Preliminary Sediment Data Summary

I&J Waterway Bellingham, Washington

Prepared by:

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, Washington 98134-1162

RETEC Project Number: PORTB-18448-210

Prepared for:

Port of Bellingham 1801 Roeder Avenue Bellingham, Washington 98225

December 6, 2006

Preliminary Sediment Data Summary

I&J Waterway Bellingham, Washington

Prepared by:

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, Washington 98134-1162

RETEC Project Number: PORTB-18448-210

Prepared for:

Port of Bellingham 1801 Roeder Avenue Bellingham, Washington 98225

Prepared by:

Dan Berlin, Environmental Scientist

Reviewed by:

Mark Larsen, Senior Project Manager

December 6, 2006

Table of Contents

1	Introd	uction	. 1-1
2	Surfac	e Sediment Testing Results	. 2-1
	2.1	Field Physical Observations	
		2.1.1 Water Depth	. 2-1
		2.1.2 Surface Sediment Texture	. 2-1
		2.1.3 Vegetation and Fauna	. 2-2
		2.1.4 Debris	
	2.2	Surface Sediment Chemistry Testing and Distribution	. 2-2
		2.2.1 Metals	. 2-2
		2.2.2 Semivolatile Organic Compounds	. 2-3
		Conventional Parameters	. 2-3
		Volatile Organics and PCB Distribution	. 2-4
	2.3	Surface Sediment Bioassay Testing	. 2-4
		2.3.1 Sediment Recollection	. 2-4
		2.3.2 Bioassay Results	. 2-5
3	Subsu	rface Sediment Testing Results	. 3-1
0	3.1	Subsurface Chemical Results	
		3.1.1 Metals	
		3.1.2 SVOCs	
		3.1.3 Other Analytes	
		3.1.4 Dioxin/Furans	
		3.1.5 Conventionals and Grain Size	
	3.2	Subsurface Bioassay Testing	
		3.2.1 10-Day Amphipod Test	
		3.2.2 20-Day Juvenile Polychaete Growth Testing	
		3.2.3 Larval Development Testing	
	3.3	Conclusions	
4	Refere	ences	. 4-1

List of Tables

- Table 2-1Summary Description of Surface Grab Samples at the I&J Waterway
- Table 2-2
 Surface Sediment Chemistry Results September 2005
- Table 2-3Surface Sediment Conventional and Grain Size Data March 2006
- Table 2-4Summary of Surface Sediment Bioassay 10-Day Amphipod Testing
(Eohaustorius estuarius)
- Table 2-5Summary of Surface Sediment Bioassay 20-Day Growth Juvenile
Polychaete Testing (Neanthes arenaceodentata)
- Table 2-6Summary of Surface Sediment Bioassay Larval Normality Testing
(Mytilus galloprovincialis)
- Table 2-7
 Reference and Control Bioassay Performance Standards
- Table 2-8
 Sediment Management Standards Biological Effects Criteria
- Table 2-9I&J Waterway Surface Sediment Bioassay Endpoint Evaluation
- Table 3-1
 Summary of Subsurface Sediment Chemical Concentrations
- Table 3-2
 Subsurface Sediment Dioxin/Furan Results
- Table 3-3
 Summary of Subsurface Sediment Grain Size Data
- Table 3-4Summary of Subsurface Sediment Bioassay 10-Day Amphipod
Testing (Eohaustorius estuarius)
- Table 3-5Summary of Subsurface Sediment Bioassay 20-Day Growth Juvenile
Polychaete Testing (Neanthes arenaceodentata)
- Table 3-6Summary of Subsurface Sediment Bioassay Larval Normality Testing
(Dendraster excentricus)
- Table 3-7
 DMMP Bioassay Evaluation Guidelines
- Table 3-8
 Evaluation of Subsurface Sediment Bioassay Test Results
- Table 3-9
 I&J Waterway Subsurface Sediment Bioassay Test Interpretations

List of Figures

- Figure 2-1 Surface Sediment Chemical Data Above Criteria
- Figure 2-2 Summary of Bis(2-ethylhexyl)phthalate data
- Figure 2-3 Summary of Surface Sediment Bioassay Test Results
- Figure 3-1 I&J Waterway Subsurface Sediment Sample Locations

List of Appendices

- Appendix AAnalytical Data ReportsAppendix BData Validation Reports
- Appendix C Bioassay Data Reports
- Appendix D Core Processing Logs

1 Introduction

This document presents a summary of preliminary chemical, physical, and biological testing on sediments in the I&J Waterway, Bellingham, Washington. This preliminary data from surface and subsurface sediment investigations was collected by the Port of Bellingham as part of the work required to complete the Remedial Investigation/Feasibility Study (RI/FS) for the I&J Waterway Site. All investigations were conducted according to the Department of Ecology (Ecology) approved Sediments RI/FS Work Plan (RETEC, 2005) as required for the Site under Agreed Order No. DE 1090.

This data summary is intended to provide an update on data collection efforts conducted as part of the RI/FS. As summarized in the October 10, 2006 letter to Ecology, recent decisions by regulatory agencies on other sites may affect the scope and content of the RI/FS. The goal of this data summary is to discuss with the Department of Ecology the data collected to this point to identify future site activities required to complete the RI/FS.

The report includes surface and subsurface sediment chemical and biological data collected as part of RI/FS work. Surface sediment sampling and testing was conducted according to Appendix A: Sampling and Analysis Plan (SAP) of the RI/FS Work Plan. Subsurface sediment sampling and testing was conducted according to Appendix B: I&J Waterway PSDDA Sediment Characterization Sampling and Analysis Plan. A summary of historic surface sediment sampling analytical data is provided in Attachment B of Appendix B of the RI/FS Work Plan.

2 Surface Sediment Testing Results

Surface sediment was collected on August 29, 30, and 31, 2005 from 13 stations in the I&J Waterway and 2 reference locations in Samish Bay. Sediment was collected from the top 12 centimeters using a hydraulic VanVeen grab sampler. Chemical, physical, and biological samples were collected from sediment composited from a single grab. Sampling was conducted according to the Sampling and Analysis Plan (SAP) contained in Appendix A of the I&J Waterway Sediments RI/FS Work Plan.

A second round of sampling was conducted on March 13 and 14, 2006 from nine stations requiring bioassay retesting. Sampling methods were identical to the August 2005 sampling event. Bioassay test results from both rounds of sampling are discussed in Section 2.3.

Analytical data reports for surface sediment testing are provided in Appendix A. All analytical data has been validated according to QA-2 protocols. The validation reports are contained in Appendix B. Bioassay data reports are provided in Appendix C.

2.1 Field Physical Observations

Physical observations of grab samples were recorded on field logs at each sampling station. Table 2-1 provides a summary of information contained on these field logs. Observations included water depth, sediment texture, sediment fauna, and the presence of anthropogenic debris in sediments. Sampling locations are illustrated on Figure 2-1.

2.1.1 Water Depth

Water depths were measured at each sampling station using a lead-line and a depth sounder, where applicable. Water depths were corrected to MLLW. Measurements of current mudline elevations are generally consistent with measurements collected during Phase 2 sediment sampling (ThermoRetec, 2001) and recent bathymetric surveys conducted in October 2005.

2.1.2 Surface Sediment Texture

Grain size information is contained in Table 2-2. Fines content, comprised of clay and silt fractions, was high at most stations. All stations, except for SS-11, contained at least 30 percent fines. Samples SS-01 through SS-05, SS-07, SS-08, SS-09, and SS-13 contained greater than 75 percent fines. Sample SS-11 had approximately 81 percent sand, and samples SS-06 and SS-10 contained 39 to 40 percent sand. The high fines content of surface sediments is consistent with grain size analysis observed during the Phase 2 study (ThermoRetec, 2001).

Gravel was present in a number of samples, although the presence of broken shells likely influenced the measured gravel fraction in samples IJW-SS-06, IJW-SS-10, and IJW-SS-12, which were collected adjacent to or under piers. Gravel percentages ranged from 14.2 to 31.3 percent by weight in these samples.

2.1.3 Vegetation and Fauna

Biota were noted during field observations in the majority of surface grab samples. Clams, mussels, barnacles, small and large worms, and tube worms were commonly observed in grab samples. Less commonly observed biota included sea anemones, kelp, and foraminifera. Table 2-1 provides a summary of biota observed in specific sample locations. Eelgrass blades were observed in samples SS-01, SS-05, SS-07, SS-09, SS-10, and SS-12, but these blades were not rooted and appeared to represent wind drift of blades from nearby eel grass areas south of the Site study area.

2.1.4 Debris

Anthropogenic debris was encountered in a number of surface grabs. Debris was generally located in sample locations adjacent to piers. Debris included small plastic fragments at locations SS-03, SS-04, SS-06, and SS-13 and rope at SS-03. Occasional wood debris was noted in most of the samples. A 2.2 foot long stick was collected from SS-01. Numerous fish bones were present in samples IJW-SS-02 and IJW-SS-06.

2.2 Surface Sediment Chemistry Testing and Distribution

Chemical analyses were conducted for Sediment Management Standards (SMS) constituents to define the horizontal extent of contamination. Analytes included heavy metals (including nickel), semivolatile organics, conventional parameters, polychlorinated biphenyls (PCBs), and volatile organics. Concentrations were compared to Sediment Quality Standards (SQS) and Cleanup Screening Level (CSL) criteria. Nickel concentrations were compared to Dredged Material Management Program (DMMP) screening level (SL) because no SMS criteria exists. Surface sediment chemistry data results are summarized in Table 2-2, and exceedances of RI/FS Work Plan screening levels are identified in Figure 2-1.

2.2.1 Metals

Of the heavy metals included in RI/FS testing, only nickel exceeded the RI/FS Work Plan screening levels. Elevated nickel concentrations were noted in several of the samples collected from the head of the Waterway. Samples SS-07 through SS-12 contained concentrations above the DMMP SL of 140 mg/kg. Sample SS-10 contained concentrations above the DMMP

bioaccumulation trigger (BT) and maximum level (ML), each of which are 370 mg/kg.

Elevated nickel concentrations are consistent with historic data, which indicate that elevated nickel concentrations were observed only at the head of the Waterway (ThermoRetec, 2001) near the location of the former Olivine ore handling operation. Historic values ranged from 731 to 1,120 mg/kg in the vicinity of IJW-SS-10 during the 2001 sampling effort.

2.2.2 Semivolatile Organic Compounds

Semivolatile organic compounds (SVOCs) were analyzed in all surface sediment collected. Analytes included polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, and miscellaneous extractables, as shown in Table 2-2.

Only one station had samples that were above the SQS for PAH compounds. Sample IJW-SS-06 contained concentrations of acenaphthene, dibenz(a,h)anthracene, fluorene, phenanthrene, chrysene, fluoranthene, and total HPAHs greater than the respective SQS values for these compounds (Figure 2-1). No PAHs were detected above CSL criteria, which is consistent with findings from the Phase 2 sampling that showed similar concentrations of SVOCs near this station (ThermoRetec, 2001). Dibenzofuran also exceeded the SQS at this location. The measured concentrations at IJW-SS-06 were in excess of the SQS, but were well below the CSL.

Concentrations of phthalate compounds were significantly lower than during previous Phase 2 sediment sampling (ThermoRetec, 2001). Only bis(2-ethylhexyl)phthalate was detected above the SQS values at one location. In sample IJW-SS-06, bis(2-ethylhexyl)phthalate concentrations (392.5 ppm-TOC) exceeded the both the SQS (45 ppm-TOC) and the CSL (78 ppm-TOC). Figure 2-2 shows the distribution of surface sediment phthalate concentrations measured in the current sampling effort.

No phenol compounds were measured in excess of SMS criteria. Of the miscellaneous extractables analyzed, only dibenzofuran was detected in excess of SMS criteria. No chlorinated hydrocarbons were measured in excess of SMS criteria.

Conventional Parameters

Conventional parameters analyzed included ammonia, pH, total solids, total volatile solids, total sulfides, and total organic carbon.

Ammonia concentrations in surface sediment ranged from 4.06 to 68 mg/kg-N with an average value of 31.3 mg/kg-N. Measurements were taken to provide the bioassay laboratory with baseline ammonia levels for testing. Values were within the range typical for Puget Sound.

Total solids ranged from 23.2 to 72.3 percent. These values are consistent with historic data that ranged from 32 to 76 percent. Total volatile solids ranged from 5.92 to 9.82 percent, with an average value of 8.51 percent. Total sulfides ranged from 1,000 to 4,500 mg/kg with an average value of 3,500 mg/kg.

Total organic carbon content ranged from 2.01 to 3.87 percent. These values are consistent with values typically found in Bellingham Bay, an average of 2.0 percent (Ecology, 1998). These values are also consistent with historic data collected in Whatcom Waterway, which indicates an average TOC content of 3.2 percent (Anchor, 2000).

Volatile Organics and PCB Distribution

No volatile organics or PCB concentrations were measured in excess of criteria.

2.3 Surface Sediment Bioassay Testing

2.3.1 Sediment Recollection

Bioassay testing was conducted on nine of the 13 samples collected in August 2005. Seven samples were selected based on chemical concentrations above Work Plan criteria (samples SS-06 through SS-12) for PAHs, phthalates, and/or nickel. Samples SS-07 through SS-12 were selected for bioassay testing based on elevated nickel concentrations. No SMS criteria has been established for nickel, however, the Work Plan uses the DMMP criteria of 140 ppm. Ecology required testing for two additional samples (SS-04 and SS-13).

Bioassay testing in October 2005 consisted of the following three tests for the nine I&J Waterway samples along with two reference samples, as required in the RI/FS Work Plan: 10 day amphipod (*Eohaustorius estuarius*) survival test, 20-day juvenile polychaete (*Neanthes arenaceodentata*) growth test, and 96-hour blue mussel (*Mytilus galloprovincialis*) larval development test. Results of the juvenile polychaete and larval development tests did not meet quality control criteria and were therefore required to be repeated. Results of the amphipod test were acceptable. Because standard hold times on sediment had expired, sediment resampling and testing was necessary.

Surface sediment was recollected on March 13 and 14, 2006 from the same nine I&J Waterway stations that required bioassay testing and 2 reference locations in Samish Bay. Because samples were collected from the same stations as the first round of sampling, Ecology only required conventional and grain size analysis rather than retesting of the full suite of chemical tests.

Surface sediment grab descriptions from the March 2006 sampling are provided in Table 2-1. Conventional chemistry and grain size data are

presented in Table 2-3. Sediment descriptions and conventional and grain size data are similar to the first round of sampling.

2.3.2 Bioassay Results

Amphipod survival, larval development, and juvenile polychaete testing was initiated within designated hold time on October 25, 2005. However, because larval development and juvenile polychaete testing did not meet quality control criteria, they were repeated within designated hold times on recollected sediment on March 21 and 22, 2006, respectively. Results of amphipod testing from October 2005 and larval development and juvenile polychaete testing from March 2006 are presented in this section.

Test samples were compared to the reference sample with the closest grain size match. Therefore, samples SS-06, SS-11, and SS-12 were compared to RR-01, which contained 15 percent and 8 percent fines for the October 2005 and March 2006 samples, respectively. All other samples were compared to RR-02, which contained 90 percent and 92 percent fines for the October 2005 and March 2006 samples, respectively.

Results of bioassay testing are contained in Tables 2-4, 2-5, and 2-6. Table 2-7 provides an assessment of performance criteria for control and reference samples. A summary of SMS decision criteria is contained in Table 2-8, and Table 2-9 provides an assessment of which samples fail SQS and CSL criteria, which is also shown on Figure 2-3. As shown in Table 2-9, statistical testing was conducted in accordance with the SMS/DMMP Bioassay Statistics Program (Biostat) developed by the Corps of Engineers.

10-Day Amphipod Test

Results of the 10-day amphipod survival test using *Eohaustorius estuarius* are presented in Table 2-4. Results are presented from testing performed on sediment collected in October 2005. The test was run according to Puget Sound Estuary Protocols (PSEP) and met SMS quality control requirements for the control and reference samples, as shown in Table 2-7.

Bioassay endpoint evaluations were determined using statistical testing and criteria outlined in Table 2-8. As shown in Table 2-9, all samples passed SMS criteria.

20-Day Juvenile Polychaete Growth Testing

Results of the 20-day juvenile polychaete growth test using *Neanthes arenaceodentata* are presented in Table 2-5. Results are presented from testing performed on sediment collected in March 2006. The test was run according to PSEP; all quality control requirements were met (Table 2-7).

As shown in Table 2-9, samples SS-06 and SS-12 failed SQS criteria. All other samples passed SMS criteria.

Larval Development Testing

Results of the larval normality test using *Mytilus galloprovincialis* are presented in Table 2-6. Results are presented from testing performed on sediment collected in March 2006. The test was run according to PSEP; however, the reference toxicant test was run incorrectly. In the absence of acceptable reference toxicant testing for this round, reference toxicant data from before and after this test were requested and were within acceptable ranges. As shown in Table 2-7, all other quality control criteria for control and reference samples were met.

As shown in Table 2-9, samples SS-4, SS-6 through SS-10, and SS-13 failed CSL criteria. Samples SS-11 and SS-12 passed SMS criteria.

3

Subsurface Sediment Testing Results

The subsurface sediment investigation was conducted according to the SAP contained in Appendix B of the I&J Waterway Sediments RI/FS Work Plan. The sampling and analysis program was designed to generate data useful to the RI/FS while at the same time satisfying testing requirements established by the DMMP to evaluate suitability for open-water disposal.

Sediment coring locations were identified in the Work Plan within six Dredge Material Management Units (DMMU). Based on chemical and bioassay results, investigation of subsurface sediment in DMMUs 1 and 2 was not necessary because surface sediment chemical concentrations did not exceed SMS criteria in these DMMUs. Therefore, sediment was collected on June 12, 13, and 14, 2006 from four (4) surface DMMUs and one (1) subsurface DMMU (DMMU 4B), as shown in Figure 3-1. Sediment core samples were composited within each DMMU, submitted for chemical and physical analysis, and archived for potential bioassay testing. Surface sediment from two (2) reference stations located in Samish Bay was also collected for potential bioassay testing.

Chemical analytical data collected during RI/FS activities and data validation reports are provided in Appendix A and B, respectively. All analytical data has been validated according to QA-2 protocols. Bioassay lab reports are contained in Appendix C, and subsurface sediment core logs are provided in Appendix D.

3.1 Subsurface Chemical Results

Chemical analyses were conducted on I&J Waterway subsurface sediments from DMMUs 3, 4A, 4B, 5, and 6. Composites were collected from four cores within each unit for analysis of DMMP constituents plus tributyl tin (See Table 3-1). One composite of the upper intervals of DMMUs 3, 4, 5, and 6 was initially analyzed for dioxin/furans, followed by analysis of subsequent, individual DMMU samples for dioxin/furans (See Table 3-2). Grain size and conventional data are presented in Table 3-3.

3.1.1 Metals

Mercury exceeded SQS criteria in DMMUs 4A and 4B and CSL criteria in DMMUs 3, 5, and 6. Nickel was above the Screening Level (SL) in DMMU 4A, but was not above criteria in any other units. No metals were above the BT or the ML, as defined by the DMMP.

3.1.2 SVOCs

SVOCs detected above criteria included bis(2-ethylhexyl)phthalate and 2, 4dimethlyphenol in DMMU 6. Bis(2-ethylhexyl)phthalate was above the ML when compared to dry-weight DMMP criteria and above the CSL when compared to organic carbon-normalized SMS criteria. The concentration of 2,4-dimethylphenol was above the CSL (SMS criteria) and above the SL (DMMP criteria) in DMMU 6. No other SVOCs were above any criteria.

3.1.3 Other Analytes

Concentrations of volatile organics, pesticides, PCBs, and bulk and porewater tributyl tin were within acceptable ranges.

3.1.4 Dioxin/Furans

Dioxin and furan congener concentrations are provided in Table 3-2. Results are presented for dioxin/furan analysis of a composite sample comprised of sediment from DMMUs 3, 4A, 5, and 6 and for individual DMMU samples, which was conducted subsequent to the composite test. Toxic equivalency concentrations (TECs) have been determined using toxic equivalency factors (TEFs), as required by the DMMP.

Total TECs for the sediment composite (IJ-C-S1) was 18.4 TEC. Individual samples from each of the DMMUs ranged from 18.0 to 32.4 TEC.

3.1.5 Conventionals and Grain Size

Conventional and grain size concentrations are summarized in Table 3-3. All samples contained greater than 50 percent fines (total clay and silt). Concentrations of sulfides were elevated in DMMU 3 and DMMU 5. Total organic carbon was above seven percent in DMMUs 4A and 6. Ammonia was slightly elevated in all samples.

3.2 Subsurface Bioassay Testing

Four surface DMMUs (DMMU-3, 4A, 5, 6) and one subsurface DMMU (DMMU-4B) were tested for the standard suite of marine bioassay tests required for characterization of sediment for open water disposal under the DMMP, as shown in Figure 3-1. These DMMUs were selected for bioassay testing based on preliminary chemical results above SL thresholds, as discussed in Section 3.1. Chemical concentrations above the SL include mercury at DMMUs 3, 4A, 4B, 5, and 6. Nickel was also elevated in DMMU-4B as was bis(2-ethylhexyl)phthalate and 2,4-dimethyphenol at DMMU-6. No chemicals exceeded the BT threshold.

Bioassay testing was initiated on all DMMU samples by August 7, 2006, which was within the maximum 8-week holding time limits. All five DMMU samples were tested in addition to two reference samples for the following tests: 10 day amphipod (*Eohaustorius estuarius*) survival test, 20-day

juvenile polychaete (*Neanthes arenaceodentata*) growth test, and 96-hour larval development test using blue mussel (*Mytilus galloprovincialis*) or sand dollar (*Dendraster excentricus*). The preferred test species for the larval development test was the blue mussel, however, spawning was unable to be induced, so testing was initiated on sand dollars, as specified in the SAP.

Results of bioassay testing are shown in Tables 3-4, 3-5, and 3-6. Table 3-7 provides performance criteria for control and reference samples and decision criteria for dispersive and non-dispersive DMMP disposal sites. Table 3-8 provides a comparison of DMMU samples to reference and control results, and Table 3-9 provides a summary of bioassay result interpretation. Statistical testing was conducted with Biostat, developed by the Corps of Engineers. Test results were compared to criteria for dispersive and non-dispersive disposal sites using reference sample RR-01, which is a suitable reference sample and passed acceptability criteria for all tests. All tests were run according to PSEP and met DMMP quality control requirements.

3.2.1 10-Day Amphipod Test

Results of the 10-day amphipod survival test using *Eohaustorius estuarius* are presented in Table 3-4. All samples passed criteria for dispersive and non-dispersive disposal sites (Table 3-8).

3.2.2 20-Day Juvenile Polychaete Growth Testing

Results of the 20-day juvenile polychaete growth test using *Neanthes arenaceodentata* are presented in Table 3-5. As shown in Table 3-8, samples from DMMU-3, 4A, and 4B passed dispersive and non-dispersive criteria. Samples DMMU-5 and DMMU-6 failed the 1-hit criteria (higher failure) for dispersive disposal sites. Each of these samples also failed the 2-hit criteria (lower failure) for non-dispersive disposal sites.

3.2.3 Larval Development Testing

Results of the larval development test using *Dendraster excentricus* are presented in Table 3-6. DMMU-3, 4A, 5, and 6 had 1-hit failures for dispersive disposal sites, but DMMU-4B passed dispersive criteria. For non-dispersive disposal sites, DMMU-3 and 5 contained 1-hit failures while DMMU-4A and 6 had 2-hit failures. DMMU-4B passed non-dispersive disposal site criteria.

3.3 Conclusions

Table 3-9 provides a summary of interpretations of test results compared to dispersive and non-dispersive disposal site bioassay criteria. For dispersive disposal sites (e.g. Rosario Straits), sediment from DMMU-3, 4A, 5, and 6 are unsuitable for disposal, based on higher level 1-hit failures. DMMU-4B passes bioassay criteria for open-water disposal at dispersive disposal sites.

For non-dispersive disposal sites (e.g. Bellingham Bay), DMMU-3 and DMMU-5 are unsuitable for disposal because of 1-hit failures. DMMU-6 is also unsuitable for non-dispersive disposal due to two failures of 2-hit criteria (polychaete and larvae). DMMU-4A and DMMU-4B are both suitable for open-water disposal at non-dispersive disposal sites based on bioassay results.

The above interpretations are identified based on bioassay test results. Disposal determinations for individual DMMUs do not consider the potential impact of dioxin/furan concentrations, which may change the suitability of open-water disposal based on DMMP review of the dioxin issue.

4 References

- Anchor Environmental and Hart Crowser, 2000. Remedial Investigation and Feasibility Study, Volume I, Whatcom Waterway Site, Bellingham, Washington. Prepared for Georgia-Pacific West, Inc. July 25.
- Ecology, 1998. Marine Sediment Monitoring Program: I. Chemistry and Toxicity Testing 1989-1995, Puget Sound. Washington State Department of Ecology. August.
- PSEP. 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, In: *Puget Sound Protocols and Guidelines, Puget Sound Estuary Program.*
- PSEP, 1995. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments, In: *Puget Sound Protocols and Guidelines, Puget Sound Estuary Program.*
- PSEP. 1996a. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound, In: Puget Sound Protocols and Guidelines, Puget Sound Estuary Program.
- PSEP. 1996b. Recommended Quality Assurance and Quality Control Guidelines for the Collection of Environmental Data in Puget Sound, In: *Puget Sound Protocols and Guidelines, Puget Sound Estuary Program.*
- PSEP. 1996c. Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, In: *Puget Sound Protocols and Guidelines, Puget Sound Estuary Program.*
- RETEC, 2005. Sediments RI/FS Work Plan I&J Waterway, Bellingham, Washington. Prepared by The RETEC Group, Inc. for the Port of Bellingham. July 27.
- ThermoRetec, 2001. Results of Phase 2 Sampling at the Olivine Site. Prepared for the Port of Bellingham. Seattle, Washington. January.

Tables

Table 2-1. Summary Description of Surface Grab Samples at the I & J Waterway

				Field Obse	ervations of Sample				Sample Re	covery Detail	is
Sample ID	Date Collected	Color	Soil Type	Biological	Odor	Sheen	Comments	Recovery Depth (cm)	Depth of Sample (cm)	Mudline Elevation (MLLW ft)*	Water Depth- Leadline (ft)
IJW-SS-01	8/31/2005	black	clayey silt	nepthys worms	sulfide-like	occasional spotty sheen	1 blade eel grass, 2, 2 foot long sticks with barnacles, 4 cm living clam	23	0-12	15.3	16.0
IJW-SS-02	8/31/2005	black	clayey silt, trace fines	spionids and nepthys worms, fish vertebrae, clams	hydrocarbon-like	none	organic rootlets, fish vertebrae archived	24	0-12	15.7	17.3
IJW-SS-03	9/1/2005	black	clayey silt, trace very fine sand	abundant dead mussel shells, occasional clam shells	moderate to strong sulfide-like	occasional spotty iridescent sheen	occasional wood stick fragments up to 2", rope and plastic bag	23	0-12	10.4	10.6
IJW-SS-04	9/1/2005	black	clayey silt, trace fine sand	none	moderate sulfide-like odor	when mixed composite had occasional spotty iridescent sheen	small piece of plastic observed (not archived)	28	0-12	17.6	17.9
	3/13/2006	black	silt with trace sand	trace rootlets, polychaete worm	none	none	jaws close, good sample	27.5	0-12	17.2	23.1
IJW-SS-05	8/31/2005	black	clayey silt	5, 2" living clams spionid worms	very slight sulfide-like odor	none	occasional rootlets, brown circular specs (forams) from 0-3mm, eel grass	24	0-12	14.7	19.3
	8/31/2005	black	very shelly silt	barnacles, mussels, crab carapace, shells up 2", fish vertebrae	very strong sulfide-like odor	spotty iridescent sheen	wood fragments, aparent plastic pieces (archived), spotty iridescent sheen observed in water while sampling	17	0-12	15.7	23.1
IJW-SS-06	3/13/2006	black	silt with trace sand, abundant shell fragments	abundant mussel shells, polychaete worms, eel grass, rootlets, wood fragments, intact shells 3-5 cm	mild sulfide-like odor	spotty iridescent sheen	jaws close with sediment in teeth, shell fragments on surface, apparent fish bones from 2-9 cm depth (archived) (15% of recovered sediment), small 9 cm rope recovered	24	0-12	13.2	18.3
IJW-SS-07	8/31/2005	black (top 1-2mm is gray)	clayey silt	bittium snail shell	slight sulfide-like odor	none	occasional to abundant rootlets/sticks, leaf litter, brown circular specs (forams) from 0-3mm, eel grass	25	0-12	13.6	19.8
	3/13/2006	black	clayey silt with trace sand	3 blades of eel grass, tace ocassional rootlets, 1- 7 cm clam shell (cockle clam)	slight sulfide-like odor	none	good grab, jaws close with sediment in teeth and blades of grass	28.5	0-12	14.7	19.4
	9/1/2005	black	clayey silt, trace fine sand	abundant spionid worms	none	sheen in composite	occasional wood fragments, rootlets, and shells	23	0-12	12.2	15.4
IJW-SS-08	3/13/2006	black	clayey silt	one 5 cm L shell, 3 cm mollusk shell, one piece of eel grass, 3 cm wood fragments, occasional rootlets, 8 cm branch polychaete worm	slight sulfide-like odor	none	great recovery, jaws close with abundant living gastropods, eel grass blades	27	0-12	14.0	21.1
	8/31/2005	black	clayey silt, trace very fine sand	none	none	none	eel grass blades	30	0-12	14.7	23.2
IJW-SS-09	3/13/2006	black	clayey silt	3 eel grass blades, 1 3" leaf, one anemone, 3 cm clam shell, whole shell, occasional rootlets, occasional polychaete, 30 cm branch, 2-12cm wood fragments	none	none	jaws close good grab	29	0-12	15.6	20.3
	9/1/2005	black	clayey silt, trace sandy gravel (<2")	trace clam shells, alive and dead,occasional nepthys worms	slight sulfide-like odor	occasional spotty iridescent sheen	abundant 2" clams, eel grass blades	21	0-12	4.2	4.8
IJW-SS-10	3/13/2006	black and green mottled	slightly sandy (medium grained) clayey silt	occasional barnacles, few shells up to 3 cm, 1/2 shell mollusks with barnacles 4 cm, one 6" cobble with barnacles, trace shell fragments 2-5 cm, occasional wood fragments 3-4 cm	none	none	good grab, jaws close on wood, barnacles, and mollus	¢ 26	0-12	4.0	10.0
IJW-SS-11	8/31/2005	black	silty fine sand, trace clay, abundant gravel at 8-12 cm up to 5"	shells up to 2", nereid worm	slight to moderate sulfide-like odor	none	abundant wood fragments up to 5"	14	0-12	0.7	8.8
	3/13/2006	black	silty sand	shell fragments up to 3 cm, branches 8 cm, brachiopod 3 cm, occasional woody fragments, eel grass, polychaete worm	slight to moderate sulfide-like odor	none	jaws partially close due to wood fragments, occasional shells to 1 1/2", wood fragments, branches to 4"	22.5	0-12	2.2	7.5
	9/1/2005	black	clayey gravelly silt	barnacles, occasional shells up to 1", abundant spionid worms	very slight sulfide-like odor	none	composite is shelly clayey gravelly silt, eel grass blades	s 21	0-12	4.6	9.7
IJW-SS-12	3/13/2006	black	shelly sandy silt	substantial (30-50) shell fragments 1/2 cm, occasional rootlets, trace eel grass blades, polychaete worms.	none	none	good grab, jaws close, lots of surface water, sea anemone present, block with barnacles, eel grass blades, polychaetes	21	0-12	9.4	16.0
IJW-SS-13	9/1/2005	black	silt, trace clay and fine sand	none	strong sulfide-like odor	occasional spotty iridescent sheen	wood fragment, wirey piece of black plastic 3"	21	0-12	15.4	16.4
	3/13/2006	black	clayey silt with trace sand	one 30 cm piece of plant material (not eel grass)	strong sulfide-like odor	none	good grab, jaws close	27.5	0-12	15.7	23.0
IJW-RR-01	9/2/2005	dark grey	silty coarse sand	abundant spionid worms, occasional teribellid worms, 2"clam shell	none	none	none	25	0-12	48.2	48.7
	3/14/2006	grayish black	silty sand	occasional polychaetes and rootlets, ocassional 1 mm shell framents	none	none	good grab, jaws close	25	0-12	46.9	52.6
	9/2/2005	olive brown	slightly sandy clayey silt	occasional spionid worms	none	none	brown circular specs (forams) from 0-1cm	28	0-12	56.0	57.1
IJW-RR-02	3/14/2006	grayish brown	slightly clayey silt with trace sand	occasional polychaetes and rootlets	none	none	good grab, jaws close, good seal	27.5	0-12	55.6	60.6

