AUGUST 2014 GROUNDWATER MONITORING

Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

TRI WESTERN INVESTMENTS, LLC.

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue Northeast, Suite 300 Bellevue, Washington 98004 (425) 455-9025 Office (888) 453-5394 Toll Free (425) 455-2316 Fax

September 18, 2014

JN-20209-5

Mr. Colin Radford Tri Western Investments, LLC. 10423 Main Street, Suite #4 Bellevue, Washington 98004

RE:

AUGUST 2014 - GROUNDWATER MONITORING

Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

Dear Mr. Radford:

Environmental Associates, Inc. (EAI) has completed a groundwater monitoring event in accordance with Tri Western Investments, LLC's authorization to sample on-site monitoring wells every August and February until further notice.

Brief Project Background

A dry-cleaner has operated as a tenant on the subject property since the 1960s. In 2009, the Client / property owner (Tri-Western Syndicated Investments) received notice from the west/southwest adjacent property owner (Bayview) that dry-cleaning solvents (tetrachloroethene or "perc" / PCE) had been discovered on their parcel and that they (Bayview) suspected that the source was the dry-cleaner on the subject property. Since discovery, numerous phases of explorations on and off the subject parcel have occurred along with focused interim remedial actions.

A network of nine (9) groundwater monitoring wells located both on the subject parcel and on the adjacent Bayview parcel have been periodically sampled since December 2011.

Scope of Work

The following scope of work has been adopted for execution of this groundwater monitoring event:

- Measure current depths to groundwater in all nine (9) study area monitoring wells (MW-1 through MW-9). Utilize the data to prepare an updated water table survey and groundwater flow interpretive map.
- Collect representative groundwater samples from each monitoring well using a low-flow micro-purging technique with a peristaltic pump.
- Submit all recovered groundwater samples to the project laboratory with analysis for chlorinated volatile organic compounds (CVOCs) by EPA test method 8260.
- Prepare a written summary report documenting field methods, observations, findings, and conclusions.

Summary of Events Since Prior Report (August 2013)

In December 2013, EAI visited the site to sample groundwater from select monitoring wells. At that time EAI observed that all off-site monitoring wells located on the Bayview parcel had been paved over and could not be visually located. Three (3) of the on-site monitoring wells (MW-2, MW-3, and MW-5 were sampled during the December 2013 site visit. Those samples were analyzed by the project laboratory and the results are included in the tabulated data sheets in Appendix-A.

In May 2014, a total of 800 pounds of 3-D ME hydrogen releasing compound (HRC) along with 210 pounds of HRC-Primer, both manufactured by Regenesis, was re-applied to the existing interceptor trench adjacent to the west side of the building.

By June 2014 all of the off-site monitoring wells had been located under the pavement and reexposed.

August 2014 - Water Table Survey

The current groundwater monitoring event was performed over a two-day period beginning on August 28th, 2014. Prior to micro-purging, the depth to groundwater below the top of each well casing was measured. These depths to groundwater along with the corresponding deduced elevations of the water table at each well location are recorded on the data tables for each monitoring well included in Appendix-A.

During this current event, water table elevations were observed to generally conform to annual seasonal low conditions (Chart-1 Hydrograph). Plate 3, Water Table Survey presents a graphical representation of the shallow water table and deduced groundwater flow directions based upon the current geometry of monitoring wells. Examining Plate 3, groundwater flow appears to be westward with a southwesterly radial influence further south in the study area. A minor degree of northwesterly flow may also be occurring in the general vicinity between MW-6 and MW-7. The groundwater flow regime appears generally consistent with prior surveys.

August 2014 - Groundwater Sampling

The nine (9) monitoring wells were sampled on August 28, 2014. Each existing monitoring well was first "micro-purged" utilizing a peristaltic pump. Following purging, groundwater samples were transferred directly to laboratory-prepared glassware.

Laboratory Results & Discussion

The nine (9) groundwater samples were analyzed by the project laboratory for chlorinated volatile organic compounds by EPA test method 8260B. The current concentrations of PCE in groundwater are presented in the table below and graphically presented on Plate 4. Additionally, the current results for all contaminants tested for along with all prior laboratory results are presented in the Data Tables in Appendix-A. A copy of the laboratory report is included as Appendix-B.

PCE Concentrations In Parts Per Billion (ppb) Prior & Current Sampling Events

Monitoring Well	Prior Event (July/Dec 2013)	Current Event (July 2013)
MW-1	<1	<1
MW-2 (Dec)	82	48
MW-3 (Dec)	89	72
MW-4	3.4	4.8
MW-5 (Dec)	39	35
MW-6	140	76
MW-7	130	74
MW-8	1.2	1.5
MW-9	9.9	2.5
Compliance Level	5	5

During this current sampling event, PCE was detected in eight (8) of the nine (9) samples. Five (5) contained PCE at concentrations above the Washington State Department of Ecology's 5 parts per billion (ppb) target compliance level. PCE was not detected in the groundwater sample recovered from MW-1 at a concentration above the laboratory's minimum detection limit. MW-4 and MW-8 continue to periodically produce groundwater samples with detectable PCE, but at concentrations below the 5 ppb compliance level.

Referring to the Data Table for MW-5 in Appendix-A, the enhanced bio-degradation reaction stimulated by the remediation products applied to the interceptor trench appears to be ongoing. The detected concentration of PCE was essentially unchanged during this current event and the degradation products TCE and cis-DCE continue to be present. A trace of TCE was also detected in groundwater at MW-3.

This scenario appears to continue to conform to the "classic" anaerobic microbial degradation reaction sequence that the HRC product applied to the trench system is intended to stimulate. That reaction essentially strips chlorine atoms from the PCE molecule producing TCE (3-chlorine atoms) which in turn transitions through variations of DCE (2-chlorine atoms) followed by vinyl chloride (1-chlorine) and finally ethylene / ethane (0-chlorine).

Monitoring wells MW-1 and MW-8 are both located along the southern margin of the study area. As such, monitoring well's MW-1 and MW-8 appear to continue to establish a partial southern limit of the PCE groundwater plume, as depicted on Plate 4, "PCE In Groundwater" as a red "dashed" line.

During the current sampling event, the highest concentrations of PCE were observed in the "core-of-the-plume" monitoring wells MW-2, MW-3, MW-6, and MW-7, in which concentrations of PCE in the groundwater ranged between 35 and 76 ppb. Overall contaminant concentrations within this "core" area appear to have declined since the prior full site monitoring event in late July 2013. The largest declines in PCE concentration were noted at MW-6 and MW-7, both along the Bayview / Bank Parcel boundary.

Next Sampling Event

The next quarterly sampling event is tentatively scheduled to occur in February 2015.

On-Site Drum Disposal

There are six (6) 55-gallon drums presently on the subject parcel. Four (4) drums contain soil generated during past site explorations by EAI and consultants working for Bayview. The remaining two (2) drums contain the development and purge water generated during groundwater monitoring events. Responding to the Client's desire to reduce the number of drums on-site, EAI also obtained representative samples of the soil and water during this August 2014 sampling event and had the laboratory analyze them for chlorinated VOCs.

In regard to the four (4) soil drums, only one was found to still contain PCE at concentrations above the laboratory's detection limit. This lab data will be used to begin the process of arranging for off-site disposal through Waste Management.

The water stored in the remaining two (2) drums was found to be free of chlorinated VOC's and will be discharged on-site during the next sampling event (February 2015). These two drums will need to remain on-site so that they can continue to be used during the periodic groundwater monitoring events.

A copy of the lab report for the drum contents is also included in Appendix-B.

