 88.3     | %              |        |
| <u>TP-4</u>    |         |          | <u>B80904</u> | 4-04         |           |          | Soil           |        |
| roclor 1016    | 0980088 | 9/3/98   | 9/17/98       |              | 50.0      | ND       | ug/kg dry      |        |
| roclor 1221    | "       | "        | "             |              | 50.0      | ND       | ug/kg diy      |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

leve Davis. Project Manager

B-6

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE (509) 924-9200 FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled:

9/1/98 Received: 9/2/98

Bellingham, WA 98225

600 Dupont St.

Project Number: Project Manager:

0307-024-02 Jay Gordon

Reported: 9/21/98 11:40

#### Polychlorinated Biphenyls by EPA Method 8082 North Creek Analytical - Bothell

|                  | Batch   | Date     | Date           | Surrogate    | Reporting |        |             |        |
|------------------|---------|----------|----------------|--------------|-----------|--------|-------------|--------|
| Analyte          | Number  | Prepared | Analyzed       | Limits       | Limit     | Result | Units       | Notes* |
| TP-4 (continued) |         |          | B80904         | <u>44-04</u> |           |        | <u>Soil</u> |        |
| Aroclor 1232     | 0980088 | 9/3/98   | 9/17/98        |              | 50.0      | ND     | ug/kg dry   |        |
| Aroclor 1242     | 11      | н        | II .           |              | 50.0      | ND     | "           |        |
| Aroclor 1248     | **      | **       | "              |              | 50.0      | ND     | n           |        |
| Aroclor 1254     | Ħ       | "        | **             |              | 50.0      | ND     | 11          |        |
| Aroclor 1260     | **      | н        | и              |              | 50.0      | ND     | 0           |        |
| Aroclor 1262     | II .    | 41       | "              |              | 50.0      | ND     | **          |        |
| Aroclor 1268     | н       | 11       | ч              |              | 50.0      | ND     | 11          |        |
| Surrogate: TCX   | "       | н        | "              | 40.0-130     |           | 87.6   | %           |        |
| <u>TP-5</u>      |         |          | <b>B8</b> 0904 | 14-05        |           |        | <u>Soil</u> |        |
| Aroclor 1016     | 0980088 | 9/3/98   | 9/17/98        |              | 50.0      | ND     | ug/kg dry   |        |
| Aroclor 1221     | "       | •        | **             |              | 50.0      | ND     | "           |        |
| Aroclor 1232     | tt      | **       | 11             |              | 50.0      | ND     | 11          |        |
| Aroclor 1242     | "       | 11       | **             |              | 50.0      | ND     | **          |        |
| Aroclor 1248     | rr      | **       | **             |              | 50.0      | ND     | ··          |        |
| Aroclor 1254     | н       | "        | **             |              | 50.0      | ND     | æ           |        |
| Aroclor 1260     | tt      | **       | 17             |              | 50.0      | ND     | **          |        |
| Aroclor 1262     | "       | **       | 11             |              | 50.0      | ND     |             |        |
| Aroclor 1268     | "       | "        | ti .           |              | 50.0      | ND     | н           |        |
| Surrogate: TCX   | **      | "        | "              | 40.0-130     |           | 92.2   | %           |        |
| Surrogate: ICX   | "       | **       | **             | 40.0-130     |           | 92.2   | %           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND **(503) 906-9200 FAX 906-9210** 

Geo Engineers - Bellingham 1600 Dupont St.

Bellingham, WA 98225

Project Number: 0307-024-02

Project: Port of Bellingham

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

|                           | Batch   | Date     | Date     | Surrogate            | Reporting      |          |                |        |
|---------------------------|---------|----------|----------|----------------------|----------------|----------|----------------|--------|
| Analyte                   | Number  | Prepared | Analyzed | Limits               | Limit          | Result   | Units          | Notes* |
| CP-1                      |         |          | B8090    | 14_01                |                |          | Ca:I           |        |
| Acetone                   | 0980260 | 9/9/98   | 9/9/98   | <del>, , , , ,</del> | 2.00           | ND       | Soil           |        |
| Benzene                   | "       | "        | "        |                      | 0.100          | ND<br>ND | mg/kg dry<br>" |        |
| Bromodichloromethane      | н       | ** .     | **       |                      | 0.100          |          | ч              |        |
| 3romoform                 | 11      | ••       | **       |                      | 0.100          | ND       | н              |        |
| Bromomethane              | "       | ır       | 11       |                      | 0.100          | ND       | н              |        |
| 2-Butanone                | 11      | н        | n        |                      | 2.00           | ND       | ··             |        |
| Carbon disulfide          | **      | **       | 11       |                      | 0.100          | ND       | 11             |        |
| Carbon tetrachloride      |         | "        | "        |                      |                | ND       |                |        |
| Chlorobenzene             | ,,      | п        | **       |                      | 0.100<br>0.100 | ND       | "              |        |
| Chloroethane              | "       | 41       | н        |                      |                | ND       | "              |        |
| Chloroform                | "       | **       | **       |                      | 0.100          | ND       |                |        |
| Chloromethane             | 11      | **       | ш        |                      | 0.100          | ND       | "              |        |
| Dibromochloromethane      | tt.     | **       | и        |                      | 0.500          | ND       | **             |        |
| .2-Dichlorobenzene        | **      | **       | ,,       |                      | 0.100          | ND       | **             |        |
| 1.3-Dichlorobenzene       | **      | **       | **       |                      | 0.100          | ND       | **             |        |
| 1.4-Dichlorobenzene       | n       | **       | 11       |                      | 0.100          | ND       | ,,             |        |
| ,1-Dichloroethane         | **      | **       | "        |                      | 0.100          | ND       |                |        |
| .2-Dichloroethane         | н       | **       | **       |                      | 0.100          | ND       | 11             |        |
| 1.1-Dichloroethene        | 11      | **       | **       |                      | 0.100          | ND       | **             |        |
| is-1,2-Dichloroethene     | ••      | **       | 15       |                      | 0.100          | ND       | **             |        |
| rans-1,2-Dichloroethene   | lt.     | ,,       | 11       |                      | 0.100          | ND       |                |        |
| 1,2-Dichloropropane       | ,,      | 11       | "        |                      | 0.100          | ND       |                |        |
| cis-1,3-Dichloropropene   | н       | **       | **       |                      | 0.100          | ND       |                |        |
| rans-1,3-Dichloropropene  |         | **       |          |                      | 0.100          | ND       | "              |        |
| Lithylbenzene             | ,,      | .,       | н        |                      | 0.100          | ND       | **             |        |
| 2-Hexanone                | tr.     | ••       | "        |                      | 0.100          | ND       | **             |        |
| fethylene chloride        | и /     | **       |          |                      | 2.00           | ND       | **             |        |
| -Methyl-2-pentanone       | ,,      |          | "        |                      | 1.00           | ND       |                |        |
| Styrene Styrene           | 11      |          | "        |                      | 2.00           | ND       | **             |        |
| 1.1.2,2-Tetrachloroethane |         | "        | "        |                      | 0.100          | ND       | **             |        |
| etrachloroethene          | "       | н        | "        |                      | 0.100          | ND       | "              |        |
| roluene                   |         | ••       | "        |                      | 0.100          | ND       | **             |        |
| 1,1.1-Trichloroethane     |         | "        | "        |                      | 0.100          | ND       | **             |        |
| 1.1.2-Trichloroethane     | "       | "        | "        |                      | 0.100          | ND       | "              |        |
| richloroethene            | "       | **       |          |                      | 0.100          | ND       | 11             |        |
|                           |         |          | *1       |                      | 0.100          | ND       | "              |        |
| Vinyl chloride            |         |          | **       |                      | 0.100          | ND       | •              |        |
| Yylenes (total)           | "       | #<br>    | H        |                      | 0.400          | ND       |                |        |
| urrogate: 2-Bromopropene  | "       | "        | "        | 70.0-130             |                | 130      | %              |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND **=** (503) 906-9200 **=** FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St.

Bellingham, WA 98225

Port of Bellingham Project:

Project Number: 0307-024-02 Project Manager:

Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| Analyte               | Batch<br>Number | Date<br>Prepared | Date<br>Analyzed | Surrogate<br>Limits | Reporting<br>Limit | Result | Units       | Notes* |
|-----------------------|-----------------|------------------|------------------|---------------------|--------------------|--------|-------------|--------|
| TP-1 (continued)      |                 |                  | B80904           | <del>14-01</del>    |                    |        | <u>Soil</u> |        |
| Surrogate: 1,2-DCA-d4 | 0980260         | 9/9/98           | 9/9/98           | 70.0-130            |                    | 105    | %           |        |
| Surrogate: Toluene-d8 | n n             | "                | "                | 70.0-130            |                    | 105    | "           |        |
| Surrogate: 4-BFB      | "               | **               | "                | 70.0-130            |                    | 97.1   | "           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL **(425)** 420-9200 **FAX** 420-9210 SPOKANE **(509)** 924-9290 **FAX** 924-9290

PORTLAND \* (503) 906-9200 \* FAX 906-9210

Geo Engineers - Bellingham

Project:

Port of Bellingham 0307-024-02 Sampled: 9/1/98 Received: 9/2/98

600 Dupont St. Bellingham, WA 98225 Project Number: Project Manager:

Jay Gordon

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

|                           | Batch   | Date     | Date     | Surrogate | Reporting |        |             |        |
|---------------------------|---------|----------|----------|-----------|-----------|--------|-------------|--------|
| Analyte                   | Number  | Prepared | Analyzed | Limits    | Limit     | Result | Units       | Notes* |
| <u>TP-2</u>               |         |          | B8090    | 14-02     |           |        | <u>Soil</u> |        |
| Acetone                   | 0980260 | 9/9/98   | 9/9/98   |           | 2.00      | ND     | mg/kg dry   |        |
| Benzene                   | 17      | **       | **       |           | 0.100     | ND     | "           |        |
| Bromodichioromethane      | 11      | **       | ••       |           | 0.100     | ND     | н           |        |
| Bromoform                 | п       | **       | **       |           | 0.100     | ND     | **          |        |
| Bromomethane              | **      | 11       | **       |           | 0.100     | ND     | "           |        |
| 2-Butanone                | ti      | **       | tt       |           | 2.00      | ND     | n           |        |
| Carbon disulfide          | 11      | **       | tr.      |           | 0.100     | ND     | n           |        |
| Carbon tetrachloride      | 11      | н.       | **       |           | 0.100     | ND     | •           |        |
| Chlorobenzene             | n .     | P        | **       |           | 0.100     | ND     | u           |        |
| Chloroethane              | "       | ti       | н        |           | 0.100     | ND     | **          |        |
| Chloroform                | 0       | 11       | ır       |           | 0.100     | ND     | **          |        |
| Chloromethane             | н       | 11       | **       |           | 0.500     | ND     | **          |        |
| Dibromochloromethane      | **      | 11       | **       |           | 0.100     | ND     | **          |        |
| 1.2-Dichlorobenzene       | "       | "        | 11       |           | 0.100     | ND     | **          |        |
| 1.3-Dichlorobenzene       | **      | 11       | **       |           | 0.100     | ND     | 41          |        |
| 1.4-Dichlorobenzene       | 11      | **       | "        |           | 0.100     | ND     | **          |        |
| 1,1-Dichloroethane        | "       | 19       |          |           | 0.100     | ND     | н           |        |
| 1.2-Dichloroethane        | **      | P        | **       |           | 0.100     | ND     | **          |        |
| 1.1-Dichloroethene        | "       | **       | "        |           | 0.100     | ND     | **          |        |
| cis-1.2-Dichloroethene    | **      | 11       | **       |           | 0.100     | ND     | **          |        |
| trans-1,2-Dichloroethene  | **      | **       | **       |           | 0.100     | ND     | o o         |        |
| 1.2-Dichloropropane       | "       | **       | •        |           | 0.100     | ND     |             |        |
| cis-1,3-Dichloropropene   | 11      |          | **       |           | 0.100     | ND     |             |        |
| trans-1,3-Dichloropropene | 11      | **       | **       |           | 0.100     | ND     | н           |        |
| Ethylbenzene              |         |          | **       |           | 0.100     | ND     | 0           |        |
| 2-Hexanone                | **      | *1       | "        |           | 2.00      | ND     | **          |        |
| Methylene chloride        | **      | n        | "        |           | 1.00      | ND     | **          |        |
| 4-Methyl-2-pentanone      | **      |          | 11       |           | 2.00      | ND     | .,          |        |
| Styrene                   | tt.     | п        |          |           | 0.100     | ND     | н           |        |
| 1.1,2,2-Tetrachloroethane | **      | **       |          |           | 0.100     | ND     | н           |        |
| Tetrachloroethene         | **      | 11       | 11       |           | 0.100     | ND     | H           |        |
| Toluene                   | •       | 11       | **       |           | 0.100     | ND     | **          |        |
| 1.1.1-Trichloroethane     | "       | и        | н        |           | 0.100     | ND     | п           |        |
| 1,1,2-Trichloroethane     | **      | **       | **       |           | 0.100     | ND     | **          |        |
| Trichloroethene           | 11      | tr       | "        |           | 0.100     | ND     | n           |        |
| Vinyl chloride            | **      | e e      |          |           | 0.100     | ND     | 11          |        |
| Xylenes (total)           | n       | **       | н        |           | 0.400     | ND     | **          |        |
| Surrogate: 2-Bromopropene |         |          |          | 70.0-130  |           | 127    | %           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL \* (425) 420-9200 \* FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham Sampled:

9/1/98

1600 Dupont St.

Project Number:

0307-024-02

Received: 9/2/98

Bellingham, WA 98225

Project Manager: Jay Gordon Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| i A l                 | Batch   | Date     | Date     | Surrogate    | Reporting | T. 1   |       |        |
|-----------------------|---------|----------|----------|--------------|-----------|--------|-------|--------|
| Analyte               | Number  | Prepared | Analyzed | Limits       | Limit     | Result | Units | Notes* |
| TP-2 (continued)      |         |          | B8090    | <u>44-02</u> |           |        | Soil  |        |
| Surrogate: 1,2-DCA-d4 | 0980260 | 9/9/98   | 9/9/98   | 70.0-130     |           | 105    | %     |        |
| Surrogate: Toluene-d8 | "       | "        | "        | 70.0-130     |           | 111    | "     |        |
| Surrogate: 4-BFB      | "       | "        | "        | 70.0-130     |           | 98.6   | "     |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 9405 S.W. Nimbus Avenue, Respector, OR 97008-7132



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE ■ (509) 924-9200 ■ FAX 924-9290

PORTLAND \* (503) 906-9200 \* FAX 906-9210

Geo Engineers - Bellingham

Bellingham, WA 98225

Project: 600 Dupont St.

Project Number: 0307-024-02 Sampled: 9/1/98

Received: 9/2/98

Project Manager: Jay Gordon Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Port of Bellingham

| •                         | Batch   | Date     | Date     | Surrogate        | Reporting |        |           |        |
|---------------------------|---------|----------|----------|------------------|-----------|--------|-----------|--------|
| Analyte                   | Number  | Prepared | Analyzed | Limits           | Limit     | Result | Units     | Notes* |
| <u>TP-3</u>               |         |          | B80904   | <del>14-03</del> |           |        | Soil      |        |
| Acetone                   | 0980260 | 9/9/98   | 9/9/98   |                  | 2.00      | ND     | mg/kg dry |        |
| Benzene                   | н       | п        | 11       |                  | 0.100     | ND     | "         | ;      |
| Bromodichloromethane      | **      | 11       | eę       |                  | 0.100     | ND     | · ·       |        |
| Bromoform                 | Ħ       | 11       | **       |                  | 0.100     | ND     | "         |        |
| Bromomethane              | Ħ       | **       | 11       |                  | 0.100     | ND     | 11        |        |
| 2-Butanone                | tr.     | п        | 11       |                  | 2.00      | ND     |           |        |
| Carbon disulfide          | 11      | и        | 51       |                  | 0.100     | ND     | **        |        |
| Carbon tetrachloride      | **      | 11       | **       |                  | 0.100     | ND     | "         |        |
| Chlorobenzene             | **      | 11       | 11       |                  | 0.100     | ND     | "         |        |
| Chloroethane              | 41      | tt       | **       |                  | 0.100     | ND     | н         |        |
| Chloroform                | **      |          | **       |                  | 0.100     | ND     | **        |        |
| Chloromethane             | 11      | н        |          |                  | 0.500     | ND     | u         |        |
| Dibromochloromethane      | et      | 11       | •        |                  | 0.100     | ND     | u .       |        |
| 1,2-Dichlorobenzene       | n       | н        | 11       |                  | 0.100     | ND     | r:        |        |
| 1.3-Dichlorobenzene       | **      | tr       | **       |                  | 0.100     | ND     | **        |        |
| 1,4-Dichlorobenzene       | "       | **       | **       |                  | 0.100     | ND     | **        |        |
| 1.1-Dichloroethane        |         | **       | **       |                  | 0.100     | ND     | **        |        |
| 1.2-Dichloroethane        |         | **       |          |                  | 0.100     | ND     | 11        |        |
| 1.1-Dichloroethene        | **      | "        | **       |                  | 0.100     | ND     | 16        |        |
| cis-1,2-Dichloroethene    | "       | **       |          |                  | 0.100     | ND     | **        |        |
| trans-1.2-Dichloroethene  | **      | "        | **       |                  | 0.100     | ND     | **        |        |
| 1,2-Dichloropropane       | **      | n        |          |                  | 0.100     | ND     | **        |        |
| cis-1,3-Dichloropropene   | u       | п        | **       |                  | 0.100     | ND     | 11        |        |
| trans-1,3-Dichloropropene | **      | п        | **       |                  | 0.100     | ND     | **        |        |
| Ethylbenzene              | н       | ır       | ••       |                  | 0.100     | ND     | **        |        |
| 2-Hexanone                | H       | **       | •        |                  | 2.00      | ND     | If        |        |
| Methylene chloride        | **      | **       | **       |                  | 1.00      | ND     | н         |        |
| 4-Methyl-2-pentanone      | ti .    | **       |          |                  | 2.00      | ND     | 11        |        |
| Styrene                   | **      | n        |          |                  | 0.100     | ND     | D         |        |
| 1.1.2,2-Tetrachloroethane | ti.     | н        | n        |                  | 0.100     | ND     | u .       |        |
| Tetrachloroethene         | **      | н        | **       |                  | 0.100     | ND     | **        |        |
| Toluene                   | и       | **       | **       |                  | 0.100     | ND     |           |        |
| 1.1.1-Trichloroethane     | н       | u        | **       |                  | 0.100     | ND     | o ·       |        |
| 1.1.2-Trichloroethanc     | 24      | "        | **       |                  | 0.100     | ND     |           |        |
| Trichloroethene           | **      | "        | **       |                  | 0.100     | ND     | **        |        |
| Vinyl chloride            | **      | "        | **       |                  | 0.100     | ND     | **        |        |
| Xylenes (total)           | "       | "        | 11       |                  | 0.400     | ND     | н         |        |
| Surrogate: 2-Bromopropene |         |          | <i>"</i> | 70.0-130         |           | 123    | %         |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE **(509)** 924-9200 **FAX** 924-9290

PORTLAND (503) 906-9200 FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St.

Bellingham, WA 98225

Project: Port of Bellingham

Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

## Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| Analyte               | Batch<br>Numb <b>e</b> r | Date<br>Prepared | Date<br>Analyzed | Surrogate<br>Limits | Reporting<br>Limit | Result | Units | Notes* |
|-----------------------|--------------------------|------------------|------------------|---------------------|--------------------|--------|-------|--------|
| 'P-3 (continued)      |                          |                  | B80904           | 14-03               |                    |        | Soil  |        |
| Surrogate: 1,2-DCA-d4 | 0980260                  | 9/9/98           | 9/9/98           | 70.0-130            |                    | 100    | %     |        |
| Surrogate: Toluene-d8 | "                        | "                | "                | 70.0-130            |                    | 102    | "     |        |
| urrogate: 4-BFB       | u                        | "                | "                | 70.0-130            |                    | 91.9   | "     |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

B-13



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

[600 Dupont St.

Bellingham, WA 98225

Project: Port of Bellingham

Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98 Received:

9/2/98

Reported. 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

|                           | Batch   | Date     | Date     | Surrogate     | Reporting |        |             |        |
|---------------------------|---------|----------|----------|---------------|-----------|--------|-------------|--------|
| Analyte                   | Number  | Prepared | Analyzed | Limits        | Limit     | Result | Units       | Notes' |
| <u> </u>                  |         |          | B80904   | <u> 14-04</u> |           |        | <u>Şoil</u> |        |
| Acetone                   | 0980260 | 9/9/98   | 9/9/98   |               | 2.00      | ND     | mg/kg dry   |        |
| Benzene                   | **      | **       | 11       |               | 0.100     | ND     | "           |        |
| 3romodichloromethane      | ••      | 11       | 11       |               | 0.100     | ND     | •           |        |
| Bromoform                 | **      | **       | **       |               | 0.100     | ND     | *1          |        |
| Bromomethane              |         | "        | 11       |               | 0.100     | ND     | "           |        |
| 2-Butanone                | **      | **       | **       |               | 2.00      | ND     | н           |        |
| Carbon disulfide          | *1      | **       | *1       |               | 0.100     | ND     | 11          |        |
| Carbon tetrachloride      | 11      | 11       | 11       |               | 0.100     | ND     | "           |        |
| Chlorobenzene             | **      | н        | 11       |               | 0.100     | ND     | **          |        |
| Chloroethane              | 11      | "        | n        |               | 0.100     | ND     | 11          |        |
| Chloroform                | ft.     | n        | ч        |               | 0.100     | ND     | it.         |        |
| Chloromethane             | II.     | **       | ш        |               | 0.500     | ND     | n           |        |
| Dibromochloromethane      | 11      | **       |          |               | 0.100     | ND     | 11          |        |
| ,2-Dichlorobenzene        | TE .    | **       |          |               | 0.100     | ND     | n           |        |
| 1.3-Dichlorobenzene       | I t     | "        | tt       |               | 0.100     | ND     | n .         |        |
| 1.4-Dichlorobenzene       | **      | **       | **       |               | 0.100     | ND     | н           |        |
| ,1-Dichloroethane         | n       | **       | **       |               | 0.100     | ND     | **          |        |
| .,2-Dichloroethane        | •       | **       | •        |               | 0.100     | ND     | **          |        |
| 1.1-Dichloroethene        | **      | н        | **       |               | 0.100     | ND     | н           |        |
| is-1,2-Dichloroethene     | tr      | n .      | n        |               | 0.100     | ND     | **          |        |
| rans-1,2-Dichloroethene   | tı      | "        | n        |               | 0.100     | ND     | н           |        |
| 1.2-Dichloropropane       | •       | **       | **       |               | 0.100     | ND     | H           |        |
| cis-1,3-Dichloropropene   | **      | n        | "        |               | 0.100     | ND     | H           |        |
| rans-1,3-Dichloropropene  | **      | •        | п        |               | 0.100     | ND     | **          |        |
| Ethylbenzene              | **      |          | **       |               | 0.100     | ND     | "           |        |
| 2-Hexanone                | •       | n        | "        |               | 2.00      | ND     | **          |        |
| Aethylene chloride        | **      | **       | "        |               | 1.00      | ND     | **          |        |
| -Methyl-2-pentanone       | tt      |          | **       |               | 2.00      | ND     | u           |        |
| Styrene                   | **      |          |          |               | 0.100     | ND     | *1          |        |
| 1.1,2.2-Tetrachloroethane | **      | **       | п        |               | 0.100     | ND     | **          |        |
| Tetrachloroethene         | ti.     | 115      | 16       |               | 0.100     | ND     | "           |        |
| foluene                   | **      | **       | н        |               | 0.100     | ND     | 11          |        |
| 1.1.1-Trichloroethane     | n       | "        | **       |               | 0.100     | ND     |             |        |
| ,1,2-Trichloroethane      | "       | "        | *1       |               | 0.100     | ND     | п           |        |
| richloroethene            | и       | **       | **       |               | 0.100     | ND     | **          |        |
| Vinyl chloride            | IT      | 11       | n .      |               | 0 100     | ND     | п           |        |
| Yylenes (total)           | п       | **       | и        |               | 0.400     | ND     | 11          |        |
| 'urrogate: 2-Bromopropene | ,       | <b>,</b> | "· ···   | 70.0-130      |           | 123    | %           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE ■ (509) 924-9200 ■ FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

1600 Dupont St.

Bellingham, WA 98225

Project: Port of Bellingham

0307-024-02 Project Number:

Project Manager: Jay Gordon Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| Analyte               | Batch<br>Number | Date<br>Prepared | Date<br>Analyzed | Surrogate<br>Limits | Reporting<br>Limit | Result | Units | Notes* |
|-----------------------|-----------------|------------------|------------------|---------------------|--------------------|--------|-------|--------|
| ΓP-4 (continued)      |                 |                  | B8090-           | 44-04               |                    |        | Soil  |        |
| Surrogate: 1,2-DCA-d4 | 0980260         | 9/9/98           | 9/9/98           | 70.0-130            |                    | 99.5   | %     |        |
| Surrogate: Toluene-d8 | "               | "                | "                | 70.0-130            |                    | 100    | "     |        |
| Surrogate: 4-BFB      | "               | "                | "                | 70.0-130            |                    | 93.3   | "     |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 9405 S W Nimbus Avenue Beaverton OR 97008-7132



BOTHELL # (425) 420-9200 # FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham Sampled:

600 Dupont St.

Project Number:

9/1/98 Received: 9/2/98

Bellingham, WA 98225

0307-024-02 Project Manager: Jay Gordon

Reported. 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| 1                         | Batch    | Date     | Date     | Surrogate        | Reporting |        |             |       |
|---------------------------|----------|----------|----------|------------------|-----------|--------|-------------|-------|
| Analyte                   | Number   | Prepared | Analyzed | Limits           | Limit     | Result | Units       | Notes |
| <u>TP-5</u>               |          |          | B80904   | <del>14-05</del> |           |        | <u>Soil</u> |       |
| Acetone                   | 0980260  | 9/9/98   | 9/9/98   |                  | 2.00      | ND     | mg/kg dry   |       |
| Benzene                   | **       | п        | **       |                  | 0.100     | ND     | יי          |       |
| Bromodichloromethane      | н        | 11       | **       |                  | 0.100     | ND     | 11          |       |
| Bromoform                 | **       | **       |          |                  | 0.100     | ND     | 11          |       |
| Bromomethane              | **       | **       | **       |                  | 0.100     | ND     | F1          |       |
| 2-Butanone                | "        | **       | +1       |                  | 2.00      | ND     | п           |       |
| Carbon disulfide          | **       | 16       | **       |                  | 0.100     | ND     | 11          |       |
| Carbon tetrachloride      | "        | **       | ••       |                  | 0.100     | ND     | n           |       |
| Chlorobenzene             | n        | **       | 19       |                  | 0.100     | ND     | "           |       |
| Chloroethane              | u        | **       | 44       |                  | 0.100     | ND     | U           |       |
| Chloroform                | a a      | **       | "        |                  | 0.100     | ND     | 11          |       |
| Chloromethane             | n        | **       | u .      |                  | 0.500     | ND     | h           |       |
| Dibromochloromethane      | rr       | ,,       | 11       |                  | 0.100     | ND     | н           |       |
| 1,2-Dichlorobenzene       | "        | **       | 11       |                  | 0.100     | ND     | н           |       |
| 1,3-Dichlorobenzene       | 4        |          | **       |                  | 0.100     | ND     | н           |       |
| 1,4-Dichlorobenzene       | u        | н        | ••       |                  | 0.100     | ND     | 11          |       |
| 1,1-Dichloroethane        | "        | **       |          |                  | 0.100     | ND     | **          |       |
| 1,2-Dichloroethane        | **       | **       | **       |                  | 0.100     | ND     | "           |       |
| 1,1-Dichloroethene        | **       | **       | н        |                  | 0.100     | ND     | **          |       |
| is-1,2-Dichloroethene     | rt .     | n        | **       |                  | 0.100     | ND     |             |       |
| rans-1,2-Dichloroethene   | **       | **       | 11       |                  | 0.100     | ND     | **          |       |
| 1.2-Dichloropropane       | 11       | **       | D        |                  | 0.100     | ND     | **          |       |
| cis-1,3-Dichloropropene   | 11       | tf       | •        |                  | 0.100     | ND     |             |       |
| :rans-1,3-Dichloropropene | 11       | ••       | **       |                  | 0.100     | ND     | **          |       |
| Ethylbenzene              | 11       | 11       | n        |                  | 0.100     | ND     | n           |       |
| 2-Hexanone                | н        | "        |          |                  | 2.00      | ND     | **          |       |
| Methylene chloride        | H        | **       | **       |                  | 1.00      | ND     | **          |       |
| 1-Methyl-2-pentanone      | н        | 0        | **       |                  | 2.00      | ND     | er .        |       |
| Styrene                   | и        | **       | **       |                  | 0.100     | ND     |             |       |
| 1.1.2,2-Tetrachloroethane | 11       | "        |          |                  | 0.100     | ND     | n           |       |
| Γetrachloroethene         | 11       | 11       | н        |                  | 0.100     | ND     | 11          |       |
| Toluene                   | и        | ir .     | o o      |                  | 0.100     | ND     | n           |       |
| 1.1.1-Trichloroethane     | и        | 0        | "        |                  | 0.100     | ND     | н           |       |
| 1.1.2-Trichlorocthane     | v        | u .      | **       |                  | 0.100     | ND     | Ħ           |       |
| Frichloroethene           | н        | n        | H        |                  | 0.100     | ND     | н           |       |
| Vinyl chloride            | "        | н        | н        |                  | 0.100     | ND     | п           |       |
| Xylenes (total)           | ч        | **       | 11       |                  | 0.400     | ND     | n           |       |
| Surrogate: 2-Bromopropene | <i>n</i> | ·· "     | ,,       | 70.0-130         |           | 121    | %           |       |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE **(509)** 924-9200 **FAX** 924-9290 PORTLAND **(503)** 906-9200 **FAX** 906-9210

Geo Engineers - Bellingham

600 Dupont St. Bellingham, WA 98225

Project Manager:

Project: Port of Bellingham

Project Number: 0307-024-02

Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

| Analyte                | Batch<br>Number | Date<br>Prepared | Date<br>Analyzed | Surrogate<br>Limits | Reporting<br>Limit | Result | Units       | Notes* |
|------------------------|-----------------|------------------|------------------|---------------------|--------------------|--------|-------------|--------|
| <u>P-5 (continued)</u> |                 |                  | B8090            | 14-05               |                    |        | <u>Soil</u> |        |
| Surrogate: 1,2-DCA-d4  | 0980260         | 9/9/98           | 9/9/98           | 70.0-130            |                    | 97.6   | %           | A      |
| Surrogate: Toluene-d8  | "               | "                | "                | 70.0-130            |                    | 99.0   | "           |        |
| 'urrogate: 4-BFB       | er              | "                | "                | 70.0-130            |                    | 92.8   | "           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98 9/2/98

600 Dupont St.

Project Number:

Received:

Bellingham, WA 98225

0307-024-02 Project Manager: Jay Gordon

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

|                             | Batch   | Date     | Date     | Surrogate    | Reporting |        |            |        |
|-----------------------------|---------|----------|----------|--------------|-----------|--------|------------|--------|
| Analyte                     | Number  | Prepared | Analyzed | Limits       | Limit     | Result | Units      | Notes* |
| <u> rp-1</u>                |         |          | B80904   | <u>14-01</u> |           |        | Soil       |        |
| Acenaphthene                | 0980087 | 9/3/98   | 9/3/98   |              | 0.100     | ND     | mg/kg dry  |        |
| Acenaphthylene              | "       | 11       | "        |              | 0.100     | ND     | "          |        |
| Aniline                     | "       | ti.      | **       |              | 0.100     | ND     | *1         |        |
| Anthracene                  | 11      | **       | н        |              | 0.100     | ND     | **         |        |
| Benzoic Acid                | **      | **       | н        |              | 0.500     | ND     | tr         |        |
| Benzo (a) anthracene        | 11      | 11       | **       |              | 0.100     | ND     | **         |        |
| Benzo (b) fluoranthene      | **      | #        | PF .     |              | 0.100     | ND     |            |        |
| Benzo (k) fluoranthene      | If      | 11       | H        |              | 0.100     | ND     | o          |        |
| Benzo (ghi) perylene        | 71      | **       | **       |              | 0.100     | ND     | "          |        |
| Benzo (a) pyrene            |         | ••       | "        |              | 0.100     | ND     | **         |        |
| Benzyl alcohol              | •       | **       | н        |              | 0.100     | ND     | "          |        |
| Bis(2-chloroethoxy)methane  | **      | **       | **       |              | 0.100     | ND     | **         |        |
| 3is(2-chloroethyl)ether     | 11      | **       | **       |              | 0.100     | ND     | 11         |        |
| 3is(2-chloroisopropyl)ether | tr      | **       | **       |              | 0.100     | ND     | If         |        |
| Bis(2-ethylhexyl)phthalate  | **      | "        | **       |              | 0.500     | ND     | **         |        |
| 1-Bromophenyl phenyl ether  | 11      | **       | **       |              | 0.100     | ND     | **         |        |
| Butyl benzyl phthalate      | 11      | **       | **       |              | 0.100     | ND     | **         |        |
| Carbazole                   | **      | **       | •        |              | 0.500     | ND     | **         |        |
| 4-Chloroaniline             | 11      | **       | **       |              | 0.100     | ND     | "          |        |
| ?-Chloronaphthalene         | 11      | **       | *1       |              | 0.100     | ND     | <b>"</b> . |        |
| 1-Chloro-3-methylphenol     | **      | **       | **       |              | 0.100     | ND     | **         |        |
| 2-Chlorophenol              | ••      | **       | **       |              | 0.100     | ND     | ti .       |        |
| 4-Chlorophenyl phenyl ether | **      |          | **       |              | 0.100     | ND     | n          |        |
| Chrysene                    | **      | •        | **       |              | 0.100     | ND     | н          |        |
| Dibenz (a.h) anthracene     | •       | **       | ••       |              | 0.100     | ND     | н          |        |
| Dibenzofuran                | 47      | "        | "        |              | 0.100     | ND     | н          |        |
| Di-n-butyl phthalate        | п       | **       | *1       |              | 0.500     | ND     | **         |        |
| 1.3-Dichlorobenzene         | •       | **       | ••       |              | 0.100     | ND     | n          |        |
| 1,4-Dichlorobenzene         | 11      | **       | **       |              | 0.100     | ND     | "          |        |
| 1.2-Dichtorobenzene         | 11      | ••       | ••       |              | 0.100     | ND     | **         |        |
| 3.3'-Dichlorobenzidine      | н       | •        | ••       |              | 5.00      | ND     | **         |        |
| 2.4-Dichlorophenol          |         | "        | *1       |              | 0.100     | ND     | n          |        |
| Diethyl phthalate           | "       | "        | **       |              | 0.100     | ND     | **         |        |
| 2.4-Dimethylphenol          | · ·     | n        | TI .     |              | 0.100     | ND     | et .       |        |
| Dimethyl phthalate          | **      | **       | **       |              | 0.100     | ND     | н          |        |
| 4.6-Dinitro-2-methylphenol  |         | **       | n        |              | 0.500     | ND     | rr         |        |
| 2.4-Dinitrophenol           | •       | 11       | ***      |              | 0.500     | ND     | st.        |        |
| 2.4-Dinitrotoluene          | 11      | **       | t)       |              | 0.100     | ND     | 11         |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham 600 Dupont St.

Project: Port of Bellingham

Sampled: 9/1/98

Bellingham, WA 98225

Project Number: 0307-024-02 Project Manager: Jay Gordon

Received: 9/2/98

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

|                            | Batch   | Date                                  | Date       | Surrogate        | Reporting |        |                                        |        |
|----------------------------|---------|---------------------------------------|------------|------------------|-----------|--------|----------------------------------------|--------|
| Analyte                    | Number  | Prepared                              | Analyzed   | Limits           | Limit     | Result | Units                                  | Notes* |
| P-1 (continued)            |         |                                       | B80904     | <del>14-01</del> |           |        | <u>Soil</u>                            |        |
| 2.6-Dinitrotoluene         | 0980087 | 9/3/98                                | 9/3/98     |                  | 0.100     | ND     | mg/kg dry                              |        |
| Di-n-octyl phthalate       | 11      | R                                     | **         |                  | 0.500     | ND     | "                                      |        |
| luoranthene                |         | н                                     | tt         |                  | 0.100     | ND     | "                                      |        |
| Huorene                    | II .    | **                                    | D          |                  | 0.100     | ND     | **                                     |        |
| Hexachlorobenzene          |         | **                                    | **         |                  | 0.100     | ND     | **                                     |        |
| lexachlorobutadiene        | 41      | **                                    | u.         |                  | 0.100     | ND     | 11                                     |        |
| fexachlorocyclopentadiene  | 11      | **                                    | **         |                  | 0.100     | ND     | If                                     |        |
| Hexachloroethane           | ti .    | 41                                    | **         |                  | 0.100     | ND     | п                                      |        |
| 'ndeno (1,2,3-cd) pyrene   | ti .    | **                                    | **         |                  | 0.100     | ND     |                                        |        |
| sophorone                  | **      | **                                    | ur.        |                  | 0.100     | ND     | "                                      |        |
| ∠-Methylnaphthalene        | 11      | tt.                                   | "          |                  | 0.100     | ND     | **                                     |        |
| 2-Methylphenol             | **      | **                                    | 11         |                  | 0.100     | ND     | 11                                     |        |
| & 4-Methylphenol           | п       | **                                    | 16         |                  | 0.100     | ND     | n                                      |        |
| Japhthalene                | п       | **                                    | **         |                  | 0.100     | ND     |                                        |        |
| 2-Nitroaniline             | tt      | н                                     |            |                  | 0.500     | ND     | H.                                     |        |
| ^-Nitroaniline             | tr      | If                                    | 81         |                  | 0.500     | ND     | п                                      |        |
| -Nitroaniline              | n       | **                                    | 11         |                  | 0.500     | ND     | *1                                     |        |
| Nitrobenzene               | 11      | н                                     | n          |                  | 0.100     | ND     | н                                      |        |
| 2-Nitrophenol              | **      | н                                     | **         |                  | 0.100     | ND     | 11                                     |        |
| -Nitrophenol               | **      | **                                    | **         |                  | 0.500     | ND     | •                                      |        |
| J-Nitrosodiphenylamine     | H       | **                                    | **         |                  | 0.200     | ND     | ri .                                   |        |
| N-Nitrosodi-n-propylamine  | 75      | **                                    | "          |                  | 0.100     | ND     | **                                     |        |
| 'entachlorophenol          | 19      | **                                    | ••         |                  | 0.500     | ND     | n                                      |        |
| 'henanthrene               | 85      | **                                    | **         |                  | 0.100     | ND     | **                                     |        |
| Phenol                     | 11      | n                                     | **         |                  | 0.100     | ND     | н                                      |        |
| Pyrene                     | 11      | 11                                    | 11         |                  | 0.100     | ND     | **                                     |        |
| .2,4-Trichlorobenzene      | 11      | н                                     | <b>f</b> 1 |                  | 0.100     | ND     | н                                      |        |
| 4,5-Trichlorophenol        | **      | tr                                    | **         |                  | 0.500     | ND     | **                                     |        |
| 2.4,6-Trichlorophenol      | и       | O.                                    | 11         |                  | 0.100     | ND     | α                                      |        |
| 'urrogate: 2-FP            |         | · · · · · · · · · · · · · · · · · · · |            | 19.0-141         |           | 77.6   | ······································ |        |
| urrogate: Phenol-d6        | "       | "                                     | "          | 44.0-128         |           | 71.3   | "                                      |        |
| Surrogate: 2,4,6-TBP       | "       | и                                     | "          | 10.0-137         |           | 104    | "                                      |        |
| Currogate: Nitrobenzene-d5 | "       | "                                     | "          | 33.0-108         |           | 71.8   | "                                      |        |
| 'urrogate: 2-FBP           | "       | "                                     | "          | 51.0-124         |           | 82.8   | "                                      |        |
| Surrogate: p-Terphenyl-d14 | "       | "                                     | "          | 48.0-149         |           | 88.5   | "                                      |        |

Yorth Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL \* (425) 420-9200 \* FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND \* (503) 906-9200 \* FAX 906-9210

Geo Engineers - Bellingham

Bellingham, WA 98225

Project: 600 Dupont St.

