

TECHNICAL MEMORANDUM

To:Mr. Aaron WilcoxFrom:Jonathan Horowitz, PEDate:February 20, 2016Subject:Handy Mart - Groundwater Monitoring Results

INTRODUCTION

HydroCon Environmental, LLC (HydroCon) is submitting this technical memorandum to Wilcox & Flegel to document the work completed at 1410 Ocean Beach Highway in Longview, Washington (the site) in February 2016. The work was conducted according to our Master Services Agreement (MSA), dated July 11, 2014.

FIELD ACTIVITIES

On February 2, 2106, HydroCon personnel mobilized to the site to perform the groundwater monitoring. Upon arrival at the site, the well cap on each well was removed and the water level was allowed to equilibrate prior to measuring the depth to water (DTW). The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north end of the top of the PVC casing) at each well. A table detailing the groundwater levels and elevations and a figure indicating the groundwater flow direction are included in the attachments. Depth to water in the wells ranged from 6.12 to 7.52 feet below top of casing. Groundwater elevations were calculated based on an arbitrary measuring point. Based on the measured groundwater elevations, the groundwater flows towards the southwest at an approximate gradient of 0.003 feet/foot. This flow direction is consistent with the previous sampling event.

HydroCon purged monitoring wells MW-1 through MW-3 with a low flow peristaltic pump equipped with new length of LDPE tubing attached to a new length of silicone tubing. Field parameters (pH, temperature and specific conductivity) were measured and recorded on a Groundwater Sample Collection field form along with the depth to water measurements (included in the attachment). Purging was completed when the field parameters had stabilized.

Samples were collected immediately after purging and placed in labeled laboratory-prepared sample bottles. The samples were shipped in an iced cooler along with chain-of-custody documentation to the project laboratory for analysis.

A total of three groundwater samples were collected for laboratory analysis. Each sample was analyzed for the following set of parameters:

- Gasoline Range Organics (GRPH) by Northwest Method NWTPH-Gx; and
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8021B.

SAMPLING RESULTS

GRPH was detected at concentrations above the laboratory Method Reporting Limits (MRLs) in one of the samples (from MW-3) submitted; however, the detected concentration was below the applicable MTCA Method A Cleanup Level. Benzene was detected at a concentration of 6.6 micrograms per liter (μ g/L) in the sample from MW-1. This concentration exceeds the MTCA Method A Cleanup Level of 5 μ g/L. In addition, benzene (MW-2) and toluene (MW-3) were detected above the MRLs in two wells; however the detected concentrations were below the applicable MTCA Method A Cleanup Levels. A summary data table and the laboratory report are included in the attachments.

DISCUSSION

Based on the analytical results, HydroCon recommends the following:

- The next round of monitoring should be conducted during the second quarter of 2016.
- Based on the exceedance of benzene during this sampling event quarterly groundwater monitoring should continue until four consecutive quarters with no detected concentrations exceeding MTCA Method A Cleanup Levels have been achieved.

QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either express or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **Wilcox & Flegel**. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or reuse of this document or the findings, conclusions, or recommendations is at the risk of said user.

The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

CLOSING

We appreciate the opportunity to perform these services for Groat Brothers, Inc. Please contact the undersigned at (360) 703-6079 if you have any questions regarding the information provided in this letter report.