Limitations

This letter report has been prepared specific application to this project in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. This document is for the exclusive of Tri Western Investments, LLC., along with its members and appointed representatives. Discussion with respect to subsurface environmental conditions relies solely upon the results of sampling and testing conducted at separated sampling localities and environmental conditions may vary between those localities or at other locations, depths, and/or media. No other warranty, expressed or implied, is made here. If new information is acquired or developed in future site work Environmental Associates, Inc., must be retained to reevaluate the conclusions of this letter report and to provide amendments as required.

lydrog**eolo**gist

97sed Geo

ROBERT B. ROE

We appreciate the opportunity to be of service on this project and trust that the information provided here is fully responsive to your needs. If you have any questions or we may be of additional service, please do not hesitate to contact us.

Respectfully submitted,

ENVIRONMENTAL ASSOCIATES, INC.

Robert B. Roe, M.Sc., P.G.

Project Manager/Hydrogeologist

License: 1125

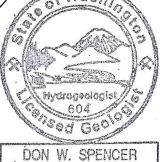
(Washington)

Don W. Spencer, M.Sc., P.G., R.E.A.

Principal

License: 604

(Washington)


License: 11464 License: 876 (Oregon) (California)

License: 5195

(Illinois)

License: 0327

(Mississippi)

L DUN VV. SPENCEN

Attachments:

Plate 1 - Vicinity / Topographic Map

Plate 2 - Study Area - Overview

Plate 3 - Water Table Survey

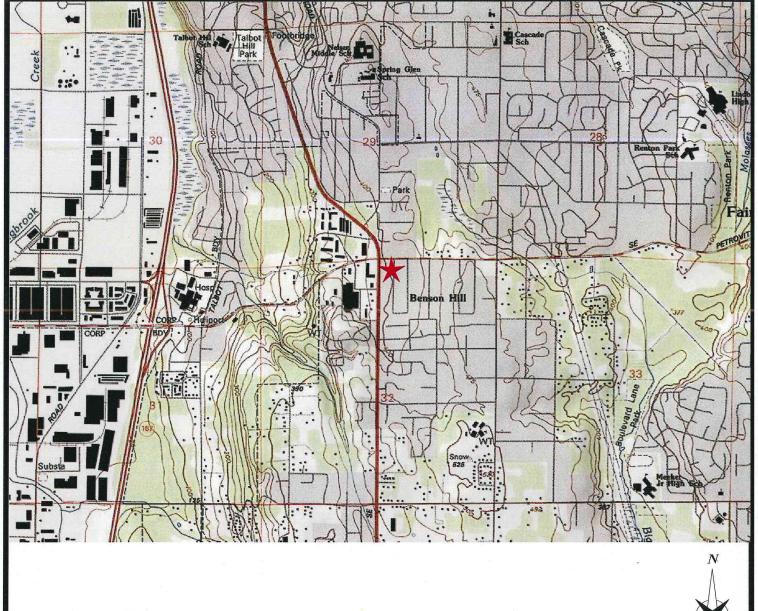

Plate 4 - PCE In Groundwater

Chart 1: Hydrograph

Chart 2: PCE Concentration Trends

Appendix-A: Data Tables MW-1 Through MW-9

Appendix-B: Laboratory Reports

USGS: 7.5 Minute Quadrangle: Renton, Washington Contour Interval: 25 feet

<u>Scale</u>

1/2 Mile

Subject Property Location

Inferred groundwater flow direction based upon the local topographical gradient in the vicinity of the subject property.

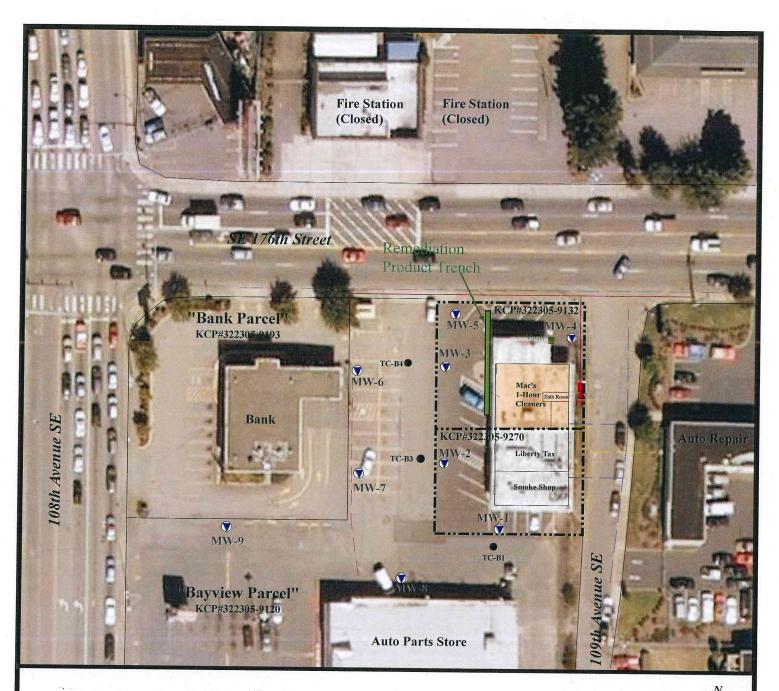
ENVIRONMENTAL

ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 300 Bellevue, Washington 98004

VICINITY / TOPOGRAPHIC MAP

Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

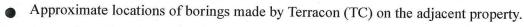

Job Number: JN-20209-5

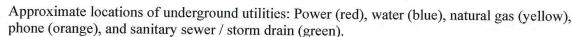
Date:

August 2014

Plate:

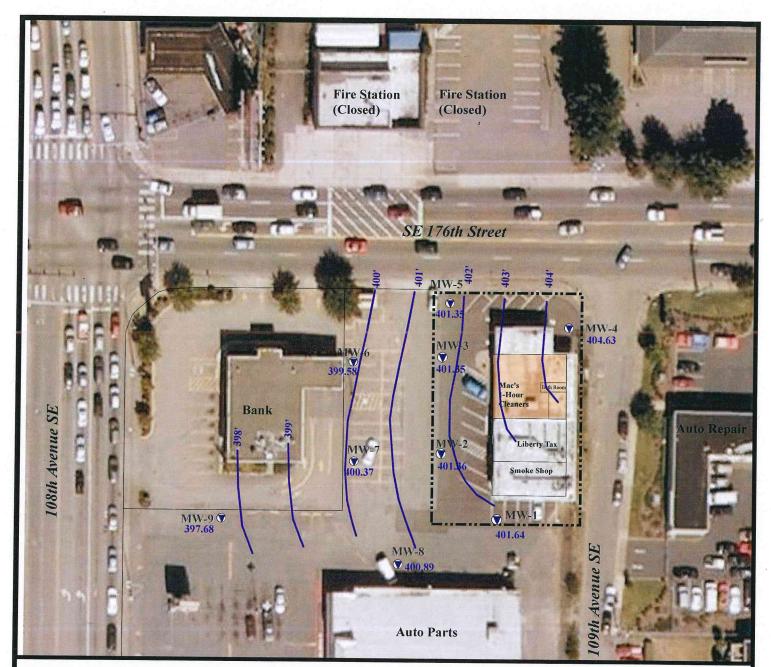
1




Approximate border of Subject Parcel.

KCP#: King County tax parcel numbers.

Existing Monitoring wells installed by EAI.


ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 300 Bellevue, Washington 98004

STUDY AREA - OVERVIEW

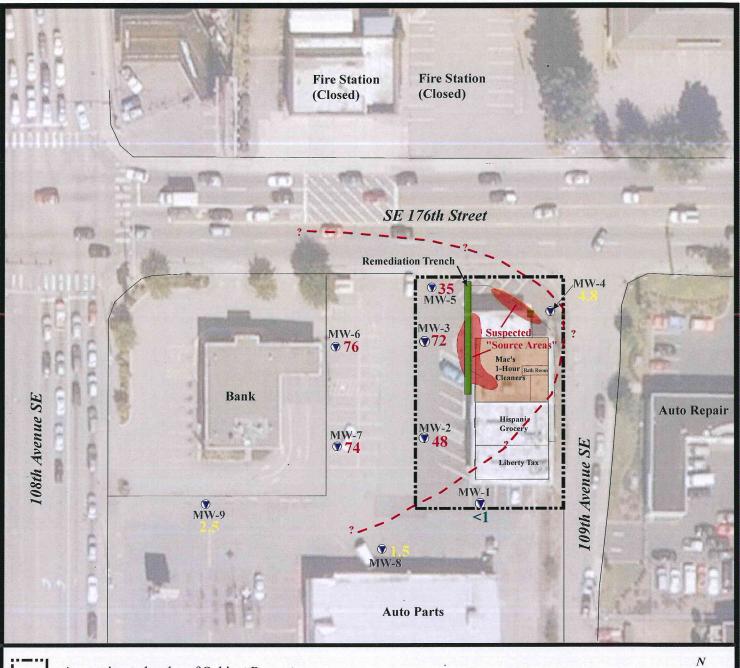
Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

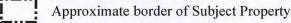
Job Number:	Date:	Scale:	Plate:	
JN-20209-5	August 2014	1"=80"	2	

Approximate border of Subject Property

Water Table equal elevation contour lines and inferred groundwater flow direction.

Existing monitoring well locations.

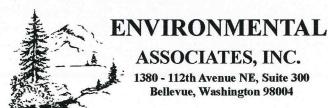

ENVIRONMENTAL ASSOCIATES, INC.


1380 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004

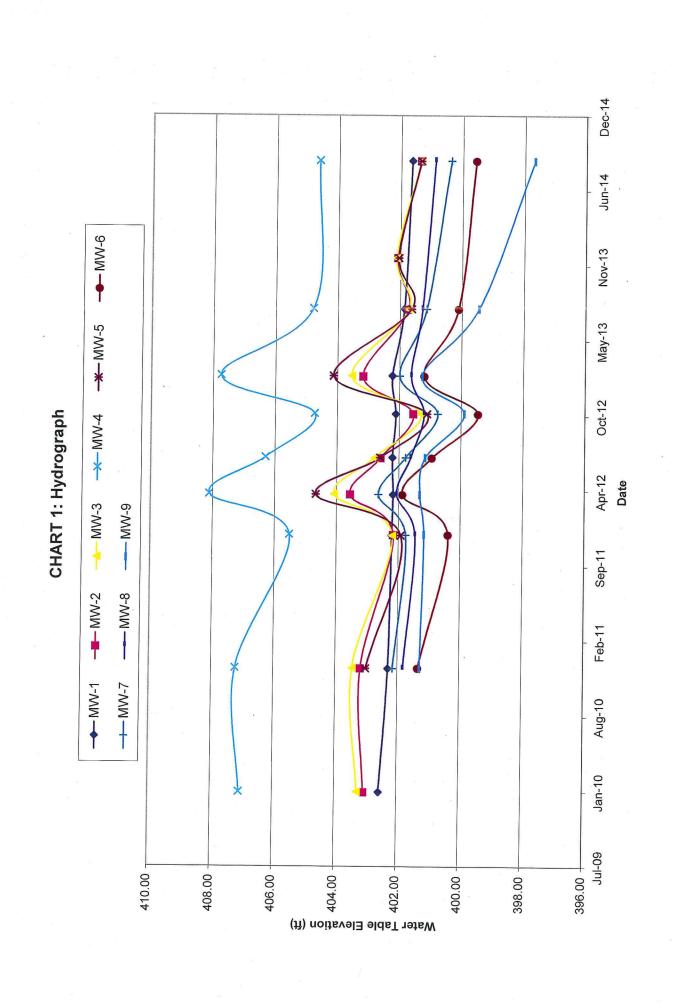
WATER TABLE SURVEY

Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

Job Number:	Date:	Scale:	Diatas
JN-20209-5	August 2014	1"=80'	Plate:



Preliminary conceptualization of chlorinated solvent (PCE) groundwater plume. The WDOE target compliance level for PCE in groundwater is 5 parts per billion (ppb). Red denotes concentrations above the WDOE's target compliance level. Yellow denotes detections below the target compliance level. Green denotes PCE not detected above laboratory detection limits.


Existing monitoring well locations.

PCE IN GROUNDWATER

Mac's One Hour Cleaners 10825 SE 176th Street Renton, Washington

Job Number:	Date:	Scale:	Plate:
JN-20209-5	August 2014	1"=80"	4

Dec-14 Nov-13 Jun-14 May-13 → MW-3 → MW-2 → MW-5 → MW-6 → MW-7 Oct-12 Sample Date Apr-12 Sep-11 Feb-11 Aug-10 Jan-10 Jul-09 1,600 0 1,400 1,200 1,000 800 009 400 200 qdd

CHART 2: PCE Concentration Trends

APPENDIX-A

Data Tables MW-1 Through MW-9

	Dissolved Oxygen (mg/L)		3.69	7.12	2.34	8.76	8.56	2.97	6.65	4.8					
	REDOX Potential (mV)		-93	110	68	321	127	446	182	190					
	Temperature (Celsius)		13.0	12.6	13.7	9.87	16.73	15.7	10.7	19.9					
()	Conductivity (mS/m)		15.3	9.1	5.4	8.1	11.3	3.7	10	1.32					
qdd) uo	Hq		7.29	5.9	98'9	6.16	6.45	6.29	60.9	6.14					
per bill	Water Table Elevation		402.58	402.31	402.22	402.19	402.22	402.12	402.24	401.87	401.64				
DATA TABLE: MW-1 ampling Results in parts per billion (ppb)	Net Change			-0.27	-0.09	-0.03	0.03	-0.10	0.12	-0.37	-0.23				
DATA TABLE: MW-1 pling Results in part	Depth to Water		5.11	5.38	5.47	5.50	5.47	5.57	5.45	5.82	6.05				
DATA npling F	Vinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		A THE PERSON NAMED IN THE	0.2	0.2 (A)
	ensalt 1,2 Dichloroethene		7	⊽	7		∵		⊽	7	7			-	160 (B)
Groundwater S	(cis) 1,2 Dichloroethene			⊽		⊽		√1		⊽	7			Ι	80 (B)
Ð	Trichloroethene (TCE)		>	⊽	71	∇	7	√1	₽	√1	7			1	5 (A)
	Тетгасилогоетћепе (РСЕ)		1.5	1.5	⊽	⊽	1.1	√1	7	7	⊽				5 (A)
	Monitoring Well	MW-1	1/20/2010	12/15/2010	12/5/2011	3/22/2012	6/29/2012	10/23/2012	2/1/2013	7/30/2013	8/28/2014	\$300,002.00		Reporting Limit ³	Existing Cleanup Level

"ND" denotes analyte not detected at or above listed Reporting Limit.
"NA" denotes sample not analyzed for specific analyte.
"Reporting Limit" represents the laboratory lower quantitation limit.
Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