Project Number: Project Manager:

0307-024-02 Jay Gordon

Port of Bellingham

Sampled: 9/1/98 Received: 9/2/98

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

| 1                           | Batch        | Date     | Date                     | Surrogate         | Reporting |          |                |        |
|-----------------------------|--------------|----------|--------------------------|-------------------|-----------|----------|----------------|--------|
| Analyte                     | Number       | Prepared | Analyzed                 | Limits            | Limit     | Result   | Units          | Notes* |
| ΓD <b>1</b>                 |              |          | POANA                    | 14.02             |           |          | Soil.          |        |
| <u>FP-2</u><br>Acenaphthene | 0980087      | 9/3/98   | <u>B8090</u> 4<br>9/3/98 | <del>+4-U</del> 2 | 0.100     | ND       | Soil           |        |
| Acenaphthylene              | 0980087<br>" | 913198   | 9/3/98                   |                   | 0.100     | ND<br>ND | mg/kg dry<br>" |        |
| Acenaphthylene<br>Aniline   | "            | 11       | п                        |                   | 0.100     | ND<br>ND | **             |        |
|                             | **           | u .      | **                       |                   | 0.100     |          | 11             |        |
| Anthracene<br>Benzoic Acid  | .,           | n        | "                        |                   | 0.100     | ND       | н              |        |
|                             | 11           | "        | **                       |                   |           | ND       |                |        |
| Benzo (a) anthracene        |              |          | **                       |                   | 0.100     | ND       | tr             |        |
| Benzo (b) fluoranthene      |              | **       |                          |                   | 0.100     | ND       |                |        |
| Benzo (k) fluoranthene      | "            | *!       | "                        |                   | 0.100     | ND       | "              |        |
| Benzo (ghi) perylene        |              | **       |                          |                   | 0.100     | ND       |                |        |
| Benzo (a) pyrene            | "            |          |                          |                   | 0.100     | ND       |                |        |
| Benzyl alcohol              |              | ts .     | н                        |                   | 0.100     | ND       | н              |        |
| Bis(2-chloroethoxy)methane  | "            | н        | II                       |                   | 0.100     | ND       | ir             |        |
| 3is(2-chloroethyl)ether     |              | ц        | 11                       |                   | 0.100     | ND       | n              |        |
| 3is(2-chloroisopropyl)ether | ч            | ,,       | **                       |                   | 0.100     | ND       | 9              |        |
| Bis(2-ethylhexyl)phthalate  | 11           |          | **                       |                   | 0.500     | ND       | ••             |        |
| 4-Bromophenyl phenyl ether  | ,,           | **       | n                        |                   | 0.100     | ND       | **             |        |
| Butyl benzyl phthalate      | H            | 11       | 41                       |                   | 0.100     | ND       | tt             |        |
| Carbazole                   | H.           | "        | ***                      |                   | 0.500     | ND       | и              |        |
| 4-Chloroaniline             | 11           | n        | ti i                     |                   | 0.100     | ND       | **             |        |
| -Chloronaphthalene          | н            | "        | ų                        |                   | 0.100     | ND       |                |        |
| -Chloro-3-methylphenol      | "            | **       | **                       |                   | 0.100     | ND       | п              |        |
| 2-Chlorophenol              | **           | ••       | н                        |                   | 0.100     | ND       | **             |        |
| 4-Chlorophenyl phenyl ether | #1           | **       | "                        |                   | 0.100     | ND       | ••             |        |
| Chrysene                    | n            | **       | и                        |                   | 0.100     | ND       | n              |        |
| Dibenz (a,h) anthracene     | *1           | **       | *1                       |                   | 0.100     | ND       | 11             |        |
| Dibenzofuran                | **           | **       | 11                       |                   | 0.100     | ND       | **             |        |
| )i-n-butyl phthalate        | 11           | **       | **                       |                   | 0.500     | ND       | **             |        |
| .3-Dichlorobenzene          | •            | •        | **                       |                   | 0.100     | ND       | **             |        |
| 1.4-Diehlorobenzene         | **           | **       | ***                      |                   | 0.100     | ND       | "              |        |
| .2-Dichlorobenzene          | "            | **       | **                       |                   | 0.100     | ND       | 11             |        |
| .3'-Dichlorobenzidine       |              | **       | 11                       |                   | 5.00      | ND       | u              |        |
| 2.4-Dichlorophenol          | н            | **       | *1                       |                   | 0.100     | ND       | н              |        |
| Diethyl phthalate           | **           | 11       | "                        |                   | 0.100     | ND       | ш              |        |
| .4-Dimethylphenol           | **           | h        | 11                       |                   | 0.100     | ND       | **             |        |
| Dimethyl phthalate          | *1           | "        | n                        |                   | 0.100     | ND       | п              |        |
| 4.6-Dinitro-2-methylphenol  | **           | ti .     | 11                       |                   | 0.500     | ND<br>ND | **             |        |
| .4-Dinitrophenol            | 71           |          | "                        |                   | 0.500     | ND<br>ND | **             |        |
| .4-Dinitrophenoi            | **           | n        | "                        |                   |           |          | **             |        |
| .4-Dimitrotonicine          |              |          |                          |                   | 0.100     | ND       | •              |        |

Morth Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL **=** (425) 420-9200 **=** FAX 420-9210 SPOKANE **=** (509) 924-9200 **=** FAX 924-9290

PORTLAND **(503)** 906-9200 **FAX** 906-9210

Geo Engineers - Bellingham

Project:

Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02

Received: 9/2/98

Bellingham, WA 98225

Project Manager: Jay Gordon

Reported: 9/21/98 11:40

## Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

| ı                          | Batch   | Date     | Date           | Surrogate | Reporting |        |           |        |
|----------------------------|---------|----------|----------------|-----------|-----------|--------|-----------|--------|
| Analyte                    | Number  | Prepared | Analyzed       | Limits    | Limit     | Result | Units     | Notes* |
|                            |         |          |                |           |           |        |           |        |
| TP-2 (continued)           |         |          | <u>B8090</u> 4 | 14-02     |           |        | Soil      |        |
| 2.6-Dinitrotoluene         | 0980087 | 9/3/98   | 9/3/98         |           | 0.100     | ND     | mg/kg dry |        |
| Di-n-octyl phthalate       | 11      | "        | **             |           | 0.500     | ND     | 11        |        |
| Fluoranthene               | **      | н        | н              |           | 0.100     | ND     | 11        |        |
| Fluorene                   | "       | **       | H              |           | 0.100     | ND     | n         |        |
| Hexachlorobenzene          | 11      | *        | **             |           | 0.100     | ND     | 11        |        |
| Hexachlorobutadiene        | "       | ti .     | **             |           | 0.100     | ND     | 1)        |        |
| Hexachlorocyclopentadiene  | **      | •        | "              |           | 0.100     | ND     | **        |        |
| Hexachloroethane           | **      | *1       | н              |           | 0.100     | ND     | **        |        |
| Indeno (1,2,3-cd) pyrene   | 15      | 11       | H              |           | 0.100     | ND     | **        |        |
| Isophorone                 | It      | "        | "              |           | 0.100     | ND     | •         |        |
| 2-Methylnaphthalene        | **      | **       | · ·            |           | 0.100     | ND     | **        |        |
| 2-Methylphenol             | **      | "        | "              |           | 0.100     | ND     | Tr.       |        |
| 3 & 4-Methylphenol         | ŧı      | "        | **             |           | 0.100     | ND     | **        |        |
| Naphthalene                | 4,      | "        | **             |           | 0.100     | ND     | **        |        |
| 2-Nitroaniline             | n       | **       | **             |           | 0.500     | NĎ     | 10        |        |
| 3-Nitroaniline             | **      | **       | **             |           | 0.500     | ND     | 16        |        |
| 4-Nitroaniline             | "       | **       | O.             |           | 0.500     | ND     | 41        |        |
| Nitrobenzene               | **      | "        | **             |           | 0.100     | ND     |           |        |
| 2-Nitrophenol              | "       | **       | 18             |           | 0.100     | ND     | **        |        |
| 1-Nitrophenol              | 11      | n        | 11             |           | 0.500     | ND     |           |        |
| N-Nitrosodiphenylamine     | н       | "        | **             |           | 0.200     | ND     | •         |        |
| N-Nitrosodi-n-propylamine  | н       | * .      | **             |           | 0.100     | ND     | rt        |        |
| Pentachlorophenol          | **      | n .      | 11             |           | 0.500     | ND     | n         |        |
| henanthrene                | tı      | "        | **             |           | 0.100     | ND     | **        |        |
| Phenol                     | "       | **       | **             |           | 0.100     | ND     | **        |        |
| Pyrene                     | tt      | ••       | **             |           | 0.100     | ND     | **        |        |
| 1,2,4-Trichlorobenzene     | п       | **       | n              |           | 0.100     | ND     | н         |        |
| 2,4,5-Trichlorophenol      | n       | ·        | **             |           | 0.500     | ND     | "         |        |
| 2.4.6-Trichlorophenol      |         | 11       | **             |           | 0.100     | ND     | H         |        |
| Surrogate: 2-FP            |         | ····· -  | ··· " -        | 19.0-141  |           |        | %         |        |
| Surrogate: Phenol-d6       | и       | 11       | "              | 44.0-128  |           | 72.6   | "         |        |
| Surrogate: 2,4,6-TBP       | "       | "        | "              | 10 0-13   |           | 101    | "         |        |
| Surrogate: Nitrobenzene-d5 | "       | u        | u              | 33.0-108  |           | 72.0   | "         |        |
| Surrogate: 2-FBP           | n       | n        | "              | 51.0-124  |           | 78.3   | ,,        |        |
| Surrogate: p-Terphenyl-d14 | "       | "        | "              | 48.0-149  |           | 89.1   | "         |        |
| Some propheny ar           |         |          |                | 10.11-147 |           | 09.1   |           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL ≈ (425) 420-9200 **►** FAX 420-9210 SPOKANE \* (509) 924-9200 \* FAX 924-9290 PORTLAND \* (503) 906-9200 \* FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02

Received: 9/2/98

Bellingham, WA 98225

Project Manager: Jay Gordon Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

| Paralyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Batch  | Date     | Date     | Surrogate        | Reporting |        |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|------------------|-----------|--------|-------------|--------|
| Acceaphthene         080087         97.98         93.98         0.100         ND         mg/kg dry           Acceaphthylene         "         "         0.100         ND         "           Anthracene         "         "         0.100         ND         "           Benzo (Acid         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (s) fluoranthene         "         "         0.100         ND         "           Benzo (s) fluoranthene         "         "         0.100         ND         "           Benzo (aphyrene         "         "         0.100         ND         "           Benzo (aphyrene         "         "         0.100         ND         "           Bis(2-chlorostophyrethene         "         "         0.100         ND         "           Bis(2-chlorostophyrethene)         "         "         0.100         ND         "<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number | Prepared | Analyzed | Limits           | Limit     | Result | Units       | Notes* |
| Acceaphthene         080087         97.98         93.98         0.100         ND         mg/kg dry           Acceaphthylene         "         "         0.100         ND         "           Anthracene         "         "         0.100         ND         "           Benzo (Acid         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (b) fluoranthene         "         "         0.100         ND         "           Benzo (s) fluoranthene         "         "         0.100         ND         "           Benzo (s) fluoranthene         "         "         0.100         ND         "           Benzo (aphyrene         "         "         0.100         ND         "           Benzo (aphyrene         "         "         0.100         ND         "           Bis(2-chlorostophyrethene         "         "         0.100         ND         "           Bis(2-chlorostophyrethene)         "         "         0.100         ND         "<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |                  |           |        |             |        |
| Aceanaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          | B8090    | <del>44-03</del> |           |        | <u>Soil</u> |        |
| Antiline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |          |                  |           |        |             |        |
| Anthracene " " 0.100 ND "  Benzo (a) anthracene " " 0.100 ND "  Benzo (b) fluoranthene " 0.100 ND "  Benzo (d) gyrene 0.100 ND "  Bis(2-chlorosthyl)ether 0.100 ND "  Carbazole 0.100 ND "  | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |          | **       |                  |           | ND     | **          |        |
| Benzoi Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n      | **       | *1       |                  | 0.100     | ND     | 11          |        |
| Benzo (a) anthracene   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11     | *1       | **       |                  | 0.100     | ND     | "           |        |
| Benzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzoic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11     | **       | "        |                  | 0.500     | ND     | n           |        |
| Benzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo (a) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a a    | **       | **       |                  | 0.100     | ND     | **          |        |
| Benzo (k) interier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo (b) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #      | **       | "        |                  | 0.100     | ND     | "           |        |
| Benzy la pryrene Bis(2-chloroethoxy)methane Bis(2-chloroethy)tehre Bis(2-chloroethy)tehre Bis(2-chlorospropyl)ether Bis(2-chloroispropyl)ether Bis(2-chlyhexy)lphthalate Bis(2-chlyhthalate) | Benzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11     | **       | **       |                  | 0.100     | ND     | "           |        |
| Bernzyl alcohol " " " 0.100 ND " Bis(2-chloroethoxy)methane " " 0.100 ND " Bis(2-chloroethyl)ether " " 0.100 ND " Bis(2-chloroethyl)ether " " 0.100 ND " Bis(2-chloroethyl)ether " " 0.100 ND " Bis(2-chlorospropyl)ether " " 0.100 ND " 1000 ND " 10000 ND " 1000 ND " 10000 ND " 100 | Benzo (ghi) perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **     | ti       | **       |                  | 0.100     | ND     | н           |        |
| Beis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-chtylhexyl)phthalate B | Benzo (a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ti .   | **       | **       |                  | 0.100     | ND     | **          |        |
| Sis(2-chlorocity)pitcher   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | **     | **       | "        |                  | 0.100     | ND     | 11          |        |
| Bis(2-chloroisopropyl)ether   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *1     | **       | и        |                  | 0.100     | ND     | 11          |        |
| Sis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **     | tt       | **       |                  | 0.100     | ND     | •           |        |
| Sista   Carbarophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11     | **       | **       |                  | 0.100     | ND     | er e        |        |
| A-Bromophenyl phenyl ether   " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | п      | н        | **       |                  | 0.500     | ND     | 11          |        |
| Butyl benzyl phthalate         """"""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The state of the s | **     | н        | **       |                  | 0.100     | ND     | **          |        |
| 4-Chloroaniline " " " " " 0.100 ND " " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **     | **       | "        |                  | 0.100     | ND     | n           |        |
| 2-Chloronaphthalene " " " " 0.100 ND " 4-Chloro-3-methylphenol " " " 0.100 ND " 2-Chlorophenol " " " 0.100 ND " 4-Chlorophenol " " " 0.100 ND " 1.2-Chlorophenol " " " 0.100 ND " 1.2-Chlorophenyl phenyl ether " 0.100 ND " | Carbazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10     | н        | **       |                  | 0.500     | ND     | "           |        |
| 4-Chloro-3-methylphenol " " " 0.100 ND " 2-Chlorophenol " " " 0.100 ND " 1-Chlorophenol " " " 0.100 ND " 1-Chlorophenol " " " 0.100 ND " 1-Chlorophenyl phenyl ether " " 0.100 ND " 1-Chrysene 0.100 N | 4-Chloroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     | **       | **       |                  | 0.100     | ND     | н           |        |
| 2-Chlorophenol       " " " " " " 0.100 ND "         4-Chlorophenyl phenyl ether       " " " 0.100 ND "         Chrysene       " " " 0.100 ND "         Dibenz (a.h) anthracene       " " " 0.100 ND "         Dibenzofuran       " " " 0.100 ND "         Di-n-butyl phthalate       " " " 0.100 ND "         1.3-Dichlorobenzene       " " " 0.100 ND "         1.4-Dichlorobenzene       " " " 0.100 ND "         1.2-Dichlorobenzene       " " " 0.100 ND "         3.3'-Dichlorobenzidine       " " " 0.100 ND "         2.4-Dichlorophenol       " " " 0.100 ND "         Diethyl phthalate       " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "      |          | **       |                  | 0.100     | ND     | **          |        |
| 4-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71     | н        | **       |                  | 0.100     | ND     | 17          |        |
| Chrosene " " " " 0.100 ND "  Dibenz (a.h) anthracene " " " 0.100 ND "  Dibenzofuran " " " 0.100 ND "  Di-n-butyl phthalate " " " 0.500 ND "  1.3-Dichlorobenzene " " " " 0.100 ND "  1.4-Dichlorobenzene " " " " 0.100 ND "  1.2-Dichlorobenzene " " " " 0.100 ND "  1.2-Dichlorobenzene " " " " 0.100 ND "  2.4-Dichlorobenzidine " " " " 0.100 ND "  2.4-Dichlorobenzidine " " " 0.100 ND "  2.4-Dinethylphthalate " " " 0.100 ND "  2.4-Dinethylphthalate " " " 0.100 ND "  2.4-Dinethylphthalate " " " 0.100 ND "  2.4-Dinethylphenol " " " 0.100 ND "  2.4-Dinitro-2-methylphenol " " " 0.500 ND "  4.6-Dinitro-2-methylphenol " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **     | **       | **       |                  | 0.100     | ND     | n           |        |
| Chrysene       " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #      | **       |          |                  | 0.100     | ND     | 17          |        |
| Dibenz (a.h) anthracene       " " " " " " 0.100 ND "         Dibenzofuran       " " " " 0.100 ND "         Di-n-butyl phthalate       " " " 0.500 ND "         1.3-Dichlorobenzene       " " " 0.100 ND "         1.4-Dichlorobenzene       " " " 0.100 ND "         1.2-Dichlorobenzene       " " " 0.100 ND "         3.3'-Dichlorobenzidine       " " " 0.100 ND "         2.4-Dichlorophenol       " " " 0.100 ND "         Diethyl phthalate       " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     | **       | "        |                  |           | ND     | **          |        |
| Di-n-butyl phthalate       " " " " 0.500 ND "         1.3-Dichlorobenzene       " " " 0.100 ND "         1.4-Dichlorobenzene       " " " 0.100 ND "         1.2-Dichlorobenzene       " " " " 0.100 ND "         3.3'-Dichlorobenzidine       " " " " 0.100 ND "         2.4-Dichlorophenol       " " " " 0.100 ND "         Dicthyl phthalate       " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dibenz (a.h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     | **       | **       |                  | 0.100     | ND     | 11          |        |
| Di-n-butyl phthalate       " " " " " 0.500 ND "         1.3-Dichlorobenzene       " " " " 0.100 ND "         1.4-Dichlorobenzene       " " " " 0.100 ND "         1.2-Dichlorobenzene       " " " " 0.100 ND "         3.3'-Dichlorobenzidine       " " " " 0.100 ND "         2.4-Dichlorophenol       " " " " 0.100 ND "         Dicthyl phthalate       " " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibenzofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **     | **       | **       |                  | 0.100     | ND     |             |        |
| 1.3-Dichlorobenzene       " " " " " 0.100 ND "         1.4-Dichlorobenzene       " " " " 0.100 ND "         1.2-Dichlorobenzene       " " " " 0.100 ND "         3.3'-Dichlorobenzidine       " " " " 0.100 ND "         2.4-Dichlorophenol       " " " " 0.100 ND "         Diethyl phthalate       " " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | **     | 41       | **       |                  |           | ND     | **          |        |
| 1,4-Dichlorobenzene       " " " " 0,100 ND "         1,2-Dichlorobenzene       " " " 0,100 ND "         3,3'-Dichlorobenzidine       " " " 0,100 ND "         2,4-Dichlorophenol       " " " 0,100 ND "         Dicthyl phthalate       " " " 0,100 ND "         2,4-Dimethylphenol       " " " 0,100 ND "         Dimethyl phthalate       " " " 0,100 ND "         4,6-Dinitro-2-methylphenol       " " " 0,500 ND "         2,4-Dinitrophenol       " " " 0,500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.     | R        | н        |                  |           | ND     | •           |        |
| 1.2-Dichlorobenzene       " " " " " 5.00 ND "         3.3'-Dichlorobenzidine       " " " " 5.00 ND "         2.4-Dichlorophenol       " " " " 0.100 ND "         Dicthyl phthalate       " " " " 0.100 ND "         2.4-Dimethylphenol       " " " " 0.100 ND "         Dimethyl phthalate       " " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " " 0.500 ND "         2.4-Dinitrophenol       " " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **     | 41       |          |                  |           |        | u           |        |
| 3.3'-Dichlorobenzidine       " " " " " 0.100 ND "         2.4-Dichlorophenol       " " " " 0.100 ND "         Diethyl phthalate       " " " " 0.100 ND "         2.4-Dimethyl phenol       " " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methyl phenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41     | 24       | **       |                  |           |        | н           |        |
| 2.4-Dichlorophenol       " " " " " 0.100 ND "         Diethyl phthalate       " " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3'-Dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **     | 11       | **       |                  |           | ND     | "           |        |
| Diethyl phthalate       " " " " 0.100 ND "         2.4-Dimethylphenol       " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **     | tt.      |          |                  |           |        | н           |        |
| 2.4-Dimethylphenol       " " " " 0.100 ND "         Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " 0.500 ND "         2.4-Dinitrophenol       " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **     | ···      | **       |                  |           |        | n           |        |
| Dimethyl phthalate       " " " 0.100 ND "         4.6-Dinitro-2-methylphenol       " " 0.500 ND "         2.4-Dinitrophenol       " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **     | н        | H        |                  |           |        | н           |        |
| 4.6-Dinitro-2-methylphenol       " " " 0.500 ND "         2.4-Dinitrophenol       " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n      | н        |          |                  |           |        | n           |        |
| 2.4-Dinitrophenol " " " 0.500 ND "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u      | **       | "        |                  |           |        | н           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11     | п        | **       |                  |           |        | н           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     | н        | **       |                  | 0.100     | ND     | •           | ,      |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE **(509)** 924-9200 **FAX** 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St. Bellingham, WA 98225

Project: Port of Bellingham

9307-024-02 Project Number: Project Manager: Jay Gordon

Sampled:

9/1/98 Received: 9/2/98

Reported. 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

| F                          | Batch   | Date        | Date     | Surrogate | Reporting |        |           | ·····  |
|----------------------------|---------|-------------|----------|-----------|-----------|--------|-----------|--------|
| Analyte                    | Number  | Prepared    | Analyzed | Limits    | Limit     | Result | Units     | Notes* |
| TP-3 (continued)           |         |             | B8090    | 44-03     |           |        | Soil      |        |
| 2.6-Dinitrotoluene         | 0980087 | 9/3/98      | 9/3/98   |           | 0.100     | ND     | mg/kg dry |        |
| Di-n-octyl phthalate       | 11      | "           | 11       |           | 0.500     | ND     | "         |        |
| Fluoranthene               | **      | "           | IT.      |           | 0.100     | ND     | **        |        |
| Fluorene                   | "       | **          | **       |           | 0.100     | ND     | n         |        |
| Hexachlorobenzene          | **      | "           | **       |           | 0.100     | ND     | "         |        |
| Hexachlorobutadiene        | 11      | "           | н        |           | 0.100     | ND     | н         |        |
| Hexachlorocyclopentadiene  | 11      | H           | **       |           | 0.100     | ND     | **        |        |
| Hexachloroethane           | tt      | n n         | **       |           | 0.100     | ND     | **        |        |
| Indeno (1,2,3-cd) pyrene   | **      | ••          | **       |           | 0.100     | ND     | 11        |        |
| Isophorone                 | н       | tt          | "        |           | 0.100     | ND     | "         |        |
| 2-Methylnaphthalene        | O       | 11          | **       |           | 0 100     | ND     | **        |        |
| 2-Methylphenol             | H       | **          | rr ·     |           | 0.100     | ND     | 13        |        |
| 3 & 4-Methylphenol         | н       | II.         | **       |           | 0.100     | ND     | а         |        |
| Naphthalene                | н .     | II          | **       |           | 0.100     | ND     | *1        |        |
| 2-Nitroaniline             | H       | lt .        | ••       |           | 0.500     | ND     | **        |        |
| 3-Nitroaniline             | H       | **          | 17       |           | 0.500     | ND     | **        |        |
| 1-Nitroaniline             | "       | n           | 17       |           | 0.500     | ND     | n         |        |
| Nitrobenzene               | 11      | tt .        | н        |           | 0.100     | ND     | II        |        |
| 2-Nitrophenol              | **      | er          | 0        |           | 0.100     | ND     | "         |        |
| 1-Nitrophenol              | 51      | 11          | "        |           | 0.500     | ND     | 11        |        |
| V-Nitrosodiphenylamine     | **      | n           | 11       |           | 0.200     | ND     | "         |        |
| N-Nitrosodi-n-propylamine  | **      | **          | 17       |           | 0.100     | ND     | n         |        |
| Pentachlorophenol          | 11      | 11          | **       |           | 0.500     | ND     | **        |        |
| Phenanthrene               | **      |             | **       |           | 0.100     | ND     | II .      |        |
| Phenol                     | et      | "           | **       |           | 0.100     | ND     | н         |        |
| Pyrene                     | **      | "           | **       |           | 0.100     | ND     | u         |        |
| 1.2.4-Trichlorobenzene     | 11      | 11          | **       |           | 0.100     | ND     | 11        |        |
| 2.4.5-Trichlorophenol      | н       | **          | Ħ        |           | 0.500     | ND     | 11        |        |
| 2.4,6-Trichlorophenol      | H       | **          | **       |           | 0.100     | ND     | **        |        |
| Surrogate: 2-FP            | "       | <del></del> | "        | 19.0-141  |           | 72.6   | %         |        |
| Surrogate: Phenol-d6       | "       | "           | n        | 44.0-128  |           | 69.7   | n         |        |
| Surrogate: 2,4,6-TBP       | "       | "           | H        | 10.0-137  |           | 103    | n         |        |
| Surrogate: Nitrobenzene-d5 | "       | "           | #        | 33.0-108  |           | 70.9   | "         |        |
| Surrogate: 2-FBP           | "       | "           | "        | 51.0-124  |           | 86.3   | "         |        |
| Surrogate: p-Terphenyl-d14 | u       | "           | 99       | 48.0-149  |           | 85.7   | n         |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02

9/2/98 Received:

Bellingham, WA 98225

Project Manager: Jay Gordon

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

|                             | Batch   | Date     | Date     | Surrogate | Reporting |        |             |        |
|-----------------------------|---------|----------|----------|-----------|-----------|--------|-------------|--------|
| Analyte                     | Number  | Prepared | Analyzed | Limits    | Limit     | Result | Units       | Notes' |
| <u>P-4</u>                  |         |          | B80904   | 14-04     |           |        | <u>Soil</u> |        |
| Acenaphthene                | 0980087 | 9/3/98   | 9/3/98   | ,         | 0.100     | ND     | mg/kg dry   |        |
| Acenaphthylene              | tt.     | **       | **       |           | 0.100     | ND     | "           |        |
| Aniline                     | 11      | **       |          |           | 0.100     | ND     | 11          |        |
| Anthracene                  | н       | **       | **       |           | 0.100     | ND     | **          |        |
| Benzoic Acid                | "       | **       |          |           | 0.500     | ND     | Ħ           |        |
| Benzo (a) anthracene        | **      | "        | **       |           | 0.100     | ND     | **          |        |
| Benzo (b) fluoranthene      | II.     | н        | **       |           | 0.100     | ND     | 91          |        |
| Benzo (k) fluoranthene      | H       | "        |          |           | 0.100     | ND     | "           |        |
| Benzo (ghi) perylene        | "       | "        | •        |           | 0.100     | ND     | **          |        |
| Senzo (a) pyrene            | o       | 11       | er e     |           | 0.100     | ND     | n           |        |
| Jenzyl alcohol              | H .     | N        | 11       |           | 0.100     | ND     |             |        |
| Bis(2-chloroethoxy)methane  | 0       | "        | **       |           | 0.100     | ND     | u           |        |
| 3is(2-chloroethyl)ether     | n       | **       | **       |           | 0.100     | ND     | п           |        |
| 3is(2-chloroisopropyl)ether | n       | **       | **       |           | 0.100     | ND     | n .         |        |
| Bis(2-ethylhexyl)phthalate  | ч       | **       |          |           | 0.500     | ND     |             |        |
| 4-Bromophenyl phenyl ether  | **      | "        | **       |           | 0.100     | ND     | 11-         |        |
| Butyl benzyl phthalate      | n       | "        | "        |           | 0.100     | ND     | п           |        |
| Carbazole                   | "       | **       | "        |           | 0.500     | ND     | 11          |        |
| 4-Chloroaniline             | 11      | **       | · ·      |           | 0.100     | ND     | ti.         |        |
| -Chloronaphthalene          | **      | er e     | **       |           | 0.100     | ND     | •           |        |
| -Chloro-3-methylphenol      | er .    | н        | **       |           | 0.100     | ND     | 11          |        |
| 2-Chlorophenol              | "       | tt       | **       |           | 0.100     | ND     | **          |        |
| '-Chlorophenyl phenyl ether | n       | **       | n        |           | 0.100     | ND     | 11          |        |
| Chrysene                    | **      | **       | "        |           | 0.100     | ND     | O           |        |
| Dibenz (a,h) anthracene     | 11      | **       | ••       |           | 0.100     | ND     | •           |        |
| Dibenzofuran                | er      | u        | **       |           | 0.100     | ND     | •           |        |
| )i-n-butyl phthalate        | 11      | 11       |          |           | 0.500     | ND     | n           |        |
| ,3-Dichlorobenzene          | ft      | п        |          |           | 0.100     | ND     | **          |        |
| 1.4-Dichlorobenzene         | **      | n .      | **       |           | 0.100     | ND     | **          |        |
| ,2-Dichlorobenzene          | **      | If       | •        |           | 0.100     | ND     | ti .        |        |
| ,3'-Dichlorobenzidine       | **      | **       | **       |           | 5.00      | ND     | *1          |        |
| 2.4-Dichlorophenol          | **      | "        | **       |           | 0.100     | ND     | **          |        |
| Diethyl phthalate           | 11      | **       | 11       |           | 0.100     | ND     | **          |        |
| .4-Dimethylphenol           | n       | n        | **       |           | 0.100     | ND     | "           |        |
| Jimethyl phthalate          | "       | n        | **       |           | 0.100     | ND     | 11          |        |
| 4.6-Dinitro-2-methylphenol  | 11      | 11       | 41       |           | 0.500     | ND     | **          |        |
| .4-Dinitrophenol            | "       | н        | 11       |           | 0.500     | ND     | **          |        |
| ,4-Dinitrotolucne           | **      | 11       | **       |           | 0.100     | ND     | "           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL **(425)** 420-9200 **FAX** 420-9210 SPOKANE **(509)** 924-9200 **FAX** 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St.

Bellingham, WA 98225

Project: Port of Bellingham

Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

|                            | Batch      | Date     | Date     | Surrogate | Reporting |              |             |        |
|----------------------------|------------|----------|----------|-----------|-----------|--------------|-------------|--------|
| Analyte                    | Number     | Prepared | Analyzed | Limits    | Limit     | Result       | Units       | Notes* |
| TD 4 (south and)           |            |          | B80904   | 14 04     | •         |              | <u>Soil</u> |        |
| TP-4 (continued)           | 0000007    | 0/2/00   | 9/3/98   | +4-04     | 0.100     | ND           |             |        |
| 2.6-Dinitrotoluene         | 0980087    | 9/3/98   | 9/3/98   |           | 0.100     |              | mg/kg dry   |        |
| Di-n-octyl phthalate       | "          | "        |          |           |           | ND           | **          |        |
| Fluoranthene               | ,,         | "        | "        |           | 0.100     | ND           | 19          |        |
| Fluorene                   |            | **       | 11       |           | 0.100     | ND           | 11          |        |
| Hexachlorobenzene          |            |          |          |           | 0.100     | ND           |             |        |
| Hexachlorobutadiene        | **         | **       |          |           | 0.100     | ND           | tt          |        |
| Hexachlorocyclopentadiene  | ri .       | ч        | 11       |           | 0.100     | ND           | **          |        |
| Hexachloroethane           | "          | "        | ft.      |           | 0.106     | ND           | 19          |        |
| Indeno (1,2,3-cd) pyrene   | 11         | "        | **       |           | 0.100     | ND           | t)          |        |
| Isophorone                 | 11         | **       | *1       |           | 0.100     | ND           | 10          |        |
| 2-Methylnaphthalene        | **         | "        | n        |           | 0.100     | ND           | ŧ.          |        |
| 2-Methylphenol             | tt         | **       | **       |           | 0.100     | ND           | <b>*</b> Ÿ  |        |
| 3 & 4-Methylphenol         | •          | **       | 11       |           | 0.100     | ND           | **          |        |
| Naphthalene                | 41         | tf .     | **       |           | 0.100     | ИD           | н           |        |
| 2-Nitroaniline             | **         | n        | н        |           | 0.500     | ND           | **          |        |
| 3-Nitroaniline             | **         | **       | If       |           | 0.500     | ND           | 84          |        |
| 4-Nitroaniline             | •          | "        | **       |           | 0.500     | ND           | **          |        |
| Nitrobenzene               | n          | 11       | n        |           | 0.100     | ND           | 11          |        |
| 2-Nitrophenol              | 12         | **       | **       |           | 0.100     | ND           | 11          |        |
| 4-Nitrophenol              | 11         | "        | ii       |           | 0.500     | ND           | <b>4</b> 9  |        |
| N-Nitrosodiphenylamine     | **         | **       | 1f       |           | 0.200     | ND           | <b>†</b> 2  |        |
| N-Nitrosodi-n-propylamine  | **         | n        | **       |           | 0.100     | ND           | F 0         |        |
| Pentachlorophenol          | 11         | •        | "        |           | 0.500     | ND           | •           |        |
| Phenanthrene               | 11         | "        | "        |           | 0.100     | ND           | 15          |        |
| Phenol                     | **         | **       | "        |           | 0.100     | ND           | 10          |        |
| Pyrene                     | <b>"</b> . | n        | u        |           | 0.100     | ND           | er e        |        |
| 1.2.4-Triehlorobenzene     | 12         | **       | **       |           | 0.100     | ND           | **          |        |
| 2,4,5-Trichlorophenol      |            | 11       | 11       |           | 0.500     | ND           | **          |        |
| 2,4.6-Trichlorophenol      | 11         | 11       | tr.      |           | 0.100     | ND           | •           |        |
| Surrogate: 2-FP            |            |          |          | 19.0-141  |           | 72.7         | %           |        |
| Surrogate: Phenol-d6       | n          | "        | 11       | 44.0-128  |           | 71.4         | "           |        |
| Surrogate: 2,4.6-TBP       | n          | "        | "        | 10.0-137  |           | 105          | "           |        |
| Surrogate: Nitrobenzene-d5 | "          | "        | n        | 33.0-108  |           | 70.3         | **          |        |
| Surrogate: 2-FBP           | 11         | "        | "        | 51.0-124  |           | 70.5<br>78 9 | ,,          |        |
| -                          | ,,         | ,,       | "        |           |           | 78.9         | **          |        |
| Surrogate: p-Terphenyl-d14 | •          |          |          | 48.0-149  |           | 18.9         |             |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engincers - Bellingham

Bellingham, WA 98225

600 Dupont St.

Project: I Project Number: (

Project Manager

Port of Bellingham

0307-024-02 Jay Gordon Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

| 1                                        | Batch   | Date     | Date     | Surrogate | Reporting |          |           |        |
|------------------------------------------|---------|----------|----------|-----------|-----------|----------|-----------|--------|
| Analyte                                  | Number  | Prepared | Analyzed | Limits    | Limit     | Result   | Units     | Notes* |
| <u>TP-5</u>                              |         |          | B80904   | 14-05     |           |          | Soil      |        |
| Acenaphthene                             | 0980087 | 9/3/98   | 9/4/98   | 11-05     | 0.100     | ND       | mg/kg dry |        |
| Acenaphthylene                           | "       | н        | "        |           | 0.100     | ND       | mg/kg dry |        |
| Aniline                                  | u       | •        | **       |           | 0.100     | ND       | н         |        |
| Anthracene                               | **      | **       | 11       |           | 0.100     | ND       | 11        |        |
| Benzoic Acid                             | ••      | **       | 11       |           | 0.500     | ND       | 11        |        |
| Benzo (a) anthracene                     | te .    | tr.      | 11       |           | 0.100     | ND       | , "       |        |
| Benzo (b) fluoranthene                   | P1      | **       | **       |           | 0.100     | ND       | n         |        |
| Benzo (k) fluoranthene                   | 16      | **       | **       |           | 0.100     | ND<br>ND | 11        |        |
| Benzo (ghi) perylene                     | te      |          | **       |           | 0.100     | ND<br>ND | "         |        |
| Benzo (giii) peryfette  Benzo (a) pyrene | 16      | "        | tt.      | •         | 0.100     | ND<br>ND | 11        |        |
| Benzyl alcohol                           | а       | **       |          |           | 0.100     | ND<br>ND | **        |        |
| Bis(2-chloroethoxy)methane               | ŧr      |          |          |           | 0.100     | ND<br>ND | H         |        |
|                                          | **      | ri .     |          |           | 0.100     | ND<br>ND | **        |        |
| Bis(2-chloroethyl)ether                  | n       | *1       | **       |           | 0.100     |          | **        |        |
| Bis(2-chloroisopropyl)ether              | 41      | **       | 11       |           |           | ND       | н         |        |
| Bis(2-ethylhexyl)phthalate               | •       |          |          |           | 0.500     | ND       | **        |        |
| 4-Bromophenyl phenyl ether               |         | **       | 11       |           | 0.100     | ND       | **        |        |
| Butyl benzyl phthalate                   |         |          |          |           | 0.100     | ND       | 11        |        |
| Carbazole                                | **      |          |          |           | 0.500     | ND       |           |        |
| 4-Chloroaniline                          | **      | ,,       |          |           | 0.100     | ND       | "         |        |
| 2-Chloronaphthalene                      |         | **       | "<br>H   |           | 0.100     | ND       |           |        |
| 4-Chloro-3-methylphenol                  |         |          | "        |           | 0.100     | ND       | п         |        |
| 2-Chlorophenol                           | **      | н        |          |           | 0.100     | ND       | **        |        |
| 4-Chlorophenyl phenyl ether              | 11      | **       | 11       |           | 0.100     | ND       | **        |        |
| Chrysene                                 | **      | "        | **       |           | 0.100     | ND       | **        |        |
| Dibenz (a,h) anthracene                  | şt      | "        | 11       |           | 0.100     | ND       | **        |        |
| Dibenzofuran                             | **      | н        | **       |           | 0.100     | ND       | **        |        |
| Di-n-butyl phthalate                     | 11      | **       | **       |           | 0.500     | ND       | "         |        |
| 1.3-Dichlorobenzene                      | ěT.     | н        | **       |           | 0.100     | ND       | н         |        |
| 1.4-Dichlorobenzene                      | 11      | **       | "        |           | 0.100     | ND       | 11        |        |
| 1.2-Dichlorobenzene                      | 01      | **       | "        |           | 0.100     | ND       | **        |        |
| 3.3'-Dichlorobenzidine                   | 29      | **       |          |           | 5.00      | ND       | **        |        |
| 2.4-Dichlorophenol                       | EP.     | н        | •        |           | 0.100     | ND       | H         |        |
| Diethyl phthalate                        | 21      | "        |          |           | 0.100     | ND       | 11        |        |
| 2.4-Dimethylphenol                       | ų.      | ••       | n        |           | 0.100     | ND       | **        |        |
| Dimethyl phthalate                       | 19      | "        | н        |           | 0.100     | ND       | "         |        |
| 4.6-Dinitro-2-methylphenol               | 71      | "        | n .      |           | 0.500     | ND       | tt        |        |
| 2.4-Dinitrophenol                        | 65      | "        | **       |           | 0.500     | ND       |           |        |
| 2.4-Dinitrotoluene                       | · "     | 11       | н        |           | 0.100     | ND       | **        |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02 Project Manager: Jay Gordon Received: 9/2/98

Bellingham, WA 98225 Project Manager:

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C North Creek Analytical - Bothell

|                            | Batch                                 | Date     | Date     | Surrogate | Reporting |        |             |        |
|----------------------------|---------------------------------------|----------|----------|-----------|-----------|--------|-------------|--------|
| Analyte                    | Number                                | Prepared | Analyzed | Limits    | Limit     | Result | Units       | Notes* |
| TP-5 (continued)           |                                       |          | B80904   | 14-05     |           |        | <u>Soil</u> |        |
| 2.6-Dinitrotoluene         | 0980087                               | 9/3/98   | 9/4/98   |           | 0.100     | ND     | mg/kg dry   |        |
| Di-n-octyl phthalate       |                                       | **       | 11       |           | 0.500     | ND     | "           |        |
| Fluoranthene               | e                                     | *1       | n        |           | 0.100     | ND     | п           |        |
| Fluorene                   | re .                                  | **       | "        |           | 0.100     | ND     | "           |        |
| Hexachlorobenzene          | н                                     | H        | n        |           | 0.100     | ND     | •           |        |
| Hexachlorobutadiene        | tt                                    | It       | 11       |           | 0.100     | ND     | "           |        |
| Hexachlorocyclopentadiene  | 17                                    | "        | 11       |           | 0.100     | ND     | IT          |        |
| Hexachloroethane           | **                                    | "        | н        |           | 0.100     | ND     | an an       |        |
| Indeno (1,2,3-cd) pyrene   | •                                     | н        | II .     |           | 0.100     | ND     | u           |        |
| Isophorone                 | **                                    | н        | n        |           | 0.100     | ND     | **          |        |
| 2-Methylnaphthalene        | te                                    | н        | "        |           | 0.100     | ND     | **          |        |
| 2-Methylphenol             | **                                    | 11       | "        |           | 0.100     | ND     | **          |        |
| 3 & 4-Methylphenol         | H.                                    | **       | "        |           | 0.100     | ND     | **          |        |
| Naphthalene                | H                                     | **       | H        |           | 0.100     | ND     | "           |        |
| 2-Nitroaniline             | **                                    | II       | 11       |           | 0.500     | ND     | **          |        |
| 3-Nitroaniline             | •                                     | **       | n        |           | 0.500     | ND     | "           |        |
| 4-Nitroaniline             | **                                    | 11       | 11       |           | 0.500     | ND     | **          |        |
| Nitrobenzene               | "                                     | "        | "        |           | 0.100     | ND     | **          |        |
| 2-Nitrophenol              | , u                                   | tı       | "        |           | 0.100     | ND     | **          |        |
| 4-Nitrophenol              | **                                    | **       | **       |           | 0.500     | ND     | "           |        |
| N-Nitrosodiphenylamine     | "                                     | **       | **       |           | 0.200     | ND     | 11          |        |
| N-Nitrosodi-n-propylamine  | **                                    | **       | **       |           | 0.100     | ND     | 11          |        |
| Pentachlorophenol          | "                                     | **       | **       |           | 0.500     | ND     | **          |        |
| Phenanthrene               | "                                     | ti       | "        |           | 0.100     | ND     | 1)          |        |
| Phenol                     | **                                    | **       | **       |           | 0.100     | ND     | **          |        |
| Pyrene                     | er e                                  | "        | н        |           | 0.100     | ND     | **          |        |
| 1.2,4-Trichlorobenzene     | **                                    | **       | 11       |           | 0.100     | ND     | **          |        |
| 2.4.5-Trichlorophenol      | 91                                    | **       | #        |           | 0.500     | ND     | **          |        |
| 2.4.6-Trichlorophenol      | **                                    | **       | "        |           | 0.100     | ND     |             |        |
| Surrogate: 2-FP            | , , , , , , , , , , , , , , , , , , , | <i>a</i> | 11       | 19.0-141  |           | 70.5   | %           |        |
| Surrogate: Phenol-d6       | "                                     | "        | "        | 44.0-128  |           | 71.1   | 19          |        |
| Surrogate: 2,4,6-TBP       | n                                     | "        | "        | 10.0-137  |           | 101    | "           |        |
| Surrogate: Nitrobenzene-d5 | "                                     | "        | n .      | 33.0-108  |           | 72.8   | "           |        |
| Surrogate: 2-FBP           | "                                     | "        | "        | 51.0-124  |           | 82.7   | "           |        |
| Surrogate: p-Terphenyl-d14 | "                                     | **       | "        | 48.0-149  |           | 90.2   | "           |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engincers - Bellingham

600 Dupont St.

Bellingham, WA 98225

Project: Por

Port of Bellingham

Project Number: 0307-024-02

Project Manager: Jay Gordon

Sampled: 9/1/98

Received: 9/2/98

Reported: 9/21/98 11:40

### Conventional Chemistry Parameters by APHA/EPA Methods North Creek Analytical - Bothell

|                 | Batch   | Date     | Date     | Specifie      | Reporting |        |             |        |
|-----------------|---------|----------|----------|---------------|-----------|--------|-------------|--------|
| Analyte         | Number  | Prepared | Analyzed | Method        | Limit     | Result | Units       | Notes* |
| <u> </u>        |         |          | B80904   | 14-01         |           |        | Soil        |        |
| Cyanide (total) | 0980549 | 9/15/98  | 9/15/98  | EPA 9010B     | 0.500     | ND     | mg/kg dry   |        |
| <u> </u>        |         |          | B80904   | 14-02         |           |        | <u>Soil</u> |        |
| Cyanide (total) | 0980549 | 9/15/98  | 9/15/98  | EPA 9010B     | 0.500     | ND     | mg/kg dry   |        |
| <u> </u>        |         |          | B80904   | 14-03         |           |        | <u>Soil</u> |        |
| Cyanide (total) | 0980549 | 9/15/98  | 9/15/98  | EPA 9010B     | 0.500     | ND     | mg/kg dry   |        |
| <u>TP-4</u>     |         |          | B80904   | <u> 14-04</u> |           |        | <u>Soil</u> |        |
| Cyanide (total) | 0980549 | 9/15/98  | 9/15/98  | EPA 9010B     | 0.500     | ND     | mg/kg dry   |        |
| <u>TP-5</u>     |         |          | B80904   | 14-05         |           |        | <u>Soil</u> |        |
| Cyanide (total) | 0980549 | 9/15/98  | 9/15/98  | EPA 9010B     | 0.500     | ND     | mg/kg dry   |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE ■ (509) 924-9200 ■ FAX 924-9290

PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

600 Dupont St.

Project: Port of Bellingham

0307-024-02

Sampled: Received: 9/2/98

9/1/98

Bellingham, WA 98225

Project Number: Project Manager: Jay Gordon

Reported: 9/21/98 11:40

## Dry Weight Determination North Creek Analytical - Bothell

| Sample Name | Lab ID     | Matrix | Result | Units |
|-------------|------------|--------|--------|-------|
| TP-1        | B809044-01 | Soil   | 95.5   | %     |
| TP-2        | B809044-02 | Soil   | 95.4   | %     |
| TP-3        | B809044-03 | Soil   | 95.4   | %     |
| TP-4        | B809044-04 | Soil   | 95.2   | %     |
| TP-5        | B809044-05 | Soil   | 96 2   | %     |

North Creek Analytical - Bothell



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham 600 Dupont St.