Notes: All samples collected using hydraulic grab sampler. The mudline elevations were calculated using leadline and height of tide elevations on the collection date * Height of tide was determined using the XTide program provided online by the Biological Sciences Department, University of South Carolina, Columbia, South Carolina (http://tbone.biol.sc.edu/tide/sitesel.html)

	Sample ID	SMS C	riteria	IJW-SS-01	IJW-SS-02	IJW-SS-03	IJW-SS-04	IJW-SS-05	IJW-SS-06	IJW-SS-07
Compound	Sample Depth	sqs	CSL	0-0.4'	0-0.4'	0-0.4'	0-0.4'	0-0.4'	0-0.4'	0-0.4'
	Sample Date	343	CGL	9/1/2005	9/1/2005	8/31/2005	8/31/2005	8/31/2005	9/1/2005	8/31/2005
Conventionals										
Ammonia - mg-N/kg				37.2	26.2	20.3	31.3	47.6	62.7	38.9
рН				7.64	7.85	7.95	7.92	7.93	8.04	7.86
Total Solids - % Sulfide - mg/kg				30.2 3,600	31.6 3,200	34.5 3,900	23.2 4,900	36 3,500	41.6 3,400	33.3 3,600
Total Organic Carbon -	%			2.32	2.39	2.46	2.34	2.24	2.14	2.45
Total Solids - %	-			34.7	35.2	38.2	31	36.6	47.2	32.7
Total Volatile Solids - %)			8.75	8.31	8.61	8.74	8.12	7.45	8.92
Grain Size - %										
Gravel				0.2	0.2	2.9	< 0.01	< 0.01	26.9	0.4
Sand				15.2	15.3	20.2	18.5	15	40.7	17.2
Silt Clay				53.2 31.5	49.2 35.2	47.5 29.4	55.2 26.4	55.1 29.9	25.3 7.2	55.7 26.7
Total Fines				84.7	84.4	76.9	81.6	85.0	32.5	82.4
Metals (EPA 6000/700	0) - ma/ka									
Antimony	<i>c)</i> g/g			< 20 R	< 10 R	< 10 R	< 20 R	< 10 R	< 30 R	< 10 R
Arsenic		57	93	< 20	< 10	20	< 20	20	< 30	10
Cadmium		5.1	6.7	0.7	0.7	0.9	0.7	0.8	< 1	0.8
Chromium Copper		260 390	270 390	74 71	75 68	75 84	74 67	75 72	38 61	72 73
Lead		450	530	15	16	20	17	17	10	20
Mercury		0.41	0.59	0.40	0.30	0.30	0.40	0.4 ^[4]	0.17	0.40
Nickel		140 ^[3]	140 ^[3]	117	122	117	119	125	57	<u>174</u>
Silver		6.1	6.1	< 0.9	< 0.9	< 0.8	< 1	< 0.8	< 2	< 0.9
Zinc		410	960	140	142	174	148	150	138	164
LPAH - ppm-OC										
2-Methylnaphthalene		38	64	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	6.5	< 2.4
Acenaphthene Acenaphthylene		16 66	57 66	< 2.5 < 2.5	< 2.5 < 2.5	< 4.0 < 4.0	< 4.2 < 4.2	< 2.7 < 2.7	<u>29.0</u> J < 2.8	< 2.4 < 2.4
Anthracene		220	1200	< 2.5	< 2.5	< 4.0 6.5	< 4.2	< 2.7	< 2.0 60.7	< 2.4
Fluorene		23	79	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	<u>38.3</u>	< 2.4
Naphthalene		99	170	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	6.1	< 2.4
Phenanthrene		100	480	4.7	< 2.5 < 2.5	6.1	6.8	4.2	<u>205.6</u>	3.8
Total LPAH		370	780	4.7	< 2.5	12.6	6.8	4.2	346.3	3.8
HPAH - ppm-OC										
Benzo(A)Pyrene		99	210	< 2.5	< 2.5	6.1	< 4.2	2.9	84.1	3.9
Total Benzofluoranthen	e	230	450	6.3	< 2.5	21.5	12.0	8.3	154.2	11.4
Benzo(G,H,I)Perylene		31	78	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	22.4	< 2.4
Benzo(A)Anthracene Dibenz(A,H)Anthracene		110 12	270 33	3.1 < 2.5	< 2.5 < 2.5	11.0	6.0 < 4.2	4.4 < 2.7	107.5 13.6	4.5 < 2.4
Chrysene		110	460	6.0	3.4	21.5	10.3	8.5	121.5	8.2
Fluoranthene		160	1200	9.1	4.1	22.0	15.0	8.9	345.8	12.2
Indeno(1,2,3-Cd)Pyrene)	34	34	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	28.0	< 2.4
Pyrene		1000	1400	7.8	3.3	30.5	16.7	8.0	196.3	9.8
Total HPAH		960	5300	32.2	10.9	112.6	59.9	41.0	<u>1073.4</u>	50.0
Chlorinated Hydrocar	bons - ppm-OC									
1,2,4-Trichlorobenzene		0.81	1.8	< 2.54 ^[2]	< 2.51 [2]	< 4.02 ^[2]	< 4.23 ^[2]	< 2.68 [2]	< 2.76 ^[2]	< 2.41 ^[2]
1,2-Dichlorobenzene		2.3	2.3	< 2.54 ^[2]	< 2.51 ^[2]	< 4.02 ^[2]	< 4.23 ^[2]	< 2.67 ^[2]	< 2.76 ^[2]	< 2.41 ^[2]
1,4-Dichlorobenzene		3.1	9	< 2.54	< 2.51	< 4.02 ^[1]	< 4.23 ^[1]	< 2.68	< 2.76	< 2.41
Hexachlorobenzene		0.38	2.3	< 2.54 ^[2]	< 2.51 ^[2]	< 4.02 ^[2]	< 4.23 ^[2]	< 2.68 ^[2]	< 2.76 ^[2]	< 2.41 ^[2]
M-Dichlorobenzene				< 2.54	< 2.51	< 4.02	< 4.23	< 2.68	< 2.76	< 2.41
Phthalates - ppm-OC										
Benzyl Butyl Phthalate		4.9	64	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	< 2.8	< 2.4
Bis(2-Ethylhexyl)Phthal	ate	47	78	10.3	2.6	16.3	9.4	5.8	<u>392.5</u>	10.2
Diethyl Phthalate		61	110	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	< 2.8	< 2.4
Dimethyl Phthalate		53	53	< 2.5	< 2.5	< 4.0	9.0	< 2.7	3.0	< 2.4
Di-N-Butylphthalate Di-N-Octyl Phthalate		220 58	1700 4500	35.8 UB	34.3 UB	26.0 UB	55.6 UB	35.7 UB	46.7 UB	34.7 UI
2 2009 i initialate							- 1.2		. 2.0	
Phenols - mg/kg										
Phenol		0.42	1.0	< 0.059	< 0.06	< 0.099	< 0.099	< 0.06	< 0.059	< 0.059
2-Methylphenol 4-Methylphenol		0.063 0.67	0.063	< 0.059 < 0.059	< 0.06 < 0.06	< 0.099 ^[2] < 0.099	< 0.099 ^[2] < 0.099	< 0.06 < 0.06	< 0.059 0.085	< 0.059 < 0.059
2,4-Dimethylphenol		0.029	0.029	< 0.059 ^[2]	< 0.06 ^[2]	< 0.099 ^[2]	< 0.099 ^[2]	< 0.06 ^[2]	< 0.059 ^[2]	< 0.059 ^[2]
Pentachlorophenol		0.36	0.69	< 0.3	< 0.3	< 0.5 ^[1]	< 0.49 ^[1]	< 0.3	< 0.3	< 0.3
•										
Miscellaneous Extract	ables - mg/kg	0.05-	0.070	. 0.050 [1]		< 0.099 ^[2]	· 0.000 ^[2]		. 0.050 [1]	. 0.050 [1]
Benzyl alcohol Benzoic acid		0.057 0.65	0.073 0.65	< 0.059 ^[1] < 0.59	< 0.06 ^[1]	< 0.099 ^[2]	< 0.099 ^[2] < 0.99 ^[2]	< 0.06 ^[1]	< 0.059 ^[1] < 0.59	< 0.059 ^[1] < 0.59
Benzoic acid		0.05	0.00	< 0.59	< 0.6	< 0.99 ¹¹	< 0.88.	< 0.6	< 0.59	< 0.59
Misc Extractables - p	om-OC									
Dibenzofuran		15	58	< 2.5	< 2.5	< 4.0	< 4.2	< 2.7	<u>23.8</u>	< 2.4
Hexachloro-1,3-Butadie	ne	3.9	6.2	< 2.5	< 2.5	< 4.0 ^[1]	< 4.23 ^[1]	< 2.7	< 2.8	< 2.4
Hexachloroethane N-Nitrosodiphenylamine)	 11	 11	< 2.5 < 2.5	< 2.5 < 2.5	< 4.0 < 4.0	< 4.2 < 4.2	< 2.7 < 2.7	< 2.8 < 2.8	< 2.4 < 2.4
• •										
Volatile Organics - mg	/kg			0.005.1	0.000					
Ethylbenzene M,P-Xylene				< 0.0034 < 0.0034	< 0.0031 < 0.0031	< 0.0028 < 0.0028	< 0.0039 < 0.0039	< 0.0028 < 0.0028	< 0.0017 < 0.0017	< 0.0026 < 0.0026
O-Xylene				< 0.0034	< 0.0031	< 0.0028	< 0.0039	< 0.0028	< 0.0017	< 0.0026
Tetrachloroethene				< 0.0034	< 0.0031	< 0.0028	< 0.0039	< 0.0028	< 0.0017	< 0.0026
Trichloroethylene				< 0.0034	< 0.0031	< 0.0028	< 0.0039	< 0.0028	< 0.0017	< 0.0026
DOD:										
PCBs - ppm-OC Aroclor 1016				< 0.86	< 0.84	< 0.73	< 0.85	< 0.89	< 0.93	< 0.82
Aroclor 1016 Aroclor 1221				< 0.86	< 0.84	< 0.73	< 0.85	< 0.89	< 0.93	< 0.82
Aroclor 1232				< 0.86	< 0.84	< 0.73	< 0.85	< 0.89	< 0.93	< 0.82
Aroclor 1242				< 0.86	< 0.84	< 0.73	< 0.85	< 0.89	< 0.93	< 0.82
				< 0.86	< 0.84	< 0.73	< 0.85	< 0.89 < 0.89	< 0.93	< 0.82
Aroclor 1248				< 0.86			< 1.28 Y	< 0.89		< 0.82
Aroclor 1248 Aroclor 1254					< 0.84	< 0.73			1.50	
Aroclor 1248		 12	 65	< 0.86 < 0.86 < 0.86	< 0.84 < 0.84 < 0.84	< 0.73 < 0.73 < 0.73	< 0.85 < 1.28 Y	< 0.89	< 0.93 1.50	< 0.82 < 0.82 < 0.82

^[1] = Value is non-detect. RDL exceeds SQS Criteria. MDL passes criteria. Notes:

 $^{\sc{[2]}}$ = Value is non-detect. RDL exceeds both SQS and CSL Criteria. MDL passes criteria.

[3] = No SQS criteria exists for the element nickel. As such, the PSDDA criteria is used in place.
 [4] = This sample is the average of an initial run (0.50 mg/kg) and a duplicate analysis (0.30 mg/kg)

-- = No criteria value established

< = Below laboratory instrument detection limit

Y = Reporting limit is raised due to instrument activity. Compound not detected.

B = Analyte was detected in the blank as well as the sample.
 Bold = value exceeds laboratory detection limit
 Bold and underline = value exceeds SQS Criteria
 Bold, underline, italics = value exceeds CSL Criteria
 Data has been validated according to QA-2 protocols.

	Sample ID ample Depth	SMS C SQS	Criteria CSL	IJW-SS-08 0-0.4'	IJW-SS-09 0-0.4'	IJW-SS-10 0-0.4'	IJW-SS-11 0-0.4'	IJW-SS-12 0-0.4'	IJW-SS-13 0-0.4'	IJW-RR-01 0-0.4'	IJW-RR-0 0-0.4'
	Sample Date			9/1/2005	8/31/2005	9/1/2005	9/1/2005	9/1/2005	9/1/2005	9/2/2005	9/2/2005
Conventionals Ammonia - mg-N/kg				44	33.9	9.02	6.55	28.4	68	4.06	23.2
рН				7.85	7.89	7.99	7.63	7.79	7.84	7.94	7.82
Total Solids - %				38.3	25.4	53.9	63.4	54.5	25.5	72.3	34.3
Sulfide - mg/kg Total Organic Carbon -%				3,300 2.75	4,000 2.01	2,100 2.79	1000 3.18	1,900 3.87	4,500 2.45	22 1.34	480 1.25
Total Solids - %				39.3	30.8	53.5	66.9	56	25.4	72.9	36.9
Total Volatile Solids - %				8.51	9	7	5.92	6.28	9.82	1.91	7.43
Grain Size - %											
Gravel Sand				< 0.01 17.5	< 0.01 15.4	14.2 39.3	7.2 81.6	31.3 28.7	< 0.01 15.2	< 0.01 84.5	< 0.01 10.1
Silt				49.3	58.2	31.7	5.5	23.6	66.5	9.5	55.7
Clay Total Fines				33.3 82.6	26.2 84.4	14.8 46.5	5.8 11.3	16.3 39.9	18.3 84.8	5.9 15.4	34.2 89.9
Metals (EPA 6000/7000) - Antimony	mg/kg			< 10 R	< 20 R		< 8 R	< 8 R			< 10
Arsenic Cadmium		57 5.1	93 6.7	20 0.9	< 20 0.8	16 0.6	< 8 < 0.3	14 0.6	< 20 0.9	< 7 0.4	< 10 < 0.5
Chromium		260	270	73	74	47	23	54	71	18	48
Copper		390	390	74	72	52	20	62	70	8	33
Lead		450	530	22	19	29	17	40	17	4	13
Mercury Nickel		0.41 140 ^[3]	0.59 140 ^[3]	0.40 <u>156</u>	0.30 <u>192</u>	0.23 511	0.08 <u>211</u>	0.22 <u>152</u>	0.40	< 0.07 22	0.10 40
Silver		140 ¹⁻¹ 6.1	140 ¹⁰⁴ 6.1	< 0.7	< 0.9	<u>511</u> < 0.5	< 0.5	<u>152</u> < 0.5	133	< 0.4	40
Zinc		410	960	166	153	142	69.7	139	159	36	98
LPAH - ppm-OC											
2-Methylnaphthalene		38	64	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Acenaphthene	[16	57	< 2.1	3.2	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Acenaphthylene Anthracene		66 220	66 1200	< 2.1 2.8	< 2.9 4.2	5.0 9.7	< 1.8 3.5	2.5 4.4	< 2.4 < 2.4	< 1.5 < 1.5	< 1.6 < 1.6
Fluorene		220	79	< 2.1	4.2 < 2.9	9. 7	3.5	4.4 < 1.5	< 2.4	< 1.5	< 1.6
Naphthalene		99	170	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Phenanthrene		100	480	5.1	8.0	19.0	11.3	6.2	6.5	< 1.5	< 1.6
Total LPAH		370	780	7.9	15.4	33.7	14.8	13.1	6.5	< 1.5	< 1.6
НРАН - ррт-ОС			-	_				-	_		
Benzo(A)Pyrene		99	210	5.5	4.8	27.6	11.3	8.8	< 2.4	1.9	< 1.6
Total Benzofluoranthene Benzo(G,H,I)Perylene		230 31	450 78	18.5	15.4 < 2.9	96.8 5.7	28.3 3.0	28.4	7.0	1.7	< 1.6 < 1.6
Benzo(A)Anthracene		110	270	7.6	6.5	25.4	11.0	11.4	3.1	2.0	< 1.6
Dibenz(Á,H)Anthracene		12	33	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Chrysene		110	460	15.6	13.4	71.7	16.0	19.4	5.7	1.9	< 1.6
Fluoranthene Indeno(1,2,3-Cd)Pyrene		160 34	1200 34	16.0	18.9 < 2.9	86.0 6.5	37.7 3.5	33.6 1.9	11.8	4.1 < 1.5	< 1.6 < 1.6
Pyrene		1000	1400	14.2	12.9	121.9	26.4	22.7	7.3	3.4	< 1.6
Total HPAH		960	5300	77.4	71.9	441.6	137.3	126.2	35.0	15.1	< 1.6
Chlorinated Hydrocarbons	s - ppm-OC										
1,2,4-Trichlorobenzene		0.81	1.8	< 2.11 ^[2]	< 2.94 ^[2]	< 3.51 ^[2]	< 1.82 ^[2]	< 1.50 ^[1]	< 2.41 ^[2]	< 1.49 ^[1]	< 1.60 ^[1]
1,2-Dichlorobenzene		2.3	2.3	< 2.11	< 2.94 ^[2]	< 3.51 ^[2]	< 1.82	< 1.50	< 2.41 ^[2]	< 1.49	< 1.60
1,4-Dichlorobenzene		3.1	9	< 2.11	< 2.94 < 2.94 ^[2]	< 3.51 ^[1] < 3.51 ^[2]	< 1.82 < 1.82 ^[1]	< 1.50 < 1.50 ^[1]	< 2.41 < 2.41 ^[2]	< 1.49 < 1.49 ^[1]	< 1.60 < 1.60 ^[1]
Hexachlorobenzene M-Dichlorobenzene		0.38 	2.3	< 2.11 ^[1] < 2.11	< 2.94 ^[2] < 2.94	< 3.51 ^[2] < 3.51	< 1.82 ^[1] < 1.82	< 1.50 ^[1] < 1.50	< 2.41 ^[2] < 2.41	< 1.49 ^[1] < 1.49	< 1.60
Phthalates - ppm-OC											
Benzyl Butyl Phthalate		4.9	64	< 2.1	< 2.9	< 3.5	2.4	< 1.5	< 2.4	< 1.5	< 1.6
Bis(2-Ethylhexyl)Phthalate Diethyl Phthalate		47 61	78 110	10.2	7.5 < 2.9	21.9 < 3.5	28.9	14.0 < 1.5	11.8	< 1.5 < 1.5	3.0
Dimethyl Phthalate		53	53	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Di-N-Butylphthalate		220	1700	28.7 UB	46.8 UB	35.1 UB	26.4 UB	23.0 UB	26.9 UE	67.9 B	80.0
Di-N-Octyl Phthalate		58	4500	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Phenols - mg/kg				a a=-	a a=-	0.077	0.6==	0.0		0	
Phenol 2 Mothylphonol		0.42	1.0	< 0.058 < 0.058	< 0.059	< 0.098 < 0.098 ^[2]	< 0.058	< 0.058	< 0.059	< 0.02	0.024
2-Methylphenol 4-Methylphenol		0.063	0.063	< 0.058 < 0.058	< 0.059 < 0.059	< 0.098 ^[2] < 0.098	< 0.058 < 0.058	< 0.058 < 0.058	< 0.059 < 0.059	< 0.02 < 0.02	< 0.02 0.055
2,4-Dimethylphenol		0.029	0.029	< 0.058 ^[2]	< 0.059 ^[2]	< 0.098 ^[2]	< 0.058 ^[2]	< 0.058 ^[2]	< 0.059 ^[2]	< 0.02	< 0.033
Pentachlorophenol		0.36	0.69	< 0.29	< 0.3	< 0.49 ^[1]	< 0.29	< 0.29	< 0.3	< 0.097	< 0.099
Miscellaneous Extractable	es-mg/kg							1	1		
Benzyl alcohol		0.057	0.073	< 0.058 ^[1]	< 0.059 ^[1]	< 0.098 ^[2]	< 0.058 ^[1]	< 0.058 ^[1]	< 0.059 ^[1]	< 0.02	< 0.02
Benzoic acid		0.65	0.65	< 0.58	< 0.59	< 0.98 ^[2]	< 0.58	< 0.58	< 0.59	< 0.2	< 0.2
Misc Extractables - ppm-0	oc					a -					
Dibenzofuran		15	58	< 2.1 < 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Hexachloro-1,3-Butadiene Hexachloroethane		3.9 	6.2	< 2.1 < 2.1	< 2.9 < 2.9	< 3.5 < 3.5	< 1.8 < 1.8	< 1.5 < 1.5	< 2.4 < 2.4	< 1.5 < 1.5	< 1.6 < 1.6
N-Nitrosodiphenylamine		11	11	< 2.1	< 2.9	< 3.5	< 1.8	< 1.5	< 2.4	< 1.5	< 1.6
Volatile Organics - mg/kg											
Ethylbenzene				< 0.0026	< 0.0033	< 0.0020	< 0.0014	< 0.0016	< 0.0036	< 0.0013	< 0.0029
M,P-Xylene				< 0.0026	< 0.0033	< 0.0020	< 0.0014	< 0.0016	< 0.0036	< 0.0013	< 0.0029
O-Xylene Tetrachloroethene				< 0.0026 < 0.0026	< 0.0033 < 0.0033	< 0.0020 < 0.0020	< 0.0014 < 0.0014	< 0.0016 < 0.0016	< 0.0036 < 0.0036	< 0.0013 < 0.0013	< 0.0029
Trichloroethylene				< 0.0026	< 0.0033	< 0.0020	< 0.0014	< 0.0016	< 0.0036	< 0.0013	< 0.0029
PCBs - ppm-OC											
Aroclor 1016				< 0.69	< 1.00	< 0.72	< 0.63	< 0.49	< 0.82	< 1.42	< 1.60
Aroclor 1221				< 0.69	< 1.00	< 0.72	< 0.63	< 0.49	< 0.82	< 1.42	< 1.60
Aroclor 1232				< 0.69 < 0.69	< 1.00 < 1.00	< 0.72 < 0.72	< 0.63 < 0.63	< 0.49 < 0.49	< 0.82 < 0.82	< 1.42 < 1.42	< 1.60 < 1.60
Aroclor 1242				< 0.69	< 1.00	< 0.72	< 0.63	< 0.49	< 0.82	< 1.42	< 1.60
Aroclor 1242 Aroclor 1248											< 1.60
Aroclor 1248 Aroclor 1254				< 0.69	< 1.00	< 0.72	< 0.63	< 0.75 Y		< 1.42	
Aroclor 1248		 12	 65	< 0.69 < 0.69 < 0.69	< 1.00 1.54 J 1.54		< 0.63 < 0.63 < 0.63	< 0.75 Y < 0.75 Y < 0.75 Y	< 0.82	< 1.42 < 1.42 < 1.42	< 1.60 < 1.60 < 1.60

Notes:

^[1] = Value is non-detect. RDL exceeds SQS Criter

^[2] = Value is non-detect. RDL exceeds both SQS a

 $^{[3]}$ = No SQS criteria exists for the element nickel. /

 $^{[4]}$ This sample is the average of an initial run (0.50

-- = No criteria value established

< = Below laboratory instrument detection limit</p>
Y = Reporting limit is raised due to instrument activit

B = Analyte was detected in the blank as well as the Bold = value exceeds laboratory detection limit Bold and underline = value exceeds SQS Criteria Bold, underline, italics = value exceeds CSL Crite Data has been validated according to QA-2 protocol

			Conve	Grain Size						
Sample ID	Ammonia mg-N/kg	рН	Sulfide mg/kg	Total Organic Carbon %	Total Solids	Total Volatile Solids %	Gravel %	Sand %	Silt %	Clay %
IJW-SS-04	10.1	7.88	2200	2.63	41.1	7.38	0.1	5.9	52.9	41.2
IJW-SS-06	20.0	7.62	890	3.29	45.1	8.15	30.7	32	23.4	13.7
IJW-SS-07	19.5	7.95	2000	1.72	36.5	8.10	0	10.3	53.9	35.6
IJW-SS-08	21.4	7.78	2300	2.35	41.8	7.62	0.4	8.5	49.7	41.4
IJW-SS-09	18.9	7.74	2900	2.38	38.7	7.69	0.4	10.3	49.4	40.1
IJW-SS-10	7.85	7.72	1200	3.43	49.8	7.93	13.2	26.9	37.2	22.7
IJW-SS-11	5.32	7.63	200	4.04	65.8	5.49	8.9	74.5	9.2	7.5
IJW-SS-12	24.9	7.80	610	2.41	58.2	5.80	32.8	27.2	17.9	22.1
IJW-SS-13	17.2	7.84	3500	2.27	37.1	7.57	0.7	8.8	45.9	44.5
IJW-RR-01	5.19	7.76	67	1.22	73.0	1.79	0	82.4	9.8	7.7
IJW-RR-02	8.36	7.68	590	1.67	36.7	7.03	0	7.7	55.4	36.8

Table 2-3. Surface Sediment Conventional and Grain Size Data - March 2006

Notes:

-- = No criteria value established

< = Below laboratory instrument detection limit

Sediment samples collected from 0-12 cm on March 13 and 14.

Table 2-4. Summary of Surface Sediment Bioassay 10- Day AmphipodTesting (*Eohaustorius estuarius*)¹

Sample Location	Replicate	Initial Count	Final Count	Percent Mortality
	Α	20	20	0
	В	20	19	5
Control-1	С	20	20	0
Control 1	D	20	17	15
	E	20	18	10
	Mean			6
	A	20	19	5
-	В	20	20	0
Control-2	С	20	19	5
Control 2	D	20	20	0
-	E	20	20	0
	Mean			2
	А	20	19	5
	В	20	18	10
IJW-RR-01	С	20	19	5
1JW-KK-01	D	20	16	20
	E	20	20	0
-	Mean			8
	А	20	16	20
	В	20	13	35
	С	20	14	30
IJW-RR-02	D	20	15	25
-	E	20	18	10
-	Mean			24
	А	20	20	0
-	В	20	17	15
	С	20	19	5
IJW-SS-04	D	20	19	5
-	Е	20	18	10
-	Mean			7
	A	20	20	0
-	В	20	15	25
	C	20	18	10
IJW-SS-06	D	20	18	10
	E	20	19	5
-	Mean			10
	A	20	17	15
	B	20	20	0
	C	20	19	5
IJW-SS-07	D	20	18	10
	E	20	18	10
	Mean			8
	A	20	13	35
-	B	20	19	5
-	C	20	15	25
IJW-SS-08	0	20	14	30
-	E	20	17	15
	Mean	20	17	22
	IVICALI			<u> </u>

Table 2-4. Summary of Surface Sediment Bioassay 10- Day AmphipodTesting (Eohaustorius estuarius)

Sample Location	Replicate	Initial Count	Final Count	Percent Mortality
	А	20	18	10
-	В	20	19	5
IJW-SS-09	С	20	13	35
1310-00-09	D	20	17	15
	E	20	18	10
-	Mean			15
	А	20	17	15
	В	20	16	20
IJW-SS-10	С	20	16	20
1310-33-10	D	20	18	10
-	E	20	18	10
-	Mean			15
	А	20	19	5
-	В	20	9	55
IJW-SS-11	С	20	16	20
1300-33-11	D	20	18	10
	E	20	20	0
	Mean			18
	А	20	20	0
-	В	20	17	15
IJW-SS-12	С	20	18	10
IJW-33-12	D	20	18	10
-	E	20	19	5
	Mean			8
	А	20	15	25
	В	20	20	0
IJW-SS-13	С	20	14	30
1300-00-10	D	20	14	30
	E	20	15	25
	Mean			22

Notes:

¹ Test results from the October 2005 sampling event.