	Oissolved Oxygen (mg/L)		2.52	6.64	5.17	8.03	6.91	5.24	6.28	8				
	REDOX Potential (mV)		37	223	209	306	251	473	215	293				
	Temperature (Celsius)		14.3	14.9	15.5	10.89	17.00	19.1	12.7	19.2				
(c	Conductivity (mS/m)		12.2	12.7	7.5	13.1	13.1	11.0	11.7	11.5				
per billion (ppb)	Нq		6.55	5.43	6.35	5.19	6.12	6.28	5.94	5.82				
	Water Table Elevation		403.08	403.20	402.18	403.58	402.61	401.56	403.19	401.74	402.1	401.36		
TABLE: MW-2 Results in parts	Net Change			0.12	-1.02	1.40	-0.97	-1.05	1.63	-1.45	0.36	-0.74		
DATA TABLE: MW-2 pling Results in part	Depth to Water		5.36	5.24	6.26	4.86	5.83	88.9	5.25	2.9	6.34	7.08		
	Vinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.0	0.2 (A)
DATA Indwater Sampling	(trans) 1,2 Dichloroethene		\	<1	\	⊽	⊽		₽		⊳	₽	-	160 (B)
Groundw	eis) 1,2 Dichloroethene			<1		⊽	⊽	⊽		7	√	₽	-	80 (B)
Ō	Trichloroethene (TCE)		1.7	1.7	⊽	⊽	⊽	⊽'	⊽			⊽	-	5 (A)
	Tetrachloroethene (PCE)		860	480	091	100	77	140	72	81	82	48		5 (A)
	Monitoring Well	MW-2	1/20/2010	12/16/2010	12/6/2011	3/23/2012	6/28/2012	10/24/2012	1/31/2013	7/29/2013	12/13/2013	8/28/2014	Reporting Limit ³	Existing Cleanup Level

"ND" denotes analyte not detected at or above listed Reporting Limit.
 "NA" denotes sample not analyzed for specific analyte.
 "Reporting Limit" represents the laboratory lower quantitation limit.
 Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

	(J\gm) nəgyxO bəvlossiO		5.56	7.49	6.13	7.91	8.22	5.06	3.43	6.9					
	REDOX Potential (mV)		200	225	217	311	269	473	238	312					
	Temperature (Celsius)		14.2	14.9	15.4	11.47	16.82	18.3	12.5	19.1					
	Conductivity (mS/m)		21.8	21.9	16.8	23.7	28.8	25.0	32.8	23.7					
qdd) uo	Hq		6.63	5.54	6.19	5.71	5.95	6.24	99.5	5.75					
per billion (ppb)	Water Table Elevation		403.29	403.47	402.21	404.10	402.81	401.32	403.56	401.73	402.14	401.35			
S	Net Change			0.16	-1.26	1.89	-1.29	-1.49	2.24	-1.83	0.41	-0.79			
DATA TABLE: MW-3 pling Results in parts	Depth to Water		5.55	5.39	6.65	4.76	6.05	7.54	5.30	7.13	6.72	7.51			
	9binold⊃ l∢niV		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		0.2	0.2 (A)
DATA Groundwater Sampling	(trans) 1,2 Dichloroethene		⊽	⊽	⊽	7	⊽		<1	I >	₽	∨			160 (B)
empuno.	(cis) 1,2 Dichloroethene		⊽	⊽	7	⊽	7	⊽		1.4	3.6	<1		1	80 (B)
Ģ	Trichloroethene (TCE)		1.4	1.7	⊽	⊽	▽	7	7	<1	1>	1.1			5 (A)
	Тетгасью гоетнепе (РСЕ)		1,500	770	240	150	011	130	120	100	89	7.2		-	5 (A)
	Monitoring Well	MW-3	1/20/2010	12/16/2010	12/5/2011	3/23/2012	6/28/2012	10/24/2012	1/31/2013	7/29/2013	12/13/2013	8/28/2014	 - 3	Reporting Limit	Existing Cleanup Level

Notes:
1 - "ND" denotes analyte not detected at or above listed Reporting Limit.
2 - "NA" denotes sample not analyzed for specific analyte.
3 - "Reporting Limit" represents the laboratory lower quantitation limit.
4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

	Uissolved Oxygen (mg/L)		5.88	6.64	5.05	7.86	8.71	5.15	5.01	6.3				
	REDOX Potential (mV)		221	216	220	356	199	373	222	272				
	Temperature (Celsius)		13.5	14.0	14.1	11.01	15.87	17.8	12.6	18.5				
	Conductivity (mS/m)		33.4	31.1	20.3	40.5	29.7	26.5	29.7	28				
per billion (ppb)	Hq		98.9	5.64	6.31	5.76	80.9	6.47	5.86	5.81				
per billi	Water Table Elevation		407.09	407.24	405.53	408.12	406.32	404.74	407.76	404.8	404.63			
MW-4 n parts	Мет Сһяпде			0.12	-1.71	2.59	-1.80	-1.58	3.02	-2.96	-0.17			
DATA TABLE: MW-4 Sampling Results in parts	Depth to Water		5.65	5.53	7.24	4.65	6.45	8.03	5.01	7.97	8.14			
DATA '	Vinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	C	0.2 (A)	
	(trans) 1,2 Dichloroethene		⊽	<1		∀	⊽	⊽	⊽	7	7	+	160 (B)	
Groundwater	(cis) 1,2 Dichloroethene		⊽	7	7	₽	√]	⊽	7	⊽	⊽	-	80 (B)	
Ō	Trichloroethene (TCE)		⊽	⊽	7	⊽	⊽	₽	⊽		⊽		5 (A)	
	Тетгясыю гоетнепе (РСЕ)		2.6	6.8	3.6	3.6	2.9	2.6	3.2	3.4	4.8	-	5 (A)	
	Monitoring Well	MW-4	1/20/2010	12/16/2010	12/6/2011	3/23/2012	6/29/2012	10/24/2012	2/1/2013	7/30/2013	8/28/2014	Donosting I imit 3	Existing Cleanup Level ⁴	N 4

Notes:
1 - "ND" denotes analyte not detected at or above listed Reporting Limit.
2 - "NA" denotes sample not analyzed for specific analyte.
3 - "Reporting Limit" represents the laboratory lower quantitation limit.
4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

	Dissolved Oxygen (mg/L)		6.77	4.67	4.13	10.44	0.33	0.00	3				
	REDOX Potential (mV)		219	198	261	-92	-89	80	11				
	Temperature (Celsius)		15.3	15.3	11.08	15.35	17.7	12.9	17				
	Conductivity (mS/m)		14.7	9.3	31.7	180	8.6	41.7	9.3				
(qdd) uc	Hq		5.72	6.30	5.81	6.49	6.74	6.18	6.21				
per billion (ppb)	Water Table Elevation	-	403.03	401.93	404.69	402.62	401.11	404.14	401.63	402.06	401.35		
1 10	Net Change			-1.10	2.76	-2.07	-1.51	3.03	-2.51	0.43	-0.71		
DATA TABLE: MW-5 pling Results in parts	Depth to Water		7.06	8.16	5.40	7.47	86.8	5.95	8.46	8.03	8.74		
	yinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	0.22	97.0	<0.2	<0.2	0.2	0.2 (A)
ater San	(trans) 1,2 Dichloroethene		7	7	~1	7	<1	₽	7	⊽	[>		160 (B)
DATA Groundwater Sampling	eis) 1,2 Dichloroethene		1>	7	⊽	120	06	29	64	34	47	1	16 (B)
์ อ	Trichloroethene (TCE)		1.9	7	7	3	7	1.4	3.8	4.7	6.7	T	5 (A)
	Тетгясһюгоетһепе (РСЕ)		230	150	84	15	13	33	32	39	35	1	5 (A)
	Monitoring Well	MW-5	12/16/2010	12/5/2011	3/23/2012	6/29/2012	10/24/2012	2/1/2013	7/30/2013	12/13/2013	8/28/2014	Reporting Limit ³	Existing Cleanup Levef

Notes:

1 - "ND" denotes analyte not detected at or above listed Reporting Limit.