Project: Port of Bellingham

Sampled: 9/1/98 Received: 9/2/98

Bellingham, WA 98225

Project Number: 0307-024-02 Project Manager: Jay Gordon

Reported: 9/21/98 11:40

# Hydrocarbon Identification by Washington DOE Method WTPH-HCID/Quality Control North Creek Analytical - Bothell

|                              | Date       | Spike       | Sample   | QC     | F        | Reporting Limit | Recov.  | RPD   | RPD |        |
|------------------------------|------------|-------------|----------|--------|----------|-----------------|---------|-------|-----|--------|
| Analyte                      | Analyzed   | Level       | Result   | Result | Units    | Recov. Limits   | %       | Limit | %   | Notes* |
| Batch: 0980093               | Date Prepa | red: 9/3/98 | <u> </u> |        | Extracti | on Method: HC   | ID (WA) |       |     |        |
| Blank                        | 0980093-BI | <u>KI</u>   |          |        |          |                 |         |       |     |        |
| Gasoline Range Hydrocarbons  | 9/4/98     |             |          | ND     | mg/kg dr | y <b>20.0</b>   |         |       |     |        |
| Diesel Range Hydrocarbons    | II.        |             |          | ND     | 11       | 50.0            |         |       |     |        |
| Heavy Oil Range Hydrocarbons | 11         |             |          | ND     | 11       | 100             |         |       |     |        |
| Surrogate: 2-FBP             | n          | DET         |          | DET    | "        | 50.0-150        | 121     | 7     |     |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290 PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

Bellingham, WA 98225

Project.

Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number: 0307-024-02 Project Manager:

Jay Gordon

Received: 9/2/98 Reported:

9/21/98 11:40

#### Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell

|                  | Date                                  | Spike           | Sample    | QC       | R          | eporting Limit               | Recov.  | RPD   | RPD   | <sub> </sub> |  |
|------------------|---------------------------------------|-----------------|-----------|----------|------------|------------------------------|---------|-------|-------|--------------|--|
| Analyte          | Analyzed                              | Level           | Result    | Result   | Units      | Recov. Limits                | %       | Limit | %     | Notes*       |  |
| Batch: 0980239   | Date Prepai                           | -ad- 0/8/09     | 2         |          | Extractio  | Extraction Method: EPA 3050B |         |       |       |              |  |
| Blank            | 0980239-BL                            |                 | 2         |          | Extraction | ii Method. El                | A JUJUD |       |       |              |  |
| Antimony         | 9/10/98                               | <del>/ICI</del> |           | ND       | mg/kg dry  | 0.500                        |         |       |       |              |  |
| Arsenic          | "                                     |                 |           | ND       | mg/kg di)  | 0.500                        |         |       |       |              |  |
| Beryllium        | 11                                    |                 |           | ND<br>ND | **         | 0.500                        |         |       |       |              |  |
| Cadmium          | "                                     |                 |           | ND       | н          | 0.500                        |         |       |       |              |  |
| Chromium         | ч                                     |                 |           | ND<br>ND | 10         | 0.500                        |         |       |       |              |  |
|                  | 11                                    |                 |           | ND<br>ND | tt.        |                              |         |       |       |              |  |
| Copper           | **                                    |                 |           |          | 11         | 0.500                        |         |       |       | В            |  |
| Lead             | "                                     |                 |           | 0.560    | 11         | 0.500                        |         |       |       | В            |  |
| Nickel           |                                       |                 |           | ND       | 11         | 0.500                        |         |       |       |              |  |
| Selenium         |                                       |                 |           | ND       |            | 0.500                        |         |       |       |              |  |
| Silver           | "                                     |                 |           | ND       | "          | 0.500                        |         |       |       |              |  |
| Thallium         | 11                                    |                 |           | ND       |            | 0.500                        |         |       |       |              |  |
| Zinc             | "                                     |                 |           | ND       | "          | 5.00                         |         |       |       |              |  |
| LCS              | 0980239-BS                            | 1               |           |          |            |                              |         |       |       |              |  |
| Antimony         | 9/10/98                               | 25.0            |           | 22.8     | mg/kg dry  | 80.0-120                     | 91.2    |       |       |              |  |
| Arsenic          | "                                     | 25.0            |           | 21.4     | "          | 70.0-130                     | 85.6    |       |       |              |  |
| Beryllium        | tt                                    | 25.0            |           | 20.5     | "          | 80.0-120                     | 82.0    |       |       |              |  |
| Cadmium          | · · · · · · · · · · · · · · · · · · · | 25.0            |           | 21.5     | u          | 70.0-130                     | 86.0    |       |       |              |  |
| Chromium         | rı .                                  | 25.0            |           | 22.2     | 11         | 80.0-120                     | 88.8    |       |       |              |  |
| Copper           | n                                     | 25.0            |           | 23.1     | **         | 80.0-120                     | 92.4    |       |       |              |  |
| Lead             | n                                     | 25.0            |           | 24.1     | 11         | 80.0-120                     | 96.4    |       |       |              |  |
| Nickel           | н                                     | 25.0            |           | 22.8     | •          | 80.0-120                     | 91.2    |       |       |              |  |
| Selenium         | п                                     | 25.0            |           | 19.2     | er e       | 70.0-130                     | 76.8    |       |       |              |  |
| Silver           | ti                                    | 25.0            |           | 22.9     |            | 80.0-120                     | 91.6    |       |       |              |  |
| Thallium         | 32                                    | 25.0            |           | 23.8     | н          | 80.0-120                     | 95.2    |       |       |              |  |
| Zinc             | R                                     | 25.0            |           | 21.8     | et.        | 70.0-130                     | 87.2    |       |       |              |  |
| B . II .         |                                       |                 |           |          |            |                              |         |       |       |              |  |
| <u>Duplicate</u> | 0980239-DU                            | <u>)P1 B</u>    | 809044-01 |          |            |                              |         |       |       |              |  |
| Antimony         | 9/10/98                               |                 | ND        | ND       | mg/kg dry  | /                            |         | 20.0  |       |              |  |
| Arsenic          | H                                     |                 | 2.60      | 2.64     | **         |                              |         | 20.0  | 1.53  |              |  |
| Beryllium        | 11                                    |                 | ND        | ND       | **         |                              |         | 20.0  |       |              |  |
| Cadmium          | n .                                   |                 | ND        | ND       | D          |                              |         | 20.0  |       |              |  |
| Chromium         | n                                     |                 | 13.3      | 16.7     | 11         |                              |         | 20.0  | 22.7  | ì            |  |
| Copper           | Ħ                                     |                 | 11.3      | 10.5     | U          |                              |         | 20.0  | 7.34  |              |  |
| Lead             | н                                     |                 | 2.77      | 2.79     | n          |                              |         | 20.0  | 0.719 |              |  |
| Nickel           | rt.                                   |                 | 15.2      | 15.9     | н          |                              |         | 20.0  | 4.50  |              |  |
| Selenium         | "                                     |                 | ND        | ND       | н          |                              |         | 20.0  |       |              |  |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE \* (509) 924-9200 \* FAX 924-9290

PORTLAND - (503) 906-9200 - FAX 906-9210

Geo Engineers - Bellingham

Bellingham, WA 98225

Project: Port of Bellingham

0307-024-02

Jay Gordon

Sampled: 9/1/98

600 Dupont St.

Project Number: Project Manager:

Received: Reported:

9/2/98 9/21/98 11:40

# Total Metals by EPA 6000/7000 Series Methods/Quality Control North Creek Analytical - Bothell

|                       | Date               | Spike               | Sample            | QC     | R         | eporting Limit | Recov.  | RPD   | RPD      |
|-----------------------|--------------------|---------------------|-------------------|--------|-----------|----------------|---------|-------|----------|
| Analyte               | Analyzed           | Level               | Result            | Result | Units     | Recov. Limits  | %       | Limit | % Notes* |
| Duplicate (continued) | 0980239-DUI        | <u>P1 B8</u>        | 309044-01         |        |           |                |         |       |          |
| Silver                | 9/10/98            |                     | ND                | ND     | mg/kg dry | /              |         | 20.0  |          |
| Thallium              | H .                |                     | ND                | ND     | 0         |                |         | 20.0  |          |
| Zinc                  | "                  |                     | 25.7              | 23.9   | 11        |                |         | 20.0  | 7.26     |
| Matrix Spike          | 0980239-MS         |                     | <u> 309044-01</u> |        |           |                |         |       |          |
| Antimony              | 9/10/98            | 20.0                | ND                | 9.23   | mg/kg dry |                | 46.1    |       | 2        |
| Arsenic               | 11                 | 20.0                | 2.60              | 17.7   | "         | 70.0-130       | 75.5    |       |          |
| Beryllium             | H                  | 20.0                | ND                | 15.7   | "         | 70.0-130       | 78.5    |       |          |
| Cadmium               | 11                 | 20.0                | ND                | 16.3   | "         | 70.0-130       | 81.5    |       |          |
| Chromium              | ti                 | 20.0                | 13.3              | 30.2   | н         | 70.0-130       | 84.5    |       |          |
| Copper                | 11                 | 20.0                | 11.3              | 33.0   | н         | 70.0-130       | 109     |       |          |
| Lead                  | 11                 | 20.0                | 2.77              | 21.3   | н         | 70.0-130       | 92.6    |       |          |
| Nickel                | 11                 | 20.0                | 15.2              | 32.0   | н         | 70.0-130       | 84.0    |       |          |
| Selenium              | н                  | 20.0                | ND                | 13.7   | 11        | 70.0-130       | 68.5    |       | 2        |
| Silver                | n                  | 20.0                | ND                | 17.7   | н         | 70.0-130       | 88.5    |       |          |
| Thallium              | rt .               | 20.0                | ND                | 18.3   | 11        | 70.0-130       | 91.5    |       |          |
| Zinc                  | 11                 | 20.0                | 25.7              | 41.5   | н         | 70.0-130       | 79.0    |       |          |
| Matrix Spike          | 0980239-MS         | <u>2</u> <u>B</u> 8 | <u>809044-01</u>  |        |           |                |         |       |          |
| Antimony              | 9/10/98            | 415                 | ND                | 399    | mg/kg dry | 70.0-130       | 96.1    |       | 3        |
| Selenium              | н                  | 415                 | ND                | 425    | н         | 70.0-130       | 102     |       | 3        |
| Batch: 0980262        | Date Prepare       | ed: 9/9/98          | 3                 |        | Extractio | n Method: EP.  | A 3050B |       |          |
| <u>Blank</u>          | 0980262-BLI        | <u>{1</u>           |                   |        |           |                |         |       |          |
| Mercury               | 9/10/98            |                     |                   | ND     | mg/kg dry | 0.100          |         |       |          |
| LCS                   | <u>0980262-BS1</u> |                     |                   |        |           |                |         |       |          |
| Mercury               | 9/10/98            | 1.75                |                   | 2.05   | mg/kg dry | 80.0-120       | 117     |       |          |
| Matrix Spike          | 0980262-MS         | <u>1 B8</u>         | 809044-01         |        |           |                |         |       |          |
| Mercury               | 9/10/98            | 0.503               | ND                | 0.548  | mg/kg dry | 80.0-120       | 109     |       |          |
| Matrix Spike Dup      | 0980262-MS         | <u>D1 B8</u>        | 809044-0 <u>1</u> |        |           |                |         |       |          |
| Mercury .             | 9/10/98            | 0.476               | ND                | 0.514  | mg/kg dry | 80.0-120       | 108     | 20.0  | 0.922    |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St. Bellingham, WA 98225

Project Manager: Jay Gordon

Project Number: 0307-024-02

Received: 9/2/98

Reported: 9/21/98 11:40

#### Polychlorinated Biphenyls by EPA Method 8082/Quality Control North Creek Analytical - Bothell

|                  | Date       | Spike       | Sample    | QC     | R         | eporting Limit | Recov. | RPD   | RPD  |        |
|------------------|------------|-------------|-----------|--------|-----------|----------------|--------|-------|------|--------|
| Analyte          | Analyzed   | Level       | Result    | Result | Units     | Recov. Limits  | %      | Limit | %    | Notes* |
| Batch: 0980088   | Date Prepa | red: 9/3/98 | 3         | -      | Extractio | n Method: EPA  | 3550B  |       |      |        |
| Blank            | 0980088-BI | <u>LK1</u>  |           |        |           |                |        |       |      |        |
| Aroclor 1016     | 9/4/98     |             |           | ND     | ug/kg dry | 50.0           |        |       |      |        |
| Aroclor 1221     | **         |             |           | ND     | **        | 50.0           |        |       |      |        |
| Aroclor 1232     | н          |             |           | ND     | **        | 50.0           |        |       |      |        |
| Aroclor 1242     | n          |             |           | ND     | н         | 50.0           |        |       |      |        |
| Aroclor 1248     | **         |             |           | ND     | H         | 50.0           |        |       |      |        |
| Aroclor 1254     | 11         |             |           | ND     | n         | 50.0           |        |       |      |        |
| Aroclor 1260     | 11         |             |           | ND     | tt.       | 50.0           |        |       |      |        |
| Aroclor 1262     | ħ          |             |           | ND     | н         | 50.0           |        |       |      |        |
| Aroclor 1268     | 11         |             |           | ND     | **        | 50.0           |        |       |      |        |
| Surrogate: TCX   | "          | 6.67        |           | 6.56   | "         | 40.0-130       | 98.4   |       |      |        |
| LCS              | 0980088-BS | <u> </u>    |           |        |           |                |        |       |      |        |
| Aroclor 1260     | 9/4/98     | 333         |           | 216    | ug/kg dry | 44.0-123       | 64.9   |       |      |        |
| Surrogate: TCX   | 11         | 6.67        |           | 6.76   | "         | 40.0-130       | 101    |       |      |        |
| Matrix Spike     | 0980088-M  | SI B8       | 309044-01 |        |           |                |        |       |      |        |
| Aroclor 1260     | 9/4/98     | 349         | ND        | 211    | ug/kg dry | 28.0-132       | 60.5   |       |      |        |
| Surrogate: TCX   | "          | 6.98        |           | 5.89   |           | 40.0-130       | 84.4   |       |      |        |
| Matrix Spike Dup | 0980088-M  | SD1 B8      | 309044-01 |        |           |                |        |       |      |        |
| Aroclor 1260     | 9/4/98     | 349         | ND        | 206    | ug/kg dry | 28.0-132       | 59.0   | 23.0  | 2.51 |        |
| Surrogate: TCX   | "          | 6.98        |           | 6.30   | "         | 40.0-130       | 90.3   |       |      |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290 PORTLAND • (503) 906-9200 • FAX 906-9210

Geo Engineers - Bellingham

Project:

Port of Bellingham

Sampled: 9/1/98

600 Dupont St.

Project Number:

Received: 9/2/98

Bellingham, WA 98225

0307-024-02 Project Manager: Jay Gordon

Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B/Quality Control North Creek Analytical - Bothell

|                           | Date              | Spike      | Sample | QC       | R          | eporting Limit | Recov.  | RPD    | RPD      |
|---------------------------|-------------------|------------|--------|----------|------------|----------------|---------|--------|----------|
| Analyte                   | Analyzed          | Level      | Result | Result   | Units      | Recov. Limits  | %       | Limit  | % Notes* |
|                           |                   |            |        |          |            |                |         |        |          |
| Batch: 0980260            | Date Prepa        |            | 3      |          | Extraction | on Method: EPA | 1 5030B | [MeOH] |          |
| <u>Blank</u>              | <u>0980260-BI</u> | <u>_K1</u> |        |          |            |                |         |        |          |
| Acetone                   | 9/9/98            |            |        | ND       | mg/kg dr   |                |         |        |          |
| Benzene                   | "                 |            |        | ND       | ti         | 0.100          |         |        |          |
| Bromodichloromethane      | **                |            |        | ND       | **         | 0.100          |         |        |          |
| Bromoform                 | 11                |            |        | ND       | "          | 0.100          |         |        |          |
| Bromomethane              | "                 |            |        | ND       | 11         | 0.100          |         |        |          |
| 2-Butanone                | н                 |            |        | ND       | "          | 2.00           |         |        |          |
| Carbon disulfide          | **                |            |        | ND       | н '        | 0.100          |         |        |          |
| Carbon tetrachloride      | н                 |            |        | ND       | ti         | 0.100          |         |        |          |
| Chlorobenzene             | "                 |            |        | ND       | н          | 0.100          |         |        |          |
| Chloroethane              | tt                |            |        | ND       | "          | 0.100          |         |        |          |
| Chloroform                | n .               |            |        | ND       | ū          | 0.100          |         |        |          |
| Chloromethane             | **                |            |        | ND       | **         | 0.500          |         |        |          |
| Dibromochloromethane      | tt                |            |        | ND       | "          | 0.100          |         |        |          |
| 1,2-Dichlorobenzene       | "                 |            |        | ND       | **         | 0.100          |         |        |          |
| 1.3-Dichlorobenzene       | n                 |            |        | ND       | 11         | 0.100          |         |        |          |
| 1,4-Dichlorobenzene       | 11                |            |        | ND       | ***        | 0.100          |         |        |          |
| 1.1-Dichloroethane        | а                 |            |        | ND       | ***        | 0.100          |         |        |          |
| 1.2-Dichloroethane        | tt.               |            |        | ND       | If         | 0.100          |         |        |          |
| 1.1-Dichloroethene        | •                 |            |        | ND       | 11         | 0.100          |         |        |          |
| cis-1,2-Dichloroethene    | 11                |            |        | ND       | 11         | 0.100          |         |        |          |
| trans-1,2-Dichloroethene  | ıı                |            |        | ND       | 11         | 0.100          |         |        |          |
| 1.2-Dichloropropane       | u ·               |            |        | ND       | n          | 0.100          |         |        |          |
| cis-1,3-Dichloropropene   | H                 |            |        | ND       | ti .       | 0.100          |         |        |          |
| trans-1,3-Dichloropropene | er                |            |        | ND       | **         | 0.100          |         |        |          |
| Ethylbenzene              | 11                |            |        | ND       | h          | 0.100          |         |        |          |
| 2-Hexanone                | •                 |            |        | ND       | **         | 2.00           |         |        |          |
| Methylene chloride        | •                 |            |        | ND       | **         | 1.00           |         |        |          |
| 4-Methyl-2-pentanone      | **                |            |        | ND       | **         | 2.00           |         |        |          |
| Styrene                   | 15                |            |        | ND       | 11         | 0.100          |         |        |          |
| 1.1,2.2-Tetrachloroethane | н                 |            |        | ND       | Ħ          | 0.100          |         |        |          |
| Tetrachloroethene         | n                 |            |        | ND       | "          | 0.100          |         |        |          |
| Toluene                   |                   |            |        | 0.103    | 11         | 0.100          |         |        | 4        |
| 1.1.1-Trichloroethane     | et .              |            |        | ND       | 11         | 0.100          |         |        | ·        |
| 1.1.2-Trichloroethane     | U                 |            |        | ND       | ш          | 001.0          |         |        |          |
| Trichloroethene           | **                |            |        | ND       | a a        | 0.100          |         |        |          |
| Vinyl chloride            | "                 |            |        | ND       | 11         | 0.100          |         |        |          |
| Xylenes (total)           | н                 |            |        | ND<br>ND | **         | 0.100          |         |        |          |
| Ayrenes (total)           |                   |            |        | עא       |            | 0.400          |         |        |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

Bellingham, WA 98225

[600 Dupont St.

Project Number: 0307-024-02 Project Manager: Jay Gordon

Received: 9/2/98 Reported: 9/21/98 11:40

#### Volatile Organic Compounds by EPA Method 8260B/Quality Control North Creek Analytical - Bothell

|                           | Date             | Spike       | Sample           | QC     | Re        | eporting Limit | Recov. | RPD   | RPD      |
|---------------------------|------------------|-------------|------------------|--------|-----------|----------------|--------|-------|----------|
| Analyte                   | Analyzed         | Level       | Result           | Result | Units     | Recov. Limits  | %      | Limit | % Notes* |
| Blank (continued)         | 0980260-BI       | <u>_K1</u>  |                  |        |           |                |        |       |          |
| Surrogate: 2-Bromopropene | 9/9/98           | 2.00        |                  | 3.05   | mg/kg dry | 70.0-130       | 152    |       | 5        |
| Surrogate: 1,2-DCA-d4     | "                | 2.00        |                  | 2.53   | "         | 70.0-130       | 126    |       |          |
| Surrogate: Toluene-d8     | "                | 2.00        |                  | 2.78   | "         | 70.0-130       | 139    |       | 5        |
| Surrogate: 4-BFB          | "                | 2.00        |                  | 2.60   | "         | 70.0-130       | 130    |       |          |
| LCS                       | 0980260-BS       | <u> </u>    |                  |        |           |                |        |       |          |
| Benzene                   | 9/9/98           | 1.00        |                  | 0.882  | mg/kg dry | 70.0-130       | 88.2   |       |          |
| Chlorobenzene             | *1               | 1.00        |                  | 0.888  | **        | 70.0-130       | 88.8   |       |          |
| 1,1-Dichloroethene        | **               | 1.00        |                  | 0.861  | 11        | 70.0-130       | 86.1   |       |          |
| l'oluene                  | **               | 1.00        |                  | 0.861  | **        | 70.0-130       | 86.1   |       |          |
| Crichloroethene           | н                | 1.00        |                  | 0.906  | 41        | 70.0-130       | 90.6   |       |          |
| Surrogate: 2-Bromopropene | <i>(</i> )       | 2.00        |                  | 2.49   | "         | 70.0-130       | 125    |       |          |
| Surrogate: 1,2-DCA-d4     | "                | 2.00        |                  | 2.02   | "         | 70.0-130       | 101    |       |          |
| Surrogate: Toluene-d8     | n                | 2 00        |                  | 2.07   | **        | 70.0-130       | 103    |       |          |
| Surrogate: 4-BFB          | "                | 2.00        |                  | 1.96   | "         | 70.0-130       | 98.0   |       |          |
| Matrix Spike              | 0980260-M        | <u>S1</u> B | 809044-05        |        |           |                |        |       |          |
| Benzene                   | 9/9/98           | 1.04        | ND               | 0.964  | mg/kg dry | 70.0-130       | 92.7   |       |          |
| Chlorobenzene             | **               | 1.04        | ND               | 1.00   | · ·       | 70.0-130       | 96.2   |       |          |
| 1,1-Dichloroethene        | 11               | 1.04        | ND               | 0.960  | 11        | 70.0-130       | 92.3   |       |          |
| Γoluene                   | 41               | 1.04        | ND               | 0.953  | **        | 70.0-130       | 91.6   |       |          |
| Trichloroethene           | 41               | 1.04        | ND               | 0.972  | tr.       | 70.0-130       | 93.5   |       |          |
| Surrogate: 2-Bromopropene | a a              | 2.08        |                  | 2.47   | **        | 70.0-130       | 119    |       |          |
| Surrogate: 1,2-DCA-d4     | n                | 2.08        |                  | 2.03   | "         | 70.0-130       | 97.6   |       |          |
| Surrogate: Toluene-d8     | "                | 2.08        |                  | 2.11   | "         | 70.0-130       | 101    |       |          |
| Surrogate: 4-BFB          | "                | 2.08        |                  | 2.09   | "         | 70.0-130       | 100    |       |          |
| Matrix Spike Dup          | <u>0980260-M</u> | SD1 B       | <u>809044-05</u> |        |           |                |        |       |          |
| Benzene                   | 9/9/98           | 1.04        | ND               | 0.922  | mg/kg dry | 70.0-130       | 88.7   | 15.0  | 4.41     |
| Chlorobenzene             | **               | 1.04        | ND               | 0.949  |           | 70.0-130       | 91.3   | 15.0  | 5.23     |
| '.1-Dichloroethene        | 11               | 1.04        | ND               | 0.895  | •         | 70.0-130       | 86.1   | 15.0  | 6.95     |
| l'oluene                  | **               | 1.04        | ND               | 0.896  | u         | 70.0-130       | 86.2   | 15.0  | 6.07     |
| Trichloroethene           | O.               | 1.04        | ND               | 0.942  | "         | 70.0-130       | 90.6   | 15.0  | 3.15     |
| Surrogate: 2-Bromopropene | и                | 2.08        | ** * ** * *      | 2.44   | "         | 70.0-130       | 117    |       |          |
| Surrogate: 1,2-DCA-d4     | 11               | 2.08        |                  | 2.06   | "         | 70.0-130       | 99 0   |       |          |
| Surrogate: Toluene-d8     | "                | 2.08        |                  | 2.06   | "         | 70.0-130       | 99.0   |       |          |
| Surrogate: 4-BFB          | "                | 2.08        |                  | 2.09   | "         | 70.0-130       | 100    |       |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

Sampled: 9/1/98

Geo Engineers - Bellingham 1600 Dupont St. Bellingham, WA 98225 Project: Port of Bellingham
Project Number: 0307-024-02

Project Manager:

0307-024-02 Jay Gordon Received: 9/2/98

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C/Quality Control North Creek Analytical - Bothell

|                             | Date              | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample | QC       |           | eporting Limit Reco | v. RPD  | RPD      |
|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------|---------------------|---------|----------|
| Analyte                     | Analyzed          | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | Result   | Units     | Recov. Limits       | % Limit | % Notes* |
| Batch: 0980087              | <u>Date Prepa</u> | red: 9/3/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3      |          | Extractio | n Method: EPA 355   | 0B      |          |
| Blank                       | 0980087-BI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |          |           |                     |         |          |
| Acenaphthene                | 9/3/98            | TO STATE OF THE ST |        | ND       | mg/kg dry | 0.100               |         |          |
| Acenaphthylene              | и                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | "         | 0.100               |         |          |
| Aniline                     | II.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | n         | 0.100               |         |          |
| Anthracene                  | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | 11        | 0.100               |         |          |
| Benzoic Acid                | IF.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | н         | 0.500               |         |          |
| Benzo (a) anthracene        | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       |           | 0.100               |         |          |
| Benzo (b) fluoranthene      | u u               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       |           | 0.100               |         |          |
| Benzo (k) fluoranthene      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | п         | 0.100               |         |          |
| Benzo (ghi) perylene        | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | 11        | 0.100               |         |          |
| Benzo (a) pyrene            | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | n         | 0.100               |         |          |
| Benzyl alcohol              | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 3is(2-chloroethoxy)methane  | ••                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | "         | 0.100               |         |          |
| 3is(2-chloroethyl)ether     | "                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | "         | 0.100               |         |          |
| Bis(2-chloroisopropyl)ether | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | н         | 0.100               |         |          |
| Bis(2-ethylhexyl)phthalate  | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.500               |         |          |
| -Bromophenyl phenyl ether   | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | t)        | 0.100               |         |          |
| Butyl benzyl phthalate      | n                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| Carbazole                   | n                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.500               |         |          |
| 1-Chloroaniline             | n                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       |           | 0.100               |         |          |
| ?-Chloronaphthalene         | n                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 4-Chloro-3-methylphenol     | а                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| ?-Chlorophenol              | "                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       |           | 0.100               |         |          |
| 1-Chlorophenyl phenyl ether | "                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | н         | 0.100               |         |          |
| Chrysene                    | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| Dibenz (a,h) anthracene     | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | n         | 0.100               |         |          |
| Dibenzofuran                | **                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | "         | 0.100               |         |          |
| Di-n-butyl phthalate        | 11                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | er e      | 0.500               |         |          |
| 1.3-Dichlorobenzene         | п                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 1.4-Dichlorobenzene         | II.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 2-Dichlorobenzene           | t)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 3,3'-Dichlorobenzidine      | "                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       |           | 5.00                |         |          |
| 2.4-Dichlorophenol          | н                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| Diethyl phthalate           | н                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | eç        | 0.100               |         |          |
| 2.4-Dimethylphenol          | "                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | н .       | 0.100               |         |          |
| Dimethyl phthalate          | tf                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND       | **        | 0.100               |         |          |
| 1.6-Dinitro-2-methylphenol  | ti .              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND<br>ND | 41        | 0.500               |         |          |
| 2.4-Dinitrophenol           | •                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ND<br>ND | •1        | 0.500               |         |          |
| .4-Dimitrophenor            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1417     |           | 0.200               |         |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE \* (509) 924-9200 \* FAX 924-9290

PORTLAND \* (503) 906-9200 \* FAX 906-9210

Geo Engineers - Bellingham

Project:

Port of Bellingham

Sampled:

9/1/98

600 Dupont St.

0307-024-02 Project Number:

Received:

9/2/98

Bellingham, WA 98225

Project Manager: Jay Gordon

9/21/98 11:40 Reported:

#### Semivolatile Organic Compounds by EPA Method 8270C/Quality Control North Creek Analytical - Bothell

|                            | Date       | Spike    | Sample | QC       |         | Reporting Limit | Recov. | RPD   | RPD      |
|----------------------------|------------|----------|--------|----------|---------|-----------------|--------|-------|----------|
| Analyte                    | Analyzed   | Level    | Result | Result   | Units   | Recov. Limits   | %      | Limit | % Notes* |
| Blank (continued)          | 0980087-BI | K1       |        |          |         |                 |        |       |          |
| 2.4-Dinitrotoluene         | 9/3/98     | <u> </u> |        | ND       | mg/kg d | lry 0.100       |        |       |          |
| 2.6-Dinitrotoluene         | 7/3/70     |          |        | ND<br>ND | " "     | 0.100           |        |       |          |
| Di-n-octyl phthalate       | 16         |          |        | ND       | u       | 0.100           |        |       |          |
| Fluoranthene               | 11         |          |        | ND<br>ND | **      | 0.100           |        |       |          |
| Fluorene                   | 11         |          |        | ND<br>ND | **      | 0.100           |        |       |          |
| Hexachlorobenzene          | 16         |          |        | ND<br>ND | **      | 0.100           |        |       |          |
| Hexachlorobutadiene        | n.         |          |        | ND       | 41      | 0.100           |        |       |          |
| Hexachlorocyclopentadiene  | **         |          |        | ND       | 41      | 0.100           |        |       |          |
| Hexachioroethane           | 15         |          |        | ND       | n       | 0.100           |        |       |          |
| Indeno (1,2,3-cd) pyrene   | H          |          |        | ND       | 11      | 0.100           |        |       |          |
| Isophorone                 | **         |          |        | ND       | 11      | 0.100           |        |       |          |
| 2-Methylnaphthalene        | 12         |          |        | ND       | 11      | 0.100           |        |       |          |
| 2-Methylphenol             | n          |          |        | ND       | **      | 0.100           |        |       |          |
| 3 & 4-Methylphenol         | e          |          |        | ND       | •       | 0.100           |        |       |          |
| Naphthalene                | n          |          |        | ND       | ••      | 0.100           |        |       |          |
| 2-Nitroaniline             | **         |          |        | ND       |         | 0.500           |        |       |          |
| 3-Nitroaniline             | н          |          |        | ND       | **      | 0.500           |        |       |          |
| 4-Nitroaniline             | 11         |          |        | ND       | ır      | 0.500           |        |       |          |
| Nitrobenzene               | 11         |          |        | ND       |         | 0.100           |        |       |          |
| 2-Nitrophenol              | п          |          |        | ND       | **      | 0.100           |        |       |          |
| 1-Nitrophenol              | **         |          |        | ND       | 11      | 0.500           |        |       |          |
| N-Nitrosodiphenylamine     | **         |          |        | ND       | **      | 0.200           |        |       |          |
| N-Nitrosodi-n-propylamine  | *1         |          |        | ND       | **      | 0.100           |        |       |          |
| Pentachlorophenol          | "          |          |        | ND       | tr.     | 0.500           |        |       |          |
| Phenanthrene               | 11         |          |        | ND       | ••      | 0.100           |        |       |          |
| Phenol                     | 11         |          |        | ND       | 11      | 0.100           |        |       |          |
| Pyrene                     |            |          |        | ND       | **      | 0.100           |        |       |          |
| 1.2,4-Trichlorobenzene     | **         |          |        | ND       | 11      | 0.100           |        |       |          |
| 2.4.5-Trichlorophenol      | **         |          |        | ND       | **      | 0.500           |        |       |          |
| 2,4,6-Trichlorophenol      | **         |          |        | ND       | н       | 0.100           |        |       |          |
| Surrogate: 2-FP            |            | 1.67     |        | 1.24     | "       | 19.0-141        | 74.3   |       |          |
| Surrogate: Phenol-d6       | "          | 1.67     |        | 1.1-     | "       | 44.0-128        | 70.1   |       |          |
| Surrogate: 2,4,6-TBP       | "          | 1.67     |        | 1.71     | "       | 10.0-137        | 102    |       |          |
| Surrogate. Nitrobenzene-d5 | "          | 1.67     |        | 1.24     | "       | 33.0-108        | 74.3   |       |          |
| Surrogate: 2-FBP           | "          | 1.67     |        | 1.36     | "       | 51.0-124        | 81.4   |       |          |
| Surrogate: p-Terphenyl-d14 | "          | 1.67     |        | 1.42     | "       | 48.0-149        | 85.0   |       |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

Steve Davis, Project Manager



BOTHELL • (425) 420-9200 • FAX 420-9210 SPOKANE • (509) 924-9200 • FAX 924-9290

PORTLAND **\*** (503) 906-9200 **\*** FAX 906-9210

Geo Engineers - Bellingham 600 Dupont St.