Sincerely,

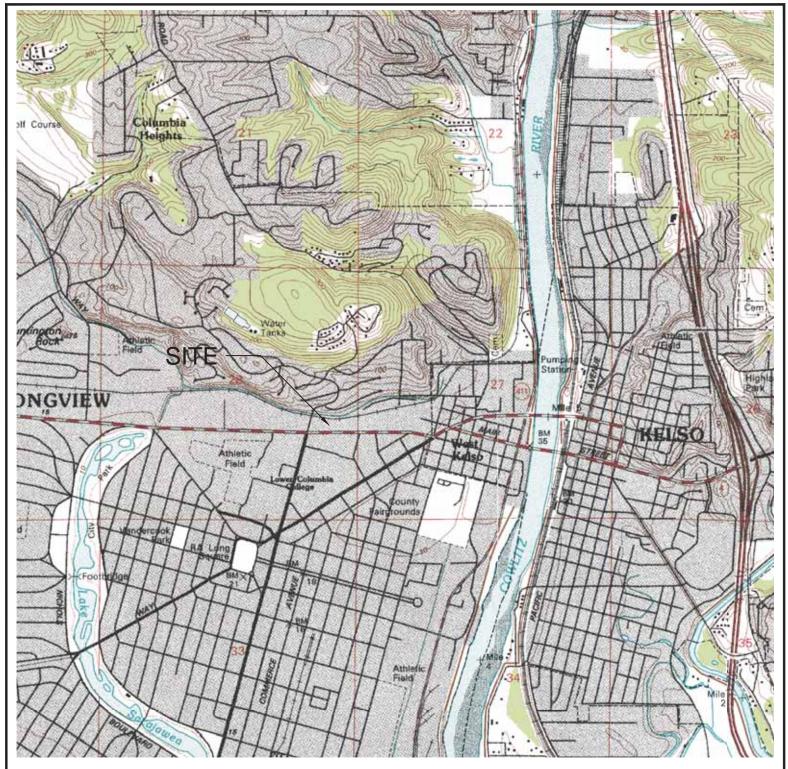
Hydro

Jonathan Horowitz, PE Project Engineer

Figures

- Figure 1 Site Location Map
- Figure 2 Site Features Map
- Figure 3 Groundwater Analytical Results
- Figure 4 Groundwater Elevations and Contour Map

Tables


- Table 1 Summary of Groundwater Elevations
- Table 2 Summary of Current Groundwater Analytical Results
- Table 3 Summary of Historical Groundwater Analytical Results