Table 2-5. Summary of Surface Sediment Bioassay 20-Day Growth Juvenile Polychaete Testing Neanthes arenaceodentata)²

Sample Location	Replicate	Initial Count	Final Count	Percent Survival	Total Worm Weight (mg)	Average Weight Per Worm (mg)	Mean Individual Growth Rate (mg/ind/day)
	А	5	5	100	78.80	15.76	0.78
	В	5	5	100	75.21	15.04	0.75
Control 4	С	5	5	100	93.87	18.77	0.93
Control-1	D	5	5	100	83.48	16.70	0.83
	Е	5	5	100	70.58	14.12	0.70
	Mean			100	80.39	16.08	0.80
	Α	5	5	100	67.79	13.56	0.67
	В	5	5	100	76.28	15.26	0.76
Control 2	С	5	5	100	66.85	13.37	0.66
Control-2	D	5	5	100	91.75	18.35	0.91
	E	5	5	100	56.32	11.26	0.56
	Mean			100	71.80	14.36	0.71
	А	5	5	100	89.07	17.81	0.89
	В	5	5	100	69.45	13.89	0.69
IJW-RR-01	С	5	5	100	134.75	26.95	1.34
1JW-KK-01	D	5	5	100	72.44	14.49	0.72
	Е	5	5	100	114.83	22.97	1.14
	Mean			100	96.11	19.22	0.96
	А	5	4	80	89.78	22.45	1.12
	В	5	5	100	59.42	11.88	0.59
IJW-RR-02	С	5	4	80	73.21	18.30	0.91
IJW-RR-02	D	5	5	100	90.31	18.06	0.90
	E	5	5	100	76.21	15.24	0.76
	Mean			92	77.79	17.19	0.86
	А	5	5	100	101.68	20.34	1.01
	В	5	5	100	76.75	15.35	0.76
	С	5	5	100	81.63	16.33	0.81
IJW-SS-04	D	5	4	80	73.51	18.38	0.91
	E	5	5	100	79.13	15.83	0.79
	Mean			96	82.54	17.24	0.86
	А	5	6	120	81.94	13.66	0.68
	В	5	5	100	68.67	13.73	0.68
IJW-SS-06	С	5	5	100	72.16	14.43	0.72
1310-33-00	D	5	5	100	63.35	12.67	0.63
	E	5	5	100	47.79	9.56	0.47
	Mean			104	66.78	12.81	0.64
	А	5	5	100	83.87	16.77	0.83
	В	5	5	100	73.56	14.71	0.73
IJW-SS-07	С	5	5	100	79.50	15.90	0.79
1000-00-07	D	5	5	100	71.58	14.32	0.71
	E	5	5	100	92.36	18.47	0.92
	Mean			100	80.17	16.03	0.80
	А	5	5	100	74.09	14.82	0.74
	В	5	5	100	84.62	16.92	0.84
IJW-SS-08	С	5	4	80	71.66	17.92	0.89
1311-33-00	D	5	5	100	67.98	13.60	0.68
	Е	5	5	100	61.27	12.25	0.61
	Mean			96	71.92	15.10	0.75
	А	5	5	100	60.49	12.10	0.60
	В	5	5	100	70.70	14.14	0.70
IJW-SS-09	С	5	5	100	79.69	15.94	0.79
1111-99-08	D	5	5	100	89.97	17.99	0.90
	Е	5	5	100	67.91	13.58	0.68
	Mean			100	73.75	14.75	0.73

Sample Location	Replicate	Initial Count	Final Count	Percent Survival	Total Worm Weight (mg)	Average Weight Per Worm (mg)	Mean Individual Growth Rate (mg/ind/day)
	А	5	5	100	57.94	11.59	0.58
	В	5	6	120	50.84	8.47	0.42
IJW-SS-10	С	5	5	100	75.54	15.11	0.75
1300-33-10	D	5	3	60	34.14	11.38	0.57
	E	5	5	100	74.14	14.83	0.74
	Mean			96	58.52	12.28	0.61
	Α	5	5	100	99.32	19.86	0.99
	В	5	5	100	77.22	15.44	0.77
IJW-SS-11	С	5	5	100	85.81	17.16	0.85
1310-22-11	D	5	5	100	102.93	20.59	1.03
	Е	5	5	100	81.28	16.26	0.81
	Mean			100	89.31	17.86	0.89
	A	5	5	100	77.22	15.44	0.77
	В	5	5	100	61.71	12.34	0.61
IJW-SS-12	С	5	5	100	50.66	10.13	0.50
IJVV-55-12	D	5	5	100	75.64	15.13	0.75
	Е	5	5	100	68.69	13.74	0.68
	Mean			100	66.78	13.36	0.66
	Α	5	5	100	79.28	15.86	0.79
	В	5	4	80	65.49	16.37	0.81
IJW-SS-13	С	5	5	100	77.45	15.49	0.77
1310-22-13	D	5	5	100	50.53	10.11	0.50
	E	5	5	100	76.07	15.21	0.76
	Mean			96	69.76	14.61	0.73

Table 2-5. Summary of Surface Sediment Bioassay 20-Day Growth Juvenile Polychaete Testing Neanthes arenaceodentata)²

Notes:

² Test results from the March 2006 sampling event.

Table 2-6. Summary of Surface Sediment Bioassay Larval Normality Testing (Mytilis galloprovincialis)²

Site	Replicate	Initial Number of Embryos, T=0	Number Normal	Number Abnormal	Total Number	N _c /Mean Initial
	А	278	214	25	239	0.77
	В	278	264	30	294	0.95
Sea Water	С	278	246	34	280	0.88
Control	D	278	250	24	274	0.90
	E	278	260	39	299	0.94
	Mean	278	247	30	277	0.89

Site	Replicate	Initial Number of Embryos, T=0	Number Normal	Number Abnormal	Total Number	N _c /Mean Initial
	A	278	262	36	298	0.94
	В	278	222	25	247	0.80
	С	278	191	19	210	0.69
	D	278	210	27	237	0.76
Sediment	E	278	217	35	252	0.78
Control	F	278	212	26	238	0.76
	G	278	217	17	234	0.78
	Н	278	188	35	223	0.68
	I	278	215	23	238	0.77
	Mean	278	215	27	242	0.77

Site	Replicate	Number Normal	Number Abnormal	Total Number	N _{R1} /N _C
	А	193	20	213	0.78
	В	140	12	152	0.57
Reference	С	172	9	181	0.70
(RR-01)	D	175	12	187	0.71
	E	189	13	202	0.77
	Mean	173.8	13	187	0.70

Site	Replicate	Number Normal	Number Abnormal	Total Number	N _{R2} /N _C
	А	157	16	173	0.64
	В	200	40	240	0.81
Reference	С	166	10	176	0.67
(RR-02)	D	188	27	215	0.76
	E	169	16	185	0.68
	Mean	176	22	198	0.71

Table 2-6. Summary of Surface Sediment Bioassay Larval Normality Testing (Mytilis galloprovincialis)²

Site	Replicate	Number	Number	Total	Mean Normal	Mean Normal
		Normal	Abnormal	Number	Survival (N _T /N _{R1})	Survival (N _T /N _{R2})
	A	99	31	130	-	0.56
	В	117	19	136	-	0.66
SS-04	С	127	24	151	-	0.72
33-04	D	99	26	125	-	0.56
	E	136	20	156	-	0.77
	Mean	116			-	0.66
	A	57	80	137	0.33	-
	В	84	49	133	0.48	-
00.00	С	73	65	138	0.42	-
SS-06	D	75	56	131	0.43	-
	E	87	77	164	0.50	-
	Mean	75			0.43	-
	A	159	29	188	-	0.90
	В	109	40	149	-	0.62
	C	58	38	96	-	0.33
SS-07	D	91	36	127	-	0.52
	E	89	70	159	-	0.52
	Mean	101	10	158	-	0.51
	A	150	29	179	-	0.85
	B	128	29 59	179	-	0.85
SS-08	C	127	49	176	-	0.72
	D	93	41	134	-	0.53
	E	89	40	129	-	0.51
	Mean	117			-	0.67
	A	145	52	197	-	0.82
	В	90	58	148	-	0.51
SS-09	С	120	49	169	-	0.68
00 00	D	105	74	179	-	0.60
	E	100	68	168	-	0.57
	Mean	112			-	0.64
	A	161	30	191	-	0.91
	В	67	91	158	-	0.38
SS-10	С	146	58	204	-	0.83
55-10	D	71	66	137	-	0.40
	E	158	115	273	-	0.90
	Mean	121			-	0.69
	A	153	33	186	0.88	-
	В	188	58	246	1.08	-
	C	195	48	243	1.12	-
SS-11	D	140	31	171	0.81	-
	E	141	71	212	0.81	-
	Mean	163		212	0.94	-
	A	175	40	215	1.01	-
	B	133	10	143	0.77	-
	Б С	174	33	207	1.00	
SS-12						-
	D	146	34	180	0.84	-
	E	89	66	155	0.51	-
	Mean	143	10	407	0.83	-
	A	125	12	137	-	0.71
	В	84	17	101	-	0.48
SS-13	С	135	18	153	-	0.77
	D	96	70	166	-	0.55
	E	137	56	193	-	0.78
	Mean	115			-	0.66

Notes:

² Test results from the March 2006 sampling event.

Replicates were run using standard method

N = normal counts

Subscripts: R1 = reference sediment RR-01, R2 = reference sediment RR-02, C = negative control

Pielegiaal Test	Control		Reference	
Biological Test	Criteria	Pass or Fail?	Criteria	Pass or Fail?
Amphipod	The control has a mortality of less than 10 percent (M _C < 10%)	Pass	The reference has a mortality of less than 25 percent (M _R < 25%)	Pass
Juvenile Polychaete	The control has a mortality of less than 10 percent and a target mean individual growth rate of 0.72 mg per individual per day. Control growth rates below 0.38 mg per individual per day will be considered a QA/QC failure (PSDDA, 1996) (M _C < 10% and MIG ≥ 0.38 mg)	Pass *	The reference has a mean individual growth rate greater than or equal to 80 percent of the growth rate measured in the control (MIG _R /MIG _C ≥ 0.80)	Pass
Larval	The control has a mean normal survivorship of greater than 70 percent of the initial count (N _C /I ≥ 0.70)	Pass	The reference has a mean normal survivorship of greater than or equal to 65 percent of the mean normal survivorship measured in the control ($N_R/N_C \ge 0.65$)	Pass

Table 2-7. Reference and Control Bioassay Performance Standards

Source: (Ecology, 1998b)

M = mortalilty, MIG = mean individual growth rate, N = normal counts, I = initial count

Subscripts: C = negative control, R = reference sediment

* = One of two control mean individual growth rates was below target levels (0.72 mg/ind/day), however, each was above QA/QC levels (0.38 mg/ind/day).

Biological Test	SQS Biological Criteria	CSL Biological Criteria
Amphipod	The test sediment has a significantly higher (t test, $p = 0.05$) mean mortality than the reference sediment, and the test sediment mean mortality exceeds 25 percent ($M_T > 25\%$)	The test sediment has a significantly higher (t- test, $p = 0.05$) mean mortality than the reference sediment, and the test sediment mean mortality is more than 30 percent greater (M _R -M _T > 30%) than the reference sediment mean mortality
Juvenile Polychaete	The mean individual growth rate in the test sediment is less than 70 percent of the mean individual growth rate in the reference sediment ($MIG_T/MIG_R < 0.70$), and the test sediment biomass is significantly different (t-test, p = 0.05) from the reference sediment biomass	The mean individual growth rate in the test sediment is less than 50 percent of the mean individual growth rate in the reference sediment ($MIG_T/MIG_R < 0.50$), and the test sediment biomass is significantly different (t-test, p = 0.05) from the reference sediment biomass
Larval	The test sediment has a mean survivorship of normal larvae that is significantly less (t- test, $p = 0.05$) than the mean normal survivorship in the reference sediment, and the mean normal survivorship as a percentage of the negative control is less than 85% than the mean normal survivorship in the reference sediment as a percentage of the negative control [(N_T/N_R) < 0.85]	The test sediment has a mean survivorship of normal larvae that is significantly less (t- test, $p = 0.05$) than the mean normal survivorship in the reference sediment, and the mean normal survivorship as a percentage of the negative control is less than 70% than the mean normal survivorship in the reference sediment as a percentage of the negative control [(N _T /N _R) < 0.70]

Table 2-8. Sediment Management Standards Biological Effects Criteria¹

¹ SMS Bioassay Evaluation Endpoints - Ecology, 1998b

M = mortalilty, MIG = mean individual growth rate, N = normal counts, I = initial count Subscripts: C = negative control, R = reference sediment

Bioassay Test	Site	Statistical Present (t-test,	Yes/No) ¹ p=0.05		ffect Criteria s/No)	Criteria	SL Effect (Yes/No)	SQS/CSL Bioligical Criteria (Pass/Fail) ²		
		RR-01	RR-02	RR-01	RR-02	RR-01	RR-02			
Amphipod ³				M_T > 25%, Absolute M		М _R -М	_T >30%			
	SS-04		No		No		No	Pass		
	SS-06	No		No		No		Pass		
	SS-07		No		No		No	Pass		
	SS-08		No		No		No	Pass		
	SS-09		No		No		No	Pass		
	SS-10		No		No		No	Pass		
F	SS-11	No		No		No		Pass		
	SS-12	No		No		No		Pass		
	SS-13		No		No		No	Pass		
-										
Juvenile Polychaete				MIG _T /M	IG _R <0.70	MIG _T /M	IG _R <0.50			
	SS-04		No		No		No	Pass		
	SS-06	Yes		Yes		No		SQS		
	SS-07		No		No		No	Pass		
	SS-08		No		No		No	Pass		
	SS-09		No		No		No	Pass		
	SS-10		Yes		No		No	Pass		
	SS-11	No		No		No		Pass		
	SS-12	Yes		Yes		No		SQS		
_	SS-13		No		No		No	Pass		
Larval					_R)<0.85		_R)<0.70			
Ļ	SS-04		Yes		Yes		Yes	CSL		
	SS-06	Yes		Yes		Yes		CSL		
	SS-07		Yes		Yes		Yes	CSL		
	SS-08		Yes		Yes		Yes	CSL		
	SS-09		Yes		Yes		Yes	CSL		
	SS-10		Yes		Yes		Yes	CSL		
	SS-11	No		No		No		Pass		
	SS-12	No		Yes		No		Pass		
Ļ	SS-13		Yes		Yes		Yes	CSL		

Table 2-9. I&J Waterway Surface Sediment Bioassay Endpoint Evaluation

¹ Statistical analyses conducted using DMMP/SMS Bioassay Statistics Program Beta v2.0c developed by the Corps of Engineers, Seattle District.

² SQS and CSL Biological Criteria for each bioassay are stated in Table 6.

³ Amphipod results are from the August 2005 sampling event.

M = mortalilty, N = normal counts, MIG = mean individual growth rate

Subscripts: R = reference sediment, T = test sediment, C = negative control

RR-01 = Reference station 1 (16% fines)

RR-02 = Reference station 2 (92% fines)

Table 3-1 Summary of Subsurface Sediment Chemical Concentrations

	SMS C	Criteria		DMMP Criteria	a	C	DMMU3		[DMMU4A			DMMU4B	
Parameter	SQS	CSL	Screening Level (SL)	Bioaccum- mulation Trigger (BT)	Maximum Level (ML)	IJ	I-C3-S1		I	IJ-C4-S1			IJ-C4-S2	
conventionals			(-)	55° ()										
Total Solids (%)	NV	NV	NV	NV	NV	4	8.4			57.5			48.5	
Total Volatile Solids(%)	NV	NV	NV	NV	NV		.75			3.76			40.5	
Total Organic Carbon (%)	NV	NV	NV	NV	NV		.98			7.08			2.45	
Ammonia (mg-N/kg)	NV NV	NV NV	NV NV	NV NV	NV NV		2.2			50.9 160			41.6 310	
Total Sulfides (mg/kg)	INV	INV	INV	INV	INV		000 g/kg)	J		ng/kg)	J		 ng/kg)	-
letals - mg/kg	NV	NV	150	150	200		9 9	UR		19/Ng) 10	UR	(1)	8	U
Antimony Arsenic	57	93	57	507.1	200 700		9 10	UK		10 10	UK		8	l
Cadmium	5.1	6.7	5.1	11.3	14		.6			0.6			0.4	
Chromium	260	270	NV	267	NV		8.3			60			44.4	
Copper	390 450	390 530	390 450	1,027 975	1,300 1,200		2.3 22			55.9 26			44.2 25	
Lead Mercury	450 0.41	0.59	450 0.41	975 1.5	2.3		. <u>70</u>			26 0.43			25 0.54	
Nickel	NV	NV	140	370	370		08			223			97	
Silver	6.1	6.1	6.1	6.1	8.4		0.6	U		0.6	U		0.5	l
Zinc	410	960	410	2,763	3,800		28	J		113	J		80.1	
orewater Organotins	N N /	N N /		N D /	N D (g/L)			ıg/L)			ug/L)	
Monobutyl Tin Dibutyl Tin	NV NV	NV NV	NV NV	NV NV	NV NV		075 .029	UB U		.065 0.029	UJ U		0.13 0.029	U
Tributyl Tin	NV	NV	0.15	NV	NV		.13	UB		0.028	J		0.12	U
Bulk Sediment Organotins -ug/kg						(ug	/kg)			ıg/kg)			Jg/kg)	
Monobutyl Tin	NV	NV	NV	NV	NV		4.1	UJ		<4.1	UJ		<4.0	U
Dibutyl Tin	NV	NV	NV	NV	NV	<	5.8	U		14			<5.7	ι
Tributyl Tin	NV	NV	(73)*	NV	NV		5.8	\square		9.1			<3.8	ι
РАН	(ppm TOC)	(ppm TOC)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)	
Naphthalene	99	170	2.1	NV NV	2.4	0.019	0.64	J	0.033	0.47	.	0.066	2.7	.
Acenaphthylene Acenaphthene	66 16	66 57	0.56 0.5	NV NV	1.3 2.0	<0.020 0.010	<0.67 0.34	U J	0.016 0.017	0.23 0.24	J J	<0.020 0.015	<0.82 0.61	
Fluorene	23	57 79	0.5	NV	2.0 3.6	0.010	0.34	J	0.017	0.24		0.015	1.1	'
Phenanthrene	100	480	1.5	NV	21	0.059	1.98	-	0.160	2.3		0.100	4.08	
Anthracene	220	1200	0.96	NV	13	0.026	0.87		0.055	0.78		0.032	1.3	
2-Methylnaphthalene Total LPAH	38 370	64 780	0.67 5.2	NV NV	1.9 29	0.020	0.67 5.13		0.033	0.47 4.82		0.067	2.7 12.5	+
НРАН	(ppm TOC)	(ppm TOC)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)	t
Fluoranthene	160	1200	1.7	4.6	30	0.120	4.03		0.310	4.38		0.150	6.12	
Pyrene	1000	1400	2.6	11.98	16	0.120	6.04		0.420	5.93		0.150	6.12	
Benzo(a)anthracene	110	270	1.3	NV	5.1	0.065	2.2		0.160	2.26		0.056	2.3	
Chrysene	110	460	1.4	NV	21	0.110	3.69		0.270	3.81		0.079	3.2	
Benzofluoranthenes (b+k) Benzo(a)pyrene	230 99	450 210	3.2 1.6	NV NV	9.9 3.6	0.125 0.049	4.19 1.6		0.350 0.150	4.94 2.12		0.095 0.044	3.9 1.8	
Indeno(1,2,3-cd)pyrene	34	88	0.6	NV	3.0 4.4	0.049	1.0		0.095	1.3		0.044	1.0	
Dibenzo(a,h)anthracene	12	33	0.23	NV	1.9	<0.020	<0.67	U	0.021	0.30		<0.020	<0.82	ι
Benzo(g,h,i)perylene	31	78	0.67	NV	3.2	0.033	1.1		0.097	1.4		0.030	1.2	_
Total HPAH	960	5300	12	NV	69	0.712	23.9		1.873	26.45		0.630	25.7	-
chlorinated Hydrocarbons	(ppm TOC)	(ppm TOC)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)	
1,3-Dichlorobenzene	NV 2.1	NV 9	0.17	NV NV	NV 0.12	<0.020 <0.020	< 0.67	U U	<0.020 <0.020	< 0.28	U U	<0.020 <0.020	<0.82 <0.82	l
1,4-Dichlorobenzene 1,2-Dichlorobenzene	3.1 2.3	2.3	0.11 0.035	NV	0.12	<0.020	<0.67 <0.67	U	<0.020 <0.020	<0.28 <0.28	U	<0.020	<0.82	1
1,2,4-Trichlorobenzene	0.81	1.8	0.031	NV	0.064	<0.020	<0.67	Ŭ	<0.020	<0.28	Ŭ	<0.020	<0.82	ι
Hexachlorobenzene	0.38	2.3	0.022	0.168	0.23	<0.020	<0.67	U	<0.020	<0.28	U	<0.020	<0.82	ι
Phthalates	(ppm TOC)	(ppm TOC)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)	
Dimethyl phthalate	53	53	0.071	NV	1.4	<0.020	<0.67	U	0.012	0.169	J	<0.020	<0.82	ι
Diethyl phthalate	61 220	110	0.2 1.4	NV NV	1.2	<0.020 <0.020	< 0.67	U U	<0.020 <0.020	<0.28	U U	<0.020 <0.020	<0.82	l
Di-n-butyl phthalate Butyl benzyl phthalate	4.9	1700 64	0.063	NV NV	5.1 0.97	<0.020 <0.020	<0.67 <0.67	U	<0.020 0.020	<0.28 0.282	J	<0.020 0.012	<0.82 0.490	
Bis(2-ethylhexyl)phthalate	47	78	1.3	NV	8.3	0.460	15.436	Ũ	0.420	5.932	•	0.110	4.490	1
Di-n-octyl phthalate	58	4500	6.2	NV	6.2	<0.020	<0.67	U	<0.020	<0.28	U	<0.020	<0.049	ι
henols - mg/kg						(mg	g/kg)		(m	ng/kg)		(n	ng/kg)	
Phenol	0.42	1	0.42	NV	1.2		.020	U		0.020	U		0.031	
2-Methylphenol	0.063	0.063	0.063	NV NV	0.077		.020	U		0.020	U		0.020	ι
4-Methylphenol 2,4-Dimethylphenol	0.67 0.029	0.67 0.029	0.67 0.029	NV NV	3.6 0.21		021 .020	υ		.032 0.020	U).045).028	
Pentachlorophenol	0.36	0.69	0.40	0.504	0.69		.099	U		0.099	U		0.099	ι
Miscellaneous Extractables	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg	ı/kg)		(m	ng/kg)		(n	ng/kg)	Τ
Benzyl alcohol	0.057	0.073	0.057	NV	0.87	<0.	.020	U	<	0.020	U		0.020	ι
Benzoic acid	0.65	0.65	0.65	NV	0.76		200	U		0.200	U		0.200	ι
Miscellaneous Extractables	(ppm TOC)	(ppm TOC)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)		(mg/kg)	(ppm TOC)	
Dibenzofuran	15	58	0.54	NV	1.7	0.019	0.638	J	0.030	0.424		0.048	1.959	
	NV	NV	1.4	NV NV	14	< 0.020	< 0.67	U	<0.020	<0.28	U	<0.020	< 0.82	l
Hexachloroethane			0.029	NV	0.27 0.13	<0.020 <0.020	<0.67 <0.67	U U	<0.020 <0.020	<0.28 <0.28	U U	<0.020 <0.025	<0.82 <1.0	l
Hexachloroethane Hexachlorobutadiene	3.9	6.2 11		NV/			-0.07			<0.28 Ig/kg)	<u> </u>		ug/kg)	\dagger
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine		6.2 11	0.028	NV (ma/ka)		1	ı/ka)			'y'''y/		(L	yny)	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine /olatile Organics -ug/kg	3.9 11	11	0.028 (mg/kg)	(mg/kg)	(mg/kg)		J∕kg) 2-2			-16			-11	Ι,
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine	3.9		0.028			<	ŋ∕kg) 2.2 2.2	U U		<1.6 <1.6	U U		<1.4 <1.4	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine Colatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene	3.9 11 NV NV NV	11 NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01	(mg/kg) NV NV NV	<i>(mg/kg)</i> 1.6 0.21 0.05	V V V	2.2 2.2 2.2	U U		<1.6 <1.6	U U		<1.4 <1.4	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine olatile Organics -ug/kg Trichloroethene Tetrachlorethene	3.9 11 NV NV	11 NV NV	0.028 (mg/kg) 0.16 0.057	(mg/kg) NV NV	<i>(mg/kg)</i> 1.6 0.21	V V V V	2.2 2.2 2.2 4.4	U		<1.6	U		<1.4	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine olatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-)	3.9 11 NV NV NV	11 NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01	(mg/kg) NV NV NV	<i>(mg/kg)</i> 1.6 0.21 0.05	<: <: <: (mg/kg)	2.2 2.2 2.2	U U U	(mg/kg)	<1.6 <1.6	U U U		<1.4 <1.4	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine bolatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT	3.9 11 NV NV NV NV (ppm TOC) NV	11 NV NV NV NV (ppm TOC) NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069	(mg/kg) NV NV NV NV (mg/kg) 0.05	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069	< <br <br (<i>mg/kg</i>) <0.002	2.2 2.2 2.2 4.4 (ppm TOC) <0.07	U U U U	(<i>mg/kg</i>) <0.002	<1.6 <1.6 <3.2 (ppm TOC) <0.03	U U U U	(<i>mg/kg</i>) <0.002	<1.4 <1.4 <2.8 (ppm TOC) <0.08	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine Tolatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin	3.9 11 NV NV NV NV (ppm TOC) NV NV	11 NV NV NV NV (ppm TOC) NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV	<: <: (<i>mg/kg</i>) <0.002 <0.001	2.2 2.2 4.4 (ppm TOC) <0.07 <0.03		(<i>mg/kg</i>) <0.002 <0.001	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01	U U U U	<i>(mg/kg)</i> <0.002 <0.001	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine Jolatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT	3.9 11 NV NV NV NV (ppm TOC) NV	11 NV NV NV NV (ppm TOC) NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069	(mg/kg) NV NV NV NV (mg/kg) 0.05	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069	< <br <br (<i>mg/kg</i>) <0.002	2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03	U U U U	(<i>mg/kg</i>) <0.002 <0.001 <0.001	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002	U U U U	(<i>mg/kg</i>) <0.002	<1.4 <1.4 <2.8 (ppm TOC) <0.08	
Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine olatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane	3.9 11 NV NV NV NV (ppm TOC) NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV	<	2.2 2.2 4.4 (ppm TOC) <0.07 <0.03		(<i>mg/kg</i>) <0.002 <0.001	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01		(<i>mg/kg</i>) <0.002 <0.001 <0.001	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine olatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 0.01 NV	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV NV 0.01	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 (ppm TOC) <0.07 <0.03 <0.03 <0.07 <0.03 <0.03</td><td></td><td>(<i>mg/kg</i>) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001</td><td><1.4 <1.4 <2.8 (<i>ppm TOC</i>) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04</td><td></td>	2.2 2.2 2.2 (ppm TOC) <0.07 <0.03 <0.03 <0.07 <0.03 <0.03		(<i>mg/kg</i>) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01		(mg/kg) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001	<1.4 <1.4 <2.8 (<i>ppm TOC</i>) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Datile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane)	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV 0.01	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV NV 0.01 NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV	<	2.2 2.2 2.2 (ppm TOC) <0.07 <0.03 <0.03 <0.07 <0.03 <0.03 <0.03 <0.03		(<i>mg/kg</i>) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.02 <0.03 <0.01 <0.01 <0.01 <0.01		(mg/kg) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Datile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin Alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV 0.01 NV 0.01 (mg/kg)	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV NV 0.01 NV 0.01 NV (mg/kg)	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg)</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.03 <0.01 <0.01 <0.01 <0.01 (ppm TOC)</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg)</td><td><1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04</td><td></td>	2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg)	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.03 <0.01 <0.01 <0.01 <0.01 (ppm TOC)		(mg/kg) <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg)	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Datile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs Aroclor 1016	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV 0.01 NV 0.01 NV	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV NV 0.01 NV 0.01 NV NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 (ppm TOC) <0.67</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.28</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020</td><td><1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04</td><td></td>	2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 (ppm TOC) <0.67		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.28		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Datile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) Seticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs Aroclor 1016 Aroclor 1242	3.9 11 NV NV NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV 0.01 NV 0.01 NV 0.01 NV 0.01 NV	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV 0.037 NV NV 0.01 NV NV 0.01 NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 <0.67</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28</td><td></td><td>(mg/kg) <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020</td><td><1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08</td><td></td>	2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 <0.67		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28		(mg/kg) <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Datile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs Aroclor 1016 Aroclor 1242 Aroclor 1248	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 0.01 0.01 0.01 NV 0.01 (mg/kg) NV NV	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV 0.037 NV NV 0.01 NV NV NV NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	<	2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.07 <0.03 <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 <0.67 <0.67		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28 <0.28 <0.28		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine Olatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs Aroclor 1016 Aroclor 1242	3.9 11 NV NV NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV 0.01 NV 0.01 NV 0.01 NV 0.01 NV	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV 0.037 NV NV 0.01 NV NV 0.01 NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 <0.67</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28</td><td></td><td>(mg/kg) <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020</td><td><1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08</td><td></td>	2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.05 <0.67		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28		(mg/kg) <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08	
Hexachloroethane Hexachloroethane N-Nitrosodiphenylamine olatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-) esticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC gamma-BHC (Lindane) CBs Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254	3.9 11 NV NV NV NV (ppm TOC) NV NV NV NV NV NV NV NV NV NV NV NV NV	11 NV NV NV NV NV NV NV NV NV NV	0.028 (mg/kg) 0.16 0.057 0.01 0.040 (mg/kg) 0.0069 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	(mg/kg) NV NV NV NV (mg/kg) 0.05 NV 0.037 NV NV 0.01 NV NV NV NV NV NV	(mg/kg) 1.6 0.21 0.05 0.16 (mg/kg) 0.069 NV NV NV NV NV NV NV NV NV NV	 <td>2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.067 <0.67 <0.67</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020 <0.020</td><td><1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28 <0.28 <0.28</td><td></td><td>(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020</td><td><1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82</td><td></td>	2.2 2.2 2.2 4.4 (ppm TOC) <0.07 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.067 <0.67 <0.67		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020 <0.020	<1.6 <1.6 <3.2 (ppm TOC) <0.03 <0.01 <0.002 <0.03 <0.01 <0.01 <0.01 (ppm TOC) <0.28 <0.28 <0.28 <0.28		(mg/kg) <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 (mg/kg) <0.020 <0.020 <0.020	<1.4 <1.4 <2.8 (ppm TOC) <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82 <0.82	

Notes: Bold values at or above laboratory detection limit <u>Underlined</u> values exceed the SQS value in SMS or the SL value of PSDDA

<u>Double underlined</u> values exceed the CSL
 <u>Double underlined and italics</u> exceeds the ML
 * The 73 ug/kg criteria for bulk TBT derived from PSDDA screening level for sediments.
 ** Total PCBs are calculated by summing detected concentrations of Aroclors.
 ** This value is normalized to organic carbon, and is expressed in mg/kg TOC.
 NV - No value currently established under PSDDA or SMS.
 NA – Not analyzed

NA = Not analyzed

U = Undetected D = Diluted sample Y = Raised reporting limit due to background interference

B = Contamination observed in the method blank

B = Contamination observed in the method blank
 J = Estimated concentration
 UG = Undetected, reporting limit may be biased low
 LPAH - Light molecular weight poly aromatic hydrocarbon
 HPAH - Heavy molecular weight poly aromatic hydrocarbon
 Data has been validated according to QA-2 protocols.

