

TECHNICAL MEMORANDUM

To: Mr. Aaron Wilcox From: David Borys Date: July 12, 2017

Subject: Handy Mart – June 2017 Groundwater Monitoring Results

INTRODUCTION

HydroCon Environmental, LLC (HydroCon) is submitting this technical memorandum to Wilcox & Flegel to document the work completed at 1410 Ocean Beach Highway in Longview, Washington (the site) in June 2017. The work was conducted according to our Master Services Agreement (MSA), dated July 11, 2014.

FIELD ACTIVITIES

On June 30, 2017, HydroCon personnel mobilized to the site to perform the groundwater monitoring. Upon arrival at the site, the well cap on each well was removed and the water level was allowed to equilibrate prior to measuring the depth to water (DTW). The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north end of the top of the PVC casing) at each well. A table detailing the groundwater levels and elevations and a figure indicating the groundwater flow direction are included in the attachments (Table 1 and Figure 4).

HydroCon purged monitoring wells MW-1 through MW-3 with a low flow peristaltic pump equipped with new length of LDPE tubing attached to a new length of silicone tubing. Field parameters (pH, temperature, dissolved oxygen, turbidity, and specific conductivity) and depth to water were measured and recorded on a Groundwater Sample Collection field form (Attachment A). Purging was completed when the field parameters had stabilized.

Samples were collected immediately after purging and placed in labeled laboratory-prepared sample bottles. The samples were shipped in an iced cooler along with chain-of-custody documentation to Apex Laboratory in Tigard, Oregon for analysis.

A total of three groundwater samples were collected for laboratory analysis. Each sample was analyzed for the following set of parameters:

- Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8260B.

GROUNDWATER CONDITIONS

Depth to water in the wells ranged from 6.73 to 8.01 feet below top of casing. Groundwater flows towards the west at an approximate gradient of 0.011 feet/foot between MW-2 and MW-3.

SAMPLING RESULTS

GRPH and the remaining BTEX constituents were not detected at concentrations above their respective laboratory method reporting limits (MRLs) in any of the submitted samples. A summary data table and the laboratory report are included in Table 2 and Attachment B, respectively.

DISCUSSION

The results of this quarterly groundwater monitoring indicate that all contaminants of concern at all site monitoring wells are below their respective MTCA Method A cleanup level. This is the fifth consecutive quarter where this condition has been observed and the second consecutive quarter where none of contaminants were detected above laboratory MRLs. Ecology requires four consecutive quarters before a site may be considered for No Further Action (NFA) determination.

Based on the analytical results, HydroCon recommends the following:

 Enter into the Ecology Voluntary Cleanup Program and submit a formal request to Ecology to review site reports and issue an NFA determination for the site.

QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either express or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other

surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Wilcox & Flegel**. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or reuse of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

CLOSING

We appreciate the opportunity to perform these services for Wilcox & Flagel. Please contact the undersigned at (360) 703-6079 if you have any questions regarding the information provided in this letter report.