Project: Port of Bellingham

Sampled: 9/1/98 Received: 9/2/98

Bellingham, WA 98225

Project Number: 0307-024-02 Project Manager: Jay Gordon

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C/Quality Control North Creek Analytical - Bothell

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Date             | Spike       | Sample    | QC     | R         | eporting Limit |                  | RPD   | RPD      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-------------|-----------|--------|-----------|----------------|------------------|-------|----------|
| Acenaphthene         9/3/98         3.33         2.35         mg/kg dry         4.80-110         70.6           4-Chloro-3-methylphenol         "6.67         5.43         "340-115         81.4           2-Chlorophenol         "6.67         4.87         "57.0-110         73.0           1,4-Dichlorobenzene         "3.33         2.51         "39.0-110         75.4           2,4-Dinitrotoluene         "6.67         5.01         "26.0-116         75.1           N-Nitrosodi-n-propylamine         "6.67         5.01         "26.0-116         75.1           Pentachlorophenol         "6.67         5.33         "46.0-120         79.9           Phenol         "6.67         4.54         "35.0-110         68.1           Pyrene         "3.33         2.34         "35.0-110         68.1           Pyrene         "3.33         2.92         39.0-110         87.7           Surrogate: 2-FFP         "1.67         1.34         "10.141         80.2           Surrogate: 2-FFP         "1.67         1.23         "10.141         80.2           Surrogate: 2-FFP         "1.67         1.24         "10.0-137         104           Surrogate: 2-FFP         "1.67         1.24         "10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyte                   | Analyzed         | Level       | Result    | Result | Units     | Recov. Limits  | %                | Limit | % Notes* |
| Acenaphthene         9/3/98         3.33         2.35         mg/kg dry         4.80-110         70.6           4-Chloro-3-methylphenol         "6.67         5.43         "340-115         81.4           2-Chlorophenol         "6.67         4.87         "57.0-110         73.0           1,4-Dichlorobenzene         "3.33         2.51         "39.0-110         75.4           2,4-Dinitrotoluene         "6.67         5.01         "26.0-116         75.1           N-Nitrosodi-n-propylamine         "6.67         5.01         "26.0-116         75.1           Pentachlorophenol         "6.67         5.33         "46.0-120         79.9           Phenol         "6.67         4.54         "35.0-110         68.1           Pyrene         "3.33         2.34         "35.0-110         68.1           Pyrene         "3.33         2.92         39.0-110         87.7           Surrogate: 2-FFP         "1.67         1.34         "10.141         80.2           Surrogate: 2-FFP         "1.67         1.23         "10.141         80.2           Surrogate: 2-FFP         "1.67         1.24         "10.0-137         104           Surrogate: 2-FFP         "1.67         1.24         "10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCS                       | 0980087-BS       | 81          |           |        |           |                |                  |       |          |
| 4-Chloro-3-methylphenol         "6.67"         5.43"         "34.0-115"         81.4           2-Chlorophenol         "6.67"         4.87"         "7.0-110"         73.0           1,4-Dichlorobenzene         "3.33"         2.51"         "39.0-110"         75.4           2,4-Dinitrotoluene         "3.33"         2.74"         "0.00-110"         82.3           4-Nitrophenol         "6.67"         5.01"         "28.0-147"         73.9           Pentachlorophenol         "6.67"         5.33"         "0.46"         35.0-110"         73.9           Pentachlorophenol         "6.67"         5.33"         "0.46"         35.0-110"         88.1           Pyrene         "3.33"         2.34"         "35.0-110"         88.1           Pyrene         "3.33"         2.92"         "39.0-110"         87.7           Surrogate: Phenol-d6         "1.67"         1.34"         "190-141"         80.2           Surrogate: Phenol-d6         "1.67"         1.25"         "44.0-128"         74.9           Surrogate: Phenol-d6         "1.67"         1.24"         "10.0-137"         104           Surrogate: Phenol-d6         "1.67"         1.24"         "10.0-137"         104         81.4           Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                  |             |           | 2.35   | mg/kg dry | 48.0-110       | 70.6             |       |          |
| 2-Chlorophenol         "6.67         4.87         "37.0-110         73.0           1,4-Dichlorobenzene         "3.33         2.74         "30.0-110         75.4           2,4-Dinitrobluene         "3.33         2.74         "50.0-110         82.3           4-Nitrophenol         "6.67         5.01         "26.0-116         75.1           N-Nitrosodi-n-propylamine         "6.67         5.33         2.46         "28.0-117         73.9           Penenaliforphenol         "6.67         5.33         "46.0-120         79.9           Phenol         "6.67         4.54         "35.0-110         68.1           Syrene         "3.33         2.94         "35.0-110         68.1           Pyrene         "3.33         2.94         "35.0-110         68.1           Surrogate: 2-FP         "6.67         1.34         "190-141         80.2           Surrogate: 2-FP         "6.167         1.74         "100-132         7.4           Surrogate: 3-Kirobenzene-d5         "6.167         1.74         "100-132         7.2           Surrogate: 3-FP         "6.167         1.78         "7.2         8.4           Surrogate: 3-FBP         "6.77         1.74         "80.0-124         8.4 </td <td>•</td> <td></td> <td>6.67</td> <td></td> <td>5.43</td> <td></td> <td></td> <td>81.4</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                               | •                         |                  | 6.67        |           | 5.43   |           |                | 81.4             |       |          |
| 1,4-Dichforobenzene       " 3,33       2,51       " 39,0-110       75,4         2,4-Dinitrotoluene       " 3,33       2,74       " 30,0-110       82,3         4-Nitrophenol       " 6,67       5,01       " 26,0-116       75,1         N-Nitrosodi-n-propylamine       " 3,33       2,46       " 28,0-147       73,9         Pentachlorophenol       " 6,67       5,33       " 45,0-120       79,9         Phenol       " 3,33       2,34       " 35,0-143       70,3         1,2,4-Trichlorobenzene       " 3,33       2,92       " 39,0-110       87,7         Surrogate: 2-FP       " 1,67       1,34       " 10,0-137       104         Surrogate: 2-FB       " 1,67       1,23       " 10,0-137       104         Surrogate: 2-FBBP       " 1,67       1,24       " 10,0-137       104         Surrogate: 2-FBBP       " 1,67       1,29       " 33,0-108       77,2         Surrogate: 2-FBBP       " 1,67       1,24       " 10,0-137       104         Surrogate: 2-FBBP       " 1,67       1,28       " 18,0-122       84,4         Surrogate: 2-FBB       " 1,67       1,28       " 1,41       " 1,41       51,0-124       84,4         Surrogate: 2-FBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | п                |             |           | 4.87   | **        |                | 73.0             |       |          |
| 2,4-Dinitrotoluene       " 3.33       2.74       " 50.0-110       82.3         4-Nitrophenol       " 6.67       5.01       " 26.0-116       75.1         N-Nitrosodinpropylamine       " 3.33       2.46       " 28.0-147       73.9         Pentachlorophenol       " 6.67       5.33       " 46.0-120       79.9         Phenol       " 6.67       4.54       " 35.0-110       68.1         Syrene       " 3.33       2.92       " 39.0-110       87.7         Surrogate: 2-FP       " 1.67       1.34       " 190-141       80.2         Surrogate: 2-FP       " 1.67       1.34       " 100-137       104         Surrogate: 2,4.6-TBP       " 1.67       1.74       " 100-137       104         Surrogate: 3,4-FBP       " 1.67       1.74       " 100-137       104         Surrogate: 4,1-FBP       " 1.67       1.74       " 100-137       104         Surrogate: 5,2-FBP       " 1.67       1.74       " 100-137       104         Surrogate: 4,1-FBP       " 1.67       1.29       " 33.0-108       77.2         Surrogate: 4,1-FBP       " 1.67       1.29       " 33.0-108       77.2         Surrogate: 4,1-FBP       " 1.67       1.29       " 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·                         | 11               |             |           |        | **        |                |                  |       |          |
| 4-Nitrophenol " 6.67 5.01 " 26.0-116 75.1 N-Nitrosodi-n-propylamine " 3.33 2.46 " 28.0-147 73.9 Pentachlorophenol " 6.67 5.33 " 46.0-120 79.9 Phenol " 6.67 5.33 " 36.0-120 68.1 Pyrene " 3.33 2.34 " 35.0-110 68.1 Pyrene " 3.33 2.34 " 35.0-110 87.7 Surrogate: 2-FP " 1.67 1.34 " 19.0-141 80.2 Surrogate: 2-FP " 1.67 1.34 " 19.0-141 80.2 Surrogate: Nhenol-d6 " 1.67 1.25 " 44.0-128 74.9 Surrogate: Nhitrobenzene-d5 " 1.67 1.74 " 10.0-137 10.4 Surrogate: Nhitrobenzene-d5 " 1.67 1.74 " 10.0-137 10.4 Surrogate: P-Terphenyl-d1 " 1.67 1.14 " 51.0-124 84.4 Surrogate: p-Terphenyl-d1 " 1.67 1.14 " 51.0-124 84.4 Surrogate: p-Terphenyl-d1 " 1.67 1.14 " 51.0-124 84.4 Surrogate: p-Terphenyl-d1 " 1.67 1.38 " 48.0-149 82.6  Matrix Spike 9/80987-MSI 8809044-02 Accenaphthene 9/3/98 3.49 ND 2.40 mg/kg dry 34.0-122 68.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                         | 11               |             |           |        | "         |                | 82.3             |       |          |
| N-Nitrosodi-n-propylamine         " 3.33         2.46         " 28.0-147         73.9           Pentachlorophenol         " 6.67         5.33         " 46.0-120         79.9           Phenol         " 6.67         4.54         " 35.0-110         68.1           Pyrene         " 3.33         2.94         " 39.0-110         87.7           Surrogate: 2-FP         " 1.67         1.34         " 19.0-141         80.2           Surrogate: Phenol-d6         " 1.67         1.74         " 100-137         104           Surrogate: Nitrobenzene-d5         " 1.67         1.74         " 100-137         104           Surrogate: Nitrobenzene-d5         " 1.67         1.74         " 100-137         104           Surrogate: P-Terphenyl-d14         " 1.67         1.74         " 100-137         104           Matrix Spike         980087-MSI         B809044-02         * 80.0-149         25.0           Accenaphtene         9/3/98         3.49         ND         2.40         mg/kg dry         34.0-122         68.8           4-Chloro-3-methylphenol         " 6.99         ND         5.42         " 26.0-129         77.5           2-Chlorophenol         " 6.99         ND         2.61         " 30.0-131 <t< td=""><td>· ·</td><td>n</td><td>6.67</td><td></td><td>5.01</td><td>**</td><td>26.0-116</td><td>75.1</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                            | · ·                       | n                | 6.67        |           | 5.01   | **        | 26.0-116       | 75.1             |       |          |
| Pentachlorophenol         "         6.67         5.33         "         46.0-120         79.9           Phenol         "         6.67         4.54         "         35.0-110         68.1           Pyrene         "         3.33         2.92         "         35.0-110         88.7           Surrogate: 2-FP         "         1.67         1.34         "         19.0-141         80.2           Surrogate: 2-FP         "         1.67         1.25         "         44.0-128         74.9           Surrogate: 2-FBP         "         1.67         1.25         "         44.0-128         74.9           Surrogate: 2-FBP         "         1.67         1.29         "         33.0-108         77.2           Surrogate: 2-FBP         "         1.67         1.41         "         51.0-124         84.4           Surrogate: 2-FBP         "         1.67         1.41         "         51.0-124         84.4           Watrix Snike         0980087-MSI         8809044-02         *         *         48.0-149         82.6           Matrix Snike         0980087-MSI         8809044-02         *         26.0-129         77.5           2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                         | **               | 3.33        |           | 2.46   | н         |                | 73.9             |       |          |
| Phenol         "         6.67         4.54         "         35.0-110         68.1           Pyrene         "         3.33         2.34         "         35.0-143         70.3           L2,4-Trichlorobenzene         "         3.33         2.92         "         39.0-110         87.7           Surrogate: Phenol-d6         "         1.67         1.25         "         44.0-128         74.9           Surrogate: Nitrobenzene-d5         "         1.67         1.74         "         10.0-137         104           Surrogate: 2-FBP         "         1.67         1.29         "         33.0-108         77.2           Surrogate: p-Terphenyl-d14         "         1.67         1.41         "         51.0-124         81.4           Durrogate: p-Terphenyl-d14         "         1.67         1.38         "         48.0-149         82.6           Matrix Spike         O980087-MSI         B809044-02         B809044-02         *         *         48.0-149         82.6           L-Chloro-3-methylphenol         "         6.99         ND         5.42         "         26.0-129         77.5           2-Chlorophenol         "         6.99         ND         2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | er e             |             |           |        | **        |                | 79. <del>9</del> |       |          |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                         | **               |             |           |        | **        |                |                  |       |          |
| 1.2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | o o              |             |           | 2.34   | **        |                |                  |       |          |
| Surrogate: 2-FP         "         1.67         1.34         "         190-141         80.2           Surrogate: Phenol-d6         "         1.67         1.25         "         44.0-128         74.9           Surrogate: Nitrobenzene-d5         "         1.67         1.74         "         10.0-137         104           Surrogate: Nitrobenzene-d5         "         1.67         1.41         "         51.0-124         84.4           Surrogate: p-Terphenyl-d14         "         1.67         1.38         "         48.0-149         82.6           Matrix Spike         O980087-MSI         B809044-02         B809044-02         Section of the state of th                                                                                                    | •                         | ••               |             |           |        | 11        |                | 87.7             |       |          |
| Surrogate: Phenol-d6         " 1.67         1.25         " 44.0-128         74.9           Surrogate: 2,4,6-TBP         " 1.67         1.74         " 10.0-137         104           Surrogate: Nitrobenzene-d5         " 1.67         1.29         " 33.0-108         77.2           Surrogate: 2-FBP         " 1.67         1.41         " 51.0-124         84.4           Surrogate: p-Terphenyl-d14         " 1.67         1.38         " 48.0-149         82.6           Matrix Spike         0980087-MSI         B809044-02         Secondary of the control |                           |                  |             |           | 1.34   | "         |                | 80.2             |       |          |
| Surrogate: 2,4,6-TBP         "         1,67         1,74         "         10.0-137         104           Surrogate: Nitrobenzene-d5         "         1,67         1,29         "         33,0-108         77.2           Surrogate: 2-FBP         "         1,67         1,41         "         51,0-124         84,4           Surrogate: p-Terphenyl-d14         "         1,67         1,41         "         51,0-124         84,4           Matrix Spike         0980987-MSI         B809044-02         B8090                                                                                                                                                                                                                                                                                                                                                                                                     | -                         | "                |             |           |        | "         | 44.0-128       |                  |       |          |
| Surrogate: Nitrobenzene-d5         "         1.67         1.29         "         33.0-108         77.2           Surrogate: 2-FBP         "         1.67         1.41         "         51.0-124         84.4           Surrogate: p-Terphenyl-d14         "         1.67         1.38         "         48.0-149         82.6           Matrix Spike         0980087-MSI         B809044-02         **         48.0-149         82.6           Acenaphthene         9/3/98         3.49         ND         2.40         mg/kg dry         34.0-122         68.8           4-Chloro-3-methylphenol         "         6.99         ND         5.42         "         26.0-129         77.5           2-Chlorophenol         "         6.99         ND         4.92         "         43.0-131         70.4           1,4-Dichlorobenzene         "         3.49         ND         2.61         "         340-131         74.8           2,4-Dinitrotoluene         "         3.49         ND         2.75         "         10.0-126         78.8           4-Nitrophenol         "         6.99         ND         5.08         "         10.0-111         72.7           N-Nitrosodi-n-propylamine         " <td></td> <td>"</td> <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | "                |             |           |        | "         |                |                  |       |          |
| Surrogate: 2-FBP         "         1.67         1.41         "         51.0-124         84.4           Surrogate: p-Terphenyl-d14         "         1.67         1.38         "         48.0-149         82.6           Matrix Spike         0980087-MSI         B809044-02                                                                                                                                                                                                                                                                                                                                                                    | *                         | n                |             |           | 1.29   | "         |                | 77.2             |       |          |
| Matrix Spike         0980087-MSI         B809044-02           Acenaphthene         9/3/98         3.49         ND         2.40         mg/kg dry         34.0-122         68.8           4-Chloro-3-methylphenol         "         6.99         ND         5.42         "         26.0-129         77.5           2-Chlorophenol         "         6.99         ND         4.92         "         43.0-131         70.4           1,4-Dichlorobenzene         "         3.49         ND         2.61         "         34.0-131         74.8           2,4-Dinitrotoluene         "         3.49         ND         2.75         "         10.0-126         78.8           4-Nitrophenol         "         6.99         ND         5.08         "         10.0-111         72.7           N-Nitrosodi-n-propylamine         "         6.99         ND         5.08         "         10.0-111         72.7           N-Nitrosodi-n-propylamine         "         6.99         ND         5.25         "         46.0-120         75.1           Phenol         "         6.99         ND         5.25         "         46.0-120         75.1           Pyrene         "         3.49         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                         | n                |             |           |        | "         | 51.0-124       | 84.4             |       |          |
| Acenaphthene       9/3/98       3.49       ND       2.40       mg/kg dry       34.0-122       68.8         4-Chloro-3-methylphenol       "       6.99       ND       5.42       "       26.0-129       77.5         2-Chlorophenol       "       6.99       ND       4.92       "       43.0-131       70.4         1,4-Dichlorobenzene       "       3.49       ND       2.61       "       34.0-131       74.8         2,4-Dinitrotoluene       "       3.49       ND       2.75       "       10.0-126       78.8         4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       2.35       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.90       "       44.0-122       67.3         1.24-Trichlorobenzene       "       1.75       1.38       "       19.0-141       78.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                         | "                | 1.67        | ·         | 1.38   | "         | 48.0-149       | 82.6             |       |          |
| Acenaphthene       9/3/98       3.49       ND       2.40       mg/kg dry       34.0-122       68.8         4-Chloro-3-methylphenol       "       6.99       ND       5.42       "       26.0-129       77.5         2-Chlorophenol       "       6.99       ND       4.92       "       43.0-131       70.4         1,4-Dichlorobenzene       "       3.49       ND       2.61       "       34.0-131       70.4         2,4-Dinitrotoluene       "       3.49       ND       2.75       "       10.0-126       78.8         4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       2.35       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.90       "       44.0-122       67.3         1.24-Trichlorobenzene       "       1.75       1.38       "       19.0-141       78.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matrix Spike              | <u>0980087-M</u> | <u>S1 B</u> | 809044-02 |        |           |                |                  |       |          |
| 4-Chloro-3-methylphenol       "       6.99       ND       5.42       "       26.0-129       77.5         2-Chlorophenol       "       6.99       ND       4.92       "       43.0-131       70.4         1,4-Dichlorobenzene       "       3.49       ND       2.61       "       34.0-131       74.8         2.4-Dinitrotoluene       "       3.49       ND       2.75       "       10.0-126       78.8         4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       1.75       1.38       "       10.0-176       83.1         Surrogate: 2-FP       "       1.75       1.86       "       44.0-128       73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 9/3/98           | 3.49        | ND        | 2.40   | mg/kg dry | 34.0-122       | 68.8             |       |          |
| 2-Chlorophenol       "       6.99       ND       4.92       "       43.0-131       70.4         1,4-Dichlorobenzene       "       3.49       ND       2.61       "       34.0-131       74.8         2.4-Dinitrotoluene       "       3.49       ND       2.75       "       10.0-126       78.8         4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         3urrogate: 2-FP       "       1.75       1.38       "       44.0-128       73.1         Surrogate: Nutrobenzene-d5       "       1.75       1.86       "       10.0-137       106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                         | tt.              | 6.99        | ND        | 5.42   | "         | 26.0-129       | 77.5             |       |          |
| 1,4-Dichlorobenzene       "       3.49       ND       2.61       "       34.0-131       74.8         2.4-Dinitrotoluene       "       3.49       ND       2.75       "       10.0-126       78.8         4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         3urrogate: 2-FP       "       1.75       1.38       "       19.0-141       78.9         Surrogate: Nitrobenzene-d5       "       1.75       1.86       "       10.0-137       106         Surrogate: 2-FBP       "       1.75       1.48       "       31.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * *                       | 11               | 6.99        | ND        | 4.92   | **        | 43.0-131       | 70.4             |       |          |
| 4-Nitrophenol       "       6.99       ND       5.08       "       10.0-111       72.7         N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         Surrogate: 2-FP       "       1.75       1.38       "       19.0-141       78.9         Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2,4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | п                | 3.49        | ND        | 2.61   | **        | 34.0-131       | 74.8             |       |          |
| N-Nitrosodi-n-propylamine       "       3.49       ND       2.47       "       29.0-160       70.8         Pentachlorophenol       "       6.99       ND       5.25       "       46.0-120       75.1         Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         Surrogate: 2-FP       "       1.75       1.38       "       19.0-141       78.9         Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2,4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4-Dinitrotoluene        | 11               | 3.49        | ND        | 2.75   | **        | 10.0-126       | 78.8             |       |          |
| Pentachlorophenol " 6.99 ND 5.25 " 46.0-120 75.1 Phenol " 6.99 ND 4.62 " 41.0-118 66.1 Pyrene " 3.49 ND 2.35 " 44.0-122 67.3 1.2,4-Trichlorobenzene " 3.49 ND 2.90 " 10.0-176 83.1 Surrogate: 2-FP " 1.75 1.38 " 19.0-141 78.9 Surrogate: Phenol-d6 " 1.75 1.28 " 44.0-128 73.1 Surrogate: 2,4,6-TBP " 1.75 1.86 " 10.0-137 106 Surrogate: Nitrobenzene-d5 " 1.75 1.32 " 33.0-108 75.4 Surrogate: 2-FBP " 1.75 1.48 " 51.0-124 84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Nitrophenol             | **               | 6.99        | ND        | 5.08   | **        | 10.0-111       | 72.7             |       |          |
| Phenol       "       6.99       ND       4.62       "       41.0-118       66.1         Pyrene       "       3.49       ND       2.35       "       44.0-122       67.3         1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         Surrogate: 2-FP       "       1.75       1.38       "       19.0-141       78.9         Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2,4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N-Nitrosodi-n-propylamine | H.               | 3.49        | ND        | 2.47   | 11        | 29.0-160       | 70.8             |       |          |
| Pyrene         "         3.49         ND         2.35         "         44.0-122         67.3           1.2,4-Trichlorobenzene         "         3.49         ND         2.90         "         10.0-176         83.1           Surrogate: 2-FP         "         1.75         1.38         "         19.0-141         78.9           Surrogate: Phenol-d6         "         1.75         1.28         "         44.0-128         73.1           Surrogate: 2.4,6-TBP         "         1.75         1.86         "         10.0-137         106           Surrogate: Nitrobenzene-d5         "         1.75         1.32         "         33.0-108         75.4           Surrogate: 2-FBP         "         1.75         1.48         "         51.0-124         84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pentachlorophenol         | n                | 6.99        | ND        | 5.25   | "         | 46.0-120       | 75.1             |       |          |
| 1.2.4-Trichlorobenzene       "       3.49       ND       2.90       "       10.0-176       83.1         Surrogate: 2-FP       "       1.75       1.38       "       19.0-141       78.9         Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2.4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | "                | 6.99        | ND        | 4.62   | **        | 41.0-118       | 66.1             |       |          |
| Surrogate:         2-FP         "         1.75         1.38         "         19.0-141         78.9           Surrogate:         Phenol-d6         "         1.75         1.28         "         44.0-128         73.1           Surrogate:         2.4,6-TBP         "         1.75         1.86         "         10.0-137         106           Surrogate:         Nitrobenzene-d5         "         1.75         1.32         "         33.0-108         75.4           Surrogate:         2-FBP         "         1.75         1.48         "         51.0-124         84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pyrene                    | **               | 3.49        | ND        | 2.35   | 11        | 44.0-122       | 67.3             |       |          |
| Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2,4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2,4-Trichlorobenzene    | **               | 3.49        | ND        | 2.90   | 11        | 10.0-176       | 83.1             |       |          |
| Surrogate: Phenol-d6       "       1.75       1.28       "       44.0-128       73.1         Surrogate: 2,4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surrogate: 2-FP           |                  | 1.75        |           | 1.38   |           | 19.0-141       | 78.9             |       |          |
| Surrogate: 2.4,6-TBP       "       1.75       1.86       "       10.0-137       106         Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | "                |             |           |        | "         |                |                  |       |          |
| Surrogate: Nitrobenzene-d5       "       1.75       1.32       "       33.0-108       75.4         Surrogate: 2-FBP       "       1.75       1.48       "       51.0-124       84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                         | "                |             |           |        | "         | 10.0-137       |                  |       |          |
| Surrogate: 2-FBP " 1.75 1.48 " 51.0-124 84.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *·                        | n .              |             |           | 1.32   | 11        | 33.0-108       | 75.4             |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                         | "                |             |           |        | "         |                |                  |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | "                | 1.75        |           | 1.45   | "         | 48.0-149       | 82.9             |       |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

Steve Davis, Project Manager



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham 600 Dupont St. Project: Port of Bellingham

Sampled: 9/1/98 Received: 9/2/98

Bellingham, WA 98225

Project Number: 0307-024-02 Project Manager: Jay Gordon

Reported: 9/21/98 11:40

#### Semivolatile Organic Compounds by EPA Method 8270C/Quality Control North Creek Analytical - Bothell

|                            | Date      | Spike         | Sample            | QC     | Re        | porting Limit | Recov.      | RPD   | RPD   |        |
|----------------------------|-----------|---------------|-------------------|--------|-----------|---------------|-------------|-------|-------|--------|
| Analyte                    | Analyzed  | Level         | Result            | Result | Units     | Recov. Limits | <u>%</u>    | Limit | %     | Notes* |
| Matrix Spike Dup           | 0980087-M | <u>SD1 B8</u> | <u> 809044-02</u> |        |           |               |             |       |       |        |
| Acenaphthene               | 9/3/98    | 3.49          | ND                | 2.42   | mg/kg dry | 34.0-122      | 69.3        | 56.0  | 0.724 |        |
| 4-Chloro-3-methylphenol    | ••        | 6.99          | ND                | 5.61   | **        | 26.0-129      | 80.3        | 29.0  | 3.55  |        |
| 2-Chlorophenol             | n .       | 6.99          | ND                | 4.94   | **        | 43.0-131      | 70.7        | 27.0  | 0.425 |        |
| 1,4-Dichlorobenzene        | n         | 3.49          | ND                | 2.59   | "         | 34.0-131      | 74.2        | 23.0  | 0.805 |        |
| 2,4-Dinitrotoluene         | H         | 3.49          | ND                | 2.77   | **        | 10.0-126      | 79.4        | 22.0  | 0.759 |        |
| 4-Nitrophenol              | n         | 6.99          | ND                | 5.23   | 11        | 10.6-111      | 74.8        | 43.0  | 2.85  |        |
| N-Nitrosodi-n-propylamine  | n         | 3.49          | ND                | 2.48   | •         | 29.0-160      | 71.1        | 25.0  | 0.423 |        |
| Pentachlorophenol          | 11        | 6.99          | ND                | 5.10   | **        | 46.0-120      | 73.0        | 29.0  | 2.84  |        |
| Phenol                     | п         | 6.99          | ND                | 4.68   | **        | 41.0-118      | 67.0        | 29.0  | 1.35  |        |
| Pyrene                     | "         | 3.49          | ND                | 2.55   | **        | 44.0-122      | 73.1        | 31.0  | 8.26  |        |
| 1,2,4-Trichlorobenzene     | **        | 3.49          | ND                | 3.01   | **        | 10.0-176      | 86.2        | 24.0  | 3.66  |        |
| Surrogate: 2-FP            | "         | 1.75          |                   | 1.31   | "         | 19.0-141      | 74.9        |       |       |        |
| Surrogate: Phenol-d6       | H         | 1.75          |                   | 1.30   | "         | 44.0-128      | 74.3        |       |       |        |
| Surrogate: 2,4,6-TBP       | ,,        | 1.75          |                   | 1.83   | "         | 10.0-137      | 105         |       |       |        |
| Surrogate: Nitrobenzene-d5 | "         | 1.75          |                   | 1.32   | rr .      | 33.0-108      | 75.4        |       |       |        |
| Surrogate: 2-FBP           | **        | 1.75          |                   | 1.44   | "         | 51.0-124      | 82 <b>3</b> |       |       |        |
| Surrogate: p-Terphenyl-d14 | "         | 1.75          |                   | 1.53   | "         | 48.0-149      | 87.4        |       |       |        |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.



BOTHELL \* (425) 420-9200 \* FAX 420-9210 SPOKANE \* (509) 924-9200 \* FAX 924-9290

PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engineers - Bellingham

Project: Port of Bellingham

9/1/98 Sampled:

1600 Dupont St. Bellingham, WA 98225

Project Manager:

Project Number: 0307-024-02 Jay Gordon

Received: 9/2/98 Reported:

9/21/98 11:40

#### Conventional Chemistry Parameters by APHA/EPA Methods/Quality Control North Creek Analytical - Bothell

|                                     | Date                         | Spike         | Sample          | QC     |          | Reporting Limit |           | RPD             | RPD      |
|-------------------------------------|------------------------------|---------------|-----------------|--------|----------|-----------------|-----------|-----------------|----------|
| Analyte                             | Analyzed                     | Level         | Result          | Result | Units    | Recov. Limits   | %         | Limit           | % Notes* |
| Batch: 0980549<br>Blank             | Date Prepar<br>0980549-BL    |               | <u> 18</u>      |        | Extracti | on Method: Ge   | neral Pre | <u>paration</u> |          |
| Cyanide (total)                     | 9/15/98                      |               |                 | ND     | mg/kg di | ry 0.500        |           |                 |          |
| LCS<br>Cyanide (total)              | <u>0980549-BS</u><br>9/15/98 | <b>L</b> 2.50 |                 | 1.80   | mg/kg di | ry 62.0-136     | 72.0      |                 |          |
| <u>Duplicate</u><br>Cyanide (total) | <u>0980549-DU</u><br>9/15/98 | P1 <u>B8</u>  | 809044-02<br>ND | ND     | mg/kg di | ry              |           | 25.0            |          |

North Creek Analytical - Bothell

\*Refer to end of report for text of notes and definitions.

Steve Davis, Project Manager



BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

Geo Engincers - Bellingham

Project: Port of Bellingham

Sampled: 9/1/98

600 Dupont St. Bellingham, WA 98225

Project Number: 0307-024-02 Project Manager:

Jay Gordon

Received: 9/2/98

Reported: 9/21/98 11:40

Notes and Definitions

| #      | Note                                                                                                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В      | Analyte detected in the method blank.                                                                                                                                                                               |
| :      | The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.                               |
| 2      | The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch. |
| 3      | Post-digestion Matrix Spike.                                                                                                                                                                                        |
| 4      | Suspected laboratory contaminant.                                                                                                                                                                                   |
| 5      | The surrogate recovery for this sample is outside of established control limits. Review of associated QC indicates the recovery for this surrogate does not represent an out-of-control condition.                  |
| DET    | Analyte DETECTED                                                                                                                                                                                                    |
| ND     | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                                                |
| NR     | Not Reported                                                                                                                                                                                                        |
| dry    | Sample results reported on a dry weight basis                                                                                                                                                                       |
| Recov. | Recovery                                                                                                                                                                                                            |
| RPD    | Relative Percent Difference                                                                                                                                                                                         |

North Creek Analytical - Bothell

Steve Davis, Project Manager

```
Data File : C:\HPCHEM\1\DATA.SEC\I03063.D
                                                                    Vial: 29
            : 4 Sep 1998
                               9:13 am
                                                                Operator: CC
             : b808044-01 B809044-01
  Sample
                                                                       : GC #1
                                                                Inst
              : hs
  Misc
                                                                Multiplr: 1.00
             : SURR.E
  IntFile
  Quant Time: Sep 4 11:59 1998 Quant Results File: TPHD2.RES
  Quant Method : C:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)
                 : TPH-D Rear Method
  Last Update : Thu Aug 13 16:37:56 1998
  Response via : Multiple Level Calibration
  DataAcq Meth : TPHD.M
  Volume Inj. :
  Signal Phase :
  Signal Info
Response
                                          103063.D\FID2B
  95000
  90000 -
  85000 -
  80000 -
  75000 -
  70000 -
  65000 -
  60000 -
  55000 -
  50000
  45000 -
  40000
  35000 -
  30000 -
  25000
  20000
  15000 -
  10000
   5000
     0 -
Time 0.00
           2.00
                4.00
                      6.00
                           8.00
                                10.00
                                     12.00
                                           14.00
                                                 16.00 18.00
                                                            20.00 22.00 24.00
                                                                            26.00 28.00
```

I03063.D TPHD2.M

Fri Sep 04 11:59:56 1998

Page 2

Data File : C:\HPCHEM\1\DATA\103046.D Acq On

: 4 Sep 1998 3:23 am

Vial: 30 Operator: CC

Sample Misc

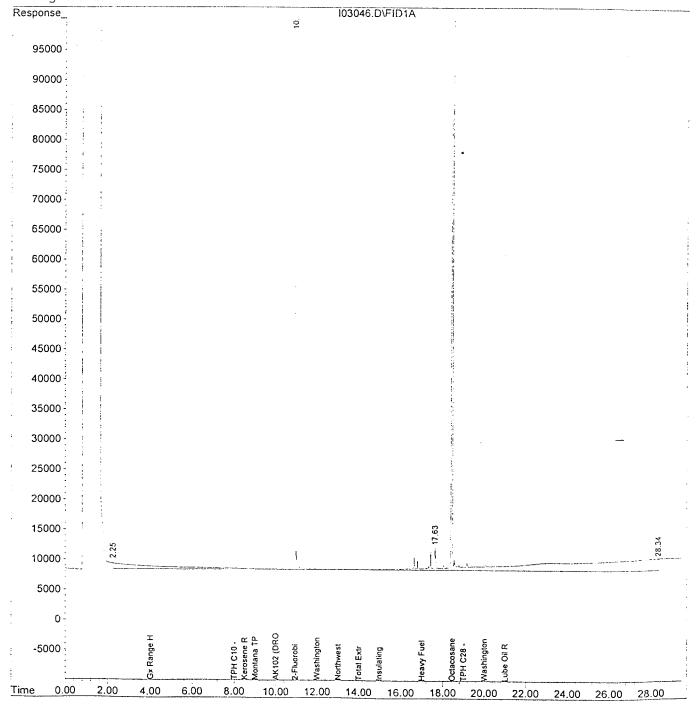
: b809044-02 : hs

Inst : GC #1 Multiplr: 1.00

IntFile : SURR.E

Quant Time: Sep 4 13:16 1998 Quant Results File: TPHD.RES

Quant Method : C:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)


Title

: TPH-D Front Method

Last Update : Tue Aug 25 16:42:12 1998 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info



·Data File : C:\HPCHEM\1\DATA.SEC\I03047.D

Acq On : 4 Sep 1998 4:01 am

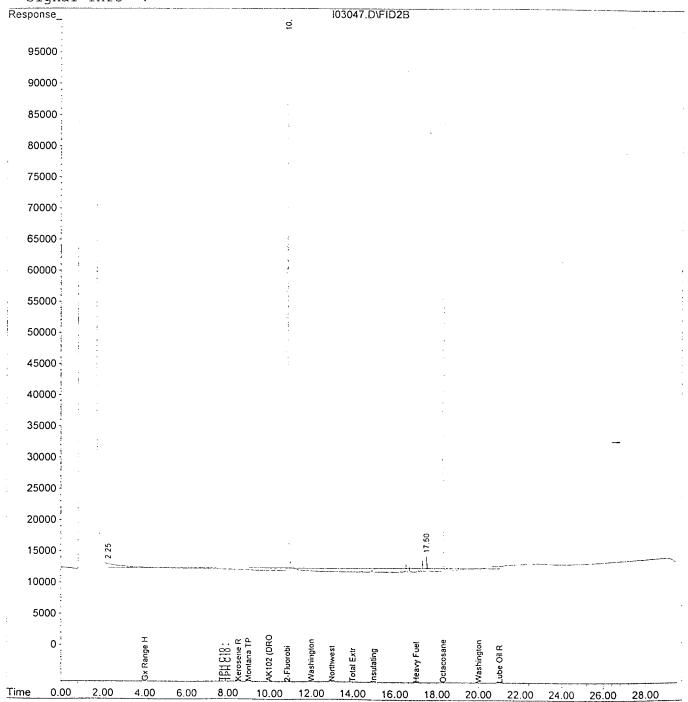
Vial: 31 Operator: CC Inst : GC #1

Multiplr: 1.00

Sample : b809044-03 Misc : hs

IntFile : SURR.E

Quant Time: Sep 4 11:51 1998 Quant Results File: TPHD2.RES


Quant Method : C:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Thu Aug 13 16:37:56 1998 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info :



I03047.D TPHD2.M

Fri Sep 04 11:51:52 1998

Data File : C:\HPCHEM\1\DATA\103048.D Acq On

4:01 am 4 Sep 1998

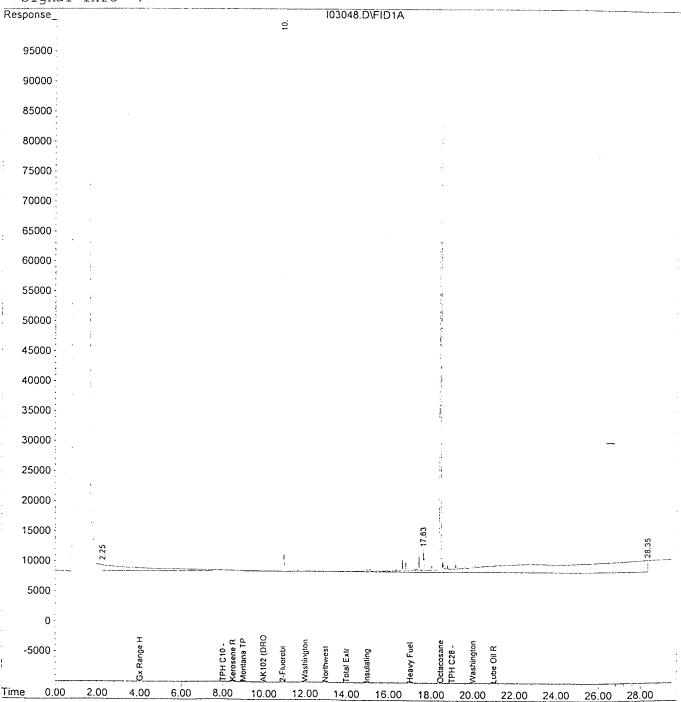
Vial: 32 Operator: CC

Sample : b809044-04 : hs Misc

Inst : GC #1 Multiplr: 1.00

IntFile : SURR.E

Quant Time: Sep 4 12:15 1998 Quant Results File: TPHD.RES


Quant Method : C:\HPCHEM\1\METHODS\TPHD.M (Chemstation Integrator)

: TPH-D Front Method

Last Update : Tue Aug 25 16:42:12 1998 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. Signal Phase : Signal Info



I03048.D TPHD.M

Fri Sep 04 12:15:26 1998

Page 2

Data File : C:\HPCHEM\1\DATA.SEC\103049.D

: 4 Sep 1998 4:40 am

Vial: 33 Operator: CC Inst : GC #1

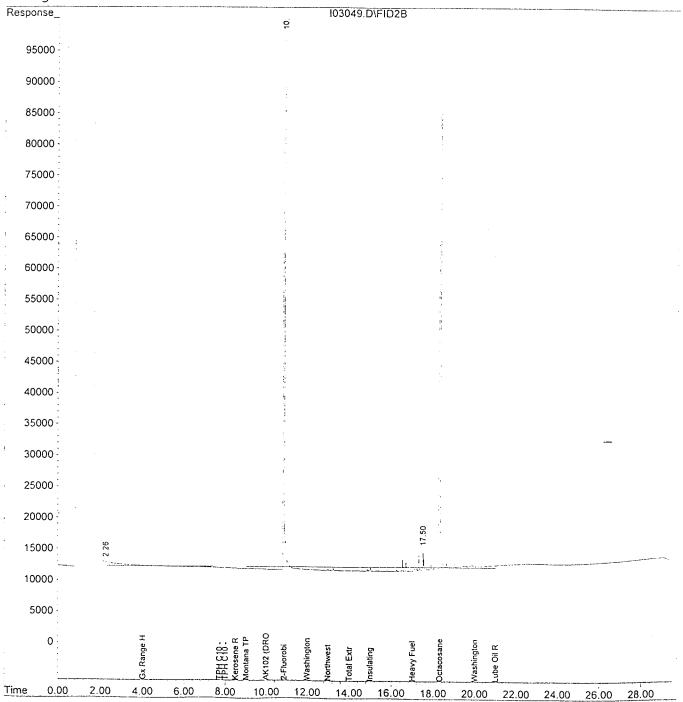
Multiplr: 1.00

Sample : b809044-05 Misc

IntFile

: hs

: SURR.E Quant Time: Sep 4 13:29 1998 Quant Results File: TPHD2.RES


Quant Method : C:\HPCHEM\1\METHODS\TPHD2.M (Chemstation Integrator)

Title : TPH-D Rear Method

Last Update : Thu Aug 13 16:37:56 1998 Response via : Multiple Level Calibration

DataAcq Meth : TPHD.M

Volume Inj. : Signal Phase : Signal Info



I03049.D TPHD2.M Fri Sep 04 13:29:15 1998

Page 2

ANALYTICAL adi Nasi Ampendaj japoninomaj 🌬 NC. LH CREEK

189.39 120th Avenue P.E., Suite 101, Bothell, WA 98011-9508 9405 S.W. Mimbus Avenue, Beaverton, OR 97008-7132 Fast 11115 Montgomery, Suite B, Spokane, WA 99206-4779

(125) 420 9200 

FAX 420-9210 EAN 924-9290 FAN 906-9210

tor all sample 9-7-8 BAVE HOLD Sampleston BTEX, GX + D&X TIME 11,00 Nume Day \* Turning and Requests less than standard may in it Rush Chinges. Fuels & Hydrocarbon Analyses

S 3.4 2 2 1 by
sorelan TURNAROUND REQUEST in Business Days \* Work Order # 7809044 DATE Organic & Inorganic Analyses CONTAINERS OTHER Spaces = MATRIX 20. DATE: 7/2/98 RECEIVED BY ISHINGHIN \_ \_\_\_\_ <u>-</u>. \_ 140 dD Ho dD AD 9F1 (ID 0 H NCA QUOTE RECEIVED BY ISsening esting son discussions with Lee Cartioli. TIME C836 PRINT NAME. CHAIN OF CUSTODY REPORT DATE 300-647-5049 P.O. MINIBER ADORESS Request 8 8 101 -05 11/19/1045-18809044-01 MICHALL RECHAPTERMENT CET Bellingham, w. 4 78225 NCA SAMPLE ID J. Gordon - Geografineris PROJECT NAME: PUT OF DECLARED LON FIRM /1130 15 ا = الح (3rt/s SAMPLING DATEZHME 600 Dupont St. PROJECT MUMBER: 0307-024-02 MINNES60-6417-1510 FAXE SAMPLED BY: ROBOCKT CLIENT SANIPLE DENTIFICATION RELINQUISHED BY MEMBER RELINQUISHED BY IStender TP-3 ADDITIONAL REMARKS: 4-4 1-d. REPORT TO: PRINT NAME. PRINT NAME:

Dredging and Sediment Analysis
US Army Corp of Engineers
July 1976

NPSEN-PL-ER 26 July 1976

MEMO FOR: RECORD

SUBJECT: Squalicum Small Boat Harbor Expansion: Test Dredging and

Sediment Analysis

1. On 21 July 1976 sediment sampling and in-situ water quality monitoring was conducted in conjunction with test dredging in the proposed Squalicum boat basin expansion area. Work was conducted cooperatively by the undersigned and Messrs. Ron Lee and Bill Finfrock (EPA) and Mr. Bob Wunderlich (U.S. F&WS).