2 - "NA" denotes sample not analyzed for specific analyte.

3 - "Reporting Limit" represents the laboratory lower quantitation limit.

4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

		<u>ග</u>	Groundwater	ater San	DATA TABLE: MW-6 Sampling Results in parts per billion (ppb)	DATA TABLE: MW-6 pling Results in part	MW-6 in parts	per bill	lon (ppb				
Monitoring Well	ТетгасһІогоетһепе (РСЕ)	Trichloroethene (TCE)	(cis) 1,2 Dichloroethene	(trans) 1,2 Dichloroethene	Vinyl Chloride	Depth to Water	Net Change	Water Table Elevation	Hq	Conductivity (mS/m)	Temperature (Celsius)	REDOX Potential (mV)	(J\gm) nəgyxO bəvləssiO
9-MM													
12/16/2010	250	1.1	₽	<1	<0.2	6.48		401.35	6.03	19.7	13.9	217	89.9
12/6/2011	210	⊽	⊽	7	<0.2	7.42	-0.94	400.41	6:59	15.9	14.4	197	6.81
3/22/2012	120	∵	⊽	7	<0.2	5.94	1.48	401.89	5:35	16.6	10.35	323	7.97
6/28/2012	95	⊽	⊽	⊽	<0.2	6.88	-0.94	400.95	6.24	18.8	15.41	251	8.78
10/23/2012	091	⊽	7	7	<0.2	8.36	-1.48	399.47	6.53	8.61	15.8	422	8.93
1/31/2013	011	7	7	<1	<0.2	6.62	1.74	401.21	5.87	21.0	11.90	215	5.45
7/29/2013	140		7	7	<0.2	7.71	-1.09	400.12	5.89	0.203	828	316	7.6
8/28/2014	92	7	⊳	7	<0.2	8.25	-0.54	399.58					
Reporting Limit ³	-	1	1		0.2								
Existing Cleanup Levef	5 (A)	5 (A)	80 (B)	160 (B)	0.2 (A)								
Notes:													

 [&]quot;ND" denotes analyte not detected at or above listed Reporting Limit.
 "NA" denotes sample not analyzed for specific analyte.
 "Reporting Limit" represents the laboratory lower quantitation limit.
 Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

Bold and Italics denotes concentrations above existing MTCA Method A groundwater cleanup levels.

		~	Januara	_	F		,			·	جسب	_		_
	(A'gm) nagyxO bavlossiO		7.22	5.51	9.32	9.34	8.63	6.91	8.4					
	REDOX Potential (mV)		139	164	308	236	437	181	328					
	Temperature (Celsius)		13.7	13.3	10.41	15.67	16.4	11.8	9.45					
(Conductivity (mS/m)		23.0	14.0	19.6	22.1	20.0	19.9	19.6					
qdd) uo	Нq		6.15	89.9	6.20	6.62	6:59	6.48	80.9					
TABLE: MW-7 Results in parts per billion (ppb)	Water Table Elevation		402.16	401.77	402.66	401.79	400.76	402.00	401.14	400.37				
MW-7 in parts	Net Change			-0.39	68.0	-0.87	-1.03	1.24	98:0-	-0.77				
DATA TABLE: MW-7 pling Results in part	Depth to Water		5.25	5.64	4.75	5.62	6.65	5.41	6.27	7.04				
DATA Sampling F	Vinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			0.2	0.2 (A)
fer	(trans) 1,2 Dichloroethene		√1	⊽	⊽	⊽	∇	\	<1	<1			-	160 (B)
Groundwa	eis) 1,2 Dichloroethene		⊽	⊽	⊽	⊽		∇.	∨	√1			1	80 (B)
Ē	Trichloroethene (TCE)		1.8	⊽	⊽	⊽		⊽	7	<1			-	5 (A)
	Тетгясhlогоеthепе (РСЕ)		280	230	130	110	170	150	130	74	***************************************		-	5 (A)
	Monitoring Well	MW-7	12/15/2010	12/5/2011	3/22/2012	6/28/2012	10/23/2012	1/31/2013	7/29/2013	8/28/2014			Reporting Limit	Existing Cleanup Levef Notes:

^{1 - &}quot;ND" denotes analyte not detected at or above listed Reporting Limit.
2 - "NA" denotes sample not analyzed for specific analyte.
3 - "Reporting Limit" represents the laboratory lower quantitation limit.
4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

Notes:
1 - "ND" denotes analyte not detected at or above listed Reporting Limit.
2 - "NA" denotes sample not analyzed for specific analyte.
3 - "Reporting Limit" represents the laboratory lower quantitation limit.
4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

				-								64		_
	(J\gm) nəgyxO bəvlossiO		9.41	8.37	10.97	6.35	8.39	8.37	6.1					
	REDOX Potential (mV)		184	160	322	242	439	207	255					
	Temperature (Celsius)		11.0	12.8	9.43	17.04	17.50	10.1	18					
	Conductivity (mS/m)		11.8	8.3	7.1	12.6	4.70	7.0	19.1					
qdd) uo	Hq		5.88	7.11	6.14	6.55	6:59	6.22	6.36					
TABLE: MW-9 Results in parts per billion (ppb)	Water Table Elevation		401.29	401.18	401.33	401.16	399.91	401.27	399.46	397.68				
MW-9 n parts	Net Change			-0.11	0.15	-0.17	-1.25	1.36	-1.81	-1.78				
DATA TABLE: MW-9 pling Results in part	Depth to Water		1.94	2.05	1.90	2.07	3.32	1.96	3.77	5.55				
DATA Sampling F	Vinyl Chloride		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		0.2	0.2 (A)	
<u>. </u>	trans) 1,2 Dichloroethene		7	√1	7	!>	7	√1	7	⊽		I	160 (B)	
Groundwate	(cis) 1,2 Dichloroethene		<1	7	7	<1		7	2.6	⊽		1	80 (B)	
9	Trichloroethene (TCE)		7	7	⊽	7	⊽	⊽	∇	⊽			5 (A)	
	Теtгасhlогоеthепе (РСЕ)		20	10	12	15	4.3	6.7	6.6	2.5		1	5 (A)	
	Monitoring Well	6-WM	12/15/2010	12/6/2011	3/22/2012	6/28/2012	10/24/2012	1/31/2013	7/30/2013	8/28/2014		Reporting Limit ³	Existing Cleanup Level ⁴	Notes:

Notes:
1 - "ND" denotes analyte not detected at or above listed Reporting Limit.
2 - "NA" denotes sample not analyzed for specific analyte.
3 - "Reporting Limit" represents the laboratory lower quantitation limit.
4 - Method A or B groundwater cleanup levels as published in the Model Toxics Control Act (MTCA) 173-340-WAC, amended 2/12/01.

Bold and Italics denotes concentrations above existing MTCA Method A groundwater cleanup levels.