Sincerely,

Hydro (Con

Brian J Pletcher

Senior Geologist/Project Manager

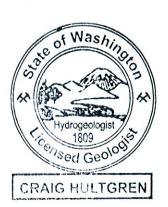
Craig Hultgren, LHG Principal Geologist

Attachments

Figure 1 – Site Location Map

Figure 2 - Site Features Map

Figure 3 - Groundwater Analytical Results


Figure 4 – Groundwater Elevations and Contour Map

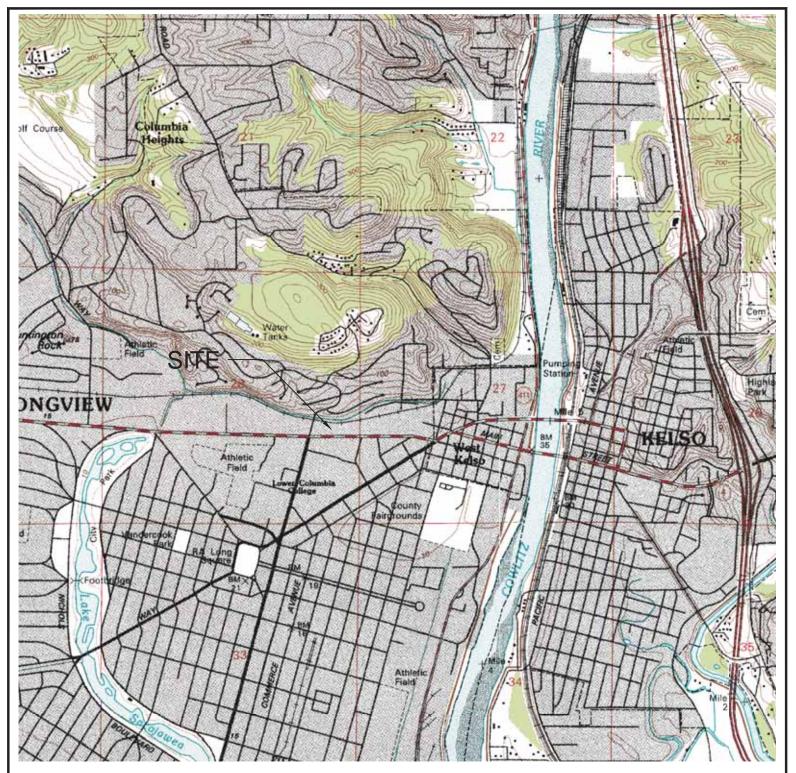
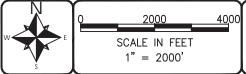
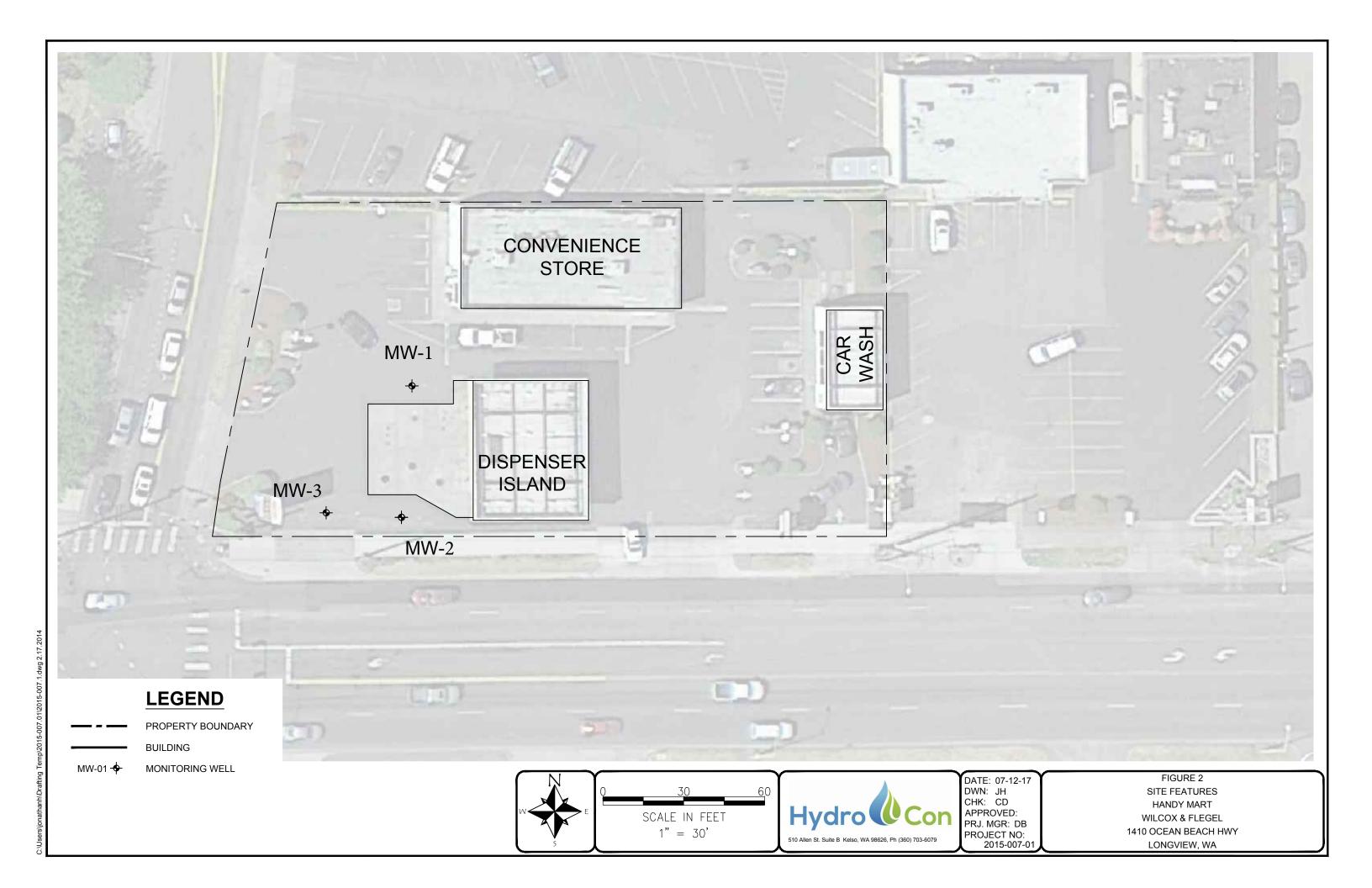
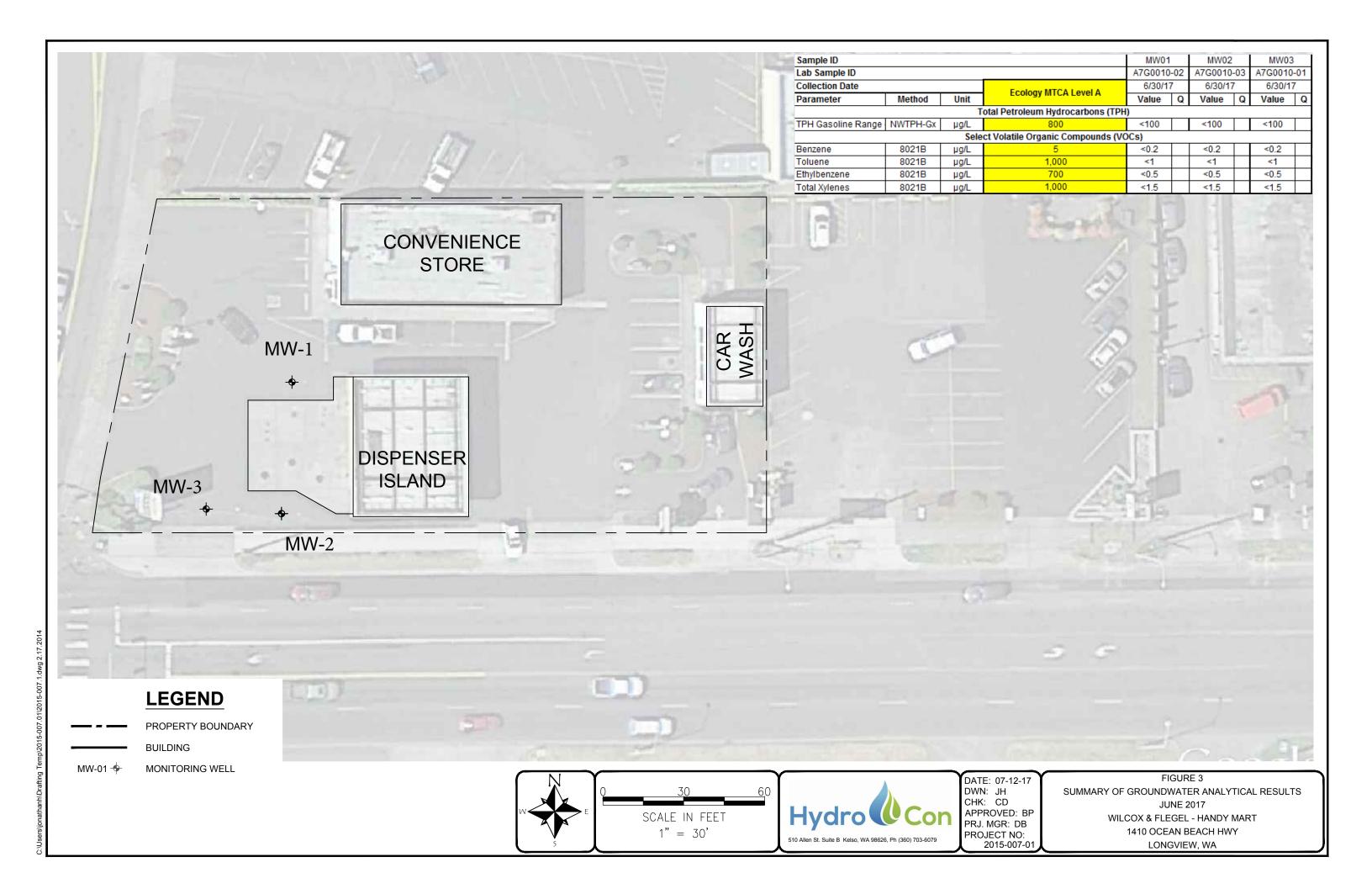