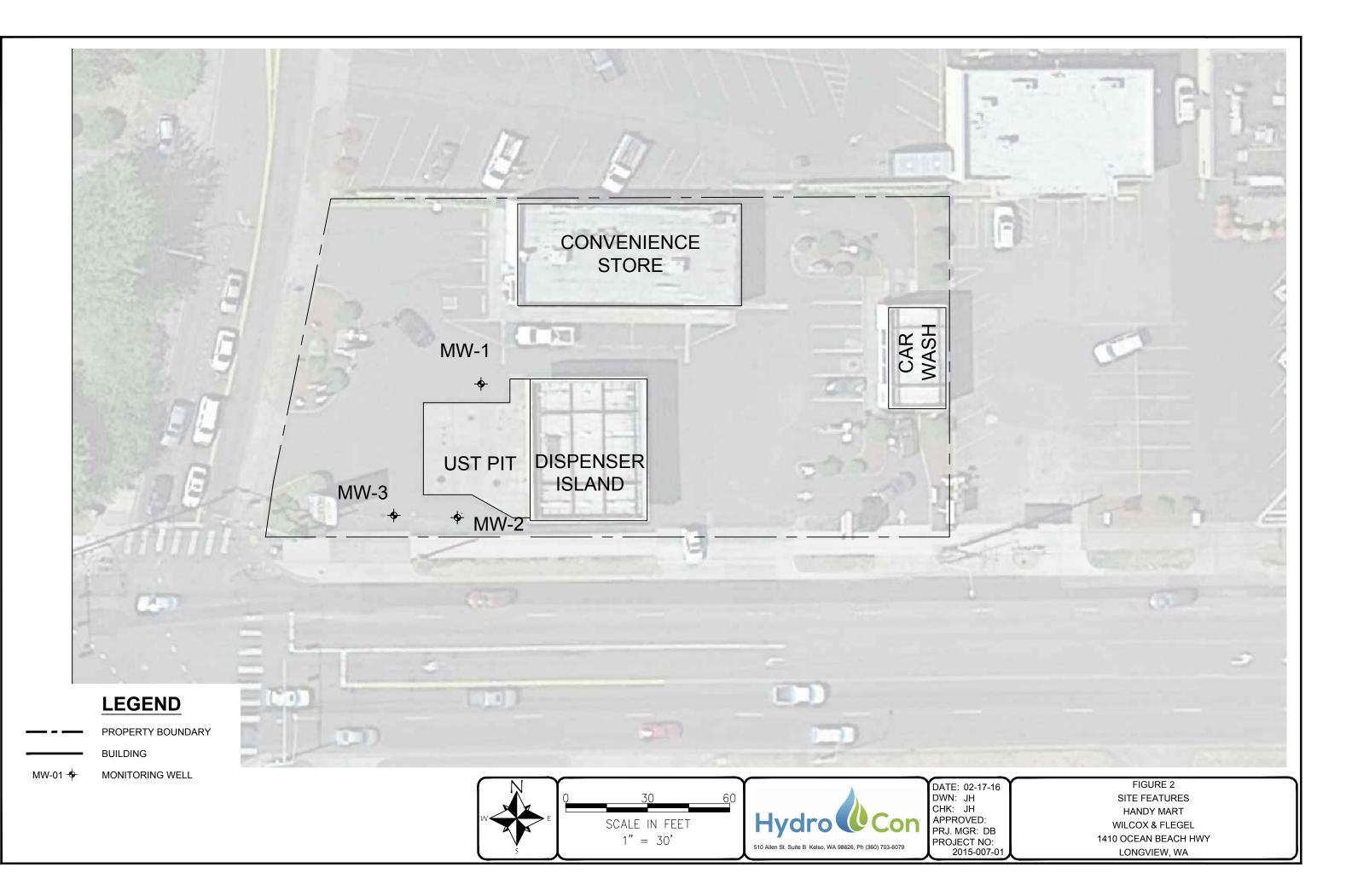
Attachments

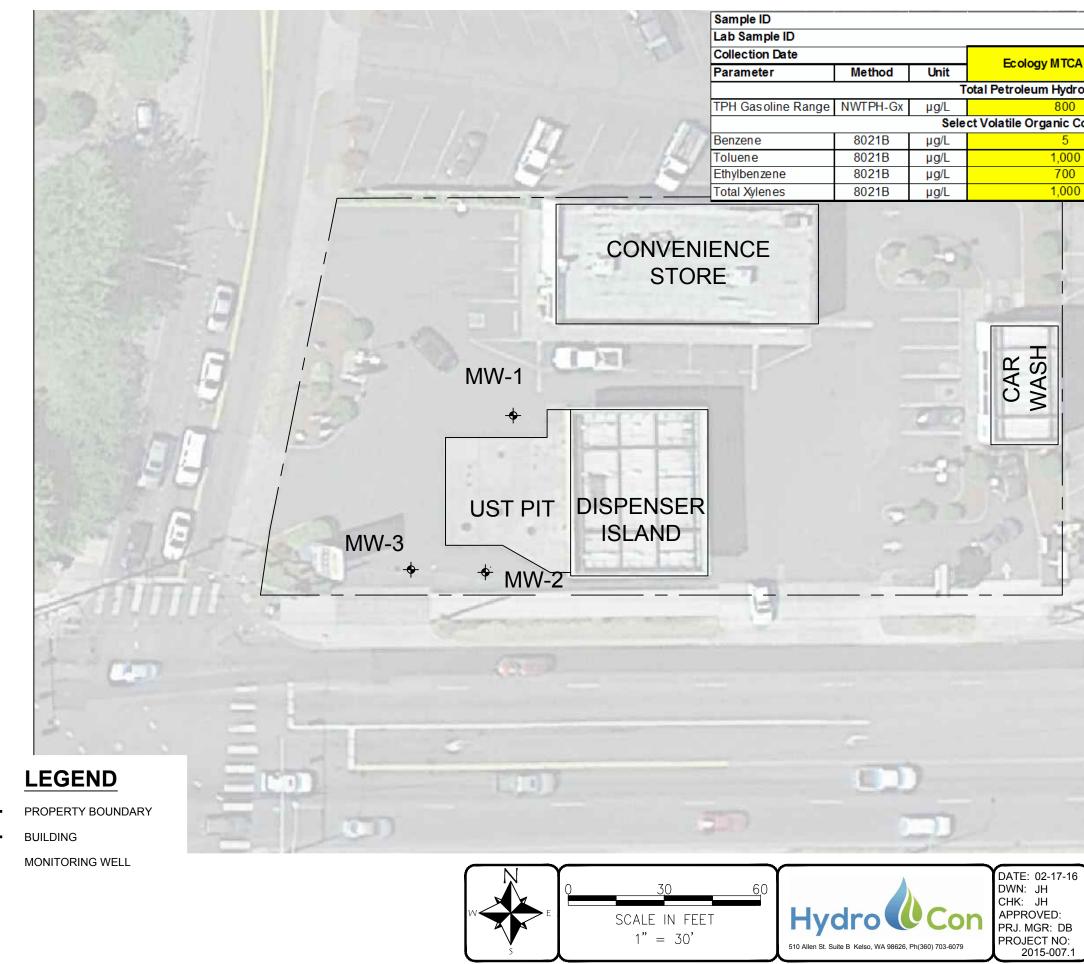
Attachment A - Groundwater Sample Collection Field Forms