Table 3-1 Summary of Subsurface Sediment Chemical Concentrations

	SMS C	riteria		DMMP Criteria	a	DMMU5			DMMU6																										
Parameter	SQS	CSL	Screening Level (SL)	Bioaccum- mulation Trigger (BT)	Maximum Level (ML)		IJ-C5-S1			IJ-C6-S1																									
Conventionals Total Solids (%) Total Volatile Solids(%) Total Organic Carbon (%) Ammonia (mg-N/kg)	NV NV NV NV	NV NV NV	NV NV NV	NV NV NV NV	NV NV NV NV		47.7 6.73 3.22 91.2			51.30 19.33 7.03 82.7																									
Total Sulfides (mg/kg)	NV	NV	NV	NV	NV	3,400												3,400		J		680	J												
Metals - mg/kg Antimony Arsenic Cadmium Chromium Copper Lead	NV 57 5.1 260 390 450	NV 93 6.7 270 390 530	150 57 5.1 NV 390 450	150 507.1 11.3 267 1,027 975	200 700 14 NV 1,300 1,200	(mg/kg) 10 10 0.7 68.0 61.8 27			(r	(mg/kg) 10 10 0.9 55 59.0 66.0																									
Mercury Nickel Silver Zinc	0.41 NV 6.1 410	0.59 NV 6.1 960	0.41 140 6.1 410	1.5 370 6.1 2,763	2.3 370 8.4 3,800		<u>0.74</u> 1 06 0.7 1 31	U J		<u>1.0</u> 94 0.6 134	U J																								
Porewater Organotins Monobutyl Tin Dibutyl Tin	NV NV	NV NV	NV NV	NV NV	NV NV	(t (<	ug/L) 0.073 0.029	UB U	(ug/L) 0.086 :0.029	UB U																								
Tributyl Tin Bulk Sediment Organotins -ug/kg	NV	NV	0.15	NV	NV).084 ıg/kg)	UB		0.022 ug/kg)	J																								
Monobutyl Tin Dibutyl Tin Tributyl Tin	NV NV NV	NV NV NV	NV NV (73)*	NV NV NV	NV NV NV		<3.9 <5.6 6.4	UJ U	(<4.0 <5.7 14	UJ U																								
LPAH Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	(ppm TOC) 99 66 16 23 100 220	(ppm TOC) 170 66 57 79 480 1200	(mg/kg) 2.1 0.56 0.5 0.54 1.5 0.96	(mg/kg) NV NV NV NV NV NV	(<i>mg/kg</i>) 2.4 1.3 2.0 3.6 21 13	(mg/kg) (ppm TOC) 0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		0.031 0.96 <0.020		U	(mg/kg) 0.110 0.014 0.062 0.067 0.180 0.083	(ppm TOC) 1.6 0.20 0.88 0.95 2.6 1.2	L										
2-Methylnaphthalene Total LPAH	38 370	64 780	0.67 5.2	NV NV	1.9 29	0.033	1.0 15.3		0.069 0.585	0.98 8.32																									
HPAH Fluoranthene Pyrene Benzo(a)anthracene Chrysene	<i>(ppm TOC)</i> 160 1000 110 110	(ppm TOC) 1200 1400 270 460	(mg/kg) 1.7 2.6 1.3 1.4	(mg/kg) 4.6 11.98 NV NV	<i>(mg/kg)</i> 30 16 5.1 21	(mg/kg) 0.320 0.400 0.160 0.200	(ppm TOC) 9.94 12.4 4.97 6.21		(mg/kg) 0.500 0.560 0.170 0.250	(ppm TOC) 7.11 7.97 2.42 3.56																									
Benzofluoranthenes (b+k) Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	230 99 34 12 31	450 210 88 33 78	3.2 1.6 0.6 0.23 0.67	NV NV NV NV	9.9 3.6 4.4 1.9 3.2	0.110 0.059 0.015 0.060	0.220 6.83 0.110 3.42 0.059 1.8 0.015 0.47		0.249 0.110 0.048 0.013 0.048	3.54 1.56 0.68 0.18 0.68	J																								
Total HPAH Chlorinated Hydrocarbons 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobenzene	960 (ppm TOC) NV 3.1 2.3 0.81 0.38	5300 (ppm TOC) NV 9 2.3 1.8 2.3	12 (mg/kg) 0.17 0.11 0.035 0.031 0.022	NV (mg/kg) NV NV NV NV 0.168	69 (mg/kg) NV 0.12 0.11 0.064 0.23	1.544 (mg/kg) <0.020 <0.020 <0.020 <0.020 <0.020	47.95 (ppm TOC) <0.62 <0.62 <0.62 <0.62 <0.62 <0.62		1.948 (mg/kg) <0.020 <0.020 <0.020 <0.020 <0.020	27.71 (ppm TOC) <0.28 <0.28 <0.28 <0.28 <0.28 <0.28	U U U U U																								
Phthalates Dimethyl phthalate Diethyl phthalate Di-n-butyl phthalate Butyl benzyl phthalate Bis(2-ethylhexyl)phthalate Di-n-octyl phthalate	(ppm TOC) 53 61 220 4.9 47 58	(ppm TOC) 53 110 1700 64 78 4500	(mg/kg) 0.071 0.2 1.4 0.063 1.3 6.2	(mg/kg) NV NV NV NV NV NV	(<i>mg/kg</i>) 1.4 1.2 5.1 0.97 8.3 6.2	(mg/kg) <0.020 <0.020 <0.020 <0.020 <0.020 0.690 0.210	(ppm TOC) <0.62 <0.62 <0.62 <0.62 <0.62 21.4 6.522		(mg/kg) 0.079 <0.020 <0.020 <0.020 <u>12.000</u> 0.040	(ppm TOC) 1.124 <0.28 <0.28 <0.28 171 0.569	U U U D																								
Phenols - mg/kg Phenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol	0.42 0.063 0.67 0.029	1 0.063 0.67 0.029	0.42 0.063 0.67 0.029	NV NV NV NV	1.2 0.077 3.6 0.21	(mg/kg) <0.020 U <0.020 U 0.055		U U J	(1 < (ng/kg) :0.020 0.011 0.097 0.054	J J																								
Pentachlorophenol Miscellaneous Extractables	0.36 (mg/kg)	0.69 (mg/kg)	0.40 (mg/kg)	0.504 (mg/kg)	0.69 (mg/kg)	0.012 <0.100 (mg/kg)		<0.100 (mg/kg)		<0.100 (mg/kg)		<0.100 (mg/kg)		<0.100 (mg/kg)		U	< (n	:0.099 ng/kg)	U																
Benzyl alcohol Benzoic acid	0.057 0.65	0.073 0.65	0.057 0.65	NV NV	0.87 0.76	<0.020 <0.200																				<0.020 <0.200						U U		:0.020 :0.200	U U
Miscellaneous Extractables Dibenzofuran Hexachloroethane Hexachlorobutadiene N-Nitrosodiphenylamine	(ppm TOC) 15 NV 3.9 11	(ppm TOC) 58 NV 6.2 11	(<i>mg/kg</i>) 0.54 1.4 0.029 0.028	(mg/kg) NV NV NV NV	(<i>mg/kg</i>) 1.7 14 0.27 0.13	(mg/kg) 0.039 <0.020 <0.020 <0.020	(ppm TOC) 1.2 <0.62 <0.62 <0.62	U U U	(mg/kg) 0.074 <0.020 <0.020 <0.020	(ppm TOC) 1.053 <0.28 <0.28 <0.28	U U U																								
Volatile Organics -ug/kg Trichloroethene Tetrachlorethene Ethylbenzene Total xylenes (Sum of o-, m-, p-)	NV NV NV NV	NV NV NV NV	(<i>mg/kg)</i> 0.16 0.057 0.01 0.040	(mg/kg) NV NV NV NV	<i>(mg/kg)</i> 1.6 0.21 0.05 0.16	(ug/kg) <2.2 <2.2 <2.2 <2.2		(ug/kg) <2.2 <2.2 <2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2 <2.2		<2.2 <2.2 <2.2		U U U U	(1	ug/kg) <1.6 <1.6 <1.6 <3.2	U U U U						
Pesticides DDT Aldrin alpha-chlordane dieldrin heptachlor alpha-BHC	(ppm TOC) NV NV NV NV NV NV	(ppm TOC) NV NV NV NV NV NV	(mg/kg) 0.0069 0.01 0.01 0.01 0.01 NV	(mg/kg) 0.05 NV 0.037 NV NV 0.01	(<i>mg/kg)</i> 0.069 NV NV NV NV NV	(mg/kg) (ppm TOC) <0.010		YUUUU	(mg/kg) <0.012 <0.002 <0.002 <0.004 <0.002 <0.002	(ppm TOC) <0.17 <0.03 <0.03 <0.06 <0.03 <0.03	Y U U U U U																								
gamma-BHC (Lindane) PCBs Aroclor 1016	NV NV (ppm TOC) NV	NV NV (ppm TOC) NV	0.01 (<i>mg/kg</i>) NV	0.01 NV (mg/kg) NV	NV NV (mg/kg) NV	<0.001 <0.001 (mg/kg)	<0.03 <0.03 (ppm TOC)	U U	<0.002 (mg/kg)	<0.03 (ppm TOC)	U U																								
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1221	NV NV NV NV	NV NV NV NV	NV NV NV NV	NV NV NV NV	NV NV NV NV	<0.020 <0.020 <0.047 0.064 <0.020 <0.020	<0.62 <0.62 <1.46 2.0 <0.62 <0.62 <0.62	U Y U U	<0.004 <0.004 <0.004 0.089 <0.004 <0.004	<0.06 <0.06 <0.06 1.3 <0.06 <0.06	U U U U																								
Aroclor 1232 Total PCBs **	NV 12	NV 65	NV 0.13	NV 38***	NV 3.1	<0.020 0.064	<0.62 2.0	U	<0.004 0.089	<0.06 1.3	U																								

Notes: Bold values at or above laboratory detection limit <u>Underlined</u> values exceed the SQS value in SMS or the SL value of PSDDA

Double underlined values exceed the CSL

<u>Double underlined</u> values exceed the CSL
 <u>Double underlined and italics</u> exceeds the ML
 * The 73 ug/kg criteria for bulk TBT derived from PSDDA screening level for sediments.
 ** Total PCBs are calculated by summing detected concentrations of Aroclors.
 ** This value is normalized to organic carbon, and is expressed in mg/kg TOC.
 NV - No value currently established under PSDDA or SMS.
 NA – Not analyzed

NA = Not analyzed U = Undetected D = Diluted sample Y = Raised reporting limit due to background interference

B = Contamination observed in the method blank

B = Contamination observed in the method blank
 J = Estimated concentration
 UG = Undetected, reporting limit may be biased low
 LPAH - Light molecular weight poly aromatic hydrocarbon
 HPAH - Heavy molecular weight poly aromatic hydrocarbon
 Data has been validated according to QA-2 protocols.

Sample ID		IJ- (sedimen	-C-S1 t compos	osite)	IJ-C3-S DMMU-	3		IJ-C4 DMMU	-4A		IJ-C4- DMMU-		3		IJ-C DMI		5			C6-S ∕IMU-	•6		IJ-B-S (clean sand	•••
Analysis	TEF	pg/g	٦	TEC	pg/g	TEC	pç	/g	TEC		pg/g		TEC		pg/g		TEC		pg/g		TEC		pg/g	TEC
Dioxins-Furans (EPA 1613B) - p	g/g																							
2,3,7,8-TCDD	1.0	< 1.7	(0.85	1.0 J	1	1	.1 ,	J 1.1		1.4 J	1	1.4		1.4	J	1.4		1.4	J	1.4	<	0.77	0.385
1,2,3,7,8-PeCDD	1.0	< 3.2		1.6	< 4.9	2.45	5	.7 .	J 5.7	<	3.6		1.8		5.8	J	5.8		5.4	J	5.4	<	0.89	0.445
1,2,3,4,7,8-HxCDD	0.1	7.5	J (0.75	9.6 J	0.96	1	0,	J 1		5.9 J	1	0.59		10	J	1		7.1	J	0.71	<	0.88	0.044
1,2,3,6,7,8-HxCDD	0.1	28		2.8	32	3.2	3	5	3.5		27		2.7		41		4.1		39		3.9	<	0.99	0.0495
1,2,3,7,8,9-HxCDD	0.1	10		1	17	1.7	1	8	1.8		13		1.3		20		2		15		1.5	<	0.87	0.0435
1,2,3,4,6,7,8-HpCDD	0.01	670		6.7	830	8.3	8	20	8.2		880		8.8		950		9.5		1000		10	<	0.61	0.00305
OCDD	0.0001	5000		0.5	6000	0.6	63	00	0.63		6200		0.62		6700		0.67		8300	Е	0.83		6.6 J	0.00066
2,3,7,8-TCDF	0.1	9.3	(0.93	12	1.2	1	5	1.5		9.3		0.93		13		1.3		8.2		0.82	<	0.96	0.048
1,2,3,7,8-PeCDF	0.05	< 2.9	0.	.0725	< 3.1	0.0775	< 3	7	0.0925	۷	2.8		0.07	<	4.3		0.1075		4.8	J	0.24	<	0.57	0.01425
2,3,4,7,8-PeCDF	0.5	< 2.6	(0.65	< 3.5	0.875	< 3	9	0.975	<	3.2		0.8	<	4.5		1.125		6.2	J	3.1	<	0.52	0.13
1,2,3,4,7,8-HxCDF	0.1	8.8	J	0.88	6.0 J	0.6	9	.4 .	J 0.94		7.6 J	I I	0.76		11		1.1		14		1.4	<	1.4	0.07
1,2,3,6,7,8-HxCDF	0.1	< 3.5	0	0.175	< 4.2	0.21	< 4	6	0.23	<	3.8		0.19	<	5.1		0.255		6.8	J	0.68	<	1.2	0.06
2,3,4,6,7,8-HxCDF	0.1	< 2.8	(0.14	< 3.7	0.185	< 3	6	0.18	<	3		0.15	<	4		0.2		5.6	J	0.56	<	0.88	0.044
1,2,3,7,8,9-HxCDF	0.1	< 2.3	0	0.115	< 0.49	0.0245	< 0.	75	0.0375	<	0.53		0.0265	<	0.66		0.033	<	0.64		0.032	<	0.85	0.0425
1,2,3,4,6,7,8-HpCDF	0.01	92	(0.92	83	0.83	10	00	1		89		0.89		110		1.1		170		1.7	<	0.49	0.00245
1,2,3,4,7,8,9-HpCDF	0.01	6.0	J (0.06	5.9 J	0.059	6.	50 .	J 0.065		5.5 J	1	0.055		7.6	J	0.076		8.90	J	0.089	<	0.60	0.003
OCDF	0.0001	260	0	0.026	230	0.023	2		0.027		240		0.024		310		0.031		390		0.039	<	1.1	0.000055
Total HpCDF		350			310		3	50			370				450				630			<	0.60	
Total HpCDD		2200			3300		29				4100				4400				4800			<	0.61	
Total HxCDF		150			120		1:	50			130				170				260			<	1.4	
Total HxCDD		410			600		6	20			530				870				610			<	0.99	
Total PeCDF		28			32		33				35				40				74			<	1.0	
Total PeCDD		150			210		2				83				280				120			<	0.89	
Total TCDD		120			150		10	50			46				160				76			<	0.77	
Total TCDF		47			50		5	5			44				56				61			<	0.96	
Total TEC			1	18.2		22.3			27.0			Γ	21.1				29.8				32.4			1.4

 Table 3-2
 Subsurface Sediment Dioxin/Furan Results

Notes: All results in pg/g. TEF = Toxic Equivalency Factor TEC = Toxic Equivalency Concentration

Total TEC is summed using detected TEC concentrations and half of the TEC of the detection limit, per DMMP recommendations.

TEFs are from Van den Berg et al., 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environmental Health Perspectives, 106:12 p 775-792, December.

	Sample ID	REF-01	REF-02	DMMU3	DMMU4A	DMMU4B	DMMU5	DMMU6
	Sample Location	REF-UI	REF-UZ	IJ-C3-S1	IJ-C4-S1	IJ-C4-S2	IJ-C5-S1	IJ-C6-S1
Parameter	Sample Date	6/15/2006	6/15/2006	6/12/2006	6/14/2	2006	6/13/2006	6/13/2006
Conventionals	- %							
Total Solids (%)		72.4	36.1	48.4	57.5	48.5	47.7	51.3
Total Volatile So	olids (%)	1.86	7.16	7.75	23.76	10.11	6.73	19.33
Total Organic Ca	arbon (%)	1.29	1.87	2.98	7.08	2.45	3.22	7.03
Ammonia (mg-N	l/kg)	15.3	13.8	62.2	50.9	41.6	91.2	82.7
Total Sulfide (mg	g/kg)	76 J	180 J	2,000	160	310	3,400	680
Grain Size - %								
Gravel		<0.0100	<0.0100	2.1	1.1	5.1	2.83	9.9
Sand		81.5	8.20	15.50	29.5	43.8	23.17	33.1
Silt		11.3	57.9	47.1	39.3	30.5	43.8	33
Clay		7.2	33.9	35.4	30	20.8	30.17	24.1
Total Fines		18.5	91.8	82.5	69.3	51.3	74	57.1

Table 3-3 Summary of Subsurface Sediment Grain Size Data

Notes:

No criteria has been established for SMS or DMMP for conventionals or grain size.

Table 3-4 Summary of Subsurface Sediment Bioassay 10- Day Amphipod Testing (*Eohaustorius estuarius*)

Sample Location	Replicate	Initial Count	Final Count	Percent Survival	Percent Mortality
	A	20	19	95	5
	В	20	20	100	0
Control-1	С	20	17	85	15
	D	20	18	90	10
	E	20	18	90	10
	Mean		18.4	92	8
	A	20	18	90	10
	В	20	20	100	0
IJW-RR-01	С	20	19	95	5
	D	20	19	95	5
	E	20	19	95	5
	Mean		19	95	5
	A	20	19	95	5
	В	20	19	95	5
IJW-RR-02	С	20	19	95	5
1000-1111-02	D	20	18	90	10
	E	20	18	90	10
	Mean		18.6	93	7
	А	20	15	75	25
	В	20	16	80	20
DMMU-3	С	20	15	75	25
DIVINO-3	D	20	18	90	10
	E	20	17	85	15
	Mean		16.2	81	19
	А	20	18	90	10
	В	20	17	85	15
DMMU-4A	С	20	17	85	15
DivilviO-4A	D	20	19	95	5
	E	20	18	90	10
	Mean		17.8	89	11
	А	20	17	85	15
	В	20	17	85	15
DMMU-4B	С	20	19	95	5
DivilviO-4D	D	20	16	80	20
	E	20	16	80	20
	Mean		17	85	15
	А	20	16	80	20
	В	20	14	70	30
DMMU-5	С	20	16	80	20
	D	20	17	85	15
	E	20	16	80	20
	Mean		15.8	79	21
	А	20	17	85	15
	В	20	18	90	10
DMMU-6	С	20	18	90	10
σ-οινιινία	D	20	17	85	15
	E	20	15	75	25
-	Mean		17	85	15
Table 3-5 Summary of Subsurface Sediment Bioassay 20-Day Growth Juvenile Polychaete Testing (Neanthes arenaceodentata)

Sample Location	Replicate	Initial Count	Final Count	Percent Survival	Total Worm Weight (mg)	Average Weight Per Worm (mg)	Mean Individual Growth Rate (mg/ind/day)
	А	5	5	100	160.1	32.0	1.55
	В	5	5	100	55.3	11.1	0.50
Control-1	С	5	5	100	159.9	32.0	1.55
Control-1	D	5	5	100	134.8	27.0	1.29
	E	5	5	100	125.2	25.0	1.20
	Mean			100	127.05	25.41	1.22
	А	5	5	100	98.5	19.7	0.93
	В	5	5	100	117.7	23.5	1.12
	С	5	5	100	117.4	23.5	1.12
IJW-RR-01	D	5	5	100	100.9	20.2	0.96
	E	5	5	100	103.5	20.7	0.98
	Mean			100	107.58	21.52	1.02
	А	5	5	100	79.4	15.9	0.74
	В	5	5	100	113.1	22.6	1.08
	С	5	5	100	99.0	19.8	0.94
IJW-RR-02	D	5	5	100	104.5	20.9	0.99
	E	5	5	100	92.3	18.5	0.87
	Mean			100	97.65	19.53	0.92
	А	5	5	100	89.1	17.8	0.84
	В	5	5	100	58.3	11.7	0.53
	С	5	5	100	119.3	23.9	1.14
DMMU-3	D	5	5	100	105.5	21.1	1.00
	Е	5	5	100	109.4	21.9	1.04
	Mean			100	96.32	19.26	0.91
	A	5	5	100	93.3	18.7	0.88
	В	5	5	100	97.3	19.5	0.92
	С	5	5	100	133.9	26.8	1.29
DMMU-4A	D	5	5	100	83.4	16.7	0.78
	E	5	5	100	102.4	20.5	0.97
	Mean			100	102.08	20.42	0.97
	А	5	5	100	101.7	20.3	0.96
	В	5	5	100	87.6	17.5	0.82
	С	5	5	100	110.4	22.1	1.05
DMMU-4B	D	5	5	100	112.8	22.6	1.07
	E	5	5	100	111.7	22.3	1.06
	Mean			100	104.84	20.97	1.00
	А	5	5	100	64.3	12.9	0.59
	В	5	5	100	82.3	16.5	0.77
	С	5	5	100	70.1	14.0	0.65
DMMU-5	D	5	5	100	63.6	12.7	0.58
	E	5	5	100	23.4	4.7	0.18
	Mean			100	60.71	12.14	0.55
	А	5	5	100	85.6	17.1	0.80
	В	5	5	100	54.3	10.9	0.49
DMALLO	С	5	5	100	75.6	15.1	0.70
DMMU-6	D	5	5	100	65.3	13.1	0.60
	E	5	3	60	46.2	15.4	0.72
	Mean	-		92	65.41	14.31	0.66

Note:

Initial worm weight average 1.07 mg.

Table 3-6 Summary of Subsurface Sediment Bioassay Larval Normality Testing (Dendraster excentricus)

Site	Replicate	Initial Number of Embryos, T=0	Number Normal	Number Abnormal	Total Number	N _C /Mean Initial
	А	213	201	4	205	0.94
Sea Water Control	В	213	254	3	257	1.19
	С	213	201	3	204	0.94
Control	D	213	227	5	232	1.07
	E	213	200	5	205	0.94
	Mean	213	217	4	221	1.02
			•			
Site	Replicate	Number Normal	Number Abnormal	Total Number	N _{R1} /N _C	
	А	183	8	191	0.84	
	В	165	6	171	0.76	
Reference	С	187	10	197	0.86	
(RR-01)	D	182	9	191	0.84	
	E	194	7	201	0.90	
	Mean	182.2	8	190	0.84	
				-		
Site	Replicate	Number Normal	Number Abnormal	Total Number	N _{R2} /N _C	
	А	196	8	204	0.90	
	В	208	12	220	0.96	
Site Reference (RR-02)	С	132	8	140	0.61	
	D	217	14	231	1.00	
	E	168	6	174	0.78	
	Mean	184	10	194	0.85	
			1			
Site	Replicate	Number Normal	Number Abnormal	Total Number	Mean Normal Survival (N _T /N _{R1})	Mean Normal Survival (N _T /N _C)
	А	141	17	158	0.77	0.65
	В	107	12	119	0.59	0.49
DMMU-3	С	128	11	139	0.70	0.59
DIVINIU-3	D	83	12	95	0.46	0.38

DivitviO-3	D	83	12	95	0.46	0.38
	E	116	8	124	0.64	0.54
	Mean	115			0.63	0.53
	А	146	11	157	0.80	0.67
	В	138	7	145	0.76	0.64
DMMU-4A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	164	0.86	0.72	
DivilviO-4A	D	165	15	180	0.91	0.76
	E	97	5	102	0.53	0.45
	Mean	140			0.77	0.65
	А	159	10	169	0.87	0.73
	В	125	8	133	0.69	0.58
DMMU-4B	С	148	5	153	0.81	0.68
DIVIIVIO-46		181	6	187	0.99	0.84
	E	186	8	194	1.02	0.86
	Mean	160			0.88	0.74
	А	103	14	117	0.57	0.48
	В	101	16	117	0.55	0.47
DMMU-5	С	98	7	105	0.54	0.45
DivitviO-5	D	163	9	172	0.89	0.75
	E	110	11	121	0.60	0.51
	Mean	115			0.63	0.53
	A	126	12	138	0.69	0.58
	В	176	7	183	0.97	0.81
DMMU-6	С	161	9	170	0.88	0.74
DivitviO-0	D	138	6	144	0.76	0.64
	Е	138	13	151	0.76	0.64
	Mean	148			0.81	0.68

Notes:

Replicates were run using standard method

N = normal counts

Subscripts: R = reference sediment, C = negative control

Table 3-7	DMMP	Bioassay	Evaluation	Guidelines
-----------	------	-----------------	-------------------	------------

Bioassay	NegativeControlReference SedimentPerformancePerformance Standard		Dispersive Dispo Interpretation Gui		Nondispersive Disposal Site Interpretation Guidelines		
	Standard		1-hit Rule	2-hit Rule	1-hit Rule	2-hit Rule	
			M _T - M _C > 20	%	M _T - M _C	> 20%	
			and		and	t	
Amphipod	$M_{\rm C} \le 10\%$	$M_R - M_C \le 20\%$	M _T vs M _R SD (p =	= 0.05)	$M_T vs M_R SD$	(p = 0.05)	
			and		and		
			M _T - M _R > 10%	NOCN	M _T - M _R > 30%	NOCN	
			N _T ÷ N _C < 0.8	30	$N_T \div N_C < 0.80$		
			and		and		
Larval	N _C ÷ I ≥ 0.70	$N_R \div N_C \ge 0.65$	N_T/N_C vs N_R/N_C SD (p = 0.10)		N_T/N_C vs N_R/N_C SD (p = 0.10)		
			and		and	b	
			$N_{\rm R}/N_{\rm C} - N_{\rm T}/N_{\rm C} > 0.15$	NOCN	$N_{\rm R}/N_{\rm C}$ - $N_{\rm T}/N_{\rm C}$ > 0.30	NOCN	
			MIG _T ÷ MIG _C <	0.80	MIG _T ÷ MIG	G _C < 0.80	
	M _C ≤ 10%	M _R ≤ 20%	and			and	
Neanthes growth	and	and	MIG _T vs MIG _R SD (p = 0.05)	MIG _T vs MIG _R	MIG_T vs MIG_R SD (p = 0.05)	
	MIGC ≥ 0.38	'MIGR ÷ MIGC ≥ 0.80	and		and		
			MIG _T /MIG _R < 0.70	NOCN	MIG _T /MIG _R < 0.50	MIG _T /MIG _R < 0.70	

Notes:

I - Initial count

M - Mortality

MIG - Mean individual growth rate

N - Normals

NOCN - No other conditions necessary

SD - Statistically different

Subscripts:

C - Negative control

R - Reference sediment

T - Test sediment

	DMMU-3	DMMU-4A	DMMU-4B	DMMU-5	DMMU-6
Amphipod Survival Test					
M _T -M _C	11%	3%	7%	13%	7%
$M_{T}-M_{C} > 20\%?$	No	No	No	No	No
M _T -M _{R1}	14%	6%	10%	16%	10%
M _T -M _{R1} > 10%?	-	-	-	-	-
$M_{T}-M_{R1} > 30\%?$	-	-	-	-	-
Statistically different from reference?	-	-	-	-	-
Dispersive Result	Pass	Pass	Pass	Pass	Pass
Nondispersive Result	Pass	Pass	Pass	Pass	Pass
Juvenile Polychaete Growth Tes	t				
$MIG_T \div MIG_C$	0.75	0.79	0.82	0.45	0.54
$MIG_T \div MIG_C < 0.80?$	Yes	Yes	No	Yes	Yes
$MIG_{T} \div MIG_{R1}$	0.89	0.95	0.97	0.54	0.65
$MIG_T \div MIG_{R1} < 0.70?$	No	No	-	Yes	Yes
$MIG_T \div MIG_{R1} < 0.50?$	No	No	-	No	No
Statistically different from reference?	No	No	-	Yes	Yes
Dispersive Result	Pass	Pass	Pass	1-hit Failure	1-hit Failure
Nondispersive Result	Pass	Pass	Pass	2-hit Failure	2-hit Failure
Larval Development Test					
$N_T \div N_C$	0.53	0.65	0.74	0.53	0.68
$N_{T} \div N_{C} < 0.80?$	Yes	Yes	Yes	Yes	Yes
N _{R1} /N _C - N _T /N _C	0.31	0.19	0.10	0.31	0.16
$N_{R1}/N_{C} - N_{T}/N_{C} > 0.15?$	Yes	Yes	No	Yes	Yes
$N_{R1}/N_{C} - N_{T}/N_{C} > 0.30?$	Yes	No	No	Yes	No
Statistically different from reference?	Yes	Yes	No	Yes	Yes
Dispersive Result	1-hit Failure	1-hit Failure	Pass	1-hit Failure	1-hit Failure
Nondispersive Result	1-hit Failure	2-hit Failure	Pass	1-hit Failure	2-hit Failure

Table 3-8 Evaluation of Subsurface Sediment Bioassay Test Results

Notes:

All samples are compared to reference sample IJW-RR-02. M = mortality MIG = mean individual growth rate (mg/individual/day) N = normals Subscripts: R = reference sediment, C = negative control, T = test sediment

Table 3-9 I&J Waterway Subsurface Sediment BioassayTest Interpretations

	Dispersive Site	Non-Dispersive Site
DMMU-3	Fail	Fail
DMMU-4A	Fail	Pass*
DMMU-4B	Pass*	Pass*
DMMU-5	Fail	Fail
DMMU-6	Fail	Fail

Notes:

* Addresses bioassay results, but does not address unresolved dioxin issue.

