

TECHNICAL MEMORANDUM

To:Mr. Aaron WilcoxFrom:Jonathan Horowitz, PEDate:April 26, 2016Subject:Handy Mart - Groundwater Monitoring Results

INTRODUCTION

HydroCon Environmental, LLC (HydroCon) is submitting this technical memorandum to Wilcox & Flegel to document the work completed at 1410 Ocean Beach Highway in Longview, Washington (the site) in April 2016. The work was conducted according to our Master Services Agreement (MSA), dated July 11, 2014.

FIELD ACTIVITIES

On April 14, 2016, HydroCon personnel mobilized to the site to perform the groundwater monitoring. Upon arrival at the site, the well cap on each well was removed and the water level was allowed to equilibrate prior to measuring the depth to water (DTW). The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north end of the top of the PVC casing) at each well. A table detailing the groundwater levels and elevations and a figure indicating the groundwater flow direction are included in the attachments. Depth to water in the wells ranged from 6.41 to 8.03 feet below top of casing. Groundwater elevations were calculated based on an arbitrary measuring point. Based on the measured groundwater elevations, the groundwater flows towards the north-northwest at an approximate gradient of 0.0008 feet/foot. This flow direction is changed from the previous sampling event when groundwater was measured to flow in a southwest direction at a gradient of .0003 feet/foot. However, the change in groundwater flow direction is likely the result of seasonal variations as the April 2016 flow direction is similar to the April 2015 flow direction.

HydroCon purged monitoring wells MW-1 through MW-3 with a low flow peristaltic pump equipped with new length of LDPE tubing attached to a new length of silicone tubing. Field parameters (pH, temperature, and specific conductivity) were measured and recorded on a Groundwater Sample Collection field form along with the depth to water measurements (included in the attachment). Purging was completed when the field parameters had stabilized.

Samples were collected immediately after purging and placed in labeled laboratory-prepared sample bottles. The samples were shipped in an iced cooler along with chain-of-custody documentation to the project laboratory for analysis.

A total of three groundwater samples were collected for laboratory analysis. Each sample was analyzed for the following set of parameters:

- Gasoline Range Organics (GRPH) by Northwest Method NWTPH-Gx; and
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8021B.

SAMPLING RESULTS

GRPH was detected at concentrations above the laboratory Method Reporting Limits (MRLs) in one of the samples (from MW-3) submitted; however, the detected concentration was below the applicable MTCA Method A Cleanup Level. Benzene was detected at a concentration of 3.7 micrograms per liter (μ g/L) in the sample from MW-1, and at 1.41 μ g/L in the sample from MW-1. Both concentrations are below the MTCA Method A Cleanup Level of 5 μ g/L. GRPH and the remaining BTEX constituents were not detected at concentrations above the laboratory MRLs. A summary data table and the laboratory report are included in the attachments.

DISCUSSION

Based on the analytical results, HydroCon recommends the following:

- The next round of monitoring should be conducted during the third quarter of 2016.
- Based on the exceedance of benzene during the previous quarterly sampling event in February 2016, groundwater monitoring should continue until four consecutive quarters with no detected concentrations exceeding MTCA Method A Cleanup Levels have been achieved.

QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either express or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other

surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Wilcox & Flegel**. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or reuse of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

CLOSING

We appreciate the opportunity to perform these services for Wilcox & Flagel. Please contact the undersigned at (360) 703-6079 if you have any questions regarding the information provided in this letter report.

Sincerely,

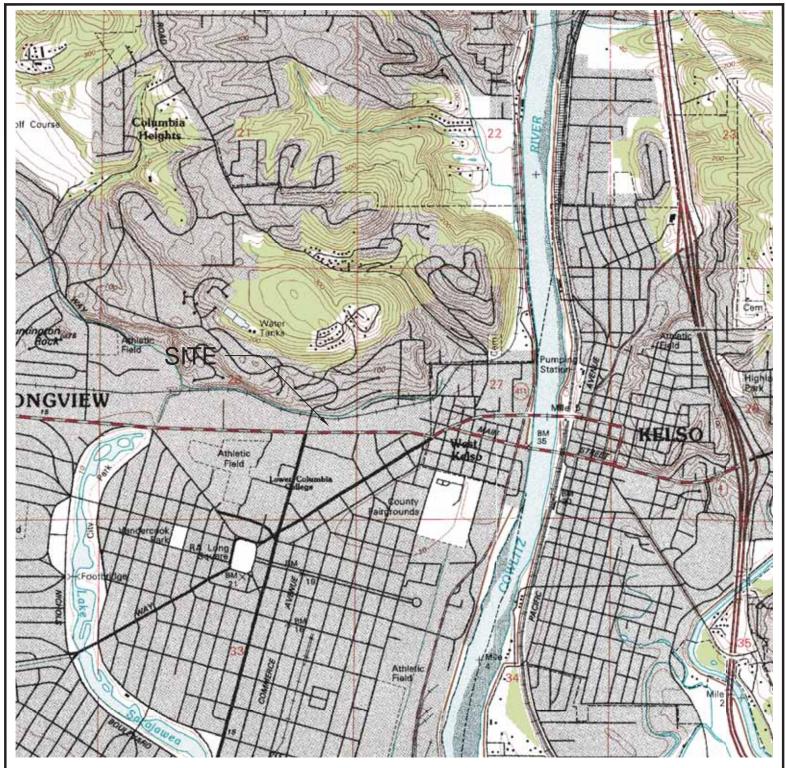
Hydro **Con**

Jonathan Horowitz, PE Project Engineer

Figures

- Figure 1 Site Location Map
- Figure 2 Site Features Map
- Figure 3 Groundwater Analytical Results
- Figure 4 Groundwater Elevations and Contour Map

Tables

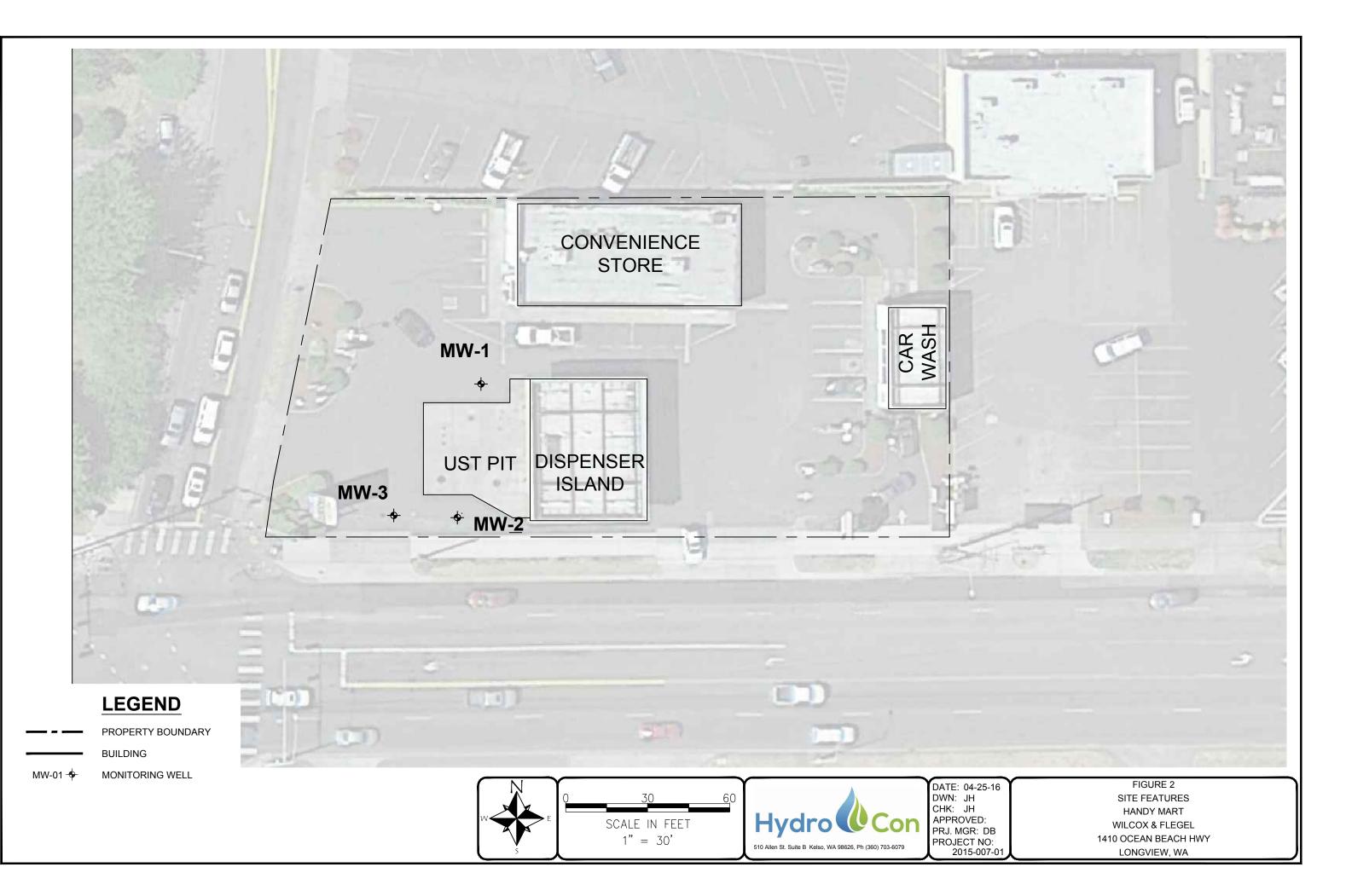

- Table 1 Summary of Groundwater Elevations
- Table 2 Summary of Groundwater Analytical Results