Attachment B - Laboratory Report and Chain-of-Custody Documentation

NOTE(S):

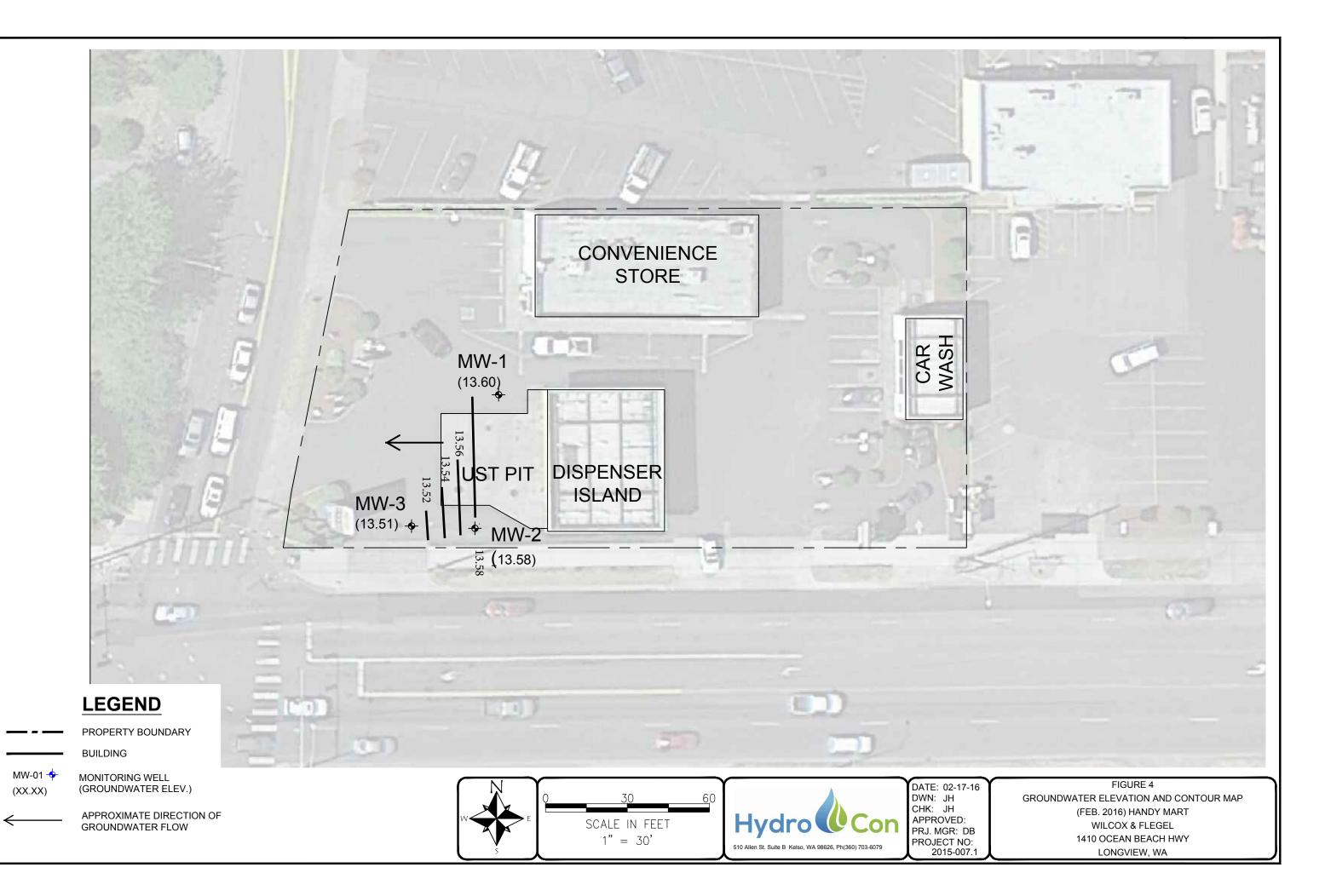
1. USGS, KELSO QUADRANGLE WASHINGTON 7.5 MINUTE SERIES (TOPOGRAPHIC)