Figures

File: H:\18448\18448S101.dwg Layout: Layout1 User: emarshall Plotted: Oct 20, 2006 – 11:37am Xref's:

File: H: 184	48 184	148S102.dwg L	ayout: Layo	out1 User:	emarshall	ll Plotted:	: Oct 20, 2006 – 11:36am Xref's:	
RETEC		PREVIOUS bis(2-Ethylhexyl)phthalate CONCENTRATION CONTOURS FROM 2001 SAMPLING: SQS BOUNDARY PREVIOUS bis(2-Ethylhexyl)phthalate CONCENTRATION CONTOURS FROM 2001 SAMPLING: CSL BOUNDARY	CURRENT OLIVINE UPLAND SITE BOUNDARY	TRY (FEET BELOW MLLW, OCTOBER	EXISTING STRUCTURES	LEGEND	EP I STREET W - 18 PEE - 18 PE	
		•	₩ AN-SS-47	DE-1	♦ 0G-10	► HC-SS-47		
		BEP >CSL(78ppm-TOC)		PRE-REMEDIAL DESIGN TESTING STATION (COMPOSITE FOR Leaching tests 2002) 2 Bilder Samble Location	1 RETEC STATION SURFACE	7 WHATCOM WATERWAY STATION SEDIMENT GRAB SAMPLE (hart crowser, 1997)	STREET OWNTER TO BE FEET MILL TO BE FE	
PORTB-18448-210 DATE: 10/19/06 DRWN: E.M./SEA	I & J WATERWAY SEDIMENTS	NOTE: BEP = BIS(2-ETHYLHEXYL)PH					US COAST GUARD	STATION BELLINGHAM

File: H: 18448 184485103.dwg Layout: Layout User: emarshall Plotted: Oct COURS OR PIERS EXISTING STRUCTURES EXISTING SHORELINE EXISTING SHORELINE CURRENT OLIVINE UPLAND SITE BOUNDARY I & J WATERWAY BOUNDARY I & J WATERWAY BOUNDARY	HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44 HW-SS-04 HC-SP-44
 HC-SS-47 WHATCOM WATERWAY STATION SEDIMENT GRAB SAMPLE (HART GROWSER, 1997) OG-10 DOE-1 PRE-REMEDIAL DESIGN TESTING STATION (COMPOSITE FOR LEACHING TESTS 2002) RI/FS SAMPLE LOCATION AN-SS-47 ANCHOR BIOASSAY SAMPLE LOCATION NO EXCEEDANCES SQS EXCEEDANCE CSL EXCEEDANCE NOT TESTED 	CHANNEL CHA
NOTES: CSL = CLEANUP SCREENING LEV SQS = SEDIMENT QUALITY STAND PASS = MEETS SEDIMENT MANAG I & J WATERWAY SEDIMENTS PORTB-18448-210 DATE: 10/19/06 DRWN: E.M./SEA	US COAST GUARD US COAST GUARD UW-SS-07 Amphipod Pass Pa

: H:\18448\1844 F

LEGEND	HE SS 44 FEDERAL CHANNEL BOUNDARY HUW-SS-01 HUW-SS-04 HUM-SS-04 HUW-SS-04 HUM-SS-04 HU
 IJ-27 SUBSURFACE CORE LOCATIONS HC-SS-47 WHATCOM WATERWAY STATION SEDIMENT GRAB SAMPLE (HART GROWSER, 1997) OG-10 OE-1 DE-REMEDIAL DESIGN TESTING STATION (COMPOSITE FOR LEACHING TESTS 2002) IJW-SS-02 RI/FS SURFACE SEDIMENT LOCATION AN-SS-47 ANCHOR BIOASSAY SAMPLE LOCATION 	STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER STORMMATER
E PLE FOR I & J WATERWAY SEDIMENTS RI/FS PORTB-18448-210 DATE: 10/24/06 DRWN: E.M./SEA	UL COAST CUARD

File: H:\18448\18448S105.dwg Layout: Layout1 User: emarshall Plotted: Oct 24, 2006 – 2:30pm Xref's:

Appendix A

Analytical Data Reports

Appendix B

Data Validation Reports

November 8, 2005

Organic and Inorganic Data Validation Report

I&J Waterway Port of Bellingham, Washington

Sediment Sampling August and September 2005

Prepared for:

Dan Berlin Project Manager The RETEC Group, Inc. 1011 Klickitat Way, Suite 207 Seattle, WA 98134

Prepared by:

Ann Biegelsen Quality Assurance Chemist The RETEC Group, Inc. 2409 Research Blvd., Suite 106 Fort Collins, CO 80526

RETEC Project No.: PORTB-18448-210

<u>Overview</u>

The samples analyzed for the Port of Bellingham I&J Waterway sediment sampling from August and September 2005 are listed in the Table of Samples Analyzed (page 2). Data validation was performed on fifteen sediment samples and two rinsate blank samples.

Samples were analyzed by Analytical Resources, Incorporated (ARI) of Tukwila, WA. The validated analyses were Volatile Organic Compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW846 GC/MS method 8260B; Semivolatile Organic Compounds (SVOCs) by SW846 GC/MS method 8270D and PSDDA SW8270D; Polychlorinated Biphenyls (PCBs) by SW846 GC method 8082 and PSDDA SW8082; Total Metals (Sb, As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, and Zn) by SW846 methods 6010B, 7470A and 7471A; Total Organic Carbon (TOC) by method Plumb. 1981; Sulfide by method 376.2; Ammonia by method 350.1; Total Volatile Solids (TVS) by method 160.4; Total Solids and Preserved Total Solids by methods E160.3 and E160.3-PRES; pH by method 150.1; and Grain Size by method PSEP.

The RETEC Analytical Data Validation Checklist is presented as pages 4-10. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA540/R-99/008, October 1999 with additional reference to document 540-R-04-009, January 2005, and USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA540/R-04/004 of October 2004 as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

Submitted Deliverables

Case Narratives Chain-of-Custody form(s) and sample integrity Sample results, reporting limits, dilution factors Holding times Method blank results Rinsate blank results LCS/LCSD (blank spike) results MS/MSD (matrix spike) results Laboratory duplicate results Organic surrogate recoveries Electronic data deliverables (EDDs)

Data Validation Qualifiers Assigned During this Review

- J estimated concentration
- UJ undetected, reporting limit is estimated
- U evaluated to be undetected at the reported concentration; result is considered to be a false positive
- R rejected due to severe QC noncompliance

Assigned qualifiers are detailed in the RETEC Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (pages 3-4).

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable. With the exception of some rejected antimony results, the data are suitable for their intended use with the qualifications noted.

Table of Samples Analyzed I&J Waterway Sediment Site, Port of Bellingham, WA Sediments with Water QC Samples Analytical Resources Inc. Laboratory Reports IM59 and IM72 August and September 2005 Sampling

Matrix	Sample Name	Sample Date a	ind Time	Lab SDG	COC Reference
Sediment	IJW-SS-01	8/31/2005	10:56	IM59	ARI
Sediment	IJW-SS-02	8/31/2005	11:48	IM59	ARI
Sediment	IJW-SS-05	8/31/2005	13:42	IM59	ARI
Sediment	IJW-SS-06	8/31/2005	15:35	IM59	ARI
Sediment	IJW-SS-07	8/31/2005	14:44	IM59	ARI
Sediment	IJW-SS-09	8/31/2005	17:14	IM59	ARI
Sediment	IJW-SS-11	8/31/2005	16:27	IM59	ARI
Sediment	IJW-RR-01	9/2/2005	11:36	IM72	100870
Sediment	IJW-RR-02	9/2/2005	12:24	IM72	100870
Sediment	IJW-SS-03	9/1/2005	10:08	IM72	100870
Sediment	IJW-SS-04	9/1/2005	11:01	IM72	100870
Sediment	IJW-SS-08	9/1/2005	13:26	IM72	100870
Sediment	IJW-SS-10	9/1/2005	9:12	IM72	100870
Sediment	IJW-SS-12	9/1/2005	14:28	IM72	100870
Sediment	IJW-SS-13	9/1/2005	11:52	IM72	100870
Water QC	Rinsate Blank Bowl	9/2/2005		IM72	NA
Water QC	Rinsate Blank Grab	9/2/2005		IM72	NA

Table of Qualified Analytical Results I&J Waterway Sediment Site, Port of Bellingham, WA Sediments with Water QC Samples Analytical Resources Inc. Laboratory Reports IM59 and IM72 August and September 2005 Sampling

Lab SDG	Sample ID	Analysis	Dil.	Method	Analyte	С	oncent	ration	Qualifier	Reason Code
IM59	IJW-SS-01	initial	3			Ť		ug/kg	U	MB
IM59	IJW-SS-01	initial	2	SW6010B	Antimony	<		mg/kg	R	MS
IM59	IJW-SS-02	initial	3		Di-n-Butylphthalate			ug/kg	U	MB
	IJW-SS-02	initial	2	SW6010B	Antimony	<		mg/kg	R	MS
IM59	IJW-SS-05	initial	3	1	Di-n-Butylphthalate		800		U	MB
	IJW-SS-05	initial	2	SW6010B	Antimony	<		mg/kg	R	MS
	IJW-SS-06	initial	3	1	Acenaphthene		620		J	MS
	IJW-SS-06	initial	3	1	Di-n-Butylphthalate		1000	ug/kg	Ŭ	MB
	IJW-SS-06	reanalysis	10	SW8270D			6800	ug/kg	J	MS
IM59	IJW-SS-06	initial	5	SW6010B	Antimony	<		mg/kg	R	MS
IM59	IJW-SS-07	initial	3	SW8270D	Di-n-Butylphthalate		850	ug/kg	U	MB
IM59	IJW-SS-07	initial	2	1	Antimony	<	10	mg/kg	R	MS
IM59	IJW-SS-09	initial	1	SW8082	Aroclor 1260		31	ug/kg	J	LCS
IM59	IJW-SS-09	initial	3	SW8270D	Di-n-Butylphthalate		940		U	MB
IM59	IJW-SS-09	initial	2	SW6010B	Antimony	<	20	mg/kg	R	MS
IM59	IJW-SS-11	initial	3	SW8270D	Di-n-Butylphthalate		840		U	MB
IM59	IJW-SS-11	initial	2	SW6010B	Antimony	<	8	mg/kg	R	MS
IM72	IJW-RR-01	initial	1	SW8270D	Di-n-Butylphthalate		910	ug/kg	U	MB
IM72	IJW-RR-01	initial	2	SW6010B	Antimony	<	7	mg/kg	R	MS
IM72	IJW-RR-02	initial	1	SW8270D	Di-n-Butylphthalate		1000	ug/kg	U	MB
IM72	IJW-RR-02	initial	2	SW6010B	Antimony	<	10	mg/kg	R	MS
IM72	IJW-SS-03	initial	5	SW8270D	Di-n-Butylphthalate		640	ug/kg	U	MB
IM72	IJW-SS-03	initial	2	SW6010B	Antimony	<	10	mg/kg	R	MS
IM72	IJW-SS-04	initial	5	SW8270D	Di-N-Butylphthalate		1300	ug/kg	U	MB
IM72	IJW-SS-04	initial	2	SW6010B	Antimony	<	20	mg/kg	R	MS
IM72	IJW-SS-08	initial	3	SW8270D	Di-n-Butylphthalate		790	ug/kg	U	MB
	IJW-SS-08	initial	2	SW6010B	Antimony	<	10	mg/kg	R	MS
IM72	IJW-SS-10	initial	5	SW8270D	Di-n-Butylphthalate		980	ug/kg	U	MB
	IJW-SS-10	initial			Antimony	<		mg/kg	R	MS
1	IJW-SS-12	initial	3		Di-n-Butylphthalate		890	ug/kg	U	MB
	IJW-SS-12	initial	2	SW6010B	Antimony	<	8	mg/kg	R	MS
1	IJW-SS-13	initial	3	SW8270D	Di-n-Butylphthalate		660	ug/kg	U	MB
	IJW-SS-13	initial			Antimony	<	20	mg/kg	R	MS
	Rinsate Blank Bowl	initial		SW8082	Aroclor 1016	<	1	ug/L	UJ	ΗT
1	Rinsate Blank Bowl	initial		SW8082	Aroclor 1221	<	1	ug/L	ŲJ	НΤ
	Rinsate Blank Bowl	initial	1	SW8082	Aroclor 1232	<	1	ug/L	ŲJ	ΗT
	Rinsate Blank Bowl	initial		SW8082	Aroclor 1242	<	1	ug/L	UJ	ΗT
1	Rinsate Blank Bowl	initial		SW8082	Aroclor 1248	<	1	ug/L	UJ	HT
	Rinsate Blank Bowl	initial		SW8082	Aroclor 1254	<	1	ug/L	UJ	HT
IM72	Rinsate Blank Bowl	initial	1	SW8082	Aroclor 1260	<	1	ug/L	UJ	HT

Table of Qualified Analytical Results I&J Waterway Sediment Site, Port of Bellingham, WA Sediments with Water QC Samples Analytical Resources Inc. Laboratory Reports IM59 and IM72 August and September 2005 Sampling

Lab SDG	Sample ID	Analysis	Dil.	Method	Analyte	Cor	centration	Qualifier	Reason Code
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1016	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1221	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1232	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1242	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1248	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1254	<	1 ug/L	UJ	HT
IM72	Rinsate Blank Grab	initial	1	SW8082	Aroclor 1260	<	1 ug/L	UJ	HT

Qualifier Definitions

J – Estimated concentration.

U - Evaluated to be undetected at the reported concentration; result is considered to be a false positive.

UJ – Undetected, reporting limit is estimated.

R - rejected due to severe QC noncompliance

Reason Code Definitions

HT - Holding time exceeded.

LCS - Laboratory control spike recovery is outside quality control limits.

MB – Method blank contamination.

MS - Matrix spike recovery is outside quality control limits.

Project Name: 1&J Waterway Sediment Site	Laboratory: Analytical Resources, Incorporated (ARI), Tukwila, WA
Project Reference: Port of Bellingham, WA	Sample Matrix: Sediment with Water QC Samples
RETEC Project: PORTB-18448-210	Sample Start Date: 08/31/2005
Validated By/Date Validated: Ann Biegelsen / 11/08/2005	Sample End Date: 09/02/2005

Samples Analyzed: Refer to the Table of Samples Analyzed, I&J Waterway Sediment Site, Port of Bellingham, WA, Sediments with Water QC Samples, Analytical Resources Inc. Laboratory Reports IM59 and IM72, August and September 2005 Sampling (page 2).

Parameters Validated: Volatile Organic Compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW846 GC/MS method 8260B; Semivolatile Organic Compounds (SVOCs) by SW846 GC/MS method 8270D and PSDDA SW8270D; Polychlorinated Biphenyls (PCBs) by SW846 GC method 8082 and PSDDA SW8082; Total Metals (Sb, As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, and Zn) by SW846 methods 6010B, 7470A and 7471A; Total Organic Carbon (TOC) by method Plumb. 1981; Sulfide by method 376.2; Ammonia by method 350.1; Total Volatile Solids (TVS) by method 160.4; Total Solids and Preserved Total Solids by methods E160.3 and E160.3-PRES; pH by method 150.1; and Grain Size by method PSEP.

Not all samples were analyzed for every parameter. Refer to Chain of Custody records for the exact analyses requested.

Laboratory Project IDs: IM59 and IM72.

PRECISION, ACCURACY, METHOD COMPLIANCE, AND COMPLETENESS ASSESSMENT								
Precision:	X	Acceptable		Unacceptable	AB	Initials		
Comments: Precision is the measure of variability of individual sample measurements. Field precision could not be determined, as there were no field duplicate samples included in this data set. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of both field and laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. No data require qualification based on laboratory duplicate precision measurements, and overall laboratory precision is acceptable. Precision measurements are reviewed in items 17, 20, and 21.								
Accuracy:	X	Acceptable		Unacceptable	AB	Initials		
Comments: Field accuracy, a measure of the sampling bias, was determined by reviewing rinsate blank bowl and rinsate blank grab results for evidence of sample contamination stemming from field activities. Laboratory accuracy is a measure of the system bias, and was measured by evaluating laboratory control sample/laboratory control sample duplicate (LCS/LCSD), matrix spike/matrix spike duplicate (MS/MSD), and organic system monitoring compounds (surrogate) percent recoveries (%Rs). LCS/LCSD %Rs, which demonstrated the overall performance of the analysis, were compared to EPA published QC limits. MS/MSD %Rs, which provided information on sample matrix interferences, were compared to EPA published QC limits or laboratory control charted limits. System monitoring compound or surrogate recoveries, which measured system performance and efficiency during organic analysis, were compared to EPA published QC limits or laboratory control charted limits. Although some data require qualification based on LCS %Rs (see item 15) or qualification or rejection based or MS %Rs (see item 16), overall field and laboratory accuracy is acceptable. Accuracy measurements are reviewed in items 12, 14, 15 and 16.								
Method Compliance:	x	Acceptable		Unacceptable	AB	Initials		
Comments: Method compliance was determined by evaluating sample integrity, holding time, system and laboratory blanks against method specified requirements, while applying EPA data validation guidelines. Although some data require qualification based on missed holding times (see item 8) or based on laboratory blank contamination (see item 11), overall method compliance is acceptable based on the supplied data. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 18, 19, 20 and 22.								

Completeness:	x	Acc	eptable		Unac	ceptable	AB	Initials
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with valid analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). As some total metals results were rejected due to MS %Rs, not all of the data received from the laboratory are useable with qualification. Out of 1421 possible data results, 15 were rejected. Completeness of the data is calculated to be 98.5% and is acceptable.								
VALIDATION CRITERIA CHECK								
Data validation qualifiers used in this review:								
J – estimated concentration								
UJ – undetected, reporting limit is estimated								
U – evaluated to be undetected at the reported conce	entrati	on; re	esult is co	nside	red to	be a fals	e positive	
R – rejected due to severe QC noncompliance								
The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary.							nments	
Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 3-4).								
 Did the laboratory identify any non- conformances related to the analytical results? 	X		Yes			No	AB	Initials
Explanation by laboratory:								
<u>Method 8260B</u> : Low internal standard recoveries were confirmed due to matrix by re-analysis. Both sets of data were submitted for the affected samples.							s of data	
<u>Method 8082</u> : Due to laboratory error, the water sam were extracted as soon as the error was discovered.	ples w	ere r	ot extrac	ted wi	ithin h	olding tim	ne. The sa	amples
Conventionals Analysis: Method blank contamination	was r	noted						
Additionally, assigned laboratory flags were noted an related to the laboratory observations are discussed					eport.	Data qua	alification,	if any,
Were sample Chain-of-Custody forms complete?			Yes)	<	No	AB	Initials
Comments: COC records from field to laboratory wer field and laboratory personnel signatures, dates, and								iced by
SDG IM72: The Rinsate Blank Bowl and Rinsate Bla COC. These samples were logged in and analyzed f analyzed for VOAs or general chemistry parameters solids, or pH. Field accuracy for the VOAs or the gen	for tota TOC,	al me [.] sulfid	tals, SVO e, ammoi	Cs, ai nia, T	nd PC VS, to	Bs. They	y were not , preserve	d total
3. Were all the analyses requested for the samples on the COCs completed by the laboratory?	X		Yes			No	AB	Initials
Comments: All requested analyses were completed.								
4. Were samples received in good condition and at the appropriate temperature?								Initials
Comments: Samples were received on ice, intact, and in good condition with cooler temperatures outside the $4^{\circ}C \pm 2^{\circ}C$ acceptance range at 4.6°C, 7.0°C and 8.0°C as noted on the COCs. Cooler temperatures that were greater than 6°C are judged acceptable as samples were received within 24 hours of collection, sample containers were intact and sample temperatures were still well below ambient (~25 °C).								

5. Were the requested analytical methods in compliance with WP/QAPP, permit, or COC?	X	Yes		No	AB	Initials
Comments: Reported methods were comparable to t Sediment Analysis Methods, Target Detection Limits exceptions.	hose reque	sted on tl a provide	he COC rec d to the dat	ords and a validate	with <i>table</i> or with the	2-3 following
<u>Method 8082</u> : Pesticides DDT, aldrin, alpha-chlordar listed on table 2-3 but were not requested on the CO met, no action is required except to note this discrep	Cs or repor	heptachl ted for th	or, alpha-Bl ese sample	HC and g s. As CC	amma-BH)C reques	C are ts were
6. Were detection limits in accordance with WP/QAPP, permit, or method?	X	Yes		No	AB	Initials
Comments: Reported detection limits are achievable by the quoted methods. Some samples required dilution due to high concentrations of target analytes or interference. The reporting limits for diluted results were raised appropriately. Detection limits for sediment results reported on a dry weight basis were increased to reflect the percent moisture content.						
Detection limits could not be compared to those spec reporting units.	cified in tabl	e 2-3 not	ed in item 5	as the ta	able did no	t include
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	AB	Initials
Comments: Only the requested target analytes were	reported.					
8. Were sample holding times met?		Yes	X	No	AB	Initials
Comments: Extraction and analytical holding times w below. <u>Method 8082</u> : Samples Rinsate Blank Bowl and R day holding time had passed. All analytes assoc indicate the undetected results are at estimated r Refer to the Table of Qualified Analytical Results for qualified (pages 3-4).	Rinsate Bla iated with reporting li	nk Grab these an mits.	were extra alyses hav	cted 4 da e been q	iys after t ualified a	he 14 s UJ to
9. Were correct concentration units reported?	X	Yes		No	AB	Initials
Comments: Correct concentration units were reported reported in units of μ g/Kg or μ g/L (ppb). All inorganic the TOC, total solid, TVS, and preserved total solids are reported in standard units.	c results are	e reported	I in units of	mg/L or r	ng/Kg exc	ept for
10. Were the reporting requirements for flagged data met?	X	Yes		No	AB	Initials
Comments: Data validation qualifiers override any as	signed labo	oratory fla	igs.			
11. Were laboratory blank samples free of target analyte contamination?		Yes	X	No	AB	Initials
Comments: All laboratory blanks were free of target a	analyte con	taminatio	n with the f	ollowing e	exceptions	
<u>Method 8270D</u> : The laboratory method blank sam reported di-n-butylphthalate at 800 µg/Kg. This c samples IJW-SS-06, IJW-RR-02, IJW-SS-06, IJW-S IJW-SS-02, IJW-SS-01, IJW-SS-11, IJW-SS-07, IJW than ten times the amount found in the blank and the analyte has been determined to be undetected due to laboratory contamination.	ommon lai SS-04, IJW- V-SS-12, IJ I has been	ooratory SS-03, IJ W-RR-01 qualified	contamina IW-SS-13, I , IJW-SS-09 I as U in th	nt was a JW-SS-0 9 and IJV ese sam	Iso detect 8, IJW-SS V-SS-10 a ples to inc	ted in 5-05, t less dicate

Continued on following page

Comments (continued):

<u>Method 6010B</u>: The laboratory method blank from the sediment batch of 09/07/2005 reported zinc at 1.2 mg/Kg. As this analyte was not detected in any of the associated samples at less than ten times the amount found in the blank, no action is required based on this discrepancy.

<u>General Chemistry</u>: The laboratory method blank from the sediment batch of 09/06/2005 reported ammonia at 0.13 mg/Kg. As this analyte was not detected in any of the associated samples at less than ten times the amount found in the blank, no action is required based on this discrepancy.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 3-4).

12. Were trip blank, field blank, and/or equipment	Yes	Х	No	AB	Initials
rinse blank samples free of target analyte					
contamination?					

Comments: Target analytes were not detected in the trip blank samples with the following exception.

<u>Method 6010B</u>: The Rinsate Blank Bowl sample, reported zinc at 0.008 mg/L and the Rinsate Blank Grab sample reported zinc at 0.012 mg/L. As this analyte was not detected at less than ten times the blank amounts in any of the associated samples, no data requires qualification based on this discrepancy.

13. Were instrument calibrations within method or	NA	Yes	NA	No	AB	Initials
data validation control limits?	· ·					

Comments: Not applicable for this level of data verification – Instrument calibration data was supplied in the analytical laboratory report but as the QAPP allowed for a level II verification, it was not considered as part of this data review.

14. Were surrogate recoveries within control	Yes	X	No	AB	Initials	
limits?			ļ			

Comments: Surrogate percent recoveries (%Rs) for organic analyses were within data validation QC criteria for all samples, with the following exceptions.

<u>Method 8270D</u>: In the analyses of sample IJW-SS-01, surrogate 1,2-dichloroethane- D_4 was recovered outside the data validation QC limits of 30-84% at 29%. The National Functional Guidelines for the validation of SVOC data allows for one surrogate of each fraction outside QC limits as long as the recovery is greater than 10%. As these criteria are met, no data requires qualification based on this discrepancy.

15. Were laboratory control sample recoveries	Yes	Х	No	AB	Initials
within control limits?					

Comments: LCS and LCSD (blank spike) recoveries were within data validation or laboratory control-charted QC limits for all target analytes.

<u>Method 8082</u>: In the analysis of the LCS sample extracted 09/09/2005, spike analyte aroclor 1016 was recovered outside the data validation QC limits of 75-125% at 150% and spike analyte aroclor 1260 was recovered outside the data validation QC limits of 75-125% at 145%. As the elevated recoveries indicate high bias undetected results do not require qualification. Aroclor 1260 was detected in sample IJW-SS-09 and has been qualified as J to indicate the concentration is estimated.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 3-4).

16. Were matrix spike recoveries within control limits?		Yes	X	No	AB	Initials
Comments: Project specific MS and MSD recoveries were not applicable due to required sample dilution, or amount spiked. MS and MSD spike recoveries for no similarity to project samples could not be guaranteed	or to sample on-project s	e concent	rations whi	ch excee	ded four ti	mes the
<u>Method 8270D</u> : In the analysis of samples IJW-SS recovered outside the laboratory QC limits of 41- pyrene was recovered outside the laboratory QC analytes were detected in this sample and have b estimated.	116% at -48 limits of 14	8% and - 4-147% a	43%, respe t -4% and -	ctively, a 5%, resp	and spike ectively.	analyte These
Method 6010B: In the analysis of sample IJW-SS- the laboratory QC limits of 75-125% at 13.3%. Th samples of the same matrix and has been qualifie rejected due to severe QC non-compliance. The metals data require the rejection of all results ass 30%.	is analyte v ed as R in t National Fi	was not o hese sar unctional	letected in nples to in I Guideline	any of t dicate th s for the	he associ le results validatio	ated are n of ICP
Refer to the Table of Qualified Analytical Results for qualified (pages 3-4).	a listing of t	he sampl	es, analyte	s, and co	ncentratio	ns
17. Were duplicate RPDs and/or serial dilution %Ds within control limits?	X	Yes		No	AB	Initials
Comments: Laboratory RPDs for target analytes in LCS/LCSD and project-specific MS/MSD samples were within data validation control limits.						
18. Were organic system performance criteria met?	NA	Yes	NA	No	AB	Initials
Comments: Not applicable for this level of data verifi- the analytical laboratory report but as the QAPP allow this data review.						
19. Were internal standards within method criteria for GC/MS sample analyses?	NA	Yes	NA	No	AB	Initials
Comments: Not applicable for this level of data verific analytical laboratory report but as the QAPP allowed this data review.						
20. Were inorganic system performance criteria met?	NA	Yes	NA	No	AB	Initials
Comments: Not applicable for this level of data verifi- the analytical laboratory report but as the QAPP allow this data review.						
21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.		Yes	X	No		Initials
Comments: There were no field duplicate samples a determined.	issociated v	vith this s	ample set.	Field pre	cision cou	ld not be
22. Were qualitative criteria for organic target analyte identification met?	X	Yes	· · ·	No	AB	Initials
Comments: Retention times and chromatography we with the laboratory's internal QA/QC program.	ere reviewed	d by traine	ed laborato	ry person	nel in acco	ordance

X	Yes		No	AB	Initials
	X	X Yes	X Yes	X Yes No	X Yes No AB

Comments: The EDD entries were resolved with the hardcopy data results and corrected as necessary. According to validation protocol, the hardcopy data report was accepted as the correct reference. The data validator provided corrected EDDs as part of this verification report. The EDD file, with data validation qualifiers and reason codes added, was returned to the RETEC database manager in Seattle, WA 11/09/2005.

The 'sample matrix code' column entries were changed from W to WQ for the rinsate blank samples.

<u>SVOC analysis</u>: The 'lab and method' column displayed SW8270D. In some cases the laboratory hard copy reports showed SW8270C as the method reference. As the laboratory confirmed that the SVOCs were analyzed following method SW8270D protocols, the SW8270D method references remain in the EDD file.

<u>Methods 8260B and 8270D</u>: In some cases the compound name as it appeared on the hard copy report and as it appeared in the EDD were different. All compound names were synonyms and there is no CAS No. disagreement. Please see the cross referencing table below for a list of compound names as they appear in the hard copy reports compared to the synonyms used in the EDD files.

		Chemical Name (Hard Copy	
Method ID	CAS No.	Reports)	Chemical Name (EDD file)
SW8260B	75-35-4	1,1-Dichloroethene	1,1-DICHLOROETHYLENE
SW8260B	135-98-8	sec-butylbenzene	2-PHENYLBUTANE
SW8260B	75-69-4	trichlorofluoromethane	CFC-11
		1,1,2-trichloro-1,2,2-	CHLORINATED FLUOROCARBON (FREON
SW8260B	76-13-1	trifluoroethane	113)
SW8260B	74-97-5	Bromochloromethane	CHLOROBROMOMETHANE
SW8260B	99-87-6	4-isopropyltoluene	CYMENE
SW8260B	75-09-2	Methylene Chloride	DICHLOROMETHANE
SW8260B	74-96-4	Bromoethane	ETHYL BROMIDE
SW8260B	87-68-3	Hexachlorobutadiene	HEXACHLORO-1,3-BUTADIENE
SW8260B	541-73-1	1.3-Dichlorobenzene	M-DICHLOROBENZENE
SW8260B	591-78-6	2-Hexanone	METHYL N-BUTYL KETONE
SW8260B	108-88-3	Toluene	METHYLBENZENE
SW8260B	110-57-6	trans-1,4-dichloro-2-butene	TRANS-1,4-DICHLOROBUTENE
SW8260B	75-25-2	Bromoform	TRIBOMOMETHANE
SW8260B	79-01-6	Trichloroethene	TRICHLOROETHYLENE
SW8270D	218-01-9	Chrysene	1,2-BENZPHENANTHRACENE
SW8270D	78-59-1	Isophorone	3,5,5-TRIMETHYL-2-CYCLOHEXENE-1-ONE
SW8270D	85-68-7	Butylbenzylphthalate	BENZYL BUTYL PHTHALATE
SW8270D	87-68-3	Hexachlorobutadiene	HEXACHLORO-1,3-BUTADIENE
SW8270D	541-73-1	1.3-Dichlorobenzene	M-DICHLOROBENZENE
SW8270D	106-47-8	4-Chloroaniline	P-CHLOROANILINE
SW8270D	100-01-6	4-Nitroaniline	P-NITROANILINE

24. Additional Comments:

25. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA540/R-99/008, October 1999 with additional reference to document 540-R-04-009, January 2005, and USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA540/R-04/004 of October 2004 as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 3-4).

