

PO Box 47775 · Olympia, Washington 98504-7775 · (360) 407-6300
711 for Washington Relay Service · Persons with a speech disability can call 877-833-6341

Electronic Copy

January 9, 2018

Mr. Jonathan Cheng Tourmaline Capitol 402 W Broadway, Suite 780 San Diego, California 92101

Re: No Further Action at a Property associated with a Site:

• **Site Name:** Bruce Titus Chevrolet

• Site Address: 633 Division Avenue, Tacoma, Washington 98403-3126

Facility/Site No.: 3427832
Cleanup Site ID: 5318
VCP Project No.: SW1616

Dear Mr. Cheng:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of a Property associated with the Bruce Titus facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issues Presented and Opinion

- 1. Is further remedial action necessary at the Property to clean up contamination associated with the Site?
 - NO. Ecology has determined that no further remedial action is necessary at the Property to clean up contamination associated with the Site.

This opinion is dependent on the continued performance and effectiveness of the post-cleanup controls and monitoring specified below.

2. Is further remedial action still necessary elsewhere at the Site?

YES. Ecology has determined that further remedial action is still necessary elsewhere at the Site.

Mr. Cheng January 9, 2018 Page 2

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Property and the Site

This opinion applies only to the Property and the Site described below. This opinion does not apply to any other sites that may affect the Property. Any such sites, if known, are identified separately below.

1. Description of the Property.

The Property includes the following tax parcel in Pierce County, which was affected by the Site and addressed by your cleanup:

2030120032.

The Property does not include portions of the following right-of-way easements, which are located on that parcel:

- North First Street
- Division Avenue

Enclosure A includes a legal description of the Property and diagrams of the Site that illustrate the location of the Property within the Site.

2. Description of the Site.

The Site is defined by the nature and extent of contamination associated with the following releases:

- Total petroleum hydrocarbons (TPH) in the gasoline range (TPH-G), TPH in the diesel range (TPH-D), TPH in the oil range (TPH-O) into the Soil and Groundwater.
- Volatile organic compounds (VOCs) into the Soil, Groundwater, and Air.
- Chlorinated VOCs into the Soil, Groundwater, and Air.
- Metals into the Soil and Groundwater.
- Polychlorinated biphenyls (PCBs) into the Soil.
- Vapor-phase hydrocarbons into the Air.

Please note that parcel(s) of real property associated with this Site are also located within the projected boundaries of the Morrells Dry Cleaning facility (Facility/Site ID #18489568). At this time, we have no information that those parcel(s) are actually affected. This opinion does not apply to any contamination associated with the Morrells Dry Cleaning facility.

Please note the parcel of real property associated with this Site is also located within the projected boundaries of the Asarco Tacoma Smelter facility (# 89267963). At this time, we have no information that the parcel is actually affected. This opinion does not apply to any contamination associated with the Asarco Tacoma Smelter facility.

3. Identification of Other Sites that may affect the Property.

Please note that parcel(s) of real property associated with this Site are also located within the projected boundaries of the Morrells Dry Cleaning facility (Facility/Site ID #18489568). At this time, we have no information that those parcel(s) are actually affected. This opinion does not apply to any contamination associated with the Morrells Dry Cleaning facility.

Please note the parcel of real property associated with this Site is also located within the projected boundaries of the Asarco Tacoma Smelter facility (# 89267963). At this time, we have no information that the parcel is actually affected. This opinion does not apply to any contamination associated with the Asarco Tacoma Smelter facility.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. Aspect Consulting, LLC (Aspect), *Remedial Investigation and Feasibility Study*, dated July 25, 2016
- 2. Aspect, Focused Feasibility Study, Former Walker Chevrolet, dated June 3, 2015.
- 3. Aspect, Focused Feasibility Study, Former Walker Chevrolet, dated May 16, 2014.
- 4. Stemen Environmental, Inc. (Stemen), *Due Diligence Sampling for Walker Chevrolet*, 633 Division Avenue, Tacoma, WA 98403, dated August 2006.
- 5. Bison Environmental Northwest, Inc. (Bison), *Independent Remedial Action Report Summary and Disposal Certificate*, Walker Chevrolet, 633 Division Avenue, Tacoma, WA, dated December 7, 1994.

- 6. Bison, *Phase 2B Subsurface Sampling*, Walker Chevrolet Paint Booth, 633 Division Avenue, Tacoma, WA, dated September 12, 1994.
- 7. Bison, *UST Removal Site Assessment and Independent Remedial Action Report for Walker Chevrolet*, 633 Division Avenue, Tacoma, WA 98403, dated August 1994.

The above documents are kept in the Central Files of the Southwest Regional Office of Ecology (SWRO) for review by appointment only. You can make an appointment by calling the SWRO resource contact at (360) 407-6365.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

1. Cleanup of the Property located within the Site.

Ecology has concluded that **no further remedial action** is necessary at the Property to clean up contamination associated with the Site. That conclusion is based on the following analysis:

a. Characterization of the Site.

Ecology has determined your characterization of the Site is sufficient to establish cleanup standards for the Site and select a cleanup for the Property.

The Site is described in detail in Ecology's Opinion on Proposed Cleanup letter dated April 11, 2017 and in Ecology's Further Action letter dated November 17, 2014.

b. Establishment of cleanup standards for the Site.

Ecology has determined the cleanup levels and points of compliance you established for the Site meet the substantive requirements of MTCA. MTCA Method A cleanup levels for unrestricted land use of soil and groundwater were used to characterize the Site.

The following cleanup levels and points of compliance established for the Site meet the substantive requirements of MTCA:

Analyte	Soil:	Groundwater:	Air:
• TPH-G	30 mg/kg	1,000 ug/l	NA
• TPH-D	2,000 mg/kg	500ug/l	NA
• TPH-O	2,000 mg/kg	500ug/l	NA
• Benzene	0.03 mg/kg	5 ug/l	0.321 ug/m3
 Toluene 	7 mg/kg	1,000 ug/l	2,290 ug/m3
• Ethylbenz	ene 6 mg/kg	700 ug/l	457 ug/m3
 Xylenes 	9 mg/kg	1,000 ug/l	45.7 ug/m3
• Lead (tota	al) 250 mg/kg	15 ug/l	NA
 Arsenic 	20 mg/kg	5 ug/l	NA
PCE	0.05 mg/kg	5 ug/l	9.62 ug/m3
• TCE	0.03 mg/kg	5 ug/l	0.37 ug/m3
 PCBs (TE 	EQ) 1 mg/kg	0.1 ug/l	NA
NA= NOT APPLIC	ABLE	•	

Points of Compliance:

Media	WAC	Point of Compliance
Soil-Direct Contact	173-340-740 (6)(d)	Based on human exposure via direct contact, the point of compliance is throughout the Site from ground surface to fifteen feet below the ground surface.
Soil- Protection of Groundwater	173-340-747	Based on the protection of groundwater, the point of compliance is throughout the Site.
Groundwater	173-340- 720(8)(b)	Based on the protection of groundwater quality, points of compliance are established as throughout the site from the uppermost level of the saturated zone extending vertically to the lowest most depth which could potentially be affected by the site.
Air Quality	173-340- 750(6)	Based on the protection of air quality, the point of compliance is ambient and indoor air throughout the Site.

c. Selection of cleanup for the Property.

Ecology has determined the cleanup you selected for the Property meets the substantive requirements of MTCA. The cleanup meets the minimum cleanup requirements and does not exacerbate conditions or preclude reasonable cleanup alternatives elsewhere at the Site.

In the July 25, 2016 Remedial Investigation Feasibility Study, Aspect selected Alternative 1 as the preferred remedy for this Site. Alternative 1 includes the decommissioning of MW-11, the recording of an environmental covenant for tax parcel 2030120032, and notifying the City that TPH contamination was identified in the 15 to 16.5 foot bgs interval of permitted soil borings in the ROW, i.e., AB-2, AB-2D, and AB-3. The environmental covenant would require notification to Ecology of any soil disrupting activities that have the potential to distribute contamination.

The Property owner (Stadium Retail LLC) has recorded an appropriate environmental covenant that restricts land use to activities that will not threaten human health or the environment, contains contaminated soil under an impermeable containment cap, and provides for regular evaluation and reporting to Ecology of groundwater and containment cap conditions. Instead of a right of way subordination agreement with the City of Tacoma, the North 1st Street and Division Avenue right of ways have been excluded from this opinion (Enclosure B). Monitoring well MW-11 is not to be decommissioned and shall be incorporated into the long term monitoring at the Site.

d. Cleanup of the Property.

Ecology has determined the cleanup you performed meets the applicable Site cleanup standards within the Property. This determination is dependent on the continued performance and effectiveness of the post-cleanup controls and monitoring specified below

2. Cleanup of the Site as a whole.

Ecology has concluded that **further remedial action** under MTCA is still necessary elsewhere at the Site. In other words, while your cleanup constitutes the final action for the Property, it constitutes only an **"interim action"** for the Site as a whole.

Post-Cleanup Controls and Monitoring

Post-cleanup controls and monitoring are remedial actions performed after the cleanup to maintain compliance with cleanup standards. This opinion is dependent on the continued performance and effectiveness of the following:

1. Compliance with institutional controls.

Institutional controls prohibit or limit activities that may interfere with the integrity of engineered controls or result in exposure to hazardous substances.

The following institutional controls are necessary at the Property:

- Restrictions on land.
- Restrictions on groundwater use.

Engineered controls prevent or limit movement of, or exposure to, hazardous substances. The following engineered controls are necessary at the Site:

• 2030120032

Ecology approved the recorded Covenant. A copy of the Covenant is included in **Enclosure A**.

2. Operation and maintenance of engineered controls.

Engineered controls prevent or limit movement of, or exposure to, hazardous substances. The following engineered controls are necessary at the Site:

• Every twenty-four month groundwater monitoring, inspection and maintenance, if necessary, of the existing asphalt cap.

Ecology has approved the operation and maintenance plan you submitted for these engineered controls. A copy of the plan is included in **Enclosure A**.

3. Performance of confirmational monitoring.

Confirmational monitoring is necessary at the Property to confirm the long-term effectiveness of the cleanup. The monitoring data will be used by Ecology during periodic reviews of post-cleanup conditions. Ecology has approved the monitoring plan you submitted. A copy of the plan is included in **Enclosure A**.

Periodic Review of Post-Cleanup Conditions

Ecology will conduct periodic reviews of post-cleanup conditions at the Property to ensure that they remain protective of human health and the environment.

Mr. Cheng January 9, 2018 Page 8

If Ecology determines, based on a periodic review, that further remedial action is necessary at the Property, then Ecology will withdraw this opinion.

Listing of the Site

Based on this opinion, Ecology will update the status of remedial action at the Site on our database of hazardous waste sites. However, because further remedial action is still necessary elsewhere at the Site, we will not remove the Site from our lists of hazardous waste sites. Furthermore, the Property will remain listed as part of the Site because the cleanup of the Property does not change the boundaries of the Site.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Change the boundaries of the Site.
- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. *See* RCW 70.105D.030(1)(i).

Contact Information

Thank you for cleaning up your Property under the Voluntary Cleanup Program (VCP). We look forward to working with you to clean up the remainder of the Site.

For more information about the VCP and the cleanup process, please visit our web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm. If you have any questions about this opinion, please contact me by phone at (360)407-63647 or at Nicholas.Acklam@ecy.wa.gov.

Sincerely,

Nicholas M. Acklam

SWRO Toxics Cleanup Program

Nicholas M. Shelam

NMA: kb

By Certified Mail: [91 7199 9991 7037 7471 8859]

Enclosures (2): A – Environmental Covenant

B – September 22, 2017 email from City of Tacoma RE: Subordination

Request

cc: Jeff Borum, Tor Environmental, Inc.

Rob Olson, Tacoma Pierce County Health District

Chris Bacha, City of Tacoma Stephanie Bussell, Ecology Carol Johnston, Ecology Megan MacClellan, Ecology

Enclosure A Environmental Covenant

201712120151 Page 1 of 39

201712120151

Electronically Recorded

Pierce County, WA **RJOHNSO** 9:11 AM

12/12/2017

Pages: 39

Fee: \$112.00

After Recording Return Original Signed Covenant to: Nicholas M. Acklam Toxics Cleanup Program Department of Ecology Southwest Regional Office P.O. Box 47775 Olympia, Washington 98504-7775

Electronically Recorded

Environmental Covenant

Grantor: Stadium Retail LLC

Grantee: State of Washington, Department of Ecology (hereafter "Ecology")

Brief Legal Description: Full legal description provided in Exhibit A and property map provided in Exhibit B. Property is located in Tacoma and bound by Division Avenue on the southeast, North First Street on the northwest, and a parking lot on the northeast.

Tax Parcel Nos.: Pierce County Tax Parcel No. 2030-12-0032 and adjoining City of Tacoma rights-of-way extending to the adjoining curb lines, from 60 feet northeast and parallel to the southwest parcel boundary, to 20 feet southwest and parallel to the southwest parcel boundary, to 10 feet northwest and parallel to the northwest parcel boundary, to 25 feet southeast and parallel to the southeast parcel boundary.

RECITALS

- This document is an environmental (restrictive) covenant (hereafter "Covenant") executed pursuant to the Model Toxics Control Act ("MTCA"), chapter 70.105D RCW, and Uniform Environmental Covenants Act ("UECA"), chapter 64.70 RCW.
- The Property that is the subject of this Covenant is part or all of a site commonly known as Walker Chevrolet (aka Bruce Titus Chevrolet, Friendly Chevrolet) Site and Facility Site ID No. 3427832, and portions of the adjoining rights-of-way. The Property is legally described in Exhibit A, and illustrated in Exhibit B, both of which are attached (hereafter "Property"). If there are differences between these two Exhibits, the legal description in Exhibit A shall prevail.