Table 1 – Summary of Groundwater Elevations

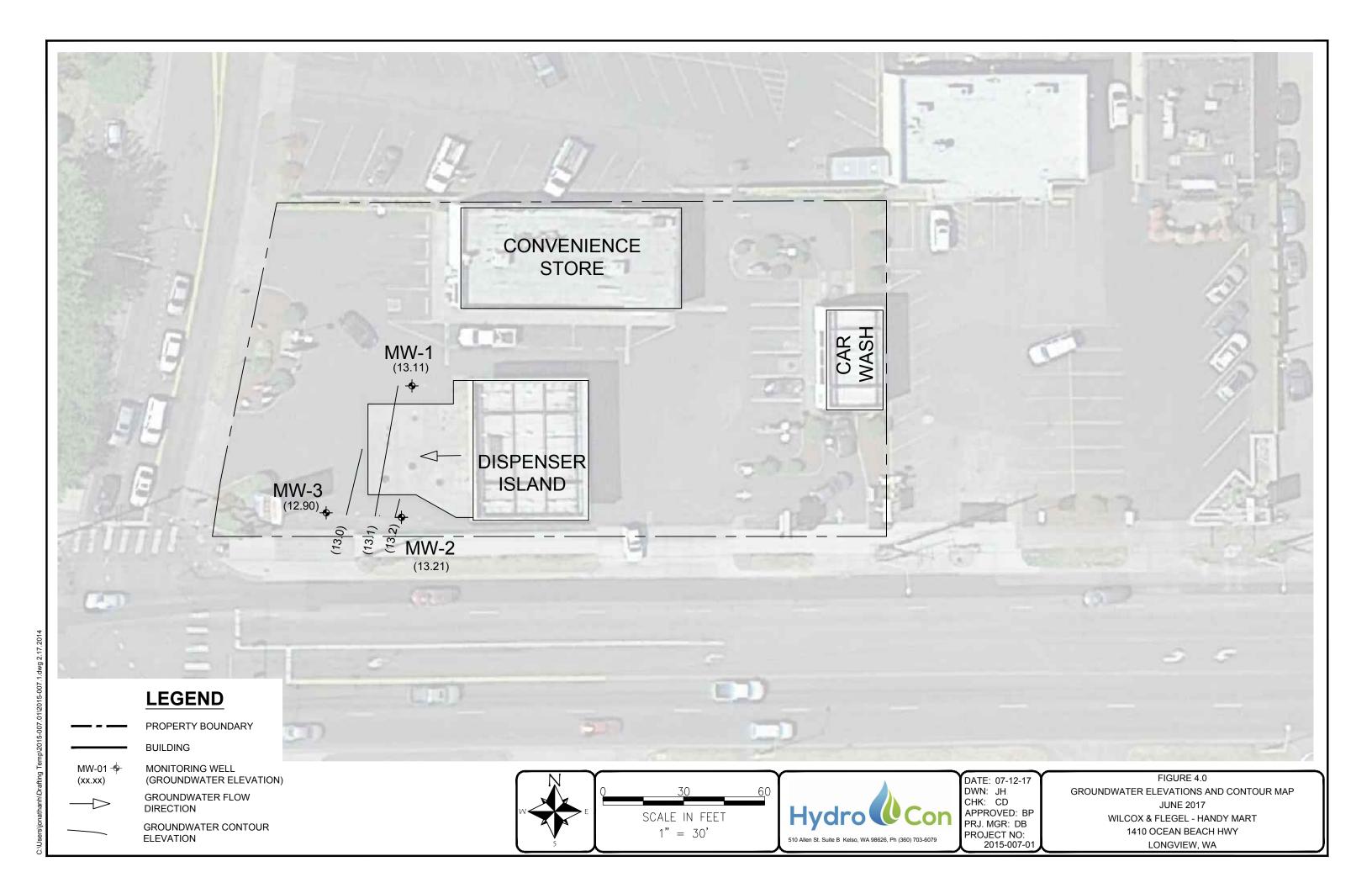
Table 2 - Summary of Groundwater Analytical Results