- 2. Six sediment samples were collected using a van Veen grab sampler at the approximate locations indicated on inclosure 1. Samples S-1 and S-2 consisted of a one-half inch thick brown aerobic layer of silt which overlaid anaerobic organic silts. Sample S-3 was at the location of test dredging conducted on 19 to 20 July 1976. Sands, silts, and coal were present in the sample. Sample S-4 was about 100 feet east of the test dredging area and consisted of mostly sand with some small granules of coal. Sample S-5 was almost entirely sand. Sample S-6 was brown in color and appeared to be riverine sediments.
- 3. All sediment samples will be analyzed for volatile solids, COD, oil and grease, and total mercury, lead, zinc, and sulphides. Samples S-l and S-6 will be analyzed for PCB's and pesticides. Elutriate analyses on all samples will be done for mercury, lead, and zinc and for PCB and pesticides in samples S-l and S-6. Dredging area water will be used as a diluent for elutriate tests. Open water disposal area water will be analyzed for mercury, lead, and zinc.
- 4. In-situ water quality profiles were determined at three locations near the test dredging being conducted on 21 July 1976 (inclosure 1). Water depth at approximately 1400 hours was approximately 8 feet. Station 1 was about 100 feet downstream from the operating dredge (inclosure 1), Station 2 was about 100 feet upstream from the operating dredge (inclosure 1), and Station 3 was northwest of the operating dredge (inclosure 1). Some results were as follows:

NPSEN-PL-ER

26 July 1976

SUBJECT: Squalicum Small Boat Harbor Expansion: Test Dredging and Sediment Analysis

|                         | St                | Station 1      |        |        | Station | 2      | ion 3   |    |        |
|-------------------------|-------------------|----------------|--------|--------|---------|--------|---------|----|--------|
|                         | S                 | MD             | В      | S      | MD      | В      | S       | ND | В      |
| Dissolved Oxygen (mg/1) | 6.6               | 4.7            | 4.6    | 6.6    | 5.7     | 5.8    | 6.2     | ND | 6.7    |
| Conductivity (umho/cm)  | 14,500            | 20,000         | 21,500 | 14,200 | 17,000  | 24,000 | 14,000  | ND | 22,000 |
| Temperature (°C)        | 17.5              | 17.5           | 17.3   | 17.5   | 17.4    | 17.3   | 17.3    | ND | 17.4   |
| ,                       | S=Surfa<br>ND=Not | ace<br>determ: | ined   | MD=Mid | -depth  |        | B=Botto | om |        |

5. Results of sediment analysis should be available in about two weeks. A preliminary determination regarding the acceptibility of the dredged material for open water disposal during basin construction will be made in cooperation with EPA when the data is available.

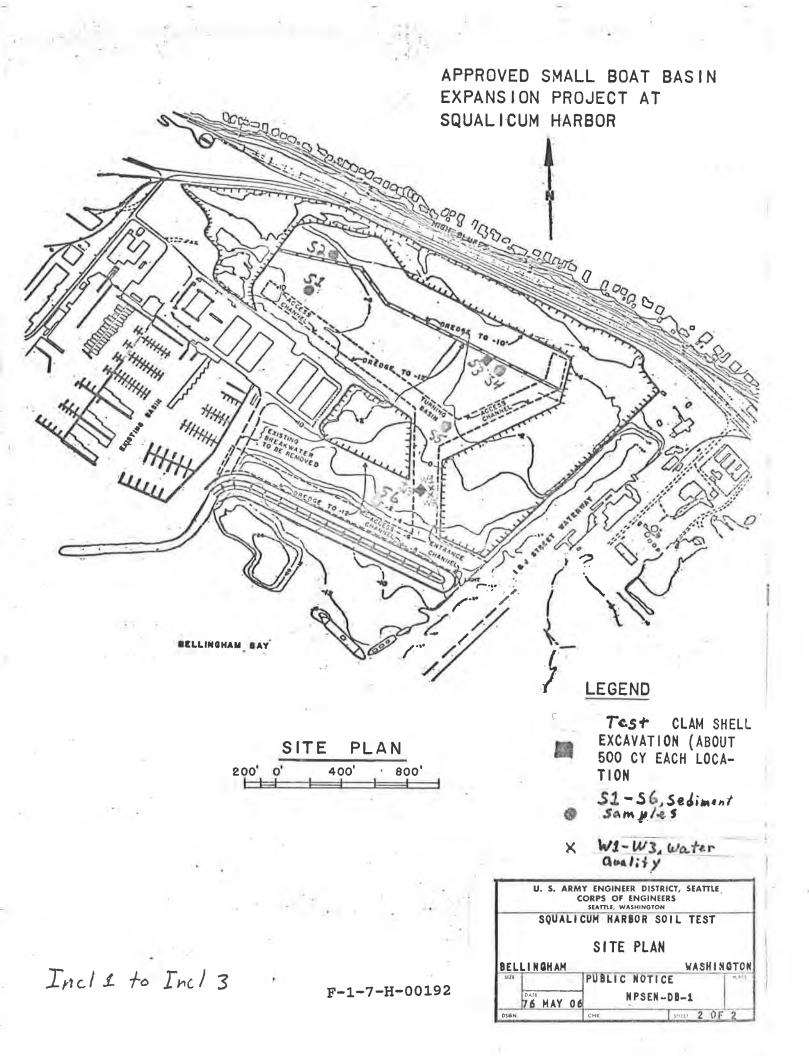
1 Incl

WEINMANN

cc:

Des Br (Cook/Lazo)

Nav & CP F&M Br.


Oprs Div

Cooke/McNeely

Dice

Weinmann

ERS File





# LAUCKS TESTING LABORATORIES

INCORPORATED

(206) 622-0727 1008 WESTERN AVENUE SEATTLE, WASHINGTON 98104

LABORATORY NO. 56760

DATE August 19, 1976

P.O. DACW 67-73-A0120

**CHEMISTS** MPLERS . INSPECTORS VERS . SPECTROGRAPHERS -CLINICAL CHEMISTRIES

> Seattle District, Corps of Engineers P. O. Box C-3755 Seattle, WA 98124

T ON

#### SEDIMENT

E IDENTIFICATION

Submitted July 21, 1976 and identified as:

Squalicum Boat Harbor Expansion: Test Dredging & Sediment Analysis.

PERFORMED AND RESULTS:

Samples were numbered: S1, S2, S3, S4, S5 and S6.

Samples were passed through a #8 sieve prior to analysis. Only material passing the sieve was analyzed. Percentages retained S3 Sl were as follows: 10

% Retained

11

Description:

Major

Wood chips & Rocks

Bark

Minor

Rocks

Routine analyses were then performed on the same with results as follows:

% as received basis 70.6 42.2 26.6 Total Solids % dry basis Chemical Oxygen 4.4 16.4 19.2 Demand Total Volatile 4.3 19.4 18.5 Solids .89 .15 .17 Oil & Grease F-1-7-H-00193





# LAUCKS TESTING LABORATORIES

INCORPORATED

MAIN 2-0727 1008 WESTERN AVENUE SEATTLE, WASHINGTON 98104

LABORATORY NO. 56760

| Seattle Distri | ct, Corps | of E | ngineers |
|----------------|-----------|------|----------|
|----------------|-----------|------|----------|

PAGE

2

| % dry basis | 0/ | 2   |    |     |
|-------------|----|-----|----|-----|
|             | /0 | dry | ba | SlS |

Zinc, calculated

as Zn

.015 .009

.006

Mercury, calculated

as Hg

Less/.0001

Less/.0001

Less/.0001

Lead, calculated

as Pb

.004

.005

.001

Sulfide, calculated

as S

.064

.12

.004

#### parts per million, as received

Poly Chlorinated

Bi-phenols

Less/.001

The elutriate test was performed on the samples with results as follows:

#### parts per million (mg/Liter)

Zinc, calculated

as Zn

.040

.032

.026

Mercury, calculated

as Hq

Less/.001

Less/.001

Less/.001

Lead, calculated

as Pb

.005

Less/.002

.025

Poly Chlorinated

Bi-phenols

Less/.001

The elutriate was examined for the presence of an oil sheen immediately after shaking. With results as follows:

Oil Sheen

no

no

no

F-1-7-H-00194





# LAUCKS TESTING LABORATORIES

NCOPPODATE

, MAIn 2-0727 1008 WESTERN AVENUE SEATTLE, WASHINGTON 98104

LABORATORY NO. 56760

Seattle District, Corps of Engineers

PAGE

3

mples were passed through a #8 sieve prior to analysis. Only material ssing the sieve was analyzed. Percentages retained were as follows:

|                     | _S4                     | × <u>\$5</u> |       |
|---------------------|-------------------------|--------------|-------|
| Retained            | 25                      | :            | -     |
| scription:<br>Major | Wood<br>chips &<br>Bark | _            | ×     |
| Minor               | Rocks                   | _            | - , : |

utine analyses were then performed on the samples with results as

#### % as received basis

| tal Solids            | 20.0            | 76.6           | 48.2      |       |
|-----------------------|-----------------|----------------|-----------|-------|
| a                     | Coa             | / <del>%</del> | dry basis |       |
| emical Oxygen<br>mand | 54.0            | 3.9            | 12.4      |       |
| tal Volatile<br>lids  | 40.0            | 5.8            | 10.4      | × III |
| l & Grease            | .40             | .02            | .10       |       |
| nc, calculated<br>Zn  | .010            | .003           | .006      |       |
| rcury, calculat<br>Hg | ed<br>Less/.000 | l Less/.0001 L | ess/.0001 |       |
| ad, calculated<br>Pb  | .005            | .001           | .002      | 3.5   |
| lfide, calculat       | ed<br>.075      | .001           | .033      |       |

F-1-7-H-00195





# LAUCKS TESTING LABORATORIES

INCORPORATED

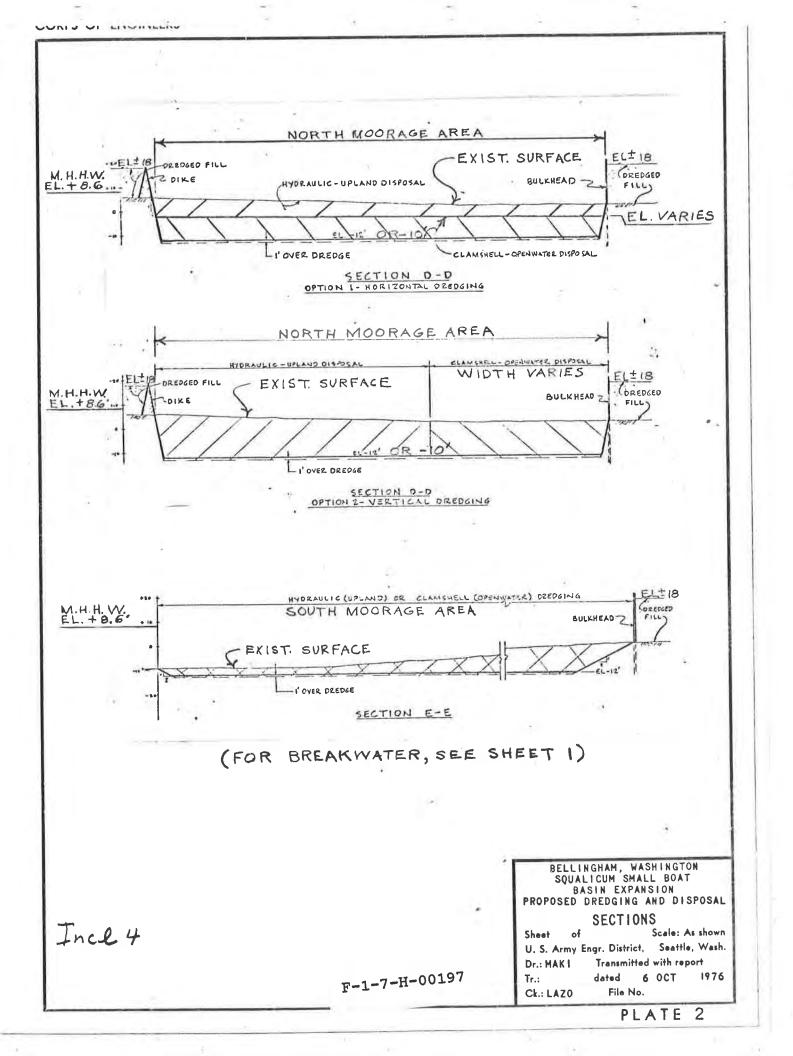
MAIN 2-0727
1008 WESTERN AVENUE
SEATTLE, WASHINGTON 98104

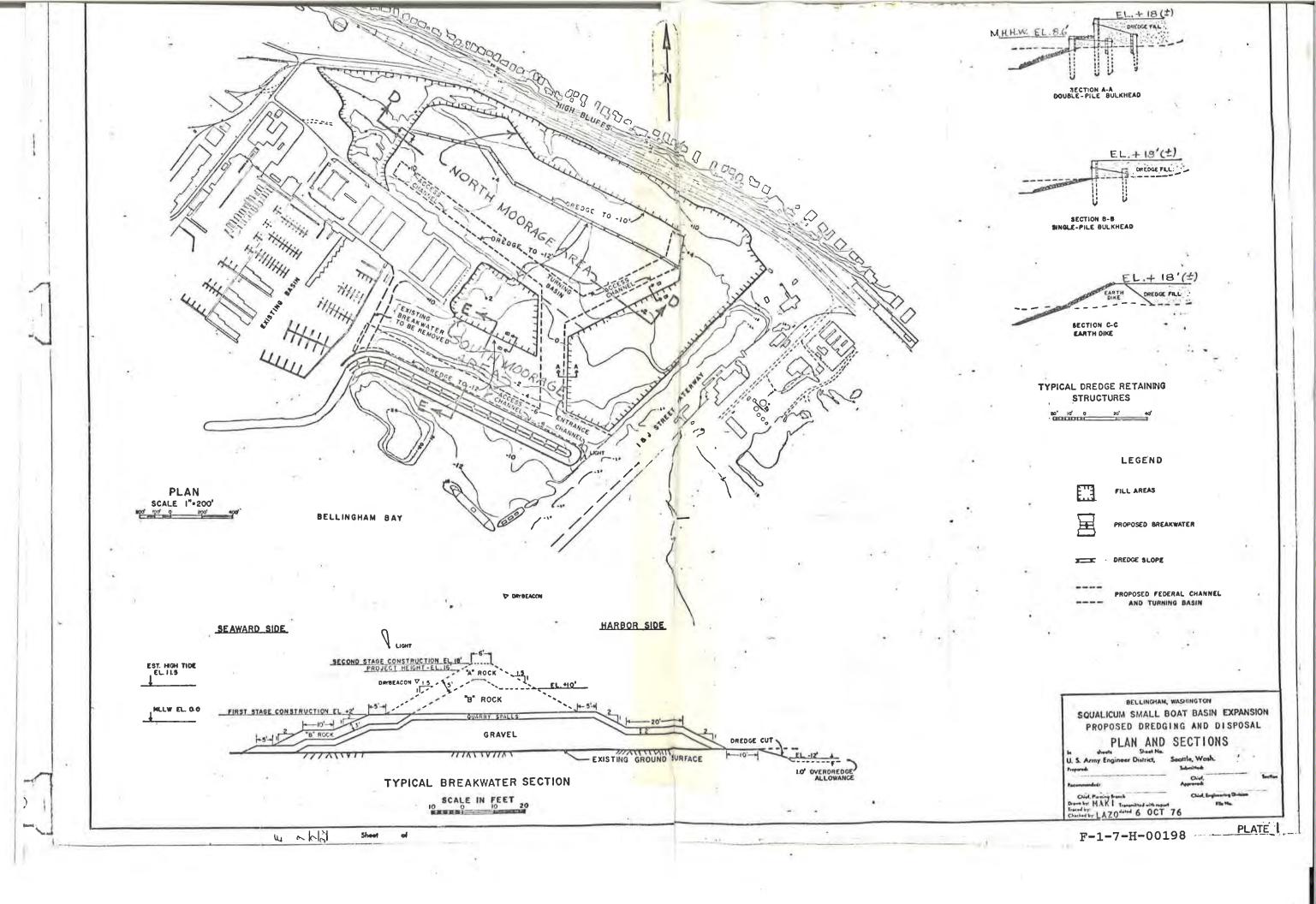
LABORATORY NO. 56760

| Seattle Distri | ct, Corps | of | Engineers |
|----------------|-----------|----|-----------|
|----------------|-----------|----|-----------|

PAGE

4


#### parts per million, as received


|                                    |              | Part Fra     |              |                  |                           |     |
|------------------------------------|--------------|--------------|--------------|------------------|---------------------------|-----|
| ly Chlorinated<br>-phenols         | i)           | -            | Less/.001    |                  |                           |     |
| elutriate test                     | was perf     | ormed on the | samples wit  | h results a Site | s follows:<br>Disposal Si | .te |
| 8                                  | _S4          | <u>\$5</u>   | _S6_         |                  | Water                     |     |
| 9                                  |              | parts pe     | r million (m | g/Liter)         |                           | i i |
| nc, calculated<br>Zn               | .032         | .030         | .025         | .046             | ,018                      |     |
| ccury, calculate<br>Hg Le          | d<br>ss/.001 | Less/.001    | Less/.001    | Less/.001        | Less/.001                 | "ta |
| ad, calculated<br>Pb               | .016         | Less/.002    | Less/.002    | Less/.002        | Less/.002                 |     |
| ly Chlorinated *<br>-phenols       | -            | -            | Less/.001    | -                | ě                         |     |
| e elutriate was<br>ter shaking. Wi |              |              |              | oil sheen im     | mediately                 |     |
| l Sheen                            | no           | no           | no           | · · · · ·        | * * *                     |     |
| 9                                  |              | Re           | spectfully s | submitted,       |                           | 37  |
| 364<br>18                          | 79           | LA           | UCKS TESTING | LABORATORI       | ES, INC.                  |     |
|                                    | 2            |              | 1.F. anderso | ,                |                           |     |

G. F. Anderson

A:mjt

F-1-7-H-00196





#### SAME CORRESPONDENCE SENT TO:

Dr. Fred C. Cleaver
Program Director
Columbia Fisheries Program Office
National Marine Fisheries Service
Post Office Box 4332
Portland, Oregon 97208

Donald P. Dubois, Regional Administrator U.S. Environmental Protection Agency 1200 Sixth Avenue Seattle, Washington 98101

R. Kahler Martinson, Regional Director U.S. Fish and Wildlife Service Post Office Box 3737 Portland, Oregon 97208

J. Norvell Brown, Field Supervisor Division of Ecological Services U.S. Fish and Wildlife Service Post Office Box 1487 Olympia, Washington 98507

John A. Biggs, Director Department of Ecology State of Washington Olympia, Washington 98504

Donald W. Moos, Director Washington Department of Fisheries General Administration Building, Room 115 Olympia, Washington 98504

Ralph W. Larson, Director Washington Department of Game 600 North Capitol Way Olympia, Washington 98504

Mr. Bert L. Cole Commissioner of Public Lands Department of Natural Resources Public Lands Building Olympia, Washington 98504 Thomas J. Glenn, General Manager Port of Bellingham Post Office Box 728 Bellingham, Washington 98225

Mr. Gregory Waddell Director of Planning 210 Lottie Street Bellingham, Washington 98225

# Early Action Completion Report Hilton Avenue Soil Borrow Transfer to Cornwall Landfill Site

# DRAFT Early Action Completion Report Soil Fill Transfer and Placement Cornwall Avenue Landfill Bellingham, Washington

December 21, 2016

Prepared for

Port of Bellingham Bellingham, Washington



130 2nd Avenue South Edmonds, WA 98020 (425) 778-0907

#### Early Action Completion Report Soil Fill Transfer and Placement Cornwall Avenue Landfill Bellingham, Washington

As the Engineer of Record, it is my opinion that the above referenced project was, to the best of my knowledge and information, constructed and completed in accordance with the plans and specifications as approved by the Washington State Department of Ecology. The construction is documented in this completion report.

| Landau Associa        | ites                                                    |                                                             |
|-----------------------|---------------------------------------------------------|-------------------------------------------------------------|
| Document prep         | pared by:                                               | Kent W. Wiken, PE Engineer of Record                        |
| Document revie        | ewed by:                                                | Larry Beard, PE<br>Project Manager                          |
| Date:<br>Project No.: | December 21, 2016<br>001037.080                         |                                                             |
| File path:            | "P:\001\037\R\Move Hilton Avenue Soil\Construction Comp | oletion\Completion Report\Hilton Av Soil Stockpile Transfer |

to Cornwall Ave LF Site.docx" Project Coordinator: KES

#### **TABLE OF CONTENTS**

| PAC | <u>SE</u> 1.0 | INTRODUCTION                                                   | 1-1 |
|-----|---------------|----------------------------------------------------------------|-----|
|     | 1.1           | Site Location                                                  | 1-1 |
|     | 1.2           | Purpose                                                        | 1-1 |
|     | 1.3           | Early Action Description                                       | 1-1 |
|     | 1.4           | Report Format                                                  | 1-2 |
|     | 1.5           | Reference Documents                                            | 1-2 |
| 2.0 | CO            | NSTRUCTION QUALITY ASSURANCE PROGRAM                           | 2-1 |
|     | 2.1           | Construction Personnel and Responsibilities                    | 2-1 |
|     | 2.2           | 1.1 Owner                                                      | 2-1 |
|     | 2.2           | 1.2 Engineer of Record and Construction Quality Assurance      | 2-1 |
|     | 2.2           | 1.3 Construction Contractor                                    | 2-2 |
|     | 2.3           | 1.4 Surveyor                                                   | 2-3 |
|     | 2.2           | 1.5 Independent Geotechnical Testing Company                   | 2-3 |
|     | 2.2           | Construction Quality Assurance Program Scope                   | 2-3 |
|     | 2.3           | Control of Construction Documents, As-Built Records, and Forms | 2-4 |
|     | 2.3           | 3.1 Project Control of Construction Documents                  | 2-4 |
|     | 2.3           | 3.2 Project Control of As-Built Information                    | 2-4 |
|     | 2.4           | Processing Reports                                             | 2-4 |
|     | 2.5           | Correcting Non-Conforming Work                                 | 2-5 |
|     | 2.5           | 5.1 Observation of Non-Conformance                             | 2-5 |
|     | 2.5           | 5.2 Determining Extent of Non-Conformance                      | 2-5 |
|     | 2.5           | 5.3 Documenting Non-Conformance                                | 2-5 |
|     | 2.5           | 5.4 Corrective Measures                                        | 2-5 |
|     | 2.5           | 5.5 Verification of Corrective Measures                        | 2-5 |
|     | 2.6           | Materials Submittals                                           | 2-5 |
|     | 2.7           | Meetings and Coordination                                      | 2-6 |
|     | 2.7           | 7.1 Pre-Construction Meeting                                   | 2-6 |
|     | 2.7           | 7.2 Progress Meetings                                          | 2-6 |
| 3.0 | СО            | NSTRUCTION QUALITY ASSURANCE ACTIVITIES                        | 3-1 |
|     | 3.1           | Introduction                                                   | 3-1 |
|     | 3.2           | Layout and Grade Control                                       | 3-1 |
|     | 3.3           | Temporary Erosion and Sediment Control                         | 3-1 |
|     | 3.4           | Site Clearing and Selective Demolition                         | 3-2 |
|     | 3.5           | Fill Soil Placement                                            | 3-2 |
|     | 3.6           | Site Restoration                                               | 3-3 |
| 4.0 | DO            | DCUMENTATION                                                   | 4-1 |
|     | 4.1           | Construction Progress Site Visit Reports                       | 4-1 |
|     | 4.2           | Geotechnical Test Reports                                      | 4-1 |
|     |               |                                                                |     |

**DRAFT**Landau Associates

| 4.3 | 3 1    | Design and Specification Revisions4 | 1-1        |
|-----|--------|-------------------------------------|------------|
| 4.4 | ı ı    | Non-Conformance Reports4            | <b>l-1</b> |
| 4.5 | 5 1    | Photographs4                        | 1-2        |
| 5.0 | USE OF | THIS REPORT5                        | 5-1        |

#### **FIGURES**

| <u>Figure</u> | <u>Title</u> |
|---------------|--------------|
|---------------|--------------|

1 As-built Fill Placement

#### **APPENDICES**

| <u>Appendix</u> | <u>Title</u>                     |
|-----------------|----------------------------------|
| Α               | Approved Submittals              |
| В               | Earthwork Construction Testing   |
| С               | Photographic Log                 |
| D               | Revised Plans and Specifications |
| E               | LAI Final Site Punchlist Review  |

#### LIST OF ABBREVIATIONS AND ACRONYMS

| AAM        | All American Marine construction site        |
|------------|----------------------------------------------|
| ASTM       | ASTM International                           |
| BNSF       | Burlington Northern Santa Fe Railway Company |
| CDF        | controlled density fill                      |
| City       | City of Bellingham                           |
| Contractor | Ram Construction General Contractors Inc.    |
| CQA        | construction quality assurance               |
| CQC        | construction quality control                 |
| CSWGP      | construction stormwater general permit       |
| DNR        | Washington Department of Natural Resources   |
| ECB        | erosion control blanket                      |
| Ecology    | Washington State Department of Ecology       |
| LAI        | Landau Associates, Inc.                      |
| MTCA       | Model Toxics Control Act                     |
| Port       | Port of Bellingham                           |
| Site       | Cornwall Avenue Landfill site                |
| SWPPP      | stormwater pollution prevention plan         |
| TESC       | temporary erosion and sediment control       |

December 21, 2016

#### 1.0 INTRODUCTION

This early action completion report documents the successful transfer and placement of fill to the Cornwall Avenue Landfill site (Site) by the Port of Bellingham (Port) in Bellingham, Washington. The early action at the Site was implemented to transfer fill soil from another Port site to the Cornwall Avenue Landfill to create the grades required to establish drainage for the upland cover system being constructed as part of the final cleanup action.

#### 1.1 Site Location

The Site is located at the terminus of Cornwall Avenue adjacent to Bellingham Bay, as shown on Figure 1. The Site is bounded by Bellingham Bay, the R.G. Haley cleanup site (a former wood treating facility), and Burlington Northern Santa Fe Railway Company (BNSF) tracks. The fill soil was placed on the landward side of the inner harbor line, as shown on Figure 1. The inner harbor line represents the boundary between City of Bellingham (City)-owned land and state-owned land.

#### 1.2 Purpose

The Port, the City, and Washington Department of Natural Resources (DNR) are undertaking final cleanup of the Site in accordance with the Washington State Model Toxics Control Act (MTCA; Chapter 173-340 WAC), and the terms of Consent Decree No. 14-2-02593-5. The cleanup includes constructing a cover system over the upland portion of the Site. The final cleanup action is currently under design; however, it is necessary to import approximately 50,000 cubic yards of soil fill to the Site to create sufficient drainage grades for the Site cover system. The Port identified a fill source for the majority of the soil fill required from a soil stockpile on the All American Marine construction site (AAM site) at 1010 Hilton Avenue. This soil stockpile was extensively tested for geotechnical and environmental suitability (Landau Associates 2016a), and the testing results were submitted to the Washington State Department of Ecology (Ecology) with a request that the fill transfer be completed as an "early action" element of the final cleanup action. This early action of placing fill soil on the eastern portion of the Site months or years in advance of the landfill cover construction will provide beneficial preloading, which will minimize the long-term settlement potential and aid in minimizing depressions that could form over time in the cover system. Ecology-approved the early action plan on March 2, 2016.

## 1.3 Early Action Description

Prior to moving the stockpile material from the AAM site, Ram Construction General Contractors Inc. (Ram Construction; Contractor) constructed a wheel wash near the entrance to the Site, and conducted Site clearing and demolition activities. Site clearing and demolition activities included rubblizing existing asphalt in place, backfilling existing catch basins with controlled density fill (CDF), and mulching vegetation. Additionally, silt fencing was installed around the stockpile areas and drainage ditches, a berm was constructed along the drainage ditch along the east side of the Site

adjacent to the BNSF railroad right-of-way, and culverts were installed to maintain stormwater flow under the approach ramps to the stockpile.

The Contractor then began transferring fill material from the stockpile on Hilton Avenue to the Site on June 1, 2016 and continued through June 28, 2016. Approximately 41,350 cubic yards of fill soil were moved from the AAM site and placed in compacted lifts at the Site. Stockpile material was hauled to the Site with end dump truck and pups, placed in 8- to 12-inch-thick loose lifts, and compacted using a smooth drum roller. As shown on Figure 1, two distinct stockpiles were formed on the eastern portion of the Site, with a drainage ditch between them. The Contractor hired the density testing firm Materials Testing & Consulting, Inc. to perform in-place density construction quality control (CQC) testing of the stockpile material. Upon completion of the stockpile import, the stockpiles were bladed and graded to provide adequate drainage, per the plans. The stockpiles were then seeded, fertilized, and covered with an erosion control blanket.

The following report documents the as-built construction, the CQC testing, and the construction quality assurance (CQA) activities conducted during this early action.

#### 1.4 Report Format

This final construction report is presented in the following four sections:

- Section 1.0 presents a general description of the project.
- Section 2.0 presents general requirements of the CQA program and introduces the roles of the entities involved with the construction.
- Section 3.0 present special requirements for specific work items of the construction, including procedures such as materials verification, test standards, testing frequencies, conformance and construction testing, and construction monitoring for each work item.
- Section 4.0 presents methods of documenting and recordkeeping.

#### 1.5 Reference Documents

The following reference documents provide background information regarding the Hilton Avenue Soil Stockpile Transfer to Cornwall Avenue Landfill Site:

- LAI. 2016a. Agency Review Draft, Engineering Design Report, Cornwall Avenue Landfill Site, Bellingham, Washington, Appendix F. March 30.
- LAI. 2016b. Construction Specifications Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile Transfer Plan, Bellingham, Washington. March 3.
- LAI. 2016c. Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile Transfer Plan, Bellingham, Washington, Construction Drawings Issued for Construction. March 4.
- LAI. 2016d. Stormwater Pollution Prevention Plan for Cornwall Avenue Landfill, Hilton Avenue Soil Transfer, Bellingham, Washington (SWPPP including CSWGP). March 3.

The LAI 2016b through 2016d references were included as bid schedule A in a larger bid package for the construction of the AAM site:

• Port of Bellingham. 2016. All American Marine Manufacturing Facility – 2016, Bellingham, Washington. Advertised March 30 and April 3.

#### 2.0 CONSTRUCTION QUALITY ASSURANCE PROGRAM

This section presents the basic elements of the CQA program, including a description of the parties involved with construction and their roles, the scope of the CQA program, construction document control, how nonconforming work was addressed, material submittals, and meetings and coordination.

#### 2.1 Construction Personnel and Responsibilities

The following section describes the entities involved with the construction and their responsibilities during construction activities.

#### 2.1.1 Owner

The owner identified for this project is the Port. Although the City owns the property upon which the fill was placed, the Port was responsible for complying with federal and state regulations governing work on the landfill for this project. The owner also took on roles of construction management. The owner's construction manager provided contract administration, budget, schedule, and coordination between parties. The construction manager requested assistance from the design Engineer of Record throughout the project to resolve construction and regulatory issues.

The owner's construction manager was:

Jon Gibson
Project Engineer
Port of Bellingham
1801 Roeder Ave, Bellingham, WA 98225
(O) (360) 715-7372
(M) (360) 603-6160
jong@portofbellingham.com

#### 2.1.2 Engineer of Record and Construction Quality Assurance

LAI acted as the Engineer of Record and was responsible for the design; therefore, LAI approved all design changes and clarifications to design questions made during construction. The Engineer of Record was also the key point for regulatory contact. During construction, the Engineer of Record was also responsible for construction quality assurance (CQA), verifying construction was being performed in accordance with the design intent, construction drawings, and technical specifications; and preparing this completion report. The Engineer of Record for this project was:

**DRAFT**Landau Associates

Kent Wiken, PE
Senior Associate Engineer
Landau Associates, Inc.

130 2nd Avenue South, Edmonds, WA 98020
(O) (425) 329-0285
(C) (206) 604-6167
kwiken@landauinc.com

The CQA monitor, representing the Engineer of Record, provided observation of the Contractor's work, performed CQA activities, reviewed and approved Contractor submittals, and provided additional documentation as needed. The CQA monitor observed and documented the activities of the Contractor in sufficient detail and with continuity to provide a high level of confidence that the work product fully complied with the intent of the construction drawings and technical specifications. All observed deviations from the construction drawings and technical specifications were noted and addressed appropriately with the Owner, Contractor, and Engineer of Record. The CQA Monitor also performed tests, when appropriate, to provide a high level of confidence that the characteristics of the work met the requirements of the construction drawings and technical specifications. The CQA Monitor for this project was:

Sean Gertz, EIT
Landau Associates, Inc.
130 2nd Avenue South, Edmonds, WA 98020
(O) (425) 329-0251
(M) (503) 784-8228
sgertz@landauinc.com

#### 2.1.3 Construction Contractor

Ram Construction was the Contractor for construction and was responsible for scheduling and performing the work within the time frame and budget agreed to in the contract, performing the work in accordance with the construction drawings and technical specifications, implementing CQC procedures, and documenting that construction complied with the technical specifications. Ram Construction also cooperated with the owner's construction manager and CQA Monitor to achieve quality construction. The lead for the general Contractor for this project was:

Josh Erholm
Project Manager

Ram Construction General Contractors Inc.
(O) 360-715-8643
(M) 360-961-0460
jerholm@ramconstruction-wa.com

#### 2.1.4 Surveyor

The surveyor, Pacific Surveying & Engineering, Inc., worked under the direction of the Contractor to assist in constructing the project in accordance with the construction drawings and technical specifications, and performed surveys to document as-built conditions and to measure the installed quantities of unit price bid items. Pacific Surveying & Engineering employs a Professional Land Surveyor licensed in the State of Washington that supervised this work. The Surveyor for the project was:

Adam Morrow, PLS
Survey Project Manager, Principal
Pacific Surveying & Engineering, Inc.
(360) 671-7387
AMorrow@psesurvey.com

#### 2.1.5 Independent Geotechnical Testing Company

The independent geotechnical testing company, working under the direction of the Contractor, provided density and moisture testing compacted site soils. The independent geotechnical testing company for this project was:

Curtis Shear
Project Manager
Materials Testing Company, Inc.
777 Chrysler Drive, Burlington, WA 98233
(O) 360-755-1990
curtis.shear@mtc-inc.net

## 2.2 Construction Quality Assurance Program Scope

A CQA program was implemented by Landau Associates, Inc. (LAI) to monitor, test, verify, and document that construction was completed in accordance with the plans, technical specifications, and the design intent. This program generally included the following:

- Verifying temporary erosion and sediment controls (TESCs) were in place prior to bringing fill to the Site, including silt fence installation, truck wash construction, drainage berm construction, and repair of riprap inlets as shown on the Drawings.
- Confirming clearing of Site vegetation and placement in a thin layer in the fill footprint.
- Confirming pavement demolition and catch basin cleaning then backfilling had been completed prior to bringing fill to the Site.
- Verifying that fill was placed in thin enough lifts for the embankment fill compaction and was properly moisture conditioned and compacted.
- Verifying density testing by the CQC testing lab was representative of conditions, and that loose areas were properly identified and reworked.

- Confirming the density test referenced the correct moisture-density curves for each fill soil type.
- Monitoring that there was no track-out of soil past the property line, and directing corrective action if needed.
- Verifying the Contractor was controlling dust with intermittent watering, and directing corrective action if needed.
- Confirming the Contractor was in compliance with the Ecology Construction Stormwater General Permit (CSWGP), including reviewing weekly discharge monitoring and requesting corrective action as necessary.
- Verifying the finished fill slopes and drainages were seeded and properly covered with erosion control blankets as shown on the Drawings.

# 2.3 Control of Construction Documents, As-Built Records, and Forms

#### 2.3.1 Project Control of Construction Documents

The Contractor and owner controlled the construction documents, including technical specifications, construction drawings, and change orders. The construction Contractor and owner maintained copies of the most current set of construction drawings and technical specifications. New revisions of technical specifications and construction drawings were created by the Engineer of Record and submitted jointly to the owner, construction Contractor, and the CQA Monitor.

#### 2.3.2 Project Control of As-Built Information

The construction Contractor and the project surveyor collected as-built information. Upon completion of the work, the construction Contractor was responsible for compiling this information into one set of construction drawings and technical specifications. The as-built information was then provided to the Engineer of Record for use in preparing this completion report. The as-built drawings for the project are provided on Figure 1.

## 2.4 Processing Reports

Copies of geotechnical testing reports for the density and moisture content of the soil were maintained by the CQA Monitor. The test reports were reviewed by the Engineer of Record and the CQA Monitor. The review included a check for mathematical accuracy, conformance to test standards, conformance to technical specifications, and a check for clarity, legibility, traceability, and completeness.

#### 2.5 Correcting Non-Conforming Work

#### 2.5.1 Observation of Non-Conformance

Whenever non-conforming work was observed, the owner's onsite representative or CQA Monitor notified the Contractor as soon as possible. The owner's onsite representative or CQA Monitor first notified the Contractor's foreman or superintendent supervising the work in question and then notified the Contractor's construction manager as appropriate.

#### 2.5.2 Determining Extent of Non-Conformance

Whenever non-conformance was discovered, the construction manager or CQA Monitor determined the extent of the non-conforming work. When appropriate, the Engineer of Record was contacted to determine the appropriate corrective measures or additional testing that was required.

#### 2.5.3 Documenting Non-Conformance

All non-conformances were documented in writing on progress reports, test reports and elsewhere, as appropriate. This documentation occurred immediately upon determining the extent of the non-conformance. During construction, non-conformance events occurred rarely and were resolved via onsite communications between the Owner's construction manager, the CQA Monitor, the Engineer of Record, and the Contractor as necessary.

#### 2.5.4 Corrective Measures

Corrective measures were determined by the requirements of the project plans and specification. The CQA Monitor, owner's onsite representative, and Contractor applied standard construction methods to correct the deficiency.

#### 2.5.5 Verification of Corrective Measures

Once the Contractor notified either the owner's onsite representative or the CQA Monitor that corrective measures were completed, the CQA Monitor and the owner's onsite representative verified and documented the satisfactory completion of the corrective action. Verification was accomplished by observations, re-testing, and/or photographing, as appropriate.

#### 2.6 Materials Submittals

Materials quality verification was evaluated first by material submittals with certificates of compliance. The Contractor identified sources and samples of various construction materials and provided test data or material specification sheets to demonstrate the materials met specifications. Material submittals were also used by the CQA Monitor to establish the acceptability of materials. Material submittals required by the contract were submitted to the construction manager and made available to the Engineer of record who provided acceptance and proper review of submittals as provided in Appendix A.

## 2.7 Meetings and Coordination

In efforts to effectively communicate, pre-construction and construction progress meetings occurred. Additionally, a clear line of communication was established between the owner's onsite representative, the Contractor, the CQA Monitor, and the Engineer of Record.

### 2.7.1 Pre-Construction Meeting

A pre-construction meeting was held at the Port office on May 20, 2016. The meeting was attended by the owner, the construction Contractor, the CQA Monitor, and Engineer of Record. The purpose of the pre-construction meeting was to:

- Confirm relationships among the various parties, including lines of authority, lines of communication, and scope of work.
- Confirm responsibilities of each party.
- Identify relevant documents.
- Establish methods for documenting and reporting, and for distributing and storing documents and reports.
- Review critical construction and scheduling aspects of the project.
- Review work area security and health and safety protocols.
- Review and make any appropriate modifications and/or addenda to the various plans, drawings, specifications, and available QC plans so that site-specific considerations and activities are incorporated.
- Reach a consensus on the interpretation of the construction plans and specifications, including methods of determining acceptability of the various components of the work.
- Review the schedule and sequencing for construction of the work, and coordinate construction requirements/logistics for various subcontractors.
- Review survey procedures, methods, equipment, datum, and horizontal and vertical control references to be used for the Contractor's surveys.
- Conduct a reconnaissance of the various project work areas to verify that the construction
  plans and sequencing and site constraints are understood, and to review appropriate vehicle
  haul routes and material and equipment storage locations.

### 2.7.2 Progress Meetings

Progress meetings were held weekly at the Port office. The progress meetings were attended by the owner's onsite representative, construction Contractor, and either the CQA Monitor or the Engineer of Record. The meetings included the following topics:

- Review of the previous period's activities and progress.
- Review of the work locations and activities for the current period.

- Identify the Contractor's and subcontractor's personnel and equipment assignments for the current period.
- Discuss any potential construction problems.

# 3.0 CONSTRUCTION QUALITY ASSURANCE ACTIVITIES

### 3.1 Introduction

This section summarizes the CQA monitoring and testing activities associated with the project. CQC inspections, observations, and testing activities were conducted by the construction Contractor and its subcontractors; the results were reported to the owner and the CQA Monitor. The owner and the CQA Monitor performed independent inspections and reviews of the CQC work performed by the Contractor. Required CQA included verifying the following were in accordance with plans, specifications and CSWGP:

- Layout and grade control
- TESC installation
- Site clearing and selective demolition
- Soil excavation at the AAM Site to confirm that it did not extend to depths below that shown on the plans
- Soil fill placement
- Site restoration.

This section describes the monitoring and testing performed to assure construction met specified requirements.

# 3.2 Layout and Grade Control

The Contractor employed a professional surveying firm (Pacific Surveying & Engineering, Inc.) to perform the construction staking, grade control, limited stockpile measurements, and excavation confirmation at the AAM site. The CQA Monitor reviewed the surveyor-provided contour plans (Figure 1) to verify the alignment and grade of the construction elements involved in the soil stockpile placement.

# 3.3 Temporary Erosion and Sediment Control

TESC measures for the soil stockpile placement were implemented in accordance with Section 31 25 00 of the Specifications and as shown on the drawings. During the installation of TESC measures, the owner's construction manager and CQA Monitor observed that:

- Erosion control blankets (ECBs), silt fencing, drainage ditch modifications, and drainage rip rap repairs were installed as shown on the drawings.
- No excavation was allowed to install the truck wheel wash. The truck wheel wash was located
  in the area shown on the drawings and was constructed using embankment fill as needed.
- All fills and disturbed areas were seeded and, in sloped areas and ditches, covered with ECB at project completion.