This instrument filed for record by First American Title Insurance Company As an accommodation only, it has not Been examined as to its execution or As to its effect upon the title

c. The Property is the subject of remedial action conducted under MTCA. This Covenant is required because residual contamination remains on the Property after completion of remedial actions. Specifically, the following principal contaminants remain on the Property:

Medium	Principal Contaminants Present
Soil	Gasoline-, diesel-, and motor oil-range total petroleum hydrocarbons (TPH), lead, tetrachloroethylene (PCE), polychlorinated biphenyls (PCBs), toluene, and xylenes
Groundwater	Trichloroethylene (TCE)
Surface Water/Sediment	Not applicable

- d. It is the purpose of this Covenant to restrict certain activities and uses of the Property to protect human health and the environment and the integrity of remedial actions conducted at the site. Records describing the extent of residual contamination and remedial actions conducted are available through Ecology. This extent of residual contamination and historical remedial actions are described in the following documents:
 - Remedial Investigation/Feasibility Study for the Former Walker Chevrolet Site (Aspect Consulting, July 25, 2016).
 - Underground Storage Tank Removal Site Assessment and Independent Remedial Action Report for the South Gas Station (Bison Environmental Northwest, August 1994).
 - Phase 2 Studies, Floor Drain and Heating Oil UST Closure, Walker Chevrolet Paint Booth (Bison Environmental Northwest, August 15, 1994).
 - Phase 2B Subsurface Sampling, Walker Chevrolet Paint Booth (Bison Environmental Northwest, September 9, 1994).
- e. This Covenant grants Ecology certain rights under UECA and as specified in this Covenant. As a Holder of this Covenant under UECA, Ecology has an interest in real property, however, this is not an ownership interest which equates to liability under MTCA or the Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. § 9601 et seq. The rights of Ecology as an "agency" under UECA, other than its' right as a holder, are not an interest in real property.

COVENANT

Stadium Retail LLC, as Grantor and fee simple owner of the Property hereby grants to the Washington State Department of Ecology, and its successors and assignees, the following covenants. Furthermore, it is the intent of the Grantor that such covenants shall supersede any prior interests the GRANTOR has in the property and run with the land and be binding on all current and future owners of any portion of, or interest in, the Property.

Section 1. General Restrictions and Requirements.

The following general restrictions and requirements shall apply to the Property:

- Interference with Remedial Action. The Grantor shall not engage in or allow any activity on the Property that may impact or interfere with the remedial action and any operation, maintenance, inspection or monitoring of that remedial action without prior written approval from Ecology.
- Protection of Human Health and the Environment. The Grantor shall not engage in or allow any activity on the Property that may threaten continued protection of human health or the environment without prior written approval from Ecology. This includes, but is not limited to, any activity that exacerbates or creates a new exposure to residual contamination remaining on the Property.
- Continued Compliance Required. Grantor shall not convey any interest in any portion of the Property without providing for the continued adequate and complete operation, maintenance c. and monitoring of remedial actions and continued compliance with this Covenant.
- Leases. Grantor shall restrict any lease for any portion of the Property to uses and activities consistent with this Covenant and notify all lessees of the restrictions on the use of the Property.
- Activity Inconsistent With Covenant. Grantor must notify and obtain approval from Ecology at least sixty (60) days in advance of any proposed activity or use of the Property in a manner that is inconsistent with this Covenant. Before approving any proposal, Ecology must issue a public notice and provide an opportunity for the public to comment on the proposal. If Ecology approves the proposal, the Covenant will be amended to reflect the change.
- Preservation of Reference Monuments. Grantor shall make a good faith effort to preserve any reference monuments and boundary markers used to define the areal extent of coverage of this Covenant. Should a monument or marker be damaged or destroyed, Grantor shall have it replaced by a licensed professional surveyor within 30 days of discovery of the damage or destruction.

Specific Prohibitions and Requirements. Section 2.

In addition to the general restrictions in Section 1 of this Covenant, the following additional specific restrictions and requirements shall apply to the Property.

Containment of Soil.

The remedial action for the Property is based on containing contaminated soil under a cap consisting of the portions of the existing building on the Property that have been used by automotive businesses and the asphalt and concrete paved surfaces on adjoining rights-of-way between the building and street curb lines near the southern portion of the building. The 25,820square-foot building occupies the majority of the 29,730-square-foot parcel. The building was originally constructed in 1926 and was renovated in 2016. The 12,080 square feet of the building located in Block 3013 of the survey (Exhibit B) has been continuously used by grocery store businesses on the first floor since 1931 and is not subject to soil containment restrictions. The remaining 13,740 square feet of the building in the vacated North G Street right-of-way and in Block 3014 were used by automotive businesses from 1926 to 2015, prior to expansion of the grocery store after May 2009 and renovation of the building in 2016.

The extent of the cap is illustrated in Exhibit C. The primary purpose of the building cap is to prevent potential contact with contaminated soil and to minimize leaching of contaminants to groundwater. The primary purpose of the pavement cap is to minimize leaching of contaminants to groundwater. As such, the following restrictions shall apply within the areas illustrated in Exhibit C:

For the building cap, the Grantor shall not alter or remove the existing structures on the Property in any manner that would expose contaminated soil, result in a release to the environment of contaminants, or create a new exposure pathway, without prior written approval of Ecology. Should the Grantor propose to remove all or a portion of the existing structure designated as a cap so that access to the underlying contamination is feasible, Ecology may require treatment or removal of the underlying contaminated soil.

If the Grantor becomes aware of any activities proposed on the adjacent portions of the City of Tacoma right-of-way that will compromise the integrity of the cap including: drilling; digging; piercing the cap with sampling device, post, stake or similar device; grading; excavation; installation of underground utilities; or removal of the cap shall be reported to Ecology in writing within forty-eight (48) hours of notification. The Grantor shall report to Ecology within forty-eight (48) hours of the discovery of any damage to the cap.

b. Compliance Groundwater Monitoring.

Monitoring well MW-11, located inside the building on the Property and shall be monitored every twenty-four (24) months and protected in accordance with the long term groundwater monitoring and cap integrity plan in Exhibit D. The Grantor shall maintain clear access to this device and protect it from damage. The Grantor shall report to Ecology within forty-eight (48) hours of the discovery of any damage to this monitoring device. Unless Ecology approves of an alternative plan in writing, the Grantor shall promptly repair the damage and submit a report documenting this work to Ecology within thirty (30) days of completing the repairs. During each groundwater compliance-monitoring event, the Grantor and/or Grantor's designee shall collect groundwater samples and submit a report to Ecology documenting the methods and results in accordance with the Site Compliance Monitoring Program (Exhibit D).

c. Groundwater Use: Groundwater shall not be extracted at the Site for any purpose other than temporary construction dewatering, investigation, monitoring, or remediation. Drilling of a well for any water supply purpose is strictly prohibited. Groundwater extracted from the Property for any purpose shall be considered potentially contaminated and any discharge of this water shall be done in accordance with state and federal law.

Section 3. Access.

- a. The Grantor shall maintain clear access to all remedial action components necessary to construct, operate, inspect, monitor and maintain the remedial action.
- b. The Grantor freely and voluntarily grants Ecology and its authorized representatives, upon reasonable notice, the right to enter the Property at reasonable times to evaluate the effectiveness of this Covenant and associated remedial actions, and enforce compliance with this Covenant and those actions, including the right to take samples, inspect any remedial actions conducted on the Property, and to inspect related records.
- c. No right of access or use by a third party to any portion of the Property is conveyed by this instrument.

Section 4. Notice Requirements.

- a. Conveyance of Any Interest. The Grantor, when conveying any interest in any part of the property, including but not limited to title, easement, leases, and security or other interests, must:
 - i. Provide written notice to Ecology of the intended conveyance at least thirty (30) days in advance of the conveyance. This provision does not apply to portions of the building outside in Survey Block 3013, as described in Section 2.a and Exhibits B and C, or to portions of the building on the floors located above the designated building cap. This includes portions of the building with ground floor entrances along Division Avenue. Waiver of this advance notice to Ecology for these transactions does not constitute waiver of this notice for the entire Property nor a waiver of the requirement in Section 4.a.ii to include this notice in any document conveying interest in the Property.
 - ii. Include in the conveying document a notice in substantially the following form, as well as a complete copy of this Covenant:
 - NOTICE: THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL COVENANT GRANTED TO THE WASHINGTON STATE DEPARTMENT OF ECOLOGY ON _____ AND RECORDED WITH THE PIERCE COUNTY AUDITOR UNDER RECORDING NUMBER _____. USES AND ACTIVITIES ON THIS PROPERTY MUST COMPLY WITH THAT COVENANT, A COMPLETE COPY OF WHICH IS ATTACHED TO THIS DOCUMENT.
 - iii. Unless otherwise agreed to in writing by Ecology, provide Ecology with a complete copy of the executed document within thirty (30) days of the date of execution of such document.
- b. Reporting Violations. Should the Grantor become aware of any violation of this Covenant, Grantor shall promptly report such violation in writing to Ecology.
- c. Emergencies. For any emergency or significant change in site conditions due to Acts of Nature (for example, flood or fire) resulting in a violation of this Covenant, the Grantor is authorized to respond to such an event in accordance with state and federal law. The Grantor must notify Ecology in writing of the event and response actions planned or taken as soon as practical but no later than within 24 hours of the discovery of the event.
- d. Notification procedure. Any required written notice, approval, reporting or other communication shall be personally delivered or sent by first class mail to the following persons. Any change in this contact information shall be submitted in writing to all parties to this Covenant. Upon mutual agreement of the parties to this Covenant, an alternative to personal delivery or first class mail, such as e-mail or other electronic means, may be used for these communications.

Environmental Covenants Coordinator
Washington State Department of Ecology
Toxics Cleanup Program
P.O. Box 47600
Olympia, WA 98504 – 7600
(360) 407-6000

ToxicsCleanupProgramHQ@ecy.wa.gov

Section 5. Modification or Termination.

- a. Grantor must provide written notice and obtain approval from Ecology at least sixty (60) days in advance of any proposed activity or use of the Property in a manner that is inconsistent with this Covenant. For any proposal that is inconsistent with this Covenant and permanently modifies an activity or use restriction at the site: ²
- i. Ecology must issue a public notice and provide an opportunity for the public to comment on the proposal; and
- ii. If Ecology approves of the proposal, the Covenant must be amended to reflect the change before the activity or use can proceed.
- b. If the conditions at the site requiring a Covenant have changed or no longer exist, then the Grantor may submit a request to Ecology that this Covenant be amended or terminated. Any amendment or termination of this Covenant must follow the procedures in MTCA and UECA and any rules promulgated under these chapters.

Section 6. Enforcement and Construction.

- a. This Covenant is being freely and voluntarily granted by the Grantor.
- b. Within ten (10) days of execution of this Covenant, Grantor shall provide Ecology with an original signed Covenant and proof of recording and a copy of the Covenant and proof of recording to others required by RCW 64.70.070.
- c. Ecology shall be entitled to enforce the terms of this Covenant by resort to specific performance or legal process. All remedies available in this Covenant shall be in addition to any and all remedies at law or in equity, including MTCA and UECA. Enforcement of the terms of this Covenant shall be at the discretion of Ecology, and any forbearance, delay or omission to exercise its rights under this Covenant in the event of a breach of any term of this Covenant is not a waiver by Ecology of that term or of any subsequent breach of that term, or any other term in this Covenant, or of any rights of Ecology under this Covenant.
- d. The Grantor shall be responsible for all costs associated with implementation of this Covenant. Furthermore, the Grantor, upon request by Ecology, shall be obligated to pay for Ecology's costs to process a request for any modification or termination of this Covenant and any approval required by this Covenant.
- e. This Covenant shall be liberally construed to meet the intent of MTCA and UECA.
- f. The provisions of this Covenant shall be severable. If any provision in this Covenant or its application to any person or circumstance is held invalid, the remainder of this Covenant or its

² An example of an activity that is unlikely to be considered a permanent modification is a proposal to disturb a cap to repair an existing underground utility that passes through the site. However, installing a new underground utility within a capped area would be a permanent change.

¹ Example of inconsistent uses are using the Property for a use not allowed under the covenant (i.e. mixed residential and commercial use on a property restricted to industrial uses), OR drilling a water supply well when use of the groundwater for water supply is prohibited by the covenant.

application to any person or circumstance is not affected and shall continue in full force and effect as though such void provision had not been contained herein.

g. A heading used at the beginning of any section or paragraph or exhibit of this Covenant may be used to aid in the interpretation of that section or paragraph or exhibit but does not override the specific requirements in that section or paragraph.

EXECUTED this 29 day of November, 2017.
- Jul P
by: Jonathan Cheng
Title: Manager, Stadium Retail LLC
A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.
the document to which this certificate is attached, and not the truthrumess, accuracy, or various or that document.
STATE OF CALIFORNIA)
COUNTY OF SAN DIEGO) ss.
On Natural 24, 2017, before me, Hunity Schull, a Notary Public, personally appeared That Will Ching, who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.
WITNESS my hand and official seal.
[SEAL] Notary in and for the State of California
JENNIFER SCHELL Notory Public - California San D'ego County Commission # 2184675 My Comm. Expres Mar 25, 2021

The undersigned Grantor warrants he/she holds the title to the Property and has authority to execute

this Covenant.

The Department of Ecology, hereby accepts the status as GRANTEE and HOLDER of the above Environmental Covenant.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

·	
by: Reberia S. Lawson	
Title: SwRo Section Manager	
Dated: 12/7/2017	
·	
//	TE ACKNOWLEDGMENT
STATE OF Washington	
STATE OF Washington	
COUNTY OF Thurston	
On this 7th day of Samuela, 20/71 certify that & personally appeared before me, acknowledged that he/shees the 70x	ebecca S. Lawson
personally appeared before me, acknowledged that he/shess the Tox	ic frogram Manager
of the state agency that executed the within and foregoing instrument	, and signed said manufaction
free and voluntary act and deed, for the uses and purposes therein me	ntioned, and on oath stated that
he/she was authorized to execute said instrument for said state agency	•
$\langle \rangle$	0.1
$\sim \rho \sim \rho$	\mathcal{M}_{\bullet}
(Noma Co	tedua
Notary Public in and fo	or the State of Washington
APAIN L. GAM.	
STORE	\ A
Residing at June	oia WH
F IO NOTARY WE E	

My appointment expires 9-17-2019

Exhibit A

LEGAL DESCRIPTION

That portion of Blocks 3013 and 3014, Map of New Tacoma, W.T., according to the plat thereof recorded February 3, 1875, in Pierce County, Washington; together with that portion of North "G" Street lying between said Blocks 3013 and 3014 vacated by Ordinance Number 65 of the City of Tacoma; also together with that vacated portion of the southeasterly 5.2 feet of North 1st Street lying northwesterly of and abutting Lot 1, Block 3013, as vacated by City of Tacoma Ordinance No. 25654;

Lying southwesterly of the following described line:

Commencing at the most northly corner of said Block 3013;

Thence along the margin of North 1st Street as vacated by said Ordinance No. 25654 north 63°01'48" west, 5.20 feet;

Thence continuing along said margin south 27°00'49" west, 16.42 feet to the point of beginning;

Thence south 63°01'48" east, 28.21 feet;

Thence south 10°23'24" east, 18.28 feet;

Thence south 62°54'47" east, 107.48 feet;

Thence north 27°59'16" east, 31.18 feet to the north line of aforesaid Block 3013;

Thence along said north line south 63°01'48" east, 45.86 feet to the northeast corner of aforesaid Block 3013 and the terminus of this described line.