Attachment A - Groundwater Sample Collection Field Forms


Attachment B - Laboratory Report and Chain-of-Custody Documentation


NOTE(S):


1. USGS, KELSO QUADRANGLE
WASHINGTON
7.5 MINUTE SERIES (TOPOGRAPHIC)



DATE:03-20-17 DWN: JH CHK: JH APPROVED: PRJ. MGR: DB PROJECT NO: 2015-007-01 FIGURE 1
SITE LOCATION
HANDY MART
WILCOX & FLEGEL
1410 OCEAN BEACH HWY
LONGVIEW, WA

Table 1 Summary of Historical Groundwater Elevations Handy Mart Longview, Washington HydroCon Project Number 2015-007.1

Monitoring Well ID	Date	TOC Elevation	Depth to Water	Groundwater Elevation
	4/14/16		8.03	13.09
	8/10/16		10.45	10.67
MW-1	11/17/16	21.12	7.93	13.19
	3/15/17	1	6.78	14.34
	6/30/17		8.01	13.11
	4/14/16		6.79	13.19
	8/10/16	1	8.41	11.57
MW-2	11/17/16	19.98	6.83	13.15
	3/15/17		5.58	14.40
	6/30/17		6.77	13.21
	4/14/16		6.41	13.22
	8/10/16		8.02	11.61
MW-3	11/17/16	19.63	6.37	13.26
	3/15/17]	5.13	14.50
	6/30/17		6.73	12.90

Notes:

TOC = Top of well casing

Table 2
Summary of Groundwater Analytical Results
Handy Mart, Longview, Washington
HydroCon Project Number 2014-007.01

Paramete	r	GRPH [1]	Benzene [2]	Toluene [2]	Ethylbenzene [2]	Total Xylenes [2]
Cleanup Lev	vel*	800	5	1,000	700	1,000
Monitoring Well ID	Date Sampled	800	,	1,000	700	1,000
	9/24/15	<100	6.1	<1	<1	<3
	2/2/16	<100	6.6	<1	<1	<3
	4/14/16	<100	3.7	<1	<0.5	<1.5
MW01	8/10/16	<100	2.2	<1	<0.5	<1.5
	11/17/16	<100	0.314	<1	<0.5	<1.5
	3/15/17	<100	<0.2	<1	<0.5	<1.5
	6/30/17	<100	<0.2	<1	<0.5	<1.5
	9/24/15	460	<1	4.4	<1	3.5
	2/2/16	<100	2.7	<1	<1	<3
	4/14/16	<100	1.41	<1	<0.5	<1.5
MW02	8/10/16	<100	<0.2	<1	<0.5	<1.5
	11/17/16	<100	<0.2	<1	<0.5	<1.5
	3/15/17	<100	<0.2	<1	<0.5	<1.5
	6/30/17	<100	<0.2	<1	<0.5	<1.5
	9/24/15	<100	<1	<1	<1	<3
	2/2/16	210	<1	3.7	<1	<3
	4/14/16	310	<0.2	<1	<0.5	<1.5
MW03	8/10/16	326	<0.2	<1	<0.5	<1.5
	11/17/16	329	<0.2	<1	<0.5	<1.5
	3/15/17	<100	<0.2	<1	<0.5	<1.5
	6/30/17	<100	<0.2	<1	<0.5	<1.5

Notes:

All values shown are in micrograms per liter (µg/L) (parts per billion).

Highlighted cell indicates compound detected above cited MTCA Method A Cleanup Level.

^{* =} Washington State Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (rev. October 12, 2007)

^{[1] =} Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx

^{[2] =} Volatile Organic Compounds (VOCs) by EPA Methods 8260B

⁼ Indicates compound not detected above the laboratory Method Reporting Limit (MRL) shown.