 All stormwater best management practices (BMPs) were installed and functioning in accordance with the stormwater pollution prevention plan (SWPPP).

The Contractor's TESC was installed and functioning correctly and in accordance with project specifications.

# 3.4 Site Clearing and Selective Demolition

Site clearing and selective demolition was accomplished for the soil stockpile placement in accordance with Section 31 12 00 of the Specifications and as shown on the drawings. During the Site clearing and selective demolition, the owner's construction manager and CQA Monitor observed that:

- The Contractor clearly marked the monitoring wells and other structures to be protected from damage by clearing and demolition activities, and executed the appropriate protection measures.
- All silt fences and temporary sedimentation ponds were in place per the drawings and Section 31 25 00 of the Specifications.
- The Site was cleared of trees and shrubs to the limits shown on the drawings and that cuttings were mulched and spread over designated areas for burial in the embankment fill.
- Water was pumped from existing catch basins and ponded areas to the designated drainage ditch.
- Existing asphalt was ripped and left in place for burial in the embankment fill.
- Existing catch basins were filled to the ground surface with controlled density fill (CDF).

The Contractor completed site clearing in accordance with project drawings and specifications.

#### 3.5 Fill Soil Placement

Fill soil placement was accomplished in accordance with Section 31 23 23 of the specifications and as shown on the drawings. During the stockpile placement, the owner's construction manager and CQA Monitor observed that:

- All site clearing and selective demolition had been completed per the drawings and Section 31 12 00 of the Specifications.
- Stakes defining the limits of the embankment fill were in place.
- Fill soil was placed and compacted in continuous layers not exceeding 12 inches loose.
- Fill soil was maintained near optimum moisture content and was compacted to at least 90 percent of the maximum dry density at a moisture content between 2 percent below to 4 percent above optimum moisture content as determined by ASTM International (ASTM) D 1557.
- Compaction tests were performed in accordance with ASTM D2922, with a minimum of one
  test per compacted lift in the south pile and one test per compacted lift in the north pile. The
  test results are located in Appendix B.

- The correct reference moisture-density curve was used to confirm that adequate compaction had been achieved.
- The embankment fill was as-built surveyed to verify height and limits were as per the drawings.
- Fill soil was placed and compacted in horizontal lifts until the height of compacted fill soil was achieved as shown on the drawings.
- The Owner's surveyor installed monuments on the embankment fill for settlement monitoring.

The Contractor completed fill placement in accordance with project drawings and specifications.

#### 3.6 Site Restoration

The owner's construction manager observed the Contractor's work area was cleaned up and that Site restoration activities were completed and adequately restored to a condition acceptable to the Owner. The Engineer of Record prepared a completion punchlist, which the CQA Monitor reviewed with the Contractor onsite on August 22, 2016. A record of LAI review of the completed work is provided as Appendix E.

In summary, punch list identified that the Contractor had failed to establish adequate grass cover though the ECBs (per CSWGP requirements) and did not grade the area north of the fill piles per the contours on drawings. The Contractor reconciled this with the Engineer of Record by providing a drawing on October 5, 2016 showing a drainage swale installed along the north side to prevent ponding, and stating that they will be monitoring grass establishment into November, and will reseed as necessary. This reconciliation of remaining items was approved by the owner.

#### 4.0 DOCUMENTATION

The CQA Monitor, Engineer of Record, and the Owner's construction manager documented that quality assurance requirements were implemented. Documentation consisted of construction progress Site visit reports, email confirmations of progress, geotechnical test reports, design and specification revisions, and this completion report.

## 4.1 Construction Progress Site Visit Reports

Construction progress site visits were conducted by the either the Engineer of Record or the CQA Monitor at milestone construction completions. These visits consisted of observation of Site construction progress, meetings with the Owner's representatives and the Contractor, review and performance of geotechnical testing, and as needed, non-conformance/corrective measure reports. Daily reports and photographic records of the construction progress site visits can be found in Appendix C.

# 4.2 Geotechnical Test Reports

In accordance with the specifications, *in situ* density and moisture testing was performed by the independent geotechnical testing company, Materials Testing Company, Inc. The construction of the embankment fill was found to meet compaction specifications. Appendix B contains the geotechnical testing reports.

# 4.3 Design and Specification Revisions

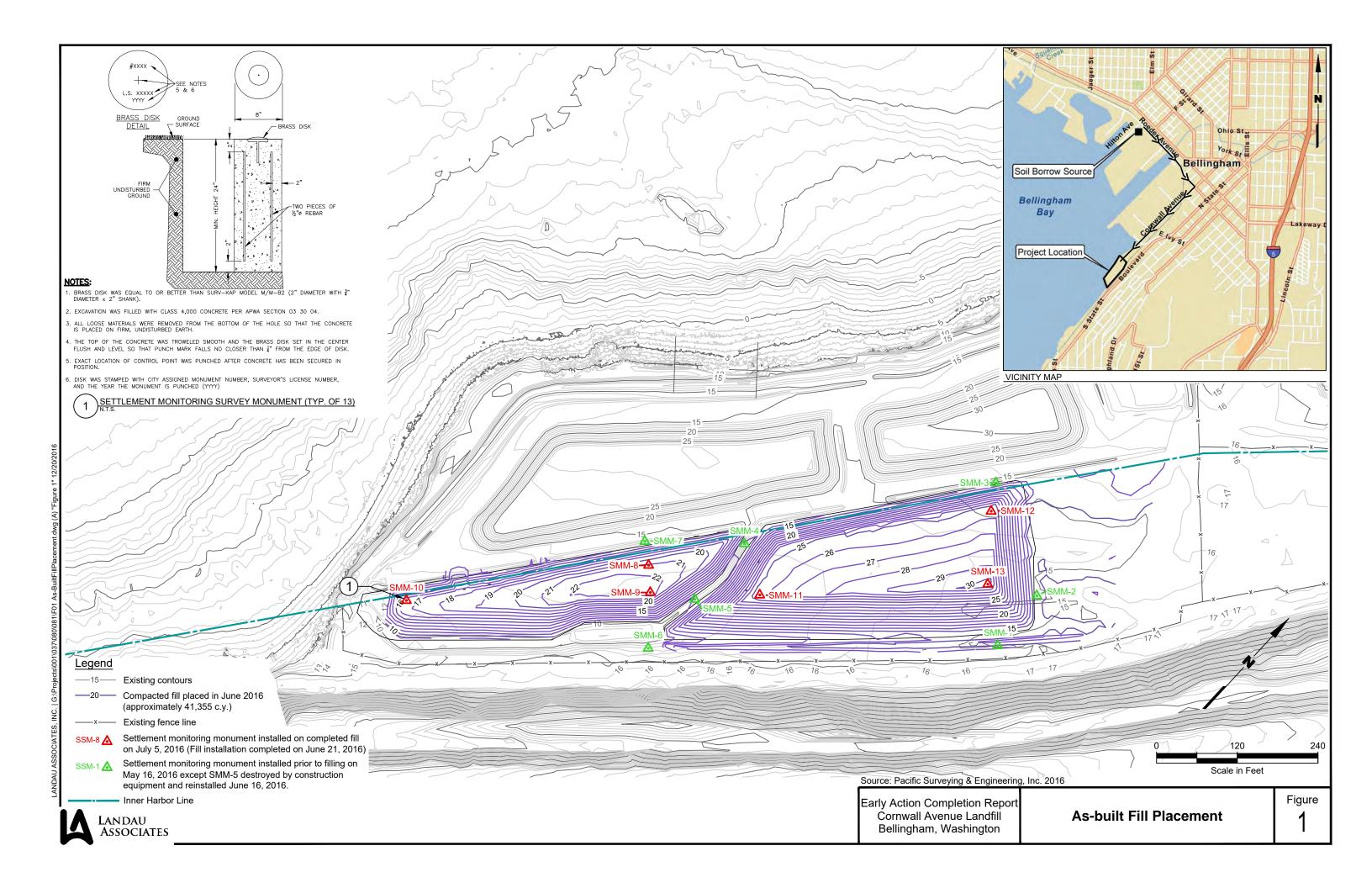
As a result of regulatory design review, acceptable design and specification revisions were made prior to and during construction. These revisions included:

- Plugging the outlet from the 48-inch-diameter manhole at the south end of the Site that was
  part of the stormwater management system constructed following demolition of the former
  GP tissue warehouse, and protecting the concrete inlet structure in-place prior to beginning
  Site disturbance activities.
- Connecting stormwater ditch flow by installing 25 linear feet of 12-inch-diameter culvert in the ditch that runs between the existing interim placement areas (IPAs) and the new fill areas.
- The Contractor elected to compact all the fill brought to the Site, and not loose stockpile a portion on top of the compacted fill as allowed for on the drawings.

All of these construction revisions were designed by the Engineer of Record, improving the original design and final construction. The complete set of plans with these design revisions and the revised specifications are provided in Appendix D.

# 4.4 Non-Conformance Reports

Non-conformance was addressed immediately by the Contractor via communications with the Owner and the CQA Monitor or Engineer of Record. As such there were no formal non-conformance reports.


**DRAFT**Landau Associates

# 4.5 Photographs

Construction activities were digitally photographed on a daily basis by the CQA Monitor and emailed to the Engineer of Record. Construction photographs are provided with the daily reports in Appendix C.

### 5.0 USE OF THIS REPORT

This Early Action Completion report has been prepared for the use of the Port of Bellingham and the Washington State Department of Ecology for specific application to the Cornwall Avenue Landfill Cleanup Project. None of the information, conclusions, and recommendations included in this document can be used for any other project without the express written consent of LAI. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and written authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.



# **Approved Submittals**



### **Submittal Review**

| Project Name: All American Marine Manufacturing Facility Submittal Number: 1 Submittal Description: TESC Materials                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The submittal has been reviewed and review action is shown below:                                                                                                                                                                                                                                                                                 |
| ☑ No Exceptions Taken                                                                                                                                                                                                                                                                                                                             |
| ☐ Furnish as Corrected                                                                                                                                                                                                                                                                                                                            |
| ☐ Revise and Resubmit                                                                                                                                                                                                                                                                                                                             |
| ☐ Rejected                                                                                                                                                                                                                                                                                                                                        |
| ☐ Submit Specified Item                                                                                                                                                                                                                                                                                                                           |
| Review Comments:                                                                                                                                                                                                                                                                                                                                  |
| The following erosion control items relevant to the Cornwall Ave site have been reviewed:                                                                                                                                                                                                                                                         |
| Item 1 - ACF West Silt Fence                                                                                                                                                                                                                                                                                                                      |
| Item 2 - ACF West Separation Fabric                                                                                                                                                                                                                                                                                                               |
| Item 4 - ACF West Erosion Blanket                                                                                                                                                                                                                                                                                                                 |
| Item 7 – RAM HD-10 Wheel Wash                                                                                                                                                                                                                                                                                                                     |
| The HD-10 wheel wash submittal is a one-page brochure without installation instructions. That is acceptable as long as the wheel wash system components are installed above grade with fill ramps; no excavation into onsite soil is allowed per Dwg. C-2 and the SWPPP for the Hilton Avenue Soil Transfer to the Cornwall Avenue Landfill site. |
|                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |
| Reviewed by: David Pischer, PE Date: May 24, 2016                                                                                                                                                                                                                                                                                                 |

This review is only for general conformance with the design concept of the project and general compliance with the information given in the Contract Documents. Corrections or comments made on or attached to the submittal during this review do not relieve the Contractor from compliance with the requirements of the Contract Documents. Approval of a specific item shall not include approval of an assembly of which the item is a component. Contractor is responsible for: dimensions to be confirmed and correlated on the jobsite, information that pertains solely to the fabrication processes or to the means, methods, techniques, sequences, and procedures of construction, coordination of the Contractor's work with that of all other trades, and for performing all work in a safe and satisfactory manner.



# LETTER OF TRANSMITTAL

Date: 5/11/2016 Project # 1607 ATTN: Jon Gibson RE: All American Marine

TO: Port of Bellingham PO Box 1677 Bellingham, WA 98225

| We are sending you the following attachments:                                                                                                                                                                                                         |           |     |                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------------------------------------------------|
| The following items:   Shop drawings                                                                                                                                                                                                                  |           |     |                                                 |
|                                                                                                                                                                                                                                                       |           |     |                                                 |
| Copies                                                                                                                                                                                                                                                | Date      | No. | Description                                     |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 1   | ACF West Silt Fence 31-25-00                    |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 2   | ACF West Separation fabric 31-20-00             |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 3   | ACF West Marker Fabric 9-33                     |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 4   | ACF West Erosion Blanket 31-25-00               |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 5   | AACF West Construction Entrance Fabric 31-25-00 |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 6   | ACF West CB Protection 31-25-00                 |
| 1                                                                                                                                                                                                                                                     | 5/11/2016 | 7   | RAM HD-10 Wheel Wash System                     |
| These are transmitted as indicated below:  □ For your use □ Approval as noted □ For Approval □ As requested □ Approved for Construction □ For review and comment □ Returned for corrections □ For payment □ Return □ Corrected Prints □ For bids due: |           |     |                                                 |
| Remarks:                                                                                                                                                                                                                                              |           |     |                                                 |
| Received By: Date:                                                                                                                                                                                                                                    |           |     |                                                 |
| Signed:Title:                                                                                                                                                                                                                                         |           |     |                                                 |
| Copy to:                                                                                                                                                                                                                                              |           |     |                                                 |

| ☐ Recipient's Copy |
|--------------------|
| ☐ Sign & Return    |
| ☐ File Copy        |



ACF West is a D.B.A. for Northwest Geosynthetics Inc.

2505 Frank Albert Rd E, Suite 111, Fife WA 98424 - PH: 253-922-6641 Fax: 253-922-6642

Description: ACF West "Supported" Silt Fence, ACF-WB-48 uses a woven fabric attached

with steel hog rings to galvanized steel support mesh.

Roll size: 48" fabric w/36" support mesh x 100 lineal foot

Available in black or "Hi-Vis" orange

Fabric: The fabric, is a woven network of polypropylene fibers, stabilized to resist

degradation due to ultraviolet exposure, and resistant to commonly encountered soil chemicals, mildew and insects. It is non-biodegradable and is stable within a

ph range of 2-13. Manufactured for ACF West Inc. The fabric meets the

following minimum average roll values (MARV):

| Property         | Test Method | MARV (English)          |
|------------------|-------------|-------------------------|
| Grab Tensile     | ASTM D 4632 | 158.1 x 161.7 lbs       |
| Grab Elongation  | ASTM D 4632 | 20.7% x 21.3%           |
| CBR Puncture     | ASTM D 6241 | 620 lbs                 |
| Trapezoidal Tear | ASTM D 4533 | 90 x 85 lbs             |
| UV Resistance    | ASTM D 4355 | 80% @ 500hr             |
| AOS              | ASTM D 4751 | 70 sieve                |
| Permittivity     | ASTM D 4491 | 0.128 sec <sup>-1</sup> |

Support Mesh: Galvanized utility mesh, 4" x 2" opening, 36" height, 100' length

Separation Fabric Specification 31-20-00

Supplier ACF West

Paragraph 2.2A



ACF West Inc. is a D.B.A. name for Northwest Geosynthetics Inc.

8951 SE 76<sup>th</sup> Drive Portland, OR 97206 (503) 771-5115, (800) 878-5115, (503) 771-1161 fax

# **Product Data Sheet**

# WSF 250 (ACF 250) Woven Geotextile

WSF 250 is a woven slit film geotextile, and will meet the following physical properties when tested in accordance with the methods listed below. The individual slit films are woven together in such a manner as to provide dimensional stability relative to each other. The construction of the geotextile makes WSF 250 ideal for soil separation and stabilization. The geotextile is resistant to ultraviolet degradation and to biological and chemical environments normally found in soils.

WSF 250 Woven Geotextile conforms to the following physical properties:

| Property                                       | Test Method | English (MARV)1            |
|------------------------------------------------|-------------|----------------------------|
| Typical Weight                                 | ASTM D-5261 | 4.5 oz/yd                  |
| Grab Tensile Strength                          | ASTM D-4632 | (MC/CD) 250 lbs            |
|                                                |             | / 250 lbs                  |
| Elongation                                     | ASTM D-4632 | >15%                       |
| Trapezoidal Tear                               | ASTM D-4533 | 90 lbs                     |
| UV Resistance                                  | ASTM D-4355 | 80%                        |
| Apparent Opening<br>Size<br>(AOS) <sup>2</sup> | ASTM D-4751 | 50 US Std. Sieve           |
| Permittivity                                   | ASTM D-4491 | 0.10 Sec <sup>-1</sup>     |
| Roll Sizes                                     |             | 12.5' x 360'<br>15' x 300' |
|                                                |             | 17.5' x 258'               |

- 1. All values listed are Minimum Average Roll Value (MARV) unless otherwise noted, calculated as the typical minus two standard deviations Statistically, it yields 97.7% degree of confidence that any sample taken during quality assurance testing will exceed the value reported.
- 2. Values for Apparent Opening size are Maximum Average Roll Value (MaxARV), typical value plus two standard deviations.

Note: WSF 250 fabric is manufactured and imported for ACF West Inc. by Gia Loi Joint Stock Company. Phuoc Thai Hamlet, Tahi Hoa Tan Uyen District. Binh Duon Province, Vietnam. WSF 250 is a trade name of ACF West Inc. and any use of this name without the expressed written consent of ACF West Inc. is strictly prohibited. The property values listed above are effective 12-1-2014 and subject to change without notice.



Landscape Cap / Marker Fabric Plan Sheet C1 - Cross section BB & CC Standard Specification 9-33 Table 3 Supplier ACF West





# Mirafi<sup>®</sup> 160N/O

Mirafi<sup>®</sup> 160N/O is an orange nonwoven geotextile composed of polypropylene fibers, which are formed into a network such that the fibers retain their relative position. Mirafi<sup>®</sup> 160N/O is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids.

| Mechanical Properties        | Test Method | Unit                                               | Typical<br>Roll Value |           |
|------------------------------|-------------|----------------------------------------------------|-----------------------|-----------|
| ·                            |             |                                                    | MD                    | CD        |
| Grab Tensile Strength        | ASTM D4632  | lbs (N)                                            | 175 (779)             | 175 (779) |
| Grab Tensile Elongation      | ASTM D4632  | %                                                  | 75                    | 75        |
| Trapezoid Tear Strength      | ASTM D4533  | lbs (N)                                            | 85 (378)              | 85 (378)  |
| CBR Puncture Strength        | ASTM D6241  | lbs (N)                                            | 480 (2136)            |           |
| Apparent Opening Size (AOS)¹ | ASTM D4751  | U.S. Sieve<br>(mm)                                 | 100<br>(0.15)         |           |
| Permittivity                 | ASTM D4491  | sec <sup>-1</sup>                                  | 1.5                   |           |
| Flow Rate                    | ASTM D4491  | gal/min/ft <sup>2</sup><br>(l/min/m <sup>2</sup> ) | 105<br>(4278)         |           |
| UV Resistance (at 500 hours) | ASTM D4355  | % strength retained                                | 80                    |           |

<sup>&</sup>lt;sup>1</sup> ASTM D4751: AOS is a Maximum Opening Diameter Value

| Physical Properties              | Unit                              | Typical Value       |
|----------------------------------|-----------------------------------|---------------------|
| Weight (ASTM D5161)              | oz/yd² (g/m²)                     | 6.5 (220)           |
| Thickness (ASTM D5199)           | mils (mm)                         | 65 (1.7)            |
| Roll Dimensions (width x length) | ft (m)                            | 15 x 300 (4.5 x 91) |
| Roll Area                        | yd <sup>2</sup> (m <sup>2</sup> ) | 500 (418)           |
| Estimated Roll Weight            | lb (kg)                           | 215 (97)            |

**Disclaimer:** TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi<sup>®</sup> is a registered trademark of Nicolon Corporation







# **C32 BD**

#### **Specification Sheet**

The ErosionControlBlanket C32 BD is a long-term 100% biodegradable double net 100% coconut fiber erosion control blanket designed for use on extreme slope and channel applications requiring erosion control for up to 36 months depending on moisture, light, and environmental conditions. The blanket is sewn together on 1.5 inch (38.1 mm) centers. The C32 BD meets all requirements established in the FHWA FP-03 as a Type 4 erosion control blanket for use on slopes with gradients not exceeding 1:1 (h:v) and has been tested by the National Transportation Product Evaluation Program (NTPEP). The C32 BD comes packaged in clear shrink-wrap with a purple band and includes installation instructions.

#### **Product Nomenclature & Properties**

**C** = 100% coconut fiber matrix

3 = coconut fiber matrix applied at a rate of 0.5 lbs/yd<sup>2</sup> (270 g/m<sup>2</sup>)

**2** = top and bottom leno woven biodegradable nets with a mesh size of 0.5 x 1.0 in (1.3 x 2.54 cm)

**BD** = 100% biodegradable leno woven net, thread, and matrix to ensure consistent functional longevity

#### **Index & Bench Scale Testing**

| Test Description                                                                  | Test Method                     | Test Results                                                                     |
|-----------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|
| Mass per Unit Area                                                                | ASTM D6475                      | 9.19 oz/yd <sup>2</sup>                                                          |
| Tensile Strength                                                                  | ASTM D6818                      | 19.9 lb/in @ 9.6% MD<br>11.9 lb/in @ 15.3% TD                                    |
| Thickness                                                                         | ASTM D6525                      | 0.261 in                                                                         |
| Light Penetration / Ground Cover                                                  | ASTM D6567                      | 12.7% / 87.3%                                                                    |
| Water Absorption                                                                  | ASTM D 1117 &<br>ECTCTASC 00197 | 271%                                                                             |
| Unvegetated Bench-Scale Rain Splash and Runoff (not to be used as a design value) | ASTM D7101                      | Soil Loss Ratio* = 13.56<br>Soil Loss Ratio* = 15.10<br>Soil Loss Ratio* = 16.82 |
| Unvegetated Bench-Scale Shear Stress (not to be used as design value)             | ASTM D7207                      | 2.90 lbs/ft² @ ½ in. soil loss                                                   |
| Seed Germination and Plant Growth Under Bench-Scale Conditions                    | ASTM D7322                      | 412% Improvement (increased biomass)                                             |

#### **Design Values**

- "C" factor = 0.002
- Maximum Permissible Shear Stress = 2.25 lbs/ft<sup>2</sup> (108 Pa)
- Maximum Permissible Velocity = 10 ft/sec (3.05 m/s)
- Manning's "n" = 0.03

#### Standard Roll Details

| Width           | 2.44m (8 ft)                               | 4.88m (16 ft)                               |
|-----------------|--------------------------------------------|---------------------------------------------|
| Standard Length | 34.3m (112.5 ft)                           | 34.3m (112.5 ft)                            |
| Area            | 83.61m <sup>2</sup> (100 yd <sup>2</sup> ) | 167.22m <sup>2</sup> (200 yd <sup>2</sup> ) |
| Weight ± 10%    | 30.8 kg (68 lb)                            | 61.6 kg (136 lb)                            |

#### "Big Daddy" Roll Details

| Width           | 2.44m (8 ft)                   | 4.88m (16 ft)    |
|-----------------|--------------------------------|------------------|
| Standard Length | 137.2m (450ft)                 | 137.2m (450ft)   |
| Area            | 334.5m² (400 <sup>°</sup> yd²) | 669m² (800 yd²)  |
| Weight ± 10%    | 92.5 kg (272 lb)               | 246.76kg (544lb) |

Construction Entrance Separation Fabric Specification 31-25-00

Section 02540



ACF West Inc. is a D.B.A. name for Northwest Geosynthetics Inc. 8951 SE 76<sup>th</sup> Drive, Portland, OR 97206 (503) 771-5115, (800) 878-5115, (503)771-1161 fax

# **Product Data Sheet**

# WSF 200 (ACF 200) Woven Geotextile

WSF 200 is a woven slit film geotextile, and will meet the following physical properties when tested in accordance with the methods listed below. The individual slit films are woven together in such a manner as to provide dimensional stability relative to each other. The construction of the geotextile makes WSF 200 ideal for soil separation and stabilization. The geotextile is resistant to ultraviolet degradation and to biological and chemical environments normally found in soils.

WSF 200 Woven Geotextile conforms to the following physical properties:

| Property                                       | Test Method | English (MARV) <sup>1</sup>               |  |
|------------------------------------------------|-------------|-------------------------------------------|--|
| Weight (Typical)                               | ASTM D-5261 | 4.0 oz./SY                                |  |
| Grab Tensile Strength                          | ASTM D-4632 | 200 lbs                                   |  |
| CBR Puncture                                   | ASTM D-6241 | 700 lbs                                   |  |
| Trapezoidal Tear                               | ASTM D-4533 | 80 lbs                                    |  |
| UV Resistance                                  | ASTM D-4355 | 80%                                       |  |
| Apparent Opening<br>Size<br>(AOS) <sup>2</sup> | ASTM D-4751 | 50 US Std. Sieve                          |  |
| Permittivity                                   | ASTM D-4491 | 0.05 sec <sup>-1</sup>                    |  |
| Roll Sizes                                     |             | 12.5' x 432'<br>15' x 360'<br>17.5'x 309' |  |

- 1) All values listed are Minimum Average Roll Value (MARV) unless otherwise noted, calculated as the typical minus two standard deviations. Statistically, it yields 97.7% degree of confidence that any sample taken during quality assurance testing will exceed the value reported.
- 2) Values for Apparent Opening size are Maximum Average Roll Values (MaxARV), typical value plus two standard deviations.

Note: WSF 200 fabric is manufactured and imported for ACF West Inc. by Gia Loi Joint Stock Company. Phuoc Thai Hamlet, Tahi Hoa Tan Uyen District. Binh Duon Province, Vietnam. ACF 200 is a trade name of ACF West Inc. and any use of this name without the expressed written consent of ACF West Inc. is strictly prohibited. The property values listed above are effective 11-1-2010 and subject to change without notice.

**CB** Inlet Protection Specification 31-25-00 Section 02540 Supplier ACF West



# **Ultra-DrainGuard®**

# Specifications Minimum Average Fabric Values

| Properties                                      | ASTM Test | Value    |
|-------------------------------------------------|-----------|----------|
| Material: Non-woven, Polypropylene Geotextile   |           |          |
| Size Dimensions: 48" L x 36" W x 18" H          |           |          |
| Grab Tensile (lbs)                              | D 4632    | 215      |
| Elongation (%)                                  | D 4632    | 50       |
| Trapezoid Tear (lbs)                            | D 4533    | 85       |
| Puncture (lbs)                                  | D 4833    | 115      |
| Mullen Burst (psi)                              | D 3786    | 360      |
| Permittivity (sec-1)                            | D 4491    | 0.9      |
| Permeability (cm/sec)                           | D 4491    | 0.25     |
| A.O.S. (U.S. sieve no.) / Microns               | D 4751    | 80 / 180 |
| UV Stability (strenght retained %) 500 hrs      | D 4355    | 70       |
| Weight (oz/yd2) (typical)                       | D 5261    | 9        |
| Thickness (mils)                                | D 5199    | 85       |
| Flow (through material gpm/ft2)                 | D 4491    | 65       |
| Flow (including bypass gpm)*                    |           | 770      |
| Flow (including bypass cfs) *                   |           | 1.7      |
| * Larger bypass flow rate designs are available |           |          |

11542 Davis Creek Court Jacksonville, FL 32256 800-353-1611

Website: <u>www.stormwater-products.com</u>

E-mail: info@stormwater- products.com



# The Soaker HD-10 Wheel Wash



# More nozzles



The HD-10 is 24' L x 10' W x 9'4" H and weighs 18,000lbs.

# **High Volume-Low Pressure**



The Soaker HD-10 is equipped with 4 high volume pumps and more nozzles for larger truck volume projects.

### **Aluminum Construction**



The all aluminum construction is environmentally friendly and easy to handle. The Soaker will not rust or flake paint.

**OSW** Equipment & Repair, Inc.

PO Box 1651 Woodinville, WA 98072 Phone: (425) 483-9863 Fax: (425) 483-4504

# **Earthwork Construction Testing**

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

## All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37329

**CLIENT** Ram Construction DATE

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT #

Bellingham WA

**Inspection Information:** 

**Inspection Date:** 06/04/2016 Time Onsite: 8:30 AM Weather Conditions: Sunny 70s

**Inspection Performed:** 

**IPD-Soil Compaction** 

**Field Data:** 

Work / Location: Landfill soil storage Gauge Standard MS:

9845

06/04/2016

**Equipment ID & Serial #:** 

CPN MC-1, Ser. #MD20906738

Gauge Standard DS:

32853

**Test Samples:** 

Sample #: Description: Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 gray silty sand w/ gravel | 125.5 | 9.4% Uncorrected |
|---------------------------------------|-------|------------------|
| 2. B16-0536 gray silty sand w/ gravel | 135.9 | 6.7% (30% RC)    |

TEST METHOD

### In Place Density Test Results (ASTM D-6938):

| Test # | Mode /<br>Depth | <b>Location of Test</b> | Elev. | Wet Dens. | Dry Dens. | Moist % | Sample # | % Comp. | % Reqd. |
|--------|-----------------|-------------------------|-------|-----------|-----------|---------|----------|---------|---------|
| 1      | 10"             | S end, W side, +200'    | 13'   | 132.8     | 120.6     | 10.1    | 1        | 96.1    | 90      |
| 2      | 10"             | S end, E side, +300'    | 15'   | 127.1     | 117       | 8.6     | 1        | 93.2    | 90      |
| 3      | 10"             | S end, E side, +40'     | 15'   | 137.4     | 123.7     | 11.1    | 2        | 91      | 90      |
| 4      | 10"             | N end, central, +220'   | 11'   | 139.5     | 127.2     | 9.7     | 2        | 93.6    | 90      |
| 5      | 10"             | N end, central, +75'    | 12'   | 132.3     | 119.7     | 10.5    | 1        | 95.4    | 90      |
| 6      | 10"             | N end, E side, +10'     | 12'   | 134.4     | 120.3     | 11.7    | 1        | 95.9    | 90      |
| 7      | 10"             | N end, W side, +65'     | 12'   | 132.7     | 120.5     | 10.1    | 1        | 96      | 90      |
| 8      | 10"             | N end, E side, +100     | 12'   | 128       | 116.7     | 9.7     | 1        | 93      | 90      |
| 9      | 10"             | S end, Central, +250'   | 14'   | 147.2     | 134.1     | 9.8     | 2        | 98.7    | 90      |
| 10     | 10"             | N end, Central, + 200   | 12'   | 126.9     | 115.3     | 10.1    | 1        | 91.9    | 90      |
| 11     | 10"             | N end, w side, +25'     | 13'   | 139.5     | 123.9     | 12.6    | 1        | 98.7    | 90      |
| 12     | 10"             | N end, w side, +115'    | 14'   | 136       | 119.8     | 13.5    | 1        | 95.5    | 90      |
| 13     | 10"             | N end, central, +65     | 14'   | 130.2     | 116       | 12.2    | 1        | 92.4    | 90      |
| 14     | 10"             | N end, e side, +125'    | 14'   | 137.4     | 123.8     | 11      | 2        | 91.1    | 90      |
| 15     | 10"             | N end, e side, +305'    | 12'   | 124.9     | 114       | 9.6     | 1        | 90.8    | 90      |
| 16     | 10 "            | N end, w side, +65'     | 15'   | 135.4     | 123.9     | 9.3     | 2        | 91.2    | 90      |
| 17     | 10              | N end, e side, +15'     | 15'   | 130.6     | 119.4     | 9.4     | 1        | 95.1    | 90      |

■ Native Soils

Soils consistent with Proctor

Yes O No

☑ Imported Fills

Soils found to be firm and stable; and to the best of our

O No Yes

knowledge, meet compaction

Contractor notified of results

O No

Remarks:

present a second and present and a second se

Corporate \* 777 Chrysler Drive \* Burlington, WA 98233 \* Phone 360.755.1990 \* Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region . 805 Dupont Struct, Suite 5 . Bellingham. WA 98225 . Phone 360.647.6061 . Fax 360.647.8111

Geolechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting





MTC on site as requested for compaction testing of soils excavated at Hilton Harbor site and imported to Cornwall Ave Landfill site for storage. Port of Bellingham job. Contractor reports 90 percent compaction minimal.

Site is divided into two sections, north and south. Majority of fill today occurred on north section. Each individual section tested is divided into east, central and west. Locations are based on southernmost margin of each section named station 0+00 by MTC, numbers increase to north.

Ten Cowden double dump trucks placed soils, which were graded by dozer into lifts of 8 inches or less and compacted by Vibromax 1105 single drum vibrating roller.

Material variability on site has produced an almost 20 pcf difference in areas tested.

Compaction was attained for all locations tested. Contractor will receive notification with this report.

Elevations are based on feet above sea level.

MTC will return upon request for continued compaction testing.

### **Images:**





UPLOADED: 06/04/2016 17:20:00

Facing East

UPLOADED: 06/04/2016 17:19:00

South area Facing South North area

REPORTED BY: Kurt Parker REVIEWED BY: Curtis Shear, Project Manager

Months of publication of the confidence of the c

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989
SW Region • 2118 Black Lake Blvd. S.W.• Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779
NW Region • 805 Dupont Street, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

## All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37337

**CLIENT** 

Ram Construction

DATE

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT#

Bellingham WA

**Inspection Information:** 

**Inspection Date:** 06/06/2016

Time Onsite: 9:00 am

**Weather Conditions:** Sunny 70s

**Inspection Performed:** 

**IPD-Soil Compaction** 

**Field Data:** 

Work / Location:

Landfill soil storage

**Gauge Standard MS:** 

9845

06/06/2016

**Equipment ID & Serial #:** 

CPN MC-1, Ser. #MD20906738

Gauge Standard DS:

32853

**Test Samples:** 

Sample #: Description:

Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

1. B16-0536 gray silty sand

125.5

9.4% Uncorrected

TEST METHOD

☑ ASTM D-1557 /AASHTO T-180

## In Place Density Test Results (ASTM D-6938):

| Test #   | Mode /<br>Depth | Location of Test             | Elev. | Wet Dens. | Dry Dens. | Moist %              | Sample # | % Comp. | % Reqd. |
|----------|-----------------|------------------------------|-------|-----------|-----------|----------------------|----------|---------|---------|
| 1        | 8"              | 175 N, 50 E                  | 15    | 134.2     | 120.3     | 11.6                 | 1        | 95.9    | 90      |
| 2        | 8"              | 200 N, 55 E                  | 15    | 129.9     | 115.4     | 12.6                 | 1        | 92      | 90      |
| 3        | 8"              | 230 N, 55 E                  | 15    | 131.5     | 117.7     | 11.7                 | 1        | 93.8    | 90      |
| 5        | 8"              | 30 N, 120 E                  | 15    | 132.7     | 117.3     | 13.1                 | 1        | 93.5    | 90      |
| 7        | 8"              | 300 N, 30 E                  | 15    | 135.5     | 120.9     | 12.1                 | 1        | 96.3    | 90      |
| 9        | 8"              | 290 N, 100 E                 | 15    | 132.1     | 119.1     | 10.9                 | 1        | 94.9    | 90      |
| 10       | 8"              | 285 N, 90 E                  | 15    | 136.8     | 123       | 11.2                 | 1        | 98      | 90      |
| 12       | 8"              | 130 N, 140 E                 | 15    | 135.6     | 119.4     | 13.5                 | 1        | 95.1    | 90      |
| 14       | 8"              | 50 N, 20 E                   | 16    | 131.1     | 115.7     | 13.3                 | 1        | 92.2    | 90      |
| 15       | 8"              | 60 N, 40 E                   | 16    | 135       | 121.5     | 11.1                 | 1        | 96.8    | 90      |
| 18       | 8"              | 250 N, 80 E                  | 16    | 129.2     | 116.9     | 10.5                 | 1        | 93.1    | 90      |
| 19       | 8"              | 30 N, 20 E                   | 16    | 127.1     | 113.5     | 12                   | 1        | 90.4    | 90      |
| 20       | 8"              | 20 N, 10 E                   | 16    | 128.9     | 114.2     | 12.9                 | 1        | 91      | 90      |
| 24       | 8"              | 270 N, 75 E                  | 16    | 130.6     | 117.3     | 11.3                 | 1        | 93.5    | 90      |
| 25       | 8"              | 140 N, 140 E                 | 16    | 134.5     | 122.2     | 10.1                 | 1        | 97.4    | 90      |
| 27       | 8"              | 10 N, 100 E                  | 16    | 128.8     | 114.4     | 12.6                 | 1        | 91.2    | 90      |
| 29       | 8"              | 20 N, 70 E                   | 17    | 132.8     | 116.8     | 13.7                 | 1        | 93.1    | 90      |
| 31       | 8"              | 160 N, 120 E                 | 17    | 130.4     | 115.4     | 13                   | 1        | 92      | 90      |
| 32       | 8"              | 280 N, 75 E                  | 17    | 132.5     | 116.8     | 13.5                 | 1        | 93.1    | 90      |
| 35       | 8"              | 130 N, 10 E                  | 17    | 130.7     | 117.7     | 11                   | 1        | 93.8    | 90      |
| □ Native | Soils           | Soils consistent with Procto | r     |           |           | <ul><li>Ye</li></ul> | s O No   |         |         |

■ Native Soils

Soils consistent with Proctor

Imported Fills

Soils found to be firm and stable; and to the best of our

O No Yes

knowledge, meet compaction Contractor notified of results

#### Remarks:

presents again, as open to acred a regarders upon v Jint - 2412 Magnigh Taxing 8 (beauting for All critic favored

Corporate \* 777 Chrysler Drive \* Burlington, WA 98233 \* Phone 360.755.1990 \* Fax 360.755.1980 SW Region . 2118 Black Lake Blvd. S.W. Olympia, WA 98512 . Phone 360.534.9777 . Fax 360.534.9779 NW Region . 805 Dupont Struct, Suite 5 . Bellingham. WA 98225 . Phone 360.647.6061 . Fax 360.647.8111

Geolechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981



MTC on site as requested for compaction testing of soils excavated at Hilton Harbor site and imported to Cornwall Ave Landfill site for storage. Port of Bellingham job. Contractor reports 90 percent compaction minimal.

Site is divided into two sections, north and south. All fill today occurred on north section. Locations are based on southernmost and easternmost margins of each section and are located by number of feet north and east of those margins.

Double dump trucks placed soils, which were graded by a John Deere 850c dozer into lifts of 8 inches or less and compacted by Vibromax 1105 single drum vibrating roller.

Material variability on site has produced an approximate 10 pcf difference in areas tested.

Compaction was attained for all locations tested. Contractor will receive notification with this report.

Elevations are based on feet above sea level.

### **Images:**



UPLOADED: 06/07/2016 07:20:00

North pad Looking north from south boundary

REPORTED BY: Cass Dimitroff REVIEWED BY: Curtis Shear, Project Manager

All contracts and contract the contract of the

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989
SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779
NW Region • 805 Dupont Street, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

## All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37343

**CLIENT** Ram Construction

DATE

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT #

Bellingham WA

**Inspection Information:** 

**Inspection Date:** 06/07/2016 **Time Onsite:** 8:45 am

**Weather Conditions:** Sunny 70s

**Inspection Performed:** 

**IPD-Soil Compaction** 

Field Data:

Work / Location: Landfill soil storage

Gauge Standard MS:

9845

06/07/2016

**Equipment ID & Serial #:** 

CPN MC-1, Ser. #MD20906738

Gauge Standard DS:

32853

**Test Samples:** 

Sample #: Description:

Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 gray silty sand w/ gravel | 125.5 | 9.4% Uncorrected |
|---------------------------------------|-------|------------------|
| 2. B16-0536 gray silty sand w/ gravel | 135.9 | 6.7% (30% RC)    |

#### TEST METHOD

#### ☑ ASTM D-1557 /AASHTO T-180

### In Place Density Test Results (ASTM D-6938):

| Test # | Mode /<br>Depth | <b>Location of Test</b> | Elev. | Wet Dens. | Dry Dens. | Moist % | Sample # | % Comp. | % Reqd. |
|--------|-----------------|-------------------------|-------|-----------|-----------|---------|----------|---------|---------|
| 1      | 10"             | N end, E side, +350     | 15'   | 137.6     | 123.1     | 11.8    | 1        | 98.1    | 90      |
| 2      | 10"             | N end, W side, +350'    | 15'   | 134.2     | 119.2     | 12.6    | 1        | 95      | 90      |
| 3      | 10"             | N end, E side, +210'    | 17'   | 138.1     | 123.2     | 12.1    | 1        | 98.2    | 90      |
| 4      | 10"             | N end, E side +100'     | 17'   | 137.9     | 120       | 14.9    | 1        | 95.6    | 90      |
| 5      | 10"             | N end, central, +280'   | 16'   | 138.5     | 122.9     | 12.7    | 1        | 97.9    | 90      |
| 6      | 10"             | N end, E side, +275'    | 16'   | 137.8     | 121.4     | 13.5    | 1        | 96.7    | 90      |
| 7      | 10"             | N end, central, +340'   | 16'   | 134.7     | 119.3     | 12.9    | 1        | 95.1    | 90      |
| 8      | 10"             | N end, W side, +290     | 16'   | 141.9     | 126.1     | 12.5    | 2        | 92.8    | 90      |
| 9      | 10"             | N end, E side +140'     | 16'   | 137.6     | 121.7     | 13.1    | 1        | 97      | 90      |
| 10     | 10"             | N end, E sidel, + 35'   | 17'   | 133.9     | 122.1     | 9.7     | 1        | 97.3    | 90      |
| 11     | 10"             | N end, central, +175'   | 15'   | 135.1     | 121.3     | 11.4    | 1        | 96.7    | 90      |
| 12     | 10"             | N end, central, +160'   | 15'   | 141.8     | 125.3     | 13.2    | 2        | 92.2    | 90      |
| 13     | 10"             | N end, e side, +85      | 16'   | 137.2     | 122.5     | 12      | 1        | 97.6    | 90      |
| 14     | 10"             | N end, central +110'    | 15'   | 134.6     | 120.3     | 11.9    | 1        | 95.9    | 90      |
| 15     | 10"             | N end, W side, +175'    | 16'   | 136.8     | 119.5     | 14.5    | 1        | 95.2    | 90      |
| 16     | 10 "            | N end, E side, +55'     | 16'   | 133.7     | 120.1     | 11.3    | 1        | 95.7    | 90      |
| 17     | 10              | N end, e side, +310'    | 16'   | 143       | 123.9     | 15.4    | 1        | 98.7    | 90      |
| 18     | 10"             | N end, W side, +315'    | 16.5' | 137.9     | 121.2     | 13.8    | 1        | 96.6    | 90      |
| 19     | 10"             | N end, E side, +145'    | 16'   | 136.6     | 118.7     | 15.1    | 1        | 94.6    | 90      |
| 20     | 10"             | N end, E side, +190     | 16'   | 137.1     | 123.4     | 11.1    | 1        | 98.3    | 90      |

□ Native Soils☑ Imported Fills

Soils consistent with Proctor

Yes O No

△ Imported rin

Soils found to be firm and stable; and to the best of our

• Yes O No

knowledge, meet compaction Contractor notified of results

Yes O Ne

All controls and in the control of t

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989
SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779
NW Region • 805 Dupont Street, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981



#### Remarks:

MTC was onsite as requested for compaction testing of imported soils for Cornwall Ave Landfill storage.