August 16, 2006

Organic and Inorganic Data Validation Report

I&J Waterway Port of Bellingham, Washington

Sediment and Porewater Sampling June 2006

Prepared for:

Dan Berlin Project Manager The RETEC Group, Inc. 1011 Klickitat Way, Suite 207 Seattle, WA 98134

Prepared by:

Ann Biegelsen Quality Assurance Chemist The RETEC Group, Inc. 2409 Research Blvd., Suite 106 Fort Collins, CO 80526

RETEC Project No.: PORTB-18448-210

Overview

The samples analyzed for the Port of Bellingham I&J Waterway sediment and porewater sampling from June 2006 are listed in the Table of Samples Analyzed (page 3). Data validation was performed on seven sediment samples and five porewater samples.

Samples were analyzed by Analytical Resources, Incorporated (ARI) of Tukwila, WA. The validated analyses were Volatile Organic Compounds (VOCs) (Ethylbenzene, Xylenes, Tetrachloroethene and Trichloroethene) by SW846 GC/MS method 8260B; Semivolatile Organic Compounds (SVOCs) by SW846 GC/MS method PSDDA SW8270D; Pesticides and Polychlorinated Biphenyls (PCBs) by SW846 GC method 8081; Butyl Tin, Dibutyl Tin and Tributyl Tin by SW846 method 8270 TBT; Total Metals (Sb, As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, and Zn) by SW846 methods 6010B and 7471A; Total Organic Carbon (TOC) by method Plumb. 1981; Sulfide by method 376.2; Ammonia by method 350.1; Total Volatile Solids (TVS) by method 160.4; Total Solids and Preserved Total Solids by methods E160.3 and E160.3-PRES; pH by method 150.1; and Grain Size by method PSEP.

The RETEC Analytical Data Validation Checklist is presented as pages 8-15. Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA540/R-99/008, October 1999 with additional reference to document 540-R-04-009, January 2005, and USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA540/R-04/004 of October 2004 as they applied to the reported methodology.

The following data components were reviewed during the data validation procedure:

Submitted Deliverables	
Case Narratives	
Chain-of-Custody form(s) and sample integrity	
Sample results, reporting limits, dilution factors	
Holding times	
Method blank results	
LCS/LCSD (blank spike) results	
MS/MSD (matrix spike) results	
Instrument tunes (system performance checks)	
Instrument calibrations	
Laboratory duplicate results	
Organic surrogate recoveries	
GC/MS Internal standards	
Electronic data deliverables (EDDs)	

Data Validation Qualifiers Assigned During this Review

- J estimated concentration
- J+ estimated concentration, biased high
- J- estimated concentration, biased low
- UJ undetected, reporting limit is estimated
- U evaluated to be undetected at the reporting limit or at the reported concentration due to evidence of contamination
- R rejected due to severe QC noncompliance

Assigned qualifiers are detailed in the RETEC Analytical Data Verification Checklist and are summarized in the Table of Qualified Analytical Results (pages 4-7).

Other Qualifiers Assigned During this Review

DNR – Do not report, used to identify duplicate results from dilutions or reanalysis that are not reportable because an alternate, acceptable result for that sample and analyte is available.

Overall Data Assessment

Precision, accuracy, method compliance, and completeness of the data set have been determined to be acceptable. The data are suitable for their intended use with the qualifications noted.

Table of Samples Analyzed I&J Waterway Sediment Site, Port of Bellingham, WA Sediment and Pore Water Samples Analytical Resources Inc. Laboratory Reports JM04, JM05, JM26, JM27, & JM28 June 2006 Sampling

Matrix	Sample Name	Sample/Porewater Centrifug	e Date and Time	Lab SDG
Sediment	IJ-C4-S1	6/15/2006	16:25	JM04
Sediment	IJ-C4-S1	6/15/2006	16:25	JM04
Sediment	IJ-C4-S2	6/15/2006	16:30	JM04
Sediment	IJ-C3-S1	6/13/2006	14:50	JM05
Sediment	IJ-C3-S1	6/13/2006	14:50	JM05
Sediment	IJ-C5-S1	6/15/2006	11:50	JM05
Sediment	IJ-C5-S1	6/15/2006	11:50	JM05
Sediment	IJ-C6-S1	6/14/2006	11:00	JM05
Sediment	IJ-C6-S1	6/14/2006	11:00	JM05
Pore Water	IJ-C4-S1 PW	6/16/2006		JM26
Pore Water	IJ-C4-S2 PW	6/16/2006		JM26
Pore Water	IJ-C3-S1 PW	6/16/2006		JM27
Pore Water	IJ-C5-S1 PW	6/16/2006		JM27
Pore Water	IJ-C6-S1 PW	6/16/2006		JM27
Sediment	SS-REF01-0606	6/15/2006	12:02	JM28
Sediment	SS-REF02-0606	6/15/2006	13:06	JM28

Table of Qualified Analytical Results I&J Waterway Sediment Site, Port of Bellingham, WA Sediment and Pore Water Samples Analytical Resources Inc. Laboratory Reports JM04, JM05, JM26, JM27, & JM28 June 2006 Sampling

Reportable Result? Yes (ès res Yes Yes (es Yes res Yes, es/ Yes Yes Yes Yes (es Yes Reason Code RPD MS CRDL Sov PQL PQL PQL ^PQL RPD MS CRDL SCV PQL Q. Qualifier <u>+</u> ÷ З മ Ξ <u>+</u> З ~~ ר ר⊂ 3 m. ~~~~ -~ С mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg lg/kg mg/kg mg/kg ug/kg ug/kg ug/kg Concentration 160 310 80.1 4.0 ŝ 128 113 41 6 4 ω 2000 4.1 3400 3.9 9 17 R 5 တ 9 <u>م</u> ŝ 19 9 3 5 ŝ v v ν Dibenz(a,h)Anthracene Benzyl Butyl Phthalate Benzyl Butyl Phthalate 2,4-Dimethylphenol Analyte Dimethyl Phthalate Acenaphthylene Acenaphthene Acenaphthene Acenaphthene Dibenzofuran Butyl Tin Ion Butyl Tin Ion Vaphthalene Butyl Tin Ion Butyl Tin Ion Antimony Antimony Antimony Antimony Fluorene Sulfide Sulfide Sulfide Sulfide Zinc Zinc Zinc Zinc SW8270 TBT SW8270 TBT SW8270 TBT SW8270 TBT Method SW6010B SW6010B SW8270D SW8270D SW8270D SW8270D SW6010B SW6010B SW8270D SW6010B SW6010B SW8270D SW8270D SW8270D SW6010B SW6010B SW8270D SW8270D SW8270D SW8270D E376.2 E376.2 E376.2 E376.2 6 9 0 ö 9 \sim \sim Analysis nitial nitial nitial nitial nitial nitial initial nitial initial nitial initial initial initial initial initial nitial nitial nitial nitial nitial initial nitial nitial nitial nitial nitial nitial nitial Sample ID IJ-C4-S2 U-C4-S2 IJ-C4-S2 U-C4-S1 IJ-C4-S2 **U-C4-S2** lu-c3-S1 LI-C3-S1 U-C3-S1 U-C3-S1 IJ-C3-S1 U-C5-S1 IJ-C5-S1 1J-C5-S1 IJ-C4-S1 IJ-C4-S1 U-C4-S1 U-C4-S1 IJ-C4-S1 IJ-C4-S1 **U-C4-S1** U-C3-S1 U-C3-S1 J-C5-S1 J-C4-S2 J-C3-S1 J-C5-S1 J-C5-S1 Lab SDG JM04 JM05 JM05 JM05 JM05 JM05 JM05 JM05 JM04 JM05 JM05 JM05 JM05 JM05 **JM05 JM05**

4

Table of Qualified Analytical Results (continued) I&J Waterway Sediment Site, Port of Bellingham, WA Sediment and Pore Water Samples Analytical Resources Inc. Laboratory Reports JM04, JM05, JM26, JM27, & JM28 June 2006 Sampling

Lab SDG	Sample ID	Analysis	Dil.	Method	Analyte	Conc	Concentration	Qualifier	Reason Code	Reportable Result?
JM05	1J-C6-S1	initial	50	E376.2	Sulfide	680) mg/kg	7	RPD	Yes
JM05	IJ-C6-S1	initial	2	SW6010B	Antimony	< 10) mg/kg	œ	WS	Yes
JM05	IJ-C6-S1	initial	2	SW6010B	Zinc	134		÷	CRDL	Yes
JM05	IJ-C6-S1	initial	-	SW8270 TBT	Butyl Tin Ion	< 4.0		n	CCV	Yes
JM05	IJ-C6-S1	ínitíal	~	SW8270D	2-Methylphenol	÷	ng/kg	~~>	<pql< td=""><td>Yes</td></pql<>	Yes
JM05	IJ-C6-S1	initial	~	SW8270D	Acenaphthylene	14		>	<pql< td=""><td>Yes</td></pql<>	Yes
JM05	IJ-C6-S1	initial	, -	SW8270D	Dibenz(a,h)thracene	13			<pql< td=""><td>Yes</td></pql<>	Yes
JM26	IJ-C4-S1 PW	reextract	-	SW8270 TBT	Butyl Tin Ion	0.065	l/ɓn g	ກ	MB, HT	Yes
JM26	IJ-C4-S1 PW	reextract	-	SW8270 TBT	Tributyl Tin Ion	0.028		->	Η	Yes
JM26	IJ-C4-S2 PW	reextract	~	SW8270 TBT	Butyl Tin Ion	0.13	l/gu t	n	MB, HT	Yes
JM26	IJ-C4-S2 PW	initial	-	SW8270 TBT	Tributyl Tin Ion	0.12		n	MB	Yes
JM27	1J-C3-S1 PW	reextract	-	SW8270 TBT	Butyl Tin Ion	0.075	l/ôn	n	MB, HT	Yes
JM27	IJ-C3-S1 PW	initial	-	SW8270 TBT	Tributy! Tin Ion	0.13		n	MB	Yes
JM27	1J-C5-S1 PW	reextract	*	SW8270 TBT	Butyl Tin Ion	0.073	l/gu i	n	MB, HT	Yes
JM27	IJ-C5-S1 PW	initial	*	SW8270 TBT	Tributyl Tin Ion	0.084		n	MB	Yes
JM27	IJ-C6-S1 PW	reextract	4	SW8270 TBT	Butyl Tin Ion	0.086	l/ôn	n	MB, HT	Yes
JM27	IJ-C6-S1 PW	reextract	₩	SW8270 TBT	Tributyl Tin Ion	0.022		<u>ل</u>	Ħ	Yes
JM28	SS-REF01-0606	initial	5	E376.2	Suifide	76	mg/kg	÷	MS, RPD	Yes
JM28	SS-REF02-0606	initial	10	E376.2	Sulfide	180		- b	MS, RPD	Yes
JM05	IJ-C6-S1	initial		SW8260B	Ethylbenzene	< 1.7	ug/kg	n	DNR, IS	No
JM05	IJ-C6-S1	initial	-	SW8260B	m,p-Xylene	< 1.7		n	DNR, IS	No
JM05	IJ-C6-S1	initial	-	SW8260B	o-Xylene	< 1.7		ß	DNR, IS	No
JM05	IJ-C6-S1	reanalysis	10	SW8270D	Anthracene	100			DNR, <pql< td=""><td>No</td></pql<>	No
JM05	IJ-C6-S1	reanalysis	10	SW8270D	Benzo(a)Anthracene	190			DNR, <pql< td=""><td>No</td></pql<>	No
JM05	1J-C6-S1	reanaiysis	0	SW8270D	Benzo(a)Pyrene	120			DNR, <pql< td=""><td>No</td></pql<>	No
JM05	1J-C6-S1	reanalysis	10	SW8270D	Benzo(b)Fluoranthene	160		ت.	DNR, <pql< td=""><td>No</td></pql<>	No
JM05	IJ-C6-S1	reanalysis	9	SW8270D	Benzo(k)Fluoranthene	120		۔ ۲	DNR, <pql< td=""><td>No</td></pql<>	No
JM05	1J-C6-S1	initial	~~~	SW8270D	Bis(2-ethylhexyl)Phthalate	7600		۔ _	DNR, ECR	No
JM05	IJ-C6-S1	reanalysis	10	SW8270D	Naphthalene	120		7	DNR, <pql< td=""><td>No</td></pql<>	No

ŝ

Analytical Resources Inc. Laboratory Reports JM04, JM05, JM26, JM27, & JM28 i&J Waterway Sediment Site, Port of Bellingham, WA Table of Qualified Analytical Results (continued) Sediment and Pore Water Samples June 2006 Sampling

Reportable Result?	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Reason Code	DNR, CCV	DNR, HT	DNR, MB	DNR, CCV	DNR, HT	DNR, HT	DNR, CCV	DNR, HT	DNR, HT	DNR, HT	DNR, HT	DNR, CCV	DNR, HT	DNR, MB
Qualifier	n	Ľ	n	n	ц	ጽ	M	۲	Я	ጽ	ድ	m	œ	D
ration	l/bn	l/bn	ug/l	l∕βn	l/gu	l∕βn	l/gu	ng/l	l/gu	l/ôn	ng/l	l/ôn	l/bn	l/gu
Concentration	0.02	0.029	0.12	0.02	0.029	0.019	0.02	0.029	0.019	0.029	0.019	0.02	0.029	0.084
	V	V		v	V	V	V	v	v	×	V	Ŷ	V	_
Analyte	Butyl Tin Ion	Dibutyl Tin Ion	Tributyl Tin Ion	Butyl Tin Ion	Dibutyl Tin Ion	Tributyl Tin Ion	Butyl Tin Ion	Dibutyl Tin Ion	Tributyl Tin Ion	Dibuty! Tin Ion	Tributyl Tin Ion	Butyl Tin Ion	Dibutyl Tin Ion	Tributyl Tin Ion
Method	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT	SW8270 TBT
Dil.	***	Yuur	4		4	*	ę.	4	t	*	4	~	~ ~~	~
Analysis	initial	reextract	initial	initial	reextract	reextract	initial	reextract	reextract	reextract	reextract	initial	reextract	initial
Sample ID	IJ-C4-S1 PW	IJ-C4-S1 PW	IJ-C4-S1 PW	IJ-C4-S2 PW	IJ-C4-S2 PW	IJ-C4-S2 PW	LI-C3-S1 PW	IJ-C3-S1 PW	IJ-C3-S1 PW	IJ-C5-S1 PW	IJ-C5-S1 PW	IJ-C6-S1 PW	1J-C6-S1 PW	IJ-C6-S1 PW
Lab SDG	JM26	JM26	JM26	JM26	JM26	JM26	JM27	JM27	JM27	JM27	JM27	JM27	JM27	JM27

Qualifier Definitions

J – Estimated concentration.

J- - Estimated concentration, biased low

J+ - Estimated concentration, biased high

N – Tentative identification

R - Rejected due to severe QC noncompliance UJ – Undetected, reporting limit is estimated.

Reason Code Definitions

< PQL – Reported concentration is greater than the MDL but less than the PQL. CCV – Continuing calibration verification outside limits.

CRDL – Contract required detection limit standard recovery is outside quality control limits.

Continued on following page

Reason Code Definitions (continued)

DNR - Do not report, an alternate, acceptable result is available.

ECR - Reported concentration exceeds instrument calibration range.

HT – Holding time exceeded.

IS - Internal standard recovery outside limits.

MB – Method blank contamination.

MS – Matrix spike recovery is outside quality control limits. RPD – Duplicate sample relative percent difference outside quality control limits.

ANALYTICAL DATA VALIDATION CHECKLIST

Project Name: I&J Waterway Sediment Site	Laboratory: Analytical Resources, Incorporated (ARI), Tukwila, WA									
Project Reference: Port of Bellingham, WA	Sample Matrix: Sediment and Porewater Samples									
RETEC Project: PORTB-18448-210	Sample Start Date: 06/13/2006									
Validated By/Date Validated: Ann Biegelsen /	Sample End Date: 06/15/2006									
08/16/2006	Porewater Centrifuge Date: 06/16/2006									
Samples Analyzed: Refer to the Table of Samples Ana	alyzed (page 3).									
Trichloroethene) by SW846 GC/MS method 8260B; Se GC/MS method PSDDA SW8270D; Pesticides and Po 8081; Butyl Tin, Dibutyl Tin and Tributyl Tin by SW846 Hg, Ni, Ag, and Zn) by SW846 methods 6010B and 74 1981; Sulfide by method 376.2; Ammonia by method 3	olychlorinated Biphenyls (PCBs) by SW846 GC method 6 method 8270 TBT; Total Metals (Sb, As, Cd, Cr, Cu, Pb,									
Not all samples were analyzed for every parameter. R requested.	Refer to Chain of Custody records for the exact analyses									
Laboratory Project IDs: JM04, JM05, JM26, JM27 and	1 JM28									
PRECISION, ACCURACY, METHOD COMPI	LIANCE, AND COMPLETENESS ASSESSMENT									
Precision:	X Acceptable Unacceptable AB Initials									
Comments: Precision is the measure of variability of individual sample measurements. Field precision could not be determined as there were no field duplicate samples collected with this data set. Laboratory precision was determined by examination of laboratory duplicate results. Evaluation of laboratory duplicates for precision was done using the Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. Laboratory RPD limits referenced EPA published QC limits. Although some data require qualification based on laboratory duplicate RPDs, overall laboratory precision is acceptable. Precision measurements are reviewed in items 17, 20, and 21.										
Accuracy:	X Acceptable Unacceptable AB Initials									
of the system bias, and was measured by evaluating la duplicate (LCS/LCSD), matrix spike/matrix spike duplic compounds (surrogate) percent recoveries (%Rs). LC performance of the analysis, were compared to EPA p information on sample matrix interferences, were comp charted limits. System monitoring compound or surrog efficiency during organic analysis, were compared to E limits. Although some data require qualification or reje	Active and the set of									

ANALYTICAL DATA VALIDATION CHECKLIST

Comments: Method compliance was determined by evaluating sample integrity, holding time, system performance checks, initial and continuing instrument calibrations, laboratory blanks, internal standards, and target analytic identification against method specified requirements, while applying EPA data validation unints (PQL) but above the method detection limits (MQL) (see item 6), analytes detected above the calibration or ange of the instrument (see item 6), laboratory blank contamination (see item 11), instrument calibration or others (see item 13), or internal standard recovery outliers (see item 19) and some data require qualification or others (see item 13), or internal standard recovery outliers (see item 6), analytes detected above the calibration or others (see item 3), or internal standard recovery outliers (see item 6), analytes detected above the calibration or others (see item 3), or internal standard recovery outliers (see item 6), analytes detected based on the supplied data. Method compliance measurements are reviewed in items 4, 6, 8, 11, 13, 19, 19, 20 and 22. Completeness: Completeness: Completeness is the overall ratio of the number of samples planned versus the number of samples with valid analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results. QC summary reports, and electronic data deliverables (EDDs). Not all of the data received from the laboratory are useable with qualification. Of a total of 525 possible data proving were rejected based on instrument MS %R outliers and one result was not reported due to laboratory oversight (see item 3). Completeness of the data is calculated to be 98.8% and is acceptable. VALIDATION CRITERIA CHECK Data validation qualifiers used in this review: J - estimated concentration, biased low UJ - undetected, r	Method Compliance:	X	Accept	able		Unac	ceptable	• A	٨B	Initials
Comments: Completeness is the overall ratio of the number of samples planned versus the number of samples with valid analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). Not all of the data received from the laboratory are useable with qualification. Of a total of 525 possible data points, five were rejected based on instrument MS %R outliers and one result was not reported due to laboratory oversight (see item 3). Completeness of the data is calculated to be 98.8% and is acceptable. VALIDATION CRITERIA CHECK Data validation qualifiers used in this review: J - estimated concentration J - estimated concentration, biased low UJ - undetected, reporting limit is estimated U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualified Analytical results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any nonconformances related to the analytical results? Yes No AB Initials Explanation by laboratory: X Yes No AB Initials 20/06.	performance checks, initial and continuing instrument target analyte identification against method specified guidelines. Although some data require qualification limits (PQL) but above the method detection limits (M range of the instrument (see item 6), laboratory blank (see item 13), or internal standard recovery outliers (state of the instrument standard recovery outliers).	t calib requir based IDL) (s conta see ite metho	ting sam rations, la rements, on analy see item amination m 19) an d complia	ole int abora while tes de 6), an ((see d som ance i	tory b apply etecte alytes item ne dat s acco	, hold lanks, ing El ed belo s deteo 11), in a requ eptable	ng time, internal PA data w the pi cted abo strumen ire qual e based	syste stand valida ractica ve the t calib ficatic on the	ards, tion al qua e calit pration	and Intitation Dration In outliers rejection
with valid analyses. Completeness goals are set at 90-100%. Determination of completeness included a review of chain of custody records, laboratory analytical methods and detection limits, laboratory case narratives, and project requirements. Completeness also included 100% review of the laboratory sample data results, QC summary reports, and electronic data deliverables (EDDs). Not all of the data received from the laboratory are useable with qualification. Of a total of 625 possible data points, five were rejected based on instrument MS %R outliers and one result was not reported due to laboratory oversight (see item 3). Completeness of the data is calculated to be 98.8% and is acceptable. VALIDATION CRITERIA CHECK Data validation qualifiers used in this review: J = estimated concentration, biased logh J - estimated concentration, biased logh J = estimated concentration, biased low UJ - undetected, reporting limit is estimated U = evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). Yes No AB Initials SDG3 JMC6 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they we	Completeness:	x	Accept	able		Unac	ceptable	A	٨B	Initials
Data validation qualifiers used in this review: J - estimated concentration J+ - estimated concentration, biased high J estimated concentration, biased low UJ - undetected, reporting limit is estimated U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/07/06/06 and they were re-analyzed on 07/07/07. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	with valid analyses. Completeness goals are set at 9 of chain of custody records, laboratory analytical met project requirements. Completeness also included 1 summary reports, and electronic data deliverables (E useable with qualification. Of a total of 525 possible outliers and one result was not reported due to labor	0-100 ^s thods a 00% r DDs). data p	%. Deter and deteo eview of Not all o oints, five	minat ction I the la of the e were	tion of imits, borate data i e reje	f comp labora ory sai receive cted b	leteness itory cas mple dat ed from ased on	s inclu e nari a resu the lat instru	ded a rative ults, C porate iment	a review s, and QC ory are MS %R
J - estimated concentration J+ - estimated concentration, biased high J estimated concentration, biased low UJ - undetected, reporting limit is estimated U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with these examples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	VALIDATION		ERIA CH	IECK						
J+ - estimated concentration, biased high J estimated concentration, biased low UJ - undetected, reporting limit is estimated U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Conformances related to the analytical results? No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submit	Data validation qualifiers used in this review:					· · ·				
J estimated concentration, biased low UJ - undetected, reporting limit is estimated U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	J – estimated concentration									
UJ – undetected, reporting limit is estimated U – evaluated to be undetected at the reported concentration; result is considered to be a false positive R – rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	J+ – estimated concentration, biased high									
U - evaluated to be undetected at the reported concentration; result is considered to be a false positive R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials conformances related to the analytical results? X Yes Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with these samples. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	Jestimated concentration, biased low									
R - rejected due to severe QC noncompliance The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	UJ – undetected, reporting limit is estimated									
The following comments identifying sample results requiring qualification are in bold type. The other comments are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	U – evaluated to be undetected at the reported conce	entrati	on; result	is co	nside	red to	be a fals	se pos	sitive	
are of interest, but qualification of the sample results is not necessary. Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7). 1. Did the laboratory identify any non-conformances related to the analytical results? X Yes No AB Initials Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	R – rejected due to severe QC noncompliance									
qualified (pages 4-7).XYesNoABInitials1. Did the laboratory identify any non- conformances related to the analytical results?XYesNoABInitialsExplanation by laboratory:Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested.SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22- 23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re- extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.										
conformances related to the analytical results? Explanation by laboratory: Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.		a listin	g of the s	ampl	es, ar	nalytes	, and co	ncent	ratior	าร
Method 8270 TBT: SDG JM04 and JM05 – resubmitted: The results for MBT and DBT have been added as requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re-extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.		X	Y	es			No	A	В	Initials
requested. SDGs JM26 and JM27: All samples were initially extracted on 06/20/2006 and they were analyzed on 06/22-23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re- extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.	Explanation by laboratory:									
23/06. Tributyl tin was detected in the method blank associated with these samples. All samples were re- extracted on 07/06/06 and they were re-analyzed on 07/07/06. Butyl tin was detected in the method blank associated with the re-extraction of these samples. The contamination is from a reagent used in the extraction process. Since insufficient sample remained, no further corrective actions could be taken. The results for both analyses have been submitted for all samples.		ed: Th	ie results	for M	IBT ai	nd DB	T have b	een a	dded	las
Continued on following page	23/06. Tributyl tin was detected in the method blank extracted on 07/06/06 and they were re-analyzed on associated with the re-extraction of these samples. process. Since insufficient sample remained, no furt	assoc 07/07/ The co	iated with /06. Buty ntaminat	n thes /I tin v ion is	e san vas de from	nples. etecteo a reag	All sam f in the r ent use	ples w netho d in th	vere r d bla e ext	re- nk raction
	Continued on following page									

Explanation by laboratory (continued):

<u>Method 8260B</u>: SDG JM04: The areas for the 4th internal standard (IS) were low following the initial analyses of samples IJ-C4-S1 and IJ-C4-S2. These samples were re-analyzed. The area for the 4th IS was low following the re-analysis of sample IJ-C4-S1. The area for the 4th IS was within acceptable QC limits (though still somewhat low) for the re-analysis of sample IJ-C4-S2. It was concluded that the sample matrices were the cause of the low IS recoveries. No further actions were taken. The results for both analyses of each sample have been submitted for comparison.

SDG JM05: The areas for the 3rd and 4th ISs were low following the initial analyses of these samples. All samples were re-analyzed. The areas for the 4th and/or the 5th ISs were not within control limits for the re-analyses of all samples. It was concluded that the sample matrices were the cause of the poor IS recoveries. No further corrective actions were taken. The results for both analyses of each sample have been submitted for comparison. *Validator's Note: There was no 5th internal standard reported. The 4th IS was not in QC limits for any of the initial or re-analyses of these samples.*

<u>Method 8081</u>: SDG JM04 and JM05: All samples were initially analyzed on 06/23/2006. The %D were high following the analysis of the closing CCAL that was analyzed on that day. All samples were re-analyzed on 06/26/2006. The %D for one surrogate was high for the closing CCAL on one column for the re-analyses. It was suspected that the sample matrices were the cause of the high %D. No further corrective action were taken. The results for the re-analyses only have been submitted for all samples. *Validator's Note: The %Ds were within data validation QC limits for all reported CCALs.*

<u>Method 6010B</u>: SDG JM04 and JM05: A small amount of zinc was detected in the MB associated with the total metals analyses of these samples. Zinc was detected in the samples at concentrations significantly greater than the amount found in the blank. No corrective actions were taken.

<u>General Chemistry</u>: SDG JM04: A matrix duplicate (MD) was prepared for total sulfides in conjunction with sample IJ-C4-S1. The RPD was high following the initial analysis of the MD. Since the %R for this analyte was within control limits in the LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD.

SDG JM28: A matrix spike (MS) was prepared and analyzed for total sulfides in conjunction with sample SS-REF01-0606. The %R was low following the initial analysis of the MS. Since the %R for total sulfides was within acceptable QC limits for the corresponding LCS, it was concluded that the sample matrix was the cause of the low MS recovery. No corrective actions were taken.

Additionally, assigned laboratory flags were noted and considered within this report. Data qualification, if any, related to the laboratory observations are discussed in the following sections.

2. Were sample Chain-of-Custody forms	Yes	Х	No	AB	Initials
complete?					

Comments: COC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt, with the following exception.

SDG JM04: Sample IJ-C4-S2 is incorrectly listed as IJ-C4-C2 on page 2 of 2 of the COCs associated with this laboratory project.

No further action is required other than to note this discrepancy.

3. Were all the analyses requested for the samples on the COCs completed by the laboratory?		Yẹs	Х	No	AB	Initials
Comments: All requested analyses were completed w	rith the fo	llowing ex	ception.	• • • • • • • • • • • • • • • • • • • •		
Method 7471A: Analysis of mercury was requested for analyte has been included in the completeness calculated			out was not	reported	This mis	sing
4. Were samples received in good condition and at the appropriate temperature?	х	Yes		No	AB	Initials
Comments: The laboratory did not note the temperatur problems were identified on the chains of custody, Sar						

ANALYTICAL DATA VALIDATION CHECKLIST

5. Were the requested analytical methods in compliance with WP/QAPP, permit, or COC?	x	Yes		No	AB	Initials
Comments: Reported methods were comparable to the requested target analytes and sample matrix.	those reque	ested on th	ne COC re	cords and	are acce	otable for
6. Were detection limits in accordance with WP/QAPP, permit, or method?	X	Yes		No	AB	Initials
Comments: Reported detection limits are achievable due to high concentrations of target analytes or inter appropriately. Detection limits for soil results reporte moisture content.	ference. Th	e reportin	g limits for	diluted re	sults were	e raised
Analytes reported below the laboratory reporting as J to indicate that the concentrations are estim	g limits, but nated.	t above tł	ne laborato	ory MDLs	, were qu	alified
Analytes detected at concentrations greater than as J to indicate the concentrations are estimated	n the calibra I.	ation ran	ge of the i	nstrumen	t were qu	ualified
Refer to the Table of Qualified Analytical Results for qualified (pages 4-7).	a listing of	the sampl	es, analyte	es, and co	ncentratic	ons
7. Do the laboratory reports include only those constituents requested to be reported for a specific analytical method?	X	Yes		No	AB	Initials
Comments: Only the requested target analytes were	e reported.			du.		<u></u>
8. Were sample holding times met?		Yes	X	No	AB	Initials
Comments: Extraction and analytical holding times v	were met for	r all samp	les and ana	alyses, ex	cept as n	oted.
Method 8270 TBT: SDGs JM26 and JM27: Sample and IJ-C6-S1 PW were re-extracted 13 days after As more than twice the total holding time had pa have been qualified as J or R to indicate estimate due to severe QC non-compliance. Refer to the Table of Qualified Analytical Results for	the 7 day a ssed from ed concent	queous (the date (rations o	extraction of porewa r undetect	holding t ter centri ted and re	time had fuge, the ejected re	passed. results esults
qualified (pages 4-7).				T		1
9. Were correct concentration units reported?	X	Yes		No	AB	Initials
Comments: Correct concentration units were report	T	Vaa		N La	4.0	1
10. Were the reporting requirements for flagged data met?	X	Yes		No	AB	Initials
Comments: Data validation qualifiers override any a	ssigned lab	oratory fla	gs.			
11. Were laboratory blank samples free of target analyte contamination?		Yes	X	No	AB	Initials
Comments: All laboratory blanks were free of target	analyte con	taminatio	n.			
<u>Method 6010B</u> : SDGs JM04 and JM05: Target analy prepared 06/22/2006. As this analyte was detected associated samples, no data requires qualification b	at more tha	n ten time	es the amo			
associated samples, no data requires qualification p	ased on this	s discrepa	ncy.			