ATTACHMENT A GROUNDWATER SAMPLE COLLECTION FIELD FORMS

GROUNDWATER SAMPLE COLLECTION FORM

lydr	ocon P		2015	Must - 007-0	dk		Sample I.D Field Duplicate Personnel:	te I.D	TT	D. Number: Nime: 1645
WEL Monu Well Head Well	L INF ument cap co lspace diame	ORMATI condition:	ON :	od Nee	olaced	Needs re	placement	✓ Water in M ☐ Surface W	Monument ater in Well	
l'otal Depth Depth Casir	l well d h to pro h to wa	ter6.	VM VM 77	ft Bottor ft ft Intake ft (H ₂ O) X	Depth (gal/ft	Not measure Z Begir = 2"=0.16 gal/f	gal. X 3 =_	ga	i.
Pum Baile	p type r type:		altic [Centrifuga	l	edicated Blac	dder □ Non-I d □ Remediat	tion System [Other	
		RAMETE	Τ	a Pata T	emp.	Su Cond	Dissolved Oxygen	Barry Company		Turbidity
Tir	ne	Level		e Rate T min)	(°C)	Sp. Cond. (mS/cm) (±3%)	(±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	(NTU)
1933		0.0000000000000000000000000000000000000		min)	(°C)	(mS/cm) (±3%)	(±10% or ≤1.00 ±0.2)	(SU) (±0.1)	(mV)	
121	5	Level		min) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(°C)	(mS/cm)	(±10% or	(SU) (±0.1)		(NTU) (± 10% or ≤10)
121	5 8 2 8	Level		min) 18	(°C) .9 7,2	(mS/cm) (±3%) .450 .452	(±10% or ≤1.00 ±0.2)	(SU) (±0.1)	(mV) -76,4	(NTU) (± 10% or ≤10) +
121	5 \$28	Level (BTOC)		min) 18	(°C) .9 7,2 7.5	(mS/cm) (±3%) .450 .457	(±10% or ≤1.00 ±0.2) 1 8 3 47- 1 · 61 (, - 18	(SU) (±0.1) 6. 19 6. 24	(mV) -76, 4 -56, 4 -63, 0 -68, 2	(NTU) (±10% or ≤10) † 40.3 2.36 3:1
121	5 \$28 31	Level (BTOC)		min) 18	(°C) .9 7,2 4.7 7.2	(mS/cm) (±3%) .450 .452	(±10% or ≤1.00 ±0.2) 1 8 3 47- 1 · 61 (, - 18	(SU) (±0.1) 6.19 6.24 6.21 6.21	(mV) -76,4 -56,4 -63.0 -68.2 -74,4	(NTU) (±10% or ≤10) † Ч0.3 2.36 31 33.7
1211212	5 \$28 31 224 237	Level (BTOC)		min) 18	(°C) .9 7,2 7.5	(mS/cm) (±3%) .450 .452 .464	(±10% or ≤1.00 ±0.2) 18 347- 1.61	(SU) (±0.1) 6. 19 6. 24 6. 21 6. 21	(mV) -76, 4 -56, 4 -63, 0 -68, 2	(NTU) (±10% or ≤10) † 40.3 2.36 3:1
12112	5 \$28 31 224 237	Level (BTOC)		min) 18	(°C) .9 7,2 4.7 7.2	(mS/cm) (±3%) .450 .452 .464 .462	(±10% or ≤1.00 ±0.2) 1 8 3 47- 1 · 61 (, - 18	(SU) (±0.1) 6.19 6.24 6.21 6.21	(mV) -76,4 -56,4 -63.0 -68.2 -74,4	(NTU) (±10% or ≤10) † Ч0.3 2.36 31 33.7
121121212	5 \$28 31 224 237	Level (BTOC)		min) 18	(°C) -9 -7,2 -7.7 -7.2 -1.2 -7.2	(mS/cm) (±3%) .450 .452 .464 .462 .468	(±10% or ≤1.00 ±0.2) 1.48 3.47- 1.61 (.48 0.89 0.75	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22	(mV) -76,4 -56,4 -63.0 -68.2 -74.4 -76.3	(NTU) (±10% or ≤10) + 40.3 2.36 3:1 33.7 £41
12112	5 \$28 31 224 237	Level (BTOC)		min) 18	(°C) -9 -7,2 -7.7 -7.2 -1.2 -7.2	(mS/cm) (±3%) .450 .452 .464 .462 .468	(±10% or ≤1.00 ±0.2) 1.48 3.47- 1.61 (.48 0.89 0.75	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22	(mV) -76,4 -56,4 -63.0 -68.2 -74.4 -76.3	(NTU) (±10% or ≤10) + 40.3 2.36 3:1 33.7 £41
1211212	5 \$28 31 224 237	Level (BTOC)		min) 18 11 12 12	(°C) .9 7.2 7.7 7.2 1.7 7.1	(mS/cm) (±3%) .450 .452 .464 .462 .468 .467	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22	(mV) -76,4 -56,4 -63.0 -68.2 -74.4 -76.3	(NTU) (±10% or ≤10) + 40.3 2.36 3:1 33.7 £41
121	5 31 224 237 40	Level (BTOC)	(L./	min) 18 1 11 1 12 1 12	(°C) .9 7.2 7.7 7.2 7.1 7.1	(mS/cm) (±3%) .450 .457 .464 .462 .468 .467 .468	(±10% or \$1.00 ±0.2) 18 3.47- 1.61 (8 0.89 0.75 0.59	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21	(mV) -76, 4 -56, 4 -63, 0 -68, 2 -74, 4 -76, 3 -77, 1	(NTU) (±10% or ≤10) † 40.3 236 31 33.7 241
121 12 12 13 13 12	5 31 224 237 40 43	Level (BTOC)	(L/	min)	(°C) .9 7,2 7.7 7.2 7.1 7.1	(mS/cm) (±3%) .450 .452 .464 .462 .468 .467 .468	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75 0.59	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21	(mV) -76, 4 -56, 4 -63, 0 -68, 2 -74, 4 -76, 3 -77, 1	(NTU) (±10% or ≤10) † 40.3 236 31 33.7 241
12" 12" 12" 12" 12" 12" 12"	5 \$ 28 31 224 237 140 43	Level (BTOC)	(L/	min) 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(°C) .9 .7,2 .7.7 .7.2 .7.2 .7.1 .7.1	(mS/cm) (±3%) .450 .452 .464 .462 .468 .467 .468	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75 0.59	(SU) (±0.1) 6. 19 6. 24 6. 21 6. 21 6. 22 6. 21 6. 20	(mV) -76, 4 -56, 4 -63, 0 -68, 2 -74, 4 -76, 3 -77, 1	(NTU) (±10% or ≤10) † 40.3 2.36 3: 33.7 2.91 15.7
12" 12" 12" 12" 12" 12" 12"	5 \$ 28 31 224 237 140 43	Level (BTOC)	(L/	min) 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(°C) .9 7,2 7.7 7.2 7.1 7.1	(mS/cm) (±3%) .450 .452 .464 .462 .468 .467 .468	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75 0.59	(SU) (±0.1) 6. 19 6. 24 6. 21 6. 21 6. 22 6. 21 6. 20	(mV) -76, 4 -56, 4 -63, 0 -68, 2 -74, 4 -76, 3 -77, 1	(NTU) (±10% or ≤10) + 40.3 2.36 3: 33.7 291 15.7 d within their (purged 1.3n)
120 12 12 12 12 12 12 12 12 12	3 28 31 224 237 40 43	Level (BTOC)	hree succeriteria.	essive measure	PC P	(mS/cm) (±3%) .450 .452 .464 .462 .468 .464 .468	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75 0.59	(SU) (±0.1) 6.19 6.24 6.21 6.22 6.21 6.20 or Dissolved Oxy	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) † 40.3 2.36 3: 33.7 2.91 15.7
121 12 12 12 12 12 12 12 13 Stabill	S 3 28 3 29 3 22 4 22 4 23 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Level (BTOC)	hree succeriteria.	min) 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pield	(mS/cm) (±3%) .450 .452 .464 .462 .463 .464 .463 .468	(±10% or \$1.00 ±0.2) 1\{8} 3.47- 1.61 (\{8} 0.89 0.75 0.59 Vity and Turbidity to be recorded.	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21 6.20	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) + 40.3 236 3:1 33.7 291 15.7 d within their Pulged 191 Prior to
120 12 12 12 12 12 12 12 12 12 12 12	3 28 31 22 31 31 31 31 31 31 31 31 31 31 31 31 31	achieved if the tabilization of tabili	hree succeptieria. A	essive measure	Pield Field No) 0	(mS/cm) (±3%) .450 .452 .464 .462 .463 .464 .463 .467 .468	(±10% or ≤1.00 ±0.2) 1[8 3.47- 1.61 ([8 0.89 0.75 0.59	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21 6.20	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) + 40.3 236 3:1 33.7 291 15.7 d within their Pulged 191 Prior to
120 12 12 12 12 12 12 12 12 12 12 12	3 28 31 22 31 31 31 31 31 31 31 31 31 31 31 31 31	achieved if the tabilization of ments: NFORMA	hree succeptieria. A	essive measure	Pield No 0 No 0	(mS/cm) (±3%) .450 .452 .464 .462 .463 .464 .467 .468 .467 .468 .464 .468 .464 .468	(±10% or \$1.00 ±0.2) 1\{8} 3.47- 1.61 (\{8} 0.89 0.75 0.59 Vity and Turbidity to be recorded.	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21 6.20	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) + 40.3 236 3:1 33.7 291 15.7 d within their Pulged 191 Prior to
120 12 12 12 12 12 12 Stabill persp Purg	3 28 31 22 31 31 31 31 31 31 31 31 31 31 31 31 31	achieved if the tabilization of ments: NFORMA	hree succeptieria. A	essive measure	Pield No 0 No 0	(mS/cm) (±3%) .450 .457 .464 .467 .468 .467 .468 .467 .468 .467 .468 .467 .468 .467 .468 .467 .468	(±10% or \$1.00 ±0.2) 1\{8} 3.47- 1.61 (\{8} 0.89 0.75 0.59 Vity and Turbidity to be recorded.	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21 6.20	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) + 40.3 236 3:1 33.7 291 15.7 d within their Pulged 191 Prior to
120 12 12 12 12 12 12 12 12 12 12 12	3 28 31 22 31 31 31 31 31 31 31 31 31 31 31 31 31	achieved if the tabilization of ments: NFORMA	hree succeptieria. A	essive measure	Field No 0 No 0 No 0	(mS/cm) (±3%) .450 .452 .464 .462 .463 .464 .467 .468 .467 .468 .464 .468 .464 .468	(±10% or \$1.00 ±0.2) 1\{8} 3.47- 1.61 (\{8} 0.89 0.75 0.59 Vity and Turbidity to be recorded.	(SU) (±0.1) 6.19 6.24 6.21 6.21 6.22 6.21 6.20	(mV) -76.4 -56.4 -63.0 -68.2 -74.4 -76.3 -77.1	(NTU) (±10% or ≤10) + 40.3 236 3:1 33.7 291 15.7 d within their Pulged 191 Prior to