Attachments

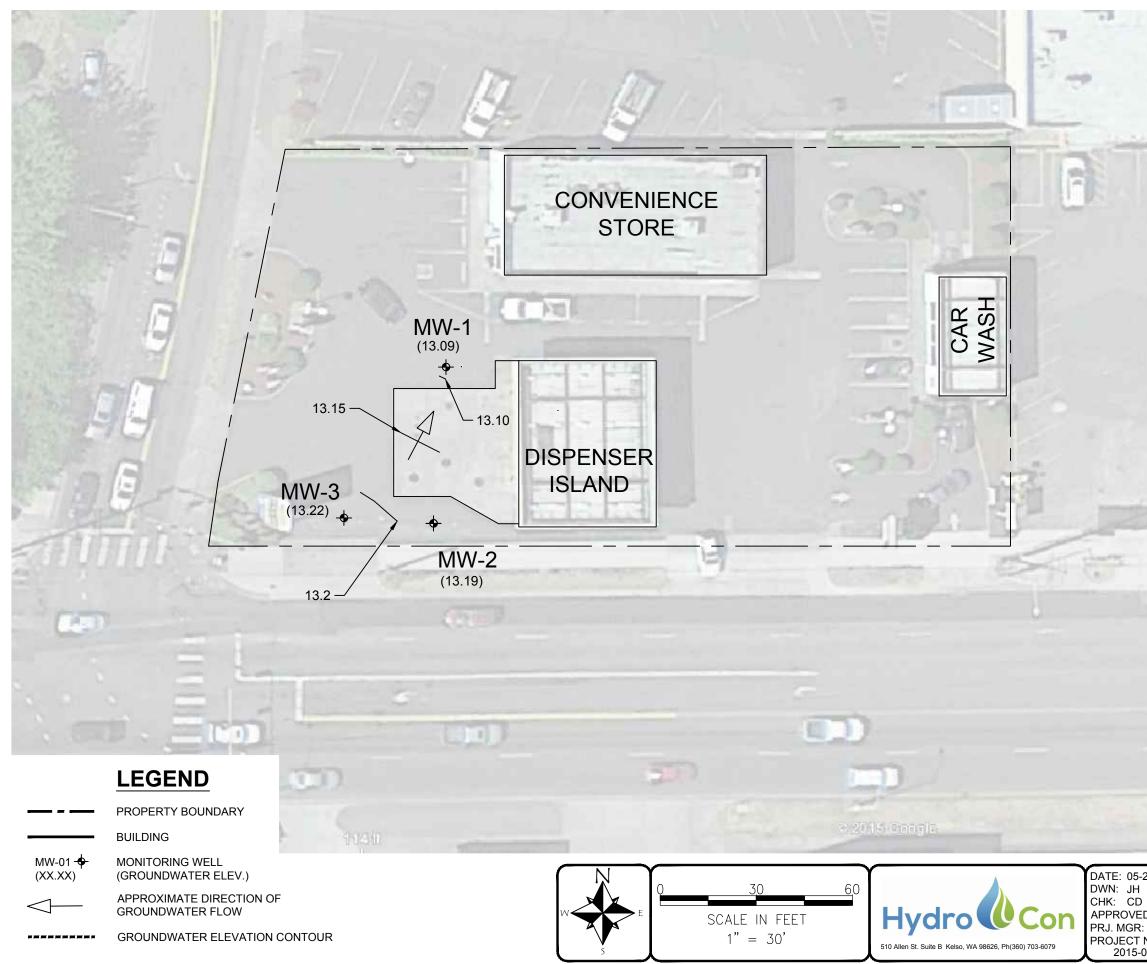
Attachment A - Groundwater Sample Collection Field Forms

Attachment B - Laboratory Report and Chain-of-Custody Documentation

NOTE(S):


1. USGS, KELSO QUADRANGLE WASHINGTON 7.5 MINUTE SERIES (TOPOGRAPHIC)

2000 SCALE IN FEET 1" = 2000'


DATE:04-25-16 DWN: JH CHK: JH APPROVED: PRJ. MGR:DB PROJECT NO: 2015-007-01 FIGURE 1 SITE LOCATION HANDY MART WILCOX & FLEGEL 1410 OCEAN BEACH HWY LONGVIEW, WA

	MW01		MW02		MW03	
	AD0449-	02	AD0449-	03	AD0449	-01
	4/14/16	6	4/14/16	6	4/14/1	6
Ecology MTCA Level A	Value	Q	Value	Q	Value	Q
etroleum Hydrocarbons (TPH)					
800	<100		<100		310	
latile Organic Compounds (VC)Cs)					
5	3.7		1.41		<0.2	
1,000	<1		<1		<1	
700	<0.5		<0.5		<0.5	
1,000	<1.5		<1.5		<1.5	

FIGURE 3 GROUNDWATER ANALYTICAL RESULTS APRIL 2016 WILCOX & FLEGEL 1410 OCEAN BEACH HWY LONGVIEW, WA

-17 FIGURE 4.0 GROUNDWATER ELEVATION & CONTOUR MAP (APRIL 2016) HANDY MART WILCOX & FLEGEL 0: 1410 OCEAN BEACH HWY LONGVIEW, WA

Table 1 Summary of Historical Groundwater Elevations Handy Mart Longview, Washington HydroCon Project Number 2015-007.1

Monitoring Well ID	Date	TOC Elevation	Depth to Water	Groundwater Elevation
	9/24/2015	21.12	10.98	10.14
MW-01	2/2/2016	21.12	7.52	13.6
	4/14/16	21.12	8.03	13.09
	9/24/2015	19.98	9.85	10.13
MW-02	2/2/2016	19.98	6.4	13.58
	4/14/16	19.98	6.79	13.19
	9/24/2015	19.63	9.54	10.09
MW-03	2/2/2016	19.63	6.12	13.51
	4/14/16	19.63	6.41	13.22

Notes: TOC = Top of well casing

Table 2Summary of Groundwater Analytical ResultsHandy Mart, Longview, WashingtonHydroCon Project Number 2014-007.01

Sample ID				MW01		MW02		MW03	}
Lab Sample ID				AD0449-	02	AD0449-	03	AD0449-	-01
Collection Date			Ecology MTCA Level A	4/14/16	6	4/14/16	6	4/14/16	6
Parameter	Method	Unit	Ecology MICA Level A	Value	Q	Value	Q	Value	Q
		•	Total Petroleum Hydrocarbons (TPH)						
TPH Gasoline Range (0	G NWTPH-Gx	µg/L	800	<100		<100		310	
		Sele	ect Volatile Organic Compounds (VO	Cs)			-		
Benzene	8021B	µg/L	5	3.7		1.41		<0.2	
Toluene	8021B	µg/L	1,000	<1		<1		<1	
Ethylbenzene	8021B	µg/L	700	<0.5		<0.5		<0.5	
Total Xylenes	8021B	µg/L	1,000	<1.5		<1.5		<1.5	Τ

Notes and Qualifiers: (Q; only shown in Table if reported by laboratory)

* = Washington State Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (rev. October 12, 2007)

[1] = Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx

[2] = Volatile Organic Compounds (VOCs) by EPA Methods 8021B

< = Indicates compound not detected above the laboratory Method Reporting Limit (MRL) shown.

All values shown are in micrograms per liter (μ g/L) (parts per billion).

Highlighted cell indicates compound detected above cited MTCA Method A Cleanup Level.

Table 3 Summary of Groundwater Analytical Results Handy Mart, Longview, Washington HydroCon Project Number 2014-007.01

Parameter	r	GRPH [1]	Benzene [2]	Toluene [2]	Ethylbenzene [2]	Total Xylenes [2]
Cleanup Lev	/el*	800	5	1,000	700	1,000
Monitoring Well ID	Date Sampled	800	5	1,000	700	1,000
	9/24/15	<100	6.1	<1	<1	<3
MW-1	2/2/16	<100	6.6	<1	<1	<3
	4/14/16	<100	3.7	<1	<0.5	<1.5
	9/24/15	460	<1	4.4	<1	3.5
MW-2	2/2/16	<100	2.7	<1	<1	<3
	4/14/16	<100	1.41	<1	<0.5	<1.5
	9/24/15	<100	<1	<1	<1	<3
MW-3	2/2/16	210	<1	3.7	<1	<3
	4/14/16	310	<0.2	<1	<0.5	<1.5

Notes: * = Washington State Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (rev. October 12, 2007)

[1] = Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx

[1] = Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-GX [2] = Volatile Organic Compounds (VOCs) by EPA Methods 8021B < = Indicates compound not detected above the laboratory Method Reporting Limit (MRL) shown. All values shown are in micrograms per liter (μ g/L) (parts per billion). Highlighted cell indicates compound detected above cited MTCA Method A Cleanup Level.

ATTACHMENT A GROUNDWATER SAMPLE COLLECTION FIELD FORMS

Print Co. State							N	Well I.D. Number.	er. riw-I
Project Na Hydrocon Date:	Project Name (Number): Hydrocon Project Number: Date: 4/i4/2016	er): H umber:	ZOIS-	1- + 00		Sample I.D.: MW Field Duplicate I.D.: Personnel: C. D.	MW-1 ate I.D.: C. D.: dual	4	Time: 1035
WELL IN	WELL INFORMATION	Z	C	landa manu					:
Well cap	Well cap condition:	K Good		Replaced		Needs Replacement		Surface Water Well Infiltration	Mater Well Infiltration
Headspac	Headspace reading: Not measured	Notr	neasured	PID Reading		mdd	ŏ □.		
well diameter. Comments	s		7-Incn		4-inch		6-inch	🖂 Other:	
PURGIN	PURGING INFORMATION	IATIO							
Fotal well depth:	l depth: 1	18.83	æ	Bottom: 🗌 Hard		🗶 Soft 🗌 Not measured		Screen Interval(s):	
Depth to product. Depth to water:		1 2 3	∉,∉	Intake Dep	Intake Depth (BTOC):		Beain P	Beain Puraina Well [.]	0.10
Casing volume: Volume Conver	sio	Factors	ft (H ₂ 0) X 3/4"=0.02 g		gal/ft 1"=0.04 gal/ft	= 2"=0.16 gal/ft	gal 4"	6"= 1.47	gal. 7 gal/ft
PURGING/ Pump type Bailer type:	PURGING/DISPOSAL M Pump type R Peristaltic Bailer type:		ETHOD	gal 🗌 De Disposal:	DD entrifugal	□ ler	Non-Dedicated Bladder 0 Remediation Systom Dother	adder Other_	
IELD P/	FIELD PARAMETERS	RS					Odor and/or Sheen:_	or Sheen: light	- meduate
Time	Water Level	Lind (T)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or	Hd	ORP	CONTRACTOR OF
iele	(BTOC)			12 4	(#3%)	51.00±0.012	(1.01)	111.100	(± 10% or s10)
10.13				1 .	+180		6.23	131	
[2 0]		_		14,1	ちたた。		6.25	20	
42 01		-		14.3	477		6.26	۵,	
2 2	3			14.3	.175		6. 30	- IH	
	1909								
				(
		J	-			250			
		2	ampe	3)					
Stabilization achieved their respective stabili Durging Comments	achieved if th tive stabilizati	hree succ ion criter	essive measu ia. A minimu	rements for m of six mea	pH, Conductivi surements sho	Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity their respective stabilization criteria. A minimum of six measurements should be recorded.	and/or Dissolve	Stabilization achieved if three successive measurements for pH. Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization criteria. A minimum of six measurements should be recorded.	orded within
AMPLE	SAMPLE INFORMATION	VTION							
Contain	Container Type	Bottle	Preservative	1000	Field Filtered?	記録のした	Analysis	ysis	の一般などの
14 01,	V6A	2	HCI	15 I		GK, BTEX			
					45 0.10				
				No O					

GROUNDWATER PURGE

Project Name (Number). March Sample 10.: Multi-2 Time. Hydrocon Project Number. Aist Feromatic Feromatic Feromatic Hydrocon Project Number. Aist Feromatic Feromatic Feromatic WELL INFORMATION Media registration Begin Puging Water in Monument Condition: Ecod Needs Replacement Ecod Feromatic Well diameter: 2:ainch 1 1 1 1 Ecod <	t Name (Number): Humber:					I.D. Numbe	Well I.D. Number. Miv - 2
t Surface V inch Surface V ed Screen Inter Begin Purgin Begin Purgin gal. X 3 = t 4"=0.65 gal/ft ion System 0 otor and/or She sub f (sub f (sub f (sub f (sub) f (sub)		5-007		Sample I.D.: Field Duplica Personnel:	MU-2 te I.D.: -		Time: 1/20
ed Screen Interval(s): Begin Purging Well: 100 gal. X 3 =gal. It 4"=0.65 gal/ft 6"= 1.47 gal. It 4"=0.65 gal/ft 6"= 1.47 gal. and/or SystemOthergal. Dedicated Bladder Othergal. Dodor and/or Sheen:gal. PH Othergal. Coror and/or Sheen:gal. for 25 23 28 6.25 33 6.25 33 7.3 33	ILL INFORMATION nument condition: S Good Il cap condition: S Good dspace reading: Not measu I diameter: 2-inch nments			s Replacement ppm	□ ° □ -u	ce Water Wel	in Monument I Infiltration
Dedicated Bladder Other ion System Other Odor and/or Sheen: Iight 0dor and/or Sheen: Iight 0f (su)	RGING INFORMATION al well depth: 19.27 ft th to product f. ft th to water f. ft ing volume: ft ime Conversion Factors: 3/4"	Bottom: A H Intake De (H ₂ 0) X	lard Soft Soft epth (BTOC):	Not measur		val(s): ig Well: 6"= 1.47	<mark>OS 6</mark> Il. sal/ft
Purge Rate Temp. Sp. Cond. Dissolved PH (L/min) (°C) (mS/cm) Oxygen PH ORP (L/min) (°C) (mS/cm) Oxygen PH ORP (L/min) (°C) (mS/cm) 0xygen PH ORP (°C) (mS/cm) (mS/cm) (mS/cm) (mV) (mV) (°C) (mS/cm) (mS/cm) (mV) (mV) (mV) (°C) (mS/cm) (mV) (mV) (mV) (mV) (°C) (mS/cm) (mV) (mV) (mV) (mV) (°C) (mS/cm) (mV) (mV) (mV) (mV) (°S) (°S) ("S) (mV) (mV) (mV) (°S) (°S) ("S) (mV) (mV) (mV) (°S) (°S) ("S) ("S) ("S) (mV) (°S) (°S) ("S) ("S) ("S) ("S) (°S) ("S) </th <th>/DISPOSAL METHO</th> <th>D ntrifugal □ I Vater Disposal</th> <th>Dedicated Blad : 🗌 Drummed</th> <th>der 🗌 Non-</th> <th>Dedicated Blac ion System Odor and/or</th> <th>lder Other]] Other Sheen:Sheen:</th> <th></th>	/DISPOSAL METHO	D ntrifugal □ I Vater Disposal	Dedicated Blad : 🗌 Drummed	der 🗌 Non-	Dedicated Blac ion System Odor and/or	lder Other]] Other Sheen:Sheen:	
6.23 28 6.25 28 6.26 28 6.29 4 6.29 -3 5.29 -3	Water Level (BTOC)		Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or s1.00 ±0.2)	Hq (US)	ORP (mV)	Turbidity (NTU) (± 10% or s10)
04 15.2 -12.4 15.2 -12.4 6.25 23 10^{-1} 13.4 $5.14H$ 6.21 2.8 2.8 116 13.4 $5.14H$ 6.27 2.8 -3 116 13.4 $5.14H$ 6.27 -3 -3 116 13.4 $5.14H$ 6.27 -3 -3 116 12.4 -144 6.27 -3 -3 116 -12.4 -12.4 -12.4 -3 -14 116 -12.4 -12.4 -12.4 -3 -3 116 -12.4 -12.4 -12.4 -3 -3 116 -12.4 -12.4 -12.4 -3 -3 116 -12.4 -12.4 -12.4 -3 -3 116 -12.4 -12.4 -12.4 -3 -3 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -12.4 -116 -12.4 -12.4 -12.4 -12.4 -116 -12.4	(nata)	5.5	• 126		6.23	28	
IIO 12.3 12.3 12.3 12.5 25 25 1116 13.4 5.144 6.29 4 6.29 4 13.4 5.144 6.29 -3 -3 1116 13.4 6.144 6.29 -3 1116 13.4 6.144 6.29 -3 1116 13.4 6.144 6.29 -3 1116 13.4 6.140 6.29 -3 1116 13.4 6.140 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 6.29 -3 111 6.29 14 14 111 6.29 14 14 111 6.29 14 14 <t< td=""><td></td><td>13.2</td><td>- 129</td><td></td><td>6.25</td><td>288</td><td></td></t<>		13.2	- 129		6.25	288	
13.4 5 14.4 6 - 29 4 11.16 13.4 6144 629 -3 11.16 13.4 6144 629 -3 11.16 13.4 6144 629 -3 11.11 13.4 11.20 11.20 11.11 11.20 11.20 11.20 11.11 11.20 11.20 11.10 11.11 11.20 11.20 11.10 11.11 11.20 11.20 11.10 11.11 11.20 11.20 11.10 11.11 11.10 11.20 11.10	011	12.3	5 14Z		G. 26	28	
lization achieved if three successive measurements should be recorded.	116	13.4	1441 °		6.29	τņ	
lization achieved if three successive measurements should be recorded.			1				
ilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within respective stabilization criteria. A minimum of six measurements should be recorded.	Com	e e	H20			÷	
	lization achieved if three successive respective stabilization criteria. A r	measurements f	or pH, Conductivi teasurements sho	ty and Turbidity uld be recorded.	and/or Dissolved	Oxygen are reco	orded within

Ho] 1/04 3 HCJ (NO) 0.45 0.10 GK, RTEX NO 0.45 0.10 GK, RTEX NO 0.45 0.10 NO 0.45 0.10 NO 0.45 0.10 NO 0.45 0.10 NO 0.45 0.10	Container	ner Type	Bottle Count	Preservative	Field Filtered?	Analysis
No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10	40~	104	~	FCI	0.45	Gr. BTEX
0.45 0.45 0.45					0.45	
0.45					0.45	
0.45					0.45	
					0.45	

GROUNDWATER AND SAMPLE COL AND SAMPLE COL Annola Mart Same Field Perss Bood Needs repair: Bood Replaced N Field Perss N Annucle Press Preservative Field Sp. Cond. Sp. Cond. Ox N Anter Disposal: Dedicated Bladder Marter Disposal: Drummed Reservative Freetration Preservative Field Filtered?	N Well I.D. Number. M.J -3	Time: Time: Time: Darked	Surface Water in Monument Surface Water Well Infiltration Odor: Other: 3/4, ''	1 Screen Interval(s): Begin Purging Well: 1140 gal. X 3 =gal. 4"=0.65 gal/ft 6"= 1.47 gal/ft	□ Non-Dedicated Bladder Other temediation System □ Other	Odor and/or Sheen:	pH ORP Turbidity (SU) (mV) (NTU) (±0.1) (±10% or ±10)		13 25 15 25 17 -5		r Dissolved Oxygen are recorded within	Analysis		
GROUN AND SAN AND SAN AND SAN AND SAN AND SAN Good Ant-F Good Replaced the Intake Depth ft Int	DWATER PURGE APLE COLLECTIO	Sample I.D.: MIN Field Duplicate I.D.: Personnel: C	□ Needs Replacement ppm inch □ 6-inch	□ Not measured =gal 2″=0.16 gal/ft 4″=	□der	Odo	Dissolved Oxygen (±10% or \$1.00 ±0.2)				H, Conductivity and Turbidity and/or urements should be recorded.		1010	D. U. IU BX, ITEX
e (Number): e (Number): roject Number ndition: ndition: ndition: eading: duct er: brite er: brite er: brite autor brite AMETERS AMETERS AMETERS autor brite brite Completion crite autor brite Completion crite autor brite Completion crite autor brite Completion crite autor brite Completion crite autor brite Completion crite autor completion crite autor brite Completion crite completion crite complet	GROUNI AND SAM	wily Mart 2015-007	ON Second Needs repair Ocod Replaced Not measured PID Reading 2-inch	PURGING INFORMATIONTotal well depth:[7.25]ftDepth to product:-ftDepth to water:5.03ftCasing volume:ft (H20) XVolume Conversion Factors:3/4"=0.02 gal/ft	IETHOD			14.6		sele	Stabilization achieved if three successive measurements for phene respective stabilization criteria. A minimum of six measu Purging Comments:	the state of		

Sampling Comments:

ATTACHMENT B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, April 18, 2016

Dave Borys HydroCon LLC 510 Allen St. Suite B Kelso, WA 98626

RE: Handy Mart / 2015-007-01

Enclosed are the results of analyses for work order <u>A6D0449</u>, which was received by the laboratory on 4/14/2016 at 3:32:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>Idomenighini@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Ausa A Zomenichini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19
	ANALYTICAL REPORT FOR SAMPLES	
	SAMPLE INFORMATION	

Sample ID	PDF Amended	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	= MW2	A6D0449-01	Water	04/14/16 10:35	04/14/16 15:32
MW-2	= MW3	A6D0449-02	Water	04/14/16 11:20	04/14/16 15:32
MW-3	= MW1	A6D0449-03	Water	04/14/16 12:00	04/14/16 15:32

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC 510 Allen St. Suite B Kelso, WA 98626			Project: Project Number: Project Manager:		l		Repo 04/18/10	
		ANA	LYTICAL SA	MPLE RI	ESULTS			
	Gasoline Rang	Hydrocar	hone (Benzene	a through	Nonhtholon			
	ouconno nung	c riyaroca		ethrough	Naphthalen	e) by NWTPH-G	X	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	X Method	Notes
Analyte		-	Reporting	Units	•	Date Analyzed		Notes
		-	Reporting Limit	Units	Dilution	Date Analyzed		Notes

Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 106 % 107 %	Limits: 50-150 % Limits: 50-150 %		"	"	
MW-2 (A6D0449-02)			Matrix: Wa	ater B	atch: 60404	10		
Gasoline Range Organics	310		100	ug/L	1	04/15/16 01:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 100 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"		"	
MW-3 (A6D0449-03)			Matrix: Wa	ater B	Batch: 60404	10		
Gasoline Range Organics	ND		100	ug/L	1	04/15/16 01:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 104 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			109 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19

ANALYTICAL SAMPLE RESULTS

		B	TEX Compo	unds by EPA 8	260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW-1 (A6D0449-01)			Matrix: Wa	iter B	atch: 60404	10		
Benzene	1.41		0.200	ug/L	1	04/15/16 00:25	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 98 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			96 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			98 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
MW-2 (A6D0449-02)			Matrix: Wa	iter B	atch: 60404	10		
Benzene	ND		0.200	ug/L	1	04/15/16 01:15	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 92 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			93 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			109 %	Limits: 80-120 %	"	"	"	
MW-3 (A6D0449-03)			Matrix: Wa	iter B	atch: 60404	10		
Benzene	3.74		0.200	ug/L	1	04/15/16 01:40	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Re	covery: 100 %	Limits: 80-120 %	"	"	"	
1,4-Difluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040410 - EPA 5030I	3						Wat	ter				
Blank (6040410-BLK1)				Pre	pared: 04/	/14/16 21:02	Analyzed:	04/14/16 23	3:10			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 104 %	Limits: 50	-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			111 %	50-	-150 %		"					
LCS (6040410-BS2)				Pre	pared: 04/	/14/16 21:02	Analyzed:	04/14/16 22	2:45			
NWTPH-Gx (MS)												
Gasoline Range Organics	498		100	ug/L	1	500		100	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 98 %	Limits: 50	-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50-	-150 %		"					
Duplicate (6040410-DUP1)				Pre	pared: 04/	/14/16 22:14	Analyzed:	04/15/16 00):50			
QC Source Sample: MW-1 (A6D04	49-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50	-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	50-	-150 %		"					