Continued on following page

÷

1. 1. ANN 1

Comments (continued):

<u>Method 8270C TBT</u>: SDGs JM26 and JM27: The method blank associated with initial extraction of pore water samples IJ-C3-S1 PW, IJ-C4-S1 PW, IJ-C4-S2 PW, IJ-C5-S1 PW and IJ-C6-S1 PW reported target analyte tributyl tin ion at 0.083 μ g/L. The laboratory case narrative attributes the detection of this analyte in the blank to a contaminated reagent. This analyte was also detected in all of the associated samples at less than five times the amount found in the blank and has been qualified as U in these samples to indicate the results are undetected at the reported concentrations and are considered to be false positives due to laboratory contamination.

The method blank associated with re-extraction of pore water samples IJ-C3-S1 PW, IJ-C4-S1 PW, IJ-C4-S2 PW, IJ-C5-S1 PW and IJ-C6-S1 PW reported target analyte butyl tin ion at 0.12 μ g/L. The laboratory case narrative attributes the detection of this analyte in the blank to a contaminated reagent. This analyte was also detected in all of the associated samples at less than five times the amount found in the blank and has been qualified as U in these samples to indicate the results are undetected at the reported concentrations and are considered to be false positives due to laboratory contamination.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

12. Were trip blank, field blank, and/or equipment	NA	Yes	NA	No	AB	Initials
rinse blank samples free of target analyte						
contamination?						

Comments: Not applicable – There were no trip blank, field blank or equipment rinse blank samples included in this data set.

13. Were instrument calibrations within method or	Yes	X	No	AB	Initials
data validation control limits?					

Comments: Calibration criteria were met for all samples and analyses with the following exceptions.

<u>Method 8270 TBT</u>: SDGs JM04 and JM05: In the continuing calibration verification (CCV) analyzed 06/23/2006, the %D for butyl tin exceeded the 0-25% QC limits at 26.9%. This analyte has been qualified as J or UJ in associated samples IJ-C3-S1, IJ-C4-S1, IJ-C4-S2, IJ-C5-S1, and IJ-C6-S1 to indicate estimated concentrations or reporting limits.

SDGs JM26 and JM27: In the continuing calibration verification (CCV) analyzed 06/22/2006, the %D for butyl tin exceeded the 0-25% QC limits at 60.9%. This analyte has been qualified as J or UJ in associated samples IJ-C3-S1 PW, IJ-C4-S1 PW, IJ-C4-S2 PW and IJ-C6-S1 PW to indicate estimated concentrations or reporting limits.

<u>Method 6010B</u>: SDGs JM04 and JM05: The CRDL standard analyzed 06/26/2006 recovered zinc outside the 70-130% QC limits at 150.8%. This analyte was detected in all of the associated samples IJ-C3-S1, IJ-C4-S1, IJ-C4-S2, IJ-C5-S1 and IJ-C6-S1 at more than two times the reporting limit and has been qualified as J+ in these samples to indicate the concentrations are estimated and biased high.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

14. Were surrogate recoveries within control limits?	x	Yes	No	AB	Initials
Comments: Surrogate percent recoveries (%Rs) for all samples.	organic a	nalyses were wit	hin data valida	tion QC c	riteria for
15. Were laboratory control sample recoveries within control limits?	x	Yes	No	AB	Initials
Comments: LCS and LCSD (blank spike) recoveries QC limits for all target analytes.	s were with	in data validatio	n or laboratory	control-c	harted
ANALYTICAL DATA VALIDATION CHECKLIST

16. Were matrix spike recoveries within control limits?	Yes	X	No	AB	Initials
---	-----	---	----	----	----------

Comments: Project specific MS and MSD recoveries for target analytes were within data validation QC limits, except as noted below. MS and MSD spike recoveries for non-project samples were not considered since matrix similarity to project samples could not be guaranteed.

<u>Method 6010B</u>: SDGs JM04 and JM05: In the analysis of the matrix spike of sample IJ-C4-S1, spike analyte antimony was recovered outside the laboratory QC limits of 75-125% at 12.4%. This analyte was not detected in any of the associated samples of the same matrix and has been qualified as R in these samples to indicate the results are rejected due to severe QC non-compliance. The National Functional Guidelines for the validation of ICP metals data require the rejection of all results associated with a matrix spike recovery that is less than 30%.

<u>General Chemistry</u>: SDG JM28: In the analysis of the matrix spike of sample SS-REF01-0606, spike analyte sulfide was recovered outside the data validation QC limits of 75-125% at 32.4%. This analyte was detected in both associated samples of the same matrix and has been qualified as J- to indicate the concentrations are estimated and biased low.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

17. Were duplicate RPDs and/or serial dilution	Yes	Х	No	AB	Initials
%Ds within control limits?					

Comments: Laboratory RPDs for target analytes in LCS/LCSD and project-specific MS/MSD samples were within data validation control limits. All laboratory duplicate samples met data validation RPD criteria, except as noted below. Laboratory duplicates for non-project samples were not considered since matrix similarity to project samples could not be guaranteed.

<u>Method 8270 TBT</u>: SDG JM26: In the analysis of the sample IJ-C4-S1 PW MS and MSD the RPDs for target analyte butyl tin ion exceeded the 0-30% data validation QC limits at 48%. As this analyte was not detected in this sample, no data requires qualification based on this discrepancy.

<u>General Chemistry</u>: SDGs JM04 and JM05: In the duplicate sample analysis of sample IJ-C4-S1 the RPD for sulfide exceeded the 0-20% QC limit at 28.6%. All detected sulfide results in samples of the same matrix have been qualified as J to indicate the concentrations are estimated.

SDG JM28: In the duplicate sample analysis of sample SS-REF02-060 the RPD for sulfide exceeded the 0-20% QC limit at 27.3%. All detected sulfide results in samples of the same matrix have been qualified as J to indicate the concentrations are estimated.

Metals Serial Dilution %D data was not performed by the laboratory and therefore could not be included in this data review.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

18. Were organic system performance criteria met?	х	Yes	No	AB	Initials
1160					

Comments: GC/MS methods 8260B BFB and 8270C DFTPP tunes were within ion abundance and 12-hour clock method criteria for all analytical sequences.

GC system performance as demonstrated by the degradation of endrin aldehyde and DDT and tracking of target analyte retention time windows, was monitored by the laboratory personnel following method requirements and the laboratory quality assurance procedures. No data outliers were noted, therefore; further review of the instrument raw data was not required to assure organic system performance.

ANALYTICAL DATA VALIDATION CHECKLIST

19. Were internal standards within method criteria	Ye	5 X	No	AB	Initials
for GC/MS sample analyses?					

Comments: Internal standards were within method criteria for all GC/MS samples and analyses with the following exceptions.

<u>Method 8260B</u>: SDG JM04: The areas of Internal standard 1,4-dichlorobenzene-D₄ were outside the 50-200% QC limits at 39% and 46% in the initial analyses of samples IJ-C4-S1 and IJ-C4-S2 and at 48% in the reanalysis of sample IJ-C4-S1. As this internal standard is not associated with any of the analytes of interest, no data requires qualification based on these discrepancies.

SDG JM05: The areas of internal standard 1,4-dichlorobenzene- D_4 were outside the 50-200% QC limits at 43%, 44% and 26%, respectively in the initial analyses of samples IJ-C3-S1, IJ-C5-S1 and IJ-C6-S1 and at 43%, 48% and 29%, respectively in the re-analyses of these samples. As this internal standard is not associated with any of the analytes of interest, no data requires qualification based on these discrepancies.

The area of internal standard 1,4-difluorobenzene was outside the 50-200% QC limits at 46% in the initial analysis of sample IJ-C6-S1. As this IS was within QC limits in the re-analysis of this sample, the re-analysis has been selected as the better of the two analyses for the affected analytes ethylbenzene, m,p-xylene and o-xylene, and these analytes have been qualified as J or UJ in the initial analysis to indicate estimated concentrations or reporting limits.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

· · · · · · · · · · · · · · · · · · ·						
20. Were inorganic system performance criteria met?	x	Yes		No	AB	Initials
Comments: System performance checks were within	n method cr	iteria for a	all analyses			· · · · ·
21. Were blind field duplicates collected? If so, discuss the precision (RPD) of the results.		Yes	X	No		Initials
Comments: There were no field duplicate samples a set could not be determined.	associated v	with this s	ample set.	Field pre	ecision for	this data
22. Were qualitative criteria for organic target analyte identification met?	x	Yes		No	AB	Initials
Comments: Retention times and chromatography we with the laboratory's internal QA/QC program. No da chromatograms during data validation was not require	ata outliers					
23. Were 100% of the EDD concentrations and reporting limits compared to the hardcopy data reports?	X	Yes		No	AB	Initials
Comments: The EDD entries were resolved with the According to validation protocol, the hardcopy data r with data validation qualifiers and reason codes add data validation report. Duplicate results from re-extr review. The data validator determined the most relia knowledge, and professional judgment. Duplicate re not reportable in the data base, and DNR was added duplicate results should not be reported.	eport was a ed, was retu actions/real able results esults, deter	accepted a urned to the nalyses w based on mined to	as the corre he Seattle c ere evaluat data valida be less relia	ect referen database ted as pa ation rules able, wer	nce. The manager rt of this d s, method e designa	EDD file, with this ata ted as
The following additional observations and changes v	vere made f	to the ED	D query.			
A column for the sample times was added to the ED appear on the COCs.	D query and	d populate	ed with the	sample ti	mes as th	еу
A column for the lab_sample_ids was added to the E they appear in the hard copy reports.	EDD query a	and popul	ated with th	ne laborat	tory samp	e IDs as

Continued on following page

Comments (continued):

A column titled Sample_Name was added to the EDD. All of the sample names are the same as they appear in the sys_sample_codes except for the porewater samples which have had PW added to the end of the sample ID.

The collection dates for the porewater samples are 06/16/2006 which is the date the porewaters were centrifuged and poured off of the associated sediments. The collection dates of the sediment samples as they appeared in the EDD query were incorrect and have been changed as follows. The sampled date for sample IJ-C3-S1 was changed from 06/16/2006 to 06/13/2006. The sampled date for sample IJ-C4-S1 was changed from 06/16/2006. The sampled date for sample IJ-C4-S1 was changed from 06/16/2006. The sampled date for sample IJ-C4-S1 was changed from 06/16/2006. The sampled date for sample IJ-C5-S1 was changed from 06/16/2006 to 06/15/2006. The sampled date for sample IJ-C5-S1 was changed from 06/16/2006 to 06/15/2006.

For the sediment samples, the sample_matrix_codes were changed from GW or SO to SED. For the porewater samples, the sample_matrix_codes were changed from GW to PW.

<u>Method 8270 TBT</u>: SDGs JM04 and JM05: Results for target analytes butyl tin ion and dibutyl tin ion were added to the EDD query for samples IJ-C3-S1, IJ-C4-S1, IJ-C4-S2, IJ-C5-S1 and IJ-C6-S1.

24. Additional Comments: Where multiple dilutions of a sample were reported, the analyses selected for a specific analyte was chosen based on considerations of required qualification or rejection of results and which analyses would provide the lowest possible reporting limit or more conservative (higher) value while detecting the target analyte within the linear calibration range of the instrument.

25. General Comments: Data were evaluated based on validation criteria set forth in the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, document number EPA540/R-99/008, October 1999 with additional reference to document 540-R-04-009, January 2005, and USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA540/R-04/004 of October 2004 as they applied to the reported methodology. Field duplicate RPD control limits were taken from the USEPA Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, February 1988, upheld in DRAFT 1993.

Refer to the Table of Qualified Analytical Results for a listing of the samples, analytes, and concentrations qualified (pages 4-7).

Appendix C

Bioassay Data Reports

Appendix D

Core Processing Logs

		Sediment Core L	og	Sheet 1 of 1
Project: POB I&J Waterw	ay	Water Body Type: Marine	Tube Length (ft): ;	8.0
Project #: PORTB-18448-	310	Water Elevation (ft)/Tide: -0.3	Penetration Depth	(ft): 7.0
Client: Port of Bellingham		Water Depth (ft): 16.7	Sample Quality: G	lood
Collection Date: 06/12/06		Mudline Elevation (ft): -17.0	Recovery in ft (%):	
Contractor: MSS		N./LAT: 48 45.2970 E./LONG: 122 29.6136	Process Date: 06/	
Vessel: R/V Nancy Anne		Horiz, Datum; NAD 83 Vert, Datum; MLLW	Process Method:	
Operator: Bill Jaworski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mcl	·····
Recovered Depth (ft) Recov.Interval & Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log
$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C3) Bioassay (IJ-C3) Archive	 ML: wet, very soft, dark gray (GLEY 1, 4/N) SILT, trace clay. Scattered rootlets and wood fragments. Clay texture is gummy. ML: wet, soft, dark gray (GLEY 1, 4/N) CLAYEY SILT, trace sand and gravel. Clay competancy increases towards basal contact. @ 1.3' subangular gravel up to 1/2" diameter ML: moist, soft, dark gray (GLEY 1, 4/N) SILT, little sand. SM: moist, medium dense, very dark gray (GLEY 1, 3/N) SAND, little silt. Sand grains are medium, multicolored (red, white, black), and coarsen towards basal contact. Trace shell fragments. Moderate hydrogen sulfide odor. GP: moist, dense, very dark gray (GLEY 1, 3/N) GRAVEL, little sand. Gravel is subrounded to subangular and up to 3" L. SM: moist, medium dense, very dark gray (7.5YR, 3/1) SAND, few silt. Sand grains are multicolored (red, white, black). Trace wood layers up to 2" thick with wood fragments up to 1" L. CL: damp, stiff, greenish gray (GLEY 1, 5/GY) CLAY. Clay is of high plasticity, rolls well, and is highly competant. End of core at 5.7. Driven to refusal. In-situ depth = Recovered Interval / % Recovery 	Homogenized for sample IJ-C3	$\begin{array}{c c} & 0 \\ \hline \\ & 1 \\ \hline \\ & 2 \\ \hline \\ \\ & 2 \\ \hline \\ \\ & 2 \\ \hline \\ \\ \\ \\ & 2 \\ \hline \\ \\ \\ \hline \\$
The RETEC Group, Inc. 1011 SW Klickitat Way, Suite Seattle, WA 98134-1162 Phone: (206) 624-9349 Fax: (206) 624-2839	refusal (6.	Method assumes compaction is the same throughout the core. Drive notes: freefall (3.0'), easy (4.8'), very hard (6.6 4'). Core shoe was 25% full of green-gray clay, rogen sulfide odor. Core tube scratched.	Sample Length	ted Recovery h/Penetration Length: 7.0 = 91 %

and base of a baba efficiency of a base of a			R		Sediment Core L	og	Sheet 1 of 1	1	
Client: Port of Bellingham Water Depth (ft): 13.6 Sample Quality: Good Collection Date: 06/12/06 Mudine Elevation (ft): -15.2 Recovery in ft (%): 5.2 (74) Contractor: MSS N/LAT: 48 45.2963 E/LONG: 122 29.6137 Process Date: 66/13/06 Vessel: RV Nancy Anne Horiz: Datum: NAD 83 Vert. Datum: MLLW Process Date: 66/13/06 Operator: Bill Jaworski Method/Tube ID: Vitracorer/3" round AI Logged BY: Logged BY: LincKee, C.Brack Operator: Bill Jaworski Method/Tube ID: Vitracorer/3" round AI Logged BY: LincKee, C.Brack Operator: Bill Jaworski Method/Tube ID: Vitracorer/3" round AI Logged BY: LincKee, C.Brack Operator: Bill Jaworski Method/Fube IC: Sectiment Description Comments In-sit Operator: Bill Structure ML: wet, soft, dark gray (GLEY 1, 4/N) SILT, trace Sectiment Sight Sectime Sight Dottics (U-C3) Mil: moist, dense, dark gray (GLEY 1, 4/N) SANDY GARAUEL: GR: Sectime Sight	Proje	ect: POB I&	J Waterv	vay	Water Body Type: Marine	Tube Length (ft):	8.0		
Collection Date: 06/12/06 Mudline Elevation (It): -15.2 Recovery in ft (%): 5.2 (74) Contractor: MSS N/LAT: 48 45.2963 E/LONG: 122 29.6137 Process Date: 06/13/06 Vessel: RV Narcy Anne Horiz Datum: NAD 83 Vert. Datum: MLLW Process Date: 06/13/06 Operator: Bill Jaworski Method/Tube ID: Vibracorer/3" round AI Logged BY: LMcKee, C.Brack 0 0 0 0 0 Sediment Description Classification Scheme: USCS Contacts are recovered depth Comments for Recovered Depths In-s/l Depths 1 Method/Tube IC: Vibracorer/3" round AI Logged BY: LMcKee, C.Brack Depths 20 0 0 0 ML: wet, soft, dark gray (GLEY 1, 4/N) SILT, trace sand. Scattered worms, trace rootlets. Depths 1 0 0 0 ML: moist, medium stiff, dark gray (GLEY 1, 4/N) SILT, trace fine sand. Sand percentage increases to Bioasseys (IJ-C3) ML: moist, dense, dark gray (GLEY 1, 4/N) SANDY GRAVEL. Gravel Is subrounded to subangular and up to 2" L Homogenized for sample LJ-C3 3 Archive N: moist, dense, very dark gray (GLEY 1, 4/N) SANDY GRAVEL. Gravel Is subrounded to subangular and up to 2" L SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, Tarce hydrogen sulfide odor. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, few sith, trace gravel. Sand grains are coarse and (3	Proje	ect #: PORT	B-18448	-310	Water Elevation (ft)/Tide: -1.7	Penetration Depth	(ft): 7.0		
Contractor: MSS N/LAT: 48 45.2963 E/LONG: 122 29.6137 Process Date: 06/13/06 Vessel: R/V Nancy Anne Horiz: Datum: NAD 83 Vert. Datum: MLLW Process Method: Cut tube Operator: Bill Jaworski Method/Tube ID: Vibracorer/3* round AI Logged By: LMCKee, C. Braci Digged by: 0 <	Clier	nt: Port of B	ellingha	ım	Water Depth (ft): 13.6	Sample Quality: G	Good		
Vessel: R/V Nancy Anne Horiz. Datum: NAD 83 Vert. Datum: MLLW Process Method: Cut tube Operator: Bill Jaworski Method/Tube ID: Vibracorer/3" round AI Logged By: LMcKee, C.Brack Vessel: RV Nancy Anne Method/Tube ID: Vibracorer/3" round AI Logged By: LMcKee, C.Brack Vessel: RV Marcy Anne Sediment Description Classification Scheme: USCS Comments In-ski Vessel: RV Marcy Anne Method/Tube ID: Vibracorer/3" round AI Comments In-ski Vessel: RV Marcy Anne Method/Tube ID: Vibracorer/3" round AI Logged By: LMcKee, C.Brack Vessel: RV Marcy Anne Method/Tube ID: Vibracorer/3" round AI Logged By: LMcKee, C.Brack Vessel: RV Marcy Anne Method/Tube ID: Vibracorer/3" round AI Logged By: LMcKee, C.Brack Vessel: RV Marcy Anne Method/Tube ID: Method/Tube ID: Method/Tube ID: Comments In-ski Vessel: RV State State red worms, trace rootels. ML: moist, medium stiff, dark gray (GLEY 1, 4/N) Sutcore State red worms, trace rootelsts. Horogenized for sample Li	Colle	ection Date:	06/12/06		Mudline Elevation (ft): -15.2	Recovery in ft (%)			
Operator: Bill Jaworski Method/Tube ID: Vibracorer/3" round Al Logged By: LMcKee, C.Brack Page dig	Cont	tractor: MSS			N./LAT: 48 45.2963 E./LONG: 122 29.6137				
Bit Bit Stores Sediment Description Classification Scheme: USCS Contacts are recovered depth Comments for Recovered Depths In-ski Depths 0 <	Vess	sel: R/V Nan	icy Anne	9	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube		
Participant Participant Comments In-sit 0	Oper	rator: Bill Ja	worski		Method/Tube ID: Vibracorer/3" round AI	Logged By: L.Mc	Kee, C.Brackett	·····	
Metals Metals SWOCs PCB PCB ML: wet, soft, dark gray (GLEY 1, 4/N) SILT, trace sand. Scattered worms, trace rootlets. ML: moist, medium stiff, dark gray (GLEY 1, 4/N) SILT, trace fine sand. Sand percentage increases to few and coarsens toward basal contact. Slight hydrogen sulfide odor. Trace fish matter (scales) up to 1/2" diameter. 2 Dioxins (U-C3) Bioassays (U-C3) Bioassays (U-C3) Archive Archive Archive Archive Archive M: moist, dense, dark gray (GLEY 1, 4/N) SANDY GRAVEL. Gravel is subrounded to subangular and up to 2" L. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND. Trace gravel. Gand grains are coarse and 'multicolored. Trace shell fragments. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, trace gravel. Sand grains are coarse and 'multicolored. Trace shell fragments. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, trace gravel. Sand grains are coarse and 'multicolored. Trace shell fragments. CL: damp, stiff to very stiff, greenish gray (GLEY 1, 3/N) SAND, trace gravel. SA: solutatil subrounded gravel up to 3" L and shell fragments. Scattered sand and smaller gravels. End of core at 4.5'. Driven to refusal (see remarks).	L CC	Depth (ft) Recov.intervai & Sample #	% Recovery (depth in ft)	Analysis	Classification Scheme: USCS	for Recovered	In-situ Depths (ft) & Graphic Log	g	
5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater VOCs Sulfides Archive Dioxins (IJ-C3) Bioassays (IJ-C3)	 sand. Scattered worms, trace rootlets. ML: moist, medium stiff, dark gray (GLEY 1, 4/N) SILT, trace fine sand. Sand percentage increases to few and coarsens toward basal contact. Slight hydrogen sulfide odor. Trace fish matter (scales) up to 1/2" diameter. GP: moist, dense, dark gray (GLEY 1, 4/N) SANDY GRAVEL. Gravel is subrounded to subangular and up to 2" L. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, trace gravel. Sand grains are coarse and 'multicolored. Trace shell fragments. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, few silt, trace gravel. Trace shell fragments. SM: moist, dense, very dark gray (GLEY 1, 3/N) SAND, few silt, trace gravel. Trace shell fragments. Trace hydrogen sulfide odor. CL: damp, stiff to very stiff, greenish gray (GLEY 1, 5/GY) CLAY. Clay has high plasticity and rolls well. @ 3.8-3.9': substantial subrounded gravel up to 3" L and shell fragments. Scattered sand and smaller gravels. End of core at 4.5'. Driven to refusal (see remarks). In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same 				

The RETEC Group, Inc. 1011 SW Klickitat Way, S	Suite 207	Remarks: Drive notes: freefall (3.5'), easy (6.1'), refusal (6.1').	Calculated Recovery
Seattle, WA 98134-1162 Phone: (206) 624-9349			Sample Length/Penetration Length:
Fax: (206) 624-2839		Refusal likely caused by mechanical rather than lithological refusal	. 5.2 / 7.0 = 74 %

			Sediment Core L	og	Sheet 1 of 1		
Project: F	POB I&J Waterv	vay	Water Body Type: Marine	Tube Length (ft): 8	3.0		
Project #	Project #: PORTB-18448-310 Water Elevation (ft)/Tide: +1.3 Penetration Depth (ft): 7.0						
Client: P	ort of Bellingha	m	Water Depth (ft): 18.4	Sample Quality: G	ood		
Collection	n Date: 06/12/06	,	Mudline Elevation (ft): -17.1	Recovery in ft (%):	6.3 (96)		
Contracto	or: MSS		N./LAT: 48 45.3057 E./LONG: 122 29.5848	Process Date: 06/			
Vessel: F	R/V Nancy Anne	3	Horiz. Datum:NAD 83 Vert. Datum: MLLW	Process Method: (Cut tube		
	: Bill Jaworski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mck			
Recovered Depth (ft)	Recov.Interval & Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log		
		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C3) Bioassays (IJ-C3)	ML: wet, very soft, dark gray (GLEY 1, 4/N) SILT, trace fine sand. ML: moist, soft, very dark gray (GLEY 1, 3/N) SILT. Silt competancy increases toward basal contact. Trace fish matter. Trace to moderate hydrogen sulfide odor. ML: moist, soft, very dark gray (GLEY 1, 3/N) SILT, little clay. Silt competancy increases toward basal contact. No hydrogen sulfide odor below 2.0'. @ 2.1' 3" L metal piece (drill bit - like) / ML: moist, medium stiff, very dark gray (GLEY 1, 3/N) SILT, few sand. Sand grains are medium to	Homogenized for sample IJ-C3 Bag @ 2.1' (metal).			
4	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	Archive .	 M) SIL1, new sand. Sand grains are medium to coarse. Trace wood and gravel. 3.3'-4.5': scattered wood fragments up to 1" L. 3.5': subrounded gravel up to 2.5" L 4.0': subangular gravel up to 2.5" L ML: moist, medium stiff, very dark gray (GLEY 1, 3/N) CLAYEY SILT, trace gravel. Trace shell fragments and organic matter (wood). 		→ → → → → → → → → → → → → → → → → → →		
			End of core at 6.1. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.	Clay tagged in core shoe.	6		

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks: Drive notes: freefall (3.7'), easy (7.0'), no refusal.	Calculated Recovery
Seattle, WA 98134-1162 Phone: (206) 624-9349	Core shoe was 100% full of damp, black clayey silt.	Sample Length/Penetration Length:
Fax: (206) 624-2839		6.7 / 7.0 = 96 %

		538 - <u>1</u> 66 66	9014 92 BARG 9889	IJ-21	The transfer the	
	POB I&J	• • • • • • • • • • • • • • • • • • • •		Water Body Type: Marine	Tube Length (ft):	
	#: PORTI			Water Elevation (ft)/Tide: -3.0	Penetration Depth	
	Port of B			Water Depth (ft): 14.1	Sample Quality: G	
	on Date: 0)6/12/06		Mudline Elevation (ft): -17.1	Recovery in ft (%):	
	otor: MSS			N./LAT: 48 45.2904 E./LONG: 122 29.6016	Process Date: 06/	13/06
Vessel	R/V Nan	cy Anne	9	Horiz, Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube
Operat	or: Bill Ja	worski	r	Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mcl	Kee, C.Bracke
Recovered Depth (ft)	Recov.Interval & Sample #	% Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (f & Graphic L
0 - -	$ \uparrow \uparrow $			ML: wet, very soft, black (GLEY 1, 2.5/N) SILT.		
1			Metals SVOCs PCB TBT bulk Pesticides	ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Trace fish matter (scales and flakes)I and wood fragments. Trace hydrogen sulfide odor. @ 1.1': 1" thick layer of wood fragments	- Homogenized for	
	0.0.0		Conventionals Grain Size TBT porewater Archive	GP: moist, dense, black (GLEY 1, 2.5/N) GRAVEL, little silt and sand. Gravel is subrounded to subangular and up to 2" in diameter.	sample IJ-C3	
?	SI SI		Dioxins (IJ-C3) Bioassays (IJ-C3)	@ 1.7': 1/2" thick lens of very coarse sand		ST C
Δ				CL: moist, medium stiff, very dark gray (GLEY 1, 3/N) CLAY, trace silt. Clay texture is gummy, rolls easily, and has low plasticity. Trace layers of fish matter (scales and flakes) and wood fragments.	~	
				@ 3.6': wood fragments up to 1" L. Plastic piece 1.5" L.	Bag @ 3.6' (plastic).	
4			Archive	 @ 4.0': Trace flakes of organic matter (fish scales) in a layer of decomposing material. 		
5				SM: moist, medium dense, black (GLEY 1, 2.5/N) SAND, little silt. Moderate to substational wood, trace fish bones. @ 4.7': 1" thick layer of moderate to substantial wood fragments @ 4.9': fish bones up to 3" L @ 5.4': CLAYEY SILT with seams of sand		¥ .
6				End of core at 6.3'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.		
	EC Group, Klickitat W		Remarks:	Drive notes: freefall (1.0'), easy (7.0'), no refusal.	Calcula	ted Recovery

.