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MWOZ

dition: X	Good Rer	olaced \[\] No	ada yanlasam				
		4-inch	ppm G-inch	ent 🔲	Surface Wat	ter in Well	
oth NM oct NM G-73 e ersion Factor	ft Botton ft ft Intake ft (H ₂ O) X	n: Hard Depth (BTOC	Soft Not n C) 12' gal/ft = gal/ft 2"=0.1	neasured _ Begin Pu g 6 gal/ft 4	Screen Integring Well:_ al. X 3 = "=0.65 gal/f	erval(s): <u>1306</u> gal t 6"= 1.47 ga	al/ft
₫ Peristaltic	☐ Centrifuga	l □ Dedicat sposal::☑ Dr	ed Bladder □ ummed □ Re	mediation	System [Other	
AMETERS					dor and/or Sl	neen: Very	taint
		(°C) (mS	Cond. Oxyg	gen 6 or	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
- (16	.7 .1	84 0.	33	6.29	-23.0	97.9
-		6.6	91 0.9	3	6.20	-41.4	7.83
-				-18		-41.4	3.17
	San	nde () 13:	25)		
ilization criteria ents:	. A minimum of s	ments for pH, C ix measurement	onductivity and T is should be recor	urbidity or I ded.	Dissolved Oxyg	en are recordec	I within their
Type Bottl	e Preservative	Field Filter	ed?		Analys	is	
4 3	1401	No 0.45 0	0.10	Gx	STEX		
		No 0.45 0).10				
	ISPOSAL M Peristaltic METERS Water Pu Level (I BTOC) - () - (ISPOSAL METHOD Peristaltic Centrifuga Water Di METERS Water Purge Rate (L/min) BTOC) - 0.10 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 17 - 16 - 17 - 17 - 18 FORMATION Type Bottle Count - 3 1401	ISPOSAL METHOD Peristaltic Centrifugal Dedicat Water Disposal:: Dr METERS	Sposal Method Dedicated Bladder Water Disposal: Drummed Reservative Reserv	Sersion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4 ISPOSAL METHOD	Sersion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 4"=0.65 gal/ft 4"=0.65 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft	Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Water Disposal: Drummed Remediation System Other