20<u>00</u> SCALE IN FEET 1" = 2000'

2015-007-1

FIGURE 1 SITE LOCATION HANDY MART WILCOX & FLEGEL 1410 OCEAN BEACH HWY LONGVIEW, WA



MW-01 🔶

	MW01		MW02		MW03	
	602046-	03	602046-	01	602046	-02
MTCA Level A	2/2/16		2/2/16		2/2/16	
INTCA Level A	Value	Q	Value	Q	Value	Q
Hydrocarbons (TPH)					
800	<100		<100		210	
anic Compounds (VC	Cs)					
5	6.6		2.70		<1	
1,000	<1		<1		3.7	
700	<1		<1		<1	
1,000	<3		<3		<3	

FIGURE 3 GROUNDWATER ANALYTICAL RESULTS (FEB. 2016) HANDY MART WILCOX & FLEGEL 1410 OCEAN BEACH HWY LONGVIEW, WA

Table 1Summary of Historical Groundwater Elevations
Handy Mart
Longview, Washington
HydroCon Project Number 2015-007.1

Monitoring Well ID	Date	TOC Elevation	Depth to Water	Groundwater Elevation
MW-01	9/24/2015	21.12	10.98	10.14
10100-01	2/2/2016	21.12	7.52	13.6
MW-02	9/24/2015	19.98	9.85	10.13
10100-02	2/2/2016	19.98	6.4	13.58
MW-03	9/24/2015	19.63	9.54	10.09
10100-03	2/2/2016	19.63	6.12	13.51

Notes:

TOC = Top of well casing

Table 2Summary of Groundwater Analytical ResultsHandy Mart, Longview, WashingtonHydroCon Project Number 2014-007.01

Sample ID	MW01		MW02		MW03	\$			
Lab Sample ID					03	602046-01		602046-0	02
Collection Date	Collection Date					2/2/16		2/2/16	
Parameter	Method	Unit	Ecology MTCA Level A	Value	Q	Value	Q	Value	Q
		•	Total Petroleum Hydrocarbons (TPH)						
TPH Gasoline Range (G	800	<100		<100		210			
		Sele	ect Volatile Organic Compounds (VO	Cs)					-
Benzene	8021B	µg/L	5	6.6		2.70		<1	
Toluene	8021B	µg/L	1,000	<1		<1		3.7	
Ethylbenzene	8021B	µg/L	700	<1		<1		<1	T
Total Xylenes	8021B	µg/L	1,000	<3		<3		<3	Τ

Notes and Qualifiers: (Q; only shown in Table if reported by laboratory)

* = Washington State Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (rev. October 12, 2007)

[1] = Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx

[2] = Volatile Organic Compounds (VOCs) by EPA Methods 8021B

< = Indicates compound not detected above the laboratory Method Reporting Limit (MRL) shown.

All values shown are in micrograms per liter (μ g/L) (parts per billion).

Highlighted cell indicates compound detected above cited MTCA Method A Cleanup Level.