APPENDIX-B

Laboratory Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 5, 2014

Rob Roe, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr. Roe:

Included are the results from the testing of material submitted on August 29, 2014 from the TriWestern Mac's Cleaners 20209-5, F&BI 408489 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EAI0905R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 29, 2014 by Friedman & Bruya, Inc. from the Environmental Associates TriWestern Mac's Cleaners 20209-5, F&BI 408489 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Associates
408489 -01	Drum 1
408489 -02	Drum 2
408489 -03	Drum 3
408489 -04	Drum 4
408489 -05	Drum 5
408489 -06	Drum 6

Several compounds in the 8260C matrix spike, laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analytes were not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	08/29/14 09/02/14 09/02/14 Water	Client: Project: Lab ID: Data File: Instrument:	Environmental Associates TriWestern Mac's Cleaners 20209-5 408489-05 090223.D GCMS9
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	100	93	107
4-Bromofluorobenzene	100	76	126

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Drum 6 08/29/14 09/02/14 09/02/14 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates TriWestern Mac's Cleaners 20209-5 408489-06 090224.D GCMS9 JS
--	---	---	---

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d 4	105	85	117
Toluene-d8	100	93	107
4-Bromofluorobenzene	100	76	126

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Not Applicable 09/02/14 09/02/14 Water	Client: Project: Lab ID: Data File: Instrument: Operator:	Environmental Associates TriWestern Mac's Cleaners 20209-5 04-1764 mb 090207.D GCMS9
Units:	ug/L (ppb)	Operator:	JS

	w '	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	98	93	107
4-Bromofluorobenzene	98	76	126

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Drum 1	Client:	Environmental Associates
Date Received:	08/29/14	Project:	TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408489-01
Date Analyzed:	09/02/14	Data File:	090211.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	62	142
Toluene-d8	99	51	121
4-Bromofluorobenzene	99	32	146

Concentration

Compounds:	mg/kg (ppm) Dry Weight
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	0.094

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Drum 2 Client: Environmental Associates Date Received: 08/29/14 Project: TriWestern Mac's Cleaners 20209-5 Date Extracted: 09/02/14 Lab ID: 408489-02 Date Analyzed: 09/02/14 Data File: 090210.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	62	142
Toluene-d8	99	51	121
4-Bromofluorobenzene	99	32	146

Concentration

Compounds:	mg/kg (ppm) Dry Weight
Vinyl chloride	< 0.05
Chloroethane	<0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method $8260\mathrm{C}$

Client Sample ID:	Drum 3	Client:	Environmental Associates
Date Received:	08/29/14	Project:	TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408489-03
Date Analyzed:	09/02/14	Data File:	090212.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	99	51	121
4-Bromofluorobenzene	100	32	146

Concentration

Compounds:	mg/kg (ppm) Dry Weight
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	< 0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Drum 4	Client:	Environmental Associates
Date Received:	08/29/14	Project:	TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408489-04
Date Analyzed:	09/02/14	Data File:	090213.D
Matrix:	Soil	Instrument:	GCMS4
Units:	mg/kg (ppm) Dry Weight	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	101	51	121
4-Bromofluorobenzene	99	32	146

Concentration

Compounds:	mg/kg (ppm) Dry Weight
, -	
Vinyl chloride	< 0.05
Chloroethane	< 0.5
1,1-Dichloroethene	< 0.05
Methylene chloride	<0.5
trans-1,2-Dichloroethene	< 0.05
1,1-Dichloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05
1,1,1-Trichloroethane	< 0.05
Trichloroethene	< 0.02
Tetrachloroethene	< 0.025

ENVIRONMENTAL CHEMISTS

Operator:

JS

Analysis For Volatile Compounds By EPA Method 8260C

mg/kg (ppm) Dry Weight

Client Sample ID: Method Blank Client: Environmental Associates Date Received: Not Applicable Project: TriWestern Mac's Cleaners 20209-5 Date Extracted: 09/02/14 Lab ID: 04-1765 mbDate Analyzed: 09/02/14 Data File: 090206.D Matrix: Soil Instrument: GCMS4

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 101 62 142 Toluene-d8 100 51121 4-Bromofluorobenzene 100 32 146

Concentration

Compounds: mg/kg (ppm) Dry Weight

Vinyl chloride < 0.05 Chloroethane < 0.5 1,1-Dichloroethene < 0.05 Methylene chloride < 0.5 trans-1,2-Dichloroethene < 0.05 1,1-Dichloroethane < 0.05 cis-1,2-Dichloroethene < 0.05 1,2-Dichloroethane (EDC) < 0.05 1,1,1-Trichloroethane < 0.05 Trichloroethene < 0.02 Tetrachloroethene < 0.025

Units:

ENVIRONMENTAL CHEMISTS

Date of Report: 09/05/14 Date Received: 08/29/14

Project: TriWestern Mac's Cleaners 20209-5, F&BI 408489

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 408466-01 (Matrix Spike)

				$\mathbf{Percent}$	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	61-139
Chloroethane	ug/L (ppb)	- 50	<1.	114	68-126
1,1-Dichloroethene	ug/L (ppb)	50	<1	- 100	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	104	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50 .	<1	104	72-122
1,1-Dichloroethane	ug/L (ppb)	50	<1	104	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	105	73-119
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	109	79-116
Trichloroethene	ug/L (ppb)	50	<1	102	75-109
Tetrachloroethene	ug/L (ppb)	50	<1	98	72-113

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	$\operatorname{Percent}$		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	89	92	73-132	3
Chloroethane	ug/L (ppb)	50	98	99	68-126	1
1,1-Dichloroethene	ug/L (ppb)	50	87	89	75-119	2
Methylene chloride	ug/L (ppb)	50	89	93	63-132	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	89	93	76 - 118	4
1,1-Dichloroethane	ug/L (ppb)	50	89	92	80-116	3
cis-1,2-Dichloroethene	ug/L (ppb)	50	90	93	81-111	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	.90	92	79-109	2
1,1,1-Trichloroethane	ug/L (ppb)	50	92	96	80-116	4
Trichloroethene	ug/L (ppb)	50 ·	89	92	77-108	3
Tetrachloroethene	ug/L (ppb)	50	88	90	78-109	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/05/14 Date Received: 08/29/14

Project: TriWestern Mac's Cleaners 20209-5, F&BI 408489

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 408489-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD.	Criteria	(Limit 20)
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	70	70	10-138	0
Chloroethane	mg/kg (ppm)	2.5	<0.5	82	82	10-176	0
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	83	84	10-160	1
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	90	89	10-156	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	95	95	14-137	0
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	97	97	19-140	0
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	100	100	25-135	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	99	9 8	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	103	103	10-156	0
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	97	98	21-139	1
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	99	100	20-133	1

Laboratory Code: Laboratory Control Sample

Percent				
Reporting	Spike	Recovery	Acceptance	
Units	Level	LCS	Criteria	
mg/kg (ppm)	2.5	81	22-139	
mg/kg (ppm)	2.5	97	10-163	
mg/kg (ppm)	2.5	95	47 - 128	
mg/kg (ppm)	2.5	104	42-132	
mg/kg (ppm)	2.5	108	67-127	
mg/kg (ppm)	2.5	111	68-115	
mg/kg (ppm)	2.5	113	72-113	
mg/kg (ppm)	2.5	110	56-135	
mg/kg (ppm)	2.5	121	62-131	
mg/kg (ppm)	2.5	110	64-117	
mg/kg (ppm)	2.5	113	72-114	
	Units mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 2.5 mg/kg (ppm) 2.5	Reporting Spike Recovery Units Level LCS mg/kg (ppm) 2.5 81 mg/kg (ppm) 2.5 97 mg/kg (ppm) 2.5 95 mg/kg (ppm) 2.5 104 mg/kg (ppm) 2.5 111 mg/kg (ppm) 2.5 113 mg/kg (ppm) 2.5 110 mg/kg (ppm) 2.5 121 mg/kg (ppm) 2.5 110	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- $\mbox{\bf d}$ The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Company Tri Western Investments Send Report To Lyviroy Membal Associates Address 10423 Main St, Swife #4
City, State, ZIP Bellevie WA 98004 10 108 H80 h