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW03 Time: 1410 MWUZ Sample I.D. Project Name: Handy Mart Time: -Hydrocon Project #: 7015-007-01 Field Duplicate I.D.____ Darohe Personnel: Chris 30 June 2017 WELL INFORMATION ☑ Water in Monument Monument condition: ☑ Good ☐ Needs repair___ Well cap condition: Good Replaced Needs replacement Surface Water in Well Headspace reading: Not measured ppm Odor ☑ Other _ 3/4" 4-inch 6-inch Well diameter: 2-inch Comments _ PURGING INFORMATION Total well depth____ NM ___ft Bottom: ☐ Hard ☐ Soft ☑ Not measured Screen Interval(s):______ NM ft Casing volume ____ft (H₂O) X ___gal/ft = ___gal. X 3 = ___gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other____ Bailer type: _____ Water Disposal:: Drummed Remediation System Other ____ Odor and/or Sheen: Nove FIELD PARAMETERS Dissolved Turbidity **Purge Rate** Temp. Sp. Cond. Oxygen pH Water ORP Time (NTU) (±10% or (L/min) (°C) (mS/cm) (SU) Level (mV) ≤1.00 ±0.2) (± 10% or ≤10) (±3%) (±0.1) (BTOC) 134 0.59 2.20 6.07 -51.1 0.04 1351 --72.3 50.7 1.17 6.12 0.61. 17.1 1354 -82.0 24.8 6.14 0.63 0.86 1357 17.0 -96.4 6.14 0.65 0.63 6.70 1400 17.0 0.54 6.44 -102.4 2.74 16.9 0.67 1403 -103.6 3.56 16.9 0.47 6.14 0.67 1406 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: Suspended orange algae in purge water SAMPLE INFORMATION Field Filtered? Analysis Bottle Preservative **Container Type** Count No 0.45 0.10 CX BTEX 40 ml VOA HCI 3 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:___

ATTACHMENT B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, July 6, 2017

Dave Borys HydroCon LLC 510 Allen St. Suite B Kelso, WA 98626

RE: Handy Mart / 2015-007-01

Enclosed are the results of analyses for work order <u>A7G0010</u>, which was received by the laboratory on 7/3/2017 at 1:15:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Kelso, WA 98626Project Manager:Dave Borys

Reported: 07/06/17 10:20

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION									
Sample ID	PDF Amended	Laboratory ID	Matrix	Date Sampled	Date Received					
MW01	= MW2	A7G0010-01	Water	06/30/17 12:45	07/03/17 13:15					
MW02	= MW3	A7G0010-02	Water	06/30/17 13:25	07/03/17 13:15					
MW03	= MW1	A7G0010-03	Water	06/30/17 14:10	07/03/17 13:15					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

Kelso, WA 98626

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01

Project Number: 2015-007-01 Reported:
Project Manager: Dave Borys 07/06/17 10:20

ANALYTICAL SAMPLE RESULTS

Gas	oline Rang	e Hydrocar	bons (Ber	zene through	Naphthalen	e) by NWTPH-G	x	
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW01 (A7G0010-01)		Matrix: Water			Batch: 70702	23		
Gasoline Range Organics	ND		100	ug/L	1	07/03/17 18:24	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 101 %	Limits: 50-150 %	, "	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	, "	"	"	
MW02 (A7G0010-02)			Matrix: Wa	ater E	Batch: 70702	23		
Gasoline Range Organics	ND		100	ug/L	1	07/03/17 18:51	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 99 %	Limits: 50-150 %	"	"	"	
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	, "	"	"	
MW03 (A7G0010-03)		Matrix: Wa	ater E	Batch: 70702	23			
Gasoline Range Organics	ND		100	ug/L	1	07/03/17 19:18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 101 %	Limits: 50-150 %	, "	"	"	
1,4-Difluorobenzene (Sur)			105 %	Limits: 50-150 %	, "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Kelso, WA 98626Project Manager:Dave Borys

Reported: 07/06/17 10:20

ANALYTICAL SAMPLE RESULTS

		ВТ	EX Compo	unds by EPA 82	60B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW01 (A7G0010-01)			Matrix: Wa	iter Ba	tch: 70702	23		
Benzene	ND		0.200	ug/L	1	07/03/17 18:24	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
MW02 (A7G0010-02)			Matrix: Wa	iter Ba	tch: 70702	23		
Benzene	ND		0.200	ug/L	1	07/03/17 18:51	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
MW03 (A7G0010-03)			Matrix: Wa	iter Ba	tch: 70702	23		
Benzene	ND		0.200	ug/L	1	07/03/17 19:18	EPA 8260B	
Toluene	ND		1.00	"	"	"	"	
Ethylbenzene	ND		0.500	"	"	"	"	
Xylenes, total	ND		1.50	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 105 %	Limits: 80-120 %	"	"	"	
Toluene-d8 (Surr)			99 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Kelso, WA 98626Project Manager:Dave Borys

Reported: 07/06/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarbo	ons (Ben	zene thro	ough Napht	halene) l	by NWTI	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070223 - EPA 5030B Water												
Blank (7070223-BLK1)				P	repared: 07/	03/17 09:22	Analyzed:	07/03/17 1	1:37			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 101 %	Limits: 5	50-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	i0-150 %		"					
LCS (7070223-BS2)				P	repared: 07/	03/17 09:22	Analyzed:	07/03/17 1	1:10			
NWTPH-Gx (MS)												
Gasoline Range Organics	435		100	ug/L	1	500		87	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 100 %	Limits: 5	50-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Kelso, WA 98626Project Manager:Dave Borys