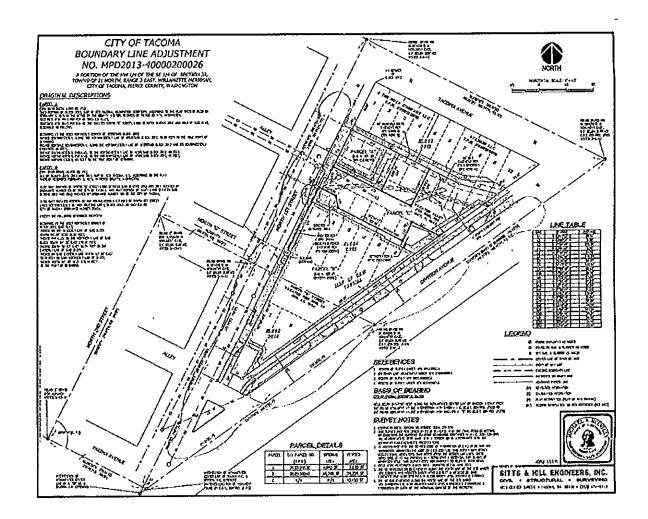

Mapped as Revised Parcel B in boundary survey performed by Sitts & Hill Engineers, Inc. in March 2013 (See Exhibit B).

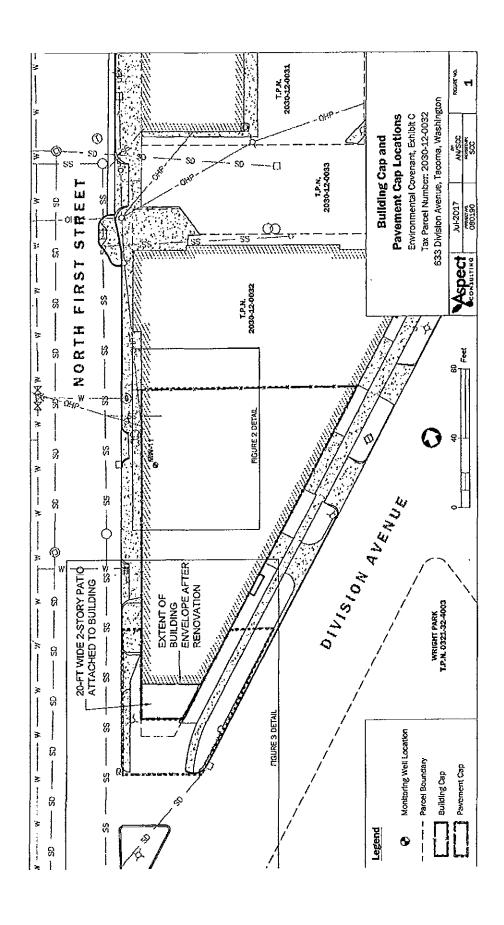
Exhibit B

PROPERTY MAP

. Record of Survey under AFN 201307095003

ME WANT OF LE CHOIL	NE EMETER 6 24 2 EM (A) 10 1 6 2		FACOMA YY LINE ADJUSTIAENT 2013-40000200026	PDS DIRECTION PRINTS CARPOR TO EASTE USE OF TE STORESTE D THE CAY OF MANA PER DETECT
The second secon	# E (4) (1)	PORTON OF THE TOWNSHIP SI H	NT 1/4 OF THE SE 1/4 OF SECTION 32. RANGE 3 E. HELAVETTE MERCAN	APPROVED FOR RECORDING
OWERS STATEMENT		DESCRIPTION OF THE PROPERTY OF	NO. 283012-003-9, 2022121-094-6	CITY TREADURER INSENDING NAMED AND ADDRESS OF A DOCUMENT OF A DATE OF A DAT
IN SECRET OF CASANI S OF THE MIX DOT ON A SERVED SEE SECRET OF THE MIX DOT ON A SERVED SEE SECRET OF THE MIX DOTS OF THE MIX D	SEVISED DESCRIPTIONS FIVED DAY IN THE TOP OF THE OF SEVEN OF THE OTHER FOR THE TOP OF THE OTHER OF THE OTHER FOR THE TOP OT	CHE LOOK SOME BANKER SOME BANKER SOME CHEST SER CHEST SER AND SERVICE AND SERVICE CHEST S	STATE SEARCH CONTROL OF STATE OF SEARCH STATE OF SEARCH SE	ASSESSOR / TREASURER SOUTH THE STATE OF THE
STOCK STATEMENT OF	APPROVAL NOTES APPROVAL NOTES I was some of the control of the c	THE STATE OF A METER OF THE STATE OF THE STA	RECEPTION ASSESSED OF SECRETARISES OF SECRETAR	USER A MERIC RASHINA DES BOUNDARY IN EMBRICATE IN FOR A PAUL REPART OF RENTANCE MANY BY PROPERTY OF STATEMENT TRACT OWNERS INC. PRO PROPERTY DESTRUCT OF RENTANCE MANY BY PROPERTY OF RENTANCE OF RENTANCE MANY BY PROPERTY OF RENTANCE IN THE PROPERTY OF RENTANCE IN THE PROPERTY OF T

Exhibit C


MAP ILLUSTRATING LOCATION OF RESTRICTIONS

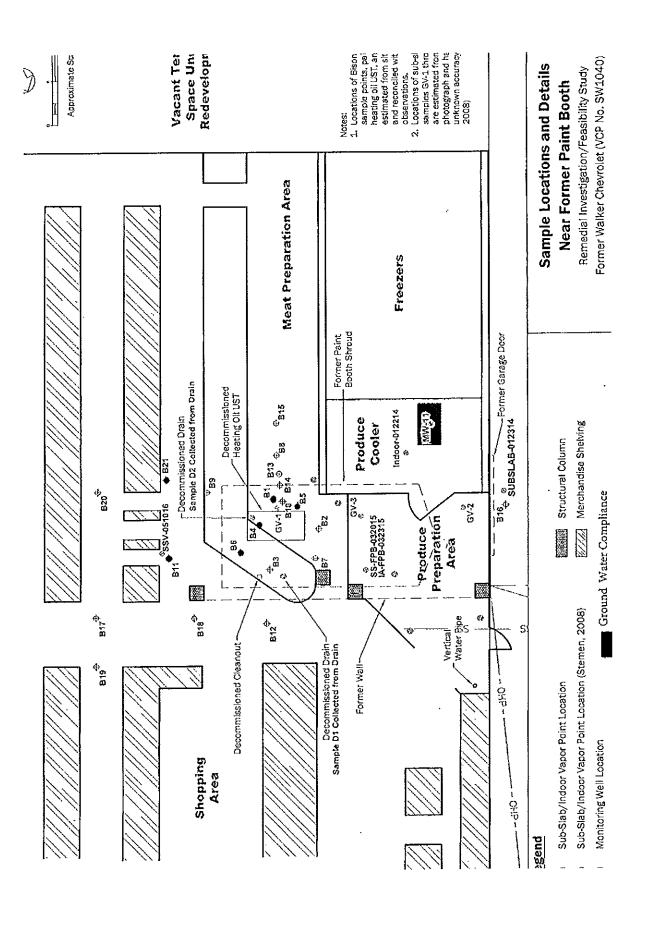

LIST OF FIGURES

FIGURE 1 — BUILDING CAP AND PAVEMENT CAP LOCATIONS
FIGURE 2 — SAMPLE LOCATIONS AND DETAILS NEAR FORMER PAINT BOOTH
FIGURE 3 — SAMPLE LOCATIONS AND DETAILS AT FORMER SOUTH GAS STATION

LIST OF TABLES

Table 1 – Soil Sample Results near Former Paint Booth
Table 2 – Groundwater Sample Results from MW-11 near Former Paint Booth
Table 3 – Soil Sample Results at South Gas Station

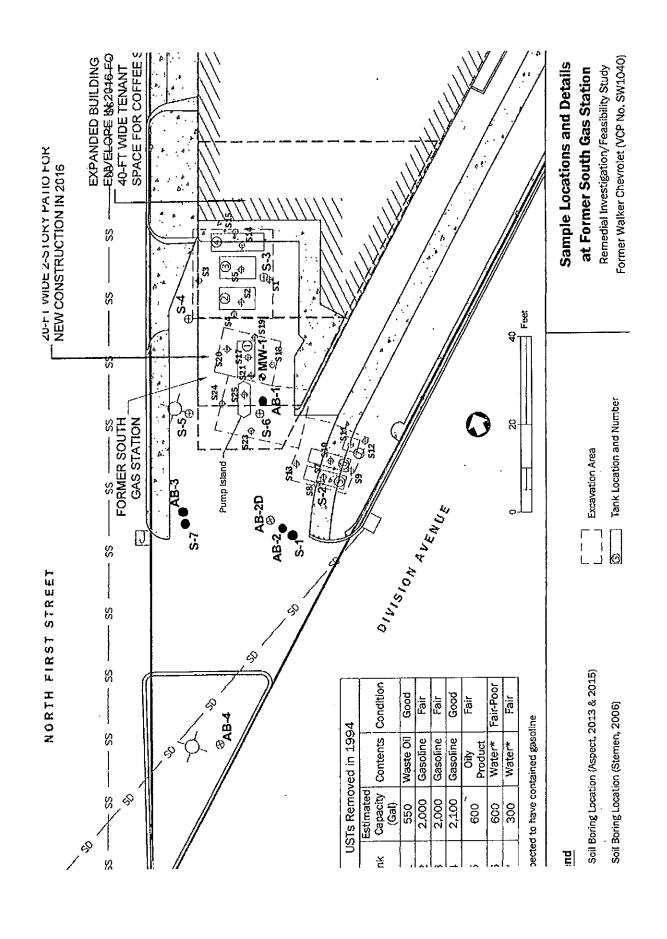


Table 1 - Soil Sample Results Near Former Paint Booth, Pierce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Netherot A Net			Soil, MTCA											
Laboratory Characteristics Land Use, Method Characteristics Land Use, Method Characteristics Characteristics Land Use, Method Characteristics Characterist			Method A,											
Marched Theile Value Theile Va			Unrestricted Land Use,	Soit, MTCA Method B,		•								
MAYPH-GX		Laboratory	Table Value	Table Value	5	8	81-5.5	82-5.5	23	7	33	85-7.5	85.9	85-10
MAYTPH-GA 100 Inside Dani Inside Dan	Description/Chemical Name	Method	(mg/kg)	(mg/kg)	7/30/1994	7/30/1994	8/3/1994	8/3/1894	8/3/1994	8/3/1994	9/6/1994	9/6/1994	9/6/1994	9/6/1994
WYTPH-GX 1DG NATPH-GX 1DG NATPH-GX 2DG NATPH-GX 2DG NATPH-GX 2DG NATPH-GX 2DG NATPH-GX NATPH-GX <t< td=""><td>Sample Depth</td><td></td><td></td><td></td><td>Sediment Inside Drain</td><td>Sediment Inside Drain</td><td>१३॥</td><td>5.5 h</td><td>2 ft</td><td>-3स</td><td>5 ft</td><td>7.5 ft</td><td>)) 6</td><td>10 n</td></t<>	Sample Depth				Sediment Inside Drain	Sediment Inside Drain	१३॥	5.5 h	2 ft	-3स	5 ft	7.5 ft)) 6	10 n
WYTPH-GRAM Library NATER PLANCE 2,000 NATER PLANCE NATER PLANCE 2,000 NATER PLANCE 2,000 NATER PLANCE 2,000 NATER PLANCE 2,	Total Petroleum Hydrocarbons (TPN)													
WYTPH-HONE 2,000 WYTPH-HONE	TPH, Gasoline-Range (mg/kg)	NWTPH-Gx	100											
WYTPH-HGD 100	TPH, Diesel-Range (mg/kg)	WWTPH-Dx	2,000											
WYPH-HCID, 100 WYPH-HCID,	TPH, Motor Oli-Range (mg/kg)	WATPH-DX	2,000											
MYPH-HCTD, 2,000T MYPH		WTPH-HCID,												
WYPH-HCID, LOUD LOUD WPH-HCID, LOUD SEG U SEG	TPH, Gasotine-Range (mg/kg)	418.1	100								D 02			Ω 82
WTRHHACK, 2,000		WTPH-HCID.									: ;			:
WYTHHACOL COOK WYTHHACOL COOK	TPH, Diesel-Range (mg/kg)	418.1	2,000								ກ ວ			20 05
4.18.1 2.000		WYPH-HOID.												
	TPH, Heavy Oil-Range (mg/kg)	418.1	2,000								390			280
\$250C 0.03 18.2 16.58 % 0.025 U 0.036 U 0.005	TPH, undifferentiated (mg/kg)	418.1	001					79	96			2,500		
8750C 0.03 18.2 16.25 U 0.23 U 0.035 U 0.005	Volatile Petroleum Compounds													
3250C 7 6,400 7.30° 3/2 0.055 U 2.2 0.005 U 0.005 U <td>Benzene (mg/kg)</td> <td>8260C</td> <td>0.03</td> <td>18.2</td> <td>:0.59 ± (#</td> <td>D.025 U</td> <td>0.23 U</td> <td></td> <td>0,005 U</td> <td>0.005 U</td> <td>0.005 U</td> <td></td> <td></td> <td>0.024</td>	Benzene (mg/kg)	8260C	0.03	18.2	:0.59 ± (#	D.025 U	0.23 U		0,005 U	0.005 U	0.005 U			0.024
875BCC 6 8,0000 ->	Tokiene (mg/kg)	8260C		6,400	. 20 ⋅ 1/6	0.025 U			0,013	5.007	0,096 B			0.72 B
R250C 50 16,000 10,005 0.13 10,005 0.01 0.	Ethylbenzene (mg/kg)	826bC	9	8.000	- 20.40 Page	0.025 U	2.2		0.005 U	0.005	0,005 บ			0,13
existor 0.005 1.0 0.055 U 0.46 U 0.01 U <td>Xylenes,total (mg/kg)</td> <td>32600</td> <td>6</td> <td>16.000</td> <td> 3.8</td> <td>Q.19</td> <td>* 140 ×</td> <td></td> <td>0.005</td> <td>900.0</td> <td>0.01</td> <td></td> <td></td> <td>0.79</td>	Xylenes,total (mg/kg)	32600	6	16.000	3.8	Q.19	* 140 ×		0.005	900.0	0.01			0.79
May (a) £25GC 0.05 0.5 0.01 0.01 U	Fuel Additives and Blending Compounds													
RESECT 11 0.5 U 0.025 U 0.005	1.2-Dibromoethane (EDB; mg/kg)	82600	0.005	0.5	1 U	0.05 U	0.46 U		0.01 U	U 10,0	0.01 U			0.01 U
Figure F	1,2-Dichloroethane (EDC; mg/kg)	82600		11	0.5.0	0.025 U	0.23 U		0.005 U	ช.ฮฮร บ	0.005 U			0.005 U
100.8 250 100.8	Methyl tert-butyl ether (MTBE; mg/kg)	82600	0.1	555.6	NR	NR.	S.N		ΑN	R.	Ξ.			딸
REZENCE 4,000 17 0,025 U 0,45 0,005 U 0,005 U<	Lead (mg/kg)	200.8	250			918	25							
R2560C 4,000 17 0,025 U 0,45 0,005 U 0,005	Other Petroleum Compounds													
SEGOC 14 10.025 U 0.45 0.005 U 0.0	n-Butylbenzene (mg/kg)	8260C		4,000	17	0.025 U	0,45		0,005 U	0.005 U	0.005 U			0.015
SZEGIC 18 0.025 U 16 0.005 U 0.005	sec-Butylbenzene (mg/kg)	82600			14	0.025 U	0,45		0.00S U	0.305 U	0.005 U			0.022
azcido 15 0,025 U 0,005 U 0,00	Isopropytbenzene (mg/kg)	3260C			18	0.025 U	1.6		U 200.0	D.305 U	ก 500"0			0.05
825GC 0.02 460 2.U 0.475 L 0.82 U 0.02 U 0.02 U 0.02 B 825GC 3.8 J 0.055 U 2.3 U 0.05 U 0.05 U 0.05 U 0.05 U 825GC 8.000 0.53 B 0.055 U 1.1 0.055 U 0.055 U 0.055 U 825GC 8.000 54 0.025 U 1.5 0.055 U 0.055 U 0.055 U 825GC 15 0.055 U 1.5 0.055 U 0.055 U 0.005 U 825GC 800 6 0.054 5 0.005 U 0.005 U 0.005 U	p-isapropytotuene (mg/kg)	3260C			15	0.025 U	0.48		∩ 500.0	0.005 U	บ 200.0			0,015
8250C S 1,500 0,535 B 1,1 0,005 U	Methylene chloride	3260C	0.02	480	NΖ	· 0.475	0.92 U		0.02 U	0.02 U	0.026 B			0.028 8
1500 0.933 0.0538 1.1 0.005 U 0.005 U 0.005 U 0.005 U	4-Methyl-2-pentanone (MIBK) (mg/kg)	\$260C			3.8.1	0.025 U	2.3 U		0.05 U	0.05 U	0.05 U			0.05 U
R256C 8,000 54 0.025 U 1.5 0.005 U 0.005 U 0.005 U mg/kq) 8250C 175 0.072 11 0.005 U 0.005 U 0.005 U mg/kq) 8250C 800 66 0.064 5 0.005 U 0.005 U 0.005 U	Nuphthalene (mg/kg)	8280C	ş	1,500	0.93 B	0.053 8	1.1		U 200.0	0.005 U	0.005 U			0.005 U
8260C 175 0.072 11 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U	n-Propylbenzene (mg/kg)	82600		8,000	54	0.025 U	1.5		0.005 U	0.005 U	ა.005 ს			9.08
0.005 U 500.0 U 500.0 S 60.0 S	1,2,4-Trimethylbcnzcae (mg/kg)	8260C			175	0.072	7		U 800,0	0.005 บ	0.005 U			0,13
	1,3,5-Trimethylbenzene (mg/kg)	8260C		800	95	0.064	S.		0.005 U	0.005 U	0.005 U			70,0

Table 1 - Soil Sample Results Near Former Paint Booth, Pierca County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoms, Washington

Description/Chemical Name	Laboratory Method	Soil, MTCA Method A, Unrestricted Land Use, Table Value (mg/kg)	Soil, MTCA Method B, Table Value (mg/kg)	D1 7/30/1994	D2 7/30/1934	B1-5.5 8/3/1994	B2-5.5 8/3/1994	B3-2 8/3/1994	B4-3 873/1994	85.5 9/6/1994	B5-7.5 9/6/1994	B5-9 9/6/1994	85-10 9/6/1994
Sample Depth				Sediment Inside Drain	Sediment Inside Drain	5.5 n	5,5 π	2.11	3 ft	5#	7.5 ft	#6	10 ft
Chlorinated VOCs				,									
Tetrachloroethylene (mg/kg)	30928	0.05	476	17 🕶	0.025 U	±0.21 J.⊱		0.005 U	0,005 U	0.005			0.053
Trichloroethylene (mg/kg)	8260C	0.03	12	n s'o	0.025 U	0.23 U		0,005 U	0.005 U	0.005 U			0.005 U
als-1,2-dichleroethytene (mg/kg)	82600	,	150	U 5.0	0.025 U	0,23 ∪		0.005 U	0,005 U	O 300'O			0.005 U
Vinyl chloride (mg/kg)	8260C	-	0.67	i nı	ວ.ຄຣ	0.45 U		U 10.0	0.01 U	0.01 U			0,01 U
Chlorobenzene (mg/kg)	20928		1,600	2.1	0.025 U	0.23 U		0,005 U	0.005 U	0.005 บ			0.005 U
1,2-Dichlorobenzene (mg/kg)	82GDC		7,200	103	0.025 U	0.23 U		0.005 U	0.005 เว	0.00S U			0.005 U
1,4-Dichlorobenzene (mg/kg)	82600		5,600	82	0.025 U	0.23 U		0.005 U	0,0005	0.005 U			0.005 U
Polycyclic Aromatic Hydrocarbons													
carcinogenic PAHs TEO (mg/kg) (calcutated	1 8270D SIM	0.1											
Polychlorinated biphenyls (PCBs)													
Polychloringted biphenyl (PCB) mixtures	80824	*	5.0										1
Motals											***************************************		
Arsenic (mg/kg)	200.8	20	29'0	5 U	5 U	5.0.3							1
Barlum (mp/kg)	200.9	1	16,000	422	2,000	43.8							
Cadmium (mg/kg)	200.9	2	œ	1	. not 4.2 in-								
Chromlum (mg/kg)	200.8	2,000	120,000	110	927	=							
Lead (mg/kg)	200.8	250			3, 918	"							
Mercury (mg/kg)	200,8	2		3 U	3.1	3 (
Selenium (mg/kg)	200,8	,	400	9 C	9.0	8 :							
Silver (mg/kg)	200.8	,	400	0.7 U	0.7 U	D.7 V							
Notes:				it = foet	Ī	ı							
Sold highlighted fort indicates exceedance of most conservative	of most conserve	tive screening leval.	91.	HCID . Hydro	HCID - Hydrocarbon Identification	ication	Sediment san	spes from dis	Sediment samples from drains D1 and D2 were	2 ware			
Blank cell inclicate that compound was not analyzed, 3 = Compound detected in taboratory blank, suggesting coast-con U = analyte was not detected at or above the reported result.	ilyzed. uggesting cross eported result.	-contamination in Isboratory.	эрогаюту.	mg/kg = millig MTCA = Mad TPH = total p	mg/kg = milignams per kilogram MTCA = Model Toxics Control Act TPH = total petroleum hydrocarbon	Jram rol Act scarbon	removed in 19 indication of s	removed in 1994. Samplos results Indication of source contamination.	removed in 1994. Samples results provide an indication of source contamination.	ue 6			

NR a not reported

. Table 1 - Soil Sample Results Near Former Paint Booth, Pierce County Tax Parcel No. 2030-12-0032, 533 Division Avenue, Tacoma, Washington

Description(themical Name	Laboratory	Soil, MTCA Method A, Uhrestricted Land Use, Table Value (molkn)	Soil, MTCA Method B, Table Value	B6-5	B6-8	17.4 10.7.19.94	B8-5 5/6/1894	B9-5	E10.4.5 2/25/2016	811-5.5	B12-5 2/25/2016	B12-9 2/25/2016	E14-4.5 2225/2016
Sample Depth				5 ft	8 ft	4.	5 ft	5 ft	4,5 tt	5.5 n	5 ft	n 6	4,5 H
Total Petroleum Hydrocarbons (TPH)													
TPH, Gasoline-Range (mg/kg)	NWTPH-Gx	100							2 U	12,000 ====		2 G	5.4
TPH, Diesel-Range (mg/kg)	XC-HGT/WN	2,900								* 5,800 X ±.	Ш	S0 U	20 ∩
TPH, Motor Oil-Range (mg/kg)	NWTPH-Dx	2,000							250 U	-17,000 nom-	250 U	250 U	250 U
	WTPH-HCID.	,		100	1			:					
TPH, Gasoline-Range (mg/kg)	478.1	100		100	0 02	20.0	0 07	3					
TPH, Diesel-Range (mg/kg)	WTPH-HCID, 418,1	2.000		50 U	50 U	50 U	So U	50-10					
	WTPH-HCID,	4000		100	1 007	100	100	11 00+					
IFH, Herry Cityange (Ingra)	410.1	7,000		3	3	3	3	3					
PH, undifferentiated (mg/kp)	416.1	100											
Volatile Petroleum Compounds													
Benzene (mg/kg)	82600	0.03	18.2	0,05 U	័	0.005 1	0.005 U	0.005 U	0.03 U	6.03 UJ	0.03 U	0.03 U	0,03
Totuene (mg/kg)	8260C	7	6.400		0.37 8	0.011 B	0,014 B	0.005 U	0.05 U	0.1 ∪	0.05 U	0.05 U	0.05 U
Ethylbenzone (mg/kg)	8260C	9	9,000 B	69.0	0.012	0.005 U	. 0.005 U	a.005 U	0.05 U	0.1 U	0.05 C	0.05 U	0.05 U
Xylenes,total (mg/kg)	8260C	8	16,000	7.1	0.15	0.005 U	ก 5000	0,005 U	0.15 U	0.3 U	o,15 U	0.15 U	0.15 U
Fuel Additives and Blending Compounds													
1,2-Dibromoethane (EDB; mg/kg)	82600	0,005	0.5	0.1 0	0.1 U	U 10.0	0.01 U	U 10.0	0.05 U	0.10	0.05 U	0.05 U	0.05 U
1,2-Dichloroethane (EDC; mg/kg)	8260C		11	0.05 U	0.05 U	0.005 U	0,005 U	0.005 ∪	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U
Methyl tert-butyl ether (MTBE; mg/kg)	82600	0.1	555.6	Ř	XX	Ĕ	Z.	χ. Υ.	0.05 U	0.10	0.05 U	0.05	0.00.0
Lead (mg/kg)	200.8	250							ļ	- 3,250 i			
Other Petroleum Compounds													
n-Butylbenzene (mg/kg)	8260C		4,000	0.19	0.005 U	0,005 U	0.005 U	0.005 U	ğ	Z,	Y.	ž	ž
sec-Butytbenzona (mg/kg)	20928			0.068	0.005 ບ	0.005 U	1,005 U	0,305,0	0.05 U	0.26	0.05 U	0.55	O.DS U
(sopropylbenzene (mg/kg)	8260C			U 20,0	0.005 U	0.005 U	ข.005 ม	0.005 U	0.05 U	0.1 U	0.05	0.05 U	0.05
p-tsopropyttoluene (mg/kg)	8260C			0.082	U 200.0	0.005 U	0,305,0	บ 200.0	0.05 บ	0.28	D.05 U	0.05 U	0.05 U
Methylene chloride	8260C	0.02	480	0.2 U	0.039 8	0.0418	0,048 8	0.02 U	0.02 U	10	0.02 U	0.02 U	0.02 U
4-Methyl-2-pentanene (MIBK) (mg/kg)	8260C			0.5 U	U 20.0	0.05 U	U 50.0	0.05 U	0.5 U	٦ ٢	0.5 U	0.5 U	0.5 U
Naphthalene (mg/kg)	8260C	ĸ	1,800	0.19	0.005 U	0.005 U	0.005 U	0.005 U	ນ 50.0	0.1 Ü	0.05 U	0.05 U	0,05 🗆
n-Propylbenzene (mg/kg)	8260C		8,000	0,089	0.005 U	0.005 U	ກ 9000	U 2001.0	0.05 U	0.1 U	0.05 U	D.05 U	0.05 U
1,2,4-Trimethylbenzene (mg/kg)	8260C			0.79	510.0	0.005 U	0.005 U	ດ,005 ປ	บ, 20,0	0.12	D.265 U	0.05 U	680'0
1.3,5-Trimethylbenzene (mg/kg)	8260C		800	0.3	0.005	ก 500:0	0.005 U	0.0ds U	0.05 U	0.14	0.05 U	0.05 U	0.05 U

Table 1 - Soil Sample Results Near Former Paint Booth, Pierce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Description/Chemical Namo	Laboratory Method	Soil, MTCA Method A. Unrectricted Land Use, Table Vatre (mg/kg)	Soil, MTCA Method B, Table Value (mg/kg)	B6-5 9/6/1984	86-8 9/8/1994	B7-4 9/6/1994	B&-5 9/6/1994	B9-5 8/6/1994	B10-4.5 2/25/2016	B11-5.5 2725/2016	B12.5 272572016	B12.9 2/25/2016	B14.5 2/25/2016
Sample Depth				511	8#	4 ft	5.11	5.4	4,5 ft	5,5 ft	Sft	9 ft	4.5 ft
Chlorinated VOCs													
Tetrachloroethylene (mg/kg)	8250C	0,05	476	0.05 U	U 20,0	0.300.0	0.005 U	0.005 U	ນ.p25 U	0.15	0.025 U	0,025 U	D.025 U
Trichloroethylene (mg/kg)	82500	6,03	12	D.05 U	U 20.0	0.005 U	O 500'0	0.005 U	0.02 U	0.04 U	0.02 U	0.02 U	0.02 U
cis-1,2-dichloroethylene (mg/kg)	82600	,	180	U 20.0	U 20.0	ก รดง'อ	0.200,U	บ 200.0	0.05 U	0.1 U	0.05 U	0,05 U	0.05 U
Vinyl chloride (mg/kg)	8260C		0,67	0.1 U	0.1 U	D. 10.0	0.01 U	0.01 U	0.05 U	0.1.0	0.05 U	0.05 U	0.05 U
Chlarobenzene (mg/kg)	82600		1,600	0.05 U	0.05 U	U 200,0	n soo:e	0,005 U	0.05 U	0.1 U	0.05 U	0.05 U	0.05 U
1,2-Dichlorabenzene (mg/kg)	826DC		7,200	0.05 U	0.05 U	U 200,0	U 300,0	0.005 U	0.05 U	0,1 U	0.05 U	0.05 U	0.D5 U
1,4-Dichlorobenzene (mg/kg)	8250C		5,500	U 20.0	0.05 U	0,005 U	D.005 U	0.005 U	ี 0.05 บ	0,1 U	ນ ວິ.05	0.05	0.05 U
Polycyclic Aromatic Hydrocarbons													
carcinogenic PAHs TEO (mg/kg) (calculated)	NIS C10228 }	0.1								0.0249			
Polychlorinated blahenyts (PCBs)													
Polychlorinated biphenyl (PCB) mixtures	8082A	+	0,5							- 202 - I			
Metals													
Arsenic (mp/kg)	200.8	20	29.0										
Badum (mg/kg)	200.8	1	16,000			_							
Cadmium (mg/kg)	200.8	2	80										
Chromium (mg/kg)	200.9	2,000	120,000							- 1			
Lead (mg/kg)	200.8	250								* 3.250			
Mercary (mg/kg)	200.8	2											
Selenium (mg/kg)	200.8	-	400										
Silver (mg/kg)	E,005		400										
Notes:				# = feet									
Bold highlighted font indicates exceedance of most conservative	if most conserval	tive screening level.	iei.	HCIO ≈ Hydr	HCID ≈ Hydrocarbon identification	fication							
Blank cell indicate that compound was not analyzed.	ılyzed.			mg/kg = milli	mg/kg " milligrams per kilogram	ດເລນ							
B = Compound defected in laboratory blank, suggesting cross-contamination in laboratory.	uggesting cross-	contamination in	laboratory.	MTCA # MIX	MTCA * Model Toxics Control Act	trol Act							
U = analyte was not detected at or above the reported result.	eported resuft.			TPH = total ;	FPH = total petroleum hydrocarbon	ocarbon							
	•												

Notes:

Bold highlighted font indicates exceedance of most conservative screening level.

Bank cell indicate that compound was not analyzed.

B = Compound defected in laboratory blank, suggesting cross-contamination in laboratory.

U = analyze was not detected at or above the reported result.

NR = not reported

Table 1 - Soil Sample Results Near Former Paint Booth, Pierce County Tax Parcel No. 2030-12-0032, 533 Division Avenue. Tacoma, Washington

		Soil, MTCA Method A, Unrestricted Land Use,	Soil, MTCA Method B.								,	
Description/Chemical Nama	Laboratory	Table Value (mg/kg)	Table Vatue (mg/kg)	814-5,5 2/25/2016	814-10,5	815-6.5 2/25/2015	816-6 2/25/2016	B17-2 S/11/2016	818-3 5/11/2016	819-6 5/11/2018	820-4.5 5/11/2016	821-9.5 5/11/2016
Sample Depth				5,5 ft	10,5 ft	6.5 ft	θĦ	2 ft	3 tt	tt 6	4.5 ft	9,51
Total Petroleum Hydrocarbons (TPH)												
TPH, Gasoline-Range (mg/kg)	NWTPHGK	001		2 U	2.0	2.0	2 U	٦ ۲	2 U	2		750 E
TPH, Diesel-Range (mg/kg)	XC-HGT/WN	2,000		20 ∩	20 ∪	50 U	5a U	50 U	SO U	OS		2 8
TPH, Motor Oil-Range (mg/kg)	NWTPH-Dx			250 U	250 U	250 U	250 U	750 U	250 U	250 U	n 052	780 C
	WTPH-HCID,											
TPH, Gasolinc-Range (mg/kg)	418.1	9										
	WTPH-HCID.					•						
TPH, Diesel-Range (mg/kg)	418.1	2,000										
	WTPH-HCID,				***							
TPH, Heavy Oil-Range (mg/kg)	418.1	2,000										
TPH, undifferentiated (mg/kg)	418.1	00r										
Volatife Petroleum Compounds												
Benzene (mg/kg)	82500	0.03	18.2	D.03 U	0.03 ∪	្ត ខ្លា	0.03 U	0.03	0.03	0.03	0.03	20.0
Toluene (mg/kg)	8250C	7	6.400	0.05 U	0.05 U	D.055 U	D,005 U	0.05 U	0.05 U	0.05	909	11-964 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Ethythenzene (mg/kg)	8250C	9	8,000	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	1.5
Xylenes, total (mg/kg)	8260C	8	16,000	0,15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	E 1141.
Fuel Additives and Blending Compounds												
1.2-Dibromoethane (EDB: mo/kg)	326DC	0.005	5.0	0.05 U	0.05 U	0.05 U	n sara	ລ.05 ບ	อ.05 บ	D.05 U	0.05 U	0.0S U
1,2-Dichloroethane (EDC; mg/kg)	8250C		11	0.05 U	0.05 U	D.05 U	n sa.o	0.05 U	0.05 U	D:05 U	0.05 U	0.05
Methyl text-butyl other (MTBE; mg/kg)	92600	0,1	555.8	U 20.0	0.05 U	0.05 U	ი.05 ს	0.08	0.05 U	0.05	0.05 U	9 1
Lead (mg/kg)	200.8	250						1.73	1.10	1.28	11.1	2
Other Petroleum Compounds									!	-	4	9
n-Butylbenzene (mg/kg)	1 8260C		4,000	ኟ	ĕ	œ Z	Œ	2	¥ ;	2 3	Y S	2 2
sec-Butybenzene (mg/kg)	8260C			0.05 U	0.05	D.05 U	0.05 U	0.05 U	0.05 U	0 800	o en co	2 60.0
Isopropyfberzone (mp/kg)	6260C			0.05 ບ	0.05 เว	0.05 U	0.05 U	0.05 U	0.05 U		CS.U	3
p-tsaprapyltaluene (mg/kg)	8250C	Ī		0.05 U	0.05 U	0.05 ບ	0.05 U	0.05 U	0.05 U	0.05 U	3:05	0.052
Methylene chloride	82600	0.02	480	0.02 U	a.02 U	0.02 U	0.02 U	0.5 U	0.5 U	0.5 U	0.5 0	950
4-Mothy-L2-pentanone (MIBK) (mg/kg)	8260C			บ ร.ด	0.5 U	0.5 1	0.5 U	0.5 U	0.5 U	0.5 U	200	200
Naphthalene (mg/kg)	BZ60C	s	1,630	ก 50.0	0.05 ປ	0.05 ປ	O.95 U	0.05 U	0.05 U	0.05 U	0.05	0.23
n-Propytbenzene (mg/kg)	8260C		8,000	0.05 U	0.0S U	U 20.0	0.05 U	0.05 U	0.05 U	9.05 U	0.05 U	0.19
1,2,4-Trimethylbergene (mg/kg)	82600			0.05 U	0.05 U	O.05 U	U 50.0	0.05 U	D 05 U	0.05	0.05 U	0.85
1.3.5-Trimethylbenzene (me/kg)	BZEOC		008	D.05 U	0.05 U	0.05 U	0.05 1	0.05 U	0.05 U	0.05 U	0.05 U	0.34

Table 1 - Soit Sample Results Near Former Paint Booth, Pierce County Tax Percal No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Description/Chemical Name	Laboratory Method	Soll, MTCA Method A, Unrestricted Land Use, Tabbe Value (mg/kg)	Soll, MTCA Method B, Table Value (mg/kg)	B14-5.5 2/25/2016	B14-10.5 2/25/2016	B15-4.5 27252016	816-6 2/25/2016	B17-2 5/11/2016	B18-3 5/1/2016	B19-6 5/11/2016	B20-4.5 \$M1/2016	B21-9.5 \$/11/2016
Sample Depth				5.5 ft	10.5 ft	€.5 #	£ 4	2 #	3.ft	6 tt	4.5 ft	9.5 fl
Chiterinated VOCs												
Tetrachloroethylene (mg/kg)	82600	50.0	476	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 เร	0.025 U	0.025 U
Trichtonethylene (mg/kg)	8260C	0.03	27	D 20.0	0.02 U	0.02 U	a.02 U	0.02 U	0.02 U	0,02 U	0.02 U	0.02 U
cis-1,2-dichloroethylene (mg/kg)	8260C	•	35	U 20.0	U 20.0	0.05 U	0.05 U	0.05 U	0.05 U	0.05 1/	0.05 U	0.05 U
Vinyl chlorida (mg/kg)	8260C		29'0	0.05 U	D 50'0	U 20,0	0.05 U	D 50.0	0.05 U	0.05 U	0.05 U	0,05 U
Chlorobenzene (mg/kg)	8260C		1,600	0.05 U	D 50'0	ก รอว	0.05 U	D 50.0	0.05 U	0.05 U	0.05 U	0.05 U
1,2-Dichlorobenzene (mg/kg)	8260C		7,200	0,05 U	D 20.0	ี ก รด.ต	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
1,4-Olchiorobenzene (mg/kg)	8260C		5,600	ע 20.0	ี 0.05 เร	0.05 U	0.05 U	ם:00	0.05 U	0.05 U	ນ 50.0	0.05 U
Polycyclic Aromatic Hydrocarbons												
carcinogenic PAHs TEQ (mg/kg) (calculated)	MIS COTER	1.0										
Potychlorinated blohenyls (PCBs)												
Polychlorinated biphenyl (PCB) modures	8082A	1	0.5									오
Metals												
Arsenic (mg/kg)	200.8	20	0.67									
Barlum (mg/kg)	200.8	,	16,000									
Cadmium (mg/kg)	8'00Z	2	8									
Chromium (mg/kg)	200.8	2,000	120,000									
Load (mg/kg)	200.8	250			1			1.71	9,7	1,29		1.87
Mercury (mg/kg)	8'00Z	2										
Selenum (marka)	87002	-	400									
Silver (mg/kg)	200.8	-	400									

Bold highlighted font indicates exceedance of most conservative screening level.

Blank cell indicate that compound was not analyzed.

8 = Campound detected in laboratory blank, suggesting cross-contamination in laboratory.

U = analyte was not detected at or above the reported result.

NR = not reported

HCID = tyctocarbon identification mg/kg = milligrams per kilogram MTCA = Model Toxics Control Act TPH = total petroleum flydrocarbon

Table 1 - Soil Sample Results Near Former Paint Booth, Pierce County Tax Parcel No. 2035-12-0032, 635 Division Avenue, Tacoma, Washington

	Laboratory	Soil, MTCA Method A, Unrestricted Land Use, Table Value	Soil, MTCA Method B, Table Value	5.5 6.5 6.5 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	?	PBLS	PBLS	88	PRWE
Description/Chemical Name	Mothod	(mg/kg)	(mg/kg)	8/31/2006	8/31/2005	10/20/2006	10/20/2006	10/20/2006	10/20/2016
Sample Depth				8 H	4 #	¥ ₹	34	2.5 ft	2 ft
Total Petroleum Hydrocarbons (TPH)									
TPH, Gasoline-Range (mg/kg)	NWTPH-Gx	100			30	9	2	2	물
TPH, Diesel-Ranga (mg/kg)	NWTPH-0x	2,000			QN	Q	Ş	일	딮
TPH, Motor Oil-Range (mg/kg)	XQ-HGLWN	2,000			QN	CN	ON	S	87
Configuration of the Property	WTPH-HCID,	400							
Carried Carrie	CICHHOLD	3							
TPH, Diesel-Range (mg/kg)	418,1	2,000							
	WTPH-HCID,								
TPH, Heavy Oil-Range (mg/kg)	418.1	2,000							
TPH, undifferentiated (mg/kg)	418.1	190			-				
Volatile Petroleum Compounds									
Benzeno (mg/kg)	92600	0.03	18.2	0,02 U	0.02 U				
Toluene (mg/kg)	8260C	7	6,400	0.05 U	0.05 U				
Ethylbenzene (mg/kg)	8250C	9	8,000	0.05 U	0.05 U				
Xylenes,total (mg/kg)	SZEGC	6	16 000	0.13	0.12				
Fuel Additives and Blanding Compounds									
1,2-Dibromoethanc (EDB; mg/kg)	3260C	0.005	0.5	D 50.0	0.05 U				
1,2-Dichloroethane (EDC; mg/kg)	8260C		-	0.05 U	0.05 ∪				
Nothy! tert-buty! ether (MTBE; mg/kg)	82600	0,1	555.6	5.05 U	0.05 U				
Load (ಗಾಭಸಿದ್ದ)	200.8	250		1.73	1.10				
Other Petroleum Compounds									
n-Butylbenzene (mg/kg)	8260C		4,000	ξ.	ğ				
sec-Butylbanzene (mg/kg)	BZ60C			0.05 U	0.05 ∪				
lappropylbenzene (mg/kg)	309Z8			0.05 U	0.05 U				
p-Isopropy(toluene (mg/kg)	82600			0.05 U	0.05 U				
Methylene chloride	BZSOC	20.0	480	0.5 U	0.5 U				
4-Methyl-2-pentanone (MIBK) (mg/kg)	BZSGC			D.5.0	0.5 U				
Naphthalene (mg/kg)	8260C	. 5	1,500	0.05 U	0.05 U				
n-Propytoenzene (mg/kg)	\$260C		8.000	0.05 ∪	0.05 U				
1,2,4-Trimethylbenzene (mg/kg)	8260C			0.05 U	0.05 U				
1,3,5-Trimethylbenzene (mg/kg)	BZ60C		800	D 90'0	0.05 U		1		1

Table 1 - Soil Sample Results Noar Former Paint Booth, Pierce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Description/Chemical Name	Laboratory	Soil, MTCA Method A, Unrestricted Land Use, Table Valus (mg/kg)	Soil, MTCA Method B, Table Value (mg/kg)	P.B.2 8/31/2005	PB-3 8/31/2006	PBLS 10/20/2006	PBLS PBRS 10/20/2006	PBRS 10/20/2006	PEWE 10/20/2016
Sample Depth				8 ft	4 ft	2 ft	3.11	2.5 ft	2 ti
Chlorinated VOCs									
Tetrachlorocthylone (mg/kg)	8260C	0.05	475	10.16 mm	+1-1: 91 0 an				
Trichloroethylene (mg/kg)	8260C	0.03	12	0.02 U	0.02 U			-	
cis-1,2-dichloroothylene (mg/kg)	B260C		160	0.05 U	ก 50.0			-	
Vinyl chloride (mg/kg)	BZ60C	•	29.0	0.01 U	0.01 12				
Chlorobonzene (mg/kg)	8260C		1,500	ี 0.05 ป	ט 20.0				
1,2-Dichlorobenzene (mg/kg)	8280C	-	7,200	ก 50.0	0.05 U				
1,4-Dichlorobenzone (mg/kg)	B250C		5,600	0.05 ∪	0.05 U			*	
Polycyclic Aromatic Hydrocarbons									
cardinogenic PAHs TEQ (mg/kg) (calculated	I 8270D SIM	0.1							
Polychlorinated biphenyls (PCBs)				-					
Polychlorinated biphenyl (PCB) mixtures	B082A	ı	0.5						
Metals									
Arsenic (mg/kg)	200.8	82	0.67						
Barkum (ராத/kg)	87002		16,000						
Cadmum (mg/kg)	200.8	2	8		1				
Chromium (mg/kg)	200.8	2,000	120,000						
Lead (mg/kg)	200.8	250							
Mercury (mg/kg)	200.8	.2							,
Selenlum (mg/kg)	200.8		400						
Silver (mp/kg)	8,002	t	400						
Notes:				fin feet					

Bold highlighted fort indicates execedance of most conservative screening level.

Blank cest indicate that compound was not analyzed.

B = Compound detected in laboratory blank, suggesting cross-contamination in laboratory.

U = analyte was not detected at or above the reported result.

NR = not reported

HCID = hydrocarbon Identification mg/kg = miligrams por kilogram MTCA = Model Toxics Control Act TPH = total petroleum hydrocarbon

Table 2 - Groundwater Sample Results from MV4-11 Noar Formor Paint Booth, Pierce County Tax Parcel No. 2035-12-0032, 633 Division Avenue, Tacoma, Washington

•											
			200		_						ASW. Boom
		Groundwater,	Maximum	MW-11	MW-11	MW-11	MW-11	MW-11	10,072,2015	MW-11	Comidence
		Method A,	Contaminant	S/12/2009	arozozota a	NCA CALL	21/4/12/2	2 2 2 2 2	_		JE C
Open Name	Method	Teple Value (µg/l.)	(hour)						100		
total Percisum nyalous and											
Gasoline-Range Hydrocarbons (µg/L)	7	4				U 60F	100 U				
(no detectable benzans)	No.					9 09	× 28				
Diesel-Range Hydrocarbons (1/9/L)	NW IPH OX	200				250 U	250 U				
Olf-Range Hydroctarbons (µg/L)	XII-LI-IMN	100									
Volatile Organic Compounds (COPCs and Other Detected Compounds)	a Other Detecta	Compounds		7	0.35	0.35	0.35		0.35 U	D.35 U	7
Benzane (ug/L)	8250C	^	4			-	7		2	7 [1
Toluche (µq/L)	628DC	1,000	200	2	5				۱ ۲	-]
Ethylbenzene (upf.)	BZROC	90	2007	- (ļ	,			9	3 6	·
Xylenes, total (ue/L)	8260C	1,000	10,000	5	?	, ·	,		-	-	_
Tetracolocoethylene (un/L)	8260C	5	\$	-			1		:	1	3.8
Techiomethylene (uc/t.)	BZGDC	\$	\$	2.3	Đ.	*			+		1
*ia-1 3-Durblorosity/tene (uo/L)	HZROC		ę.	-	-	, .	?			-	
+mea-12-Dishlosocthylane (up/L)	EZEDC		100	7		-					
A A Dioningsthulped (101)	8250C			יי						į	
Constitution of the consti	8260C	0.2	2	0.2 U		0.2			ļ.		1
Vinys Charles (part)	CORCO		2	1,4	2.8	1.	12	-			5
Carbon Lettachionde (LQLL)	20000		GE C	1.8	2	1,	1.1		7	-	
Chloratorn (µg/L)	20070		-			101) D.4 1	n		-	
1,4-Diaxane	2000										
Polycyclic Aromatic Hydrocarbons						0.05	-	L			
Benz(a)anthracene (ug/L)	8270D SIM					1000		 -	-		
Benzo(a)pyrene (µg/L)	8270D SIM	0.1	200			200	1		-	-	
Record(b)(b) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	82700 SIM					co'n	1	-	-	-	_
Describilingsofthers (1971)	8270D SIM					CO'0			-		
Chairman	82700 SIM		-			0.05	5		+	+	-
Charles blandhouse and Cont.	WIS GOTON					502	5		1		
CADOLIZO (A.O.) STITUTION CONTROL	WIS GOTTON	-	-		L	50.05	<u>.</u>			-	+
Indend(1.2,3-cd)pyrene (pak.)	100000	,				CZ			-	4	
Total cPAHs TEO (yo/L, calculated)	27.750 SING	<u> </u>						İ			

Table 2 - Groundwater Sample Results from WW-11 Near Former Paint Booth, Pierce County Tax Parcel No. 2020-12-0022, 633 Division Avenue, Tacoma, Washington

Chemical Name Laboratory Table Vatical Name Activity Table Vatical Name Table Vatical Nam	Federal and State Maximum A. Conteminant Lovel (1991).	6/12/2009 6/12/2009	NW-11 122222010	11-WAN	0.01 U 0.01 U 0.05 C 0.35 C 0.	#W-11 #128/2015 #1. 6.29 *** 1 U	MW-11 10/07/72015	MW-11 2/3/2016	95% Upper Confidence Limit
Laboratory Method 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8			▃▗▃ ▃▃▃┤▏┟ ┈╏╸╏┈┞┈╏╸╏ ┈	1123/2014 4 1023/2014		14) 1 : 1 . L	MW-11 10/07/72015	MW411 2/3/2016	Sonsidence Confidence Limit
Laboratory Method RESENC 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8	── ╣ ╟┈┼╏┯ ╟				0.01 U 0.01 U 5.75	47. 628 6- 1 U			
200.8 200.8	┩┞┼┼┼┼				0.01 U 5.15 . 5.7.9	-1. 6.20 1 U 73.2			
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8					0.01 U 57.3 : 57.9	40.5 6.20 ft. 1 U 73.2			
200.8 200.8					57.9	-1. 629 1 U	1 0	7	
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8					57.9	72.27			
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8					57.9	77.2			
2008 2003 2003 2003 2003 2003 2003 2003									
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8						12.5			
200.8 200.8 200.8 200.8 200.8 200.9 200.8 200.8 200.8					1 0				
200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8						-			
200.8 200.8 200.8 200.8 200.8 200.8 200.8					24	26.1	_		
200.8 200.8 200.8 200.8 200.8 200.8						1.78			
200.8 200.8 200.8 200.8 200.8	-			2.44	4.99	9.2		ļ	
200.8 200.8 ed 200.8	2					-			
203.8 ed 200.8 200.8					- -	-	ı,		
200.8						-			
					-	٦	ā		
						٦	17		
plyed		-			+	7	5		
							5		
lved									
Ja (PCBa)		1		1 C		L.			 -
PCB Mixtures (ug/L)									
Notice Affects for Parameters				2.3	2.6		2.7	52	
Ossolvod povojen (mg/L)				12	125		25	113	
Charles and the Control of Control				1					

Notes:

Blank set all indicate not sampled or no standard exists
Blank set all indicate not sampled or no standard exists
CDAH = caractropetric pulpycytic aromatic hydrocarban
mg/L x militigazara per liter
MTGA = Model Toxics Control Act:
mt/V = militoric Control Act:
mt/V = militoric cquivalent quotient
U = analyse was and sembacted at or above the reported result.
U = analyse was not sembacted at or above the reported result.
Discolved metals were filtered through 0.45 micron filter
Discolved metals were filtered through 0.45 micron filter
SS% upper confidence intit calculated using students t-distribution of normal data using EPA's ProUCL 5.0 aproadsheet.

Table 3 - Soil Sample Results at South Gas Station, Plerce County Tax Parcel No. 2030-12-6032, 633 Division Avenue, Tacoma, Washington

							_				•	-
		Soil, MTCA			,		<u> </u>					
	Laboratory	Mathod A, Unrestricted Land Use, Table	AB-1-15	AB-1-25	AB-1-45	AB-1-61.5 12/20/2013	AB-2-16,5 4/6/2015	AB-2D-10 3/4/2016	AB-2D-15 3/4/2016	AB-2D-27.5 3/4/2016	AB-2D-37.5 3/4/2016	AB-2D-52.5 3/4/2016
Description/Chemical Name	Method	Value (Ingres)	1420140									-
Location							SE corrier of					
							parking fot		į	1	<u> </u>	
		,		Middle of 1	Middle of parking tot	•	(5 ft from S. 5.		й Ж	(Adjacent to AB-2)		
				(Near Tormer	(Near former pump stand)	27.5.6	16.5.0	10 #	151	27.5 11	37.511	52.5 11
Sample Depth			15 🖁	25#	£ 04	01.211						
Total Petroleum Hydrocarbons												
Total Connelling Darson (morks)	7 WTPH-HCID, 418.1	ස										
Holy Others Decode (market)		2,000										
THE CHARLES IN 18 CO.	WIPHHOD, 418.1	2,002										
TPH Heavy Of-Kange (mg/kg)	418.1	30						-	Mar R70 day	2	2 17	2 U
TPH undifferentiated (mg/kg)	110,1	5	1	ľ	2 5	2 U	1.900	*		100	205	∩ 0S
TPH, Gasoling-Range (mg/kg)	NWIFICE	3	١				1,600 X	20 D	<u>{</u>		1 036	250 1
TPH, Diesel-Range (mg/kg)	NWTPH-DX	2,000					250 □	250 ∪	250 U	2002	2000	
TPH Oil-Range (mg/kg)	WAIPH-DX	2,000									1	1. 00 0
Appropriate Composition						500	11 80 0	D 603 U	0.03 U	0.03	0.03 U	0.03
Colorina (moles)	8260C	0.03	0.02 U	0.02	2000		D 20 C	0.05 U	0.05 U	0.05 ⊔	0.05 15	O CO
Deliker Chinaman	8260C	7	0.02 U	0.02	0.02	2 60 6	0.24	0.05 U	0.15	U 20.0	0.05 U	0.05
מוחסוום לונולה אליל	SPEDE	9	D,02 U	0.02 U	O ZO'D	3 7 7	,	1 45 1	0.35	0.15 U	0.15 C	0.15 U
Ethylbenzene (mg/kg)	Jusca	6	0.33	U 30.0	0.06 U	0.05 U	-	2000				
Xylenos,total [mg/kg)	1								11 30 00	11 80 0	0.05 U	ົນ 50.0
Fuel Additives and Blending Compounds	l		200	0.05.0	U 0.05 U	0,05 U	0.05 U	0,22,0	200		1300	11 50 0
1.2-Dibromoethane (EDB; mg/kg)	·	200.0	2000	1 200	0.05 U	0.05 U	0.05 U	ນ 50.0	0.05	01:0	300	11 200
1.2-Dichloraethane (EDC: mg/kg)	8260C		0 200	2000	0.05 U	0.05	0.05 U	0.05 U	0.05 U	0.03	2 000	200
Wethyl tert-butyl other (MTBE; mg/kg)	3) 8260C	0.1	0,00 0	5 65 6	231	1.90	3.46	2.59	3.82	2.18	4,33	3
Lead (mg/kg)		250	242	2								

Table 3 - Soll Sample Rosulta at South Gas Station, Pierce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

able o - non Cample Monte of Plan									_			
	•	Soil, MTCA Method A, Unrestricted		d d	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AB-1-81.5	AB-2-16.5	AB-2D-10	A8-20-15	AB-2D-27,5	AB-20-37.5	AB-20-52.5
Description/Chemical Name	Laboratory Method	Land Use, Table Value (mg/kg)	AB-1-15 12/20/2013	12/20/2013	12/20/2013	12/20/2013	4/6/2015	3/4/2016	3/4/2016	3/4/2016	3/4/2/10	2077
Location						•	SE camer of					_
				Middle of	Middle of parking lot		(5# ffom		SEC	SE comer of parking lot (Adjacent to AB-2)	g lot 2)	4
			1	Near temor	Near tarmer pump spariety	61.5#	16,5 ft	10 #	1511	27.5 ft	37.5#	π c.2c
Sample Depth			n ci	3								
Spelling many many many						14 30 0	0.12	0.05 U	0,05 U	0.05 U	0.05 U	0.05 U
Nanhthelene (marka)	MIS 02728	5	0.05 U	0.05 U	o com	200	2.4	U 20.0	1	U 50.0	0.05 U	0.05 U
Isoprocyberzene (mg/kg)	B270D SIM						3.9	0.05 U	33	0.05 U	0.00	0.00
o-Propybenzene (mg/kg)	8270D SIM						22	0.05 U	24	0.00	0.000	2000
1.2.4-Trimethylbenzene (mg/kg)	8270D SIM				-		12	0.05 U	41	0.05	0 07:0	202
1.3.5-Trimethytbenzene (mg/kg)	B270D SIM				-		Ä	æ	æ	ž	¥ 8	0.505
n-Butylbenzene (mg/kg)	B270D SIM						0.86	0.05 U	9.0	0 000	3 5	0.05 U
sec-Butylbenzene (mg/kg)	8270D SIM				 -		0.05 U	0.05 U	80.0		3 2	ž
tert-Butylbenzene (mg/kg)	MIS G0229		1				χ. Υ.	Ξ.	ž	ž	1 300	0.05 U
Isopropytoluene (mg/kg)	8270D SIM						1.3	0.05 ∪	88.0	200	2000	
p-Isapropyltaluena (mg/kg)	8270D SIM									1	CN.	GN4
Other Compounds				-	 -	 -	2	2	2	Ž	2	
Chlorinated VOCs (mg/kg)	8250C	,		1	-							
PCB mixtures (mg/kg)								•				

Notos:

Bold highlighted font indicates exceedance of most conservative screening level.

Bold chamicals of concern include gasoline-range organica from Table 830-1 in Model Texics Control Act.

Potential chemicals of concern include gasoline-range organica from Table 830-1 in Model Texics Control Act.

ft = feet

mg/kg = miligrams per kilogram MTCA = Model Toxics Control Act

NR * not reported

U = analyte was not detected at or above the reported result.

NWTPH = Northwest total petroleum hydrocarbon method

WTPH = Whashington total petroleum hydrocarbon method

WTPH = twashington total petroleum hydrocarbon method

HCID = hydrocarbon identification enalysis

Table 3 - Soil Sample Results at South Gas Stadon, Pierce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Sable 3 - Soil Sample Results at Court								•			
		Soll, MTCA							-		
	Laboratory	Unrestricted Land Use, Table	AB-3-16.5	AB-4-16.5	\$-1	S-2 8/31/2006	S-3 8/31/2006	S-4 8/31/2006	\$-5 8/31/2006	S-6 8/31/2006	S-7 8/31/2008
Doscription/Chomical Name	Method	Value (mg/kg)	4/6/2015	C107/007	2000			twinst.	West		SW comer of
Location			SW comer of	Triangular	SE comer of	East boundary of	NE boundary	boundary of parking lat	boundery of parking lot	Middle of parking lot	parking lot (Nearest
			parking fot (1 ft from	medium south of	(Near former	٠,	(Near former	(Near former Tenks 1-4)	(Near former Tank 1)	(Near former pump island)	tormer pump island)
			5-7)	16 S #	15 ft	15#	15 #	15 ft	13 ft	\$: \$	151
Sample Depth			11 G.B1								
Total Petroleum Hydrocarbons	LAMBELHON 418.1	30									
TPH, Gasotine-Range (mg/kg)	WIPH-HCID, 418.1	2									
TPH, Diesel-Range (mp/kg)	WYPH-HCID 418.1	L									
TPH, Heavy Oll-Kange (migra)	1 41						1	52	Ç	S	360
TPH, undifferentiated (mg/kg)	110.1	GE .	w . 520 (P	2.0	L. 40 920 KH.	2	2	2 9	Ş	2	QN
TPH, Gasoline-Range (mg/kg)	MALLUMAN	0000	180 X	08	QN L		ĝ	2 !	QN2	Ç	Q
TPH, Diesel-Range (mg/kg)	NWIPH-UX	300	250 11	250 U	£	2	Q	Q.	2		
TPH, Oil-Range (mg/kg)	NWTPH-UX	2,000	3							1	
Volume Petroleum Compounds				200	Spiles 5.11.	QN	2	9		ا ا	-
Represe (ma/kg)	8260C	003	0 500	300	4.1	2	QV.	QV	ş	<u></u>	
Tokiene (mg/kg)	\$280C		o coco	2 50 0	9	2	QΝ	Ş			
Cthylaprene (molks)	82600	9	2000	2	63,	2	Q Z	9	Q	N.C	}
Xvenes total (mc/kg)	8260C	6	0.15 U	0.00							
Enal addition and Blending Compounds	undt			1 200	1005						-
1.2 Disconochano (EDB: ma/kg)	l	0,005	Ogin		1 50 6						\ \ -\
4 2 Dichlomerhane (EDC: mg/kg)	82600		0.65	2000	1 30 0		-			1	1
Assessment by the other (ATBE: mo/kg)		0.1	0.05 U	2000							
ואכרואן יכול-סמאן פוועי לאו	_	250	7.26	3							
Lead (mg/kg)											

Table 3 - Soil Sample Results at South Gas Station, Plorce County Tax Parcel No. 2030-12-0632, 633 Division Avenue, Tacoma, Washington

									-	,	
		Soil, MTCA	,								
	Laboratory	Method A. Unrestricted Land Use, Table	~	AB-4-16.5	S-1	S-2	S-3 8/31/2006	S-4 8/31/2006	S-5 8/31/2006	S-6 8/31/2006	S-7 8/31/2006
Description/Chamical Name	Method	Value (mg/kg)	4/6/2015	4/6/2U IS	OON WILLIAM				,		PLAT COMMON OF
Location			SW comer of	Triangular	SE comer of	East boundary of		West boundary of	West boundary of	Middle of	parking for
			parking lot (1 ft from	medium south of	parking lot (Near former	jj	ž ģ	parking lot (Near former	(Near former	(Near former	former pump
			S-3	parking lot	Tank 5)	Tank 7	Tank 4)	SDRS 1-4)	128	# 8	18.11
Sample Depth			16,5 ft	16.5 ft	15 # 4	±5. #	# SL	::	<u>.</u>		
		_									
Other Petroleum Compounds					11 200						
Naphthalone (ma/kg)	8270D SIM	9	0.77	ח רטים	200						
teograph (more)	8270D SIM		0.64	0.05	7						
Control of the contro	MIS CO728		1.1	0.05 U	4						
n-Propyline Leaf (18) way	MIS COLUM		1,7	D.05 U	7						
7,2,4-10metryperaterial	MIS COZOS		1.8	ก รดช	37						
1,3,5-1 Introdutyibetizerid (ingray)	8270D SIM		NR	Υ.	6,2						
rec-Binchenzene (mo/kg)	8270D SIM		1.1	_{0.05} ບ	0.05 U						
14d-Bulybritzene (mg/kg)	MIS 00.28		0.05 U	0.05 U	0.05						
Isomonytholisene (mo/kg)	8270D SIM		Ä	ž	5						
o-Isograph(place (mg/kg)	8270D SIM		1,5	0.05 U	ž						
Other Compounds					٩						
Okladadod VOCa (modko)	8260C		ş	QN	2						 -
Cultural Co. Doubling		-			S						
PCB mixtures (mg/kg)											

Notest: Bold highlighted font indicates exceedance of most conservative screening level. Potential chemicals of concern include gasoline-range organics from Table 830-1 in Model Toxics Control Act.

ft = feet

mg/kg = milligrams per kilogram MTCA = Model Toxics Control Act

NR = not reported
U = analyte was not detected at or above the reported result.
NWTPH = Northwest total petrokeum hydrocarbon method
WTPH = Washington total petrokoum hydrocarbon method
HCID = hydrocarbon identification analysis

Table 3 - Soil Sample Results at South Gas Statton, Plerce County Tax Parcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

							-					
		Soll, MTCA Method A.		_	,							_
	Laboratory	Unreatricted Land Use, Table Value (molter)	S1	\$2 8/1/1994	S3 8/1/1994	S4 8/1/1994	SS 871/1894	S6 8/1/1994	S7 8/1/1994	S8 8/1/1994	S9 8/1/1994	S10 8/1/1994
Description/Chemical Name	molitate	Bar Jan										.,
Location							•				•	
			Excevation.	Excavation,	Excavation,	_	Excavation,		Excavation,		Excevation,	Excavation, hottom Tank
			east wall,	bottom, Tank		South wall	bottom, Tank	Tanks 5-7	Dottorn, Larik	Tank 5-7	Tank 5-7	9
			Tank 2-4	2	-	ļ	200		9.11		7.6	8#
Sample Depth			S. ₽	5 £	# -	# _	:					
Total Petroleum Hydrocarbons					17 0%	11 06		20 02	20.0	20 02	20 U	2 0.2
TPH Caroline-Rame (ma/kg)	WTPH-HCID, 418.1		20.0		3			5	1 02	<i>1</i> 7 05	20 0	돲
The Control Owers (works)	WTPH-HCIO 418.1		ក ន		20 0	20.0		200	3 8	11 007	11 004	100
The Descination (myna)	THOU DOWN	2000	7 005		1001	Š		100 0	J 100	200	2	
TPH, Heavy Carkanga (mg/kg)				200			". CC . 39 ALTA					
TPH, undifferentiated (mg/kg)	415.1	3										
1PH, Gasoline-Range (mg/kg)	NWTPH-GX	90										
TPH, Diesel-Range (mg/kg)	NWTPH-DX	2,000										
TPH, OIFRange (mg/kg)	NWTPH-Dx	2,000										
Volatile Petroleum Compounds									L			
Benzene (ma/ka)	82600	9.03		2			2					
Tothers (ma/kg)	B260C	7		0.3 0			22.0					
Ethytherizene (mg/kg)	8260C	8		03			2.6					
Xvienes lotal (ma/ka)	82500	6		0.3 U		1	3					
First Additives and Stending Compounds	nuds											
1 2.Dibramaethane (EDB: ma/kg)	١.	0,005							-			
1 2-Dichloroethane (EDC: mg/kg)	82600											
Methyl tert-buny other (MTBE; mg/kg)	3) 8260C	0.1					-					
Lead (modes)		250		4			3					
Carrie (trajement)												

Table 3 - Soll Sample Results at South Gas Station, Pierce County Tax Percol No. 2030-12-0032, 633 Division Avenue, Tacoms, Washington

							-					
Description(Chemical Namo	Laboratory Mothod	Soil, MTCA Method A, Unrestricted Land Uso, Table Value (mg/kg)	S1 8/1/1994	S2 841/1994	53 8/1/1994	S.4 81/1994	S5 8/1/1994	S6 8/1/1994	S7 87/1/894	S8 8/1/1/894	\$9 8/1/1994	S10 8/1/994
רסבסתטים												
			Excavation, oost wall,	Excavetion, bottom, Tenk	Excavation, west wall,	ب بر	Excavation, bottom, Tank	Excavation.	Excavation, bottom, Tank	Excavation, south well, Tank 5-7	Excavation, east well, Tank 5-7	Excavation, bottom, Tank 6
			Tank 2-4	2	Tank 2-4	4	\$ 50,	1	16	7.11	7.11	8 #
Sample Depth			#us #us	10 11	22 -	E .	1	200	;			
Other Petroleum Compounds												
Naphthalene (mo/kg)	8270D SIM	5										
Incorpovibenzene (md/kg)	8270D SIM											
n-Propylbenzene (mg/kg)	MIS G0728											
1.2.4-Trimethylbenzene (mg/kg)	MIS C0228											
1.3 5-Temethylbenzene (marka)	MIS 02728											
n-Butylbenzene (mp/kg)	MIS 00228											
sec-Bulybenzene (mg/kg)	8270D SIM											
ieri-Butylbenzane (mg/kg)	8270D SIM											
Issurpovitoluene (mo/kg)	BZ70D SIM											
p-isoprapy(toluene (mp/kg)	8270D SIM											
Other Compounds											L.	
Choringted VOCs (mo/kg)	82500											
Collection and Constitution		-										
PCB Mbaures (maying)												

Notes:

Bold highlighted fortimates exceedance of most concervative screening level.

Potential chemicals of concern stellde gasoline-range organics from Table 830-1 in Model Toxics Control Act.

A = fact

mg/kg = miligrams per kilogram MTCA ≠ Mode! Toxics Control Act

NR * not reported

U = analyte was not detected at or above the reported result.

U = analyte was not detected at or above the reported result.

WATPH = Northwest total portoleum hydrocarbon method

WTPH = Washington total portoleum hydrocarbon method

HCID * hydrocarbon identification analycic

Table 3 - Soil Sample Results at South Gas Station, Pierce County Tax Parcel No. 2030-12-0002, 613 Division Avenue, Tacoma, Washington

Description/Chemical Name	Laboratory Mothod	Soil, MTCA Method A. Unrestricted Land Use, Table Value (mg/kg)	S11	S12 8/1/1994	S13 8/1/1994	S14 8/1/1994	S15 8/1/1984	S17 8/2/1994	\$18 8/2/1994	\$19 8/2/1994	S20 8/2/1984	S21 8/2/1994
Location			Excavation, bottom, Tenk	Excevation, east well,	Excavation, west wall,	Excevation, bottom, Tank	Excavation, north wall.	Excevation, bottom, Tank	Excavation, east wall,	Excavation, north wall,	Excavation, west wall,	Excavation, south wall, Tank 1
Sample Depth			8#	7 tt	Sft 5-1	10#	8 tt	- 8# ##	#9	# 12	6.4	7.11
Total Petroleum Hydrocarbons												-
TPH Gasoline-Range (mo/kg)	TWTPH-HCID, 418.1	æ	20 U	ZD U	20 U		ာ အ	그 유	ე 	20 0	8 5	0 07
TPH Diesel-Range (mg/kg)	WTPH-HCID, 418,1	2,000	20 ∪	50 U	50 U		8	20 0	1 00	5	3 8	2000
TPH, Heavy Oil-Range (mg/kg)	WYPH-HCID, 418.1	2,000	100 U	100 U	100 U		18 5	180 U	100 D	2000	200	3
1PH, undifferentiated (mg/kg)	418,1	ap.				28.2						
TPH, Gasoline-Range (mg/kg)	NWTPH-Gx	30										
TPH, Dieset-Range (mg/kg)	MWTPH-Dx	2,000										
TPH, Oll-Range (mg/kg)	NWTPH-DX	2,000										
Volatile Petroloum Compounds												
Benzene (mg/kg)	8260C	0.03				0.3 U						
Tetuene (mg/kg)	8260C	7				D.3 C						
Ethytbenzene (mg/kg)	8260C	8				0,3						
Xyleres,total (mg/kg)	\$260C	6				0.3 U				-	-	
Fuel Additives and Blending Compounds	l											
1.2-Dibromoethane (EDB: mg/kg)		0.005										
1,2-Dichlorocthane (EDC; mg/kg)	8250C											
Methyl tech-bulyl ether (MTBE; mg/kg)	L	0,5										
Lead (mg/kg)		250										

Table 3 - Soll Sample Results at South Gas Station, Pierce County Tax Parcel No. 2036-12-0032, 633 Division Avenue, Tacoma, Washington

Description/Chemical Name	Leboratory Method	Solf, MTCA Method A, Unrestricted Land Usc, Table Value (mg/kg)	S11 8/1/1994	\$12	S 7.3 8/1/1994	S14 8/1/1994	S15 8/1/1984	S17 872/1994	S18 82/1994	S19 8/2/1994	S20 8/2/1994	S21 8/2/1954
Location			Excevation, bottom, Tank	Excavetion, east wall,	Excavation.	Excavation. bottom, Tank	Excavation, north wall,	Excavation, bottom, Tank	Excevetion, east wall,	Excevation, north waf,	Excavation, west well,	Excavation, south wall,
Sample Depth			. a #	1 ank 5-7	130K 5-/	10 11	8 #	- # 8	1 351K 1	7 ff	5 ff	ank 1
Other Petroleum Compounds												
Naphthalene (mg/kg)	8270D StM	5										
Isopropylbenzene (mg/kg)	8270D SIM											•
n-Propylbenzene (mg/kg)	MIS 0028											
1,2,4-Trimethylbenzene (mg/kg)	8270D SIM											
1,3,5-Trimethylbenzsne (mg/kg)	MIS 00228			_								
n-Bulylbenzene (mg/kg)	MIS G0728											
soc-Butylbenzene (mg/kg)	8270D SIM											
terl-Butylbenzene (mg/kg)	MIS 00228	,										
(sppropytolvene (mg/kg)	8270D SIM											
p-IsopropyRobene (mg/kg)	8270D SIM											
Other Compounds												
Chlarinated VOCs (mg/kg)	82500											
PCB mbtures (mg/kg)		-										
			Notes:									

Notes:
Bold highlighted forti indicates exceedance of most conservative screening level.
Potential chemicals of concern include gasaline-range organics from Table 830-1 in Model Toxics Control Act.

R = feet

mg/kg = miligrams per kilogram MTCA = Model Toxks Control Act

NR = not reported

U = analyte was not detected at or above the reported result.

NWTPH = Northwest total petroleum hydrocarbon method

WTPH = VVashington total petroleum hydrocarbon method

HGID = hydrocarbon identification analysis

Table 3 - Soll Sample Results at South Gas Station, Plerce County Tax Parcel No. 2030-12-0632, 633 Division Avenue, Tacoma, Washington

Excavation, Excavation, Excavation, Excavation, south wall, worst wall, bottom, pump listand Overburden Overburden Overburden Stand	Solt, MTCA Method A, Unrestricted and Use, Table Value (mg/kg)
31 5t 5t 20 20 0 20 0 20 0 20 0 20 0 20 0	Excavetion, Expurp island so (Removed) pun
20 U	211
20 U	
50 U 50 U 50 U 50 U 50 U 100 U	30
100 U	2,000
	2,000
	30 220
	30
	2,000
	2,000
	0.03 1.42
	7 7.81
0	11,11
0.01 U 0.05 U 0.	84.2
0.01 U 0.	
U 2005 U	500.0
NR NR	
34	0.1
	250 18

Table 3 - Soil Sample Results at South Gas Station, Plorce County Tax Purcel No. 2030-12-0032, 633 Division Avenue, Tacoma, Washington

Description/Chomical Namo	Laboratory Method	Soil, MTCA Method A, Unrestricted Land Uso, Tablo Value (mg/kg)	S22 8/2/1994 (Soll was Excavated)	S23 872/1994	S24 8/2/1994	S25 8/2/1994	01 8/1/1894	02	03	04	05 4997(%	06 4201708
Location												
			i							-		
			Excavation,	Excavation,	-	Excavation,	1					•
			(Removed)	South Wall,	west wall,	bottom, pump	Jank 2 Overbrinden	Terrik 3	fank 1	Tank S-8	Tank S-8	Tenk 1
Sample Depth			2.#	3.22	3#	# S			מוייסווסמי	Cocionidei	Cveromodu	Cveroniden
Other Petroleum Compounds												
Nachthalana (movko)	8970D CIR	١										
Roomban Theorem / medical	20000	,										0.005 U
(Hutter) programmed decided	92/ UD SIM:											
n-Propytaenzene (mg/kg)	8270D SIM											
1,2,4-Trimethylbenzene (ma/kg)	S270D SIM							1				
1,3,5-Trimethylbenzene (mg/kg)	8270D SIM											
n-Butyborzene (mg/kg)	8270D SIM											
sec-Butylbenzene (mg/kg)	82700 SIM											
tert-Butylbenzeno (mg/kg)	MIS 00.28									1		
Isopropyttoluene (mg/kg)	8270D SIM									†		
p-teopropyttoluene (mg/kg)	82700 SIM											
Other Compounds												1
Chlorinated VOCs (mg/kg)	8260C											
PCB mixturos (ma/kg)												0,010
									-			0.1 C

Notes:
Bold highlighted fort indicates exceedance of most conservative screening level.
Potential chemicals of concern include gaseline-range organics from Table 830-1 in Model Toxics Control Act.

A = feet

mg/kg = milligrams per kilogram
MTCA = hadel Toxics Control Act
NR = nat reported
U = analyte was not detected at or above the reported result.
WYTPH = Northwest total petroleum hydrocarbon method
WTPH = Washington total petroleum hydrocarbon method
HCID = hydrocarbon identification analysis

Exhibit D

CAP INTEGRITY AND GROUNDWATER MONITORING PLAN

The Grantor shall maintain the building cap in accordance with Section 2.a, and shall not modify or remove the existing structure over the area designated as a cap, as illustrated in Exhibit C, without written authorization from Ecology. There are no inspection requirements for the building cap on the Property. The presence and condition of the pavement cap in the right-of-way will be observed during five-year periodic reviews.

The Grantor shall maintain MW-11 as an observation point in accordance with Section 2.c. MW-11 shall be sampled at a 24-month interval following receipt of Ecology's no further action (NFA) opinion letter to confirm the effectiveness of the building cap. As mandated by the Model Toxic Control Act, long-term compliance monitoring is required if containment is the selected cleanup action for a site or a portion of a site. The compliance monitoring plan must be prepared as per the requirements of WAC 173-340-820 and must contain the elements of WAC 173-340-410(3). The plan must require submittal of groundwater samples for the analysis of volatile organic compounds by EPA Method 8260 and total petroleum hydrocarbons by Methods NWTPH-Gx and NWTPH-Dx, or equivalent. Sample results shall be submitted to the Department of Ecology through the Environmental Information Management (EIM) database. A groundwater monitoring report must be submitted to Ecology after each sampling event.

Groundwater samples will be collected following "Technical Guidance on Low Flow Purging and Sampling" (Nielson, 2002). Groundwater will be pumped from the middle portion of the water column in the well at a rate of less than 1.0 L/min. A water level indicator will be used to monitor the elevation of groundwater during pumping of the well to mitigate drops in the water level during pumping and sampling. A calibrated multi-parameter water meter will be used with a flow cell for monitoring groundwater (temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential) during the pumping and sampling process (Appendix A).

The Department of Ecology will perform a five-year periodic review of the Site in accordance with Section 173-340-420, Washington Administrative Code of the Model Toxics Control Act.

This page left intentionally blank,

Enclosure B

September 22, 2017 email from City of Tacoma RE: Subordination Request

Acklam, Nicholas (ECY)

From:

Bacha, Chris (Legal) < CBacha@ci.tacoma.wa.us>

Sent:

Friday, September 22, 2017 2:19 PM

To: Subject:

Acklam, Nicholas (ECY) Stadium Retail LLC

Nick.

Thanks for the call and I am sorry I missed you. Please let me know what Ecology decides to do. Also, I saw a number of typos in the e-mail I sent earlier, so I am re-transmitting it below with corrections. Enjoy your week-end.

Regards,

Nick.

I met with representatives of public works and the City's environmental services department recently to discuss the request from Ecology for the City to execute a subordination agreement covering a part of First Avenue and Division Street in Tacoma. I have not yet scheduled a meeting with our power and water utilities; however, I do not believe that their position on this issue would be any different than our public works and environmental services departments. This communication is intended to convey to Ecology the City's concerns regarding the conditions the City has been asked to voluntarily agree too so that the property owner may be issued a no further action letter.

We understand that the property owner (Stadium Retail, LLC) has undertaken a voluntary clean-up of its property under MTCA through removal of UST's and Ecology's approval of a building cap intended to contain contaminated soil under the cap to prevent potential contact and to minimize leaching of contaminants to ground water. This cap apparently extends to portions of the City right of way and thus would be subject to the restrictive covenant required as a condition of Ecology's issuance of a no further action letter to the property owners. Our understanding is that Ecology believes that soils in the right of way may be contaminated as a result of activities in and upon the abutting developed property resulting in migration of contaminants to the right of way. A boring sample shows that contaminated soil is present in the right of way at a depth greater than 15 feet; however, it is not clear that the contaminated soil in the right of way exceeds MTCA clean-up levels.

The City has not been involved in the voluntary clean-up action undertaken by the property owner, and until the City received the request to sign the subordination agreements, had not been notified of the possibility that the contaminants may have migrated to the right of way. Nor was the City aware that the property owner and Ecology proposed that the right of way pavement and sidewalk would constitute a cap under this voluntary clean-up action and subject to a restrictive covenant. Additionally, as to this site, it is not clear that contaminants within the right of way exceed MTCA clean-up levels such that remediation would be required, and there is no evidence that the City was the source of the contamination within the right of way.

The subordination agreement would require the City to subordinate its constitutional and statutory right and interest in management and control over the right of way to the conditions set forth in the restrictive covenant. Among other things, the restrictive covenant would prohibit any activity in the right of way that will compromise the integrity of the cap including: drilling; digging; piercing the cap with sampling device, post, stake or similar device; grading; excavation; installation of underground

utilities. Any such activities would require prior notice to and approval of Ecology. Additionally, the restrictive covenant would require the City to give notice to Ecology of the conveyance of "any interest" in the right of way and notice of the restrictive covenant to any such party.

The City has a number of concerns:

- 1. Burden upon the City. Although the primary purpose of the right of way is for transportation and travel, the right of way is a utility corridor used routinely for installation, operation. maintenance and repair of overhead and underground public and private utility systems. Utility installation and repair in the public right of way is common place. The requirement for notice to Ecology and prior approval of any activity in the right of way that will disturb the pavement cap is a significant and burdensome obligation that will delay and add costs to all utility projects in the right of way corridor subject to this restrictive covenant. Although the area of this site may be small, the practice of requiring restrictive covenants within the right of way when adjacent property is subsect to a restrictive covenant, could cause the number of such restrictive covenants to proliferate making it difficult for the City to track the covenants and maintain compliance with the covenant conditions. The burden is especially onerous with regard to common activities such locating new utility poles and street signs, and sidewalk replacement and repair. The City does not object to ensuring that its activities, and the activities of 3rd party users, do not expose workers to contact with contaminants or ensuring that contaminated soils are properly handled. The burden that the City is concerned about is removing these sites from the City's current practices (see discussion below) and requiring a notice and approval process prior to commencement of any work; even installing a street sign, in the right of way would be subject to the subordination agreement.
- 2. Conflict with Practice and Policy. Second, it is rare for a municipality in Washington state to accept encumbrances upon a right of way. Such encumbrances interfere with the City's obligation and authority to manage, maintain and control the right of way for purposes of travel and authorized secondary uses. Accordingly, encumbrances upon the use of the right of way are disfavored under Washington law. See generally, Irrigation Dist. Spokane County, 13 Wn. App. 686, 699 (1975). Further, the Washington Courts have held that the City has absolute control of the streets and that abutting property owners, regardless of their fee interest in the right of way, have no right to use the right of way for purposes other than ingress and egress without the City's consent. See, Baxter-Wyckoff Co. v Seattle, 67 Wn. 2d 555, 560-562 (1965). The proposed subordination agreement which would subject to the right of way to the terms and conditions of the restrictive covenant is highly unusual and, to my knowledge, the City has never agreed to such a restriction for the benefit of an abutting property owner.
- 3. Practices and Requirements. The City routinely encounters contaminants in the right of way and understands its obligations under MTCA and the need to protect workers and the public. The City routinely issues contracts for work to be performed in the public right of way. These contracts in every instance include provisions for handling contaminated soils encountered while excavating within the public right of way. Further, all permits issued for 3rd parties to perform work in the right of way require compliance with the State environmental laws, including MTCA. Accordingly, the City has practices and requirements in place to protect future workers and to make sure that any disturbed soils are properly handled and managed.

The City supports the property's owners efforts to complete its voluntary clean-up action and receive a no further action letter. The City further supports the efforts of Ecology to ensure that future work in the adjacent right of way does not expose workers to contaminated soil and provides for the proper handling and disposal of contaminated soil. However, the City does not agree that the subordination

agreement is a viable or practical method for addressing these concerns. Instead, the City believes that Ecology should consider removing the subordination requirement and application of the restrictive covenant to the City under the provisions of WAC 173-340-440(8)(b). This regulation provides generally that for properties owned by a local government, such as the City's right of way easement, the subrogation/restrictive covenant obligation need not be required if the local government does not, (1) routinely file records relating to the type of interest in real property that is has in the site, and (2) the local government will implement an effective alternative system to meet the requirements typically imposed under a restrictive covenant. The City believes that it meets both conditions and is willing to meet with Ecology to discuss this approach as an alternative to the subordination agreement. The City is likewise available to discuss the MOA, but because we have not seen a draft, it is not clear to the City what terms and conditions would be contained in the MOA.

I appreciate your efforts to work with the City on this issue and we will continue to work with Ecology to come to a mutually acceptable solution that can be applied going forward, not just for this site, but for other sites in the City. We understand that Ecology has a similar issue with another site in Tacoma (the Heidelberg MTCA Site). Although that site has different right of way conditions, I believe the City's position is the same. My understanding is that Allyson Bazan with the A.G.'s office may be working on that agreement.

Regards,

Chris Bacha Chief Deputy City Attorney City of Tacoma 747 Market Street, Rm 1120 Tacoma, WA 98402-3767 Direct: (253) 591-5626

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you are not the named addressee you should not disseminate, distribute or copy this email. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. If you are not the intended recipient you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

Date: May 22, 2018

Dept of Ecology:

The following is in response to your May 22, 2018 request for delivery information on your Certified Mail™ item number 9171999991703774718859. The delivery record shows that this item was delivered on January 12, 2018 at 10:43 am in SAN DIEGO, CA 92101. The scanned image of the recipient information is provided below.

Signature of Recipient:

Address of Recipient:

Thank you for selecting the Postal Service for your mailing needs.

If you require additional assistance, please contact your local Post Office or postal representative.

Sincerely,

United States Postal Service