Locations for testing are based on the south end of each north and south sections starting at 0+00 and continuing to the north, in the west, central and eastern segments of the north and south fill areas.

Majority of work today was done on north section of project. Material variability was high and moisture was increasing throughout the day due to an increase in clay content.

Imported fills were placed by dump trucks, graded in lifts of 8 inches or less by dozer and compacted by Vibromax 1105 single drum vibrating roller.

Compaction was attained for all locations tested.

### **Images:**



UPLOADED: 06/07/2016 16:05:00

South fill area Facing south

REPORTED BY: Kurt Parker REVIEWED BY: Curtis Shear, Project Manager

All contracts and contract the contract of the

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region • 805 Dupont Struct, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

### All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37350

**CLIENT** Ram Construction

DATE

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT #

06/08/2016

Bellingham WA

### **Inspection Information:**

**Inspection Date:** 06/08/2016 **Time Onsite:** 9:00 am **Weather Conditions:** cloudy, 57 deg

Inspection Performed: IPD-Soil Compaction

Field Data:

Work / Location: Landfill soil storage (pre-load) Gauge Standard MS: 9878

Equipment ID & Serial #: CPN MC-1, Ser. #MD20906738 Gauge Standard DS: 32947

Test Samples:

Sample #: Description: Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 Silty sand with gravel | 125.5 | 9.4%, 0% oversize  |
|------------------------------------|-------|--------------------|
| 2. B16-0536 Silt sand with gravel  | 128.8 | 8.5%, 10% oversize |

#### TEST METHOD

#### ☑ ASTM D-1557 /AASHTO T-180

### In Place Density Test Results (ASTM D-6938):

| Test<br># | Mode /<br>Depth | <b>Location of Test</b>                      | Elev. | Wet Dens. | Dry Dens. | Moist % | Sample # | % Comp. | % Reqd. |
|-----------|-----------------|----------------------------------------------|-------|-----------|-----------|---------|----------|---------|---------|
| 1         | 8               | 720 ft from center divider NW side           | 18    | 132.3     | 117.8     | 12.3    | 1        | 93.9    | 95      |
| 2         | 8               | 280 ft S of N-boundary center west           | 20    | 138.2     | 118.9     | 16.3    | 1        | 94.7    | 95      |
| 3         | 8               | 300 ft S of N-boundary east side             | 21    | 133.1     | 114       | 16.7    | 1        | 90.8    | 95      |
| 4         | 8               | 610 ft S of N-boundary east side             | 22    | 133.2     | 115.5     | 15.4    | 1        | 92      | 95      |
| 5         | 8               | 705 ft N of center NE side                   | 17    | 133.2     | 116.2     | 14.6    | 1        | 92.6    | 95      |
| 6         | 8               | 690 ft N of center divide center             | 17    | 134.2     | 117.8     | 13.9    | 1        | 93.9    | 95      |
| 7         | 8               | 260 ft S of N-boundary center center (N end) | 17    | 136.8     | 119.2     | 14.8    | 1        | 95      | 95      |
| 8         | 8               | 80 ft N of center divide (E side)            | 16    | 133.3     | 115.4     | 15.5    | 1        | 92      | 95      |
| 9         | 8               | 100 ft south of center east side (S end)     | 20    | 130.5     | 116.7     | 11.8    | 1        | 93      | 95      |
| 10        | 8               | 40 ft S of center west side                  | 18    | 136.4     | 120.2     | 13.5    | 1        | 95.8    | 95      |
| 11        | 8               | 50 ft S of center divide east (S end)        | 18    | 126.8     | 119       | 6.5     | 1        | 94.8    | 95      |
| 12        | 8               | 50 ft S of center divide west (S end)        | 17    | 136.5     | 118.2     | 15.5    | 1        | 94.2    | 95      |
| 13        | 8               | SW 20 ft N of southernmost portion           | 15    | 135       | 119.1     | 13.4    | 1        | 94.9    | 95      |
| 14        | 8               | 100 ft N of southernmost portion center      | 15    | 138.8     | 122.2     | 13.6    | 2        | 94.9    | 95      |
| 15        | 8               | 30 ft N of South end center center           | 15    | 127.8     | 115.4     | 10.8    | 1        | 92      | 95      |
| 16        | 8               | 30 ft S of center divide center (S end)      | 15    | 137.5     | 123.2     | 11.6    | 2        | 95.7    | 95      |
| 17        | 8               | 100 ft N of center divide (W side)           | 21    | 133.8     | 118.7     | 12.8    | 2        | 92.2    | 95      |
| 18        | 8               | 80 ft S of N-boundary center                 | 23    | 136.8     | 120.8     | 13.3    | 2        | 93.8    | 95      |
| 19        | 8               | 80 ft S of N-boundary east side              | 21    | 134.9     | 121.1     | 11.4    | 1        | 96.5    | 95      |
| 20        | 8               | 100 ft N of center divide (center N side)    | 22    | 136.8     | 117.2     | 16.7    | 1        | 93.4    | 95      |
| 21        | 8               | 150 ft S of N-boundary center                | 20    | 140.9     | 124.3     | 13.4    | 2        | 96.5    | 95      |
| 22        | 8               | 80 ft N of center divide (E side)            | 18    | 137.4     | 120       | 14.5    | 2        | 93.2    | 95      |
| 23        | 8               | 40 ft S of N-boundary center                 | 18    | 137.8     | 120.9     | 14      | 2        | 93.9    | 95      |

All controlled and a superior and the superior of the superior

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region • 805 Dupont Street, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geolechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

#### Engineered Assurance Since 1981

|    |   |                               |    |       |       |      |   | •    | •  |
|----|---|-------------------------------|----|-------|-------|------|---|------|----|
| 24 | 8 | 40 ft S of N-boundary east    | 18 | 137.7 | 119.1 | 15.6 | 1 | 94.9 | 95 |
| 25 | 8 | 40 ft S of N-boundary west    | 16 | 137.9 | 123.5 | 11.7 | 2 | 95.9 | 95 |
| 26 | 8 | 110 ft S of N-boundary center | 17 | 140.5 | 121.5 | 15.6 | 2 | 94.3 | 95 |
| 27 | 8 | 110 ft S of N-boundary east   | 18 | 140.7 | 125.3 | 12.3 | 2 | 97.3 | 95 |
| 28 | 8 | 110 ft S of M-boundary west   | 16 | 137.5 | 120.7 | 13.9 | 2 | 93.7 | 95 |

□ Native Soils

Soils consistent with Proctor

Yes

Soils found to be firm and stable; and to the best of our

Yes O No

O No

O No

knowledge, meet compaction Contractor notified of results

#### Remarks:

MTC on-site for compaction testing of imported fill materials at the Cornwall Ave landfill storage area. Test locations based on distances from the ditch line dividing the north and south fill areas.

### **Images:**





UPLOADED: 06/09/2016 05:37:00

UPLOADED: 06/09/2016 05:36:00

Looking north across the north fill area

Looking north from the drainage ditch dividing the fill areas

REPORTED BY: Ross Jorgensen REVIEWED BY: Curtis Shear, Project Manager

All controlled in a controlled in the control of th

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989

SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779

NW Region • 805 Dupont Struct, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

## All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37361

**CLIENT** Ram Construction **DATE** 

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT#

06/09/2016

Bellingham WA

### **Inspection Information:**

**Inspection Date:** 06/09/2016 Time Onsite: 8:45 AM Weather Conditions: | cloudy, 57 deg

**Inspection Performed: IPD-Soil Compaction** 

**Field Data:** 

Work / Location: Landfill soil storage (pre-load) Gauge Standard MS: 9834 CPN MC-1, Ser. #MD20906738 Gauge Standard DS: 32997

**Equipment ID & Serial #:** 

**Test Samples:** 

Sample #: Description: Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 Silty sand with gravel | 125.5 | 9.4%, 0% oversize  |
|------------------------------------|-------|--------------------|
| 2. B16-0536 Silt sand with gravel  | 128.8 | 8.5%, 10% oversize |

#### TEST METHOD

#### ■ ASTM D-1557 /AASHTO T-180

## In Place Density Test Results (ASTM D-6938):

| Test # | Mode /<br>Depth | <b>Location of Test</b> | Elev. | Wet Dens. | Dry Dens. | Moist % | Sample # | % Comp. | % Reqd. |
|--------|-----------------|-------------------------|-------|-----------|-----------|---------|----------|---------|---------|
| 1      | 10              | N end, W side, +150ft   | 17    | 140.6     | 124.4     | 13      | 1        | 99.1    | 90      |
| 2      | 10              | N end, E side, +300 ft  | 18    | 126.9     | 114.7     | 10.7    | 1        | 91.4    | 90      |
| 3      | 10              | N end, E side, +50 ft   | 18    | 134.3     | 120.9     | 11.1    | 1        | 96.3    | 90      |
| 4      | 10              | N end, center, +75 ft   | 17    | 139.4     | 122.8     | 13.5    | 1        | 97.8    | 90      |
| 5      | 10              | N end, W side, +100 ft  | 17    | 137.2     | 121.5     | 12.9    | 1        | 96.8    | 90      |
| 6      | 10              | N end, E side, +150 ft  | 18    | 134.6     | 121.1     | 11.2    | 1        | 96.5    | 90      |
| 7      | 10              | N end, W side, +165 ft  | 18    | 136.5     | 123.9     | 10.2    | 1        | 98.7    | 90      |
| 8      | 10              | N end, center, +140 ft  | 18    | 140.4     | 122.4     | 14.7    | 1        | 97.5    | 90      |
| 9      | 10              | N end, E side, +280 ft  | 18    | 139.7     | 124       | 12.7    | 1        | 98.8    | 90      |
| 10     | 10              | N end, center, +250 ft  | 17    | 139.1     | 127.2     | 9.3     | 2        | 98.8    | 90      |
| 11     | 10              | N end, center, +160 ft  | 17    | 139.8     | 123.4     | 13.3    | 1        | 98.3    | 90      |
| 12     | 10              | N end, W side, +60 fr   | 16    | 135.2     | 120.6     | 12.1    | 1        | 96.1    | 90      |
| 13     | 10              | N end, center, +170 ft  | 17    | 132.3     | 121.1     | 9.2     | 1        | 96.5    | 90      |
| 14     | 10              | N end, W side, +220 ft  | 17    | 137.6     | 124.5     | 10.5    | 1        | 99.2    | 90      |
| 15     | 10              | N end, E side, +290 ft  | 18    | 134.2     | 123       | 9.1     | 1        | 98      | 90      |
| 16     | 10              | N end, E side, +300 ft  | 19    | 128.1     | 119.6     | 7.1     | 1        | 95.3    | 90      |
| 17     | 10              | N end, E side, +150 ft  | 18    | 120.9     | 113.2     | 6.8     | 1        | 90.2    | 90      |
| 18     | 10              | N end, center, +35 ft   | 16    | 138       | 126.9     | 8.8     | 2        | 98.5    | 90      |
| 19     | 10              | N end, W side, +20 ft   | 16    | 138.3     | 127.1     | 8.8     | 2        | 98.7    | 90      |
| 21     | 10              | S end, center, +300 ft  | 16    | 140.1     | 123       | 13.9    | 2        | 95.5    | 90      |
| 22     | 10              | S end, E side, +350 ft  | 16    | 140.1     | 124.3     | 12.7    | 2        | 96.5    | 90      |
| 23     | 10              | N end, E side, +200 ft  | 17    | 138.6     | 121.4     | 14.2    | 2        | 94.3    | 90      |
| 24     | 10              | N end, E side, +265 ft  | 16    | 131.6     | 114.6     | 14.8    | 1        | 91.3    | 90      |

ed. As a consignment is a consiste public and coroline of copies on a constant as described in corony of the percentage against a operation and a regarders upone v 1801 - 2812 Manufall Turing 8 (benefiting the All Other Inserted

Corporate \* 777 Chrysler Drive \* Burlington, WA 98233 \* Phone 360.755.1990 \* Fax 360.755.1980 SW Region . 2118 Black Lake Blvd. S.W. Olympia, WA 98512 . Phone 360.534.9777 . Fax 360.534.9779 NW Region . 805 Dupont Struct, Suite 5 . Bellingham. WA 98225 . Phone 360.647.6061 . Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

#### Engineered Assurance Since 1981

|    |    |                        |    |       |       |      |   | •    | •  |
|----|----|------------------------|----|-------|-------|------|---|------|----|
| 25 | 10 | N end, E side, +110 ft | 18 | 139.4 | 123   | 13.3 | 2 | 95.5 | 90 |
| 26 | 10 | N end, center, +75 ft  | 17 | 135.2 | 118.2 | 14.4 | 2 | 91.8 | 90 |
| 27 | 10 | N end, center, +225 ft | 17 | 140.9 | 126.8 | 11.1 | 2 | 98.4 | 90 |

#### Remarks:

MTC arrived onsite per client's request to test for compaction of imported fill.

Location references are same as report on 6/7/16. Compaction was obtained for all locations tested. Contractor was notified of results.

## **Images:**



UPLOADED: 06/09/2016 16:32:00

REPORTED BY: Greg Moran REVIEWED BY: Curtis Shear, Project Manager

All controlled in a controlled in the control of th

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989

SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779

NW Region • 805 Dupont Struct, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

# All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37367

**CLIENT** Ram Construction

DATE

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT #

06/10/2016

Bellingham WA

### **Inspection Information:**

Inspection Date: 06/10/2016 Time Onsite: 9:15 AM Weather Conditions: cloudy, 57 deg

Inspection Performed: IPD-Soil Compaction

Field Data:

Work / Location:

Landfill soil storage (pre-load)

Gauge Standard MS:

9766

Equipment ID & Serial #:

CPN MC-1, Ser. #MD20906738

Gauge Standard DS:

32714

**Test Samples:** 

Sample #: Description: Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 Silty sand with gravel | 125.5 | 9.4%, 0% oversize  |
|------------------------------------|-------|--------------------|
| 2. B16-0536 Silty sand with gravel | 128.8 | 8.5%, 10% oversize |

**TEST METHOD** 

#### ■ ASTM D-1557 /AASHTO T-180

### In Place Density Test Results (ASTM D-6938):

| Test # | Mode /<br>Depth | <b>Location of Test</b> | Elev. | Wet Dens. | Dry Dens. | Moist % | Sample # | % Comp. | % Reqd. |
|--------|-----------------|-------------------------|-------|-----------|-----------|---------|----------|---------|---------|
| 1      | 10              | N end, W side, +300 ft  | 17    | 138.9     | 120.7     | 15.1    | 1        | 96.2    | 90      |
| 2      | 10              | N end, E side, +315 ft  | 17    | 139       | 125       | 11.2    | 1        | 99.6    | 90      |
| 3      | 10              | N end, E side, +100 ft  | 17    | 137.4     | 124.8     | 10.1    | 1        | 99.4    | 90      |
| 4      | 10              | N end, center, +20 ft   | 16    | 128.4     | 117.5     | 9.3     | 1        | 93.6    | 90      |
| 5      | 10              | S end, W side, +350 ft  | 15    | 137.8     | 118.5     | 16.3    | 1        | 94.4    | 90      |
| 6      | 10              | S end, W side, +200 ft  | 15    | 137.7     | 119.8     | 14.9    | 1        | 95.5    | 90      |
| 7      | 10              | S end, W side, +20 ft   | 15    | 138.8     | 122.3     | 13.5    | 1        | 97.5    | 90      |
| 8      | 10              | N end, E side, +120 ft  | 18    | 138.1     | 119.5     | 15.6    | 1        | 95.2    | 90      |
| 9      | 10              | N end, W side, +150 ft  | 18    | 131.6     | 115.5     | 13.9    | 1        | 92      | 90      |
| 10     | 10              | N end. E side, +330 ft  | 18    | 133.3     | 115.2     | 15.7    | 1        | 91.8    | 90      |
| 11     | 10              | N end, E side, +300 ft  | 18    | 137.8     | 121.2     | 13.7    | 1        | 96.6    | 90      |
| 12     | 10              | N end, W side, +160 ft  | 20    | 137.9     | 118.1     | 16.8    | 1        | 94.1    | 90      |
| 13     | 10              | N end, central, +175 ft | 18    | 140.1     | 124.6     | 12.4    | 1        | 99.3    | 90      |
| 14     | 10              | N end, E side, +135 ft  | 18    | 134       | 119.5     | 12.1    | 1        | 95.2    | 90      |
| 15     | 10              | N end, W side, +50 ft   | 18    | 133.1     | 117.5     | 13.3    | 1        | 93.6    | 90      |
| 16     | 10              | S end, W side, +375 ft  | 16    | 129.7     | 114.6     | 13.2    | 1        | 91.3    | 90      |
| 17     | 10              | S end, E side, +300ft   | 16    | 134.2     | 119.1     | 12.7    | 1        | 94.9    | 90      |
| 18     | 8               | Center divide           | 16    | 138.9     | 125.4     | 10.8    | 1        | 99.9    | 90      |

□ Native Soils

Soils consistent with Proctor

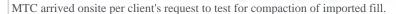
• Yes O No

Soils found to be firm and stable; and to the best of our

• Yes O No

knowledge, meet compaction Contractor notified of results

Yes O No


#### Remarks:

All contracts and contract the contract of the

Corporate • 777 Chrysler Brive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1989
SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779
NW Region • 805 Dupont Street, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981



All areas tested met compaction requirements. Contractor was notified of results.

Location descriptions are same as reported on 6/7/16.

Contractor reported compaction testing no longer needed after today.

### **Images:**



UPLOADED: 06/10/2016 16:10:00

REPORTED BY: Greg Moran REVIEWED BY: Curtis Shear, Project Manager

All controlled in a controlled in the control of th

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region • 805 Dupont Struct, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

Geotechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981

## All American - Cornwall - 16W002-01R - IPD-Soil Compaction: Report #D37514

**CLIENT** Ram Construction DATE 07/08/2016

**PROJECT LOCATION** Dead end of Cornwall / near beach access

PERMIT#

Bellingham WA

#### **Inspection Information:**

**Inspection Date:** 07/08/2016 Time Onsite: 1215 Weather Conditions: Partly Sunny

**Inspection Performed:** 

IPD-Soil Compaction

**Field Data:** 

Work / Location: Hilton Avenue - Building Pad **Equipment ID & Serial #:** 

**Gauge Standard MS:** 

Troxler 3430D, Ser. #19286 Gauge Standard DS:

**Test Samples:** 

Sample #: Description: Proctor Value(pcf): Optimum Moisture and Oversize Rock Correction:

| 1. B16-0536 Silty sand with gravel | 125.5 | 9.4%, 0% oversize  |
|------------------------------------|-------|--------------------|
| 2. B16-0536 Silty sand with gravel | 128.8 | 8.5%, 10% oversize |
| 3. B16-0536 Silty sand with gravel | 134.1 | 7.1%, 25% OS       |

TEST METHOD

#### △ ASTM D-1557 /AASHTO T-180

## In Place Density Test Results (ASTM D-6938):

| T           | est#                                                                                                 | Mode /<br>Depth | <b>Location of Test</b> | Elev. | Wet Dens. | Dry Dens.            | Moist %                | Sample # | % Comp. | % Reqd. |
|-------------|------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-------|-----------|----------------------|------------------------|----------|---------|---------|
|             | 1                                                                                                    | 8"              | gL A/10                 | AFG   | 139       | 133                  | 4.5                    | 3        | 99.2    | 95      |
|             | 2                                                                                                    | 8"              | gL A/7                  | AFG   | 132       | 127                  | 3.9                    | 2        | 98.6    | 95      |
|             | 3                                                                                                    | 8"              | gL A/5                  | AFG   | 134.7     | 129.5                | 4                      | 3        | 96.6    | 95      |
|             | 4                                                                                                    | 6"              | gL A/3                  | AFG   | 135.7     | 130.2                | 4.2                    | 3        | 97.1    | 95      |
|             | Native Soils Soils consistent with Proctor                                                           |                 |                         |       |           |                      | <ul> <li>Ye</li> </ul> | es O No  |         |         |
| $\boxtimes$ | Imported Fills  Soils found to be firm and stable; and to the best of our knowledge, meet compaction |                 |                         |       | of our    | <ul><li>Ye</li></ul> | es O No                |          |         |         |

#### Remarks:

MTC onsite as requested to perform compaction testing of material placed at the proposed building site after installation of stone columns. MTC observed upon arrival that material had been placed snd compacted prior to arrival

Upon arrival, MTC met with Bob from RAM construction who discussed the placement and location of tests.

MTC performed tests along the A line at gL 10, 7,5,3.

All tests met or exceeded the required 95% compaction. Contractor was notified of results.

Contractor notified of results

#### **Images:**

ed. As a consignment is a sciencial public and resolves all repensive actual of a describing as present a second and present and a second se

Corporate \* 777 Chrysler Drive \* Burlington, WA 98233 \* Phone 360.755.1990 \* Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region . 805 Dupont Struct, Suite 5 . Bellingham. WA 98225 . Phone 360.647.6061 . Fax 360.647.8111

Visit our website: www.mtc-inc.net

Yes

O No

Geolechnical Engineering & Consulting \* Special Inspection \* Materials Testing \* Environmental Consulting

Engineered Assurance Since 1981





UPLOADED: 07/08/2016 13:00:00

Project site
Photo looking south along A line shows location of compaction tests.

REPORTED BY: Meghan Hallam REVIEWED BY: Curtis Shear, Project Manager

All controls and in a description of the control of

Corporate • 777 Chrysler Drive • Burlington, WA 98233 • Phone 360.755.1990 • Fax 360.755.1980 SW Region • 2118 Black Lake Blvd. S.W. • Olympia, WA 98512 • Phone 360.534.9777 • Fax 360.534.9779 NW Region • 805 Dupont Struct, Suite 5 • Bellingham, WA 98225 • Phone 360.647.6061 • Fax 360.647.8111

# **Photographic Log**



| Project No.:      | 001037.070                                                  | Report No.: | 1       |
|-------------------|-------------------------------------------------------------|-------------|---------|
| Client/Owner:     | Port of Bellingham                                          | Date:       | 5/30/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpile Tra | ansfer      |         |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington            |             |         |
| Weather Condition | s: Sunny, 60's F                                            |             |         |
| Prepared By:      | Sean Gertz, E.I.T. Reviewed                                 | Зу:         |         |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. No construction activities were observed today; this visit was simply to observe the current conditions on the site.

### **Observations and Recommendations**

Upon arrival at the site, I observed the gates locked and no activity occurring due to the Memorial Day holiday. At the time of my visit, the asphalt had been pulverized in place and the vegetation on site had been mulched and spread around the areas of the proposed soil stockpiles. Ecology blocks had been placed around site features that are to be protected, though it was noted that one settlement monitoring point (SSM-5) had been destroyed beyond repair. A wheel wash was observed to be on site, but not yet operational.

Because the contractor (RAM Construction), had not received the most recent drainage improvements plan (5/25/16 revision), the storm drain at the south end of the site had not been plugged and the culvert along the southwestern edge of the work area had not been installed.

Equipment observed on-site: one (1) Hitachi excavator, one (1) John Deere bulldozer, and one (1) John Deere front-end loader

Visitors: -naAttachments: Site Photos 1-4

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



1. Destroyed settlement survey monument SSM-5.



2. Looking north from southeast end of site.





Looking north from southwest end of site. Asphalt has been ripped and vegetation has been mulched and left in place.



4. Looking south from southwest end of site. Vegetation has been mulched and left in place.





| Project No.:      | 001037.070                                                   | Report No.: | 2       |
|-------------------|--------------------------------------------------------------|-------------|---------|
| Client/Owner:     | Port of Bellingham                                           | Date:       | 5/31/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpile Tran | nsfer       |         |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington             |             |         |
| Weather Condition | ns: Sunny, 60's F                                            |             |         |
| Prepared By:      | Sean Gertz, E.I.T. Reviewed B                                | y:          |         |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. I arrived on site after the conclusion of the 8:30 AM weekly construction meeting at the Port of Bellingham office, around 9:30 AM.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of constructing the wheel wash, near the entrance at the north end of the site. Throughout the day, trucks arrived with gravelly sand material for constructing the ramps leading up to the wheel wash. Construction of the wheel wash was not completed by the end of the day and the contractor expects it to be completed tomorrow, before beginning to import stockpile material from the Hilton Avenue site on Thursday.

While on site, I observed the contractor install a temporary culvert (approximately 50 L.F.) in the drainage ditch that runs between the two proposed stockpiles. The temporary culvert was installed at the approximate location of CP-7 (on page C-2). Based on conversations with the contractor, it is understood that this culvert will be used for the haul route through the site. I also observed the installation of a permanent culvert at the south end of the site. The contractor began installation of the silt fencing around the stockpile areas, and plans to have the silt fence installation completed by the time they begin transferring the stockpile material. The contractor also began consolidating the pulverized asphalt into an area approximately 10 ft smaller than the embankment footprint on all sides.

Because the contractor, had not received the most recent drainage improvements plan (5/25/16 revision), the storm drain at the south end of the site had not been plugged and the culvert along the southwestern edge of the work area had not been installed. Settlement monitoring point, SSM-5 has not been replaced.

Equipment observed on-site: one (1) Hitachi excavator, one (1) John Deere bulldozer, and one (1) John Deere front-end loader, one (1) Vibromax smooth drum roller

Visitors: -naAttachments: Attachment 1, Site Photo 5

#### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.

Signed: Sem (1873)



5. Temporary culvert installed between the two stockpiles.



| Project No.:      | 001037.070                                             | Report No.: | 3      |
|-------------------|--------------------------------------------------------|-------------|--------|
| Client/Owner:     | Port of Bellingham                                     | Date:       | 6/1/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpil | e Transfer  |        |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington       |             |        |
| Weather Condition | s: Cloudy - Rain in Evening, 60's F                    |             |        |
| Prepared By:      | Sean Gertz, E.I.T. Review                              | ved By:     |        |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. I arrived on site at approximately 7:30 AM, and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of constructing the wheel wash, near the entrance at the north end of the site. Throughout the day, trucks arrived with gravelly sand material for constructing the ramps leading up to the wheel wash, which was completed by the end of the day. While on site, I observed the contractor install silt fencing around the southern stockpile and consolidate the pulverized asphalt in preparation of bringing in fill material.

The contractor has received the most recent drainage improvements plan (5/25/16 revision) as of this morning, and by the end of the day, a plug had been installed in the storm drain at the southern end of the site. The culvert added to the drainage plan in the most recent revision has not yet been installed, but the existing berm has been excavated so that groundwater flows freely through the area where the culvert is to be installed.

Throughout the day, the contractor made several requests for changes to the compacted fill plan. It was requested to move the edge of the embankment along the southeast edge of the site to the east approximately 10 ft so that it is not in the middle of the existing drainage ditch. After discussion with Dave Pischer, it was decided that it would be best to leave the edge of the embankment as is shown on the plans. Additionally, the contractor requested to move the edge of the embankment at the southern end of the site approximately 25 ft to the north to avoid filling around two telephone poles. This change was agreed to be reasonable. The contractor also requested to move the area of the proposed ramp that crosses over the culvert for use in the access road north to the area where the contractor actually constructed the culvert. This was also agreed to be a reasonable change. The stormwater outlet detail on page C-5 of the plan set instructed the contractor to place silt fencing around the stormwater outlet. The contractor pointed out that installing the silt fence around the outlet would cause quite a bit of ground disturbance and was not practical. The contractor instead opted to construct a quarry spall dam in the existing drainage ditch, just upstream from the stormwater outlet.

Equipment observed on-site: one (1) Hitachi excavator, one (1) John Deere bulldozer, and one (1) John Deere front-end loader, one (1) Vibromax smooth drum roller

| Visitors: -na- |                                |   |
|----------------|--------------------------------|---|
| Attachments:   | Attachment 1, Site Photos 6-10 |   |
|                |                                | _ |

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



# **DRAFT** Construction Field Report



6. Culvert installed at location of approach ramp to stockpile.



7. Ditches have been connected for stormwater flow. A culvert was installed here after this photo was taken.



Early Action Completion Report Cornwall Avenue Landfill Selected Site Photographs June 1, 2016

Figure C\_/



8. Quarry spall check dam installed instead of silt fence.



9. Silt fence installed around perimeter of stockpile areas.



12/20/16 (\edmdata01\projects\001\037\R\Wove Hilton Avenue Soil\Construction Completion\Completion\Completion Report\Appendix C\Figure C-6 060116.docx



| Project No.:      | 001037.070                                        | Report No        | .: 4   |
|-------------------|---------------------------------------------------|------------------|--------|
| Client/Owner:     | Port of Bellingham                                | Date:            | 6/2/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Sto | ockpile Transfer |        |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washingto   | n                |        |
| Weather Condition | s: Scattered showers in the AM, Partly Cloudy PM  | M, 60's F        |        |
| Prepared By:      | Sean Gertz, E.I.T.                                | Reviewed By:     |        |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. I arrived on site at approximately 8:00 AM, and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of completing construction of the silt fence around the southern stockpile and began construction of the silt fence around the northern stockpile. At around 8:30 AM, truck and trailers and side-dump trucks began arriving with the stockpile fill material, which generally appeared to consist of a moist, gray-brown sand with silt and gravel to silty sand with gravel, with some intermittent chunks of clay. The trucks were arriving at approximately 30 trucks per hour. As the trucks dumped material, the contractor used a bulldozer to spread the material around the area of the southern stockpile, and began using a smooth drum vibratory roller to compact the material at around 10 AM.

The contractor's density testing subcontractor (MTC) arrived around noon to begin testing the density of the material for compaction. After conversations with MTC's representative (Victor), I learned that they will not have proctor results for the fill material until Monday. I requested that Victor take frequent density readings at approximately 150 ft spacing.

By the end of the day, the contractor claims to have placed and compacted approximately 5,100 cubic yards of fill material in the southern stockpile. According to Victor, the dry density results ranged from 106 to 121 pcf, with water content ranging from 7% to 12%. The presence of organics, construction debris, and intermittent clay in the fill material is likely causing inconsistent density readings. Throughout the day, I observed the embankment material to perform well under the heavy truck traffic, showing only minimal (1-2 inches) of pumping, and minor rutting. No material was placed in the north stockpile today.

Equipment observed on-site: one (1) Hitachi excavator, one (1) John Deere bulldozer, and one (1) John Deere front-end loader, one (1) Vibromax smooth drum roller

| Visitors: -na- |                             |
|----------------|-----------------------------|
| Attachments:   | Attachment 1, Site Photo 11 |

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.

Signed: See Constant



11. Looking from existing stockpile toward the southern new stockpile.



| Project No.:      | 001037.070                                               | Report No.: | 5      |  |
|-------------------|----------------------------------------------------------|-------------|--------|--|
| Client/Owner:     | Port of Bellingham                                       | <br>Date:   | 6/6/16 |  |
| Project Name:     | Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile T |             |        |  |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington         |             |        |  |
| Weather Condition | ns: Partly cloudy, 70's F                                |             |        |  |
| Prepared By:      | Sean Gertz, E.I.T. Reviewed                              | d By:       |        |  |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. I arrived on site at approximately 11:30 AM, and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of hauling, placing, and compacting the fill material in the location of the north stockpile, which generally appeared to consist of a moist, gray-brown sand with silt and gravel to silty sand with gravel, with some intermittent chunks of clay and some organics. As the trucks dumped material, the contractor used a bulldozer to spread the material around and a smooth drum vibratory roller to compact the material in lifts.

The contractor's density testing subcontractor (MTC) was on site when I arrived, and had been testing the density of the material for compaction. Comparing with the proctor results that MTC had received today, the material the contractor has placed so far does not pass 90% compaction using the rock corrected max density value. After conversations with MTC's representative, it was decided that because the material being brought to the site didn't appear to be very gravelly, it would be appropriate to use the original max density value of approximately 125 pcf instead of the rock corrected value of 132 pcf.

By the end of the day, the contractor claims to have placed and compacted a total of approximately 22,000 cubic yards of fill material between the two stockpiles to date. According to MTC, the density tests have all shown the material to be passing 90% compaction, based on the uncorrected max density value. Throughout the day, I observed the embankment material to perform well under the heavy truck traffic, showing only minimal (2 inches) of pumping, and minor rutting. At one point in the afternoon, I observed the contractor placing material in lifts up to 2 ft thick, at which point, I recommended that the contractor make their lifts thinner in order to achieve better compaction. Despite the excessive lift thickness in this area, the material still managed to achieve 90% compaction, and when proof-rolled with a fully loaded dump truck, only minimal deformation was observed. With the exception of a small amount of material placed to improve the haul road, stockpile material was only placed in the north stockpile today.

It was also observed that a truck going around the haul road had cut a corner too sharply and tore through the plastic stockpile cover in the northern corner of the site.

Equipment observed on-site: one (1) Hitachi excavator, one (1) John Deere bulldozer, and one (1) John Deere front-end loader, one (1) Vibromax smooth drum roller

| Visitors: -na- |                     |  |  |
|----------------|---------------------|--|--|
| Attachments:   | Site Photos 12-13   |  |  |
| ,              | 0.10 1 110100 12 10 |  |  |

#### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.



# **DRAFT** Construction Field Report

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



12. Area where cap material was damaged by truck traffic.



13. Looking south from top of north existing stockpile.





| Project No.:      | 001037.070                                                   | Report No.: | 6      |
|-------------------|--------------------------------------------------------------|-------------|--------|
| Client/Owner:     | Port of Bellingham                                           | Date:       | 6/7/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpile Tran | nsfer       |        |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington             |             |        |
| Weather Condition | ns: Partly Cloudy, 60's F                                    |             |        |
| Prepared By:      | Sean Gertz, E.I.T. Reviewed B                                | y:          |        |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. We arrived on site at approximately 10:00 am, after the conclusion of the 8:30 am weekly construction meeting at the Port of Bellingham office, and made the following observations.

# **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of filling with truck and trailers and side-dump trucks on-site with the stockpile fill material from the Hilton Avenue borrow site. The materials consisted of a moist to wet, gray-brown sand with silt and gravel to silty sand with gravel, with some intermittent chunks of clay. By late morning the majority of the import soil consisted of a wet, gray brown, sandy silt/clay with gravel. As the trucks dumped material, the contractor used a bulldozer to spread the material around the area of the northern stockpile, and used a smooth drum vibratory roller to compact the material.

After walking the site and observing that the drainage berm had not been constructed and that installation of the silt fence had not been completed around the northern stockpile, we discussed the issue with the contractor, and he agreed to complete these tasks before the next rain.

The contractor's density testing subcontractor (MTC) was on site when I arrived, and claimed to have been on site since 9:00 am to conduct fill density testing of the material for compaction. According to MTC, the dry density results all exceeded 90% of the max dry density, based on their proctor results. Most of tests were above optimum moisture content. Borrow soil import included the presence of sod and other fine organics along with some wood, and construction debris consisting of plastic pipe, plastic tarps, metal pipes, etc.

We observed the embankment material generally to perform well under the heavy truck traffic, some areas of rutting and subgrade pumping occurred in the upper lifts of the embankment fill where the wet sandy silt/clay soils were placed and compacted. The previously damaged settlement monitoring point, SSM-5 was replaced today by Wilson Engineering.

Equipment observed on-site: one (1) Hitachi excavator (not working), two (2) John Deere bulldozer, and one (1) John Deere front-end loader (not working), one (1) Vibromax smooth drum roller.

| Visitors: -na- |               |  |  |  |
|----------------|---------------|--|--|--|
| Attachments:   | Site Photo 14 |  |  |  |

#### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



# **DRAFT** Construction Field Report



14. Destroyed settlement survey monument SSM-5 has been replaced.

12/20/16 (\edmdata01\projects\001\037\R\Wove Hilton Avenue Soil\Construction Completion\Completion\Completion Report\Appendix C\Figure C-9 060716.docx



| Project No.:      | 001037.070                                         | Report No.:    | 7      |
|-------------------|----------------------------------------------------|----------------|--------|
| Client/Owner:     | Port of Bellingham                                 | Date:          | 6/8/16 |
| Project Name:     | Cornwall Avenue Landfill, Hilton Avenue Soil Stock | kpile Transfer |        |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington   |                |        |
| Weather Condition | s: Partly Cloudy, Rain Beginning at 3 PM, 60's F   |                |        |
| Prepared By:      | Sean Gertz, E.I.T. Re                              | viewed By:     |        |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. We arrived on site at approximately 8:30 am and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of filling with truck and trailers and side-dump trucks on-site with the stockpile fill material from the Hilton Avenue borrow site. The material placed today consisted of a wet, gray brown, sandy silt/clay with gravel. As the trucks dumped material, the contractor used a bulldozer to spread the material around the area of the northern stockpile, and used a smooth drum vibratory roller to compact the material.

The contractor's density testing subcontractor (MTC) arrived on site around 9:00 am to conduct fill density testing of the material for compaction. According to MTC, the dry density results all exceeded 90% of the max dry density, based on their proctor results today. Most of tests were above optimum moisture content. Borrow soil import included the presence of sod and other fine organics along with some wood, and construction debris consisting of plastic pipe, plastic tarps, metal pipes, etc.

We observed the embankment material generally to perform poorly under the heavy truck traffic, many areas of rutting and subgrade pumping occurred in the embankment fill where the wet sandy silt/clay soils were placed and compacted. During the time between 7 and 9 am, we observed three trucks get stuck and need the help of the bulldozer to get free. After discussing performance of the material with the contractor, they began placing material in the southern stockpile in order to give the northern stockpile time to stabilize. Around noon, the contractor switched back to placing material on the northern stockpile because the surface of the southern stockpile was also not performing well under the heavy truck traffic.

The drainage berm and silt fencing around the northern stockpile was still not completed by the end of the day.

Equipment observed on-site: one (1) Hitachi excavator (not working), two (2) John Deere bulldozer, and one (1) John Deere front-end loader (not working), one (1) Vibromax smooth drum roller.

Visitors: -naAttachments: Site Photos 15-18

### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



15. A stuck truck being pulled out by bulldozer.



16. Construction of southern stockpile. Note oversized piece in foreground.





17. Silt fence has fallen down. MTC technician in background.



18. Trucks getting stuck in compacted fill material.





| Project No.:      | 001037.070                                           | Report No.:  | 8      |
|-------------------|------------------------------------------------------|--------------|--------|
| Client/Owner:     | Port of Bellingham                                   | Date:        | 6/9/16 |
| Project Name:     | Cornwall Avenue Landfill , Hilton Avenue Soil Stockp | ile Transfer |        |
| Location:         | Cornwall Avenue Landfill, Bellingham, Washington     |              |        |
| Weather Condition | s: Partly Cloudy, Rain Beginning at 3 PM, 60's F     |              |        |
| Prepared By:      | Sean Gertz, E.I.T. Revie                             | ewed By:     |        |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. We arrived on site at approximately 8:15 am and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of filling with truck and trailers and side-dump trucks on-site with the stockpile fill material from the Hilton Avenue borrow site. The materials consisted of a wet, gray brown, sandy silt/clay with gravel. By late morning the majority of the import soil consisted of a moist to wet, gray-brown sand with silt and gravel to silty sand with gravel, with some intermittent chunks of clay. As the trucks dumped material, the contractor used a bulldozer to spread the material around the area of the southern stockpile, and began using a smooth drum vibratory roller to compact the material.