Phone # (415) 455-9025 Fax # (415) 455-22/

SAMPLE CHAIN OF CUSTODY SAMPLERS (Signature) PROJECT NAME/NO:

REMARKS Tri Western / Mac's Cleaned 20209-5 PO#

h1/6 2/80

TURNAROUND TIME

Standard (2 Weeks)

RUSH

Rush charges authorized by

☐ Dispose after 30 days SAMPLE DISPOSAL

☐ Return samples

☐ Will call with instructions

FORMS\COC\COC.DOC	Fax (206) 283-5044 Received by:	Relinquished by:	Received by	3012 16th Avenue West Relinguished Strong							Sicon Ho Cos H20		"CA"	Drawn #4 or 1	Drum #3 o3)rum #2 02	Drum #1 015	ID
		Draz	1 west 13	PRI		00111					2	2	U	J	W	W	3	# of containers
		19		PRINT NAME		<u> </u>	ļ	-	_		ļ	-	_	_			ļ	TPH-Diesel
		ph a	2	AAM.			-	+-				-		\dashv			-	TPH-Gasoline
		5	De		-						X	×	X	,	X	X	X	BTEX by 8021B Chlorivate VOCs by8260
			[-		_	+	\dashv		 	-	+-	4				HFS A
H		1	†	\dagger	-			+	\dashv				+-	+				HFS
					-	a)		+	+		ļ		+	+				
		7	1	COMPANY	-			\vdash	\dashv	·			\vdash	+				
		R	円	IPAN		8 7		-	\downarrow				-	\perp				
				Y			· · · · · · · · · · · · · · · · · · ·	ļ	\perp	· · · · · · · · · · · · · · · · · · ·			_	_				
						2			\downarrow				_					
		3/8	28		\parallel		-		_			Ot-1- towar						
		0 8 41 14/16	11/82	DATE TIME		/2°5												Notes

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 5, 2014

Rob Roe, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr. Roe:

Included are the results from the testing of material submitted on August 29, 2014 from the TriWestern Mac's Cleaners 20209-5, F&BI 408488 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EAI0905R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on August 29, 2014 by Friedman & Bruya, Inc. from the Environmental Associates TriWestern Mac's Cleaners 20209-5, F&BI 408488 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Associates
408488 -01	MW-1
408488 -02	MW-2
408488 -03	MW-3
408488 -04	MW-4
408488 -05	MW-5
408488 -06	MW-6
408488 -07	MW-7
408488 -08	MW-8
408488 -09	MW-9

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix:	MW-1 08/29/14 09/02/14 09/02/14 Water	Client: Project: Lab ID: Data File: Instrument:	Environmental Associates TriWestern Mac's Cleaners 20209-5 408488-01 090212.D GCMS9
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	100	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-2
Date Received: 08/29/14
Date Extracted: 09/02/14
Date Analyzed: 09/02/14
Matrix: Water
Units: ug/L (ppb)

Client: Environmental Associates
Project: TriWestern Mac's Cleaners 20209-5

Lab ID: 408488-02
Data File: 090218.D
Instrument: GCMS9
Operator: JS

		Lower	$_{ m Upper}$
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	99	76	126

	Concentration
Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	48

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3
Date Received: 08/29/14
Date Extracted: 09/02/14
Date Analyzed: 09/02/14
Matrix: Water
Units: ug/L (ppb)

Client: Environmental Associates
Project: TriWestern Mac's Cleaners 20209-5
Lab ID: 408488-03

Data File: 408488-03
Data File: 090219.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	101	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1 <1
Trichloroethene	1,1
Tetrachloroethene	72

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-4	Client:	Environmental Associates
Date Received:	08/29/14	Project:	TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408488-04
Date Analyzed:	09/02/14	Data File:	090213.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	m JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	101	93	107
4-Bromofluorobenzene	99	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	4.8

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-5
Date Received: 08/29/14
Date Extracted: 09/02/14
Date Analyzed: 09/02/14
Matrix: Water
Units: ug/L (ppb)

Client: Environmental Associates
Project: TriWestern Mac's Cleaners 20209-5

Lab ID: 408488-05
Data File: 090217.D
Instrument: GCMS9
Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	99	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	47
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	7.9
Tetrachloroethene	35

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	MW-6 08/29/14	Client: Project:	Environmental Associates TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408488-06
Date Analyzed:	09/02/14	Data File:	090221.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS
Matrix:	Water	Instrument:	GCMS9

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d 4	103	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	99	76	126

	Concentration
Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	76

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed:	MW-7 08/29/14 09/02/14 09/02/14	Client: Project: Lab ID: Data File:	Environmental Associates TriWestern Mac's Cleaners 20209-5 408488-07 090220.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane- $d4$	102	85	117
Toluene-d8	99	93	107
4-Bromofluorobenzene	99	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	74

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-8 08/29/14 09/02/14 09/02/14 Water ug/L (ppb)
Units:	ug/L (ppb)

	\ ~
Project: TriWestern Mac's Cleaners 20209	<i>3-</i> 5
Lab ID: 408488-08	
Data File: 090216.D	
Instrument: GCMS9	
Operator: JS	

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	103	93	107
4-Bromofluorobenzene	102	76	126
		,	

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	1.5

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-9	Client:	Environmental Associates
Date Received:	08/29/14	Project:	TriWestern Mac's Cleaners 20209-5
Date Extracted:	09/02/14	Lab ID:	408488-09
Date Analyzed:	09/02/14	Data File:	090215.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	$_{ m JS}$

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	85	117
Toluene-d8	101	93	107
4-Bromofluorobenzene	102	76	126

Compounds:	Concentration ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	2.5

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank
Date Received: Not Applicable
Date Extracted: 09/02/14
Date Analyzed: 09/02/14
Matrix: Water
Units: ug/L (ppb)

Client: Environmental Associates
Project: TriWestern Mac's Cleaners 20209-5
Lab ID: 04-1764 mb
Data File: 090207.D

Instrument: GCMS9 Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	85	117
Toluene-d8	98	93	107
4-Bromofluorobenzene	98	76	126

•	Concentration
Compounds:	ug/L (ppb)
Benzene	< 0.35
Toluene	<1
Ethylbenzene	<1
m,p-Xylene	<2
o-Xylene	<1
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/05/14 Date Received: 08/29/14

Project: TriWestern Mac's Cleaners 20209-5, F&BI 408488

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 408466-01 (Matrix Spike)

				$\operatorname{Percent}$	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	50	< 0.2	104	61-139
Chloroethane	ug/L (ppb)	- 50	<1	114	68-126
1,1-Dichloroethene	ug/L (ppb)	50	<1	100	71 - 123
Methylene chloride	ug/L (ppb)	50	<5	104	61-126
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	104	72 - 122
1,1-Dichloroethane	ug/L (ppb)	50	<1	104	79-113
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	105	73-119
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	104	78-113
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	109	79-116
Benzene	ug/L (ppb)	50	< 0.35	101	79-109
Trichloroethene	ug/L (ppb)	50	<1	102	75-109
Toluene	ug/L (ppb)	50	<1	100	73-117
Tetrachloroethene .	ug/L (ppb)	50	<1	98	72 - 113
Ethylbenzene	ug/L (ppb)	50	<1	103	71-120
m,p-Xylene	ug/L (ppb)	100	<2	103	63-128
o-Xylene	ug/L (ppb)	50	<1	104	64 - 129