Table 3 Summary of Groundwater Analytical Results Handy Mart, Longview, Washington HydroCon Project Number 2014-007.01

Paramete	Parameter		GRPH [1] Benzene [2] Toluene [2] Ethylbenzene [2]			
Cleanup Lev	/el*	800	5	1,000	700	1,000
Monitoring Well ID	Date Sampled	800	5	1,000	700	1,000
MW-1	9/24/15	<100	6.1	<1	<1	<3
10100-1	2/2/16	<100	6.6	<1	<1	<3
MW-2	9/24/15	460	<1	4.4	<1	3.5
10100-2	2/2/16	<100	2.7	<1	<1	<3
MW-3	9/24/15	<100	<1	<1	<1	<3
Notes	2/2/16	210	<1	3.7	<1	<3

Notes:

* = Washington State Model Toxics Control Act (MTCA) Method A Cleanup Level for Groundwater (rev. October 12, 2007)
 [1] = Gasoline Range Petroleum Hydrocarbons (GRPH) by Northwest Method NWTPH-Gx

[2] = Volatile Organic Compounds (VOCs) by EPA Methods 8021B

< = Indicates compound not detected above the laboratory Method Reporting Limit (MRL) shown.</p>

All values shown are in micrograms per liter ($\mu g/L$) (parts per billion). Highlighted cell indicates compound detected above cited MTCA Method A Cleanup Level.

ATTACHMENT A GROUNDWATER SAMPLE COLLECTION FIELD FORMS

GROUNDWATER PURGE AND SAMPLE COLLECTION

Well I.D. Number: MW - 1

Project Na Hydrocon Date:	Project Nu	r): mber:	andy h 2013-0	lart 7-0	1	Sample I.D.:_/ Field Duplicat Personnel:_/	e I.D.:		Time: <u>095</u> } Time:
Monumen Well cap o Headspace Well diam	condition: e reading:D eter:	: O Go G Go Not me 2-in	od 🗌 Ne od 🗍 Ra easured Pl nch	eplaced D Readi	Need	s Replacement _ ppm _ 6-i	☐ Surfa ☐ Odor: nch ☑ O	ce Water We	in Monument Il Infiltration
Total well Depth to pr Depth to w Casing vol	G INFORM depth: roduct: ater: ume: ponversion F	.90	_ft Botton _ft _ft Int _ft (H₂O) >	n: 🗌 Ha ake Dep (al/ft 1"	rd Soft oth (BTOC):gal/ft =0.04 gal/ft	Not measure = 2"=0.16 gal/f	ed Screen Ir Begin Pu _gal. X 3 =_ t 4"=0.65 gal,	nterval(s): rging Well: /ft 6"= 1.47	al. gal/ft
Pump type	G /DISPOS Perist	altic 🕱	Centrifuga	t De isposal:[edicated Bla Drummed	dder 🗌 Non-l I 🗌 Remediat	edicated Bla on System	dder Other_] Other	
FIELD PA	RAMETE	RS					Odor and/or	Sheen: <u>Nev</u>	u .
Time 2731 2934 2937 2940 2940 2940 2940 2946	Water Level (BTOC)	Purge (L/r	nin) /4 14 14	emp. (°C) (65) (65) (73) (73) (73) (73) (73) (73) (73) (73	Sp. Cond. (mS/cm) (±3%) 348 × 359 × 367 367 371 371 371	Dissolved Oxygen (±10% or ≤1.00 ±0.2) Q,4(7 d.36 d.36 d.36 d.36 d.31 d.31 d.49	pH (su) (±0.1) 7.84 7.97 7.97 7.37 7.37 7.31 7.31 7.26	ORP (mV) 2.0 -3.1 -15.7 -15.7 -33.0 -33.0	Turbidity (NTU) (± 10% or ≤10)
Stabilization their respect Purging Co	achieved if th ive stabilizati mments:	iree succe on criteri:	ssive measure	ments for	pH, Conductiv	PIDA vity and Turbidity ould be recorded.	ind/or Dissolved ruent h	10xygen are ree 64c7 Leve	corded within
SAMPLE	INFORMA	TION							35373
Contain 40mL		Bottle Count	HCL.	No 0. No 0. No 0. No 0.	Filtered? 45 0.10 45 0.10 45 0.10 45 0.10 45 0.10		Analy	sis	
				No 0	45 0.10				