Apex Laboratories

Ausa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	Compou	inds by	EPA 8260E	3					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 6040410 - EPA 5030E	8						Wat	ter				
Blank (6040410-BLK1)				Pre	epared: 04/	14/16 21:02	Analyzed:	04/14/16 2	23:10			
EPA 8260B												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	"	"							
Ethylbenzene	ND		0.500	"	"							
Xylenes, total	ND		1.50	"	"							
Surr: Dibromofluoromethane (Surr)		Rec	overy: 102 %	Limits: 80	0-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %	80)-120 %		"					
Toluene-d8 (Surr)			100 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	0-120 %		"					
LCS (6040410-BS1)				Pre	epared: 04/	14/16 21:02	Analyzed:	04/14/16 2	22:19			
EPA 8260B												
Benzene	18.4		0.200	ug/L	1	20.0		92	70-130%			
Toluene	20.0		1.00	"	"	"		100	"			
Ethylbenzene	21.0		0.500	"	"	"		105	"			
Xylenes, total	65.6		1.50	"	"	60.0		109	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 90 %	Limits: 80	0-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			92 %	80)-120 %		"					
Toluene-d8 (Surr)			94 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
Duplicate (6040410-DUP1)				Pre	epared: 04/	14/16 22:14	Analyzed:	04/15/16 (0:50			
QC Source Sample: MW-1 (A6D044	9-01)											
EPA 8260B												
Benzene	1.49		0.200	ug/L	1		1.41			6	30%	
Toluene	ND		1.00	"	"		ND				30%	
Ethylbenzene	ND		0.500	"	"		ND				30%	
Xylenes, total	ND		1.50	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 98 %	Limits: 80	0-120 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			96 %	80)-120 %		"					
Toluene-d8 (Surr)			98 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80)-120 %		"					

Apex Laboratories

Ausa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19
<u> </u>		

SAMPLE PREPARATION INFORMATION

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 6040410							
A6D0449-01	Water	NWTPH-Gx (MS)	04/14/16 10:35	04/14/16 22:14	5mL/5mL	5mL/5mL	1.00
A6D0449-02	Water	NWTPH-Gx (MS)	04/14/16 11:20	04/14/16 22:14	5mL/5mL	5mL/5mL	1.00
A6D0449-03	Water	NWTPH-Gx (MS)	04/14/16 12:00	04/14/16 22:14	5mL/5mL	5mL/5mL	1.00
			BTEV Compound				
			BTEX Compounds	S DY EFA 0200B			
Prep: EPA 5030B			BIEX Compounds	5 DY EFA 6260B	Sample	Default	RL Prep
Prep: EPA 5030B Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
	Matrix	Method	· · · · ·	-	*		1
Lab Number	Matrix Water	Method EPA 8260B	· · · · ·	-	*		1
Lab Number Batch: 6040410			Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

Assa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

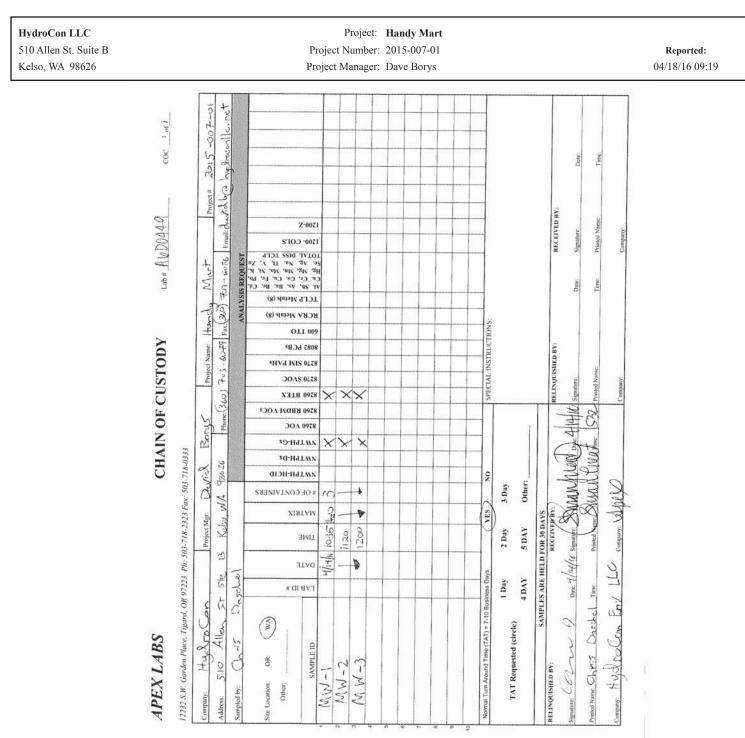
HydroCon LLC	Project: Handy Mart	
510 Allen St. Suite B	Project Number: 2015-007-01	Reported:
Kelso, WA 98626	Project Manager: Dave Borys	04/18/16 09:19

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET	
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.
RPD	Relative Percent Difference
MDL	If MDL is not listed, data has been evaluated to the Method Reporting Limit only.
WMSC	Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.
Batch QC	Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.
Blank Policy	Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.
	For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.
	Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.
	QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.


*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Jusa A Zomenighini

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Jusa A Zomenighini

Lisa Domenighini, Client Services Manager