Project: POB I&J Waterway		IJ-22 Water Body Type: Marine	Tube Length (ft):	P 0	
Project #: PORTB-18448-31		Water Elevation (ft)/Tide: -2.6	Penetration Depth		
lient: Port of Bellingham		Water Depth (ft): 16.7	Sample Quality: Good		
ollection Date: 06/12/06		Mudline Elevation (ft): -19.3	Recovery in ft (%): 6.6 (93)		
Contractor: MSS		N./LAT: 48 45.3023 E./LONG: 122 29.5739	Process Date: 06/15/06		
essel: R/V Nancy Anne		Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube	
perator: Bill Jaworski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mcl	Kee, C.Brackett	
Recovered Depth (ft) Recov.Interval & Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log	
1 т	-Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C5) oassays (IJ-C5)	ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT trace very fine sand. Trace shell fragments up to 3" L. Moderate hydrogen sulfide odor. ML: moist, medium stiff, greenish black (GLEY 1, 2.5/10Y) SILT, few medium-coarse sand. Scattered small shell fragments. Strong hydrogen sulfide odor. CL: moist, stiff, greenish gray (GLEY 1, 5/GY) CLAY, trace subrounded gravel. End of core at 6.6'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.	Homogenized for sample IJ-C5		

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks: Drive notes: freefall (2.0'), moderate (7.0'), no refusal.	Calculated Recovery
Seattle, WA 98134-1162	Core shoe was 100% full of green-gray clay.	Sample Length/Penetration Length:
Phone: (206) 624-9349 Fax: (206) 624-2839		6.6 / 7.0 = 93 %

		R		Sediment Core L	og	Sheet 1 of 1	
Project:	OB I&J	Waterv	vay	Water Body Type: Marine	Tube Length (ft):	8.0	
Project #	~~~~			Water Elevation (ft)/Tide: -1.8	Penetration Depth	(ft): 7.0	
Client: P	ort of B	ellingha	m	Water Depth (ft): 15.7	Sample Quality: G	iood	
Collectio	n Date: (6/12/06		Mudline Elevation (ft): -17.5	Recovery in ft (%):	6.7 (96)	
Contract	or: MSS			N./LAT: 48 45.2721 E./LONG: 122 29.6107	Process Date: 06/		
Vessel:	R/V Nan	cy Anne	•	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube	
Operator	Bill Ja	worski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mci	Kee, C.Brackett	
Recovered Depth (ft)	Recov.Interval & Sample #	% Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log	
			Metais VOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C5) Bioassays (IJ-C5)	 ML: moist, very soft, greenish black (GLEY 1, 2.5/10Y) SILT, few sand. Abundant intact mussel shells up to 1.5" L. Trace wood fragments up to 2.5" L. Moderate hydrogen sulfide odor. Grades to substantial shells and fish scales up to 3" L and fish bones up to 1" L. Trace subrounded 2" L gravel and trace wood fragments up to 2" L. Very strong hydrogen sulfide odor. @ 1.6': piece of 3" L filmy, thin, plastic ML: moist, medium stiff, greenish black (GLEY 1, 2.5/10Y) SILT, few fine sand. Scattered 'decomposed fish matter (scales and flakes). ML: moist, medium stiff, greenish black (GLEY 1, 2.5/10Y) VERY SANDY SILT. Scattered 1/2" to 1" thick layers of decomposed, broken fish matter (scales, bones, flakes). CL: moist, stiff, greenish gray (GLEY 1, 5/GY) CLAY, trace subrounded gravel up to 1/2" diameter. 	Homogenized for sample IJ-C5 Bag @ 1.6' (plastic).	S1	о 1 1 2 2 3 3 4 4 4 5 5 6 6

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks: Drive notes: freefall (1.0'), easy (4.0'), moderate-hard (7.0'), Calculated Recover					
	no refusal. Core shoe was 100% full of green-gray clay.	Sample Length/Penetration Length:				
	Piece of 3/8" polypropylene line in bottom of core shoe.	6.7 / 7.0 = 96 %				

	Metals SVOCs PCB TBT bulk resticides nventionals frain Size F porewater Archive xins (IJ-C5) ssays (IJ-C5)	Water Body Type: Marine Water Elevation (ft)/Tide: -0.9 Water Depth (ft): 16.3 Mudline Elevation (ft): -17.2 N./LAT: 48 45.2894 E./LONG: 122 29.5948 Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick layers. Trace hydrogen sulfide odor.	Tube Length (ft): Penetration Depth Sample Quality: (Recovery in ft (%) Process Date: 06 , Process Method: Logged By: L.Mc Comments for Recovered Depths Homogenized for sample IJ-C5	h (ft): 7.0 Good): 6.6 (96) /15/06 Cut tube
Client: Port of Bellingham Collection Date: 06/12/06 Contractor: MSS Vessel: R/V Nancy Anne Operator: Bill Jaworski Para (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Metals SVOCs PCB TBT bulk Pesticides nventionals Grain Size T porewater Archive xins (IJ-C5)	Water Depth (ft): 16.3 Mudline Elevation (ft): -17.2 N./LAT: 48 45.2894 E./LONG: 122 29.5948 Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. (@ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy foward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Sample Quality: (Recovery in ft (%) Process Date: 06, Process Method: Logged By: L.Mc Comments for Recovered Depths	Good): 6.6 (96) /15/06 Cut tube CKee, C.Brackett In-situ Depths (ft) & Graphic Log
Collection Date: 06/12/06 Contractor: MSS Vessel: R/V Nancy Anne Operator: Bill Jaworski person diagonal di	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Mudline Elevation (ft): -17.2 N./LAT: 48 45.2894 E./LONG: 122 29.5948 Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Recovery in ft (%) Process Date: 06, Process Method: Logged By: L.Mc Comments for Recovered Depths): 6.6 (96) /15/06 Cut tube cKee, C.Brackett In-situ Depths (ft) & Graphic Log
Collection Date: 06/12/06 Contractor: MSS Vessel: R/V Nancy Anne Operator: Bill Jaworski participation of the set of	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Mudline Elevation (ft): -17.2 N./LAT: 48 45.2894 E./LONG: 122 29.5948 Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Recovery in ft (%) Process Date: 06, Process Method: Logged By: L.Mc Comments for Recovered Depths): 6.6 (96) /15/06 Cut tube cKee, C.Brackett In-situ Depths (ft) & Graphic Log
Contractor: MSS Vessel: R/V Nancy Anne Operator: Bill Jaworski	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	N./LAT: 48 45.2894 E./LONG: 122 29.5948 Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ Ø.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy foward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Process Date: 06/ Process Method: Logged By: L.Mc Comments for Recovered Depths	/15/06 Cut tube Cut tube CKee, C.Brackett In-situ Depths (ft) & Graphic Log
Vessel: R/V Nancy Anne Operator: Bill Jaworski	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Horiz. Datum: NAD 83 Vert. Datum: MLLW Method/Tube ID: Vibracorer/3" round AI Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Process Method: Logged By: L.Mc Comments for Recovered Depths	Cut tube :Kee, C.Brackett In-situ Depths (ft) & Graphic Log
Operator: Bill Jaworski	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Method/Tube ID: Vibracorer/3" round Al Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm UL: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Logged By: L.Mc Comments for Recovered Depths	cKee, C.Brackett
Depth (ft) Concered Conc	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Sediment Description Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	Comments for Recovered Depths	In-situ Depths (ft) & Graphic Log
-0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	Metals SVOCs PCB TBT bulk Pesticides riventionals Grain Size T porewater Archive xins (IJ-C5)	Classification Scheme: USCS Contacts are recovered depth ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick	for Recovered Depths	Depths (ft) & Graphic Log
-1 G G Dion Bioas	SVOCs PCB TBT bulk Pesticides reationals Grain Size T porewater Archive xins (IJ-C5)	SILT, trace very fine sand. Color is mottled gray- green and black. @ 0.5': 2" L worm ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT. Silt competancy increases toward basal contact. Few fish matter (fish scales and bones), trace intact mussle shells up to 1" L, and trace shell fragments up to 2 cm. ML: moist, soft, black (GLEY 1, 2.5/N) CLAYEY SILT, trace fine sand. Silt decreases in competancy toward basal contact. Trace fish matter (scales, bones) increasing to substantial below 2.2' in 2" thick		S1
-4	Archive	ML: moist, medium-stiff, black (GLEY 1, 2.5/N) SILT, few sand and trace gravel. Sand grains are medium to coarse and multicolored (gray, white, black). Gravel is subangular, up to 3" diameter, and increases to few below 4.2 feet. Trace rootlets. Trace hydrogen sulfide odor.		→
		SM: moist, medium dense, black (GLEY 1, 2.5/N) COARSE SAND, few silt. Moderate to substantial shredded wood fragments.		- Z1
-6		CL: moist, medium stiff, greenish gray (GLEY 1, 5/GY) CLAY. End of core at 6.3'. In-situ depth = Recovered (nterval / % Recovery		
The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207 Seattle, WA 98134-1162		Drive notes: freefall (1.0'), easy (4.0'), moderate-hard	Galcula	ated Recovery th/Penetration Leng
Phone: (206) 624-9349 Fax: (206) 624-2839	·····	bdy material.		/7.0 = 96 %

		7	R		Sediment Core L	og	Sheet 1 of 1
P	roject:	POB I&	J Water	way	Water Body Type: Marine	Tube Length (ft):	8.0
P	roject	#: PORT	B-18448	3-310	Water Elevation (ft)/Tide: 0.01	Penetration Depth	(ft): 7.0
C	lient:	Port of E	ellingha	am	Water Depth (ft): 16.9	Sample Quality: G	iood
C	ollecti	ion Date:	06/12/06	5	Mudline Elevation (ft): -16.9	Recovery in ft (%):	6.8 (97)
C	Contrac	ctor: MSS			N./LAT: 48 45.3027 E./LONG: 122 29.5741	Process Date: 06/	15/06
V	essel:	R/V Nar	ncy Ann	e .	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube
C	perate	or: Bill Ja	aworski		Method/Tube ID: Vibracorer/3" round AI	Logged By: L.Mcl	Kee, C.Brackett
Decontered		Recov.Interval & Sample #	% Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log
	2			Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater VOCs Sulfides Archive Dioxins (IJ-C5) Bioassays (IJ-C5)	 ML: wet, very soft, greenish black (GLEY 1, 2.5/10Y), CLAYEY SILT. ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) CLAYEY SILT. Silt competancy increases toward basal contact. Trace rootlets. Trace hydrogen sulfide odor. ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) CLAYEY SILT, trace very fine sand. Trace fish matter (scales) below 2.2 feet and trace layers of fish matter. @ 2.0': 2" thick layer of substantial fish matter (scales, bones, shells). Slight hydrogen sulfide odor. ML: moist, medium-stiff, greenish black (GLEY 1, 2.5/10Y) CLAYEY SILT, trace medium to coarse sand. 	Homogenized for sample IJ-C5	
	\$	\rightarrow \leftarrow z1 \rightarrow		Archive	ML: moist, medium-stiff, greenish black (GLEY 1, 2.5/10Y) SILT, little medium to coarse sand. Moderate decomposed wood chips and shreds up to 1" L. CL: damp, stiff, greenish gray (GLEY 1, 5/GY)		
	6				CLAY, trace subrounded gravel up to 1" diameter. Clay is of high plasticity, rolls well, and is highly competant. End of core at 6.1'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.		

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks:	Drive notes: freefall (4.0'), easy (5.0'), moderate-hard (7.6	^{0'),} Calculated Recovery			ery
Seattle, WA 98134-1162 Phone: (206) 624-9349	no refusal	. Core shoe was 100% full of gray-green clay.	Samp	le Length/Pen	etratio	n Length:
Fax: (206) 624-2839				6.8 /7.0	= 97	%

	Âħ				R		Sediment Core L	og	Sheet 1 of 1
F	roj	ect:	POI	3 1&.	l Waterv	vay	Water Body Type: Marine	Tube Length (ft):	3.0
F	roj	ject i	#: P	ORT	B-18448	-310	Water Elevation (ft)/Tide: -3.0	Penetration Depth	(ft): 7.0
6	Clie	nt: I	Port	of B	ellingha	m	Water Depth (ft): 17.2	Sample Quality: G	ood
0	Coll	ectio	on D	ate: (06/13/06		Mudline Elevation (ft): -14.2	Recovery in ft (%):	5.2 (75)
	Con	trac	tor: I	NSS			N./LAT: 48 45.2519 E./LONG: 122 29.6311	Process Date: 06/*	14/06
	/es	sel:	R/V	Nan	cy Anne)	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method: (Cut tube
					worski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mcl	Kee. C.Brackett
		_	al		ζœ	w		· · · · · · · · · · · · · · · · · · ·	
	Recovered	Depth (ft)	Recov.Interval	Sample #	% Recovery (depth in ft)	Analysis	Sediment Description	Comments	In-situ
	200	Jept	ov.	am	Rec	Ana	Classification Scheme: USCS Contacts are recovered depth	for Recovered	Depths (ft)
ļ	ř		Rec	8	% (q		Contacts are recovered depth	Depths	& Graphic Log
	0 1			< \$1		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater VOCs Sulfides Archive Dioxins (IJ-C6) Bioassays (IJ-C6)	ML: wet, soft, greenish black (GLEY 1, 2.5/10Y) FISHY SILT. Abundant decomposed fish bones and scales up to 4" L, wood splinters and fragments up to 2.5" L, and shells up to 2.5" L. Very strong hydrogen sulfide odor.	Homogenized for sample IJ-C6	
	3			\rightarrow \rightarrow \rightarrow		Archive .	 3/10Y) SILT, little fine to medium sand. Very strong hydrogen sulfide odor. / ML: moist, medium-stiff, greenish gray (GLEY 1, 3/10Y) SILT, little, sand and clay. Silt texture increases in competancy toward basal contact. Scattered fish matter (bones) up to 2" L, shells both intact and fragments up to 2" L, and wood fragments up to 3"L. Hydrogen sulfide odor decreases toward basal contact from strong to trace. CL: moist, stiff, greenish gray (GLEY 1, 5/GY) CLAY. Clay rolls well and is of high plasticity. End of core at 4.8'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core. 	No sample collected, below 3.75' due to `` clay layer. Strongest hydrogen sulfide odor of all the cores logged.	
TI SO PI	11 att	SW ile, W ile: (2	Klick /A 9 :06)6		Vay, Suite 1162 349	≥ 207	Drive notes: freefall (3.5'), easy (6.0'), moderate-har . Core shoe was 100% full of gray-green clay.	Sample Length	ted Recovery /Penetration Length: 7.0 = 75 %

					Re		Sediment Core L	og	Sheet 1 of 1
Pr	roje	ect: P	ОВ	1&J	Waterw	/ay	Water Body Type: Marine	Tube Length (ft):	8.0
Pi	Project #: PORTB-18448-310 Client: Port of Bellingham				3-18448	-310	Water Elevation (ft)/Tide: -3.0	Penetration Depth	(ft): 7.0
C	lien	Ant: Port of Bellingham lection Date: 06/13/06 htractor: MSS lesel: R/V Nancy Anne erator: Bill Jaworski (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				m	Water Depth (ft): 13.4	Sample Quality: 0	Good
C	olle	ection	Dat	e: 0	6/13/06		Mudline Elevation (ft): -16.4	Recovery in ft (%)	6.7 (96)
C	ont	racto	r: MS	SS			N./LAT: 48 45.2702 E./LONG: 122 29.6068	Process Date: 06/	14/06
V	ess	sel: R	/V N	land	cy Anne	•	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube
0	per	rator:	Bill	Jav	vorski	·····	Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mc	Kee, C.Brackett
Recovered	-	Depth (ft)	cov.Intervai		Recovery lepth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered	In-situ Depths (ft)
ď		۔ `	Å Å	\$	% S	·		Depths	& Graphic Log
	•			\wedge		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive	ML: wet, soft, greenish black (GLEY 1, 2.5/10Y) FISHY SILT, trace subrounded gravel. Abundant decomposed fish scales and wood splinters up to 3.0" L, trace intact mussel shells up to 0.5" L and worms. Moderate hydrogen sulfide odor.	Homogenized for sample IJ-C6	
2 2 2	!			S1		Dioxins (IJ-C6) Bioassays (IJ-C6)	CL: moist, medium stiff, very dark greenish gray (GLEY 1, 5/GY) CLAY, few fine sand and clay. Scattered wood fragments and fish matter (bones). Trace to moderate hydrogen sulfide odor. @ 2.0': angular anthropogenic fragment		
3 3 	•	< -					ML: moist, soft, very dark greenish gray (GLEY 1, 3/10Y) FISHY SILT, little fine sand. Abundant fish matter (bones and scales). Very strong hydrogen sulfide odor.		3
4 4			-			Archive	ML: moist, soft, very dark greenish gray (GLEY 1, 3/10Y) SILT, little fine sand. Scattered fish matter (bones, scales, vertebrae). Moderate hydrogen sulfide odor.		
				- Z1		, wonve	ML: moist, medium-stiff, very dark greenish gray (GLEY 1, 3/10Y) SILT, few sand and clay. Scattered layer of fish matter (scales).		Z1-
5 5 	;			⊻			CL: damp, stiff, greenish gray (GLEY 1, 5/GY) CLAY, trace subrounded gravel. Clay is highly competant, of high plasticity, and rolls well.		5
+ + + + + +	÷						End of core at 6.5'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.		6-
The	e RI	ETEC	Gro	up. I	Inc.	Remarks	Drive notes: freefall (5.0'), moderate-hard (7.0'),		
101	11 S	SW KI	ickita	at W	ay, Suite	207			ited Recovery
Ph	one	e, WA e: (200	5) 624	4-93			. Proposed location was under the dock, actual is		n/Penetration Length:
Fax	x: (2	206) 6	24-2	839		6.0' from p	proposed.	6.7	/7.0 = 96 %

				Sediment Core L	og	Sheet 1 of 1
	Project: POB	I&J Waterw	vay	Water Body Type: Marine	Tube Length (ft):	3.0
	Project #: PC	ORTB-18448	-310	Water Elevation (ft)/Tide: +3.0	Penetration Depth	(ft): 7.0
	Client: Port of	of Bellingha	m	Water Depth (ft): 17.0	Sample Quality: G	ood
	Collection Da	te: 06/13/06		Mudline Elevation (ft): -14.0	Recovery in ft (%):	5.8 (92)
	Contractor: M	ISS		N./LAT: 48 45.2865 E./LONG: 122 29.5820	Process Date: 06/	14/06
	Vessel: R/V	Nancy Anne)	Horiz, Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube
Ì	Operator: Bi			Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mcl	Kee, C.Brackett
	tecovere Depth (f	& Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log
		$\langle S1 \rangle \langle Z1 \rangle$	Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C6) Bioassays (IJ-C6) Archive	 ML: wet, very soft, greenish black (GLEY 1, 2.5/10Y) FISHY SILT, trace sand. Abundant decomposed fish matter (bones) and mussel shells. ML: moist, soft, very dark greenish gray (GLEY 1, 5/GY) SILT, few sand and trace subrounded gravel up to 3" L. Silt competancy increases with depth. Moderate fish matter (scales). ML: moist, soft, very dark greenish gray (GLEY 1, 3/10Y) SILT, few fine to medium sand. Trace to scattered fish matter (scales), shells, and seams of decomposed wood. ML: moist, soft, very dark greenish gray (GLEY 1, 3/10Y) SILT, few sand and clay, trace subangular gravel up to 0.25" diameter. Moderate shell fragments. Trace hydrogen sulfide odor. ML: moist, soft, dark greenish gray (GLEY 1, 4/10Y) SILT, little medium to coarse sand. Trace rootlets. Grades to more sand towards basal contact. End of core at 5.3'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core. 	Homogenized for sample IJ-C6	
	The RETEC Gro 1011 SW Klicki Seattle, WA 98 Phone: (206) 624-2 Fax: (206) 624-2	tat Way, Suite 134-1162 24-9349	e 207 Remarks: no refusal	Drive notes: freefall (2.6'), moderate-hard (7.0'),	Sample Length	ted Recovery /Penetration Length: 7.0 = 92 %

				R		Sediment Core L	og	Sheet 1 of 1			
Project	t: P	OB	18.	Waterv	vay	Water Body Type: Marine	Tube Length (ft):	8.0			
······				B-18448		Water Elevation (ft)/Tide: -2.1					
lient:	Po	ort o	of B	ellingha	m	Water Depth (ft): 8.4	Sample Quality: G	iood			
			·····)6/13/06		Mudline Elevation (ft): -10.3	Recovery in ft (%): 6.8 (100)				
Contra	acto	r: N	ISS			N./LAT: 48 45.3000 E./LONG: 122 29.5616	Process Date: 06/				
				cy Anne		Horiz, Datum: NAD 83 Vert. Datum: MLLW	Process Method:				
				worski	·	Method/Tube ID: Vibracorer/3" round Al	Logged By: L.McI				
	1		Sample #	% Recovery (depth in ft)	Analysis	Sediment Description	Comments	In-situ			
Depth (ft)		Kecov.Interval	& Sam	% Re (dept	Ana	Classification Scheme: USCS Contacts are recovered depth	for Recovered Depths	Depths (ft) & Graphic Log			
1		_	<> <> <>		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C6) Bioassays (IJ-C6)	ML: wet, soft, greenish black (GLEY 1, 2.5/10Y) CLAYEY SILT, trace fine sand. Silt competancy and sand content increase towards basal contact. Trace shell and wood fragments up to 2" L and scattered worms. Trace hydrogen sulfide odor. ML: wet, soft, greenish black (GLEY 1, 2.5/10Y)	Homogenized for sample IJ-C6	S1 ×			
3			$-z_1 \rightarrow$		Archive	CLAYEY SILT, few fine sand. Trace rootlets and wood fragments.		- Z1>			
3						@ 3.8': seam of wood fragments (lumbered)					
>						ML: moist, medium-stiff, very dark greenish gray (GLEY 1, 3/10Y) CLAYEY SILT, little sand. Color is mottled black and greenish gray.					
	<i>د</i> ا	1	1	I		End of core at 6.8'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.	}	⊥}			
ne RET 11 SW eattle, none: (1x: (20)	V KI WA (206	icki 98 6) 62	tat W 134- 24-93	/ay, Suite 1162 49	Remarks:	Drive notes: easy (6.8'), no refusal.	Sample Length	ted Recovery /Penetration Leng 6.8 = 100 %			

	7		R		Sediment Core L IJ-30	og	Sheet 1 of 1		
Project:	POB	1&J	Waterv	vay	Water Body Type: Marine	Tube Length (ft):	8.0		
Project	#: PC	RTI	3-18448	3-310	Water Elevation (ft)/Tide: -0.5	Penetration Depth	(ft): 7.0		
Client:	a x x a x x a x x b x x b x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x c x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x <td>ım</td> <td>Water Depth (ft): 15.3</td> <td colspan="3">Good</td>			ım	Water Depth (ft): 15.3	Good			
					Mudline Elevation (ft): -15.8	: 6.5 (93)			
					N./LAT: 48 45.3170 E./LONG: 122 29.5745	Process Date: 06/			
	· · · · · · · · · · · · · · · · · · ·								
			-	9	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:			
Operato	or: Bi	ll Ja		1	Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mc	Kee, C.Brackett		
Recovered Depth (ft)	Recov.interval	& Sample #	% Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log		
		\uparrow		Metals SVOCs	ML: wet, very soft, black (GLEY 1, 2.5/N) SILT, few fine sand. Trace eel grass blades and mussel shell fragments up to 1" L. ML: wet, soft, black (GLEY 1, 2.5/N) SILT, few fine	Homogenized for sample IJ-C4-S1			
		\$1		PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C4-S1) Bioassays (IJ-C4-	ML: moist, soft, very dark gray (GLEY 1, 3/N) ML: moist, soft, very dark gray (GLEY 1, 3/N) CLAYEY SILT, few fine sand. Trace wood fragments.		S1		
					ML: moist, soft, very dark gray (GLEY 1, 3/N) CLAYEY SILT, few medium sand. Trace rootlets. Trace hydrogen sulfide odor.				
-4	· · · · · · · · · · · · · · · · · · ·	< S2		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive	ML: moist, medium stiff, dark reddish brown (5YR, 2.5/Z) WOODY SILT, little sand. Wood fragments and chips are up to 3" L. Sand grains are medium to coarse, angular, poorly sorted, multicolored (black, white, brownish-green), and non-native looking. Moderate hydrogen sulfide odor. @ 3.8': Strong hydrogen sulfide odor.	Homogenized for sample IJ-C4-S2 Bag @ 4.0' (sand, non-native looking).	> \$2 		
		$\frac{\downarrow}{\uparrow}$		Dioxins (IJ-C4-S2) Bioassays (IJ-C4- S2) Archive	ML: moist, medium stiff, very dark gray (GLEY 1, 3/N) SILT, few medium sand. Trace hydrodgen sulfide odor.				
		- 21			ML: moist, soft, very dark gray (GLEY 1, 3/N) CLAYEY SILT, few medium sand. Trace rootlets.				
6		\downarrow			End of core at 6.1'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.		. 21		
		l	 Ino			<u>i</u>			
The RETI 1011 SW				e 207	Drive notes: freefall (0-3'), easy (7.0'), no refusal.	Calcula	ated Recovery		
Seattle, V	NA 98	134-	1162		was 50 % full of black sandy silt with wood.	Sample Lengt	n/Penetration Lengt		
Phone: (2	206) 62 5) 624-3		49			· • • • •	/7.0 = 93 %		

R		Sediment Core L	og	Sheet 1 of 1			
Project: POB I&J Water	way	Water Body Type: Marine	Tube Length (ft):	8.0			
Project #: PORTB-18448	-310	Water Elevation (ft)/Tide: +1.0	Penetration Depth	th (ft): 7.0			
Client: Port of Bellingha	m	Water Depth (ft): 16.8	Sample Quality: G	bood			
Collection Date: 06/14/06		Mudline Elevation (ft): -15.8	Recovery in ft (%):	6.9 (99)			
Contractor: MSS		N./LAT: 48 45.3238 E./LONG: 122 29.5602	Process Date: 06/				
essel: R/V Nancy Anne perator: Bill Jaworski		Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method:	Cut tube			
		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.Mc	Kee, C.Brackett			
Recovered Depth (ft) Recov.Interval & Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log			
$\begin{array}{c} -0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ \end{array}$	Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C4-S1) Bioassays (IJ-C4- S1) Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C4-S2) Bioassays (IJ-C4- S2)	 ML: wet, soft, black (GLEY 1, 2.5/N) SILT. Trace leaf and wood fragments up to 3" L. ML: moist, soft, black (GLEY 1, 2.5/N) SILT with 2" diameter pockets of clay. Silt has increased competancy. Trace rootlets. Trace hydrogen sulfide odor. @ 1.2': 2" thick layer of moist, soft, black (GLEY 1, 2.5/N) SILT, few medium sand. Trace wood fragments up to 0.25" L. Moderate hydrogen sulfide odor. @ 2.2': layer of fish scales up to 0.5" L. ML: moist, medium stiff, black (GLEY 1, 2.5/N) SILT, few coarse sand and clay, trace sub-angular gravel. Sand is similar to that found in IJ-30. Gravel is up to 1" diameter. Trace dark red (5YR, 2.5/2) wood fragments up to 3" L. CL: damp, stiff, greenish gray (GLEY 1, 5/GY) CLAY. Clay is of high plasticity, rolls well, and is highly competant. 	Homogenized for sample IJ-C4-S1 Homogenized for sample IJ-C4-S2	$\langle \qquad \ \ \ \ \ \ \ \ \ \ \ \ \$			

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks: Drive notes: freefall (4.5'), moderate (5.0'), hard (7.0'), no	Calculated Recovery	
Seattle, WA 98134-1162 Phone: (206) 624-9349	refusal. Core shoe was full of stiff, gray, clay.	Sample Length/Penetration Length:	
Fax: (206) 624-2839		6.9 /7.0 = 99 %	

	RETEC					Sediment Core Log Sheet 1 of 1 IJ-32			
Project: POB I&J Waterway				Waterv	vay	Water Body Type: Marine	Tube Length (ft):	be Length (ft): 8.0	
Project #: PORTB-18448-310				B-18448	-310	Water Elevation (ft)/Tide: +2.6	Penetration Depth	(ft): 7.0	
Client: Port of Bellingham				ellingha	im	Water Depth (ft): 3.7	Sample Quality: Good		
С	Collection Date: 06/14/06					Mudline Elevation (ft): -1.1	Recovery in ft (%): 4.2 (60)		
С	Contractor: MSS					N./LAT: 48 45.3292 E./LONG: 122 29.5429	Process Date: 06/15/06		
V	essel:	R/V	Nan	cy Anne	3	Horiz. Datum: NAD 83 Vert. Datum: MLLW	Process Method: Cut tube		
0	perato	r: Bi	ll Ja	worski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.McKee, C.Brackett		
Ę	£	Nal	#	ery ft)	sis	Sediment Description	0	1	
Recovered	Depth (ft)		& Sample #	% Recovery (depth in ft)	Analysis	Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log	
		ď	~				Depins		
		•	<hr/> s1		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Sulfides VOCs Archive Dioxins (IJ-C4-S1) Bioassays (IJ-C4- S1)	SP: moist, medium dense, dark gray (GLEY 1, 4/N) FINE SAND, few silt. Jumbled texture. Trace intact clam shells up to 2" L and rootlets. Scattered wood fragments up to 3" L. Moderate to strong hydrogen sulfide odor. @ 0.0-0.8': Shell fragments with trace intact shells up to 2" L.	Homogenized for sample IJ-C4-S1		
			\rightarrow \langle \sim $z \rightarrow$ \rangle \langle \sim $z \rightarrow$ \rangle		Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Sulfides VOCs Archive Dioxins (IJ-C4-S2) Bioassays (IJ-C4- S2) Archive	SP: moist, medium dense, dark gray (GLEY 1, 4/N) MEDIUM SAND, trace subrounded gravel up to 2" diameter. Scattered shell fragments. End of core at 3.6'. In-situ depth = Recovered Interval / % Recovery Method assumes compaction is the same throughout the core.	Homogenized for sample IJ-C4-S2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	• RFTE	C. Gr		Inc	Pomarka				
1011 SW Klickitat Way, Suite 207			/ay, Suite	207	: Drive notes: moderate (7.0'), no refusal. Calculated Reco		-		
Ph	Phone: (206) 624-9349				Core shoe	vas full of dark gray sand with moderate Sample Length/Penetration Le		n/Penetration Length:	
Fa	Fax: (206) 624-2839 sulfide odor. 4.2 / 7.0 = 60 %								

B K		Sediment Core L	og	Sheet 1 of 1	
roject: POB I&J Waterw	ay	Water Body Type: Marine Tube Length (ft): 8.0			
roject #: PORTB-18448-	310	Water Elevation (ft)/Tide: +1.2	Penetration Depth (ft): 7.0		
lient: Port of Bellinghar	n	Water Depth (ft): 11.2 Sample Quality: Good Mudline Elevation (ft): -10.0 Recovery in ft (%): 6.8 (97) N./LAT: 48 45.3149 E./LONG: 122 29.5432 Process Date: 06/15/06			
ollection Date: 06/14/06					
Contractor: MSS					
essel: R/V Nancy Anne		Horiz. Datum: NAD 83 Vert. Datum: MLLW Proces		cess Method: Cut tube	
perator: Bill Jaworski		Method/Tube ID: Vibracorer/3" round Al	Logged By: L.McKee, C.Brackett		
Depth (ft) Depth (ft) Recov.Interval & Sample # % Recovery (depth in ft)	Analysis	Sediment Description Classification Scheme: USCS Contacts are recovered depth	Comments for Recovered Depths	<i>In-situ</i> Depths (ft) & Graphic Log	
	Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C4-S1) Bioassays (IJ-C4- S1)	ML: wet, very soft, greenish black (GLEY 1, 2.5/10Y) SILT. ML: moist, soft, greenish black (GLEY 1, 2.5/10Y) CLAYEY SILT, few fine sand. Trace rootlets and leaf stems. Grades to medium sand below 1.5'. Trace hydrogen sulfide odor.	Homogenized for sample IJ-C4-S1	S1	
	Metals SVOCs PCB TBT bulk Pesticides Conventionals Grain Size TBT porewater Archive Dioxins (IJ-C4-S2) Bioassays (IJ-C4- S2)	ML: moist, medium stiff, very dark gray (GLEY 1, 3/N) SILT, few fine to medium sand. Sand grains are poorly sorted and angular. Scattered shredded wood up to 2" L. Grades to no wood below 4.2". Sand content increases to little (25%) toward basal contact.	Homogenized for sample IJ-C4-S2	> S2	
		CL: damp, medium stiff, greenish gray (GLEY 1, 5/GY) CLAY, few sand. Jumbled texture.			

The RETEC Group, Inc. 1011 SW Klickitat Way, Suite 207	Remarks: Drive notes: easy (7.0'), no refusal.	Calculated Recovery
Seattle, WA 98134-1162 Phone: (206) 624-9349	Core shoe was full of gray-green clay.	Sample Length/Penetration Length:
Fax: (206) 624-2839		6.8 / 7.0 = 97 %