The contractor's density testing subcontractor (MTC) arrived on site around 9:00 am to conduct fill density testing of the material for compaction. According to MTC, the dry density results all exceeded 90% of the max dry density, based on their proctor results. Most of tests were above optimum moisture content. Borrow soil import included the presence of sod and other fine organics along with some wood, and construction debris consisting of plastic pipe, plastic tarps, metal pipes, etc. MTC collected a sample of the sandy silt/clay material in order to run a new proctor test since the material is clearly different than the sand with silt to silty sand material.

We observed the embankment material generally to perform better than the previous day under the heavy truck traffic, some areas of rutting and subgrade pumping occurred in the embankment fill where the wet sandy silt/clay soils were placed and compacted. Ram requested a meeting with Port of Bellingham representatives to discuss the difficulties of working with the sandy silt/clay material and the Port agreed to support the contractor if a change of tactics is needed to continue working with the material due to poor weather. During this meeting, the contractor also said they would remove a piece of existing stem wall that crosses one of the drainage ditches and affects the flow of stormwater.

Equipment observed on-site: one (1) Hitachi excavator (not working), two (2) John Deere bulldozer, and one (1) John Deere front-end loader (not working), one (1) Vibromax smooth drum roller.

| Visitors: -na- |      |
|----------------|------|
|                |      |
| Attachments:   | None |

### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



| Project No.:                                                              | 001037.070                                                       | Report No.: | 9       |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------|-------------|---------|--|
| Client/Owner:                                                             | Port of Bellingham                                               | Date:       | 6/10/16 |  |
| Project Name:                                                             | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpile Transfer |             |         |  |
| Location:                                                                 | Cornwall Avenue Landfill, Bellingham, Washington                 |             |         |  |
| Weather Conditions: Scattered showers in the AM, Partly Cloudy PM, 60's F |                                                                  |             |         |  |
| Prepared By:                                                              | Brian Christianson Reviewed B                                    | y:          |         |  |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. We arrived on site at approximately 8:00 AM, and made the following observations.

# **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of filling with truck and trailers and side-dump trucks on-site with the stockpile fill material from the Hilton Avenue borrow site. The materials consisted of a moist to wet, gray-brown sand with silt and gravel to silty sand with gravel, with some intermittent chunks of clay. By late morning the majority of the import soil consisted of a wet, gray brown, sandy silt/clay with gravel. As the trucks dumped material, the contractor used a bulldozer to spread the material around the area of the southern stockpile, and began using a smooth drum vibratory roller to compact the material.

Two visits were made to the borrow site at Hilton Avenue. It was estimated that the majority of the remaining borrow material will mostly be the wet, gray brown, sandy silt/clay soils. The majority of the site subgrade following the removal of the off haul is noted to be a gravelly sand to a sandy gravel with silt.

By late morning the south and north embankment(s) fill had been completed to approximately the designed compaction height. The exception is the north end of the south embankment and the south end of the north embankment where the haul road crosses over the temporary culvert along the central drainage ditch. These areas are within about 2 feet of final grade. The remainder of the day the mostly gray, wet, sandy clay soils was stockpiled on the east (side dumps) and west (truck and trailers) sides of the embankments to allow through haul down the center of the embankments of the haul trucks on the compacted stable soils. The contractor noted these soil will be grade into the design slopes following soil import.

The contractor will likely be close to finishing the soil hauling from Hilton Avenue from by the end of the day Saturday or next Monday. Final embankment grading will be done next week to shape the final fill slopes. Additionally, silt fencing, soil berms, and other storm water control structures will be completed.

The contractor's density testing subcontractor (MTC) arrived around 10:00 am to begin testing the fill density of the material for compaction. They left the site about mid-day for about two hours to cover another project. According to Victor, the dry density results were above 92% today. Most of tests were above optimum moisture content. Samples collected last week for proctor tests were delayed being run by the contractor according to MTC Victor. Borrow soil import included the presence of sod and other fine organics along with some wood, and construction debris consisting of plastic pipe, plastic tarps, metal pipes, etc.

We observed the embankment material generally to perform well under the heavy truck traffic, some areas of rutting and subgrade pumping occurred in the upper lifts of the embankment fill where the wet sandy silt/clay soils were placed and compacted.

See site photographs taken today at both Cornwall site and the Hilton Avenue borrow area for construction details.

Equipment observed on-site: one (1) Hitachi excavator (not working), two (2) John Deere bulldozer, and one (1) John Deere front-end loader (not working), one (1) Vibromax smooth drum roller.



# **DRAFT** Construction Field Report

| Project No.:   | 001037.070                                                   | Report No.: | 9       |
|----------------|--------------------------------------------------------------|-------------|---------|
| Client/Owner:  | Port of Bellingham                                           | Date:       | 6/10/16 |
| Project Name:  | Cornwall Avenue Landfill , Hilton Avenue Soil Stockpile Tran | nsfer       |         |
|                |                                                              |             |         |
| Visitors: -na- |                                                              |             |         |
| Attachments:   | Site Photos 19-22                                            |             |         |

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.

Signed: Sund Elluston



19. Both stockpiles viewed from top of north existing stockpile.



20. Construction of southern stockpile.





21. Looking south from top of north stockpile.



22. Looking west between the two stockpiles. Note silt fence has been repaired.





| Project No.:                              | 001037.070                                                  | Report No.: | 10      |  |
|-------------------------------------------|-------------------------------------------------------------|-------------|---------|--|
| Client/Owner:                             | Port of Bellingham                                          | Date:       | 6/21/16 |  |
| Project Name:                             | Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile Tran | nsfer       |         |  |
| Location:                                 | Cornwall Avenue Landfill, Bellingham, Washington            |             |         |  |
| Weather Conditions: Partly Cloudy, 60's F |                                                             |             |         |  |
| Prepared By:                              | Sean Gertz E.I.T. Reviewed B                                | y:          |         |  |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe placement of fill material to be imported from the All American Marine - Hilton Avenue site. We arrived on site at approximately 11:00 AM, and made the following observations.

### **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) had finished shaping the stockpiles and was in the process of installing erosion control blanket on the southern stockpile. At the time of my arrival, approximately a quarter of the southern stockpile had been covered, and no erosion control had been installed on the northern stockpile or the drainage berm. The erosion control blankets came in rolls and the contractor installed them so that there was a 3 to 4 inch overlap between each blanket, with staples approximately every 6 ft along the overlapping areas.

Since the last visit, the contractor had installed the drainage berm along the eastern edge of the project site and had stockpiled material to be used in filling in the low areas at the north end of the site to promote drainage to the stormwater pond on the eastern side of the site. The culvert that had been left incomplete was still incomplete, though the contractor informed me that it would be completed by the end of the day. I also noted the silt fence was falling down/missing in several areas around the site, and the contractor told me he would address this as well.

See site photographs taken today at the Cornwall site for construction details.

Equipment observed on-site: two (2) Hitachi excavators (not working), one (1) John Deere bulldozer (not working), one (1) John Deere front-end loader (not working), and one (1) Vibromax smooth drum roller (not working).

| Visitors: -na- |                   |
|----------------|-------------------|
| Attachments:   | Site Photos 23-26 |

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.

Signed: Sem (18)



23. Erosion control matting being installed on southern stockpile.



24. Incomplete culvert. Looking to the south.





25. Looking north toward northern stockpile from middle of south stockpile. Erosion control matting being placed.



26. Repairs made to damaged stockpile cover.





| Project No.:                              | 001037.070                                                      | Report No.: | 11      |  |
|-------------------------------------------|-----------------------------------------------------------------|-------------|---------|--|
| Client/Owner:                             | Port of Bellingham                                              | Date:       | 6/28/16 |  |
| Project Name:                             | Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile Transfer |             |         |  |
| Location:                                 | Cornwall Avenue Landfill, Bellingham, Washington                |             |         |  |
| Weather Conditions: Partly Cloudy, 60's F |                                                                 |             |         |  |
| Prepared By:                              | Sean Gertz E.I.T. Reviewed                                      | By:         |         |  |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe installation of drainage and erosion control features at the Cornwall Avenue site. We arrived on site at approximately 10:30 AM, and made the following observations.

# **Observations and Recommendations**

Upon arrival at the site, the contractor (RAM Construction) was in the process of installing erosion control blanket on the northern stockpile. At the time of my arrival, all but approximately a quarter of the northern stockpile had been covered, and the drainage berm had been nearly completely covered with erosion control as well. The erosion control blankets came in rolls and the contractor installed them so that there was a 3 to 4 inch overlap between each blanket, with staples approximately every 6 ft along the overlapping areas.

Since the last visit, the contractor had filled in the low areas at the north end of the site to promote drainage to the stormwater pond on the eastern side of the site. The contractor brought attention to the fact that there would still be a low area that would cause ponding at the north end of the site unless some of the existing asphalt was removed. The contractor said they would take this up with the Port. The culvert that had previously been left incomplete was now completed and covered with erosion control blanket. I noted that silt fence was still missing along the east and north edges of the northern stockpile. I discussed this with the contractor and told him that all areas of silt fencing need to be constructed per the approved plans.

While on-site, I observed Wilson Engineering install six settlement monuments on the top of the stockpiles, approximately in the planned locations.

See site photographs taken today at the Cornwall site for construction details.

Equipment observed on-site: two (2) Hitachi excavators (not working), one (1) John Deere bulldozer (not working), one (1) John Deere front-end loader (not working), and one (1) Vibromax smooth drum roller (not working).

Visitors: -naAttachments: Site Photos 27-31

# Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



27. Drainage berm has been constructed and covered with erosion control matting.



28. Looking north from top of northern stockpile. Low area is barely visible left of pavement.





29. Previously incomplete culvert has been completed.



30. Settlement survey monument installed on top of stockpile.





31. Temporary culvert has been removed and area has been covered with erosion control.

12/20/16 \\edmdata01\projects\001\037\R\Move Hilton Avenue Soil\Construction Completion\Completion Report\Appendix C\Figure C-18 062816.docx



| Project No.:                              | 001037.070                                                      | Report No.: | 12      |  |
|-------------------------------------------|-----------------------------------------------------------------|-------------|---------|--|
| Client/Owner:                             | Port of Bellingham                                              | Date:       | 8/22/16 |  |
| Project Name:                             | Cornwall Avenue Landfill, Hilton Avenue Soil Stockpile Transfer |             |         |  |
| Location:                                 | Cornwall Avenue Landfill, Bellingham, Washington                |             |         |  |
| Weather Conditions: Partly Cloudy, 60's F |                                                                 |             |         |  |
| Prepared By:                              | Jeremy Davis, PE Reviewed B                                     | y:          |         |  |

#### General

Landau Associates was on-site today at the request of the Port of Bellingham, to observe conditions of drainage and erosion control features at the Cornwall Avenue site. Landau Associates visited the site with Ben Howard (Port of Bellingham) and Bob Carbee (Ram Construction) after reviewing a brief punch list of tasks and items documenting completion of the stockpile transfer project. We arrived at the Cornwall Site together at approximately 10:30 AM, and made the following observations.

# **Observations and Recommendations**

Upon arrival at the site, we walked together to visually observe the following:

- Jute matting covering the soil stockpiles to provide erosion control
  - o Appeared to be in-place and secure over all areas of the soil stockpile
- Grass growth on the stockpiles to provide erosion control
  - o Grass growth was insufficient.
  - o Established growth estimated at approximately 10% of the stockpile area
  - Significant growth noted only along the western portions of the stockpile area
- Silt fence at the bottom of the stockpiles to protect the stormwater control conveyance ditches from fine particulates
  - o Silt fence was present and appeared to be functioning well along the toe of the stockpile
- Construction access road
  - o The road appeared clean; free of soil or debris

No work was occurring onsite during the visit. No equipment was observed onsite during the visit.

See attached photographs documenting vegetation conditions.

Visitors: Ben Howard (Port of Bellingham); Bob Carbee (Ram Construction)

Attachments: Site Photos 32-37

### Distribution:

Landau Associates' representatives are onsite solely to observe operations of the contractor identified, to form opinions about the adequacy of those operations, and report those opinions to our client. The presence and activities of our field representative do not relieve the contractor from its obligation to meet contractual requirements. The contractor retains sole responsibility for site safety and the methods, operations, and sequences of construction.

A preliminary copy of the Field Report may be provided solely as evidence that field observation was performed. Observations and/or conclusions and/or recommendations conveyed in the Field Report are subject to review and revision by Landau Associates' project manager or designee. A reviewed Field Report shall take precedence over a preliminary report.



32. Looking down the west side of the northern stockpile



33. Looking north from top of northern stockpile.





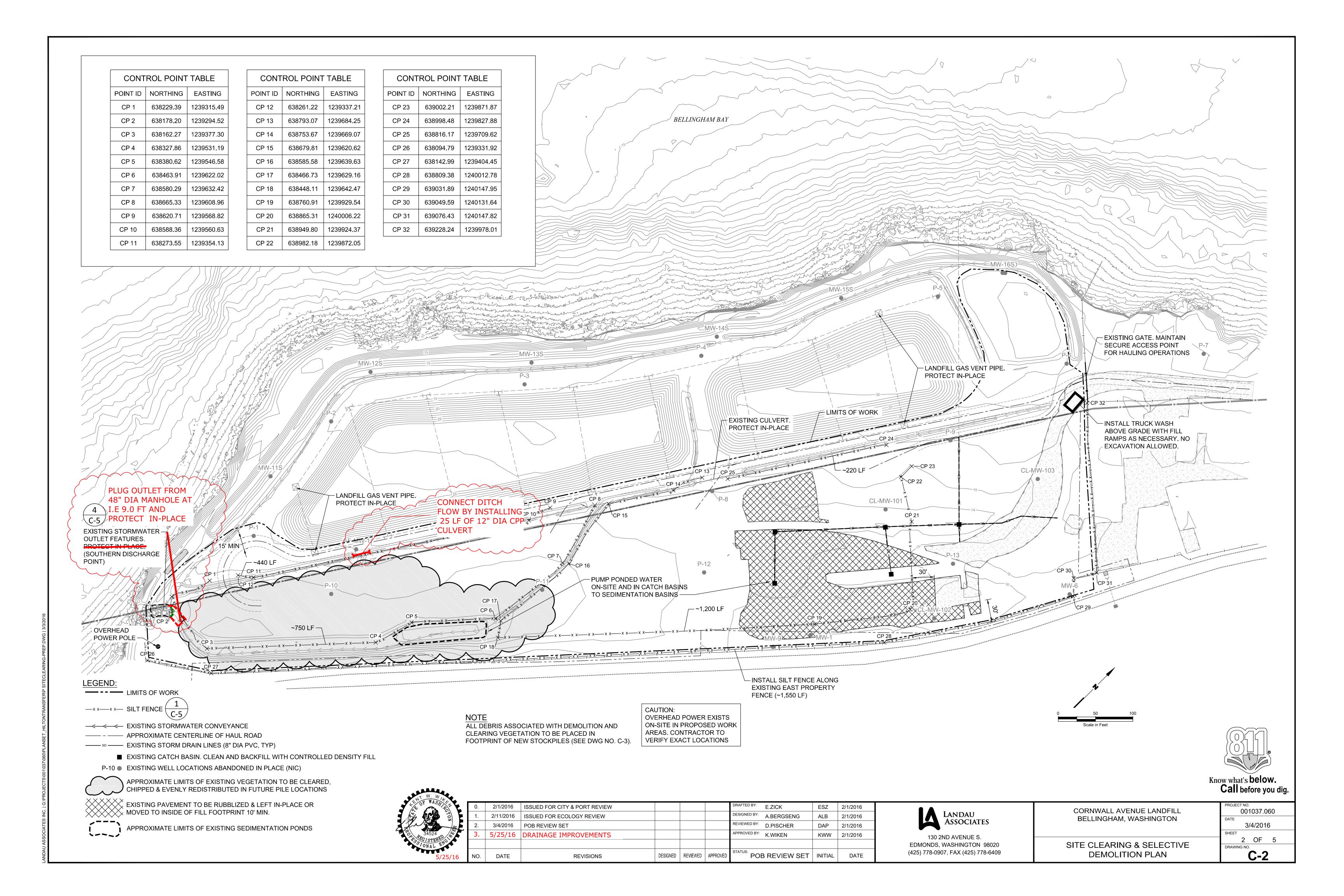
34. Looking northwest from top of northern stockpile.

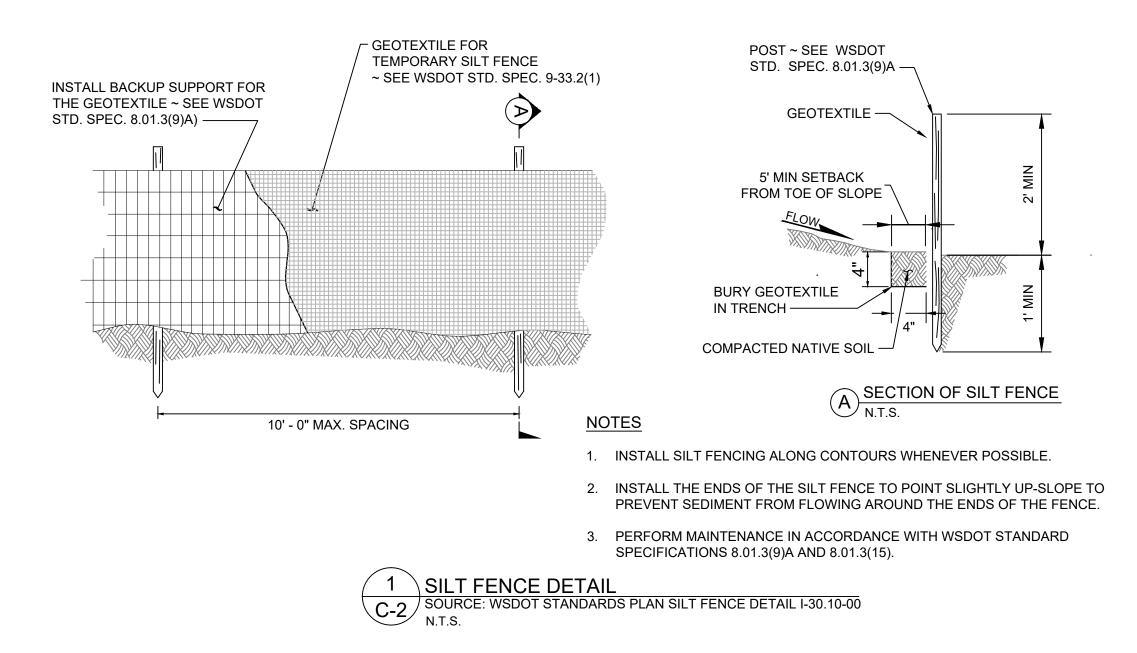


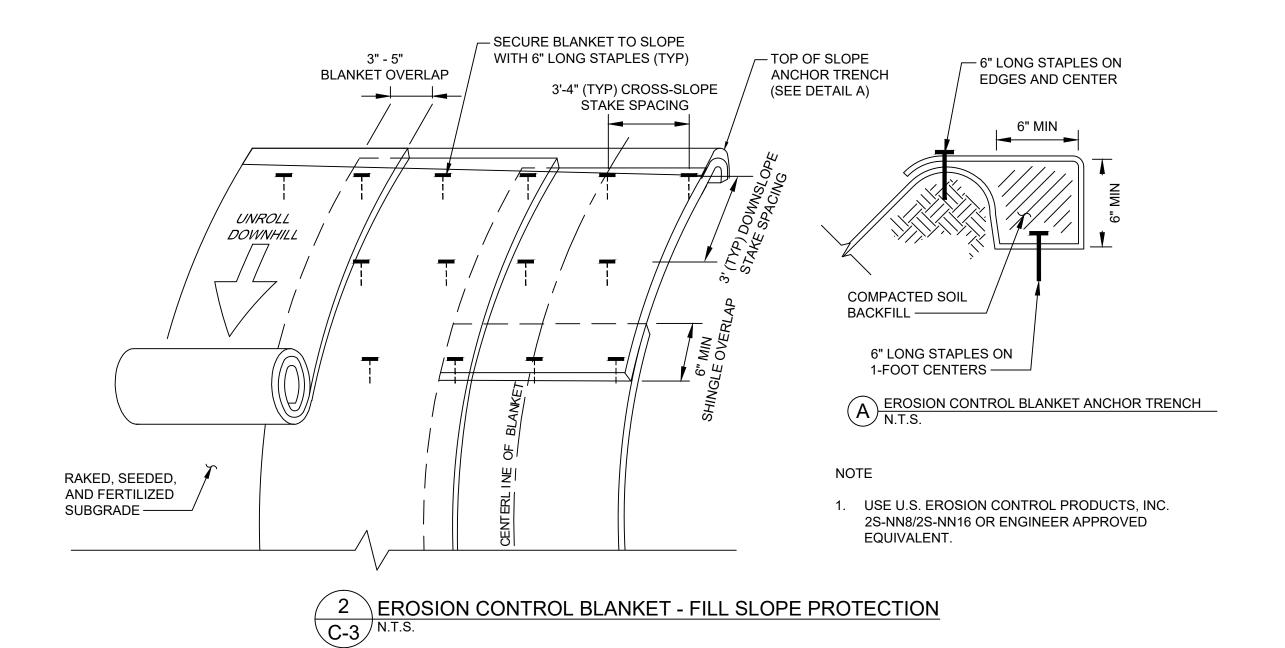
35. Looking south along the west edge of the northern stockpile.

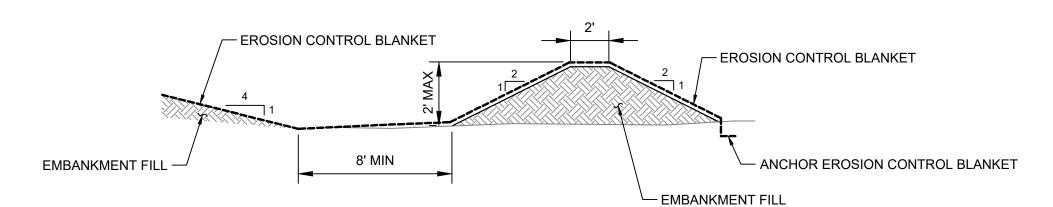





36. Looking south from top of northern stockpile. Grass seed has not been successful.





37. Looking west from top of northern stockpile.

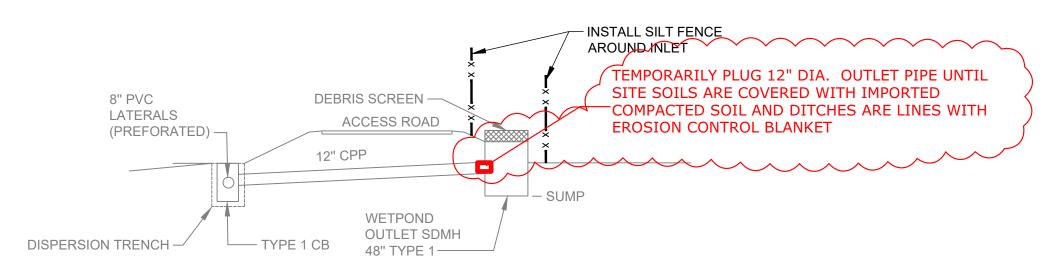



# **Revised Plans and Specifications**

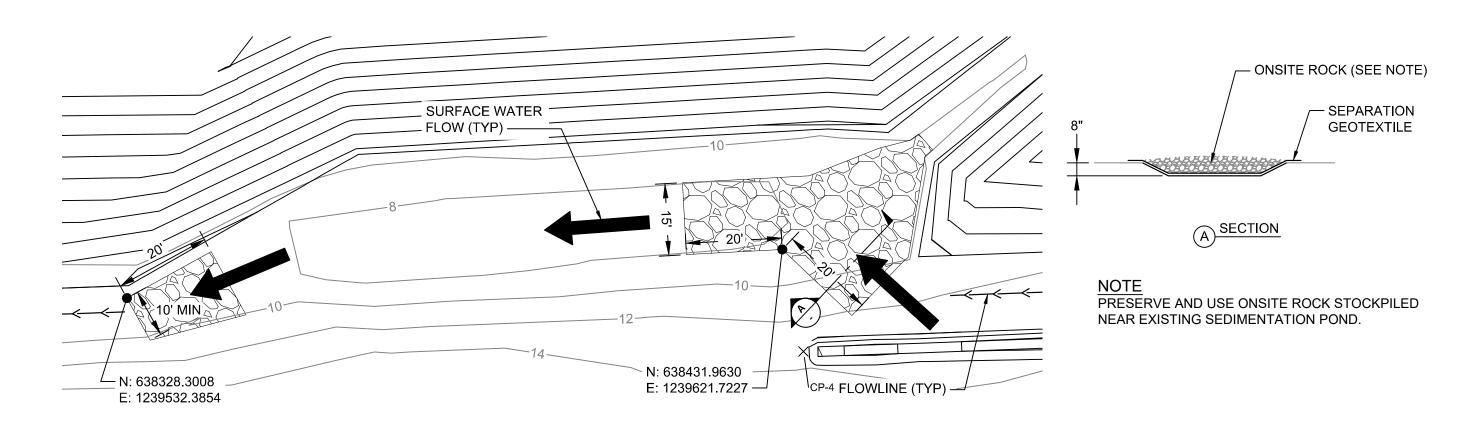


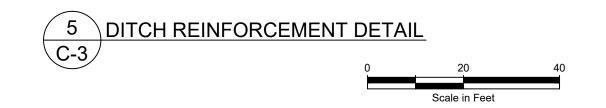







## NOTES


- 1. EROSION CONTROL BLANKET SHALL BE U.S. EROSION CONTROL PRODUCTS, INC. 2S-NN8/2S-NN16 OR ENGINEER APPROVED EQUIVALENT.
- 2. STAKES SHALL BE SPACED ON 3' X 3' GRID PATTERN.








4 EXISTING STORMWATER OUTLET PROTECTION DETAIL C-2 N.T.S.









| 0.  | 2/1/2016 | ISSUED FOR CITY & PORT REVIEW ISSUED FOR ECOLOGY REVIEW |          |          |          | DRAFTED BY: DESIGNED BY: | E.ZICK A.BERGSENG | ESZ        | 2/1/2016 |
|-----|----------|---------------------------------------------------------|----------|----------|----------|--------------------------|-------------------|------------|----------|
| 2.  | 3/4/2016 | POB REVIEW SET                                          |          |          |          | REVIEWED BY:             | D.PISCHER         | ALB<br>DAP | 2/1/2016 |
| 3.  | 5/25/16  | DRAINAGE PROTECTION                                     |          |          |          | APPROVED BY:             | K.WIKEN           | KWW        | 2/1/2016 |
|     |          |                                                         |          |          |          |                          |                   |            |          |
| NO. | DATE     | REVISIONS                                               | DESIGNED | REVIEWED | APPROVED | STATUS: POI              | B REVIEW SET      | INITIAL    | DATE     |



| CORNWALL AVENUE LANDFILL | PROJECT NO. |  |  |
|--------------------------|-------------|--|--|
| BELLINGHAM, WASHINGTON   | DATE 3      |  |  |
|                          | SHEET       |  |  |
|                          | 5           |  |  |
| DETAILS                  | DRAWING NO  |  |  |

PROJECT NO. 001037.060

DATE 3/4/2016

SHEET 5 OF 5

DRAWING NO. C-5

## **LAI Final Site Punchlist Review**

#### **Technical Memorandum**

**TO:** Jon Gibson, EIT

Port of Bellingham

FROM: Kent Wiken, PE

**DATE:** August 24, 2016

RE: Punchlist Review of Soil Transfer from Hilton Avenue Site

Cornwall Avenue Landfill Bellingham, Washington

Project No. 0001037.070 Task 071

#### Introduction

Ram Construction (Contractor) began transferring fill from the All American Marine (AAM) construction site on Hilton Avenue to the Cornwall Avenue Landfill (Site) on June 1, 2016 and continued through June 28, 2016. This fill transfer was to be completed in accordance with the plans and specifications prepared by Landau Associates, Inc. (LAI) and was as observed by LAI's field engineers during site preparation and fill placement.

On August 22, 2016, Jeremy Davis from LAI met with the Contractor superintendent, Bob Carbee, and Ben Howard with the Port of Bellingham (Port) to review the punchlist for completion of the transfer of fill from the Hilton Avenue site to the Site. On August 24, 2016, the Port provided the as-built surveys of both the AAM excavation site and the Cornwall Fill Areas. This technical memorandum outlines the observations made during that site visit and lists the outstanding items that remain to be completed.

#### **Punchlist Items**

The following punchlist items are provided in order of bid item requirements:

**Item No 1. Temporary Facilities and Required Plans** – The temporary facilities have been removed.

**Item No. 2 Construction Survey –** On August 24, 2015 the Port provided LAI the as-built survey information that they received from the Contractor.

**Item No. 3 Site Clearing and Demolition** – LAI verified that the asphalt pavement had been ripped and left in place and the catch basins had been backfilled with controlled density fill (CDF) as required by the specifications and shown on the drawing.

Item No. 4 Embankment Fill – The Contractor provided the Port with their calculation of the quantity of embankment fill placed. On August 24, 2016, the Port provided LAI this quantity calculation. The Contractor estimated the fill placed on the Site to be 41,355 cubic yards of compacted embankment fill. This quantity will be verified by LAI once we receive the requested CAD file from the Contractor's Surveyor (Pacific Surveying & Engineering, Inc.). It is understood, from discussions with the Port, that the Contractor requested that all the fill brought to the Site be compacted. This was approved by the Port on the condition that since



the Contractor did not provide an intermediate survey once the embankment fill reached the design height, the compacted fill above the estimated 32,100 cubic yards for embankment fill would be billed as "Stockpile Fill Soil" (see Item 5).

**Item No. 5 Stockpile Fill Soil** – As noted in Item 4 above, the quantity of compacted fill over 32,100 cubic yards would be billed as stockpile fill soil. Subtracting 32,100 cubic from 41,355 cubic yards placed (quantity to be verified by LAI) yields 9,255 in-place cubic yards of additional compacted soil.

**Item No. 6 Temporary Erosion and Sediment Control (TESC)** – See attached photos. In summary:

- 1. Silt Fence the silt fence remains on the Site and should remain in place and in good condition until vegetation growth has been established on the piles and ditches.
- 2. Erosion Control Blankets has been placed and anchored on the stockpiles and the channel with seeding underneath it. The jute matting is in good condition but vegetation growth is not adequate for Site stabilization.
- 3. Seeding LAI estimates that only 10% of the surface area has established vegetation. Vegetation appears limited to the northern and western slopes of the piles.
- 4. Grading and drainage
  - a. Because of the additional compacted fill (as discussed in Item 4 above), the finished grades are approximately 2 feet higher in elevation on the south pile and 4 feet higher in elevation on the north pile. The crown grades, however, parallel those shown on the plans to provide adequate drainage. The higher elevation piles are therefore acceptable.
  - b. According to the as-built survey provided, there is a depression on the north end of the piles. The construction plans require that the area northwest of the northern stockpile be graded in a way to promote overland sheet flow in the area leading to the engineered channel on the eastern boundary. The comparison of the as-built grades to the required plan grades is attached as Figure 1.

**Item No. 7 Excavate Borrow Soil, Load and Haul to Cornwall Avenue Landfill Site** – the haul route was left in good condition, there are no signs of tracked soil off the property.

### Remaining Items to be Completed by Contractor

Based on the Site walkover and review of the as-built plans provided, it is recommended the Contractor:

1. Provide additional non-contaminated compacted fill to the north end of the piles to be consistent with the plans. Transporting additional soil from the AAM site should not be allowed to avoid possible transport of contaminated soil that exists below the AAM site. After review of the AAM excavation as-built drawing, the excavation was close to the target elevations shown on Sheet C5 of the Construction Plans, and therefore any additional soil from the AAM site as a result of building earthwork should not be transported to the Site. Loose soil that has accumulated on the inside of the silt fences may be used as fill, but may

not be enough soil. It is important to eliminate depressions and provide adequate drainage on the north side to the eastern drainage ditch before the fall and winter rains. The Contractor should provide a plan to the Port for this work for approval prior to proceeding.

- 2. The loose soil accumulated on the upstream side of the silt fences (see photos 4 and 5 attached) must be removed or graded and vegetated before the silt fences can be removed.
- 3. Field design and implement additional seeding measures. Per Washington State Department of Ecology (Ecology) requirements (as outlined in the Construction Stormwater General permit [CSWGP]) and City of Bellingham requirements, the Site must have 80 percent coverage of established vegetation on the embankment fill and all disturbed ground, and 100 percent coverage of established vegetation in the ditches (areas not covered by rip rap). These requirements were included in the specifications:
  - a. The Specifications Section 31 25 00 includes:
    - i. Paragraph 1.01.C "Provide and install seeding and fertilizer for all areas disturbed by construction."
    - ii. Paragraph 1.01.E. "If the Owner, Engineer, or any governmental agency determines that Contractor's TESC measures are inadequate to meet the intent of applicable regulatory programs or the Contract Documents with regard to the control of surface water runoff or erosion or the prevention of environmental degradation as a result surface water runoff or erosion, Contractor shall field design and implement additional surface water runoff or erosion control measures that address the deficiencies at no additional cost to the Port."
    - iii. Paragraph 1.03.A requires the Contractor to comply with City of Bellingham Standards (specifically BMC 15.42.060.F.2.iv and v [Element 4 and Element 5] apply here),
    - iv. Paragraph 1.03.B requires the Contractor to have a Certified Erosion and Sediment Control Lead (CESCL) who shall oversee all elements of this specification including compliance with the CSWGP.
  - b. Section S10.A.1 of the CSWGP requires that the site undergo final stabilization. Final stabilization is defined as establishment of vegetative cover that prevents erosion. Ecology Stormwater Management Manual for Western Washington, Section 4-19, requires reseeding of any seeded areas that fail to establish at least 80 percent cover (100 percent cover for areas that receive sheet or concentrated flows).

Per the above requirements, the Contractor should provide a plan on how to establish the required grass growth to the Port for approval prior to proceeding. The Contractor also needs to provide documentation on the seed mix and fertilizer used.

4. Once the seeding is established and all other erosion and sediment control elements are complete and satisfactory to the Port, the Contractor should apply for a Notice of Termination (NOT) for their CSWGP. Once the NOT is obtained, the Contractor should remove the silt fence from the Site.

Upon receipt of the construction closeout items listed herein, LAI will prepare a construction report for the project which will include in progress photos, field reports, compaction testing, and documentation of as-built conditions.

This concludes our review of the work completed to date on the Site. Please contact me at (425) 329-0285 or kwiken@landauinc.com if you have any questions or concerns.

LANDAU ASSOCIATES, INC.

Kent Wiken, PE

Senior Associate Engineer

KWW/kes

[P:\001\037\R\MOVE HILTON AVENUE SOIL\CONSTRUCTION COMPLETION\LAI FINAL SITE WALKOVER 082216.DOCX]

Attachments: Figure 1 – TESC Photos (3 pages)

Figure 2 – North Area Grade Comparison





1. Top of pile, looking west toward IPAs. Jute matting and grass coverage is typical of 90% of the pile.



2. Top of pile looking southwest. Southern IPA in background.







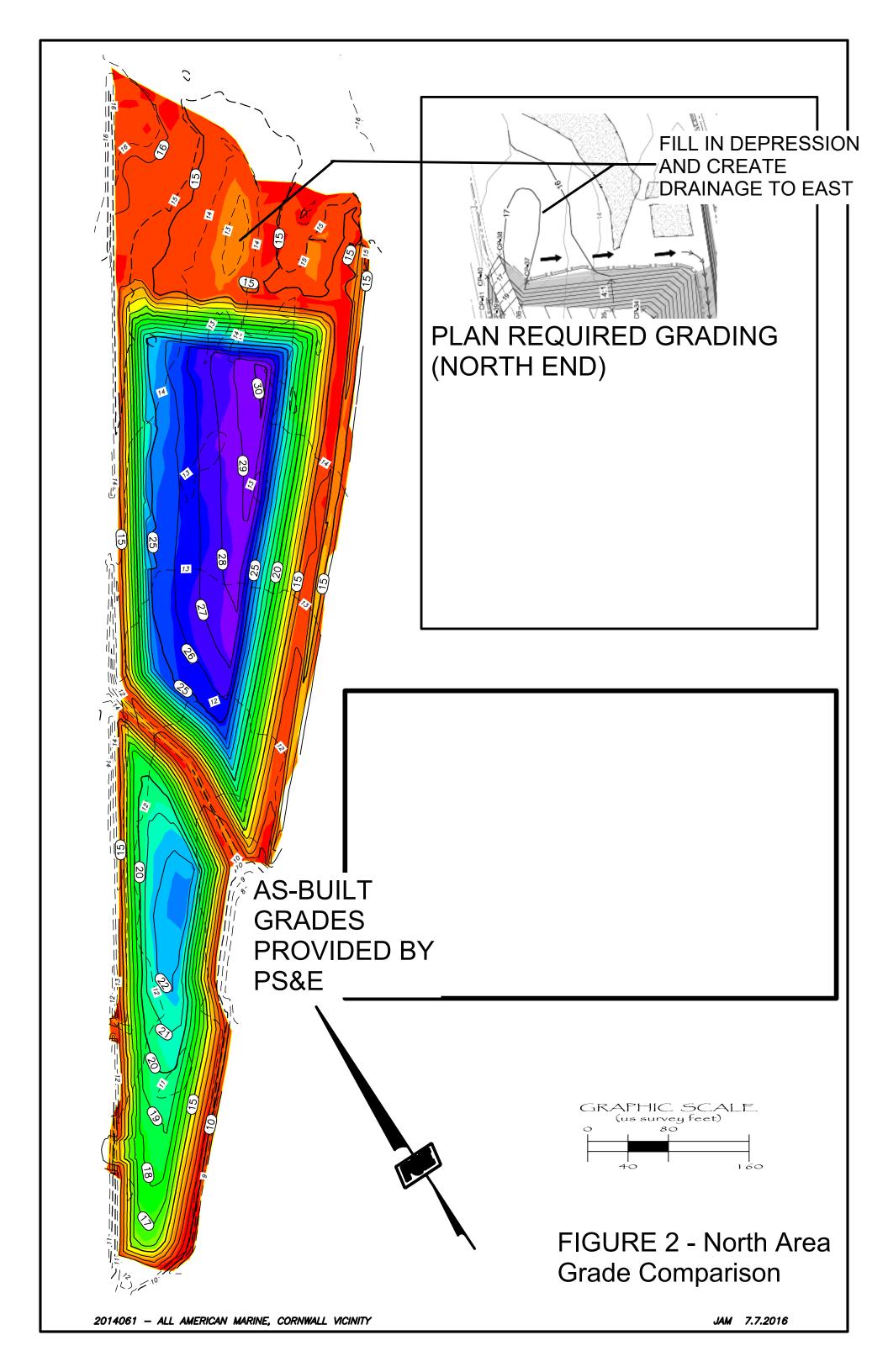
3. Top of pile looking north. Rail tracks on right



4. Top of pile showing western slope, silt fence visible, grass visible. Loose soil along upstream side of silt fence needs to be graded out and stabilized with grass or some other means.

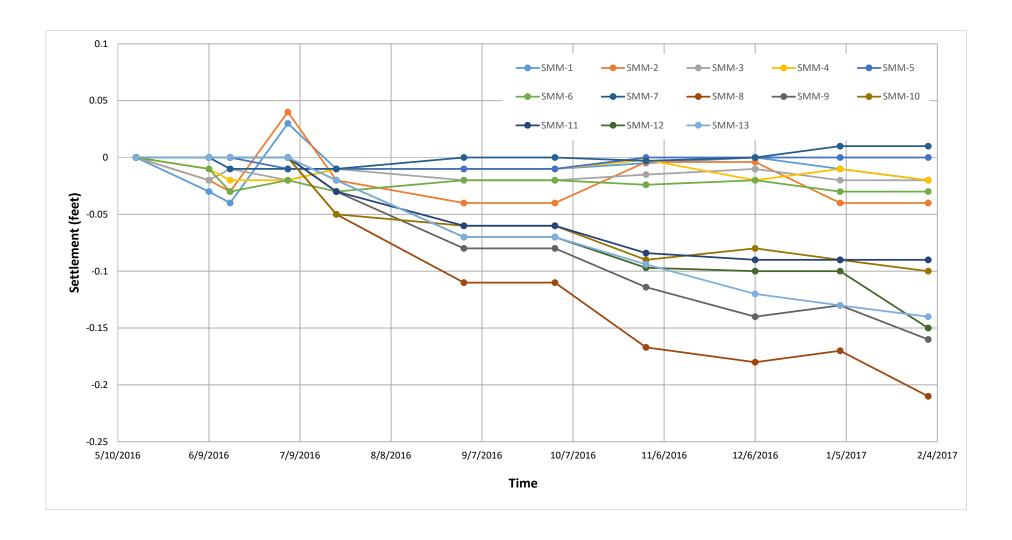







5. Top of pile looking west, down the western slope, silt fence visible, grass visible.




6. Top of pile looking northwest, silt fence visible, some grass visible on northern slope. Per survey, fill needs to be added to areas north of pile to facilitate drainage.





# **Preload Settlement Monitoring Results**

# Appendix F.3 Settlement v. Time Eastside Preloading Cornwall Avenue Landfill



# **Project Schedule**