GROUNDWATER PURGE AND SAMPLE COLLECTION

Hydrocoi Date:	ame (Numbe Project Nu 2-/2-//6	r): <u>Handy</u> mber: <u>2015</u>	-07-01		Field Dunlicat	te I.D.:		_Time: <u>(03</u> 0 _Time:
Monumer Well cap Headspac Well dian	condition: e reading: eter:	ON : OGood C Good C Not measured 2-inch	Replaced	Need	s Renlacement	□ Surfa □ Odor: nch ४ (_ Water ace Water We Other: <u>3/4</u>	
Fotal wel Depth to p Depth to w Casing vo	vater: lume:	ATION $\underline{a_1 a_2 4}$ ft Bo ft $\underline{a_1 a_2 4}$ ft ft $\underline{a_1 a_2 4}$ ft $\underline{a_1 a_2 4}$ ft $\underline{a_2 4}$ ft $\underline{a_1 a_2 4}$ ft $\underline{a_2 4}$ ft a	Intake Dep 0) X	oth (BTOC):		Begin Pu	rging Well:	
Pump typ Bailer typ	e 🕅 Perista	AL METHOD altic Centri Wate	fugal 🔲 Do er Disposal:[edicated Blad Drummed	lder 🗌 Non-I 🗌 Remediati	on System [] Other	
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
008 011 014 014 017 1020 023			13.62 13.62 13.68 13.73 13.83 13.83	152× 157× 159 × 160 × 161 × 162	2.86	7.5) × 7.22 × 7.16 × 7.15 × 7.15 × 7.15 ×	-42.9 -35.7 -34.3 -39.1 -42.5 -46.4	
			Samo	1. 0	120			

SAMPLE INFORMATION

Container Type	Bottle Count	Preservative	Field Filtered?	Analysis
40mLVOA	4	HCL	No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
			No 0.45 0.10	
		·	No 0.45 0.10	

GROUNDWATER PURGE AND SAMPLE COLLECTION

Well I.D. Number: Mu/-3 Sample I.D.: MW-3 Project Name (Number): Hander Mart Hydrocon Project Number: 2018-007-01 Time: 110 Time: Field Duplicate, I,D.:___ Personnel: MAG Date: 2-12-116 WELL INFORMATION 🔄 🖾 Water in Monument Monument condition: 🖄 Good 🛛 🗖 Needs repair:___ Needs Replacement Surface Water Well Infiltration Well cap condition; 🖾 Good 🔲 Replaced Headspace reading: Not measured PID Reading _____ ppm Odor: Ø Other:_ ⊃/4 " 2-inch Well diameter: 4-inch 6-inch Comments PURGING INFORMATION Total well depth: 17.2 ft Bottom: Hard Soft Not measured Screen Interval(s):_____

 Depth to product:
 ______ft

 Depth to water:
 _______ft

 Intake Depth (BTOC):
 _______Begin Purging Well:

 Casing volume:
 ______ft (H₂O) X ______gal/ft = ______gal. X 3 = _____gal.

 Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🕅 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🗌 Non-Dedicated Bladder Other_____ Bailer type: _____ Water Disposal: Drummed Remediation System Other _____ FIELD PARAMETERS Odor and/or Sheen: Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP (°C) (±10% or Level (L/min) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) (±3%) (±0.1) (BTOC) 2.84 5.17 410 1050 6.72 -11.7 2.57 429 -22.8 1053 6.77 2.46 5141 440 -33.2 1096 6.81 2.38 1059 15,50 461 6.85 -46.4 469 237 1102 15,60 6.88 -55.1 473 2.38 1105 5,60 6.91 -106.3 amo 40 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity and/or Dissolved Oxygen are recorded within their respective stabilization/criteria. A minimum of six measurements should be recorded. Purging Comments: Well Size too Small for congruent uper level Menitorina SAMPLE INFORMATION 15.0 130 Bottle Preservative **Field Filtered? Container Type** Analysis Count 40 ML VOA CL (No) 0.45 0.10 4 No 0.45 0.10 No 0.45 0.10

> No 0.45 0.10 No 0.45 0.10

Sampling Comments:

ATTACHMENT B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 5, 2016

Jonathan Horowitz, Project Manager HydroCon 510 Allen St, Suite B Kelso, WA 98626

Dear Mr. Horowitz:

Included are the results from the testing of material submitted on February 3, 2016 from the Handy-Mart, PO 2015-007-01, F&BI 602046 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures HDC0205R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 3, 2016 by Friedman & Bruya, Inc. from the HydroCon Handy-Mart, PO 2015-007-01, F&BI 602046 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>HydroCon</u>	PDF Amended
602046 -01	MW-1	= MW2
602046 -02	MW-2	= MW3
602046 -03	MW-3	= MW1

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/16 Date Received: 02/03/16 Project: Handy-Mart, PO 2015-007-01, F&BI 602046 Date Extracted: 02/03/16 Date Analyzed: 02/03/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW-1 602046-01	2.7	<1	<1	<3	<100	90
MW-2 602046-02	<1	3.7	<1	<3	210	91
MW-3 602046-03	6.6	<1	<1	<3	<100	91
Method Blank 06-186 MB	<1	<1	<1	<3	<100	87

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/16 Date Received: 02/03/16 Project: Handy-Mart, PO 2015-007-01, F&BI 602046

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 602034-04 (Duplicate)

5	Reporting	,	Duplicate	RPD
Analyte	Units	Sample Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	93	65-118		
Toluene	ug/L (ppb)	50	93	72-122		
Ethylbenzene	ug/L (ppb)	50	95	73-126		
Xylenes	ug/L (ppb)	150	92	74-118		
Gasoline	ug/L (ppb)	1,000	99	69-134		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\ensuremath{\mathsf{ca}}$ - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

 $hr\ \text{-}\ The\ sample\ and\ duplicate\ were\ reextracted\ and\ reanalyzed.\ RPD\ results\ were\ still\ outside\ of\ control\ limits.\ Variability\ is\ attributed\ to\ sample\ inhomogeneity.$

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 ${\rm ip}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ø	60204/10	S	SAMPLE CHAIN OF CUSTO	CHAIN O	F C	US		DY			É.	ME02-03-16	Ś	5	_				5	\sim	
7	in the in the	now:tz	SAMPI	SAMPLERS (signature)	ature	Ĵ		T.	91					ן ר		Page #	TIRNAROIND TIME] -		╝╟─	
Company HEC	-		PROJE	PROJECT NAMENO.	\$ Z	+1					PO#	*			C Standa	Hard H	C Standard (2 Weeks) RUSH	eeks)		E	
Address			ہ م	1015-00	2	9				I				Ru	sh ct	harge	Rush charges authorized by	thoris	zed b	ÿ	
City, State, ZIP			REMARKS												Dispo	AMF	SAMPLE DISPOSAL Dispose after 30 days	DISP(0 day	OSA ys	Г	
Phone #	Fax #	-													Will w	rn sai call v	 Return samples Will call with instructions 	s nstru	ctior	st	
					\square			Þ	VAL	ANALYSES REQUESTED	REO	UE	STEI	Ŭ							
Sample ID	Lab Date ID Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	PH-Gasoline	TEX by 8021B	/OCs by8260	VOCs by 8270 HFS									z	Notes		
MW-1	014-026/16	6250	Water	4		*	~	┝──╊				┝──╋			 -						
MW-2	02	1030																			
MW-3	03/4	1110	4-	4		-															
							_			-							5				
							┝──┤	┢──┤	┝─┤			┝─┤		┝──┤	┝╾╾┥						
														_							
											Sa	Samples		receiv	ived a	2	7	່ຕໍ			
						 						-									
2012 ica A Bruya, Inc.		SIGNATURE		PR	PRINT NAME	NAN	Ē					COMPANY	PAN	R			DATE			TIME	
<i>3012 16th Avenue West</i> <i>Seattle, WA 98119-2029</i>	Received by:	22		Max A		12	Jumme	2		HF	b d	-1/1				3 P		ē	No No	38	<u> </u>
Ph. (206) 285-8282	Relinquished by:					NAM2	P										4	8			`
Fax (206) 283-5044	Received by:																				
FORMS\COC\COC.DOC																					L