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
•	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	89	92	73-132	3
Chloroethane	ug/L (ppb)	50	98	99	68-126	1
1,1-Dichloroethene	ug/L (ppb)	50	87	89	75-119	2
Methylene chloride	ug/L (ppb)	50	89	93	63-132	4
trans-1,2-Dichloroethene	ug/L (ppb)	50	89	93	76-118	4
1,1-Dichloroethane	ug/L (ppb)	50	89	92	80-116	3
cis-1,2-Dichloroethene	ug/L (ppb)	50	90	93	81-111	3
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	90	92	79-109	2
1,1,1-Trichloroethane	ug/L (ppb)	50	92	96	80-116	4
Benzene	ug/L (ppb)	50	88	91	81-108	3
Trichloroethene	ug/L (ppb)	50	89	92	77-108	3
Toluene	ug/L (ppb)	50	88	90	83-108	2
Tetrachloroethene	ug/L (ppb)	50	88	90	78-109	2
Ethylbenzene	ug/L (ppb)	50	92	93	84-110	1
m,p-Xylene	ug/L (ppb)	100	91	93	84-112	2
o-Xylene	ug/L (ppb)	50	92	94	82-113	2

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Bill to 408488

SAMPLE CHAIN OF CUSTODY

Send Report To Environmental Associates City, State, ZIP Bellevue - WA 98004 Phone #(425) 453-9025 Fax #(425) 455-23/6 Address 10423 Main St, Surte#4

ME 08/29/14 of 20209-Tri Western / Mac's (leaneds SAMPLERS (signardine) PROJECT NAME/NO REMARKS

\	TURNAROUND TIME
	Standard (2 Weeks)
7	Rush charges authorized by
	SAMPLE DISPOSAL
	☐ Dispose after 30 days
	☐ Return samples
	☐ Will call with instructions

	Notes										1200
ANALYSES REOUESTED											Samples retained at
ANALYSES	TPH-Diesel TPH-Casoline SVOCs by 8270 VOCs by 8270 HFS HFS	$\frac{1}{\lambda}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		< >	\rightarrow	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	×	×	
	# of containers	7	2	7	7 2	2	2	2	7	2	CONTRACTOR OF THE PARTY OF THE
	Sample Type	H20									
	Time Sampled										
	Date Sampled	41/87/8 410									
	Lab	018	02	8	ho	05	%	ŧο	٥۶	25	
	Sample ID	1-mw1	2-MW	MW-3	14mm	MW-5	MW-6	7-WK	MW-8	MM-9	

Friedman & Bruya, Inc. Seattle, WA 98119-2029 3012 16th Avenue West Fax (206) 283-5044 Ph. (206) 285-8282

FORMS/COC/COC.DOC

んだられていた。	1,			
DAIL CALL DIOLATIONS	PRINT NAME	COMPANY	DATE	TIME
weight and an			71117	TIATE
	1000 How	いずい	0100	
Received how	1000	たがし	0/64/62	
my that beared	#76 - 20 - 1		110	
Control Control	South Farm	かるこ	10.9/10	10511 111861
Ketinguished by:	The state of the s		7.//	(11)
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 26, 2013

Rob Roe, Project Manager Environmental Associates, Inc. 1380 112th Ave. NE, 300 Bellevue, WA 98004

Dear Mr. Roe:

Included are the results from the testing of material submitted on December 20, 2013 from the 20209-5, F&BI 312347 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EAI1226R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 20, 2013 by Friedman & Bruya, Inc. from the Environmental Associates 20209-5, F&BI 312347 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Associates
312347 -01	MW-2
312347 -02	MW-3
312347 -03	MW-5

Chloroethane in the 8260C laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analyte was not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	MW-2 12/20/13	Client: Project:	Environmental Associates 20209-5, F&BI 312347
Date Extracted:	12/20/13	Lab ID:	312347-01
Date Analyzed:	12/20/13	Data File:	122011.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	82

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received:	MW-3 12/20/13	Client: Project:	Environmental Associates 20209-5, F&BI 312347
Date Extracted:	12/20/13	Lab ID:	312347-02
Date Analyzed:	12/20/13	Data File:	122012.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	57	121
Toluene-d8	97	63	127
4-Bromofluorobenzene	97	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	<0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	3.6
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	89

ENVIRONMENTAL CHEMISTS

Client Sample ID:	MW-5	Client:	Environmental Associates
Date Received:	12/20/13	Project:	20209-5, F&BI 312347
Date Extracted:	12/20/13	Lab ID:	312347-03
Date Analyzed:	12/20/13	Data File:	122013.D
Matrix:	Water	Instrument:	GCMS4
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	96	63	127
4-Bromofluorobenzene	95	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	34
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	4.7
Tetrachloroethene	39

ENVIRONMENTAL CHEMISTS

Date Received: Date Extracted: Date Analyzed: Matrix:	Method Blank Not Applicable 12/20/13 12/20/13 Water ug/L (ppb)
---	---

Client: Project:	Environmental Associates 20209-5, F&BI 312347
Lab ID:	03-2610 mb
Data File: Instrument:	122009.D GCMS4
Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	57	121
Toluene-d8	98	63	127
4-Bromofluorobenzene	96	60	133

Compounds:	Concentration ug/L (ppb)
Vinyl chloride	< 0.2
Chloroethane	<1
1,1-Dichloroethene	<1
Methylene chloride	<5
trans-1,2-Dichloroethene	<1
1,1-Dichloroethane	<1
cis-1,2-Dichloroethene	<1
1,2-Dichloroethane (EDC)	<1
1,1,1-Trichloroethane	<1
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 12/26/13 Date Received: 12/20/13

Project: 20209-5, F&BI 312347

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 312333-03 (Matrix Spike)

			Percent				
	Reporting	\mathbf{Spike}	\mathbf{Sample}	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Vinyl chloride	ug/L (ppb)	50	0.75	97	36-166		
$\operatorname{Chloroethane}$	ug/L (ppb)	50	<1	139	46-160		
1,1-Dichloroethene	ug/L (ppb)	50	<1	105	60-136		
Methylene chloride	ug/L (ppb)	50	<5	94	67-132		
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	101	72 - 129		
1,1-Dichloroethane	ug/L (ppb)	50	<1	97	70-128		
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	98	71 - 127		
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	93	69-133		
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	103	60-146		
Trichloroethene	ug/L (ppb)	50	<1	97	66-135		
Tetrachloroethene	ug/L (ppb)	50	<1	97	10-226		

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	$\mathbf{Percent}$		
	Reporting	\mathbf{Spike}	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	50	100	102	50-154	2
Chloroethane	ug/L (ppb)	50	147 vo	$150 \mathrm{\ vo}$	58-146	2
1,1-Dichloroethene	ug/L (ppb)	50	107	108	67-136	1
Methylene chloride	ug/L (ppb)	50	95	100	39-148	5
trans-1,2-Dichloroethene	ug/L (ppb)	50	102	102	68-128	0
1,1-Dichloroethane	ug/L (ppb)	50	99	99	79-121	0
cis-1,2-Dichloroethene	ug/L (ppb)	50	100	100	80-123	0
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	93	93	73 - 132	0
1,1,1-Trichloroethane	ug/L (ppb)	50	107	109	83-130	2
Trichloroethene	ug/L (ppb)	50	9 8	99	80-120	1
Tetrachloroethene	ug/L (ppb)	50	99	100	76-121	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.