Reported: 07/06/17 10:20

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	(Compou	ınds by l	EPA 8260B	3					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7070223 - EPA 5030E	3						Wat	er				
Blank (7070223-BLK1)				Pro	epared: 07/	03/17 09:22	Analyzed:	07/03/17 1	1:37			
EPA 8260B												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	"	"							
Ethylbenzene	ND		0.500	"	"							
Xylenes, total	ND		1.50	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (7070223-BS1)				Pre	epared: 07/	03/17 09:22	Analyzed:	07/03/17 1	0:43			
EPA 8260B												
Benzene	20.0		0.200	ug/L	1	20.0		100	70-130%			
Toluene	20.4		1.00	"	"	"		102	"			
Ethylbenzene	20.4		0.500	"	"	"		102	"			
Xylenes, total	62.4		1.50	"	"	60.0		104	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Kelso, WA 98626Project Manager:Dave Borys

Reported: 07/06/17 10:20

SAMPLE PREPARATION INFORMATION

	0	Sasoline Range Hydr	ocarbons (Benzene	through Naphthalene	e) by NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 7070223							
A7G0010-01	Water	NWTPH-Gx (MS)	06/30/17 12:45	07/03/17 11:02	5mL/5mL	5mL/5mL	1.00
A7G0010-02	Water	NWTPH-Gx (MS)	06/30/17 13:25	07/03/17 11:02	5mL/5mL	5mL/5mL	1.00
A7G0010-03	Water	NWTPH-Gx (MS)	06/30/17 14:10	07/03/17 11:02	5mL/5mL	5mL/5mL	1.00
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5030B					Sample	Default	RL Prep
					Sample	Delauit	KL I ICP
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
	Matrix	Method	Sampled	Prepared	*		1
	Matrix Water	Method EPA 8260B	Sampled 06/30/17 12:45	Prepared 07/03/17 11:02	*		1
Batch: 7070223					Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 HydroCon LLC
 Project
 Handy Mart

 510 Allen St. Suite B
 Project Number: 2015-007-01
 Reported:

 Kelso, WA 98626
 Project Manager: Dave Borys
 07/06/17 10:20

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

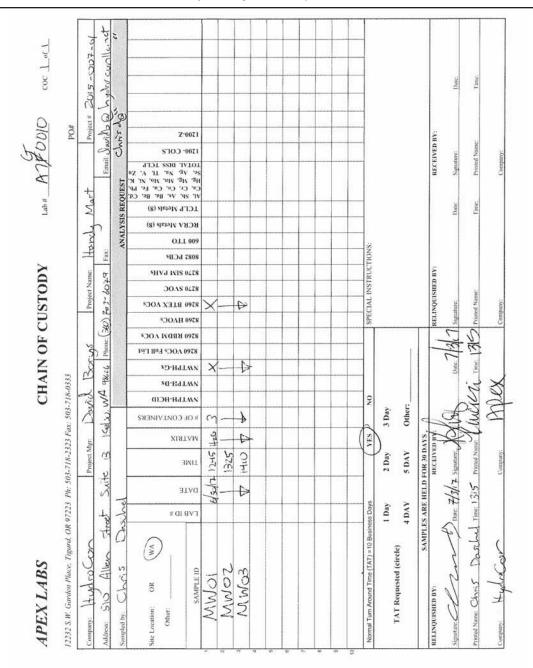
Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Reported:Kelso, WA 98626Project Manager:Dave Borys07/06/17 10:20

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Handy Mart510 Allen St. Suite BProject Number:2015-007-01Reported:Kelso, WA 98626Project Manager:Dave Borys07/06/17 10:20

	APE	X LABS COOLER RECEI	PT FORM
Client:	thelo	con	Element WO#: A7 CAO 10
Project/Project	#:	landy Mart	
Delivery info:	11	J	
Date/Time Recei	ved: 7817@	1315 By: 11	n
Delivered by: Ap	Dex Client X ES		wift Senvoy SDS Other
Cooler Inspectio		:_\url_:_	47/3/17@ 1320
Chain of Custody	Included? Yes	No Custody	Seals? YesNo_X
Signed/Dated by	Client? Yes	No	
Signed/Dated by	*	No	
	A142 (1997)		oler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg	10		
Received on Ice	(v)N)		
Temp. Blanks? ((N)	State of the second second second	
Ice Type: (Ge)/Re	eal/Other)	n -	
Condition:	Avix		
Cooler out of tem	p? (Y/N) Possible rea	son why:	
If some coolers ar	re in temp and some of	ut, were green dot applied to	out of temperature samples? Yes/No/NA
Samples Inspect	ion: Inspected by:	an : -7/2	0 1265 C
All Samples Intac	t? Yes X No	Comments:	
Bottle Labels/CO	Cs agree? Yes 📈 N	lo Comments:	
		17	
Containers/Volun	nes Received Appropr	iate for Analysis? Yes 🗶 1	No Comments:
Do VOA Vials ha	ave Visible Headspace	? Yes No <u>y</u> NA _	
Comments	Transfer freuespace		
	nH Checked and Appr	opriate (except VOAs): Yes	No NA (/
Comments:	A Checked and Appl	opinic (encept 1 oris), 1 to	
Additional Inform	ation:		
Augunonai miorm	IAUOII.		
Labeled by:	Witness:	Cooler Inspected by:	See Project Contact Form: Y
	con	Vim	
Vin	*	Enc	
UNC	2		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenighini