

January 2018 Shelton Harbor Sediment Cleanup Unit Oakland Bay and Shelton Harbor Sediments Cleanup Site (Cleanup Site ID: 13007)

Shelton Harbor Interim Action Plan

Prepared for Simpson Timber Company and the Washington State Department of Ecology

Dioxin data in this report are not correct due to lab error. See corrected data in Shelton Harbor Interim Action Basis of Design - Appendix A -Data Report, 9/30/18 January 2018 Shelton Harbor Sediment Cleanup Unit Oakland Bay and Shelton Harbor Sediments Cleanup Site (Cleanup Site ID: 13007)

Shelton Harbor Interim Action Plan

Prepared for

Simpson Timber Company 1305 5th Avenue Suite 2700 Seattle, Washington 98101

Washington State Department of Ecology Toxics Cleanup Program, Southwest Region PO Box 47775 Olympia, Washington 98504-7775

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

TABLE OF CONTENTS

1	Intro	oductio	on	1
2	She	lton Ha	arbor Environmental Conditions	2
	2.1	Shelto	on Harbor Background	2
	2.2	Summ	nary of Sediment Sampling Data	3
	2.3	Conce	eptual Site Model	7
3	Clea	nup R	equirements	9
	3.1	Sedim	9	
		3.1.1	Protection of the Benthic Community	9
		3.1.2	Protection of Human Health	
		3.1.3	Protection of Upper Trophic-Level Wildlife	
		3.1.4	Background	
	3.2	Site-S	pecific Sediment Cleanup Levels	
	3.3	Points	of Compliance	
	3.4	Reme	dial Action Levels	
	3.5	Sedim	nent Management Areas	
	3.6	Clean		
	3.7	Source	e Control Status	
	3.8	Compliance with Applicable Laws		
		3.8.1	State Environmental Policy Act	
		3.8.2	Puget Sound Dredged Material Management Program	
		3.8.3	Shoreline Management Act	
		3.8.4	Washington Hydraulics Code	
		3.8.5	Federal Clean Water Act	
		3.8.6	Washington Water Pollution Control Act	
		3.8.7	Archaeological and Historic Preservation Act	
		3.8.8	Health and Safety	
	3.9	Exemp	otions from Procedural Requirements	
		3.9.1	City of Shelton Shoreline Master Program	
		3.9.2	Hydraulic Project Approval Permit	
4	Inte	rim Ac	tion Alternatives and Comparative Evaluation	24
	4.1	Clean	up Technologies	24
	4.2	Cap D	esign Evaluation	

		4.2.1	Chemical Isolation and Bioturbation	26
		4.2.2	Erosion Protection	30
		4.2.3	Consolidation	31
		4.2.4	Constructability Considerations	31
		4.2.5	Preliminary Cap Design Specifications	32
	4.3	Sheltor	n Harbor Interim Action Alternatives	32
		4.3.1	Alternative 1 – Dredging	32
		4.3.2	Alternative 2 – Engineered Capping	33
		4.3.3	Alternative 3 – Enhanced Natural Recovery	34
		4.3.4	Alternative 4 – Monitored Natural Recovery	34
	4.4	Detaile	d Analysis of Alternatives	34
		4.4.1	Minimum Requirements	35
		4.4.2	Disproportionate Cost Analysis	36
	4.5	Recom	mended Interim Action Remedy	43
5	Inter	im Act	ion Implementation Plans	45
6	Inter	im Act	ion Compliance Monitoring	46
	6.1	Monito	pring Objectives and Rationale	46
7	Refe	rences		48

TABLES

Table 3-1	Shelton Harbor SCU Cleanup Levels and Remedial Action Levels
Table 4-1	Remedial Technology Screening
Table 4-2	Input Parameter Values for Chemical Isolation Cap Modeling
Table 4-3	Chemical-Specific Model Input Parameters
Table 4-4	Steady-State Model Results for a 6-inch Chemical Isolation/Bioturbation Layer
Table 4-5	Cap Design Specifications
Table 4-6	Disproportionate Cost Analysis

FIGURES

- Figure 1-2 Shelton Harbor Sediment Cleanup Unit and Bathymetry
- Figure 2-1 North Shelton Harbor Habitat Restoration Project

Figure 2-2	Shelton Harbor Surface Sediment Toxicity
Figure 2-3	Shelton Harbor Surface Sediment Dioxin/Furan TEQ
Figure 2-4	Shelton Harbor Surface Sediment cPAH TEQ
Figure 3-1	Northern Shelton Harbor Sediment Management Areas
Figure 3-2	Southern Shelton Harbor Subsurface Sediment Lead-210 and CoC Profiles
Figure 3-3a	Dioxin/Furan TEQ Fingerprints: Clinker Deposit and SH-03 Sediment – Concentrations
Figure 3-3b	Dioxin/Furan TEQ Fingerprints: Clinker Deposit and SH-03 Sediment – Proportions
Figure 4-1	Chemical Isolation Cap Model Domain and Processes
Figure 4-2	Interim Action Alternative 1 – Removal
Figure 4-3	Interim Action Alternative 2 – Engineered Capping
Figure 4-4	Interim Action Alternative 3 – Enhanced Natural Recovery
Figure 4-5	Interim Action Alternatives Disproportionate Cost Analysis
Figure 5-1	SMA-1 Cap Section
Figure 5-2	SMA-2 Cap Section
Figure 5-3	SMA-3 Embankment Cap Plan
Figure 5-4	SMA-3 Embankment Cap Section

APPENDICES

Appendix A	2017 Data Report
Appendix B	Interim Action Alternative Cost Estimates

ABBREVIATIONS

µg/kg	micrograms per kilogram
μg/L	micrograms per kilogram
Agreed Order	Agreed Order DE 14091
CAP	Cleanup Action Plan
-	centimeter
cm	
cm/d	centimeters per day
cm/hr	centimeters per hour
cm/yr	centimeters per year
cm ² /s	square centimeters per second
cm²/y	square centimeters per year
CoC	chemical of concern
Corps	U.S. Army Corps of Engineers
сРАН	carcinogenic polycyclic aromatic hydrocarbon
CQAP	Construction Quality Assurance Project Plan
CSL	cleanup screening level
CSM	conceptual site model
CWA	Clean Water Act
су	cubic yard
D ₅₀	median (50%) grain size diameter
DCA	disproportionate cost analysis
DMMP	Dredged Material Management Program
Dw	diffusivity in water
Ecology	Washington State Department of Ecology
ENR	enhanced natural recovery
EPA	U.S. Environmental Protection Agency
g/mol	grams per mole
H:V	horizontal to vertical
HPA	Hydraulic Project Approval
IAP	Shelton Harbor Interim Action Plan
Кос	organic carbon partitioning coefficient
Kow	octanol water partitioning coefficient
L/kg	liters per kilogram
mg/kg	milligrams per kilogram
MNR	monitored natural recovery
MTCA	Model Toxics Control Act
N/A	not applicable
, , , ,	

ng/kg	nanograms per kilogram
NWP	Nationwide Permit for Cleanup of Hazardous and Toxic Waste
OC	organic carbon
OMMP	Operations, Maintenance, and Monitoring Plan
РАН	polycyclic aromatic hydrocarbon
PLP	Potentially Liable Party
PQL	practical quantitation level
RAL	remedial action level
RCW	Revised Code of Washington
RD Work Plan	Remedial Design Work Plan
RI/FS	remedial investigation/feasibility study
RI/FS Work Plan	Shelton Harbor Sediment Cleanup Unit Remedial Investigation/Feasibility Study Work Plan
SCO	sediment cleanup objective
SCU	Sediment Cleanup Unit
SCUM II	Sediment Cleanup User's Manual II
SEPA	State Environmental Policy Act
Simpson	Simpson Timber Company
SMA	sediment management area
SMS	Sediment Management Standards
SPI	sediment profile imaging
SWAC	surface-weighted average concentration
ТВТ	tributyltin
TEQ	toxic equivalence quotient
USC	United States Code
WAC	Washington Administrative Code

1 Introduction

This *Shelton Harbor Interim Action Plan* (IAP) describes the selected cleanup action for portions of the Shelton Harbor Sediment Cleanup Unit (SCU) within the Oakland Bay and Shelton Harbor Sediments Cleanup Site (Ecology Cleanup Site ID 13007; Figure 1-1). The Shelton Harbor SCU (Figure 1-2) was delineated by the Washington State Department of Ecology (Ecology) in accordance with the Washington State Sediment Management Standards (SMS; 173 204-500(4)(a)), as further described in the 2017 Agreed Order DE 14091 (Agreed Order) between Ecology and the Simpson Timber Company (Simpson). An interim action is a remedial action partially addressing the cleanup of a site, as provided under the Washington State Model Toxics Control Act (MTCA) regulation (Washington Administrative Code [WAC] 173-340-430) and the Agreed Order. Specifically, this IAP describes sediment cleanup actions for three subareas within the Shelton Harbor SCU with elevated concentrations of chemicals of concern (CoCs). This IAP, which fulfills the requirements of Section VII.D of the Agreed Order, describes the proposed interim actions and sets forth functional requirements that these cleanup actions must meet to comply with the requirements of MTCA and the SMS. Simpson, along with other Potentially Liable Parties (PLPs) as appropriate, will implement this IAP to satisfy the requirements of the Agreed Order.

This IAP has also been prepared to expedite cleanup of Shelton Harbor sediments located below the mean higher high-water elevation, including areas within the northern Shelton Harbor habitat restoration project described in Section 2.1. The remainder of the Shelton Harbor SCU will be addressed in a forthcoming SCU-wide Cleanup Action Plan (CAP), currently targeted to be prepared in 2019.

2 Shelton Harbor Environmental Conditions

This section summarizes environmental conditions in Shelton Harbor, including a brief background of the harbor, a summary of sediment data, and the current conceptual site model (CSM) of sediment contamination.

2.1 Shelton Harbor Background

Like the rest of Puget Sound, the Shelton Harbor area was glaciated and carved out during the last ice age. Shelton Harbor, Oakland Bay, and Hammersley Inlet are likely the remnants of a subglacial channel formed during the most recent glacial retreat (Herrera 2010). The current bathymetry of the Shelton Harbor area is depicted on Figure 1-2. Watershed inputs from Goldsborough Creek and Shelton Creek, along with algal (e.g., phytoplankton) production within Oakland Bay, contribute sediments to Shelton Harbor. Sands transported through Goldsborough and Shelton Creeks deposit in the relatively large intertidal delta near the creek mouth in north Shelton Harbor, while finer sediment (silt and clay) is transported into deeper water areas of the SCU.

The non-Native American Shelton area economy was built around the forest products industry and paper manufacturing, farming, dairying, and ranching as well as shellfish aquaculture including oyster cultivation. Industrial development in Shelton Harbor began with sawmill operations in the late 1800s, which continue to this day. In general, waterfront industrial operations peaked in the 1950s and 1960s and have declined since that period, like other areas of Puget Sound.

Both Goldsborough and Shelton Creeks are productive salmonid streams. In 2000, Simpson and the U.S. Army Corps of Engineers (Corps), in conjunction with the Washington State Department of Fish and Wildlife and the Squaxin Island Tribe, removed a 33-foot-high dam in Goldsborough Creek, improving fish passage for Chinook (*Oncorhynchus tshawytscha*), coho (*O. kisutch*), and chum (*O. keta*) salmon, along with coastal cutthroat trout (*O. clarkii clarkii*) and bull trout (*Salvelinus confluentus*). Today, Goldsborough Creek is one of the only watersheds in Puget Sound with increasing coho salmon runs (https://nwifc.org/recordgoldsborough/). Shelton Creek has continued to support chum (*O. keta*) salmon runs, even though it is in an urbanized watershed.

In 1991, a railroad ferry dock located on the north side of the spit that bisects Shelton Harbor was removed by the Corps, after which the mouth of Goldsborough Creek migrated to the north into deeper, formerly dredged areas, creating an abrupt grade drop from the creek channel into a former dredged area within the delta (Anchor QEA 2017a). Even following removal of the Goldsborough Creek dam, this grade change has continued to propagate an upstream channel incision into Lower Goldsborough Creek as it has adjusted to its new base elevation, exposing buried pipelines in the creek, creating fish passage barriers, and degrading estuary and creek habitat.

The Squaxin Island Tribe, South Puget Sound Salmon Enhancement Group, Simpson, Port of Shelton, and other project partners are currently designing and permitting a habitat restoration project within the northern portion of Shelton Harbor to address these habitat impacts, with the objective of facilitating greater salmon runs. The habitat restoration project is located within a portion of the Shelton Harbor SCU (Figure 2-1). The initial (2017) phase of the habitat restoration project installed engineered log jams designed to slow and reverse the upstream channel incision. Subsequent phases of the habitat restoration project (beginning in 2018) will place clean fill in the estuary to restore saltwater wetland habitat and enhance riparian areas. The overall goals of the habitat restoration project include the following (Anchor QEA 2017a):

- Provide aquatic habitat and hydraulic complexity.
- Promote aggradation and complex flow paths.
- Restore estuary functions and facilitate natural processes.
- Improve habitat conditions at the mouths of Goldsborough and Shelton creeks.

The next (summer/fall 2018) phase of the habitat restoration project will include constructing a salt marsh lobe in the northwest portion of Shelton Harbor on tidelands owned by Simpson and adjacent to Sierra Pacific Industries properties and rerouting the mouth of Shelton Creek into a new lagoon, as depicted in Figure 2-1. As described in this IAP, sediment cleanup actions in northern Shelton Harbor will be designed to be compatible with habitat restoration plans. Cleanup construction is also anticipated to be coordinated with habitat construction to the extent practicable. However, cleanup actions described in this IAP will not be dependent on the habitat restoration project.

Cleanup plans for other areas of the Shelton Harbor SCU, to be addressed in the forthcoming SCU-wide CAP (currently targeted to be prepared in 2019), will also be orchestrated with habitat restoration to the extent practicable. For example, as part of a future (likely 2020 or beyond) phase of the habitat restoration project, a portion of an existing timber railway and underlying upland soils may be excavated from the spit located immediately southeast of the Goldsborough Creek delta, improving connectivity of northern and southern Shelton Harbor habitats (Figure 2-1). Soil excavation, disposal, and other future project elements to be performed within the spit and other harbor areas necessary to ensure human health and environmental protection will be described in the forthcoming (2019) SCU-wide CAP.

2.2 Summary of Sediment Sampling Data

As part of the Puget Sound Initiative for restoration and recovery of Puget Sound, Ecology identified the Oakland Bay and Shelton Harbor Sediments Cleanup Site (Figure 1-1) as one of seven high priority areas in Puget Sound for cleanup and restoration because of its important habitat and valuable natural resources. In 2008, Ecology performed a study of Oakland Bay to identify potential areas of sediment contamination and confirm priority areas for cleanup. Ecology designed the study

to characterize sediment quality, determine the nature and extent of sediment contamination and wood debris, and help identify protective sediment cleanup levels. Findings from the study were published in the *Sediment Investigation Report, Oakland Bay Sediment Characterization Study* (Sediment Investigation Report; Herrera 2010).

The scope of Ecology's 2008 Oakland Bay study included Shelton Harbor and adjoining areas, and included an assessment of sediment input and transport throughout the bay system and the collection of sediment samples for both CoC and toxicity analyses (Herrera 2010). Fifty surface grabs and 51 subsurface core samples were collected across the Oakland Bay study area; additionally, three reference sediment surface grab samples were collected from Carr Inlet to provide background toxicity comparisons. Samples were analyzed for a wide range of CoCs associated with historical industrial activities.

Ecology's 2008 Oakland Bay study identified surface and subsurface deposits of wood debris (with associated elevated levels of sulfides and ammonia), dioxins/furans, and other CoCs in portions of the northern and southern Shelton Harbor SCU (Herrera 2010). However, none of the surface sediment samples collected in the northern harbor exceeded SMS sediment cleanup objective (SCO) chemical criteria for benthic community protection, and only one surface sediment sample collected in the southern harbor exceeded the SCO chemical criterion for a single polycyclic aromatic hydrocarbon (PAH; fluoranthene). Historical (2000 to 2005) sampling of the marine railway area in the northern harbor also identified a localized SCO chemical criterion exceedance of copper, as well as localized areas of elevated tributyltin (TBT) concentrations in the upper intertidal zone. There is no promulgated SMS criterion for TBT, but levels can be compared to regional risk-based benchmarks for the purposes of evaluating areas for potential cleanup.

Bioassay testing performed in 2008 found toxicity at several stations within Shelton Harbor, primarily for the larval bioassay test. However, the results were somewhat inconclusive, because "clean" reference sediments that were used for comparison to test sediments failed the SMS acceptability criteria for some of the tests (Herrera 2010). Additionally, test procedures in use for the larval bioassay test in 2008 were later revised because the earlier test method was found to produce a negative bias. Ecology's Oakland Bay study concluded that the 2008 bioassay results were "associated with the presence of wood waste, fine-grain sediment, synergistic effects of these and other correlated constituents of concern, or some unmeasured condition."

The 2008 study reported elevated surface sediment dioxin/furan concentrations at the Site, particularly within the Shelton Harbor SCU (Herrera 2010). Dioxin/furan concentrations were also found in sediment core samples. In most cases the deeper sediment samples were found to contain higher dioxin/furan concentrations, likely due to historical sources. Ecology's (2017a) comparison with the most recent updates of the SMS regulation concluded that dioxins/furans as well as carcinogenic PAHs (cPAHs) are human health CoCs within the Shelton Harbor SCU.

Thus, based on Ecology's previous evaluations, the following CoCs have been identified within the Shelton Harbor SCU:

- Toxicity from wood debris breakdown products
- Dioxins/furans
- cPAHs
- Copper
- TBT

As discussed in the *Shelton Harbor Sediment Cleanup Unit Remedial Investigation/Feasibility Study Work Plan* (RI/FS Work Plan; Anchor QEA 2017b) developed under the Agreed Order, most of the data needed to complete the Shelton Harbor RI/FS were collected between 2005 and 2011, including sampling and analysis data presented in the Sediment Investigation Report (Herrera 2010). Consistent with the RI/FS Work Plan, a final defined data collection effort was completed by Simpson in summer 2017. The 2017 data collection included sediment profile imaging (SPI)¹ throughout Shelton Harbor; confirmatory bioassays using new test methods at several of the stations that failed bioassay criteria in 2008; total volatile solids and porewater sulfide concentrations at bioassay stations; sediment cores for radioisotopes Lead-210 and Cesium-137 to evaluate sedimentation rates; dioxin/furan and cPAH analysis at selected stations, and sediment coring to evaluate wood distributions at targeted locations. A report summarizing the 2017 sampling data is provided in Appendix A (these data are also available on Ecology's Environmental Information Management database). The specific sampling objectives and findings of the 2017 investigations are briefly summarized as follows:

- Evaluate benthic conditions (e.g., SPI at 60 stations and confirmatory bioassays at 11 targeted locations).
 - At almost all SPI locations, surface sediments did not exhibit visible wood debris, and it appears that wood debris and associated toxic conditions in surface sediments throughout most of the Shelton Harbor SCU declined significantly between 2008 and 2017; elevated wood debris levels (greater than 10% by volume) remain in isolated areas of the southern harbor (Figure 2-2).
 - SPI results also reveal that surface sediments in much of the harbor are well oxygenated and indicative of healthy benthic communities.
 - Eight of the 11 confirmatory bioassays performed in 2017, including the single confirmatory station in the northern harbor, passed SCO biological criteria; localized areas of the southern harbor exceeded SCO biological criteria (i.e., no more than minor

¹ Sediment profile imaging is a survey method that rapidly maps large areas of surface and near-surface sediment, providing information on sediment textures, geochemical conditions, and biological features.

localized benthic community impacts), and only one sample in the southern harbor (SH-19) exceeded the cleanup screening level (CSL) biological criterion.

- Evaluate potential bioaccumulation exposures to humans and wildlife, building on regional background evaluations recently performed by Ecology (2017a).
 - Dioxin/furan toxic equivalence quotient (TEQ) levels are elevated throughout much of the Shelton Harbor SCU, with the highest levels found in southwestern Shelton Harbor and in the Shelton Creek delta. The maximum surface sediment concentration was detected at Station SH-03, containing approximately 287 nanograms per kilogram (ng/kg; Figure 2-3).
 - cPAH TEQ levels are elevated throughout much of the Shelton Harbor SCU, with the highest concentrations in the southwestern harbor, along the northern shoreline, and in the south-central harbor. The maximum concentration of approximately 320 micrograms per kilogram (µg/kg) was reported historically at Station SH-22 (Figure 2-4).
- Evaluate ongoing sources to sediments (e.g., further evaluation of potential dioxin/furan sources in Shelton Creek).
 - Existing surface sediment dioxin/furan TEQ levels in Shelton Creek above the estuary, including near the clinker deposit on the west bank of the creek, range between approximately 6 and 23 ng/kg, significantly lower than levels measured in the Shelton Creek delta (Station SH-03; Figure 2-3).
 - The dioxin/furan congener "fingerprints" of the clinker and Shelton Creek delta deposits are also dissimilar, further suggesting that the clinker deposit is not a present-day significant source of dioxins/furans to the Shelton Harbor SCU (see Section 3.7).
 - Evaluation of dissolved dioxin/furan concentrations in shallow groundwater underlying the clinker deposit is ongoing, and will be reported in the forthcoming Shelton Harbor RI/FS (and addressed in the SCU-wide CAP as appropriate).
- Evaluate recent natural recovery (e.g., radioisotope and other analyses to better characterize sedimentation rates and sediment stability).
 - Based on radioisotope dating, net sedimentation rates in subtidal areas of Shelton Harbor average 0.30 ± 0.06 centimeters per year (cm/yr; see Section 2.3 for further discussion of natural recovery and sediment stability in the Shelton Harbor SCU).

While the 2017 sediment sampling data presented in Appendix A suggest that subtidal surface sediment concentrations of dioxin/furan TEQ and cPAH TEQ have declined since 2005 consistent with prior source controls and recent natural recovery of these CoC, not all prior sampling stations were reoccupied during the 2017 sampling. To provide a conservative estimate of current surface sediment CoC concentrations across the Shelton Harbor SCU for this IAP, average 2017 and historical sampling data for collocated stations were used to develop concentration interpolations across the

SCU; historical (2005 to 2008) data were used for stations not sampled in 2017. The combined 2005 to 2017 sampling data interpolated by inverse distance weighting for dioxin/furan TEQ and cPAH TEQ are presented in Figures 2-3 and 2-4, respectively, and are discussed in more detail in Section 3.

2.3 Conceptual Site Model

A wide range of historical sources including industrial facilities may have released hazardous substances or wood debris to sediments in Shelton Harbor, based on their scale, nature of operations, and years of operation. More detailed descriptions of historical sources are provided in the *"Summary of Existing Information and Identification of Data Gaps Technical Memorandum"* (Herrera 2008). As discussed in Herrera (2010), historical sources of contamination to Shelton Harbor could have included wood debris, wood burning and hog fuel boiler operations, pulp mill and bleaching operations, sawmill facilities, wastewater discharges from industrial sources as well as public-owned treatment works, vessel maintenance and repair, and other operations. Historical transport pathways may have included currents and tidal fluctuations, aerial deposition, and stormwater runoff.

Potential current ecological and human health risks have been identified in Shelton Harbor, summarized as follows:

- Benthic effects have been studied primarily through a series of SMS bioassay tests; the 2008 and 2017 bioassay data (summarized in Section 3 and presented in Appendix A) reveal that risks to sensitive benthic invertebrates are localized to active log rafting operational areas in southern Shelton Harbor, as well as historical log rafting areas in the southwestern corner of the harbor (Figure 2-2).
- While several of the 2008 larval bioassay SCO exceedance stations in the northern harbor were not resampled in 2017, these stations had lower levels of wood debris and associated degradation product concentrations than the northern harbor station (SH-04) that was resampled in 2017, which passed SCO biological criteria using improved larval bioassay test procedures (Anchor QEA 2017b). Based on the weight of evidence of the combined 2008 and 2017 data (i.e., SPI results showing a healthy benthic community, improved larval bioassay methods, recent natural recovery), no benthic risks were identified in the northern harbor.
- For several bioaccumulative chemicals including dioxins/furans and cPAHs, risk-based values protective of human health and upper trophic level wildlife fall below natural and regional background concentrations defined in the SMS (WAC 173-204-505; Ecology 2017b). As discussed in Section 3, average concentrations of dioxins/furans in Shelton Harbor are higher than South Puget Sound draft regional background levels; however, average cPAH concentrations in the Shelton Harbor SCU are less than regional background levels.
- Based on radioisotope dating, net sedimentation rates in subtidal areas of Shelton Harbor average approximately 0.30 ± 0.06 cm/yr, at the low end of net sediment deposition rates

measured throughout Puget Sound (roughly 0.5 to 2 cm/yr; Carpenter et al. 1985; Lavelle et al. 1985; see Section 3.6). At these rates, it would take approximately 15 to 30 years for CoC concentrations in the top 10 centimeters (cm) of subtidal sediments to decline by 50 percent, depending on the degree of surface sediment mixing and bioturbation. Observed declines between 2008 and 2017 in subtidal surface sediment dioxin/furan TEQ concentrations in the Shelton Harbor SCU are consistent with this measured sedimentation rate, and also suggest that there has been relatively little mixing/bioturbation of subtidal surface sediment from pre-1970 legacy releases remain in surface and subsurface sediments of the Shelton Harbor SCU.

3 Cleanup Requirements

Consistent with WAC 173-340-430, this IAP has been developed to achieve cleanup standards for portions of the Oakland Bay and Shelton Harbor Sediments Cleanup Site. The interim action is also intended to be consistent with the SCU-wide CAP, which will be developed in 2019. In this situation, the interim action also needs to be compatible with habitat restoration plans. Interim action construction will be coordinated with habitat construction as practicable, but the cleanup action will not depend on the habitat restoration to meet cleanup standards.

The MTCA regulations and SMS provide that a cleanup action must comply with cleanup levels for CoCs at the points of compliance. Site-specific cleanup standards are summarized in the following sections, along with delineation of sediment management areas (SMAs) in both the northern and southern portions of the Shelton Harbor SCU. Cleanup action objectives and applicable or relevant and appropriate requirements, based on federal and state laws (WAC 173-340-710) that the interim action must meet, are also briefly summarized at the end of this section.

3.1 Sediment Management Standards Cleanup Levels

Cleanup standards consist of the following: 1) cleanup levels that are protective of human health and the environment; 2) the point of compliance at which the cleanup levels must be met; and 3) additional regulatory requirements from applicable state and federal laws. Site-specific cleanup standards are developed for the protection of the benthic community, human health, and upper trophic-level wildlife, as discussed in the following sections.

3.1.1 Protection of the Benthic Community

Sediment cleanup levels for benthic community protection are based on SMS bioassay criteria (WAC 173-204-562(3)). The proposed site-specific bioassay cleanup level is the SCO criterion (Table 3-1). Evaluation of compliance with the biological criteria in the Shelton Harbor SCU uses the 2008 and 2017 bioassay results and other supporting information. As discussed in Section 2.3, based on the weight of evidence of these combined data (i.e., SPI results showing a healthy benthic community, oxygenated conditions, no visible wood, improved larval bioassay methods, recent natural recovery), all the northern Shelton Harbor area within the footprint of northern habitat restoration project is considered to meet the SCO bioassay cleanup level. However, the SCO bioassay cleanup level is currently exceeded in localized active log rafting operational areas in southern Shelton Harbor, as well as in historical log rafting areas within the southwestern corner of the harbor (Figure 2-2).

As discussed in Section 2.2, historical (2000 to 2005) sampling of the marine railway area in the northern harbor also identified a localized exceedance of the SCO chemical criterion for copper (390 milligrams per kilogram [mg/kg]), as well as localized areas of elevated TBT concentrations in the upper intertidal zone. While there is no promulgated SMS criterion for TBT, detailed evaluations of

sediment TBT exposure and toxicity in Seattle's East Waterway resulted in the development of a riskbased benchmark for the protection of the benthic invertebrate community from sediment TBT of 7.5 mg/kg, normalized to the organic carbon content of the sediment (OC-normalized; Windward and Anchor QEA 2014). Historical sampling of the marine railway area in the northern harbor identified localized TBT concentrations in the upper intertidal zone exceeding this benchmark.

3.1.2 Protection of Human Health

The SMS regulation as updated in 2013 provides a process for developing site-specific cleanup levels for protection of human health from fish and shellfish consumption as well as incidental sediment ingestion and direct contact, considering risk-based threshold concentrations as well as comparisons with background concentrations and practical quantitation levels (PQLs). SMS sediment cleanup levels for human health protection are summarized in the following sections.

3.1.2.1 Fish and Shellfish Consumption

Based on recent cleanup projects in other similar areas of Puget Sound, SMS risk calculations for protection of human health from dioxin/furan TEQ associated with potential fish and shellfish consumption are very low—typically below both the natural background level and the PQL. For example, calculated risk-based threshold concentrations of dioxin/furan TEQ in surface sediments that would be protective of potential human seafood consumption at both the Lower Duwamish Waterway and Western Port Angeles Harbor sites are less than 1 ng/kg (LDWG 2012; NewFields 2013). These calculated concentrations are below the Puget Sound natural background level (4 ng/kg; Ecology 2017b), the PQL (5 ng/kg), and the draft South Puget Sound regional background level (19 ng/kg; Ecology 2017a). A site-specific risk-based dioxin/furan TEQ sediment cleanup level for fish and shellfish consumption protection was not developed for this IAP because under any reasonable maximum exposure scenario applicable to Shelton Harbor, calculated values would be well below the PQL and background concentrations. Therefore, under the SMS framework for developing cleanup standards, SMS human health-based sediment cleanup levels for dioxin/furan TEQ default to PQL and/or background levels, whichever are higher. Regional background-based cleanup levels are discussed in Section 3.1.4.2.

Similarly, calculated risk-based threshold concentrations of cPAH TEQ in surface sediments that would be protective of potential human seafood consumption are also below both the natural background level and the PQL. For example, calculated concentrations of cPAH TEQ in surface sediments that would be protective of potential human seafood consumption at both the Lower Duwamish Waterway and Western Port Angeles Harbor sites are less than 1 µg/kg (LDWG 2012; NewFields 2013), below the PQL (9 µg/kg), the Puget Sound natural background level (21 µg/kg; Ecology 2017b), and the draft South Puget Sound regional background level (78 µg/kg; Ecology

2017a). Thus, SMS human health-based sediment cleanup levels for cPAH TEQ also default to PQL and background levels discussed in Section 3.1.4.2.

While relatively high sediment TBT concentrations have the potential to pose human health risks associated with fish and shellfish consumption, detailed evaluations of sediment TBT exposure and toxicity in Seattle's East Waterway concluded that the primary risk posed by TBT is to the benthic community (Windward and Anchor QEA 2014). Moreover, these evaluations reveal that achieving the risk-based benchmark for the protection of the benthic invertebrate community from sediment TBT exposure (7.5 mg/kg OC) by addressing localized accumulations of TBT (in this case within the northern harbor marine railway area; see Section 3.1.1) would also protect human health as well as upper trophic-level wildlife.

3.1.2.2 Sediment Ingestion and Direct Contact

Ecology (2017b) developed risk-based sediment concentrations that are protective of human health from a range of incidental ingestion and direct contact pathways associated with child beach play, adult subsistence clam digging, and adult subsistence net fishing. The most conservative risk-based sediment concentrations developed by Ecology for these pathways (dioxin/furan TEQ = 15 ng/kg; cPAH TEQ = 75 μ g/kg²) are slightly lower than the draft South Puget Sound regional background levels (Ecology 2017a).

3.1.3 Protection of Upper Trophic-Level Wildlife

Risk calculations for protection of upper trophic level species (e.g., fish, birds, and mammals) are usually above both regional background levels and risk levels that are protective of human health (Windward and Anchor QEA 2014). Thus, by protecting human health and achieving regional background, upper trophic-level species will also be protected, obviating the need for this IAP to develop cleanup levels for higher trophic-level receptors.

Both Shelton Harbor and Port Angeles Harbor are characterized by similar historical CoC sources (e.g., wood burning and hog fuel boiler operations, pulp mill, bleaching, and sawmill facilities, wastewater discharges from industrial and public-owned treatment works), as well as similar historical transport pathways (e.g., currents and tidal fluctuations; Herrera 2010; Ecology & Environment and NewFields 2012). Existing surface sediment dioxin/furan and PAH concentrations and associated "fingerprint" patterns in these two harbors are also similar, further supporting comparability between these sites. The *Port Angeles Harbor Marine Environment: Sediment Investigation Report and Screening Level Human Health and Ecological Risk Assessment* (Ecology & Environment and NewFields 2012) included a quantitative evaluation of potential risks of

² Note that the U.S. Environmental Protection Agency (EPA 2017) recently relaxed the cancer potency factor for cPAHs by approximately 7-fold, which is not reflected in Ecology's (2017b) SCUM II calculations (i.e., risk-based cPAH TEQ concentrations are now approximately 7-fold higher, further underscoring the protectiveness of human health-based cPAH TEQ cleanup levels)

dioxin/furan and PAH exposure to upper trophic-level wildlife from bioaccumulation (e.g., ingestion of prey and incidental ingestion of sediment). The Port Angeles Harbor ecological risk assessment evaluated three piscivorous species (double-crested cormorant [*Phalacrocorax auritus*], harbor seal [*Phoca vitulina*], and bald eagle [*Haliaeetus leuCoCephalus*]), as well as three omnivorous species (brant [*Branta bernicula*], greater scaup [*Aythya marila*], and common raccoon [*Procyon lorot*]). The risk assessment used conservative exposure parameters for the species evaluated, providing quantitative risk characterization results for dioxin/furan and PAH exposures using current toxicity reference values. The Port Angeles Harbor ecological risk assessment concluded that there were no unacceptable dioxin/furan or PAH risks for any of the species evaluated. Because of similarities between these sites (e.g., similar estuarine and nearshore habitats), similarly low ecological risks are likely present in Shelton Harbor, further underscoring that protection of human health will also protect upper-trophic-level species in Shelton Harbor.

3.1.4 Background

3.1.4.1 Natural Background

Puget Sound natural sediment background concentrations of dioxin/furan TEQ (4 ng/kg) and cPAH TEQ (21 µg/kg) have been developed by Ecology and other regulatory agencies in sediment remediation and dredge disposal guidance (DMMP 2009; Ecology 2017b). Nearly all surface sediments within and adjacent to the Shelton Harbor SCU exceed natural background criteria for both dioxin/furan TEQ and cPAH TEQ (Figures 2-3 and 2-4, respectively).

3.1.4.2 Regional Background

In 2013, Ecology revised the SMS regulations (Chapter 173-204 WAC) to establish a new framework for identification and cleanup of sediment sites. A key component of that framework was the concept of regional background sediment concentrations, which represents the concentration in surface sediment that is technically possible to maintain. This concept recognizes that some chemicals are ubiquitous in urban environments (e.g., from stormwater runoff and aerial deposition), which would result in recontamination of cleaned up sediments (Ecology 2017b). The SMS allows adjustment of the sediment cleanup level from natural background (the SCO) up to regional background (the CSL) to practicably protect human health and the environment at sediment sites located within urban settings such as Shelton Harbor, when the calculated risk-based concentrations and PQL are less than background concentrations. The SMS includes a definition for regional background and parameters for establishing regional background (WAC 173-204-560[5]):

"Regional Background" means the concentration of a contaminant within a department-defined geographic area that is primarily attributable to diffuse sources, such as atmospheric deposition or storm water, not attributable to a specific source or release (WAC 173-204-505[16]).

Ecology recently developed regional background levels for several Puget Sound areas, including draft values for South Puget Sound, to support progress on sediment cleanup projects. As discussed in the *South Puget Sound Regional Background: Draft Final Data Evaluation and Summary Report* (Ecology 2017a), the South Puget Sound regional background levels for dioxin/furan TEQ (19 ng/kg) and cPAH TEQ (78 µg/kg) apply to the Shelton Harbor SCU, consistent with the SMS definition above. Like the natural background comparison discussed above, much of the Shelton Harbor SCU contains surface sediments that exceed these regional background levels, particularly for dioxin/furan TEQ (Figure 2-3). Point of compliance considerations for comparison with these cleanup levels are discussed in Section 3.3.

3.2 Site-Specific Sediment Cleanup Levels

Sediment cleanup levels for the Shelton Harbor SCU were developed for all Shelton Harbor CoCs identified in Section 2.2, including toxicity from wood debris breakdown products, dioxin/furan TEQ, cPAH TEQ, copper, and TBT. In accordance with *Sediment Cleanup User's Manual II* (SCUM II; Ecology 2017b), cleanup levels for each CoC were selected from the highest of regional/natural background, benthic protection, human health/upper-trophic-level risk, or the PQL. Table 3-1 summarizes site-specific sediment cleanup levels. Human health risk-based cleanup levels for dioxin/furan TEQ and cPAH TEQ are based on background concentrations because calculated risk-based values and PQLs are below background. For sites where background concentrations are proposed as cleanup levels because risk-based concentrations are below background, Ecology considers the SCO to be natural background, while the CSL is recognized to be regional background.

As discussed in SCUM II (Ecology 2017b), the site-specific sediment cleanup level can be adjusted upward from the SCO to a value no greater than the CSL based on the following considerations:

- Technical possibility: whether it is technically possible to achieve a sediment cleanup level at the applicable point of compliance within the Site or SCU (WAC 173-204-560(2)(a)(ii)(A)).
- Net adverse environmental impacts: whether meeting a sediment cleanup level will have a net adverse environmental impact on the aquatic environment.

Technically possible is defined as "...capable of being designed, constructed and implemented in a reliable and effective manner, regardless of cost" (WAC 173-204-505(23)). Technical possibility depends on a variety of site-specific factors that include the ability to achieve the sediment cleanup level using available technologies. Although achieving the SCO is technically possible at least for a short post-construction period, ongoing non-point sources (not under the control of PLPs) of cPAH TEQ, and potentially also dioxin/furan TEQ, are likely to increase the post-construction surface-weighted average concentration (SWAC) to concentrations greater than the natural background SCO. Thus, the inability to maintain natural background-based SCOs for bioaccumulative CoCs renders the SCO technically impossible to achieve under WAC 173-204-505(23). Ecology (2017a) established

draft regional background for South Puget Sound (including Shelton Harbor) in recognition that it is not technically possible to maintain natural background-based SCOs for dioxin/furan TEQ and cPAH TEQ within the urbanized areas of South Puget Sound (see SCUM II Section 7.2.3.2; Ecology 2017b).

The draft south Puget Sound regional background report establishes regional background values for dioxin/furan TEQ of 19 ng/kg, and for cPAH TEQ of 78 µg/kg (Ecology 2017a). Because the study's intent was to identify concentrations due to diffuse nonpoint sources, it did not include areas of known point sources such as Shelton Harbor. In contrast to the regional background value of 78 µg/kg, the current SWAC for cPAH TEQ in Shelton Harbor is approximately 52 µg/kg. The lower SWAC value in Shelton Harbor is likely because a large area within central Shelton Harbor contains very low levels of contaminants due to ongoing contribution of clean sediments from Goldsborough Creek. Therefore, it appears to be technically possible to maintain a SWAC value lower than regional background for cPAH TEQ in Shelton Harbor.

The determination of net adverse environmental impacts is based on whether meeting the cleanup level will have a net adverse impact, considering short- and long-term positive and adverse impacts of cleanup actions on natural resources, including shellfish, forage fish, aquatic habitat, and restoration and enhancement opportunities (WAC 173-204-560[2][a][ii][B]). Targeting portions of the Shelton Harbor SCU by establishing the site-specific sediment cleanup levels above the SCO for bioaccumulative CoCs would reduce risks more rapidly by focusing active remediation on the higher concentration areas and avoiding extensive disturbance of lower-concentration sediments. The duration of adverse impacts on natural resources and habitat associated with remedial construction would be more limited, and the natural recovery of the rest of the SCU would be accelerated.

Therefore, based on considerations of net adverse environmental impacts, as well technical impossibility as outlined above, the site-specific SWAC-based sediment cleanup levels for bioaccumulative CoCs in the Shelton Harbor SCU are appropriately set as follows (Table 3-1):

- Dioxin/furan TEQ = 19 ng/kg (South Puget Sound regional background level; Ecology 2017a)
- cPAH TEQ = 52 μg/kg (current SWAC for cPAH TEQ in Shelton Harbor)

Separate considerations of net adverse environmental impacts based on the short- and long-term positive and negative effects of cleanup actions on natural resources, as required under WAC 173-204-560(2)(a)(ii)(B), apply to benthic community protection. For example, potential sediment toxicity impacts on natural resources resulting from setting site-specific benthic chemical criteria at levels greater than the SCO must be appropriately balanced with construction impacts during and after remediation. For benthic toxicity, the SCO is the criterion at which no adverse effects occur, including no acute or chronic adverse effects on biological resources. The CSL is the minor adverse effects level, which is the minimum level to be achieved in all cleanup actions under the SMS. Because of the more localized exceedances of the benthic SCO in southern portions of the Shelton Harbor SCU

(Figure 2-2), the site-specific sediment cleanup level for benthic community protection is appropriately set at the SCO, the level of no adverse effects (Table 3-1).

Site-Specific Sediment Action Levels	Toxicity from Wood Debris Degradation	Dioxin/Furan TEQ ng/kg	cPAH TEQ µg/kg	Copper mg/kg	TBT (mg/kg OC)
Benthic Community Protection ¹	SCO Bioassay Criteria	N/A	N/A	390	7.5
Human Health Fish and Shellfish Consumption ²	N/A	<1	<1	N/A	N/A
Human Health Sediment Ingestion and Contact ²	N/A	15	75	N/A	N/A
Upper Trophic-Level Wildlife Protection ^{2,3}	N/A	N/A	N/A	N/A	N/A
Practical Quantitation Limit	N/A	5	9	0.1	1
Puget Sound Natural Background (SCO) ²	N/A	4	21	N/A	N/A
South Puget Sound Regional Background (CSL; Ecology 2017a) ²	N/A	19	78	N/A	N/A
Existing Shelton Harbor SWAC	N/A	29	52	N/A	N/A
Sediment Cleanup Level	SCO Bioassay Criteria ¹	19 ²	52 ²	390 ¹	7.5 ¹
Remedial Action Level	N/A	42 (Section 3.4)	Not Required	N/A	N/A

Table 3-1Shelton Harbor SCU Cleanup Levels and Remedial Action Levels

Notes:

1. Sample-specific point of compliance is the top 10 cm

2. SWAC-based point of compliance is the top 10 cm

3. A specific cleanup level for upper trophic-level wildlife protection is not applicable as discussed in Section 3.1.3

3.3 Points of Compliance

Under MTCA, the point of compliance is the point or location within an SCU where cleanup levels must be attained. For sediments, the vertical point of compliance is the biologically active zone, which is the depth in surface sediments where most benthic organisms are found and where bioturbation occurs. For typical subtidal, soft-bottom sediment in Puget Sound, SCUM II (Ecology 2017b) has established a 10-cm biologically active zone. Site-specific radioisotope (Lead-210) data collected in south Shelton Harbor (Appendix A; also see Section 3.6) suggest that relatively little bioturbation and vertical mixing of sediment occurs within the SCU over the top 10 cm.

As set forth in the SMS, sediment cleanup levels for protection of the benthic community (proposed to be the SCO bioassay criteria for the Shelton Harbor SCU) apply to individual sampling stations and, therefore, each station across the cleanup area is evaluated for compliance separately. As discussed in Section 3.1.1, based on the weight of evidence of the combined 2008 and 2017 data (i.e., SPI results showing a healthy benthic community, oxygenated conditions, no visible wood, improved larval bioassay methods, recent natural recovery), all the northern Shelton Harbor area within the footprint of northern habitat restoration project is considered to meet the SCO bioassay cleanup level. However, the SCO bioassay cleanup level is currently exceeded in localized active log rafting operational areas in southern Shelton Harbor, as well as in historical log rafting areas within the southwestern corner of the harbor (Figure 2-2).

For protection of human health and upper-trophic-level species, SMS cleanup levels apply to the SWAC across the entire Shelton Harbor SCU. SMS further clarifies that cleanup levels need to be achieved within at most 10 years following completion of remedial construction (achieving cleanup levels immediately upon completion of construction is preferred as practicable). As discussed in Section 2.2, while the 2017 sediment sampling data suggest that subtidal surface sediment concentrations of dioxin/furan TEQ and cPAH TEQ have declined over the past ten years consistent with prior source controls and recent natural recovery of these CoCs, not all prior sampling stations were reoccupied during the 2017 sampling. To provide a conservative estimate of current surface sediment CoC concentrations across the Shelton Harbor SCU for this IAP, average 2017 and historical sampling data for collocated stations were used to develop concentration interpolations across the SCU; historical (2005 to 2008) data were used for stations not sampled in 2017. The combined 2005 to 2017 interpolated sampling data for dioxin/furan TEQ and cPAH TEQ and cPAH TEQ are presented in Figures 2-3 and 2-4, respectively. Based on these data, current SWACs within the Shelton Harbor SCU are estimated as follows:

- Dioxin/furan TEQ = 29 ng/kg (above the 19 ng/kg regional background-based cleanup level)
- cPAH TEQ = $52 \mu g/kg$ (equal to the current SWAC for cPAH TEQ in Shelton Harbor).

Thus, of the two bioaccumulative CoCs, only dioxin/furan TEQ was carried forward in this IAP for further evaluation of cleanup requirements, as discussed in the following sections.

3.4 Remedial Action Levels

As it relates to the proposed interim actions, the concept of identifying a remedial action level (RAL) is to identify areas with chemical concentrations above which a cleanup action is needed for the overall cleanup unit to meet the SWAC-based cleanup levels. To develop initial RALs for dioxin/furan TEQ that would achieve the SWAC-based regional background concentration immediately after completion of remedial construction, a "hill-topping" analysis was conducted in which surface sediment concentrations in the Shelton Harbor SCU were ranked from highest to lowest (using the

data set presented in Figure 2-3), and the areas with the highest values sequentially replaced with post-remedy "clean" sediment (natural background level) until the SWAC concentration was reduced to the regional background-based cleanup level of 19 ng/kg. The hill-topping calculations were separately performed for the footprint of the northern habitat restoration area (44 acres; Figure 2-1), as well as the entire Shelton Harbor SCU (198 acres). The hill-topping calculations revealed that a dioxin/furan TEQ RAL of approximately 42 ng/kg would achieve the cleanup level of 19 ng/kg as a SWAC across the northern habitat restoration area as well as the Shelton Harbor SCU immediately following completion of remedial construction. The approximate areas within the northern and southern portions of the Shelton Harbor SCU that exceed 42 ng/kg are depicted in Figure 2-3.

3.5 Sediment Management Areas

Based largely on the interpolated extent of existing dioxin/furan TEQ concentrations exceeding the 42 ng/kg RAL, three SMAs within the Shelton Harbor SCU, two within the footprint of the northern habitat restoration area and one in the southwestern harbor, were identified for consideration of interim actions. Each of these SMAs is described as follows (see Figure 3-1):

- **SMA-1**: Based on the combined 2005 to 2017 data, approximately 4.4 acres in the Shelton Creek delta (within the footprint of the northern Shelton Harbor habitat restoration project) are estimated to currently exceed the dioxin/furan TEQ RAL of 42 ng/kg.
- **SMA-2**: Based largely on historical (2000 to 2005) data, approximately 0.6 acres in the former marine railway area (also within the footprint of the northern Shelton Harbor habitat restoration project) are estimated to currently exceed the copper RAL of 390 mg/kg, the TBT RAL of 7.5 mg/kg OC, and/or the dioxin/furan TEQ RAL of 42 ng/kg (Table 3-1).
- SMA-3: Based on the combined 2005 to 2017 data, approximately 10 acres in the southwestern harbor (outside of the footprint of the northern Shelton Harbor habitat restoration project) has recently exceeded the dioxin/furan TEQ RAL of 42 ng/kg (Figure 2-3). Based on the potential for natural recovery over the past ten years (discussed in Section 2.3), this IAP contemplates a smaller 3.5-acre remediation area in SMA-3. The footprint of SMA-3 will be further refined as described below.

The extent of all three SMAs will be refined in spring 2018 by sampling surface sediments in these areas to inform final remedial designs. Note that some of the dioxin/furan TEQ, copper, and TBT data used to develop preliminary SMA delineations are 10 or more years old; updated data are needed to refine the extent of the interim action areas.

While interim actions in SMA-1 and SMA-2 would immediately achieve cleanup levels throughout the footprint of the northern Shelton Harbor habitat restoration project, interim actions in SMA-3 may only partially achieve cleanup levels throughout the rest of the Shelton Harbor SCU. Follow-on

remedial actions as may be necessary in other areas of the Shelton Harbor SCU will be addressed in the forthcoming SCU-wide CAP (targeted for 2019).

3.6 Cleanup Action Objectives

Cleanup action objectives consist of chemical- and medium-specific goals for protecting the environment. The cleanup action objectives specify the media and contaminants of interest, potential exposure routes and receptors, and proposed cleanup goals for the Shelton Harbor SCU.

Exposure routes to be addressed by cleanup actions in north Shelton Harbor include transport pathways to benthic receptors, humans, and upper-trophic-level wildlife. Consistent with WAC 173-340-430, this IAP is intended to be consistent with the final cleanup action. The sediment cleanup action objectives for this IAP are summarized as follows:

- Eliminate, reduce, or otherwise control to the extent practicable risks to humans and uppertrophic-level wildlife from ingestion of seafood that may accumulate contaminants from sediments containing elevated concentrations of dioxins/furans.
- Eliminate, reduce, or otherwise control to the extent practicable risks to benthic organisms through exposure to sediments containing deleterious wood debris degradation products, copper, and/or TBT that exceed the cleanup levels summarized in Table 3-1.

3.7 Source Control Status

The *Oakland Bay Sediment Dioxin Source Study* (NewFields 2014) presents a review of sediment dioxin data in Shelton Harbor and Oakland Bay to identify potential upland sources and transport pathways using chemometric interpretations of sediment dioxin/furan congener profiles. A main deduction of that study is that dioxin/furan concentrations remaining in surface sediments within Shelton Harbor were from historical practices that are no longer occurring. For example, most of the dioxin/furan deposits detected in Shelton Harbor were either associated with pentachlorophenol, a chemical currently banned from most industrial uses, or hog fuel burners that have either been decommissioned or no longer use salt-laden wood. As discussed in Section 2.3, a portion of pre-1970 legacy releases to Shelton Harbor remain in surface and near-surface sediments within the SCU and are recovering slowly. Significantly lower dioxin/furan TEQ levels in the top 10 cm of southern Shelton Harbor subtidal sediments, compared to underlying sediments, corroborates this CSM (Figure 3-2).

As a condition of the mitigated Determination of Non-Significance under the State Environmental Policy Act (SEPA) for demolition of former sawmill buildings and construction of new mills, Sierra Pacific Industries has been capping and closing historical catch basins, storm drain lines, and storm outfalls that discharged from historic sawmill facilities to Shelton Harbor (City of Shelton 2015). These recent actions provide further assurance of effective source control from the former sawmill facilities to north Shelton Harbor.

The pattern of elevated surface sediment dioxin/furan TEQ levels in the Shelton Harbor SCU further suggests that the SMA-1 dioxin/furan deposit is attributable to the legacy releases described in the NewFields source study report, as lower dioxin/furan TEQ levels are present in both Goldsborough and Shelton Creeks, compared to concentrations in the delta (Figure 2-3). Ecology (2013) noted that a deposit of former pulp mill and/or sawmill burner "clinker" residues is present on the north bank of Shelton Creek. Two samples from the clinker material (Ecology 2013) contained an average dioxin/furan TEQ level of approximately 31 ng/kg, below the 42 ng/kg RAL, but exceeding the 19 ng/kg regional background level (Table 3-1). While the clinker deposit initially may have been a source of legacy contaminants, it does not appear to be a continuing source. The distinctly different congener concentrations and proportions (fingerprints) of SMA-1 sediments (Station SH-03) and samples of the clinker deposit on the Shelton Creek bank indicate that the present-day material within the clinker deposit is not a significant ongoing source of dioxins/furans to sediments in SMA-1 (Figure 3-3a and 3-3b).

An additional evaluation of the clinker deposit on the Shelton Creek bank is ongoing to also confirm that this deposit is not a significant ongoing source of dissolved-phase dioxins/furans to Shelton Harbor (Anchor QEA 2017b). In addition, under Ecology oversight, Simpson and other PLPs will perform post-construction monitoring of surface sediments to further ensure the protectiveness of remedial actions, implementing contingency actions as appropriate based on the findings of post-construction performance monitoring (see Section 6).

3.8 Compliance with Applicable Laws

The interim action in the Shelton Harbor SCU will be performed pursuant to MTCA and the SMS under the terms of the Agreed Order. In addition to the cleanup standards developed through the SMS process, other regulatory requirements must be considered in the selection and implementation of an interim action. MTCA requires cleanup standards to be at least as stringent as all applicable state and federal laws (WAC 173-340-700(6)(a)). In addition, cleanup standards must ensure compliance with applicable state and federal laws (WAC 173-340-710(1)). The applicable state and federal laws may impose certain technical and procedural requirements (including obtaining permits or approvals) for performing remedial actions. Applicable state and federal laws are identified in this section. Ecology has not identified any relevant and appropriate requirements that apply to the interim action.

Pursuant to Revised Code of Washington (RCW) 70.105D.090(1), the interim action is exempt from the procedural requirements of Chapters 70.94, 70.95, 70.105, 77.55, 90.48, and 90.58 RCW and of any laws requiring or authorizing local government permits or approvals. However, the interim action

must comply with the substantive requirements of such permits or approvals. The exempt permits or approvals and the applicable substantive requirements of those permits or approvals, as they are known at the time of this IAP, are identified in Section 3.8. Where they are not identified, they will be determined at the remedial design stage of the interim action.

3.8.1 State Environmental Policy Act

SEPA (RCW 43.21C; WAC 197-11) and the SEPA procedures (WAC 173-802) are intended to ensure that state and local government officials consider environmental values when making decisions. Under WAC 197-11-250, MTCA and SEPA procedural requirements are integrated to reduce duplication and improve public participation, including common public review and comment. SEPA requires the identification, avoidance, minimization and/or mitigation of environmental impacts associated with agency permitting or actions such as the interim MTCA cleanup action in north Shelton Harbor. The impacts from this cleanup have been identified along with requirements to select construction methods and timing and implementation of best management practices that will mitigate those impacts that cannot be avoided. Avoidance, minimization, and mitigated Determination of Non-Significance. Additional avoidance and minimization measures and/or mitigation requirements identified prior to and during construction must also be met.

3.8.2 Puget Sound Dredged Material Management Program

In Puget Sound, the open-water disposal of sediments is managed under the Dredged Material Management Program (DMMP), which is administered jointly by Ecology, Corps, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Natural Resources. The DMMP developed the Puget Sound Dredge Disposal Analysis protocols, which include testing requirements to characterize whether dredged sediments are appropriate for unconfined, openwater disposal. The results of this characterization are formalized in a written suitability determination from the Dredged Material Management Office. As discussed in Section 4.1 below, the DMMP has made past determinations that sediments with concentrations like those in SMA-1 to SMA-3 are not suitable for unconfined, open water disposal.

3.8.3 Shoreline Management Act

The Shoreline Management Act (RCW 90.58) and its implementing regulations establish requirements for developments on the shorelines of the state. A substantial development shall not be undertaken on shorelines of the state without first obtaining a permit from the government entity having administrative jurisdiction. Any development must be consistent with the policy of RCW 90.58.140, and the applicable guidelines, rules, or master program.

3.8.4 Washington Hydraulics Code

The Washington Hydraulics Code (WAC 220-110) establishes requirements for the construction of any hydraulic project or the performance of any work that will use, divert, obstruct, or change the natural flow or bed of any of the salt or fresh water of the state. The code also creates a program requiring Hydraulic Project Approval (HPA) permits for any activities that could adversely affect fisheries and water resources. Timing restrictions and technical requirements under the hydraulics code are applicable to dredging, capping, and placement of post-dredge residual covers.

3.8.5 Federal Clean Water Act

The Clean Water Act (CWA) is the primary federal law for protecting water quality from pollution. The CWA regulations provide requirements for the discharge of dredged or fill material to waters of the United States and are applicable to any in-water work. The CWA regulations also prescribe permitting requirements for point source and non-point source discharges. Acute criteria are relevant and appropriate requirements for discharges to marine surface water during sediment dredging, as well as for return flows (if necessary) to surface waters from dewatering operations.

3.8.5.1 Construction Stormwater Permit

Section 402 of the CWA requires a permit for discharge of pollutants pursuant to 33 United States Code (USC) § 1342 that is likely to apply to construction stormwater from the cleanup. Construction activities that disturb one acre or more of land need to comply with the provisions of construction stormwater regulations. Ecology has determined that a construction stormwater general permit does not meet the requirements for the permit exemptions in RCW 70.105D.090, and thus a project-specific construction stormwater permit will be required if land disturbance greater than one acre is necessary (e.g., for equipment staging areas). As needed, a construction stormwater general permit would be obtained during the remedial design process, supplemented as appropriate by the remedial contractor.

3.8.5.2 Corps of Engineers Section 404 Permit

Section 404 of the CWA requires permits from the Corps for discharges of dredged or fill material into waters of the United States, including wetlands (33 USC § 1344). CWA Section 404(b)(1) requires an alternatives analysis as part of the permitting process. Requirements for all known, available, and reasonable technologies for treating waste water prior to discharge to state waters are applicable to any dewatering of marine sediment prior to upland disposal.

The cleanup action may qualify for a Corps Nationwide Permit for Cleanup of Hazardous and Toxic Waste (NWP) 38, as appropriate. Otherwise, the cleanup action may qualify for the full permitting process under 33 USC § 1344.

3.8.5.3 Clean Water Act Section 401 Water Quality Certification

CWA Section 401 requires the state to certify that federal permits are consistent with water quality standards (33 USC § 1341). If the cleanup action is permitted under NWP 38, a formal 401 certification would not be needed. Instead, the project would be subject to NWP 38 conditions, and Ecology would ensure that the project is consistent with water quality standards via regulatory oversight under this IAP.

3.8.6 Washington Water Pollution Control Act

Ecology has promulgated statewide water quality standards under the Washington Water Pollution Control Act (RCW 90.48). Under these standards, all surface waters of the state are divided into classes (Extraordinary, Excellent, Good, and Fair) based on the aquatic life uses of the water bodies. Water quality criteria are defined for different types of pollutants and the characteristic uses for each class of surface water. The standards for marine waters are applicable to discharges to surface water during sediment dredging or capping, and return flows (if necessary) to surface waters from dewatering operations.

3.8.7 Archaeological and Historic Preservation Act

The Archaeological and Historic Preservation Act (16 USC § 496a-1) is applicable if any covered materials are discovered during excavation or dredging activities performed as a part of the selected sediment cleanup action. Early in the remedial design and permitting of the cleanup action, Simpson, in consultation with the Washington Department of Archaeology and Historic Preservation and the Squaxin Island Tribe, will further evaluate areas where cleanup-related disturbance of cultural resources may occur, including capping, dredging, staging and mooring areas, and transport routes as appropriate. More detailed cultural resource evaluations, as necessary, will be integrated with studies for engineering design as practicable.

3.8.8 Health and Safety

Sediment cleanup construction activities will be performed in accordance with the requirements of the Washington Industrial Safety and Health Act (RCW 49.17) and implementing regulations, as well as the federal Occupational Safety and Health Act and implementing regulations (29 CFR §§ 1910, 1926). These applicable regulations include requirements that workers are to be protected from exposure to contaminants and that excavations are to be properly shored. A health and safety plan would be developed as part of the engineering design and remedial action processes.

3.9 Exemptions from Procedural Requirements

Interim action construction in the Shelton Harbor SCU, as required by this IAP, will be performed under the existing Agreed Order between Ecology and Simpson, in which Ecology's approvals will address substantive requirements of state and local regulations as outlined as follows.

3.9.1 City of Shelton Shoreline Master Program

The cleanup action will take place within the City of Shelton. Ecology has consulted with city planning staff on the substantive requirements of the Shoreline Master Program in developing this IAP. The capping and dredging alternatives considered in this IAP are permissible actions under the Shelton Shoreline Master Program. For example, Section 5.6.2 allows "cleanup and/or disposal of contaminated sediments as part of an interagency environmental cleanup plan", and states that "fill in shoreline areas is required to be 'sand, gravel, soil, rock, crushed concrete or a similar material". Dredging waterward of the ordinary high water mark is allowed for environmental cleanup activities (Section 6.18.3). Section 6.21.2 allows structural stabilization measures (e.g., bulkheads/rip-rap) to protect hazardous substance remediation projects only when nonstructural measures, vegetation, or on-site drainage improvements are not feasible or sufficient; and that the stabilization structure will not result in a net loss of shoreline ecological functions.

The preferred alternative under this IAP (capping) will utilize sand and gravel fill. Dredging is not a preferred alternative. A bulkhead is not proposed. Vegetation and non-structural stabilization measures will be evaluated in the design planning for the shoreline slope at SMA-3. Ecology will continue to consult with the City of Shelton during the remedial design phase of the interim action to ensure that all substantive requirements are met.

3.9.2 Hydraulic Project Approval Permit

Ecology has also consulted with the area habitat biologist for the Washington State Department of Fish and Wildlife regarding the substantive requirements for the HPA Permit and with tribal biologists on specific fish closure periods; requirements may be refined during the remedial design phase. The substantive requirements that have been identified to date for planning purposes include the following:

- Authorized in-water construction windows to protect juvenile salmonids in the Shelton Harbor SCU are from July 15 to February 15.
- There are no known baitfish spawning areas within or adjacent to the Shelton Harbor SCU.

Ecology will continue to consult with the Washington State Department of Fish and Wildlife during the remedial design phase of the interim action to ensure that all substantive requirements are met.

4 Interim Action Alternatives and Comparative Evaluation

This section builds on the CSM developed in Section 2.3 and the cleanup requirements in Section 3 to develop and compare remedial alternatives for Shelton Harbor SMA-1 to SMA-3. Specifically, this section summarizes potentially viable sediment cleanup technologies for the Shelton Harbor SCU (Section 4.1), presents an engineered cap design evaluation for SMA-1 to SMA-3 (Section 4.2), develops Shelton Harbor interim action alternatives (Section 4.3), presents a detailed comparative analysis of these alternatives consistent with MTCA/SMS requirements (Section 4.4), and identifies the recommended sediment interim action remedy (Section 4.5).

4.1 Cleanup Technologies

Remedial technologies and sediment remediation practices are relatively well established for sediment cleanup sites in Puget Sound, and common remedial technologies are listed in the SMS rule (WAC 173-204-570(4)(b)) and described in Section 12.4.3 of SCUM II (Ecology 2017b). Table 4-1 summarizes the technology screening for the Shelton Harbor interim actions based on the technologies listed in the SMS rule.

Remedial Technology			
(173-204-570(4)(b))	Screening Determination		
(i) Source controls in combination with other cleanup technologies	Eliminated . Extensive historical source control work in Shelton Harbor has eliminated sources sufficiently to allow in-water remediation work to proceed (see Section 3.6). Further sampling and analysis will be performed under the Agreed Order (including additional sampling in the clinker deposit area as well as post-construction sediment monitoring) to further confirm that effective source controls are in place.		
(ii) Beneficial reuse of site sediments	Eliminated . There is a lack of currently viable beneficial uses for contaminated sediments.		
(iii) Treatment to immobilize, destroy, or detoxify contaminants	Eliminated . While promising in situ treatment technologies such as activated carbon amendments are available to control the bioavailability of CoCs such as dioxin/furan TEQ, site-specific evaluations of such amendments in Shelton Harbor have not been completed. In situ treatment may be evaluated in more detail as part of the forthcoming SCU-wide CAP, if it can be shown to be effective.		
(iv) Dredging and disposal in an upland engineered facility that minimizes subsequent releases and exposures to contaminants	Retained . Demonstrated to be effective in similar Puget Sound sites. Based on the most recent sediment core data collected as part of the RI/FS, approximately two feet of subsurface contaminated sediment is present in SMA-1 and SMA-2; approximately 10 feet of subsurface contaminated sediment is present in much of SMA-3. Following removal, the pre-construction grade would need to be restored to mitigate habitat disturbances.		

Table 4-1Remedial Technology Screening

Remedial Technology (173-204-570(4)(b))	Screening Determination
(v) Dredging and disposal in a nearshore, in-water, confined aquatic disposal facility	Eliminated . No current facility exists in the Shelton area. However, as appropriate, nearshore, in-water, confined aquatic disposal will be evaluated in more detail as part of the SCU-wide CAP.
(vi) Containment of contaminated sediments in place with an engineered cap	Retained . Capping is expected to be an effective technology, based on similar Puget Sound sites and contaminant transport modeling. Detailed site-specific cap designs are presented in Section 4.2.
(vii) Dredging and disposal at an open water disposal site approved by applicable state and federal agencies	Eliminated . The DMMP has made past determinations that sediments with concentrations like those in SMA-1 to SMA-3 are not suitable for unconfined, open water disposal.
(viii) Enhanced natural recovery (ENR)	Retained . ENR (i.e., placement of thin layer of sand to augment natural recovery) has been demonstrated to be effective at similar Puget Sound sites. Time trends and deposition observations in the Shelton Harbor SCU indicate that surface sediments are relatively stable. Site-specific chemical transport modeling presented in Section 4.2 suggests that an ENR layer could effectively isolate the underlying sediments.
(ix) Monitored natural recovery (MNR)	Retained . Time trends and deposition observations indicate that surface sediments are relatively stable, but at an average sedimentation rate of 0.30 \pm 0.06 cm/yr, MNR is proceeding relatively slowly within the Shelton Harbor SCU. MNR is applicable to relatively lower concentration areas of the SCU.
(x) Institutional controls and monitoring	Retained . Institutional controls and monitoring are important aspects of all alternatives. However, consistent with MTCA/SMS rules, institutional controls and monitoring are not employed as stand-alone technologies, but are used in conjunction with other cleanup technologies.

Thus, the resulting list of remedial technologies retained for further evaluation in this IAP include the following:

- Dredging and disposal in upland facility
- Engineered capping
- Enhanced natural recovery (ENR)
- Monitored natural recovery (MNR)

Institutional controls and monitoring are part of all alternatives. To further support the development of protective interim action alternatives for the Shelton Harbor SCU, a site-specific cap design evaluation was performed, as summarized in the following section.

4.2 Cap Design Evaluation

This section describes preliminary cap design for SMA-1 to SMA-3, developed in accordance with the following detailed EPA and Corps guidance for in situ capping:

• *Guidance for Subaqueous Dredged Material Capping* (Palermo et al. 1998a)

• Assessment and Remediation of Contaminated Sediments (ARCS) Program Guidance for In Situ Subaqueous Capping of Contaminated Sediments (Palermo et al. 1998b)

These documents provide detailed procedures for cap design. Importantly, caps designed following the EPA and Corps guidance have been demonstrated to be protective of human health and the environment (EPA 2005). For the purposes of this IAP, and consistent with EPA and Corps guidance, a preliminary cap design for SMA-1 to SMA-3 was developed based on consideration of the following four components:

- Chemical isolation and bioturbation
- Erosion protection
- Consolidation
- Constructability considerations (e.g., placement accuracy)

Each of these considerations are discussed in the following sections.

4.2.1 Chemical Isolation and Bioturbation

A preliminary cap design analysis was conducted to identify cap chemical isolation layer requirements to maintain surface sediment dioxin/furan TEQ concentrations below the regional background level of 19 ng/kg (Table 3-1) within SMA-1. This analysis was performed in accordance with Corps and EPA sediment cap design guidance (Palermo et al. 1998a, 1998b).

Consistent with current EPA (2005) guidance, this cap design evaluation used the one-dimensional steady-state model of chemical transport within sediment caps developed by Dr. Danny Reible (Texas Tech University), based on the steady state analytical solution to the governing equations. Details on the model structure and underlying theory and governing equations for the steady-state model were published in *"An Analytical Modeling Approach for Evaluation of Capping of Contaminated Sediments"* (Lampert and Reible 2009). The steady-state model has been used to support the evaluation and design of sediment caps at Superfund sediment cleanup sites throughout the United States (e.g., Hudson River, New York; Lower Fox River, Wisconsin; Lower Willamette River, Oregon), and has also been used at MTCA/SMS cleanup sites in Washington State (e.g., Port Gamble Bay, Bellingham Bay).

The Reible model simulates the fate and transport of chemicals (dissolved and sorbed phases) under the processes of bioturbation, advection, diffusion, dispersion, biodegradation, and exchange with the overlying surface water, as generally depicted in Figure 4-1. Steady-state predictions provide a useful means of assessing long-term contaminant profiles within a cap, although the time to reach the steady-state concentrations will vary depending on the chemical characteristics of the contaminant, sediment geochemical conditions, and subsurface hydrogeology. For this analysis, the fate and transport of all 17 dioxin/furan congeners was simulated. Model-predicted steady-state concentrations of the individual congeners at the cap surface were then used to calculate the dioxin/furan TEQ concentration as follows in Equation 1:

Equation 1				
D/F T	$EQ = \sum_{i}^{N}$	$\sum_{i=1}^{17} C_i \times TEF_i$		
where	:			
С	=	model-predicted dioxin or furan congener concentration		
TEF	=	World Health Organization toxic equivalency factor for each dioxin/furan congener (unitless) (Van den Berg et al. 2006)		

The cap design model uses several input parameters that describe site-specific conditions, chemical-specific properties, cap material properties, and chemical mass transport rates. These input parameters were based on site-specific data, information from literature, and cap designs successfully constructed at other similar sites. For this evaluation, the maximum detected surface sediment dioxin/furan TEQ concentration measured in the Shelton Harbor SCU (Station SH-03 [Figure 2-3]; 2017 sampling; 287 ng/kg TEQ) was input into the model to ensure a protective cap design. A listing of model inputs is provided in Tables 4-2 and 4-3.

Table 4-2Input Parameter Values for Chemical Isolation Cap Modeling

Model Input Parameter	Value	Data Source					
Chemical-specific Properties							
OC partitioning coefficient, log K _{OC} (log L/kg)	See Table 4-3	Log K _{oc} values calculated from K _{ow} values reported Govers and Krop (Govers and Krop 1998) using Di To (Di Toro 1985) relationship					
Water diffusivity (cm ² /s)	See Table 4-3	Calculated based on the molecular weight of the compound using the correlation identified from <i>Environmental Organic Chemistry</i> (Schwarzenbach et a 1993)					
Chemical biodegradation rate	0	Assumed no degradation					
Chemical porewater concentration in underlying sediment (µg/L)	See Table 4-3 and Appendix A	Calculated from the maximum surface sediment concentration measured in Shelton Harbor (location SH-03; 2017 sampling) using equilibrium partitioning; total OC level of 3.8% measured at this location					
Cap Properties							
Cap thickness (cm) Design parameter		Assumed placement of 6 inches of sand; refined as necessary based on model results					

Model Input Parameter	Value	Data Source		
Porosity	0.4	Typical value for sand (e.g., Domenico and Schwartz 1990)		
Fraction OC of cap material (%)	Design parameter	Assumed typical regional quarry value (0.1%); refined as necessary based on model results		
Fraction OC of bioturbation zone (%)	3.8	.8 Surface sediment level at station SH-03, representing sediment that will deposit on the cap		
Mass Transport Properties				
Boundary layer mass transfer coefficient (cm/hr)	0.75	Typical value used for capping design (e.g., Reible 2012); consistent with range of values measured in other systems (e.g., Thibodeaux et al. 2001)		
Groundwater seepage Darcy velocity (cm/d)	0.1 to 1.0	Based on regional hydrogeological evaluations in similar estuarine settings; evaluated range as sensitivity analysis		
Deposition rate (cm/yr)	0 to 0.30	Averaged measured values are 0.30 ± 0.06 cm/yr; but also evaluated a wider range as a sensitivity analysis		
Dispersion Length (cm)	3	Representing tidal mixing with an increased dispersion coefficient is a common approach in groundwater modeling (e.g., La Licata et al. 2011); based on tidal range of approximately 10 feet (NOAA 2017), dispersivity is based on 20% of model domain length (cap thickness)		
Bioturbation zone thickness (cm)	10	Typical value for cap design (e.g., Clarke et al. 2001; Reible 2012); consistent with SMS (Ecology 2017a)		
Porewater biodiffusion coefficient (cm ² /yr)	940	Parameter represents bioturbation rate applied to dissolved phase; typical value used for capping design (e.g., Reible 2012)		
Particle biodiffusion coefficient (cm²/yr)	9.4	Parameter represents bioturbation rate applies to particulate phase; typical value used for capping design (e.g., Reible 2012)		

Table 4-3
Chemical-Specific Model Input Parameters

Chemical	log K _{oc} (log L/kg)	Molecular Weight (g/mol)	Dw (cm²/s)	Surface Sediment Concentration (ng/kg)	Calculated Porewater Concentration (µg/L)
2,3,7,8-TCDD	6.8	322.0	4.5E-06	3.76 J	1.4E-08 J
1,2,3,7,8-PeCDD	7.4	356.4	4.2E-06	26.4	2.9E-08
1,2,3,4,7,8-HxCDD	7.8	390.9	3.9E-06	41.2	1.7E-08
1,2,3,6,7,8-HxCDD	7.8	390.9	3.9E-06	346	1.3E-07
1,2,3,7,8,9-HxCDD	7.8	390.9	3.9E-06	108	4.1E-08
1,2,3,4,6,7,8-HpCDD	8.3	425.3	3.7E-06	8,990 J	1.3E-06 J
OCDD	8.6	459.8	3.5E-06	108,000 J	7.1E-06 J
2,3,7,8-TCDF	6.4	306.0	4.6E-06	13.4	1.6E-07
1,2,3,7,8-PeCDF	6.9	340.4	4.3E-06	19.5	6.9E-08
2,3,4,7,8-PeCDF	7.0	340.4	4.3E-06	60.4	1.6E-07
1,2,3,4,7,8-HxCDF	7.4	374.9	4.0E-06	181	1.9E-07
1,2,3,6,7,8-HxCDF	7.4	374.9	4.0E-06	58	5.5E-08
1,2,3,7,8,9-HxCDF	7.6	374.9	4.0E-06	2.77 U	1.7E-09 U
2,3,4,6,7,8-HxCDF	7.5	374.9	4.0E-06	102	8.1E-08
1,2,3,4,6,7,8-HpCDF	7.9	409.3	3.8E-06	2,600	9.1E-07
1,2,3,4,7,8,9-HpCDF	8.1	409.3	3.8E-06	146	3.1E-08
OCDF	8.5	443.8	3.6E-06	11,800	1.1E-06
Total Dioxin/Furan TEQ (U = 1/2)				287 J	

The steady-state model predicts that a 6-inch sand cap isolation layer with relatively low total OC content (0.1%) will maintain long-term dioxin/furan TEQ concentrations in the top 10 cm (vertical average) of the cap to below the regional background dioxin/furan TEQ of 19 ng/kg (Table 4-4). As discussed in Section 3.3, site-specific radioisotope (Lead-210) data collected in south Shelton Harbor suggest that relatively little bioturbation and vertical mixing of sediment occurs within the SCU over the top 10 cm, even though benthic community feeding voids were observed at depths greater than 10 cm in SPI surveys. The 6-inch cap incorporates a 10-cm bioturbation layer.

The protectiveness of a 6-inch combined bioturbation/chemical isolation layer is also corroborated by vertical sediment CoC profiles; that is, significantly lower dioxin/furan TEQ levels are present in the top 10 cm of Shelton Harbor sediments compared to underlying sediments, consistent with the CSM (Figure 3-2). A 6-inch-thick cap isolation layer would also be protective over the range of possible groundwater flow rates (0.1 to 1 cm/day), and net sedimentation rates (0 to 0.30 cm/year). Using the highest potential groundwater flux (1 cm/day) and lowest (zero) deposition rate, the model predicts the steady-state dioxin/furan TEQ in the top 10-cm to be at the regional background concentration of 19 ng/kg. Considering more realistic groundwater flow and site-specific measured net sediment deposition rates, the model-predicted concentrations within the cap surface would be well below the 19 ng/kg TEQ regional background-based cleanup level.

Variable	Model Inputs	Model-predicted Steady-State			
Darcy Flux (cm/d)	Deposition Rate (cm/yr)	Dioxin/Furan TEQ (ng/kg) ¹			
0.1	0.30	2.2E-06			
1	0.30	0.014			
0.1	0	2.2			
1	0	19			

Table 4-4Steady-State Model Results for a 6-inch Chemical Isolation/Bioturbation Layer

Notes:

1. Vertical average in the top ten centimeters of sediment

4.2.2 Erosion Protection

In addition to chemical isolation, an erosion analysis was performed to calculate the stable grain size of capping material within SMA-1 to SMA-3. This analysis builds on a similar analysis performed for the Oakland Bay Habitat Restoration project, which includes the SMA-1 and SMA-2 footprint (Anchor QEA 2017a). SMA-1 and SMA-2 overlap with the north marsh and west marsh areas delineated in that analysis; however, as a conservative simplifying assumption, only the results for the north marsh area are presented here because it has higher erosion forces than the west marsh area. The erosion protection analysis focused on resisting forces produced by wind and waves. The Corps'

automated coastal engineering system revetment module (Leenknecht et al. 1992) was used to estimate the stable sediment sizes under wave attack³, using a stability formula like the one developed by Hudson (1958). The SMA-1 and SMA-2 areas have existing slopes of approximately ten horizontal to one vertical (10H:1V). The automated coastal engineering system revetment calculation assumes a steeper slope (6H:1V) resulting in a more conservative stable sediment size of one inch (median grain size diameter or D₅₀) for the protection layer. These steeper slopes also apply to the proposed SMA-3 embankment cap (see Section 4.3.2).

For suitable armor protection, the thickness of the armor layer needs to be at least double the median grain size (D₅₀), or two inches (Palermo et al. 1998b). However, given constructability considerations (see Section 4.2.4), and to provide an additional factor of safety to ensure protection, the cap armor layer is assumed to have a minimum thickness of six inches.

The gravel armor layer requires an underlying sand filter layer to restrict the movement of finely grained native sediments through the armor. For gravel armor materials with a one- to two-inch D_{50} , the underlying filter layer would need to have a D_{50} of approximately 0.1 inches. The thickness of the filter layer is assumed to be at least six inches to perform the function of chemical isolation (Section 4.2.1) and for constructability (Section 4.2.4).

4.2.3 Consolidation

The cap materials are anticipated to be granular and to undergo elastic settlement within the period of construction, with negligible additional consolidation settlement after construction. Therefore, no additional thickness is included to account for long-term cap consolidation. However, the softer silty sand sediments that underlie the cap would consolidate up to several inches following placement of the cap. Porewater flux associated with this post-construction subgrade consolidation was considered in the chemical isolation thickness design outlined in Section 4.2.2.

4.2.4 Constructability Considerations

Given the inherent difficulties in achieving accurate placement tolerances for in-water construction, an additional thickness (overplacement allowance) is typically specified in capping contracts. Based on anticipated material placement equipment (mechanical clamshell or skip box), along with recent experience at other similar thin layer sand placement and capping projects (e.g., 2015 to 2017 Port Gamble Bay cleanup project), regional capping contractors can accurately place sand and gravel within a thickness tolerance of approximately two to three inches. Thus, an additional three inches of material would likely need to be placed to achieve the required design thickness for each cap layer.

³ Refinements to preliminary cap designs and long-term monitoring and maintenance requirements addressing these and other potential forces, such as earthquakes, would be developed during design.

4.2.5 Preliminary Cap Design Specifications

Based on the site-specific cap design analyses summarized above, preliminary SMA-1 to SMA-3 cap design specifications are summarized in Table 4-5. The preliminary cap design consists of placement of six inches of sand ($D_{50} = 0.1$ inches) as a combined chemical isolation and filter layer and placement of an additional six inches of gravel ($D_{50} =$ one inch) as a combined armor and bioturbation layer. The total minimum design thickness is twelve inches, plus an average overplacement of three inches for each layer. The total placement thickness of the SMA-1 to SMA-3 caps would thus average approximately 18 inches.

Table 4-5 Cap Design Specifications

Cap Layer	Thickness of Armored Cap		
Erosion Protection (Armor) and Bioturbation	6 inches ($D_{50} = 1$ to 2 inches)		
Chemical Isolation and Filter Layer	6 inches ($D_{50} = 0.1$ inches)		
Querrale compart	Armor Layer: 3 inches		
Overplacement	Isolation/Filter Layer: 3 inches		
Total Placed Thickness (Average)	18 inches		

If capping is selected as the SMA-1 to SMA-3 interim action, the specifications will be refined as part of remedial design.

4.3 Shelton Harbor Interim Action Alternatives

This section assembles the technologies screened in Section 4.1 into interim action alternatives for Shelton Harbor SMA-1 to SMA-3. As described in Section 3.4, the prospective Shelton Harbor interim action area comprises three SMAs totaling approximately 8.2 acres (Figure 3-1):

- SMA-1: Approximately 4.4 acres in the Shelton Creek delta
- SMA-2: Approximately 0.6 acres in the former marine railway area
- SMA-3: Approximately 3.5 acres in the southwestern harbor

For each of these SMAs, the four retained remedial technologies (dredging, capping, ENR, and MNR) were combined into corresponding interim action alternatives, as described in the following sections.

4.3.1 Alternative 1 – Dredging

Alternative 1 consists of the removal of all contaminated sediment from SMA-1 to SMA-3 (Figure 4-2). Based on available sediment coring data in SMA-1 (Station SH-03), sediments in SMA-1 and SMA-2 that exceed the 42 ng/kg dioxin/furan TEQ RAL likely extend approximately two feet below mudline (Appendix A), while contaminated sediments in much of SMA-3 likely extend

approximately 4 to 10 feet below mudline, depending on the location (see Figure 5-4). An additional one-foot overdredge allowance for constructability along with a 20 to 30 percent side slope allowance (depending on the depth of cut) has been assumed for volume and cost estimating purposes (see Table B-2). Removal of the SMA-1 to SMA-3 deposits would result in approximately 81,000 cubic yards (cy) of dredged material. Backfill of the dredge cut with an equivalent volume of sand and/or gravel material would contain anticipated post-removal dredging residuals (Bridges et al. 2010), and would also restore pre-construction grade. Backfill materials would be supplied from a local quarry and likely barged to Shelton Harbor. Additional delineation of required dredge thickness would be performed during remedial design as necessary.

Removal would likely be conducted using a barge-mounted mechanical excavator or equivalent equipment. All dredged material would be placed onto a transport barge and transported to a regional sediment transload facility (e.g., in Tacoma or Seattle) for loading on to rail cars for disposal at a permitted subtitle D landfill (e.g., in eastern Washington).

The Alternative 1 cost is estimated at approximately \$29 million, including removal, disposal, backfilling, and construction monitoring, and would likely require approximately three years of in-water construction (Appendix B).

4.3.2 Alternative 2 – Engineered Capping

Alternative 2 consists of engineered capping to isolate contaminated sediments within SMA-1 to SMA-3 (Figure 4-3). Capping involves placing granular material to provide chemical confinement and to physically isolate contaminated material to protect biological receptors (e.g., benthic infauna, forage fish, and crabs). As discussed in Section 4.2.1, placement of an average thickness of 18 inches of sand and gravel materials is needed to withstand erosive forces generated by wind and wave action, physically isolate contaminated material from biological receptors, and contain the flux of CoCs into the bioactive zone. In SMA-3, additional cap thickness (to 3 feet) would be placed to create a stable embankment slope. Approximately 23,000 cy of capping material would be required in SMA-1 to SMA-3. Using materials supplied from local upland quarries, cap material could be placed either using barge-mounted mechanical placement equipment (i.e., mechanical clamshell or skip box), or with land-based equipment (i.e., amphibious excavators, dozers, and/or conveyor equipment).

The Alternative 2 cost is estimated at approximately \$1.9 million, including placement and performance monitoring of an engineered cap in SMA-1 to SMA-3, along with long-term monitoring and maintenance, and would likely require approximately three months of in-water construction (Appendix B).

4.3.3 Alternative 3 – Enhanced Natural Recovery

Alternative 3 consists of placement of an ENR layer over SMA-1 to SMA-3 (Figure 4-4). ENR involves the placement of approximately four inches (10 cm) of suitable sand or sediment to accelerate the natural recovery process and reduce surface concentrations to below the RALs. ENR is often applied in areas where natural recovery may be an appropriate remedy, yet the rate of sedimentation or other natural processes is insufficient to reduce potentially unacceptable risks within an acceptable time frame. ENR includes the implementation of active remediation measures or further monitoring and analysis if cleanup levels are not achieved in a reasonable restoration time frame. ENR layers are designed to potentially mix with underlying sediment, thereby diluting sediment CoC concentrations. ENR layers are not designed to be completely isolating, in contrast to an engineered cap.

Radioisotope dating performed in the Shelton Harbor SCU reveals that the average sedimentation rate in the SCU is approximately 0.3 ± 0.06 cm/year, providing a relatively slow natural recovery (i.e., a half time in surface sediments of approximately 10 to 30 years (see Section 2.3). To achieve cleanup standards within a reasonable time frame in SMA-1 to SMA-3, some placement is likely necessary. The ENR alternative would place a minimum of four inches of sand material, described above in Section 4.2.2, sourced from a local quarry. Considering overplacement allowances, the average placed thickness would be approximately six inches. Thus, the total volume of ENR material placed in SMA-1 to SMA-3 would be approximately 6,000 cy, likely placed in the same fashion as described for Alternative 2.

The Alternative 3 cost is estimated at approximately \$1.1 million, including mechanical placement and long-term verification monitoring of the ENR layer, and would likely require approximately one month of in-water construction (Appendix B).

4.3.4 Alternative 4 – Monitored Natural Recovery

Alternative 4 consists of MNR within SMA-1 to SMA-3. As discussed in Section 4.1, MNR relies on the natural deposition of sediments to reduce contaminant concentrations to meet cleanup levels in the biologically active zone. Because of the relatively low sedimentation rates in north Shelton Harbor, the dioxin/furan TEQ RAL in these three SMAs would likely not be achieved for at least 50 years. Long-term monitoring costs are estimated at approximately \$1.4 million (Appendix B).

4.4 Detailed Analysis of Alternatives

The SMS evaluation criteria are specified in WAC 173-204-570, which evaluates the cleanup action alternatives under the SMS and provides the basis for selecting a preferred alternative. The following sections summarize minimum MTCA/SMS requirements, present the MTCA disproportionate cost analysis (DCA), and from the DCA identify the preferred sediment remediation alternative for north Shelton Harbor.

4.4.1 Minimum Requirements

Cleanup actions performed under SMS must comply with eleven minimum requirements under WAC 173-204-570(3). This section discusses MTCA/SMS minimum requirements for alternatives.

4.4.1.1 Compliance with Cleanup Standards

Under SMS, compliance with cleanup standards represents the measure of whether and when an alternative has reduced risk sufficiently to protect human health and the environment. Site-specific sediment cleanup levels summarized in Section 3.2 were developed to protect human health, the health of the benthic community, and ecological (higher trophic level species) health under WAC 173-204-560 through 564. Therefore, compliance with cleanup standards is used to evaluate the minimum requirements of "protection of human health and the environment" (WAC 173-204-570(3)(a)), "compliance with cleanup standards" (WAC 173-204-570(3)(c)), and to "provide for a reasonable restoration time frame" (WAC 173-204-570(3)(e)).

Alternatives 1 through 3 are expected to meet cleanup levels in the northern harbor immediately following construction. Consistent with WAC 173-204-570(5)(a), these alternatives are considered to have a reasonable restoration time frame and meet these three minimum requirements. Due to elevated starting concentrations and the rate of natural recovery, Alternative 4 would have an extended restoration time frame and therefore does not meet these minimum requirements.

As discussed in Section 3.5, the scope of the SMA-3 interim action will be refined during remedial design. Follow-on remedial actions as may be necessary in other areas of the Shelton Harbor SCU will be addressed in the forthcoming SCU-wide CAP (targeted for 2019).

4.4.1.2 Other Minimum Requirements

The achievement of other minimum requirements is summarized as follows:

- All alternatives comply with all applicable laws as summarized in Section 3.7 (WAC 173-204-570(3)(b)).
- Source control measures are not necessary for any of the interim action cleanup alternatives (WAC 173-204-570(3)(f)) because the historical sources of site-related contamination no longer exist.
- A sediment recovery zone is not expected to be necessary for Alternatives 1 through 3 because cleanup standards would be achieved within ten years following construction (WAC 173-204-570(3)(g)). Alternative 4 would require a sediment recovery zone.
- Alternatives 1 through 3 do not exclusively rely on MNR or institutional controls (WAC 173-204-570(3)(h)). Alternative 4 does not meet this minimum requirement, and therefore was eliminated from further consideration in the DCA.
- This IAP will undergo appropriate public review and comment by affected landowners and the general public (WAC 173-204-570(3)(i)).

- All alternatives include adequate monitoring to ensure effectiveness of the cleanup action (WAC 173-204-570(3)(j)).
- All alternatives leave some contamination in place, which will be subject to periodic reviews under WAC 173-204-570(3)(k).

The DCA summarized in the next section addresses the minimum requirement of "using permanent solutions to the maximum extent practicable" (WAC 173-204-570(3)(d)).

4.4.2 Disproportionate Cost Analysis

MTCA and SMS specify that preference shall be given to cleanup actions that are permanent solutions to the maximum extent practicable. Identifying an alternative that is permanent to the maximum extent practicable requires weighing costs and benefits. SMS uses the MTCA DCA (WAC 173-340-360(3)(e)) as the tool for comparing each remedial alternative's incremental environmental benefits with its incremental costs. The DCA is the primary method by which the alternatives are systematically compared to each other in this IAP. Under MTCA, costs are considered disproportionate to benefits when the incremental costs of an alternative exceed the incremental benefits compared to other, lower cost, protective alternatives. Alternative 4 is not included in the DCA because it did not satisfy SMS minimum requirements for protectiveness.

Seven MTCA criteria, which are listed in WAC 173-340-360(3)(f), are used to evaluate and compare remedial alternatives when conducting the DCA. Under SMS, each criterion is not equal in the DCA evaluation and, therefore, is assigned a relative weight for the DCA. Consistent with recent DCA and equivalent evaluations performed by Ecology at similar Puget Sound sediment cleanup sites (e.g., Bellingham Bay, Fidalgo Bay, and Lower Duwamish Waterway), the first six evaluation criteria are weighted and assigned a score for total benefits; those total benefits are then summed and compared with costs of the alternatives, using the following weighting:

- Protectiveness (30% of total benefit score)
- Permanence (20% of total benefit score)
- Effectiveness over the long term (20% of total benefit score)
- Management of short-term risks (10% of total benefit score)
- Technical and administrative implementability (10% of total benefit score)
- Consideration of public concerns (10% of total benefit score)
- Cost (compared to total benefits as above)

The following sections describe the methodology and rationale for evaluating the remedial alternatives under each criterion. Total benefit scores and costs are shown in Table 4-6 and plotted in Figure 4-5. For scoring purposes, criteria were ranked numerically from 1 to 5, with 1 representing the lowest score or benefit and 5 representing the highest score or benefit.

Table 4-6 Disproportionate Cost Analysis

					Alternative 1	Alternative 2	Alternative 3
Criterion		Site-Specific Considerations		Removal	Engineered Capping	ENR	
Protectiveness	30%	Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, time required to reduce risk at the facility and attain cleanup standards, on-site and offsite risks resulting from implementing the alternative, and improvement of the	Protection of human health (regional background for dioxins/furans) and protection of the benthic community		As discussed in Section 4.4.1.1, Alternatives 1 through 3 are expected to meet cleanup levels in the northern harbor immediately following construction. The scope of the SMA-3 interim action will be refined during remedial design. Follow-on remedial actions as may be necessary in other areas of the Shelton Harbor SCU will be addressed in the forthcoming SCU-wide CAP (targeted for 2019). Alternative 3 is the least protective because the ENR layer may be subject to erosion		
		overall environmental quality	Total	Score	5.0	5.0	3.0
Permanence	20%	The degree to which the alternative permanently reduces the toxicity, mobility or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated	Certainty and reliability the alternative will not result in future releases to the biologically active zone		Dredging removes most contaminated sediment, but some resuspension and residuals may occur during construction	Engineered caps permanently isolate contaminated sediment; monitoring verifies protectiveness in the long term	ENR sand placement has been demonstrated to be protective at other Puget Sound sites; however, contaminated sediment is not completely isolated from the biologically active zone; contaminated sediment could be exposed by wind/wave forces
			Total	Score	5.0	4.0	2.0
Effectiveness over the Long Term	20%	 When assessing the relative degree of long-term effectiveness of cleanup action components, the following types of components may be used as a guide, in descending order: (i) Source controls in combination with other cleanup technologies (ii) Beneficial reuse of the sediments (iii) Treatment to immobilize, destroy, or detoxify contaminants (iv) Dredging and disposal in an upland engineered facility that minimizes subsequent releases and exposures to contaminants (v) Dredging and disposal in a nearshore, in-water, confined aquatic disposal facility (vi) Containment of contaminated sediments in-place with an engineered cap (vii) Dredging and disposal at an open water disposal site approved by applicable state and federal agencies (viii) Enhanced natural recovery (ix) Monitored natural recovery 	Total Score Remedial technologies used		Dredging with Backfill	Engineered Capping	ENR
		(x) Institutional controls and monitoring	Total	Score	5.0	3.0	1.0

					Alternative 1	Alternative 2	Alternative 3
Criterion		Site-Specific Considerations		Removal	Engineered Capping	ENR	
Management of Short-term Risks	10%	The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks	Risk to human health and safety and risks to environment during construction	Construction time (days)	370	58	15
			(proportional to construction time)	Score	1	4	5
			Site risks during restoration time	Time to achieve cleanup standards	As discussed in Section 4.4.1.1, Alternatives 1 through 3 are expected to meet cleanup levels in the northern harbor immediately following construction. The scope of the SMA-3 interim action will be refined during remedial design. Follow-on remedial actions as may be necessary in other areas of the Shelton Harbor SCU will be addressed in the forthcoming SCU-wide CAP (targeted for 2019).		
				Score	5	5	5
			Total (average)	Score	3.0	4.5	5.0
Technical and Administrative Implementability	10%	Technical and administrative implementability. Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary offsite facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions	Technical feasibility to implement	Performance	All work is technically feasible; there are challenges related to the mobilization of marine- based equipment and logistics related to transloading and disposal of contaminated sediment	All work is technically feasible; there are challenges related to the mobilization of marine-based equipment and logistics related to transloading	All work is technically feasible; there are challenges related to the mobilization of marine-based equipment and logistics related to transloading
				Score	2	4	4
			Administrative implementability	Performance	All work is administratively implementable; there are challenges related to permitting in-water work, performing work within the established "fish- window," and additional permitting or contaminated sediment transloading operations	All work is administratively implementable; there are challenges related to permitting in-water work and performing work within the established "fish- window"	All work is administratively implementable; there are challenges related to permitting in- water work, performing work within the established "fish- window"
				Score	3	4	4
			Total (average)	Score	2.5	4.0	4.0
Consideration of Public Concerns	10%	Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site	Consistency with land use, protection of users, habitat restoration, certainty of technology to permanently improve the environment	Performance	Public likely to support removal of contaminated sediment from the harbor	Public likely to support engineered permanent isolation of contaminated sediment, but slightly less than removal	Public may question the effectiveness of thin-layer placement and the certainty that contaminants are isolated in the long term
			Total	Score	5	3	2
Total Weighted Benefits			4.6	4.1	2.6		
Cost			\$29,000,000	\$1,900,000	\$1,100,000		

4.4.2.1 Protectiveness

WAC 173-340-360(3)(f)(i) defines protectiveness as follows:

Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced, time required to reduce risk at the facility and attain cleanup standards, on-site and off-site risks resulting from implementing the alternative, and improvement of the overall environmental quality

Consistent with DCAs used by Ecology at other Puget Sound sediment cleanup sites, the protectiveness of each remedial alternative was scored based on the anticipated human health and ecological risk reductions during and following remedial actions (i.e., compared to the regional background and SCO benthic criteria). All alternatives achieve regional background dioxin/furan TEQ concentrations and achieve protection of the benthic community (benthic SCO) within SMA-1 to SMA-3, but Alternative 3 is the least protective as the ENR layer may be subject to erosion.

As shown in Table 4-6, Alternatives 1 and 2 protect human health and the environment by rapidly reducing concentrations to protective levels; each of these alternatives score 5 out of 5 for this criterion. Alternative 3 scores 3 out of 5 for this criterion.

4.4.2.2 Permanence

WAC (173-340-360)(3)(f)(ii) defines permanence as follows:

The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated

Permanence is scored based on the certainty and reliability that an alternative will not result in future releases to the biologically active zone. Alternative 1 is designed to provide permanence as it would remove all contaminated material to the extent practicable, and includes backfill to contain anticipated dredging residuals. While some CoCs may not be removed and some resuspension may occur during dredging (Bridges et al. 2010), Alternative 1 scores 5 of 5. Alternative 2 scored slightly lower (4 of 5) because CoCs would be contained in place; caps designed following EPA and Corps guidance have been demonstrated to be permanent (EPA 2005). Alternative 3 scored the lowest (2 of 5) based on the possible disturbance of placed ENR material and because the ENR layer is not designed to provide permanent isolation.

4.4.2.3 Effectiveness over the Long Term

As part of the long-term effectiveness evaluation, SMS provides a preferential hierarchy of remedial technologies, which replaces a similar upland-oriented list in MTCA, as follows:

When assessing the relative degree of long-term effectiveness of cleanup action components, the following types of components may be used as a guide, in descending order, in place of the components listed in WAC 173-340-360 (3)(f)(iv):

(i) Source controls in combination with other cleanup technologies

(ii) Beneficial reuse of the sediments

(iii) Treatment to immobilize, destroy, or detoxify contaminants

(iv) Dredging and disposal in an upland engineered facility that minimizes subsequent releases and exposures to contaminants

(v) Dredging and disposal in a nearshore, in-water, confined aquatic disposal facility

(vi) Containment of contaminated sediments in-place with an engineered cap

(vii) Dredging and disposal at an open water disposal site approved by applicable state and federal agencies

(viii) Enhanced natural recovery

(ix) Monitored natural recovery

(x) Institutional controls and monitoring (WAC 173-204-570(4)(b))

All alternatives provide institutional controls and monitoring as necessary to maintain effectiveness in the long term. For this criterion, the alternatives were ranked in the order consistent with the MTCA/SMS regulations: Alternatives 1, 2, and 3 scored 5, 3, and 1, respectively.

4.4.2.4 Management of Short-term Risk

Management of short-term risk considers impacts during construction, and the risks remaining on site during the restoration time frame. WAC 173-340-360(3)(f)(v) defines management of short-term risk as follows:

The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of measures that will be taken to manage such risks

As summarized in Table 4-6, the remedial alternatives were evaluated based on short-term risks during construction, also considering risks associated with sediment concentrations exceeding the RAL until cleanup levels are achieved.

During remedial construction, multiple short-term risks are present: risks to human health from worker safety, impacts to the benthic community during placement and removal activities, and impacts to the water column during removal activities. The magnitude of impacts on human health and the environment during construction are generally proportional to the construction time frame for each alternative. The construction time frames range from approximately 380 days for Alternative 1 to 16 days for Alternative 3, and score 1, 4, and 5 for Alternatives 1 through 3 respectively.

The restoration time frame provides a general measure for the risks due to remaining contaminated sediment on site. Because Alternatives 1 through 3 all achieve cleanup levels within 10 years following construction, they all score a 5 for this criterion.

4.4.2.5 Technical and Administrative Implementability

WAC 173-340-360(3)(f)(vi) defines technical and administrative implementability as follows:

Ability to be implemented including consideration of whether the alternative is technically possible, availability of necessary off-site facilities, services and materials, administrative and regulatory requirements, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with existing facility operations and other current or potential remedial actions

As summarized on Table 4-6, both technical and administrative implementability are scored based on a narrative evaluation of the technical and administrative challenges of each alternative.

For technical implementability, all alternatives require the mobilization of marine construction equipment and the development or use of transload facilities for moving material to and from land. Alternative 1 scores the lowest because of the need to coordinate removal and disposal of contaminated material, given that the closest available transload facilities for contaminated

sediments are in Tacoma and Seattle. Alternative 2 scores higher because of the need to only furnish and place clean capping material; local sand/gravel quarries and transload facilities are available in the Shelton area. The highest score was given to Alternatives 2 and 3 because they only require furnishing and placement of clean material. For this criterion, Alternatives 1, 2, and 3 scored 2, 4, and 4, respectively.

For administrative implementability, all alternatives require permitting for performing in-water construction activities. Alternative 1 scored the lowest (3) due to the complexity involved in permitting both removal and contaminated sediment transloading. Alternatives 2 and 3 both scored higher than Alternative 1 (4), because they both require permitting of marine filling activities, but do not involve the transport of contaminated sediment. In addition, they are both compatible with the Shelton Harbor habitat restoration project, which includes filling within the SMA-1 area.

4.4.2.6 Consideration of Public Concerns

WAC 173-340-360(3)(f)(vii) defines consideration of public concerns as follows:

Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, tribes, federal and state agencies, or any other organization that may have an interest in or knowledge of the site

Generally, public concerns may regard the certainty that the cleanup protects human health and the environment in the most permanent manner practicable. Alternative 1 scores highest (5 out of 5) because dredging has been previously demonstrated effective and permanent over a wide range of conditions. Alternative 2 scores 3 out of 5 because, although capping has been previously demonstrated to permanently isolate material, the public often equates removal as a more protective option. Alternative 3 scores lower (2 out of 5) because of potential public concerns that ENR may not fully isolate the contaminated material from the bioactive zone and disturbance could result in the release of contaminated material.

4.4.2.7 Total Benefits and Costs

Total benefit scores and costs are shown in Table 4-6 and plotted in Figure 4-5. For SMA-1 to SMA-3, the total weighted benefits range from 2.6 for Alternative 3, to 4.1 for Alternative 2, to 4.6 for Alternative 1. Estimated costs increase from \$1.1 million for Alternative 3, to \$1.9 million for Alternative 2, to \$29 million for Alternative 1 (detailed cost estimates are provided in Appendix B). As summarized in Figure 4-5, while total weighted benefits increase proportionately to costs between Alternatives 3 and 2, the cost of Alternative 1 is disproportionately costly compared to Alternative 2 relative to the incremental benefits provided.

4.5 Recommended Interim Action Remedy

Based on the analysis described in Section 4, Alternative 2, Engineered Capping, provides the most benefits that are not disproportionately costly. Thus, Alternative 2 is the recommended sediment interim action remedy for the Shelton Harbor SCU. Under this recommended alternative, contaminated sediments within SMA-1 to SMA-3 will be capped with a chemical isolation/filter layer $(D_{50} = 0.1 \text{ inches})$ overlain by an erosion protection/bioturbation layer ($D_{50} = 1 \text{ to } 2 \text{ inches}$). Subject to final design refinements, the total cap thickness including overplacement allowances would be approximately 18 inches. In SMA-3, additional cap materials (approximately 3-foot-thick) would be placed to create a stable embankment slope. Material specifications will be refined during design in coordination with permitting agency and stakeholder reviews to optimize habitat functions.

Approximately 23,000 cy of capping material would be required in SMA-1 to SMA-3. Using materials supplied from local upland quarries, cap material could be placed either using barge-mounted mechanical placement equipment (i.e., mechanical clamshell or skip box), or with land-based equipment (i.e., amphibious excavators, dozers, and/or conveyor equipment).

Consistent with Chapter 70.105D Revised Code of Washington, as implemented by Chapter 173-340 WAC (MTCA Cleanup Regulation), the recommended interim sediment cleanup action is protective of human health and the environment, will attain federal and state requirements that are applicable or relevant and appropriate, complies with cleanup standards, and provides for compliance monitoring. The recommended interim action also satisfies the preference expressed in WAC 173-340-360 for the use of permanent solutions to the maximum extent practicable and provides for a reasonable restoration time frame.

The recommended interim sediment cleanup action was identified consistent with MTCA and SMS alternatives evaluation and remedy selection criteria. Those criteria include the following:

- **Compliance with SMS Minimum Requirements:** The recommended interim action complies with the minimum requirements, which include protecting human health and the environment and complying with the cleanup standards in a reasonable restoration time frame (cleanup standards will be met within 10 years following completion of remedial construction).
- Use of Permanent Solutions to the Maximum Extent Practicable: As described in Section 4.4.2 and summarized in Figure 4-1, the recommended interim action uses permanent solutions to the maximum extent practicable and has costs commensurate with the benefits based on the findings of the DCA. The recommended alternative will achieve significant human health and environmental benefits at a cost (approximately \$1.9 million) that is not disproportionate. Lower-cost alternatives provide less environmental benefit compared with the recommended alternative, and higher-cost alternatives include minimal additional benefits.

Consistent with WAC 173-340-430, the recommended interim sediment cleanup action remedy will achieve cleanup standards for portions of the Shelton Harbor SCU, and is intended to be consistent with the final cleanup action to be developed in a forthcoming SCU-wide CAP, currently targeted to be prepared in 2019. The recommended interim action will restore surface sediments in the biologically active zone to achieve cleanup standards. The recommended remedy is expected to sequester contaminants below the placed sand and gravel layers.

5 Interim Action Implementation Plans

Implementation of interim actions in the Shelton Harbor SCU will begin with the development of a Remedial Design Work Plan (RD Work Plan) to be approved by Ecology under the existing Agreed Order. Among other elements, the RD Work Plan will describe any remaining data collection efforts necessary to complete engineering design of the interim action. For example, surface sediments in SMA-1 to SMA-3 would be sampled in early 2018 to refine the current extent of exceedance of the Table 3-1 RALs to inform final remedial designs (note that some of the dioxin/furan TEQ and copper data used to develop preliminary SMA delineations are ten or more years old; updated data are needed to refine the extent of the interim action areas). The RD Work Plan would also describe planned cap design refinements (e.g., to ensure stability during earthquakes) and development of detailed plans and specifications for remedial construction.

As summarized in Section 3.8.5.2, subject to Corps review, the cleanup action may qualify for permitting under NWP 38. The RD Work Plan will describe coordination and sequencing of the interim action with the Oakland Bay Habitat Restoration project (Anchor QEA 2017a). For example, to ensure protectiveness, construction of cleanup actions (i.e., engineered caps) will precede habitat restoration actions. The relationship of SMA-1 and SMA-2 cleanup caps with follow-on habitat restoration actions in these areas is depicted in Figures 5-1 and 5-2, respectively.

Subject to permitting schedules, construction of the SMA-1 to SMA-3 caps is currently targeted for summer/fall 2018. Rerouting of the Shelton Creek delta and construction of the lagoon and western salt marsh lobe adjacent to Sierra Pacific Industries is also currently targeted for summer/fall 2018. Construction of the remainder of the Oakland Bay Habitat Restoration project depicted in Figure 2-1 is targeted for 2020 or later, subject to funding.

As discussed above, separate from the Oakland Bay Habitat Restoration project, additional cap materials would be placed in SMA-3 to create a stable intertidal embankment slope and adjacent subtidal cap. A preliminary plan and section of the SMA-3 interim action is depicted in Figures 5-3 and 5-4, respectively. These preliminary designs would be refined in early 2018 based on more detailed engineering design and permitting requirements,

6 Interim Action Compliance Monitoring

Compliance monitoring and contingency responses (as needed) will be implemented in accordance with WAC 173-340-410, Compliance Monitoring Requirements. The RD Work Plan would describe development of a detailed Construction Quality Assurance Project Plan (CQAP) and Operations, Maintenance, and Monitoring Plan (OMMP). The objective of these plans is to confirm that cleanup standards have been achieved, and also to confirm the long-term effectiveness of interim cleanup and source control actions in the Shelton Harbor SCU. The plans will contain discussions on duration and frequency of monitoring, the trigger for contingency response actions, and the rationale for terminating monitoring. The three types of compliance monitoring to be conducted include the following:

- **Protection Monitoring:** To confirm that human health and the environment are adequately protected during the construction period of the interim action
- **Performance Monitoring:** To confirm that the interim action has attained site-specific cleanup standards and other performance standards
- **Confirmation Monitoring:** To confirm the long-term effectiveness of the cleanup and source control actions once performance standards have been attained

Cleanup levels and associated points of compliance for the cleanup action are described above in Section 3.

6.1 Monitoring Objectives and Rationale

Monitoring would be performed to determine whether cleanup standards have been achieved during and after the interim cleanup action. Three broad categories of compliance monitoring would be performed as follows:

- Water Quality (Protection and Confirmation Monitoring): During the interim action, construction controls and protection monitoring would be implemented as practicable to ensure surface water quality protection within Shelton Harbor. Detailed monitoring and contingency response requirements will be described in the CQAP and OMMP to be prepared as a part of remedial design as approved by Ecology.
- Physical Limits and Integrity (Performance and Confirmation Monitoring): Bathymetric performance monitoring would be conducted during the interim action to guide the limits of construction activities. Following completion of construction, physical confirmation monitoring of sediment cap surfaces would be performed to verify that caps are not substantially eroded over time by natural and/or anthropogenic forces. During these confirmation monitoring events, sediment cap thickness would be assessed and compared with the minimum required thickness determined during remedial design to ensure integrity of the caps to protect human health and the environment (Palermo et al. 1998a, 1998b).

Again, detailed monitoring and contingency response requirements would be described in the CQAP and OMMP to be prepared as a part of remedial design.

• Sediment Quality (Performance and Confirmation Monitoring): Following completion of construction, performance monitoring of surface sediments on the surface of the SMA-1 to SMA-3 caps would be conducted. Chemical monitoring would be performed to verify that these areas achieve and maintain site-specific RALs (Table 3-1). Post-construction monitoring may include sampling and analysis of the 0 to 2 cm and 2 to 10 cm sediment intervals to help differentiate potential ongoing sources from underlying cap performance. Again, detailed monitoring and contingency response requirements would be described in the OMMP to be prepared as a part of remedial design.

7 References

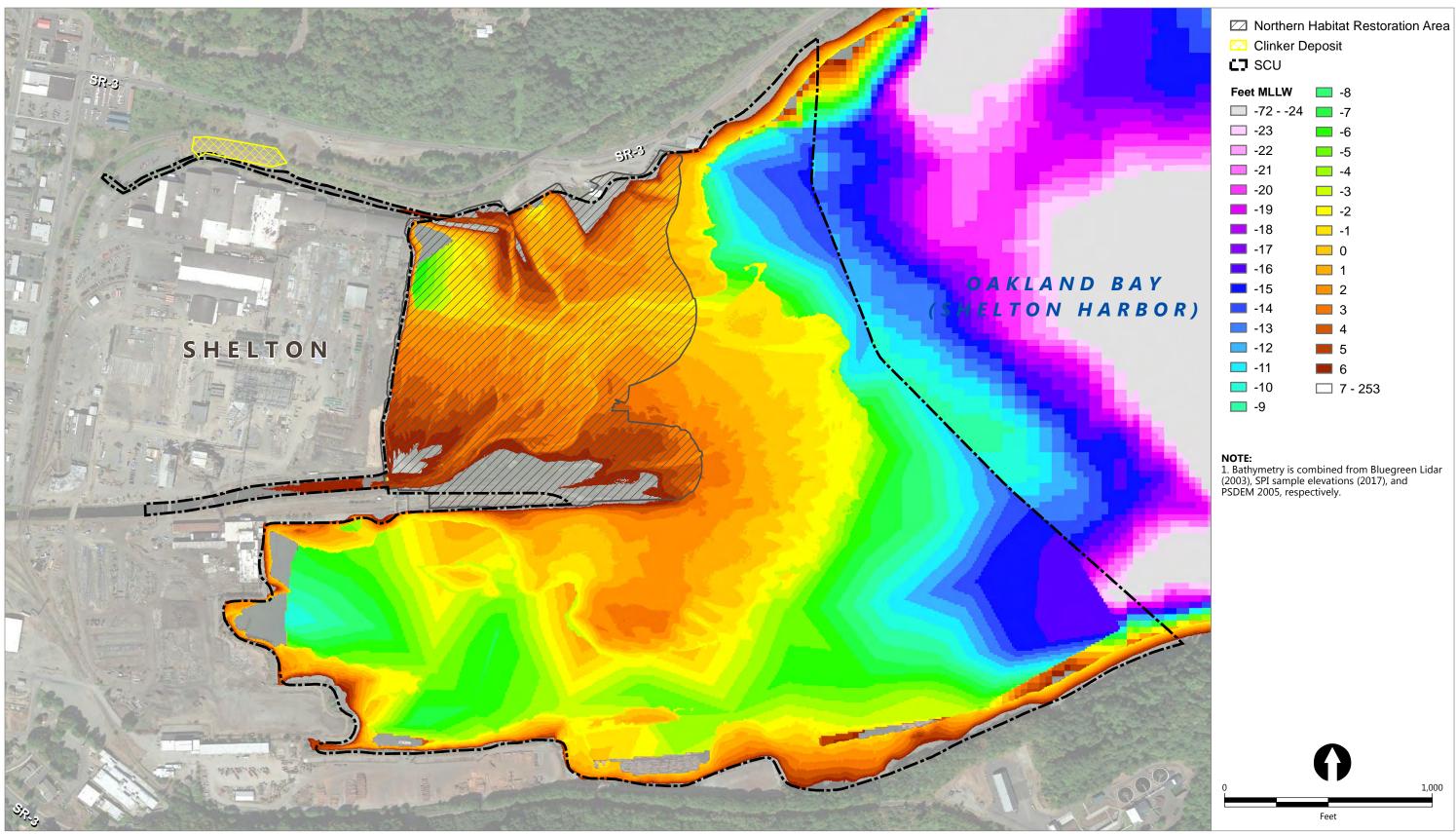
- Anchor QEA, 2017a. Oakland Bay Restoration Project: 60% Basis of Design Report. Prepared for South Puget Sound Salmon Enhancement Group. December 2017.
- Anchor QEA, 2017b. Remedial Investigation/Feasibility Study Work Plan: Shelton Harbor Sediment Cleanup Unit, Oakland Bay and Shelton Harbor Sediments Cleanup Site. Prepared for Simpson Timber Company and the Washington State Department of Ecology. July 2017.
- Bridges, T.S., K.E. Gustavson, P. Schroeder, S.J. Ells, D. Hayes, S.C. Nadeau, M.R. Palermo, and C.R.
 Patmont, 2010. "Dredging Processes and Remedy Effectiveness: Relationship to the 4 Rs of
 Environmental Dredging." Integrated Environmental Assessment and Management 6:619–630.
- Carpenter, R., M.L. Peterson and J.T. Bennett, 1985.²¹⁰Pb Derived Sediment Accumulation and Mixing Rates for the Greater Puget Sound Region. *Marine Geology* 64:291-312.
- City of Shelton, 2015. *Mitigated Determination of Non-Significance: Sierra Pacific Industries Shelton Lumber Mill Redevelopment.* SEPA No. 03-15. November 2015.
- Clarke, D.G., M.R. Palermo, and T.C. Sturgis, 2001. Subaqueous Cap Design: Selection of Bioturbation Profiles, Depths, and Process Rates. DOER Technical Notes Collection (ERDC TN-DOER-C21), U.S. Army Engineer Research and Development Center. August 2001.
- Di Toro, D.M., 1985. "A Particle Interaction Model of Reversible Organic Chemical Sorption." *Chemosphere* 14(10):1503-1538.
- DMMP (Dredged Material Management Program), 2009. OSV Bold Summer 2008 Survey: Data Report. Prepared by the Dredged Material Management Program. June 2009.
- Domenico, P.A., and F.W. Schwartz, 1990. *Physical and Chemical Hydrogeology*. New York: John Wiley & Sons.
- Ecology (Washington State Department of Ecology), 2013. *Dioxin in Surface Water Sources to Oakland Bay (Mason County)*. Publication No. 13-03-022. May 2013.
- Ecology, 2017a. South Puget Sound Regional Background: Draft Final Data Evaluation and Summary Report. Publication No. 17-09-130. August 2017.
- Ecology, 2017b. Draft Sediment Cleanup User's Manual II. Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Publication No. 12-09-057. Revised April 2017.

- Ecology & Environment and NewFields, 2012. Port Angeles Harbor Marine Environment: Sediment Investigation Report and Screening Level Human Health and Ecological Risk Assessment, Port Angeles, Washington. Prepared by Ecology & Environment and NewFields for Ecology. December 2012.
- EPA (U.S. Environmental Protection Agency), 2005. *Contaminated Sediment Remediation Guidance for Hazardous Waste Sites*. OSWER Publication 9355.0-85. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response. Available at: <u>http://www.epa.gov/superfund/resources/sediment/guidance.htm</u>.
- EPA, 2017. *Toxicological Review of Benzo[a]pyrene*. EPA/635/R-17/003Fa. <u>www.epa.gov/iris</u>. January 2017.
- Govers, H.A.J. and H.B. Krop, 1998. "Partition Constants of Chlorinated Dibenzofurans and Dibenzo-P-Dioxins." *Chemosphere* 31(9-12):2139-2152.
- Herrera (Herrera Environmental Consultants), 2008. "Summary of Existing Information and Identification of Data Gaps Technical Memorandum." Oakland Bay, Shelton, Washington. Prepared for the Washington State Department of Ecology. May 2008.
- Herrera, 2010. Sediment Investigation Report, Oakland Bay Sediment Characterization Study. Mason County, Washington. Prepared for the Washington State Department of Ecology. November 2010.
- Hudson, R.Y., 1958. *Design of Quarry Stone Cover Layers for Rubble Mound Breakwaters*. Research Report 2-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- La Licata, I., C.D. Langevin, A.M. Dausman, and L. Alberti, 2011. "Effect of Tidal Fluctuations on Transient Dispersion of Simulated Contaminant Concentrations in Coastal Aquifers." *Hydrogeology Journal* 19: 1313–1322.
- Lampert, D.J., and D. Reible, 2009. "An Analytical Modeling Approach for Evaluation of Capping of Contaminated Sediments." *Soil and Sediment Contamination: An International Journal* 18(4):470-488.
- Lavelle, J.W., G.J. Massoth, and E.A. Crecelius, 1985. "Sedimentation Rates in Puget Sound from 210Pb Measurements." National Oceanic and Atmospheric Administration Technical Memorandum ERL PMEL-61. Pacific Marine Environmental Laboratory, Sequim, WA.
- LDWG (Lower Duwamish Waterway Group), 2012. Lower Duwamish Waterway Remedial Investigation/Feasibility Study Report, Remedial Investigation Report. Submitted to U.S.

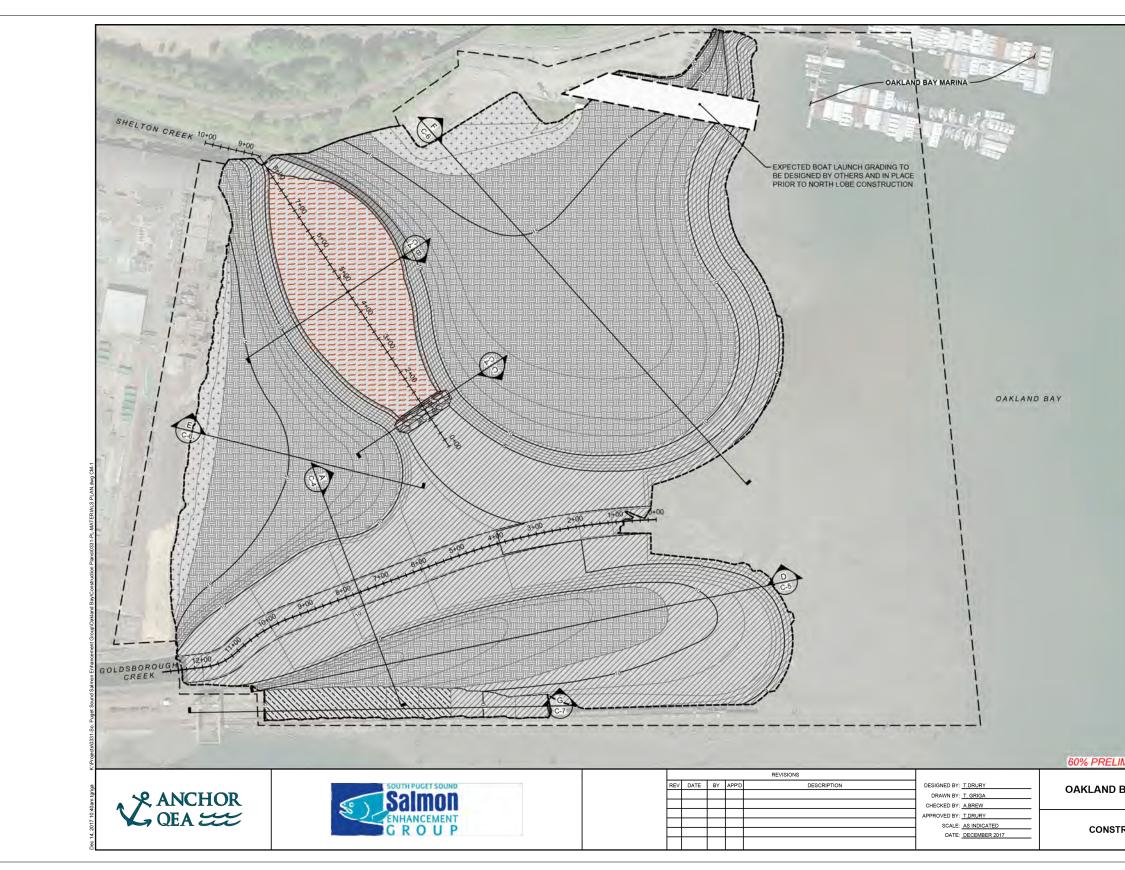
Environmental Protection Agency, Seattle, WA, and Washington State Department of Ecology, Bellevue, WA. October 2012.

- Leenknecht, D.A., A. Szuwalski, and A.R. Sherlock, 1992. *Automated Coastal Engineering System: Technical Reference*. Coastal Engineering Research Center. Vicksburg, MS. September 1992.
- NewFields, 2013. *Preliminary Sediment Cleanup Objectives for Port Angeles Harbor*. Prepared for the Washington State Department of Ecology. May 2013. Available at: http://ecyaptcp/isis/SiteDocuments/Index/11907.
- NewFields, 2014. *Oakland Bay Sediment Dioxin Source Study*. Oakland Bay, Washington. Prepared for the Washington State Department of Ecology. November 2014.
- NOAA (National Oceanic and Atmospheric Administration), 2017. "Tide Predictions for 9446628 Shelton, Oakland Bay, WA." *Tides and Currents*. Last modified October 15, 2013; accessed October 5, 2017. Available at: <u>https://tidesandcurrents.noaa.gov/noaatidepredictions.</u> <u>html?id=9446628&legacy=1</u>.
- Palermo, M.R., J.E. Clausner, M.P. Rollings, G.L. Williams, T.E. Myers, T.J. Fredette, and R.E. Randall, 1998a. *Guidance for Subaqueous Dredged Material Capping*. Technical Report DOER-1. United States Army Corps of Engineers, Waterways Experiment Station. Available at: <u>http://www.wes.army.mil/el/dots/doer/pdf/doer-1.pdf</u>.
- Palermo, M.R., J. Miller, S. Maynord, and D. Reible, 1998b. Assessment and Remediation of Contaminated Sediments (ARCS) Program Guidance for In Situ Subaqueous Capping of Contaminated Sediments. EPA 905/B-96/004. Prepared for the Great Lakes National Program Office, United States Environmental Protection Agency, Chicago, Illinois. Available at: <u>http://www.epa.gov/glnpo/sediment/iscmain</u>.
- Reible, D., 2012. Model of 2 Layer Sediment Cap, Description and Parameters. Version 2 Layer Analytical Model v.1.18 and Active Cap Layer Model v 4.1. Available at: <u>https://www.depts.ttu.edu/ceweb/groups/reiblesgroup/downloads/2%20layer%20analyti</u> <u>cal%20model%20description.doc</u>.
- Schwarzenbach, R.P., P.M. Gschwend, and D.M. Imboden, 1993. *Environmental Organic Chemistry*. New York: John Wiley & Sons, Inc.
- Thibodeaux, L.J., K.T. Valsaraj, and D.D. Reible, 2001. "Bioturbation-Driven Transport of Hydrophobic Organic Contaminants from Bed Sediment." *Environmental Engineering Science* 18(4):215-223.

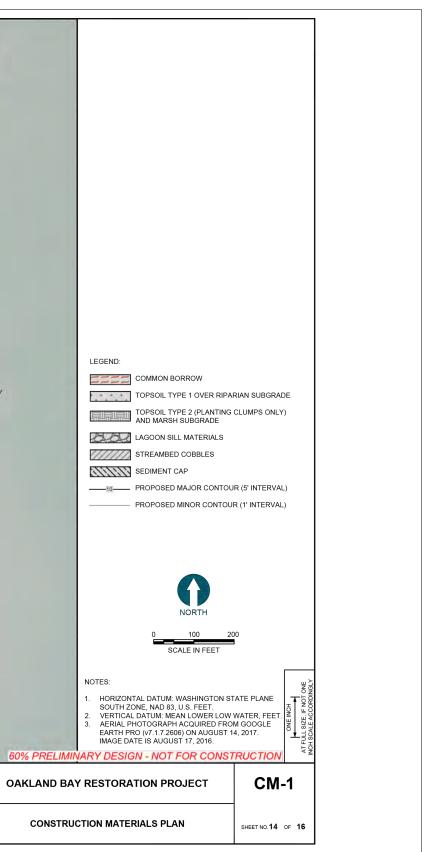
- Van den Berg, M., L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler,
 H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher,
 J. Tuomisto, M. Tysklind, N. Walker, R.E. Peterson, 2006. "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. *Toxicological Sciences* 93(2):223-41.
- Windward (Windward Environmental LLC) and Anchor QEA, 2014. *Final Supplemental Remedial Investigation Report: East Waterway Operable Unit RI/FS*. Prepared for U.S. Environmental Protection Agency. January 2014.


Figures

Filepath: \/fuji\anchor\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 1-1_Oakland Bay and Shelton.docx

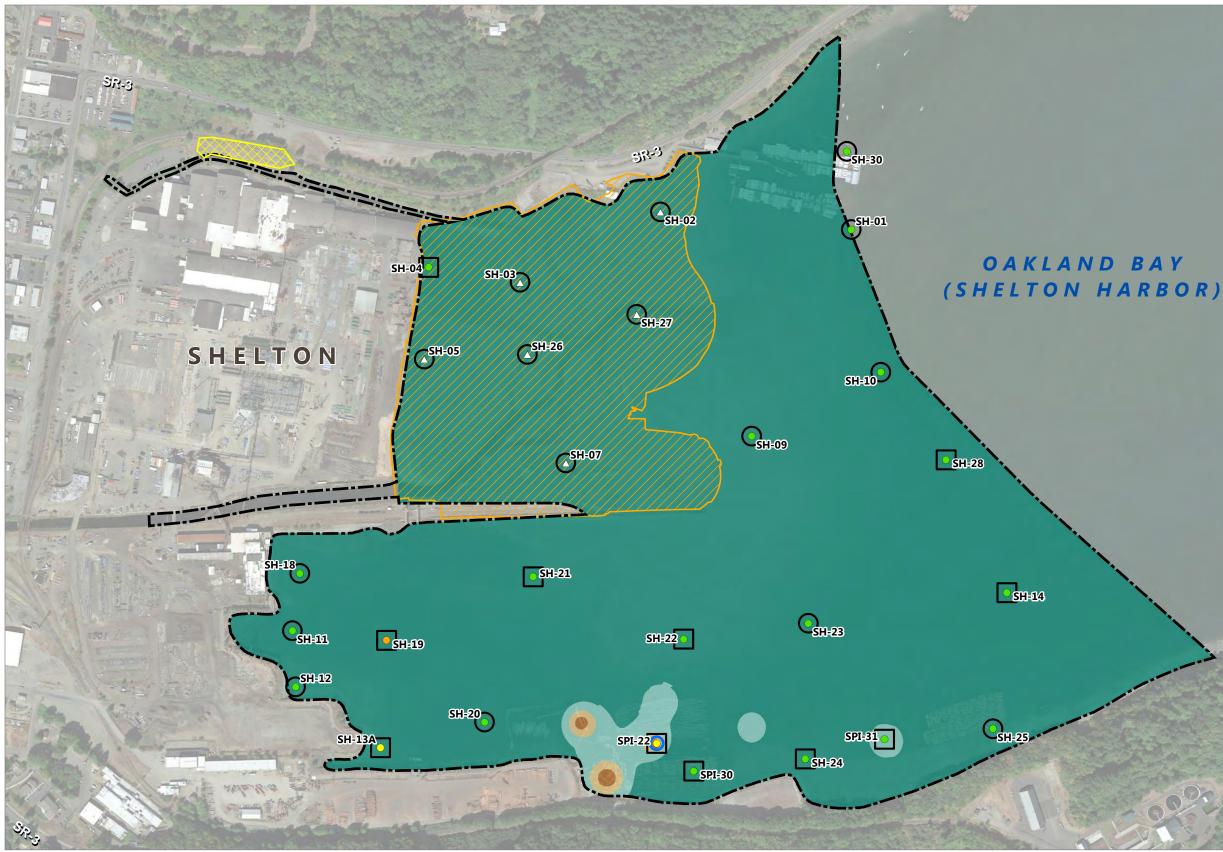

Figure 1-1 Oakland Bay and Shelton Harbor Sediments Cleanup Site

Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site



Publish Date: 2017/12/19, 10:46 AM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\BluegreenLidar_and_SPI_2017_Bathy.mxd

Figure 1-2 Shelton Harbor Sediment Cleanup Unit and Bathymetry Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site



Filepath: I:\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 2-1_v2_013018.docx

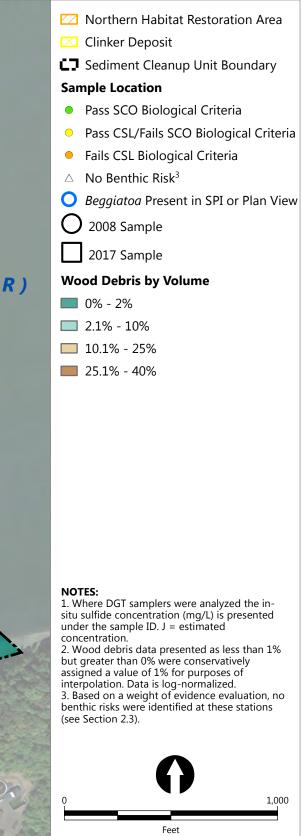
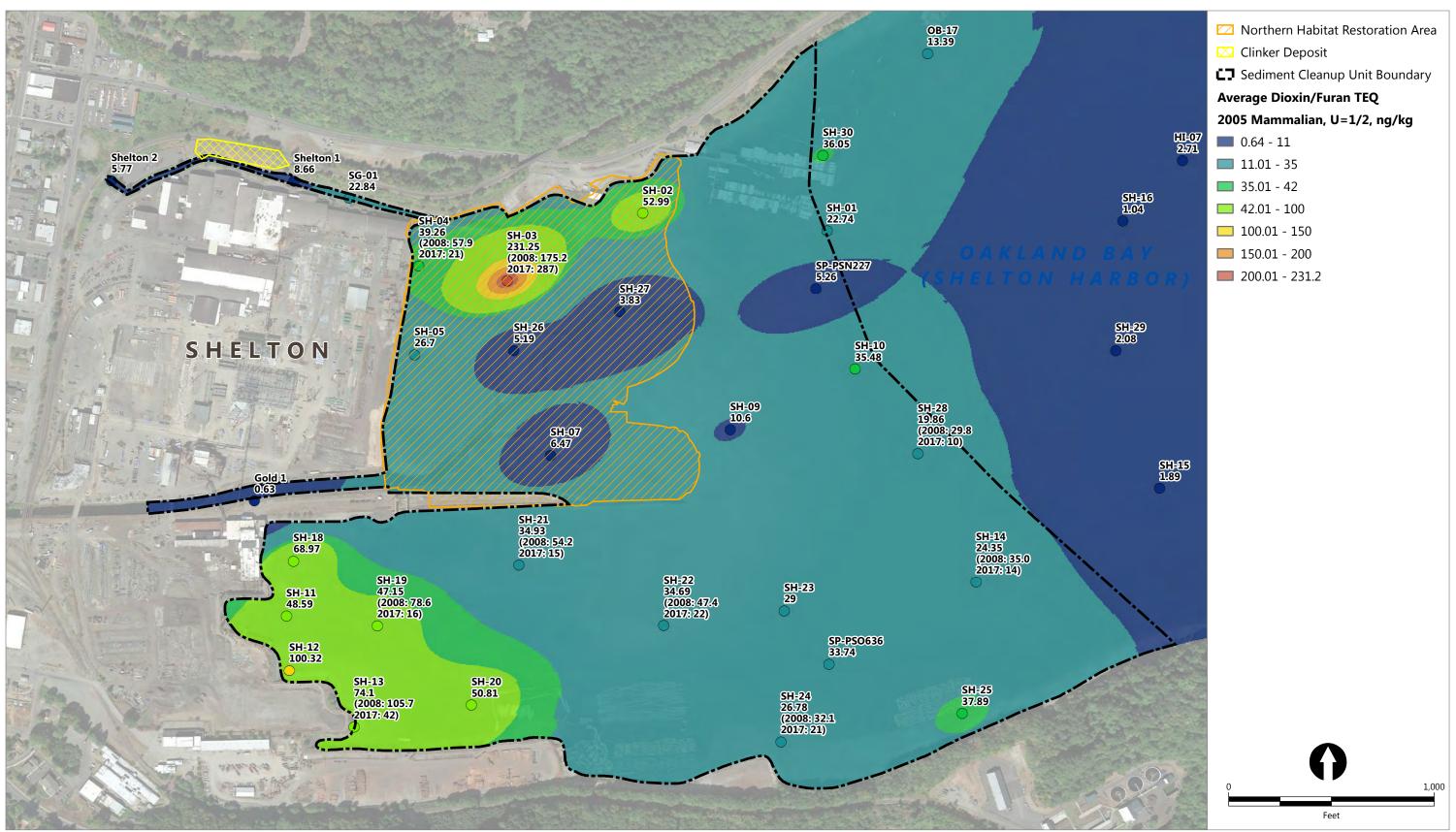


Figure 2-1 North Shelton Harbor Habitat Restoration Project


Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Publish Date: 2018/01/26, 2:12 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SurfSed_Toxicity.mxd

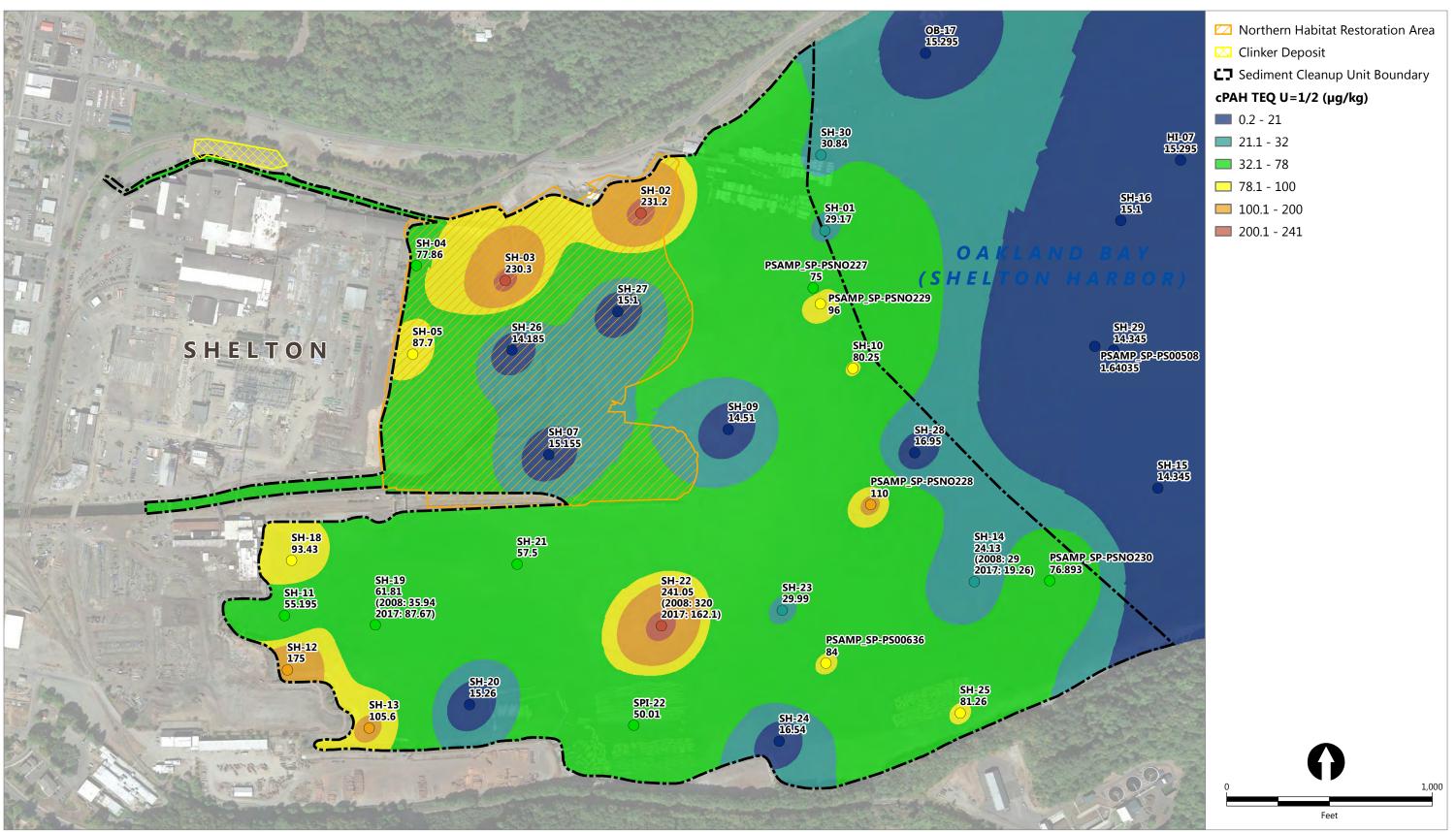


Figure 2-2 Shelton Harbor Surface Sediment Toxicity Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

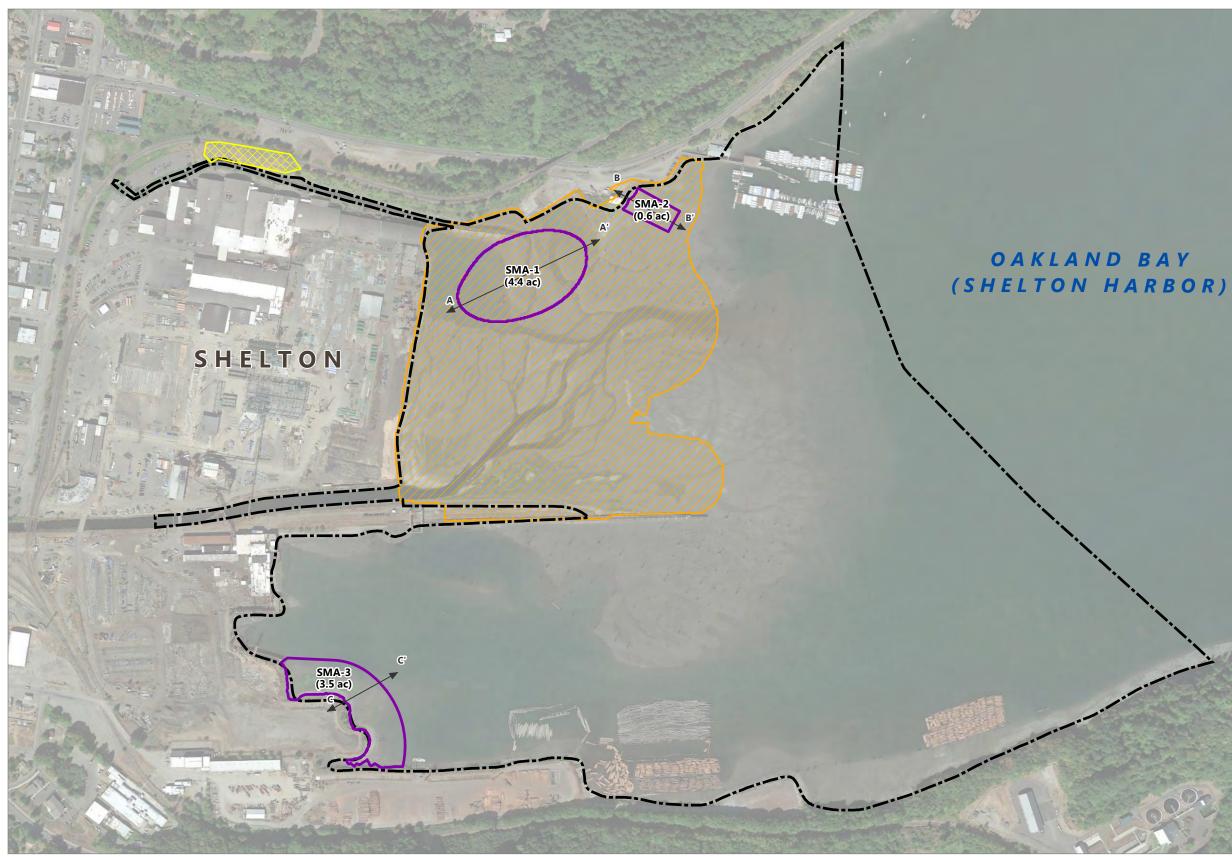

Publish Date: 2017/12/19, 10:43 AM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\DF_2008_2017.mxd

Figure 2-3 Shelton Harbor Surface Sediment Dioxin/Furan TEQ Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Publish Date: 2018/01/17, 3:02 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\cPAH_TEQ.mxd

> Figure 2-4 Shelton Harbor Surface Sediment cPAH TEQ Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Publish Date: 2018/01/29, 1:31 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SMAs.mxd

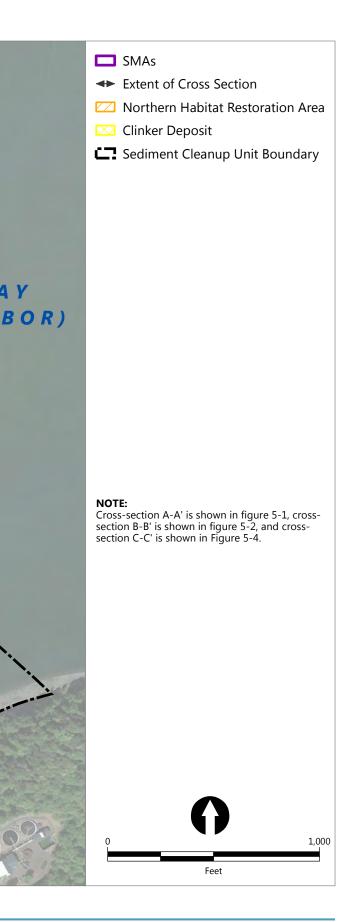
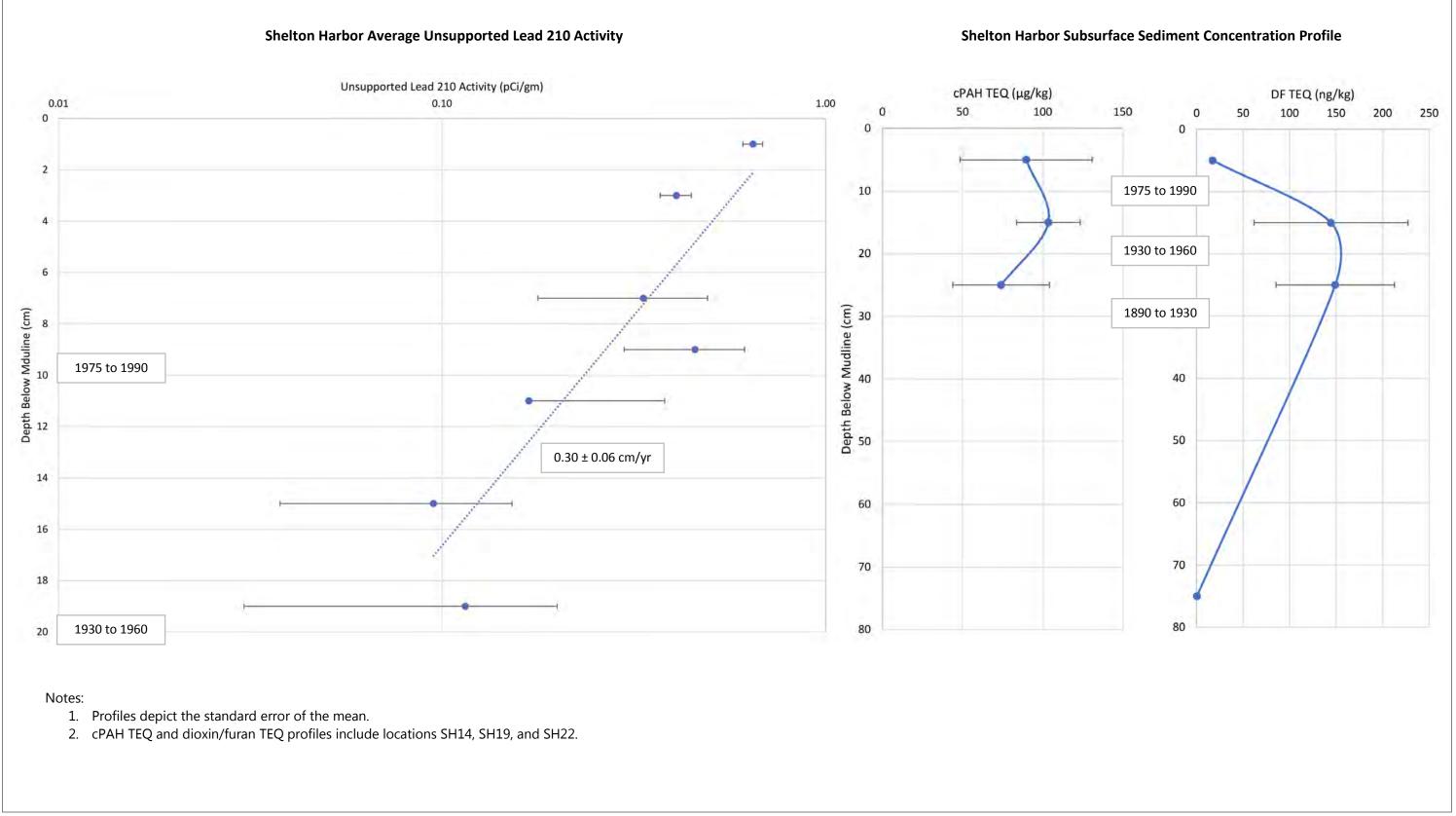
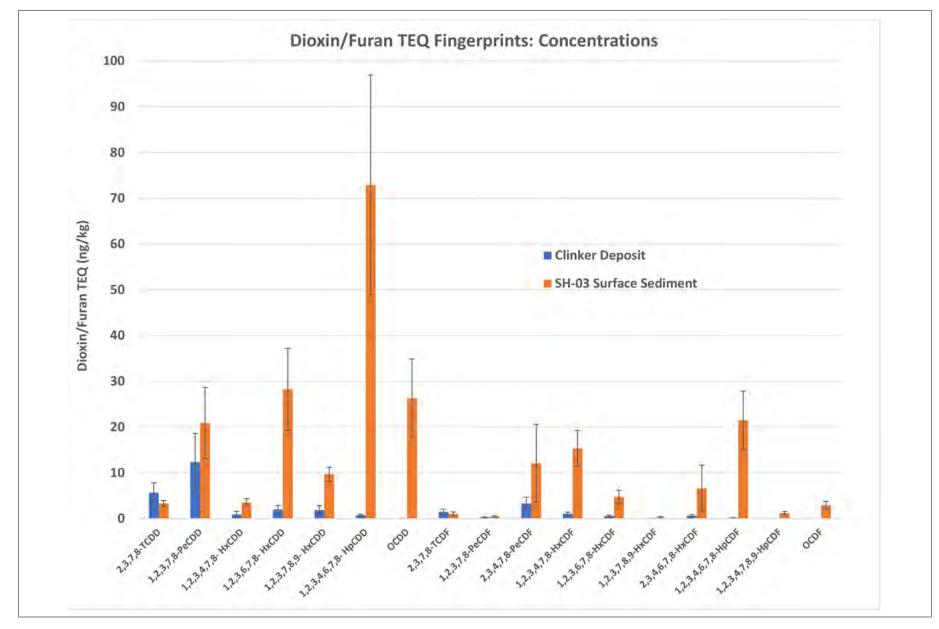
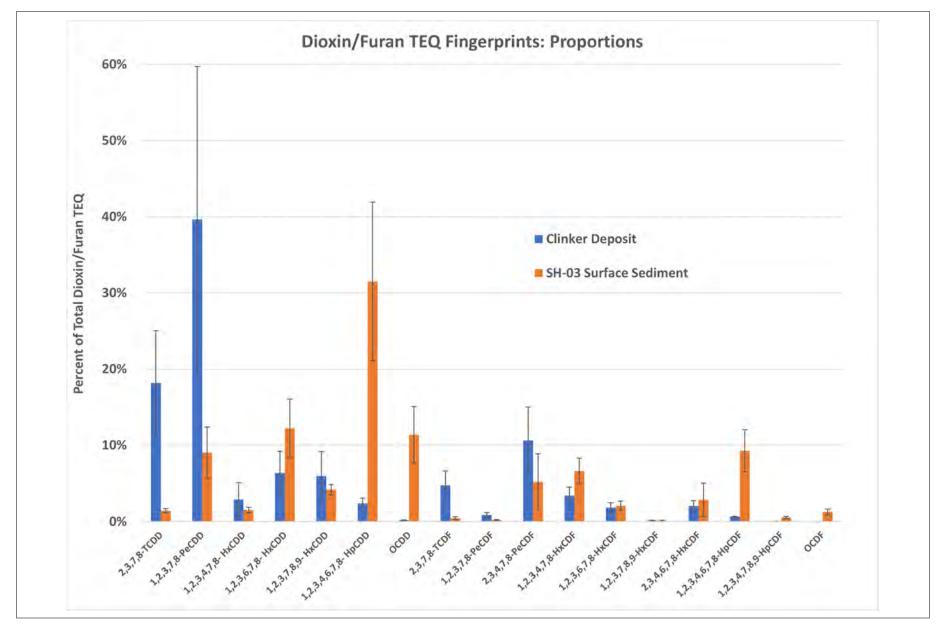




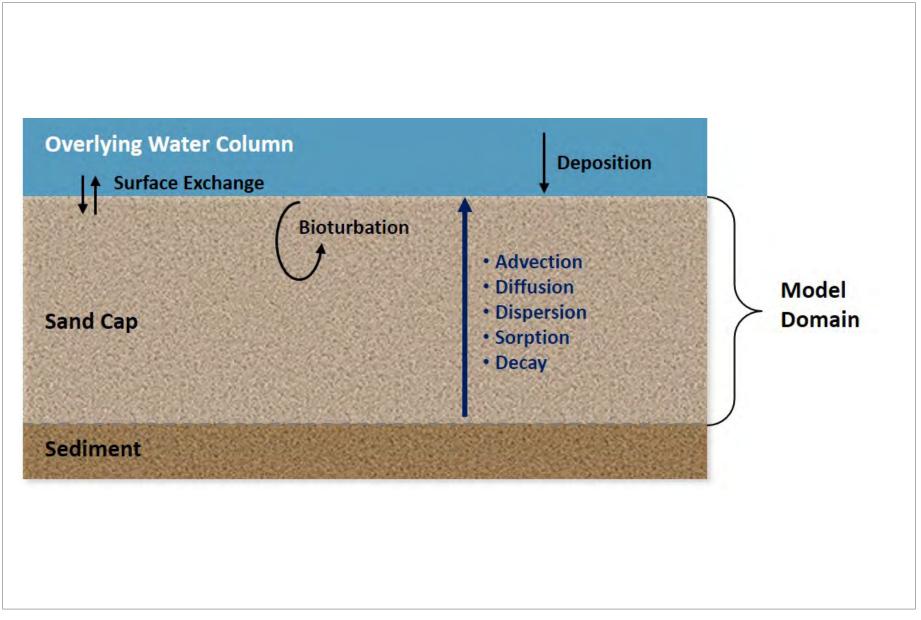
Figure 3-1 Northern Shelton Harbor Sediment Management Areas Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Filepath: I:\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 3-2\Figure 3-2 Radiochem and Core Profile_01-29-18.docx


Figure 3-2 Southern Shelton Harbor Subsurface Sediment Lead-210 and COC Profiles Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Filepath: I:\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 3-3a.docx

Figure 3-3a Dioxin/Furan TEQ Fingerprints: Clinker Deposit and SH-03 Sediment – Concentrations


Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

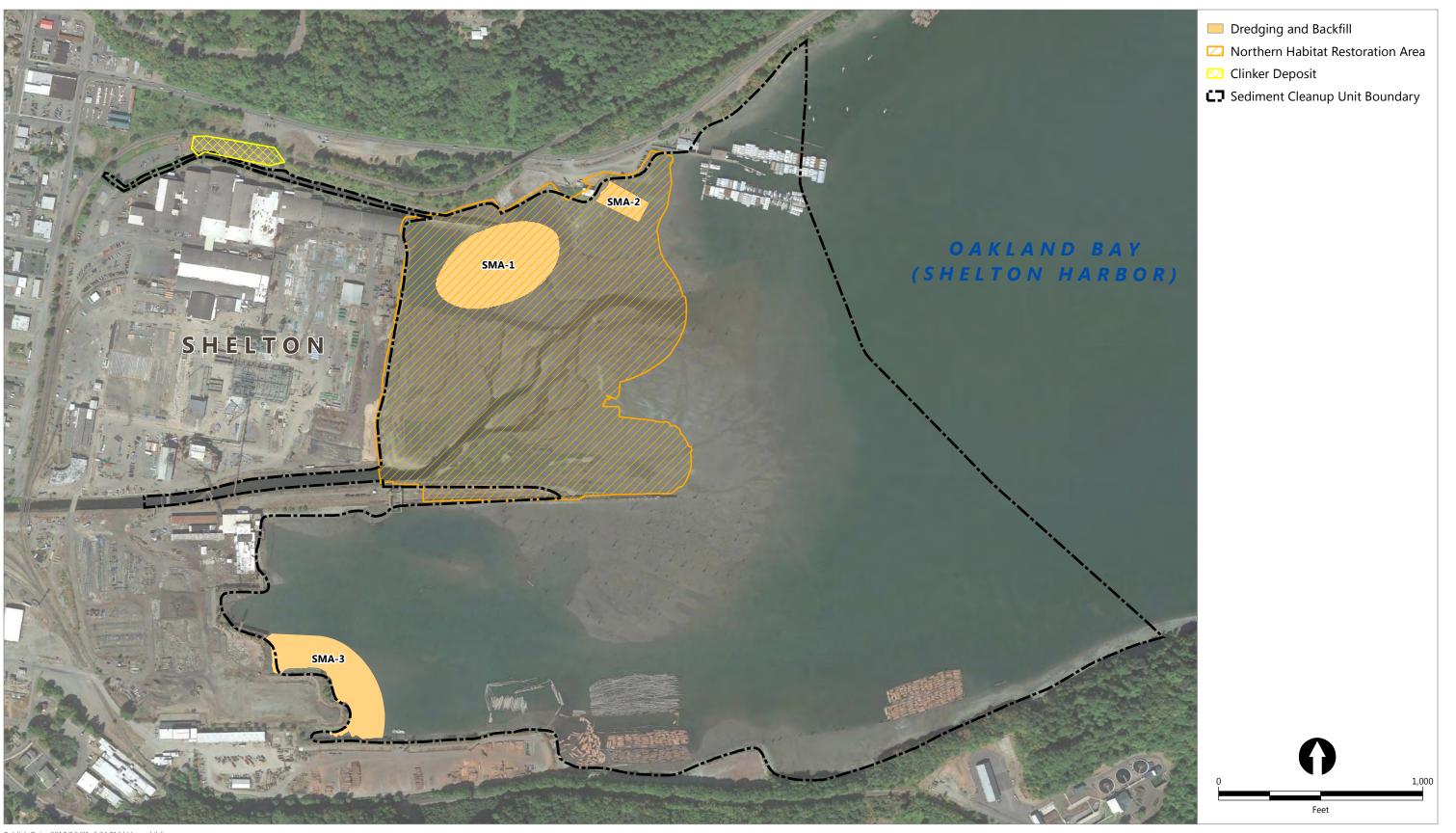
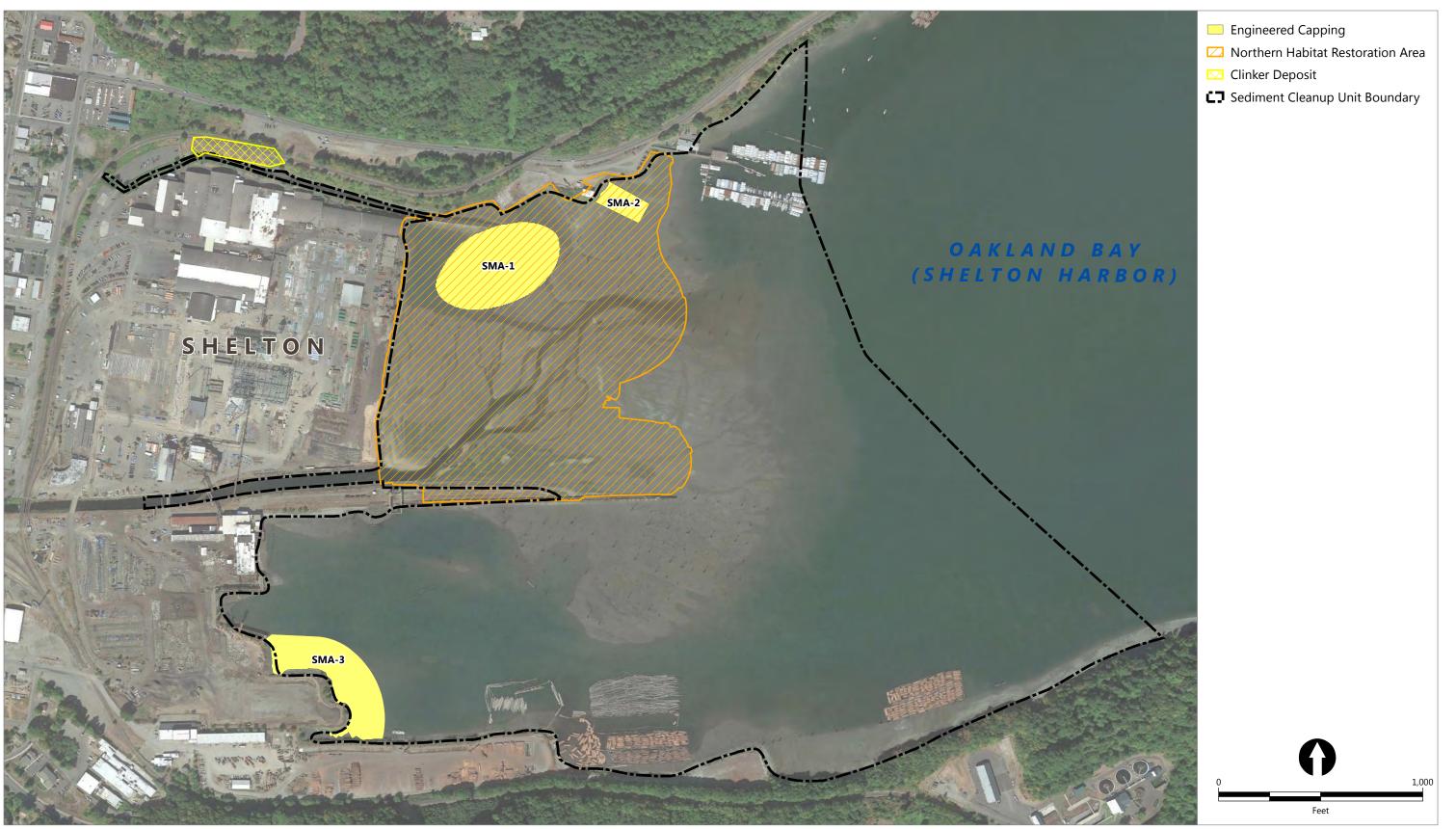
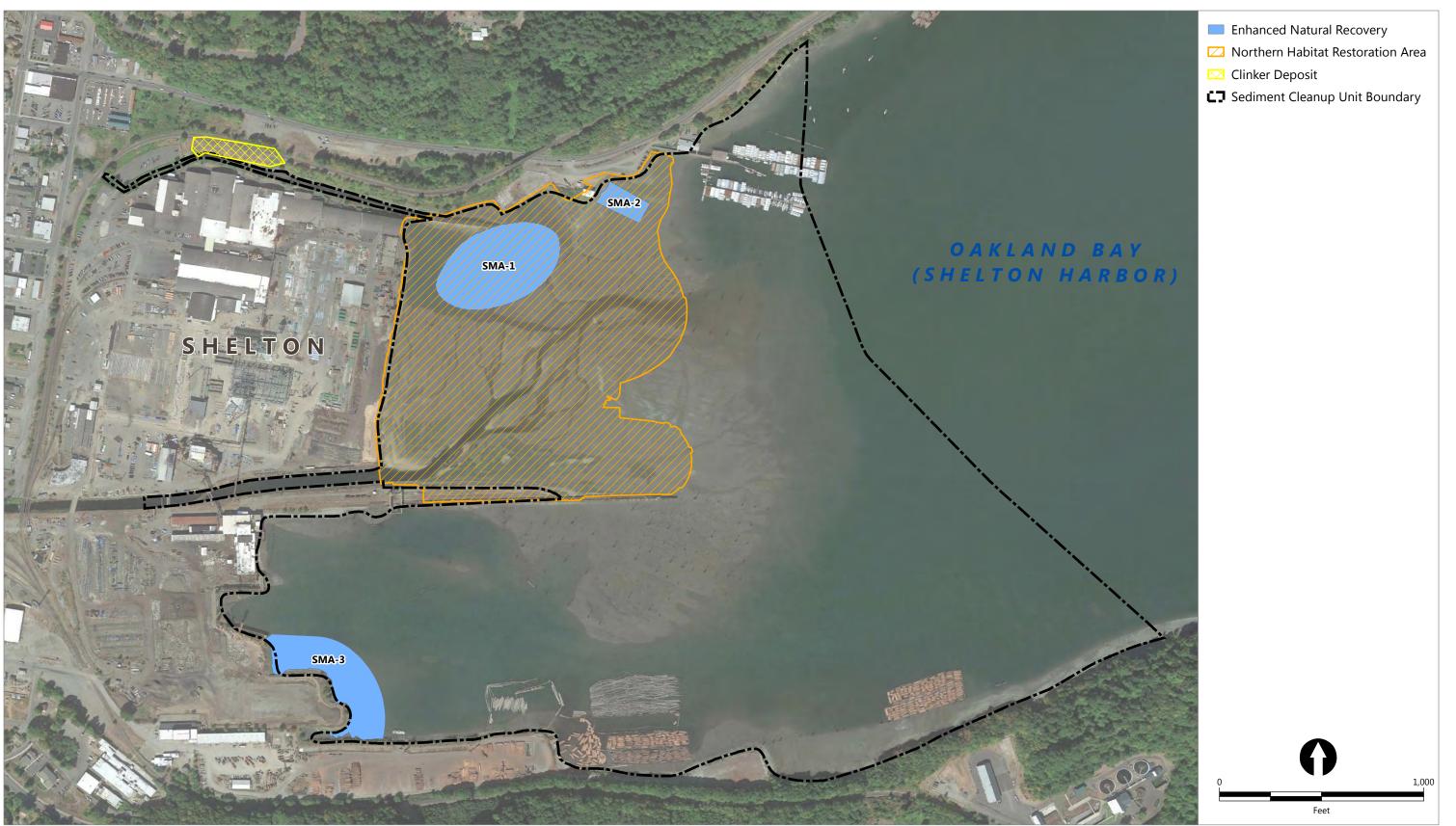

Filepath: I:\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 3-3b.docx

Figure 3-3b Dioxin/Furan TEQ Fingerprints: Clinker Deposit and SH-03 Sediment – Proportions

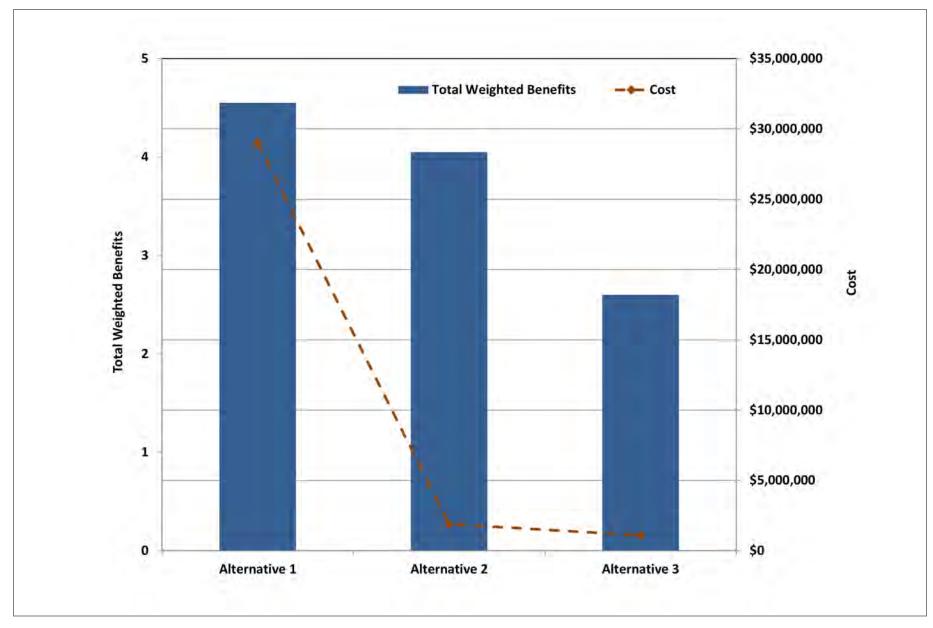
Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site



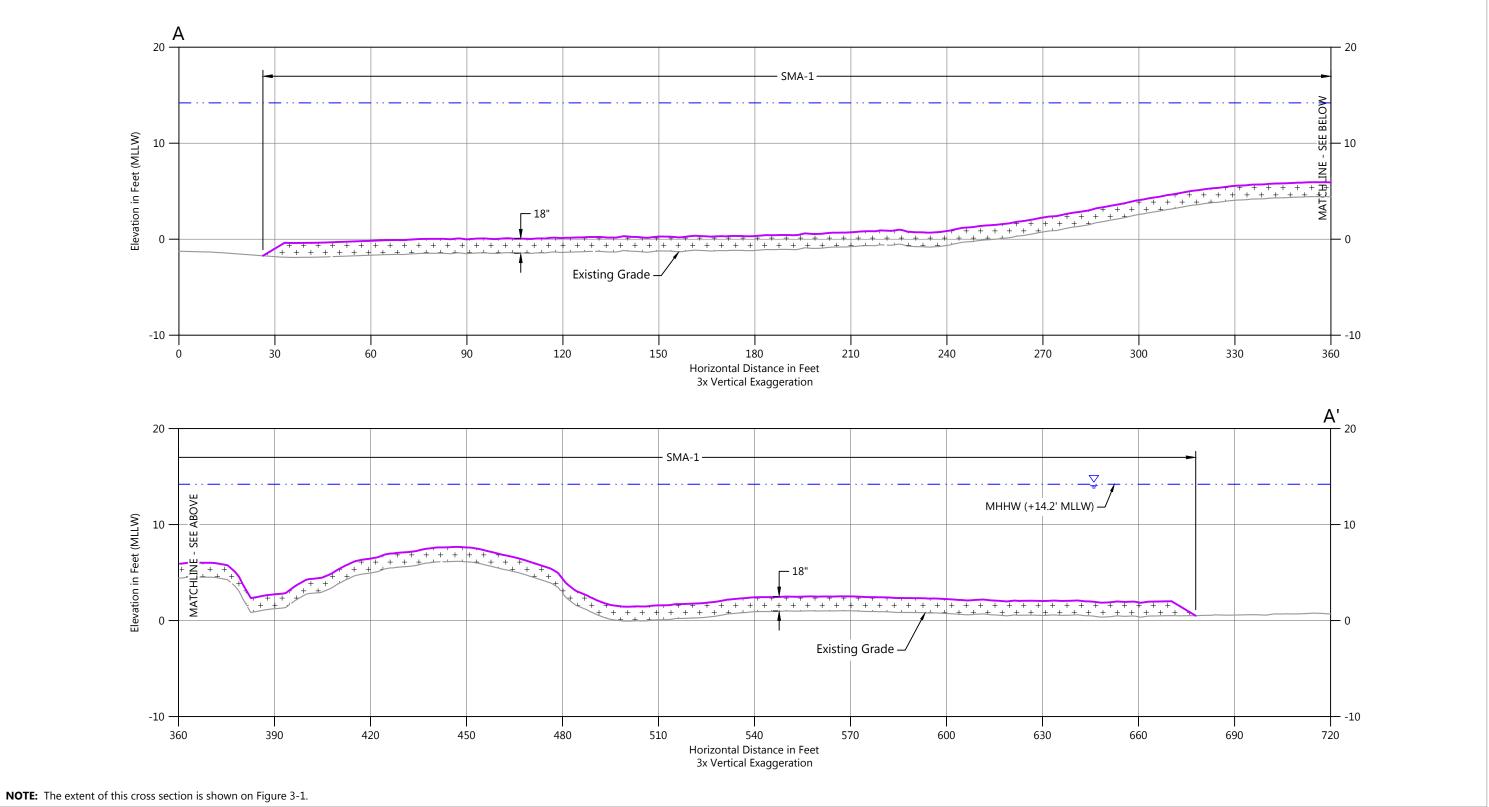
 $Filepath: \label{eq:linear} Filepath: \label{eq:linear}$


Publish Date: 2017/12/21, 3:24 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SMAs_Alts_DDP.mxd

> **Figure 4-2 Interim Action Alternative 1 – Removal** Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

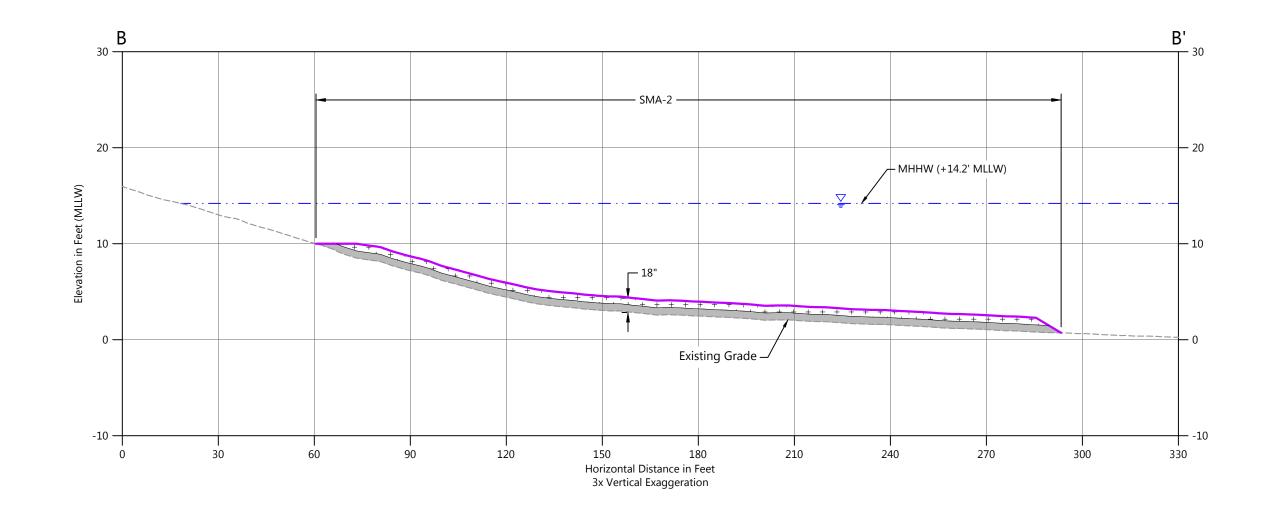

Publish Date: 2017/12/21, 3:25 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SMAs_Alts_DDP.mxd

> Figure 4-3 Interim Action Alternative 2 – Engineered Capping Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site



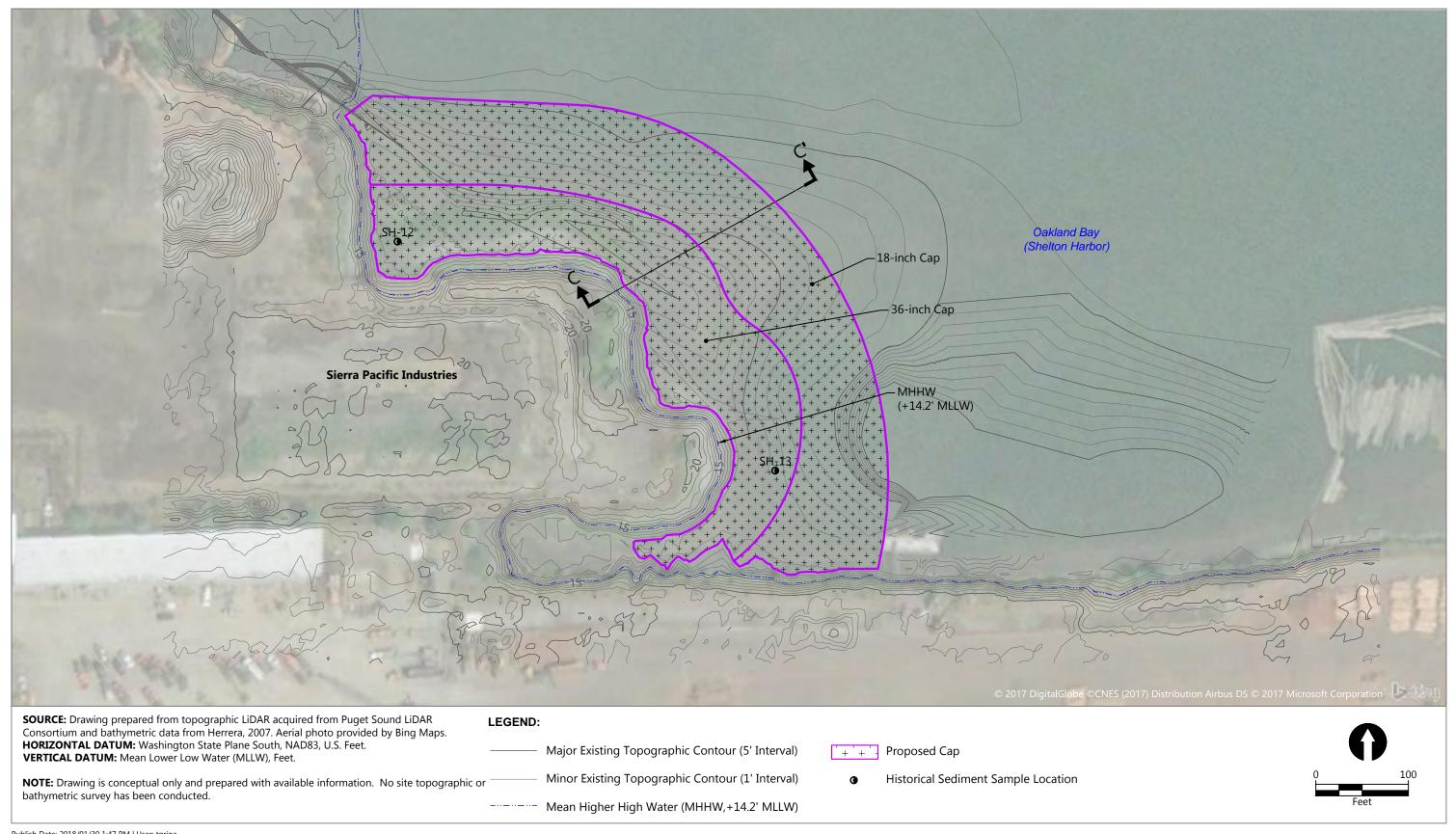
Publish Date: 2017/12/21, 3:25 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SMAs_Alts_DDP.mxd

Figure 4-4 Interim Action Alternative 3 – Enhanced Natural Recovery Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site



Filepath: I:\Projects\Simpson\Shelton\2017 Evaluations\2017 CAP\N. Harbor Interim CAP\Figures\Source Files\Figure 4-5.docx

Publish Date: 2018/01/30 1:45 PM | User: tgriga Filepath: K:\Projects\0331-So. Puget Sound Salmon Enhancement Group\Oakland Bay\0331-RP-002-Cap-XS.dwg Figure 5-1


Figure 5-1 SMA-1 Cap Section

NOTE: The extent of this cross section is shown on Figure 3-1.

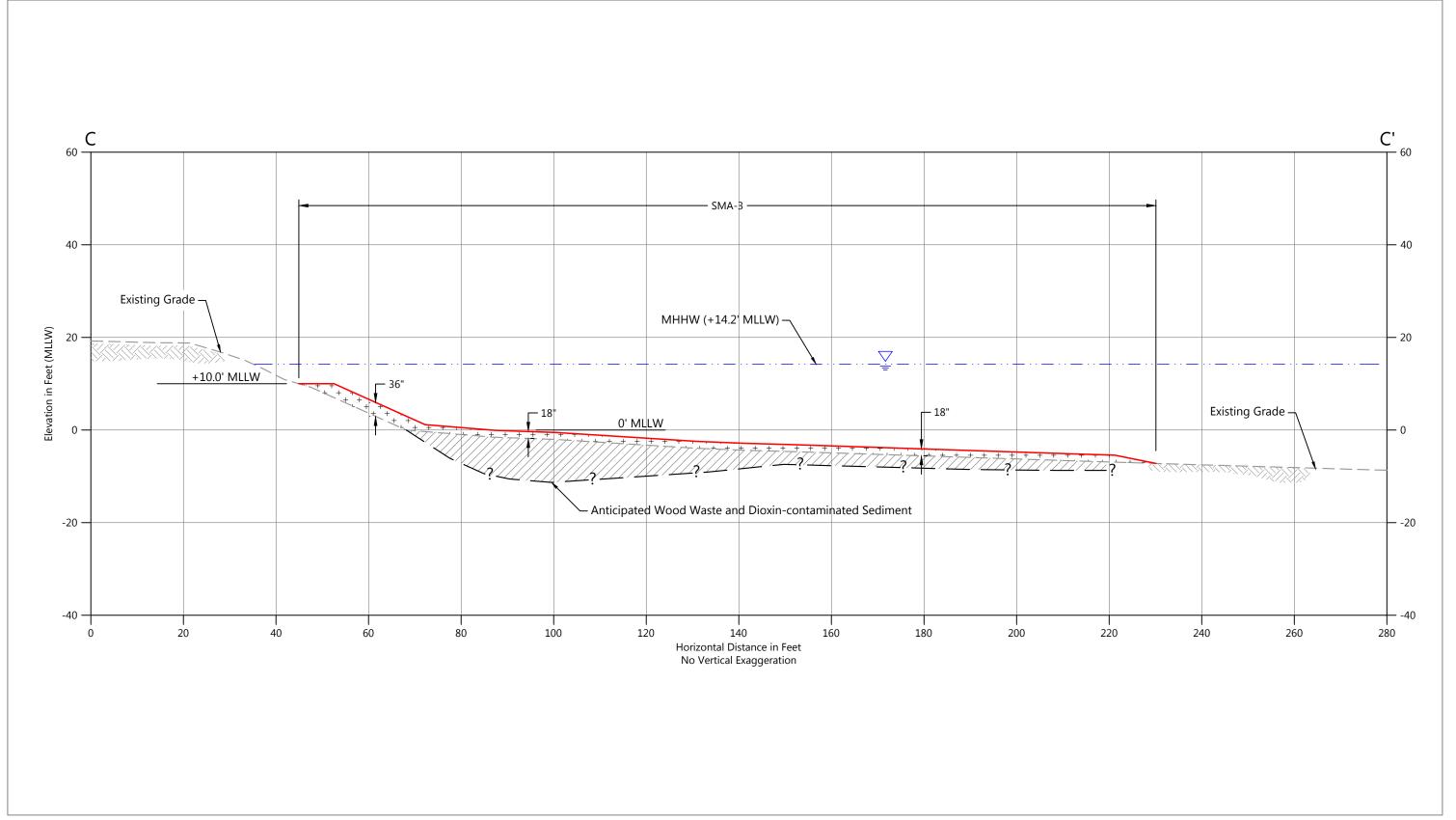

Publish Date: 2018/01/30 1:45 PM | User: tgriga Filepath: K:\Projects\0331-So. Puget Sound Salmon Enhancement Group\Oakland Bay\0331-RP-002-Cap-XS.dwg Figure 5-2

Figure 5-2 SMA-2 Cap Section

Publish Date: 2018/01/30 1:47 PM | User: tgriga Filepath: K:\Projects\0331-So. Puget Sound Salmon Enhancement Group\Oakland Bay\0331-RP-003-SMA-3.dwg Figure 5-3

Figure 5-3 SMA-3 Embankment Cap Plan

Figure 5-4 SMA-3 Embankment Cap Section

Appendix A 2017 Data Report

Dioxin data in this report are not correct due to lab error. See corrected data in Shelton Harbor Interim Action Basis of Design - Appendix A -Data Report, 9/30/18

January 2018 Shelton Harbor Sediment Cleanup Unit Oakland Bay and Shelton Harbor Sediments Cleanup Site (Cleanup Site ID: 13007)

Appendix A – Data Report

Prepared for Simpson Timber Company and the Washington State Department of Ecology

Dioxin data in this report are not correct due to lab error. See corrected data in Shelton Harbor Interim Action Basis of Design - Appendix A - Data Report, 9/30/18 January 2018 Shelton Harbor Sediment Cleanup Unit Oakland Bay and Shelton Harbor Sediments Cleanup Site (Cleanup Site ID: 13007)

2017 Data Report

Prepared for

Simpson Timber Company 1305 5th Avenue Suite 2700 Seattle, Washington 98101

Washington State Department of Ecology Toxics Cleanup Program, Southwest Region PO Box 47775 Olympia, Washington 98504-7775

Prepared by

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

TABLE OF CONTENTS

1	Intro	oductio	n	1
	1.1	Docum	nent Organization	1
2	Anal	ytical [Data Quality	2
	2.1	-	cal Data Quality	
	2.2		lanagement	
3	Sam	ple Aco	quisition and Results	3
	3.1	•	• Puality Objective 1: Evaluate Benthic Conditions	
		3.1.1	Sediment Profile Imaging	3
		3.1.2	Sediment Bioassay	3
	3.2	Data Q	uality Objective 3: Evaluate Ongoing Sources to Sediments	4
	3.3	Data Q	uality Objective 4: Evaluate Recent Natural Recovery	4
	3.4	Feasibi	lity Study Evaluations	5
		3.4.1	Bench-Scale Activated Carbon Testing	5
		3.4.2	Extent of Wood Debris Sediment Coring	5
		3.4.3	Extent of Dioxins/Furans at SH-03	5
4	Refe	rences		6

TABLES

Table 1	Surface Bulk Sediment Results
Table 2	Surface Sediment Porewater Results
Table 3	Radiochemistry Restults
Table 4	Subsurface Bulk Sedimemnt Results

FIGURES

Figure 1	Vicinity Map
Figure 2	2017 SPI Survey and Sampling Locations

ATTACHMENT

- Attachment 1 Laboratory Reports (Not Included)
- Attachment 2 Data Validation Reports (Not Included)
- Attachment 3 Field Collection Forms
- Attachment 4 SPI Report
- Attachment 5 Bioassay Report

ABBREVIATIONS

DQO	data quality objective
Ecology	Washington State Department of Ecology
PAH	polycyclic aromatic hydrocarbon
QA	quality assurance
QC	quality control
RI/FS	Remedial Investigation/Feasibility Study
SCU	Sediment Cleanup Unit
SPI	sediment profile imaging
SQAPP	Sampling and Quality Assurance Project Plan
TVS	total volatile solids
Work Plan	Shelton Harbor Sediment Cleanup Unit Remedial Investigation/ Feasibility Study Work Plan

1 Introduction

In accordance with Agreed Order DE 14091 and under oversight by the Washington State Department of Ecology (Ecology), Simpson Timber Company is performing a Remedial Investigation/Feasibility Study (RI/FS) for the Shelton Harbor Sediment Cleanup Unit (SCU) in Shelton, Washington (Figure 1). The Shelton Harbor SCU RI/FS Work Plan (Work Plan; Anchor QEA 2017; Exhibit B of the Agreed Order) describes the data needed to complete the RI/FS, along with corresponding data quality objectives (DQOs). This Data Report summarizes 2017 field sample collection activities and analytical results, consistent with DQOs summarized in the Sampling and Quality Assurance Project Plan (SQAPP; Appendix A of Anchor QEA 2017).

1.1 Document Organization

This 2017 Data Report is organized as follows:

- Section 2 Data quality and management
- Section 3 Sample acquisition and results as they pertain to the DQOs
- Section 4 References

2 Analytical Data Quality

This section describes the quality and management aspects of the data acquired.

2.1 Analytical Data Quality

DQOs and quality assurance procedures are provided in the Sampling and Quality Assurance Project Plan (SQAPP; Anchor QEA 2017). Chemical analyses were performed by SGS in Wilmington, North Carolina; ALS Environmental in Kelso, Washington; and Analytical Resources, Inc., in Tukwila, Washington. Stage 2B and/or Stage 4 (dioxin/furan) data validation was performed on all data (EPA 2009). During the validation process, analytical data were evaluated for method quality control (QC) and laboratory QC compliance, and their validity and applicability for program purposes determined. Based on the findings of the validation process, data validation qualifiers were assigned.

The data package was validated by Laboratory Data Consultants and Anchor QEA. Laboratory data reports are provided in Attachment 1, and data validation reports are provided in Attachment 2. All qualifiers applied to the data during final validation have been incorporated into the database for this project. Data qualifiers assigned during data validation included the following:

- "J" indicates that the result is an estimated concentration.
- "U" indicates a method detection limit below which the analyte was not detected.
- "UJ" indicates an estimated method detection limit below which the analyte was not detected.

The validation process resulted in some J-qualified data (estimated values) based on a specified protocol or technical advisory, as discussed in the attached data validation reports (Attachment 2). Overall, all reporting limits were acceptable and met the SQAPP (Appendix A of Anchor QEA 2017) objectives. All data are considered useable for site characterization as reported or as qualified.

2.2 Data Management

The validated project data, including qualifiers, were entered into the project database, enabling this information to be retained or retrieved, as needed. Validated data have also been submitted to Ecology's Environmental Information Management database.

3 Sample Acquisition and Results

The section reports the results of the data acquired for each identified DQO.

3.1 Data Quality Objective 1: Evaluate Benthic Conditions

As identified through the Work Plan DQO process and detailed in the SQAPP, additional data were collected to characterize current sediment quality within the SCU. Sediment benthos quality was evaluated using a combination of sediment profile imaging (SPI), bioassay testing, and surface sediment porewater sulfide and ammonia analyses. Field sample collection forms are included as Attachment 3.

3.1.1 Sediment Profile Imaging

The SPI survey was conducted by NewFields with support from Marine Sampling Systems and Anchor QEA on July 10 and 11, 2017. In accordance with the SQAPP (Appendix A of Anchor QEA 2017), a meeting between NewFields, Anchor QEA, and Ecology was conducted on the mornings of July 11 and 12, 2017, to discuss the initial results of the SPI images collected the previous day, which informed the collection of additional surface sediment sampling and analysis. In total, 63 locations were surveyed using the SPI apparatus (Figure 2). The results of each survey location included the estimated presence of wood, presence of methane, presence of bacterial mats (*Beggiatoa sp.*), and apparent redox potential discontinuity depth. Detailed SPI results are provided in NewFields' Shelton Harbor SPI Survey Data Report (Attachment 4).

3.1.2 Sediment Bioassay

On July 12 and 13, 201,7 Anchor QEA, with support from Marine Sampling Systems, collected surface sediments for bioassay testing (Attachment 3-a). The sediment bioassay testing was conducted at 11 locations throughout the SCU. Eight pre-defined historical exceedance locations were reoccupied and three locations were added, at the direction of Ecology, following the SPI image review meetings (Figure 2; see Section 3.1.1). Where the historical bioassay exceedance locations were reoccupied, testing was conducted for larval and/or polychaete bioassays consistent with the SQAPP. At the three additional locations, a full suite of bioassay tests were conducted. All tests were performed in accordance with the current Ecology-approved testing methodology (Kendall et al. 2013). Table 5-1 in EcoAnalyst Inc's Shelton Harbor Sediment Cleanup Site Toxicology Testing Results (Attachment 5), provides a summary of all bioassay test results.

To supplement the bioassay test results, bulk sediment conventional testing was conducted in accordance with the SQAPP-specified methodology for total volatile solids (TVS) and grain size. The conventional and chemical bulk sediment testing results are presented in Table 1.

In situ free hydrosulfide and hydrogen sulfide porewater concentrations (free sulfides) were measured using a diffusive gradient thin film passive sampling method. Due to physical conditions encountered during deployment, diffusive gradient thin film samplers were deployed at 7 of 11 locations bioassay locations. Of the 7 locations, 5 resulted in calculated free sulfide concentrations, ranging from 0.005 to 1.6 milligrams per liter, as detailed in Table 2.

3.2 Data Quality Objective 3: Evaluate Ongoing Sources to Sediments

The RI/FS is evaluating spatial gradients of chemicals of concerns in surface sediments, focusing on areas that exceed preliminary cleanup levels. Field reconnaissance of the intertidal Shelton Creek delta was conducted to field locate a single dioxin/furan sampling location (SG-01; Figure 2) downstream of the clinker deposit. The results of the SG-01 dioxins/furans analysis are presented in Table 2.

Passive sampling of porewater in the vicinity of the clinker deposit is ongoing, in accordance with the SQAPP (Appendix A of Anchor QEA 2017), and will be reported in the draft RI/FS.

3.3 Data Quality Objective 4: Evaluate Recent Natural Recovery

The natural recovery DQO called for the collection of paired sediment cores where advanced at three locations (Figure 2). Initial field core collection was conducted on July 12, 2017, but was terminated due to equipment failure. The additional cores were collected on August 8, 9, and 10, 2017, and subsequently processed. All core collection and processing logs are presented in Attachments 3-b and 3-c, respectively.

At each location, the paired cores were processed into 2-centimeter intervals for initial radioisotope testing with archives for further radioisotope and chemical testing, where needed. The initial radioisotope laboratory results were evaluated, which informed a secondary submittal to refine the dataset. All core radioisotope testing results are provided in Table 3.

After review of the radioisotope results, selected archived intervals were laboratory composited and submitted for polycyclic aromatic hydrocarbon (PAH) and dioxin/furan testing. The results of the laboratory testing are presented in Table 4.

In addition to the planned testing of subsurface sediments to inform natural recovery, selected surface sediments were submitted for supplemental PAH and dioxin/furan testing for comparison to historical results. Results from the supplemental surface sediment PAH and dioxin/furan testing are included in Table 1.

3.4 Feasibility Study Evaluations

The SQAPP (Appendix A of Anchor QEA 2017) describes bench-scale testing of an activated carbon amendment to control dioxin/furan bioavailability, as well as subsurface coring and analyses to characterize the thickness of wood debris in portions of the southern harbor. At Ecology's request, an additional core was advanced at station SH-03 to characterize the thickness of dioxins/furans at this northern harbor location.

3.4.1 Bench-Scale Activated Carbon Testing

To determine if in situ treatment is an effective remedial technology, a surface sediment sample was collected from station SH-19 and is currently undergoing treatability testing. The surface sediment was tested for black carbon and the result is included in Table 3. Treatability testing results will be reported in the draft RI/FS.

3.4.2 Extent of Wood Debris Sediment Coring

Upon review of the SPI results in consultation with Ecology (see Section 3.1.1), core locations were selected and advanced to delineate the vertical extent of wood debris (Figure 2). The cores were logged (Attachment 3-c), and the interval underlying the last identified presence of wood debris was submitted for TVS analyses. The results of the TVS testing are presented in Table 4.

3.4.3 Extent of Dioxins/Furans at SH-03

All SH-03 core interval results are presented in Table 4.

4 References

- Anchor QEA, 2017. Shelton Harbor Sediment Cleanup Unit Remedial Investigation/Feasibility Study Work Plan. Prepared for Simpson Timber Company and the Washington State Department of Ecology. June 2017.
- EPA (U.S. Environmental Protection Agency), 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response. EPA 540-R-08-005. January 2009.
- EPA, 2012. Guidelines for Using Passive Samplers to Monitor Organic Contaminants at Superfund Sediment Sites. Office of Solid Waste and Emergency Response Directive 9200.1-110FS. December 2012.
- EPA, 2016. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-B-16-001. April 2016.
- EPA, 2017a. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Methods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 540-R-2017-001. September 2016.
- EPA, 2017b. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. EPA 540-R-2017-002. January 2017.
- Kendall, D., R. McMillan, W. Gardiner, B. Hester, and J.D. Word, 2013. *Bioassay Endpoint Refinements: Bivalve Larval and Neanthes Growth Bioassays*. DMMP/SMS Clarification Paper. May 2013.

Tables

			Task	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI FS 2017	SheltonRI FS 2017	SheltonRI FS 2017	SheltonRI FS 2017	SheltonRI_FS_2017	SheltonRI FS 2017
			Location ID		SH-03-170809	SH-04-170713	SH-13A-170713	SH-14-170712	SH-19-170712	SH-21-170712	SH-22-170712	SH-24-170713
					SH-03-SC-0-10-170809			SH-14-SG-170712		SH-21-SG-170712		SH-24-SG-170713
			Sample Date	7/13/2017	8/9/2017	7/13/2017	7/13/2017	7/12/2017	7/12/2017	7/12/2017	7/12/2017	7/13/2017
			Depth	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm
			Sample Type	N	N	N	N	N	N	N	N	N
				1078804.278	1079571.097	1079142.371	1078917.959	1081852.952	1078945.317	1079632.45	1079632.45	1080908.296
			Y	86149.22393	85744.088	85824.72775	83577.94747	84299.87451	84076.30474	84373.99247	84373.99247	83520.27469
						•	1			•	•	
		AET_Marine_										
		SCO_SCUMII	CSL_SCUMII									
Conventional Parameters (pct)					F							
Total volatile solids	D2974			8.37		12.13	13.3	6.71	15.09	13.82	8.66	11.73
Black Carbon	Ghosh								1.23			
Grain Size (pct)		I	I							-		
Gravel	PSEP			38.36		1.61 J	01	0.65 J	2.67 J	3.4 J	5.51 J	8.55 J
Sand, very coarse	PSEP			7.09		2.19	0.32	1.27	2.31	5.75	2.65	2.52
Sand, coarse	PSEP			6.16		2.2	3.68	1.65	2.85	6.57	4.24	3.29
Sand, medium	PSEP			4.61		3.86	5.15	3	4.91	7.34	19.69	11.82
Sand, fine	PSEP			6.81		6.92	6.45	14.07	4.75	11.44	21.85	12.55
Sand, very fine	PSEP			11.7		15.23	13.55	33.79	8.15	10.79	11.41	8.95
Percent retained 31.25 micron sieve	PSEP			5.06		33.3	36.74	14.78	27.94	27.64	11.88	20.07
Percent retained 62.5 micron sieve	PSEP			8.43		3.49 J	3.27 J	6.29 J	0.68 J	1.03 J	2.26 J	3.97 J
Percent retained 15.6 micron sieve	PSEP			2.33		10.65	12.07	6.52	13.6	11.82	4.15	8.36
Percent retained 7.8 micron sieve	PSEP			2.22		8.39	6.54	5.73	11.7	6.94	4.12	7.07
Percent retained 3.9 micron sieve	PSEP			1.61		5.08	3.38	3.88	8.2	4	3.27	4.79
Percent retained 1.95 micron sieve	PSEP			0.97		4.98	4.31	3.69	6.79	4.76	2.64	3.48
Percent retained 0.98 micron sieve	PSEP			1.06		7.8	7.76	5.73	10.19	8.97	3.91	5.58
Total Fines (sum of all sieves)				21.68		73.69	74.07	46.62	79.1	65.16	32.23	53.32
Polycyclic Aromatic Hydrocarbons (µg/kg)												
2-Methylnaphthalene	SW8270DSIM	670	670					5.1	24		4.8	
Acenaphthene	SW8270DSIM	500	500					5.5	23		11	
Acenaphthylene	SW8270DSIM	1300	1300					4.7	22		6.1	
Anthracene	SW8270DSIM	960	960					8.3	53		240	
Benzo(a)anthracene	SW8270DSIM	1300	1600					15	43		150	
Benzo(a)pyrene	SW8270DSIM	1600	1600					13	65		100	
Benzo(b,j)fluoranthene	SW8270DSIM							24	99		250	
Benzo(e)pyrene	SW8270DSIM							16	55			
Benzo(g,h,i)perylene	SW8270DSIM	670	720					10	43		45	
Benzo(k)fluoranthene	SW8270DSIM							8.4	33		100	
Chrysene	SW8270DSIM	1400	2800					52	73		590 J	
Dibenzo(a,h)anthracene	SW8270DSIM	230	230					2.2	8.4		11	
Dibenzofuran	SW8270DSIM	540	540								14	
Fluoranthene	SW8270DSIM	1700	2500					95	270		710	
	SW8270DSIM		540					5.2	26		20	

			Task	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI FS 2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI FS 2017
			Location ID		SH-03-170809	SH-04-170713	SH-13A-170713	SH-14-170712	SH-19-170712	SH-21-170712	SH-22-170712	SH-24-170713
				SG-01-SG-170713	SH-03-SC-0-10-170809		SH-13A-SG-170713	SH-14-SG-170712	SH-19-SG-170712	SH-21-SG-170712	SH-22-SG-170712	SH-24-SG-170713
			Sample Date	7/13/2017	8/9/2017	7/13/2017	7/13/2017	7/12/2017	7/12/2017	7/12/2017	7/12/2017	7/13/2017
			Depth	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm	0–10 cm
			Sample Type	N	N	N	N	N	N	N	N	N
			x	1078804.278	1079571.097	1079142.371	1078917.959	1081852.952	1078945.317	1079632.45	1079632.45	1080908.296
			Y	86149.22393	85744.088	85824.72775	83577.94747	84299.87451	84076.30474	84373.99247	84373.99247	83520.27469
		AET_Marine_ SCO_SCUMII										
Indeno(1,2,3-c,d)pyrene	SW8270DSIM	600	690					7.8	36		51	
Naphthalene	SW8270DSIM	2100	2100					46	170		23	
Perylene	SW8270DSIM							9.4	31			
Phenanthrene	SW8270DSIM	1500	1500					37	200		120	
Pyrene	SW8270DSIM	2600	3300					83	330		580	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)								19.26	87.67		162.1 J	
Total Benzofluoranthenes (b,j,k) (U = 0)		3200	3600					8.4	33		100	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)								19.26	87.67		162.1 J	
Total HPAH (SMS) (U = 0)		12000	17000					310.4	1000.4		2587 J	
Total LPAH (SMS) (U = 0)		5200	5200					106.7	494		420.1	
Dioxin Furans (ng/kg)	•		•		•			•				
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			1.06	3.76 J	0.506 U	2.68	0.432 J	0.884	0.382 U	0.258 U	0.447 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			4.2	26.4	2.7 J	7.49	2.47 J	2.17 J	1.77 J	1.5 J	3.02 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			7.11	41.2	5.3 J	14.1 J	3.42	3.16	3.97 J	4.3	6.37
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			26.9	346	25.5	55.9	17.7	17.3	19.6	30.4	27.3
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			12.7	108	8.92 J	21.6 J	5.54	5.04	7.17	7.41	10.9
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			488	8990 J	613	913	295	296	528	960	574
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			4000	108000 J	6420	8200	2480	2390	4650	7940	4670
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B		1 1	89.5 J	713 J	147 J	861	212 J	85.3 J	107 J	73 J	212
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B		1 1	144 J	913 J	157 J	841 J	138 J	101 J	137 J	93.9	187 J
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			263	3260	370 J	992 J	275	193	332	489 J	433
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			941	21200	1310	2280	835	832	1670	4940	1290
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B			3.12	13.4	1.54	8.81	1.88 J	4.16	1.41 J	1.8	2.61
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			2.95	19.5	1.53 J	6.19	1.56 J	2.96 J	1.39 J	1.98 J	2.29 J
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			7.23	60.4	4.26	11.7	5.44	6.44	3.38 J	4.46	5.42
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			11.8	181	11.8	19.6	8.79	11.3	7.46	7.86	13.1
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			6.16	58	3.58	8.5	2.92	4.27	2.9 J	2.71	4.76
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			1.03 J	2.77 U	1.47 U	1.34 U	0.431 J	0.623 U	0.563 U	0.681 J	0.767 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			9.06	102	5.83 J	12.8	5.09	6.6	4.76	4.95	8.24
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			126	2600	164	245	75.1	158	99	81.1	169
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			8.66	146	11.9	14.5	4.92	6.66 U	5.52	4.61	9.64
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B			370	11800	806	795	300	359	415	256	701
Total Tetrachlorodibenzofuran (TCDF)	E1613B			61.2 J	341 J	22.3 J	202 J	64.1 J	106 J	35.1 J	37.2 J	64 J
Total Pentachlorodibenzofuran (PeCDF)	E1613B			79.9 J	575 J	43.3 J	141 J	60.2 J	87 J	38.8 J	48.5	62.1 J
Total Hexachlorodibenzofuran (HxCDF)	E1613B			231 J	3710	263 J	370 J	159 J	216	136 J	149 J	236
Total Heptachlorodibenzofuran (HpCDF)	E1613B			466	11200	732 J	937	303	501 J	374	283	676
Total Dioxin/Furan TEQ 2005 (Mammal) (U = $1/2$)				22.8431 J	287.2635 J	20.6542 J	42.4872 J	13.7421 J	15.68695 J	15.61655 J	21.9534 J	21.44225 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)				22.8431 J	287.125 J	20.3277 J	42.4202 J	13.7421 J	15.6225 J	15.3974 J	21.834 J	21.1804 J
$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	1	l	L I	22.04J1 J	207.1233	20.3211 J	72.9202 J	13./4213	13.0223 J	1J.37/4 J	21.0244 J	21.10V4 J

			Test					
					SheltonRI_FS_2017 SPI-22-170713		SheltonRI_FS_2017	SheltonRI_FS_2017
			Location ID			SPI-30-170713	SPI-31-170713	SPI-31-170713
			-	SH-28-SG-170712		SPI-30-SG-170713	SPI-131-SG-170713	SPI-31-SG-170713
			Sample Date		7/13/2017	7/13/2017	7/13/2017	7/13/2017
			Depth		0–10 cm	0–10 cm	0–10 cm	0–10 cm
			Sample Type		N	N	FD	N
			х	1081568.517	1080205.879	1080380.919	1081277.578	1081277.578
			Y	84922.72201	83592.417	83461.02485	83610.71742	83610.71742
		AET_Marine_	AET Marine					
		SCO_SCUMII						
Conventional Parameters (pct)								
Total volatile solids	D2974			5.61	26.69	15.87	13.13	12.56
Black Carbon	Ghosh							
Grain Size (pct)								
Gravel	PSEP			7.55 J	16.63 J	7.59 J		2.24 J
Sand, very coarse	PSEP			3.39	4.15	2.12		1.44
Sand, coarse	PSEP			2.49	2.95	1.94		1.45
Sand, medium	PSEP			2.99	4.33	3.13		4.09
Sand, fine	PSEP			17.37	5.45	6.18		7.6
Sand, very fine	PSEP			31.07	7.43	8.52		10.26
Percent retained 31.25 micron sieve	PSEP			11.08	28.66	29.88		32.34
Percent retained 62.5 micron sieve	PSEP			3.22 J	2.94 J	2.23 J		5.16 J
Percent retained 15.6 micron sieve	PSEP			4.7	10.23	13.25		13
Percent retained 7.8 micron sieve	PSEP			4.42	6.13	7.73		9.87
Percent retained 3.9 micron sieve	PSEP			3.3	4.17	4.72		5.71
Percent retained 1.95 micron sieve	PSEP			3.02	4.31	5.11		5.33
Percent retained 0.98 micron sieve	PSEP			4.39	9.36	9.23		8.93
Total Fines (sum of all sieves)				34.13	65.8	72.15		80.34
Polycyclic Aromatic Hydrocarbons (µg/kg)	•				•			
2-Methylnaphthalene	SW8270DSIM	670	670		1.6 J			
Acenaphthene	SW8270DSIM	500	500		4.4			
Acenaphthylene	SW8270DSIM	1300	1300		1.7			
Anthracene	SW8270DSIM	960	960		17			
Benzo(a)anthracene	SW8270DSIM	1300	1600		68			
Benzo(a)pyrene	SW8270DSIM	1600	1600		32			
Benzo(b,j)fluoranthene	SW8270DSIM				57			
Benzo(e)pyrene	SW8270DSIM				26			
Benzo(g,h,i)perylene	SW8270DSIM	670	720		15			
Benzo(k)fluoranthene	SW8270DSIM				23			
Chrysene	SW8270DSIM	1400	2800		100			
Dibenzo(a,h)anthracene	SW8270DSIM	230	230		5.1			
Dibenzofuran	SW8270DSIM	540	540					
Fluoranthene	SW8270DSIM	1700	2500		140			
Fluorene	SW8270DSIM	540	540		7.1			

Page 3 of 5 January 2018

			Tack	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
			Location ID		SPI-22-170713	SPI-30-170713	SPI-31-170713	SPI-31-170713
					SPI-22-170713			
			Sample ID Sample Date		7/13/2017	SPI-30-SG-170713 7/13/2017	SPI-131-SG-170713 7/13/2017	SPI-31-SG-170713 7/13/2017
			-					
			Depth		0–10 cm	0–10 cm	0–10 cm	0–10 cm
			Sample Type		N	N	FD	N
			X	1081568.517	1080205.879	1080380.919	1081277.578	1081277.578
		1	Y	84922.72201	83592.417	83461.02485	83610.71742	83610.71742
		AET Marine	AET Marine					
		SCO_SCUMII	CSL_SCUMII					
Indeno(1,2,3-c,d)pyrene	SW8270DSIM	600	690		17			
Naphthalene	SW8270DSIM	2100	2100		2.2			
Perylene	SW8270DSIM				11			
Phenanthrene	SW8270DSIM	1500	1500		45			
Pyrene	SW8270DSIM	2600	3300		110			
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)					50.01			
Total Benzofluoranthenes (b,j,k) (U = 0)		3200	3600		23			
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)					50.01			
Total HPAH (SMS) (U = 0)		12000	17000		567.1			
Total LPAH (SMS) (U = 0)		5200	5200		77.4			
Dioxin Furans (ng/kg)		3200	3200		,,,,,	l	I	I
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			0.365 J				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			1.6 J				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			2.25 J				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			12.2				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			4.77				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			219				
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B			1790				
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B			93.9 J				
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B			85.9 J				
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B			206 J				
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B			587				
2,3,7,8-Tetrachlorodibenzofuran (TCDF)				1.62				
	E1613B							
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			1.34 J				
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B			3.47				
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			6.12				
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			2.53				
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B			0.38 J				
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B			4.36				
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B			62.5				
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B			3.98				
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B		ļ	208				
Total Tetrachlorodibenzofuran (TCDF)	E1613B			35.1 J				
Total Pentachlorodibenzofuran (PeCDF)	E1613B			41.4 J				
Total Hexachlorodibenzofuran (HxCDF)	E1613B			112				
Total Heptachlorodibenzofuran (HpCDF)	E1613B			215				
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)				9.9234 J				
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)				9.9234 J				

Page 4 of 5 January 2018

Table 1 Surface Bulk Sediment Results

Notes

Bold: detected result

µg/kg: micrograms per kilogram

CAEPA: California EPA

cPAH: carcinogenic polycyclic aromatic hydrocarbons

FD: field duplicate

J: estimated value

HPAH: high-molecular-volumen polycyclic aromatic hydrocarbon

LPAH: low-molecular-weight polycyclic aromatic hydrocarbon

N: normal sample

ng/kg: nanograms per kilogram

pct: percent

TEQ: Toxic Equivalence Quotient

U: compound analyzed, but not detected above detection limit

Page 5 of 5 January 2018

Table 2 Surface Sediment Porewater Results

Station ID Free hydrosi	DGT Gel Thickness (mm) ulfide ion (H	Trap Sample Sulfide Mass (µmol) IS`) and Hydrog	Trap Sample Sulfide Concentration (mg/L) en Sulfide (H ₂ S)	Hours of Deployment	Calculated Porewater Free Sulfide Concentration (mg/L)	Sampling notes
SH-04	0.78	R	R	48.1	R	Rejected - DGT observed lying flat on sediment surface
SH-13A	0.78	11	0.18	45.3	0.4	Sediment observed on appuratus to ~ 3.5 inches
SH-14	0.78	NA	NA	NA	NA	Sampler Lost
SH-19	0.78	0.11	0.0018	41.6	0.005	Sediment observed to top of appuratus
SH-21	0.78	21.5	0.34	46.5	0.8	Sediment observed to top of appuratus
SH-22	0.78	1	0.016	47.3	0.04	Sediment observed on appuratus to ~ 3.5 inches
SPI-31	0.78	36	0.58	39.6	1.6	Visual confirmation of full insertion

Notes:

Example Calculation:

PW concentration

mass of sulfide sorbed by DGT(35.7 μ mol) * 0.001 $\frac{\text{mmol}}{\mu\text{mol}}$ * 32 $\frac{\text{mg}}{\text{mmol}}$ * thickness of diffusion layer (0.78mm) * 0.1 cm/mm

 $= \frac{10^{-5} \text{ cm}^2}{\text{Diffusion coefficient of sulfide in gel } (1.48 * \frac{10^{-5} \text{ cm}^2}{\text{s}}) * \text{ surface area of the gel } (27 \text{ cm}^2) * \text{ exposure time} (48 \text{ hours} = 172800 \text{ s}) * \frac{ml}{\text{cm}^3} * 0.001 L/ml}$

Bold: detected result

µmol: micromole

DGT: diffusive gradient thin

mg/L: milligrams per liter

mm: millimeter

NA: not available

R: result rejected

		SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
		SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808
		SH-14-GEO-0-2-170809	SH-14-GEO-10-12-170809	SH-14-GEO-12-14-170809	SH-14-GEO-14-16-170809	SH-14-GEO-16-18-170809	SH-14-GEO-18-20-170809	SH-14-GEO-22-24-170809	SH-14-GEO-2-4-170809	SH-14-GEO-28-30-170809
	Sample Date	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017
	Depth	0–2 cm	10–12 cm	12–14 cm	14–16 cm	16–18 cm	18–20 cm	22–24 cm	2–4 cm	28–30 cm
	Sample Type	N	N	Ν	N	N	N	N	N	N
	Matrix	SE	SE	SE	SE	SE	SE	SE	SE	SE
	х	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559
	Y	84302.015	84302.015	84302.015	84302.015	84302.015	84302.015	84302.015	84302.015	84302.015
Radionuclides (pci/g	g)									
Beryllium 7	E901.1									
Cesium 137	E901.1		0.0986 U	0.0847 U	0.0981 U	0.0893 U			0.0993 U	
Lead 210	TBE-2015	0.126 U	0.253		0.293		0.429	0.13	0.634	0.133 U

		SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
		SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808	SH-19-170712	SH-19-170712
		SH-14-GEO-38-40-170809	SH-14-GEO-4-6-170809	SH-14-GEO-48-50-170809	SH-14-GEO-6-8-170809	SH-14-GEO-78-80-170809	SH-14-GEO-8-10-170809	SH-19-GEO-000002-170714	SH-19-GEO-002004-170714
	Sample Date	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	7/14/2017	7/14/2017
	Depth	38–40 cm	4–6 cm	48–50 cm	6–8 cm	70–80 cm	8–10 cm	0–2 cm	2–4 cm
	Sample Type	Ν	N	N	N	N	N	N	N
	Matrix	SE	SE	SE	SE	SE	SE	SE	SE
	х	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1081852.559	1078945.317	1078945.317
	Y	84302.015	84302.015	84302.015	84302.015	84302.015	84302.015	84076.30474	84076.30474
Radionuclides (pci	/g)								
Beryllium 7	E901.1							0.99 U	
Cesium 137	E901.1		0.0643 U		0.089 U		0.0958 U		0.196 U
Lead 210	TBE-2015	0.13 U		0.135 U	0.404	0.309	0.126 U	0.854 J	0.6

		SheltonRI_FS_2017								
		SH-19-170712								
		SH-19-GEO-004006-170714	SH-19-GEO-006008-170714	SH-19-GEO-008010-170714	SH-19-GEO-010012-170714	SH-19-GEO-012014-170714	SH-19-GEO-014016-170714	SH-19-GEO-016018-170714	SH-19-GEO-018020-170714	
	Sample Date	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	
	Depth	4–6 cm	6–8 cm	8–10 cm	10–12 cm	12–14 cm	14–16 cm	16–18 cm	18–20 cm	
	Sample Type	N	N	N	N	N	N	Ν	Ν	
	Matrix	SE								
	х	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	
	Y	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	
Radionuclides (pci/	'g)									
Beryllium 7	E901.1	-								
Cesium 137	E901.1	0.0921 U	0.0969 U	0.0979 U	0.0892 U	0.0652 U	0.098 U	0.0843 U		
Lead 210	TBE-2015	-	0.823	0.812 J	0.154		0.267		0.221 J	

		SheltonRI_FS_2017							
		SH-19-170712							
		SH-19-GEO-020022-170714	SH-19-GEO-022024-170714	SH-19-GEO-024026-170714	SH-19-GEO-028030-170714	SH-19-GEO-032034-170714	SH-19-GEO-038040-170714	SH-19-GEO-044046-170714	SH-19-GEO-048050-170714
	Sample Date	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017
	Depth	20–22 cm	22–24 cm	24–26 cm	28–30 cm	32–34 cm	38–40 cm	44–46 cm	48–50 cm
	Sample Type	N	N	N	N	N	N	N	N
	Matrix	SE							
	х	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317	1078945.317
	Y	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474	84076.30474
Radionuclides (pci/g)									
Beryllium 7	E901.1								
Cesium 137	E901.1	0.056 U		0.0951 U		0.0752 U	0.0949 U	0.0914 U	
Lead 210	TBE-2015		0.159		0.0949 UJ		0.232 J		0.231 J

			SheltonRI_FS_2017						
		SH-19-170712	SH-19-170712	SH-19-170809	SH-22-170712	SH-22-170712	SH-22-170712	SH-22-170712	SH-22-170712
		SH-19-GEO-050052-170714	SH-19-GEO-052054-170714	SH-19-GEO-98-100-170810	SH-22-GEO-000002-170714	SH-22-GEO-002004-170714	SH-22-GEO-004006-170714	SH-22-GEO-006008-170714	SH-22-GEO-008010-170714
	Sample Date	7/14/2017	7/14/2017	8/10/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017
	Depth	50–52 cm	52–54 cm	98–100 cm	0–2 cm	2–4 cm	4–6 cm	6–8 cm	8–10 cm
	Sample Type	N	N	N	N	N	N	N	N
	Matrix	SE							
	х	1078945.317	1078945.317	1078962.382	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45
	Y	84076.30474	84076.30474	84090.036	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247
Radionuclides (pci/g)								
Beryllium 7	E901.1				0.731 U				
Cesium 137	E901.1	0.0819 U	0.0982 U			0.0962 U	0.0976 U	0.0862 U	0.0657
Lead 210	TBE-2015			0.126 U	0.882 J	0.651		0.443	0.543 J

		SheltonRI_FS_2017							
		SH-22-170712							
		SH-22-GEO-010012-170714	SH-22-GEO-012014-170714	SH-22-GEO-014016-170714	SH-22-GEO-016018-170714	SH-22-GEO-018020-170714	SH-22-GEO-020022-170714	SH-22-GEO-022024-170714	SH-22-GEO-024026-170714
	Sample Date	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017
	Depth	10–12 cm	12–14 cm	14–16 cm	16–18 cm	18–20 cm	20–22 cm	22–24 cm	24–26 cm
	Sample Type	Ν	N	Ν	N	N	N	N	N
	Matrix	SE							
	х	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45
	Y	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247
Radionuclides (pci/g	g)								
Beryllium 7	E901.1	-							
Cesium 137	E901.1	0.0905 U	0.0749 U	0.0946 U	0.0955 U		0.0772 U		0.098 U
Lead 210	TBE-2015	0.764		0.381		0.351 J		0.101 U	

		SheltonRI_FS_2017							
		SH-22-170712							
		SH-22-GEO-028030-170714	SH-22-GEO-032034-170714	SH-22-GEO-038040-170714	SH-22-GEO-044046-170714	SH-22-GEO-048050-170714	SH-22-GEO-050052-170714	SH-22-GEO-052054-170714	SH-22-GEO-058060-170714
	Sample Date	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017	7/14/2017
	Depth	28–30 cm	32–34 cm	38–40 cm	44–46 cm	48–50 cm	50–52 cm	52–54 cm	58–60 cm
	Sample Type	Ν	Ν	Ν	N	N	N	N	N
	Matrix	SE							
	х	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45	1079632.45
	Y	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247	84373.99247
Radionuclides (pci/g)									
Beryllium 7	E901.1			-					
Cesium 137	E901.1		0.0934	0.0936 U	0.0939 U		0.0916 U	0.0725 U	
Lead 210	TBE-2015	0.309 J		0.102 J		0.248 J			0.128 J

	SheltonRI_FS_2017		SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
		SH-22-170712	SH-22-170712	SH-22-170712	SH-22-170712	SH-22-170809
		SH-22-GEO-060062-170714	SH-22-GEO-066068-170714	SH-22-GEO-068070-170714	SH-22-GEO-078080-170714	SH-22-GEO-118-120-170809
	Sample Date	7/14/2017	7/14/2017	7/14/2017	7/14/2017	8/9/2017
	Depth	60–62 cm	66–68 cm	68–70 cm	78–80 cm	118–120 cm
	Sample Type	Ν	Ν	N	Ν	N
	Matrix	SE	SE	SE	SE	SE
	х	1079632.45	1079632.45	1079632.45	1079632.45	1080337.853
	Y	84373.99247	84373.99247	84373.99247	84373.99247	84082.176
Radionuclides (pci/g)					
Beryllium 7	E901.1					
Cesium 137	E901.1	0.0468 U	0.0996 U			
Lead 210	TBE-2015			0.191 J	0.22 J	0.36

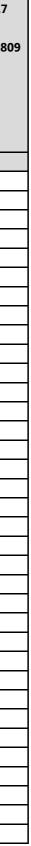
Page 8 of 9 January 2018

Notes: **Bold: detected result** cm: centimeter J: estimated value N: normal pci/g: picocuries per gram SE: sediment U: compound analyzed, but not detected above detection limit U: compound analyzed, but not detected above estimated detection limit

Page 9 of 9 January 2018

Table 4Subsurface Bulk Sediment Results

	Task	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
	Location ID	SH-03-170809	SH-03-170809	SH-03-170809	SH-14-170808	SH-14-170808	SH-14-170808	SH-14-170808
		SH-03-SC-00-1.9-170809	SH-03-SC-1.9-3.75-170809	SH-03-SC-3.75-4.6-170809	SH-14-10-20-170810		SH-14-GEO-52-70-170810	SH-14-GEO-60-88-170810
	Sample Date	8/9/2017	8/9/2017	8/9/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017
	Depth	0–1.9 ft	1.9–3.75 ft	3.75–4.6 ft	0.3-0.7 ft	0.7-1 ft	1.7-2.3 ft	2-2.9 ft
	Sample Type	N	N	N	N	N	N	N
	x	1079571.097	1079571.097	1079571.097	1081852.559	1081852.559	1081852.559	1081852.559
	Y	85744.088	85744.088	85744.088	84302.015	84302.015	84302.015	84302.015
Conventional Parameters (pct)								
Total volatile solids	D2974			3.41			6.92	
Polycyclic Aromatic Hydrocarbons (µg/kg)								
2-Methylnaphthalene	SW8270DSIM				28	22		
Acenaphthene	SW8270DSIM				26	16		
Acenaphthylene	SW8270DSIM				34	32		
Anthracene	SW8270DSIM				30	32		
Benzo(a)anthracene	SW8270DSIM				32	22 J		
Benzo(a)pyrene	SW8270DSIM				54	24		
Benzo(b,j)fluoranthene	SW8270DSIM				33	27		
Benzo(e)pyrene	SW8270DSIM				57	22		
Benzo(g,h,i)perylene	SW8270DSIM				52	25		
Benzo(k)fluoranthene	SW8270DSIM				9.2	8.2		
Chrysene	SW8270DSIM				49	31		
Dibenzo(a,h)anthracene	SW8270DSIM				8.5	2.7		
Fluoranthene	SW8270DSIM				150	180		
Fluorene	SW8270DSIM				24	19		
Indeno(1,2,3-c,d)pyrene	SW8270DSIM				20	15		
Naphthalene	SW8270DSIM				320	240		
Perylene	SW8270DSIM				78	94		
Phenanthrene	SW8270DSIM				190	180		
Pyrene	SW8270DSIM				170	210		
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)					64.76	31.8 J		
Total Benzofluoranthenes (b,j,k) (U = 0)					9.2	8.2		
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)					64.76	31.8 J		
Total HPAH (SMS) (U = 0)					577.7	544.9 J		
Total LPAH (SMS) (U = 0)					624	519		
Dioxin Furans (ng/kg)								
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	5.57	0.214 U	0.0702 U	3.31	2.72		0.117 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	29.6	0.275 U	0.0797 U	17.9	13.3		0.154 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	50.9	0.322 U	0.0937 U	32.9	23.7		0.204 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	350	0.546 J	0.1 U	365	229		0.192 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	118	0.5 J	0.0922 U	80.4	47.3		0.232 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	10,200 J	8.59	1.09 J	10,400 J	5,160 J		0.557 U
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	74,700 J	54	8.23	78,900 J	36,700 J		6.36 U


Table 4Subsurface Bulk Sediment Results

	Task Location ID Sample ID Sample Date Depth Sample Type X Y	SH-03-SC-00-1.9-170809 8/9/2017 0–1.9 ft	SheltonRI_FS_2017 SH-03-170809 SH-03-SC-1.9-3.75-170809 8/9/2017 1.9–3.75 ft N 1079571.097 85744.088	SheltonRI_FS_2017 SH-03-170809 SH-03-SC-3.75-4.6-170809 8/9/2017 3.75-4.6 ft N 1079571.097 85744.088	SheltonRI_FS_2017 SH-14-170808 SH-14-10-20-170810 8/10/2017 0.3-0.7 ft N 1081852.559 84302.015	SheltonRI_FS_2017 SH-14-170808 SH-14-20-30-170810 8/10/2017 0.7-1 ft N 1081852.559 84302.015	SheltonRI_FS_2017 SH-14-170808 SH-14-GEO-52-70-170810 8/10/2017 1.7-2.3 ft N 1081852.559 84302.015	SheltonRI_FS_2017 SH-14-170808 SH-14-GEO-60-88-170810 8/10/2017 2-2.9 ft N 1081852.559 84302.015
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	388 J	7.42 J	0.0702 U	513 J	255 J		0.117 U
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	505	7.22 J	0.0797 U	645	257		0.154 U
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	2,340	7.73 J	0.0952 U	2,950	1,860		0.282 J
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	20,900	17.8	2.48	21,000	11,600		1.46 J
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B	11.3	0.733	0.0683 U	12	8.58		0.118 U
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	12.5	0.336 U	0.0499 U	16.1	11.6		0.0838 U
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	45.3	0.343 U	0.0547 U	49.5	27.3		0.0925 U
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	150	0.363 U	0.0835 U	217	176		0.0701 U
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	51.7	0.367 U	0.0729 U	64.1	40.5		0.0672 U
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B	9.45	0.467 U	0.0996 U	12.1	7.98		0.13 U
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	103	0.36 U	0.078 U	112	76.6		0.0724 U
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	4,170	2.57 J	0.418 J	4,770	3250		0.209 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	170	0.392 U	0.0923 U	237	159		0.113 U
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	13,800 J	7.36	0.976 J	18,900 J	9,430 J		0.436 U
Total Tetrachlorodibenzofuran (TCDF)	E1613B	380 J	12.2 J	0.0683 U	315 J	294 J		0.118 U
Total Pentachlorodibenzofuran (PeCDF)	E1613B	814	0.34 U	0.0522 U	743 J	765 J		0.088 U
Total Hexachlorodibenzofuran (HxCDF)	E1613B	4,550	2.64 J	0.305 J	5,530	4,030		0.0815 U
Total Heptachlorodibenzofuran (HpCDF)	E1613B	17,000	8.34	1.3	22,000	12,900		0.578 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		305.52 J	0.704808 J	0.1366168 J	309.503 J	185.053 J		0.154 U
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		305.52 J	0.307908 J	0.0178418 J	309.503 J	185.053 J		0.154 U

	Task	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
	Location ID	SH-19-170809	SH-19-170809	SH-19-170809	SH-19-170809	SH-22-170809	SH-22-170809	SH-22-170809
	Sample ID	SH-19-10-20-170810	SH-19-20-30-170810	SH-19-GEO-28-46-170810	SH-19-GEO-60-90-170810	SH-22-10-20-170809	SH-22-20-30-170809	SH-22-GEO-3.1-4.2-170809
	Sample Date	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/9/2017	8/9/2017	8/9/2017
	Depth	0.3-0.7 ft	0.7-1 ft	0.9-1.5 ft	2-3 ft	0.3-0.7 ft	0.7-1 ft	3.1–4.2 ft
	Sample Type	Ν	N	N	N	N	N	N
	x	1078962.382	1078962.382	1078962.382	1078962.382	1080337.853	1080337.853	1080337.853
	Y	84090.036	84090.036	84090.036	84090.036	84082.176	84082.176	84082.176
Conventional Parameters (pct)	•							
Total volatile solids	D2974			3.46				5.65
Polycyclic Aromatic Hydrocarbons (µg/kg)								
2-Methylnaphthalene	SW8270DSIM	33	24 J			40	70	
Acenaphthene	SW8270DSIM	36	30			52	48	
Acenaphthylene	SW8270DSIM	49	25			27	62	
Anthracene	SW8270DSIM	82	48			61	66	
Benzo(a)anthracene	SW8270DSIM	73 J	39 J			82	63	
Benzo(a)pyrene	SW8270DSIM	87	44 J			100	110	
Benzo(b,j)fluoranthene	SW8270DSIM	100	47 J			100	66	
Benzo(e)pyrene	SW8270DSIM	72	34 J			110	120	
Benzo(g,h,i)perylene	SW8270DSIM	92	48 J			85	110	
Benzo(k)fluoranthene	SW8270DSIM	34	15			39	20	
Chrysene	SW8270DSIM	100	48			260	110	
Dibenzo(a,h)anthracene	SW8270DSIM	7.4	3.7			18	20 J	
Fluoranthene	SW8270DSIM	580	290 J			320	340	
Fluorene	SW8270DSIM	44	31			55	57	
Indeno(1,2,3-c,d)pyrene	SW8270DSIM	56	29			42	44	
Naphthalene	SW8270DSIM	350	200 J			350	830	
Perylene	SW8270DSIM	47	90 J			96	140	
Phenanthrene	SW8270DSIM	480	250 J			270	410	
Pyrene	SW8270DSIM	750	350 J			310	330	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)		115.04 J	57.85 J			130.7	132.4 J	
Total Benzofluoranthenes (b,j,k) (U = 0)		34	15			39	20	
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		115.04 J	57.85 J			130.7	132.4 J	
Total HPAH (SMS) (U = 0)		1,879.4 J	913.7 J			1356	1213 J	
Total LPAH (SMS) (U = 0)		1041	584 J			815	1473	
Dioxin Furans (ng/kg)				•	•	•	•	
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	3.44	2.19		0.128 U	1.34	2.42	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	9.79	6.27		0.108 U	5.82	13.7	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	12.7	8		0.0891 U	11.4	23.8	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	43.4	23.2		0.0904 U	87.7	269	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	17.7	11.8		0.101 U	22.3	58.1	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	730	331		1.1 U	2490	7,650 J	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	6,180	2240		8.51 U	20,400 J	62,700 J	

	Task Location ID Sample ID Sample Date Depth Sample Type X Y	SheltonRI_FS_2017 SH-19-170809 SH-19-10-20-170810 8/10/2017 0.3-0.7 ft N 1078962.382 84090.036	SheltonRI_FS_2017 SH-19-170809 SH-19-20-30-170810 8/10/2017 0.7-1 ft N 1078962.382 84090.036	SheltonRI_FS_2017 SH-19-170809 SH-19-GEO-28-46-170810 8/10/2017 0.9-1.5 ft N 1078962.382 84090.036	SheltonRI_FS_2017 SH-19-170809 SH-19-GEO-60-90-170810 8/10/2017 2-3 ft N 1078962.382 84090.036	SheltonRI_FS_2017 SH-22-170809 SH-22-10-20-170809 8/9/2017 0.3-0.7 ft N 1080337.853 84082.176	SheltonRI_FS_2017 SH-22-170809 SH-22-20-30-170809 8/9/2017 0.7-1 ft N 1080337.853 84082.176	SheltonRI_FS_2017 SH-22-170809 SH-22-GEO-3.1-4.2-170809 8/9/2017 3.1-4.2 ft N 1080337.853 84082.176
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	465 J	356 J		0.179 J	217 J	294 J	
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B E1613B	465 J 511 J	389 J		0.108 U	217 5	328	
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	690	499		0.588	860	1,770	
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	1630	763		2.78 J	6,960	17,900	
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B	17.6	10.2		0.0756 U	5.9	9.69	
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	11.3	6.12		0.104 U	6.76	14.5	
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	19.5	10.4		0.0827 U	21.7	50.8	
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	23.3	11.5		0.0475 U	63	208	
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	11.7	6.38		0.0435 U	17.8	53.9	
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B	1.82 J	1.05 J		0.0788 U	4.28	13.5	
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	16.5	8.35		0.0488 U	29	93.7	
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	296	129		0.262 U	778	3,180	
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	16.3	7.31		0.0982 U	45.5	182	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	861	310		0.928 J	2,990	11,900 J	
Total Tetrachlorodibenzofuran (TCDF)	E1613B	358 J	206 J		0.0756 U	119 J	250 J	
Total Pentachlorodibenzofuran (PeCDF)	E1613B	226 J	123 J		0.199 J	242 J	639 J	
Total Hexachlorodibenzofuran (HxCDF)	E1613B	417 J	199		0.185 J	1,120	4,040	
Total Heptachlorodibenzofuran (HpCDF)	E1613B	1090	444		0.915 J	3,380	14,300	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		46.4263 J	25.2497 J		0.1695559 J	78.1628 J	237.264 J	
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		46.4263 J	25.2497 J		0.0002784 J	78.1628 J	237.264 J	

	Task Location ID Sample ID Sample Date Depth Sample Type X Y	SH-22-170809 SH-22-GEO-60-90-170810 8/9/2017 2-3 ft	SheltonRI_FS_2017 SPI-22A-170810 SPI-22A-SC-6.7-7.6-170810 8/10/2017 6.7-7.6 ft N 1080479.550 83563.844	SheltonRI_FS_2017 SPI-31-170809 SPI-31-SC-3-5-170809 8/9/2017 3-5 ft N 1081265.397 83607.691	SheltonRI_FS_2017 SPI-31-170809 SPI-31-SC-5-7-170809 8/9/2017 5-7 ft N 1081265.397 83607.691	SheltonRI_FS_2017 SPI-131-170809 SPI-131-SC-5-7-170809 8/9/2017 5-7 ft FD 1081265.397 83607.691
Conventional Parameters (pct)						
Total volatile solids	D2974		5.2	5.38	6.32	6.08
Polycyclic Aromatic Hydrocarbons (µg/kg)	02574		J.2	5.50	0.52	0.00
2-Methylnaphthalene	SW8270DSIM					
Acenaphthene	SW8270DSIM					
Acenaphthylene	SW8270DSIM					
Anthracene	SW8270DSIM					
Benzo(a)anthracene	SW8270DSIM					
Benzo(a)pyrene	SW8270DSIM					
Benzo(b,j)fluoranthene	SW8270DSIM					
Benzo(e)pyrene	SW8270DSIM					
Benzo(g,h,i)perylene	SW8270DSIM					
Benzo(k)fluoranthene	SW8270DSIM					
Chrysene	SW8270DSIM					
Dibenzo(a,h)anthracene	SW8270DSIM					
Fluoranthene	SW8270DSIM					
Fluorene	SW8270DSIM					
Indeno(1,2,3-c,d)pyrene	SW8270DSIM					
Naphthalene	SW8270DSIM					
Perylene	SW8270DSIM					
Phenanthrene	SW8270DSIM					
Pyrene	SW8270DSIM					
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 1/2)						
Total Benzofluoranthenes (b,j,k) (U = 0)						
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)						
Total HPAH (SMS) (U = 0)						
Total LPAH (SMS) (U = 0)						
Dioxin Furans (ng/kg)						
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	0.145 U				
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	0.322 U				
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.206 U				
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.193 U				
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	0.224 U				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	6.33				
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	50.2				

Page 5 of 7 January 2018

	Task	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017	SheltonRI_FS_2017
	Location ID	SH-22-170809	SPI-22A-170810	SPI-31-170809	SPI-31-170809	SPI-131-170809
	Sample ID	SH-22-GEO-60-90-170810	SPI-22A-SC-6.7-7.6-170810	SPI-31-SC-3-5-170809	SPI-31-SC-5-7-170809	SPI-131-SC-5-7-170809
	Sample Date	8/9/2017	8/10/2017	8/9/2017	8/9/2017	8/9/2017
	Depth	2-3 ft	6.7–7.6 ft	3–5 ft	5–7 ft	5–7 ft
	Sample Type	Ν	N	N	N	FD
	х	1080337.853	1080479.550	1081265.397	1081265.397	1081265.397
	Y	84082.176	83563.844	83607.691	83607.691	83607.691
Total Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	4.62 J				
Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	3.56 J				
Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	6.47 J				
Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	15.8				
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B	0.366 U				
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	0.187 J				
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B	0.11 U				
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.187 U				
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.164 U				
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	E1613B	0.338 U				
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B	0.199 U				
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	3.67				
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	0.541 U				
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	9.68 J				
Total Tetrachlorodibenzofuran (TCDF)	E1613B	2.37				
Total Pentachlorodibenzofuran (PeCDF)	E1613B	1.29 J				
Total Hexachlorodibenzofuran (HxCDF)	E1613B	4.39 J				
Total Heptachlorodibenzofuran (HpCDF)	E1613B	13.6				
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)		0.470129 J				
Total Dioxin/Furan TEQ 2005 (Mammal) (U = 0)		0.123574 J				

Page 6 of 7 January 2018

Table 4

Subsurface Bulk Sediment Results

Notes:

Bold: detected result

µg/kg: micrograms per kilogram

CAEPA: California EPA

cPAH: carcinogenic polycyclic aromatic hydrocarbons

FD: field duplicate

J: estimated value

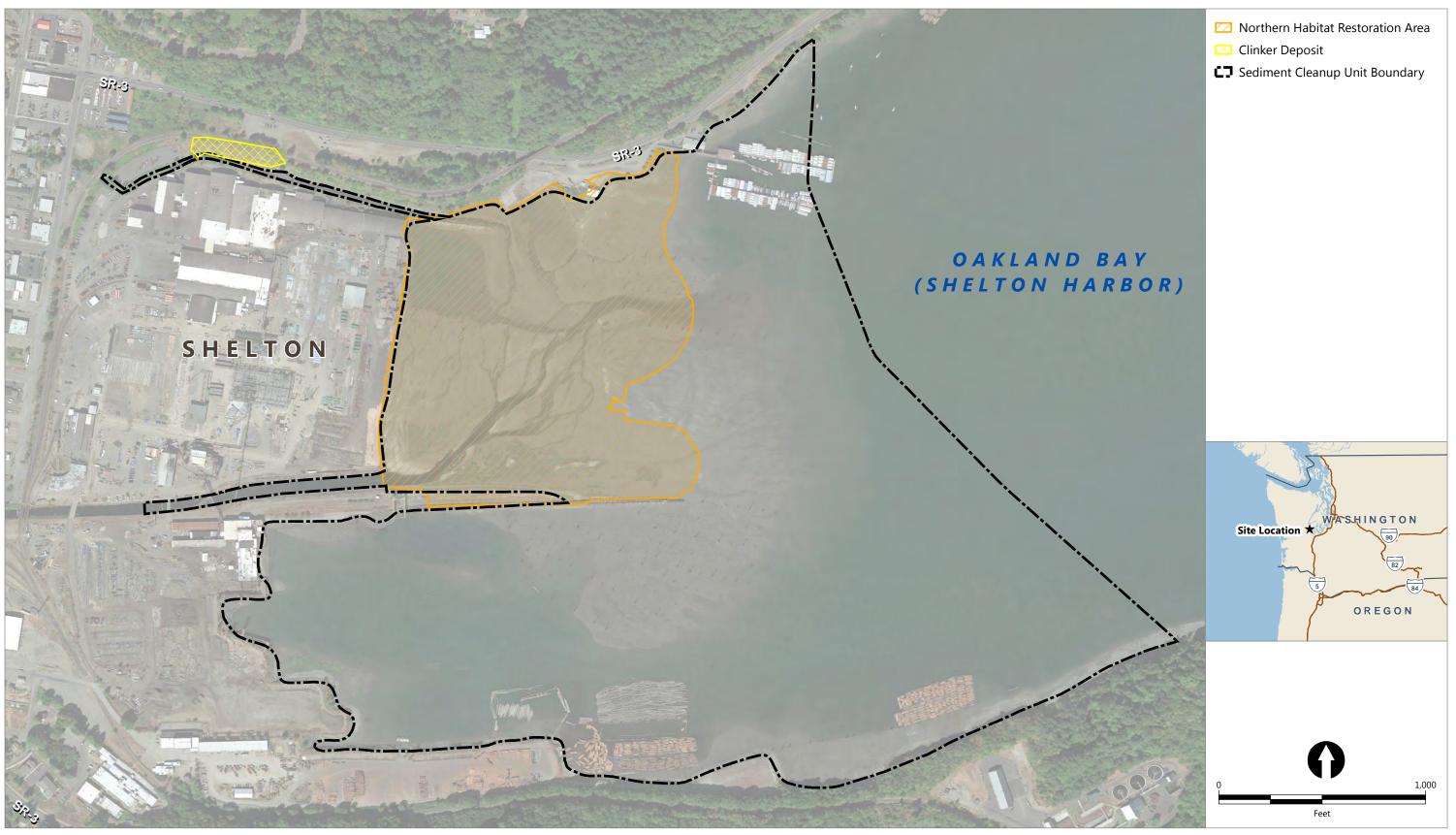
HPAH: high-molecular-volumen polycyclic aromatic hydrocarbon

LPAH: low-molecular-weight polycyclic aromatic hydrocarbon

N: normal sample

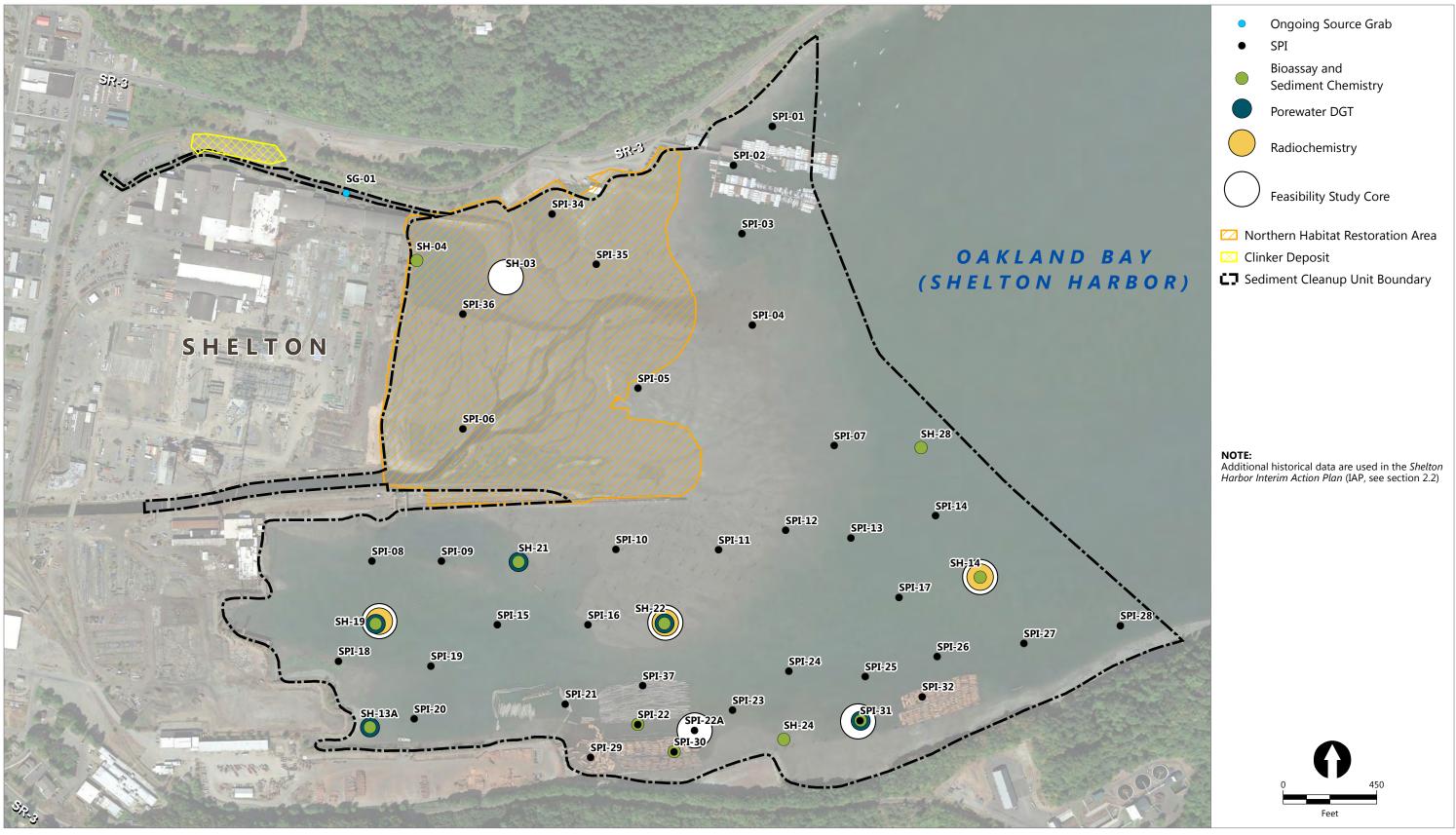
ng/kg: nanograms per kilogram

pct: percent


TEQ: Toxic Equivalence Quotient

U: compound analyzed, but not detected above detection limit

UJ: compound analyzed, but not detected above estimated detection limit


Page 7 of 7 January 2018

Figures

Publish Date: 2018/01/29, 3:52 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\Vicinity_Map.mxd

> Figure 1 Vicinity Map Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Publish Date: 2018/01/29, 3:06 PM | User: ckiblinger Filepath: \\orcas\gis\Jobs\Simpson_Timber_0008\SheltonHarbor\Maps\Interim_CAP\SPI_Locs_by_Type_2017.mxd

Figure 2 2017 SPI Survey and Sampling Locations Shelton Harbor Interim Action Plan Oakland Bay and Shelton Harbor Sediments Cleanup Site

Attachment 1 Laboratory Reports (Not Included)

Due to file size, this attachment is only available upon request.

Attachment 2 Data Validation Reports (Not Included)

Due to file size, this attachment is only available upon request.

Attachment 3 Field Collection Forms

Recorded by: Eli Partmont

Project Name:	- <u></u>	Pro	oject No: 1100.	6-01.01	Station	10: 5H	-24
Sampling Crev	n: BJ, A/B € E	ρ				•	•
Sample Date	e: 7/13/2017	-		Sampling Method	: Pour	(mab)	·····
	1: Nary Anne					<u> </u>	
Subcontractor(s			· · · ·	Weather			
Station Coordinates				_			
	E/Long.						
Datum	: NAD 83 / WGS 84	•	zone:	_			<u>.</u>
Sample IC	»: SH-24-56-	70	713				
Analysis	: Metals / TBT / SVOCs /	VOC	s / PCBs / Pest	Other:			
	TS / TVS / Grain Size /			Other:	<u> </u>		
	(Circle Appropriate Ana				· .		
Grab Number:	Water Depth: 11.6	<u>.</u>	**************************************	Carl Bassiers	219		Dalla
	Tide Level:	_ft. ft.		Grab Recovery:		-	04-10-
loassay / Chemistry	Depth MLLW:	_IL. ft.		Sample Interval:	$-\omega$	cm	1005
ediment Type:	Sediment Color:		Density:	Sediment Odor:		Sheen:	Moisture:
obble	D.O.		Very soft/Loose		H25	none	Dry
ravel	gray		soft/ioose/	slight	Petroteum	trace	Damp
and C M F	black)			moderate	other:	slight	Molst
IT clay	brown		dense/stiff	strong		moderate	Wet
ganic matter	brown surface	_	very dense/stiff	overwhelming		heavy	1
rab Number:	Water Depth: Tide Level:		. <u> </u>	Grab Recovery: Sample Interval:			
loassay / Chemistry	Depth MLLW;	_ft.					
ediment Type:	Sediment Color:		Density:	Sediment Odor:		Sheen:	Moisture:
obbie	D,O,		Very soft/Loose	none	H2S	none	Dry
avel	gray		soft/loose	slight	Petroleum	trace	Damp
ind C M F	black		mod dense/stiff	moderate	olher:	slight	Moist
t clay ganic matter	brown brown surface		dense/sliff very dense/sliff	strong overwheiming		moderate	Wet
omments:	DIOWI SUIIACE		very dense/still	loverwheating	· · ·	heavy	
	·····		·····		<u></u>		
ab Number:	Water Depth:	_ft.		Grab Recovery:_	<u> </u>	m Time: _	
	Tide Level:	_ft.		Sample Interval:		m	
bassay / Chemistry	Depth MLLW:	<u>_ft</u> .					
diment Type:	Sediment Color:		Density:	Sediment Odor:		Sheen:	Moisture:
oble	D.O.		Very soft/Loose	none	H2S	none	Dry
ive)	gray		soft/loose	slight	Petroleum	trace	Damp
nd C M F	black		mod dense/stiff	moderate	other:	slight	Moist
clay	brown		dense/stiff	strong		moderate	Wet
janic matter	brown surface		very dense/stiff	overwhelming		heavy	
mments:		<u>.</u>					
omments:		· .					

Date/Time Lab Drop Off:

47.20653 N 123.08446 W

P	Project Name:	FN	oject No: 1/000				
	Sampling Crew	BJ NB JEP					
	Sample Date	F/13/2017		Sampling Method	: Ann	Grab	
		Nancy Anne	······		<u></u>	<u></u>	· · u · ·
	Subcontractor(s)			Wealher	·····		
					*	<u>.</u>	<u>.</u>
	Station Coordinates:	N / Lat.	<u> </u>	_	*		
		E/Long.		-			
	Datum:	NAD 83 / WGS 84	zone:				
·	Sample ID:	SPt-212-51	-170713				
	•	Metals / TBT / SVOCs / VOC		Other:			
	i didijolo.	TS / TVS / Grain Size / TOC		Other:	<u> </u>		
		(Circle Appropriate Analyses		Outor.			
			- N.	· ···-	ole		1stal.
Gr	arab Number:		16.3	Grab Recovery:_		cm Time: <u>(</u>	24te
		Tide Level:ft.		Sample Interval:	10	cm	
_	ioassay / Chemistry	Depth MLLW:ft.				•	
	ediment Type:	Sediment Color:	Density:	Sediment Odor:	·	Sheen:	Molsture:
co	obble	D.O.	Very soft/Loose	none	H2S	none	Dry
1×	ravel	gray	soft/loose	slight	Petroleum	trace	Damp
sa	and C M F	black	mod dense/stiff	moderate	other:	slight	Moist
	li clay	brown	dense/stiff	strong		moderate	Wet
	ganic matter	brown surface 📝 📝	very dense/stiff	overwheiming		heavy	
DIQ	omments: <u>Rejected</u>	grab	······································				· · · · · · · · · · · · · · · · · · ·
Gr	rab Number: <u>Z</u>	Water Depth: <u>16, 4</u> ft. Tide Level:ft.	······	Grab Recovery: Sample Interval:	,	im Time: <u>6</u> cm	0440
Gr. Bic	rab Number:	Water Depth: <u>16, 4</u> ft. Tide Level:ft. Depth MLLW:ft.	Doosibu	Sample Interval:	,	cm	
Gr. Bic Se	rab Number: loassay / Chemistry ediment Type:	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color:	Density:	Sample Interval: Sediment Odor:	10	cm Sheen:	Moisture:
Gr. Bic Se	rab Number: <u>2</u> loassay / Chemistry ediment Type:	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O.	Very soft/Loose	Sample Interval: Sediment Odor: none <	H25	cm Sheen: none	Moisture: Dry
Gr. Bic Se	rab Number: <u>2</u> loassay / Chemistry ediment Type: bbble avel	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray	Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none < slight	H2S Petroleum	cm Sheen: none Irace	Moisture: Dry Damp
Gr. Bic Gr. Bic Se col gra sav	rab Number: <u>2</u> loassay / Chemistry ediment Type: bbble avel and C M F	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW: <u>ft.</u> Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/sliff	Sample Interval: Sediment Odor: none < slight moderate	H25	cm Sheen: none trace silght	Moisture: Dry Damp Moist
Gr. Bic Gr. Bic Se col gra sav	rab Number: <u>2</u> loassay / Chemistry ediment Type: bbble avel and C M F , tcay	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray	Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none < slight	H2S Petroleum	cm Sheen: none Irace	Moisture: Dry Damp
	rab Number: <u>2</u> loassay / Chemistry ediment Type: bbble avel and C M F , tcay	Water Depth: <u>16 , 4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none < slight moderate strong overwhelming	H2S Petroleum	cm Sheen: none trace silght moderate heavy	Moisture: Dry Damp Moist
	rab Number: <u>2</u> loassay / Chemistry ediment Type: bbble avel and C M F tclay ganic matter omments: Roughly 2	Water Depth: <u>16.9</u> ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black brown brown brown brown brown brown brown brown surface) 5% weedly defy	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff is, w. H. H.	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r USP 41.12	H2S Petroleum olher:	cm Sheen: none trace silght moderate heavy	Moisture: Dry Damp Moist (Wet
	rab Number: loassay / Chemistry ediment Type: obble avel and C M F tclay ganic matted omments: Rough / y 2	Water Depth: <u>16.9</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface) 5% werely defy Water Depth: <u>11.6</u> ft.	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming f 0.19 M.C.	H2S Petroteum other: MGJHe ZO c	cm Sheen: none trace silght moderate heavy 1 5 ¹ -C(+ 4)	Moisture: Dry Damp Moist (Wet
	rab Number: loassay / Chemistry ediment Type: obble avel and C M F tclay ganic matted omments: Rough / u Pab-Number:	Water Depth: <u>II</u> , <u>4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface) 5% werely defy Water Depth: <u>II.6</u> ft. Tide Level:ft.	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff is, w. H. H.	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r USP 41.12	H2S Petroleum olher: MgJHc	cm Sheen: none trace silght moderate heavy 1 5 ¹ -C(+ 4)	Moisture: Dry Damp Moist (Wet
	rab Number: loassay / Chemistry ediment Type: obble avel and C M F tclay ganic matter omments: Rough / u rab-Number: cassay / Chemistry	Water Depth: <u>II</u> , <u>4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface 5% werely defy Water Depth: <u>II.6</u> ft. Tide Level:ft. Depth MLLW:ft.	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff is, w.M. He 7/13/2017 5/13/2017	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r OSPM.'C Grab Recovery: Sample Interval:	H2S Petroleum olher: MgJHc	cm Sheen: none trace slight moderate heavy 1 5 ⁴ -C(-1-4) m Time: m	Moisture: Dry Damp Moist (Wet)
	rab Number:	Water Depth: <u>16.9</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown br	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff is, w.M. Here 7/13/2017 5/13/2017 Density:	Sample Interval: Sediment Odor: none slight moderate strong overwhelming <i>C J P PL 'C</i> Grab Recovery: Sample Interval: Sediment Odor:	H2S Petroleum other: MgJFe ZO c	cm Sheen: none trace slight moderate heavy 1 5 ¹ -C(-+	Moisture: Dry Damp Moist (Wet) S Jegge 5.
	rab Number: loassay / Chemistry ediment Type: obble avel avel ganic matter omments: Rough / y ab Number: cassay / Chemistry ediment Type: obble	Water Depth: <u>II6.9</u> ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black brown brow	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff $15, \dots, M - M - 1$ 7/13/2017 54 - 24 Density: Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r O.S. A.Y. Grab Recovery: Sample Interval: Sediment Odor: none	H2S Petroleum other: MgJHe ZO c (4	cm Sheen: none trace slight moderate heavy 1 5 ⁴ -C(-1-4) m Time: m	Moisture: Dry Damp Moist (Wet)
	rab Number: loassay / Chemistry ediment Type: obble avel avel ganic matter omments: Rough / y ab Number: cassay / Chemistry ediment Type: obble	Water Depth: <u>16.9</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown br	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff is, w.M. Here 7/13/2017 5/13/2017 Density:	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r O.J.g. ght, 'C. Grab Recovery: Sample Interval: Sediment Odor: none	H2S Petroteum other: MgJJe ZO c (0 (4)	cm Sheen: none trace slight moderate heavy 1 5 ¹ -C(-+	Moisture: Dry Damp Moist (Wet) S Jegge 5.
C BISE C C BISE C C BISE C C C C C C C C C C C C C C C C C C C	rab Number: loassay / Chemistry ediment Type: bbble avel and C M F tclay ganic matted comments: Rough / u ganic matted comments: Rough / u ganic matted comments: Rough / u cate Number: cate Number Number: cate Number	Water Depth: <u>II</u> , <u>4</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface 5% werely defy Water Depth: <u>II.6</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff x_{r} w_{r} w_{r} w_{r} w_{r} w_{r} w_{r} w_{r} x_{r} w_{r} w_{r} w_{r} w_{r} x_{r} w_{r} w_{r} w_{r} w_{r} Density: Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming f 0.59 m.'(Grab Recovery: Sample Interval: Sediment Odor: none slighD	H2S Petroleum other: 20 c (4 R2S) Petroleum	cm Sheen: none trace silght moderate heavy / St-C(-9) m Time: cm Sheen: none trace	Moisture: Dry Damp Molst Wet S Jecte 5.
COLUCIE BILLE COLUCIE	rab Number: loassay / Chemistry ediment Type: bbble avel avel ganic matted omments: Rough / u rab-Number: cassay / Chemistry ediment Type: bble avel avel nd C M F	Water Depth: <u>II6.9</u> ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black brown brow	Very soft/Loose soft/loose mod dense/sliff dense/sliff very dense/sliff $15, \dots, M - M - 1$ 7/13/2017 54 - 24 Density: Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming f 0.59 m.'(Grab Recovery: Sample Interval: Sediment Odor: none slighD	H2S Petroleum other: MgJHe ZO c (4	cm Sheen: none trace slight moderate heavy 1 5 ¹ - C + 4 m Time: m Sheen: none	Moisture: Dry Damp Molst Wei S Jecte 5 Moisture: Dry Damp Moist
	rab Number: loassay / Chemistry ediment Type: bbble avel and C M F t clay ganic matted omments: Rough / u - 2 rab-Number: classay / Chemistry ediment Type: bble avel avel nd C M F	Water Depth: <u>II</u> , <u>Y</u> _ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface 5% werely defy Water Depth: <u>II.6</u> ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff x_{s} , w , M - He 7/13/2017 5/13/2017 Density: Very soft/Loose soft/loose mod dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming r O.S. M.X. Grab Recovery: Sample Interval: Sediment Odor: none slighD moderate	H2S Petroleum olher: MGJFe ZO c (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	cm Sheen: none trace slight moderate heavy 1 5 ⁴ -C(-1	Moisture: Dry Damp Molst Wet S Jecte 5.
	rab Number:	Water Depth: <u>16.9</u> ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black brown brown brown surface 5 /o werely defy Water Depth: <u>11.6</u> ft. Tide Level: ft. Sediment Color: D.O. gray black brown brown strown surface	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff is, w. M. M.c. 7/13/2017 SM-24 Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming C D M M. C Grab Recovery: Sample Interval: Sediment Odor: none slighD moderate strong	H2S Petroleum olher: MGJFe ZO c (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	cm Sheen: none trace slight moderate heavy 1 5 ⁴ -C(-1	Moisture: Dry Damp Molst Wei S Jecte 5 Moisture: Dry Damp Moist
	rab Number: loassay / Chemistry ediment Type: bbble avel and C M F t clay ganic matted omments: Rough / u - 2 rab-Number: classay / Chemistry ediment Type: bble avel avel nd C M F	Water Depth: <u>16</u> , <u>4</u> , ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black brown brown brown surface) 5 /o <u>wealy</u> <u>defy</u> Water Depth: <u>11.6</u> ft. Tide Level: <u>ft.</u> Depth MLLW: <u>ft.</u> Sediment Color: D.O. gray black brown brown brown brown brown brown black	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff x_{s} w \mathcal{M}	Sample Interval: Sediment Odor: none slight moderate strong overwhelming C D M M. C Grab Recovery: Sample Interval: Sediment Odor: none slighD moderate strong	H2S Petroleum olher: MGJFe ZO c (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	cm Sheen: none trace slight moderate heavy 1 5 ⁴ -C(-1	Moisture: Dry Damp Molst Wei S Jecte 5 Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

Recorded by: El: Partment

Project Name:		Project No:	0008-01.01	Station	id: SP7	-31
Sampling Crew	BJ/NB/EP					
	7/13/2017		Sampling Meth	iod: R Pa	Pr Gran	6
	Nurry Ane		···· • • • • • • • • • • • • • • •		var ora	<u>o</u>
Subcontractor(s)			Weal	her [.]		<u> </u>
Station Coordinates		-				
	E / Long.					
Datum	NAD 83 / WGS 84	zone:				
					*	
	<u>SPI-31-56-1</u>					
Analysis:	Metals / TBT / SVOCs / \			<u></u>		<u> </u>
	TS / TVS / Grain Size / T		ulfides Other:			
	(Circle Appropriate Analy		······································	2		1.5
Grab Number:	Water Depth: 14.8	ft.	Grab Recover	ry: 22	cm Time:	10.35
	Tide Level:		Sample Interv	ral:()	cm	
Bioassay / Chemistry		ft				
Sediment Type:	Sediment Color:	Density:	Sediment.Odd		Sheen:	Moisture:
cobble	D.O.	Very soft/Lox	1	H2S (none	Dry
gravel	gray	< soft/loose	slight	Petroleum	trace	Damp
sand C M(F)	black	mod dense/s		other:	slight	Moist
SilCclay organic matter	brown brown surface	dense/sliff very dense/s	tiff overwhelming		moderate heavy	Wer
Comments: CrcAsioAct						
Grab Number:	Water Depth:1 Tide Level;	ît. ft.		y:¢		······································
Bloassay / Chemistry		ít.	· · · · · · · · · · · · · · · · · · ·		••••	
Sediment Type:	Sediment Color:	Density:	Sediment Odd	or:	Sheen:	Molsture:
cobble	D.O.	Very soft/Loc	none none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/s	tiff moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/s	tiff overwhelming		heavy	
Comments:	· · · · · ·					······································
Grab Number:	Water Depth:f	t.	Grab Recover	y:ċ	m Time: _	
	Tide Level:	t.	Sample Interv	al:0	cm	
Bioassay / Chemistry		t				
Sediment Type:	Sediment Color:	Density:	Sediment Odo	·	Sheen:	Moisture:
cobble	D.O.	Very soft/Loc	1	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/s	tiff moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/s	liff overwhelming		heavy	
Comments:			· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·		- • • • • • • • • • • • • • • • • • • •			
· · ·						

Date/Time Lab Drop Off:

Recorded by: Eli Partmont

M.00280.221 N.00280.221

Sample ID: SPT-22-SE-170FB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TCC / Ammonia / Sulfides Other: Grab Number:	ry soft/l ft/loose od dens nse/stiff	Very soft soft/loose mod den dense/sli	e/stiff f		moderate	ing		slight moderate		Damp Moist Wet
Sample ID: SPT-22-56-170F13 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Other: Grab Number: Water Depth: Fr. Sample Interval: Other: Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Imme: Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Imme: Imme: Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Imme: Imme: <th>ry sofVl fVloose od dens</th> <th>Very soft soft/loose mod den</th> <th>e/stiff</th> <th></th> <th>moderate</th> <th></th> <th></th> <th>slight</th> <th> </th> <th>Moist</th>	ry sofVl fVloose od dens	Very soft soft/loose mod den	e/stiff		moderate			slight		Moist
Sample ID: SPT-22-56-1707 IB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: Other: Grab Number:	ry soft/l	Very soft		\searrow				uace		
Sample ID: SPI-22-56-170F1B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Other: Grab Number; Water Depth: ft. Sample Interval: 0 Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: ft. Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: ft. Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: ft. Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: ft. Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: ft. gravel grav soft/loose mod dense/stiff overwhelming heavy organic matter brown surface very dense/stiff overwhelming heavy Comments: Neuly Contract 194, 194, 194, 194, 194, 194, 194, 194,			10038	$\mathbb{C} \setminus \mathbb{P}$				heave		N
Sample ID: SP I - 22 - 56 - 170F IB Analysis: Matalis / TBT / SVOCs / VOCs / PCBs / Pest Other: T5 / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:	nsity.	Density	<u> </u>					.		Dry
Sample ID: SPT-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:			~	1	Sediment (Odor:		Sheen:		Moisture:
Sample ID: SPT-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:	North Andrews			Ň	oomhie itt			411		
Sample ID: SPT-22-56-1707B3 Analysis: Metals / TBT / SVOCs / VCCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:	r								e:	
Sample ID: SP I - 22 - 56 - 1707 IS Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:	/	/			0					
Sample ID: SPI-22-56-1707 IB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other:			/							
Sample ID: SPI-22-56-1707 IB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other:	ur.	a ur.	109		- XWills	<u> </u>		/ج(_ + (W E	M K
Sample ID: SPT-22-56-1707 B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:	-						chiek.		no l	auk,
Sample ID: SPT-22-56-1707B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:					•	ino				Wet
Sample ID: SPI-22-56-1707B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:							other:	1 T	1	Moist
Sample ID: SPT-22-56-170743 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:					-					Damp
Sample ID: SPT-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:				- F					- 1	Dry
Sample ID: SPT-22-56-170F13 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:		-			~	Odor:			į	Moisture:
Sample ID: SPT-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:										
Sample ID: SPT-22-56-170FB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:			-1							
Sample ID: SPT-22-56-170FB Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number:	PI	SPI	-31	1 .	Grab Reco	very:_	c	m Tim	ie:	035
Sample ID: SP 1-22-56-1707 B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) (Circle Appropriate Analyses) Grab Number:										
Sample ID: SP 1-22-56-1707 B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) (Circle Appropriate Analyses) Grab Number:			<u> </u>							~
Sample ID: SPI-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number: ////////////////////////////////////	Nesi	ou/ups	Uq_	5.4	itial.	510	16 SAM	ne is	; Mo	<u>5714</u>
Sample ID: <u>SPT-22-56-170713</u> Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other:	-	-			_	_	1	<u> </u>		
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number: ////////////////////////////////////					•	1.a			e	Wet
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) (Circle Appropriate Analyses) Grab Number:				7		>	other:	1 7		Moist
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) (Circle Appropriate Analyses) Grab Number: ////////////////////////////////////				r				ŧ		Damp
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Other: Grab Number: //// Water Depth: fit. 15, 8 Grab Recovery: Tide Level: fit. Bioassay / Chemistry Depth MLLW: Sediment Type: Sediment Color:					A	2				Dry
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Circle Appropriate Analyses Grab Number:					Sediment (Moisture:
Sample ID: Sp 1-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Grab Number: 9 Grab Number: Water Depth: Str. 15, 8 Grab Recovery: Scm Time: C					<u> </u>		-			
Sample ID: Spit-22-56-170713 Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses)	-	•					10			•
Sample ID: <u>SPI-22-56-1707</u> Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses)	.8	5.8			Grab Reco	overy:_	18	m Tim	ne: <u>C</u>	900
Sample ID: Sp I - 22 - 56 - 1707 B Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other:			_							
Sample ID: <u>SPT-22-56-170713</u> Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest Other:	monia	Ammonia	/ Sulfide	ês	Othe	9 1 :				
			Pest		Othe)r:				
	70 1	170+	<u> </u>							
Datum: NAD 83 / WGS 84 zone:		zone:	1 ~							
E/Long.							· · · ·			
Station Coordinates: N / Lat.										
Subcontractor(s): MSS Weather: Sugar					We	eather	Sugar			
Sampling Vessel: Nancy Ame										
Sample Date: 7/13/2017 Sampling Method: Poiner Grab				s	Sampling M	lethod	Power	6746	•	

Recorded by: Eli Partmon 1

Surface Sediment Field Sample Record

Tide Level: ft. Sample Interval: cm //6:/0 Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture cobble D.O. Very soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp Sand C M F black mod dense/stiff moderate other: slight Moist Silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy Grab Number: 2 Water Depth: (0.0 ft. Grab Recovery: 2.2 cm Time: (####################################	Sa Sampl Subco Station Co Station	mple Date: 7/12/20 ing Vessel: Alarcy A ntractor(s): 1/15 S bordinates: N / Lat. E / Long. Datum: Datum: NAD 83 / WGS Sample ID: SH-28 Analysis: Metals / TBT / 3 TS / TVS / Grait (Circle Appropriation of the context of the conte	$\frac{2}{2} \frac{1}{4} \frac{1}$	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Weather Other: o Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy	IGHD Moisture Dry Damp Moist Wet
Sampling Vesset: Δεντζα ΔΑ.Δ.Δ. Station Coordinates: Y1.Lat. E1.Long. Datum: NAD 83 / WGS 84 Datum: NAD 83 / WGS 84 zone: Sample ID: Station Coordinates: N1/Lat. E1.Long. Charles: Other: Analysis: Mata / TB / SVOCS / VOCS / PCB / PcB / Dc1 Other: Grab Number: If Water Depth: ft. Sample Interval: Cm Bioassay / Chemistry Depth MLLW: n. Sample Interval: Moistur Grab Number: If Water Depth: ft. Stationose Sediment Odor: Sheen:: Moistur Sediment Type: Sediment Color: Very soft/Loose none H2S none Dry gravel grav strong moderate very dense/stiff overwhelming moderate Dry sand C M F black mod dense/stiff overwhelming moderate Dry gravel gravel gravel strong moderate Dry Dry sand C M F black mod dense/stiff overwhelming	Sampl Subco Station Co Station Co	ing Vessel: <u>Alancia</u> A ntractor(s): <u>1155</u> pordinates: N / Lat. E / Long. Datum: NAD 83 / WGS Sample ID: <u>5H - 28</u> Analysis: Metals / TBT / 3 TS / TVS / Grai (Circle Appropri- Water Depth: Tide Level: iry Depth MLLW: SedIment Color D.O. gray black brown brown surface <u>Percent at Son</u>	5 84 z 5 84 z 5 84 z 5 84 z 5 84 z 7 5 5 7 7 7 5 8 7 7 7 5 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 5 7 7 7 7	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Weather Other: ofrab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Subcontractor(s):	Subco Station Co Station Co Station Co Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Û Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Sediment Type: cobble gravel sand C M F	ntractor(s): <u>4755</u> poordinates: N / Lat. <u>E / Long.</u> Datum: NAD 83 / WGS Sample ID: <u>5 H - 28</u> Analysis: Metals / TBT / 3 TS / TVS / Grai (Circle Appropri- Water Depth: Tide Level: Tide Level: Tide Level: Popth MLLW: Sediment Color D.O. gray black brown brown surface <u>C peacht act 501</u>	S 84 z SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.5 ft.	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Station Coordinates: N1/Lat. E1/Long. Datum: NAD 83 /WGS 84 Sample ID: SHF - 28 - 56 - 1407 12 Analysis: Matals/TBF1 SVOCS/VOCS/POBs/Pest TS /TVS / Grain Stee /TOC / Annonial / Sulfides Other: Circle Appropriate Analyses) Orab Number: Water Depth: 4.9 nt. Title Level: ft. Bibassay / Chemistry Depth MLLW: Sediment Type: Sediment Color: Density: Sediment Odor: Station Covery: Con Grab Number: Dupth MLLW: Station Covery: Con Title Level: ft. Sediment Type: Sediment Color: Density: Sediment Odor: Station covery: Station one Drown dense/stiff organic matter brown surface progent MLLW: ft. Sediment Color: Density: Sediment Color: Density: Grab Number: 2	Grab Number: Bioassay / Chemisi Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Û Grab Number: Bioassay / Chemisi Sediment Type: cobble gravel sand C M F sili clay organic matter	boordinates: N / Lat. E / Long. Datum: NAD 83 / WGS Sample ID: SH-28 Analysis: Metals / TBT / 3 Analysis: Metals / TBT / 3 TS / TVS / Graid (Circle Appropring) Water Depth; Tide Level; Tide Level; Ty Depth MLLW; Sediment Color D.O. gray black brown brown surface CPANT CANCALSON Sol Z Water Depth;	SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.3 ft, ft.	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
E / Long. Dalum: NAD 83 / WGS 84 Sample ID: Shelas / 181 / SVOG / VOGS / PCBs / PBst Analysis: Metals / 181 / SVOG / VOGS / PCBs / PBst Circle Appropriate Analyses Other: Sediment Type: Sediment Color: Deassay / Chemistry Depth MLLW: R. Steament Color: Sediment Type: Sediment Color: Do. Very soft/Loose sind C M F black black mod dense/stiff organic matter brown surface prown surface Very soft/Loose Sediment Type: Sediment Color: Comments: Query Depth MLLW: ft Sample Interval: [C con Grab Number: Z Water Depth: [C Cont Grab Number: Sediment Color: Density: Sample Interval: [C cont Bioassay / Chemistry Depth MLLW: ft Sample Interval: <td>Grab Number: Bioassay / Chemisl Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Ûve Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter</td> <td>E / Long. Datum: NAD 83 / WGS Sample ID: SH - 28 Analysis: Metals / TBT / 3 TS / TVS / Grait (Circle Appropriation of the construction of t</td> <td>SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.3 ft, ft. ft.</td> <td>407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff</td> <td>s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming</td> <td>H2S Petroleum other:</td> <td>cm Sheen: none trace slight moderate heavy</td> <td>16:10 Dry Damp Moist Wet</td>	Grab Number: Bioassay / Chemisl Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Ûve Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	E / Long. Datum: NAD 83 / WGS Sample ID: SH - 28 Analysis: Metals / TBT / 3 TS / TVS / Grait (Circle Appropriation of the construction of t	SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.3 ft, ft.	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Datum: NAD 83 / WG8 84 zone: Sample ID: SH - 2 S - 5 - 1 407 / Z Analysis: Metals / TB7 / SVOGs / VOGs / POBs / Pols Other: ST / TS / Srinis Ster / TCC / IMmonia / Sulides Other:	Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Û Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Datum: NAD 83 / WGS Sample ID: SH- SH- S Analysis: Metals / TBT / S TS / TVS / Grait (Circle Appropriation of the control of the	SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.3 ft, ft.	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Sample ID: SH-28-SC-140712 Analysis: Metals / TBT / SVO26 / VOC5 / POEs / Post Other: TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Circle Appropriate Analyses) Other: Grab Number:	Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Û_e Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Sample ID: <u>SH-28</u> Analysis: Metals / TBT / 3 TS / TVS / Grai (Circle Appropri- Water Depth; Tide Level; Tide Level; Sediment Color D.O. gray black brown brown surface <u>Perestruct SO1</u>	SVOCs / VOCs / in Size / TOC / A rlate Analyses) 4.3 ft, ft.	407 12 / PCBs / Pest Ammonia / Sulfide: Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Analysis: Matalis / TBT / SVOCs / VOCs / PCBs / Pest TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: Grab Number:	Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Û Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Analysis: Metals / TBT / 3 TS / TVS / Grai (Circle Appropri- Tide Level:	SVOCs / VOCs / in Size / TOC / A rlate Analyses) <u>(, , , , ft, , , , , , , , , , , , , , , </u>	/ PCBs / Pest Ammonia / Sulfides Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Analysis: Metals / TBT / SVOCs / VOCs / PCBs / Pest TS / TVS / Grain Size / TOC / Armonia / Sulfides Other: Grab Number:	Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Û Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Analysis: Metals / TBT / 3 TS / TVS / Grai (Circle Appropri- Tide Level:	SVOCs / VOCs / in Size / TOC / A rlate Analyses) <u>(, , , , ft, , , , , , , , , , , , , , , </u>	/ PCBs / Pest Ammonia / Sulfides Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
TS / TVS / Grain Size / TOC / Ammonia / Sulfides Other: (Circle Appropriate Analyses) Grab Number:	Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Úve, Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	TS / TVS / Grain (Circle Appropring) Water Depth: Tide Level: ry Depth MLLW: Sediment Color D.O. gray black brown brown surface Percentruct Sol 2 Water Depth:	in Size / TOC / A rlate Analyses) <u>(, S)</u> ft, ft. ft. r: [Ammonia / Sulfides Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	s Other: Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
(Circle Appropriate Analyses) Grab Number:	Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Úver Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	(Circle Appropriation of the second constraints) Water Depth: Tide Level: Tide Level: Inv Depth MLLW: Sediment Color D.O. gray black brown brown surface Perent (CLT SOA) 2 Water Depth:	rlate Analyses) <u>(1, 5)</u> ft, <u>ft.</u> ft. r: <u>ft.</u> v: <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u> <u>ft.</u>	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Grab Number:	Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Úver Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Water Depth: Tide Level: Ty Depth MLLW: Sediment Color D.O. gray black brown brown surface Pene Hcc + Son 2 Water Depth:	<u>(, S</u> _ft, ft. ft. ft. v: s v v	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Tide Level: ft. Sample Interval: fc. Bioassay / Chemistry Bediment Color: Density: Sediment Ddor: Sheen: Moistur Sediment Type: Sediment Color: Density: Sediment Ddor: In one Dry gravel gray soft/loose soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff woderate other: slight Moistur organic matter brown surface very dense/stiff overwhelming heavy Moderate Grab Number:	Bioassay / Chemist Sediment Type: Cobble gravel sand C M F silt clay organic matter Comments: Úver Grab Number: Bioassay / Chemist Sediment Type: Cobble gravel sand C M F sill clay organic matter	Tide Level: ry Depth MLLW: Sediment Color D.O. gray black brown brown surface <u>perchrution</u> 2 Water Depth:	ft. ft. 	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	cm Sheen: none trace slight moderate heavy	16:10 Dry Damp Moist Wet
Bioassay / Chemistry Depth MLLW; ft. Sediment Type: Sediment Color: Density: Sediment Odor: Shean: Moistur cobble D.O. Yery soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod denso/stiff moderate other: slight Moistur organic matter brown denso/stiff strong moderate Wet organic matter brown denso/stiff overwhelming heavy Comments: Quert Depth: (Q.C.ft. Grab Recovery: 2.2. cm Time: [###0] Bioassay / Chemistry Depth MLLW: ft. Sample Interval: [.Cem 16.12.ce Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moistur cobble D.O. Very soft/Loose ingne H2S none Damp gravel gray stifficose stifficose stifficose none Damp	Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Over Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	ry Depth MLLW: Sediment Color D.O. gray black brown brown surface <u>peactruction</u>	ft. [2 r: [2] s n d v v	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture Dry Damp Moist Wet
Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture Gobble D.O. Very soft/Loose none H2S none Dry gravel gravy soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff strong moderate other: slight Moist organic matter brown surface very dense/stiff strong moderate Wet Comments: Query peachter f. A.O. Sample Interval: Query dense/stiff overwhelming heavy Comments: Query peachter f.A.O. Sample Interval: Query dense/stiff overwhelming heavy Comments: Query peachter f.f. Strong Sample Interval: Query f.A.O.O. for the strong heavy Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture Softfloose Strong strong trace Damp gravel gravel gravel strong trace Damp gravel gravel <td< td=""><td>Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Ùe Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter</td><td>Sediment Color D.O. gray black brown brown surface <u>pereficition</u></td><td>r: [] (), (), </td><td>Very soft/Loose soft/loose mod dense/stiff dense/stiff</td><td>none slight moderate strong overwhelming</td><td>Petroleum other:</td><td>none trace slight moderate heavy</td><td>Dry Damp Moist Wet</td></td<>	Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Ùe Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F sill clay organic matter	Sediment Color D.O. gray black brown brown surface <u>pereficition</u>	r: [] (), (), 	Very soft/Loose soft/loose mod dense/stiff dense/stiff	none slight moderate strong overwhelming	Petroleum other:	none trace slight moderate heavy	Dry Damp Moist Wet
cobble D.O. Very soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod ense/stiff moderate other: slight Moist organic matter brown brown dense/stiff overwhelming heavy Wet Comments: <u>O.P. pears/CU-F.O.</u> ft. Grab Recovery: 2.2 cm Time: <u>####################################</u>	cobble gravel sand C M F sill clay organic matter Comments: Over Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M F still clay organic matter	D.O. gray black brown brown surface <u>pereficition</u> 2Water Depth:	v (<u>(),()</u> , ft.	Very soft/Loose soft/loose mod dense/stiff dense/stiff	none slight moderate strong overwhelming	Petroleum other:	none trace slight moderate heavy	Dry Damp Moist Wet
Sill clay brown surface dense/stiff strong overwhelming moderate heavy Wet heavy Organic matter brown surface very dense/stiff strong overwhelming moderate heavy Wet Comments: Ourge percent of Alan Section and the sectin and the section and the section and the se	Sill clay organic matter Comments: Ûver Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M(F) Sill clay organic matter	gray black brown brown surface <u>peredroction</u> 2Water Depth:	s n d v	soft/loose mod dense/stiff dense/stiff	slight moderate strong overwhelming	Petroleum other:	trace slight moderate heavy	Damp Moist Wet
Sill clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming moderate Heavy Wet Comments: Curry pare-freefice ft Grab Number: Z moderate Met Grab Number: Z Water Depth: (C.O. ft. Grab Recovery: Z.Z. cm Time: HET Bioassay / Chemistry Depth MLLW: ft. Sample Interval: (C.O. m) 16.2 cc Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture cobile D.O. Very soft/Loose figare H2S filling Damp gravel gravel gravel filling strong moderate other: slight Moisture Sill clay brown surface very dense/stiff strong moderate strong heavy filling gravel gravel brown surface very dense/stiff overwhelming heavy hoisture ofganic matter brown surface ft.	Sill clay organic matter Comments: Ûver Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M(F) sill clay organic matter	black brown brown surface <u>percetrection</u> 2Water Depth:	n d v	mod dense/stiff dense/stiff	moderate strong overwhelming	other:	slight moderate heavy	Moist Wet
Sill clay brown surface dense/stiff strong overwhelming moderate heavy Wet heavy Organic matter Drown surface very dense/stiff overwhelming moderate heavy Wet Comments: Dury Pare-Arc2+101 Image: Section of the section of t	Sill clay organic matter Comments: Ûver Grab Number: Bloassay / Chemist Sediment Type: cobble gravel sand C M(F) sill clay organic matter	brown brown surface <u>percetraction</u> 2Water Depth:	d v [<u>(),[]</u> ft.	dense/stiff	strong overwhelming		moderate heavy	Wet
organic matter brown surface very dense/stiff overwhelming heavy Comments: Our percent of A A Grab Number: 2 Water Depth: (0,0) ft. Grab Recovery: 2.2 cm Time: 16*20 Bioassay / Chemistry Depth MLLW: ft. Sample Interval: (0,0) cm 16*20 Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture cobble D.0. Very soft/Loose (ngne) H2S ngne) Day gravel gray soft/loose sight Petroleum frace Damp sand C M (F) black mod dense/stiff overwhelming mederate other: slight Moist ofganic matter brown surface very dense/stiff overwhelming heavy Petroleum frace Grab Number:	Grab Number: Grab Number: Bloassay / Chemist Sediment Type: cobble gravel sand C M(F) sill clay organic matter	brown surface	v [<u>(),[)_</u> ft.		overwhelming	ۍ ر.	heavy	
Organic matter providence (very densessor) Over (very densessor) Over (very densessor) (very densessor) Comments: Over (very densessor) 2.2 cm Time: (very densessor) Grab Number: 2 Water Depth: ft. Sample Interval: (Comments: (Comments: <td>Grab Number: Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M(F) still clay organic matter</td> <td>2 Water Depth:</td> <td><u>[0,0 n</u>.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Grab Number: Grab Number: Bioassay / Chemist Sediment Type: cobble gravel sand C M(F) still clay organic matter	2 Water Depth:	<u>[0,0 n</u> .					
Grab Number: 2 Water Depth: Q.Q. ft. Grab Recovery: 2.2 cm Time: ### Bioassay / ChemIstry Depth MLLW: ft. Sample Interval: 1.0 cm 1.6 2.2 Bioassay / ChemIstry Depth MLLW: ft. Sediment Odor: Sheen: Moisture Cobble D.O. Very soft/Loose ingae H2S ingae Dry gravel gravel gragy soft/Loose sight Petroleum trace Damp sand C M F) Effack mod dense/stiff strong moderate other: silght Moist organic matter brown brown surface very dense/stiff overwhelming heavy Comments: 10:or 2Qrs 2Qrs 2Qrs 2Qrs 2Qrs Grab Number: Water Depth: ft. Grab Recovery: cm Time:	Grab Number: Bioassay / ChemIst Sediment Type: cobble gravel sand C M(F) sill clay organic matter	2 Water Depth:		,		د. د.		ی مسالم و
stifl clay brown dense/stiff strong moderate wet organic matter brown surface very dense/stiff overwhelming moderate wet Comments: 19.992 2-4/.000 Locally deforics Grab Recovery: cm pressurf gravple Grab Number: Water Depth: ft. Grab Recovery: cm Time: gravple Bloassay / Chemistry Depth MLLW: ft. Sample Interval: cm Moisture Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture gravel gray soft/loose none H2S none Dry sand C M F black mod dense/stiff moderate other: slight Moist slift clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy	still clay organic matter				Sample Interval:	10 0	, mc	16:20
still clay brown brown surface dense/stiff strong moderate wet Organic matter brown surface very dense/stiff overwhelming moderate (Wet Comments: 10.00 2-4.464 Locally debriss 6-4057 347.40 pressurf grample Grab Number:	still clay organic matter	a de la companya de l		<u></u>	<u> </u>			
still clay brown brown surface dense/stiff strong moderate wet Organic matter brown surface very dense/stiff overwhelming moderate (Wet Comments: 10.00 2-4.464 Locally debriss 6-4057 347.40 pressurf grample Grab Number:	still clay organic matter							
still clay brown brown surface dense/stiff strong moderate wet Organic matter brown surface very dense/stiff overwhelming moderate (Wet Comments: 10.00 2-4.464 Locally debriss 6-4057 347.40 pressurf grample Grab Number:	still clay organic matter		1			· · · · · ·		1 .
still clay brown brown surface dense/stiff strong moderate wet Organic matter brown surface very dense/stiff overwhelming moderate (Wet Comments: 10.00 2-4.464 Locally debriss 6-4057 347.40 pressurf grample Grab Number:	still clay organic matter		~		1 *			1
organic matter brown surface very dense/stiff overwhelming heavy Comments: 19.99 2-4.664 de645 6-4037 360.000 presend in generalized Grab Number:	organic matter					oner:	-	
Comments: Image: 2-4 Mich Image: debris	Comminator I				•			AAG
Grab Number:	Comments: Crrc	min				A	<u> </u>	
Tide Level: ft. Sample Interval: cm Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture cobble D.O. Very soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff moderate other: slight Moist silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy	•	pe C-YMCY L	Loan a	-015, 15-	40.57 341 M	<u>p presi</u>	sý n	Sample
Tide Level: ft. Sample Interval: cm Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture cobble D.O. Very soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff moderate other: slight Moist silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy								
Tide Level: ft. Sample Interval: cm Bioassay / Chemistry Depth MLLW: ft. Sediment Odor: Sheen: Moisture Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture cobble D.O. Very soft/Loose none H2S none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff moderate other: slight Moist silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy								
Bioassay / Chemistry Depth MLLW:ft. Sediment Type: Sediment Color: Density: Sediment Odor: Sheen: Moisture cobble D.O. Very soft/Loose none Dry gravel gray soft/loose slight Petroleum trace Damp sand C M F black mod dense/stiff moderate other: slight Moist silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwhelming heavy	Grab Number:						m Time: _	
Sediment Type:Sediment Color:Density:Sediment Odor:Sheen:MoisturecobbleD.O.Very soft/LoosenoneH2SnoneDrygravelgraysoft/looseslightPetroleumtraceDampsand C M Fblackmod dense/stiffmoderateother:slightMoistsilt claybrowndense/stiffstrongmoderateWetorganic matterbrown surfacevery dense/stiffoverwhelmingheavy					Sample Interval:	c	m	
cobbleD.O.Very soft/LoosenoneH2SnoneDrygravelgraysoft/looseslightPetroleumtraceDampsand C M Fblackmod dense/stiffmoderateother:slightMoistsilt claybrowndense/stiffstrongmoderateWetorganic matterbrown surfacevery dense/stiffoverwhelmingheavy			· · · · · · · · · · · · · · · · · · ·					1
gravelgraysoft/looseslightPetroleumtraceDampsand C M Fblackmod dense/stiffmoderateother:slightMoistsilt claybrowndense/stiffstrongmoderateWetorganic matterbrown surfacevery dense/stiffoverwhelmingheavy				-			· · ·	
sand C M Fblackmod dense/stiffmoderateother:slightMoistsilt claybrowndense/stiffstrongmoderateWetorganic matterbrown surfacevery dense/stiffoverwhelmingheavy				-	1		t. 1	1 .
silt clay brown dense/stiff strong moderate Wet organic matter brown surface very dense/stiff overwheiming heavy	gravel	gray	S	sofvloose	slight	Petroleum	trace	Damp
organic matter brown surface very dense/stiff overwhelming heavy	sand C M F	black	ſſ	nod dense/stiff	moderate	other:	slight	Moist
			1-		*		moderate	Wet
Comments:	organic matter	1	v	ery dense/stiff	overwhelming		heavy	
	Comments:	brown surface						

Date/Time Lab Drop Off:

1

Samelia C	rew: NB, BJ \$	r n	NE D. I.	a. D. 54.	1. 1. 12	CI DIL	A
Sampling C	hate: 7/12/2017	E [~	Well Dreht	er, Ben John	<u>301 P</u>	FIFAT	mm I
				Sampling Method	110	er anab	
	ssel: Nancy Ann	ë.		-	. <u> </u>		
Subcontracto	r(s): <u>MSS</u>			Weather	;		
Station Coordina	ites: N / Lat.						
	E / Long.						
Dati	um: NAD 83 / WGS 84		zone:	_			_
		C1 -					
Sample				- Other			
Analy	sis: Metals / TBT / SVOC			Other:			
	TS)(TS) Grain Siz			Other:	·		
	(Circle Appropriate /	· · ·	}				
Grab Number:	Water Depth: 10	<u>,</u> 7_ft.		Grab Recovery:	27_0	xm Time:	0855
	Tide Level:			Sample Interval:		cm	
Bloassay) Chemistry	Depth MLLW:	ft.	-			· · · · · · · · · · · · · · · · · · ·	
Sediment Type:	Sediment Color:		Density:	Sediment Odor:		Sheen:	Moisture
cobble	D.O.	ć	Very soft/Loose	none	H2S	none	Dry
gravel	gray'	-	soft/loose	slight_)	Petroleum	trace	Damp
sand C M F	bláck		mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown		dense/stiff	strong		moderate	Wet
organi c matter	brown surface		very dense/stiff	overwheiming		heavy	
Comments: Myn ly (lams & Wood d	<u>ctris,</u>			167		(170
	lams & Wood & Water Depth: 10.0]ft.		Grab Recovery:		-	G[30
Comments: Min la (Grab Number:	Water Depth: 10.0]ft.		Grab Recovery: Sample Interval:		zm Time: _ cm	G[30
Comments: My la (Grab Number: <u>2</u> Bioassay / Chernistry	lams & Wood & Water Depth: 10.0]ft. ft.	Density:			-	CF[30 Moisture
Comments: Min la (Grab Number:	Water Depth: 10,0 Tide Level: Depth MLLW:]ft. ft.	Density:	Sample Interval:	0	cm Sheen:	Moisture
Comments: My la (Grab Number: <u>2</u> Bioassay / Chernistry Sediment Type:	AM5 & Wxx & A Water Depth: 0.4 Tide Level: Depth MLLW: Sediment Color: D.O.]ft. ft.		Sample Interval: Sediment Odor:	(O (H2S)>	cm Sheen:	
Comments: My la (Grab Number: <u>2</u> Bioassay / Chernistry Sediment Type: cobble	Vater Depth: 10, 4 Tide Level; Depth MLLW: Sediment Color;]ft. ft.	Density: Very soft/.cose	Sample Interval:	(O (H2S)>	cm Sheen:	Moisture Dry
Comments: My la (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel	Water Depth: 0, 0 Water Depth: 0, 0 Tide Level: Depth MLLW: Sediment Color: D.O. Qray]ft. ft.	Density: Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none slight	H2S> Petroleum	cm Sheen: Noñe Irace	Moisture Dry Damp
Comments: My la (Grab Number: <u>2</u> Bioassay / Chemistry Sediment Type: cobble gravel sand C (M F)	Water Depth: 0.4 Water Depth: 0.4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black]ft. ft.	Density: Very soft/_ooge_ soft/loose mod dense/stiff	Sample Interval: Sediment Odor: none slight moderate	H2S> Petroleum	cm Sheen: flone trace slight	Moisture Dry Damp Moist
Comments: Mm In (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel sand C (M F slit clay organic matter	Water Depth: 10, 4 Water Depth: 10, 4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface]ft. ft. ft.	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong	H2S> Petroleum	cm Sheen: frace slight moderate	Moisture Dry Damp Moist
Comments: My la (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel sand C (M F) slit clay organic matter	Water Depth: 10, 4 Water Depth: 10, 4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface]ft. ft.	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong	H2S> Petroleum	cm Sheen: flone trace slight moderate	Moisture Dry Damp Moist
Comments: Mm In (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel sand C (M F slit clay organic matter	Water Depth: 10, 4 Water Depth: 10, 4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface]ft. ft. ft.	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong	H2S> Petroleum	cm Sheen: flone trace slight moderate	Moisture Dry Damp Moist
Comments: Mm In (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel sand C (M F slit clay organic matter	Water Depth: 10, 4 Water Depth: 10, 4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface]ft. ft. ft.	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S> Petroleum other:	cm Sheen: flone trace slight moderate	Moisture Dry Damp Moist
Comments: Mm In (Grab Number: Bioassay / Chernistry Sediment Type: cobble gravel sand C (M F slit clay organic matter	Water Depth: 10,0 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface am 5 bettle, 4 we	25 AS	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong	H2S> Petroleum other:	cm Sheen: frone trace slight moderate heavy	Moisture Dry Damp Moist (Wet)
Comments: Mm la (Grab Number:	Water Depth: 10,0 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown brown surface am 5 bettle, 4 we	<u>}ft.</u> ft. ft. ft. ft.	Density: VEry soft/_ooge_ soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S> Petroleum other:	cm Sheen: frone trace slight moderate heavy	Moisture Dry Damp Moist
Comments: Mm /4 (Grab Number:	Water Depth: 0.4 Water Depth: 0.4 Tide Level: Depth MLLW: Sediment Color: D.O. Gray black brown surface am 5 bells, 2 we Water Depth: Tide Level: Depth MLLW:	25 AS	Density: VEry soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval:	H2S> Petroleum other:	cm Sheen: Iface slight moderate heavy m Time: cm	Moisture Dry Damp Moist Wet
Comments: My la (Grab Number:	Water Depth: 0.0 Tide Level;	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor:	H2S Petroleum other:	cm Sheen: Itone Irace slight moderate heavy m Time: cm	Moisture Dry Damp Moist Wet
Comments: Mm /n /n /n Grab Number: 2 Bioassay / Chemistry Sediment Type: cobble gravel sand C (M F) silt clay organic matter Comments: C (C	Water Depth: 0.0 Tide Level; Depth MLLW: Depth MLLW:	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none	H2S	cm Sheen: Iface slight moderate heavy m Time: cm	Moisture Dry Damp Moist Wet
Comments: My la (Grab Number:	Water Depth: 0.0 Tide Level; Depth MLLW: Sediment Color: D.0. Jack brown Surface brown Surface Water Depth: Water Depth Tide Level; Depth MLLW: Sediment Color: D.0. Tide Level; Depth MLLW: Sediment Color:	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor:	H2S	cm Sheen: Itone Irace slight moderate heavy m Time: cm	Moisture Dry Damp Moist Wet
Comments: Mm /n /n /n Grab Number: 2 Bioassay / Chemistry Sediment Type: cobble gravel sand C (M F) silt clay organic matter Comments: C (C	Water Depth: 0.0 Tide Level; Depth MLLW: Depth MLLW:	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none	H2S	cm Sheen: Irace slight moderate heavy m Time: cm Sheen: none	Moisture Dry Damp Moist Wet
Comments: My la (Grab Number:	Water Depth: 0.0 Tide Level: Depth MLLW: Sediment Color: D.O. black brown brown surface Water Depth: Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. Tide Level: Depth MLLW: Sediment Color: D.O. gray	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other:	cm Sheen: Iface slight moderate heavy m Time: cm Sheen: none trace	Moisture Dry Damp Moist Wet Moisture Dry Damp
Comments: My la (Grab Number:	Water Depth: 0.0 Tide Level: Depth MLLW: Sediment Color: D.O. Jack brown surface Water Depth: 7 Water Depth: 7 Water Depth: 7 Dilack brown surface Water Depth: 7 Tide Level: Depth MLLW: Sediment Color: D.O. gray black	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	cm Sheen: Irace slight moderate heavy m Time: cm Sheen: none trace slight	Moisture Dry Damp Moist Wet Moisture Dry Damp Moist
Comments: Mm In (Grab Number:	Water Depth: 0.0 Tide Level: Depth MLLW: Sediment Color: D.O. Jack brown Surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. Jack brown Surface Sediment Color: Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown	<u>}ft.</u> ft. ft. ft. ft.	Density: Very soft/Loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other:	cm Sheen: Irace slight moderate heavy m Time: cm Sheen: none trace slight moderate	Moisture Dry Damp Moist Wet Moisture Dry Damp Moist

Date/Time Lab Drop Off:

•

Recorded by: Eli Patnont

Project Name:		Project No: 1/00	280-0101	Station		-19
Sampling Cre	W: Eli Patmont.	Bon Johnson V.	ik Bacher			
Sample Da	ile: 7/12/2017		Sampling Metho	d: Paulo	, Ginh	
Sampling Vess		>				
Subcontractor			– Weathe			
Station Coordinate				····		
Oration Coordinati			<u> </u>	·		
Datu	E/Long.					
	n: NAD 83/WGS 84	zone:				
	10: <u>SH-19-5G-</u>		<u> </u>			
Analysi	s: Metals / TBT / SVOCs /		Other:			
		FOC / Ammonia / Sulfides	Other:			
	(Circle Appropriate Anal	yses)		_	<u> </u>	
Grab Number:	Water Depth: 13,6	_ft.	Grab Recovery:		cm Time:	12:05
	Tide Level:	ft.	Sample Interval			<u>v</u>
Bloassay / Chemistry	Depth MLLW:	ft.	• · · ·			
Sediment Type:	Sediment Color:	Density:	Sediment Odor:	· · · · ·	Sheen:	Moisture
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	1	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Molst
sill day	brown	dense/stiff	strong		moderale	Wet
organic matter	brown surface	very dense/stiff	overwheiming		heavy	
						<u></u>
Grab Number:	Water Depth: <u> </u>	ft.	Grab Recovery:	25	m Time:	12.25
	Tide Level:	<u>f</u> t.	Sample Interval	10	cm -	
Bioassay / Chemistry	Depth MLLW:	ft.				
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none)	H2S (none ?	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sarid C M F	black	mod dense/stiff	moderate	other:	slight	Molst
sill,clay	(brown)	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhetming		heavy	1
Comments: Wood dr	Bus churks, fo	e dans	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>	<u> </u>				
Grab Number:	Water Depth: 123	n. 11, 7	Grab Recovery:	20 0	m Time: 🖌	22454
17 - 1 17 - 1		ft.	Sample Interval:			3:00
Bloassay / Chemistry	Depth MLLW:f	it.				
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	(none)	H2S	none	Dry
gravel	gray	soft/loose	slight		trace	Damp
sand C M F	black	mod dense/stiff				
sill clay			moderate	other:	slight	Moist
organic matter	brown brown surface	dense/sliff	strong		moderate	Wet
		very dense/stiff	overwhelming		heavy	
	Lability test.	Grab Brejecte	A MOT (2.2	<u>s ft dry</u>	dly	
Woody debris in	MCAG. BROLD DIE	scat in acabo	A12:44	V		
sumale.						
13:00 GRAGY			Date/Tir	ne Lab Dr	op Off:	
					,	
Recorded by: Eli	01. L					
	int mout					

47.20653 W

Surface Sediment Field Sample Record

Project Name:	14	oject No: 1000	5-0101	otation	ID: SH-	UT
Sampling Cr	W: RT NR EP					
	ite: 7/13/17	·	Sampling Method	+ D	- Const	
	sel: Nancy Ane		ounping monor	<u>. Facoo</u>	0196	
Subcontractor			Weather			
		· · · · · ·		·		
Station Coordinat	es: <u>N / Lat.</u>		-	<u> </u>		
	E / Long.		_			
Datu	m: NAD 83 / WGS 84	zone:				
Sample	10: <h-124.56< td=""><td> 170712</td><td></td><td></td><td></td><td></td></h-124.56<>	170712				
	s: Metals / TBT / SVOCs / VOC		Other:			
ranarja	TS / TVS / Grain Size / TOC		Other:	·		
	(Circle Appropriate Analyses	· ·	Other.			<u> </u>
		<u>, , , , , , , , , , , , , , , , , , , </u>		3		0100
Grab Number:	Water Depth: <u>13, 2 ft.</u>		Grab Recovery:_	22	cm Time:	<u>8:20</u>
	Tide Level:ft.		Sample Interval:	_0	cm	
Bioassay / Chemistry	Depth MLLW:ft.					-
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	(soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
Silt clay	orown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments: Traile or	Water Depth:ft	state we	Grab Recovery:		1-145 € 	
Grab Number:			J	(
Srab Number:	Water Depth:ft, Tide Level:ft. Depth MLLW:ft.	54-01-	Grab Recovery: Sample Interval:	(cmTime:	
Grab Number:	Water Depth:ft,	Density:	Grab Recovery: Sample Interval: Sediment Odor:		cm	Môlsture:
Srab Number: Bioassay'/ Chemistry Sediment Type: xobble	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O.	Density: Very soft/Loose	Grab Recovery:_ Sample Interval: Sediment Odor: none	H2S	mTime: _ cm Sheen: none	Mõisture: Dry
Grab Number: Bioassay / Chemistry Sediment Type:	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray	Density: Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleym	Sheen: Inone	- Moisture: Dry Damp
Srab Number: Bioassay'/ Chemistry Sediment Type: xobble gravel	Water Depth:ft, Tíde Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black	Density: Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S	Sheen: Inona Irace Islight	Mõisture: Dry Damp Moist
Grab Number: Bioassay'/ Chemistry Sediment Type: xobble gravel and C M F	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleym	Sheen: none Irace slight moderate	- Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Typè: xobble gravel sand C M F illt clay	Water Depth:ft, Tide Level:ft, Depth MLLW:ft. Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleym	Sheen: Inona Irace Islight	Mõisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: xobble gravel and C M F ill clay grganic matter	Water Depth:ft, Tide Level:ft, Depth MLLW:ft. Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleym	Sheen: none Irace slight moderate	Mõisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: xobble gravel and C M F ill clay grganic matter	Water Depth:ft, Tide Level:ft, Depth MLLW:ft. Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleym	Sheen: none Irace slight moderate	Mõisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: xobble gravel and C M F ill clay organic matter comments:	Water Depth:ft, Tide Level:ft, Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery:- Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	mTime: cm Sheen: none trace slight moderate heavy	Mõisture; Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Sediment Type: xobble gravel and C M F ill clay grganic matter	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft,	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_	H2S Petroleum other:	m Time: _	Mõisture; Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Sediment Type: xobble gravel and C M F ill clay organic matter Comments:	Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery:- Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	mTime: cm Sheen: none trace slight moderate heavy	Moisture; Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Sediment Typè: Sobble gravel and C M F ilt clay granic matter comments: Grab Number: bioassay / Chemistry	Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft.	Density: Very soft/Loose soft/toose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval:	H2S Petroleym other:	m Time:	Mõisture: Dry Damp Moist Wet
Srab Number: lioassay / Chemistry rediment Type: obble ravel and C M F lit clay rganic matter comments: rab Number: lioassay / Chemistry ediment Type:	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color:	Density: Very soft/Loose soft/toose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor:	H2S Petroleum other:	mTime: _ cm Sheen: none Irace slight moderate heavy m Time: _ cm Sheen:	Moisture: Dry Damp Moist Wet Moisture:
Srab Number: Noassay / Chemistry Sediment Type: Sobble ravel and C M F Ilt clay rganic matter Somments: somments: ioassay / Chemistry ediment Type: Sobble	Water Depth:ft, Tide Level:ft, Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O.	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery:_ Sample Interval: Sediment Odor: none	H2S Petroleym other:	m Time: m Time: none trace slight moderate heavy m Time: m Sheen: none	Moisture: Dry Damp Moist Wet Moisture: Dry
Srab Number: Bioassay / Chemistry Sediment Type: obble ravel and C M F ilt clay rganic matter comments: Grab Number: ioassay / Chemistry ediment Type: obble ravel	Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray	Density: Very soft/Loose soft/toose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other:	Sheen: m Time: race slight moderate heavy m Time: m Sheen: none trace	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
Srab Number: Bioassay / Chemistry Sediment Type: cobble pravel and C M F ill clay prganic matter comments: Brab Number: bioassay / Chemistry rediment Type: cobble pravel and C M F	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D:O. gray black	Density: Very soft/Loose soft/toose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose soft/toose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other: H2S Petroleum other:	m Time: m Time: race slight moderate heavy m Time: m Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
Srab Number: Bioassay / Chemistry Sediment Type: cobble pravel and C M F ill clay prganic matter Comments: Brab Number: Brab Number: Brab Number: bioassay / Chemistry cediment Type: cobble ravel and C M F ilt clay	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D:O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other: 	m Time: m Time: race slight moderate heavy m Time: m Sheen: none trace slight moderate	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Typè: xobble yravel and C M F ilt clay yrganic matter Comments: Drab Number: Comments: Drab Number: ioassay / Chemistry rediment Type: obble ravel and C M F ilt clay yganic matter	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D:O. gray black	Density: Very soft/Loose soft/toose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose soft/toose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other: 	m Time: m Time: race slight moderate heavy m Time: m Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
Srab Number: Srab Number: Sobble ravel and C M F It clay rab Number: Ioassay / Chemisiry ediment Type: Doble ravel and C M F It clay ganic matter	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D:O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other: 	m Time: m Time: race slight moderate heavy m Time: m Sheen: none trace slight moderate	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
brab Number:	Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D.O. gray black brown brown surface Water Depth:ft, Tide Level:ft, Depth MLLW:ft, Sediment Color: D:O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overy/helming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other: 	m Time: m Time: race slight moderate heavy m Time: m Sheen: none trace slight moderate	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

Recorded by: Eli Patmont

Project Name:		oject No: State	27			
	Ben Johnson.		Eli Partman		<u>id: 54-</u>	<u>L</u>
Sample Date	7/13/2017	<u> </u>	Sampling Method		r Grab	
	Marcy Arr.					
Subcontractor(s):			Weathe	<i>,</i>		
Station Coordinates						····
	E/Long.					_
Datum:	NAD 83 / WGS 84	zone:		·	- · · · - · · · ·	
	5H-04-56-1					
			- Other			
Analysis.	Metals / TBT / SVOCs / VOC		Other:			
	TS / TVS / Grain Size / TOC		Other:			
	(Circle Appropriate Analyses)				<u> </u>
Grab Number:	Water Depth:ft.		Grab Recovery:	- - 0 (cm Time:	7:25
	Tide Level:ft.		Sample Interval:		<u>,</u> cm	
Bioassay / Chemistry	Depth MLLW:ft.					
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture
cobble	D,O,	Very soft/Loose	none	H2\$	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
20)-1	brown	dense/stiff	strong		moderate	Wet
sincialy						
Sommenis: Rucket	brown surface Lipped over, No	very dense/stiff	Grah Recovery		heavy	07'30
Grab Number:	brown surface Lipped over, Ma Water Depth: 2,4 ft. Tide Level:ft.	·	Grab Recovery: Sample Interval:			07'30
Grab Number:	brown surface Lipped over, Ma Water Depth: 2, 4 ft. Tide Level:ft. Depth MLLW:ft.	Terroreny	Grab Recovery: Sample Interval;			-
Grab Number:	brown surface Lipped over, No Water Depth: 2, 4 ft. Tide Level:ft. Depth MLLW:ft. Sediment Color:	Density:	Grab Recovery: Sample Interval: Sediment Odor:		rm Time: _ cm Sheen:	Moisture:
Grab Number: Bloassay / Chemistry Sediment Type:	brown surface Lipped OVEL, No Water Depth: 2, 4 ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O.	Density: Very soft/Loose	Grab Recovery: Sample Interval: Sediment Odor: none	H2S	:m Time: _ cm Sheen: none	Moisture: Dry
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel	brown surface Lipped OVEL, No Water Depth: 2,4 ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray	Density: Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum	m Time: _ cm Sheen: none trace	Moisture: Dry Damp
Grab Number: <u>J</u> Bloassay / Chemistry Sediment Type: cobble gravel sand C M F	brown surface Lipped OVEL, No Water Depth: 2, 4 ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black	Density: Very soft/Loose soft/loose mod dense/stlff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S	m Time: _ cm Sheen: none trace slight	Moisture: Dry Damp Moist
Granic matter Comments: Rucket Grab Number: <u>F</u> Bloassay / Chemistry Sediment Type: xobble gravel send C M F silt clay	brown surface	Density: Very soft/Loose soft/loose mod dense/stilf dense/stilf	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum	m Time: _ cm Sheen: none trace slight moderate	Moisture: Dry Damp
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	brown surface Lipped OVEL, No Water Depth: 2, 4 ft. Tide Level: ft. Depth MLLW: ft. Sediment Color: D.O. gray black	Density: Very soft/Loose soft/loose mod dense/stlff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum	m Time: _ cm Sheen: none trace slight	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum	m Time: _ cm Sheen: none trace slight moderate	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	brown surface	Density: Very soft/Loose soft/loose mod dense/stilf dense/stilf	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum	m Time: _ cm Sheen: none trace slight moderate	Moisture: Dry Damp Moist
Grab Number: <u>J</u> Grab Number: <u>J</u> Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: <u>Rejected</u>	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate héavy	Moisture: Dry Damp Moist Wet
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejerfed	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy m Time: _	Moisture: Dry Damp Moist
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejected. Grab Number:	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate héavy	Moisture: Dry Damp Moist Wet
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejerfed	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery:_ Sample Interval; Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_ Sample interval;	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy m Time: _ m	Moisture: Dry Damp Moist Wet 7::40
Grab Number: Bloassay / Chemistry Bloassay / Chemistry Sediment Type: sobble gravel sand C M F silt clay organic matter Comments: Rejected Brab Number: Bloassay / Chemistry	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery:_ Sample Interval; Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_ Sample Interval:_ Sediment Odor:	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy m Time: _ cm Sheen:	Moisture: Dry Damp Moist Wet 7:: 40
Organic matter Comments: Rucket Grab Number: Image: Comments: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejected Bloassay / Chemistry Stab Number: 2 Bloassay / Chemistry Sediment Type: cobble	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Grab Recovery:_ Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_ Sample Interval:_ Sediment Odor: none	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy m Time: _ cm Sheen: 1000	Moisture: Dry Damp Moist Wet 7: 40 Moisture: Dry
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejerfed Grab Number: Bloassay / Chemistry Sediment Type: Sediment Type: Sediment Type: Comments: Rejerfed Sediment Type: Sediment Type: Sediment Type: Sobble gravel	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: rione Slight	H2S Petroleum other:	m Time:	Moisture: Dry Damp Moist Wet 7: 40 Moisture: Dry Damp
Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Rejerfed Grab Number: 2 Bloassay / Chemistry Sediment Type: cobble gravel sand C M F Silt clay organic matter Comments: Rejerfed Sediment Type: cobble gravel Sediment Type: cobble gravel sand C M F	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	m Time: Sheen: none trace slight moderate heavy m Time: m Sheen: fone trace slight	Moisture: Dry Damp Moist Wet 7: 40 Moisture: Dry Damp Moist
Graphic matter Comments: Bucket Grab Number: Bloassay / Chemistry Sediment Type: Sobble gravel sand C M F sill clay organic matter Comments: Rejected Brab Number: 2 Bloassay / Chemistry Sediment Type: Sobble gravel Sill clay Stab Number: 2 Bloassay / Chemistry Sediment Type: sobble gravel and C M F ill clay	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: rione Slight	H2S Petroleum other:	m Time:	Moisture: Dry Damp Moist Wet 7: 40 Moisture: Dry Damp
Grab Number: <u>J</u> Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: <u>Rejected</u> Grab Number: <u>2</u>	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	m Time: _ cm Sheen: none trace slight moderate heavy m Time: _	Moistur Dry Damp Moist Wet
Grab Number:	brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	m Time: Sheen: none trace slight moderate heavy m Time: m Sheen: trace slight	Moisture: Dry Damp Moist Wet 7:40 Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

47,21270 4 123.04185°U

47,21270 2

47.20812517 W

Surface Sediment Field Sample Record

Project Name:		PIDJECT NO: [[CC]	18-01.01	Station	1D: 54	
Sampling C	Srew: FPANB					
Sample (Date: 7/12/2017		Sampling Metho	d: Que	1 Cosat.	
Sampling Ve	ssel: Nuncu Anne				1070	
Subcontracto	or(s): MSS		Weathe	·		
Station Coordina		· · · · · · · · · · · · · · · · · · ·	<u> </u>			<u>_</u>
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	_	,		
	E / Long.	<u> </u>		<u></u>		
Dat	um: NAD 83 / WGS 84	zone:				
Sample	10: SH-Z1-56-	-170717				
	sis: Metals / TBT / SVOCs / N		Other:			
		OC / Ammonia / Sulfides	Other:			<u></u>
	(Circle Appropriate Analy	/ses)			·	
Grab Number:	Water Depth: 5.5			Da		1200
			Grab Recovery:			1800
Bioassay / Chemistry		ft	Sample Interval		_cm	•
Sediment Type:	Sediment Color:		Rediment Ort-		Inhari	1
cobble	D.O.	Density: Very soft/Loose >	Sediment Odor:	-H2S)	Sheen:	Moisture:
gravel	gray	soft/loose	slight	Petroleum	none >	Dry
sand C M F	< black)	mod dense/stiff	moderate	olher:	trace slight	Damp
allt clay>	brown	dense/stiff	strong	outer.	moderate	< Moist Wet
		a conta cont			1	AAGI
	dbrown surface	very dense/stiff	ioverwneiming		ineavy	
Comments: 504-		n.	·		jheavy Suiffe cm Time:	
Gordenic matters	Water Depth:	<u>n.</u>		(Sulta	<u> </u>
Gorganic matters Comments: 59777 Grab Number: Bloassay / Chemistry	Water Depth: Tide Level: Depth MLLW:f	n. 1.	Grab Recovery: Sample Interval:	(Suite cm Time:	
Grab Number: Bloassay / Chemistry Sediment Type:	Water Depth: Tide Level:f Depth MLLW:f Sediment Color:	n. t. t. Density:	Grab Recovery: Sample Interval:		Sist Fa cm Time: cm Sheen:	Moislure:
Grab Number: Bloassay / Chemistry Sediment Type:	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O.	t. ft. ft. Uensity: Very soft/Loose	Grab Recovery: Sample Interval: Sediment Odor: none	 H2S	Sist Fa cm Time: cm Sheen: none	Moisture: Dry
Grab Number: Bloassay / Chemistry Sediment Type:	Water Depth: Tide Level:f Depth MLLW:f Sediment Color:	t. t. Density: Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleurn	Still Fa	Moisture: Dry Damp
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: xobble gravel sand C M F	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray	t. t. Density: Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	 H2S	Sist Fa cm Time: cm Sheen: none trace slight	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silit clay	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O, gray black	t. t. Density: Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleurn	Sheen: cm Sheen: none trace slight moderate	Moisture: Dry Damp
organic matters Comments: 57777 Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F salit clay organic matter	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown	t. t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleurn	Sist Fa cm Time: cm Sheen: none trace slight	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silit clay organic matter Comments:	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown	t. t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleurn	Sheen: cm Sheen: none trace slight moderate	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F sillt clay organic matter Comments:	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:f	rt. ft. ft. t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other:	Sheen: cm Time: cm Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: xobble gravel sand C M F sill clay organic matter Comments: Brab Number:	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:f Tide Level:f	t. t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	Sheen: cm Time: cm Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F sill clay organic matter Comments: Brab Number: Brab Number: Bloassay / Chemistry	Water Depth: I Tide Level: I Depth MLLW: f Sediment Color: D.O, gray black brown brown surface Water Depth: fr Tide Level: fr Depth MLLW: fr	A. A. A. A. A. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	Sheen: cm Time: cm Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bloassay / Chemistry Sediment Type: sobble gravel sand C M F silt clay organic matter Comments: Brab Number: Brab Number: tioassay / Chemistry sediment Type:	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:ft Tide Level:ft Depth MLLW:ft Sediment Color:	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	Sheen: cm Time: cm Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bloassay / Chemistry Bediment Type: Sediment C M F Bilt clay Drganic matter Comments: Brab Number: Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry	Water Depth: I Tide Level: I Depth MLLW: f Sediment Color: D.O, gray black brown brown surface Water Depth: fr Tide Level: fr Depth MLLW: fr	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff Very soft/Loose	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval:	H2S Petroleum other:	Sheen: cm Time: cm Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bloassay / Chemistry Bediment Type: Sediment C M F Bilt clay Drganic matter Comments: Brab Number: Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:ft Tide Level:ft Depth MLLW:ft Sediment Color:	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor:	H2S Petroleum other:	Sheen: Sheen: Inone trace slight moderate heavy m Time: _ cm	Moisture: Dry Damp Moist Wet
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: Sobble gravel sand C M F silt clay organic matter Comments: Brab Number: Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry Bloassay / Chemistry	Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:f Tide Level:f Depth MLLW:ft Sediment Color: D.O.	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff very dense/stiff Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other:	Sheen: m Time: cm Time: cm Time: slight moderate heavy m Time: cm Time: cm	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
organic matters Comments: 57777 Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F salit clay organic matter	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:f Tide Level:f Depth MLLW:ff Sediment Color: D.O. gray	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff Very soft/Loose soft/loose mod dense/stiff	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	Sheen: none trace slight moderate heavy m Time; _ cm Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
Grab Number: Grab Number: Bloassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Brab Number: Brab Number: Bloassay / Chemistry iediment Type: obble ravel and C M F	Water Depth: Water Depth: Tide Level: Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:f Tide Level:f Depth MLLW:ff Sediment Color: D.O. gray black	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff very dense/stiff Very soft/Loose soft/loose	Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other:	Sheen: m Time: cm Time: cm Time: slight moderate heavy m Time: cm Time: cm	Moisture: Dry Damp Moist Wet Moisture: Dry Damp

Date/Time Lab Drop Off:

Recorded by: Eli Patnont

47.20876 N

Surface Sediment Field Sample Record

Project Name:		Project No: 1000	8-01.01	Station	<u>10: 5Hr</u>	<u>14</u>
Sampling Cr	ew: NB \$ EP		-			
	ate: 7/12/2017		Sampling Metho	d: Poise	o tak	
Sampling Ves	sel: Nancy Anne	,	Sampling Metho	<u>,<u>1- y. </u> <u>,</u></u>	3.1	
Subconfractor	(s): 1155	,	- Weath	er Sund	· · · · · · · · · · · · · · · · · · ·	
Station Coordinat]	
Station Coordinat	• · · · ·			•		<u></u>
	E / Long.	·				
Datu	m: NAD 83 / WGS 84	ZONO:				N
Sample	10: SH-14-SG	-0170712				
	sis: Metals / TBT / SVOCs	and the second	Other:			
· · · · · · · · · · · · · · · · · · ·	TS / TVS / Grain Size /	/ TOC / Ammonia / Sulfides				
	(Circle Appropriate An	alyses)				
Dank Muserkann I	Water Depth: 15, {		<u> </u>	25		VL-17
Grab Number:			Grab Recovery	1.4	cm Time:	1715
Honegou / Chamiolar	Tide Level;		Sample Interva	1: <u> C </u>	cm	17/5
Bioassay / Chemistry	Depth MLLW: Sediment Color:	_ft.	Codiment Oda	·····	Chaster	A fastate a
Sediment Type:	D.O.	Density: Very soft/Loose	Sediment Odor	: H2S	Sheen:	Moisture:
navel		(soft/loose)	slight	H2S Petroleum	none	Dry
sand C M F	dgray) black	mod dense/stiff	moderate	other:	trace slight	Damp Moist
lif day	(brown)	dense/stiff	strong	outer.	moderate	Wel
rganic matter	brown surface	very dense/stiff	overwhelming		heavy	ALC: -
		wed debis in	-	1 17		<u> </u>
Bioassay / Chemistry	Tide Level: Depth MLLW:	ft. 	Sample Interva	l:	cm	
Bediment Type:	Sediment Cotor:	Density:	Sediment Odor	:	Sheen:	
		·		-		Moisture:
obbie	D.O.	Very soft/Loose	none	H2S	none	Moisture: Drv
	D.O. gray	Very soft/Loose soft/loose	1	H2S Petroleum		Dry
ravel			none slight moderate		none	
ravel and C M F	gray	soft/loose	slight	Petroleum	none trace	Dry Damp
ravel and C M F Ilt clay	gray black	soft/loose mod dense/stilf	slight moderate	Petroleum	none trace slight	Dry Damp Moist
ravel and C M F Ilt clay rganic matter	gray black brown	soft/loose mod dense/stiff dense/stiff	slight moderate strong	Petroleum	none trace slight moderate	Dry Damp Moist
ravel and C M F ilt clay rganic matter iomments:	gray black brown brown surface Water Depth:	soft/loose mod dense/stiff dense/stiff very dense/stiff	slight moderate strong overwhelming Grab Recovery:	Petroleum other:	none trace slight moderate heavy m Time:	Dry Damp Moist
ravel and C M F Ilt day rganic matter comments:	gray black brown brown surface Water Depth: Tide Level:	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming	Petroleum other:	none trace slight moderate heavy	Dry Damp Moist Wet
ravel and C M F It clay rganic matter omments: rab Number:	gray black brown brown surface Water Depth: Tide Level: Depth MLLW:	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample interval	Petroleum other:	none trace slight moderate heavy m Time: _ cm	Dry Damp Moist Wet
ravel and C M F It clay ganic matter omments: rab Number: oassay / Chemistry ediment Type:	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color:	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor:	Petroleum other:	none trace slight moderate heavy m Time: _ cm Sheen:	Dry Damp Moist Wet
ravel and C M F It clay rganic matter omments: rab Number: loassay / Chemistry ediment Type: bbble	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O.	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor: none	Petroleum other:	none trace slight moderate heavy m Time: _ cm Sheen: none	Dry Damp Moist Wet Moisture: Dry
ravel and C M F ilt clay rganic matter omments: rab Number: loassay / Chemistry ediment Type: bbble ravel	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color:	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor:	Petroleum other:	none trace slight moderate heavy m Time: _ cm Sheen: none trace	Dry Damp Moist Wet
ravel and C M F ilt clay rganic matter comments: irab Number: irab Number: ioassay / Chemistry ediment Type: obble ravel and C M F	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O.	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor: none	Petroleum other:	none trace slight moderate heavy m Time: _ cm Sheen: none	Dry Damp Moist Wet Moisture: Dry
obble provel and C M F ill clay rganic matter comments: brab Number: brab Numbe	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O, gray black brown	soft/loose mod dense/stilf dense/stilf very dense/stiff ftft	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor: none slight moderate strong	Petroleum other:	none trace slight moderate heavy m Time: cm Sheen: none trace slight moderate	Dry Damp Moist Wet Moisture: Dry Damp
ravel and C M F ilt clay rganic matter comments: Grab Number: loassay / Chemistry ediment Type: obble ravel and C M F	gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O, gray black	soft/loose mod dense/stiff dense/stiff very dense/stiff 	slight moderate strong overwhelming Grab Recovery: Sample Interval Sediment Odor; none slight moderate	Petroleum other:	none trace slight moderate heavy m Time: _ cm Sheen: none trace slight	Dry Damp Moist Wet Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

Recorded by: Eli Patmant

	Core	Collection Lo	Page 1 of
Job: Bill Sheller Harbor		Station ID: SH-1	
Job No: 110008-0101		Attempt No. /	
Field Staff: 37, NB, EP		Date: 7/12/201	7
Contractor: M55		Logged By: EL: P.	athort
Vertical Datum:		Horizontal Datum:	
Field Collection Coordinates:			
LaVNorthing:		Long/Easting:	·
A. Water Depth B. Wa	ater i ev	el Measurements	C. Mudline Elevation
-	1225		
	11.7		
Source		,	Recovery Measurements (prior to cuts)
Core Collection Passwary Datailar			· •
Core Collection Recovery Details: Core Accepted: Yes / No			
Core Tube Length:			
Drive Penetration: APA 2.7 1		-	
Headspace Measurement: 26 inches		•	
Recovery Measurement: 27 inches		·	
		·	
Recovery Percentage: Total Length of Core To Process: 2.2 inches		- lot	
Total Lengin of Cole to Process: 77 AZRES		Core Tube Length	
Drive Notes:			
		Š	
		hand	
			Sections To Process:
·····		· · · ·	
			<u>A:</u>
			<u>B:</u>
			D:
Core Field Observations and Description:		Sediment type, moisture, col	or, minor modifier, MAJOR modifier, other constituents,
		odor, sheen, layering, anoxid	clayer, debris, plant matter, shells, biota
No woody debis in core, p	<i>andu</i>	meed color ch	lange at lattern from
& dork brown to tan to light	1	brown,	.
W FINAL REFERENCE SPIRIT SO STOVES		<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
·····			
			· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
······································			
			· · · · · · · · · · · · · · · · · · ·
Notes:			

Steve

Job: Stelton Harbor Job No: 110008.01.01	Station ID: 5/-/ Attempt No. /		
Field Staff: A/B, BJ, & EP	Date: 7/12/20	17	l de la companya de l
Contractor: MSS	Logged By: FP	-	
Vertical Datum:	Horizontal Datum:	:	
Field Collection Coordinates:			
Lat/Northing:	Long/Easting:		
A. Water Depth B. Water L	Level Measurements	C. Mudline Elevation	
DTM Depth Sounder: Time: C			
DTM Lead Line: 10 Height: 10 Source:	0.7 ft	Recovery Measurements (prior to	o cuts)
Core Collection Recovery Details:			
Core Accepted: Yes (No)			
Core Tube Length: 41t	<u> </u>		
Drive Penetration: And OH Sinches			
Headspace Measurement: 0ff Linch Recovery Measurement: 0ff Finches			
Recovery Percentage:	— ₁	£	
Total Length of Core To Process: Reject ed			
Drive Notes: Recovery to Finches with	h woody	2	
			1
deliris lager at the bottom. Core	1ejecteda	Core	
deliris lager q- the bottom. Lote	rejectéde	Core Tube Length	
deliris lager 9- ilie battom. Lote	<u>iejcctéd</u>		
deliris lager 9+ ilie bottom. Lote	<u>iejretæd</u>	Sections To	Process:
deluis lager 9+ ilie bottom. Lote			Process:
deliris lager 9+ ilve bottom. Lote		Sections To <u>A:</u> <u>B:</u>	Process:
deliris lager 9+ ilve bottom. Lote		Sections To	Process:
deliris lager 9+ ilve bottom. Lote		Sections To <u>A:</u> <u>B:</u>	Process:
		Sections To A: B: C: D:	
Core Field Observations and Description:	Sediment type, moisture	Sections To A: B: C:	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
Core Field Observations and Description:	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
Core Field Observations and Description:	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
Core Field Observations and Description:	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	
Core Field Observations and Description:	Sediment type, moisture	e, color, minor modifier, MAJOR modifier, othe	

·

.

V ANCHOR OEA	ment Core	e Collectio	n Log			Page _ of
Job: Shelton Harbor Job No: 110008-01 01 Field Staff: NB, B, J, 4 EP Contractor: M55 Vertical Datum:		Station ID: Attempt No. 7 Date: 7/12/ Logged By: Horizontal Dat	2017 E.P			
Field Collection Coordinates; Lat/Northing:	_	Long/Easting:				-
A. Water Depth DTM Depth Sounder: DTM Lead Line:	B. Water Lev Time: Height: Source:	el Measurement		ludline Elev	vation	- r to cuts)
Core Collection Recovery Details: Core Accepted: Yes) / No Core Tube Length: Y H Drive Penetration: Headspace Measurement: Recovery Measurement: Recovery Measurement: Recovery Percentage: Total Length of Core To Process: Drive Notes: Mast Recovery Limit Refusal Encountered at 3 pene Irmition		 	Core Tube Length		Sections 7 A: B: C: D:	o Process;
Core Field Observations and Description Mastly clay/silt like of core		Sediment type, mol odor, sheen, layerin J. Whodus C	g, anoxic layer,	debris, plant n	natter, shells, biol	а
Notes:	·····		· · · · · · · · · · · · · · · · · · ·	<u>··</u>		

.

.

	Core Collection Log Page $2 \text{ of } 2$
JOD: GHELTON HARDOR	Station ID: GP1-38
Job No: 110008-0101	Attempt No. V
Field Staff: 14 NB, EP, HS	Date: 0/10/2017 Logged By: HG
Contractor: MG9	Logged By: HG
Vertical Datum: MUW	Horizontal Datum: VV6594
Field Collection Coordinates: Lat/Northing: みつっしンカのしつと N	Long/Easting: 123° 0517171 W
	ter Level Measurements C. Mudline Elevation
	1230 - 5.8 FT
DTM Lead Line: 0.1: FT Height:	4.9 FT
	: NOAA SHEVTON, Recovery Measurements (prior to cuts)
0A0	HAND BAY
Core Collection Recovery Details:	
Core Accepted: (Yes)/ No	5.6
Core Tube Length: 15 PT	
Drive Penetration: 14.0 FT	
Headspace Measurement: 5, U FT	
Recovery Measurement: 9.4 FT	
Recovery Percentage: 617.	
Total Length of Core To Process: 4.2 PT	
Drive Notes:	
8-10" OF FREEFALL BREAKS	$\overline{\mathbf{D}}$ - $\mathbf{d}\mathbf{D}$ - $\mathbf{d}\mathbf{A}$ / \mathbf{H}
UTV UT FREEFALL EREFTS	
SUMETHING AT SURFACE. 2751	DRIVEAF
BUTTOMAFTER NA' MARK.	
	Sections To Process:
	A: 0-4.0 FT
	B: 4.6-9.2FT
	D:
Core Field Observations and Description:	Sediment type, moisture, color, minor modifier, MAJOR modifier, other constituents.
	odor, sheen, layering, anoxic layer, debris, plant matter, shells, blota
WOOD WASTE VISIBLE AT OUT	BETWEEN SECTIONS A & B.
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
····	
Notes:	
SILT IN DOTTUM SFGHILE	i i
SILT IN BOTTOM 4 TOP SHOE	· · · · · · · · · · · · · · · · · · ·
Notes: SILT IN BOTTUM UF SHUE	· · · · · · · · · · · · · · · · · · ·
Notes: SILT IN BOTTUM 4 DF SHUE	

V ANCHOR QEA EEE Sedi	ment Core	Collectio	n Lo	g		Page 2 of 2
JOD: GHELTUN HAKBOK		Station ID: S	b1-21			Page P or P
Job No: 110008 - 0101		Attempt No.				-
Field Staff: NB,EP,HS	<u> </u>		2017			- 1
Contractor: NG3	<u> </u>	Logged By: 1		·	· ·	-
Vertical Datum: MLLW	_	Horizontal Dal		NAGON		- I
,,	_				· · · · · · · · · · · · · · · · ·	-
Field Collection Coordinates: Lat/Northing: 47° 12-40771 N	_	Long/Easting:	123	04,982	42 W	_
A Water Denth	D. Minhaw I. and		4-	O Hudkas F	t	
A. Water Depth		I Measurement	ts	C. Mudline E		
DTM Depth Sounder:	Time: 1.20			-5.2	. Fr	_
DTM Lead Line: 9-(FT	Height: 3.9					
· · ·	Source: NOA		j –	Recovery Mea	surements (prio	r to cuts)
Core Collection Recovery Details:	onterne	HARBUR		+ []		Í
Core Accepted: (Yes) / No						
Core Tube Length: 15 FT				3.1		
Drive Penetration: 14.0 FT						
Headspace Measurement: 3, 1 Ft						
Recovery Measurement: 11.3 Fr						
Recovery Percentage: 91 7.			2			
Fotal Length of Core To Process: 10,9	<u>er z</u>		Core Tube Length			
rotal Lengul of Cole To Process. [0,9]	P1		Le Le	15 11.2		
Drive Notes:			P.			
			F			
EAST DRIVE FOR FIRST	FIVE FE	51.	ŏ			
WM FURM DRIVE					1	
			السعسا			
					Sections T	o Process:
					A: 0-5.5	
		{				
· · · · · · · · · · · · · · · · · · ·					<u>B: 5,5 - </u>	INA FI
					<u>C:</u>	
	1			•	D;	
Core Field Observations and Description		Sediment type, moi	sture, colo	r, minor modifier,	MAJOR modifier, o	her constituents,
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
Core Field Observations and Description		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
· · · · ·		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
ALOT OF WATER PELE		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
ALOT OF WATER PELE		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
ALOT OF WATER PELE		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .
ALOT OF WATER PELE		odor, sheen, layenn	g, anoxic	layer, debris, plar	l matter, sheils, biol	a .

V ANCHOR Se	diment Co	re Collection L	_og	<u> </u>
Job: Shelten Huber		Station ID: Ø 5	-	Page 2 of 4
		Station ID: 47	· · · · ·	—
Job No: 1008-0101		Attempt No. 4	10.0	
Field Staff: # B/H3/EP	<u> </u>	Date: 5 8/9		/
Contractor: M35'		Logged By: 투너		6
Vertical Datum:		Horizontal Datum:	· · · · · · · · · · · · · · · · · · ·	
Field Collection Coordinates: _at/Northing: 17 12 7508	7 <i>1</i> 6	Long/Easting: (2	3 05,40632	·
A. Water Depth	B, Water L	evel Measurements	C. Mudline Elevation	
DTM Depth Sounder:	Time: 102			
DTM Lead Line: 4,7 PE	Height:			
Sim Lead Line. 93.9 ; C	Source:	· · · · · ·	Recovery Measurements (prior to cuts)
-			• <u> </u>	•
Core Collection Recovery Details:				
Core Accepted: Yes / No				
Core Tube Length: 15 ft				[
Drive Penetration: 76.97				
leadspace Measurement: 9.03	ŀf	_		
Recovery Measurement: 5, 12 11	<u>į</u>			
Recovery Percentage: \$6%	L	==		
Total Length of Core To Process: 5.	<u>~ 14</u>	[2		
Total Lenginor Core To Flocess. 5.	<u> </u>	— -		
	1 - 11 1	Lien Met Hurd		
Drive Notes: prove well to	<u>~ 6.) +t. 1</u>	hen Met F		
hard material core stor	oped adva	cini. Shan		
	in cole she		5]] [] [
ranea core apri e most	IVI COIC SAC			
			Sectio	ns To Process:
			A:	
	·			
			B:	· · · · · · · · · · · · · · · · · · ·
			• <u> </u>	
	ntion'	Sediment type, moisture.	, color, minor modifier, NAJOR modifi	er, other constituents,
Core Field Observations and Descri	puon	odor, sheep, lavering, an	oxic laver, debris, plant matter, shells	biota
Core Field Observations and Descri		, odor, sheen, layering, an	oxic layer, debris, plant matter, snells	, biota
Core Field Observations and Descri		. odor, sheen, layening, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, sneiis	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, sneiis	, biota
Core Field Observations and Descri		. odor, sheen, layering, an	oxic layer, debris, plant matter, sneiis	
		odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, blota
		odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota
		. odor, sheen, layering, an	oxic layer, debris, plant matter, shells	, biota

.

		Collection Log
Job: 1000 dren Shelfon	Huber	Station ID: SH-14 (AB)
Job No: 10008-01.01		Attempt No. 2
Field Staff: ND EP. HS		Date: 8/8/2017
Contractor: M55		Logged By: EP
Vertical Datum: MLLW		Horizontal Datum: NGS 84
Field Collection Coordinates:		
Lat/Northing:		Long/Easting:
A. Water Depth E	3. Water Leve	Measurements C. Mudline Elevation
· ·	ime: 145	
		4 FT
	ource: NVN	A SHE LTUN, Recovery Measurements (prior to cuts)
-	UNH-LAN	P BA-
Core Collection Recovery Details:		
Core Accepted: Yes / No		
Core Tube Length: 5'0"		
Drive Penetration: 41 211		
Headspace Measurement:		
	SING LOST	2" []
Recovery Percentage:	1110 0021	<u>ج</u> ا
Total Length of Core To Process: 2' 11"		
Drive Notes:		
	ANICE AF	
EASY DRIVE WITTL DESIG	HNCL M	
		Sections To Process:
		A:
	······································	
······		
	· · · · · · · · · · · · · · · · · · ·	D;
Core Field Observations and Description:		Sediment type, moisture, color, minor modifier, MAJOR modifier, other constituents,
		odor, sheen, layering, anoxic layer, debris, plant matter, shells, blota
······································		
······································		
	<u> </u>	
		an a
· · · · · · · · · · · · · · · · · · ·		
Notes:		
	1 Acres 14	CLAMPIN, In. JP. L
TO POST OFF OFF BOILD	VI DUKIN	G CAPPING, lengthe to provess 2.111"
PISTON LOPE		~ 1
	_	

13.9

V OEA CON Sedi		Station ID: 🤇	4	∆ / È `	١			Page $\int of 2$	
JOD: CHELTON HAPBOR		Station ID: Station	<u>-1-1</u> ,	4 CR)			~	
Job No:		Attempt No.	1 1 1	-1				- 1	
Field Staff: NP, IEP, HS Contractor: MSS	_	Date: U, U	<u>101</u>					-	
		Logged By: H		1				-	
Vertical Datum: MLLW	- .	Horizontal Datu	m:	WGS				-	
Field Collection Coordinates:									
Lat/Northing:		Long/Easting:						-	
A. Water Depth	B. Water Lev	el Measurements		C. Mi	ıdline E	levatio	n		
DTM Depth Sounder:	Time: 14-20				14.5				
DTM Lead Line: 13,1 FT					1.1	<u> </u>		-	
DTWLEau Line. 17,1 PI	Height: - <u><u>N.</u>Q.</u>	A CHELTINE		Rocov		acurom	ents ['] (prio	to cute)	
		A GHELTON,		INCLUY	CI Y 1010	asuiciu	cius (huò		
Core Collection Recovery Details:	UAKL	NND BAT		†	()	1		UASITE	50
						•		WASH 6	A IS
Core Accepted: (Yes) / No					2			WATE	<u>،</u> :
Core Tube Length: 50		-		•				+21	
Drive Penetration: 9'01'		-						ΤĽ	
Headspace Measurement: $\gamma' \gamma'$		-				ŧ			
Recovery Measurement: 31 31		_							
Recovery Percentage: 151.			Core Tube Length	1		1			
Total Length of Core To Process: 3 0	1	-	Š	Ē					
		-	5	5	3				
Drive Notes:			9					1	
	· · · ·		5					[
EAGY DRIVE MORE REC	SISTANCE		Įğ						
TOWARDS BUTTOM			101			1			
						Ş	ections T	o Process:	
						A: '			
·····									
						,			
				4		<u>C:</u>			•
				_		D;			
Core Field Observations and Description	on:	Sediment type, moist							
		odor, sheen, layering	, anoxi	ic layer, d	ebris, pla	nt matter	shells, biol	â	
	·····	<u></u>							
		·····		• •					
								·	
	· · · · · · · · · · · · · · · · · · ·								
	enth to	novess -	 						
FOR THE FORTSTRIL L	eryth to	pricess	3'						
Notes: FOR FIFTINGSTRY L PISTUN LUPE	eryth to	pricess	3 [†]						
FOR THE FORTSTRIL L	eryth to	pricess	3'						

Vertical Datum: MLLW Horizontal Datum:: V/05 24 Field Collection Coordinates: Long/Easting: 123' 05 54142 W A. Water Depth B. Water Level Measurements C. Mudiline Elevation DTM Depth Sounder: - Height: -0.5 FT DTM Lead Line: Q:12 FT Height: -0.5 FT Core Collection Recovery Details: Source: Recovery Measurements (prior to cuts) Core Collection Recovery Details: Core Tube Length: 15.4 FT Drive Penetration: 0.0 FT Height: -0.0 FT Headspace Measurement: 0.4 FT FT Recovery Measurements (prior to cuts) Drive Penetration: 0.0 FT FT FT Drive Notes: - FT - - Drive Notes: - Difference Difference Difference Core Field Observations and Description: Sections type, molsture, color, minor modifier, MAJOR modifier, other constituent (odor, shean, layering, anode layer, debris, plant mater, shels, blota Sulf: DetwEEN SECTION Sections	Field Collection Coordinates: Lat/Northing: 4] * 1 2 . 4154 * N A. Water Depth B. Water Level Measurements DTM Depth Sounder: Time: DTM Lead Line: 9, 2 FT Height: - 9.3 FT Source: No A SHELTPN, Core Collection Recovery Details: Core Accepted: Core Collection Recovery Details: Extended to the second	Job: SHELTON HARBOR Job No: 110000-01 01 Field Staff: NB, EP,HS Contractor: MGS	Station ID: SH Attempt No. ン Date: ジークーン Logged By: トー	2017	Page <u>2</u> of
DTM Depth Sounder:	DTM Depth Sounder:	Field Collection Coordinates: Lat/Northing: 4구° 12.475년원 1			_
Core Collection Recovery Details: Core Accepted: (e) / No Core Tube Length: 15.4 Drive Penetration: 0.0 Recovery Measurement: 0.4 Penetration: 0.0 Total Length of Core To Process: 0.0 Drive Notes: 15 Drive Notes: 15 Core Field Observations and Description: Sections to process: Sections to process: 0.0 Drive Notes: 0	Core Collection Recovery Details: Core Accepted: (is) / No Core Tube Length: 15.1 FT Drive Penetration: 0.0 FT Headspace Measurement: 0.4 FT Recovery Measurement: 0.4 FT Recovery Percentage: 0.0 °1. Total Length of Core To Process: 0.0 FT Drive Notes:	DTM Depth Sounder: DTM Lead Line: 9, 2 FT	Time: 1405 Height: -0.3 Ft Source: NCAA SHELTON,		- r to cuts)
A: 0-3 FT B: 3-6 FT B: 3-6 FT Core Field Observations and Description: Sediment type, molsture, color, minor modifier, MAJOR modifier, other constituent odor, sheen, layering, anoxic layer, debris, plant matter, shells, biola SILT BETWEEN SECTIONS A:3 B	A: 0-3 FT B: 3-6 FT B: 3-6 FT Core Field Observations and Description: Sediment type, molsture, color, minor modifier, MAJOR modifier, other constituent odor, sheen, layering, anoxic layer, debris, plant matter, shells, biola SILT BETWEEN SECTIONS A:3 B	Core Accepted: (es) / No Core Tube Length: 15.4 FT Drive Penetration: 20.0 FT Headspace Measurement: 20.6 FT Recovery Measurement: 20.4 FT Recovery Percentage: 2.0 % Total Length of Core To Process: 2.0		Core Tube Length	
SILT BETWEEN SECTIONS ASB	SILT BETWEEN SECTIONS ASB				Dragon
		Core Field Observations and Descriptio		A: C3 B: 3-6 C: D:	FT FT

Job: Shelton Herker	Station	1D: 5H - 22		1
Job No: 10008-01.01	Attempt			
Field Staff: N.B. 1/5, E.P.		19/2017		
Contractor: MSS		ву: Ер	,	
Vertical Datum: MLLW		tal Datum: NOS もり		
				l
Field Collection Coordinates:		- 1	- 1	
Lat/Northing: 47° 12.482241/	Long/Eas	sting: 123° 05,20305	W	
A. Water Depth	B. Water Level Measur	rements C. Mudline Elev	ation	
DTM Depth Sounder:	Time: //04	0.6 F		
DTM Lead Line: 6 3 FT	Height: U.9 FF		<u>*</u>	
<u></u>	Source: NOAA SHE	LTON, Recovery Measur	ements (prior to cuts)	
	GALLANDE			
Core Collection Recovery Details:				
Core Accepted: Yes / No				
Core Tube Length: 15 F4	<u></u>			
Drive Penetration: 1(P+				
Headspace Measurement: 5.08				
Recovery Measurement: 9.92				
Recovery Percentage: 10%	·/			
Total Length of Core To Process: 9,5	<u>t</u>			
Drive Notes: Houd at the to				
down to ~ 10 ft. Dwni	p returned told			
	p retrieval bold	Core Tube Length		
down to ~ 10 ft. Dwne	p retrieval bold			
down to ~ 10 ft. Dwne	p retrieval bold	 _	Sections To Process-	
down to ~ 10 ft. Dwne	p retrieval bold		Sections To Process:	
down to ~ 10 ft. Dwne	p retrieval bold		A: U-4 At	
down to ~ 10 ft. Dwne	p retrieval bold		a: U-4 ft B: 4-9.5 ft	
down to ~ 10 ft. Dwne	p retrieval bold		A: U-4 At	
down to ~ 10 ft. Dwne	p retrieval bold		a: U-4 ft B: 4-9.5 ft	
down to ~ 10 ft. Dwne	n: Sediment by	ype, molsture, color, minor modifier, MA.	A: U - Y At- B: Y - G. S At- C: D: JOR modifier, other constituents,	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ If I above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to ~ 10 ft. Dwni unt: 1 ~ 1 ft above mud	n: Sediment ty	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to m 10 ft. Dwni until m 1 ft above mud Core Field Observations and Descript Lost above 2 inches ou	p retrieval told ie then stiff. m: Sediment by odor, sheen i of the bothan o	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	
down to m 10 ft. Dwni until ~ If t above mud Core Field Observations and Descript Lost above 2 inches ou	p retrieval told ie then stiff. m: Sediment by odor, sheen i of the bothan o	vpe, molsture, color, minor modifier, MA.	A: $U - Y + F_{-}$ B: $Y - Q$. S. f_{+} C: D: IOR modifier, other constituents, Iter, shells, blots	·

.

Job: CHELTBM HAPDOL2 Station ID: CP1-26 Page 1 ar 2 Job No: 1(0002-01 0) Attempt No. 1 Date: 1(2002-01 0) Field Staff: ND: EP.KG Date: 2/10 1 2 411 Date: 2/10 1 2 411 Contractor: My55 Uogged By: H35 Horizontal Datum: VV 05 0-4 Verticel Datum: MLLLV Horizontal Datum: VV 05 0-4 Horizontal Datum: VV 05 0-4 Field Collection Coordinates: LatMonthing: 41*12-2-0 Contractor: My55 A. Water Depth B. Water Level Measurements Time: 12-00 C. Mudline Elevation DTM Lead Line: [1-1 FT Hoigh: 0-1 FT Recovery Measurements (prior to cuts) Core Collection Recovery Details: Core Accepted: Vse / M00 Recovery Measurement: 1.5 FT Recovery Measurement: 1.5 FT FT Recovery Measurement: 1.5 FT Sections To Proceas: Drive Notes: 7.5 C FT Sections To Proceas: B. Core Field Observations and Dascription: Sedenect type, mobility, cubits, plan mater, shells, bios Sections To Proceas: Core Field Observations and Dascription: Sedenect type, mobility, dubris, plan mater, shells, bios Di Core Field Observations and Dascription: Sedenect type, mobility, dubris, plan mater, shells, bios Di Motes: </th <th>V ANCHOR QEA SEE Sedin</th> <th>nent Core Collection Log</th> <th> </th> <th>Page L of 2</th>	V ANCHOR QEA SEE Sedin	nent Core Collection Log		Page L of 2
Lad/Northing: 4]1 12.2-24 Julk Long/Easting: 12.3° 0.5 (12.53 W) A. Water Depth B. Water Level Measurements C. Mudline Elevation DTM Lead Line: [1.7] FF B. Water Level Measurements C. Mudline Elevation Time: 1/2.0° -5.0 FT Recovery Measuremonts (prior to cuts) Core Collection Recovery Details: O/A+LAND CA-1 Recovery Measuremonts (prior to cuts) Core Collection Recovery Details: O/A+LAND CA-1 Image: Core Tube Length: Image: Core Tube Length: Core Collection Recovery Details: Core Tube Length: Sections To Process: Image: Core Tube Length: Orive Details: Gore To Process: Image: Core Tube Length: Image: Core Field Observations and Description: Sections To Process: Orive Notes: Sections and Description: Sections there, notifier, abbr constituents, addr, eben, laying, anoxie layer, debris, plant matter, shells, bota Core Field Observations and Description: Sections there, notifier, debris, plant matter, shells, bota Voites: Voites: Sections To Process:	Job No: 10006-010 Field Staff: NB, EP, HG Contractor: MSS	Attempt No. Date: 8/10 / 2017 Logged By: HS		rage <u>1</u> of <u></u>
A: B: C: D: Core Field Observations and Description: Sediment type, moleture, color, minor modifier, MAJOR modifier, other constituents, odor, sheen, layering, anoxic layer, debris, plant matter, shells, biota	Field Collection Coordinates: Lat/Northing: 41 12.3966 N A. Water Depth DTM Depth Sounder: DTM Lead Line: 11.7 FT Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: 15 FT Drive Penetration: 4.2 FT Headspace Measurement: 11.5 FT Recovery Percentage: 9.37. Total Length of Core To Process: Prive Notes: 9.10 F F12-EEFALL ABCMT	Long/Easting: 123° (B. Water Level Measurements C. Time: 1200 Height: 6.1 FT Source: NUMA SHELTON) Re OAKLAND BAH 11 4.5', PEMETRATION 8	Mulline Elevation -5.6 = T ecovery Measurements (prior	to cuts)
odor, sheen, layering, anoxic layer, debris, plant matter, shells, biola			A: B: C:	Process:
	Core Field Observations and Description		ninor modifier, NAJOR modifier, oth er, debris, plant matter, shells, biota	er constituents,
		I VF SHOE		

.

V. ANCHOR OEA	nent Core	Collection Lo	og	Page ↓ of <u>2</u>
Job: GHEU ON HALBOK Job No: 110008-01.01 Field Staff: NB, EP, HG Contractor: MCG: Vertical Datum: NGS MUW	- - -	Station ID: SP(-2) Attempt No. 1 Date: 20/0/201 Logged By: FKS Horizontal Datum: N	1	
Vertical Datum: VES MILW Field Collection Coordinates: Lat/Northing: 47.12.4090N A. Water Depth DTM Depth Sounder: DTM Lead Line: 10.7 PT Core Collection Recovery Details: Core Accepted: Ves / Vo Core Tube Length: 15.0 FT Drive Penetration: 14.0 FT Headspace Measurement: 5.4 FT Recovery Measurement: 5.4 FT Recovery Measurement: 9.6 FT Recovery Percentage: 447-15 Total Length of Core To Process: Drive Notes: 1 FT OF FP-EEFALL BEFT MATERAL	Time: 1140 Height: 5.0 Source: Ni NA CAFLAND	Long/Easting: 123"	04.98439 C. Mudline Ele 	vation
			-	Sections To Process: A: B: C: D:
Core Field Observations and Description	1:	Sediment type, moisture, co odor, sheen, layering, anox	olor, minor modifier, M ic layer, debris, plant r	AJOR modifier, other constituents,
Notes: GIVI IN STIDE				· · · · · · · · · · · · · · · · · · ·

.

•

	Pag	e⊥ot∠
Job: He Shelton Habar	Station ID: 5H-22	
Job No: 1/0008-01.01	Attempt No. 1	
Field Staff: NB, HS, EP	Date: 8/9/2017	
Contractor: M3S	Logged By: É P	1
Vertical Datum: MLLW	Horizontal Datum: WGG @イ	
Field Collection Coordinates:		
Lat/Northing: 470 124 9125 N	Long/Easting: 123° 05.20319W	
A. Water Depth	B. Water Level Measurements C. Mudline Elevation	
DTM Depth Sounder:	Time: 1100 0.5 FT	
DTM Lead Line: M.Y. PE	Height: U-4 FT	
	Source: NUAA SHELTON, Recovery Measurements (prior to c	ute)
	DARLAND BA-	
Core Collection Recovery Details:		
Core Accepted: Yes //No		I
Core Tube Length:		
Drive Penetration:		
Headspace Measurement:		I
Recovery Measurement:		
Recovery Percentage:		
Total Length of Core To Process:	I, Lefusal ut loo	
Drive Notes: ~10" of free fall	1. Cotusal wt 3 4	
10%		
	Sections To Pro	cess:
	<u>A:</u>	
· · · · · · · · · · · · · · · · · · ·		
	C:	
	C: D:	
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents,
Core Field Observations and Descriptio	C: D:	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents,
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents,
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents,
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	nstituents.
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
Core Field Observations and Descriptio	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	
	Dn: Sediment type, moisture, color. minor modifier, MAJOR modifier, other co	

.

	ment Core Collection Log	of <u>2</u>
JOD: SHELTON HARBOR	Station ID: SH-19	
Job No: 110000 -01 01	Attempt No. (Í
Field Staff: NB, EP, HS	Date: 9/9 2017	
Contractor: MSS	Logged By: HS	
Vertical Datum: MLLW	Horizontal Datum: WOS RA	
Field Collection Coordinates:		
LavNorthing: 47° 12.47097 N	Long/Easting: 123 05 54731 W	
A. Water Depth	B. Water Level Measurements C. Mudline Elevation	
DTM Depth Sounder:	Time: 1335 - 6.1 FT	
DTM Lead Line: 9.1 FT	Height: 0.4 FT	
3	Source: NOAA, SHELTON, Recovery Measurements (prior to cuts)	
	OAKLAND BAY	
Core Collection Recovery Details:		
Core Accepted: Yes (No)		
Core Tube Length: 15 FT		
Drive Penetration: 3, 1 FT		
Headspace Measurement:		
Recovery Measurement:		
Recovery Percentage:		
Total Length of Core To Process:		
Total Length of Cole To Flucess.		
Drive Notes:		
Drive Notes:		
	Š	
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	O	s:
· · · · · · · · · · · · · · · · · · ·		:s:
· · · · · · · · · · · · · · · · · · ·	Sections To Proces	·s:
· · · · · · · · · · · · · · · · · · ·		.s:
		:s:
		is:
Core Field Observations and Descriptic	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
Core Field Observations and Description	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
SANDA GRAVEL	Sections To Proces A: B: C: D: D: Sediment type, moisture, color, minor modifier, MAJOR modifier, other constit	
SAND 9 CPAVEL	Sections To Proces A: B: C: D: D: D:	
	Sections To Proces A: B: C: D: D: D:	
SAND 9 CPAVEL	Sections To Proces A: B: C: D: D: D:	
SAND 9 CPAVEL	Sections To Proces A: B: C: D: D: D:	

V ANCHOR OEA	ment Core	e Collection Lo	og (Page 1 of 4
Job: Shelton Havlan		Station ID: SH-0	3	Page <u>/ 01 </u>
Job No: 11003-01.01	_	Attempt No.		- .
Field Staff: NB. HS. EP	_	Date: 8/4/ Co17		_
Contractor: 1153	_	Logged By: EP		-
Vertical Datum:	_	Horizontal Datum:		_
	-	Honzontal Datani,		-
Field Collection Coordinates:		,		
Lat/Northing:	-	Long/Easting:		-
A. Water Depth	B. Water Lev	el Measurements	C. Mudline Elevation	
DTM Depth Sounder:	Time: Cuten	₽ C×103		
DTM Lead Line: 7,4	Height:		<u></u>	-
	Source:		Recovery Measurements (prio	r to cuts)
			· · · · · · · · · · · · · · · · · · ·	,
Core Collection Recovery Details:				
Core Accepted: Yes / No				
Core Tube Length: 15++		-		
Drive Penetration: Y.18ft	···##	_		
Headspace Measurement: 11.25		_		
Recovery Measurement: 3,75		·		
Recovery Percentage: \$ 90%		뛾		
Total Length of Core To Process:				
Drive Notes:		13		
~2 the of free fall, sifte	is ten wi	1		
	A TOP WI			
stiff material below. Ht	Pelastan			
Still marter af from - 2 to	.4. PE . Cos	e castele		
empta but closed w/cles	v mater	MARLE	Sections T	o Process:
ant end of ave tube				
			<u>A:</u>	· · ·
			<u> </u>	
			D:	
Core Field Observations and Description	1:	Sediment type, moisture, co	lor, minor modifier, MAJOR modifier, of	her constituents.
		odor, sheen, layering, anoxid	o laver, debris, plant matter, shells, blot	a
Egg After opening corre,	mix of	shell high wa	nd in ~ 50% file	s l
		,	/	
······	······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			·	
·			-	
				[
Notes:			· · · · · · · · · · · · · · · · · · ·	
and Ct 1/1 M	1	6 1	clear cheen, Reject corr .	, I
* 2 to the Water Aber	hy out o	st come tabe	Geen, Reject Core a	š1e(
check material	<u> </u>		į.	1
	<u></u>	·······		

.

47° 12.75114 N 123° 05.40605W

V ANCHOR Sedi	ment Core	e Collection Lo	og $Page \ge of \frac{4}{2}$
Job: Shelfon Harbon Job No: 11000 5 01.01 Field Staff: 1/15 HS. EP		Station ID: SH-0: Attempt No. 2 Date: S/4/2017	
Contractor: <u>M55</u> Vertical Datum:		Logged By: EP Horizontal Datum:	······································
Field Collection Coordinates:		Long/Easting:	
A. Water Depth		vel Measurements	C. Mudline Elevation
DTM Depth Sounder: DTM Lead Line: 1277 7.7			Recovery Measurements (prior to cuts)
Core Collection Recovery Details: Core Accepted: Yes / No Core Tube Length: 15 Drive Penetration: 11.08 Headspace Measurement: 9.5 Recovery Measurement: 41 5.5 Recovery Percentage: 50% Total Length of Core To Process: Drive Notes: 1 of free fall, hu ART under, Core catebra Schall & glave!	vid nieterig	be Length	Sections To Process: A: B: C: D:
Core Field Observations and Descrip	lion:	Sadiment type, moisture, a ador, sheen, layering, and	color, minor modifier, MAJOR modifier, other constituents xic tayer, debris, plant matter, shells, blota
-	<u></u>		
			· · · · · · · · · · · · · · · · · · ·
	·		
· · · · · · · · · · · · · · · · · · ·			
Notes: (Joldhu			

47° 12,752071 123° 05 40867W

Job:		Station ID: SH-C	()'>	Page 🕇 of
Job No:		Attempt No. 3	<u> </u>	_
Field Staff:		Date:		
Contractor:		Logged By:		
Vertical Datum:		Horizontal Datum:		
			·····	
Field Collection Coordinates:				
Lat/Northing:		Long/Easting:		
• • • • •			·····	••••••
A. Water Depth		vel Measurements	C. Mudline Elevation	
DTM Depth Sounder:	<u>Time: [006</u>	2		
DTM Lead Line: 5.5'	Height:			
	Source:	·····	Recovery Measuremer	ts (prior to cuts)
Core Collection Recovery Details:			+ m l	
Core Accepted: Yes / No				
Core Tube Length: 15 ft			╎╎└─┘╎│	
Drive Penetration: 1.531	······································			
Headspace Measurement:	·····	_		
Recovery Measurement:			- ·	
Recovery Percentage:				
Total Length of Core To Process:		light		
Longitor Odia 10 1100ess.				
Drive Notes:] da		
	71	F		
115 IT THE HIL PACON				
	atered it	<u>64.369</u>		
early. Nothing in care cul	ter.	Core Tube Length		
1.5 A free fall, encour eavily. Nothing in care cut	ter.			
early. Nothing in care cut	ter.			None To Decessor
early. Nothing in care cut	ter.		Sec	ctions To Process:
early. Nothing in care cut	ter.			ctions To Process:
early. Nothing in case cut	ter.		Sec	tions To Process:
early. Nothing in case cut	ter.		Sec	ctions To Process:
early. Northing in care cut	ter.		Sec <u>A:</u> <u>B:</u> <u>C:</u>	tions To Process:
			Sec <u>A:</u> <u>B:</u> <u>C:</u> D:	· · · ·
		Sediment type, moisture, c	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec <u>A:</u> <u>B:</u> <u>C:</u> D:	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
early Nothing in care cut Core Field Observations and Description Munk of wind in botton	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen
Core Field Observations and Description	DN:	Sediment type, moisture, c odor, sheen, layering, anox	Sec A: B: C: D: Sec	odifier other constituen

.

•

173°0640516W

PROJECT: Shelten Harber	Log of Core No. 5H-19
CORE LOCATION: SH-19	ELEVATION AND DATUM:
CORING CONTRACTOR MSS (AQ)	DATE STARTED: 7 14 17 DATE COMPLETED: 7 14 17
CORING METHOD: Piston Coming	PENETRATION LENGTH: PERCENT RECOVERY:
CORING EQUIPMENT: PISton Core (AQ)	RECOVERED LENGTH: 59cm
SAMPLING METHOD: Cut Tyto Zcm slices	LOGGED BY: N. Bacher
CORE DIAMETER: 3" Poly carbungte	Notes:
E 3 SAMPLES NAME (USCS Symbol): color, moisture, plasticity, consistence reaction with HCL geologic interpretati	
SH-19-60- 0-12 wetterny, soft -	5 95 5 95
- SH-19-GED - Sand, 2 large OSBOSS of wood Mupp Scattered suis	2" pieces er 14cu, U bark
- fragments th SI. to med. Hz	remanst. Sodor
22-36 wet, gray shift	185th 90 10
	fu soud, w 3/4 1
76-44 vet, gray 517+ prod. April 1000000000000000000000000000000000000	9455 (UOS) 100 Band trus
Start mod. Plast. 40 Be scattered ve fragments.	-44 cm ed brute
74-52 upt, gray, san dense, frace	ut, most. 90 10
braniph red	Sovle fragments
52-39 wet, oxer dat nod. dense	Sand 10 90
fravel. 8 10% pen	Rivel., Marc Ablack wood from s.
Project No 110008 - 01.01	Page 1 of

PotreroCoreLog.xls

CORING CONTRACTOR MSS (AQ) DATE STARTED: 7/14/17 DATE COMPLETED: 7/14/17 CORING METHOD: Piston corre (AQ) PENETRATION LENGTH: PERCENT RECOVERY: CORING EQUIPMENT: Piston core (AQ) RECOVERED LENGTH: 80Cm EAMPLING METHOD: Cut Mto 2 cm slices LOGGED BY; N. Bacher CORE DIAMETER: 3" poly carbonate Notes: FIELD-ESTIMATED %	PROJECT: Shelton Harb	w T	L	og (of (Col	re N	No.	SH-22 #2
CONING CONTRACTOR MSS (AG) DATE STARTED: 7/14/17 DATE COMPLETED: 7/14/17 DOTING METHOD: PISTAN correct (AG) RECOVERED LENGTH: BOCM AMPLING METHOD: Cut MTD Zom Slikes LOGGED BY: N. Backer CORE DIAMETER: 3" poly carbonalc Note: SAMPLES DESCRIPTION MARE PECE Syndy contained and the completion of the start of the Contained and the start of			· · · · · · · · · · · · · · · · · · ·						
CONING METHOD: PISton coming penetration length: PERCENT RECOVERY: PORNAGE CUIPMENT: PISton core (AQ) RECOVERED LENGTH: 800 mg AMPLING METHOD: Cut net 2 cm slices LOGGED BY: N. Bacher OTHER DAMETER: 3" poly carbonistic Models consider Models SAMPLES MARE (BESS Syndy CON, MARINE, MARCH, CONSIDER, CONSIDER, MARCH, CONSIDER, M		40)	DATE STARTED:	7	14	17	- 0	ATE C	OMPLETED: 7/14/17
AMPLING METHOD: Cut noto 2 cm slicas LOGGED BY: N. Bacher DORE DIAMETER: 3" poly carbonate Notos: SAMPLES MUE (BCC Symbil: Control on Milling Control on Milling Control on Milling Multic Control on Multic Control on Milling Multing Multic Control on	CORING METHOD: Piston co	mine	PENETRATION LEN	IGTH:			P	ERCE	NT RECOVERY:
AMPLING METHOD: Cut noto 2 cm slicas LOGGED BY: N. Bacher DORE DIAMETER: 3" poly carbonate Notos: SAMPLES MUE (BCC Symbil: Control on Milling Control on Milling Control on Milling Multic Control on Multic Control on Milling Multing Multic Control on	CORING EQUIPMENT: Piston con	re(AQ)	RECOVERED LENG	TH: 1	T)ċv	4		
SAMPLES DESCRIPTION FIELD-ESTIMATED %. REMARKS AND / OR TEST RESULTS SH-22-6ED- OTOTOR 0-16 web, olivegray, Mod. S oft 0 0 0 0 0 0 0 TEST RESULTS SH-22-6ED- OTOTOR 0-16 web, olivegray, Mod. S oft 0 0 0 0 0 0 0 0 0 0 0 TEST RESULTS SH-22-6ED- OTOTOR 0-16 web, olivegray, Mod. S oft 0	SAMPLING METHOD: Cut nto	2 cm slices	LOGGED BY;	N.	Ba	ردل	er	****	
SAMPLES DESCRIPTION IMME NOCO Syndromic and adding consistency, and an one of the market is anony market, consistency, and a consistency and a solid adding adding the adding the adding add	CORE DIAMETER: 3" poly ca	obmate	Notes:						· · · · · · · · · · · · · · · · · · ·
SH-22-6E2- O-16 web, olivegray, mod.soft (10) 60 SH-22-6E2- 10 mod. H25 oder. 2.5" bark 078050 Frag @ 14 cm. 16-24 cm 65-75% bark 16-24 web, brownish gray mod. 16-34 web, brownish gray mod. 16-34 web, brownish gray mod. Cm stiff word bark fragments 34-60 web, brownish gray, mod. Cm mod. stiff, wood (bark frags) 34-60 web, brownish gray, mod. Cm mod. stiff, wood (bark frags) 05-95% bark fragments 34-60 web, brownish gray, mod. Cm mod. stiff, wood (bark frags) 05-95% bark fragments 34-60 web, brownish gray, mod. Cm mod. stiff, wood (bark frags) 06-85 M28% wood, - Cm mod. stiff, wood (bark frags) 06-80 web, olive gray, mod. stiff, cored through, trans. 0-80 web, olive gray, mod. stiff, 25% bark 60-80 web, olive gray, mod. stiff, 20 000 Cored through, to 1/2". Undu pl. frags, sl. H25 oder. Trace shell hash. Newse to 10% nord fram 75-80 cm.	SAMPLES NAI.1E (USCS Symbol): coor	, moisture, plasticity, consistenc		Gra	vel	5	Sand	- s	1
16-24 cm to5-75% bale (6-24 cm to5-75% bale (ragments, trace shell hish. 16-34 wet, brownish gray mod. em stiff word (bare frag.) 05-75% bale fragments 34-60 wet brownish gray, cm med. stiff, wood (bale frag.) (25-75% bale for bale for bale frag.) (25-75% bale for bale fo	-0000002-1 -1	trace bark " Non-pl. f oder. 2.5" (Fragments mes, 51.	-) 60	
CM Mod. Stiff, wood (bole timps) () 10 85 Mills 70 wood, (C 54-60 sand pocket, gray, wed_cr. sand. 4 2.5" S" large. gray, wed_cr. sand. Fraze shell hagh, Mod. Stiff, 60-80 wel, olive gray, mod. stiff, 51.4, 20-25% bol fragmanes to 12". Wou-pl. fries, sl. Hes odor. Trace shell hagh. Novese to 40% wood from 75-80 cm.	16-34 wet em stif	24 cm 65-7 Fragments, shell has brownish gro f word (trace h. w. mod. book frac	<u> </u>			6		25
Mou-pl. fries. sl. H2S oder. trace shell hash. Movese to 40% wood Frem 75-80 cm.		1d. stiff, we 54-60 sam 24, wed-cr trace shell Mcd-stren	d, d pocluty . sand. hagh, (H2S of	ings			2.5		
	- No - Tr	u-pl. fines. nce shell vese to 70%	sl. HgS de hagh.	ln.			20	69	
	<u> </u>		<u>l</u>	<u> </u>		1			

ob: Si				Station ID: SH - 14 - Geo (A)	×	a QEA と	<u> </u>
ob No			1.01	Date/Time: 918/17 8/9/17		. <u> </u>	
o, of S			<u> </u>	Core Logged By: 'Carey Traise A Attempt #: 1			
rive L lecove					racore	Diver Core	PISTRU
Reco	nverv	- 15 m	71	-76			
otes:			<u>-7.0</u>	Core Quality Good Fair	Poor	Disturbed	
8 Å	% Gravel	Sand	Fines	Classification and Remarks	Recovered Length (ft)	1 <u>a</u>	Summary Sketch
Kecovered Length	Ō	\$ \$	Ч К Г	(Density, Moisture, Color, Minor Constituent, MAJOR	N E	Sample	te ya
ğ Ğ	9	Size '	Size	Constituent, with Additional Constituents, Sheen, Odor)	Sec.	۳ N	Sun
ᆇᆈ╽	Size	ŝ	l is	· · ·			
	\mathcal{O}	15	85	0-39 DR Clive Grey, roist, low plast silt		SH-14-GE	0-000-00
	\mathcal{O}	1.1	7 (1)	0-39 DR Clive Grey, Foist, low plast. silt cm soft, sl. shell hash wood Fry & 26 cm, thom performance 3 cm long	┝╴╼┤	SH - 14 - GE	2.002.0
				soft sl. shell hash			
\mathbf{F}				unal By a 26 cm that art			
				www fry a no cri fino ne			
		ļ) cun luag			
υĘΙ				V			
∕⊢–∖							
<u> </u>							
4-1							
_⊑⊣	·	L	~	34-88 olive grey, moist wit, silt			
<u> </u> -	Õ	10	10	SI-00 var fill have here			
۲Ŀ				en d'huld al la			
14				cm 5% shell hash throughout soft to mod, firm, low plasticity	\vdash		· •
		ļ		soft to mode firm. low plasticity			
				· · · · · · · · · · · · · · · · · · ·	-		
ି⊢−				@ 50 word frequent, 1 cm long			
				fren frend i			
,–							
š E I							
					\vdash		
-							
٥L							
				@ 90 wood fragment, 6 cm long	\vdash		
°┣			ļ	@ 10 wood tragment, 6 cm long	┝		
ΓI		ŀ			\vdash		
` 							
FI			·		⊢		
			1				1

Page____of ____

		on Har		Station ID: 5/イー0.3 -	1	-7	QEA Z	\mathbb{Z}
		0008-	01.01	Date/Time: 8/09/17 1200				
	Sect			Core Logged By: Caser Junix h				
	Leng /ery:		\$ 7 (
			8	Type of Core Mudmole Vib % Dlameter of Core (inches) 4	elozer		Diver Core	
otes			<u> </u>	Core Quality Good Fair	Poor		Disturbed	
	1	1	1		1 00/		Distarbed	
Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Molsture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	QIA	Sample	Summary Sketch
	0	15	85	0-3.75 Wet, mod. soft, gree silt. sl. shell hush. low plasticity Suffer smell present. to med. © 0.7 wood dobti fragment 1.4 to 3.75 mixed wood fragments 25% to 35% 2-2.1 Wood Program			5H-03-00 5H-03-1,	
		60	40	2.5 Wood Fragment 12.5 Wood Fragment 2.5 Wood Fragment 2.5 Wood fragments, 0.05-inch thick gray: wet. 2.5 Wood Fragments, 0.1-inch thick, black				
	5	70		3.75 10 5.5 S. Ity Sand, mode dense med to fine stand, sub-angular, small amount of gravel, rounded. Grey sand and cill, moist			SH • 03 - 3.75 - 4.6	
	5	85	10	4.6 - transition of silty sand to more SAND, DENSE, course to med sund.			5H-03 - 4.6-56	

Job. Si Job No	101101			Station ID: $3H - 03$ Date/Time: $8/07/17$ [200				
No. of S			110 /	Core Logged By: 01				
Drive L			6.	Attempt #:			<u> </u>	
Recove	ery:	5.6			racore		Diver Core	
% Reco	overy:	9	812	Diameter of Core (inches) 7 Core Quality Q60d Fair	Poor		Disturbed	
Notes:				Core Quality Qood Fair	100	,		
D C	ivel	P	es		t) ed		ർ	2
Recovered Length (ft)	0 G	% Sand	Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR	Recovered Length (ft)	뎹	Sample	Summary Sketch
ngt co	%	% e	%	Constituent, with Additional Constituents, Sheen, Odor)	eco	۵.	Sar	ng X
Le &	Size % Gravel	Size	Size		8 7			v
5-		85	10					
· F	٦.	02	\mathcal{O}		-			
El					F			
╌듸				@55 and start and & i was	, 			
╶╆╌╢				@ 5.5 sand w/ s.ct, small & of gruve transition to brown, sub-angular; danse, noist	Έ			
				transition to brown, sub-angular;	┢			
$\left - \right $				dense moist				
					F			
		:			┣-			
					F			
		:			E			
					<u> </u>			
					F			
F					-			
$\left \right $								
L					 			
- ·					E			
E					F			
					┢			
					\vdash			
-					E			
L				· · · · ·				
-					\vdash			
F					F			
F					┢			
E			1		F			
F					+			
┢						1		
					·			
-			1		F			
H-		I	1		Г	1		

.

Job: S Job Ne				<u>Station ID: SPI-31-5C</u> Date/Time: 08/09/17 152	*	<u>_</u>	QEA 😆	<u>~</u>	-
No. of	Secti	ions:	2	Core Logged By: Caller Trasch)				-
Drive I	Lengt	h: 1	614	<u>ft Altempt #: 1 2</u>			<u></u>		1
Recov		11.3			bracore		Diver Core]
% Rec Notes:		<u>': 81</u>	10	Diameter of Core (inches) Core Quality Good Fair	Poor		Disturbod		4
10:00.							Disturbed		<u> </u>
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	Qid	Sample	Summary Sketch	
	Ö	5	95	0-0.5 Very Soft, Wet, dk grey Silt, presence of organics, Silt, no plust.			517-31-50 0.2-1708	- p?	
	δ	10	90	0,5 - 3,0 soft to m sult alk alive gre silt, presence of wood Fraimonts, slight southin odor; low to mod plaiticity. 30-35% wa					
				@ 1.4 -> 0.4 Ht wood Frayment		*			
				is 2.1 well Programments			SPZ-31-52	-2-3-	120307
	0	10	90	5-10.4 m. soft to firm, olive grey silt, low to mall plasticity. presence of syster shells			577-31-50 3-5-170869		
			1	4.5 to Oyster shells 484					
>				Ur cont. on lg 2	Page	1	of _2		

Shelton Harl	oor	Station ID: $SPT = 31$	×	, QEA	$\overline{}$
No. 110008-0	1.01	Date/Time: 07/09/17			
of Sections:		Core Logged By: CT			
e Length: 🌈		Attempt #: 2	racore	Diver Core	_
overy: 11.3		Type of Core Mudmole Vib Diameter of Core (inches)	I duure	Diver Core	
ecovery: <u>8/9</u> es:	<u> </u>	Core Quality Good Fair	Poor	Disturbed	
Lengun (π) Size % Gravel Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	PID Sample	Summary Statch
_				SPI-31-5C-	
-			-	5-7-17070	9
					•
-			—		
-			┣ ┃		
-		Same, mod. Firm, olive grey			
-		7 <i>st</i>	-		
- '					
	1				
-		@G.7 Oyster shells	ΕI		
	1			·	
-					
-				STI-31-50	
-				7-9-140	
-				,	
-					
-	1				
- - ·	1 ·				
-					
-					,
	1	· ·			
-					
-					
-		eq.1 Oyster shells		31º I - 31 - 5C	~
			-	9-10-1708	
-					L, r
-					
-			\vdash		
-					
<u></u> ~^				2 . 1	
- 10.4	En	1	Page_	2 of 2	

.

.

and system Noted Price

.

		n Har		Station ID: -5-FI-22_5H-22	· ¥		QEA 😂	z
		0008-0		Date/Time: 09/09/17				
		ons:		Core Logged By: Carey Jenisch				
		h: 11-		Attempt #: <u>1 2 '</u>				
		6.44			racore		Diver Core	
tes:		1: 90	70	Diameter of Core (inches) 4				
nes.				Core Quality Geed Fair	Poor		Disturbed	
Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	OId	Sample	Summary Sketch
	Ö	5	95	0-05 Soft, Wet, dk grey silt, wood Progments 25%, Sulfur Quar			SH-22-6 00-02-	
, 	0	1		0.5 - 1.7 Mod. Astiff, dk olive grey silt				
				Wood Fragments throughout including not				-
	Ů	25	7.5	1,7-62 mod. soft olive grey s'lt, wel slight shall hash throughout 5% presence of more sound, much to fine, sub-angular, slight presence of wood frogmonts				
				0)37 Shell layer, whole unit pieces 50-60% for 0.2 ft			V/	
-				4.2 to 50 intermittent course sand			SH-22-GE - 120-17	0809
				204.7 course sand particles, rounded		S4	54-22-66 3.1-4.2- -22-660	0 - 70807 - 4
	<u> </u>	<u></u>	<u>-</u>		Page_	1	of <u>2</u>	- <u>-</u> 72

Construction Print Inc. 1

.....

Job: Shelto			e Processing Log Station ID: 5H - 22	<u>×</u>	- 7 Q	EA #			
Job No. 11(0-8000	1.01	Date/Time: 08/01/17						
No. of Secti		<u>}</u>	Core Logged By: 27 Attempt #: 4 2						
Drive Lengt Recovery:	1.4.	<u>t</u>	Type of Core Mudmole Vibracore Diver Core						
% Recovery	r. 40°/	<u>ب</u>	Diameter of Core (inches) 4			Vieturbod			
Notes:			Core Quality Good Fair	Poor	L	Disturbed			
Recovered Length (ft) Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	DIA	Sample	Summary Sketch		
5-	1		Same, see prev. sheet						
E.				F					
-									
				F					
F									
				-					
	5	95	6.2-9 grew w/ Grown, mod. stiff, wet, silt w/ clay, slight shell and would fragments						
E 0	10	12	the set alay						
			Wely sin of cy i						
			slight shell and would Fragments						
			25%	F					
7			~ , V ,						
				-					
				E					
			@ 77 would Alagment	F					
				-					
8									
				E					
				F					
				\vdash					
				F					
4	-	+	End of Simple						
				F] [
				┣-					
Ⅰ									
				F	<u> </u>	<u></u>			
	<u> </u>					of _2_			

No. 110008-01.01 Or Sections: We Length: Addre 4.2 ft covery. Addre 5. ft covery. Addre 4.2 ft covery. A	ob: 5	Shelto	n Harl	лог	re Proces	Station ID: SH) (B)	$\mathbf{\hat{v}}$	Ľ	ANCH QEA 😂	OR	
covery: brown is if if is the covery of t	o. of	Secti	ons:		4.2.44	Core Logged By:		51					
Constituent, with Additional Constituent, MAJOR (Density, Moisture, Color, Minor Constituent, MAJOR (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor) 0 10 90 0-30 507, wet, dk brown grey silt st. stalfur odor, no Alesticity, sume shell Projuents in top 10 cm 0 30 = n wild fragment, 6 cm wide, redish brown oolor 0 46 cn whole fragments, number of the sh 0 5 95 50 - 88 cm mod. stiff, wet, olive grey, sitt w/ clay st. shell Ansk throughout, low 6 m. plasticity 0 76 cm whole elam 0 76 cm whole elam	ecov Rec	/ery: covery	2069 1	61 74	3.1 Ft	Type of Core Diameter of Core	(inches) 3			·		Pistar	Core.
0 5 95 95 507 wet, dk brown grey sjilt 0 10 90 0-30 507, wet, dk brown grey sjilt st. sulfur oder, no plasticity; some shell hojments in top 10 cm $0 30 en wood fragment, 6 cm wide, redish brown color 0 46 en wood fragments nd shell hash0 5 95 50 - 88 cm mod. stilf, wet, olivegrey, sitt w/ clay st. shell hash throughout, 10w 6 m. plasticity 0 76 cm whole clum0 76 cm whole clum$, ,	1	1 -	<u>ngred 0/00</u>	Core Quality	6000	Fair	1 1		Disturbed		
© 30 cm wood fragment, 6 cm wide, redish brown color 0 46 cn wood fragments and shell hash 0 5 95 50 - 88 cm mod. stiff, wet, olive grey, sitt w/ clay st. shell hash throughout, low 6 m. plasticity @ 76 cm whole elam SH-14-GEQ-	Length Art	Size % Grav		Size %	Constituent	loisture, Color, Minor with Additional Const	Constituent, Mi ituents, Sheen	, Odor)	Recovered Length (ft)	PID	Sample	Summary Sketch	
- F 6-88-170810				95	© 30 cm redi © 46 cn wa 50 - 88 grey, sl. she plastici	wood fragment, sh brown solur od fragments m cm mod. sti sitt w/ chy Il hash throu	6 cm w d shell ha ff, wet,	ide, sh olive			0-2-170	\$7/0	

lob: S	heltor	Harb	or		Station ID: JH	-19-GEO		- *	~7	QEA 😂	
ob. O					Date/Time: 08/						
		ons: 2	_		Core Logged By:	Cased Ja	also h				
Drive L				<u> 3 4 – – – – – – – – – – – – – – – – – –</u>	Attempt #: 2				-		
Recove				5.4.14	Type of Core	Mudmole	Vibs	eore	<u> </u>	Diver Core	
% Rec					Diameter of Core						
Votes:		<u>. a</u> u	70		Core Quality	6009	Fair	Poor		Disturbed	
				 			· · · · · · · · · · · · · · · · · · ·				
7 0	ভ	g	ŝ					υ			
erec (#	Gravel	% Sand	Fines		Classification and	Remarks		ere E	~	e e	Summary Sketch
gth Ø	%	8	8		, Moisture, Color, Minor			š B	입습	Sample	ummar Sketch
Recovered Length (ft)	Size 9	Size	Size	Constitue	nt, with Additional Cons	tituents, Sheer	ı, Odor)	Recovered Length (ft)		Ŭ	l ng
ጨጋ	Siz .	N I	S		۱.						
	Q	15	<u>УГ</u>	0.11 0	14 4 -1-		. d				1
		15	05	V-1-1 30	oft, wet, oli	ve grey s	en,	\vdash			
				HUDDA	Prisonante areas	at il	A- t- A	⊢			
			. 1		l frugments press l + organics, sc	H . 1	1 C L	ΗI			
				5and	(+ organics, sc	xlerex arou	n Trymen Is				
					-						
								\vdash			
, -								\vdash			
E	0	40	60	11-1-	- NI	f	6 14				I
			60	11-15 1	n. soft, wet, e	ntive grey t	o dR gree	μl			1
				er)1	ith soul .	u la r	U.	\vdash			
		en		Sift	with sand, a Sand with silta	ngulu Ir		┝╾╴╽			
	15	90	5	15-22	tout with with	ed a could	disco	E I			1
				1.2 215	JANA WILL SHIL	an gruvel	VILVE				1
				w/y	elbo brown and gr fire clarp sand, course t	ex, rounde	d gravel	\vdash			1
2⊢					fire sand citils "	Stor. N.P.	Mel. from	<u> </u>			
				and angu	Mar A Sava, com		MARY CALIN	\vdash			1
	0	ac	-7.5	2.2-3.1 0	not stiff nou	SH 1.	h dat it				
	0	25	13		nal. stiff, grey	· · · · · · / ^ · / g·	n particity				
				St. RMOUN	it sand and clay,	Moist, V.	Fine saul	┝━━			
					/ /			\vdash			
										1	
ΓI								\vdash			
3––1								┝━			
╴┝╾╌┥				21-24	dh brown+grey s'in	It, low plata	ity, mod.	├~			
	0	30	70		fine stand, anyular;		1 1				
			i i							ł	
	40	60	n	3.4-4.3	sand w/ gravel,	sand angul	ur, glavel	┝━ ┃			
	IV	6 '		Sub-row	nded, v. dense,	ox dered 1	ed + brown	\vdash			, I
					1	AUGUERON L					1
, E								E I		1	1
┦匚┃								┣—			1
`┣, ┃								\vdash		1	
	O	27	77.7	4.3-4.5	stiff, wet, silt,	brown, no	o plusticits				
					to Pas coul.	maulum	· ,	┝━─│			
				V, tine	to fine sardy	angular	/	⊢			1
	5	90	5	4.5-5.7				\vdash			ŀ
				see next	AUG P						
				≪ <i>⊂ 11 €</i> X L	11 7 L			r 1		1	1

P

S	ea	lime	ent	Cor	re Processing Log	1	8.	ANCH	OR
			h Hart		Station ID: 5/1-19-GED Date/Time: 08/10/17	¥		QEA 😂	\tilde{z}
			008-0		Date/Time: 08/10/17 Core Logged By: Casey Janigch	<u> </u>			
		ength			Altempt #: 2				
	ecov					rote		Diver Core	
	Rec stes:	overy			Diameter of Core (inches) 4 Core Quality 6000 Fair	Poor		Disturbed	
Ê		1		 I		1 1			
Recovered	Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	DIA	Sample	Summary Sketch
5		5	90	5	4.5-5.7 Brown, V. dense sand with gravel and silt; mix coarse to fine sand, SP,		r		
6					End @ 5.7 At				
									- -
7									
								-	
					•				
				- - -					

Page____of

ob: Shelton Harbor ob No. 110008-01.01 lo. of Sections: 2 Drive Length: 1971 Recovery: 9: 1 24 6 Recovery: 9: 6.5 lotes:	Type of Core Mudmole	actore_ Poor	QEA 🛫 Renam DiveSPI-22 Disturbed	ned to
Length (ft) Length (ft) Size % Gravel Size % Sand Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft) PID	Sample	Summary Sketch
	 O-6.7 ft Soft to Mal. Soft, Olive grey, silt, wet, wood fagments 20-30%, wood fagments very between shords and 0.3-At chaniles a tube diameter, Bath yellow t red wood. Trace shell hash throughout. 2.3 Prequency of wood fragments increase to 65-75% to 9.6' B.S.R. Ft - saturated silt, 80% wood, 0.3 At thick G.3 At thick G.4.6 presence of wood back to 20-30% 		57-38- 00-02-17 57-38-50 02-04-17 57-38- 04-06-170	 0310

SPI-22A

SPI-224

Sec	lim	ent	Co	re Processing Log	•	X	ANCH	OR]
Job; S				Station ID: SPI- 38-50	\searrow	4	QEA 😂	$\underline{\cdot}$	
Job N				Date/Time: 08/10/17		-			1
No. of				Core Logged By: CT				ned to	1
Drive			14	Attempt #: 1 2					
Recov % Rec		<u> </u>	150	Type of Core Mudmole VIB	B COre		Dive SPI-2	<u>ZA</u>	
Notes			659	Diameter of Core (inches) 4 Core Quality Grade Fair	Dees		Disturberd]
10100					Poor		Disturbed		
Recovered Length (ft)	Size % Gravel	Size % Sand	Size % Fines	Classification and Remarks (Density, Moisture, Color, Minor Constituent, MAJOR Constituent, with Additional Constituents, Sheen, Odor)	Recovered Length (ft)	QIA	Sample	Summary Sketch	
5-	0	10	90						
	0	25	75	Same, olive grey silt, soft to mad, soft, 20-30% woold Angunats Uroughout 6.7 60 7.6 ft olive grey to grey, wet, max soft, silt, some sond, angular, sl. shell hash whole shek @ 7.2 ft. 7.6-7.65 Saturated Silt. 7.6 to 9.1 ft, grey, firm, silt w/ clay, no shell hash or wood, moist,			5/17-38-50- 06-67-17 5/17-38-52 6.7-7.6-1 5/27-38-52- 76-9.1-17	0 <i>810</i> 7080	
<u> 0]- </u>					<u> - </u>	ر ح	7		
					Page	4	of _2		

Attachment 4 SPI Report

Shelton Harbor SPI Survey

Data Report

September 15, 2017

NewFields

115 2nd Ave N, Suite 100

Edmonds, WA 98020

Table of Contents

1.0	Introduction
2.0	Methods1
2.1	Sediment Profile Imaging1
2.2	SPI Image Analysis1
2.2	2.1 Presence of Wood Debris
2.2	2.2 Presence of Methane
2.2	2.3 Presence of Bacterial Mats
2.2	2.4 Apparent Redox Potential Discontinuity (RPD) Depth4
2.3	Plan View Imaging
2.4	Plan View Image Analysis
3.0	Results
3.1	Wood Debris
3.2	Sedimentary Methane
3.3	Distribution of Bacterial Mats (Beggiatoa)
3.4	Apparent Redox Potential Discontinuity7
4.0	Summary18
5.0	References

Appendix A SPI and PV Image Analysis Results

List of Figures

Figure 2-1.	Schematic diagram of the sediment profile camera and sequence of operation of	n
	deployment.	2
Figure 2-2.	Shelton Harbor target and actual SPI and PV sampling locations	3
Figure 3-1.	Shelton Harbor SPI/PV wood debris distribution.	8
Figure 3-2.	SPI images from station SH-18 and SPI-07 showing very fine wood debris	9
Figure 3-3.	SPI and PV images from station SPI-23.	10
Figure 3-4.	SPI and PV images from station SPI-37.	11
Figure 3-5.	SPI and PV images from station SPI-22.	12
Figure 3-6.	SPI and PV images from station SPI-29.	13
Figure 3-7.	SPI and PV images from station SPI-02.	14
Figure 3-8.	SPI images from station SH-14 and SPI-07 showing methane	15
Figure 3-9.	Shelton Harbor SPI results for mean apparent RPD	16
Figure 3-10.	SPI images from stations SPI-31 and SH-14.	17

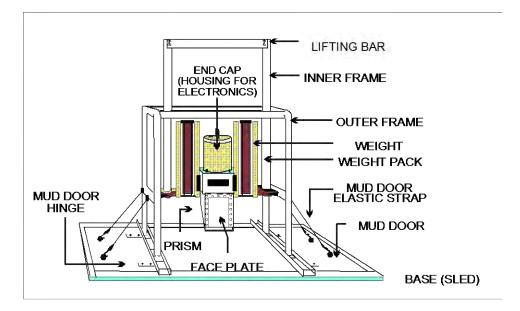
1.0 Introduction

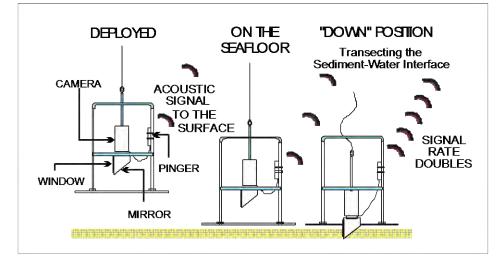
This report presents the results of the 2017 Sediment Profile Imaging (SPI) survey conducted in Shelton Harbor, WA, in support of the Shelton Harbor Remedial Investigation and Feasibility Study (RI/FS). NewFields, Edmonds, WA, was contracted by Simpson Timber Company to conduct the survey on July 10 and 11, 2017. Technical direction for the survey was provided by Anchor QEA, Seattle, WA. The focus of the SPI investigation was to determine the presence of woody debris in surface sediments, determine the presence of methane gas and bacterial mats, and measure the depth of the apparent redox potential discontinuity (RPD) in Shelton Harbor. The apparent RPD depth approximates the depth of oxygenation and biological mixing in surface sediments. Sampling methods and analysis protocols used for conducting the SPI survey are provided in Section 2.0. Results are presented in Section 3.0 and a summary is provided in Section 4.0.

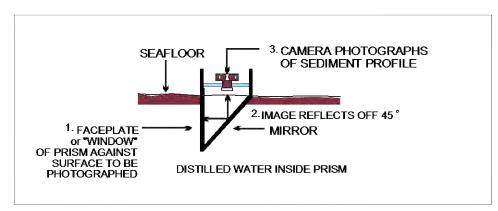
2.0 Methods

2.1 Sediment Profile Imaging

SPI images were collected using an Ocean Imaging System model 3731 sediment-profile camera deployed from the research vessel (R/V) *Nancy Ann*, owned and operated by Marine Sampling Systems, Burley, WA. The sediment-profile camera consisted of a wedge-shaped prism with a Plexiglas face plate and a back mirror mounted at a 45 degree angle. Light was provided by an internal strobe. The camera obtained images of up to 20 cm of the upper sediment column in profile (Figure 2-1).


Over the course of two days (July 10 and 11, 2017), SPI images were collected at 62 stations throughout Shelton Harbor (Figure 2-2). A minimum of one SPI image was collected at each station.


2.2 SPI Image Analysis


Computer image analysis of SPI images apparent RPD depths followed a formal and standardized technique developed by Rhoads and Germano (1982, 1986). Physical and biological parameters were measured directly from the digital SPI images by an analyst using computer image analysis software. A minimum of one SPI image was analyzed at each station and a duplicate image was analyzed at 21 stations (33% of stations). The image analysis parameters for the Shelton Harbor survey included:

- Wood debris (presence and percent coverage)
- Presence of methane
- Presence of bacterial mats
- Depth of the apparent RPD (cm)

All data were edited and verified by a senior-level scientist before final data synthesis, statistical analysis, and interpretation. Final SPI image analysis results are provided in Appendix A.

Figure 2-1. Schematic diagram of the sediment profile camera and sequence of operation on deployment.

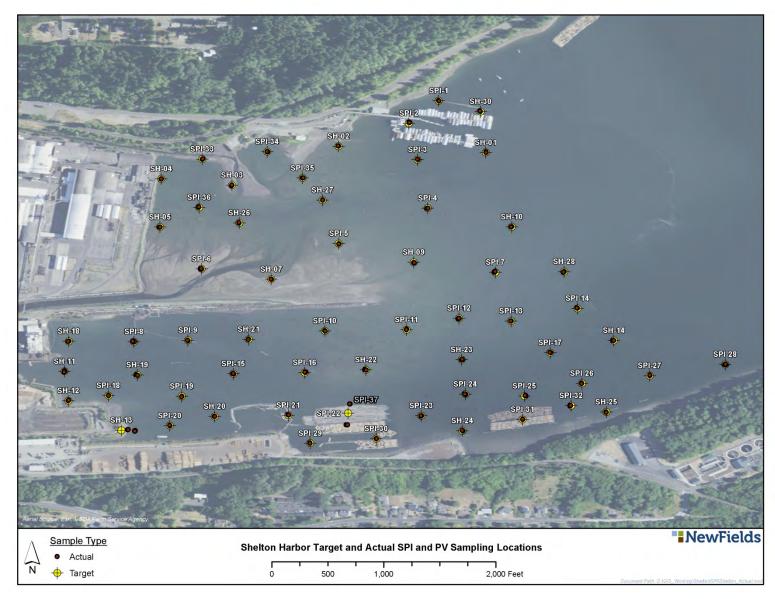


Figure 2-2. Shelton Harbor target and actual SPI and PV sampling locations.

2.2.1 Presence of Wood Debris

Presence of wood debris relies on the visual identification of wood-like particles in surface sediments that contrast with the surrounding sedimentary texture. Wood debris can consist of dark or brown particles, shards, bark, or larger wood pieces. The estimate of percent wood debris in SPI images was determined visually using Munsell charts for estimating proportions of mottles and coarse fragments (GretagMacbeth 2000).

2.2.2 Presence of Methane

Gas-filled voids in sediment are identifiable in SPI images because of their irregular, generally circular shape and glassy appearance (due to the reflection of the camera strobe off the gas). The presence of sedimentary methane indicates high organic matter loading to a system as methanogenesis predominates where sulfate is depleted by organic overloading.

2.2.3 Presence of Bacterial Mats

Sulfate-reducing bacterial mats such as *Beggiatoa* can be visually identified in SPI images. *Beggiatoa* can exist at the interface between oxic and anoxic conditions. It usually lives within sediments and its presence on the surface indicates the lack of oxygen in underlying sediments. In SPI images, the bacterial mats can appear as layers of white fibrous material or accumulations of light gray organic aggregations. Sediments below these layers generally appeared black and anoxic, devoid of any organisms or evidence of biological activity.

2.2.4 Apparent Redox Potential Discontinuity (RPD) Depth

The depth of the apparent RPD, which is the change from oxidized to reduced sediment, can be measured using SPI and computer image analysis. The upper surface of aerobic fine-grained sediments has a higher light reflectance value than underlying hypoxic or anoxic sediments. This is readily apparent in SPI images and is due to oxidized surface sediment that contains minerals in an oxidized state (typically an olive brown color), while the reduced sediments below this oxygenated layer are generally green, gray, blue, or black. The boundary between the colored ferric hydroxide surface sediment and underlying sediment is called the apparent redox potential discontinuity (RPD). The apparent RPD is a sensitive indicator of infaunal succession, sediment bioturbation activity, and sediment oxygen demand. The depth of the apparent RPD has proven to be a useful parameter for mapping gradients of enrichment on the seafloor (Rhoads and Germano 1982, Lyle 1983).

The actual RPD is the boundary that separates the positive Eh region (presence of free oxygen) of the sediment column from the underlying negative Eh region (absence of free oxygen). The exact location of the Eh boundary (where Eh = 0) can only be determined with microelectrodes. Therefore, the reflectance boundary observed in the SPI images is termed the apparent RPD. In general, the depth of the actual RPD will be shallower than the depth of the apparent RPD, because organisms cause bioturbation of ferric hydroxide-coated particles downward below the Eh = 0 horizon. As a result, the apparent RPD depth provides an estimate of the degree of biogenic sediment mixing. This variable is important in evaluating the effect of colonizing benthos. Bioturbation vertically transports buried reduced compounds to the sediment surface and exposes them to an oxidizing water column (Aller 1982). Bioturbation also affects sediment transport by changing the physical properties of sediments and their mechanical behavior (Rhoads and Boyer 1982).

Another important characteristic of the apparent RPD is the contrast in reflectance values at this boundary. This contrast is related to the interactions among the degree of organic-loading in the

sediment, bioturbation, and bottom-water dissolved oxygen levels. A high input of labile organic material increases sediment oxygen demand, stimulates the sulfate reduction rate, and results in sulfitic products. This results in more highly reduced (lower-reflectance) sediments at depth and higher RPD contrasts. In a region where generally low RPD contrasts exist, images with high RPD contrasts indicate localized sites of relatively high inputs of organic-rich material, such as wood debris.

2.3 Plan View Imaging

Plan view (surface) imaging was conducted using a downward facing underwater Chimaera MKII camera with external flash, manufactured by SubC Control, Newfoundland, Canada. The plan view (PV) camera and external flash were mounted on the frame of the SPI camera in a downward-looking orientation. Images were collected just before the SPI camera touched the seafloor, using a lead ball and cable attached to a bounce trigger.

Collection of PV images were attempted at the same 62 stations in Shelton Harbor where SPI images were collected (Figure 2-2). Turbidity in the water column affected PV image quality. A minimum of one PV image was collected at each station, with the exception of seven stations (SH-02, SH-09, SH-14, SPI-13, SPI-26, SPI-27, and SPI-35). Useable PV images were not collected at these stations due to high turbidity in the water column.

2.4 Plan View Image Analysis

Image analysis of the PV images consisted primarily of evaluating the images for the presence of wood debris on the sediment surface. Percent estimates of wood debris for the PV images were not determined due to turbidity affecting image quality. However, where wood debris was documented the percent cover was at least 50% or greater in most cases. Final PV image analysis results are provided in Appendix A.

3.0 Results

3.1 Wood Debris

Wood debris observed in SPI images in Shelton Harbor ranged from very fine wood particles to large wood pieces and bark. Wood debris was observed at 52 percent of the stations surveyed (32 of 62 stations) (Figure 3-1). Of the 32 stations showing wood debris, 78 percent of the stations (25 stations) showed trace amounts of fine, black, wood-like particles in the surface sediments¹. The amount of this type of wood debris was characterized as less than 1 percent by area in the SPI images (Figure 3-2). Fine wood debris particles were not evident in the PV images.

Higher concentrations of wood debris (2 to 15 percent by area in the SPI images) were observed at four stations surrounding the Manke log storage site, along the southern shoreline of Shelton Harbor (SH-22, SPI-23, SPI-31, and SPI-37) (see Figure 3-1). The wood debris consisted of large to small wood pieces or particles visible on the surface or in the sediment column. This wood debris was also visible in PV images (Figures 3-3 and 3-4).

The highest concentrations of wood debris (30 to 50 percent by area in the SPI images) consisted of large wood pieces and bark, and were observed at three stations located in areas within the Manke log storage site (stations SPI-21, SPI-22, and SPI-29) (Figures 3-5 and 3-6). This wood debris was clearly evident in PV images.

Presence of larger wood debris in PV images was generally consistent with SPI observations. The PV image at station SPI-02 showed the presence of wood debris on the sediment surface (Figure 3-7). However, the SPI image did not show clear evidence of wood debris. Station SPI-02 is located within the Oakland Bay Marina and the wood debris was likely attributed to activities within the marina.

3.2 Sedimentary Methane

Sedimentary methane was observed in SPI images at 5 stations (SH-02, SH-07, SH-14, SH-21, and SH-25) within Shelton Harbor (Figure 3-1). The methane was observed as gas-filled voids within the sediment column, and the methane had a glassy appearance due to reflection from the camera strobe (Figure 3-8). Benthic habitat quality did not appear to be impacted at the stations where methane was observed (i.e., apparent RPD depths were well developed and feeding voids were visible, indicating the presence of head-down deposit feeding organisms). This suggested that the organic loading at these locations may be related to deposition of natural organic materials versus impacts from recent wood debris accumulation.

3.3 Distribution of Bacterial Mats (Beggiatoa)

Sulfate-reducing bacteria (likely *Beggiatoa*) were observed at 8 stations along the southern shoreline of Shelton Harbor where wood debris was observed (stations SPI-21, SPI-22, SPI-23, SPI-29, SPI-30, SPI-31, and SPI-32). The *Beggiatoa* bacteria generally consisted of a white-colored layer or coating visible on wood debris in SPI and PV images (Figure 3-1). The presence of bacterial mats at these locations suggested the lack of oxygen in underlying sediments. In

¹ The trace amounts of fine organic black particles mixed into the sediments were presumed to be related to wood debris, but could be from other natural sources in Shelton Harbor.

most instances, the underlying sediments observed in SPI images were black in color, indicating low oxygen sedimentary conditions (see Figures 3-5 and 3-6).

3.4 Apparent Redox Potential Discontinuity

The apparent RPD depth estimates the depth of oxygenation in the upper sediment column and provides an estimate of the biological mixing depth by infaunal organisms. Overall, mean apparent RPD depths were well developed throughout most of Shelton Harbor, and ranged from 0.16 to 5.48 cm, with an average depth of 2.51 (\pm 1.20 cm; n=83) for the 62 SPI stations (Figure 3-9). The presence of fine wood debris in low concentrations (less than 1 percent by area in SPI images) did not appear to affect benthic habitat quality in Shelton Harbor. Apparent RPD depths at these stations averaged 2.95 cm (\pm 0.94 cm; n=36).

The shallowest apparent RPD depths were measured in areas within the Manke log storage site where the highest accumulation of wood debris was observed (Figures 3-9 and 3-10). Within the log storage site, apparent RPD depths averaged 0.34 cm (\pm 0.28 cm; n=7) at stations SPI-21, SPI-22, SPI-29, SPI-30, and SPI-37. Outside of the log storage site, apparent RPD depths averaged 2.72 cm (\pm 1.05 cm; n=69).

Apparent RPD contrast was also higher in areas within and around the Manke log storage site, suggesting benthic habitat stress due to input of organic-rich material (likely wood debris) (see Figure 3-10).

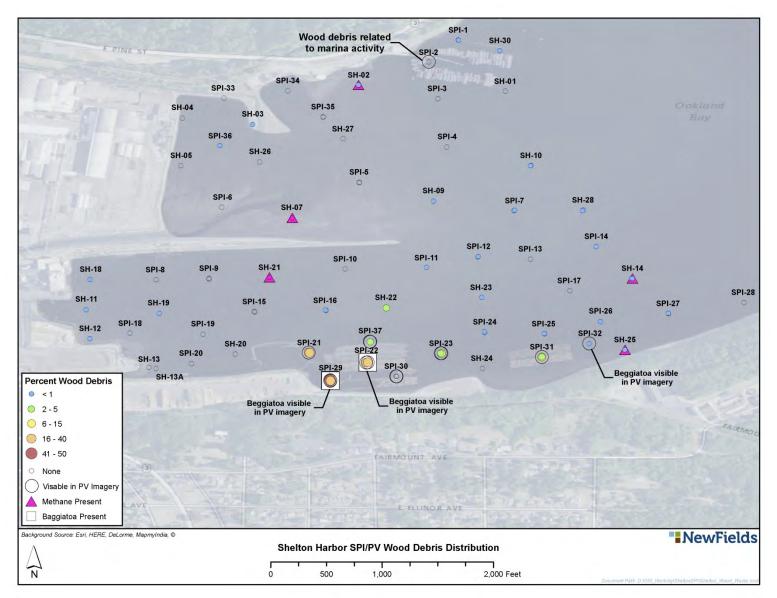


Figure 3-1. Shelton Harbor SPI/PV wood debris distribution.

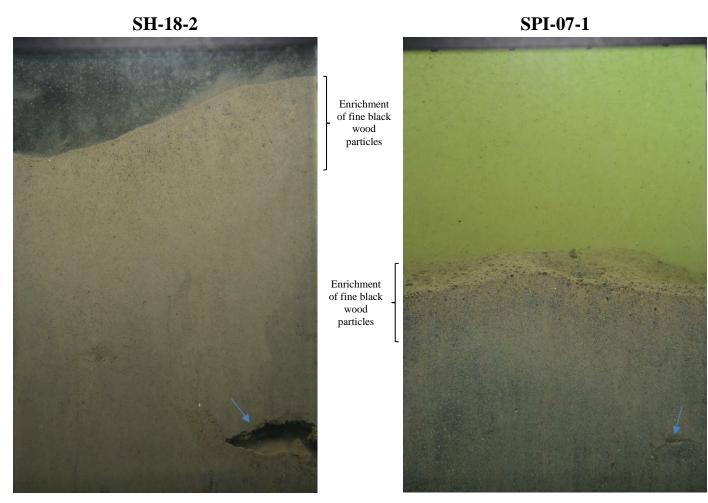


Figure 3-2. SPI images from station SH-18 and SPI-07 showed very fine wood debris.

SPI images from stations SH-18 replicate 2 (SH-18-2) and SPI-07 replicate 1 (SPI-07-1) showed very fine, black particles in fine-grained surface sediments. The black particles were presumed to be wood debris. Feeding voids were visible at depth at both stations (blue arrow), which were created by head-down deposit feeders. Presence of feeding voids is an indicator of healthy and well established benthic habitat. SPI image width = 15 cm.

Figure 3-3. SPI and PV images from station SPI-23.

The SPI image from SPI-23-2 showed silt covered wood pieces protruding from the sediment surface (blue arrows). The surface PV image showed scattered wood pieces, branches, and bark on the sediment surface. A crab (likely *Cancer gracilis*) was present (white arrow). SPI image width = 15 cm. PV image area = 0.7 square meters.

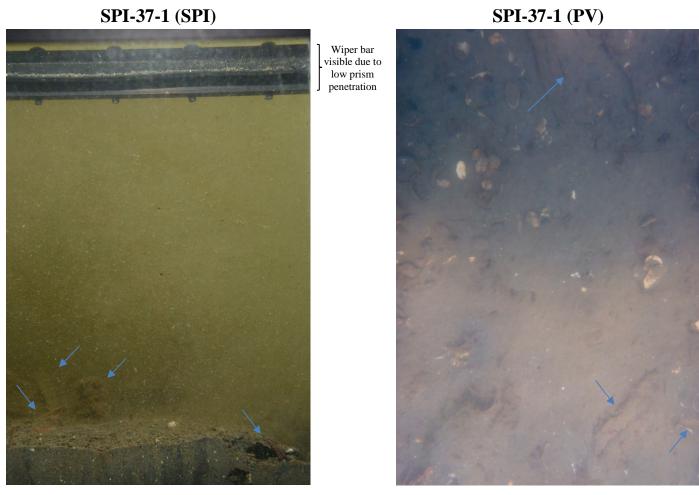
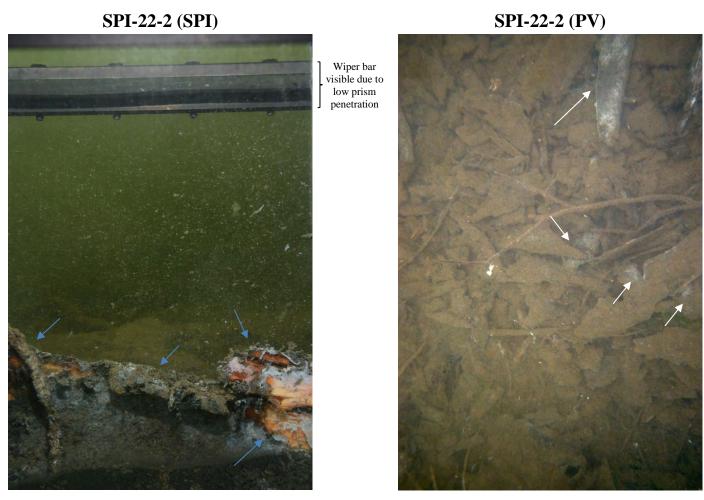



Figure 3-4. SPI and PV images from station SPI-37.

The SPI image from SPI-37-1 showed scattered pieces of wood debris on the sediment surface (blue arrows). Compact sands were present and SPI camera prism penetration was low. The surface PV image showed scattered pieces of larger wood debris (blue arrows) and shells. SPI image width = 15 cm. PV image area = 0.7 square meters.

The SPI image from SPI-22-2 showed wood pieces and branches (blue arrows), overlying black anoxic sediments. The white coating present on the wood debris was likely *Beggiatoa* bacteria. The surface PV image showed a dense mat of wood debris consisting of wood pieces, branches, and bark. The white coating visible on some wood pieces was likely *Beggiatoa* bacteria (white arrows). SPI image width = 15 cm. PV image area = 0.7 square meters.

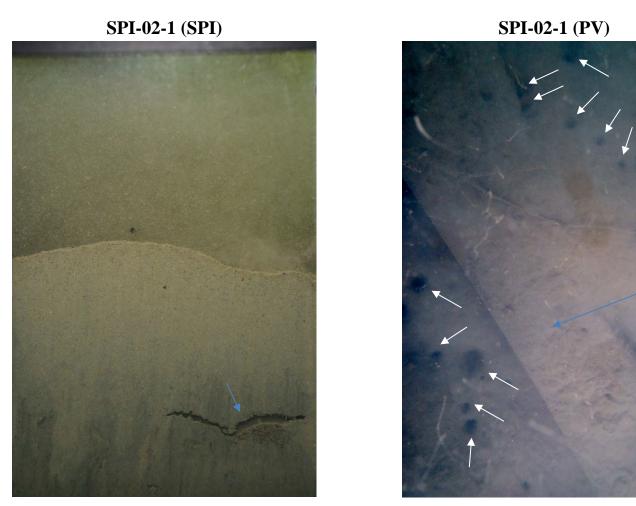
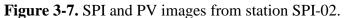




Figure 3-6. SPI and PV images from station SPI-29.

The SPI image from SPI-29-1 also showed wood pieces (blue arrows), overlying black anoxic sediments. The white coating present on the wood debris was likely *Beggiatoa* bacteria. The PV image showed a mat of wood debris consisting of wood pieces, branches, and bark. The white coating visible on some wood pieces was likely *Beggiatoa* bacteria (white arrows). SPI image width = 15 cm. PV image area = 0.7 square meters.

The SPI image from SPI-02-1 showed fine grained sediments with no apparent evidence of wood debris. A large feeding void was visible at depth (blue arrow). The surface PV image appeared to show a wooden board lying on the sediment surface (blue arrow). Large surface burrows were visible (white arrows). The board was likely related to activities at the marina. SPI image width = 15 cm. PV image area = 0.7 square meters.

Figure 3-8. SPI images from station SH-14 and SPI-07 showing methane.

SPI images from stations SH-14-2 and SH-21-1 (SPI-07-1) showed fine grained silt/clay sediments with sedimentary methane bubbles at depth (white arrows). In several cases the methane bubbles were present within active feeding voids. The apparent RPD depth was relatively well developed in both images. SPI image width = 15 cm.

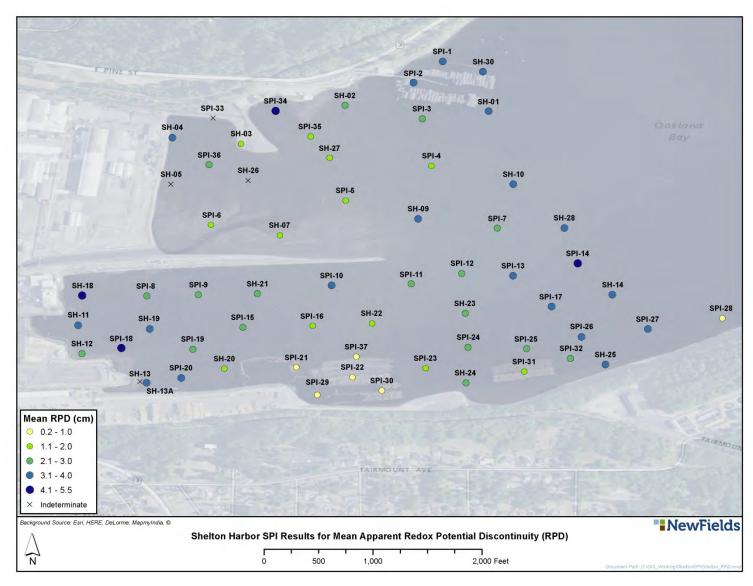


Figure 3-9. Shelton Harbor SPI results for mean apparent RPD.

Figure 3-10. SPI images from stations SPI-31 and SH-14.

The SPI image from station SPI-31-1 showed high apparent RPD contrast (thin apparent RPD layer of light colored oxidized sediment contrasted with the underlying black anoxic sediments). Sediment oxygen demand was high at this station. Wood debris was visible on the sediment surface (white arrows). In comparison, the SPI image from station SH-14 showed a deeper apparent RPD with underlying sediments that were much lighter in color (higher oxygen penetration and lower concentrations of sulfides). Feeding voids were visible at depth (blue arrows) indicating the presence of head-down deposit feeders. SPI image width = 15 cm.

4.0 Summary

- Wood debris observed in SPI images in Shelton Harbor ranged from very fine wood particles to large wood pieces and bark. The highest concentrations of wood debris (30 to 50 percent by area in the SPI images) consisted of large wood pieces and bark, and were observed in areas within the Manke log storage site.
- Fine, black particles were observed in surface sediments throughout Shelton Harbor and presumed to be wood debris. This type of wood debris was characterized as less than 1 percent by area in the SPI images and did not affect benthic habitat quality.
- Sedimentary methane was observed in SPI images at 5 stations but did not appear to affect benthic habitat quality. Apparent RPD depths were well developed and feeding voids were visible, indicating the presence of head-down deposit feeding organisms.
- Sulfate-reducing bacteria (likely *Beggiatoa*) were observed at 8 stations along the southern shoreline of Shelton Harbor where wood debris was observed.
- Mean apparent RPD depths were well developed throughout most of Shelton Harbor, and ranged from 0.16 to 5.48 cm, with an average depth of 2.51 cm. The shallowest apparent RPD depths (average of 0.34 cm) were measured in areas within the Manke log storage site where the highest accumulation of wood debris was observed.

5.0 References

- Aller, R. 1982. The effects of macrobenthos on chemical properties of marine sediments and overlying waters. In: P.L. McCall and M.J.S. Tevesz (eds.). Animal-Sediment Relations. Topics in Geobiology. Plenum Press, N.Y., N.Y. 2: 53-102.
- GretagMacbeth. 2000. Munsell® Soil Color Charts. GretagMacbeth, New Windsor, NY.
- Johnson, R.G. 1972. Conceptual models of benthic communities. In: Models of Paleobiology (Schopf, ed.), Freeman, Cooper, and Co. San Francisco. Pp. 145-159.
- Lyle, M. 1983. The brown-green color transition in marine sediments: A marker of the Fe (III)-Fe (II) redox boundary. Limnol. Oceanogr. 28: 1026-1033.
- Pearson, T.H. and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16: 229-311.
- Rhoads, D.C. and L.F. Boyer. 1982. The effects of marine benthos on physical properties of sediments. In: P.L. McCall and M.J.S. Tevesz (eds.). Animal-Sediment Relations. Topics in Geobiology. Plenum Press, N.Y., N.Y. 2: 3-52.
- Rhoads, D.C. and J.D. Germano. 1982. Characterization of benthic processes using sediment-profile imaging: An efficient method of Remote Ecological Monitoring of the Seafloor (REMOTS® System). Mar. Ecol. Prog. Ser. 8: 115-128.
- Rhoads, D.C. and J.D. Germano. 1986. Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiology 142: 291-308.

Project: Shelton Harbor **Pixel Calib. Factor:** 0.3619175 Bacteria Apparent RPD Thickness (cm) Wood Debris Methane Date Time Comments Station Replicate Analyst Mats (Initials) Area Min Max Mean Present | Percent | Present | Count | Mean Depth | Diameter Silty sands, feeding voids at depth SH-01 14:56 49.26 4.37 3.41 FALSE JSN 1 7/11/17 2.48 TRUE JSN SH-02 7/10/17 10:40 41.75 0.35 2.89 < 1.00 1 5.81 JSN SH-02 2 7/10/17 10:42 31.66 3.55 2.19 TRUE < 1.00 TRUE 8 10.42 0.32 0.00 JSN 7/11/17 TRUE SH-03 8:17 22.3 0.67 2.19 1.54 < 1.00 1 JSN SH-04 7/11/17 8:08 46.66 1.1 6.12 3.23 FALSE Unconsolidated fine grained sediments 1 JSN SH-05 7/11/17 8:42 FALSE Low pen, gravel bottom coated with organics/fines 1 indet JSN SH-07 1 7/11/17 9:11 20.34 0.38 2.33 1.41 FALSE TRUE 26 1.56 0.19 bubbles at depth JSN SH-09 1 7/10/17 11:22 44.82 1.82 4.62 3.10 TRUE < 1.00 depth JSN SH-10 1 7/11/17 14:40 51.36 6.59 TRUE 1.29 3.55 < 1.00 JSN SH-10 2 7/11/17 14:41 36.54 0.85 4.53 2.53 TRUE < 1.00 JSN 4 SH-11 7/11/17 14:00 47.83 2.07 6.30 3.31 TRUE < 1.00 sediment column JSN SH-12 7/11/17 10:54 34.27 1.43 5.04 TRUE < 1.00 1 2.37 mixed in the surface JSN SH-13 1 7/11/17 11:07 indet FALSE Gravel bottom - intertidal area Unconsolidated fine grained sediments, numerous feeding voids at depth JSN SH-13A 3 7/11/17 11:32 49.02 1.55 6.86 3.39 FALSE JSN SH-14 Unconsolidated fine grained sediments, feeding voids at depth 1 7/10/17 15:35 48.61 1.19 6.66 TRUE < 1.00 3.36 TRUE JSN SH-14 7/10/17 TRUE 12.57 0.56 2 15:36 59.14 1.10 7.80 4.09 < 1.00 5 small organic black particles mixed into sediment column 7/11/17 TRUE JSN SH-18 2 10:38 74.8 3.72 6.24 5.17 < 1.00 2 Traces of very fine organic black particles mixed in the sediment column JSN SH-19 7/11/17 13:48 48.45 1.33 7.53 TRUE 3.35 < 1.00 JSN SH-20 7/11/17 13:16 28.11 0.38 5.24 1.94 FALSE Fine grained sediments, small feeding void at depth center 1 JSN SH-21 1 7/10/17 18:37 35.79 1.61 3.17 2.47 FALSE TRUE 1 10.63 1.00 JSN SH-22 2 7/10/17 17:39 28.44 0.56 3.2 1.97 TRUE 2.00 JSN SH-23 4 7/10/17 13:31 30.92 1.19 4.3 2.14 TRUE < 1.00 column FALSE JSN SH-24 7/10/17 18:17 35.48 1.10 4.05 2.45 1 JSN SH-25 7/11/17 9:54 46.46 TRUE TRUE 10.47 0.26 1 2.04 7.02 3.21 < 1.00 6 the sediment column Compact silt/sand bottom, numerous surface tubes, twigs, crab far field JSN SH-26 1 7/11/17 8:48 indet FALSE Compact sand bottom JSN SH-27 1 7/10/17 11:03 28.07 0.72 2.61 1.94 FALSE JSN SH-28 1 7/10/17 16:32 62.42 1.23 10.12 4.32 TRUE < 1.00 SH-28 7/10/17 16:33 47.78 JSN 2 1.23 5.20 3.30 TRUE < 1.00 depth SH-30 JSN 1 7/11/17 15:04 44.32 2.07 4.2 TRUE 3.06 < 1.00 SPI-01 JSN 1 7/11/17 15:11 56.59 1.61 7.49 3.91 TRUE < 1.00 particles JSN SPI-01 2 7/11/17 15:13 44.27 1.27 6.14 3.06 TRUE < 1.00 particles JSN SPI-02 7/11/17 15:21 52.67 2.45 4.50 3.64 FALSE Fine grained sediments, void at depth 1 JSN **SPI-03** 7/11/17 14:49 43.29 1.23 6.85 2.99 FALSE Fine grained sediments, voids at depth, burrow right surface 1 Fine sands, lower pen, surface tubes JSN FALSE SPI-04 7/11/17 9:28 27 0.91 2.98 1 1.87 Fine sands, lower pen JSN **SPI-05** 1 7/11/17 9:21 25.58 0.58 3.74 1.77 FALSE JSN SPI-05 7/11/17 1.95 FALSE Fine sands, lower pen 2 9:22 20.9 0.61 1.45

NewFields Sediment Profile Image Analysis

Traces of very fine organic black particles mixed in the sediment column Methane gas bubbles at depth, traces of very fine organic black particles mixed in the sediment

Low pen, surface tubes, feeding void at depth, scattered small black particles on surface

Low pen, compact sand bottom with organic filamentous mat coating, apparent methane gas

Fine sands and silts, possible scattered small wood particles on surface? Large feeding void at

Traces of small organic black particles mixed in the surface (possible wood origins?)

Scattered wood particles on surface (brown and black), feeding voids at depth Unconsolidated fine grained sediments, traces of fine black particles mixed in the surface

Fine grained sediments, reduced at depth (higher RPD contrast), traces of fine black particles

Unconsolidated fine graine sediments, methane bubbles at depth in feeding voids, traces of

Traces of very fine organic black particles mixed in the sediment column

Fine grained sediments, feeding voids at depth, methane gas bubble in void

Consolidated bottom, scattered black wood particles on surface, polychaete visible at depth

Fine grained sediments, traces of very fine organic black particles mixed in the sediment

Low pen, compact sediments, high RPD contrast, organic coating (algae?) on surface

Fine grained sediments, methane bubbles, traces of very fine organic black particles mixed in

Scattered fine organic black particles mixed in the sediment column, feeding voids at depth

Scattered fine organic black particles mixed in the sediment column, numerous feeding voids at

silty fine sands, traces of fine organic black particles near surface, feeding void silty fine sands, numerous feeding voids, scattered shell particles, traces of fine organic black

silty fine sands, numerous feeding voids, scattered shell particles, traces of fine organic black

0.3619175 **Project:** Shelton Harbor **Pixel Calib. Factor: Bacterial** Apparent RPD Thickness (cm) Wood Debris Methane Station Replicate Date Time Comments Analyst Mats (Initials) Area Min Max Mean Present | Percent | Present | Count | Mean Depth | Diameter Low pen, consolidated fine sands, organic filamentous algae coating JSN 9:06 17.54 1.56 1.21 FALSE **SPI-06** 3 7/11/17 0.45 SPI-07 11:30 42.17 TRUE silty fine sands, scattered black particles on surface (possible woody debris) JSN 1 7/10/17 0.88 3.63 2.92 < 1.00 JSN 7/10/17 TRUE **SPI-07** 2 11:32 41.02 0.55 4.86 2.84 < 1.00 JSN **SPI-08** 5 7/11/17 13:52 42.72 2.14 4.30 2.95 FALSE Unconslidated fine grained sediments Fine grained sediments, higher RPD contrast JSN **SPI-09** 7/10/17 2.18 FALSE 1 18:46 31.47 0.87 3.47 SPI-09 7/10/17 FALSE Fine grained sediments, higher RPD contrast JSN 2 18:47 33.17 1.13 4.04 2.29 Fine grained unconsolidated sediments, feeding voids at depth JSN SPI-10 1 7/10/17 18:56 55.24 1.23 7.05 3.82 FALSE Traces of very fine organic black particles mixed in the sediment column JSN SPI-11 1 7/10/17 19:09 29.82 1.38 2.69 2.06 TRUE < 1.00 JSN SPI-12 7/10/17 12:01 37.67 TRUE 1 0.41 4.23 2.60 < 1.00 Traces of very fine organic black particles mixed in the sediment column JSN SPI-12 3 7/10/17 18:00 36.53 1.71 2.91 2.53 TRUE < 1.00 JSN SPI-13 7/10/17 11:37 53.43 6.12 FALSE Fine grained sediments, voids at depth 1 1.88 3.69 JSN SPI-14 1 7/10/17 16:23 79.28 3.50 11.36 5.48 TRUE < 1.00 Scattered fine organic black particles, scattered fine shell particles Unconsolidated fine grained sediments JSN SPI-15 3 7/11/17 13:09 34.7 0.8 3.72 2.40 FALSE Unconsolidated fine grained sediments JSN SPI-15 4 7/11/17 13:10 39.88 1.65 4.24 2.76 FALSE JSN SPI-16 7/10/17 18:25 19 0.39 2.30 1.31 TRUE < 1.00 1 surface JSN SPI-16 2 7/10/17 18:27 14.98 0.23 3.94 1.04 TRUE < 1.00 Unconsolidated fine grained sediments JSN SPI-17 1 7/10/17 13:37 56.41 0.61 10.38 3.90 FALSE 7/11/17 FALSE JSN SPI-18 1 11:00 74.15 2.85 7.35 5.13 Fine grained sediments, voids at depth JSN SPI-19 1 7/11/17 13:39 37.46 1.04 4.70 2.59 FALSE JSN SPI-20 7/11/17 FALSE Fine grained sediments, voids at depth 1 13:20 51.38 2.07 8.09 3.55 Larger wood pieces JSN SPI-21 1 7/10/17 13:04 11.89 0.00 2.74 0.82 TRUE 30.00 Larger wood pieces JSN SPI-21 2 7/10/17 13:05 6.65 0.00 1.66 TRUE 40.00 0.46 JSN SPI-22 1 7/10/17 16:57 4.3 0.00 1.06 0.30 TRUE 30.00 JSN SPI-22 2 7/10/17 16:58 indet TRUE 40.00 TRUE 7/10/17 13:13 21.81 0.07 Sed-covered wood pieces protruding from sediment JSN SPI-23 3 3.34 TRUE 15.00 1.51 JSN SPI-23 4 7/10/17 13:14 10.28 0.00 2.68 0.71 TRUE 3.00 Small scattered black wood particles Trace fine small woody particles near surface JSN SPI-24 3 7/10/17 13:21 31.93 0.68 3.20 2.21 TRUE < 1.00 SPI-24 7/10/17 13:23 33.3 1.29 3.20 TRUE < 1.00 Trace fine small woody particles near surface JSN 4 2.30 Traces of very fine organic black particles mixed in the sediment column JSN SPI-25 7/10/17 15:25 34.74 TRUE 1 1.56 3.63 2.40 < 1.00 JSN SPI-25 7/10/17 15:27 31.52 TRUE Traces of very fine organic black particles mixed in the sediment column 2 0.42 3 2.18 < 1.00 Traces of very fine organic black particles mixed in the sediment column JSN SPI-26 2 7/10/17 15:19 50.78 2.27 4.55 3.51 TRUE < 1.00 SPI-27 JSN 1 7/10/17 15:10 48.18 1.62 4.92 3.33 TRUE < 1.00 particles at depth possible wood debris Traces of very fine organic black particles mixed in the sediment column JSN SPI-27 2 7/10/17 15:12 54.07 1.81 8.00 3.74 TRUE < 1.00 Low penetration, compact sand bottom with shell debris JSN SPI-28 3 7/10/17 14:49 8.14 0.00 1.72 0.56 FALSE JSN SPI-29 7/10/17 17:16 TRUE 50.00 TRUE 1 indet White coated wood particle likely beggiatoa bacteria JSN SPI-29 2 7/10/17 17:18 2.85 0.00 0.25 TRUE TRUE 0.20 30.00 JSN **SPI-30** 1 7/10/17 17:30 2.25 0.00 0.55 0.16 FALSE Thin RPD, high contrast, possible burrow center? FALSE JSN SPI-30 2 7/10/17 17:31 3.73 0.00 0.51 0.26

NewFields Sediment Profile Image Analysis

silty fine sands, scattered black particles on surface (possible woody debris), voids at depth

Traces of very fine organic black particles, voids at depth, scattered fine shell particles

Low pen, consolidated fine sands with shell particles, scattered organic black particles on

consolidated fine sands with shell particles, scattered organic black particles on surface

Unconsolidated fine grained sediments, feeding voids at depth, burrow left surface

Bacterial mat coating on wood (white) likely beggiatoa. Some "fresher" wood exposed

Traces of very fine organic black particles mixed in the sediment column, reddish-brown

Wood debris in black sediments at depth, white coating on wood likely beggiatoa bacteria

Thin RPD, high contrast with reduced black fine-grained sediments, stressed habitat

		•••••														
Project:	Shelton	Harbor		Pixel Calib. Factor:		0.3619175										
Analyst	Station	Replicate	Date	Time	Арра	arent RPD Th	ickness	(cm)	Wood	Debris			Methane		Bacterial Mats	Comments
(Initials)					Area	Min	Max	Mean	Present	Percent	Present	Count	Mean Depth	Diameter		
JSN	SPI-31	1	7/11/17	10:05	5.42	0.00	0.85	0.37	TRUE	10.00						High RPD contrast, wood pieces on surf
JSN	SPI-31	2	7/11/17	10:05	28.39	0.00	3.50	1.96	TRUE	5.00						Deeper RPD, but strong contrast, scatte
JSN	SPI-32	1	7/11/17	9:59	40.88	1.07	5.65	2.83	TRUE	< 1.00						Traces of very fine organic black particle
JSN	SPI-33	2	7/11/17	8:02				indet	FALSE							Gravels on bottom, no penetration
JSN	SPI-34	3	7/11/17	8:23	62.65	1.43	7.34	4.33	FALSE							Fine-grained unconsolidated sediments
JSN	SPI-35	1	7/10/17	10:56				indet	FALSE							Low penetration, clams and/or shells on
JSN	SPI-35	2	7/10/17	10:57	23.34	1.00	2.19	1.61	FALSE							Low penetration, consolidated bottom
JSN	SPI-36	2	7/11/17	8:31	36.51	1.27	4.37	2.52	TRUE	< 1.00						Traces of very fine organic black particle
JSN	SPI-37	1	7/11/17	14:25	11.38	0.00	1.56	0.79	TRUE	5.00						Low penetration, compact, sandy botton

NewFields Sediment Profile Image Analysis Project: Shelton Harbor Pixel Calib. Factor:

surface

attered wood particles

ticles mixed in the sediment column

nts

on surface, consolidated bottom

ticles mixed in the sediment column

ttom, wood pieces on surface

NewFields Sediment Profile Image Analysis

Project: Shelton Harbor

OID	image file	Station	Rep	Date	time	Image Area (sqft)	Class	Wood Waste Present	Wood Waste Type	Turbidity	
132	SH01A.ARW		1/1/00		42928	7.80	-			high	suspended organics m
133	SH01B.ARW		1/2/00		42928	7.80	soft mud, silt			high	suspended organics, c bottom
	SH03A.ARW	SH03	1	7/11/2017		7.8				moderate	suspended organics, a
62	SH03B.ARW	SH03	1/2/00		42927	7.80	sands			high	suspended organics
	011002#1111	0.100	.,_, 00	0.00			00.100				
59	SH04A.ARW	SH04	1	7/11/2017	8:07	7.8	-			high	sediment plume maski
60	SH04B.ARW	SH04	2	7/11/2017	8:08	7.8	_			high	sediment plume maski
	SH05A.ARW	SH05	1	7/11/2017	8.41	7.8	hard bottom			moderate	suspended organics, c
	SH05B.ARW	SH05	2	7/11/2017		7.8				moderate	suspended organics, c
	SH07A.ARW	SH07	1	7/11/2017		7.8				moderate	ghost shrimp hole
	SH07B.ARW	SH07	2	7/11/2017		7.8					ghost shrimp holes, air
129	SH10A.ARW	SH107 SH10	1/1/00		42928	7.80	soft mud, silt				ghost shrimp holes
	SH10B.ARW	SH10	2	7/11/2017		7.8					ghost shrimp holes
	SH10B.ARW SH11A.ARW	SH10 SH11	2	7/11/2017		7.8				high	high turbidity masking
	SH11B.ARW									high	high turbidity masking
107	SHIID.AKW	SH11	2	7/11/2017	11.40	7.8	-			high	high turbidity masking
125	SH11C.ARW	SH11	3	7/11/2017	13:59	7.8	-			high	suspended organics m
126	SH11D.ARW	SH11	4	7/11/2017	14:00	7.8				high	high turbidity masking
										5	some organic leafy ma
94	SH12A.ARW	SH12	1	7/11/2017	10:53	7.8	soft mud, silt				grey to light reddish
95 \$	SH12B.ARW	SH12	2	7/11/2017	10:54	7.8	-			high	sediment plume maski
98	SH13A.ARW	SH13	1	7/11/2017	11:07	7.8	rocks				
99 3	SH13B.ARW	SH13	2	7/11/2017	11:08	7.8	rocks				
100 \$	SH13A-A.ARW	SH13A	1	7/11/2017	11:10	7.8	soft mud, silt				ghost shrimp holes
101 3	SH13A-C.ARW	SH13A	3	7/11/2017	11:31	7.8	-			high	suspended organics m
102 \$	SH13A-D.ARW	SH13A	4	7/11/2017	11:32	7.8	-			high	sediment plume maski
93 3	SH18B.ARW	SH18	2	7/11/2017	10:37	7.8	-			high	sediment plume maski
121	SH19A.ARW	SH19	1	7/11/2017	13:46	7.8	-			high	suspended organics m
122 3	SH19B.ARW	SH19	2	7/11/2017	13:47	7.8	-			high	suspended organics m
					13.14						high suspended organi
	SH20A.ARW	SH20	1	7/11/2017						high	soft
113	SH20B.ARW	SH20	2	7/11/2017	13:15	7.8	soft mud, silt			high	suspended organics, g high suspended organi
114	SH20C.ARW	SH20	3	7/11/2017	13:15	7.8	soft mud, Silt			high	soft
	SH20D.ARW	SH20	4	7/11/2017		7.8				iligii	image too dark
	SH21A.ARW	SH21	. 1	7/10/2017		7.8				moderate	suspended organics, g
	SH21B.ARW	SH21	2	7/10/2017		7.8				high	sediment plume maski
	SH22A.ARW	SH22	- 1	7/10/2017		7.8				high	high in suspended orga
	SH22B.ARW	SH22	2	7/10/2017		7.8				high	high in suspended orga
	SH22C.ARW	SH22	3	7/10/2017		7.8				high	high in suspended orga
00 .	011220.7470	01122	0	1/10/2011		7.0	Sando			mgn	high in suspended orga
7 3	SH23A.ARW	SH23	1	7/10/2017	12:16	13.8	soft mud, silt			high	bottom
					12.17						high in suspended orga
	SH23B.ARW	SH23	2	7/10/2017						high	bottom
42 \$	SH24A.ARW	SH24	1	7/10/2017	18:17	7.8	-			high	high in suspended orga

Notes

masking bottom

, can make out ghost shrimp holes so likely very soft

, a few large rocks are visible on the sand

sking the bottom, air bubble trapped on camera face

sking the bottom, air bubble trapped on camera face

, cobble covering the bottom

, cobble covering the bottom

air bubble trapped on camera face

ng bottom ng bottom

masking the bottom, air bubble trapped in camera face ng bottom

material and green algae, sediment transition from dark

sking bottom

masking the bottom

sking bottom

sking bottom

masking the bottom

masking the bottom, image out of focus

anics in water column, ghost shrimp holes so likely very

, ghost shrimp holes

anics in water column, ghost shrimp holes so likely very

, ghost shrimp holes

sking the bottom

rganics

rganics, unable to resolve the bottom

rganics

organics, ghost shrimp holes visible so likely very soft

rganics, ghost shrimp holes visible so likely very soft

rganics, unable to resolve the bottom

OID	image file	Station	Rep	Date	time	Image Area (sqft)	Class	Wood Waste Present	Wood Waste Type	Turbidity	
43 S	SH24B.ARW	SH24	2	7/10/2017	18:18	7.8	-	I		high	sediment plume maski
83 5	SH25A.ARW	SH25	1	7/11/2017	9:53	7.8	soft mud, silt				ghost shrimp holes, cra
84 S	SH25B.ARW	SH25	2	7/11/2017	9:54	7.8	-				sediment plume maski
69 S	SH26A.ARW	SH26	1	7/11/2017	8:48	7.8	sands, hard bottom			moderate	few broken shells, crab
70 S	SH26B.ARW	SH26	2	7/11/2017	8:48	7.8	sands hard bottom			moderate	few broken shells, air b
1 S	SH27A.ARW	SH27	1	7/10/2017	11:02	13.8	soft mud, silt			high	high in suspended orga bottom
2 5	SH27B.ARW	SH27	2	7/10/2017	11:03	13.8	-			high	high in suspended orga
27 5	SH28A.ARW	SH28	1	7/10/2017	16:31	7.8	soft mud, Silt			high	high in suspended orga
28 S	SH28B.ARW	SH28	2	7/10/2017	16:33	7.8	soft mud, Silt			high	high in suspended orga
134 S	SH30A.ARW	SH30	1	7/11/2017	15:04	7.8	soft mud, silt			high	suspended organics, c
135 S	SH30B.ARW	SH30	2	7/11/2017	15:05	7.8	soft mud, silt			high	suspended organics, c
136 5	SPI01A.ARW	SPI01	1	7/11/2017	15:11	7.8	soft mud, silt				ghost shrimp holes, air
	SPI01B.ARW	SPI01	2	7/11/2017		7.8	soft mud, silt			high	ghost shrimp holes
	SPI02A.ARW	SPI02	1	7/11/2017		7.8	soft mud, wood waste	yes	board	5	ghost shrimp holes
	SPI02B.ARW	SPI02	2	7/11/2017	15:22	7.8	-				image too dark
131 5	SPI03A.ARW	SPI03	1	7/11/2017	14:48	7.8	soft mud, silt			moderate	suspended organics, g
81 5	SPI04A.ARW	SPI04	1	7/11/2017	9:27	7.8	sands, silt				
82 5	SPI04B.ARW	SPI04	2	7/11/2017	9:28	7.8	-				sediment plume maski
79 S	SPI05A.ARW	SPI05	1	7/11/2017	9:21	7.8	sands, silt				few suspended organic
80 5	SPI05B.ARW	SPI05	2	7/11/2017	9:22	7.8	-				sediment plume maski
71 S	SPI06A.ARW	SPI06	1	7/11/2017	8:53	7.8	sands, hard bottom				few suspended organic
72 5	SPI06B.ARW	SPI06	2	7/11/2017	8:54	7.8	sands, hard bottom			moderate	suspended organics
74 S	SPI06C.ARW	SPI06	3	7/11/2017	9:06	7.8	sands, hard bottom			moderate	few suspended organic
75 S	SPI06D.ARW	SPI06	4	7/11/2017	9:06	7.8	-			high	sediment plume maski
76 S	SPI06E.ARW	SPI06	5	7/11/2017	9:06	7.8	sands hard bottom				white object likely a bo
3 5	SPI07A.ARW	SPI07	1	7/10/2017	11:30	13.8	Sands			high	high in suspended orga
4 5	SPI07B.ARW	SPI07	2	7/10/2017	11:31	13.8	Sands			high	high in suspended orga
91 S	SPI08A.ARW	SPI08	1	7/11/2017	10:29	7.8	-			high	sediment plume masking
92 S	SPI08B.ARW	SPI08	2	7/11/2017	10:36	7.8	-			high	sediment plume maski
103 S	SPI08C.ARW	SPI08	3	7/11/2017	11:39	7.8	-			high	sediment plume masking
104 S	SPI08D.ARW	SPI08	4	7/11/2017	11:40	7.8	soft mud, silt			high	sediment plume maskin sediment plume
105 S	SPI08E.ARW	SPI08	5	7/11/2017	11:43	7.8	-			high	suspended organics m
123 S	SPI08F.ARW	SPI08	6	7/11/2017	13:51	7.8	-			high	suspended organics m
124 S	SPI08G.ARW	SPI08	7	7/11/2017	13:53	7.8	-			high	suspended organics m
49 S	SPI09A.ARW	SPI09	1	7/10/2017	18:45	7.8	silts, soft sed			high	suspended organics, g
50 S	SPI09B.ARW	SPI09	2	7/10/2017	18:46	7.8	-			high	sediment plume masking
51 S	SPI10A.ARW	SPI10	1	7/10/2017	18:56	7.8	silts, soft sed			high	suspended organics, g
52 S	SPI10B.ARW	SPI10	2	7/10/2017	18:58	7.8	-				image too dark
53 S	SPI11A.ARW	SPI11	1	7/10/2017	19:08	7.8	silts, soft sed			moderate	suspended organics, g
54 S	SPI11B.ARW	SPI11	2	7/10/2017	19:11	7.8	silts, soft sed			moderate	suspended organics, g
5 S	SPI12A.ARW	SPI12	1	7/10/2017	12:00	13.8	soft mud, silt			high	high in suspended orga
6 5	SPI12B.ARW	SPI12	2	7/10/2017	12:02	13.8	-			high	high in suspended orga

sking the bottom

crab (Cancer gracilis)

sking bottom

ab (Cancer gracilis), air bubble trapped on camera face

r bubble trapped on camera face

rganics, ghost shrimp holes visible so likely very soft

rganics masking bottom

rganics

rganics

, can make out ghost shrimp holes so likely very soft

, can make out ghost shrimp holes so likely very soft

air bubble trapped on camera face

, ghost shrimp holes

sking bottom

nics, ghost shrimp holes

sking bottom

nics, air bubble trapped on camera face

nics

sking bottom

bone of some type

rganics

rganics

sking bottom

sking bottom

sking bottom

sking bottom, likely very soft bottom given organics in

masking the bottom

masking the bottom

masking the bottom

, ghost shrimp holes

sking the bottom

, ghost shrimp holes

, ghost shrimp holes

, ghost shrimp holes, mud clast

rganics, ghost shrimp holes

rganics, air bubble trapped in camera face

Table A.2 - Plan View Image Summary

41 SP12D ARW SP12 4 7/10/2017 16/21 7.8 sands sit moderate suspended organics, 25 SP114 A.RW SP114 1 7/10/2017 16/23 7.8 - high sediment plume mask 26 SP115 A.RW SP115 1 7/11/2017 16/23 7.8 - high sediment plume mask 106 SP115 A.RW SP115 1 7/11/2017 15/6 7.8 soft mud, sit high sediment plume mask 110 SP115 A.RW SP115 7 7/11/2017 13/8 7.8 soft mud, sit high sugment plume, four four sediment plume four sediment plume four sediment plume four four </th <th>OID</th> <th>image file</th> <th>Station</th> <th>Rep</th> <th>Date</th> <th>time</th> <th>Image Area (sqft)</th> <th>Class</th> <th>Wood Waste Present</th> <th>Wood Waste Type</th> <th>Turbidity</th> <th></th>	OID	image file	Station	Rep	Date	time	Image Area (sqft)	Class	Wood Waste Present	Wood Waste Type	Turbidity	
25 SPI14 1 7/10/2017 16/24 7.8 . high sediment plume made high sediment plume made high sediment plume made high sediment plume high sediment plume high </td <td>40 SF</td> <td>PI12C.ARW</td> <td>SPI12</td> <td>3</td> <td>7/10/2017</td> <td>18:00</td> <td>7.8</td> <td>sands, silt</td> <td></td> <td></td> <td>moderate</td> <td>suspended organics, g</td>	40 SF	PI12C.ARW	SPI12	3	7/10/2017	18:00	7.8	sands, silt			moderate	suspended organics, g
28 SPI14 2 7102017 1624 7.8 - high bediment plume mask off, union 108 SPI15.ARW SPI15 1 7.112017 1155 7.8 soft mud, sit high settimes plume mask off, union 109 SPI15.ARW SPI15 2 7112017 1358 7.8 soft mud, sit high settimes plume mask settimes plume mask settimes plume mask 101 SPI15.ARW SPI15 4 7112017 1358 7.8 soft mud, sit high settimes plume mask 45 SPI15.ARW SPI16 2 7102017 1357 7.8 soft mud, sit high settimes plume mask 45 SPI15.ARW SPI16 2 7102017 1337 7.8 soft mud, sit high settimes plume mask 9 SPI173.ARW SPI17 2 7102017 1337 7.8 soft mud, sit moderate settimes plume mask 9 SPI173.ARW SPI17 2 7112017 1330	41 SF	PI12D.ARW	SPI12	4	7/10/2017	18:01	7.8	sands, silt			moderate	suspended organics, g
106 SPH15A.ARW SPH5 1 7/11/2017 11:55 7.8 soft mud, sit hgh usediment plume musi sudiment plume musi sudiff sudiment plume musi sudiment plume musi sudiment plume musi su	25 SF	PI14A.ARW	SPI14	1	7/10/2017	16:23	7.8	-			high	sediment plume mask
106 107 171 171 7.8 oft mud, sit high addmarp jume mask sedment jume mask sedmask sedmak sedment jume mask sedmask sedment jume mask sedment	26 SF	PI14B.ARW	SPI14	2	7/10/2017	16:24	7.8	-			high	sediment plume mask
105 P119CARW SP119 1 7110217 17.5 Soft Midd, sit http://www.sp119 http://wwwwwwwwwwwwwwwwwwwwwwwwwwwwww						11.55						high turbidity, can just
100 SPI10 2 7/11/2017 11.5 7.8 ooth mud. sit high sedemate planne 111 SPI102.ARW SPI16 4 7/11/2017 13.88 7.8 soft mud. sit high sedemate planne high high <td>108 SF</td> <td>PI15A.ARW</td> <td>SPI15</td> <td>1</td> <td>7/11/2017</td> <td>11.00</td> <td>7.8</td> <td>soft mud, silt</td> <td></td> <td></td> <td>high</td> <td></td>	108 SF	PI15A.ARW	SPI15	1	7/11/2017	11.00	7.8	soft mud, silt			high	
110 SPING ARW SPI15 3 711/2017 1300 7.8 soft mud, all high suggended organics. 111 SPINS ARW SPI16 1 711/2017 18.25 7.8 sands, shell debris high sediment pluma mask 44 SPI16 ARW SPI16 1 710/2017 18.25 7.8 sands, shell debris moderate 20 SPI17 ARW SPI17 2 710/2017 18.27 7.8 sands, shell debris moderate 20 SPI17 ARW SPI17 2 710/2017 18.39 7.8 soft mud, SIt moderate soft softment 20 SPI17 BARW SPI18 2 711/2017 10.59 7.8 soft mud, sit moderate soft softment 118 SPI80ARW SPI18 2 711/2017 13.39 7.8 soft mud, sit moderate soft softment 118 SPI80ARW SPI18 2 711/2017 13.40 7.8 soft mud, sit moderate lingh sediment pluma mask 118 SPI80ARW SPI19 2 711/2017 13.40 7.8 soft mud, sit soft soft softm	109 SF		SPI15	2	7/11/2017	11:56	7.8	soft mud silt			high	
111 SH150 ARW SH16 4 711/2017 1825 7.8 sandma, shall debris high sadiment plume, ghat 44 SH166 ARW SH16 1 710/2017 1825 7.8 sands, shall debris imodurato 44 SH166 ARW SH16 1 710/2017 1827 7.8 sands, shall debris imp sands, sandt debris imp sands, sandt debris imp imp sands, sandt debris imp imp sandt, sandt debris imp sandt, sandt debris imp imp sandt, sandt sandt, sindt imp </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.08</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						13.08					-	
44 SPI6A.ARW SPI6 1 7/10/2017 18/27 7.8 sands, shall dabris moderate 45 SPI6C.ARW SPI6 2 7/10/2017 18/27 7.8 sands, shall dabris ingh sediment plume mask 46 SPI6C.ARW SPI6 2 7/10/2017 13/27 7.8 sands, shall dabris ingh high nigh sediment plume mask 20 SPI17A.RW SPI17 1 7/10/2017 13/27 7.8 soft mud, Slit moderate sort mud, Slit 20 SPI17B.ARW SPI18 7/11/2017 10/207 7.8 soft mud, Slit moderate sort mud, Slit 95 SPI5A.ARW SPI18 2 7/11/2017 13/40 7.8 soft mud, slit high soft mud, slit 118 SPI19A.ARW SPI19 1 7/11/2017 13/40 7.8 soft mud, slit high soft mud, slit 118 SPI20.ARW SPI20 1 7/11/2017 13/40 7.8 soft mud, slit high sogt mud mum mask 12 SPI20.ARW SPI20 7/11/2017 13/40 7.8 soft mud, slit											-	
44 SPI56.ARW SPI16 2 77/10/2017 18/27 7.8 sands, shell debris high sediment plume mail 46 SPI56.ARW SPI16 3 71/0/2017 13.37 7.8 sands, shell debris high sediment plume											-	ocamient plante, gried
46 SPHICARW SPHI6 3 710/2017 18.29 7.8 sands, shell debris 19 SPHICARW SPH17 1 710/2017 13.37 7.8 - high soft ook high soft ook soft ook high soft ook soft ook high high high high high high high high high </td <td></td> <td></td> <td></td> <td>י ר</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>sediment nlume mask</td>				י ר								sediment nlume mask
19 SPI17 1 7/10/2017 13.37 7.8 - high soft admard 98< SPI18A ARW											nign	
20 SP117E.ARW SP117 2 7/10/2011 13:39 7.8 soft mud, Silt soft softment 96 SP18A.ARW SP118 1 7/11/2017 11:00 7.8 - high soft mud, silt 97 SP118B.ARW SP118 2 7/11/2017 11:00 7.8 - high soft mud, silt 118 SP119A.ARW SP119 2 7/11/2017 13:40 7.8 - high soft 118 SP119A.ARW SP119 2 7/11/2017 13:40 7.8 - high soft 110 SP119A.ARW SP119 2 7/11/2017 13:24 7.8 soft mud, silt high subsequed organics 117 SPI20B.ARW SP121 7/11/2017 13:21 7.8 soft mud, wood waste psessible sticks high high subsequed organics 117 SPI20B.ARW SP121 7/10/2017 16:57 7.8 wood waste pse wood chunks, bark, sticks Begglatoa present on 30 SP122A.ARW <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>high</td><td>high in suspended or</td></t<>											high	high in suspended or
20 SPH78.ARW SPH7 2 7/10/2017 15:39 7.6 soft mud, silt moderate soft sediment 96 SPH38.ARW SPH8 1 7/11/2017 10:59 7.8 soft mud, silt moderate somd submodd org high softmand, silt moderate somd submodd org high softmand, silt high softmand, softmand, silt high high high high softmand, softmand, softmand, soft high h	19 51		35117	1	//10/2017	13.37	1.0	•			nign	
97 SP188.ARW SP118 2 7/11/2017 11:00 7.8 - high sediment plume mask high suspended orgat soft 118 SP1198.ARW SP119 1 7/11/2017 13:39 7.8 soft mud, silt high subment plume mask 115 SP120A.ARW SP120 1 7/11/2017 13:20 7.8 soft mud, silt high subment plume mask 13 SP120A.ARW SP121 1 7/10/2017 13:04 7.8 soft mud, wood waste possible sticks high high high subpended orgat soft 13 SP121A.ARW SP121 1 7/10/2017 13:05 7.8 - high high insupended orgat soft 13 SP121A.ARW SP122 1 7/10/2017 16:57 7.8 wood waste yes wood chunks, bark, sticks Begglatoa present on SP1230.ARW	20 SF	PI17B.ARW	SPI17	2	7/10/2017	13:39	7.8	soft mud, Silt				
Inspectation Normality	96 SF	PI18A.ARW	SPI18	1	7/11/2017	10:59	7.8	soft mud, silt			moderate	some suspended orga
118 SPI19A.ARW SPI19 1 7/11/2017 13:40 7.8 soft mud, silt high soft 119 SPI19B.ARW SPI19 2 7/11/2017 13:44 7.8 - high sediment plume mask 115 SPI20A.ARW SPI19 3 7/11/2017 13:44 7.8 - inage tool dark 115 SPI20A.ARW SPI20 1 7/11/2017 13:21 7.8 soft mud, silt high suspended organics 13 SPI21A.ARW SPI21 1 7/10/2017 13:05 7.8 - image too dark 14 SPI21AARW SPI21 1 7/10/2017 16:57 7.8 wood waste yes wood chunks, bark, sticks Beggiatoa present on 3 SPI22A.ARW SPI23 3 7/10/2017 12:18 1.8 - high high high migh a suspended organics 3 SPI23A.ARW SPI23 3 7/10/2017 12:18 1.8 - high migh a suspended organics 3 SPI23A.ARW SPI2	97 SF	PI18B.ARW	SPI18	2	7/11/2017	11:00	7.8	-			high	sediment plume mask
Instruction The Drift of						12.20						high suspended organ
120 SP19Q.ARW SP19 3 7/11/2017 13:44 7.8 - high sediment plume mask 116 SP120A.ARW SP120 1 7/11/2017 13:20 7.8 soft mud, silt high suspended organics 117 SP120B.ARW SP120 2 7/11/2017 13:20 7.8 - high high suspended organics 13 SP121A.ARW SP121 1 7/10/2017 13:05 7.8 - high suspended org 13 SP121 2 7/10/2017 16:57 7.8 wood waste yes wood chunks, bark, sticks Begglatoa present on 30 SP122A.ARW SP123 3 7/10/2017 12:28 13.8 - high	118 SF	PI19A.ARW	SPI19	1			7.8	soft mud, silt			high	
116 SPI20 1 7/11/2017 13:20 7.8 soft mud, silt high suspended organics 117 SPI20.0.2 7/11/2017 13:21 7.8 - image too dark 13 SPI21.A.RW SPI21 1 7/10/2017 13:04 7.8 soft mud, wood waste possible sticks high high </td <td>119 SF</td> <td>PI19B.ARW</td> <td>SPI19</td> <td>2</td> <td>7/11/2017</td> <td>13:40</td> <td>7.8</td> <td>-</td> <td></td> <td></td> <td>high</td> <td>-</td>	119 SF	PI19B.ARW	SPI19	2	7/11/2017	13:40	7.8	-			high	-
117 SPI20 2 7/11/2017 13:21 7.8 - image too dark 13 SPI21A.ARW SPI21 1 7/10/2017 13:04 7.8 soft mud, wood waste possible sticks high high <td>120 SF</td> <td>PI19C.ARW</td> <td>SPI19</td> <td>3</td> <td>7/11/2017</td> <td>13:44</td> <td>7.8</td> <td>-</td> <td></td> <td></td> <td>high</td> <td>sediment plume mask</td>	120 SF	PI19C.ARW	SPI19	3	7/11/2017	13:44	7.8	-			high	sediment plume mask
13 SPI21A.RW SPI21 1 7/10/2017 13:04 7.8 soft mud, wood waste possible sticks high sediment plume <	116 SF	PI20A.ARW	SPI20	1	7/11/2017	13:20	7.8	soft mud, silt			high	suspended organics
13 SPI21 1 71.0 7.8 Softman, wood waste pessible stacks Inight	117 SF	PI20B.ARW	SPI20	2	7/11/2017	13:21	7.8	-				image too dark
13 SPI21 1 71.0 7.8 Softman, wood waste pessible stacks Inight	10 00		00104	4	7/10/2017	13:04	7.0	aaft mud wood wooto	naasihla	atialia	high	high in suspended or
29 SPI22 1 7/10/2017 16:57 7.8 wood waste yes wood chunks, bark, sticks Beggiatoa present on 30 SPI226 2 7/10/2017 16:58 7.8 wood waste yes wood chunks, bark, sticks Beggiatoa present on 9 SPI23C.ARW SPI23 3 7/10/2017 12:18 13.8 - high image to oark, unable 12 SPI23D.ARW SPI23 4 7/10/2017 13:13 7.8 wood waste yes sticks, bark moderate crab (Cancer gracilis) 16 SPI23D.ARW SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) 16 SPI23A.ARW SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) 10 SPI24A.ARW SPI24 2 7/10/2017 13:22 7.8 - high high									possible	SIICKS	-	
30 SPI22 2 7/10/2017 16:58 7.8 wood waste yes wood chunks, bark, sticks Beggiatoa present on 9 SPI23C.ARW SPI23 3 7/10/2017 12:18 13.8 - high image too dark, unable 12 SPI23C.ARW SPI23 1 7/10/2017 12:18 13.8 wood waste yes sticks, bark high high image too dark, unable 16 SPI23L.ARW SPI23 4 7/10/2017 13:13 7.8 wood waste yes sticks, bark moderate crab (Cancer gracilis) 16 SPI23E.ARW SPI23 6 7/10/2017 13:14 7.8 - high sediment plume of ture 17 SPI23E.ARW SPI24 1 7/10/2017 12:22 13.8 soft mud, silt moderate rab (Cancer gracilis) high high high superided org 11 SPI24 2 7/10/2017 12:23 13.8 - high				2						wood obunko, bark atiako	nign	
9 SPI23C.ARW SPI23 3 7/10/2017 12:18 13.8 - high image too dark, unable 12 SPI23A.ARW SPI23 1 7/10/2017 12:28 13.8 wood waste yes sticks, bark high high insupended org 15 SPI23D.ARW SPI23 4 7/10/2017 13:13 7.8 wood waste yes sticks, bark moderate crab (Cancer gracills) 16 SPI23E.ARW SPI23 5 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracills) 17 SPI23F.ARW SPI24 1 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracills) 10 SPI24A.ARW SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high high high high high insupended org 11 SPI24B.ARW SPI24 2 7/10/2017 12:22 7.8 - high high high insupended org 24 SPI25A.ARW SPI28 1				1					•			
12 SPI23 1 7/10/2017 12:28 13.8 wood waste yes sticks, bark high isspended org 16 SPI23 4 7/10/2017 13:14 7.8 wood waste yes sticks, bark moderate crab (Cancer gracilis) 16 SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) 10 SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bigh bottom 11 SPI24A.ARW SPI24 2 7/10/2017 12:23 13.8 - high bottom 24 SPI24A.ARW SPI24 3 7/10/2017 13:22 7.8 - high								wood waste	yes	WOOD CHUNKS, DARK, STICKS	h i sh	
15 SPI23D.ARW SPI23 4 7/10/2017 13:13 7.8 wood waste yes sticks, bark moderate crab (Cancer gracilis) 16 SPI23E.ARW SPI23 5 7/10/2017 13:14 7.8 - high sediment plume of tur 17 SPI23F.ARW SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) 10 SPI24A.ARW SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bottom 11 SPI24B.ARW SPI24 2 7/10/2017 12:22 7.8 - high high high bottom 18 SPI24C.ARW SPI24 3 7/10/2017 13:22 7.8 - high sediment plume mask 21 SPI28A.ARW SPI28 1 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 23 SPI28A.ARW SPI28 2 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 23 SPI								-		-Color book	-	U
16 SPI23 5 7/10/2017 13:14 7.8 - high sediment plume of tur 17 SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) 10 SPI24A.ARW SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bottom 11 SPI24A.ARW SPI24 2 7/10/2017 12:23 13.8 - high high high bottom 18 SPI24C.ARW SPI24 3 7/10/2017 13:22 7.8 - high high high high high high high supended orgonation 24 SPI24 3 7/10/2017 15:25 7.8 - moderate broken shells litter the 22 SPI28A.ARW SPI28 1 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the moderate broken shells									•		-	• •
17 SPI23F.ARW SPI23 6 7/10/2017 13:14 7.8 wood waste yes wood chunks, bark moderate crab (Cancer gracilis) high in suspended orgeneration of the pottom 10 SPI24A.ARW SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bottom high bottom 11 SPI24B.ARW SPI24 2 7/10/2017 12:23 13.8 - high high high bottom 18 SPI24C.ARW SPI24 3 7/10/2017 13:22 7.8 - high high high high high sediment plume mask 24 SPI25A.ARW SPI28 1 7/10/2017 15:25 7.8 - moderate broken shells litter the 22 SPI28A.ARW SPI28 1 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 23 SPI28C.ARW SPI28 3 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 31 SPI29A.ARW SPI29 1 7/10/2017 17:15 7.8<								wood waste	yes	Sticks, dark		
10 SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bigh bottom 11 SPI24B.ARW SPI24 2 7/10/2017 12:23 13.8 - high <								-			-	
10 SPI24 1 7/10/2017 12:22 13.8 soft mud, silt high bottom 11 SPI24B.ARW SPI24 2 7/10/2017 12:23 13.8 - high high<	17 SF	PI23F.ARW	SPI23	6	7/10/2017	13:14	7.8	wood waste	yes	WOOD CHUNKS, DARK	moderate	
11 SPI24B.ARW SPI24 2 7/10/2017 12:23 13.8 - high high<	10 SF	PI24A.ARW	SPI24	1	7/10/2017	12:22	13.8	soft mud. silt			hiah	
18 SPI24C.ARW SPI24 3 7/10/2017 13:22 7.8 - high high in suspended org 24 SPI25A.ARW SPI25 1 7/10/2017 15:25 7.8 - high sediment plume mask 21 SPI28A.ARW SPI28 1 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 22 SPI28B.ARW SPI28 2 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 23 SPI28C.ARW SPI28 3 7/10/2017 14:52 7.8 hard Sands, shell debris moderate broken shells litter the 31 SPI29A.ARW SPI29 1 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark Beggiatoa present on 32 SPI29A1.ARW SPI29 2 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark Image: starter the 33 SPI29A2.ARW SPI29 3 7/10/2017 17:17 7.8 wood waste yes wood chunks, bark Image: starter the starter the s				2		12:23					-	high in suspended org
24 SPI25A.ARWSPI2517/10/201715:257.8hard Sands, shell debrishighsediment plume mask21 SPI28A.ARWSPI2817/10/201714:327.8hard Sands, shell debrismoderatebroken shells litter the22 SPI28B.ARWSPI2827/10/201714:347.8hard Sands, shell debrismoderatebroken shells litter the23 SPI28C.ARWSPI2837/10/201714:527.8hard Sands, shell debrismoderatebroken shells litter the31 SPI29A.ARWSPI2917/10/201717:157.8wood wasteyeswood chunks, barkBeggiatoa present on32 SPI29A1.ARWSPI2927/10/201717:157.8wood wasteyeswood chunks, barkterm33 SPI29A2.ARWSPI2937/10/201717:157.8wood wasteyeswood chunks, barkterm34 SPI29E.ARWSPI2957/10/201717:177.8wood wasteyeswood chunks, barkterm35 SPI30A.ARWSPI3017/10/201717:307.8wood wasteyeswood chunkshighhigh in suspended or of the sustained or of								-			-	high in suspended org
21 SPI28A.ARW SPI28 1 7/10/2017 14:32 7.8 hard Sands, shell debris moderate broken shells litter the 22 SPI28B.ARW SPI28 2 7/10/2017 14:34 7.8 hard Sands, shell debris moderate broken shells litter the 23 SPI28C.ARW SPI28 3 7/10/2017 14:52 7.8 hard Sands, shell debris moderate broken shells litter the 31 SPI29A.ARW SPI29 1 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark Beggiatoa present on 32 SPI29A1.ARW SPI29 2 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark Beggiatoa present on 33 SPI29A2.ARW SPI29 3 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark Total state 34 SPI29E.ARW SPI29 5 7/10/2017 17:17 7.8 wood waste yes wood chunks, bark Total state 34 SPI29E.ARW SPI30 1 7/10/2017 17:17 7.8 wood waste yes wood chunks hi				1							•	sediment plume mask
22 SPI28B.ARWSPI2827/10/201714:347.8hard Sands, shell debrismoderatebroken shells litter the23 SPI28C.ARWSPI2837/10/201714:527.8hard Sands, shell debrismoderatebroken shells litter the31 SPI29A.ARWSPI2917/10/201717:157.8wood wasteyeswood chunks, barkBeggiatoa present on32 SPI29A1.ARWSPI2927/10/201717:157.8wood wasteyeswood chunks, barkSegiatoa present on33 SPI29A2.ARWSPI2937/10/201717:157.8wood wasteyeswood chunks, barksegiatoa present on34 SPI29E.ARWSPI2957/10/201717:177.8wood wasteyeswood chunkshighhigh in suspended or of35 SPI30A.ARWSPI3017/10/201717:307.8wood wastepossiblewood chunkshighhigh in suspended or of				1				hard Sands, shell debris			-	-
23 SPI28C.ARWSPI2837/10/201714:527.8hard Sands, shell debrismoderatebroken shells litter the31 SPI29A.ARWSPI2917/10/201717:157.8wood wasteyeswood chunks, barkBeggiatoa present on32 SPI29A1.ARWSPI2927/10/201717:157.8wood wasteyeswood chunks, barkHerd Sands, bark33 SPI29A2.ARWSPI2937/10/201717:157.8wood wasteyeswood chunks, bark34 SPI29E.ARWSPI2957/10/201717:177.8wood wasteyeswood chunks, bark35 SPI30A.ARWSPI3017/10/201717:307.8wood wastepossiblewood chunks, bark												
31 SPI29A.ARWSPI2917/10/201717:157.8wood wasteyeswood chunks, barkBeggiatoa present on32 SPI29A1.ARWSPI2927/10/201717:157.8wood wasteyeswood chunks, bark33 SPI29A2.ARWSPI2937/10/201717:157.8wood wasteyeswood chunks, bark34 SPI29E.ARWSPI2957/10/201717:177.8wood wasteyeswood chunks, bark35 SPI30A.ARWSPI3017/10/201717:307.8wood wastepossiblewood chunkshighhigh in suspended or so												
32 SPI29A1.ARW SPI29 2 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark 33 SPI29A2.ARW SPI29 3 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark 34 SPI29E.ARW SPI29 5 7/10/2017 17:17 7.8 wood waste yes wood chunks, bark 35 SPI30A.ARW SPI30 1 7/10/2017 17:30 7.8 wood waste possible wood chunks high high in suspended orgon				1					Ves	wood chunks bark	modorato	
33 SPI29A2.ARW SPI29 3 7/10/2017 17:15 7.8 wood waste yes wood chunks, bark 34 SPI29E.ARW SPI29 5 7/10/2017 17:17 7.8 wood waste yes wood chunks, bark 35 SPI30A.ARW SPI30 1 7/10/2017 17:30 7.8 wood waste yes wood chunks high high in suspended or suspended o				2					-			
34 SPI29E.ARWSPI2957/10/201717:177.8wood wasteyeswood chunkshighhigh in suspended or35 SPI30A.ARWSPI3017/10/201717:307.8wood wastepossiblewood chunkshighhigh in suspended or									•			
35 SPI30A.ARW SPI30 1 7/10/2017 17:30 7.8 wood waste possible wood chunks high high in suspended or											high	high in suspended are
									•		-	
o orisub. Anw orisu 2 1/10/2017 17.51 7.6 wood waste possible wood chunks high high high high high high high hig				1					•		-	
	30 51	LISOD.AKW	58130	2	7/10/2017	17.31	7.8	wood waste	possible		nign	ingir in suspended olg

Notes	
s, ghost shrimp holes	
s, ghost shrimp holes	
asking the bottom	
asking the bottom	
ust make out the bottom, ghost shrimp holes so likely very	
asking bottom, likely very soft bottom given organics in	

, ghost shrimp holes so likely very soft ost shrimp holes so likely very soft

sking portion of the bottom

rganics masking bottom s, likely camera triggered late due to weight sinking in very

ganics, ghost shrimp holes

sking bottom

anics in water column, ghost shrimp holes so likely very

sking the bottom

sking the bottom, image out of focus

rganics, can just make out possible wood waste debris

rganics

on wood waste

n wood waste

ble to resolve the bottom

rganics

urbidity masking the bottom

s), turbidity plum masking portion of the image

rganics, ghost shrimp holes visible so likely very soft

rganics masking bottom

rganics masking bottom

sking the bottom

ne bottom

ne bottom

ne bottom

n wood waste

organics

rganics

rganics

Table A.2 - Plan View Image Summary

OII	D image file	Station	Rep	Date	time	Image Area (sqft)	Class	Wood Waste Present	Wood Waste Type	Turbidity	
8	7 SPI31A.ARW	SPI31	1	7/11/2017	10:04	7.8	soft mud, wood waste	yes	fibrous, wood chunks	moderate	high concentration of o
8	8 SPI31B.ARW	SPI31	2	7/11/2017	10:05	7.8				high	sediment plume mask
8	9 SPI31C.ARW	SPI31	3	7/11/2017	10:05	7.8	-			high	sediment plume mask
ç	0 SPI31D.ARW	SPI31	4	7/11/2017	10:06	7.8	-			high	sediment plume mask
8	5 SPI32A.ARW	SPI32	1	7/11/2017	9:59	7.8	soft mud, wood waste	yes	fibrous	moderate	high concentration of o
8	6 SPI32B.ARW	SPI32	2	7/11/2017	10:00	7.8	-				sediment plume mask
5	7 SPI33A.ARW	SPI33	1	7/11/2017	8:00	7.8	rocky				large cobles and rocks
5	8 SPI33B.ARW	SPI33	2	7/11/2017	8:01	7.8	rocky				large cobles and rocks
5	5 SPI34A.ARW	SPI34	1	7/11/2017	7:46	7.8	silts, soft sed			moderate	suspended organics, g
5	6 SPI34B.ARW	SPI34	2	7/11/2017	7:47	7.8	-				image too dark
6	3 SPI34C.ARW	SPI34	3	7/11/2017	8:23	7.8	soft mud, Silt			high	suspended organics a have sunk in soft sedi
e	4 SPI34D.ARW	SPI34	4	7/11/2017	8:24	7.8	soft mud, Silt			high	suspended organics a have sunk in soft sedi
6	5 SPI36A.ARW	SPI36	1	7/11/2017	8:30	7.8	hard bottom			high	suspended organics a bottom
e	6 SPI36B.ARW	SPI36	2	7/11/2017	8:31	7.8	-			high	sediment plume mask
12	7 SPI37A.ARW	SPI37	1	7/11/2017	14:24	7.8	sand, wood waste	yes	wood chunks, bark		wood debris and other
12	8 SPI37B.ARW	SPI37	2	7/11/2017	14:26	7.8	sand, wood waste	possible			some organics cover b

Notes

of organics on bottom, few chunks of wood

sking bottom

asking bottom, extra image

sking bottom, extra image

of organics on bottom, Beggiatoa present on wood waste

sking bottom

cks

cks

s, ghost shrimp holes

s and sediment plume, image out of focus, camera may ediment

and sediment plume, image out of focus, camera may

and sediment plume, possible rocks in image, likely hard

sking the bottom

her organics cover bottom, some broken shells

r bottom, possible wood waste, some broken shells

Attachment 5 Bioassay Report

TOXICOLOGY TESTING RESULTS SHELTON HARBOR SEDIMENT CLEANUP SITE SHELTON, WASHINGTON

Prepared for Anchor QEA LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

On behalf of: Simpson Timber Company 1305 5th Ave, Suite 2700 Seattle, WA 98101

Prepared by EcoAnalysts, Inc. 4770 NE View Drive PO Box 216 Port Gamble, Washington 98364

EcoAnalysts Report ID: 081417.01

Submittal Date September 18, 2017

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated.

APPROVED BY:

Brian Hester

Brian Hester Laboratory Director

Authors:

Hillary Eichler

Julia Baum

Bridget Gregg

CONTENTS

1.	INTRODUCTION	1
2.	METHODS	1
2.1	Sample Collection and Organism Receipt	1
2.2	Sample Testing Plan	1
2.3	Sample Grain Size and Reference Comparison	2
2.4	10-day Amphipod Bioassay	4
2.5	20-day Juvenile Polychaete Bioassay	4
2.6	Larval Developmental Bioassay	5
2.7	Data Analysis and QA/QC	7
3.	RESULTS	8
3.1	10-day Amphipod Bioassay	8
3.2	20-day Juvenile Polychaete Bioassay	12
3.3	Larval Development Bioassay	18
4.	DISCUSSION	24
4.1	Amphipod Test Suitability Determination	24
4.2	Juvenile Polychaete Test Suitability Determination	24
4.3	Larval Test Suitability Determination	26
5.	SUMMARY	27
6.	REFERENCES	28

TABLES

Table 2-2. Sample and Reference Grain Size Comparison.	3
Table 3-1. Test Results for Eohaustorius estuarius.	9
Table 3-2. Water Quality Summary for Eohaustorius estuarius.	10
Table 3-3. Ammonia and Sulfide Summary for Eohaustorius estuarius.	10
Table 3-4.Test Condition Summary for Eohaustorius estuarius.	11
Table 3-5. Test Results for Neanthes arenaceodentata.	13
Table 3-6. Water Quality Summary for Neanthes arenaceodentata.	15
Table 3-7. Ammonia Summary for Neanthes arenaceodentata.	15
Table 3-8. Sulfide Summary for Neanthes arenaceodentata.	16
Table 3-9. Test Condition Summary for Neanthes arenaceodentata.	17
Table 3-10. Test Results for Mytilus galloprovincialis.	19
Table 3-11. Water Quality Summary for Mytilus galloprovincialis.	21
Table 3-12. Ammonia and Sulfide Summary for Mytilus galloprovincialis.	22
Table 3-13. Test Condition Summary for Mytilus galloprovincialis.	23
Table 4-1. SMS Comparison for Eohaustorius estuarius.	24
Table 4-2. SMS Comparison for Neanthes arenaceodentata.	25
Table 5-1. Summary of SMS Evaluation.	27

APPENDICES

- Appendix A: Test and Reference Toxicant Test Results
- Appendix B: Statistical Comparisons
- Appendix C: Supporting Documents

ACRONYMS AND ABBREVIATIONS

AFDW:	Ash-free dry weight
ARI:	Analytical Resources, Inc., Tukwila, WA
cm:	Centimeter
CSL:	Cleanup Screening Level
°C:	Degrees Celsius
EC ₅₀ :	Effective Concentration that results in a 50% reduction in a sub-lethal endpoint
g:	Grams
LC ₅₀ :	Lethal Concentration that results in a 50% reduction in survival
L:	Liter
μm:	Micrometer
mg:	Milligram
mg/L:	Milligrams per liter
mL:	Milliliter
mm:	Millimeter
NELAP:	National Environmental Laboratory Accreditation Program
NOEC:	No Observed Effect Concentration
OR:	Oregon
ppt:	parts per thousand
PSEP:	Puget Sound Estuary Protocols (PSEP 1995)
SCO:	Sediment Cleanup Objective
SMS:	Sediment Management Standards
SOP:	Standard operation procedure
SSAPA:	Sediment Sampling and Analysis Plan Appendix (SSAPA; WDOE 2008)
SMARM:	Sediment Management Annual Review Meeting
UIA:	Un-ionized ammonia
USACE:	United States Army Corps of Engineers
USEPA:	United States Environmental Protection Agency
WA:	Washington State
WAC:	Washington Administrative Code
WDOE:	Washington (State) Department of Ecology

1. INTRODUCTION

EcoAnalysts conducted biological toxicity testing with sediment samples collected by Anchor QEA, LLC. as part of a Remedial Investigation/Feasibility Study (RI/FS) being performed at the Shelton Harbor Cleanup Site in Shelton, Washington. Sediments were evaluated for biological effects following guidance provided by the Washington State Department of Ecology (WDOE) Sediment Management Standards (SMS) under the Washington Administrative Code (WAC) 173-204-315. This report presents the results of the toxicity testing portion of the Shelton Harbor sediment investigation.

2. METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the Sediment Cleanup User's Manual II (SCUM II; WDOE 2015), and the various updates presented during the Sediment Management Annual Review Meeting (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the 20-day juvenile polychaete survival and growth test, and the 48-hour benthic larval development test.

2.1 Sample Collection and Organism Receipt

Eleven test sediments were collected on July 12 - 13, 2017 and were received at EcoAnalysts on July 15, 2017. Reference sediments from Carr Inlet, WA were collected by EcoAnalysts on July 22, 2017 and received on the same day. Sediment samples were stored in a walk-in cold room at 4 ± 2 °C in the dark. The test sediment was not sieved prior to testing. All tests were conducted within the eight-week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. Animals were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (Neanthes were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish in Shelton, WA. Broodstock were held in unfiltered seawater at 14 – 16°C prior to spawning.

Native *Eohaustorius* sediment from Yaquina Bay, Oregon was also provided by Northwest Aquatic Sciences for use as control sediment treatments for the amphipod and juvenile polychaete tests.

2.2 Sample Testing Plan

Based on historical data of the Shelton Harbor Cleanup Unit, Ecology approved a modified testing approach. Larval and polychaete bioassays were conducted at sample locations where historical SMS exceedances had occurred. Areas with higher wood debris content than historical sampling locations received full suite bioassay testing (larval, polychaete, and amphipod). Sample locations and their corresponding bioassays are outlined in Table 2-1.

/ 1								
Sample ID	Benthic Larval Development Test	Juvenile Polychaete Survival and Growth Test	Amphipod Survival Test					
SH-04	Х							
SH-13A		Х						
SH-14	Х							
SH-19	Х	Х						
SH-21	Х							
SH-22	Х	Х						
SH-24	Х							
SH-28		Х						
SPI-22	Х	Х	Х					
SPI-30	Х	Х	Х					
SPI-31	Х	Х	Х					

Table 2-1. Bioassay Sample Assignments

X = Indicates test to be conducted with associated samples

2.3 Sample Grain Size and Reference Comparison

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments. The percent fines value is defined as the amount of sediment that passes through a 62.5-µm sieve, expressed as a percentage of the total sample analyzed. This is also the sum of the silt and clay fraction of sediment. Wet-sieve grain size results for the reference sample was conducted in the field (at the time of collection) and after receipt at the EcoAnalysts laboratory. The percent-fines determination of the project sediments are summarized in Table 2-2.

Table 2-2. Sample and Reference Grain Size Comparison.

Treatment	Percent Fines ¹	Treatment Compared To:
SH-Ref-1 (Reference)	10%	
CARR/SH-Ref-1 (Reference)	28%	
CARR (Reference)	52%	
CR-022 (Reference)	72%	
SH-04	48%	CARR
SH-13A	46%	CARR
SH-14	32%	CARR/SH-Ref-1
SH-19	48%	CARR
SH-21	62%	CARR or CR-022
SH-22	36%	CARR/SH-Ref-1
SH-24	38%	CARR/SH-Ref-1
SH-28	28%	CARR/SH-Ref-1
SPI-22	10%	SH-Ref-1
SPI-30	34%	CARR/SH-Ref-1
SPI-31	56%	CARR

¹ Wet sieve results

2.4 10-day Amphipod Bioassay

The 10-day acute toxicity test with *E. estuarius* was initiated on July 28, 2017. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45- μ m filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥5.1 mg/L
Temperature:	15 ± 1°C
Salinity:	28 ± 1 ppt
pH:	7 - 9 units

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980). A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.5 20-day Juvenile Polychaete Bioassay

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on July 28, 2017. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. The control and reference sediment were tested concurrently with the test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure overlying and interstitial ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total

ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were:

Dissolved Oxygen:	≥4.6 mg/L
Temperature:	20 ± 1°C
Salinity:	28 ± 2 ppt
pH:	7 - 9 units

The juvenile polychaete test was initiated by randomly allocating five *N. arenaceodentata* into each test chamber, and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. *N. arenaceodentata* were fed every other day with 40 mg of TetraMarin[®] (approximately 8 mg dry weight per worm).

At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and dried in a drying oven at 60°C for approximately 24 hours. Each weigh-boat was removed, cooled in a desiccator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to correct for the influence of sediment grain size differences between treatments. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980). A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.6 Larval Developmental Bioassay

Test sediment was evaluated using the larval benthic toxicity test with the mussel, *M. galloprovincialis*. The mussel larval test was initiated on August 1, 2017. The control and reference sediment were tested with the test treatments. To prepare the test exposures, 18 g (\pm 1 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45-µm filtered seawater. Six replicate chambers were prepared for the test treatment, reference sediment, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs are transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and sub-samples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 20,000 to 40,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2 (test termination). Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were monitored using a HACH DR/2800V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen:	≥5.0 mg/L
Temperature:	16 ± 1°C
Salinity:	28 ± 1ppt
pH:	7 - 9 units

The development test was conducted as a static test without aeration. The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At termination, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early stage larvae.

To evaluate the relative sensitivity of the organisms, reference toxicity tests were performed using standard reference toxicants (Lee 1980). A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to ammonia concentrations that would possibly be present in the sediments.

2.7 Data Analysis and QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the normalized combined mortality and abnormality endpoint was used to evaluate the test sediment. This was based on the number of normal larvae in each treatment and reference sample divided by the mean number of normal larvae in the control replicates, as defined in the SCUM II guidance document (Ecology 2015).

Experiment-wide survival, growth, and development data were analyzed using one-way analysis of variance (ANOVA). When ANOVA showed a significant difference, multiple comparison t-tests then compared survival in each of the control and test sediments against survival in the reference sediments. Prior to analyses, normality and homogeneity of variance was assessed. When necessary to satisfy these assumptions, proportional survival data were arcsine square-root transformed. Solid-phase analyses were performed with GraphPad Prism, Version 7.03. Statistical analyses of all dose-response tests were performed using CETIS Comprehensive Toxicity Data Analysis and Database Software version 1.9.2.6. Comparisons between the lab control and each test concentration were performed following recommended USEPA decision matrices (USEPA 2002).

3. **RESULTS**

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix A and statistical analyses are provided in Appendix B.

3.1 10-day Amphipod Bioassay

The bioassay test with *E. estuarius* was validated with 1% mortality in the native sediment control, which met the performance criterion of $\leq 10\%$ mortality for SMS evaluations. This result indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference treatments CARR, SH-Ref-1 and CARR/SH-Ref-1 was between 1 - 5% which met the performance criteria ($\leq 25\%$ mortality) and indicated that the reference sediment was acceptable for suitability determination. Mean mortality in the three project samples was between 8 - 9%. All endpoint results are summarized in Table 3-1. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-2, Table 3-3, and Table 3-4.

Temperature was recorded above the targeted range of $15 \pm 1^{\circ}$ C (Max value of 16.8° C) on Day 9 among all treatments. The temperature control system was adjusted upon discovery and temperatures were returned to the targeted range for the duration of the test. The pH of replicate 5 of sample SPI-31 was 6.7 units on Day 10. This was slightly outside the expected range of 7 – 9 pH units. No corrective action is warranted for instances of pH variance. Survival within this replicate was 100%, indicating that the pH did not impair organism survival. All other water quality parameters were within the acceptable limits throughout the duration of the test. Given the high level of survival among all treatments (\geq 91%), these deviations did not affect the significance of the test results.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within ±2 standard deviations from the laboratory historical mean. This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at EcoAnalysts.

Ammonia concentrations observed in the *E. estuarius* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-3; compare to NOEC of 151 mg/L). Values were also below the published threshold concentration of 15 mg/L total ammonia (Barton 2002). Therefore, ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments. Initial sulfide concentrations in interstitial water ranged from 0.090 – 25.9 mg/L. Project samples SPI-22 and SPI -30 expressed elevated porewater sulfide values of 15.0 and 25.9 mg/L total sulfides, respectively. While these values exceeded the potential trigger values for purging (1.9 mg/L total sulfides / 0.122 mg/L hydrogen sulfide) (Inouye 2015), this evaluation did not require sample purging prior to testing (Soccorsy 2017). Given the high survival observed in all test treatments, these values did not appear to affect the test results.

Treatment	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
	1	20	20	0	100		
	2	20	19	1	95		
Control	3	20	20	0	100	99.0	2.2
	4	20	20	0	100		
	5	20	20	0	100		
	1	20	18	2	90		
	2	20	19	1	95		
SH-Ref-1	3	20	18	2	90	95.0	5.0
	4	20	20	0	100		
	5	20	20	0	100		
	1	20	20	0	100		
	2	20	19	1	95		4.2
CARR	3	20	18	2	90	96.0	
	4	20	20	0	100		
	5	20	19	1	95		
	1	20	20	0	100		
	2	20	20	0	100		
CARR / SH-Ref-1	3	20	20	0	100	99.0	2.2
	4	20	20	0	100		
	5	20	19	1	95		
	1	20	20	0	100		
	2	20	17	3	85		
SPI-22	3	20	18	2	90	91.0	5.5
	4	20	18	2	90		
	5	20	18	2	90		
	1	20	20	0	100		
	2	20	17	3	85		
SPI-30	3	20	20	0	100	91.0	10.8
	4	20	15	5	75	1	
	5	20	19	1	95	1	
	1	20	18	2	90		
	2	20	17	3	85	1	
SPI-31	3	20	19	1	95	92.0	5.7
	4	20	18	2	90		
	5	20	20	0	100		

Table 3-1. Test Results for *Eohaustorius estuarius*.

Treatment	Dissolved Oxygen (mg/L) ≥5.1 mg/L			Temperature (°C) 15 ± 1°C			Salinity (ppt) 28 ± 1 ppt			pH 7 - 9 units		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.3	7.7	8.5	15.0	14.1	16.6	29	28	29	8.1	8.0	8.2
SH-Ref-1	8.3	8.1	8.5	15.0	14.2	16.6	29	29	29	8.2	8.0	8.5
CARR	8.3	8.1	8.4	15.1	14.2	16.7	29	28	29	8.1	8.0	8.3
CARR / SH-Ref-1	8.3	7.9	8.5	15.1	14.3	16.7	29	29	29	8.1	8.0	8.3
SPI-22	8.2	7.9	8.4	15.1	14.4	16.8	29	28	29	8.2	7.8	8.6
SPI-30	8.2	7.9	8.4	15.1	14.2	16.7	28	28	29	8.3	7.8	8.6
SPI-31	8.3	8.0	8.5	15.2	14.4	16.8	28	27	29	8.2	6.7	8.6

 Table 3-2. Water Quality Summary for Echaustorius estuarius.

Bold = Values that fell outside of the targeted water quality criteria

Treatment	(mg/L	Ammonia Total) 151 mg/L	(mg/L	Ammonia Total) 151 mg/L	(mg/L ² Trigger V	g Sulfides Total) /alue = 1.9 g/L	Interstitial Sulfides (mg/L Total) ² Trigger Value = 1.9 mg/L		
	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	
Control	0.00	0.00	NM	NM	0.011	0.020	NM	NM	
SH-Ref-1	0.365	0.588	NM	2.61	0.082	0.005	NM	NM	
CARR	0.226	0.00	3.80	1.46	0.037	0.02	0.090	0.069	
CARR / SH-Ref-1	0.432	0.163	5.10	1.43	0.061	0.011	0.11	0.122	
SPI-22	0.522	0.674	6.00	2.81	0.031	0.035	15.0	0.298	
SPI-30	0.805	2.42	8.50	2.90	0.009	0.012	25.9	0.198	
SPI-31	0.603	0.252	5.30	2.20	0.021	0.043	0.1	0.196	

Table 3-3. Ammonia and Sulfide Summary for *Eohaustorius estuarius*.

¹NOEC (concurrent reference-toxicant test derived) = 151 mg/L total ammonia

²Inouye 2015: Total sulfide value 1.9 mg/L derived from hydrogen sulfide dissociation (0.122 mg/L H₂S @ 15°C, 28 ppt, and 8.1 pH)

NM = not measured; insufficient porewater recovered for analysis

Bold = Values that fell outside of the targeted water quality criteria

Table 3-4.Test Condition Summary for Echaustorius estuarius.

Test Conditions: PSEP E. estuarius									
Date sampled	July 12 -	- 13, 2017							
Date received	July 15, 2017								
Test dates	July 28 – August 7, 2017								
Sample storage conditions	4°C	, dark							
Days of holding	15 _ 2	16 Days							
Recommended: ≤8 weeks (56 days)	15								
Source of control sediment	Yaquina	a Bay, OR							
Test Species	E. es	tuarius							
Supplier	Northwestern Aquation	c Sciences, Newport, OR							
Date acquired	July 2	7, 2017							
Age class	Mature ac	lult, 3-5 mm							
Test Procedures		revisions, SCUM II (2015) SED002.09							
Test location	EcoAnalysts Port	Gamble Laboratory							
Test type/duration	10-Da	ay static							
Control water	North Hood Canal sea	awater, 0.45µm filtered							
Test dissolved oxygen	Recommended: > 5.1 mg/L	Observed: 7.7 – 8.5 mg/L							
Test temperature	Recommended: 15 \pm 1 °C	Observed: 14.1 – 16.8°C							
Test Salinity	Recommended: 28 \pm 1 ppt	Observed: 27 – 29 ppt							
Test pH	Recommended: 7 - 9	Observed: 6.7 – 8.6							
Control Performance Standard SMS	Recommended: Control ≤ 10% mortality	Observed: 1% mortality; Pass							
Reference Performance Standard SMS	Recommended: Reference ≤ 25% mortality	Observed mortality: 1 – 5%; Pass							
Reference Toxicant LC50 (total ammonia)	LC ₅₀ = 1	96.9 mg/L							
Mean; Acceptable Range (total ammonia)	151.1; 55.5	– 246.7 mg/L							
NOEC (total ammonia)	151	mg/L							
NOEC (unionized ammonia)	1.74	mg /L							
Test Lighting	50 – 100 foot candles	(ambient and constant)							
Test chamber	1-Liter Gla	ass Chamber							
Replicates/treatment	5 + 2 surrogates (one used for WQ measurements throughout the test)								
Organisms/replicate		20							
Exposure volume	175 mL sedime	nt/ 775 mL water							
Feeding	Ν	one							
Water renewal	N	one							
	None Temperature, pH								

3.2 20-day Juvenile Polychaete Bioassay

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) in the control was 0.397 mg/ind/day (dry weight) and 0.261 mg/ind/day (AFDW). These values fall within the test acceptability criteria of <10% mean mortality and ≥0.38 mg/ind/day dry weight (Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 3-5. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-6, Table 3-7, Table 3-8, and Table 3-9.

Mean mortality in the reference treatments ranged from 0 – 4%, meeting the reference performance standard of \leq 10% (WDOE 2015; USACE 2015). Mean individual growth for the reference treatments ranged from 0.362 to 0.417 mg/ind/day (dry weight) and 0.274 to 0.305 mg/ind/day (AFDW). When compared to the control, MIG expressed as AFDW ranged from 1.049 to 1.169, which met the reference performance standard of \geq 0.80 (WDOE 2015).

Mortality in the project sediments ranged from 0% to 16%. Mean individual growth (as dry weight) in the test treatments ranged from 0.250 to 0.428 mg/ind/day. Mean individual growth in the AFDW assessment, which removes variability caused by gut contents, ranged from 0.198 to 0.341 mg/ind/day as AFDW.

All water quality parameters were within the acceptable limits throughout the duration of the test. Initial mean individual biomass (pretest) of the test organisms was below the recommended criterion of 0.25 - 0.50 mg/individual at 0.111 mg/ind; however, the test organisms were within the recommended age for testing (2 -3 weeks old). The control growth criterion was met (0.397; \geq 0.38 mg/ind/day), indicating a valid test.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC_{50} value was within control chart limits (±2 standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at EcoAnalysts.

Ammonia concentrations observed in the *N. arenaceodentata* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-7; compare to NOEC of 99.9 mg/L). Initial sulfide concentrations in the interstitial water were below the NOEC of 3.4 mg/L total sulfides (Kendall and Barton 2004) for all samples except SPI-30 and SPI-31, which had measured sulfide levels of 3.5 and 7.8 mg/L, respectively. While these values exceeded established trigger values, this evaluation did not warrant sample purging prior to testing (Soccorsy 2017).

		Number		Mean		Indivi	dual Grov	wth (mg/ind	d/day)	
Treatment	Rep	Initiated	Survivors	Mortality (%)	Dry Weight	Mean	Std Dev	AFDW	Mean	Std Dev
	1	5	5		0.669			0.411		
	2	5	5		0.312			0.199		
Control	3	5	5	0	0.373	0.397	0.154	0.272	0.261	0.089
	4	5	5		0.317			0.201		
	5	5	5		0.317			0.224		
	1	5	5		0.322			0.234		
	2	5	5		0.320			0.230		
SH-Ref-1	3	5	5	0	0.333	0.362	0.059	0.261	0.274	0.054
	4	5	5		0.460			0.364		
	5	5	5		0.376			0.277		
	1	5	5		0.432			0.301		
	2	5	5		0.419			0.330		
CARR	3	5	5	0	0.407	0.417	0.030	0.307	0.305	0.029
	4	5	5		0.454			0.330		
	5	5	5		0.372			0.260		
	1	5	5		0.353			0.258		
	2	5	4		0.427			0.326		0.031
CARR / SH-Ref-1	3	5	5	4.0	0.416	0.410	0.033	0.313	0.301	
	4	5	5		0.416			0.281		
	5	5	5		0.438			0.330		
	1	5	5	0	0.160			0.132		
	2	5	5		0.278			0.220		
SH-13A	3	5	5		0.276	0.250	0.052	0.209	0.198	0.037
	4	5	5		0.283			0.221		
	5	5	5		0.254			0.207		
	1	5	5		0.295			0.249		
	2	5	5		0.206			0.174		
SH-19	3	5	5	0	0.282	0.262	0.050	0.218	0.216	0.041
	4	5	5		0.316			0.265		
	5	5	5		0.212			0.176		
	1	5	5		0.397			0.301		
	2	5	5		0.378			0.275		
SH-22	3	5	5	0	0.313	0.326	0.060	0.253	0.253	0.038
	4	5	5		0.257			0.201		
	5	5	5		0.285			0.238		
	1	5	5		0.282			0.213		
	2	5	5		0.438			0.293		
SH-28	3	5	5	0	0.127	0.307	0.129	0.086	0.219	0.089
	4	5	5		0.264			0.197		
	5	5	5		0.426			0.307		
	1	5	5		0.416			0.334		0.061
	2	5	5		0.537			0.427	0.329	
SPI-22	3	5	5	0	0.405	0.415	0.076	0.311		
	4	5	5		0.385			0.313]	
	5	5	5		0.330			0.260	1	

Table 3-5. Test Results for *Neanthes arenaceodentata*.

		Number		Mean	Individual Growth (mg/ind/day)						
Treatment	Rep	Initiated	Survivors	Mortality (%)	(%) Dry Weight Me	Mean	Std Dev	AFDW	Mean	Std Dev	
	1	5	5		0.395			0.307			
	2	5	5		0.527	0.428	0.062	0.433	0.341	0.055	
SPI-30	3	5	4	4.0	0.443			0.348			
	4	5	5		0.409			0.325			
	5	5	5		0.367			0.292			
	1	5	5		0.402			0.295	-		
	2	5	5		0.226			0.174			
SPI-31	3	5	5	16.0	0.317	0.324	0.096	0.244	0.245	0.061	
	4	5	3		0.438			0.315			
	5	5	3		0.235			0.196			

Treatment	Dissolved Oxygen (mg/L) ≥4.6 mg/L			Temperature (°C) 20 ± 1°C			Salinity (ppt) 28 ± 2 ppt			pH 7 - 9 units		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.5	7.3	7.8	19.3	18.9	19.8	29	29	29	8.1	7.2	8.2
SH-Ref-1	7.5	7.3	7.7	19.3	18.9	19.9	29	29	29	8.2	7.4	8.4
CARR	7.5	6.7	7.7	19.4	19.0	19.9	29	28	29	8.0	7.1	8.1
CARR / SH-Ref-1	7.5	7.2	7.7	19.4	19.1	19.9	29	29	29	8.1	7.3	8.2
SH-13A	7.5	7.0	7.7	19.5	19.2	20.0	29	28	29	8.0	7.2	8.1
SH-19	7.5	7.1	7.7	19.4	19.0	19.9	28	27	29	8.0	7.2	8.1
SH-22	7.4	7.1	7.7	19.6	19.3	20.1	29	28	29	8.2	7.5	8.3
SH-28	7.5	7.0	8.0	19.5	19.0	19.9	29	28	29	8.0	7.2	8.2
SPI-22	7.1	5.4	7.6	19.5	19.1	19.8	29	28	29	7.9	7.2	8.2
SPI-30	7.4	7.0	7.6	19.5	19.1	19.9	29	28	29	8.1	7.4	8.3
SPI-31	7.0	6.6	7.5	19.6	19.0	20.1	29	28	29	8.0	7.7	8.4

Table 3-6. Water Quality Summary for *Neanthes arenaceodentata*.

Bold = Values that fell outside of the targeted water quality criteria

Table 3-7. Ammonia Summary for Neanthes arenaceodentata.

Treatment	Overlying (mg/L ¹ NOEC = 9		Interstitial Ammonia (mg/L Total) ¹ NOEC = 99.9 mg/L			
	Day 0	Day 20	Day 0	Day 20		
Control	0.00	1.94	NM	1.39		
SH-Ref-1	0.897	0.00	NM	1.01		
CARR	0.541	0.103	NM	1.21		
CARR / SH-Ref-1	0.549	0.006	4.60	1.09		
SH-13A	0.426	0.00	3.04	0.335		
SH-19	0.318	0.00	2.25	0.566		
SH-22	1.59	0.00	12.9	1.94		
SH-28	0.217	0.00	1.69	0.586		
SPI-22	0.629	0.431	4.90	3.15		
SPI-30	1.15	2.42	5.40	3.86		
SPI-31	0.765	0.066	7.60	0.995		

¹NOEC (concurrent reference-toxicant test derived) = 99.9 mg/L total ammonia

NM = not measured; insufficient porewater recovered for analysis

Bold = Values that fell outside of the targeted water quality criteria

Treatment	Overlying Sulfides (mg/L Total) ¹ Trigger Value = 3.4 mg/L		Interstitial Sulfides (mg/L Total) ¹ Trigger Value = 3.4 mg/L	
	Day 0	Day 20	Day 0	Day 20
Control	0.000	0.017	0.010	0.043
SH-Ref-1	0.035	0.006	0.180	0.111
CARR	0.014	0.011	0.050	0.037
CARR / SH-Ref-1	0.066	0.026	0.130	0.051
SH-13A	0.008	0.014	0.060	0.040
SH-19	0.021	0.013	0.070	0.104
SH-22	0.049	0.006	0.140	0.052
SH-28	0.018	0.004	0.090	0.066
SPI-22	0.014	0.012	3.530	0.168
SPI-30	0.035	0.010	7.780	0.182
SPI-31	0.014	0.003	0.160	0.134

Table 3-8. Sulfide Summary for Neanthes arenaceodentata.

¹Kendall and Barton 2004

Bold = Values that fell outside of the targeted water quality criteria

Test Conditions: PSEP N. arenaceodentata						
Date sampled	July 12 - 13, 2017					
Date received	July 15, 2017					
Test dates	July 28 – August 17, 2017					
Sample storage conditions	4°C, dark					
Days of holding						
Recommended: ≤8 weeks (56 days)	15 – 16 days					
Source of control sediment	Yaquina Bay, OR					
Test Species	N. arenaceodentata					
Supplier	Aquatic Toxicology Support					
Date acquired	July 28, 2017					
Age class	Juvenile; 14 - 18 Days post emergence					
Test Procedures	PSEP 1995 with SMARM revisions, SCUM II (2015) SOP No. SED009.08					
Test location	EcoAnalysts Port Gamble Laboratory					
Test type/duration	20-Day static renewal					
Control water	North Hood Canal seawater, 0.45µm filtered					
Test dissolved oxygen	Recommended: > 4.6 mg/L	Observed: 5.4 – 8.0 mg/L				
Test temperature	Recommended: 20 ± 1 °C	Observed: 18.9 – 20.1 °C				
Test Salinity	Recommended: 28 ± 2 ppt	Observed: 27 – 29 ppt				
Test pH	Recommended: 7 - 9	Observed: 7.1 – 8.4				
Initial biomass	Recommended: 0.5 - 1.0 mg	0.111 mg				
	Minimum: 0.25 mg	0.111 mg				
	Recommended:	Observed: 0% Pass				
Control Performance Standard	Control < 10% mortality					
	Recommended: ≥ 0.72 mg/ind/day	Observed: 0.397 mg/ind/day; Pass				
	Minimum: ≥ 0.38 mg/ind/day					
	(as Dry Weight)					
Reference performance standard	Recommended: Mortality ≤20%	0 – 4%; Pass				
(SMS)	$MIG_{Reference}/MIG_{Control} \ge 80\%$	91.0% (mean); Pass				
Reference Toxicant LC ₅₀	LC ₅₀ = 183.1	LC ₅₀ = 183.1 mg/L				
(total ammonia)						
Mean; Acceptable Range	163.7: 90.1 – 2	163.7; 90.1 – 237.3 mg/L				
(total ammonia)						
NOEC (total ammonia)	99.9 mg/L					
NOEC (unionized ammonia)	1.532 mg /L					
Test Lighting	50 – 100 foot candles					
Test chamber	1-Liter Glass Chamber					
Replicates/treatment		5 + 2 surrogates (one used for WQ measurements throughout the test)				
Organisms/replicate	5					
Exposure volume	175 mL sediment/ 775 mL water					
Feeding	40 mg/jar every other day (8 mg/ind every other day)					
Water renewal		Water renewed every third day (1/3 volume of exposure chamber)				
Deviations from Test Protocol	Initial biomass					

Table 3-9. Test Condition Summary for Neanthes arenaceodentata.

3.3 Larval Development Bioassay

The larval development test with *M. galloprovincialis* was validated by 93.1% normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value was within both the SMS acceptability criteria of >70%. A summary of the test results for all samples is shown in Table 3-10. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in, Table 3-11, Table 3-12, and Table 3-13.

Mean normal survival of the reference sediments were between 79.6 and 92.0% of the control response, which met the SMS reference acceptability criteria (N_R/N_C) of \geq 65%. This is defined as the number of normal larvae in the reference sample(s) divided by the number of normal larvae in the control. The test mean chamber stocking density (measured at test initiation) was 27.9 embryos/mL and was within the test objective of 20 – 40 embryos/mL.

Water quality parameters were within acceptable limits throughout the duration of the test, except for dissolved oxygen on the final day of testing.

The reference-toxicant test EC_{50} for total ammonia was 9.27 mg/L, which fell slightly above the confidence limits of 2.31 - 8.59 mg/L. While it is useful to report results in terms of total ammonia because these values are directly measured by ion-selective electrode, the calculated unionized ammonia (UIA) values can sometimes be a better predictor of aquatic toxicity. This is primarily a reflection that slight differences within test pH have a significant effect on the expression of UIA. After correction for actual test conditions (pH, salinity, temperature) the unionized ammonia LC_{50} value was calculated to be 0.136 mg/L UIA, which was within two standard deviations of the running mean (0.017 – 0.184 mg/L UIA). Given these results it is unlikely that the test organisms were unhealthy or less sensitive than usual.

Ammonia concentrations observed in the *M. galloprovincialis* test were below the No Observed Effect Concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-12; compare to NOEC 6.4 mg/L). This indicates that ammonia concentrations within the sediment samples should not have contributed to any adverse biological effects observed in the test treatments.

Treatment	Rep	Number Normal	Number Abnormal	Mean # Normal (N)	Std. Dev.	Control Normal Survival Nc/I	Reference Normal Survival Relative to Control N _R /N _c	Performance Standard	
	1	286	8						
	2 253 15			× 0. 70.					
Control	3	236	17	259.6	1.6	93.1		>0.70; Meets Criterion	
	4	252	12					weets chienon	
	5	271	10						
	1	224	5						
	2	273	13						
SH-Ref-1	3	232	12	238.8	1.4		92.0	≥0.65; Meets Criterion	
	4	233	7					weets chienon	
	5	232	4						
	1	224	28						
	2	225	27						
CARR / SH-Ref-1	3	228	25	224.4	2.4		86.4	≥0.65; Meets Criterion	
	4	236	43					weets criterion	
	5	209	34						
	1	228	8						
	2	257	7						
CARR	3	240	7	236.6	0.7		91.1	≥0.65; Meets Criterion	
	4	225	7					weets chienon	
	5	233	11						
	1	211	9						
	2	207	6						
CR-022	3	225	3	206.6	3.1		79.6	≥0.65;	
	4	221	11					Meets Criterion	
	5	169	18						
	1	218	13						
	2	252	7						
SH-04	3	264	8	236.2	1.2				
	4	213	8						
	5	234	8						
	1	233	18						
	2	230	13						
SH-14	3	221	14	231.4	1.3				
	4	228	9						
	5	245	12			See Se	ection 4.3 for Larval Te	est Suitability	
	1	196	32				Determination		
	2	189	24						
SH-19	3	177	29	182.0	3.1				
	4	185	17						
	5	163	13						
	1	207	2						
	2	217	3						
SH-21	3	225	5	220.0	0.9				
	4	243	8						
	5	208	5						

Treatment	Rep	Number Normal	Number Abnormal	Mean # Normal (N)	Std. Dev.	Control Normal Survival N _c /I	Reference Normal Survival Relative to Control N _R /N _C	Performance Standard
	1	213	9					
	2	190	8					
SH-22	3	247	13	208.6	1.4			
	4	203	3					
	5	190	5					
	1	231	10					
	2	227	9					
SH-24	3	208	4	222.6	1.0			
	4	230	6					
	5	217	8					
	1	174	19					
	2	184	10					
SPI-22	3	175	12	177.6	2.1			
	4	194	13					
	5	161	7					
	1	214	8					
	2	210	11					
SPI-30	3	229	13	211.8	0.9			
	4	224	9					
	5	182	6					
	1	230	10					
	2	236	7					
SPI-31	3	241	4	230.8	1.0			
	4	236	9					
	5	211	8					

I = Mean Initial count (Stocking density); 278.8

Nc = Mean Control Normal

N_R = Mean Reference Normal

Treatment	Dissolved Oxygen (mg/L) ≥5.0 mg/L		Temperature (°C) 16± 1°C		Salinity (ppt) 28 ± 2 ppt		pH 7 - 9 units					
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.2	7.1	7.2	16.0	15.9	16.2	28	28	28	7.8	7.8	7.8
SH-Ref-1	6.1	5.5	7.1	16.2	16.0	16.3	28	28	28	7.7	7.7	7.8
CARR/SH-Ref-1	6.2	5.5	6.9	16.1	16.0	16.3	28	28	28	7.7	7.7	7.8
CARR	6.3	5.9	6.9	16.3	16.0	16.5	28	28	28	7.8	7.7	7.8
CR-022	6.1	5.6	6.4	16.3	16.0	16.5	28	28	28	7.8	7.8	7.8
SH-04	5.9	5.3	6.3	16.4	16.0	16.7	28	28	28	7.6	7.6	7.7
SH-14	6.2	5.8	6.8	16.3	16.1	16.7	28	28	28	7.7	7.6	7.7
SH-19	5.9	5.0	7.0	16.1	16.0	16.2	28	28	28	7.6	7.6	7.7
SH-21	5.5	4.4	6.2	16.1	15.9	16.2	28	28	28	7.8	7.7	7.8
SH-22	6.3	5.7	6.7	16.1	16.0	16.3	28	28	28	7.7	7.6	7.7
SH-24	5.8	5.3	6.2	16.3	15.8	16.7	28	28	28	7.7	7.6	7.7
SPI-22	5.4	3.6	6.3	16.4	16.1	16.6	28	28	28	7.6	7.5	7.7
SPI-30	5.0	4.6	5.5	16.4	16.3	16.5	28	28	28	7.6	7.6	7.7
SPI-31	6.2	5.0	6.8	16.2	15.9	16.5	28	28	28	7.7	7.7	7.8

Table 3-11. Water Quality Summary for Mytilus galloprovincialis.

Bold = Values that fell outside of the targeted water quality criteria

Treatment	Overlying (mg/L ¹ NOEC =	Total)	Overlying Sulfides (mg/L Total) ² Trigger Value = 0.009 mg/L		
	Day 0	Final (Day 2)	Day 0	Final (Day 2)	
Control	0.00	0.00	0.008	0.001	
SH-Ref-1	0.00	0.00	0.101	0.023	
CARR/SH-Ref-1	0.00	0.00	0.202	0.029	
CARR	0.00	0.00	0.084	0.025	
CR-022	0.00	0.00	0.156	0.031	
SH-04	0.00	0.00	ND	0.018	
SH-14	0.00	0.00	0.003	0.024	
SH-19	0.00	0.00	0.091	0.024	
SH-21	0.00	0.00	ND	0.020	
SH-22	0.00	0.00	0.054	0.017	
SH-24	0.00	0.00	ND	0.013	
SPI-22	0.01	0.00	ND	0.014	
SPI-30	0.14	0.00	ND	0.012	
SPI-31	0.00	0.00	ND	0.029	

Table 3-12. Ammonia and Sulfide Summary for Mytilus galloprovincialis.

¹NOEC (concurrent reference-toxicant test derived) = 6.4 mg/L total ammonia

²Inouye 2015: Total sulfide value 0.009 mg/L derived from hydrogen sulfide dissociation (0.0025 mg/L H₂S @ 16°C, 28 ppt, and 7.7 pH) ND = Non-detect

Bold = Values that fell outside of the targeted water quality criteria

Test Conditions: PSEP <i>M. galloprovincialis</i>									
Date sampled	July 12 - 1	3, 2017							
Date received	July 15, 2017								
Test dates	August 1 – 3, 2017								
Sample storage conditions	4°C, c								
Holding time	20.5								
Recommended: < 8 weeks (56 days)	20 Da	ays							
Test Species	M. gallopro	ovincialis							
Supplier	Taylor Shellfish								
Date acquired	July 25,	2017							
Age class	<4-h old e	mbryos							
Tast Drass duras	PSEP 1995 with SMARM r	evisions, SCUM II (2015)							
Test Procedures	SOP No. SE	D005.06							
Test location	EcoAnalysts Port Ga	amble Laboratory							
Test type/duration	48-60 Hour static tes	t (Actual: 48 hours)							
Control water	North Hood Canal sea w	vater, 0.45µm filtered							
Test dissolved oxygen	Recommended: > 4.8 mg/L	Observed: 3.6 – 7.2 mg/L							
Test temperature	Recommended: 16 \pm 1 °C	Observed: 15.8 – 16.7 °C							
Test Salinity	Recommended: 28 ± 1 ppt Observed: 28 pp								
Test pH	Recommended: 7 - 9	Observed: 7.5 – 7.8							
Stocking Density	Recommended: 20 – 40	Observed: 27.9 embryos/mL							
Control performance standard	embryos/mL Recommended:	Observed: 93.1%; Pass							
Control performance standard									
(SMS)	Control normal survival > 70% Recommended:								
Reference performance standard	Reference normal survival relative	Observed: 79.6 – 92.0%; Pass							
(SMS)	to control $\geq 65\%$	Observed. 79.0 – 92.0%, Fass							
Reference Toxicant	Total Ammonia	Unionized Ammonia							
Reference Toxicant EC ₅₀									
(total ammonia)	EC ₅₀ = 9.27 mg/L	EC ₅₀ = 0.136 mg/L							
Mean; Acceptable Range		0.100:0.017 0.184							
(total ammonia)	5.45; 2.31 – 8.59 mg/L	0.100; 0.017 – 0.184 mg/L							
NOEC Combined proportion normal (total	6.4 mg/l	0.004 mg /l							
ammonia)	6.4 mg/L	0.094 mg/L							
Test Lighting	50 – 100 foc	ot candles							
Test chamber	1-Liter Glass	Chamber							
Replicates/treatment	5 + 1 surrogate (used for WQ mea	surements throughout the test)							
Exposure volume	18 g sediment/	900 mL water							
Feeding	Nor	ne							
Water renewal	Nor	ne							
Deviations from Test Protocol	Dissolved	oxygen							

Table 3-13. Test Condition Summary for *Mytilus galloprovincialis*.

4. DISCUSSION

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology's Sediment Cleanup User's Manual II (SCUM II; WDOE 2015). Comparisons were made for each treatment against the reference sample. Two numerical comparisons were made under SMS, the Sediment Cleanup Objective (SCO) and the Cleanup Screening Level (CSL).

4.1 Amphipod Test Suitability Determination

Under the SMS program, a treatment will fail SCO if mean mortality in the test sediment relative to the reference sediment is >25% and the difference between mean mortality in the treatment compared to mean mortality in the reference is statistically significant (p < 0.05). Treatments fail the CSL if mean mortality in the test treatment >30% relative to the reference sediment and the difference is statistically significant.

Project sediments from the Shelton Harbor Site do not fail the SCO and CSL criteria for the amphipod test as shown in Table 4-1.

Treatment	Mean Mortality (%)	Compared To:	Statistically Different than Reference? (P=0.05)	Mortality Comparison to Reference M _{T-} M _R (%)	Fails SCO? ¹ > 25 %	Fails CSL? ² > 30 %
Control	1					
SH-Ref-1	5					
CARR	4					
CARR/SH-Ref-1	1					
SPI-22	9	SH-Ref-1	No	4	No	No
SPI-30	9	CARR/SH-Ref-1	No	8	No	No
SPI-31	8	CARR	No	4	No	No

Table 4-1.	SMS Com	parison for	⁻ Eohaustorius	estuarius.
101010 1 21	0	panoon 10		0000000000

¹SCO: Statistical Significance and M_T >25%

²CSL: Statistical Significance and M_T-M_R >30%

M_T = Treatment Mortality

M_R = Reference Mortality

4.2 Juvenile Polychaete Test Suitability Determination

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG). A test treatment fails SCO criteria if MIG is statistically lower in the test treatment, relative to the reference, and the ratio of the MIG in the test treatment is <0.70 that of the reference. The treatments will fail CSL criteria if the MIG is significantly lower than the reference treatment and the ratio between the MIG of the treatment and the MIG of the reference is <0.50.

Project sediments SH-13A and SH-19 fail the SCO criteria for both dry weight and AFDW. Additionally, sample SH-28 fails the SCO criteria for AFDW. All other Shelton Harbor project sediments do not fail the SCO and CSL criteria when evaluated on the dry weight and AFDW basis (Table 4-2).

Treatment	MIG (mg/ind/day)	Comparison To: (p=0.05)		MIG Relative to Reference MIG _T /MIG _R	Fails SCO? ¹ < 0.70	Fails CSL? ² < 0.50			
Dry Weight									
Control	0.397								
SH-Ref-1	0.362								
CARR	0.417								
CARR/SH-Ref-1	0.410								
SH-13A	0.250	CARR	Yes	0.60	Yes	No			
SH-19	0.262	CARR	Yes	0.63	Yes	No			
SH-22	0.326	CARR/SH-Ref-1	No	0.80	No	No			
SH-28	0.307	CARR/SH-Ref-1	No	0.75	No	No			
SPI-22	0.415	SH-Ref-1	No	1.15	No	No			
SPI-30	0.428	CARR/SH-Ref-1	No	1.04	No	No			
SPI-31	0.324	CARR	No	0.78	No	No			
	·	Ash-Fre	e Dry Weight						
Control	0.261								
SH-Ref-1	0.274								
CARR	0.305								
CARR/SH-Ref-1	0.301								
SH-13A	0.198	CARR	Yes	0.65	Yes	No			
SH-19	0.216	CARR	No	0.71	No	No			
SH-22	0.253	CARR/SH-Ref-1	No	0.84	No	No			
SH-28	0.219	CARR/SH-Ref-1	No	0.73	No	No			
SPI-22	0.329	SH-Ref-1	No	1.20	No	No			
SPI-30	0.341	CARR/SH-Ref-1	No	1.13	No	No			
SPI-31	0.245	CARR	No	0.80	No	No			

 $^1SCO:$ Statistical Significance and $MIG_T/MIG_R{<}70\%$

 $^2\text{CSL}:$ Statistical Significance and $\text{MIG}_{T}/\text{MIG}_{R}\,{<}50\%$

MIG_T = Treatment Mean Individual Growth

MIG_R = Reference Mean Individual Growth

4.3 Larval Test Suitability Determination

Larval test treatments fail SCO criteria if the number of normal larvae in the test treatment is significantly lower (p < 0.10) than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.85 of the normal development in the reference. Treatments fail CSL criteria if the number of normal larvae in the test treatment is significantly lower (p < 0.10) than that of the reference and if the ratio between the normal development in the test treatment is significantly lower (p < 0.10) than that of the reference and if the ratio between the normal larval development in the test treatment is less than 0.70 of the normal development in the reference.

Project sediments SH-19 and SH-22 fail the SCO criteria for larval development, but do not exceed the CSL criteria. All other project sediments from the Shelton Harbor Site pass the SCO and CSL criteria for the bivalve development evaluation (Table 4-3).

Treatment	Mean Normal Survival (%) ¹	Mean Number Normal	Compared To:	Statistically Less than Reference? (p=0.10)	Normal Survival to Reference N _T /N _R	Fails SCO? ² <0.85	Fails CSL? ³ <0.70
Control	93.1	260					
SH-Ref-1	92.0	239					
CARR/SH-Ref-1	86.4	224					
CARR	91.1	237					
CR022	79.6	207					
SH-04	93.4	236	CARR	No	0.996	No	No
SH-14	94.2	231	CARR/SH-Ref-1	No	1.03	No	No
SH-19	79.0	182	CARR	Yes	0.768	Yes	No
SH-21	86.5	220	CR022	No	1.06	No	No
SH-22	83.3	209	CARR/SH-Ref-1	No	0.933	No	No
SH-24	88.6	223	CARR/SH-Ref-1	No	0.996	No	No
SPI-22	73.1	178	SH-Ref-1	Yes	0.745	Yes	No
SPI-30	85.2	212	CARR/SH-Ref-1	No	0.946	No	No
SPI-31	91.8	231	CARR	No	0.975	No	No

Table 4-3. SMS Comparison for Mytilus galloprovincialis.

¹ Control data is normalized to the stocking density; reference and project treatments are normalized to the control

 2 SCO: Statistical Significance and (N_T/N_R) <0.85

 3 CSL: Statistical Significance and (N_T/N_R) <0.70

 N_{T} =Treatment Mean Number Normal

 $N_{\mbox{\tiny R}}$ =Reference Mean Number Normal

Nc =Control Mean Number Normal

5. SUMMARY

A summary of the biological tests conducted on the Shelton Harbor Site sediments evaluated under the SMS sediment quality criteria (Table 5-1) are provided below.

Samples SH-13A and SH-19 fail SCO criteria for polychaete growth and SH-19 and SPI-22 fail SCO for bivalve normality. All other project samples pass the SCO and CSL performance criteria for all tests performed on the Shelton Harbor Site sediments.

Treatment	Sedime	nt Cleanup Ob	jectives	Cleanup Screening Levels			
rreatment	Amphipod	Polychaete	Larval	Amphipod	Polychaete	Larval	
SH-04		Pass	Pass		Pass	Pass	
SH-13A		Fail	Pass		Pass	Pass	
SH-14			Pass			Pass	
SH-19		Fail	Fail		Pass	Pass	
SH-21			Pass			Pass	
SH-22		Pass	Pass		Pass	Pass	
SH-24			Pass			Pass	
SH-28		Pass			Pass		
SPI-22	Pass	Pass	Fail	Pass	Pass	Pass	
SPI-30	Pass	Pass	Pass	Pass	Pass	Pass	
SPI-31	Pass	Pass	Pass	Pass	Pass	Pass	

Table 5-1. Summary of SMS Evaluation.

*Shaded cells represent tests not conducted as part of the test design

6. **REFERENCES**

- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- CETIS. 2016. CETIS[™] Comprehensive Environmental Toxicity Information System User's Guide. Tidepool Scientific Software. McKinleyville, CA.
- GraphPad Software Inc. 1992-2016. GraphPad Prism, version 7.01.
- Inouye 2015. DMMP Clarification Paper: Modifications to Ammonia and Sulfide Triggers for Purging and Reference Toxicant Testing for Marine Bioassays. Final Paper August 14, 2015. Prepared by Laura Inouye (Ecology), Erika Hoffman (EPA) and David Fox (Corps) for the DMMP agencies.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Lee, D.R. 1980. Reference toxicants in quality control of aquatic bioassays: Aquatic invertebrate bioassays. In Buikema AL Jr, Cairns J Jr, eds, Proceedings, 2nd Annual Symposium on Aquatic Toxicology. STP 715. American Society for Testing and Materials, Philadelphia, PA, pp 188–199.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- Soccorsy 2017. Soccorsy, Nathan. "RE: Shelton Harbor Bulk PW". Message to Brian Hester. July 20, 2017. E-mail.
- USACE 2015. Dredged Material Evaluation and Disposal Procedures (Users' Manual), Dredged Material Management Program (DMMP). US Army Corps of Engineers-Seattle District; US Environmental Protection Agency (Region 10); Washington State Department of Ecology, and Washington State Department of Natural Resources.
- WDOE 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Presented at the 17th Annual Sediment Management Annual Review Meeting by Tom Gries, Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- WDOE 2015. Sediment Cleanup Users Manual II (SCUM II). Guidance for Implementing the Cleanup Provisions of the Sediment Management Standards, Chapter 173-204 WAC. Toxics Cleanup Program. Washington State Department of Ecology. Olympia, Washington. Publication No. 12-09-057. March 2015

APPENDIX A. TEST AND REFERENCE TOXICANT TEST RESULTS

- 1. Eohaustorius estuarius 10-Day Test
- 2. Neanthes arenaceodentata 20-Day Test
- 3. Mytilus galloprovincialis Bivalve Larval Test

APPENDIX B. STATISTICAL COMPARISONS

STATISTICAL RESULTS: *EOHAUSTORIUS ESTUARIUS* TEST STATISTICAL RESULTS: *NEANTHES ARENACEODENTATA* TEST STATISTICAL RESULTS: *MYTILUS GALLOPROVNICIALIS* LARVAL TEST

APPENDIX A. TEST AND REFERENCE TOXICANT TEST RESULTS

1. Eohaustorius estuarius 10-Day Test

CLIENT		PROJ	СТ	JOB	N0.		PROJECT MA						
Anchor QEA		S	Shelton Harbo		PG101		Brian Hes		BORATORY	PROTO	1	SPECIES	
							BSERVATION	IS	Port Gamble /	PSE	P 1995	Eohaustorius	estuarius
#S= Number on the Surface #M= Number of Mortality L=Anoxic Surface			DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10	
F=Fungal Patches D=No Air Flow (DO?) U=Excess food N=Normal B=No Burrows	INITIAL # ORGANIS	SMS	DATE 729/17 TECHNICIAN	DATE 750 TECHNICIAN	DATE 7(3) TECHNICIAN		DATE 8/2	DATE 8/3		DATE 8/5	DATE 8/6	date SI7 .	NUMBER REMAINING
Sample ID		INITIAL #	B Observns.	OBSERVINS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	UBSERVNS.	OBSERVNS.	UB	NE		MW JMBER R
	2		<u> </u>	N	N	Ņ	N	N	N N	OBSERVNS.	OBSERVNS.	OBSERVNS.	ž 20
Control /	3				IM N			lm Ņ					19 20
	5												20
	2				IMFL	N	N	N	Ņ	Ņ			20 18
SH-Ref-1 /	3						······						19 18
	5							l v	le l				20 20
	2			15		L N	L N	L N	N	Ņ			1920
CARR /	3			N					10		·		19 18
	5							DL N N		15			20
	2							Ņ	Ŋ	Ņ			20
CARR / SH-Ref-1 /	3							Im					20 20
	5	21/						N J		J	Ļ		20
	E.JL 7 E, VB 8	3417	-		w 🕑	C-MK 8	1.	V1	<u>¥</u>		<u>~ </u>		19
7/28/2017 Shelton E	Eoh SP En	dpoint										\checkmark	/

LIENT Anchor QEA	PRO	DJECT Shelton Harb	JOB			ROJECT MA	AN. LAB	ORATORY	PROTO	COL	SPECIES	
		oneiton narbi	01	PG101		Brian Hes	ster I	Port Gamble /	1	P 1995	Eohaustorius	sestuar
#S= Number on the Surface		DAY 1	DAY 2			SERVATION	NS					ootuar
#M= Number of Mortality -=Anoxic Surface		DATE		DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10	(1
=Fungal Patches)=No Air Flow (DO?)		7/29/17	DATE オ130	DATE	DATE	DATE	DATE	DATE	DATE	DATE	DATE	
J=Excess food I=Normal	INITIAL # OF ORGANISMS	TECHNICIAN	TECHNICIAN	731 TECHNICIAN	B(61	82	83	84	815	816	817	12
=No Burrows	20		IAE		TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	/ ¹ /2
Sample ID		I	Ů		JU	B	UB	UB	UB	Ha	18	ME //L
	1	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.		
	2		N	N	Ν	N	Ņ	Ŋ	N	N		2
SPI-22 /	3		25	35	<u> </u>	[<u>1.9</u>		
	4		N	N	N							1-18
	5	······		35	L							19
	1			CPL	L	19	V	J				18
	2	()		15	N	N	N	Ν	N	Ň		20
SPI-30 /	3	D.		N	25	ما	Ĺ	L	, v	j.		17
	4	U		15	15	Ņ	Ņ	Ņ		15		X
	5	Q		Ņ	N				·····	N		·····
	1	U	<u> </u>				V	U	J. I	V		15
ŀ	2	N	35	Im		L		L, 35, 1M	L, 15	3 N	15, L	18
SPI-31 /	3		<u>N</u>	P		Ņ	N	N	L		N	17
	4							·····		\$		19
	5	₩	·····				I	·····	N			\B
		15	V			\mathbf{V}	V	J				••••••
O Cloudy /Turbid	UB 7/29	(2)15.	127/31/	17 6	D Alon	1 growt	h He	8(6				20

LIENT Anchor QEA	*	PRO			n llash i	1	ECIES		TEST START	DATE	17	ESTS	TART DATE	TEOT EN	
OB NUMBER					n Harbor NAGER		Eohaustorius estua	arius	Port	Gambi	le	_010	28Jul17	TEST EN	D DATE 07Aug17
PG1019					NAGER Hester	LA	BORATORY Port Gamble /		DILUTION W	ATER 1 72717.		ROTO	COL		ornug I /
							WATER QU	ALIT					PSEP 1995		
TEST CONDITIONS				l	D.O. (mg/L) >5.1		TEMP (°C) 15 ± 1		SALINITY (ppt)	T	pH (pH unit	s)			
SAMPLE ID	C	DAY	REP	meter	D.O.	met	TEMP		28 ± 2 SALINITY		7 - 9 pH		TECH.		Date
Control /		0	1	8	8.2	8		mete	er ppt 28	mete			1.		
Control /		0	2		8.4	1	14.5	0	29	1	0.8		60		128/17
Control /		0	3	\prod	8.5		14.5	\vdash	29	++	8.	<u> </u>			<u>İ</u>
Control /	0)	4		8.5	11	14.7		29	┼┼	8.1				
Control /	C)	5.	J	7.7	IJ		J	0328	H_{-}	8.1	-+			
Control /	1	S	irc •	8	8.5	8	14.1	<u>2</u> 8		8	8.0	-+			4
Control /	2	Sı	ırr	4	8.2	8	15.4	5	29		8.1		<u> </u>	71	29/17
Control /	3	SL	11	9	8.0	9	15.6	9	29	8	8.1 8.1		- HE		7130
Control /	4	Su	rr	B	B.5	B	14,3	B	29	Ø	81	·			7/31
Control /	5	Su	rr 4	8	8.3	8	B 15.214.9	~	0 2829	T F		8.0			8/01
Control /	6	Su	γ	8	8.3	8	14.6	8	29	r V	00.1	1	UB_		8/2
Control /	7	Su	r q	3	8.1	8	15.4	8	29		8.1		<u>UB</u>		8/3
Control /	8	Sur	1 5	8	8.0	8		8	29	8 8			<u>UB</u>	8	14
Control /	9	Sur	19	ŝŤ	8.1	8	11 1 3	8	29		8.1		<u>UB</u>	8	15
Control /	10	1	8	Ť	8.4	8		2 8	29	5	8.2		Kh	8	3/6
Control /	10	2	Ī	1	8.4		15.0	$\frac{\delta}{1}$	29	-8	8.1		NE	- 3	<u>[7</u>
Control /	10	3		\uparrow	8.4	╧┤┨	15.1	┼╂	29	┼╂					
Control /	10	4		T	8.4	/ 	15.1	++	29	++	8.1			_	
Control /	10	5	J	1	8.3	5	15.0	Ħ		Ħ	8.2				1
		A	ar		मारमन	 @	Wrong sheet	Ĺ	- 29		8.1		U V 2°		

CLIENT Anchor QEA	P	ROJE		ton Harbor	SPEC	CIES bhaustorius estu	arius	TEST START	DATE Gamble		T START DATE	TEST END DATE
OB NUMBER PG1019	PI	ROJE		ANAGER an Hester		DRATORY Port Gamble /		DILUTION WA	TER B	ATCH PRO	28Jul17 DTOCOL PSEP 1995	07Aug17
						WATER QU	ALITY	DATA			FSEF 1995	
TEST CONDITIONS				D.O. (mg/L) >5.1		TEMP (°C)		ALINITY (ppt)		oH (pH units)		
SAMPLE ID	DA	AY RI	iP met	D.O.	meter	15 ± 1 TEMP °C	meter	28 ± 2 SALINITY	<u> </u>	7 - 9 pH	тесн.	Date
SH-Ref-1 /	0) 1	8	8.4	8	14.9	8	29	mete	r unit	100	
SH-Ref-1 /	0) 2		8.4		14.5		29	1	8.1	ES -	7128/17
SH-Ref-1 /	0) 3		8.4		14.5		29	╂╂	61		<u>_</u>
SH-Ref-1 /	0	4	\prod	8.3		14.6		29	┼┼	8.1		
SH-Ref-1 /	0	5	b	8.4	V	14.6	し	21	10	8.D		
SH-Ref-1 /	1	Su	rr F	8.4	8	14.2	8	29	8	8.1	UB	7/20/17
SH-Ref-1 /	2	Su	r 8	8.3	8	15.3	8	29	8	8.Z		7/29/17
SH-Ref-1 /	3	Su	79	6.1	9	15,7	9	29	9	0.2		7/30
SH-Ref-1 /	4	Sur	r B	8.5	8	14.3	B	29	ß	8.2		
SH-Ref-1 /	5	Sur	18	8.3	8	149	8	29	8	8,2	UB	
SH-Ref-1 /	6	Sur	8	8.4	8		8	29	8	8.2	UB	82
SH-Ref-1 /	7	Sur	8	8.1	8	15.5	8	29	8	8.3	UB	
SH-Ref-1 /	8	Suri	8	8.1	8	15,3	8	29	8	8.3	1B	8/4
SH-Ref-1 /	9	Surr	8	8.1	8	16.6	8	29	8	8.3	Khi I	85
SH-Ref-1 /	10	1	4	8.3	8	15.3	8	29	8	8.5	H2	<u> </u>
SH-Ref-1 /	10	2		8.3	1	15.2	1	29	i	8.4		8/7
SH-Ref-1 /	10	3		8.3		15.1		29	╶┼╂	8.4		
SH-Ref-1 /	10	4		4.3	1	5.2		29	┤┨	8.4		
SH-Ref-1 /	10	5	IJ	8.2		15.2		79		8.4		

CLIENT Anchor QEA	PRO		Sheltor	n Harbor	SPEC Ec	CIES haustorius estua	arius	TEST START Port (DATE Gamble		START DATE 28Jul17	TEST END DATE 07Aug17
OB NUMBER PG1019	PRO	JEC		IAGER Hester	LABC	DRATORY Port Gamble /		DILUTION WA	TER B 72717.0			U/Aug1/
						WATER QU	ALITY	DATA			10211000	
TEST CONDITIONS			I	D.O. (mg/L) >5.1		TEMP (°C) 15 ± 1		ALINITY (ppt)	1	oH (pH units)	T	
SAMPLE ID	DAY	REP	meter	D.O. mg/L	meter	TEMP	meter	28 ± 2 SALINITY ppt	mete	7-9 pH r unit	ТЕСН.	Date
CARR /	0	1	8	8.2	8	14.9	8	28	8	8.0	66	7/28/17
CARR /	0	2		8.4	1	19.5	Ιĭ	29	1	8.1	1	
CARR /	0	3		8.4		14.6	17	29		8.0		
CARR /	0	4		8.3		15.3		29		8.1 -		
CARR /	0	5	\checkmark	8.4	*	14.6	V	28	と	8.D	V	
CARR /		Surr	T	8.4	8	14.2	8	29	8	8.1	WB	7/29/17
CARR /		Surr	8	8.4	8	15 9	8	29	5	8.1	Her	7/30
CARR /		Surr	9	<u>B.l</u>	9	15.7	9	29	9	B.(UL	7/31
CARR /		Surr	B	8,4	в	14.4	B	29	в	B.(JL	8/01
CARR /		Surr	8	8.3	8	15.2	8	29	8	8.0	UВ	82
CARR /		Surr	8	8.4	8	14.7	8	29	8	8.]	UB	83
CARR /		Surr	8	8.2	8	15.5	8	29	8	8.1	Wb	8/4
		Surr	8	8.1	8	15.4	8	29	8	8.1	UB	8/5
CARR /			8	8.1	8	16.7	8	29	8	8.1	152	816
CARR /			8	6.3	8	15.2	6	29	\$	8.2	Ha	8/17
CARR /		2		8.5	-+-	15.	$\downarrow \downarrow$	29		8.3		1
CARR /		3	┼┼┟	0.5		15.3		29		8.2		
CARR /				8.3	\square	5.	4	29		8.2		
		5	$\underline{\neg}$	8.3	4	15.1	7	29	U	82	L	

IENT Anchor QEA B NUMBER		ROJE	Shelte	on Harbor	SPEC Ec	C IES ohaustorius estua	arius	TEST START Port	DATE Gamble	TE	ST START DATE 28Jul17	TESI	FEND DATE 07Aug17
PG1019		OJEC		NAGER n Hester	LABO	DRATORY Port Gamble /			ATER B 72717.0		OTOCOL PSEP 1995		
				DO (#)		WATER QU							1
TEST CONDITIONS	······			D.O. (mg/L) >5.1		TEMP (°C) 15 ± 1	S	ALINITY (ppt) 28 ± 2	q	H (pH units)		1	
SAMPLE ID	DAY	Y REP		D.O.		TEMP		SALINITY		<u>7 - 9</u> pH	TECH.		Date
CARR / SH-Ref-1 /	0	1	mete 8		meter	°c 14.5	mete		meter				
CARR / SH-Ref-1 /	0	2	0	8.5	0	14.4	8	29	8	8.1	Ba		7/29/17
CARR / SH-Ref-1 /	0	3		8.4		145	$\left\{ \right\}$	29 29	+	8.			
CARR / SH-Ref-1 /	0	4		8.4		14.5	╞┼╴	29		8.0 8.1			
CARR / SH-Ref-1 /	0	5	J	8.5	4	14.5	1	29	IJ	8.1			
CARR / SH-Ref-1 /	1	Surr	g	8.3	8	14.3	8	29	8	8.0	WB		7/20
CARR / SH-Ref-1 /	2	Surr	8	8.2	8	15.6	8	29	8	8.1	1 Ari		7/29 7/30
CARR / SH-Ref-1 /	3	Surr	9	7.9	9	15.9	9	29	9	0.0			7/31
CARR / SH-Ref-1 /	4	Surr	в	B.5	в	14.5	в	29	в	8.1	JL		B/01
CARR / SH-Ref-1 /	5	Surr	Ś	8,3	8	15.2	8	29	8	8.0	UB		8/2
CARR / SH-Ref-1 / CARR / SH-Ref-1 /		Surr	8	8.3	8	14.8	8	29	8	8.1	Ub		8/3
CARR / SH-Ref-1 /		Surr	8	8.1	8	15.7	8	29	8	8.]	Ub		84
CARR / SH-Ref-1 /	+	Surr Surr	8	8.0	8	- G	8	29	8	8.1	UB		8/5
CARR / SH-Ref-1 /	10	1	8	8.0	8	16.7	8	79	8	8.2	Ka	\square	816
CARR / SH-Ref-1 /	10	2	8	8.4	-4	15.1	5	29	_8_	8.3	Ha		817
CARR / SH-Ref-1 /	10	3	┼╂	8.4	+	5.1	$\left \right $	29	++	8.3			
CARR / SH-Ref-1 /	10	4	\uparrow	\$.3	┤╂	15.1	┼╂	29 29	┼╂	8.3			
CARR / SH-Ref-1 /	10	5	tt		U	15.2 1	} 	29		0.5 8.2			

CLIENT Anchor QEA	P	ROJE		on Harbor		CIES bhaustorius estua	nrius	TEST START I Port C	DATE Gamble		START DATE T 28Jul17	EST END DATE 07Aug17
JOB NUMBER PG1019	P	ROJE		NAGER Hester	LAB	DRATORY Port Gamble /		DILUTION WA FSW07			OCOL PSEP 1995	
						WATER QU/	ALITY	DATA				
TEST CONDITION	ONS			D.O. (mg/L) >5.1		TEMP (°C) 15 ± 1	S	ALINITY (ppt) 28 ± 2	1	oH (pH units)		
SAMPLE ID	D	AY REI	mete	D.O.	meter	TEMP	meter	SALINITY	mete	7 - 9 pH	ТЕСН.	Date
SPI-22 /) 1	8	8.1	8	14.4	8	78	8	7.9	39	7123/17
SPI-22 /	() 2		G.8	(14.6	N	R	1	7.8	1	
SPI-22 /	() 3		8.4		14.7		38		81		
SPI-22 /	() 4	$\downarrow \downarrow$	8.3		14.7		28		7.9		
SPI-22 /	(V	7.9	d'	14.7	4	28	L	7.8		
SPI-22 /	1		+	8.3	8	14.4	४	29	8	8.1	UB	7/29
SPI-22 /	2		10	8.3	8	15.5	4	29	8	8.1	Hr.	7/30
SPI-22 /	3	_	<u> </u>	B.0	9	15.8	٩	29	9	B.l	JU	7/31
SPI-22 /	4	_	Ļč	8.4	в	14.5	в	29	в	8.2	K	8/01
SPI-22 /	5		0	8.3	8	15.1490	8	29	8	8.1	UB	8/2
SPI-22 /	6	_	<u> </u>	8.3	8	14.8	8	29	8	8.3	UB	83
SPI-22 /	7			8.1	8	15.5	8	29	8	8.4	UB	814
SPI-22 /	8		<u> </u>	8.1	8	15.5	8	29	8	જે.પ	US.	8/5
SPI-22 /	9		0	8.0	8	16.8	8	29	8	8.5	HE	816
SPI-22 /	10		8	رک کم	8	15,2	8	29	8	8.5	Ha	8/7
SPI-22 /	10			4.0		15.3	(29		8.3		
SPI-22 /	10			8.2		15.7	┦┨	29		8.6		
SPI-22 /	10			8.2		15.2		29		8.5		
SPI-22 /	10	5	6	8.3	と	15.2	L	28	L	8.5		

() Wring sheet, up s/2

Anchor QEA	PR	DJEC		n Harbor	SPEC	CIES bhaustorius estua	riue	TEST START I			START DATE	TEST END DATE
IOB NUMBER	PR					DRATORY	nus	DILUTION WA	Samble	1	28Jul17 OCOL	07Aug17
PG1019				Hester		Port Gamble /		FSW07			PSEP 1995	
					1	WATER QU	LITY	DATA				
TEST CONDITION	S			D.O. (mg/L) >5.1		TEMP (°C) 15 ± 1	S	ALINITY (ppt) 28 ± 2	p	H (pH units) 7 - 9	1	
SAMPLE ID	DAY	REP	<u> </u>	D.O.	1	TEMP		SALINITY		рН	ТЕСН.	Date
SPI-30 /			meter	7	meter		meter		meter	/		
	0	1	8	8.4	8	14.4	8	28	8	8.1	BG	7/23/7
SPI-30 /	0	2		8.3		14.5	1	28	11	8D		
SPI-30 /	0	3		8.1		14.6		28		7.9		
SPI-30 /	0	4		8.2		14.6	Τ	28		8.1		
SPI-30 /	0	5	Y	8.2	4	14.6	Ł	28	4	7.8		
SPI-30 /	1	Surr	8	8.3	8	14.2	8	29	8	8.1	UB	7/29
SPI-30 /	2	Surr	4	8.3	8	15.5	8	29	\$	8.2	ME	7/30
SPI-30 /	3	Surr	9	79	9	15.7	٩	29	9	8.(JL JL	7/31
SPI-30 /	4	Surr	8	8.4	в	14.4	B	28	В	B.2	UL	B/01
SPI-30 /	5	Surr	8	8.2	୪	15.1	8	28	Г	8.1	(1b)	812
SPI-30 /	6	Surr	F	8.3	8	14.7	8	28	8	8.2	UB	83
SPI-30 /	7	Surr	8	8.0	8	15.5	8	28	8	8.4	UB	8/4
SPI-30 /	8	Surr	8	1.8	8	15.5	8	28	8	8.5	UB	8/5
SPI-30 /	9	Surr	8	8,0	8	16.70	4	28	8	8.6	NG	2 8/4 8/6
SPI-30 /	10	1	8	8.2	E	15.2	8	20	8	8.6	HZ	6/7
SPI-30 /	10	2		8.3	1	15.3		29		8.6		
SPI-30 /	10	3		87		15.2		28	╞┼╌╂	8.6		
SPI-30 /	10	4		8.2		15.3				81		
SPI-30 /	10	5	J	8.7	J	15.2	IJ	29 28		8.6		
() Buth at	lon	- Jul		temp	N/	er 8/6		O TILCO		11/1	- 816	l

JALITY DATA SALINIT 28 : SALINI meter	Y (ppt) p ± 2	ATCH PR	28Jul17 ROTOCOL PSEP 1995	07Aug17
/ JALITY DATA SALINIT 28 : SALII	FSW072717.0 (ppt) ± 2	D1	PSEP 1995	
SALINIT 28 : SALII	Y (ppt) p ± 2	pH (pH units		
SALINIT 28 : SALII	Y (ppt) p ± 2	oH (oH units)		
SALI)	
meter	NITY	<u>7 - 9</u> pH	TECH.	Date
	ppt mete	r unit		
8 5	28 8	8.0	Ba	51778
12		8.0	1	
	18	8.1		
2	1 1	8.1		
V 2:		79		
	29 8	8.1	UB	7/29
	29 8	8.2	- HZ	7/30
9	29 9	B.(JL	7/31
в	28 B	B.2	U V	8/01
8	28 8	8.1	Wh	812
	28 8	8.2		83
8 7	28 8	8.4	UB	814
	28 8	8.4	UB.	815
8 28		8.4	HE.	816
1 1	8 8	8.6	Ha	8/7
	29 1	8.5	- 1	
7	9	8.5		
7	8			
		6.7		
	7	28	28 8.6	28 8.6

Den BU FEFLIF

{

Ammonia and Sulfide Analysis Record

Organism: Test Duration (days): Client/Project: 10-2 Ancher Shelton Hurber Fohs DAY of TEST: O (DARETEST & INITIAD / FINAL / OTHER (circle one) PØREWATER (PW) (circle one) / Comments: OVERLYING (OV) **Calibration Standards Temperature** Sample temperature should be within +1°C of **Temperature:** Date: standards temperature at time and date of analysis. 7128/17 19.400 Calc-Measured Sample Date of Date of Ammonia Sample Sal Multi-Temp ulated Sample ID or Conc. Sampling and Reading and pH Volume Sulf. Value Preserved Sulf. or Rep °C (ppt) plier Description (Y/N)Initials Initials (mL)(mg/L)(mg/L)(mg/L)7/28/17 JU 0.011 NA 18.9 7/28/17 UB 0.00 MA OV Svr N 10 3H-Ref -1 0.082 0.365 0.037 Carr 0.226 0.061 aur/SH-Ref-1 0.432 0.031 SP1-22 0.522 0.805 0.009 SP1-30 0.603 V Sp1-31 0.021 0.000 0 NA 7/28/17 00 7/28/17-56 N (1) 16 Ó Sur (i)0.012 10 SH-Ref-1 PW/ 0 0.09 20.0 7.3 0.009 Carr 5.1 7.4 0.011 28 Curr/SH-Ref-1 0 0.11 7.1 00 27 0.150 SP1-22 6.0 0. 15.0 0-259 7.0 27 SP1-30 8.5 0. 00 25.9 7.2 27 5.3 0.010 0.10 5P1-31 V 10 () Insufficient volume for analysis, UB 7/28 (27IE H2 8/16

1

Page 1 of 1

Ammonia and Sulfide Analysis Record

0V

	OVI	REVIN	16 (0)) P	7 FINAL OREWATE	É (PW) (circle of	cle one) ne) / Con	nments:				DAY of TH		
				Calibr	ation Standa	ards Tem	peratu	·e							u
			Date	•			Г	emperat	ure:		Sample	temperature	e should be with	$\frac{100}{100}$	f
			7/17					19	.400		standar	as temperatu	re at time and o	late of ana	lysis.
이 가슴을 가 가슴을 다니?	ple ID or cription	Conc. or Rep	Samj Ir	ate of oling and nitials	Ammonia Value (mg/L)	Temp °C	Read	te of ing and tials	Sample Preserved (Y/N)	pH	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calo ulate Sult
0	18	SURA	8171	17 12	0.00	20.4	He c	3/7/17	N	1	<u> </u>	16			(mg/
SA-Ve	2F 1				0.598	<u> </u>	· \r L C	<u>, , , , , , , , , , , , , , , , , , , </u>	ſ	$\left \right\rangle$		10	0.020	1	<u> </u>
CA	a R			1	0.00					\vdash			0.005		
CARR	I SH VEF				0.163						/		0.016		
56	JJI				0.674										\vdash
SF	YI 30				2.42					-/			0.035		\vdash
50	PI 31	U		U	0.252	J	1		\bigvee	/	\sim	Ļ	0.012 0.043	_ _	-{
8		Surr	8/71	17 14	3	19.3	NG.	817/17	N	(3) -					
5# -	recl	I		1	2.61			1	- <u>n</u>	357.6	28	6 _			5
CA	RR				1.46					7.3	28		0.069		
CAR	r 1 stf rer				1.43					7.6	28		0.122	(
50	I 22 I				2.81					7.2	28		0.149	2	10 24
	I 30				2.90			1		7.1	28	5	0.099		0.29
SP	I 31				2.20	V				7.2	78		0.098		0.19
									v	1.6	-0		0.040	2	0.11

Page _ _ _ of _ _

	-		-	Acute	Surviva	in the second	-				-			All Match	hing Lab
		Surviva EPA/60		94/025 (1994)	Orga Endr	anism: point:	Eohai Propo	ustorius e ortion Sur	estuarius (A vived	mphipod)	Materia Source	of a second second	nmonia ce Toxicant-REF	
		350.0					Refer	епсе То	xicant 96-	h Acute Survi	ival Test				
		291.7-	/												
	a l	233.3-	1,	-	~		-		~		*			+25	
	EC50-mg/L Total Ammonia	175.0-	N	-	-1					21				• +15	
	g/L Total	1	1,	A	4	+	1	•	4	V		~	4	Mean	
	EC50-mg	116.7-	1)	h	V	6	•		V				$\rightarrow \downarrow /$		
	9	58.3-	1	-	×	_						_	¥		
					~									-25	
		0.0 Nov-13	12 Nov-13-	04 Apr-14-	-25 Apr-14-	26 Aug-14-	15 Sep-14-	10 Dec-14-	27 Feb-15-	26 Jun-15- 25 Sep-15-	06 Nov-15-	08 Apr-16- 03 Aug-16-	19 Aug-16 02 Sep-16	-16	
		N 10	2 N	4 4	5 A	2 Au	5 Se	8	Fe	Set Ju	Dec	Apr	19 Aug-16 02 Sep-16	30 Sep-16 26 May-17- 28 Jul-17-	
			ean:	151.1				9							
		Me Si trol Data	ean: gma: a	151. 47.79	r i	Count:	20 31.60%		-1s \	ສ ສ Warning Li Warning Li	mit: 103.3		ର୍ମ୍ମ ଅ 2s Action Lir 2s Action Lir	nit: 55.51	
oint Ye	ear	Ma Si trol Data Month	ean: gma: a Day	151. 47.79 Time	QC Dat	Count: CV: a Delta	20 31.60% Si	gma	-1s \ +1s \	Warning Li	mit: 103.3 mit: 198.9	+:	2s Action Lir	nit: 55.51	
oint Ye	ear	Me Si trol Data	ean: gma: a Day 1	151. 47.7 Time 13:30	QC Dat 215	Count: CV: a Delta 63.91	20 31.60% Si 1.	gma 337	-1s \ +1s \ Warn (+	Warning Li Warning Li ning Actio	mit: 103.3 mit: 198.9 n Test ID 15-9765-	-: +: A 5224 0	2s Action Lir 2s Action Lir	nit: 55.51 nit: 246.7 Laboratory	
oint Ye 20	ear)13	Ma Si trol Data Month Nov	ean: gma: a Day 1 12	151. 47.79 Time 13:30 13:45	QC Dat 215 91.52	Count: CV: a Delta 63.91 -59.58	20 31.609 Si 1. -1	gma 337 .247	-1s \ +1s \ Warn	Warning Li Warning Li ning Actio	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327-		2s Action Lir 2s Action Lir analysis ID 8-6656-9431 6-0504-8497	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields	
oint Ye 20	ear)13	Ma Si trol Data Month	ean: gma: a Day 1 12 4	151. 47.79 Time 13:30 13:45 19:15	QC Dat 215 91.52 173.9	Count: CV: a Delta 63.91 -59.58 22.75	20 31.609 Si 1. -1 0.	gma 337 .247 4761	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617-	A 5224 0 2465 0 0473 1	2s Action Lir 2s	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields Port Gamble Env	
oint Ye 20	ear)13	Ma Si trol Data Month Nov Apr	ean: gma: Day 1 12 4 25	151. 47.75 Time 13:30 13:45 19:15 13:00	QC Dat 215 91.52 173.9 65.78	Count: CV: a Delta 63.91 -59.58 22.75 -85.32	20 31.609 1. -1 0. -1	gma 337 .247 4761 .785	-1s \ +1s \ Warn (+	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394-	A 5224 0 2465 0 0473 1 9115 1	2s Action Lir 2s Action Lir 4nalysis ID 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env	
oint Ye 20	ear)13	Ma Si trol Data Month Nov Apr May	ean: gma: Day 1 12 4 25	151. 47.75 Time 13:30 13:45 19:15 13:00 15:30	QC Dat 215 91.52 173.9 65.78 193.9	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82	20 31.609 1. -1 0. -1 0.	gma 337 .247 4761 .785 896	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744-	A 5224 0 2465 0 0473 1 9115 1 7543 0	2s Action Lir 2s	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON	
oint Ye 20	ear)13	Ma Si trol Data Month Nov Apr	ean: gma: Day 1 12 4 25 30	151. 47.75 Time 13:30 13:45 19:15 13:00	QC Dat 215 91.52 173.9 65.78	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78	20 31.609 1. -1 0. -0	gma 337 .247 4761 .785 896 .7905	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0	2s Action Lir 2s Action Lir 4.000 Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON	
oint Ye 20	ear)13	Ma Si trol Data Month Nov Apr Apr May Aug	ean: gma: Day 1 12 4 25 30 26 15	151.: 47.79 Time 13:30 13:45 19:15 13:00 15:30 15:45	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3	Count: CV: 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76	20 31.60% 1. -1 0. -1 0. -0 -0	gma 337 .247 4761 .785 896 .7905 .9365	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON	
oint Ye 20 20	ear)13)14	Ma Si trol Data Month Nov Apr Aug Sep Nov Dec	ean: gma: Day 1 12 4 25 30 26 15	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10	QC Dat 215 91.52 173.9 65.78 193.9 113.3	Count: CV: 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9	20 31.609 1. -1 0. -0 -0 -0 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20	ear)13)14	Ma Si trol Data Month Nov Apr Aug Sep Nov	ean: gma: Day 1 12 4 25 30 26 15 14	151.1 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21	20 31.609 1. -1 0. -0 -0 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434	nit: 55.51 nit: 246.7 NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20	ear)13)14	Ma Si trol Data Month Nov Apr Aug Sep Nov Dec	ean: gma: Day 1 12 4 25 30 26 15 14 10 27	151.1 47.75 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3	Count: CV: 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9	20 31.60% 1. -1 0. -0 -0 0. 0. 0. -0	gma 337 .247 4761 .785 896 .7905 .9365 3535	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043	nit: 55.51 nit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20	ear 013 014	May Apr Apr May Aug Sep Nov Dec Feb Jun Sep	ean: gma: Day 1 12 4 25 30 26 15 14 10 27 26	151.: 47.75 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3	20 31.60% 1. -1 0. -0 0. 0. -0 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 8851	-1s \ +1s \ Warm (+ (-	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20	ear 013 014	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov	ean: gma: Day 1 12 4 25 30 26 15 14 10 27 26 25 6	151.: 47.75 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168.3 108.8 197.1 157.8 240.8	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99	20 31.60% 1. -1 0. -0 -0 0. 0. 0. 0. 0. 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623	-1s \ +1s \ Warm (+ (-)	Warning Li Marning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5360 2 1886 1 3625 1	2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762	mit: 55.51 mit: 246.7 NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 20 2 3	ear 013 014	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec	ean: gma: Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7	151.: 47.75 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30 15:58	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98	20 31.60% 1. -1 0. -0 -0 0. 0. 0. 1. 1.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406	-1s \ +1s \ Warm (+ (-	Warning Li Marning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5355 1 9112 0 5860 2 1886 1 3625 1 4762 0	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603	mit: 55.51 mit: 246.7 NewFields NewFields Port Gamble Env Port Gamble Env ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 20 2 3 4 5 20	ear 013 014 015	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 178.3	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23	20 31.60% 1. -1 0. -0 -0 0. 0. -0 0. 1.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064 5697	-1s \ +1s \ Warm (+ (-)	Warning Li Marning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5355 1 9112 0 5860 2 1886 1 3625 1 4762 0 2632 0	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env EnVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 2 3 4 5 20 5 20 5	ear 013 014 015	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr Aug	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30 15:58 14:40 16:55	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 178.3 155	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23 3.936	20 31.60% 1. -1 0. -0 -0 0. 0. -0 0. 1.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064	-1s \ +1s \ Warm (+ (-)	Warning Li Marning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462- 18-5380-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1 3625 1 4762 0 2632 0 4511 2	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684 0-5786-8614	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env EnVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 2 3 4 5 20 5 5 20 5	ear 013 014 015	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr Aug	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40 16:55 14:25	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 178.3 155 177	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23 3.936 25.86	20 31.60% 1. -1 0. -0 -0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064 5697 .8236 5411	-1s \ +1s \ Warm (+ (-)	Warning Li Marning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462- 18-5380- 20-3339-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1 3625 1 1886 1 3625 1 1886 1 3625 1 1 4762 0 2632 0 4511 2 7986 1	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684 0-5786-8614 4-0317-8212	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env EnvIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 20 2 3 4 5 20 5 5 20 5	ear 013 014 015	May Apr May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Feb Jun Sep Nov Sep	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19 2	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40 16:55 14:25 16:25	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 178.3 155 177 80.2	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23 3.936 25.86 -70.9	20 31.60% 1. -1 0. -0 -0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064 5697 08236	-1s \ +1s \ Warm (+ (-)	Warning Li Narning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462-4 18-5380- 20-3339-4 15-5854-	A 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1 3625 1 9112 0 5860 2 1886 1 3625 1 4762 0 2632 0 4511 2 7986 1 9736 1	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684 0-5786-8614 4-0317-8212 3-2092-5186	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env EnVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 20 2 3 4 5 5 20 5 5 5	ear 013 014 015	May Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr Aug Sep	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19 2 30	151. 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40 16:55 14:25 16:25 15:00	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 177.8 240.8 180.1 177.8 240.2 152.6	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23 3.936 25.86 -70.9 1.548	20 31.60% 1. -1 0. -0 -0 -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064 5697 98236 5411 483 93239	-1s \ +1s \ Warm (+ (-) (-)	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462- 18-5380- 20-3339- 15-5854- 10-0746-8	4 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1 3625 1 4762 0 2632 0 4511 2 9736 1 4542 1	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684 0-5786-8614 4-0317-8212 3-2092-5186 6-8119-8926	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env EnvIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	
oint Ye 20 20 20 20 2 2 3 4 5 5 20 5 5 3 9	ear 013 014 015 116	Ma Si trol Data Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Feb Jun Sep Nov Dec Feb Jun Sep Nov Dec Feb Jun Sep Nov Dec Feb Jun Sep Nov	ean: gma: 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19 2 30 26	151.: 47.79 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40 16:55 14:25 16:25	QC Dat 215 91.52 173.9 65.78 193.9 113.3 106.3 168 168.3 108.8 197.1 157.8 240.8 180.1 178.3 155 177 80.2	Count: CV: a Delta 63.91 -59.58 22.75 -85.32 42.82 -37.78 -44.76 16.9 17.21 -42.3 45.99 6.718 89.72 28.98 27.23 3.936 25.86 -70.9	20 31.60% 1. -1 0. -0 -0 -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 0. -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	gma 337 .247 4761 .785 896 .7905 .9365 3535 36 .8851 9623 1406 377 5064 5697 08236 5411 483	-1s \ +1s \ Warn (+ (-;	Warning Li Warning Li ning Actio))	mit: 103.3 mit: 198.9 n Test ID 15-9765- 12-4327- 13-5617- 11-2394- 11-1744- 15-5557- 07-1282- 09-0717- 19-3485- 19-3876- 00-5720- 05-7835- 07-0462- 18-5380- 20-3339- 15-5854- 10-0746- 06-2389-	4 5224 0 2465 0 0473 1 9115 1 7543 0 5937 0 2061 0 5355 1 9112 0 5860 2 1886 1 3625 1 4762 0 2632 0 4511 2 9736 1 4542 1 1864 1	2s Action Lir 2s Action Lir 2s Action Lir 2s Action Lir 8-6656-9431 6-0504-8497 4-6315-5154 6-6351-0798 2-6036-0984 0-0529-4993 1-5984-9612 9-7840-9499 5-9978-3434 1-0291-4043 1-7391-9309 4-8488-2762 5-5994-4603 1-5604-1684 0-5786-8614 4-0317-8212 3-2092-5186 5-8119-8926 1-2277-7148	mit: 55.51 mit: 246.7 Laboratory NewFields NewFields Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env Port Gamble Env EnvIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON ENVIRON	

Report Date:

04 Aug-17 13:48 (1 of 1)

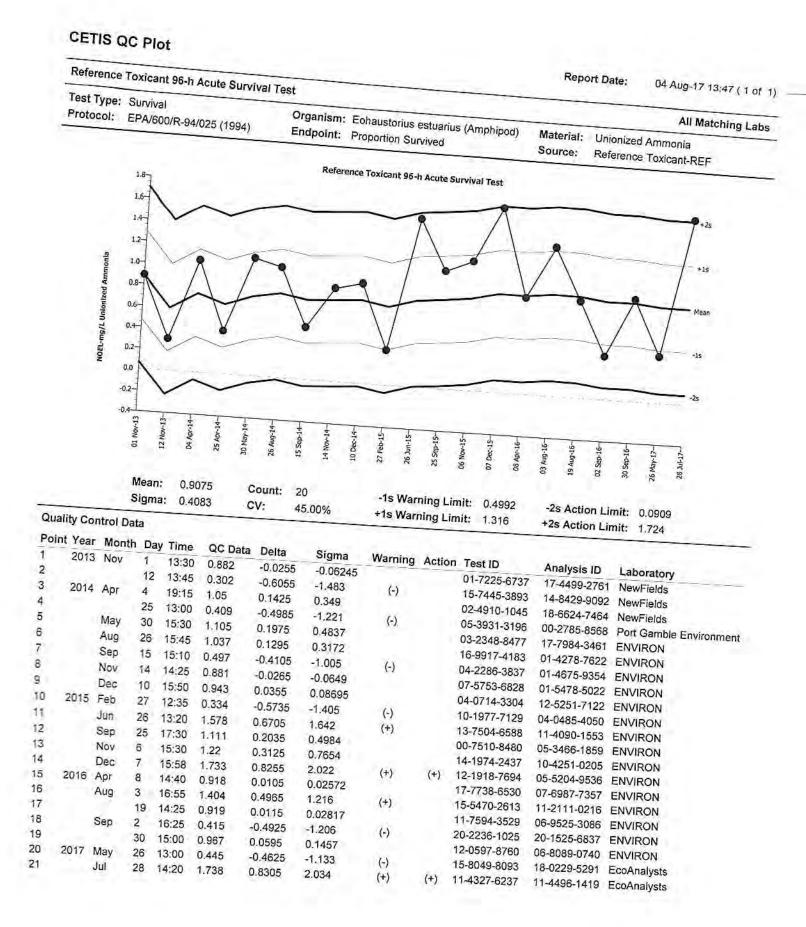
Analyst: MY QA: HE

CETIS QC Plot

Reference	Toxican	t 96-h	Acute	Survival	Test												A	All Ma	atching La
Test Type Protocol:)4/025 (1994)				haustori oportion			nphipo	od)		erial: Irce:	Total . Refer				
NOEL-mg/L Total Ammonia	200 150 100 50			Z	4		Reference	a Toxicant	96-h Acu	tė Surviva	al Test	~	-	~		_		/	+2s +1s Mean -1s
Ŷ	-50	-87			-	-+ -+	-	-	1								-	_	-25
Quality Co	Si	ean: igma:	86.7 42.5		-6F-5my 92 Count		-51-vol 14			hing Lim	nit: 4	44.2 ⁴	h -		ction	Limit			
Quality Co	M Si ntrol Dat	ean: igma: a	86.7 42.54	5	Count CV:	: 20 49)).00%	+	ls Warr Is Warr	iing Lim iing Lim	nit: 4 nit: *	44.2 [.] 129.3		-2s A	ction	Limit	: 1.67	6	
Point Year	M Si ntrol Dat Month	ean: igma: a Day	86.7 42.5 Time	5 4 QC Dat	Count CV: a Del	: 20 49 Ita) 9.00% Sigm	+* 1a W	ls Warr Is Warr	ning Lim	nit: 4 nit: 1 n Tes	44.2 [.] 129.3 t ID	3	-2s A +2s A Anal	Action Action	Limit Limit D L	: 1.67 : 171.	8 tory	
Point Year	M Si ntrol Dat	ean: igma: a Day 1	86.7 42.5 Time 13:30	5 4 QC Dat 96.4	Count CV: a Del 9.6	: 20 49 Ita 5) 0.00% Sigm 0.226	+- +- 58	ls Warr Is Warr arning	iing Lim iing Lim	nit: nit: 1 Tes 15-9	44.2* 129.3 t ID 9765	-5224	-2s A +2s A Anal 03-3	Action Action Nysis IE	Limit Limit D L	: 1.67 : 171. -aborat	8 tory lds	
Point Year 1 2013 2	M Si ntrol Dat Month Nov	ean: igma: a Day 1	86.75 42.54 Time 13:30 13:45	5 4 QC Dat 96.4 39.3	Count CV: a Del 9.63 -47	: 20 49 Ita 5 .45) 9.00% Sigm 0.226 -1.11		Is Warr Is Warr arning (-)	iing Lim iing Lim	nit: 4 nit: 4 1 Tes 15-9 12-4	44.2 129.3 t ID 9765	-5224	-2s A +2s A Anal 03-3 09-6	Action Action Vysis IE 609-76 874-03	Limit Limit D L 570 M 551 M	: 1.67 : 171. -aborat NewFiel	8 tory Ids	
Point Year 1 2013 2 3 2014	M Si ntrol Dat Month	ean: igma: a Day 1 12	86.7 42.5 Time 13:30	5 4 QC Dat 96.4	Count CV: a Del 9.64 -47 60.3	: 20 49 Ita 5 .45 25) 3.00% Sigm 0.226 -1.11 1.416	na W 38 5 5	Is Warr Is Warr arning (-) (+)	iing Lim iing Lim	nit: 4 nit: 7 15-9 12-4 13-5	44.2° 129.3 t ID 9765 4327 5617	-5224 -2465 -0473	-2s A +2s A Anal 03-3 09-6 16-0	Action Action lysis IE 609-76 874-03 396-50	Limit Limit 570 M 551 M	: 1.67 : 171. .aborat NewFiel Port Gar	8 Ids Ids mble	Environm
Point Year 1 2013 2	M Si ntrol Dat Month Nov	ean: igma; a Day 1 12 4	86.7 42.54 Time 13:30 13:45 19:15	5 4 96.4 39.3 147	Count CV: a Del 9.69 -47 60.3	: 20 49 Ita 5 .45 25 .75) 9.00% Sigm 0.226 -1.11 1.416 -1.40		Is Warr Is Warr arning (-)	iing Lim iing Lim	nit: 4 nit: 4 15-9 12-4 13-5 11-2	44.2 129.3 t ID 9765 4327 5617 2394	-5224 -2465 -0473 -9115	-2s A +2s A Anal 03-3 09-6 16-0 19-2	Action Action 9ysis IE 609-76 874-03 396-50 434-94	Limit Limit 570 N 551 N 573 F 139 F	: 1.67 : 171. .aborat NewFiel Port Gar Port Gar	8 Ids Ids mble mble	Environm
Point Year 1 2013 2 3 2014 4	M Si ntrol Dat Month Nov Apr	ean: igma: a Day 1 12 4 25 30	86.79 42.54 Time 13:30 13:45 19:15 13:00 15:30	5 4 96.4 39.3 147 27 126	Count CV: a Del 9.64 -47, 60.3 -59, 39,3	: 20 49 Ita 5 .45 25 .75 25) 2.00% 0.226 -1.11 1.416 -1.40 0.922	-+* na <u>W</u> 688 5 5 5 5 5 27	Is Warr Is Warr arning (-) (+)	iing Lim iing Lim	nit: 4 nit: 4 15-9 12-4 13-5 11-2 11-1	44.2 129.3 t ID 9765 4327 5617 2394	-5224 -2465 -0473 -9115 -7543	-2s A +2s A Anal 03-3 09-6 16-0 19-2 06-3	Action Action 995is IE 609-76 874-03 396-50 434-94 985-74	Limit Limit 570 M 551 M 551 M 573 F 139 F 139 F	: 1.67 : 171. .aborat NewFiel Port Gai Port Gai Port Gai	8 Ids Ids mble DN	
Point Year 1 2013 2 2014 3 2014 5 5 6 7	M Si ntrol Dat Month Nov Apr May	ean: igma: a Day 1 12 4 25 30 26	86.79 42.54 Time 13:30 13:45 19:15 13:00	5 4 96.4 39.3 147 27	Count CV: 9.64 -47 60.3 -59 39.3 3.3	: 20 49 1ta 5 .45 25 .75 25 5) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078	-+* na W 388 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Is Warr Is Warr arning (-) (+)	iing Lim iing Lim	nit: 4 nit: 4 15-9 12-4 13-5 11-2 11-1 15-5	44.2° 129.3 t ID 9765 4327 5617 2394 1744 5557	-5224 -2465 -0473 -9115 -7543 -5937	-2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3	Action Action 995is IE 609-76 874-03 396-50 434-94 985-74 094-43	Limit Limit 570 M 551 551	: 1.67 : 171. .aborat NewFiel Port Gar Port Gar ENVIRC ENVIRC	8 Ids Ids mble DN DN	
Point Year 1 2013 2 3 2014 4 5 6 7 8	M Si Month Nov Apr May Aug	ean: igma: a Day 1 12 4 25 30 26 15	86.79 42.54 Time 13:30 13:45 19:15 13:00 15:30 15:45	5 4 96.4 39.3 147 27 126 90.1	Count CV: a Del 9.63 -47, 60.3 -59, 39,3	: 20 49 1ta 5 .45 25 .75 25 5 .25) 0.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85	-+* 	Is Warr Is Warr arning (-) (+)	iing Lim iing Lim	nit: 4 nit: 4 15-9 12-4 13-5 11-2 11-1 15-5 07-1	44.2 129.: 129.: 129.: 129.: 129765 1327- 5617: 2394- 1744 5557- 1282-	-5224 -2465 -0473 -9115 -7543 -5937 -2061	-2s A +2s A Anal 03-3 09-6 16-0 19-2 06-3 08-3 16-3	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09	Limit Limit 570 M 551 M 573 F 139 F 139 F 139 F 138 E 135 E	: 1.67 : 171. .aborat NewFiel Port Gal Port Gal Port Gal ENVIRC ENVIRC	8 Ids Ids mble mble DN DN DN	
Point Year 1 2013 2 2 3 2014 4 5 5 7 8 9	M Si Month Nov Apr May Aug Sep	ean: igma: a Day 1 12 4 25 30 26 15 14	86.79 42.54 Time 13:30 13:45 19:15 13:00 15:30 15:45 15:10	5 4 96.4 39.3 147 27 126 90.1 50.5	Count CV: 9.69 -47, 60.3 -59, 39.3 3.39 -36.	: 20 49 1ta 5 .45 25 .75 25 5 .25 25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078	++ ++ 	Is Warr Is Warr arning (-) (+)	iing Lim iing Lim	nit: 4 nit: 15-9 12-4 13-5 11-2 11-1 15-5 07-1 09-0	44.2 ⁻ 129.3 129.3 129.5 1327 55617 55617 55617 55617 55617 5557 1282 5557 1282 5557 1282 557 1282 557	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0	Action Action 874-03 396-50 434-94 985-74 094-43 885-09 500-80	Limit Limit 570 M 551 M 555 M	: 1.67 : 171. .aborat NewFiel Port Gal Port Gal Port Gal ENVIRC ENVIRC ENVIRC	8 Ids Ids mble DN DN DN DN	
Point Year 1 2013 2 2 3 2014 4 5 5 6 7 8 9 10 2015	M Si Month Nov Apr May Aug Sep Nov	ean: igma: a Day 1 12 4 25 30 26 15 14 10	86.79 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25	5 4 96.4 39.3 147 27 126 90.1 50.5 114	Count CV: 9.64 -47, 60.3 -59, 39.3 3.35 -36, 27.3	: 20 49 1ta 5 .45 25 .75 25 5 .25 25 .35) 0.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640	++ 	Is Warr Is Warr (-) (+) (-)	iing Lim iing Lim	nit: 4 nit: 15-9 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3	44.2' 129.: 129: 9765 4327 5617 2394 1744 5557 1282 2394 1744 5557 1282 20717 3485	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10	Limit Limit 570 M 551 M 551 M 551 M 551 M 551 M 573 F 588 E 588 E 588 E 508 E 508 E	: 1.67 : 171. .aborat NewFiel Port Gal Port Gal Port Gal NVIRC NVIRC NVIRC NVIRC	8 Ids mble DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 4 5 5 5 7 8 9 10 2015 11 2015	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27	86.79 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4	Count CV: 9.64 -47, 60.3 -59, 39.3 3.35 -36, 27.3 -27.2	: 20 49 1ta 5 .45 25 .75 25 5 .25 25 .35 .45) 0.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.642	- +* ha W 58 5 5 5 5 5 5 5 27 375 21 06 29	Is Warr Is Warr (-) (+) (-)	iing Lim iing Lim	nit: 1 nit: 1 15-5 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3 19-3	44.2' 129.: 129.: 129.: 129.: 129765: 14327. 2394: 1744: 5557. 1282- 0717. 3485: 3485: 38876.	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7	Action Action 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35	Limit Limit Limit 20 L 251 M 2551 M 2551 M 2551 M 2551 M 255 E 255	: 1.67 : 171. Laborat NewFiel Port Gal Port Gal NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids Ids mble DN DN DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 5 6 7 8 9 10 2015 11 12 2015	M Si mtrol Dat Month Nov Apr May Aug Sep Nov Dec Feb	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26	86.7 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3	Count CV: 9.64 -47, 60.3 -59, 39.3 -36, 27.3 -27, -57,	: 20 49 1ta 5 .45 25 .75 25 5 .25 5 .35 .45 25) 3.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.642 -0.644 -1.35	- +* ha M 58 5 5 5 5 5 5 5 5 5 27 375 21 06 29 4	Is Warr Is Warr (-) (+) (-)	iing Lim iing Lim	nit: 1 nit: 1 15-5 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3 19-3 00-5	44.2° 129.3 129.3 129.5 129.5 129.7 1282- 0717- 3485- 3876- 5720-	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 1886	-2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7 15-3	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 570-80 579-10 961-35 704-41	Limit Limit Limit 20 L 370 M 351 M 355 M 355 E 388 E 335 br>E 335 E 355 E 3	: 1.67 : 171. Laborat NewFiel Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids Ids mble DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 4 5 5 6 7 8 9 9	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26	86.7 42.5 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132	Count CV: 9.63 -47, 60.3 -59, 39.3 -36, 27,2 -27, -57, 45,2	: 20 49 1ta 5 .45 25 .75 25 .25 .25 .25 .25 .25 25 25 25)).00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.644 -1.35 1.064		Is Warr Is Warr (-) (+) (-) (-)	iing Lim iing Lim	nit: 1 1 Tes 15-5 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3 19-3 00-5 05-7	44.2° 129.3 129.3 129.5 129.7 5617. 5617. 5617. 5557. 1282. 0717. 3485. 3876. 5720. 7835.	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 1886 3625	-2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 07-0 19-7 15-3 21-0	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39	Limit Limit D L 370 M 351 M 351 M 355 F 335 F 355 F 35	: 1.67 : 171. Aborat NewFiel Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 Ids Ids Ids Ids DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 5 5 6 7 7 8 9 10 2015 11 12 13 12 13 14	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6	86.7 42.5 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117	Count CV: 9.63 -47 60.3 -59. 39.3 -36. 27.3 -27. -57. 45.2 30.2	: 20 49 1ta 5 .45 25 .75 25 .25 25 .25 25 25 25 25 25 25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85; 0.640 -0.642 -1.35 1.064 0.711 1.839	- +* 58 55 55 57 57 57 57 57 57 57 57 57 57 57	(-) (-) (+) (+) (+)	iing Lim iing Lim	nit: 1 1 Tes 15-9 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3 19-3 00-5 05-7 07-0	44.2° 129.3 129.3 129.5 129.5 139.4 1744 5557- 1282- 0717- 3485- 3876- 5720- 7835- 0462-	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 -1886 -3625 4762	-2s A +2s A -2s A	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39 906-36	Limit Limit Limit D L 350 M 351 M 351 M 353 F 339 F 335 E 335 br>E 335 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 355 E 35	: 1.67 : 171. JewFiel Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids mble DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 5 6 7 8 9 10 2015 11 12 13 12 13 14 15 2016 14	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7	86.7 42.5 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165	Count CV: 9.63 -47 60.3 -59. 39.3 -36. 27.3 -27. -57. 45.2 30.2 78.2	: 20 49 1ta 5 .45 25 .75 25 .25 25 25 25 25 25 25 25 25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.64 -1.35 1.064 0.711 1.839 1.205	-+* 	(-) (-) (+) (-) (+) (+) (+) (+)	iing Lim iing Lim	nit: 1 1 Tes 15-9 12-4 13-5 11-2 11-1 15-5 07-1 19-3 09-0 19-3 00-5 05-7 07-0 18-5	44.2 129. 129. 129. 129. 129. 129. 129. 12	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 -1886 -3625 -4762 -2632	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7 15-3 21-0 19-7 19-7 19-7 19-7	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39 906-36 335-52	Limit Limit Limit D L 370 M 851 M 851 M 851 M 853 F 888 E 888 E 935 E 935 E 936 E 118 E 999 E 119 E 773 E 331 E	: 1.67 : 171. Jaborat NewFiel Port Gar Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 Ids Ids mble DN DN DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 2 3 2014 5 5 6 7 7 8 9 2015 11 12 13 14 15 2016 16 2016	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8	86.7 42.5 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30 15:58	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165 138	Count CV: 9.64 -47 60.3 -59 39.3 3.39 -36, 27.3 -27, -57, 45,2 30,2 78,2 51,2	: 20 49 1ta 5 .45 25 .75 25 .25 .25 .25 .25 .25 25 25 25 25 25 5 5) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.64 -1.35 1.064 0.711 1.839 1.205 -0.036	-+* 	(-) (-) (+) (+) (+)	iing Lim iing Lim	nit: 1 1 Tes 15-9 12-4 13-5 11-2 11-1 15-5 07-1 19-3 00-5 05-7 07-0 18-5 20-3	44.2° 129.3 129.3 129.3 129.5 1327.5 1327.5 1327.5 1327.5 1282.5 1744.5 1282.5 1744.5 1282.5 1744.5 1282.5 1744.5 1282.5 1744.5 1282.5 1744.5 1282.5 1282.5 129.5	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 -1886 -3625 -4762 -2632 -4511	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7 15-3 21-0 19-7 19-7 19-7 16-7	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 9961-35 704-41 939-39 906-36 335-52 438-07	Limit Limit Limit Limit D L 370 M 851 M 851 M 851 M 853 F 888 E 893 F 894 E 999 E 119 E 119 E 773 E 331 E	: 1.67 : 171. Jaborat NewFiel Port Gar Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 Ids mble DN DN DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 3 3 2014 4 5 5 6 7 8 9 2015 11 12 13 14 15 2016 16 17	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3	86.7 42.5 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:30 15:58 14:40	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165 138 85.2	Count CV: 9.64 -47, 60.3 -59, 39.3 -36, 27.3 -27, -57, 45,2 30,2 78,2 51,2 -1,5	: 20 49 1ta 5 .45 25 .75 25 .25 .25 .25 .25 .25 25 25 25 25 25 25 25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.644 -1.35 1.064 0.711 1.839 1.205 -0.036 0.264	- +* ha W 38 5 5 5 5 27 375 21 06 29 4 11 3 5 644 45	(-) (-) (+) (-) (+) (+) (+) (+)	iing Lim iing Lim	nit: 15-5 12-4 13-5 11-2 11-1 15-5 07-1 19-3 00-5 05-7 07-0 18-5 20-3 15-5	44.2 129.3 129.3 129.3 129.3 129.3 130.5 1282- 1744 15557- 1282- 1744 15557- 1282- 0717- 3485- 38876- 5720- 7835- 0462- 5380- 3339- 8554- 139- 139- 139- 139- 139- 139- 139- 139- 139- 139- 149- 159- 1	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 -1886 -3625 -4762 -2632 -4511 -7986	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7 15-3 21-0 19-7 19-7 16-7 00-7 16-7 05-8	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 9961-35 704-41 939-39 906-36 335-52 438-07 355-99	Limit Limit Limit Limit D L 370 M 851 M 851 M 851 M 853 F 888 F 888 F 888 F 899 F 199 F 19	: 1.67 : 171. Jaborat NewFiel Port Gar Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids mble DN DN DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 3 3 2014 4 5 6 7 7 8 9 2015 11 12 13 11 15 2016 16 17 18 2016	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr	ean: igma; a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19	86.79 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 15:50 12:35 13:20 17:30 15:58 14:40 16:55	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165 138 85.2 98	Count CV: 9.63 -47, 60.3 -59, 39.3 -36, 27.3 -57, 45.2 30.2 78,2 51,2 -1.5 11,2	: 20 49 1ta 5 .45 25 .75 25 .25 .25 .25 .25 .25 .25 .25 .25 .25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.64 -1.35 1.064 0.711 1.839 1.205 -0.036	- +* ha W 38 5 5 5 5 27 375 21 06 29 4 11 3 5 644 45 15	(-) (-) (+) (-) (+) (+) (+) (+)	iing Lim iing Lim	nit: 15-9 12-4 13-5 11-2 11-1 15-5 07-1 09-0 19-3 19-3 00-5 05-7 07-0 18-5 20-3 15-5 10-0	44.2 129.3 129.3 129.3 129.3 1327.5 1223.5 1228	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 1886 	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7' 15-3 21-0' 19-7' 15-3 21-0' 19-7' 16-7' 00-7' 16-7' 05-8' 12-8'	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39 906-36 335-52 438-07 355-99 350-44	Limit Limit	: 1.67 : 171. JewFiel Port Gar Port Gar Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids mble DN DN DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 3 3 2014 4 5 6 7 7 8 9 2015 11 12 13 14 15 2016 16 17 18 19	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr Aug	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19 2	86.79 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 13:20 17:30 15:58 14:40 16:55 14:25	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165 138 85.2 98 76.9	Count CV: 9.69 -47, 60.3 -59, 39.3 3.39 -36, 27.3 -57, 45,2 30,2 78,2 51,2 -1,5 11,2 -9,8	: 20 49 1ta 5 .45 25 .25 25 .25 .25 .25 .25 .25 .25 .25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.644 -1.35 1.064 0.711 1.839 1.205 -0.036 0.264 -0.23	++ 	(-) (-) (+) (-) (+) (+) (+) (+)	iing Lim iing Lim	nit: 15-9 12-4 13-5 11-2 11-1 15-5 07-1 19-3 00-5 05-7 07-0 18-5 20-3 15-5 10-0 06-2	44.2 129. 129. 129. 129. 129. 1327.	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 -1886 -3625 -4762 -2632 -4511 -7986 -9736 -4542	-2s A +2s A +2s A 03-3 09-6 16-0 19-2 06-3 08-3 16-3 07-0 07-0 19-7 15-3 21-0 19-7 15-3 21-0 19-7 15-3 21-0 19-7 15-3 21-0 19-7 18-8 0 12-8 18-80	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39 906-36 335-52 438-07 355-99 350-44 547-77	Limit Limit	: 1.67 : 171. JewFiel Port Gai Port Gai Port Gai Port Gai NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids mble mble DN DN DN DN DN DN DN DN DN DN DN DN DN	
Point Year 1 2013 2 3 3 2014 4 5 5 6 7 8 9 2015 11 12 13 14 15 2016 16 17 18 19	M Si ntrol Dat Month Nov Apr May Aug Sep Nov Dec Feb Jun Sep Nov Dec Apr Aug	ean: igma: a Day 1 12 4 25 30 26 15 14 10 27 26 25 6 7 8 3 19 2 30	86.79 42.54 13:30 13:45 19:15 13:00 15:30 15:45 15:10 14:25 13:20 17:30 15:58 14:40 16:55 14:25 16:25	QC Dat 96.4 39.3 147 27 126 90.1 50.5 114 59.4 29.3 132 117 165 138 85.2 98 76.9 54.1	Count CV: 9.63 -47, 60.3 -59, 39.3 3.33 -36, 27.3 -57, 45,2 30,2 78,2 51,2 -1.5 11,2 -9.8 -32,	: 20 49 1ta 5 .45 25 .75 25 .25 .25 .25 .25 .25 .25 .25 .25 .25) 2.00% Sigm 0.226 -1.11 1.416 -1.40 0.922 0.078 -0.85 0.640 -0.642 -0.642 1.205 1.064 0.711 1.839 1.205 -0.030 0.264 -0.23 -0.76	-+* 	(-) (-) (+) (-) (+) (+) (+) (+)	iing Lim iing Lim	nit: 15-9 12-4 13-5 11-2 11-1 15-5 07-1 19-3 00-5 05-7 07-0 19-3 19-3 19-3 19-3 19-3 19-3 19-3 19-3	44.2 129.3 129.3 129.3 129.3 1327.5 1328.5 1328	-5224 -2465 -0473 -9115 -7543 -5937 -2061 -5355 -9112 -5860 1886 	-2s A +2s A +2s A -2s A +2s A -2s A	Action Action (ysis IE 609-76 874-03 396-50 434-94 985-74 094-43 885-09 500-80 579-10 961-35 704-41 939-39 906-36 335-52 438-07 355-99 350-44 547-77	Limit Limit	: 1.67 : 171. JewFiel Port Gar Port Gar Port Gar Port Gar NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC NVIRC	8 tory Ids mble DN DN DN DN DN DN DN DN DN DN DN DN DN	

Analyst: MC

+25
Mean
-25
16 May-17-


Report Date:

04 Aug-17 13:47 (1 of 1)

			ean: gma:	1.24 0.429			20 34.60%	-1s Warr +1s Warr			-2s Action Lin +2s Action Lin	
Qualit	y Con	trol Dat	a									
Point		Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Aug	27	12:10	1.689	0.4493	1.046	(+)		18-3860-3992	18-0374-3993	NewFields
2		Nov	1	13:30	1.339	0.0985	5 0.2295			01-7225-6737	09-1642-9045	NewFields
3			12	13:45	0.4715	-0.768	5 -1.789	(-)		15-7445-3893	06-3812-4989	NewFields
	2014	Apr	4	19:15	1.072	-0.168	4 -0.392			02-4910-1045	07-9486-3041	NewFields
5			25	13:00	0.6871	-0.552	9 -1.287	(-)		05-3931-3196	11-2528-6540	Port Gamble Environment
6		May	30	15:30	1.517	0.2766	0.644			03-2348-8477	19-6287-3473	ENVIRON
7		Aug	26	15:45	1.087	-0.153	-0.3561			16-9917-4183	13-7453-5343	ENVIRON
8		Sep	15	15:10	0.6543	-0.585	7 -1.364	(-)		04-2286-3837	03-1229-8693	ENVIRON
9		Nov	14	14:25	1.119	-0.120	9 -0.2814			07-5753-6828	00-1415-6148	ENVIRON
10		Dec	10	15:50	1.441	0.2006	0.467			04-0714-3304	08-0742-5225	ENVIRON
11	2015	Feb	27	12:35	0.8668	-0.373				10-1977-7129	06-3048-0232	ENVIRON
12		Sep	25	17:30	1.361	0.1208	and the second second			00-7510-8480	16-9779-9851	ENVIRON
13		Nov	6	15:30	1.605	0.3653	a state the			14-1974-2437	14-7486-0204	
14		Dec	7	15:58	1.807	0.5666	C.C.C.C.C.C.	(+)		12-1918-7694	and the second se	ENVIRON
15	2016	Apr	8	14:40	1.512	0.2717		(1)		17-7738-6530	00-1085-2209	ENVIRON
16		Aug	3	16:55	1.775	0.5345		(+)		15-5470-2613	02-5159-2977	ENVIRON
17			19	14:25	1.264	0.0236	1012.00	(+)		100 100 100 100 100 100 100 100 100 100	20-0153-1348	ENVIRON
18		Sep	2	16:25	0.5558	-0.6842		15		11-7594-3529	18-2266-1841	ENVIRON
19		COP	30	15:00	1.885	0.6449	1	(-)		20-2236-1025	01-7459-0032	ENVIRON
1000	2017	May	26	13:00	1.101	-0.1394		(+)		12-0597-8760	12-1436-9613	ENVIRON
21		Jul	28	14:20	2.103				100	15-8049-8093	00-1911-6893	EcoAnalysts
0		U UI	20	14.20	2.103	0.8628	2.009	(+)	(+)	11-4327-6237	03-7130-7368	EcoAnalysts

CETIS QC Plot

2.2

Analyst: MK QA: H

xicant 96-h Acute Survival	Test					Test Code:	00		14-8451-45
		200.00			_				EcoAnalyst
		Survival	a a a la composition de la composition			Analyst:			
		EPA/600/R-94				Diluent:	Laboratory Sea	awater	
100 m		Eohaustorius e	and the second			Brine:	Not Applicable		
a second a second as a	Irce:	Northwestern A	Aquatic Scie	nce, OR	-	Age:			
12-1096-5815 Cod		482DDF37				Client:	Internal Lab		
		Total Ammonia				Project:	Reference Tox	icant	
and a second		Reference Tox	icant						
74d 14h Stat	ion:	p170515.19							
jl mk he lb									
Summary									
Endpoint	NOEL	LOEL	TOEL	PMSD	ти	Metho	d		
Proportion Survived	151	305	214.6	19.5%			tt Multiple Con	nparison Te	st
Summary						24100			
Endpoint	Level	mg/L	95% LCL	95% UCL	TU	Metho	d		
Proportion Survived	EC5	83.8	N/A	126.7	10		Interpolation (
A TANK TANK	EC10	102.3	9.851	210.2		Luiear	merpolation (icpin)	
	EC15	124.9	13.22	197.9					
	EC20	151.3	62.87	181.9					
	EC25	158.1	108.6	187.9					
	EC40	180.3	155.8	207.3					
	EC50	196.9	174.5	221.2					
rvived Summary									
Control Type Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effect
Dilution Water 3	0.9333	0.7899	1	0.9	1	0.0333		6.19%	0.0%
3	0.9667	0.8232	1	0.9	1	0.0333		5.97%	-3.57%
3	0.9667	0.8232	1	0.9	1	0.0333		5.97%	-3.57%
3	0.9333	0.6465	1	0.8	1	0.0666	and the second second	12.37%	0.0%
3	0.7667	0.4798	1	0.7	0.9	0.0666		15.06%	17.86%
3	0	0	0	0	0	0	0		100.0%
vived Detail									
Control Type Rep 1	Rep 2	Rep 3							
Dilution Water 0.9	1	0.9							
1	0.9	1							
1	0.9	1							
1	1	0.8							
0.9	0.7	0.7							
0	0	0							
vived Binomials									
Control Type Rep 1	Rep 2	Rep 3							
Control Type Rep 1	10/10	9/10							
Dilution Water 9/10		10/10							
Dilution Water 9/10	9/10								
Dilution Water 9/10 10/10									
Dilution Water 9/10 10/10 10/10	9/10	10/10							
Dilution Water 9/10 10/10 10/10 10/10									

000-173-187-3

CETIS™ v1.8.7.16

CETIS Tes	t Da	ita W	Vork	sheet			Report Date: Test Code:		-17 13:39 (p 1 of 1) 51-4586/587BE51A				
Reference To	xican	nt 96-h	Acut	e Survival T	est				EcoAnalysts				
Start Date: End Date: Sample Date:	28 Jul-17 14:20Species:Eohaustorius estuarius01 Aug-17 14:50Protocol:EPA/600/R-94/025 (1994)e:15 May-17Material:Total Ammonia						Sample Code: 482DDF37 Sample Source: Reference Toxicant Sample Station: p170515.19						
Sample Note:	jlm	k he lt	5										
C-mg/L	Code	Rep	Pos	# Exposed	# Survived		Notes						
0	D	1	10	10	9								
0	D	2	12	10	10								
0	D	3	8	10	9								
19.9		1	11	10	10								
19.9	-	2	16	10	9				-				
19.9		3	14	10	10								
40.4	1	1	9	10	10								
40.4		2	13	10	9								
40.4		3	2	10	10								
75.3		1	3	10	10								
75.3		2	15	10	10								
75.3		3	5	10	8								
151	-	1	17	10	9								
151		2	6	10	7								
151		3	4	10	7								
305	-	1	18	10	0								
305		2	1	10	0								
305		3	7	10	0								

Analyst: MK

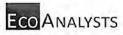
		_						Test Code:		44	2502CD 1	1-4327-623
Reference Tox	cicant 96-h Acu	te Surv	ival Test								E	coAnalysts
Batch ID: Start Date: Ending Date: Duration:	17-7829-8487 28 Jul-17 14:2 01 Aug-17 14: 4d 1h		Test Type: Protocol: Species: Source:	Survival EPA/600/R-94 Eohaustorius Northwestern	estuarius	nce, OR	ĺ	Analyst: Diluent: Brine: Age:		atory Sea oplicable	water	
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	4B5E6DC Unionized Am Reference To p170515.19				Client: Internal Lab Project: Reference Toxicant				
Comparison S	ummary	~~~					-					
Analysis ID Endpoint			NOEL	LOEL	TOEL	PMSD	τU	Meth	hod			
11-4496-1419	Proportion Sur	vived	1.738		2.212	19.5%	10	14 A 1 - 2		tiple Com	parison Te	st
Point Estimate Summary								10.5 - 40 W.	1- 41 3- 61	1411018-001	Person da	
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Meth	hod			
03-7130-7368			EC5	1.436	0.3236	1.69		Carles et	15V5	olation (I	CPIN)	
			EC10	1.534	0.7887	1.991		Linde	at interp	enation (i	or my	
			EC15	1.637	1.024	1.984						
			EC20	1.741	1.337	1.978						
			EC25	1.798	1.505	2.025						
			EC40	1.977	1.783	2.169						
			EC50	2.103	1.934	2.269						
Proportion Su	rvived Summa	ry										
	Control Type	Coun		2214 222	95% UCL	Min	Max	std E	Err S	Std Dev	CV%	%Effect
	Dilution Water	3	0.933		1	0.9	1	0.033	333 0	0.05774	6.19%	0.0%
0.458		3	0.966	and the second se	1	0.9	1	0.033	333 0	0.05774	5.97%	-3.57%
0.924		3	0.966		1	0.9	1	0.033	2.31	0.05774	5.97%	-3.57%
1.385		3	0.933	A) 27, 204 (28)	1	0.8	1	0.066		0.1155	12.37%	0.0%
1.738		3	0.766		1	0.7	0.9	0.066	100.000	0.1155	15.06%	17.86%
2.816		3	0	0	0	0	0	0	C)		100.0%
Proportion Su												
	Control Type	Rep 1		and the second se			_					
	Dilution Water	0.9	1	0.9								
0.458		1	0.9	1								
0.924		1	0.9	1								
1.385		1	1	0.8								
1.738		0.9	0.7	0.7								
2.816		0	0	0								
	rvived Binomia	als										
	Control Type	Rep 1		Rep 3								
	Dilution Water	9/10	10/10	9/10			_					
0.458		10/10		10/10								
0.924		10/10	9/10	10/10								
1.385		10/10	10/10	8/10								
1.738		9/10	7/10	7/10								
2.816		0/10	0/10	0/10								

Analyst: MK QA

CLIENT:	Anchor	Test Date:	28-Jul-17	
PROJECT:	Shelton Harbor	Test Type:	Eoh RT	
COMMENTS		Tost Type.	Edititi	_

COMMENTS: | To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	er: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
	9.34
935	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
934	A
9.35	1
9 32	*
9.31	/
9.30	4
9.29	1
9.29	· .
127	
9.28	
9.25	3 4 5 6 7 8


Sample Target / Sample Name	mou	NH3T (mg/L)		pH	temp (C)	temp (K)	i-factor	Mod NH3U (mg
		Actual	22.9	8.0	24.1	297.26	9.3053	#VALUE
Example 3.5	-	2.000	10.0	7,5	5.0	278.16	9.2750	0.008
0		0	29	8.10	15.3	288.46	9.3214	0.000
15		19.90	29	8.00	15.4	288.56	9.3214	0.458
30		40.40	29	8.00	15.3	288.46	9.3214	0.924
60	-	75.30	29	7.90	15.4	288.56	9.3214	1.385
120	-	151.00	29	7.70	15.2	288.36	9.3214	1.738
240		305.00	29	7.60	15.3	288.46	9.3214	2.816
							-	1.
	-			-				
	-				-			
							-	
	-						-	
							-	
							-	*
				-				-
				-				
			·		-			
			11	-	1			
	1.1	1						
	1							
		1000	b. (C. 1.2.)	-	1		1000	
								1
						-	1.3	
				10.2.5			1.00	
	1			1.1.1				
	I			1.1.1				
	-		· . · · · · · · · · · · · · · · · · · ·	1.1		1		
1								
	1		2			-	_	
	_				1.00			
				1				
	-		A. 75					
	-							
						-		-
	-			-				
	-	_						
	-					L.		
	-			-				
	-							
						1		

CETIS Test Data Worksheet

04 Aug-17 13:45 (p 1 of 1) 11-4327-6237/442502CD

Report Date: Test Code:

Reference To	xican	t 96-h	Acute	e Survival Tes	st			EcoAnalysts
Start Date: End Date: Sample Date	28 Jul-17 14:20 01 Aug-17 14:50 : 15 May-17				: EPA/600/R-94/025 (1994)		4B5E6DC Reference Toxicant p170515.19	
C-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes		
0	D	1	9	10	9			
0	D	2	1	10	10			
0	D	3	8	10	9			
0.458		1	10	10	10			
0.458		2	15	10	9			
0.458	-	3	2	10	10			
0.924	1	1	6	10	10			
0.924		2	17	10	9			
0.924	-	3	13	10	10			
1.385		1	3	10	10			
1.385		2	16	10	10			
1.385		3	5	10	8			
1.738	-	1	14	10	9			
1.738		2	4	10	7			
1.738		3	18	10	7			
2.816		1	11	10	0			
2.816		2	12	10	0			-
2.816		3	7	10	0			

Ammonia Reference Toxicant Test Water Quality Data Sheet

CLIENT Anchor		PROJECT	She	elton Ha	arbor				Ec	ohaustau	urius .	Estuar	ius	Labo	ratory Port	Gamble .	PROTOCOL PSEF	
155110 8170515.16	١	^{LOT #:} 2	-981	6 (57)	0								-DAY ENI	DATE 01A	145C			
glass pint J	uV	EXPOSURE		50 m	L				. 4		22							
TEST	CONDIT	IONS	y)		the second second	(mg/L) ► 4.6	TE	MP(C)	SA	TY DA1 L (ppt) 8 + 1		pH 8 + 0 5	TECHNICI		AMMO	AIA		
	CONCEN	CONCENTRATION				D.O.	15 <u>+</u> 1 темр.		SALINITY		7.8 ± 0.5 рн		5		MMONIA			
SAMPLE ID value		units	DAY	REP	meter	mg/L	meter	°C	meter	ppt	meter	unit	- WQ TECH/ DA	METE	R mg/L	Tech		
		n	0	Stock	в	7.9	B	15.3	в	29	в	8.1	Jr 7/2	3 (0	0.00			
Ref.Toxammonia	0	mg/L-	4	1	8	7.2	BU	15:55	8	29	в	7.9	MK 8/1	1				
B. (= 1)	45	15		0	Stock	в	7.9	B	15.4	в	29	в	8.0	1272	8 10	19,9		
Ref.Toxammonia	15	mg/L-	4	1	B	7.3	8	15.0	в	29	8	7.9	MK 8/					
			0	Stock	B	7.9	B	15.3	в	29	в	8.0	1	3 10	40.4			
Ref.Toxammonia	30	mg/L-	4	t	8	7.3	8	14.9	8	29	8	7.9	MK B	1	0			
			0	Stock	в	7.9	в	15.4	B	29	в	7,0	1 sh The	3 10	75.3			
Ref.Toxammonia	60	mg/L	4	1	8	7.8	8	14.9	8	29	8	7.9	MK 81					
B. CT. Contractor de la	400		0	Stock	8	7.9	8	15.2	в	29	B	7.7			151			
Ref.Toxammonia	120	mg/L-	4	1	8	7.9	8	15.0	8	29	8	7.9	MK 8/					
D.(T.)	0.40		0	Stock	8	7.9	B	15.3	в	29	B	7.6	してれ		305			
Ref.Toxammonia	240	mg/L-	4	1	_	-						-				1.1		

01E.MK 8/1.

Ammonia Re^rence Toxicant Test Water Q^rlity Data Sheet

LIFE IN WATER

<u> </u>							1000	e		a far strange	2.5																				
	PRO.	SHEL					B.	Hester		1.000		nble .	PROTOC #V/	COL ALUE!																	
TION KEY		SUF		L & DAY 1	BEHA	VIOR	DAY 2			DAY 3			DAY 4																		
	ORGAN	NISMS	DATE 7/	29) SIAN	17		7130			7[3] SIAN		date らりし Technician																			
CONC.		INITIAL		00			12		l	ÚC.			UB																		
value units		NUMBER	1 201	#DEAD		#ALIVE		OBS	1.10.10.00	1 - 4 - 1	1		#DEAD	OBS																	
		10		I,		9	0	M	9	0	N	9	U	N																	
0 mg/L	2		10	0	Ν	10	0		(0	0	5	10	0	ļļ																	
	3		10	0	3F	10	0	5	10	0	IF	٩	1	V																	
	1		10	0	2F	10	0	N	10	0	N	10	0	N																	
15 mg/L	2		9	1	N	9	0	N	9	О	IF	9	0																		
	3		10	D	28	10	0	ZF	(0	G	N	10	0	V																	
	1		10	0	Ν	16	0	N	10	0	N	10	0	N																	
30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	30 mg/L	2		940	0'	₽¦F	100	0	IF	9		IF	9	0	IF
-	3		10	0	N	10	0	15	()	Ð	·····	10	0	N																	
	1		10	0	N	10	Xo	N	10		N	10	0	N																	
60 mg/L	2		10	0	4F			1	10	0	1	10	D																		
	3			٥	N			1	9	١	J	8	1	IF																	
	1	T				1000	1.	1	9	0	0	-	0	IFC																	
120 mg/L	2	1							B		Ĭ	·····	1																		
	3			••••••				·			IFA		1	QQ																	
	1					,		1	1		mp	5		Y.																	
	2			1	·····			1	·····>	1			1																		
	3	1	1	2		0				-/				~																	
	bium Ince	TION KEY bium ICe INITIAL ORGAN Value units REP 1 0 mg/L 2 3 1 15 mg/L 2 3 1 30 mg/L 2 3 1 1 2 3 3 1 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	SUF TION KEY bium ace INITIAL # OF ORGANISMS 0 0 mg/L 2 0 mg/L 2 3 1 15 mg/L 2 3 1 15 mg/L 2 3 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 1 10 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	Structor SURVIVA DATE ICB INITIAL # OF DATE ICB INITIAL # OF TECHNIC ICB INITIAL # OF INITIAL Value units REP INITIAL Value units REP INITIAL Value units REP INITIAL 0 mg/L 2 100 0 mg/L 2 100 1 JO 100 100 15 mg/L 2 9 3 IO IO 100 30 mg/L 2 100 30 IO IO IO 30 IO IO IO 3 IO IO IO 3 IO IO IO 120 mg/L 2 IO 3 IO IO IO 10 IO IO IO 10 IO IO IO 10 </td <td></td> <td></td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P170525,19
Date Prepared:	7/28/17
Technician Initials:	ÚV.

Amp/Eoh NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Date: 7/2 Measurement: 9

7/28/2017 9453.3

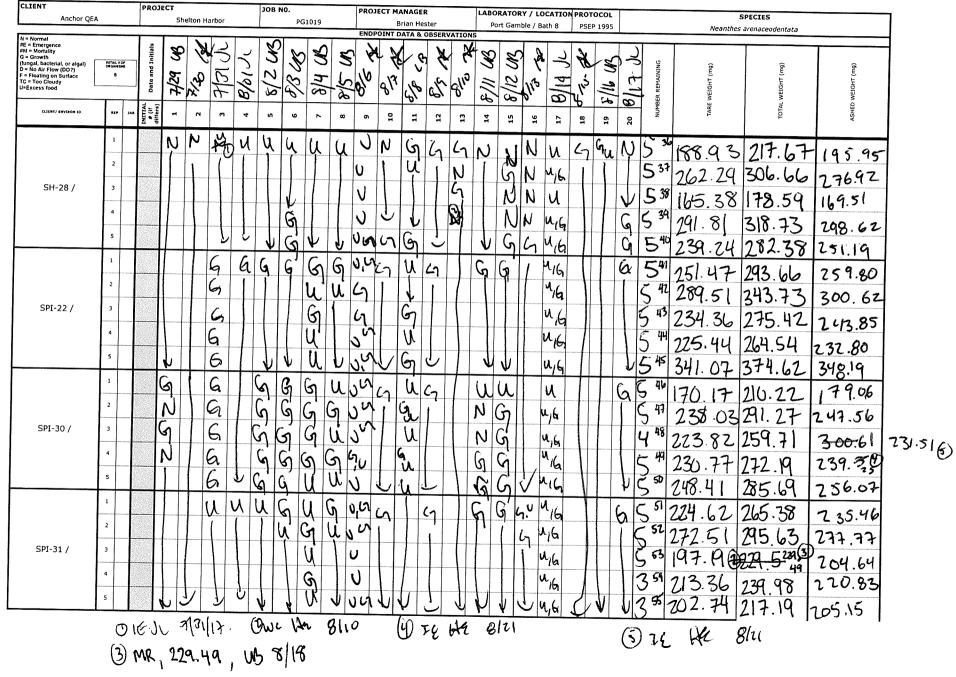
Test Solutions			Volume of stack to use the desired	
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration mL stock to increase	
mg/L	mg/L	mL		
				SALT WATER
305	240	750		28.561
151	120	750		14.281
75.3	60	750		7.140
40.4	30	750		3.570
19.9	15	750		1.785
0,00	0	750		0.000
		i		

2. Neanthes arenaceodentata 20-Day Test

Anchor QE	A	PRO:		helton H	Harbor		JOB				PROJ		ANAGE			LABOR	ATORY	/ LOC	CATION	PROT	COL						
i = Normal								PG	1019		ENDP	B	rian He	iter DBSERVA		Por	t Gamb	le / Bat	th 8		1995					SPECIES arenaceodentata	
 romai romai E = Emergence M = Mortality F Growth ungal, bacterial, or algal) No Air Flow (DO?) = Floating on Surface C = Too Cloudy =Excess food 	NITUL FOR ORCUMENTS S	Date and Initials	SN 124	19	·	8/01 JI	2	5\$ UB	8/4 US	53	816 Apr	igh.	8/8 (13	₹₹	* 2	\$/11 CB	8/12 UN	8113 12	141	N.S. R.	16 4	30	REMAINING		WEIGHT (mg)	WEIGHT (mg)	WEIGHT (mg)
CLIENT/ ENVIRON ID	117	INITIAL # (If differs)	-	7	e	4	'n	9	~	8	6	10	11 0	12 00	50 ·	4	15 0	91 19	17 8	ع ۳	20 et	8)/ 8	NUMBER		TARE WE	TOTAL WE	ASHED WE
Control /	1 2 3 4 5		Ń			V	4	S S			2 2 2 2 2 1		92 4 4 4 90	N V	•			JV	46	NN				361 293 168 255	.04 ·74 .38	428.57 324.75 206.64 287.59	387.0 304.9 178.97 267.0
SH-Ref-1 /	1 2 3 4 5					6		5	5 (G		2 2 2	\prod	Q .	5 C C C C C C C C C C C C C C C C C C C				1 4 14 14	16				5 8 9		55	274.09 301.78 181.17 362.46 310.08	2 51.29 277.90 157.68 335.87 273.19
CARR /	1 2 3 4 5											$\tau \mid $						1 1 1 1 1	6				13 13	345. 229. 260. 264.	11 64 .62	271. 54 301.88 310.57	150.88 358.91 238.05 270.7 277.17
Rep	Num	ber T	are Wei (mg)	ght [Dry Weig (mg)	iht As	ned Wei (mg)		mments:	#			$\frac{N^{N}}{2nd}$	K 11			ᡛ᠆᠆	<u>\"\</u>	540	<u>/ \</u>	<u>H</u>		515 1	56,0	58		67.45
Biomass 2	5		50.6 70.5		21.1		0.72	-1 ⁻	29 39(25 D				nove		ove fro	n M	at Ove	12 2n	10 at	8/ 	17	17	, JC 3/10	1	ven temp. Jv	12400
3	5		50.3		51.0		0.5	-	23															•			

() also loons like # 159, UB 7/29 (2) 1E, Bout # 25, UB 7/29 (3) 1E, N, UB 8/8

Ç



i

CLIENT Anchor QEA		1	ROJEC		- 11 - 1			100	8 NO.			PRO.	JEC I M	ANAG	: K		LAB	ORATO	RY / L(OCATIO	N PROT	OCOL				0000000	
				Sn	elton H	arbor			P	G1019		END		Brian H			P	ort Gar			1	9 1995			Neanthe	SPECIES es arenaceodentata	
N = Normal RE = Emergence RM = Mortality G = Growth (tungal, bacterial, or algal) D = No Air Flow (DO7) F = Floating on Surface TG = Too Cloudy U=Excess food	NETLIC FOR ORGANISME 5		2	54 MB	×2,2 ×	13102	8/01 11			8/4 (12)	SK-CR	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3	B/F/N	5 fr	110 775 M	111 LAR	112 LM	HA INS	14/1	A. A.	In US	17 11	RÉMAINING	WEIGHT (mg)	WEIGHT (mg)	
CLIERY/ ENVIRON ID	444	INITIAL	# (if differs)	7	7	m	4	2	0	~ ~	8	6	10	11	12 6	ы 8	14 F	100	20	5 0	¥6. ≅	19 S	30	NUMBER	TARE WE	ТОТАL WE	ASHED WE
	1 2			N 	N	V I	U]	5	5	G U	জ ধ	らし	S N	y	N	5	G	5	G	u,6	G 1	G,u	િ ઉ	5"	224.23 273.62	260.10	233 281.
CARR / SH-Ref-1 /	4											1.U 1		Se U	6 N		S N	522		46 46			นี เง	5 ¹⁸ 5 ¹⁸	27 5.62 165.08 196.91	207.20	175,9
	5 1 2							6	3	G	b	J 53	5	و دی کد	67 67	5		6 6		M16 M16			GG	5 ²⁰ 5 ²¹	169.56	213.96	180,1 Z11,8
SH-13A /	3							4 6 1	550		u 1	い,い い .,	N	a U	1	J	G N	G' N	N	4,6 4,6		-	V V	5 ¹² 5 ¹³ 7 ¹⁴	163.36 251.76	191.72 279.93	169: 258
	5								5 2 2	l U	J.	<u>)</u>	<u>V</u>	U U		N G	U	SN	NN	1,a 16			J	5 25	166.19 204.00	195.02 229.97	172.5 208.5
SH-19 /	2								1 1 2			2 2			N L		5	ŋ	6	16 16 16			6	527	191.96	221,98	196.6
	4					l		4				ບ ນ	U	J	N	J		5 2 6		16 16				5 ²⁹	206.90 281.20 289.47	234.21 313.39 311.25	2122 286.
-	1 2 3 4		12 20 1	0		4 7 55 5	1	Ś	\mathcal{X}		5		N	à K Ĵ	ς \ [<u>ភ្</u> តិ (5	4 V 7 V 7 V	4				5332	275.22 188.52 257.03	315.45 226.88 288.9.3	293.1 784.9 198,9 263.1
ON, mistu	5	fior	V } n	J M	- 4	u ₹	1	3	5 N 29	V	3	SAL SAL			131		م (حر(<u>ي</u> کار	น / น	16		J.		5 2 56	338.43 199.41	364.67 228.44	344.1 204.7
GIA H	r	81	U	(jw	G-7 + f		ן איני	<i>1-</i> لر		ノ V	NC .	JU	-1	1.,	111					Ć) NO	600		, used by	ut 56, U	58/11

~

CLIENT			PF	OJECT			START TIME/ E	ND TIN	E DILUT		ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				5	Shelton Harbor		1320	00	100	FSWO	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PR	OJECT	MANAGER		LABORATORY /	LOCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gamb	le / Ba	th 8	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
							WATER QUA	LITY	DATA			1		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C)	S	ALINITY (ppt)		рН]		
SAMPLE ID	DAY	REF	AL		D.O.	<u></u>	<u>20 ± 1</u> TEMP		28 ± 2 SALINITY	80 - 23 2 - 23 	8.0±1.0 pH	WATER	T	I
				mete	.	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
Control /	0	Sur	r 5	19	7.7	8	19.1	8	29	8	8.1		.)~	ta 712917
Control /	1	Sur	r 🛔	8	7.6	8	19.1	8	29	8	8.1			(B 2/29)
Control /	2	Sur	r	8	7.3	8	19.8	8	29	8	8.1		the	HE 7/30
Control /	3	Sur	r	B	7.6	B	19.5	B	29	B	8.1	JUME		52731
Control /	4	Sur	r	0	7.6	B	19.0	в	29	0	8.1		UB	UL BOI
Control /	5	Sur	r	8		8	19.4	8	29	8	8.0		015	UB 8/2
Control /	6	Suri	-	8	7.6	8	19.5	8	29	ষ	8.1	UB/HE	uns	UB 8/3
Control /	7	Suri	-	8	7.5	8	19.5	8	29	8	8.1	0110	<u> </u>	UB 8/4
Control /	8	Surr		8	7.5	8	M. 3	8	29	8	8,1		B	UB 8/5
Control /	9	Surr	·	8	1.6	8	19.6	8	29	ç	8.2	KK.		H 8/6
Control /	10	Surr		8	7.8	Q	18.9	8	29	8	8,1		He-	He 8/7
Control /	11	Surr		8	7.6	S S	19.1	8	29	8	8.)			UB 8/8
Control /	12	Surr		8	7.6	8	19.2	8	29	8	7.2	UB HE	UB	152 8/9
Control /	13	Surr		8	7.5	8	19.1	8	29	8	8.(1 8/10
Control /	14	Surr		9	7.5	9	19.1	q	29	q	8.2		Ins	UB 8/11
Control /	15	Surr		9	7.4	9	19.3	q	29	9	8.1	IM	•	UB 8/12
Control /	16	Surr		9	1.5	9	19.6	9	29	9	8.1	<u> </u>	1 %	N4 8/12
Control /	17	Surr		9	7.5	9	19.4	9	29	9	B,1		- Mar	1 B/14
Control /	18	Surr		9	1.5	9	19.2	G	29	9	8.1	JUHE	1B	A2 8/15
Control /	19	Surr		9	7.6	Q	19.1	9	29	9	8.0	<u> </u>		WA SIL
Control /	20	Surr	l	9	73	9	19.8	9	29	9	8.1			UL 8/17

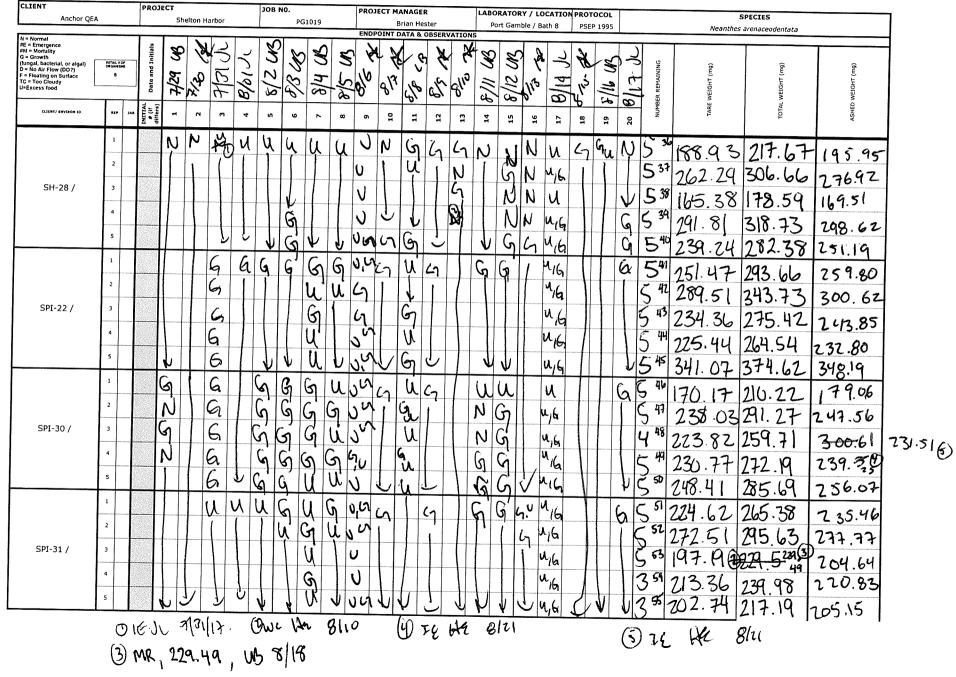
08/21/15

.

Anchor QE	A	PRO:		helton H	Harbor		JOB				PROJ		ANAGE			LABOR	ATORY	/ LOC	CATION	PROT	COL						
i = Normal								PG	1019		ENDP	B	rian He	iter DBSERVA		Por	t Gamb	le / Bat	th 8		1995					SPECIES arenaceodentata	
 romai romai E = Emergence M = Mortality F Growth ungal, bacterial, or algal) No Air Flow (DO?) = Floating on Surface C = Too Cloudy =Excess food 	NITUL FOR ORCUMENTS S	Date and Initials	SN 124	19	·	8/01 JI	2	5\$ UB	8/4 US	53	816 Apr	igh.	8/8 (13	₹₹	* 2	\$/11 CB	8/12 UN	8113 12	141	N.S. R.	16 4	30	REMAINING		WEIGHT (mg)	WEIGHT (mg)	WEIGHT (mg)
CLIENT/ ENVIRON ID	117	INITIAL # (If differs)	-	7	e	4	'n	9	~	8	6	10	11 0	12 00	50 ·	4	15 0	91 19	17 8	ع ۳	20 et	8)/ 8	NUMBER		TARE WE	TOTAL WE	ASHED WE
Control /	1 2 3 4 5		Ń			V	4	S S			2 2 2 2 2 1		92 4 4 4 90	N V	•			JV	46	NN				361 293 168 255	.04 ·74 .38	428.57 324.75 206.64 287.59	387.0 304.9 178.97 267.0
SH-Ref-1 /	1 2 3 4 5					6		5	5 (G		2 2 2	\prod	Q .	5 C C C C C C C C C C C C C C C C C C C				1 4 14 14	16				5 8 9		55	274.09 301.78 181.17 362.46 310.08	2 51.29 277.90 157.68 335.87 273.19
CARR /	1 2 3 4 5									v V		$\tau \mid $						1 1 1 1 1	6				13 13	345. 229. 260. 264.	11 64 .62	271. 54 301.88 310.57	150.88 358.91 238.05 270.7 277.17
Rep	Num	ber T	are Wei (mg)	ght [Dry Weig (mg)	iht As	ned Wei (mg)		mments:	#			$\frac{N^{N}}{2nd}$	K 11			ᡛ᠆᠆	<u>\"\</u>	540	<u>/ \</u>	<u>H</u>		515 1	56,0	58		67.45
Biomass 2	5		50.6 70.5		21.1		0.72	-1 ⁻	29 39(25 D				nove		ove fro	n M	at Ove	12 2n	10 at	8/ 	17	17	, JC 3/10	1	ven temp. Jv	12400
3	5		50.3		51.0		0.5	-	23															•			

() also loons like # 159, UB 7/29 (2) 1E, Bout # 25, UB 7/29 (3) 1E, N, UB 8/8

Ç



i

CLIENT Anchor QEA		1	ROJEC		- 11 - 1			100	8 NO.			PRO.	JEC I M	ANAG	: K		LAB	ORATO	RY / L(OCATIO	N PROT	OCOL				0000000	
				Sn	elton H	arbor			P	G1019		END		Brian H			P	ort Gar			1	9 1995			Neanthe	SPECIES es arenaceodentata	
N = Normal RE = Emergence RM = Mortality G = Growth (tungal, bacterial, or algal) D = No Air Flow (DO7) F = Floating on Surface TG = Too Cloudy U=Excess food	NETLIC FOR ORGANISME 5		2	54 MB	×2,2 ×	13102	8/01 11			8/4 (12)	SK-CR	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A N	B/F/N	5 fr	110 775 M	111 LAR	112 LM	HA INS	14/1	A. A.	he un	17 11	RÉMAINING	WEIGHT (mg)	WEIGHT (mg)	
CLIERY/ ENVIRON ID	444	INITIAL	# (if differs)	7	7	m	4	5	0	~ ~	8	6	10	11	12 6	ы 8	14 F	5	20	5 0	¥6. ≅	19 S	30	NUMBER	TARE WE	ТОТАL WE	ASHED WE
	1 2			N 	N	V I	U]	5	5	G U	জ ধ	らし	S N	y	N	5	G	5	G	u,6	G 1	G,u	િ ઉ	5"	224.23 273.62	260.10	233 281.
CARR / SH-Ref-1 /	4											1.U 1		Se U	6 N		S N	522		4.6 4.6			นี เง	5 ¹⁸ 5 ¹⁸	27 5.62 165.08 196.91	207.20	175,9
	5 1 2							6	3	G	b	J 53	5	و دی کد	67 67	5		6 6		M16 M16			GG	5 ²⁰ 5 ²¹	169.56	213.96	180,1 Z11,8
SH-13A /	3							4 6 1	550		u 1	い,い い .,	N	a U	1	J	G N	G' N	N	4,6 4,6		-	V V	5 ¹² 5 ¹³ 7 ¹⁴	163.36 251.76	191.72 279.93	169: 258
	5								5 2 2	l U	J.	<u>)</u>	<u>V</u>	U U		N G	U	SN	NN	1,a 16			J	5 25	166.19 204.00	195.02 229.97	172.5 208.5
SH-19 /	2								1 1 2			2 2			N L		5	ŋ	6	16 16 16			6	527	191.96	221,98	196.6
	4					l		4				ບ ນ	U	J	N	J		5 2 6		16 16				5 ²⁹	206.90 281.20 289.47	234.21 313.39 311.25	2122 286.
	1 2 3 4		12 20 1	0		4 7 55 5	1	Ś	\mathcal{X}		5		N	à K Ĵ	ς \ [<u>ភ្</u> តិ (5	4 V 7 V 7 V	4				5332	275.22 188.52 257.03	315.45 226.88 288.9.3	293.1 784.9 198,9 263.1
ON, mistu	5	fior	V N	J M	- 4	u R	1	3	5 N 29	V	3	SAL SAL			131		م (حر(<u>ي</u> کار	น / น	16		J.		5 2 56	338.43 199.41	364.67 228.44	344.1 204.7
GIA H	r	81	U	(jw	G-7 + f		ן איני	<i>1-</i> لر		ノ V	NC .	JU	-1	1.,	111					Ć) NO	600		, used by	ut 56, U	58/11

~

CLIENT			PF	OJECT			START TIME/ E	ND TIN	E DILUT		ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				5	Shelton Harbor		1320	00	100	FSWO	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PR	OJECT	MANAGER		LABORATORY /	LOCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gamb	le / Ba	th 8	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
							WATER QUA	LITY	DATA			1		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C)	S	ALINITY (ppt)		рН]		
SAMPLE ID	DAY	REF	AL		D.O.	<u></u>	<u>20 ± 1</u> TEMP		28 ± 2 SALINITY	80 - 23 2 - 23 	8.0±1.0 pH	WATER	T	I
				mete	.	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
Control /	0	Sur	r 5	19	7.7	8	19.1	8	29	8	8.1		.)~	ta 712917
Control /	1	Sur	r 🛔	8	7.6	8	19.1	8	29	8	8.1			(B 2/29)
Control /	2	Sur	r	8	7.3	8	19.8	8	29	8	8.1		the	HE 7/30
Control /	3	Sur	r	B	7.6	B	19.5	B	29	B	8.1	JUME		52731
Control /	4	Sur	r	0	7.6	B	19.0	в	29	0	8.1		UB	UL BOI
Control /	5	Sur	r	8		8	19.4	8	29	8	8.0		015	UB 8/2
Control /	6	Suri	-	8	7.6	8	19.5	8	29	ষ	8.1	UB/HE	uns	UB 8/3
Control /	7	Suri	-	8	7.5	8	19.5	8	29	8	8.1	0110	<u> </u>	UB 8/4
Control /	8	Surr		8	7.5	8	M. 3	8	29	8	8,1		B	UB 8/5
Control /	9	Surr	·	8	1.6	8	19.6	8	29	ç	8.2	KK.		H 8/6
Control /	10	Surr		8	7.8	Q	18.9	8	29	8	8,1		He-	He 8/7
Control /	11	Surr		8	7.6	S S	19.1	8	29	8	8.)			UB 8/8
Control /	12	Surr		8	7.6	8	19.2	8	29	8	7.2	UB HE	UB	152 8/9
Control /	13	Surr		8	7.5	8	19.1	8	29	8	8.(1 8/10
Control /	14	Surr		9	7.5	9	19.1	q	29	q	8.2		Ins	UB 8/11
Control /	15	Surr		9	7.4	9	19.3	q	29	9	8.1	IM	•	UB 8/12
Control /	16	Surr		9	1.5	9	19.6	9	29	9	8.1	<u> </u>	1 %	N4 8/12
Control /	17	Surr		9	7.5	9	19.4	9	29	9	B,1		- Mar	1 B/14
Control /	18	Surr		9	1.5	9	19.2	G	29	9	8.1	JUHE	1B	A2 8/15
Control /	19	Surr		9	7.6	Q	19.1	9	29	9	8.0	<u> </u>		WA SIL
Control /	20	Surr	l	9	73	9	19.8	9	29	9	8.1			UL 8/17

08/21/15

.

Client/P Anchos	roject:	helf	on H	arbor	Organi	sm: Neantles ER (circle one)			Test	Duration Z	(days): ころ		
	ETEST ERLYIN	GOY	NITIAL ') / P((TINAL)	/ UIH	ER (circle one) circle one) / Con					DAY of TI	EST: <u>2</u>	0
				ation Standa	ards Tem	perature							
		Date	:			Temperat	ure:				should be with the at time and		
	817	117				20.4	5°0		Stanuar				
Sample ID or Description	Conc. or Rep	Samj Ir	Pate of pling and nitials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
6v &	SUIT	the	8117/17	1.94	19.9	HE 8/17/17	N		1	10	0.017	1'	$\left \left(\frac{\ln g}{L} \right) \right $
SH-ref.				0.00	1		1			, <u>,</u>	0.006	ł	+\
CARE				0.103							0.011		+ \
CAPPISHIEFI	ľ			0.0062							0.026		+ +
5H-13A				0.00		I		1	/		0.014		+
S17-19 S17-22				0.00				1	/		0.013		+
51+-22				0.00				/			0.006		+
514-28				0.00							0004		+
SPI -22		1		0.431							0.012		
V SPI-22 SPI-30	/		,	2.42							0.010	· · · · ·	\vdash
a SPI.31	V	J		0.0662	V			/			0.003		
PW SPI -31	Sur	HE	8/19/17	0.995	20.0	He 8/17/17	N	7.2	29	- S	0.067	2	0.134
pu &	1	1		1.39	,	1		7.2	27	10	0.043		0
SH-ref.				1.01				7.3	27	10	0.11	<u> </u>	\backslash
CARR				1,21		· ·		6.9	27	10	0.037	1	
CARP/SH-REE1				1.09				6.9	24	10	0.051	1 t	
SH-13A				0.335				7.3	29		0.040	<u> </u>	-
514-19				0.566				7.1	29		0.052	2	0-104
514.22				1.94				7.4	29		0.014		
51+-28				0.586				7.4	29				0.02
SPI-22				3.15				7.3	27		0.033	-1	0.066
SPI - 30	J	(3.86				7.5	28		0.084	2	0.168
¥			I_	<u>J. Uv</u>	$-\Psi$	<u> </u>	$-\mathbf{\nabla}$	• •/	10	2	0.091	2	0.182

CLIENT			PR	OJECT			START TIME/ E			ION W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA					helton Harbor		1320	00	100	FSW	072617.02	PSEP 19	995	28-Jul-2017
			PR	OJECT	MANAGER		LABORATORY /	LOCAT	ION ORGAN	NISM B	ватсн	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gamb	le / Ba	ith 8	ATS	5072817	Neanthes arenad	eodentata	17-Aug-2017
	965UAX685814		ak Jaena -	a tata a tata tata tata tata tata tata			WATER QUA	LITY	DATA					17-Aug-2017
TEST CONDITIONS			-		DO (mg/L) > 4.6		TEMP (C)	S	ALINITY (ppt)		рН			
SAMPLE ID	DAY	REP	JAI		D.O.	25 ST 500 800	<u>20 ± 1</u> TEMP		$\frac{28 \pm 2}{\text{SALINITY}}$	55 <u>1956</u> 8	8.0±1.0 pH		· · · · · · · · · · · · · · · · · · ·	
				meter	mg/L	meter	°C	meter	ppt	meter		RENEWAL	Feeding	TECH/DATE
SH-Ref-1 /	0	Surr	4	58	7.7	8	19.0	8	29	8	8.1	ALNEWAL	1	
SH-Ref-1 /	1	Surr	. (8	7.6	8	19.3	8	29	8	8,2		JL	Bh 7/28/1
SH-Ref-1 /	2	Surr		8	7.3	8	19.9	8	29	8	8.2		64	UB 7/29
SH-Ref-1 /	3	Surr	11	B	7.6	0	195	8	29	8 B	B.Z B.3	1. 64	HE	AC +13
SH-Ref-1 /	4	Surr		8	7.6	8	19.1	B	7 a	8	8.3	J- /HE	UB	J 7/31
SH-Ref-1 /	5	Surr		8	7.6	8	19.5	8	29	8	82			
SH-Ref-1 /	6	Surr		8	7.6	8	19.6	8	29	8	8.4	10 hr	(14_	UB 8/2
SH-Ref-1 /	7	Surr		8	7.5	8	19.6	8	29	8	8,3	UB/HE	UB	13 813
SH-Ref-1 /	8	Surr		8	7.5	8	19.4	8	29	8	8.3		(MB	UB 8/4
SH-Ref-1 /	9	Surr		4	7.5	5	19.7	8	29	8	8.3	HK.		UB 8/5 Hz 8/6
SH-Ref-1 /	10	Surr		8	7.1	8	19.0	8	29	\$	8.2	- 155	J.	HE 816 No 817
SH-Ref-1 /	11	Surr		8	7.5	8	18.9	8	29	8	8.2		18-	UB 5/8
SH-Ref-1 /	12	Surr		8	7.6	8	19.2	8	29	8	7.4	UB/HE	UB	
SH-Ref-1 /	13	Surr		8	7.4	8	19.2	8	29	8	8.1	00110	00	He 3/9 He 8110
SH-Ref-1 /	14	Surr		9	7.5	q	19.0	9	29	q	8.2		m	(B 8/11
SH-Ref-1 /	15	Surr		9	7.4	9	19.3	9	29	q	8.1	Um l	<u> </u>	UB 0/11 UB 8/12
SH-Ref-1 /	16	Surr		٩	7.5	9	19.6	9	29	G	8.1		14	He 8113
SH-Ref-1 /	17	Surr		9	7.5	9	19.4	9	29	9	6.1		HEARING MARKED	JL 8/14
SH-Ref-1 /	18	Surr		9	7.5	9	19.3	9	29	9	8.1	Jr/712	10000000000000000000000000000000000000	Her 8/15
SH-Ref-1 /	19	Surr		9	7.6	9	19.0	9	29	ġ	8.0	- 1 mg	- 00	in chi
SH-Ref-1 /	20	Surr	\mathcal{O}	9	7.5	9	19.8	9	29	9	8.1			US 8/16 JL 8/17

, <u>)</u>

CLIENT			PRO	JECT			START TIME/ EN			ON W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				S	helton Harbor		1320,	00	200	FSW0	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PRO	JECT	ANAGER		LABORATORY / I	OCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019				1	Brian Hester		Port Gamble	e / Ba	th 8	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
			L				WATER QUA					······		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	ALINITY (ppt) 28 ± 2		рН 8.0±1.0	4		
SAMPLE ID	DAY	REP	JAR	5 0.000 0.000	D.O.	1735.ed955	TEMP	0.0000000000	SALINITY	10 100000000	<u>рН</u>	WATER	Feeding	TECH/DATE
			201	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL		
CARR /	0	Surr	54	8	7.7	T	19.2	б	28	8	7.9		JV	En 7/28/H
CARR /	1	Surr	1	S	7.7	8	19.2	8	29	8	0.8			UB 7/29
CARR /	2	Surr		8	6.7	8	19.8	Г	29	8	8.0		HE	He 7/30
CARR /	3	Surr		B	7.4	B	19.6	B	29	в	8.0	UN/HE		N 7771
CARR /	4	Surr		B	7.7	B	19.0	0	29	B	8.(B	JL 8/01
CARR /	5	Surr		8	7.6	8	19.5	8	29	8	8.0			UB 8/2
CARR /	6	Surr		8	7.5	8	19.6	8	29	8	8.1	UB/HE	UB	UB 8/3
CARR /	7	Surr		8	7.4	8	19.6	8	29	8	8.6			VB 8/4
CARR /	8	Surr		8	7.5	8	19.4	8	29	8	8~)		B	UB 0/5
CARR /	9	Surr		4	7.4	8	19.7	8	29	8	8.1	Hr.		,H4 816
CARR /	10	Surr		Š	7.6	8	19.1	8	28	8	8.1		H	1 8/7
CARR /	11	Surr		۴	7.4	Š	19.2	8	28	S.	6,8	i de la companya de l	l	UB 818
CARR /	12	Surr		G	7.6	४	19.2	8	29	8	7.1	UB/2TE	LB	He 819
CARR /	13	Surr		8	7.5	8	19.2	8	29	8	8,0	D.		Ha 8110
CARR /	14	Surr		95 ⁴	7.5	9	19.2	9	29	q	8.1		Im	UB 8711
CARR /	15	Surr		Q	7.3	ġ	19.3	q	29	9	§.]	WS		UB 8/12
CARR /	16	Surr		9	7,5	9	19.7	S	29	9	8.(Ity	ph 8/13
CARR /	17	Surr		q	7.5	٩	19.5	q	29	9	B.O			UI 8/14
CARR /	18	Surr		٩	7.4	9	19.4	9	29	9	8.1	N/HE	B	HA 8115
CARR /	19	Surr		9	7.5	9	19.2	9	29	9	.D.8			UB 8/16
CARR /	20	Surr	U	9	7.3	9	19.9	9	29	9	0.1			JL 8/17

016, aurt 9 11 8/11

Į.

 $\sum_{i=1}^{n}$

1

LIENT			PRO	JECT			START TIME/ EI			TION W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA					helton Harbor					FSW0	72617.02	PSEP 19	95	28-Jul-2017
OB NUMBER			PRO	JECT I	MANAGER		LABORATORY /	LOCAT	ION ORGA	NISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gambl			ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
			0.0600		DO (mg/L)	N STREET	WATER QUA TEMP (C)			ana araang				
TEST CONDITIONS					> 4.6		$\frac{20 \pm 1}{20 \pm 1}$		ALINITY (ppt) 28 ± 2		рн 8.0±1.0	4		
SAMPLE ID	DAY	REP	JAR	meter	D.O. mg/L	meter	TEMP °C	meter	SALINITY ppt	meter	рН	WATER	Feeding	TECH/DATE
CARR / SH-Ref-1 /	0	Surr	43	В	7.7	8	19.1	B			unit	RENEWAL	JU	
CARR / SH-Ref-1 /	1	Surr	1	8	7.6	8	19.3	8	29 29	8	8.1			B(17/28)F
CARR / SH-Ref-1 /	2	Surr	+	8	2.2	S	19.9	8	29	5	8.(the.	UB 7/29 HE 7/30
CARR / SH-Ref-1 /	3	Surr	1	8	7.5	B	19.6	B	29	B	<u> </u>	hlar	De.	SE 7/30
CARR / SH-Ref-1 /	4	Surr	╎	8	7,6	8	19,1	8	29	в	B.I	1/2/2	IB	JE 7/01
CARR / SH-Ref-1 /	5	Surr		8	7.5	8	19.5	8	29	ð	8.0			UB 8/2
CARR / SH-Ref-1 /	6	Surr		8	7.4	8	19.6	8	29	8	8.2	UB/HE	UB	10 8/3
CARR / SH-Ref-1 /	7	Surr		8	7.4	8	19.7	8	29	8	8.1	00/110		UB 8/4
CARR / SH-Ref-1 /	8	Surr		8	7.5	8	19.4	8	29	8	8.2		(M)	COB 8/5
CARR / SH-Ref-1 /	9	Surr		8	7.4	8	19.7	8	29	8	8.2	KE	<u></u>	8.7.816
CARR / SH-Ref-1 /	10	Surr		8	7.3	8	19.1	8	29	8	8.1		H	14 817
CARR / SH-Ref-1 /	11	Surr		r	7.4	8	19.1	8	29	8	8.1		- pre-	10 8/8
CARR / SH-Ref-1 /	12	Surr		Ц	7.6	8	19.2	8	29	4	7.3	UB/HE	UB	Ha 819
CARR / SH-Ref-1 /	13	Surr		8	7.4	8	19.3	8	29	8	8.1			A 8110
CARR / SH-Ref-1 /	14	Surr		9	7.5	9	19.1	9	29	9	8,2		M	UB 8/1
CARR / SH-Ref-1 /	15	Surr		٩	7.3	9	19.4	9	29	q	8.)	US		UB 8/12
CARR / SH-Ref-1 /	16	Surr		9	7.5	9	19.7	9	29	9	8.1		1th	M 84
CARR / SH-Ref-1 /	17	Surr		9	7,5	9	19.5	9	29	ġ	B.O			J. 8/14
CARR / SH-Ref-1 /	18	Surr		9	7.5	9	19.3	g	29	9	8.1	JU/HZ	UB	1A4 8/15
CARR / SH-Ref-1 /	19	Surr		$\frac{d}{d}$	7.6	9	19.1	9	29	9	8.1			UB 8/16
CARR / SH-Ref-1 /	20	Surr	V	9	7.5	9	19.8	૧	29	9	B.1			UL 8/17

Ì

CLIENT			PRO:	DECT			START TIME/ EN	ID TIM	E DILUI		TER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				Sł	nelton Harbor		13201	00	00	FSW0	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PRO		ANAGER		LABORATORY /	LOCAT	ION ORGA	NISM B	атсн	TEST SPECIES		TEST END DATE
PG1019				E	Brian Hester		Port Gambl	e / Ba	th 8	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
							WATER QUA							
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	28 ± 2		рН 8.0±1.0	_		
SAMPLE ID	DAY	REP	JAR		D.O.		TEMP		SALINITY		<u>рН</u>	WATER	Feeding	TECH/DATE
		ļ		meter	mg/L	meter		meter	ppt	meter	unit	RENEWAL	, veeding	TECH/DATE
SH-13A /	0	Surr	31	S	7.7	8	19.2	8	29	8	8.1		N	BG 7/29/
SH-13A /	1	Surr		8	7.6	8	19.5	б	29	8	8.0			UB 7/29
SH-13A /	2	Surr		4	7.0	8	20.0	8	29	8	7,9		Ha	₩ 7/30
SH-13A /	3	Surr		B	7.5	B	19.7	B	29	B	B.0	JL/712		UL 7/31
SH-13A /	4	Surr		B	7.6	в	ા ૧.૩	B	28	B	6,6		UB	J 6/01
SH-13A /	5	Surr		প	7.5	8	19.7	8	28	8	F, O			UB 8/2
SH-13A /	6	Surr		8	7.5	8	19.8	8	29	8	8.0	UB/HE	UB	UB 8/3
SH-13A /	7	Surr		Г	7.4	8	P.7	8	28	8	6,8-			UB 8/4
SH-13A /	8	Surr		8	7.5	8	19.6	8	28	8	8.0		B	015 8/5
SH-13A /	9	Surr		G	7.5	X	19.8	8	29	5	8.0	HE		Hz 816
SH-13A /	10	Surr		8	7.6	Š	19,2	Š	28	8	8.0		Her	the 817
SH-13A /	11	Surr		8	7.5	Š	19.3	8	28	8	8.0			UB 8/8
SH-13A /	12	Surr		8	7.6	8	19.3	8	78	8	7.2	UB/HE	IB	Ha 8/9
SH-13A /	13	Surr		б	7.3	V	19.4	8	29	8	8.1			4 8/10
SH-13A /	14	Surr		٩	7,5	9	19.2	9	29	9	8.)		B	WB 8/11
SH-13A /	15	Surr		9	7,4	9	19.5	9	29	9	8.1	ins		UB 8/12
SH-13A /	16	Surr		9	7.4	9	19.8	9	29	9	8,((ty	H4 8/13
SH-13A /	17	Surr		9	7.5	9	19.6	9	29	9	8.0			ch 8/14
SH-13A /	18	Surr		9	7.9	9	19.0	9	29	9	8.1	UL/12	VB	14 8/15
SH-13A /	19	Surr		q	7.5	q	19.2	9	29	ġ	8,0			UB 8/16
SH-13A /	20	Surr		9	7.5	9	199	9	29	9	9.1			J 8/1=

.)

CLIENT			PRC	JECT			START TIME/ EN		4	ON WA	TER BATCH	PROTOCOL		TEST ST	ART DATE
Anchor QEA				SI	nelton Harbor		1320,	00	100	FSW0	72617.02	PSEP 19	95	28-J	ul-2017
JOB NUMBER			PRO	JECT I	ANAGER		LABORATORY /	LOCAT	ION ORGAN	ISM B	атсн	TEST SPECIES		TEST EN	DATE
PG1019				I	Brian Hester		Port Gambl	e / Ba	th 8	ATS	072817	Neanthes arenad	eodentata	17-A	ug-2017
······································							WATER QUA	LITY	DATA					1	
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	LINITY (ppt) 28 ± 2		рН 8.0±1.0	_			
SAMPLE ID	DAY	REP	JAR		D.O.	C C Producers	ТЕМР		SALINITY		pН	WATER	Feeding	TECI	I/DATE
			15	meter	mg/L	meter		meter	ppt	meter		RENEWAL	(h)		
SH-19 /	0	Surr	45	8	7.7	8	19.2	8	28	8	7.9		IN.	BCA -	H295 17
SH-19 /	1	Surr		8	7.5	8	19.3	8	28	8	7.7			UB	7/29
SH-19 /	2	Surr		8	7.1	4	19.9	8	27	8	7.8		pte	HZ	7/30
SH-19 /	3	Surr		B	7.3	B	196	B	27	B	7.B	JL/HE		して	7/31
SH-19 /	4	Surr		0	7.6	B	19.1	0	27	0	7.9		UB	JL	8/01
SH-19 /	5	Surr		8	7.4	8	19.5	8	27	8	7.8			UB	8/2
SH-19 /	6	Surr		8	7.6	8	19.5	8	27	8	8.1	UB/HE	ß	VB	8/3
SH-19 /	7	Surr		8	7,6	8	19.5	ଟି	28	V	ר, צ			UB	814
SH-19 /	8	Surr		8	7.5	Ø	19.3	8	28	8	8.1		UB	UB	8/5
SH-19 /	9	Surr		8	7.5	8	19.6	8	78	8	8.1	Her		など	816
SH-19 /	10	Surr		4	7,7	$\langle \langle \rangle$	19.0	8	28	8	8.1	U.	K	the	8/7
SH-19 /	11	Surr		8	7.6	8	19.1	8	28	8	8.0			UB	8/8
SH-19 /	12	Surr		8	7.7	8	19.7	8	28	8	7.2	UB/752	UB	HE	819
SH-19 /	13	Surr		8	7.4	8	19.1	8	29	Š	8.1			ple	8/10
SH-19 /	14	Surr		٩	7,5	q	19,1	9	29	q	8.]		M	UB	8/1
SH-19 /	15	Surr		٩	7.4	q	19.3	9	29	9	8.1	m		UB	8/12
SH-19 /	16	Surr		٩	7.5	9	19.6	9	79	9	8.1		Kh	1th	8/113
SH-19 /	17	Surr		9	7.5	9	19.4	9	29	ġ	B, l			r	8/10
SH-19 /	18	Surr		9	7,4	9	19.3	9	29	9	8.	JU/HE	1B	the	81:5
SH-19 /	19	Surr		9	7.6	β	19.0	ġ	29	લ્	8.6	L. L.		UB	8/16
SH-19 /	20	Surr	l	9	7.4	9	19.8	9	2.9	9	8.1			ch-	8/17

CLIENT			PRO	JECT			START TIME/ EN			ON W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				S	helton Harbor		1320,	04	200	FSW0	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PRC	JECT	MANAGER		LABORATORY / I	LOCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019			ł		Brian Hester		Port Gamble	e / Ba	ith 8	ATS	072817	Neanthes arenace	eodentata	17-Aug-2017
	anistate es ha	and the state	Discussion	as I to be checked		Lauran	WATER QUA			· · · · · · · · · · · · · · · · · · ·		•		
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S.	ALINITY (ppt) 28 ± 2		pH 8.0±1.0			
SAMPLE ID	DAY	REP	JAR		D.O.		TEMP		SALINITY		pH	WATER	Feeding	TECH/DATE
				meter	mg/L	meter	°C	meter	••	meter	unit	RENEWAL		
SH-22 /	0	Surr	U	8	7.7	8	19.3	8	29	8	8.1		JU	EG 7/28/17
SH-22 /	1	Surr	1	8	7.5	8	19.6	8	29	8	8.1			UB 7/29
SH-22 /	2	Surr		8	7.1	૪	20.1	8	29	4	8.2		Na	UE 7/30
SH-22 /	3	Surr		B	7.5	B	19.8	6	29	B	8.2	UL/HE		JL 731
SH-22 /	4	Surr		в	7.6	B	19.4	в	28	8	B.2	1 *	IB	JL 8/01
SH-22 /	5	Surr		8	7.4	8	19.8	8	28	8	8,2			UB 8/2
SH-22 /	6	Surr		8	7.4	8	20.0	8	28	8	8.3	UB/HE	UB	UB 813
SH-22 /	7	Surr		V	7.3	8	19.9	8	28	8	8.2	1.10		10 814
SH-22 /	8	Surr		8	7.3	8	19.7	8	28	8	8.3		UB	UB 8/5
SH-22 /	9	Surr		8	7.3	8	19.9	8	· 28	8	8,3	HG		H2 8/12
SH-22 /	10	Surr		8	1.5	8	19,3	8	28	8	8.2		HE	N/2 8/7
SH-22 /	11	Surr		8	7.2	8	19.5	8	र्द	8	8.2		1.	UB 8/8
SH-22 /	12	Surr		8	7.5	4	(9.4	9	28	8	7.5	UB/75	UB	1# 8/9
SH-22 /	13	Surr		4	7.7	8	19.4	q	29	8	8.1			14 8110
SH-22 /	14	Surr		٩	7.3	9	19.4	9	29	9	8.2		m	WB 8/11
SH-22 /	15	Surr		Ŋ	7.2	q	19.7	q	29	9	8.2	ر ي ا		(B 8/12
SH-22 /	16	Surr		9	7.4	9	19.9	9	29	9	8.1		He	14 8/13
SH-22 /	17	Surr		9	7.3	9	19,7	9	29	9	8.1			1. 8/14
SH-22 /	18	Surr		9	7.3	9	19.5	٩	29	9	8.2	JL/172	UB	Nr 8/15
SH-22 /	19	Surr		9		9	19.3	Q	29	9	8.1			UB 8/16
SH-22 /	20	Surr	U	9	7.4	9	20.0	9	29	a	8.2			16 817

,

CLIENT			PR	OJECT			START TIME/ E				ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				9	Shelton Harbor		1320,	, 6 <i>0</i>	160	FSW0	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PR	OJECT	MANAGER		LABORATORY /	LOCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gamb		-	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
			tion income	aton transmos		-4 20.06245-0010	WATER QUA					-		
TEST CONDITIONS			-		DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S/	ALINITY (ppt) 28 ± 2		рН 8.0±1.0	4		
SAMPLE ID	DAY	RE	AL 9		D.O.		TEMP	al spacetore	SALINITY	41 20202000	<u>0.0±1.0</u> pH	WATER	<u> </u>	Γ
				mete	r mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
SH-28 /	0	Su	rr 6	18	7.6	8	19.0	8	28	8	7.9		リレ	867178/F
SH-28 /	1	Sui	rr)	8	7.6	8	19.3	8	29	8	7.9			IB 729
SH-28 /	2	Su	7	4	7.0	8	19.9	8	29	4	7.9		HE	14 7/30
SH-28 /	3	Su	-r	B	7.4	B	19.6	B	29	B	8.0	JL/HE	- pac	N 7/31
SH-28 /	4	Sur	т	B	7.7	B	19.1	B	28	в	6.0	<u> </u>	UB	JL 8/01
SH-28 /	5	Sur	r	8	7.6	8	19.5	8	2.8	8	8.0			INB 8/2
SH-28 /	6	Sur	r	8	7.5	8	19.7	8	29	8	0.8	UB/HE	un	UO 8/3
SH-28 /	7	Sur	r	8	7.4	8	19.7	8	28	8	7.8			UB 8/4
SH-28 /	8	Sur	r	8	7.5	8	19.5	8	29	8	8.1		R	UB 8/5
SH-28 /	9	Sur	r	8	7.5	8	19.7	8	29	8	8.1	MZ		H4 816
SH-28 /	10	Sur	r	8	7.5	8	19.1	8	28	8	8.1	<u> </u>	the	Hg 8/7
SH-28 /	11	Sur	r	8	7.6	8	19.2	T	28	8	8.1		1°C	13 8/8
SH-28 /	12	Sur	r	ÿ	7.6	8	19.3	8	29	8	7.2	UB/21E	B	Ha 8/9
SH-28 /	13	Sur	r	8	8.0	8	19.4	8	29	8	8-1			He 8/10
SH-28 /	14	Sur	r	9	7.5	q	19,2	9	29	9	8.2		M	VB 8/11
SH-28 /	15	Suri		ġ	7.4	q	19.5	ଖ	29	9	8.2	UB.		UB 8/12
SH-28 /	16	Suri		9	7.5	9	19.7	9	29	9	8.1		Ha	He 8/13
SH-28 /	17	Suri	·	9	7.4	9	19.6	9	29	9	B.(JL B/14
SH-28 /	18	Suri	·	9	7.4	9	19.9	9	29	9	8.2	JU/22	IB	14 8/15
SH-28 /	19	Suri		q	7.5	q	19.2	q	29	9	8.1	1.0		UB 8/16
SH-28 /	20	Surr		9	7.3	9	199	9	29	9	8.1			J- 8/17

1

CLIENT			PRO	JECT	· · · · · · · · · · · · · · · · · · ·		START TIME/ EN			ION W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				S	heiton Harbor		1320,	0 4	100	FSWC	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PRO	JECT	MANAGER		LABORATORY /	LOCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019					Brian Hester		Port Gambl	e / Ba	th 8	ATS	6072817	Neanthes arenace	eodentata	17-Aug-2017
				o Excessions		- T	WATER QUA					.	· · · ·	1
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	ALINITY (ppt) 28 ± 2		рн 8.0±1.0			
SAMPLE ID	DAY	REP	JAR		D.O.		TEMP		SALINITY		рН	WATER	Feeding	TECH/DATE
				meter		meter	°C	meter	ppt	meter	unit	RENEWAL		-
- SPI-22 /	0	Surr	6	8	7.6	8	19.2	8	29	8	7.9		しく	84 7/28/15
SPI-22 /	1	Surr	1	8	6.8	8	19.4	8	29	8	7.8			UB 7/29
SPI-22 /	2	Surr		8	7.0	8	19.8	4	Zg	8	8.0		NE	the 7/30
SPI-22 /	3	Surr		B	7.2	B	19.6	8	29	B	7.9	SIATE		UL 7/31
SPI-22 /	4	Surr		в	7,4	B	19.1	B	28	B	0.1		1B	JL 8/01
SPI-22 /	5	Surr	Ι	8	6.9	r	19.5	8	28	T	6,0			UB 8/2
SPI-22 /	6	Surr	Ι	8	7.0	8	19.7	8	28	8	8.2	UB/HE.	S	(B 8/3
SPI-22 /	7	Surr		8	6.9	8	19.6	8	28	8	79	,		UB 8/4
SPI-22 /	8	Surr		8	7.0	8	19.6	8	28	8	8.0		UB	VB 8/5
SPI-22 /	9	Surr		Ц	7.0	8	19.8	8	28	8	8.0	He		He 8/6
SPI-22 /	10	Surr		8	7.2	8	19.3	8	28	8	8.0		H	14 8/7
SPI-22 /	11	Surr		8	7.0	8	19.4	8	28	8	7.9			UB 8/8
SPI-22 /	12	Surr		8	7.1	8	19.4	8	28	4	0 6.97.2	UB HE	B	Nr. 8/9
SPI-22 /	13	Surr		8	6.8	8	19.2	8	29	8	7.9	• •		94- 8110
SPI-22 /	14	Surr		q	5.4	q	19.4	9	Źq	9	7.5		M	UB 8/11
SPI-22 /	15	Surr		9	7.2	9	19.5	٩	29	0	8.1	In		UB 8/12
SPI-22 /	16	Surr		9	7.4	9	19.7	9	29	9	8.		HA	14 8/13
SPI-22 /	17	Surr		ġ	7.3	9	19.4	9	29	9	B.(**		UL B/14
SPI-22 /	18	Surr		G	7.4	9	19.2	9	29	9	8.1	J1/1E	IB	HE 8/15
SPI-22 /	19	Surr		9	7.4	9	19.1	ġ	29	9	8.0			UB 8/16
SPI-22 /	20	Surr		a	24	a	19.8	0	29	9	B.O			JU BILA

Ome Hg 819

CLIENT			PRO.	JECT			START TIME / EN			ION W	ATER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				SI	nelton Harbor		1320 1	09	00	FSW0	72617.02	PSEP 19	95	28-Jul-2017
IOB NUMBER			PRO.	JECT N	ANAGER		LABORATORY /	LOCAT	ION ORGAI	NISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019				E	Brian Hester		Port Gambl	e / Ba	th 8	ATS	072817	Neanthes arenac	eodentata	17-Aug-2017
			L			-	WATER QUA							
TEST CONDITIONS					DO (mg/L) > 4.6		TEMP (C) 20 ± 1	S	LINITY (ppt) 28 ± 2		рН 8.0±1.0			
SAMPLE ID	DAY	REP	JAR		D.O.		TEMP	 1.000 (200) 	SALINITY		рН	WATER	Feeding	TECH/DATE
	<u> </u>		f 1	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL		
SPI-30 /	0	Surr	66	8	7.6	8	19.2	8	<u>_28</u>	8	8.0		い	BG 71295
SPI-30 /	1	Surr		8	7.5	8	19.3	8	29	8	7.9			UB 7/29
SPI-30 /	2	Surr		8	7.0	4	19.9	\$	29	8	7.9	• •	the	HR 7/30
SPI-30 /	3	Surr		0	7.4	8	19.6	B	29	В	6.0	Juffs.		JL 7/31
SPI-30 /	4	Surr		B	7.6	в	19.3	8	28	B	B,l		UB	JL B/01
SPI-30 /	5	Surr		8	7.2	8	19.6	8	28	R	S,O			UB 8/2
SPI-30 /	6	Surr		8	7.47.60	8	19.7	8	28	8	8.2	UB/HE	UB	UB 8/3
SPI-30 /	7	Surr		8	7.4	8	19.7	8	28	8	8.1	•		UB 8/4
SPI-30 /	8	Surr		8	7.4	8	19.5	8	28	8	8.3		UB	13 8/5
SPI-30 /	9	Surr		8	7.2	8	19.8	8	28	8	8.3	HE.		HE 81
SPI-30 /	10	Surr		8	7.6	8	۱۹،۱	8	28	8	8.3		#	林 817
SPI-30 /	11	Surr		8	7.4	8	19.3	8	28	જ	8.2		r	UB 8/8
SPI-30 /	12	Surr		8	7.5	Ş	19.4	8	78	8	7.4	UB/HE	IB	Hr 819
SPI-30 /	13	Surr		4	7.4	8	19.3	8	29	8	8.7			# 8/16'
SPI-30 /	14	Surr		9	7,3	9	19.4	9	29	q	8.2		1B	UB 8/11
SPI-30 /	15	Surr		٩	7.2	٩	19.5	9	29	q	8.2	UB		UB 8/2
SPI-30 /	16	Surr		9	7.4	9	19.8	9	29	9	8.1		john .	144 8/13
SPI-30 /	17	Surr		18	7.3	9	19.6	9	29	9	B.0			JL 8/14
SPI-30 /	18	Surr		à	7.2	9	19.4	9	29	Cl	8.1	JU HE	B	124 8/5
SPI-30 /	19	Surr		ġ	7.4	q	19.3	9	29	g	8.0			UB 8/12
SPI-30 /	20	Surr	U	9	7.2	9	19.9	9	29	9	8.1			JL 8/1
OMR, 105 8]3		C	216		8/14/17	•								

CLIENT			PRO	JECT			START TIME/ EN	D TIM	E DILUTI	ON W	TER BATCH	PROTOCOL		TEST START DATE
Anchor QEA				S	heiton Harbor		1320,	00	100	FSW0	72617.02	PSEP 19	95	28-Jul-2017
JOB NUMBER			PRO	JECT	MANAGER		LABORATORY / I	OCAT	ION ORGAN	ISM B	АТСН	TEST SPECIES		TEST END DATE
PG1019				I	Brian Hester		Port Gamble	e / Ba	th 8	ATS	072817	Neanthes arenace	eodentata	17-Aug-2017
							WATER QUAI	ITY I	DATA					
TEST CONDITIONS					DO (mg/L)		TEMP (C)	S	ALINITY (ppt)		pH			
		1			> 4.6 D.O.		<u>20 ± 1</u> TEMP		$\frac{28 \pm 2}{\text{SALINITY}}$		8.0±1.0 pH	WATER	T	
SAMPLE ID	DAY	REP	JAR	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
SPI-31 /	0	Surr	22	8	7.5	8	19.2	8	28	8	7.9		JL	BG1 7/25/17
SPI-31 /	1	Surr	1	Г	6.7	8	19.6	8	29	8	7,7			157/29
SPI-31 /	2	Surr		δ	6.6	8	20.1	8	29	8	7.9		the	He 7/30
SPI-31 /	3	Surr		B	7.0	B	19.8	в	29	в	7.9	JUME		J2 7/31
SPI-31 /	4	Surr		в	7.2	в	19.4	в	28	в	8.2	1 *	UB	Jr 8/01
SPI-31 /	5	Surr		४	6.9	8	19.8	8	28	8	8.1			UB 8/2
SPI-31 /	6	Surr		8	70	8	26.0	8	28	8	8.4	UBITE	UB	UB 8/3
SPI-31 /	7	Surr		8	6.8	F	19.8	8	28	8	81	1		UB 514
SPI-31 /	8	Surr		8	7.0	8	19.7	8	28	8	8,2		US	UB 8/5
SPI-31 /	9	Surr		8	6.8	4	19.9	S	28	5	8.1	HE		# 8/6
SPI-31 /	10	Surr		4	7.1	8	19,3	8	28	8	8.2		K	142 817
SPI-31 /	11	Surr		8	6.9	8	19.5	8	28	R	8.0			UB 8/8
SPI-31 /	12	Surr		8	7.2	V	19.5	8	78	$\left \begin{array}{c} \\ \\ \\ \end{array} \right $	7.8	UBIHE	B	712 8/09
SPI-31 /	13	Surr		Š	7.0	8	19.4	8	29	8	8.0			# 8110
SPI-31 /	14	Surr		9	6.8	9	19.4	9	29	9	8,0		S	UB 8/11
SPI-31 /	15	Surr		9	6.6	9	19.7	9	29	9	7.9	WS		10/8/12
SPI-31 /	16	Surr		9	7.4	9	19.8	9	29	9	8.1		[94	le 3/13
SPI-31 /	17	Surr		9	7.3	٩	19.5	9	29	9	в.(Jr 8/14
SPI-31 /	18	Surr		9	7.3	٩	19.4	9	Zg	9	8.2	JU/71E	UB	He 8115
SPI-31 /	19	Surr		٩	7.5	9	19.0	q	29	q	8.1			UB 8/16
SPI-31 /	20	Surr	ŗ	9	7.4	2	19.8	9	29	9	B.(UL 8/12

 $\left.\right>$

 \rangle

	Client/Pr Anch	w/3	helton	. Hurber		Organis Num	sm: ches At	enacod	intata		Test	Duration	21) - dau	
	(PR	ETES	י / IN	NITIAL	/ FINAL OREWATEF		ER (circ circle on		ments:				DAY of TH	EST:	
					ation Standa	rds Tem	A				Somula	tomporature	should be with	$hin \pm 10C$ or	f
			Date				Те	mperati	ire:				re at time and		
	,		7/28/1	۲				14,7							
	Sample ID or Description	Conc. or Rep	Sam	Pate of pling and nitials	Ammonia Value (mg/L)	Temp °C	Readi	e of ng and ials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
j v _i	Ø,	Sur	7 25	117 VB	0.00	19.9	728	17 UB	N	8.1	29	10 ml	0	NA	NA
.	5H-kef-1			1	0.897					9.1 7.9	29		.035		
\	Carr				0.541						29	· ·	.014		<u> </u>
	cur/SH-Ref-1				0.549					8.1	<u>29</u> 29		.066		
	5H-13A 5H-19				0.426					8.1 79	28		.008		
	5H-22			1	1.59					79	29		,049		
	54-28				0.217					79	28		.018		
	SP1-22				0.629					7.9	29		.014		
. • (5P1-30				1.15					0.8	250		.035		
_ √_	SPI-31	V		V	0.765	4	1	J	٦ ا	7.9	28		.014		
w	Ø	Sur	7/70	カチンレ	h	NA	7/28/1	7	N	(Z)	Q	Iml	[60.0	10	0.6
	SH-Ref-1		1/20	1	H Z		1	·			Ĩ	1	0.019	1	0.180
	Curr			1	(2)					\downarrow			200.0		0.05
	Jun / SH-Ref-1				4.6	19.9		-		7.9	28		0.013		0.130
	5H-13A			<u> </u>	3.04					7.3	27		0.006		0.06
	54-19			ļ	2.25					7.3	21		0.007		0.07
	SH - 22				12.9					73	28		0.014		0.140
	SH - 28				1.69		<u> </u>			7.4	28		0.009		0.09
	0501-3591-22 501-30			\	4,9 5.4	$-\sqrt{-}$				7,2	28 27		0,353 0.778		3,53 7.73
V L	<u> 57 0 1</u>	().		1	Br awaling					1.4	<u> </u>		0.110		

DIE, SPI-22 (2) Insufficient volume for analysis, UB 7/28

	Client/P	NIHOR	Shelton 4	abor	Organis	NERMAN	avenacei	odentati	Test	Duration	L		
	OV]	ERLYIN	/ (NITIAL G (OV) / PO	OREWATEI	R(PW)	ER (circle one) circle one) / Con	nments:				DAY of TI	EST: <u>C</u>)
1			Calibr Date: 7 28	ation Standa	irds Tem	perature Temperat	ure: 19.0	4°C	Sample standar	e temperature ds temperatu	should be with re at time and o	hin <u>+</u> 1°C o date of ana	f lysis.
Des	ple ID or cription	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
PW 51	1-31	Sur	7/28/17 JL	7.6	19.9	7/28/17	N	7.3	27	Imi	0.016	(0	0.160
									·····				

Client/P Anchos	roject:	helf	on H	arbor	Organi	sm: Neantles ER (circle one)			Test	Duration Z	(days): ころ		
	ETEST ERLYIN	GOY	NITIAL ') / P((TINAL)	/ UIH	ER (circle one) circle one) / Con					DAY of TI	EST: <u>2</u>	0
				ation Standa	ards Tem	perature							
		Date	:			Temperat	ure:				should be with the at time and		
	817	117				20.4	5°0		Stanuar				
Sample ID or Description	Conc. or Rep	Samj Ir	Pate of pling and nitials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
6v &	SUIT	the	8117/17	1.94	19.9	HE 8/17/17	N		1	10	0.017	1'	$\left \left(\frac{\ln g}{L} \right) \right $
SH-ref.				0.00	1		1			, <u>,</u>	0.006	ł	+\
CARE				0.103							0.011		+ \
CAPPISHIEFI	ľ			0.0062							0.026		+ +
5H-13A				0.00		I		1	/		0.014		+
S17-19 S17-22				0.00				1	/		0.013		+
51+-22				0.00				/			0.006		+
514-28				0.00							0004		+
SPI -22		1		0.431							0.012		
V SPI-22 SPI-30	/		,	2.42							0.010	· · · · ·	\vdash
a SPI.31	V	J		0.0662	V			/			0.003		
PW SPI -31	Sur	HE	8/19/17	0.995	20.0	He 8/17/17	N	7.2	29	- S	0.067	2	0.134
pu &	1	1		1.39	,	1		7.2	27	10	0.043		0
SH-ref.				1.01				7.3	27	10	0.11	<u> </u>	\backslash
CARR				1,21		· ·		6.9	27	10	0.037	1	
CARP/SH-REE1				1.09				6.9	24	10	0.051	1 t	
SH-13A				0.335				7.3	29		0.040	<u> </u>	-
514-19				0.566				7.1	29		0.052	2	0-104
514.22				1.94				7.4	29		0.014		
51+-28				0.586				7.4	29				0.02
SPI-22				3.15				7.3	27		0.033	-1	0.066
SPI - 30	J	(3.86				7.5	28		0.084	2	0.168
¥			I_	<u>J. Uv</u>	$-\Psi$	<u> </u>	$-\mathbf{\nabla}$	• •/	10	2	0.091	2	0.182

CETIS Q	C Plot								Report	t Date:	16 A	ug-17 11:33 (1 of 1
Reference	Toxicant 9	6-h Acute	Survival T	est								All Matching Labs
Test Type: Protocol:		ols		Organism: Endpoint:		es arenaced tion Survive			erial: rce:	Total An Reference		ant-REF
ECS0-mg/L Total Ammonta	300 250 200 150-		1	Ref	erence Tox	icant 96-h Acute	a Survival Test					+25 +15 Maan
1025	50 50 50 8 8	-St-vely lot	21 Augris-	05 Mon-15 DH Decc15 05 Jan-15	-91-mt 62	36 feb 16- 15 Age 16-	-dr-out-shi -dr-out-shi	91-004 85 91-05 81	23 Sep-16	di Mari 17-	26 May-17-	-15 -25 -25 -21-017 82
Quality Cor	Mea Sign			Count: 20 CV: 22,50	%		ning Limit ning Limit			Action Lin Action Lin		
	Month D	av Time	QC Data	Delta S	Sigma	Warning	Action	Test ID	Ana	lysis ID	Labo	ratory
	Mar 6 Apr 2	11:50	181.2 103.1	17.46 (-60.62 -	0.4741 1.646	(-)		09-2159-7453 01-6315-9057	09-1	672-5355 990-5019	ENVI	RON

						Dona	ergina	ranning	Action	reatin	Analysis ID	Laboratory
1	2015	Mar	6	11:50	181.2	17.46	0.4741			09-2159-7453	09-1672-5355	ENVIRON
2		Apr	24	12:50	103.1	-60.62	-1.646	(-)		01-6315-9057	02-6990-5019	ENVIRON
3		May	15	14:00	89.83	-73.87	-2.006	(-)	(-)	15-1184-2734	08-8902-1629	ENVIRON
4		Jul	2	14:15	185.6	21.88	0.5942			18-8075-0902	16-6019-0259	ENVIRON
5		Aug	21	16:33	161	-2.715	-0.07374			18-5704-8732	08-2852-0434	ENVIRON
6		Nov	5	16:00	154.3	-9.364	-0.2543			15-0871-2744	12-3779-6972	ENVIRON
7		Dec	4	15:55	169.2	5.523	0.15			15-8650-5167	03-4063-5051	ENVIRON
8	2016	Jan	5	15:40	211.6	47.9	1.301	(+)		08-2089-5605	19-0377-2050	ENVIRON
9			29	10:55	170.9	7.209	0.1958			17-5198-4435	10-4316-4458	ENVIRON
10		Feb	26	13:05	251.9	88.2	2.396	(+)	(+)	12-4659-9912	05-2938-3515	ENVIRON
11		Apr	15	11:20	187.5	23.78	0.6459	2.94		14-5662-2397	01-2817-7421	ENVIRON
12		Jun	24	14:10	161.5	-2.192	-0.05952			18-4503-3329	10-8210-8087	ENVIRON
13		Jul	21	14:00	130.8	-32.87	-0.8926			03-2252-3368	14-5043-4569	ENVIRON
14		Aug	26	17:00	191.5	27.81	0.7553			03-0001-3671	08-4097-9552	ENVIRON
15		Sep	16	13:45	196.9	33.15	0.9005			15-1361-3636	10-0806-2573	ENVIRON
16			23	14:00	135.9	-27.83	-0.756			11-8849-2684	05-6423-6975	ENVIRON
17		Oct	21	12:20	157.3	-6.362	-0.1728			07-3517-7142	10-6382-3344	ENVIRON
18	2017	May	5	11:10	145.4	-18.26	-0.4959			19-9695-8635	12-9907-4132	EcoAnalysts
19			26	11:20	135.4	-28.28	-0.768			02-4398-8901	19-3251-4383	EcoAnalysts
20		Jun	9	13:12	152.9	-10.78	-0.2928			06-5936-3810	21-1385-6147	EcoAnalysts
21		Jul	28	10:45	183.1	19.38	0.5264			04-6413-3650	06-5419-2075	EcoAnalysts
												and a state of the

aA:UB Analyst:_

. . .

Test Type: Protocol:	Survival All Protocols			Organism: Endpoint:		ies arenace tion Survive		ta (Polycha	Material: Source:		mmonia ice Toxican	I-REF
				Re	ference Tox	icant 96-h Acu	te Survival	Test				
	0.25								٨			
	0.20								-			+25
	0.15-	_				8						+15
	14.000								1	7	/	N
otal Ammonda	0.10		•		à	L	1			V		Mean
50-mg/L Total Ammonia	0.10		•	-•-	-		-	••	•	\mathbf{V}		
PMSD-mg/L Tolal Anmonda		-•	~	-•-	-		-	• •		$\mathbf{\mathbf{Y}}$		Rean
трионичут 1/би-05Нd	0.05		~					••		~		Mean -15

Report Date:

16 Aug-17 11:33 (1 of 1)

			ean: gma:	0.087	3. G	ount: 20 V: 55.1	10%	-1s Warn +1s Warn			-2s Action Lim +2s Action Lim	and the second second
Qualit	ty Con	trol Dat	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2011	Aug	23	11:00	0.06897	-0.01863	-0.3859			19-2308-3344	00-4985-4824	NewFields
2		Oct	10	15:35	0.04485	-0.04275	-0.8854			06-7843-9085	04-4902-3567	NewFields
3			18	14:35	0.05459	-0.03301	-0.6838			20-2964-2236	18-1232-0295	NewFields
4	2012	Apr	13	14:00	0.05813	-0.02947	-0.6105			19-8365-3565	05-2732-2674	NewFields
5		Aug	22	11:00	0.07103	-0.01657	-0.3433			02-2456-0921	08-5116-1008	NewFields
6		Oct	9	14:00	0.05459	-0.03301	-0.6838			09-2476-6828	01-8486-9232	NewFields
7		Nov	11	16:00	0.0567	-0.0309	-0.64			05-7907-0031	20-7001-2062	NewFields
8	2013	May	7	13:00	0.06568	-0.02192	-0.454			03-6682-4675	13-3264-9963	NewFields
9		Jul	12	13:20	0.08381	-0.003793	-0.07856			14-1288-0905	07-0996-7321	NewFields
10		Aug	20	15:45	0.06086	-0.02674	-0.5539			00-0072-4465	04-2226-9652	NewFields
11			29	13:40	0.1391	0.0515	1.067	(+)		00-4506-4349	03-1605-8937	NewFields
12	2014	Jan	24	13:20	0.04635	-0.04125	-0.8543	1		20-9603-7883	15-6685-9407	NewFields
13	2015		16	11:15	0.06086	-0.02674	-0.5539			03-9642-9379	02-7191-1789	ENVIRON
14		Jul	2	14:15	0.05459	-0.03301	-0.6838			18-8075-0902	00-0324-0641	ENVIRON
15		Aug	21	16:33	0.09264	0.005044	0.1045			18-5704-8732	12-5806-5521	ENVIRON
16	2016	Jan	29	10:55	0.2298	0.1422	2.946	(+)	(+)	17-5198-4435	20-2746-8183	ENVIRON
17		Feb	26	13:05	0.1302	0.04263	0.8829	4.4		12-4659-9912	04-9112-4627	ENVIRON
18		Jul	21	14:00	0.07889	-0.008714	-0.1805			03-2252-3368	05-6001-6512	ENVIRON
19		Oct	21	12:20	0.1344	0.04684	0.9703			07-3517-7142	04-1673-2094	ENVIRON
20	2017	May	26	11:20	0.1659	0.07831	1.622	(+)		02-4398-8901	20-6641-5688	EcoAnalysts
21		Jul	28	10:45	0.05212	-0.03548	-0.7349			04-6413-3650	18-1225-7941	EcoAnalysts

QA:

001-132-357-2

Analyst:

Reference	Toxicant 96-h Acute Su	rvival Test			All Matching La
Test Type: Protocol:	Survival All Protocols		Neanthes arenaceodentata (Polycha Proportion Survived	Material: Source:	Unionized Ammonia Reference Toxicant-REF
	3.0	Ref	erence Toxicant 96-h Acute Survival Test		
	2.4-				+25
	NY N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	200		+13
monla	1.8			× /	
L Unionized Ammonia	18	1		\checkmark	Mean ds
ECS0-mg/L Unionized Ammonia	V			\sim	\sim
ECSo-mg/L Valoaitzed Amm onia	1.0				\sim

			ean: gma:	1.674 0.404		ount: 20 V: 24	20%	+1s Warr	ning Limit ning Limit		-2s Action Lim +2s Action Lim	
Qualit	y Con	trol Data	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2015	Jan	16	11:15	1,864	0.19	0.4693			18-9719-6747	15-5803-7088	ENVIRON
2		Feb	20	14:50	0.866	-0.808	-1.996	(-)		15-6687-7653	15-3894-5718	ENVIRON
3		Mar	6	11:50	1.861	0.1873	0.4627			11-3697-1780	11-9165-3524	ENVIRON
4		Apr	24	12:50	0.8832	-0.7908	-1.954	(-)		01-0867-6874	09-2102-1717	ENVIRON
5 6		May	15	14:00	1.043	-0.6313	-1.56	(-)		09-1275-9559	04-5482-9783	ENVIRON
		Jul	2	14:15	1.633	-0.04146	-0.1024			12-0891-3679	07-1814-7730	ENVIRON
7		Aug	21	16:33	2.206	0.5316	1.313	(+)		12-1645-6634	17-4166-4421	ENVIRON
8		Nov	5	16:00	1.894	0.2197	0.5428			13-9158-6969	12-9319-1772	ENVIRON
9		Dec	4	15:55	1.68	0.005638	0.01393			05-0232-3049	00-1680-9936	ENVIRON
10	2016	Jan	5	15:40	2.076	0.4018	0,9926			16-5879-5239	14-7332-7904	ENVIRON
11			29	10:55	2.116	0.4424	1.093	(+)		02-3774-6836	17-0304-9971	ENVIRON
12		Feb	26	13:05	2.236	0.5617	1.388	(+)		18-2733-1978	16-1252-1654	ENVIRON
13		Jun	24	14:10	1.621	-0.053	-0.1309			14-5937-9292	12-2632-5647	ENVIRON
14		Jul	21	14:00	1.412	-0.262	-0.6472			13-0851-4355	08-2460-4906	ENVIRON
15		Aug	26	17:00	1.818	0.1439	0.3554			18-0730-6378	20-7585-3701	ENVIRON
16		Sep	23	14:00	1.482	-0.1924	-0.4752			16-0277-5330	13-3150-6775	ENVIRON
17		Oct	21	12:20	1.851	0.1774	0.4382			15-4953-5653	13-6771-5656	ENVIRON
18	2017	May	5	11:10	1.947	0.2731	0.6747			06-1983-2716	10-6060-2702	EcoAnalysts
19			26	11:20	1.668	-0.005988	-0.01479			11-9977-1019	12-2648-7955	EcoAnalysts
20		Jun	9	13:12	1.32	-0.3537	-0.8737			20-5746-1828	16-2628-9369	EcoAnalysts
21		Jul	28	10:45	1.989	0.3151	0.7784			11-9488-2902	14-7043-7154	EcoAnalysts

an: MS Analyst._

Test Type:	Toxicant 96-h Survival All Protocols	Acute SL	irvival I	_		Neant Propo				ata (Po	olycha	Mate Sou	erial: rce:		ized Ar ence To	nmonia	
	3.0			1	Ref	erence To	xicant 96	5-h Acub	e Surviva	al Test							+25
KOEL-mg/L Unionized Ammonia	3.6-	1	1	ł		~			2	•	1			•	~	V	+15 Mean -15 -25
	0.0		~~~~	-St-Inc 20		04 Dec-15		- (1	1		1	1		_

Report Date:

16 Aug-17 11:33 (1 of 1)

			ean: gma:	1.469 0.408		Count: CV:	20 27.80%	-1s Warr +1s Warr	-		-2s Action Lin +2s Action Lin	Charles Constants
Qualit	ty Con	trol Data	a	-								1.1
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2015	Jan	16	11:15	1.723	0.254	0.6221			18-9719-6747	13-2446-7374	ENVIRON
2		Feb	20	14:50	0.756	-0.713	-1.746	(-)		15-6687-7653	19-8246-2320	ENVIRON
3		Mar	6	11:50	1.333	-0.136	-0.3331			11-3697-1780	05-2303-0535	ENVIRON
4		Apr	24	12:50	0.659	-0.81	-1.984	(-)		01-0867-6874	18-8094-8803	ENVIRON
5		May	15	14:00	0.85	-0.619	-1.516	(-)		09-1275-9559	12-8836-8785	ENVIRON
6		Jul	2	14:15	1.402	-0.067	-0.1641			12-0891-3679	17-1059-5211	ENVIRON
7		Aug	21	16:33	2.184	0.715	1.751	(+)		12-1645-6634	17-2823-4932	ENVIRON
В		Nov	5	16:00	1.627	0.158	0.387			13-9158-6969	18-5085-3785	ENVIRON
9		Dec	4	15:55	1.473	0.004	0.009797			05-0232-3049	09-1115-6716	ENVIRON
10	2016	Jan	5	15:40	2.023	0.554	1.357	(+)		16-5879-5239	13-0355-9173	ENVIRON
11			29	10:55	1.883	0.414	1.014	(+)		02-3774-6836	16-2829-1192	ENVIRON
12		Feb	26	13:05	1.635	0.166	0.4066	0.0		18-2733-1978	17-6331-1700	ENVIRON
13		Jun	24	14:10	1.415	-0.054	-0.1323			14-5937-9292	10-8537-0051	ENVIRON
14		Jul	21	14:00	1.27	-0.199	-0.4874			13-0851-4355	06-2505-9350	ENVIRON
15		Aug	26	17:00	1.732	0.263	0.6441			18-0730-6378	04-2606-0638	ENVIRON
16		Sep	23	14:00	1.085	-0.384	-0.9405			16-0277-5330	10-1484-1501	ENVIRON
17		Oct	21	12:20	1.725	0.256	0.627			15-4953-5653	10-3980-3312	ENVIRON
18	2017	May	5	11:10	1.812	0.343	0.8401			06-1983-2716	14-3198-2813	EcoAnalysts
19			26	11:20	1.529	0.06	0.147			11-9977-1019	08-2373-9544	EcoAnalysts
20		Jun	9	13:12	1.258	-0.211				20-5746-1828	13-3286-2330	EcoAnalysts
21		Jul	28	10:45	1.532	0.063	0.1543			11-9488-2902	00-8692-4177	EcoAnalysts

MB Analyst:

CETIS QC Plot

SETIS Sun	nmary Repo	ort						ort Date: t Code:		Aug-17 11:3: AA1E12 04		
Reference To:	xicant 96-h Acu	te Survi	val Test							Ec	oAnaly	sts
Batch ID:	00-8411-4166		Test Type:	Survival			Ana	lyst:				
Start Date:	28 Jul-17 10:45		Protocol:	PSEP (1995)					aboratory Seav	water		
Ending Date:	01 Aug-17 10:40	0 :	Species:	Neanthes arena	aceodentata	21	Brin		lot Applicable			
Duration:	96h		Source:	Aquatic Toxicol	logy Suppor		Age					
Sample ID:	13-6614-0895		Code:	516DA7DF			Clie	nt: In	ternal Lab	1		
Sample Date:			Material:	Total Ammonia			Pro	ect: R	eference Toxic	ant		
Receipt Date:	15 May-16	10	Source:	Reference Toxi	cant							
Sample Age:	74d 11h	3	Station:	p170515.20	-							
Multiple Com	parison Summa	iry										
Analysis ID	Endpoint	1.	Comp	arison Method			NOEL	LOEL	TOEL	ти	PMS	, c
18-1225-7941	Proportion Surv	ived		Variance t Two-	Sample Tes	it	99.9	145	120.4		5.21%	
Point Estimat	e Summary					-						
Analysis ID	Endpoint		Point	Estimate Metho	od		Level	mg/L	95% LCL	95% UCL	TU	
	Proportion Surv	ived	Spear	man-Kärber			EC50	183.1	169.9	197.2		
Proportion Su	irvived Summai	ry										
Conc-mg/L	Code	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe	ect
0	D	3	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
63.3		3	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
99.9		3	1.000	C Alexandre	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
145		3	0.800	2 1 1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1.0000	0.7000	0.9000	0.0577	0.1000	12.50%	20.00	%
210		3	0.433		0.5768	0.4000	0.5000	0.0333	0.0577	13.32%	56.67	%
255		3	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		100.0	0%
Proportion Su												
Conc-mg/L	Code	Rep 1					_					
0	D	1.0000		6. 6. 6. 6. F. I.								
63.3		1.0000	9									
99.9		1.0000										
145		0.7000	919.59									
210		0.4000										
255		0.0000	0.000	0.0000								
	rvived Binomia											
Conc-mg/L	Code	Rep 1					_					
0	D	10/10	10/10	10/10								
63.3		10/10	10/10	10/10								
99.9		10/10	10/10	10/10								
145		7/10	8/10	9/10								
210		4/10	4/10	5/10								
255		0/10	0/10	0/10								

pl and Analyst:

ETIS Tes	t Dat	ta W	orks	sheet			eport Date: est Code/ID:	14 Aug-17 15:24 (p 1 of 1 04-6413-3650/1BAA1E1:
Reference To	xicant	96-h	Acute	Survival Te	st			EcoAnalysts
Start Date: End Date: Sample Date:	01 A	ul-17 1 ug-17 ay-17	10:40	Protoco	 Neanthes arenaceodentata I: PSEP (1995) Total Ammonia 	Sample Code: 516DA7DF Sample Source: Reference Toxicant Sample Station: p170515.20		
Conc-mg/L 0	Code D	Rep 1	Pos 10	# Exposed 10	# Survived 10	Notes		
0	D	2	12	10	10			
0	D	3	14	10	10 ,			
63.3		1	8	10	10 ,			
63.3		2	17	10	10			
63.3		3	7	10	10			
99.9		1	13	10	10 ,			
99.9	1	2	2	10	10 .			
99.9		3	1	10	10 .			
145		1	3	10	7			
145		2	11	10	8,			
145		3	9	10	9,			
210		1	15	10	4 ,			
210		2	18	10	4 .			
210		3	4	10	5			
255		1	6	10	0.			
255		2	5	10	0			
255		3	16	10	0			

Analyst: WE QA: UB

SE 113 SUN	nmary Repo	m						ort Date: t Code:		Aug-17 11:33 387756 11-		
Reference To:	xicant 96-h Acu	te Surviv	val Test				165	Code.	46		oAnaly	-
		00.030.00	- <u> </u>	An The Lat						EC	oAnaly	sts
Batch ID:	00-8411-4166		fest Type:					lyst:				
Start Date:	28 Jul-17 10:45		Protocol:	PSEP (1995)	Maria.		Dilu		aboratory Seaw	vater		
Contraction of the Contraction of the	01 Aug-17 10:4		Species:	Neanthes aren			Brir	ie: N	lot Applicable			
Duration:	96h	5	Source:	Aquatic Toxicol	logy Suppor	t	Age	:				
Sample ID:	06-6813-0357		Code:	27D2DC35			Clie	nt: Ir	nternal Lab			
Sample Date:	15 May-17	1	Material:	Unionized Amn	nonia		Pro	ect: R	Reference Toxic	ant		
Receipt Date:	15 May-17	5	Source:	Reference Toxi	cant							
Sample Age:	74d 11h	5	Station:	p170515.20								
Multiple Com	parison Summa	iry										
Analysis ID	Endpoint	6. A	Comp	parison Method			NOEL	LOEL	TOEL	ти	PMS	ο.
00-8692-4177	Proportion Surv	ived		Variance t Two-		st	1.532	1.772	1.648		5.21%	
Point Estimat	e Summary											
a station of the second s	Endpoint		Point	Estimate Meth	od		Level	mg/L	95% LCL	95% UCL	TU	
14-7043-7154	Proportion Surv	ived	Spear	man-Kärber			EC50	1.989	1.917	2.064		
Proportion Su	urvived Summa	ry		0.77			2.5	-				
Conc-mg/L	Code	Count			95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe	ect
0	D	3	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
1.217		3	1,000	5 C C C C C C C C C C C C C C C C C C C	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
1.532		3	1.000		1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	0.00%	6
1.772		3	0.800		1.0000	0.7000	0.9000	0.0577	0.1000	12.50%	20.00	%
2.044		3	0,433		0.5768	0.4000	0.5000	0.0333	0.0577	13.32%	56.67	%
2.482		3	0.000	0 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		100.0	0%
Proportion Su	urvived Detail											
Conc-mg/L	Code	Rep 1	Rep 2					_				
0	D	1.0000										
1.217		1.0000	1.000	0 1.0000								
1.532		1.0000	1.000	0 1.0000								
1.772		0.7000	0.800	0.9000								
2.044		0.4000	0.400	0 0.5000								
2.482		0.0000	0.000	0.0000 0								
Proportion Su	urvived Binomia	ls			-							
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								
0	D	10/10	10/10	10/10								-
1.217		10/10	10/10	10/10								
1.532		10/10	10/10	10/10								
1.772		7/10	8/10	9/10								
2.044		4/10	4/10	5/10								
2.482		0/10	0/10	0/10								

Un-ionized Ammonia Calculator

CLIENT:	Anchor	Date of Test:	28-Jul-17	
PROJECT:	Shelton Harbor	Test Type:	Neanthes NH3 RT	
COMMENTO.	D470545.00			

COMMENTS: P170515.20 To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

	Sample	Mod NH3T (mg/L)		рН	temp (C)	temp (K)	i-factor	Mod NH3U (mg
inter Lands -	Target / Sample Nam		22.9	0.3	24.1	297.26	9.3053	#VALUE
eger: I-factor	Example 3 5	2.000	10.0	7.5	5.0	278.16	9.2750	0.008
9.26 1	0	1 1 111		1. C. C. C.				
9.27 2		63.30 -	29	78.	19.1 .	292.26	9.3214	1.217
9.28 3		99.90 •	29	77 .	19.1 -	292.26	9.3214	1.532
9.29 4		145.00 /	29	7.6 ·	191.	292.26	9.3214	1.772
9.30 5		210.00	29	7.5 .	19.1	292.26	9.3214	2.044
9.32 6		255.0	29	7.5 .	191.	292.26	9.3214	2.482
9.33 7				-				
9.34 8								
9 10							-	
1 11				-				
13								
14								
13 4 5 5 7 8 16				-				
10							-	
18		-			-			
			-	-	-			
19			-	1.00-000				
20								
21				P	-			
22				-				
23				-				
24				1.00				
25								
26				1				
27	2							
28		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-					
29								
30				1		(
31		1. 1. A.		1.1.1.1.1.1.1				
32				Contract of				
33				-		1	a	
34					-			
35				P				
36				4				
37				1		1		
38					1		1.11	
39				12.7.2.2				
40 41					-			
			-			1		
42				1.000			2	
43 44							1	
					-			
45			1	1	-			
46								
				1				

ETIS Tes	t Dat	ta W	orks	sheet			Report Date: Test Code/ID:	14 Aug-17 15:26 (p 1 of 1 11-9488-2902/47387756
Reference To	xicant	96-h	Acute	Survival Te	est			EcoAnalysts
Start Date: End Date: Sample Date:		ug-17	10:40	Protoco	: Neanthes ol: PSEP (19 I: Unionized	Sample Code: 27D2DC35 Sample Source: Reference Toxicant Sample Station: p170515.20		
Conc-mg/L 0	Code D	Rep 1	Pos 12	# Exposed 10	# Survived 10 .	Notes		
0	D	2	8	10	10			
0	D	3	17	10	10			
1.217		1	9	10	10			
1.217		2	4	10	10			
1.217		3	11	10	10			
1.532		1	1	10	10			
1.532		2	15	10	10			
1.532		3	10	10	10 +			
1.772		1	18	10	7			
1.772		2	2	10	8			
1.772		3	16	10	9,			
2.044		1	6	10	4,			
2.044		2	14	10	4 .			
2.044		3	5	10	5			
2.482		1	7	10	0			
2.482	i	2	3	10	0			
2.482		3	13	10	0			

Analyst: ______QA:______

Ammonia Reference Toxicant Test Survival Data Sheet

CLIENT Anchor		PROJECT		helton H	larbo	or		SPECIES	Ne	anthes a	arena	ceoder	itata	LAB	ORATORY Port	Gamb	le .	PROTO	SEP
PIZOSIS.2	D	LOT #:	29	86 CS	510)		TEST START	DATE	8Jul17		TI		AY END	DATE	ug17		TIME L	040
CHAMBER SIZE/TYPE	-	EXPOSUR	REVOLUM	E		-			-							ugii		10	-
glass pint	jur		25	0 mL								_					*	1	
					_		-	TER QL	-	and the second second	TA								
TEST	CONDIT	IONS			-	O (mg/L) > 4.6	-	EMP(C)		AL (ppt)	7.0	pH	TECHNICIAN		AMMO	AIA		SULFID	ES
	CONCE	NTRATION		1		D.O.		20 <u>+</u> 1 TEMP.	1	0 <u>+</u> 2	1.6	<u>рн</u>		A	MMONIA			SULFIDES	T
CLIENT/ENVIRON ID	value	units	DAY	REP	mete	r mg/L	meter	°C	meter	ppt	meter	unit	- WQ TECH/ DATE	METER	۳ mg/L	Tech	meter	mg/L	Tech
Ref.Toxammonia	0	mg/L	0	Stock	в	7.8	в	19.1	в	29	B	B.0	U~ 7/28	lo	0.00				U
rter, roxammonia		ing/c	4	1	в	6.9	B	19.2	в	29	B	B.0	JL B/01						
Ref.Toxammonia	60	mg/L	0	Stock	в	7.9	в	19.1	B	29	8	7.8	JLARB	10	63.3				a
Noi. Fox. animonia	00	ing/c	4	1	в	7.5	в	19.3	в	29	в	B.0	JL B/ol						
Ref.Toxammonia	100	mg/L	0	Stock	B	7.9	B	19.1	в	29	B	7.7	J - 7/28	10	99,9				2
		gr=	4	1	в	7.6	0	19.0	B	29	в	7.9	ULB/01						
Ref.Toxammonia	140	mg/L	0	Stock	в	7.8	в	19.1	в	29	в	7.6	J-7/28	10	145				Ju
		····g/=	4	1	B	7.5	в	18.8	в	29	B	7.9	JL B/01						
Ref.Toxammonia	180	mg/L-	0	Stock	Ø	7.9	в	19.1	B	29	в	7.5	U- 7/28	10	210				JL
			4	1	в	7.5	в	19.3	B	30	в	79	10 8/01						
Ref.Toxammonia	220	mg/L-	0	Stock	в	7.9	8	191	в	29	8	7.5	JL 7/28	10	255				JL
			4	1	-		-		-		-			-					

OWL JL 7/28/17

Ammonia eference Toxicant Test Survi ... al Data Sheet

CLIENT		Iner	1000	_				SPECIE	N	leanth			odenta	10.00	
Anchor		PRO. C	JECT)		OC	в №. PG10	14	Contract of the second	CT MANA Heste		LABOR. PO	atory rt Gan	nble .	PROTO #VA	COL LUE!
			SUF	AVIVA	L & 1	BEHA	VIOF	DA	TA						
OBSERVA	TION KEY				DAY	1	1	DAY	2	1.00	DAY :	3		DAY 4	1
N = Normal LOE = Loss of equili Q = Quinscent DC = Discoloration	bium r	INITI	AL # OF	date 7	29/	17	date 71	30		DATE	2/21		DATE	8/0	١
NB = No body F = Floating on surfa	ice	ORG		TECHNI	CIAN M)	TECHNI	cian An		TECHNIC		Ç	TECHNI		/
CLIENT/ENVIRON ID	CONC. value units	REP	INITIAL NUMBER	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS	#ALIVE	#DEAD	OBS
		1	10	10	6	IF	10	0	N	10	0	2	10	Ó	N
Ref.Tox Ammonia	0 mg/L	2		10	0	IF	10	0		10	б	7	10	ð	
		3		10	0	ZF	10	0	T	10	0	IF	lo	O	Ţ
		1	1	10	0	IF	10	0	N	10	D	N	10	D	2
Ref.Tox Ammonia	60 mg/L	2		10	0	N	10	0	1	10	D	1	10	0	ſ
internet y unanomia		3		10	0	IF	10	д	L	10	D	l	10	0	L
		1		10	0	N	10	0	N	10	0	0-	772	0	0
Ref.Tox Ammonia	100 mg/L	2		10	0	IF	10	0	١	10	0	1	10	0	
		3		10	0	N	10	0	t	10		Ţ	10		L
		1		10	()	Q	16	0	02	10	0	0	7	3	Ð
Ref.Tox Ammonia	140 mg/L	2		10	0	Q	10	0		10	0	Γ	в	2	1
		3		10	υ	Q	10	6	L	(0		ſ	9	l	t
		1		10	Ø	Q	7	3	Q	6	(0	4	2	0
Ref.Tox Ammonia	180 mg/L	2		10	0	Q	10	0		10	0		.4	6	1
		3		10	Ò	Q		д	J	10	Q	Ł	S	T	T
		1		10	Û	Q	0	(0					1		
Ref.Tox Ammonia	220 mg/L	2		10	Ó	Q	0	10						/	
		3	V	10	0	Q	0	10	1		~	1		••••••	

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P170515.20		
Date Prepared:	2/28/17		
Technician Initials:	jet		

Neanthes NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Date: Measurement: 7/28/2017 9453.3

Test Solutions			Mahuma at start	Webser war in a start of the start of the	
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration		
mg/L	mg/L	mL	mL stock	to increase	
-			FRESH WATER (mL)	SALT WATER (mL)	
63.3	60	750		7.14	
99.9	100	750		11.90	
195	140	750		16.66	
2,10	180	750		21.42	
255	220	750		26.18	
		-			
		-			

3. Mytilus galloprovincialis Bivalve Larval Test

Ecc	IΑ	NA	LY	ST	-S
		****			-

CLIENT

Anchor QEA	
------------	--

PROJECT MANAGER PG1019 Brian Hester LABORATORY

ABORATORY PROTOCOL Port Gamble Bath 6 PSEP (1995)

TEST ORGANISM SPAWNING DATA

JOB NUMBER

SPECIES			
Mytilu:	s galloprov	/incialis	
SUPPLIER	flor She	ulfish	ORGANISM BATCH TS2B49
SPAWNING I	METHOD	INITIAL SPAWNING TIME	FINAL SPAWNING TIME
heat s	hock	1130	1430
MALES	FEMALES	SPERM VIABILITY	EGG CONDITION
4	2	\checkmark	\checkmark
BEGIN FERTI	LIZATION	END FERTILIZATION	CONDITION OF EMBRYOS
14	32	1752	> 90%. div

PROJECT

SAMPLE STORAGE
4 Degrees Celsius - dark
SEDIMENT TREATMENT
none
TEST CHAMBERS
1 L Mason Jars
EXPOSURE VOLUME
900mL seawater / 18g Sediment
TIME OF SHAKE
1445
TIME OF INITIATION
1752

SPECIAL CONDITIONS

ROM TEST INITIATION (YES/NO)
No
OTHER (EXPLAIN)
esuspensia @ end of te

EMBRYO DENSITY CALCULATIONS

60×100 = 6000 enbyo/nL

LIENT	00015		SPECI M	ytilus gallopr		
Anchor QEA	PROJECT Shelto		G1019 Br	ст манадек ian Hester	LAB / LOCA Port Gan	TION PROTOCOL nble / Bath 6 PSEP (1995)
CLIENT/ ID			BSERVATION I			
CLIENT/ ID	REP	NORMAL	Abnormal	OATE	TECHNICIAN	COMMENTS
	1		281	BIB	UB	
	2		270			
STOCKING DENSITY	3		289			
	4		272			
	5		2.82		J.	
	1	286	8	8/4/17	MK	
	2	253	15			
Control /	3	236	17			
	4	252	12			
	5	271	10	V.	Ţ	
	1	224	5	8/5/17	MK	
	2	273	13			
SH-Ref-1 /	3	232	IZ			
	4	233	7	-		QA226 (R. 8/
	5	232	4			· · · · · · · · · · · · · · · · · · ·
	1	224	28		VB	
	2	225	27-			
CARR/SH-Ref-1 /	3	228	25			QA 23/9 (28/17
	4	236	43			
	5	209	34			
	1	228	8			
	2	257	7			
CARR /	3	240	7			
	4	225	7			
	5	233	11	1		

ENT	PROJECT	JOB NUMBER		SPECIES My		allopro				,]
Anchor QEA		n Harbor Po	G1019	Bria	an Hes			OCATIO Gamble	N / Bath 6	PROTOCOL PSEP (1		
		LARVAL O			ATA		.					
CLIENT/ ID	REP	NORMAL	NUMBER		D	ATE	TECHNI	CIAN	C	OMMENTS		
	1	211	9		8/7	117	W	3				
	2	207	6									
CR-022 /	3	225	3									
	4	221	11									
	5	169	18					C	2A 12	33/9 64	18/1	7
	1	218	13		8/0	9/17						
	2	252	7		l	•						
SH-04 /	3	264	8									
	4	213	8									
	5	234	8									
	1	233	18									
	2	230	13					2				
SH-14 /	3	221	14					Ê				
	4	228	9					Ø				
	5	245	12.		J.	/		e)			
	1	188 0	42	0	<u></u>	0/17			-			
	2	189	24					G	A 19	Ks U	28/	17
SH-19 /	3	177	29								·	
	4	185	17						·····			
	5	163	13									
	1	207	2					2	QA	203/	s c	٤
	2	217	3									•
SH-21 /	3	225	5									
	4	243	8									
	5	208	5		T		V					

DRECOUNTED 196 normal, 32 abronnal, UB Devotacean nampli present, should not affect lanae, UB 8/16

CLIENT	PROJECT	JOB NUMBE	SPE	Mytilus gallopro			
Anchor QEA		on Harbor P	G1019	JECT MANAGER Brian Hester	LAB / LOCA Port Gam	TION PROTOCOL hble / Bath 6 PSEP (1995)	
CLIENT/ ID	REP	NUMBER	DBSERVATION		I	1	1
	1	NORMAL			TECHNICIAN	COMMENTS	
		213	9	0/11/17	UB		
	2		8				
SH-22 /	3	247	13			QA-245/19 GR	8/17
	4	203	3				
· · · · · · · · · · · · · · · · · · ·	5	190	5				
	1	231	16				
	2	227	9				
SH-24 /	3	208	4				
	4	230	6				
····	5	217	8	L			
	1	174	19	8/15/17			
	2	184	10				
SPI-22 /	3	175	12				
	4	194	13				
10 <u>0 </u>	5	161	7			All Marine and Annual Annua	
	1	230	10				
sp1-31	2	236	7			······································	(\mathcal{D})
0 - SPI-30 7	3	241	4			QA 218/20 CR	8/17
	4	236	9				
	5	211	8				
	1	214	8				
() 571-30	2	210	11				-
SPI-31 /	3	229	13			QH 218/20 CR 8/	n ⁽⁾
	4	224	9				
	5	182	6		V		
() Swapped and	uts fir	•	- trunscript	sur error,	WB 8	118	

	Anchor Job Number			PROJECT MA		Harbor		TEST START		ilus gallo	provii	TIME		Port TEST END		ble / Bat	h6	PSEP (
	• Day 384 observations needed or		Oment and ar		rian H	lester	14/ -	TER A		ug17		175	<u>L</u>			ug17		170
		TEST		te not met by day 2	D	DO (mg/L) 1		Temp (°C)	JAL.	Sal (ppt)		рН	T -	Ammonia	nmonia Sulfide			
	SAMPLE ID	DAY	Random	# REP		>5.0 D.O.		16 ± 1 TEMP.		28 ± 1 SALINITY		7 - 9 pH	_		_	NA	TECH	DATE
					mete	r mg/L	mete	_	met		mete	unit			al) Tech	SULFIDE	al F	č
	Control /	0	18	WQ Suri	8	7.1	2		ę	28	8	7.8	He	0.00	0	50.00	3 1	8
	Control /	1	_	WQ Surr	8	7.2	8	16.2	28	28	8		-				UB	8
	Control /	2		WQ Surr	8	7.2	ß	15.9	8	28	θ	7.8	W	0.00	In	0.001		
	Control /	3		WQ Surr			1								Ĩ	01001	100	1 1
	Control /	4	Ţ	WQ Surr							1				1			
2	SH-Ref-1 /	0	71	WQ Surr	8	7.1	B	16.0	в	28	B	7.8	1te	0.00	1.	8.101	MK	8
	SH-Ref-1 /	1	1	WQ Surr	8	5,6	8	16.3	8	28	8	7.7			<u> v'</u> .			
	SH-Ref-1 /	2		WQ Surr	B	5.5	8	14.3	8	28	8	7.1		0.00	30		UB	
	SH-Ref-1 /	3		WQ Surr								<u> </u>		0.00	130	0.023	5 MK	33
	SH-Ref-1 /	4	1	WQ Surr											$\left \right $			
	CARR/SH-Ref-1 /	0	6	WQ Surr	8	6.9	8	16.1	8	28	B	7.8	¥.	0.00	í ne	0.202		81
	CARR/SH-Ref-1 /	1	1	WQ Surr	8	6.1	8		8	28	8	7.7	<u>191</u>	0.00				
	CARR/SH-Ref-1 /	2		WQ Surr	B	S.5		16.3	8	28	8		A LV	0.00	<u>}</u>	0 -		8/2
	CARR/SH-Ref-1 /	3		WQ Surr								<u>·· (</u>	10.14	0.00	5	0.029	ME	Ujs
	CARR/SH-Ref-1 /	4	4	WQ Surr													$\left - \right $	
ľ	CARR /	0	28	WQ Surr	I	6.9	8	6.5	9	28	8	7.8	j.Ju	ር በስ	(M-	0.084	ANK	B1.
	CARR /	1		WQ Surr	8	6.2	8	16.0			8	7.8	1					
	CARR /	2		WQ Surr	A 1	5.9	1	16.5	B	28	B			ດດວ	<u>tı</u>	0.025		<u> 8 2</u> 8 3
	CARR /	3		WQ Surr		<u>~ 1</u>							Int.	<u>v</u> ,v-	50	0.065	Mr	013
	CARR /	4	J	WQ Surr								-						<u> </u>
Ĺ	CR-022 /	0	43	WQ Surr	g	6.4	B	16.3	Ø	28	8	7.63	(1)	1 00	110-	0.156		8/1
	CR-022 /	1	1	WQ Surr	8	6.3	8	n 	8	28		7.8		0.00	<u>כיע</u>			
	CR-022 /	2		WQ Surr	8		n l		~	28			11/				-	8/2
ļ	CR-022 /	3		WQ Surr			-	<u></u>	\rightarrow	N	- +	1.0	MY	0.00	JL	0.031	ME	B/3
	CR-022 /	4	ł	WQ Surr			-											
1	Precip. fate 18 illugible : 16.1	00	ແນດ.	<u> </u>	<u>L</u> ,	Saura	ـــــــــــــــــــــــــــــــــــــ		0 A	 k in		MCA		<u> </u>		0, ,	1394	
	neupin	_			~	Sunt	r 7		rr	<i>بر</i> ۲۰ ۲		reter	en	ce?	• •	7/0	~~~	

Ι.

Anchor	QEA			PROJECT She	lton	Harbor	1	SPECIES	Mvti	lus gallop	novi	ncialie		LAB / LOC		0 / D-+L		
NUMBER				PROJECT MA				TEST START				TIME		TEST END		le / Bath		PSEP (1
PG10:					ian ⊦	lester				ug17		175	2		03Au	Jg17		170
ay 384 observations needed or	TEST	ment enc	ipoint no	ot met by day 2	D	0 (mg/L)		TER QU emp (°C)		TY DAT Sal (ppt)	<u>`A</u>	рН		Ammonia		Sulfide		
cc	NDITIONS		Т			>5.0		16 ± 1		28 ± 1		7 - 9		NA		NA	тесн	DATE
SAMPLE ID	DAY	Rand	lom #	REP	meter	D.O. mg/L	mete	TEMP.	mete	SALINITY ppt	mete	pH r unit		mg/L (tota		SULFIDE		
SH-04 /	0	8	0	WQ Surr	8	6.2	8	16.0	B	28	8	7.6		0.00				9/
SH-04 /	1			WQ Surr	8	6.3	8	16.7	8	28	q	7.7					VB	81
SH-04 /	2			WQ Surr	ઝ	5.3	8	16.6	8	28	8	7.6	IN	0.00	ju	0.018	MK	8 3
SH-04 /	3			WQ Surr														
SH-04 /	4	×		WQ Surr														
SH-14 /	0			WQ Surr		4.8	1	16.1	8	28	8	7:7	20.000	0.00	lus	(3) 0.003	W	81
SH-14 /	1			WQ Surr	0	+ <u> </u>	+	16.1	8	28	8	7.6					ИB	8].
SH-14 /	2		-	WQ Surr	в	6.0	8	16.7	ß	28	8	7.7	M¥/	0.00	JL	0.024	MK	8 3
SH-14 /	3			WQ Surr									<u> </u>					
SH-14 /	4	*		WQ Surr	0		0									1/2		
SH-19 / 	0		-	WQ Surr	•	7.0	8	16.0	8	28	8	7.7	He	0.00	UB	(3) 0.091	MK	81
SH-19 /	1			WQ Surr WQ Surr	σ	5.7	8	16.0	8	28	8						lb	8/
SH-19 /	3		+	WQ Surr		¥2.5.0	B	16.2	в	28	B	7.6	all.	0.00	JC	0.024	MK	83
SH-19 /	4			WQ Surr														
SH-21 /	0	49		WQ Surr	ĝ	6.2	в	ira	8	28	g	70	11.	n 04	r 10 (D		Øl
SH-21 /	1			WQ Surr	·····	5.9	8		8	28	8	7.8 7.8	1000000	0.00	145	<u> </u>	MK	
SH-21 /	2	1		WQ Surr	<u> </u>		-	16.2	B	28	0		1	0.0	JU	0.020	UB	8/3 8/3
SH-21 /	3			WQ Surr	-19	y <u></u>						1 • 1				0.020	M	- 10
SH-21 /	4	J	<u> </u>	WQ Surr														
SH-22 /	0	40	2	NQ Surr	в	6.5	в	16.3	00	28	8	7.7	l-te,	0 00	IB	2.054	MK	8/1
SH-22 /	1		\	NQ Surr	8	6.7	8	16.0	8	28	8	7.7		<u>v.vu</u>	<u>v'</u> -		116	8/2
SH-22 /	2		Ń	NQ Surr	в	5.1	B	16.1	B	28	8		WV/	0.00	JL	0.017	MK	al
SH-22 /	3		V	NQ Surr													(***	
SH-22 /	4	d	V	VQ Surr														

QWC. MK 8 3.

EcoAr	IALY	STS	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								- Sun						
CLIENT Anchor (DEA		PROJECT	lton i	Harbor	s	PECIES	Mytil	us gallop	rovir	cialic		LAB / LOCA				ROTOCOL
JOB NUMBER			PROJECT MAI			T	EST START D	-		ovin	TIME		TEST END D		le / Bath		PSEP (1995
PG101	9		Br	ian H					Jg17		175	52		03AL	ıg17		1700
Day 384 observations needed only	y if develop	ment endpoint n	ot met by day 2				FER QU emp (°C)		TY DAT	<u>A</u>		1				·····	
CO	DITIONS			DO (mg/l >5.0			16 ± 1		Sal (ppt) 28 ± 1		рН 7-9		mmonia NA		Sulfide NA		ш
SAMPLE ID	DAY	Random #	REP	meter	D.O.		TEMP.		ALINITY		рН	-	MMONIA	1	ULFIDE	TECH	DATE
A 11 A 1					mg/L	meter	r °C	meter		meter	unit	Techn.	mg/L (total) Techn	mg/L (Total		<u> </u>
SH-24 /	0	n	WQ Surr	в	6.2	8	15.8	B	28	8	7.7	He.	0.00	W		NK	8/1
SH-24 /	1		WQ Surr	8	6.0	8	16.7	8	28	8	7.7			Γ		UB	8/2
SH-24 /	2		WQ Surr	8	5.3	B	16.3	8	28	8		MK	0.00	IN	0.013	MK	01
SH-24 /	3		WQ Surr													1 Mar	10
SH-24 /	4	T	WQ Surr														
SPI-22 /	0	26	WQ Surr	в	6.3	B	16.6	¢	28	B	7.7	He	0.0127	WB	$(2)^3$	MK	8/1
SPI-22 /	1		WQ Surr	8	6.3	8	16.1	8	28	8	7.7					IB	8/2
SPI-22 /	2		WQ Surr	B	5:5	в	16.4	B	28	6	7.5	MK	0.00	si	0.014	1	. B 3
SPI-22 /	3		WQ Surr														
SPI-22 /	4	e d	WQ Surr														
SPI-30 /	0	7	WQ Surr	B	5.5(4)	в	16.5	B	гв	8	7.7	Ha	0.141	IB	23	NK	8/1
SPI-30 /	1	1	WQ Surr	8	5.0	8	16.3	8	28	8	7.6					UB	8/2
SPI-30 /	2		WQ Surr	9	4.6	b	16.5	B	28	B	7.6	MK	OW	dr	0.012	MK	8/3
SPI-30 /	3		WQ Surr														
SPI-30 /	4	L	WQ Surr														
SPI-31 /	0	35	WQ Surr	B	6.7	в	16.5	в	28	6	7.8	Hr.	0.00	in-	23	MK	8/1
SPI-31 /	1		WQ Surr	8	6.8	8	15.9	8	28	8	7.7						8/2
SPI-31 /	2		WQ Surr	8	5.0	Ø	16.2	Ø	28	в	7.7	MK	0.00	JL	0.029		
SPI-31 /	3		WQ Surr											-			
SPI-31 /	4	イ	WQ Surr														

Owc. MK 8/1.

- 2 ND, 138/1

- (3) precipitate present in blank, UB, 8/]
 (4) re-measured DO @ 1740, 6.0 mg/L, UB 8/]
 (5) mf. meter not stabilized. Actual = 3.6 mr 8/3.
- 05/14/15

	val Survival and Developm Development-Survival	ALL CALLS	Mytilus galloprovincialis (Bay	Mussel Material:	All I Total Ammonia	Matching Lab
Protocol:	All Protocols	Endpoint:	Combined Proportion Normal		Reference Toxicant-R	EF
		Plus				
	10-1	Biva	lve Larval Survival and Development Tes	t		
	-e	8				9
	5-	A				+25
					- 1	
Ę			× ^			+15
ECSO-mg/L Total Ammonia	A A		> /V	1		Mean
Jot Tot	5-		\/•	2	× ¥	
ECS0-n		-	¥	\mathbf{V}		+15
	-	· · ·				
	2	-				-25
				1 1 1		7
	15 Apr-15- 30 Apr-15- 20 May-15- 02 Jun-15-	21-90-61 21 Aug-15 28 Scp-15 15 Jun-16	23 Feb:16 17 Min-16 14 April6 13 Abril6 13 -16	03 Aug-16- 17 Aug-16- 21 Sep-16-	28 Oct-15- 05 Apr-17- 20 Apr-17- 09 Jun-17-	-21-6nv 10
				9 - A		0

Report Date:

22 Aug-17 11:01 (1 of 1)

			ean: gma:	5.448 1.57			20 28.80%	-1s Warr +1s Warr			-2s Action Lim +2s Action Lim	
Quali	ty Con	trol Data	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2015	Apr	15	19:10	5.993	0.5452	0.3473			13-8932-4228	19-6133-3160	ENVIRON
2			30	18:04	3.781	-1.667	-1.062	(-)		20-6119-4159	02-4196-3961	ENVIRON
3		May	20	17:25	6.135	0.6868	0.4374			09-2578-9028	09-4770-1274	ENVIRON
4		Jun	2	17:40	3.4	-2.048	-1.304	(-)		17-1514-2545	13-6694-9114	ENVIRON
5		Jul	15	17:28	3.896	-1.552	-0.9883			03-2854-6295	19-5139-2675	ENVIRON
6		Aug	13	17:12	4.263	-1.185	-0.7548			11-0008-2350	17-0708-6345	ENVIRON
7		Sep	28	19:46	9.184	3.736	2.379	(+)	(+)	13-4113-2133	05-9076-7384	ENVIRON
8	2016	Jan	15	18:45	6.515	1.067	0.6794			12-5434-0454	10-0079-7236	ENVIRON
9		Feb	23	17:50	5.292	-0.156	2 -0.09948			18-1470-2153	19-1029-0373	ENVIRON
10		Mar	17	19:30	3.757	-1.691	-1.077	(-)		15-5000-9198	13-5264-4225	ENVIRON
11		Apr	14	17:15	6.621	1.173	0.7474			20-6935-4588	11-5576-6536	ENVIRON
12		Jul	13	19:55	5.147	-0.301	-0.1917			21-3594-7965	13-9208-2204	ENVIRON
13			20	19:37	6.871	1.423	0.9064			15-8198-2198	11-4931-7833	ENVIRON
14		Aug	3	18:20	4.732	-0.716	1 -0.4561			01-0657-3943	18-0523-9298	ENVIRON
15			17	17:05	5.081	-0.366	6 -0.2335			12-6418-6345	06-5970-9287	ENVIRON
16		Sep	21	17:05	3.644	-1.804	-1.149	(-)		12-2755-6335	12-7771-4113	ENVIRON
17		Oct	28	16:55	4.947	-0.500	9 -0.3191			11-5556-2644	13-8974-7601	ENVIRON
18	2017	Apr	5	18:40	7.21	1.762	1.123	(+)		01-5481-7076	04-4954-7137	EcoAnalysts
19			20	17:20	7.867	2.419	1.541	(+)		10-4553-7194	08-5173-1627	EcoAnalysts
20		Jun	9	17:00	4.628	-0.820	4 -0.5225			14-1261-0889	04-7911-3613	EcoAnalysts
21		Aug	1	17:25	9.266	3.818	2.432	(+)	(+)	06-8669-3676	12-0819-3140	EcoAnalysts

CETIS QC Plot

Bivalve La	val Surv	vival a	and Dev	elopme	ent Test											AI	Matching Lat
Test Type: Protocol:	Develop All Prote		-Surviva	al				S		alis (Bay n Norma		Mate Sour		Total A		onia Toxicant	-REF
NOEL-mg/L Total Amnonia	Start Start Start		4			Biv	alve Larval	I Surviva	al and Deve	lopment Te	st				-		+25 +15 Meen
NOR	Is vers	30 Apr: 15-		023JM-15-	-St-Dave El	28 Stp-15-	23 feb:16-	17 Mar-16-	14 yer-16-	13 Jul-16-	03 Aug. 16	-st-guy Zi	-51-Sec-16-	da data da	20 Abrit2-	-Ct-ant 60	-trout to
		ean: igma:	3.281 1.274		Count: CV:	20 38.80	0%			ing Lim ing Lim				Action Action		: 0.733 : 5.829	
Quality Co	ntrol Dat	a				-											
Point Year		Day	Time	QC D	ata Delt	ta	Sigma	W	arning	Action	Test ID		Ana	lysis II	o i	Laborat	огу
2015	Apr	15	19:10	4.59	1.30		1.027		(+)		13-893	2-4228	17-9	9791-42	217 1	ENVIRO	N
		30	18:04	2.94	-0.3		-0.2677				20-6119			0732-05		ENVIRO	N
	May	20	17:25	4.51	1.22		0.9647				09-257			7558-23		ENVIRO	
	Jun	2	17:40	1.83	-1.4		-1.139		(-)		17-1514			3284-89		ENVIRO	
i i	Jul	15	17:28	2.77	-0.5		-0.4011				03-285			5331-66		ENVIRO	
	Aug	13	17:12	3	-0.2		-0,2206				11-000			0317-14		ENVIRO	
	Sep	28	19:46	1.77	-1.5		-1.186		(-)		13-411:			4448-60		ENVIRO	
2016	Jan	15	18:45	2.96	-0.3	21	-0.252				12-543	4-0454	00-	3028-90	046	ENVIRO	N

0.219

-1.261

0.239

0.289

2.369

0.089

-0.001

-1.791

-1.501

2.159

2.049

-0.981

3.119

0.1719

-0.9898

0.1876

0.2268

1.859

0.06986

-1.406

-1.178

1.695

1.608

-0.77

2.448

-0.000785

18-1470-2153

15-5000-9198

20-6935-4588

21-3594-7965

15-8198-2198

01-0657-3943

12-6418-6345

12-2755-6335

11-5556-2644

01-5481-7076

10-4553-7194

14-1261-0889

06-8669-3676

12-0892-9662

10-0930-7275

02-5801-5963

00-8086-5441

16-7479-3581

04-9221-3739

02-1682-8136

16-0123-9122

14-4042-7171

15-7963-0031 ENVIRON

18-2881-4415 ENVIRON

12-0068-9010 EcoAnalysts

10-3249-5372 EcoAnalysts

ENVIRON

ENVIRON

ENVIRON

ENVIRON

ENVIRON

ENVIRON

ENVIRON

EcoAnalysts

EcoAnalysts

CETIS QC Plot

Analyst:_

9

10

11

12

13

14

15

16

17

18

19

20

21

Feb

Mar

Apr

Jul

Aug

Sep

Oct

Jun

Aug

2017 Apr

23

17

14

13

20

3

17

21

28

5

20

9

1

17:50

19:30

17:15

19:55

19:37

18:20

17:05

17:05

16:55

18:40

17:20

17:00

17:25 6.4

3.5

2.02

3.52

3.57

5.65

3.37

3.28

1.49

1.78

5.44

5.33

2.3

CETIS™ v1.9.2.6

(+)

(-)

(-)

(+)

(+)

(+)

(+)

	rval Survival ar Development-			rganis	m: N	Aytilus	gallop	orovine	cialis (Bay M	ussel	Ma	terial:	Un	ionize	ed Am	nmoni		hing Lab
Protocol:	All Protocols	12	E	ndpoin	nt: C	Combir	ned Pr	oporti	on No	rmal		So	urce:	Re	feren	ce To	oxicant	-REF	
					Bivalve	e Larval :	Survival	and Dev	elopme	nt Test									
	0.25																		
	0.20				8														
		· · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	7													+25	
ECS0-mg/L Unionized Ammania	0.15-			1			• -	-			-				1	1	Ň	9 +15	
L Unionize	0.10-	~	_	1	/-	+-		\square	×	1				_	1		\setminus	Mean	
EC50-mg		1	-	F		6	-			,	6	~		1			•		
	0.05-		~				1.88						0					-15	
	0.00	1		/	~													-3	
	15 Apr-15	20 May-15-	-SI-OL SI	28 5cp-15	07 Dec-15-	15 Jan-16-	17 Ma-16-	14 Apr-16	-91-FC E1	-20 Jul-16-	03 Aug-16-	17 Aug-16	21 Sep-16-	28 Oct-16-	05 Apr-17	20 Apr-17-	-21-unt 60	C3-6nV 10	
	5 8	50 03	9 A	28	20	15	n	*	4	X	03	22	12	28	65	20	8	10	
	Mean:	0.1002	Cour	nt: 20			-1;	s War	ning l	imit:	0.05	5843	-29	s Acti	ion Li	mit:	0.016	663	
	Sigma:	0.0418	CV:	41	.70%		+1:	s War	nina l	imit:	0.14	12	+25	Acti	on Li	mit:	0.183	38	

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2015	Apr	15	19:10	0.1609	0.06068	1.452	(+)		16-8535-8797	10-1479-4973	ENVIRON
2			30	18:04	0.08192	-0.01828	-0.4374			03-9240-3383	09-4512-5047	ENVIRON
3		May	20	17:25	0.09802	-0.002183	-0.05224			02-2718-1762	05-2499-4463	ENVIRON
4		Jun	2	17:40	0.05293	-0.04727	-1.131	(-)		05-0395-8879	02-8689-2030	ENVIRON
5		Jul	15	17:28	0.06313	-0.03707	-0.8868			00-2296-0969	17-0196-9853	ENVIRON
6		Aug	13	17:12	0.05202	-0.04818	-1.153	(-)		20-0843-4308	07-3272-8799	ENVIRON
7		Sep	28	19:46	0.1464	0.04616	1.104	(+)		14-0799-9245	10-1527-0979	ENVIRON
8	1.22	Dec	7	18:00	0.1977	0.09755	2.334	(+)	(+)	14-1153-0185	08-9940-5879	ENVIRON
9	2016	Jan	15	18:45	0.07307	-0.02713	-0.649			14-3705-6085	19-2478-0688	ENVIRON
10		Mar	17	19:30	0.0747	-0.0255	-0.6099			04-9304-7933	11-8311-5806	ENVIRON
11		Apr	14	17:15	0.1231	0.02292	0.5482			21-0694-5716	16-1625-7449	ENVIRON
12		Jul	13	19:55	0.1066	0.006429	0.1538			17-3624-8523	09-8766-4801	ENVIRON
13			20	19:37	0.1295	0.02934	0.702			16-4492-6137	18-6316-6428	ENVIRON
14		Aug	3	18:20	0.0688	-0.0314	-0.7512			09-2291-5121	03-3596-0456	ENVIRON
15			17	17:05	0.08185	-0.01835	-0.4389			07-3188-3147	05-9364-3209	ENVIRON
16		Sep	21	17:05	0.05781	-0.04239	-1.014	(-)		12-6262-3928	08-6003-5732	ENVIRON
17		Oct	28	16:55	0.06459	-0.03561	-0.852			05-5636-6924	16-1083-2604	ENVIRON
18	2017	Арг	5	18:40	0.1177	0.01753	0.4193			07-6165-8877	17-4223-4248	EcoAnalysts
19			20	17:20	0.1634	0.06317	1.511	(+)		05-0815-7437	21-2956-9302	EcoAnalysts
20		Jun	9	17:00	0.09031	-0.009886	-0.2365			03-2543-7495	10-0892-9679	EcoAnalysts
21		Aug	1	17:25	0.1359	0.03575	0.8552			10-8097-0537	01-7132-8530	EcoAnalysts

A QA: Analyst:___

Test Type: Protocol:	Development-S All Protocols	urvival		rganisr ndpoin		lytilus Combin					ussel		terial: urce:				nmonia xicant	
	0.25				Bivalve	: Larval S	Survival	and Dev	elopme	nt Test								
ania	0.15			~	Å		-								7		_	+25
NOEL-mg/L Unionized Ammonia	0.10-	1	-	1	~	1	-	•	-	Δ	6	•	~	/	/	1	V	Magn -15
NOEL-	0.05		~~~~	~	1												-	
	-010- 30 April: 10-	20 Mar-15 02 Jun-15	-51-INC ST	28 Sep-15-	07 Dec-15-	-15 Jan-16-	17 Mar-15	14 Apr-16-	-914WET	20 Jul-16	03 Aug-16	17 Aug.16-	-91-de5 (2	28 Oct-16	05 Apr-17-	20 Apr-17-		Di Aug-17-
	Mean:	0.064	Cour	t: 20			-1:	s War	ning	Limit:	0.02	2608	-29	Act	ion Li	mit:	-0.01	18

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2015	Apr	15	19:10	0.134	0.07	1.846	(+)		16-8535-8797	14-3122-1198	ENVIRON
2			30	18:04	0.063	-0.001	-0.02637			03-9240-3383	00-2807-5882	ENVIRON
3		May	20	17:25	0.081	0.017	0.4483			02-2718-1762	04-5934-5151	ENVIRON
4		Jun	2	17:40	0.028	-0.036	-0.9494			05-0395-8879	14-7577-7111	ENVIRON
5		Jul	15	17:28	0.045	-0.019	-0.5011			00-2296-0969	19-0657-0188	ENVIRON
6		Aug	13	17:12	0.035	-0.029	-0.7648			20-0843-4308	02-2615-4019	ENVIRON
7		Sep	28	19:46	0.028	-0.036	-0.9494			14-0799-9245	09-3291-9362	ENVIRON
8		Dec	7	18:00	0.155	0.091	2.4	(+)	(+)	14-1153-0185	11-3892-1501	ENVIRON
9	2016	Jan	15	18:45	0.033	-0.031	-0.8175			14-3705-6085	10-1556-6538	ENVIRON
10		Mar	17	19:30	0.04	-0.024	-0.6329			04-9304-7933	18-2075-7796	ENVIRON
11		Apr	14	17:15	0.07	0.006	0.1582			21-0694-5716	12-4502-8479	ENVIRON
12		Jul	13	19:55	0.065	0.001	0.02637			17-3624-8523	04-6243-8640	ENVIRON
13			20	19:37	0.105	0.041	1.081	(+)		16-4492-6137	18-5505-5894	ENVIRON
14		Aug	3	18:20	0.049	-0.015	-0.3956			09-2291-5121	05-1896-5100	ENVIRON
15			17	17:05	0.054	-0.01	-0.2637			07-3188-3147	16-9734-3329	ENVIRON
16		Sep	21	17:05	0.024	-0.04	-1.055	(-)		12-6262-3928	13-9034-6853	ENVIRON
17		Oct	28	16:55	0.023	-0.041	-1.081	(-)		05-5636-6924	02-7414-4116	ENVIRON
18	2017	Apr	5	18:40	0.098	0.034	0.8966			07-6165-8877	17-6318-6320	EcoAnalysts
19			20	17:20	0.105	0.041	1.081	(+)		05-0815-7437	03-4135-8920	EcoAnalysts
20		Jun	9	17:00	0.045	-0.019	-0.5011			03-2543-7495	14-0954-3373	EcoAnalysts
21		Aug	1	17:25	0.094	0.03	0.7911			10-8097-0537	12-0420-5438	EcoAnalysts

QA: Analyst

CETIS QC Plot

001-132-357-2

CETIS™ v1.9.2.6

Batch ID: 1 Start Date: 0 Ending Date: 0 Duration: 4	Survival and D 18-5813-4668 01 Aug-17 17:25 03 Aug-17 15:50 46h	Tes Pro								Ec	Analy	ete
Start Date: 0 Ending Date: 0 Duration: 4 Sample ID: 1 Sample Date: 1 Receipt Date: 2	01 Aug-17 17:25 03 Aug-17 15:50 46h	Pro	t Type: I									000
Sample Date: 1 Receipt Date: 2			cies: I	Development-S PSEP (1995) Mytilus gallopro Faylor Shellfish	vincialis		Ana Dilu Brin Age	ent: Lab e:	oratory Seav	vater		
	25 Jul-17 12:05	Sou	erial: Irce: I	3BCBB1A8 Total Ammonia Reference Toxi P170515.21			Clie Proj		ernal Lab erence Toxic	ant		
	arison Summa	ry					1			5.7		
	Endpoint	Carlo Aleste		irison Method			NOEL	LOEL	TOEL	TU	PMS	-
	Combined Propo	ortion Norm	a Dunnet	t Multiple Com	parison Test		6.4	13.1	9.156	-	24.79	0
Point Estimate					a.					50		
	Endpoint			Estimate Metho	bd		Level	mg/L	95% LCL	the state of the section of the section of	TU	~
	Combined Propo		0.0.0	han-Kärber			EC50	9.266	9,198	9.334		_
	portion Normal	A contraction have		277.957		24.	ā.,	aba (-5115-1			5
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL		Max	Std Err	Std Dev	CV%	%Eff	
)	D	3	0.8980	A 0 A 0 200	0.9611	0.8694	0.9179	0.0147	0.0254	2.83%	0.00%	
0.63		3	0.8980		1.0000	0.7985	1.0000	0.0582	0.1008	11.22%	0.00%	
1.46		3	0.9502		1.0000	0.9067	1.0000	0.0271	0.0470	4.94%	-5.82	
3.58 6.4		3	0.8644	200000	1.0000	0.7761	0.9552	0.0517	0.0896	10.36%	3.749	
0.4 13.1		3 3	0.9627		1.0000	0.9067	1.0000	0.0285	0.0494	5.13%	-7.20	
20.7		3	0.0238		0.0520	0.0112	0.0336	0.0066	0.0114 0.0000	48.24%	97.37	
Combined Pro	portion Normal	Detail			10127570	143 6.86	1041.13	103 4 2 3	94.910		0-04-	-
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								
0	D	0.9179	0.8694									_
0.63	U	1.0000	0.7985	1								
1,46		N 2000										
Contraction of the second s		1.0000	0.9440									
3.58 6.4		0.8619	0.9552									
		1.0000	0.9813									
13.1 20.7		0.0336	0.0261									
	portion Norma			0.0000								
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								
0	D	246/268	233/26									-
0.63		275/275	214/26	and the state of t								
1.46		280/280	253/26									
3.58		231/268	256/26									
6.4		279/279	263/26									
13.1		9/268	7/268	3/268								
20.7		0/268	0/268	0/268								
HA11		01200	0/200	0/200								

DA:_JU Analyst:

ETIS Tes	st Dat	ta W	orks	heet					Report Date: Test Code/ID:	22 Aug-17 11:07 (p 1 of 1) 06-8669-3676/28EE1D2C
Bivalve Larv	al Surv	vival a	nd Dev	velopment	Test			· · · · · · · · · · · · · · · · · · ·		EcoAnalysts
Start Date: End Date: Sample Date	03 A	ug-17	17:25 15:50	Protoco	s: Mytilu bl: PSEP il: Total /		cialis	Sample Code: 3BCBB1A8 Sample Source: Reference Toxicant Sample Station: P170515.21		
Conc-mg/L 0	Code D	Rep 1	Pos 14	Initial Density 268	Final Density 260	# Counted 260	# Normal 246	Notes		
0	D	2	12	268	244	244	233			
0	D	3	20	268	257	257	243			
0.63		1	6	268	286	286	275			
0.63	ŧ.	2	9	268	225	225	214			
0.63		3	1	268	247	247	240			
1.46		1	7	268	291	291	280			
1.46		2	3	268	264	264	253			
1.46		3	4	268	251	251	243			
3.58		1	19	268	239	239	231			
3.58		2	21	268	267	267	256			
3.58		3	16	268	227	227	208			
6.4		1	13	268	289	289	279			
6.4		2	15	268	285	285	263			
6.4		3	5	268	265	265	243			
13.1		1	8	268	284	284	9			
13.1		2	10	268	253	253	7			
13.1	-	3	17	268	268	268	3			
20.7		1	11	268	259	259	0			
20.7		2	2	268	254	254	0			
20.7		3	18	268	240	240	0			

aA: Analyst:_

Un-ionized Ammonia Calculator

CLIENT:	Anchor	Date of Test:	01-Aug-17	
PROJECT:	Shelton Harbor	Test Type:	Mytilus RT	
OOMENTO	DIZOFIE OF			

COMMENTS: P170515.21
To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

	Sample	Mod NH3T (mg/L)		рН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/
	Target / Sample Name	Actual	22.9	8.6	24.1	297.26	9.3053	#VALUE!
ger: I-factor	Example 3.5	2.000	10 0	7.5	5.0	278.16	9.2750	0.008
9.26	1 0		1		Sec. 1			1
9.27	2 0.75	0.63	27	77	15.5	288.66	9.3160	0.008
9.28	3 1.5	1.46	27	7,8	15.4	288.56	9.3160	0.022
9.29	4 3	3.58	27	7.8	15.2	288.36	9.3160	0.052
9.30	5 6	6.40	27	7.8	15.2	288.36	9.3160	0.094
9.32	6 12	13.1	27	7.8	15.2	288.36	9.3160	0.192
9.33	7 18	20.7	27	78	15.2	288.36	9.3160	0.303
9.34	8			_				11.
	9	-			1.000	1		1
1	10		·					
1	11	1	2					
1	12		·	_				14
/	13			-		1		
	14	1			12.144			
2345675	15			1.1	-	1		
	16							
	17				-			
	18		-		1	-		
	19				-		1.	
	20			5-0-0-	-			
	21				-			
	22		1					
	23	-			-			
	24			-	-			
	25 26				-			
	27				-	-		
	28	1		_	-			-
	29		-		1			
	30			_	-			
	31			_	1	1		
	32				-			
	33			-	1		-	-
	34			-				
	35							
	36		1					
	37							
	38							
	39		1					
	40				1	-		
	41	1112-2-1						
	42				1	2000		
	43	1.1.1			1			
	44			1				1
	45							
	46		1	1	1		-	
		1	-		1. 1			1
			1	1				
						-		
		1			1. 1			
							-	

Rivalvo I and	I Survival and D	auclonmo	nt Toot									inter.
		evelopine	ant rest							EC	oAnaly	ysts
Batch ID: Start Date: Ending Date: Duration:	18-5813-4668 01 Aug-17 17:25 03 Aug-17 15:50 46h	Pro Sp	st Type: otocol: ecies: urce:	Development-S PSEP (1995) Mytilus gallopro Taylor Shellfish	ovincialis			ie:	ooratory Seav	vater		
Sample ID: Sample Date: Receipt Date: Sample Age:	25 Jul-17 13:07	Ma So	de: terial: urce: ation:	64A89774 Unionized Amn Reference Toxi P170515.21			Clie Proj		ernal Lab ference Toxic	ant		
Multiple Com	parison Summa	ry	-						-			
Analysis ID	Endpoint		Com	parison Method			NOEL	LOEL	TOEL	ти	PMS	D V
12-0420-5438	Combined Propo	ortion Norr	na Dunn	ett Multiple Com	parison Test		0.094	0.192	0.1343		24.79	%
Point Estimat	te Summary											
Analysis ID	Endpoint		Point	Estimate Meth	od		Level	mg/L	95% LCL	95% UCL	TU	1
	Combined Propo	ortion Norr		D. CLUB BOARD OF DRAWN			EC50	0.1359	0.135	0.1369	34 ⁴ 7	
Combined Pr	oportion Normal	Summar	v									
Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Eff	fect
0	D	3	0.898		0.9611	0.8694	0.9179	0.0147	0.0254	2.83%	0.00	
0.008		3	0.898		1.0000	0.7985	1.0000	0.0582	0.1008	11.22%	0.00	
0.022		3	0.950		1.0000	0.9067	1.0000	0.0271	0.0470	4.94%	-5.82	
0.052		3	0.864		1.0000	0.7761	0.9552	0.0517	0.0896	10.36%	3.74	
0.094		3	0.962		1.0000	0.9067	1.0000	0.0285	0.0494	5.13%	-7.20	
0.192		3	0.023		0.0520	0.0112	0.0336	0.0066	0.0114	48.24%	97.37	
0.303		3	0.000	0 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	26000394	100.0	
Combined Pr	oportion Normal	Detail										
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								
0	D	0.9179	0.869									
0.008		1.0000	0.798	21 TTTTTT								
0.022		1.0000	0.944									
0.052		0.8619	0.955									
0.094		1.0000	0.981									
0.192		0.0336	0.026									
0.303		0.0000	0.000									
Combined Pr	oportion Normal	Binomia	Is									
Conc-mg/L	Code	Rep 1	Rep 2	Rep 3								
0	D	246/268	233/2									
0.008		275/275	214/2									
0.022		280/280	253/2									
0.052		231/268	256/2									
0.094		279/279	263/2									
0.192		9/268	7/268									
0.303		0/268	0/268									
		0/200	0/200	01/00								

Analyst: QA

CETIS Tes	st Da	ta W	orks	heet						Report Date: Test Code/ID:	22 Aug-17 11:04 (p 1 of 1 10-8097-0537/406E4D2
Bivalve Larva	al Surv	vival a	nd Dev	elopment	Test						EcoAnalysts
Start Date: End Date: Sample Date:	03 A	lug-17 lug-17 May-17	15:50	Protoc	ol: PSEP	s galloprovin (1995) zed Ammon		Sample Code: 64A89774 Sample Source: Reference Toxicant Sample Station: P170515.21			
Conc-mg/L 0	Code D	Rep 1	Pos 17	Initial Density 268	Final Density 260	# Counted 260	# Normal 246		Notes		
0	D	2	4	268	244	244	233				
0	D	3	18	268	257	257	243				
0.008	1	1	7	268	286	286	275				
0.008		2	15	268	225	225	214				
0.008	1	3	2	268	247	247	240				
0.022		1	20	268	291	291	280				
0.022	1	2	19	268	264	264	253				
0.022	1.	3	3	268	251	251	243				
0.052	1	1	5	268	239	239	231				
0.052		2	11	268	267	267	256				
0.052		3	13	268	227	227	208				
0.094		1	16	268	289	289	279				
0.094	-	2	1	268	285	285	263				
0.094		3	6	268	265	265	243				
0.192	r -	1	12	268	284	284	9				
0.192	-	2	14	268	253	253	7				
0.192		3	21	268	268	268	3				
0.303		1	9	268	259	259	0				
0.303		2	10	268	254	254	0				
0.303		3	8	268	240	240	0				

Analy

Test ID: 170515.2	1			Study Director: 路代		Location: Ine	-	
Dilution Water	7.01 TS	ganism Batch: 2849		Associated Test(s Shelton	5):	Organism: Myfilu		
Chamber Size/ 30 ml shel		posure Volum 10 ml					2/	
Toxicant: Amr Chloride:	1112 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ot#: 2986C	510	Date Prepared:		Initials:		
Target Conce				Quantity of Sto Target: See spiking		Quantity o Target:	fDiluent: 00 mL	
	See spiking w	orksheet		Actual: See spiki		Actual: Z	ODML	
0 Hours gli		160	0	STOCK	Start Time: 1		tials:BH	
D.O. (%)	Control	0.75	1.5	3	6	12	18	
(>4.9 mg/L)	7.4	7.2	7.6	7.6	7.7	7.7	7.7	
Temperature $(16 \pm 1^{\circ}C)$	16.1	15.5	15.4	15.2	15.2	15.2	15.2	
Salinity (30±2 ppt)	27	27	27	27	27	27	27	
pH (7.8 ± 0.5)	7.5	7.7	1.8	7.8	7.8	7.8	7.8	
Day 1	Temperature $(16 \pm 1^{\circ}C)$	15	.6	H2				
Final Day	Date: 831	1 WQ Tim	1530) MK STOCK	End Time: (55D Init	ials: ME/LB	
	Control	0.75	1.5	3	6	12	18	
D.O. (%) (>4.9 mg/L)	7.9	8.5	8.5	8.6	8.6	8.4	8.4	
Temperature (16±1°C)	216.015.0	15.4	15.4	15.6	15.3	15.3	15.4	
Salinity (30 ± 2 ppt)	28	28	28	27	28	28	29	
pH (7.8 ± 0.5)	7.9	8.0	8.0	8.(9.0	8.0	8.0	

48 Hour Bivalve Development Reference Toxicant Test

Notes: O IE.ME 8/3.

Conc.	Rep	Number Normal	Number Abnormal	Da	te	Initials
	1 - 1 -	246	14	88	17	UB
Control	2	233	11	1		
	3	243	14			
	1	275	11			
0.75	2	214	11			
	3	240	7		,	
	1	280	11	819	17	
1.5	2	253	11			
	3	243	8	112-10		-
	1	231	8		1	
3	2	256	8			
	3	208	19			
	1	279	10			
6	2	263	22	·		
	3	243	22		1	
	1	9	275	8/10	0/17	
12	2	7	246	1	-	-
	3	3	265			1
	1	0	259			
18	2	0	254			
	3	0	240		/	V
		Stocking	Density			r
Rep		Co			Init	
12		0.2	3 294	-	UB	ń
3			264 295		UB	
5	Mean:		268		1	2
A Count Checks: 1 conc/rep <u> </u>	#2 conc/rep # normal 24	<u>1.5/3</u> 2#abnormal <u>7</u>	#3 conc/rep <u>3/1</u> # normal <u>233</u> # abn	ormal <u>6</u> #		$\frac{2}{4}$ # abnormal $\frac{2}{2}$
ech. Init. <u>CR</u>	Tech. Init	UL	Tech. Init. CR	1	Tech. Init	UL
$\frac{11}{236} = 4.71 \frac{11}{233} = 4.71$	4.7.1 242 2	$9 \times \frac{8}{243} = 3.3 \times$	233 = 2.61 2	31 = 3.5.1	NC	
A Check Acceptabil		nce in means of QA	& orig. counts			

48 Hour Bivalve Development Reference Toxicant Test

Ammonia Reference Toxicant Spiking Worksheet

Reference Toxicant ID:	P170515.21	
Date Prepared:	8/117	
Technician Initials:	ite	

Biv / Echino NH₃ RT

Assumptions in Model Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Date: Measurement: 7/28/2017 9453.3

Te	st Solutions	Maluma of stack to much desire	An all the second deviced		
Measured Desired Volume			Volume of stock to reach desired concentration		
mg/L	mg/L	mL	mL stock to increase		
0.00	2	0.000		SALT WATER	
0.630	0.75	200		0.024	
1.46	1,5	200		0.048	
3.58	3	200		0.095	
6.40	6	200		0.190	
13.1	12	200		0.381	
20.7	18	200		0.571	

APPENDIX B. STATISTICAL COMPARISONS

Statistical Results: *Eohaustorius estuarius* Test

Constant	Value
Experiment Date	7/28/2017
Experiment ID	Anchor Shelton Harbor
Notebook ID	
Project	Eohaustroius estuarius
Experimenter	
Protocol	Survival

	Group A	Group B	Group C	Group D	Group E	Group F
	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SPI-22	SPI-30
	Y	Y	Y	Y	Y	Y
1	100	90	100	100	100	100
2	95	95	95	100	85	85
3	100	90	90	100	90	100
4	100	100	100	100	90	75
5	100	100	95	95	90	95

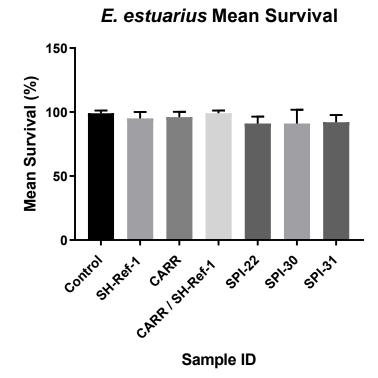
	Group G	
	SPI-31	
1	Y	
1		90
2		85
3		95
4		90
5		100

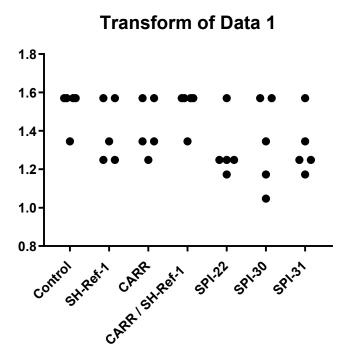
Transform	Α	В	С	D	E	F
Transform	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SPI-22	SPI-30
	Y	Y	Y	Y	Y	Y
1	1.571	1.249	1.571	1.571	1.571	1.571
2	1.345	1.345	1.345	1.571	1.173	1.173
3	1.571	1.249	1.249	1.571	1.249	1.571
4	1.571	1.571	1.571	1.571	1.249	1.047
5	1.571	1.571	1.345	1.345	1.249	1.345

	G
	SPI-31
1	Y
1	1.249
2	1.173
3	1.345
4	1.249
5	1.571

	1way ANOVA ANOVA	
	4	
1	Table Analyzed	Transform of Data 1
2	Data sets analyzed	A : Control
3		
4	ANOVA summary	
5	F	1.781
6	P value	0.1394
7	P value summary	ns
8	Significant diff. among means (P < 0.05)?	No
9	R square	0.2762
10		
11	Brown-Forsythe test	
12	F (DFn, DFd)	0.9168 (6, 28)
13	P value	0.4976
14	P value summary	ns
15	Are SDs significantly different (P < 0.05)?	No
16		
17	Bartlett's test	
18	Bartlett's statistic (corrected)	3.792
19	P value	0.7048
20	P value summary	ns
21	Are SDs significantly different (P < 0.05)?	No
22		
23	ANOVA table	SS
24	Treatment (between columns)	0.262
25	Residual (within columns)	0.6865
26	Total	0.9486
27		
28	Data summary	
29	Number of treatments (columns)	7
30	Number of values (total)	35

	4		
1	-		
2	B : SH-Ref-1	C : CARR	D : CARR / SH-Ref-1
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23	DF	MS	F (DFn, DFd)
24	6	0.04367	F (6, 28) = 1.781
25	28	0.02452	
26	34		
27			
28			
29			
30			


1	
2	E : SPI-22
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	P value
24	P=0.1394
25	
26	
27	
28	
29	
30	


1way ANOVA Multiple comparisons					
	1				
1	Number of families	1			
2	Number of comparisons per family	3			
3	Alpha	0.05			
4					
5	Holm-Sidak's multiple comparisons test	Mean Diff.	Significant?	Summary	Adjusted P Value
6					
7	SH-Ref-1 vs. SPI-22	0.09879	No	ns	0.5472
8	CARR / SH-Ref-1 vs. SPI-30	0.1843	No	ns	0.2043
9	CARR vs. SPI-31	0.09879	No	ns	0.5472
10					
11					
12	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.
13					
14	SH-Ref-1 vs. SPI-22	1.397	1.298	0.09879	0.09903
15	CARR / SH-Ref-1 vs. SPI-30	1.526	1.341	0.1843	0.09903
16	CARR vs. SPI-31	1.416	1.317	0.09879	0.09903

	[
1				
2				
3				
4				
5				
6				
7	B-E			
8	D-F			
9	C-G			
10				
11				
12	n1	n2	t	DF
13				
14	5	5	0.9975	28
15	5	5	1.861	28
16	5	5	0.9975	28

1way ANOVA Descriptive Statistics		Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SPI-22
		Control	30-Rei-1	CARR	CARR / SH-Rei-1	381-22
1	Number of values	5	5	5	5	5
2						
3	Minimum	1.345	1.249	1.249	1.345	1.173
4	25% Percentile	1.458	1.249	1.297	1.458	1.211
5	Median	1.571	1.345	1.345	1.571	1.249
6	75% Percentile	1.571	1.571	1.571	1.571	1.41
7	Maximum	1.571	1.571	1.571	1.571	1.571
8						
9	Mean	1.526	1.397	1.416	1.526	1.298
10	Std. Deviation	0.1009	0.1635	0.1465	0.1009	0.1559
11	Std. Error of Mean	0.0451	0.0731	0.0655	0.0451	0.06972
12						
13	Lower 95% CI	1.4	1.194	1.234	1.4	1.105
14	Upper 95% CI	1.651	1.6	1.598	1.651	1.492

	SPI-30	SPI-31
	[
1	5	5
2		
3	1.047	1.173
4	1.11	1.211
5	1.345	1.249
6	1.571	1.458
7	1.571	1.571
8		
9	1.341	1.317
10	0.2346	0.1542
11	0.1049	0.06898
12		
13	1.05	1.126
14	1.633	1.509

Statistical Results: Neanthes arenaceodentata Test

Constant	Value	
Experiment Date	7/28/2017	
Experiment ID	Anchor Shelton Harbor	
Notebook ID		
Project	Neanthes arenaceodentata	
Experimenter		
Protocol	Survival	

	Group A	Group B	Group C	Group D	Group E	Group F
	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19
	Y	Y	Y	Y	Y	Y
1	100	100	100	100	100	100
2	100	100	100	80	100	100
3	100	100	100	100	100	100
4	100	100	100	100	100	100
5	100	100	100	100	100	100

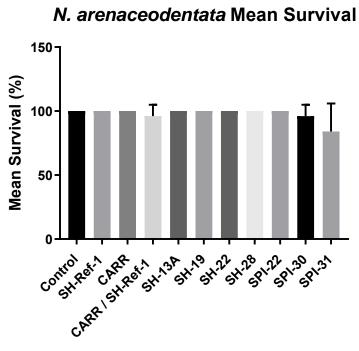
	Group G Group H		roup G Group H Group I		Group K
	SH-22	SH-28	SPI-22	SPI-30	SPI-31
	Y	Y	Y	Y	Y
1	100	100	100	100	100
2	100	100	100	100	100
3	100	100	100	80	100
4	100	100	100	100	60
5	100	100	100	100	60

	Α	В	С	D	E	F
	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19
	Y	Y	Y	Y	Y	Y
1	1.571	1.571	1.571	1.571	1.571	1.571
2	1.571	1.571	1.571	1.107	1.571	1.571
3	1.571	1.571	1.571	1.571	1.571	1.571
4	1.571	1.571	1.571	1.571	1.571	1.571
5	1.571	1.571	1.571	1.571	1.571	1.571

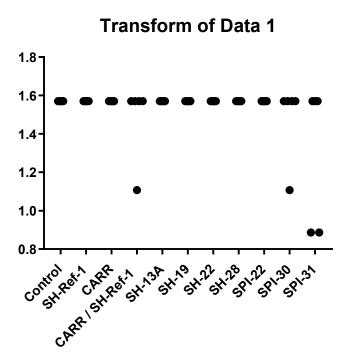
	G	Н	I	J	K
	SH-22	SH-28	SPI-22	SPI-30	SPI-31
	Y	Y	Y	Y	Y
1	1.571	1.571	1.571	1.571	1.571
2	1.571	1.571	1.571	1.571	1.571
3	1.571	1.571	1.571	1.107	1.571
4	1.571	1.571	1.571	1.571	0.886
5	1.571	1.571	1.571	1.571	0.886

	1way ANOVA ANOVA			
	4			
1	Table Analyzed	Transform of Data 1		
2	Data sets analyzed	A : Control		
3				
4	ANOVA summary			
5	F	1.772		
6	P value	0.0946		
7	P value summary	ns		
8	Significant diff. among means (P < 0.05)?	No		
9	R square	0.2871		
10				
11	Brown-Forsythe test			
12	F (DFn, DFd)	1.772 (10, 44)		
13	P value	0.0946		
14	P value summary	ns		
15	Are SDs significantly different (P < 0.05)?	No		
16				
17	Bartlett's test			
18	Bartlett's statistic (corrected)	+infinity		
19	P value	<0.0001		
20	P value summary	***		
21	Are SDs significantly different (P < 0.05)?	Yes		
22				
23	ANOVA table	SS		
24	Treatment (between columns)	0.3652		
25	Residual (within columns)	0.9066		
26	Total	1.272		
27				
28	Data summary			
29	Number of treatments (columns)	11		
30	Number of values (total)	55		

	4		
1			
2	B : SH-Ref-1	C : CARR	D : CARR / SH-Ref-1
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23	DF	MS	F (DFn, DFd)
24	10	0.03652	F (10, 44) = 1.772
25	44	0.0206	
26	54		
27			
28			
29			
30			


A	
1	
2	E : SH-13A
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	P value
24	P=0.0946
25	
26	
27	
28	
29	
30	

	1way ANOVA Multiple comparisons				
	1	I			
1	Number of families	1			
2	Number of comparisons per family	7			
3	Alpha	0.05			
4					
5	Holm-Sidak's multiple comparisons test	Mean Diff.	Significant?	Summary	Adjusted P Value
6					
7	SH-Ref-1 vs. SPI-22	0	No	ns	>0.9999
8	CARR vs. SH-13A	0	No	ns	>0.9999
9	CARR vs. SH-19	0	No	ns	>0.9999
10	CARR vs. SPI-31	0.2739	Yes	*	0.0293
11	CARR / SH-Ref-1 vs. SH-22	-0.09273	No	ns	0.8945
12	CARR / SH-Ref-1 vs. SH-28	-0.09273	No	ns	0.8945
13	CARR / SH-Ref-1 vs. SPI-30	0	No	ns	>0.9999
14					
15					
16	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.
17					
18	SH-Ref-1 vs. SPI-22	1.571	1.571	0	0.09078
19	CARR vs. SH-13A	1.571	1.571	0	0.09078
20	CARR vs. SH-19	1.571	1.571	0	0.09078
21	CARR vs. SPI-31	1.571	1.297	0.2739	0.09078
22	CARR / SH-Ref-1 vs. SH-22	1.478	1.571	-0.09273	0.09078
23	CARR / SH-Ref-1 vs. SH-28	1.478	1.571	-0.09273	0.09078
24	CARR / SH-Ref-1 vs. SPI-30	1.478	1.478	0	0.09078


1				
2				
3				
4				
5				
6				
7	B-I			
8	C-E			
9	C-F			
10	С-К			
11	D-G			
12	D-H			
13	D-J			
14				
15				
16	n1	n2	t	DF
17				
18	5	5	0	44
19	5	5	0	44
20	5	5	0	44
21	5	5	3.017	44
22	5	5	1.021	44
23	5	5	1.021	44
24	5	5	0	44

	way ANOVA criptive Statistics	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A
	1					
1	Number of values	5	5	5	5	5
2						
3	Minimum	1.571	1.571	1.571	1.107	1.571
4	25% Percentile	1.571	1.571	1.571	1.339	1.571
5	Median	1.571	1.571	1.571	1.571	1.571
6	75% Percentile	1.571	1.571	1.571	1.571	1.571
7	Maximum	1.571	1.571	1.571	1.571	1.571
8						
9	Mean	1.571	1.571	1.571	1.478	1.571
10	Std. Deviation	0	0	0	0.2073	0
11	Std. Error of Mean	0	0	0	0.09273	0
12						
13	Lower 95% CI	1.571	1.571	1.571	1.221	1.571
14	Upper 95% CI	1.571	1.571	1.571	1.736	1.571

	SH-19	SH-22	SH-28	SPI-22	SPI-30	SPI-31
	X					
1	5	5	5	5	5	5
2						
3	1.571	1.571	1.571	1.571	1.107	0.8861
4	1.571	1.571	1.571	1.571	1.339	0.8861
5	1.571	1.571	1.571	1.571	1.571	1.571
6	1.571	1.571	1.571	1.571	1.571	1.571
7	1.571	1.571	1.571	1.571	1.571	1.571
8						
9	1.571	1.571	1.571	1.571	1.478	1.297
10	0	0	0	0	0.2073	0.375
11	0	0	0	0	0.09273	0.1677
12						
13	1.571	1.571	1.571	1.571	1.221	0.8312
14	1.571	1.571	1.571	1.571	1.736	1.763

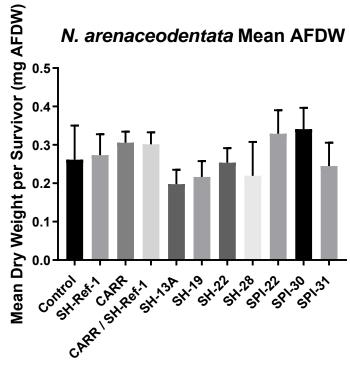
Sample ID

Constant	Value
Experiment Date	7/28/2017
Experiment ID	Anchor Shelton Harbor
Notebook ID	
Project	Neanthes arenaceodentata
Experimenter	
Protocol	Mean Individual Growth per Day (Dry Weight)

Constant	Value
Experiment Date	7/28/2017
Experiment ID	Anchor Shelton Harbor
Notebook ID	
Project	Neanthes arenaceodentata
Experimenter	
Protocol	Mean Individual Growth per Day (AFDW)

	Group A	Group B	Group C	Group D	Group E	Group F	Group G
	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19	SH-22
	Y	Y	Y	Y	Y	Y	Y
1	0.411	0.234	0.301	0.258	0.132	0.249	0.301
2	0.199	0.230	0.330	0.326	0.220	0.174	0.275
3	0.272	0.261	0.307	0.313	0.209	0.218	0.253
4	0.201	0.364	0.330	0.281	0.221	0.265	0.201
5	0.224	0.277	0.260	0.330	0.207	0.176	0.238

	Group H	Group I	Group J	Group K
	SH-28	SPI-22	SPI-30	SPI-31
	Y	Y	Y	Y
1	0.213	0.334	0.307	0.295
2	0.293	0.427	0.433	0.174
3	0.086	0.311	0.348	0.244
4	0.197	0.313	0.325	0.315
5	0.307	0.260	0.292	0.196


	1way ANOVA ANOVA					
1	Table Analyzed	Data 1				
2	Data sets analyzed	A : Control	B : SH-Ref-1	C : CARR	D : CARR / SH-Ref-1	E : SH-13A
3						
4	ANOVA summary					
5	F	3.465				
6	P value	0.0020				
7	P value summary	**				
8	Significant diff. among means (P < 0.05)?	Yes				
9	R square	0.4405				
10						
11	Brown-Forsythe test					
12	F (DFn, DFd)	0.6482 (10, 44)				
13	P value	0.7645				
14	P value summary	ns				
15	Are SDs significantly different (P < 0.05)?	No				
16						
17	Bartlett's test					
18	Bartlett's statistic (corrected)	10.77				
19	P value	0.3756				
20	P value summary	ns				
21	Are SDs significantly different (P < 0.05)?	No				
22						
23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
24	Treatment (between columns)	0.1119	10	0.01119	F (10, 44) = 3.465	P=0.0020
25	Residual (within columns)	0.1421	44	0.00323		
26	Total	0.254	54			
27						
28	Data summary					
29	Number of treatments (columns)	11				
30	Number of values (total)	55				

	1way ANOVA Multiple comparisons					
1	Number of families	1				
2	Number of comparisons per family	7				
3	Alpha	0.05				
4						
5	Sidak's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
6						
7	SH-Ref-1 vs. SPI-22	-0.0558	-0.1569 to 0.04532	No	ns	0.6157
8	CARR vs. SH-13A	0.1078	0.00668 to 0.2089	Yes	*	0.0307
9	CARR vs. SH-19	0.0892	-0.01192 to 0.1903	No	ns	0.1129
10	CARR vs. SPI-31	0.0608	-0.04032 to 0.1619	No	ns	0.5134
11	CARR / SH-Ref-1 vs. SH-22	0.048	-0.05312 to 0.1491	No	ns	0.7684
12	CARR / SH-Ref-1 vs. SH-28	0.0824	-0.01872 to 0.1835	No	ns	0.1727
13	CARR / SH-Ref-1 vs. SPI-30	-0.0394	-0.1405 to 0.06172	No	ns	0.8987
14						
15						
16	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1
17						
18	SH-Ref-1 vs. SPI-22	0.2732	0.329	-0.0558	0.03594	5
19	CARR vs. SH-13A	0.3056	0.1978	0.1078	0.03594	5
20	CARR vs. SH-19	0.3056	0.2164	0.0892	0.03594	5
21	CARR vs. SPI-31	0.3056	0.2448	0.0608	0.03594	5
22	CARR / SH-Ref-1 vs. SH-22	0.3016	0.2536	0.048	0.03594	5
23	CARR / SH-Ref-1 vs. SH-28	0.3016	0.2192	0.0824	0.03594	5
24	CARR / SH-Ref-1 vs. SPI-30	0.3016	0.341	-0.0394	0.03594	5

1			
2			
3			
4			
5			
6			
7	B-I		
8	C-E		
9	C-F		
10	C-K		
11	D-G		
12	D-H		
13	D-J		
14			
15			
16	n2	t	DF
17			
18	5	1.552	44
19	5	2.999	44
20	5	2.482	44
21	5	1.692	44
22	5	1.335	44
23	5	2.293	44
24	5	1.096	44

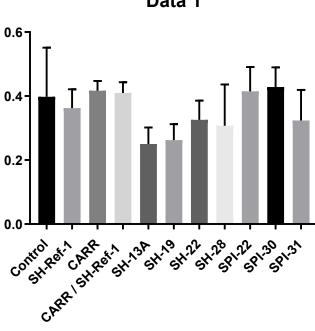
	1way ANOVA							
De	escriptive Statistics	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19	SH-22
	I 							
1	Number of values	5	5	5	5	5	5	5
2								
3	Minimum	0.199	0.23	0.26	0.258	0.132	0.174	0.201
4	25% Percentile	0.2	0.232	0.2805	0.2695	0.1695	0.175	0.2195
5	Median	0.224	0.261	0.307	0.313	0.209	0.218	0.253
6	75% Percentile	0.3415	0.3205	0.33	0.328	0.2205	0.257	0.288
7	Maximum	0.411	0.364	0.33	0.33	0.221	0.265	0.301
8								
9	Mean	0.2614	0.2732	0.3056	0.3016	0.1978	0.2164	0.2536
10	Std. Deviation	0.08865	0.05434	0.02869	0.03105	0.03732	0.0414	0.0378
11	Std. Error of Mean	0.03964	0.0243	0.01283	0.01389	0.01669	0.01852	0.0169
12								
13	Lower 95% CI	0.1513	0.2057	0.27	0.263	0.1515	0.165	0.2067
14	Upper 95% CI	0.3715	0.3407	0.3412	0.3402	0.2441	0.2678	0.3005

	SH-28	SPI-22	SPI-30	SPI-31	
1	5	5	5	5	
2					
3	0.086	0.26	0.292	0.174	
4	0.1415	0.2855	0.2995	0.185	
5	0.213	0.313	0.325	0.244	
6	0.3	0.3805	0.3905	0.305	
7	0.307	0.427	0.433	0.315	
8					
9	0.2192	0.329	0.341	0.2448	
10	0.08864	0.06118	0.05551	0.06092	
11	0.03964	0.02736	0.02483	0.02724	
12					
13	0.1091	0.253	0.2721	0.1692	
14	0.3293	0.405	0.4099	0.3204	

Sample ID

	Group A	Group B	Group C	Group D	Group E	Group F	Group G
	Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19	SH-22
	Y	Y	Y	Y	Y	Y	Y
1	0.669	0.322	0.432	0.353	0.160	0.295	0.397
2	0.312	0.320	0.419	0.427	0.278	0.206	0.378
3	0.373	0.333	0.407	0.416	0.276	0.282	0.313
4	0.317	0.460	0.454	0.416	0.283	0.316	0.257
5	0.317	0.376	0.372	0.438	0.254	0.212	0.285

	Group H	Group I	Group J	Group K
	SH-28	SPI-22	SPI-30	SPI-31
	Y	Y	Y	Y
1	0.282	0.416	0.395	0.402
2	0.438	0.537	0.527	0.226
3	0.127	0.405	0.443	0.317
4	0.264	0.385	0.409	0.438
5	0.426	0.330	0.367	0.235


	1way ANOVA ANOVA					
	1					
1	Table Analyzed	Data 1				
2	Data sets analyzed	A : Control	B : SH-Ref-1	C : CARR	D : CARR / SH-Ref-1	E : SH-13A
3						
4	ANOVA summary					
5	F	3.102				
6	P value	0.0045				
7	P value summary	**				
8	Significant diff. among means (P < 0.05)?	Yes				
9	R square	0.4135				
10						
11	Brown-Forsythe test					
12	F (DFn, DFd)	0.7625 (10, 44)				
13	P value	0.6631				
14	P value summary	ns				
15	Are SDs significantly different (P < 0.05)?	No				
16						
17	Bartlett's test					
18	Bartlett's statistic (corrected)	18.79				
19	P value	0.0430				
20	P value summary	*				
21	Are SDs significantly different (P < 0.05)?	Yes				
22						
23	ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
24	Treatment (between columns)	0.2065	10	0.02065	F (10, 44) = 3.102	P=0.0045
25	Residual (within columns)	0.2929	44	0.006657		
26	Total	0.4994	54			
27						
28	Data summary					
29	Number of treatments (columns)	11				
30	Number of values (total)	55				

	1way ANOVA Multiple comparisons					
1	Number of families	1				
2	Number of comparisons per family	7				
3	Alpha	0.05				
4						
5	Sidak's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant?	Summary	Adjusted P Value
6						
7	SH-Ref-1 vs. SPI-22	-0.0524	-0.1976 to 0.09278	No	ns	0.9296
8	CARR vs. SH-13A	0.1666	0.02142 to 0.3118	Yes	*	0.0164
9	CARR vs. SH-19	0.1546	0.00942 to 0.2998	Yes	*	0.0310
10	CARR vs. SPI-31	0.0932	-0.05198 to 0.2384	No	ns	0.4325
11	CARR / SH-Ref-1 vs. SH-22	0.084	-0.06118 to 0.2292	No	ns	0.5601
12	CARR / SH-Ref-1 vs. SH-28	0.1026	-0.04258 to 0.2478	No	ns	0.3171
13	CARR / SH-Ref-1 vs. SPI-30	-0.0182	-0.1634 to 0.127	No	ns	0.9999
14						
15						
16	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1
17						
18	SH-Ref-1 vs. SPI-22	0.3622	0.4146	-0.0524	0.0516	5
19	CARR vs. SH-13A	0.4168	0.2502	0.1666	0.0516	5
20	CARR vs. SH-19	0.4168	0.2622	0.1546	0.0516	5
21	CARR vs. SPI-31	0.4168	0.3236	0.0932	0.0516	5
22	CARR / SH-Ref-1 vs. SH-22	0.41	0.326	0.084	0.0516	5
23	CARR / SH-Ref-1 vs. SH-28	0.41	0.3074	0.1026	0.0516	5
24	CARR / SH-Ref-1 vs. SPI-30	0.41	0.4282	-0.0182	0.0516	5

1			
2			
3			
4			
5			
6			
7	B-I		
8	C-E		
9	C-F		
10	C-K		
11	D-G		
12	D-H		
13	D-J		
14			
15			
16	n2	t	DF
17			
18	5	1.015	44
19	5	3.228	44
20	5	2.996	44
21	5	1.806	44
22	5	1.628	44
23	5	1.988	44
24	5	0.3527	44

	1way ANOVA							
Descriptive Statistics		Control	SH-Ref-1	CARR	CARR / SH-Ref-1	SH-13A	SH-19	SH-22
	I 							
1	Number of values	5	5	5	5	5	5	5
2								
3	Minimum	0.312	0.32	0.372	0.353	0.16	0.206	0.257
4	25% Percentile	0.3145	0.321	0.3895	0.3845	0.207	0.209	0.271
5	Median	0.317	0.333	0.419	0.416	0.276	0.282	0.313
6	75% Percentile	0.521	0.418	0.443	0.4325	0.2805	0.3055	0.3875
7	Maximum	0.669	0.46	0.454	0.438	0.283	0.316	0.397
8								
9	Mean	0.3976	0.3622	0.4168	0.41	0.2502	0.2622	0.326
10	Std. Deviation	0.1538	0.05917	0.03051	0.03314	0.05164	0.0501	0.05991
11	Std. Error of Mean	0.06877	0.02646	0.01364	0.01482	0.02309	0.02241	0.02679
12								
13	Lower 95% CI	0.2067	0.2887	0.3789	0.3688	0.1861	0.2	0.2516
14	Upper 95% CI	0.5885	0.4357	0.4547	0.4512	0.3143	0.3244	0.4004

	SH-28	SPI-22	SPI-30	SPI-31
1	5	5	5	5
2				
3	0.127	0.33	0.367	0.226
4	0.1955	0.3575	0.381	0.2305
5	0.282	0.405	0.409	0.317
6	0.432	0.4765	0.485	0.42
7	0.438	0.537	0.527	0.438
8				
9	0.3074	0.4146	0.4282	0.3236
10	0.1286	0.07601	0.06164	0.09573
11	0.05753	0.03399	0.02757	0.04281
12				
13	0.1477	0.3202	0.3517	0.2047
14	0.4671	0.509	0.5047	0.4425

Data 1

Statistical Results: Mytilus galloprovnicialis Larval Test

Constant	Value	
Experiment Date	8/1/2017	
Experiment ID	Anchor Shelton Harbor	
Notebook ID		
Project	Mytilus galloprovincialis	
Experimenter		
Protocol		

	Group A Group B Group C		Group D	Group E	Group F	Group G	
	Control	SH-Ref-1	CARR/SH-Ref-1	CARR	CR-022	SH-04	SH-14
	Y	Y	Y	Y	Y	Y	Y
1	102.6	80.3	80.3	81.8	75.7	78.2	83.6
2	90.7	97.9	80.7	92.2	74.2	90.4	82.5
3	84.6	83.2	81.8	86.1	80.7	94.7	79.3
4	90.4	83.6	84.6	80.7	79.3	76.4	81.8
5	97.2	83.2	75.0	83.6	60.6	83.9	87.9

	Group H	Group I	Group J	Group K	Group L	Group M
	SH-19	SH-21	SH-22	SH-24	SPI-22	SPI-30
	Y	Y	Y	Y	Y	Y
1	70.3	74.2	76.4	82.9	62.4	76.8
2	67.8	77.8	68.1	81.4	66.0	75.3
3	63.5	80.7	88.6	74.6	62.8	82.1
4	66.4	87.2	72.8	82.5	69.6	80.3
5	58.5	74.6	68.1	77.8	57.7	65.3

	Group N
	SPI-31
1	Y
1	82.5
2	84.6
3	86.4
4	84.6
5	75.7

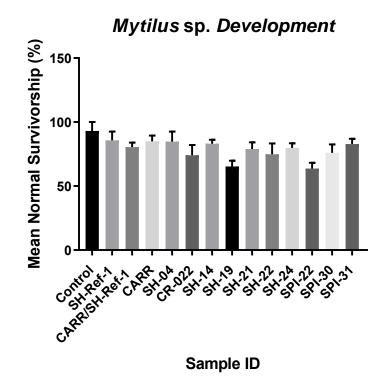
	A B		С	D	E	F
	Control SH-Ref-1		CARR/SH-Ref-1	CARR	CR-022	SH-04
	Y	Y	Y	Y	Y	Y
1		1.111	1.111	1.130	1.055	1.085
2	1.261	1.425	1.116	1.288	1.038	1.256
3	1.168	1.148	1.130	1.189	1.116	1.338
4	1.256	1.154	1.168	1.116	1.098	1.064
5	1.403	1.148	1.047	1.154	0.892	1.158

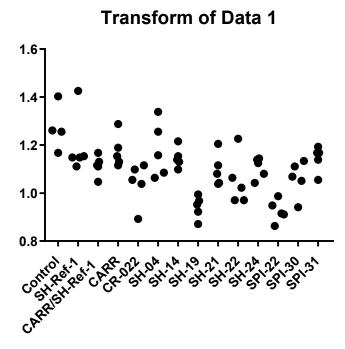
	G	Н	I	J	К	L
	SH-14	SH-19	SH-21	SH-22	SH-24	SPI-22
	Y	Y	Y	Y	Y	Y
1	1.154	0.994	1.038	1.064	1.144	0.911
2	1.139	0.967	1.080	0.971	1.125	0.948
3	1.098	0.922	1.116	1.226	1.043	0.915
4	1.130	0.952	1.205	1.022	1.139	0.987
5	1.216	0.871	1.043	0.971	1.080	0.863

	М	N			
	SPI-30	SPI-31			
	Y	Y			
1	1.068	1.139			
2	1.051	1.168			
3	1.134	1.193			
4	1.111	1.168			
5	0.941	1.055			

	1way ANOVA ANOVA		
1	Table Analyzed	Transform of Data 1	
2	Data sets analyzed	A : Control	B : SH-Ref-1
3			
4	ANOVA summary		
5	F	7.12	
6	P value	<0.0001	
7	P value summary	****	
8	Significant diff. among means (P < 0.05)?	Yes	
9	R square	0.6273	
10			
11	Brown-Forsythe test		
12	F (DFn, DFd)	0.4923 (13, 55)	
13	P value	0.9197	
14	P value summary	ns	
15	Are SDs significantly different (P < 0.05)?	No	
16			
17	Bartlett's test		
18	Bartlett's statistic (corrected)	14.59	
19	P value	0.3334	
20	P value summary	ns	
21	Are SDs significantly different (P < 0.05)?	No	
22			
23	ANOVA table	SS	DF
24	Treatment (between columns)	0.5654	13
25	Residual (within columns)	0.336	55
26	Total	0.9014	68
27			
28	Data summary		
29	Number of treatments (columns)	14	
30	Number of values (total)	69	

1			
2	C : CARR/SH-Ref-1	D : CARR	E : CR-022
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
	MS	F (DFn, DFd)	P value
	0.04349	F (13, 55) = 7.12	P<0.0001
25	0.006108		
26			
27			
28			
29			
30			


	1way ANOVA Multiple comparisons				
1	Number of families	1			
2	Number of comparisons per family	9			
3	Alpha	0.1			
4					
5	Holm-Sidak's multiple comparisons test	Mean Diff.	Significant?	Summary	Adjusted P Value
6					
7	SH-Ref-1 vs. SPI-22	0.2728	Yes	****	<0.0001
8	CARR/SH-Ref-1 vs. SH-14	-0.03309	No	ns	0.9405
9	CARR/SH-Ref-1 vs. SH-22	0.06368	No	ns	0.7959
10	CARR/SH-Ref-1 vs. SH-24	0.008062	No	ns	0.9834
11	CARR/SH-Ref-1 vs. SPI-30	0.0534	No	ns	0.8349
12	CARR vs. SH-04	-0.004873	No	ns	0.9834
13	CARR vs. SH-19	0.2338	Yes	***	0.0001
14	CARR vs. SPI-31	0.03074	No	ns	0.9405
15	CR-022 vs. SH-21	-0.05634	No	ns	0.8349
16					
17					
18	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.
19					
20	SH-Ref-1 vs. SPI-22	1.197	0.9247	0.2728	0.04943
21	CARR/SH-Ref-1 vs. SH-14	1.114	1.147	-0.03309	0.04943
22	CARR/SH-Ref-1 vs. SH-22	1.114	1.051	0.06368	0.04943
23	CARR/SH-Ref-1 vs. SH-24	1.114	1.106	0.008062	0.04943
24	CARR/SH-Ref-1 vs. SPI-30	1.114	1.061	0.0534	0.04943
25	CARR vs. SH-04	1.175	1.18	-0.004873	0.04943
26	CARR vs. SH-19	1.175	0.9414	0.2338	0.04943
27	CARR vs. SPI-31	1.175	1.145	0.03074	0.04943
28	CR-022 vs. SH-21	1.04	1.096	-0.05634	0.04943


1				
2				
3				
4				
5				
6				
7	B-L			
8	C-G			
9	C-J			
10	С-К			
11	C-M			
12	D-F			
13	D-H			
14	D-N			
15	E-I			
16				
17				
18	n1	n2	t	DF
19				
20	5	5	5.518	55
21	5	5	0.6693	55
22	5	5	1.288	55
23	5	5	0.1631	55
24	5	5	1.08	55
25	5	5	0.09859	55
26	5	5	4.73	55
27	5	5	0.6218	55
28	5	5	1.14	55

1way ANOVA Descriptive Statistics					0455	0.5.000
		Control	SH-Ref-1	CARR/SH-Ref-1	CARR	CR-022
1	Number of values	4	5	5	5	5
2						
3	Minimum	1.168	1.111	1.047	1.116	0.8922
4	25% Percentile	1.19	1.13	1.079	1.123	0.9651
5	Median	1.258	1.148	1.116	1.154	1.055
6	75% Percentile	1.367	1.29	1.149	1.238	1.107
7	Maximum	1.403	1.425	1.168	1.288	1.116
8						
9	Mean	1.272	1.197	1.114	1.175	1.04
10	Std. Deviation	0.09726	0.1286	0.04358	0.06866	0.08841
11	Std. Error of Mean	0.04863	0.0575	0.01949	0.0307	0.03954
12						
13	Lower 95% CI	1.117	1.038	1.06	1.09	0.9302
14	Upper 95% CI	1.426	1.357	1.168	1.261	1.15

	SH-04	SH-14	SH-19	SH-21	SH-22	SH-24
1	5	5	5	5	5	5
2						
3	1.064	1.098	0.8708	1.038	0.9706	1.043
4	1.074	1.114	0.8965	1.04	0.9706	1.061
5	1.158	1.139	0.9525	1.08	1.022	1.125
6	1.297	1.185	0.9809	1.16	1.145	1.142
7	1.338	1.216	0.9944	1.205	1.226	1.144
8						
9	1.18	1.147	0.9414	1.096	1.051	1.106
10	0.1161	0.04314	0.04735	0.06842	0.1057	0.04366
11	0.05193	0.01929	0.02117	0.0306	0.04726	0.01953
12						
13	1.036	1.094	0.8827	1.011	0.9194	1.052
14	1.324	1.201	1	1.181	1.182	1.16

	SPI-22	SPI-30	SPI-31		
	Г 				
1	5	5	5		
2					
3	0.8627	0.9409	1.055		
4	0.8867	0.9958	1.097		
5	0.9148	1.068	1.168		
6	0.9675	1.122	1.18		
7	0.9868	1.134	1.193		
8					
9	0.9247	1.061	1.145		
10	0.04623	0.07483	0.05339		
11	0.02067	0.03346	0.02388		
12					
13	0.8673	0.968	1.078		
14	0.9821	1.154	1.211		

APPENDIX C. Supporting Documents

Chain of Custody Record & Laboratory Analysis Request

P Pri P	Laborator, mber: Date: Project Name: Shelton Harborist Toject Number: 110008-01.01 Diject Manager: Nathan Socco None Number: 206-903-3385 ment Method:	prsv		Containers	ssay	Bioassay	ioassay		s aramete	ers					V ANCHOR QEA
ine 1	Field Sample ID	Collection Date/Time ₹/12/2017 0855	Matrix 5→	No. of	× Larval Bioassay	K Polychaete Bioassay		X Archive, 4°C							Comments/Preservation
3	54-19-56-170712 54-28-56-170712 54-14-56-170712 54-21-56-170712	1225 1620 1715	5-3	N C C	XXX	X X		X X X							11.4°C, 3.7°C +11 9.2°C, 11.4°C, 77°C, 11 9.0°C, 11.4°C, 77°C, 11 9.0°C, 11.4°C 11
6 4		1800 7/13/2017 0740 0820 0400		- Wai a	$\frac{\lambda}{\lambda}$	x									1.0°0, 114°0 111 1.2°0, 110°0 11 1.2°0, 11.0°0 11 1.2°0, 11.0°0 11
	SPJ-30-SG-170713 SH-24-SG-170713 SPJ-31-5G-170713	0940 1005 1035		- 13-	x										1.0°C 1 1.0°C 1 1.2°C 1.6°, 111
25	CERT SC TREAKS	他每	5						+						4.0°C 1
5 N	otes:				1										
F.	ellinguished By: Eli Partmon t gnature/Printed Name	Company: <u>/</u> (2:00	7/14	QEA 1/2 Date/T	91	7		Received By: JWLIA Signature/Prin	Bau.V ed Name	n	tui	ß	aun	1	Company: EcoAnalysts 7/15/17 1150 Date/Time
	linquished By: inature/Printed Name	Company;	C	Date/T	ime			Received By: Signature/Print	ed Name						Company: Date/Time

Ammonia and Sulfide Analysis Record

Client/Project: Organism: Test Duration (days): SHelton Heurbor NA NA PRETEST / INITIAL / FINAL / OTHER (circle one) DAY of TEST: NA Bulk OVERLYING (OV) / POREWATER (PW) (circle one) / Comments: **Calibration Standards Temperature** Sample temperature should be within +1°C of Date: **Temperature:** standards temperature at time and date of analysis. 7/18/17 19.8°C Calc-Date of Date of Sample Measured Ammonia Sample Sample ID or Conc. Temp Sal Multiulated Sampling and Reading and Preserved Volume Sulf. Value pН Description °C or Rep (ppt) plier Sulf. (Y/N)Initials Initials (mg/L)(mL) (mg/L)(mg/L)SH-22 7/18/17 UB/HE 7/18/17 UB/HE BUIK 5.61 20.1 27 0.022 10 0.22 7.4 N SH -19. 19.9 7.4 2.55 16 0.014 10 0.14 I 514-28 2.98 20.Ò 7.3 26 0.12 0.012 10 ١ 27 SH - 14 7.3 1 2.15 20.0 0.036 19.9 10 SH-21 3.67 7.4 26 0.112 SH - 04 4.53 19.9 7.3 26 0.010 10 0.10 SH - 13A 2.46 20.0 7.1 27 0.017 6.72 24001 SPI-22 20.4 7.3 26 0.141 100 14.1 26 SPI-30 HA 11.8 7.1 0.590 59.0 20.2 D.1 100 24 26 517-24 7.04 21.5 0.075 7.7 0.075 10 1 SPI-3] 8.41 10.4 7.3 V 0.011

Page 1 of

7/18 (2) Sample dilution required Ju 7/19/17.

1) MH

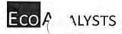
Ha

Wet-Sieve Procedure for Determining Percent Fines (<63 µm) of Sediment

DATE: 17	CLIENT:	project:	5
7/18/18 0	Anchor	Set shelton Harbo	
	Innewor	0	

Procedure:

- 1. Collect 50 mL of sediment to be analyzed
- 2. Transfer sediment to a #230 (63 µm) testing sieve
- 3. Rinse sieve thoroughly with a stream of water until water flowing through the sieve is clear


4. Transfer all retained material to a 100mL graduated cylinder using a small funnel and DI squirt bottle

5. Allow sediment to settle. Record the volume of sediment retained below.

SAMPLE ID:	INITIAL VOLUME OF SEDIMENT (mL)	VOLUME OF SEDIMENT RETAINED (mL)	(INIT VOL - VOL RETAINED) * 2	Estimated Percent Fines
19	50	26	(50-26)×2 =	48
22		32	(50-32)×2 =	36
14		34	(50-34)×2 =	32
71		19	(50-19)×2 =	62
24		31	(50-31)×2 =	38
04		26	(50-26)×2 =	48
28		36	(50-36)x2 =	28
13		27	(50-27)×2	46
30		33	(50-33)×2 =	34
SPI - 22		45	(50-451 =	10
5P1-31	S/	22	(50-22)×2 =	56
			(w)	
			-	
			-	1 mar 1
		1		
-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			-	
				1
			-	

Owing year Ar 7/18 @ In Ha 7/18

CHAIN OF CUSTODY

EcoAnalysts, Inc. 4770 NE View Dr., Port (ble, WA. 98364 (260) 461 5784

Destination: PG Las	Sample	e Originator (Organiza	tion) to Analus B	1.1FN	Report Results To:			Phone: (360) 461-3					
Destination Contact: Lulia Baun	PERSO	ON WHO COLLECTE	D SAMPLE:	un Filler	Contact Name:	N		Fax:					
Destination: PG Lab Destination Contact: Lulia Baum Date: 7/22/17 Furn-Around-Time: N/A Project Name:	Addres	70 NE VI	100) EoAnalys B DSAMPLE: Scamp & Hill ew Pr, Port G 8364	sumble, WA	Address:			Email:					
Project Name:	Phone:	360 29	7 6040	1	Analyses:		Invoicing To:	Invoicing To:					
Shelton Hurbor	Fax:			9			Comments or Spec	pecial Instructions:					
Contract/PO;	E-mail	CANOKAMA	EECO ANALYSB.CO	m			har -						
	Matrix	Volume & Type of Container	Date & Time				Preservation	Sample Temp Upon Receipt	LAB ID				
$\begin{array}{c c} 1 & CARR & C \\ \hline & 2 & CR - 22 \\ \hline & 3 & SH - Ref - 1 \\ \hline & 4 & CR - Q' & Z2 \end{array}$	Set	3 gal bag	7/22/17 1600				4°C		P170772.01				
2 CR-22						1000		1.2.2.1	P170722.02				
3 SH - Ref - 1		1					-/		P17-0722.03				
4 CR - 0 22	Y	↓ ↓	1						P170722.04				
5					-C								
6					- 10		14						
7				· · · · · · · · · · · · · · · · · · ·	2 I' 'L								
8				1				_					
9					1								
10				A									
11				1		100.00							
12						e the							
13													
4							PT 1						
15						1							
16													
17													
18													
19			·										
20								1					
Relinquished by:		Recieved	by:		Relinquished by			Recieved by:	Matrix Codes				
	t Name:			Print Name:			Print Name:		FW = Fresh Water				
gnature: Sign	nature:			Signature:			Signature:						
filiation: Affilia	ation:	-		Affiliation:			SB = Suit & Affiliation:						
ate/Time: Date	e/Time:			Date/Time:			Date/Time:		SS = Soil & Sediment				

Wet-Sieve Procedure for Determining Percent Fines (<63 μm) of Sediment

DATE:	CLIENT:	PROJECT:
7124/17	Anchor	shelton

Procedure:

- 1. Collect 50 mL of sediment to be analyzed
- 2. Transfer sediment to a #230 (63 µm) testing sieve
- 3. Rinse sieve thoroughly with a stream of water until water flowing through the sieve is clear
- 4. Transfer all retained material to a 100mL graduated cylinder using a small funnel and DI squirt bottle
- 5. Allow sediment to settle. Record the volume of sediment retained below.

SAMPLE ID:	INITIAL VOLUME OF SEDIMENT (mL)	VOLUME OF SEDIMENT RETAINED (mL)	(INIT VOL - VOL RETAINED) * 2	Estimated Percent Fines
517-165	50	45	50-45-, 5 x2 =	10
CAPE	50	24	50-24=26×2 =	52%
CR.22	50	46	50-46=4xZ = =	87
CAPE CE-72 CE-72	50	14	50-46=4x2 = 50-14=36.2 =	721
•			=	
CARR/SH	50	36	50-36 = 14.2 =	287.
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	
			=	

₹/28 ⁻ Organism:	T		A /	-		Batch No.						
		_	0845	5		ATS						
						- /						
Neur	othes	arenac	eodenta	ta								
Source / Su	pplier:											
Aqua	hic Tox	Supp	rt									
No. Ordered	1:	No	. Receive	d:		rce Batch:		-				
t	560		T II				atch date, etc.)					
20		- 1 h	616	0 11ge= 1/18 11/1F								
Condition of	t Organis	ms:		Appro	ximate Siz	e or Age:						
90	500			(Days from hatch, life stage, size class, etc.):								
	00			14 -18 days								
Shipper:	Counter			BofL	(Tracking	No.)						
	Conter			MA								
Condition of	Containe	er:		Receiv	ed By:							
_	Gov C	ļ		UB								
	ainer D.O. Temp. Con		Cond Sal. (Includ Units)) pH	pH (Units)	# Dead	% Dead*	Tech. (Initials				
01	13.5	18.8	3(22 7.6	0		UB				
					-			1.				
			1									
>10% contact la	b manager											
otes: ① com ② MrR			-									

ORGANISM RECEIPT LOG

.

Aquatic Toxicology Support 1849 Charleston Beach Road West Bremerton, Washington 98312 (360) 813-1202

Order Summary

umber Shipped: $560 \pm 109_{6}$
alinity (ppt): 30

Tival.

Date:		Tir	me:	e: Bat			tch No.				
7/271	17		1230			NAS 49	50				
Organism. Qo					I						
Source / S	\cup				_						
	NAS										
No. Ordere		No	. Receive			Source Batch: Collection date, h	atch date, etc.)				
10	00		~110	00 collected 745119							
Condition	of Organis 90			Approximate Size or Age: (Days from hatch, life stage, size class, etc.): 3 - 5 mm							
Shipper:	Fele	×			L (Tracki			0			
Condition of O	1.1	er:		Rece	eived By:	to2		<u> </u>			
Container	D.O. (mg/L)	Temp. (°C)	Cond. Sal. (Inclue Units	de	pH (Units)	# Dead	% Dead*	Tech. (Initials)			
(D-					\geq	0	-	A			
								P			
f >10% contact	t lab manager										
lotes:	054	Hen .	7127		$\overline{\mathbb{C}}$	shipped	dry				

ORGANISM RECEIPT LOG

~

Northwestern Aquatic Sciences 3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

SOLD TO: EcoAnalysts		D	O.W. D. 4000 - D
4729 NE View	Dr.	Brian Hester/	Collin Ray/Hillary Eichole 360.297.6040
P.O. Box 216			Julia Baum
Port Gamble W	A 98364		360.509.4141
FedEx# 1817-5	747-7		
DATE OF SHIPMENT: 7	-26-17		
	ANIMAL	HISTORY	
Species		Age/Size	Number Shipped
Eohaustorius estuarius		3-5mm	1000 + 10%
	WATER QUALITY A	T TIME OF SHIPMENT	
Temperature (°C): 15.0	pH: 8,2	Salinity (ppt): 29.0	D.O. (mg/L): 😽. O
Other:			
PACKAGED BY:	es Nalcaham	DATE: 7-2	-6-12
FIELD COLLECTION/C	ULTURE NOTES		
	and the		
Collected 7-25-17 from Yaq	uina Bay, OR.	- 1 ⁻	
Held at 15°C in aerated wate	°C, Salinity 32.0 ppt.; salinity er.	adjusted up ~5 ppt.	
ADDITIONAL COMMEN	VTS		
P.O.# PGL 1324			

PLEASE RETURN ALL SHIPPING MATERIALS

If you have any questions, Please call Gary Buhler or Gerald Irissarri at (541) 265-7225. Thank You.

ORGANISM RECEIPT LOG

Date: Time: Batch No. 7125/17-1300 TS 2849 Organism: My filus Source / Supplier: Taylor Shellfish No. Ordered: No. Received: Source Batch: Collection date, hatch date, etc.): 10 165 10 165 rollected HZY Condition of Organisms: Approximate Size or Age: (Days from hatch, life stage, size class, etc.): 9002 ult Shipper: B of L (Tracking No.) Feder 7872 7434 2849 **Condition of Container:** Received By: 900 Cond. or D.O. Temp. Container Sal. pH Tech. (mg/L)# Dead (°C) % Dead* (Include (Units) (Initials) Units) 1 *if >10% contact lab manager Oshipped dry Notes: He 7/25

MAINTENANCE LOG FOR CULTURES

ORGANISM: <u>Eohaustaurius</u> LOCATION: <u>Bath</u>9

Date	Feed AM/PI		Tub No.	D.O.	Temp (°C)	Cond/	рН	H ₂ O Change	Organisms appear healthy (Y/N)	# Mort	% Mort*	Init.	Comments
7/28/17			1	8.1	15.6	28		DAFT	Y	()	-	UB	
7/29/17	-	_	i_	8.1	15.6	28	8.0	FT	Υ	Ö	-	UB	
							-						
												-	
												-	
			_	1			-	-					

MAINTENANCE LOG FOR CULTURES

ORGANISM: <u>Mytilus</u> sp. LOCATION: <u>Bootn 9</u>

Batch Nu	mb	er: T	52849	1		Date	Received	1: 7/25	117	Initial	# of Organi	sms: 10	lbs
Date	F	⁼ eed M/PM	Tub No.	D.O.	Temp (°C)	Cond/	pН	H ₂ O Change	Organisms appear healthy (Y/N)	# Mort	% Mort*	Init.	Comments
+/26/17-	-	-	1	4.40	14.2	30	7.5	FT	Y	0		WS	
					_								
	1										1.000		
											1		
	-												
_						1							
			1 = 1	· · · · · ·			_						
				i ī	- 11								
			1	(a.)									

FT = Flow-through *if >10% notify lab manager () Increased air flow, UB 7/26

4/3/17

Appendix B Interim Action Alternative Cost Estimates

Table B-1 Cost Estimate for Alternatives

					Quar	ntities			Ca	osts	
				Alt 1	Alt 2	Alt 3	Alt 4	Alt 1	Alt 2	Alt 3	Alt 4
Cost Element	Unit Cost	Unit	Basis	Removal	Capping	ENR	MNR	Removal	Capping	ENR	MNR
Removal, Dewatering, Transportation, Transload, and D	isposal	-			-			-		-	
Dredge to Barge and Dewater	\$30	су	Unit cost based on project experience in Puget Sound and recent bids. Quantities calculated in Table B-2.	80,800	0	0	0	\$2,424,000	\$0	\$0	\$0
Transport by Barge from Shelton to Lafarge (Seattle)	\$16	су	150 miles round trip. Costs based on 4 days round trip (including offload) for 2000 cy barge at \$8,000/day for barge + tug.	80,800	0	0	0	\$1,292,800	\$0	\$0	\$0
Transload, Transport (Rail) and Tipping	\$120	су	Based on recent bids for transload at the Lafarge facility, transport, and tipping.	80,800	0	0	0	\$9,696,000	\$0	\$0	\$0
Subtotal Removal								\$13,412,800	\$0	\$0	\$0
Sand and Gravel Purchase, Delivery, Transload and Plac	e										
Purchase from Local Quarry	\$8	су	Cost of pit run from Shelton-area pits, includes transport to the Shelton Harbor shoreline. Does not account for transload to barge. Quantities calculated in Table B-2.	80,800	23,100	5,900	0	\$646,400	\$184,800	\$47,200	\$0
Transload from Stockpile to Barge	\$5	су	Costs based on project experience and includes loading equipment and labor.	80,800	23,100	5,900	0	\$404,000	\$115,500	\$29,500	\$0
Material Placement From Barge	\$25	су	Unit cost based on project experience in Puget Sound and recent bids.	80,800	23,100	5,900	0	\$2,020,000	\$577,500	\$147,500	\$0
Subtotal Placement								\$3,070,400	\$877,800	\$224,200	\$0
Total Construction Costs		-			-	-	_			-	
Subtotal Construction								\$16,483,200	\$877,800	\$224,200	\$0
Additional Costs			1								
Mobilization/Demobilization	15%		Percentage of construction costs. Typical FS-level estimate.	1	1	1	0	\$2,472,480	\$131,670	\$33,630	\$0
Tax	8.5%		Tax rate in Shelton.					\$1,401,072	\$74,613	\$19,057	\$0
Design, Permitting, and Construction Support	20%		Percentage of construction costs. Typical FS-level estimate.					\$3,296,640	\$175,560	\$44,840	\$0
Contingency	30%		Percentage of construction costs. Typical FS-level estimate.					\$4,944,960	\$263,340	\$67,260	\$0
Post-Construction Monitoring	\$70,000	per event	Based on project experience.	2	5	10	20	\$140,000	\$350,000	\$700,000	\$1,400,000
Total Costs			· · · · · · · · · · · · · · · · · · ·								
Total								\$28,738,352	\$1,872,983	\$1,088,987	\$1,400,000
Total (Rounded)								\$29,000,000	\$1,900,000	\$1,100,000	\$1,400,000
Notes:											
Alt: alternative											

cy: cubic yard

ENR: enhanced natural recovery MNR: monitored natural recovery

Table B-2 Volume Estimate for Alternatives

		Alternative 1 - Removal + Backfill			I	Alternative 2 - Capping		Alternative 3 - ENR	
SMA	Area (acres)	Contaminant Depth (Neatline) (ft)	Overdepth (ft)	Side Slope Allowance	Volume (cy)	Thickness Including Overplacement (ft)	Volume (cy)	Thickness (ft)	Volume (cy)
1	4.4	2	1	20%	25,500	1.5	10,600	0.5	3,500
2	0.6	2	1	20%	3,500	1.5	1,500	0.5	500
3 (Slope)	2.1	10	1	30%	49,400	3.0	10,400	0.5	1,700
3 (Flat)	1.4	4	1	20%	2,400	1.5	600	0.5	200
Total	8.5			•	80,800		23,100		5,900
Construction Duration (Days)					360		58		15
Construction Duration (Months)					18		3		1
Construction Duration (Seasons)					3		0.5		0.1
Removal Placement	Production Rate (cy/day) 500 400								
Construction Season I	Days Calculation								
Start of Construction Season			15-Jul						
End of Construction Season 15-Feb			15-Feb						
Total Days			215						
Weekend Days			61						
Holidays			7						
Delays (Permitting, Contracting, Mob/Demob, etc.) 20			20						
Total Production Days			127						

Notes:

cy: cubic yard

ENR: enhanced natural recovery

ft: foot

SMA: Sediment Management Area

Page 1 of 1 January 2018