

SoundEarth Strategies, Inc. 2811 Fairview Avenue East, Suite 2000 Seattle, Washington 98102

REMEDIAL INVESTIGATION AND CLEANUP ACTION REPORT

Site:

Modera Jackson Site 1803–1905 South Jackson Street Seattle, Washington

Report Date: January 29, 2018

Prepared for:

South Jackson Street Development LLC 1417 116th Avenue Northeast, Suite 208 Bellevue, Washington

Remedial Investigation and Cleanup Action Report

Prepared for:

South Jackson Street Development LLC 1417 116th Avenue Northeast, Suite 208 Bellevue, Washington 98004

Modera Jackson Site 1803–1905 South Jackson Street Seattle, Washington 98144

Project No.: 0811-005

Prepared by:

Tal

Clare Tochilin, LG Project Hydrogeologist

Reviewed by:

Ryan K. Bixby, LG President

January 29, 2018

lln

Rob Roberts Senior Scientist

ACRO	ACRONYMS AND ABBREVIATIONSv			
1.0 IN	ITRO	DUCTION	1	
	1.1	PURPOSE AND OBJECTIVE	. 1	
	1.2	REPORT ORGANIZATION		
2.0 SI	TE BA	CKGROUND	. 2	
	2.1	PROPERTY DESCRIPTION	. 2	
	2.2	SURROUNDING PARCEL DESCRIPTIONS	. 3	
		2.2.1 North	3	
		2.2.2 South	3	
		2.2.3 East	3	
		2.2.4 West	3	
	2.3	LAND USE DESIGNATION	. 3	
	2.4	HISTORICAL LAND USE OF PROPERTY	. 3	
	2.5	HISTORICAL LAND USE OF SURROUNDING PARCELS	. 4	
		2.5.1 North	4	
		2.5.2 East	4	
		2.5.3 South	4	
		2.5.4 West	5	
		2.5.5 Surrounding Properties	5	
	2.6	FUTURE LAND USE	. 5	
	2.7	ENVIRONMENTAL SETTING	. 5	
		2.7.1 Meteorology	5	
		2.7.2 Topography	6	
		2.7.3 Groundwater Use	6	
	2.8	GEOLOGIC AND HYDROGEOLOGIC SETTING	. 6	
		2.8.1 Regional Geology and Hydrogeology	6	
		2.8.2 Site Geology	7	
		2.8.3 Site Hydrology	7	
3.0 PF	REVIO	OUS INVESTIGATIONS	.8	
	3.1	ENVIRONMENTAL ASSOCIATES, INC. 2000 PHASE I ENVIRONMENTAL AUDIT	. 8	
	3.2	EAI 2011 PHASE I ENVIRONMENTAL SITE ASSESSMENT		
	3.3	SLOTTA DESIGN AND CONSULTING 2012 SUBSURFACE INVESTIGATION REPORT		
	3.4	GEOTECH CONSULTANTS, INC. 2012 PRELIMINARY GEOTECHNICAL	. ,	
	5.4	CONSIDERATIONS MEMORANDUM	. 9	
	3.5	SOUNDEARTH 2012 PHASE I ESA	-	
	3.6	SOUNDEARTH 2012 PHASE II ESA		
	3.7	SOUNDEARTH 2012 PHASE I ESA		

TABLE OF CONTENTS

TABLE OF CONTENTS (CONTINUED)

3.8	SOUNDEARTH 2016 PHASE I ESA	10
4.0 REME	DIAL INVESTIGATION FIELD PROGRAM	10
4.1	PRE-FIELD ACTIVITIES	11
4.2	SOIL BORING ADVANCEMENT AND SAMPLING	11
	4.2.1 Soil Results	12
4.3	MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING	13
	4.3.1 Groundwater Results	14
4.4	SUMMARY OF DATA GAPS	14
5.0 CONC	EPTUAL SITE MODEL	14
5.1	CONFIRMED AND SUSPECTED SOURCE AREAS	15
5.2	CHEMICALS AND MEDIA OF CONCERN	15
5.3	CONTAMINANT FATE AND TRANSPORT	15
	5.3.1 Environmental Fate of Petroleum Hydrocarbons in the Subsurface	16
	5.3.2 Transport Mechanism Affecting the Distribution of Petroleum Hydrocarbons	
	in the Subsurface	16
5.4	EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS	16
	5.4.1 Soil	17
	5.4.2 Groundwater	17
5.5	TERRESTRIAL ECOLOGICAL EVALUATION	17
5.6	CONCEPTUAL SITE MODEL SUMMARY	18
6.0 TECHI	NICAL ELEMENTS	18
6.1	REMEDIAL ACTION OBJECTIVES	18
6.2	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	19
6.3	CHEMICALS AND MEDIA OF CONCERN	20
6.4	CLEANUP STANDARDS	20
	6.4.1 Cleanup Levels	21
	6.4.2 Points of Compliance	21
	6.4.2.1 Point of Compliance for Soil	21
7.0 MODI	EL REMEDY CLEANUP ACTION IMPLEMENTATION	21
7.1	SITE SPECIFIC HEALTH AND SAFETY	22
7.2	BUILDING DEMOLITION	22
7.3	MONITORING WELL DECOMMISSIONING	22
7.4	SOIL CLASSIFICATION	22
7.5	REMEDIAL EXCAVATION	23
	7.5.1 Excavation Area 1 (EX01)	23
	7.5.2 Excavation Area 2 (EX02)	24
	7.5.3 Excavation Area 3 (EX03)	24
	7.5.4 Elevator Pit Excavation Area (EX04)	25

TABLE OF CONTENTS (CONTINUED)

	7.6	SOIL DISPOSAL	25
	7.7	WATER DISPOSAL	26
8.0 C	OMPL	IANCE MONITORING	26
	8.1	PROTECTION MONITORING	26
	8.2	PERFORMANCE MONITORING	26
	8.3	CONFIRMATIONAL MONITORING	27
9.0 C	ONCL	USIONS	27
10.0	10.0 LIMITATIONS		
11.0	11.0 REFERENCES		

FIGURES

- 1 Property Location Map
- 2 Site Plan and Remedial Excavation Areas
- 3 Soil Analytical Results for TPH and BTEX
- 4 Groundwater Analytical Results for TPH and BTEX
- 5 Geologic Cross Section A–A'
- 6 Geologic Cross Section B–B'
- 7 Conceptual Site Model Exposure Assessment
- 8 Remedial Excavation Areas EX01, EX02, and EX03 Soil Sampling Analytical Results
- 9 Remedial Excavation Area EX04 (Elevator Pit) Soil Sampling Analytical Results

TABLES

- 1 Soil Analytical Results for TPH, VOCs, PCBs, and RCRA 8 Metals
- 2 Groundwater Analytical Results for TPH, BTEX, and MTCA 5 Metals
- 3 Excavation Soil Sample Analytical Results for DRPH and ORPH

PROPERTY PHOTOGRAPHS

APPENDICES

- A Boring Logs
- B Laboratory Analytical Reports

Remedial Investigation – Soil Laboratory Analytical Reports Friedman & Bruya, Inc. #606020 Friedman & Bruya, Inc. #606053 Friedman & Bruya, Inc. #606382 Remedial Investigation – Groundwater Laboratory Analytical Reports

TABLE OF CONTENTS (CONTINUED)

Friedman & Bruya, Inc. #606383 Friedman & Bruya, Inc. #606424 Friedman & Bruya, Inc. #609055 and additional Excavation – Soil Laboratory Analytical Reports Friedman & Bruya, Inc. #702117 Friedman & Bruya, Inc. #702173 Friedman & Bruya, Inc. #705113 Friedman & Bruya, Inc. #705140 Friedman & Bruya, Inc. #705380

- C Terrestrial Ecological Evaluation
- D Well Decommissioning Documentation
- E Disposal Documentation

ACRONYMS AND ABBREVIATIONS

ARAR	applicable or relevant and appropriate requirement
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
CAR	Cleanup Action Report
CFR	Code of Federal Regulations
сос	chemical of concern
CSM	conceptual site model
CUL	cleanup level
Dickson	Dickson Company
DRPH	diesel-range petroleum hydrocarbons
EAI	Environmental Associates, Inc.
Ecology	Washington State Department of Ecology
Elk Heights	Elk Heights Excavation LLC
EPA	U.S. Environmental Protection Agency
ESA	Environmental Site Assessment
F&BI	Friedman & Bruya, Inc.
FS	feasibility study
GeoTech	GeoTech Consultants, Inc.
GRPH	gasoline-range petroleum hydrocarbons
HASP	Hazardous Waste Operations and Emergency Response
HAZWOPER	Hazardous Waste Operations and Emergency Response
LNAPL	light nonaqueous-phase liquid
mg/kg	milligrams per kilogram
MTCA	Washington State Model Toxics Control Act

ACRONYMS AND ABBREVIATIONS (CONTINUED)

NAVD88	North American Vertical Datum 1988	
NWTPH	Northwest Total Petroleum Hydrocarbon	
ORPH	oil-range petroleum hydrocarbons	
РСВ	polychlorinated biphenyl	
PCS	petroleum-contaminated soil	
PID	photoionization detector	
the Property	the property located at 1803 to 1905 South Jackson Street, Seattle, Washington	
RAO	remedial action objective	
RCW	Revised Code of Washington	
REC	recognized environmental condition	
RI	remedial investigation	
RI/CAR	Remedial Investigation/Cleanup Action Report	
the Site	includes soil contaminated with diesel- and oil-range petroleum hydrocarbons beneath the Property	
Slotta	Slotta Design and Consulting	
SMP	Soil Management Plan for Construction Excavation	
SoundEarth	SoundEarth Strategies, Inc.	
SPU	Seattle Public Utilities	
TEE	Terrestrial Ecological Evaluation	
USC	United States Code	
USCS	Unified Soil Classification System	
UST	underground storage tank	
VOC	volatile organic compound	
WAC	Washington Administrative Code	

1.0 INTRODUCTION

SoundEarth Strategies, Inc. (SoundEarth) has prepared this report on behalf of South Jackson Street Development LLC to document the results of the remedial investigation and remedial excavation at the Modera Jackson property, located at 1803-1905 South Jackson Street in Seattle, Washington (the Property; Figure 1). Based on the results of subsurface investigations conducted at the Property, three areas of known or suspected petroleum contamination were identified. Performance and confirmation samples were collected within these areas prior to and during targeted excavation of these areas prior to mass excavation of the Property for redevelopment. Remedial excavation and confirmation sampling were conducted for one additional impacted area discovered during the redevelopment excavation.

The "Site" is defined by the full lateral and vertical extent of contamination exceeding applicable cleanup levels (CULs) that has resulted from releases of petroleum hydrocarbons at the Property. Based on the results of the Site investigations, the chemicals of concern (COCs) identified at the Site are diesel-range petroleum hydrocarbons (DRPH) and oil-range petroleum hydrocarbons (ORPH) in soil beneath the Property. The Site does not extend beyond the Property boundary and all soil exceeding Ecology's MTCA cleanup levels was removed during redevelopment, with no requirements for institutional controls. Therefore, cleanup of the Site was conducted under the guidelines of Model Remedy Option #1 (Ecology Publication No. 15-09-043, September 2015, Revised December 2017).

1.1 PURPOSE AND OBJECTIVE

The objectives of this Remedial Investigation and Cleanup Action Report (RI/CAR) are to summarize data necessary to adequately characterize the Site for selection and implementation of a final remedial action and to document field activities that were conducted as part of the cleanup action described in the Soil Management Plan for Construction Excavation (SMP), dated December 20, 2016 (SoundEarth 2016d). This RI/CAR presents historical information regarding the former use of the Property and surrounding parcels, summarizes the information obtained during the review of historical information, summarizes the scope and findings of each subsurface investigation that has been conducted at the Site, presents a conceptual site model (CSM) to represent the extent of contamination and identified exposure receptors, and describes the cleanup action that has been performed at the Site. The purpose of the cleanup action performed was to, concurrent with excavation and construction activities related to the Property redevelopment, remove and lawfully dispose off-Site all soil contamination on the Property.

1.2 REPORT ORGANIZATION

This RI/CAR is organized into the following sections:

- Section 2.0, Site Background. This section provides a description of the Property features and location; a summary of current and historical uses of the Property and adjoining properties; and a description of the Property's environmental setting, including the local meteorology, geology, and hydrology.
- Section 3.0, Previous Investigations. This section provides a description of the previous investigations conducted at the Property between 2000 and 2016. A summary of the field work performed and results obtained is included.
- Section 4.0, Remedial Investigation Field Program. This section provides a description of the remedial investigation (RI) field work program conducted at the Property by SoundEarth

between June and September 2016, including a summary of the pre-field activities, scope of work, and results, and a discussion of data gaps based on the findings of the RI.

- Section 5.0, Conceptual Site Model. This section provides a summary of the CSM derived primarily from the results of the historical research and cumulative investigations performed at the Site, including a discussion of the confirmed and suspected source areas, the chemicals and media of concern, the fate and transport characteristics of the release of hazardous substances, and the potential exposure pathways.
- Section 6.0, Technical Elements. This section summarizes the technical elements of the remedial analysis, including the remedial action objectives (RAOs), applicable or relevant and appropriate requirements (ARARs), COCs, media of concern, and applicable cleanup standards.
- Section 7.0, Model Remedy Cleanup Action Implementation. This section describes the components of the cleanup activities performed, including site demolition, monitoring well decommissioning, and soil excavation.
- Section 8.0, Compliance Monitoring. This section describes the protection, performance, and confirmation monitoring that was conducted as part of the cleanup activities performed. This section also includes a discussion of performance soil sampling results.
- Section 9.0, Conclusions. This section presents the conclusions based on the results of the cleanup action.
- Section 10.0, Limitations. This section discusses document limitations.
- **Section 11.0, References.** This section lists references cited in this document.

2.0 SITE BACKGROUND

This section provides a description of the Site features and location, a summary of the land use history of the Property and surrounding parcels, the geologic and hydrogeologic setting, and a summary of previous investigations conducted at the Site.

2.1 **PROPERTY DESCRIPTION**

The Site is defined by the nature and extent of contamination originating from the releases of hazardous substances on and beneath the Property, as discussed in Section 1.0 above (Figure 2).

The Property consists of seven rectangular tax parcels (King County Parcel Nos. 3319501215 [Parcel A], 3319501225 [Parcel B], 3319501235 [Parcel C], 3319501245 [Parcel D], 3319501255 [Parcel E], 3319501265 [Parcel F], and 3319501275 [Parcel G]) that comprise a total of approximately 45,700 square feet (1.04 acres) of land in Township 24 North/Range 4 East/Section 4, Seattle, King County, Washington. Figure 2 depicts a plan view/layout of the Property and shows the locations of the seven parcels. The parcels were formerly occupied by a variety of commercial buildings and warehouses constructed in the 1940s and 1950s. All structures at the Property were demolished as part of the planned redevelopment in January and February 2017.

Potable water and sewer service are provided to the Property by Seattle Public Utilities (SPU). Puget Sound Energy provides natural gas, and Seattle City Light provides electricity to the Property.

2.2 SURROUNDING PARCEL DESCRIPTIONS

2.2.1 <u>North</u>

South Jackson Street runs east–west, north of the Property. There are two parcels to the north of South Jackson Street. The parcel (King County Parcel No. 3319500875) to the northeast is occupied by the Pratt Fine Arts Center. The parcel (King County Parcel No. 3319500785) to the north is occupied by a multi-story residential building owned by Legacy Partners First Hill.

2.2.2 <u>South</u>

South Jackson Place runs east–west, south of the Property, with nine parcels occupied by singleand multi-family residences directly to the south of the Property (King County Parcel Nos. 3319501385, 3319501380, 3319501375, 3319501370, 3319501365, 3319501360, 3319501355, 3319501350, and 3319501345). Three additional single- and multi-family residences are located to the southeast of the Property (King County Parcel Nos. 3319501340, 3319501335, and 3319501326).

2.2.3 <u>East</u>

The east-adjoining parcel (King County Parcel No. 3319501295) contains a single-story restaurant. The current owner of the parcel is Chang Kuan Chun.

2.2.4 <u>West</u>

18th Avenue South runs north–south, west of the Property, with a single-story office building beyond to the west (King County Parcel No. 3319501500). The current owner of the parcel is 1711 South Jackson LLC.

2.3 LAND USE DESIGNATION

The current land use of the Property and surrounding area is a mix of residential, office, and commercial. According to the City of Seattle's zoning map, the Property is zoned as Neighborhood Commercial 3 Pedestrian-40, which is used for residential and commercial purposes. Zoning for the surrounding parcels is Neighborhood Commercial, Commercial, and Lowrise (City of Seattle 2017).

2.4 HISTORICAL LAND USE OF PROPERTY

The historical uses of the Property are summarized in this section. Figure 2 presents current and historical features for the Property and surrounding area.

The Property was initially developed with an automotive repair garage in 1913 on Parcel B. A mixed-use residential and commercial building was constructed on Parcel A in 1915, and a residence was constructed on Parcel D in 1917. The residence was occupied by a sign company between 1920 and 1931 and by a machine shop between 1935 and 1955 (Van's Metal Spinning). In 1958, the residence was removed, and a warehouse was constructed on Parcel D (designated as Building 2 on Figure 2); the warehouse was occupied by Van's Metal Spinning. Van's Metal Spinning also occupied an adjacent wood-framed structure on Parcel C (Building 1) for approximately 20 years. An automotive repair garage operated on Parcel E between at least 1925 and 1950.

Building 3, formerly located on Parcel F, was occupied at various times by the Seattle Store Fixture Company (a cabinet manufacturer), a restaurant, a medical facility, and a community service center. Building 4 on Parcel B was used as a construction company office and for storage. Building 5, which

formerly occupied most of Parcel G, was occupied by a geotechnical testing lab in the 1960s and 1970s, an architect in the 1980s, and North Star Electric from 1996 to 2015.

All on-Property structures were demolished as part of the Property redevelopment in January and February 2017.

2.5 HISTORICAL LAND USE OF SURROUNDING PARCELS

This section presents a summary of the historical land use on parcels adjoining and surrounding the Property.

2.5.1 <u>North</u>

The north-adjoining property was first developed with a three-story, masonry-framed apartment building in 1912. Heat was initially provided to the apartments by an oil-burning furnace. A two-story bakery building, also heated by an oil-burning furnace, was constructed north of the apartment building in 1916. An oil storage shed for the bakery was constructed west of the apartments in 1934. The oil shed was demolished prior to 1949 and the properties west of the apartment building were developed with a parking garage for Continental Baking Company in 1950. Tax records indicate that an automotive repair facility operated in the garage and that a 4,000-gallon fuel underground storage tank (UST) was located on the property. The apartments were demolished by 1980, and a parking lot was constructed on the property. The bakery buildings were demolished in 2007, and the existing apartment building (1800 South Jackson Street) was constructed on the property in 2008.

The northeast-adjoining property was initially developed with a three-story, masonry-framed apartment building in 1908. The building was heated by an oil-burning hot water system. The apartments were demolished between 1975 and 1977. A storage warehouse and an automotive repair facility and fueling station (1900 South Jackson Street) for the west-adjoining bakery were constructed on the property in 1977. Building plans indicate the presence of two 10,000-gallon USTs, one 1,000-gallon UST, and a 500-gallon UST on the property. The on-property buildings were converted to classrooms and a woodworking studio for Pratt Fine Arts in 2011.

2.5.2 <u>East</u>

The east-adjoining property was initially developed with a one-story, masonry-framed commercial building (1911 South Jackson) in 1949. Heat was provided by an oil-burning furnace. The building was occupied by an upholstery shop between at least 1951 and 1980. A legal services office and a restaurant have operated in the property since 1996.

2.5.3 <u>South</u>

Three single-family residences were constructed south of the Property between 1904 and 1916. The property south of Parcel B (1810 South King Street) also included a detached garage that was occupied by a soda bottling shop in at least 1916 and by a metal filing and grinding facility between 1940 and 1950. A two-story, wood-framed, stove-heated multi-family residence (1842 South King Street) was constructed on the southeast-adjoining property in 1918. Four additional single-family residences were constructed south of the Property between 1921 and 1929. A detached garage (1830 South King Street) was constructed on the property south of Parcel F in 1932. This garage was occupied by a cabinet shop between at least 1950 and 1969. Five of the

residences were heated by oil-burning furnaces by 1956. A wood-framed, electric baseboardheated apartment building (1822 South King Street) was constructed south of Parcel E in 1988.

2.5.4 <u>West</u>

The west-adjoining property, beyond 18th Avenue South, was developed with the existing masonry-framed commercial building (1723 South Jackson Street) in 1924. The building was occupied by an automotive repair garage between 1925 and 1930, by a machinery repair facility in 1940, and by a grocery in 1944. Heat was provided by a natural gas-burning furnace. A metal fabrication facility operated on the property between 1950 and 1960. The property was occupied by a storage facility between 1966 and 1969 and by an air conditioning facility in 1970.

The northwest-adjoining property, across South Jackson Street, was developed with a singlefamily residence and a detached garage in 1947. An automotive repair facility operated in the detached garage between at least 1950 and 1969. Both buildings were demolished by 1975. The existing apartment building (1700 South Jackson Street) was constructed on the property in 2008.

The southwest-adjoining property was initially developed with a one-story, masonry-framed, unheated warehouse (415 18th Avenue South) in 1917. A one-story, wood-framed, steam-heated factory was constructed on the northern portion of the property in 1918. The property was occupied by Union Dye Works in 1930, by a rug and upholstery cleaner between 1935 and 1950, and by Norco Cleaners between 1944 and 1951. A food processing facility operated on the property between 1955 and 1960. A fiberglass manufacturer operated on the property between at least 1966 and 1969. Sanborn Maps indicate the presence of a 2,000-gallon UST on the southwestern portion of the property between 1950 and 1960. The buildings were occupied by a plumbing warehouse between 1970 and 1990 and by Jergen's Painting since 1996.

2.5.5 <u>Surrounding Properties</u>

A carpet and upholstery cleaners operated approximately 90 feet southeast of the Property between at least 1980 and 1990. A dry cleaner operated approximately 100 feet east of the Property between 1950 and 1970. An automotive repair facility operated approximately 300 feet north of the Property between at least 1950 and 1969.

2.6 CURRENT AND FUTURE LAND USE

The development project covers the entire footprint of the Property and includes the construction of a multi-story residential building with two levels of underground parking. The bottom level parking garage is designed to an excavation depth of approximately 242.4 feet North American Vertical Datum of 1988 (NAVD88). The Property owner currently estimates that opening of the mixed use project will occur in December 2018.

2.7 ENVIRONMENTAL SETTING

A summary of the environmental setting, including meteorology, topography, and groundwater use for the Site, is provided below.

2.7.1 <u>Meteorology</u>

Climate in the Seattle area is generally mild and experiences moderate seasonal fluctuations in temperature. Average temperatures range from the 60s in the summer to the 40s in the winter.

The warmest month of the year is August, which has an average maximum temperature of 74.90 degrees Fahrenheit, while the coldest month of the year is January, which has an average minimum temperature of 36.00 degrees Fahrenheit.

The annual average rainfall in the Seattle area is 38.25 inches, with December as the wettest month of the year when the area receives an average rainfall total of 6.06 inches (IDcide 2017). The prevailing wind direction in the Seattle area is from the south to southwest in winter and spring, and southwest to north in the summer and fall (Western Regional Climate Center 2017).

The main underlying sources for ambient air pollutants in Seattle are motor vehicle traffic and residential wood burning (PSCAA 2011).

2.7.2 Topography

The Site lies within the Puget Trough or Lowland portion of the Pacific Border Physiographic Province (USGS 2011). The Puget Lowland is a broad, low-lying region situated between the Cascade Range to the east and the Olympic Mountains and Willapa Hills to the west. In the north, the San Juan Islands form the division between the Puget Lowland and the Strait of Georgia in British Columbia. The region is characterized by roughly north–south-oriented valleys and ridges, with the ridges that locally form an upland plain at elevations of up to about 500 feet above sea level. The moderately to steeply sloped ridges are separated by swales, which are often occupied by wetlands, streams, and lakes. The physiographic nature of the Puget Lowland was prominently formed by the last retreat of the Vashon Stade of the Fraser Glaciation, which is estimated to have occurred between 14,000 and 18,000 years before present (Waitt and Thorson 1983).

Elevations at the Property range from 245 to 268 feet above mean sea level, sloping upwards from west to east. Lake Washington is approximately 1 mile east of the Site.

2.7.3 Groundwater Use

According to the Ecology Water Well Logs database, there are no water supply wells in the vicinity of the Site (Ecology 2017).

SPU provides the potable water supply to the City of Seattle. SPU's main source of water is derived from surface water reservoirs located within the Cedar and South Fork Tolt River watersheds.

2.8 GEOLOGIC AND HYDROGEOLOGIC SETTING

This section summarizes the regional geology and hydrogeology in the Site vicinity and the geologic and hydrogeologic conditions encountered beneath the Site.

2.8.1 Regional Geology and Hydrogeology

According to *The Geologic Map of Seattle—A Progress Report* (Troost et al. 2005), the surficial geology in the vicinity of the Property consists of deposits corresponding to the Vashon Stade of the Fraser Glaciation and pre-Fraser glacial and interglacial periods. The surficial deposits in the immediate vicinity of the Property have been mapped as Vashon till. These deposits consist of a dense mixture of silt, sand, gravel, and clay, which are typically characterized by relatively low vertical hydraulic conductivity.

The youngest pre-Fraser deposits in the Seattle area, known as the Olympia beds, were deposited during the last interglacial period, approximately 18,000 to 70,000 years ago. The Olympia beds consist of very dense, fine to medium, clean to silty sands and intermittent gravel channel deposits, interbedded with hard silts and peats (Troost and Booth 2008). Organic matter and localized iron-oxide horizons are common. The Olympia beds have known thicknesses of up to 80 feet. Beneath the Olympia beds are various older deposits of glacial and nonglacial origin. In general, deposits from older interglacial and glacial periods are similar to deposits from the most recent glacial cycle, due to similar topographic and climactic conditions (Troost and Booth 2008).

The Vashon ice-contact deposits in the vicinity of the Site are generally discontinuous, highly variable in thickness and lateral extent, and consist of loose to very dense, intermixed glacial till, and glacial outwash deposits. The till typically consists of sandy silts with gravel. The outwash consists of sands and gravels, with variable amounts of silt (Troost et al. 2005).

The Vashon advance outwash deposits outcrop to the northwest of the Site and are generally discontinuous and consist of loose to very dense layered sands and gravels, which are generally well-sorted (poorly graded). Layers of silty sands and silts are less common. The Vashon recessional outwash deposits, which outcrop to the east of the Property, consist of loose to dense, stratified sand and gravel with less common silty sand and silt. (Troost et al. 2005).

2.8.2 <u>Site Geology</u>

Based on Troost et al. 2005, the surficial deposits in the immediate vicinity of the Site have been mapped as Vashon till, consisting of compact silt, sand, and subrounded gravels that were glacially transported and deposited under ice.

Based on the results of previous investigations at the Site, the Site is underlain by loose to medium dense fill soil to depths ranging from approximately 1 to 5 feet below ground surface (bgs), underlain by medium to very dense, brown, tan or mottled orange-brown silty sand, sandy silt, or gravelly sand and/or silt to a depth of at least 38 feet bgs.

2.8.3 <u>Site Hydrology</u>

The glacial and nonglacial deposits beneath the Seattle area comprise the unconsolidated Puget Sound aquifer system, which can extend from ground surface to depths of more than 3,000 feet. Coarse-grained units within this sequence generally function as aquifers, and alternate at some scale with fine-grained units which function as aquitards (Vaccaro et al. 1998). Above local or regional water table aquifers, discontinuous perched groundwater may be present in coarsegrained intervals seated above fine-grained intervals. Below the regional water table, the alternating pattern of coarse- and fine-grained units results in a series of confined aquifers. Regional groundwater flow is generally from topographic highs toward major surface water bodies, such as Puget Sound, Lake Union, Lake Washington Ship Canal, and Salmon Bay. Vertical hydraulic gradients are typically upward near the major surface water bodies, and downward inland (Floyd Snider McCarthy Team 2003, Vaccaro et al. 1998). Regional groundwater flow typically discharges to the closest major surface water body.

Based on inference from local topography, drainage patterns, and surface water flow, it appears that shallow-seated groundwater in the vicinity of the Property flows in a general southwesterly direction. Groundwater was encountered during the 2016 SoundEarth Phase II subsurface investigation while drilling in hollow-stem auger boring DB01 on Parcel E at a depth of

approximately 33 feet bgs and in hollow-stem auger boring DB02 on Parcel B/C at a depth of approximately 19 feet bgs (the surface elevation at DB02 is approximately 11 feet lower than the elevation at DB01). Groundwater was encountered in hollow-stem auger borings DB04 and DB05 on Parcel A at depths of 36 and 34 feet bgs, respectively. At the time of sampling, depth to groundwater in monitoring well MW01 was 34.35 feet below the top of well casing.

3.0 PREVIOUS INVESTIGATIONS

This section summarizes activities and results from previous investigations conducted by SoundEarth and others at the Site. The information below includes all known sampling data collected between 2000 and 2016 at the Site. Approximate soil boring and monitoring well locations are shown on Figure 2. Soil and groundwater analytical results are summarized in Tables 1 and 2 and shown on Figures 3 and 4.

3.1 ENVIRONMENTAL ASSOCIATES, INC. 2000 PHASE I ENVIRONMENTAL AUDIT

In August 2000, Environmental Associates, Inc. (EAI) completed a Phase I Environmental Audit of Parcels B, C, and D at the Property (EAI 2000). A gasoline fuel pump was observed along the north wall of the storage shed on Parcel B. A 1,000-gallon gasoline UST, a 1,000-gallon diesel UST, and a 300-gallon heating oil UST were removed from Parcels B and C by EAI in June 2000. Soil samples were collected from the UST excavations and submitted for analysis. Gasoline-range petroleum hydrocarbons (GRPH); DRPH; ORPH; and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were reportedly not detected in the soil samples collected from the UST excavations. However, the tank removal report detailing the sampling locations and depths was not included as an attachment to the Phase I report or otherwise available to SoundEarth for review.

The EAI report also identified the following historical surface releases of ORPH on the Property:

- Oil staining on the wall and ground surface on the southwestern portion of Building 2, due to a leaking press machine.
- Oil-staining beneath a horse trailer containing 55-gallon drums of oil stored on Parcel B.
- Oil-soaked sawdust stored on Parcel B.

Petroleum-contaminated soil (PCS) was removed from the area beneath the horse trailer (4 cubic yards) and in the vicinity of the oil-stained surface next to Building 2 (also 4 cubic yards). Approximately 0.2 cubic yard of PCS was estimated by EAI to remain on the Property beneath Building 2. This material was not removed due to concerns regarding the structural stability of the building foundation. A report detailing the two cleanup actions was not discussed in the EAI Phase I report or provided to SoundEarth for review.

3.2 EAI 2011 PHASE I ENVIRONMENTAL SITE ASSESSMENT

EAI completed a Phase I Environmental Site Assessment (ESA) of Parcel D in 2011. This Phase I ESA identified the following recognized environmental condition (REC) for the Property (EAI 2011):

Shallow impacts to surface soil by petroleum products.

3.3 SLOTTA DESIGN AND CONSULTING 2012 SUBSURFACE INVESTIGATION REPORT

In October 2012, Slotta Design and Consulting (Slotta) conducted a subsurface investigation on Parcels B and C (Slotta 2012). Five borings were advanced to depths between 4 and 9 feet bgs (SB-1 through SB-5; Figure 2). Soil samples were collected and submitted for laboratory analysis of DRPH and ORPH. One sample was also tested for GRPH and BTEX, and one sample was analyzed for mercury, arsenic, chromium, lead, polychlorinated biphenyls (PCBs), and solvents. None of the samples contained concentrations of the indicated constituents above their respective Washington State Model Toxic Control Act (MTCA) Method A CULs. However, a sample collected from boring SB-5 at a depth of 4 feet in the Building 1 hydraulic press room contained 110 milligrams per kilogram (mg/kg) DRPH and 260 mg/kg ORPH (both below the MTCA Method A CUL of 2,000 mg/kg, but above Washington State Department of Ecology's (Ecology) Category 1 soil classification for disposal purposes).

3.4 GEOTECH CONSULTANTS, INC. 2012 PRELIMINARY GEOTECHNICAL CONSIDERATIONS MEMORANDUM

According to a December 5, 2012, memorandum to Isola Homes, GeoTech Consultants, Inc. (GeoTech) advanced six geotechnical borings (B-1 through B-6) across the Property to depths of up to 31 feet bgs (GeoTech 2012). One of the borings (B-5) encountered what was reported to be petroleum-impacted soil at an approximate depth of 6 to 8 feet. The boring was advanced near the former 300-gallon heating oil tank location at Building 1. A sample was not collected for chemical analysis during this investigation.

3.5 SOUNDEARTH 2012 PHASE I ESA

SoundEarth completed a Phase I ESA of Parcels A through F in 2012 (SoundEarth 2012). This Phase I ESA identified the following RECs:

- The historical operation of an automotive repair facility on the Property.
- The use and storage of petroleum products on the Property and the presence of petroleumimpacted soil at Building 1 and Building 2.
- Discharge of process water to a potential French drain on the Property (reportedly on the south end of Building 2).
- The current and historical operation of a metal works on the Property (Vans Metal Spinning).
- The historical operation of cabinet shops on the Property.

3.6 SOUNDEARTH 2012 PHASE II ESA

In 2012, SoundEarth oversaw the advancement of ten direct-push probe borings (P01 through P10) on Parcels B, C, D, and E (SoundEarth 2013). Borings were advanced to depths between 10 and 20 feet bgs; boring locations are indicated on Figure 2. None of the samples submitted for analysis contained concentrations of GRPH, DRPH, ORPH, BTEX, or chlorinated volatile organic compounds that exceeded the laboratory's lower reporting limit. Concentrations of arsenic, barium, chromium, and lead were detected in two composite samples. The identified metals concentrations were typical of or below natural background levels for the Puget Sound area (Ecology 1994). Groundwater was not encountered during the investigation. No indications of a French drain were encountered in two borings advanced on the south side of Building 2.

3.7 SOUNDEARTH 2015 PHASE I ESA

SoundEarth completed a Phase I ESA of Parcels A through G in 2015 (SoundEarth 2015). This Phase I ESA identified the following RECs:

- The historical operation of an automotive repair facility on the Property.
- The use and storage of petroleum products on the Property and the presence of petroleumimpacted soil at Building 1 and Building 2.
- Discharge of process water to a potential French drain on the Property.
- The historical operation of a metal works on the Property.

3.8 SOUNDEARTH 2016 PHASE I ESA

SoundEarth completed a Phase I ESA of Parcels A through G in October 2016 (SoundEarth 2016c). Based on the previous Phase II work conducted at the Property, the following issues of potential environmental concern were identified:

- The historical use and storage of petroleum products on the Property and the presence of petroleum-impacted soil at Buildings 1 and 2 (listed as a Historical REC with de minimis quantities of petroleum-impacted soil).
- The historical operation of an automotive repair facility on the Property.
- The use and storage of petroleum products on the Property and the presence of petroleumimpacted soil at Building 1 and Building 2.
- Discharge of process water to a potential French drain on the Property.
- The historical operation of a metal works on the Property.
- The historical operation of a cabinet shop on the Property.
- The historical operation of a cleaning facility on the southwest-adjoining property.
- The historical operation of automotive repair facilities on the north-adjoining properties.

4.0 REMEDIAL INVESTIGATION FIELD PROGRAM

SoundEarth conducted the RI field work at the Property between June and September 2016 (SoundEarth 2016a and 2016b). Soil boring and monitoring well locations were selected to address the data gaps identified during previous investigations and to assess previously uninvestigated parcels of the Property. The following sections summarize the results of the RI field work. The locations of borings and groundwater monitoring wells are shown on Figure 2. The soil and groundwater analytical results are shown on Figures 3 and 4 and in Tables 1 and 2.

A summary of the scope of work completed for each work element, as well as the results of the RI activities, are provided below.

4.1 PRE-FIELD ACTIVITIES

Pre-field activities for the RI included the following:

- SoundEarth created a health and safety plan (HASP) for the Property in accordance with MTCA and Part 1910.120 of Title 29 of the Code of Federal Regulations (29 CFR 1910.120) before initiating field activities.
- SoundEarth prepared work plans for the field activities to be conducted at the Property.
- Applied Professional Services, Inc. of Seattle, Washington, performed private utility locate surveys before each subsurface investigation phase and located utilities in the vicinity of the proposed boring locations.

4.2 SOIL BORING ADVANCEMENT AND SAMPLING

This work element included the advancement of direct-push and hollow-stem auger borings between June and September 2016 and the collection of soil samples at various depths in each boring. The first phase of field work, consisting of 17 direct-push borings and two hollow-stem auger borings, was conducted in June 2016. The second phase of work, consisting of three additional hollow-stem auger borings, was conducted in September 2016. The borings were advanced in areas where localized petroleum hydrocarbon impacts had previously been encountered (former hydraulic press and UST areas), metal working areas, the former auto repair building, and in previously unassessed areas of Parcels A, E, F, and G. Boring locations are shown on Figure 2. Cross sections showing subsurface soil profile characteristics, historical groundwater elevation ranges, and references to analytical results are presented on Figures 5 and 6. Boring logs from the subsurface investigations are included in Appendix A.

On June 1 and 2, 2016, Standard Environmental Probe of Tumwater, Washington, under the direction of a licensed SoundEarth geologist, advanced 17 push-probe borings on the Property (B01 through B17). The borings were advanced to depths between 4 and 13 feet bgs at the locations shown on Figure 2. Interior borings were advanced inside Buildings 1, 2, 3, and 5 using a limited-access hand-held roto-hammer, and exterior borings were advanced using a truck-mounted hydraulic ram. After the maximum depth was achieved in each sample interval, relatively undisturbed discrete soil samples were collected.

On June 21, 2016, Cascade Drilling of Woodinville, Washington, under the direction of a licensed SoundEarth geologist, advanced two hollow-stem auger borings on Parcels E and C (borings DB01 and DB02, respectively) to assess groundwater conditions beneath the Property. The borings were advanced to depths of 25 (DB02) and 38 feet (DB01) bgs at the locations shown on Figure 2, and soil samples were collected at 5-foot intervals in each of the borings.

To further assess groundwater conditions beneath the Property, three additional hollow-stem auger borings were advanced on Parcels A (DB04 and DB05) and D (DB03) by Cascade Drilling on September 2, 2016. The borings were advanced to depths of 36.5 feet bgs at the locations shown on Figure 2, and soil samples were collected at 5-foot intervals in each of the borings.

All soil samples were described in accordance with the Unified Soil Classification System (USCS) and were screened in the field for potential evidence of contamination using visual observations and notations of odor, and by conducting headspace analysis using a photoionization detector (PID) to detect the presence of volatile organic vapors. The USCS symbol, visual and olfactory notations for the

samples, and PID readings were recorded on boring log forms, copies of which are provided as Appendix A.

Soil samples to be analyzed for volatile organic compounds (VOCs) were collected in accordance with U.S. Environmental Protection Agency (EPA) Method 5035A. Additional soil samples were collected using 4-ounce jars. Soil containers were labeled with a unique sample ID, placed on ice in a cooler, and delivered to Friedman & Bruya, Inc. (F&BI) of Seattle, Washington, under standard chain-of-custody protocols for laboratory analysis. Based on boring locations, screening results, sampling depths, and observed soil characteristics, selected soil samples were submitted for chemical analysis, including:

- DRPH and ORPH by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Dx
- GRPH by Method NWTPH-Gx
- BTEX by EPA Methods 8021B or 8260C
- VOCs by EPA Method 8260C
- MTCA 5 Metals (arsenic, lead, cadmium, chromium, and mercury) by EPA Method 200.8
- PCBs by EPA Method 8082A

4.2.1 Soil Results

Based on observations presented in boring logs provided in Appendix A, shallow soil conditions on the Property generally consisted of loose to medium dense fill soil from the ground surface to depths ranging from approximately 1 to 5 feet bgs. Fill soil generally consisted of silty sand with varying amounts of gravel and trace amounts of brick and coal fragments. Observed native soil conditions below the fill material generally consisted of medium to very dense, brown, tan, gray, or mottled orange-brown silty sand, sandy silt, or gravelly sand and/or silt to the maximum depths of soil sampling. Groundwater was encountered at depths between 19 and 36 feet bgs at the time of drilling in borings DB01, DB02, DB04, and DB05.

Field screening revealed no obvious visual or olfactory indications of petroleum hydrocarbon contamination and no elevated PID readings in any of the recovered soil samples from borings B01 through B17 or DB01 through DB05.

Analytical results for soil samples indicated the following:

- Concentrations of GRPH, DRPH, ORPH, BTEX, VOCs, and PCBs were not detected above laboratory reporting limits in any of the analyzed soil samples.
- Concentrations of arsenic and chromium were detected in soil samples collected at 4 feet bgs in borings B02, B03, B12, B13, and B16 at concentrations below their respective MTCA Method A CULs for Unrestricted Land Uses. Concentrations of lead were detected in soil samples collected at 4 feet bgs in borings B02, B03, B12, and B16 at concentrations below their respective MTCA Method A CULs for Unrestricted Land Uses. The concentrations were generally consistent with natural background levels for the Puget Sound area (Ecology 1994). Cadmium and mercury were not detected at concentrations above the laboratory reporting limits in any of the analyzed samples.

Laboratory analytical reports are provided in Appendix B.

4.3 MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING

Groundwater was not encountered in any of the push-probe borings or in hollow-stem auger boring DB03. Groundwater was encountered during drilling in hollow-stem auger boring DB01 at a depth of approximately 33 feet bgs, in boring DB02 at a depth of approximately 19 feet, in boring DB04 at a depth of approximately 36 feet bgs, and in boring DB05 at a depth of approximately 34 feet bgs. Temporary monitoring wells consisting of 1-inch-diameter PVC casing with a 5-foot screened interval were installed in borings DB02, DB04, and DB05. Reconnaissance groundwater samples were collected from each of the temporary wells using a bailer, and the well casings were removed from each boring after sample collection. Borings DB02, DB04, and DB05 were subsequently decommissioned by filling the boreholes with hydrated bentonite chips and sealing with concrete to grade, in accordance with the procedures specified in Chapter 173-360 of the Washington Administrative Code, Minimum Standards for Construction and Maintenance of Wells (WAC 173-360).

Monitoring well MW01 was installed in boring DB01 on the northeastern portion of Parcel E in an effort to evaluate the potential risk of impacts from a UST site located across South Jackson Street to the northeast (Continental Baking). MW01 was constructed of 2-inch-diameter blank PVC casing flush-threaded to 0.010-inch slotted well screen from 28 to 38 feet bgs. The bottom of the well was fitted with a threaded PVC bottom cap, and the top of the well was fitted with a locking compression-fit well cap. The annulus of the monitoring well was filled with #2/12 silica sand to 2 feet above the top of the screened interval. A bentonite seal with a minimum thickness of 1 foot was installed above the sand pack. MW01 was completed at the surface with a flush-mounted, traffic-rated well box set in concrete. MW01 was developed with the use of a submersible whale pump. Monitoring well development consisted of surging and purging the well until approximately 35 gallons of water had been removed and the groundwater no longer appeared turbid. Turbidity was measured visually by field personnel conducting development activities.

On June 23, 2016, SoundEarth collected a groundwater sample from MW01 in accordance with EPA's *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* (1996) a minimum of 24 hours following well development. Purging and sampling were performed using a bladder pump and dedicated polyethylene tubing. During purging, water quality parameters that were monitored and recorded included temperature, pH, specific conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential. The well was purged until all parameters had stabilized.

After collection, reconnaissance and low-flow groundwater samples were labeled with a unique sample ID, placed on ice in a cooler, and delivered to F&BI under standard chain-of-custody protocols for laboratory analysis. Non-dedicated field sampling equipment was cleaned and decontaminated between uses and before leaving the Property. Decontamination wash water and purge water were contained on the Property in labeled 55-gallon drums, pending waste profiling and proper disposal.

Groundwater samples from DB01/MW01, DB02, DB04, and DB05 were submitted for chemical analysis of the following:

- DRPH and ORPH by Method NWTPH-Dx
- GRPH by Method NWTPH-Gx
- BTEX by EPA Method 8021B

- VOCs by EPA Method 8260C
- MTCA 5 metals by EPA Method 200.8

4.3.1 Groundwater Results

At the time of sampling, depth to groundwater in MW01 was 34.35 feet below the top of well casing.

Analytical results for the reconnaissance groundwater samples indicated that concentrations of GRPH, DRPH, ORPH, BTEX, and VOCs did not exceed the applicable MTCA Method A CULs in the samples collected from borings DB02, DB04, and DB05. Total arsenic, chromium, and lead were detected in reconnaissance groundwater samples from DB04 and/or DB05 at concentrations exceeding the applicable cleanup levels. However, these elevated concentrations are the result of turbidity in the reconnaissance groundwater samples, as commonly occurs in groundwater samples that are not collected from a fully developed, permanent groundwater monitoring well. They are not interpreted to be an indication of metals contamination in groundwater beneath the Property. As evidence of this conclusion, arsenic, chromium, and lead were detected in soils at concentrations that were an order of magnitude below their respective CULs, which is typical of background levels for the Puget Sound region (Ecology 1994). Additionally, there were no identified releases of metals at the Site. To confirm this conclusion, the reconnaissance groundwater samples were analyzed for dissolved arsenic, chromium, and lead, and the results demonstrated that the samples did not contain concentrations in excess of the applicable CULs (Table 2). Accordingly, for the purposes of this RI/CAR, metals in groundwater are not considered COCs for the Site.

Analytical results for the groundwater sample collected from monitoring well MW01 indicated that concentrations of GRPH, DRPH, ORPH, and BTEX were not detected. Laboratory detection limits were well below the applicable MTCA Method A CULs. Laboratory analytical results are provided in Appendix B.

4.4 SUMMARY OF DATA GAPS

Data gaps remaining after previous investigations performed by SoundEarth and others included the extents of limited areas of known or suspected petroleum-impacted soil in the vicinity of the former heating oil UST on Parcel B, at Slotta boring SB05 on Parcel C, and in the former hydraulic press area near the southern common boundary of Parcels C and D. These areas were identified as potentially impacted areas prior to excavation activities, and the data gaps did not significantly impact the identification of a preferred remedial alternative for cleanup at the Property.

5.0 CONCEPTUAL SITE MODEL

A CSM identifies confirmed and suspected source areas of hazardous substances, affected environmental media, fate and transport mechanisms, environmental media of potential concern, and exposure pathways for potential receptors. The CSM is the basis for developing technically feasible cleanup alternatives from which a final cleanup action approach is selected. However, as noted previously, this Site was remediated as a Model Remedy site Option #1 (Ecology, 2017a), and therefore a feasibility study was not required. A preliminary exposure assessment, based on a zoning designation of residential and commercial use, is presented on Figure 7.

This section discusses the components of the CSM developed for the Site, based on completion of the various phases of investigation conducted by SoundEarth and others. Included in the following sections is a discussion of the confirmed and suspected source areas, affected environmental media, fate and transport mechanisms, COCs, exposure pathways and potential receptors, the Terrestrial Ecological Evaluation (TEE), and the CSM summary.

5.1 CONFIRMED AND SUSPECTED SOURCE AREAS

The source areas are the locations of COC releases that have affected soil quality at the Site. The series of investigations conducted at the Site between 2000 and 2016 (i.e., prior to commencement of redevelopment activities) identified three locations of known or suspected limited areas of petroleum-impacted soil on the Property. These areas included the following:

- Area 1. GeoTech advanced geotechnical boring B-5 on Parcel B near the former 300-gallon heating oil tank location at Building 1. During the drilling of geotechnical boring B-5, GeoTech noted the presence of soil exhibiting petroleum odors at depths of 6 to 8 feet bgs. A soil sample was not collected for chemical analysis. Four other borings in this immediate area did not encounter indications of petroleum impacts.
- Area 2. A soil sample collected from Slotta boring SB-5 at a depth of 4 feet bgs in the Building 1 hydraulic press room contained 110 mg/kg of DRPH and 260 mg/kg of ORPH. Both concentrations are below the MTCA Method A level of 2,000 mg/kg, but are considered by Ecology as "Category 2" soil for disposal purposes. Two other soil borings advanced in the hydraulic press area did not encounter indications of petroleum impacts.
- Area 3. During a Phase I Environmental Audit conducted in 2000 by EAI, oil-staining was observed on the wall and ground surface on the southwestern portion of Building 2. The staining was due to a leaking press machine. A remedial excavation of impacted soil was conducted by EAI outside the building, adjacent to the leak. However, approximately 0.2 cubic yards of PCS were estimated by EAI to remain beneath Building 2. This material was not removed due to concerns regarding the structural stability of the building foundation.

These soil impacts were determined to be localized and bounded by nearby borings in which petroleum hydrocarbons were not detected or observed during drilling.

5.2 CHEMICALS AND MEDIA OF CONCERN

Based on the findings from the investigations conducted at the Site as well as performance samples collected during the remedial excavation activities, the COCs for the Site are DRPH and ORPH. Soil is the only medium of concern. Elevated concentrations of COCs were not detected in groundwater samples collected at the Site and accordingly, groundwater is not deemed a medium of concern.

5.3 CONTAMINANT FATE AND TRANSPORT

The fate and transport of contaminants in the environment affect their migration, mobility, and persistence. Within the medium of concern (soil), the transport of petroleum hydrocarbons is largely dependent on the texture of the soil. The fate of the petroleum hydrocarbons is dependent on their chemical properties, and the biological and abiological processes in the media of concern.

5.3.1 <u>Environmental Fate of Petroleum Hydrocarbons in the Subsurface</u>

The most significant fate process for petroleum hydrocarbons is biodegradation (i.e., natural attenuation). Once petroleum hydrocarbons enter the subsurface, natural attenuation of the compound begins. The natural attenuation processes include intrinsic abiotic and biotic degradation in soil, and adsorption onto soil particles. Both abiotic and biotic processes degrade petroleum hydrocarbons to carbon dioxide, assuming the appropriate geochemical conditions are present in soil. Adsorption onto soil particles retards the vertical and lateral migration of petroleum hydrocarbons, and the residual saturation capacity of soil affects the vertical migration of LNAPL. Evidence for natural attenuation processes in soil would include significant shrinking in the magnitude and extent of the petroleum impacts.

5.3.2 <u>Transport Mechanism Affecting the Distribution of Petroleum Hydrocarbons in the</u> <u>Subsurface</u>

The transportation and distribution of petroleum hydrocarbons in the vadose zone beneath the Site is controlled by a number of factors, including the following:

- The mass of contamination released from each source area.
- Adsorption and desorption of contaminants from soil particles and organic matter. Adsorption is a function of moisture content of the soil, the organic-carbon partitioning coefficient for the contaminants, and the concentration of organic matter in the soil.
- The diffusive transport of contaminated vapors from areas of high to low concentrations.
- Advective transport of vapors due to changes in pressure and temperature gradients.
- Depth to groundwater.

The transportation and distribution of petroleum hydrocarbons in groundwater was not evaluated since groundwater is not a medium of concern for the Site (as discussed in Section 4.3.1).

5.4 EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

The preliminary exposure assessment identifies potential receptors for exposure pathways for environmental media of potential concern from contaminant fate and transport mechanisms. Potential receptors at risk from exposure associated with the presence of COCs at the Site are human and ecological receptors. The objective of the preliminary exposure assessment is to assess the completeness of exposure pathways from environmental media of potential concern and associated contaminant fate and transport mechanisms for the potential receptors for the Site. The results from the preliminary exposure assessment will assist with the evaluation of potential feasible cleanup alternatives that are protective of the potential receptors identified as complete. The preliminary exposure assessment for each exposure pathway and associated environmental media of potential concern is summarized below by affected environmental media. The exposure pathway assessment for the Site is depicted on Figure 7.

5.4.1 <u>Soil</u>

Soil with concentrations of petroleum hydrocarbons exceeding applicable MTCA Method A CULs may present a potential exposure pathway to human and/or ecological receptors.

The principal contaminant fate and transport mechanisms for soil at the Site include adsorption, volatilization, leaching, advection, dispersion, diffusion, and biodegradation (Figure 7). The potential exposure pathways for soil at the Site include direct contact with soil, volatilization to soil vapor, soil leaching to groundwater, and LNAPL associated with soil partitioning to groundwater. The human consumption of drinking water is not an applicable potential receptor for the exposure pathway for soil at the Site. The potential exposure pathways for soil (before and during redevelopment prior to completion of the final remedy) are discussed further in the sections below:

- Direct Contact (Dermal Contact and Ingestion) with Subsurface Adsorbed-Phase Contaminated Soil. This exposure pathway is complete for subsurface soil via dermal contact or ingestion. The standard point of compliance for the direct-contact exposure pathway for soil is 15 feet bgs for human health, which is within the depth to be excavated during Property redevelopment activities (WAC 173-340-740[6][d] and WAC 173-340-7490[4][b]). COCs above the preliminary CULs are present in shallow subsurface soil within 15 feet bgs at the Site. This exposure pathway may be complete for environmental field personnel and construction and utility workers who may come in contact with contaminated soil on the Property during redevelopment excavation activities.
- Inhalation of Airborne Soil. The release mechanism for this exposure pathway is the inhalation of airborne soil particles during excavation and construction activities on the Property. This exposure pathway could be complete for environmental field personnel and construction and utility workers during redevelopment.
- Inhalation of Vapors. The release mechanism for this exposure pathway is volatilization. This exposure pathway may be complete for environmental, construction, and utility workers during redevelopment of the Property.
- Leaching to Groundwater. This exposure pathway is considered incomplete for potential receptors based on the fact that elevated concentrations of COCs have not been detected in groundwater beneath the Site, indicating that leaching to groundwater has not occurred.

5.4.2 <u>Groundwater</u>

Based on the results of the subsurface investigations, COCs are not present in groundwater beneath the Site. Therefore, the groundwater pathway is considered incomplete.

5.5 TERRESTRIAL ECOLOGICAL EVALUATION

A TEE is required by WAC 173-340-7940 at locations where a release of a hazardous substance to soil has occurred. The TEE is intended to assess potential risk to plants and animals that live entirely or primarily on affected land.

The Site qualifies for an exclusion from further evaluation based on point of compliance (WAC 173-340-7491 [1][a]). Redevelopment of the Site included the complete removal of contaminated soil, which

effectively eliminates risk to plants and animals. A copy of the TEE prepared for the Site is included in Appendix C.

5.6 CONCEPTUAL SITE MODEL SUMMARY

Soil beneath the Property contained concentrations of DRPH and ORPH that exceeded applicable MTCA Method A CULs. There are two general types of receptors that are potentially at risk from exposure associated with the presence of petroleum hydrocarbons in soil at the Property. The receptors include terrestrial wildlife and humans. The Property qualifies for a TEE exclusion based on WAC 173-340-7491.

The potential exposure pathways for soil at the Property included direct contact, inhalation of airborne soil, and inhalation of vapors. The primary receptors for these exposure pathways include environmental field personnel, construction workers, utility workers, and residents of the planned residential building. During redevelopment of the Property, direct contact with soil, inhalation of airborne soil, and inhalation of vapors pathways are potentially complete for construction, utility, and environmental workers. At the completion of the redevelopment, source removal will eliminate the direct-contact and both inhalation pathways at the Property for commercial workers and residents.

6.0 TECHNICAL ELEMENTS

The RAOs developed for the Property were used to define the technical elements for the screening evaluation and to select the remedial action for the Property. In accordance with cleanup of the Site under Ecology's Model Remedy Option #1, an FS was not conducted for the Site because all known PCS was to be removed as part of the Property redevelopment. Furthermore, groundwater beneath the Site is not impacted, and soil contamination has not migrated off the Property.

6.1 REMEDIAL ACTION OBJECTIVES

RAOs are statements of the goals that a remedial alternative should achieve in order to be retained for further consideration as part of a Feasibility Study (FS) or Model Remedy. The purpose of establishing RAOs for a site is to provide remedial alternatives that are protective of human health and the environment (WAC 173-340-350). In addition, RAOs are designated in order to:

- Implement administrative principles for cleanup (WAC 173-340-130).
- Meet the requirements, procedures, and expectations for conducting a Model Remedy or FS, and developing cleanup action alternatives, as discussed in WAC 173-340-350 through 173-340-370.
- Develop CULs (WAC 173-340-700 through 173-340-760) and remedial alternatives that are protective of human health and the environment.

In particular, RAOs must address the following threshold requirements from WAC 173-340:

- Protect human health and the environment.
- Comply with CULs.
- Comply with applicable state and federal laws.
- Provide for compliance monitoring.

The RAOs for the Property are to mitigate potential exposure pathways for human and terrestrial receptors and to comply with ARARs and applicable CULs to demonstrate compliance and obtain a Site-wide No Further Action determination from PLIA. The implementation of the selected cleanup action alternative will address the potential exposure pathways to protect human health and the environment. Compliance monitoring will demonstrate that cleanup standards have been met at the established points of compliance.

6.2 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Under WAC 173-340-350 and 173-340-710, applicable requirements include regulatory cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that specifically address a contaminant, remedial action, location, or other conditions at a site.

MTCA defines relevant and appropriate requirements as:

Those cleanup action standards, standards of control, and other human health and environmental requirements, criteria or limitations established under state and federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstances at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site.

WAC 173-340-710 through 173-340-760 identify several requirements the department considers relevant and appropriate. For other regulatory requirements, the criteria specified in WAC 173-340-710(4)(a)-(i) shall be used to determine if a requirement is relevant and appropriate.

Remedial actions conducted under MTCA must comply with the substantive requirements of the ARARs but are exempt from their procedural requirements (WAC 173-340-710[9]). Specifically, this exemption applies to state and local permitting requirements under the Washington State Water Pollution Control Act, Solid Waste Management Act, Hazardous Waste Management Act, Clean Air Act, State Fisheries Code, and Shoreline Management Act. ARARs were screened to assess their applicability to the Site. The following table summarizes the preliminary ARARs for the Site.

Preliminary ARAR	Citation or Source
MTCA	Chapter 70.105 of the Revised Code of Washington (RCW)
MTCA Cleanup Regulation	WAC 173-340
Ecology, Toxics Cleanup Program – <u>Guidance To</u> <u>Be Considered</u>	Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action, Review, Publication No. 09-09-047. October 2009; Review Draft Revised February 2016.
State Environmental Policy Act	RCW 43.21C
Washington State Shoreline Management Act	RCW 90.58; WAC 173-18, 173-22, and 173-27
The Clean Water Act	33 United States Code (USC) 1251 et seq.
Comprehensive Environmental Response,	42 USC 9601 et seq. and 40 CFR 300

Preliminary ARARs for the Site

Preliminary ARAR	Citation or Source
Compensation, and Liability Act of 1980	
The Fish and Wildlife Coordination Act	16 USC 661-667e; the Act of March 10, 1934; Ch. 55; 48 Stat. 401
Endangered Species Act	16 USC 1531 et seq.; 50 CFR 17, 225, and 402
Native American Graves Protection and Repatriation Act	25 USC 3001 through 3013; 43 CFR 10 and Washington's Indian Graves and Records Law (RCW 27.44)
Archaeological Resources Protection Act	16 USC 470aa et seq.; 43 CFR 7
Washington Dangerous Waste Regulations	WAC 173-303
Solid Waste Management Act	RCW 70.95; WAC 173-304 and 173-351
Occupational Safety and Health Administration Regulations	29 CFR Parts 1910, 1926
Washington Department of Labor and Industries Regulations	WAC 296
Water Quality Standards for Surface Waters of the State of Washington	RCW 90.48 and 90.54; WAC 173-201A
Water Quality Standards for Ground Water	WAC 173-200
Department of Transportation Hazardous Materials Regulations	40 CFR Parts 100 through 185
Washington State Water Well Construction Act	RCW 18.104; WAC 173-160
City of Seattle regulations, codes, and standards	All applicable or relevant and appropriate regulations, codes, and standards.
King County regulations, codes, and standards	All applicable or relevant and appropriate regulations, codes, and standards.
Puget Sound Clean Air Agency	Regulation I Article 6

6.3 CHEMICALS AND MEDIA OF CONCERN

The COCs for the Site are those compounds that were detected at concentrations exceeding their respective CULs. The COCs and the media where the COCs were detected are listed below:

- DRPH in soil
- ORPH in soil

6.4 CLEANUP STANDARDS

The selected cleanup alternative or Model Remedy must comply with the MTCA cleanup regulations specified in WAC 173-340 and with applicable state and federal laws. The CULs selected for the Site are consistent with Model Remedy Option 1. The associated media-specific CULs for the identified COCs are summarized in the following sections.

6.4.1 <u>Cleanup Levels</u>

The CULs for the media and COCs are tabulated below, including the source of the cleanup standard. The proposed CULs for soil at the Site are the MTCA Method A CULs for Unrestricted Land Use.

	Cleanup Level	
COC	(mg/kg)	Source
DRPH	2,000	MTCA Method A, Unrestricted; WAC 173-340-740(2)(b)(i)
ORPH	2,000	
NOTES:		
COC = chemical of cor	ncern	MTCA = Washington State Model Toxics Control Act
DRPH = diesel-range petroleum hydrocarbons		ORPH = oil-range petroleum hydrocarbons

WAC = Washington Administrative Code

Proposed Cleanup Levels for Soil

6.4.2 **Points of Compliance**

mg/kg = milligrams per kilogram

The point of compliance is the location where the enforcement limits that are set in accordance with WAC 173-200-050 will be measured and cannot be exceeded (WAC 173-200-060). Once the CULs have been attained at the defined points of compliance, the impacts present beneath the Property will no longer be considered a threat to human health or the environment.

6.4.2.1 Point of Compliance for Soil

In accordance with WAC 173-340-740(6)(b-d), the point of compliance for direct contact exposure is throughout the Site from the ground surface to 15 feet bgs, which is within the depth of soil to be excavated and lawfully disposed off-Site as a result of redevelopment activities.

7.0 MODEL REMEDY CLEANUP ACTION IMPLEMENTATION

This section provides a description of the components of the cleanup activities completed at the Site. The cleanup activities were designed to coincide with redevelopment activities at the Property. Construction activities were coordinated with Dickson Company (Dickson), the demolition and remedial excavation contractor, as well as with Elk Heights Excavation LLC (Elk Heights), the earthworks contractor, with SoundEarth providing supervision and guidance for the remedial activities. Photographs of the cleanup activities implementation process are included with this report and annotated for the field activity being performed. Dickson and Elk Heights performed the remedial excavation activities in accordance with the procedures detailed in SoundEarth's SMP (SoundEarth 2016d).

The cleanup action for the Site was a remedial excavation of known or suspected petroleum-impacted areas completed prior to and during a lot-line to lot-line redevelopment excavation. The Model Remedy was determined to be the most permanent and effective alternative available for the Site as it met the criteria set forth in Ecology's guidance (Ecology, 2017a), including a petroleum release to soil, Ecology notification, implementation of interim actions, adequate characterization of the Site to confirm that groundwater, surface water, and sediments were not impacted by petroleum hydrocarbons, absence of off-property impacts, and the Site met the criteria of WAC 173-340-7491 and is therefore excluded from a Terrestrial Ecological Evaluation.

The excavation was compatible with the Site redevelopment plan, which included an overall excavation of the Property, with a subgrade parking garage or base floor slab ranging from 10 feet bgs on the western quarter, to 12 to 22 feet bgs in the central portion, and to 22 feet bgs on the eastern quarter of the Property. The redevelopment has a subgrade elevation of approximately 242.4 feet NAVD88, with perimeter and elevator footings extending to a maximum depth of approximately 233 feet NAVD88. Excavation of the Property to this depth removed all soil exhibiting COCs above the applicable CULs. The excavation was completed between February and May 2017.

7.1 SITE SPECIFIC HEALTH AND SAFETY

Before the commencement of construction activities, SoundEarth prepared a Site-specific HASP in accordance with 29 CFR 1910.120. Dickson and Elk Heights were responsible for the health and safety of their workers while on the Property.

SoundEarth field-screened ambient air during the excavation activities to monitor petroleum hydrocarbon levels in the breathing zone of personnel and equipment operators, and at the Property boundaries. Ambient air field screening was conducted using a PID. Results of ambient air monitoring are discussed in Section 8.1.

An exclusion zone was set up around the Property to ensure that only HAZWOPER (Hazardous Waste Operations and Emergency Response)-certified workers entered the contaminated area.

7.2 BUILDING DEMOLITION

Demolition of all structures on the Property was completed prior to the Site excavation. Demolition activities were conducted by Dickson in January and February 2017.

7.3 MONITORING WELL DECOMMISSIONING

Monitoring well MW01, formerly located within the excavation area on the northern portion of Parcel E, was decommissioned on January 10, 2017. The monitoring well was decommissioned by Holocene Drilling, Inc. of Puyallup, Washington, in accordance with WAC 173-160-460. The monitoring well casing was filled with bentonite chips to grade and hydrated (Appendix D).

7.4 SOIL CLASSIFICATION

SoundEarth, MCRT Modera Jackson Construction, LLC, Dickson, and Elk Heights discussed the recommended soil disposal facilities prior to the excavation and ensured all parties were in agreement regarding the preferred disposal facilities for the soil classification system detailed in the SMP. The SMP identified the following soil classifications to efficiently direct the real-time segregation of excavated soil and loading of haul trucks:

- Category 1—Non-impacted fill or native soil (without debris or contaminants).
- Category 2—Impacted fill or native soil (containing less than 450 mg/kg DRPH and ORPH, as required by the Category 2 facility's permit).
- Category 3—Contaminated fill or native soil containing petroleum hydrocarbons at concentrations above 450 mg/kg, as required by the Category 3 disposal facility and in accordance with Ecology's Guidelines for Reuse of Petroleum-Contaminated Soil (Ecology 2011).

More detailed information on soil classification designations and disposal acceptance criteria for permitted landfill facilities is provided in the SMP (SoundEarth 2016d).

7.5 REMEDIAL EXCAVATION

Based on the soil boring observations, analytical data, and predevelopment remedial excavations conducted at the Property between 2012 and 2016, the following three areas of known or suspected petroleum contamination were identified, as depicted on Figure 2:

- Area 1. GeoTech advanced geotechnical boring B-5 on Parcel B near the former 300-gallon heating oil tank location at Building 1. During the drilling of geotechnical boring B-5, GeoTech noted the presence of soil exhibiting petroleum odors at depths of 6 to 8 feet bgs. A soil sample was not collected for chemical analysis. Four other borings in this immediate area did not encounter indications of petroleum impacts.
- Area 2. A soil sample collected from Slotta boring SB-5 at a depth of 4 feet bgs in the Building 1 hydraulic press room contained 110 mg/kg of DRPH and 260 mg/kg of ORPH. Both concentrations are below the MTCA Method A CUL of 2,000 mg/kg but are considered by Ecology as "Category 2" soil for disposal purposes. Two other soil borings advanced in the hydraulic press area did not encounter indications of petroleum impacts.
- Area 3. During a Phase I Environmental Audit conducted in 2000 by EAI, oil-staining was observed on the wall and ground surface on the southwestern portion of Building 2. The staining was due to a leaking press machine. A remedial excavation of impacted soil was conducted by EAI outside the building, adjacent to the leak. However, approximately 0.2 cubic yards of PCS were estimated by EAI to remain beneath Building 2. This material was not removed due to concerns regarding the structural stability of the building foundation.

SoundEarth, in conjunction with Dickson, completed remedial excavation of the three areas described above and depicted on Figure 2 between February 8 and 10, 2017. Remedial activities for these three areas are summarized in sections 7.5.1 through 7.5.3 below (Table 3; Figure 8).

Additionally, as concrete slabs and asphalt paving were removed from each parcel in preparation for mass excavation of the Property, SoundEarth performed visual, olfactory, and PID screening of surficial soil beneath the former concrete and asphalt areas to identify any additional areas where PCS may be present. Impacted surficial soil was not observed in any portion of the Property during this screening process.

On May 5, 2017, following mass excavation of the Property for redevelopment, an area of odorous, gray-stained soil was discovered in the northwestern portion of the Property. The stained soil was encountered in the vicinity of Area 1 during the excavation of an elevator footing for the new construction. Remedial activities for this area are summarized in section 7.5.4 below (Table 3; Figure 9).

7.5.1 Excavation Area 1 (EX01)

Remedial excavation area EX01 was located in the vicinity of a former heating oil UST, where PCS had reportedly been observed at a depth of approximately 6 to 8 feet bgs in boring B-5 on the northern portion of Parcel B. The final dimensions of excavation area EX01 were 13 feet (north to south) by 13 feet (east to west) by 8 feet deep. No hydrocarbon odors, staining, or elevated PID readings were observed during the excavation. Confirmation soil samples were

collected from the bottom and sidewalls of the excavation area. All confirmation samples from EX01 had no detectable DRPH or ORPH. Excavated soil was stockpiled on plastic sheeting and sampled, pending completion of the remedial excavation and receipt of the analytical results.

7.5.2 Excavation Area 2 (EX02)

Remedial excavation area EX02 was located in the vicinity of a former hydraulic press in the northern portion of Building 1 on Parcel C, where DRPH and ORPH were previously detected in soil at a depth of 4 feet bgs in boring SB-5. Excavation area EX02 was completed in an L-shape based on the locations of the detections in boring SB-5 and the hydraulic press; final excavation dimensions were approximately 15 feet (north to south) by 16 feet (east to west) by 5 feet deep. No hydrocarbon odors, staining, or elevated PID readings were observed during the excavation. Confirmation soil samples were collected from the bottom and sidewalls of the excavation area. All confirmation samples from EX02 had no detectable DRPH or ORPH. Excavated soil was stockpiled on plastic sheeting and sampled, pending completion of the remedial excavation and receipt of the analytical results.

7.5.3 Excavation Area 3 (EX03)

Excavation area EX03 was located on the southern portion of Parcels C and D, directly adjacent to a historical remedial excavation of PCS associated with a former leaking press machine in Building 2. This excavation was conducted to remove the PCS beneath Building 2 that could not be removed during the previous excavation while the building was still in place. The proposed excavation dimensions were approximately 15 feet (north to south) by 8 feet (east to west) by 5 feet deep.

During the excavation, PCS was observed at a depth of approximately 2 to 3 feet bgs along the northern portion of the west sidewall, adjacent to the previously excavated area. This material was observed to be very dense silt and sand with gray staining and a faint to moderate hydrocarbon odor. The excavation area was extended approximately 1 to 2 feet to the northwest based on field observations and screening, and confirmation soil samples were collected from the bottom and sidewalls of the excavation area.

Following the initial excavation and soil sampling, analytical results indicated that PCS was still in place on the bottom at 4.0 feet below grade (ORPH at 3,300 mg/kg) and on the west sidewall at 2.0 feet below grade (ORPH at 720 mg/kg). Based on these results, an additional 2 feet of soil was excavated from the bottom of the excavation and the north end of the west sidewall until field screening indicated that all PCS was removed. New confirmation soil samples were collected from the bottom and west sidewall of the excavation area. All final confirmation samples from EX03 had no detectable DRPH or ORPH. The final excavation dimensions were approximately 15 feet (north to south) by 9 to 13 feet (east to west) by 6 feet deep. Excavated soil was stockpiled on plastic sheeting and sampled, pending completion of the remedial excavation and receipt of the analytical results.

Prior to the over-excavation of the west sidewall and bottom of EX03 on February 10, 2017, approximately 3 feet of stormwater had accumulated within the excavation. Pro-Vac was called to the site with a vacuum truck to pump the water out of the excavation. Approximately 2,500 gallons of water were removed from the excavation.

7.5.4 Elevator Pit Excavation Area (EX04)

On May 5, 2017, PCS was discovered during the excavation of an elevator footing in the northwestern portion of the Property. The PCS was encountered along the bottom and west sidewall of the excavated area at a depth of approximately 14 feet below original grade. The observed PCS was located in the vicinity of the former heating oil tank, adjacent to and vertically below remedial excavation EX01. Pursuant to the SMP prepared for the Property (SoundEarth 2016d), Elk Heights discontinued excavation activities when the impacted soil was observed. SoundEarth was called to the Property to collect performance soil samples and characterize the extent of the impacts, again in conformance with the SMP. The results of performance soil sampling indicated that DRPH was present at concentrations exceeding the MTCA Method A CUL in samples collected from the bottom (2,700 mg/kg at 17 feet below grade) and the west sidewall of the excavation (11,000 mg/kg at 14 feet below grade) (Table 3). The laboratory identified the petroleum product as heating oil.

On May 8, 2017, SoundEarth, in conjunction with Elk Heights, began the remedial excavation of the impacted areas of EX04. Approximately 1 to 2 feet of soil was removed from the bottom and south sidewall of the excavation to a depth of approximately 19 feet below original grade, until field screening indicated that all PCS had been removed from these areas. Approximately 2 to 3 feet of soil was excavated from the west sidewall, until Elk Heights indicated that the excavation had reached the planned limits of the elevator footing. It was determined that Elk Heights would discontinue remedial excavation activities on the west sidewall until after the footing was poured. Confirmation soil samples were collected from the north, south, and east sidewalls and the bottom of the excavation area. A performance soil sample was collected from the remaining PCS in the west sidewall (5,200 mg/kg at 15 feet below grade). Excavated soil was stockpiled on plastic sheeting, pending the completion of the remedial excavation and removal of the PCS from the Property.

On May 22, 2017, SoundEarth and Elk Heights resumed the remedial excavation of the west sidewall of EX04 with the new footing in place. Clean soil overlying the remaining PCS on the west sidewall was removed and stockpiled for reuse. Approximately 2 to 3 feet of additional PCS were removed from the west sidewall, and 1 to 2 additional feet of soil were removed from the bottom of the excavation where small pockets of PCS were observed. Excavation activities were completed when field screening indicated that all PCS had been removed.

The final dimensions of EX04 were approximately 34 feet (north to south) by 20 feet (east to west) by 9 feet deep (approximately 21 feet below original grade). PCS was only observed in the western portion of the elevator pit excavation area. Confirmation soil samples were collected from the bottom and west sidewall of the final limits of the excavation area, and excavated soil was stockpiled on plastic sheeting, pending removal from the Property. All final confirmation samples from EX04 had no detectable DRPH or ORPH.

Groundwater was not encountered in any of the excavation areas during the course of the remedial excavation.

7.6 SOIL DISPOSAL

PCS encountered during excavation activities was sampled and stockpiled on plastic sheeting, pending laboratory analytical results to determine the appropriate disposal facilities for each stockpile. Soil samples collected from the excavation area EXO2 stockpile did not contain concentrations of DRPH or

ORPH exceeding 500 mg/kg; therefore, this soil was transported as Category 2 material to the CEMEX facility in Everett, Washington, on February 10, 2017. Soil samples collected from the EX01 and EX03 stockpiles contained DRPH and/or ORPH concentrations exceeding or equaling 500 mg/kg; therefore, this soil was transported as Category 3 material to the Republic Services' Regional Disposal Intermodal facility located at 3rd and Lander in Seattle, Washington, on February 9, 2017, or to the CEMEX Category 3 facility in Everett, Washington, on February 10, 2017.

Based on performance soil sample results from the elevator pit excavation area EX04, soil removed from this excavation contained concentrations of DRPH exceeding 500 mg/kg and was, therefore, transported as Category 3 material to the Regional Disposal Intermodal Facility at 3rd and Lander in Seattle, Washington, on May 22, 2017.

Approximately 27.77 tons of Category 2 and 222.72 tons of Category 3 soil were removed from the Property and transported to CEMEX and Republic. Soil disposal documentation is provided in Appendix E.

7.7 WATER DISPOSAL

Approximately 2,500 gallons of stormwater were pumped from excavation area EX03 and removed from the Property by Pro-Vac on February 10, 2017 (certificate provided in Appendix E). Since the stormwater accumulated in a petroleum impacted area, no profiling of this water was required for disposal by Pro-Vac. Groundwater was not encountered or disposed of during excavation activities.

8.0 COMPLIANCE MONITORING

There are three types of compliance monitoring identified for the cleanup action (WAC 173-340-410): protection, performance, and confirmational monitoring. A paraphrased definition for each is presented below (WAC 173-340-410[1]):

- Protection Monitoring. To evaluate whether human health and the environment are adequately
 protected during the cleanup activities.
- Performance Monitoring. To document that the cleanup activities have attained cleanup standards.
- **Confirmational Monitoring**. To evaluate the long-term effectiveness of the cleanup activities, or once cleanup standards or other performance standards have been attained.

8.1 **PROTECTION MONITORING**

In accordance with the Site-specific HASP, SoundEarth monitored ambient air during excavation activities for petroleum hydrocarbons in the breathing zone of personnel and equipment operators and at the boundaries of the Property. Air monitoring was conducted using a PID. Results of air monitoring did not indicate elevated PID readings exceeding 1.0 parts per million by volume (ppmv) in the breathing zone or at the Property boundaries.

8.2 PERFORMANCE MONITORING

Performance monitoring included the collection of soil samples from the sidewalls and floors of each of the four remedial excavation areas. Soil samples were collected by a SoundEarth geologist and

transferred directly to laboratory-prepared sample containers labeled with unique laboratory identification numbers. The containers were placed in an iced cooler and transported for laboratory analysis to F&BI under standard chain-of-custody protocols. Samples were analyzed for DRPH and ORPH by Method NWTPH-Dx. Performance soil sampling locations and results are presented on Figures 8 and 9 and in Table 3. Laboratory analytical reports are provided in Appendix B.

Performance monitoring and field screening of soil was conducted during the remedial excavation activities to direct advancement of the excavation and demonstrate that MTCA Method A CULs had been met. A SoundEarth geologist observed the excavation of identified impacted soil during the excavation activities and performed field screening of the non-impacted soil areas to confirm the lack of notable impacts. Field screening included observation of the soil for discoloration, sheen, and odors. In addition to physical observations, a PID was used to qualitatively measure volatile organic vapors in the soil.

Contaminated soil was excavated from each of the remedial excavation areas until visual observations, field screening, and performance sample laboratory data indicated that the extent of contamination had been determined and all impacted soil removed. A performance soil sample collected from the bottom of excavation area EX03 at a depth of 4 feet bgs (EX03-B02-4) contained a concentration of ORPH above the applicable MTCA Method A CUL and a concentration of DRPH below the applicable CUL. A performance soil sample collected from the west sidewall of this excavation area at a depth of 2 feet bgs (EX03-WSW01-2) contained concentrations of DRPH and ORPH below the applicable CULs. The west sidewall and bottom of the excavation area were then overexcavated by approximately 2 feet and resampled until compliance with CULs was achieved.

Performance soil samples collected from the bottom and west sidewall of excavation area EXO4 at depths of 14, 15, and 17 feet below original grade contained concentrations of DRPH exceeding the applicable CUL. The bottom and west sidewall of the excavation area were subsequently overexcavated by approximately 3 to 4 feet and resampled until compliance with CULs was achieved.

8.3 CONFIRMATIONAL MONITORING

Confirmation soil samples were collected from the final extents (sidewalls and bottom) of each of the four remedial excavation areas. Soil samples were submitted to F&BI for laboratory analysis of DRPH and ORPH by NWTPH Method NWTPH-Dx. None of the confirmation soil samples collected from the final limits of the four excavation areas contained detectable concentrations of DRPH or ORPH.

Confirmation soil sampling locations and results are presented on Figures 8 and 9 and in Table 3. Copies of the laboratory analytical reports are included in Appendix B.

9.0 CONCLUSIONS

The results of the RI activities and previous subsurface investigations conducted by SoundEarth and others at the Site between 2012 and 2016 support the conclusion that the COCs for the Site are DRPH and ORPH in soil. Impacts to groundwater above background concentrations were not observed during any previous subsurface investigations conducted on the Property.

Soil impacts were initially thought to be limited to three source areas identified on the Property, including the vicinity of the former heating oil UST on Parcel B (EX01), at Slotta boring SB05 on Parcel C

(EX02), and the former hydraulic press area near the southern common boundary of Parcels C and D (EX03). A fourth area of limited impacted soil was identified during the excavation of an elevator footing pit (EX04) associated with the Property redevelopment. This impacted area was located directly adjacent to and vertically beneath area EX01 and was likely associated with the former heating oil UST. All contaminated soil was disposed off-Site at a licensed disposal facility.

Confirmation soil samples collected from the final extent of remedial excavation areas EX01, EX02, EX03, and EX04 demonstrate that all soil containing detected concentrations of DRPH and ORPH has been removed from the Property. None of the final confirmation soil samples from any of the four excavation areas contained detectable concentrations of DRPH or ORPH, indicating that all remedial action objectives have been achieved.

Neither PCS nor other impacted soil was observed in any other areas of the Property during initial surficial soil screening, mass excavation of the Property, or excavation of footings and utility trenches. Based on the results of the confirmation soil samples collected from excavation areas EX01, EX02, EX03, and EX04, and the absence of any groundwater impacts based upon previous investigations, no additional remedial actions at the Property are warranted.

10.0 LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report are derived, in part, from data gathered by others, and from conditions evaluated when services were performed, and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We do not warrant and are not responsible for the accuracy or validity of work performed by others, nor from the impacts of changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the use of segregated portions of this report.

11.0 REFERENCES

- City of Seattle. 2017. City of Seattle Zoning as of November 10, 2017. http://www.seattle.gov/dpd/Research/gis/webplots/smallzonemap.pdf>. Accessed January 3, 2018.
- Environmental Associates, Inc. (EAI). 2000. Phase I Environmental Audit, Van's Metal Spinning, 1815, 1817, and 1819 South Jackson Street, Seattle, Washington. August 7.

______. 2011. Phase I Environmental Site Assessment, Commercial Building, Parcel # 331950-1245, 1819 South Jackson Street, Seattle, Washington. March 18.

Floyd Snider McCarthy Team. 2003. North BINMIC Hydrogeologic and Environmental Settings Report Brownfields Pilot Project.

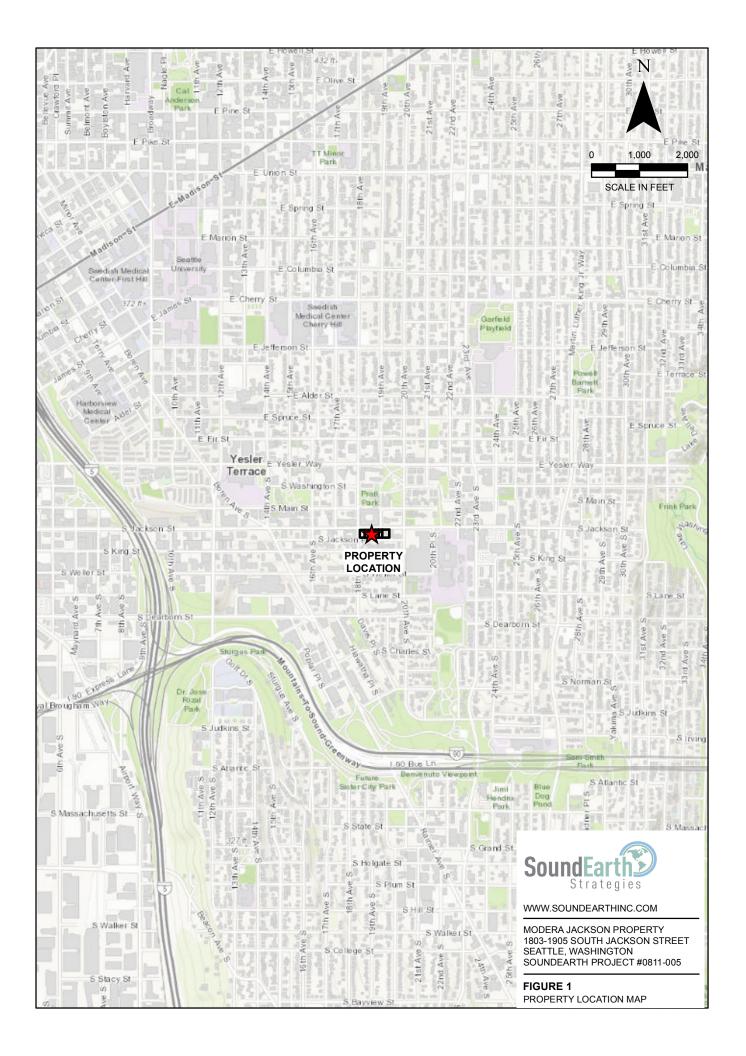
- GeoTech Consultants, Inc. (GeoTech). 2012. Preliminary Geotechnical Considerations, Proposed Mixed-Use Building – Six lots 1801-1825 South Jackson Street, Seattle, Washington. December 5.
- IDcide. 2017. Weather data. Reviewed online at <http://www.idcide.com/weather/index.htm>.
- Puget Sound Clean Air Agency (PSCAA). 2011. *Executive Summary, 2010 Study of Air Toxics in Tacoma and Seattle,* Publication Number 30-42. February.
- Slotta Design and Consulting (Slotta). 2012. Subsurface Investigation Report, Van's Metal Spinning Shop, 1817 South Jackson Street, Seattle, Washington. October 10.
- SoundEarth Strategies, Inc. (SoundEarth). 2012. Phase I Environmental Site Assessment, 18th and Jackson Property, 1803 to 1825 South Jackson Street, Seattle, Washington. December 10.

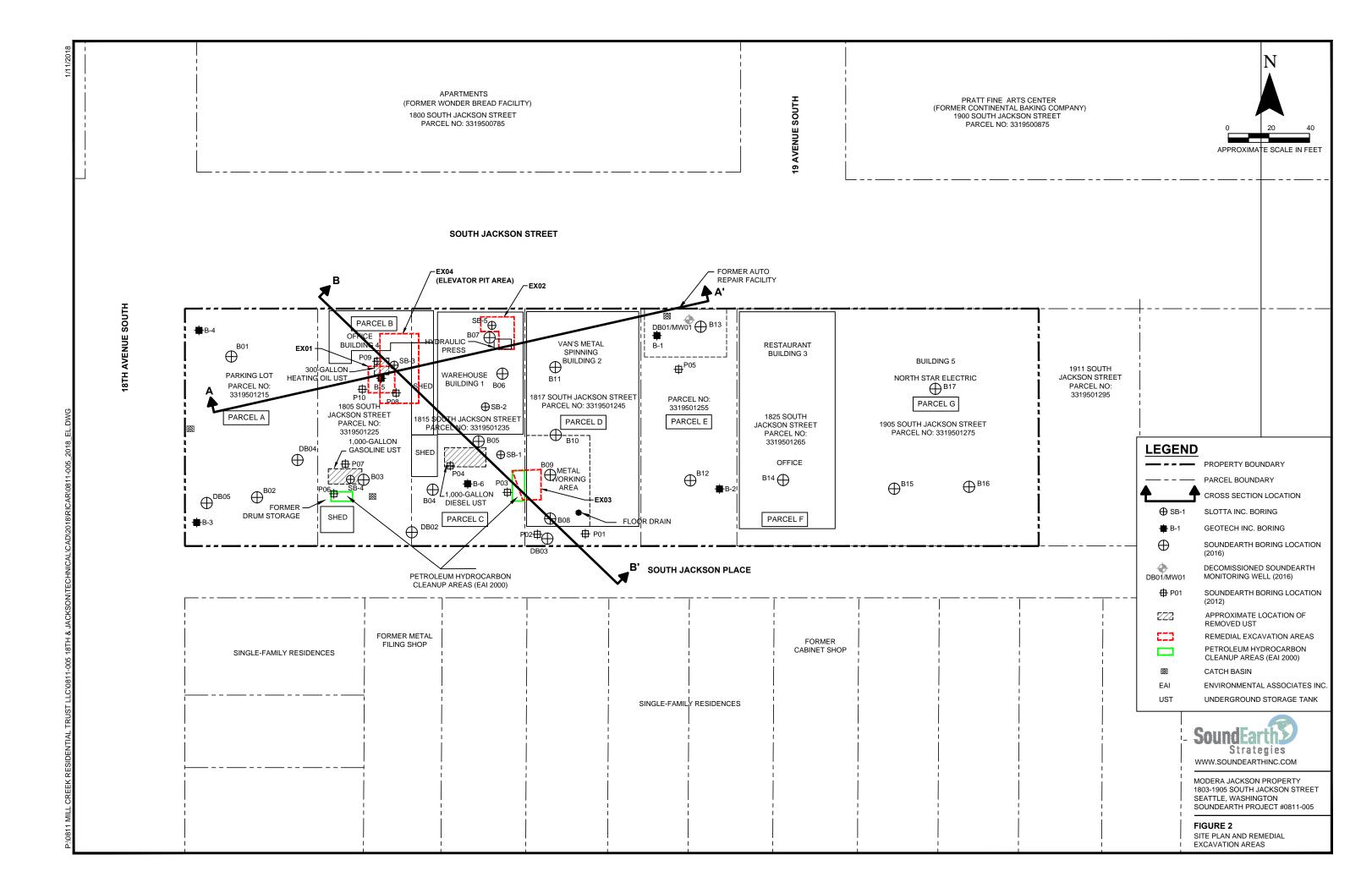
____. 2013. Supplemental Phase II Environmental Site Assessment, Van's Metal Spinning Properties, 1803-1825 South Jackson Street, Seattle, Washington. January 4.

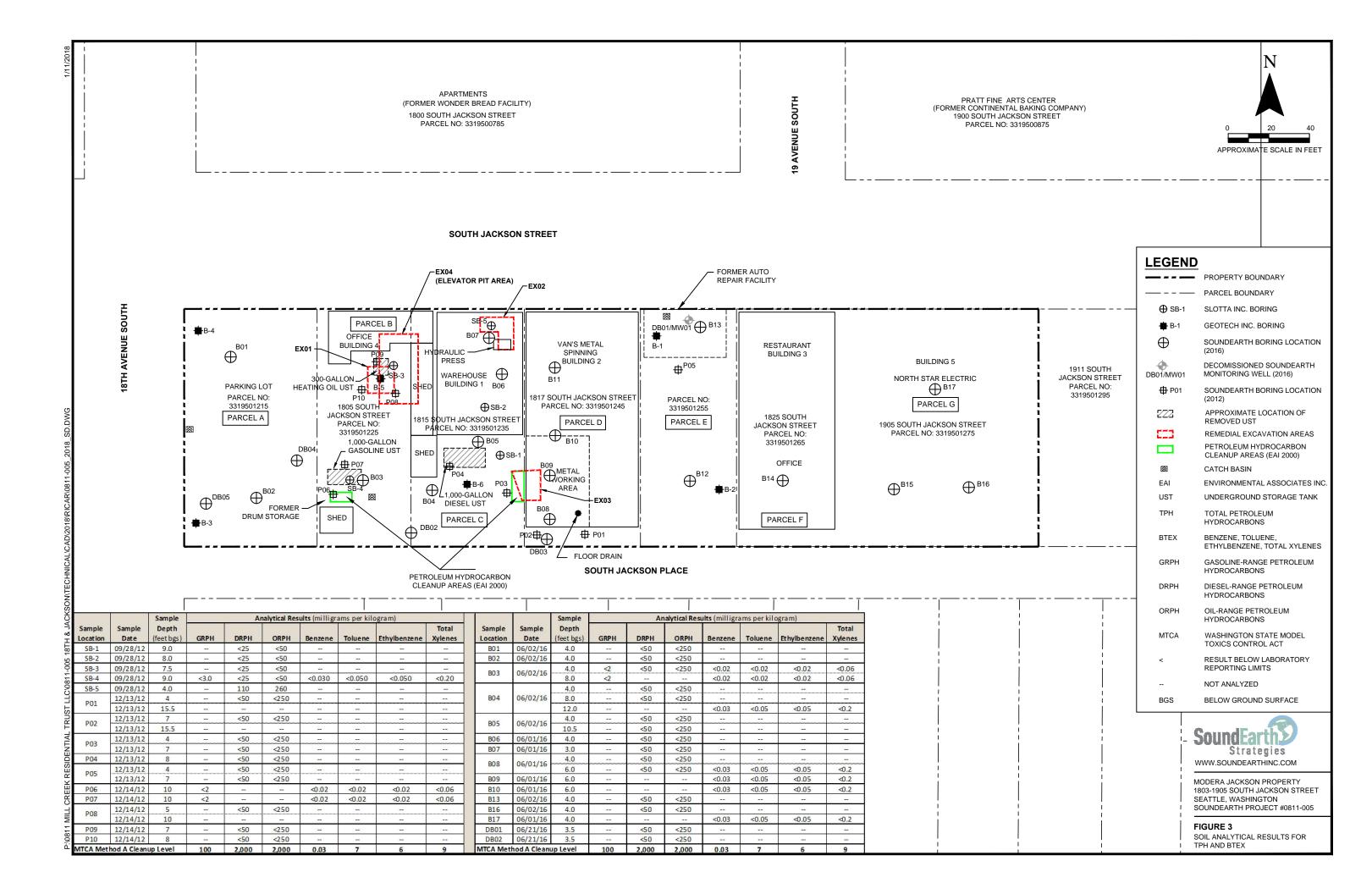
_____. 2015. Phase I Environmental Site Assessment, The Atlantic Property, 1803 to 1905 South Jackson Street, Seattle, Washington. November 19.

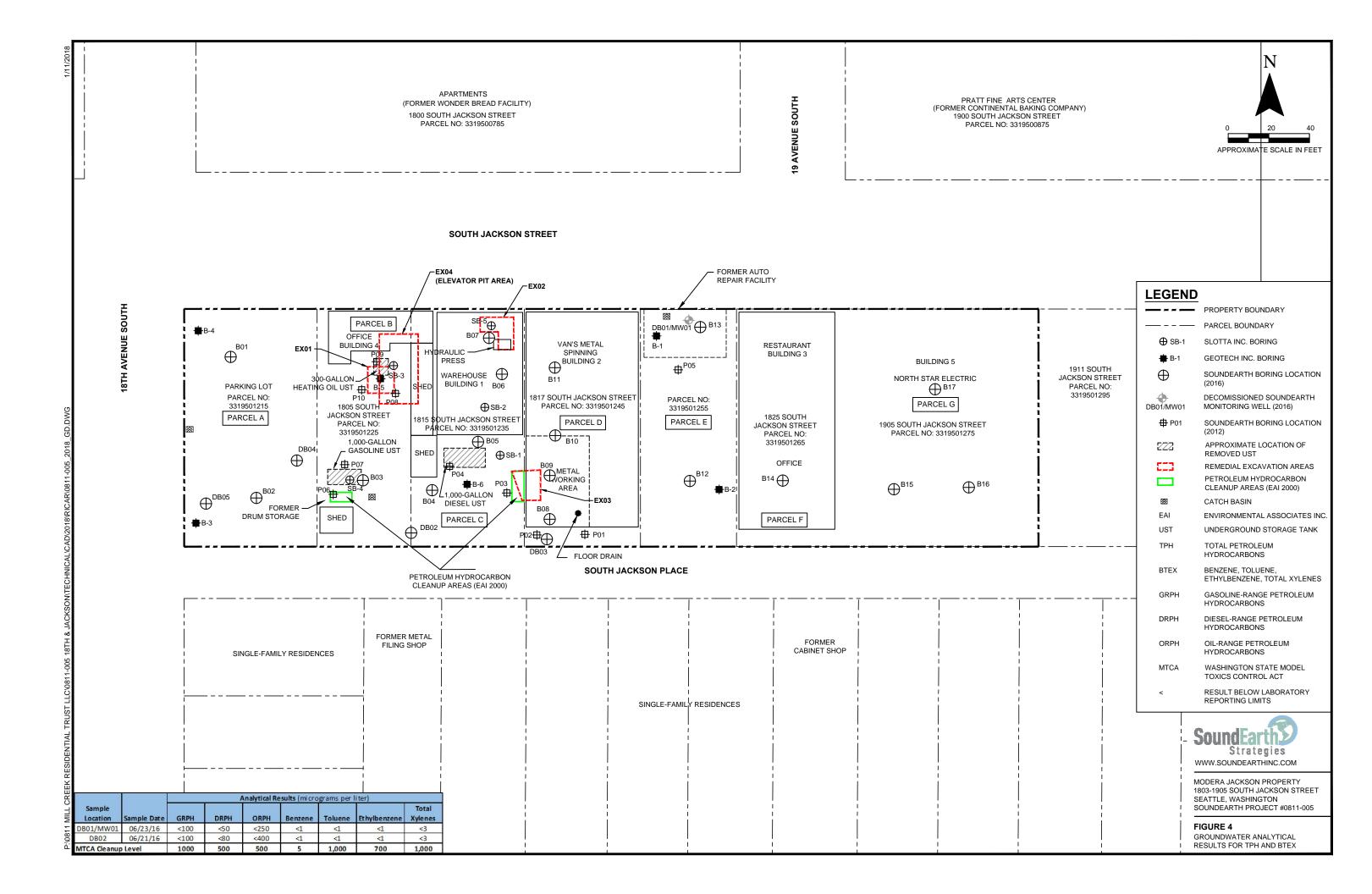
_____. 2016a. Phase I Environmental Site Assessment, 18th and Jackson Property, 1803 to 1905 South Jackson Street, Seattle, Washington. October 7.

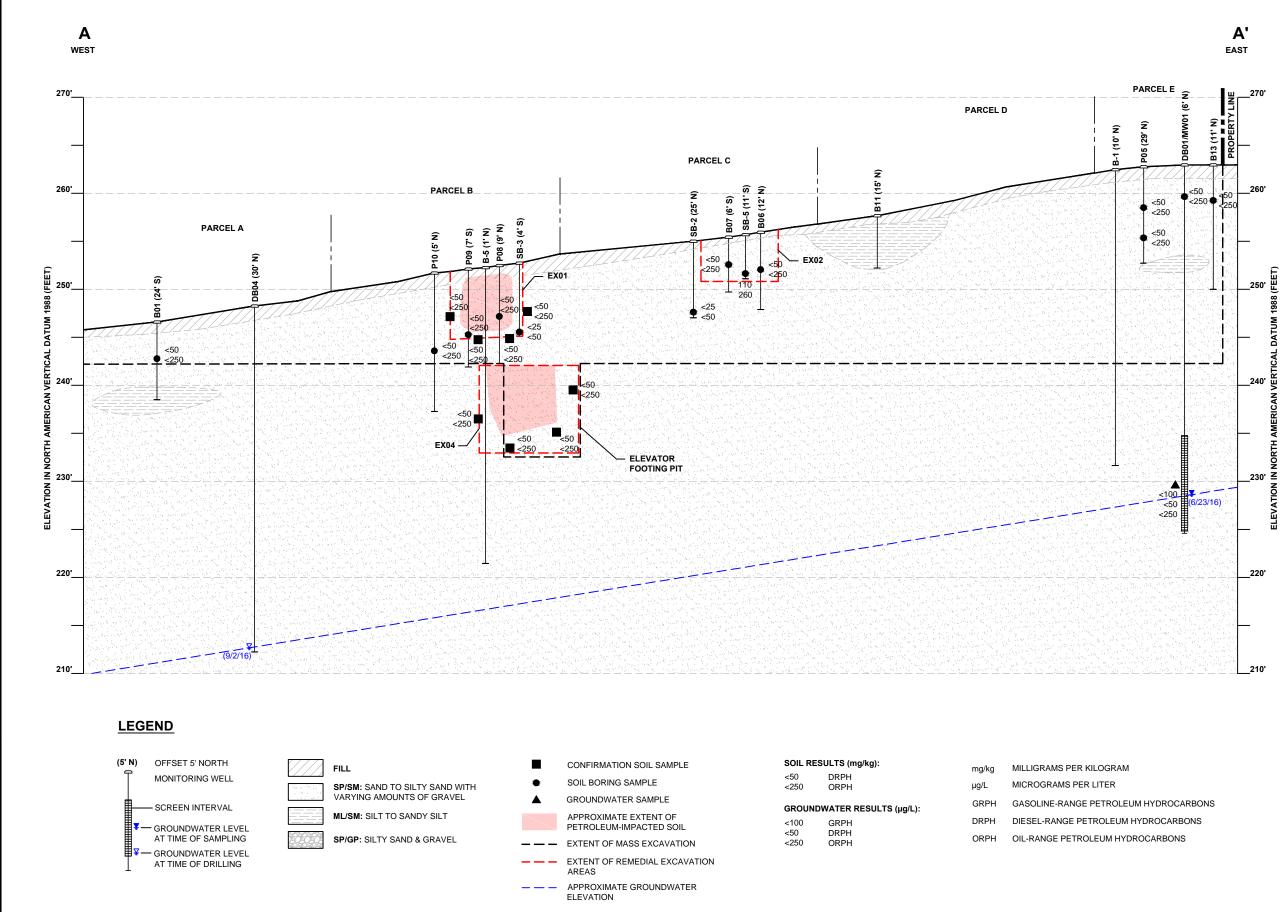
____. 2016b. Supplemental Phase II Environmental Site Assessment, 18th and Jackson Property, 1803 to 1905 South Jackson Street, Seattle, Washington. July 15.

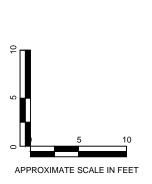

_____. 2016c. Supplemental Phase II Environmental Site Assessment, 18th and Jackson Property, 1803 to 1905 South Jackson Street, Seattle, Washington. September 29.

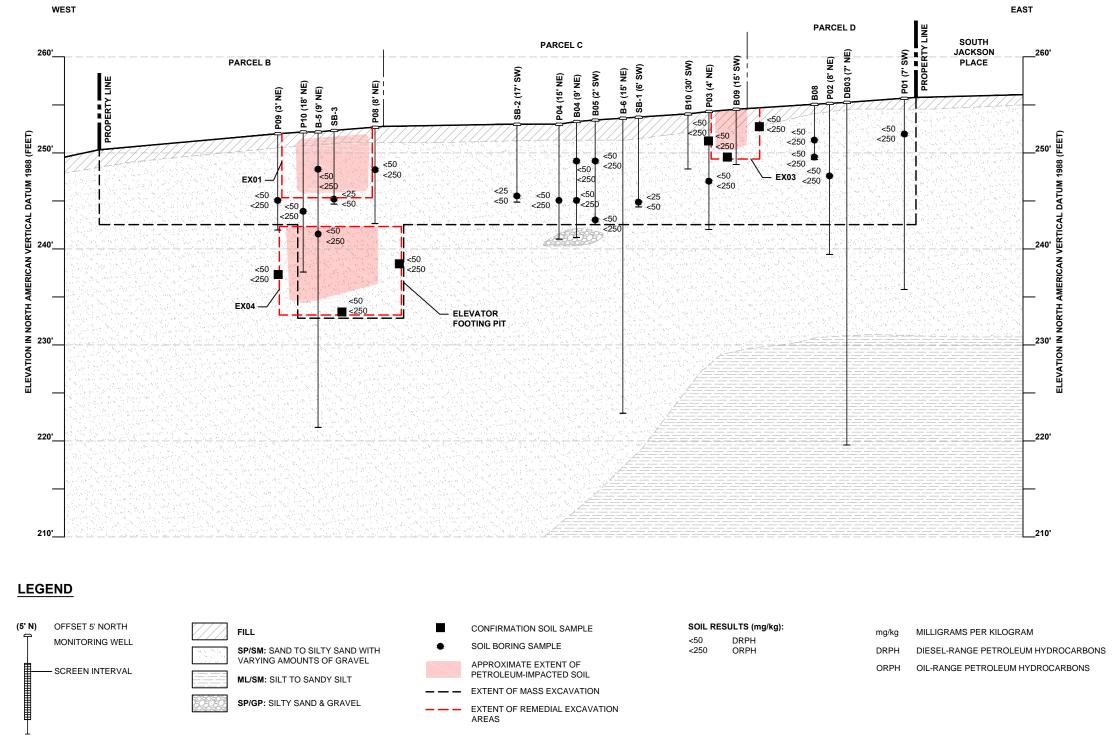

_____. 2016d. Soil Management Plan for Construction Excavation, 18th and Jackson Property, 1803 to 1905 South Jackson Street, Seattle, Washington. December 20.


- Troost, Kathy Goetz, D.B. Booth, A.P. Wisher, and S.A. Shimel (Troost et al.). 2005. *The Geologic Map of Seattle—A Progress Report.* U.S. Geological Survey Open-File Report 2005-1252. http://pubs.usgs.gov/of/2005/1252/. December 9.
- Troost, K.G. and D.B. Booth (Troost and Booth). 2008. "Geology of Seattle and the Seattle Area, Washington." Reviews in *Engineering Geology*. (20), pp. 1–36.
- U.S. Environmental Protection Agency (EPA). 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504. April.
- U.S. Geological Survey. 2011. Seattle North Quadrangle, Washington, 7.5-Minute Series.
- Vaccaro, J.J., A.J. Hansen, Jr., and M.A. Jones (Vaccaro et al.). 1998. *Hydrogeologic Framework of the Puget Sound Aquifer System, Washington and British Columbia.* US Geological Survey Professional Paper 1424-D. 77p.

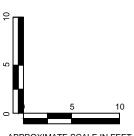

- Waitt Jr., R.B. and R.M. Thorson (Waitt and Thorson). 1983. "The Cordilleran Ice Sheet in Washington, Idaho, and Montana." IN: H.E. Wright, Jr. (ed.), 1983, *Late-Quaternary Environments of the United States, Volume 1: The Late Pleistocene* (Stephen C. Porter [ed.]): University of Minnesota Press, 407p., Chapter 3, pp. 53-70.
- Washington State Department of Ecology (Ecology). 1994. Natural *Background Soil Metals Concentrations in Washington State*. Publication No. 94-115. October.
 - _____. 2009. *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action.* Publication No. 09-09-047. October. Review Draft Revised February 2016.
 - _____. 2011. *Guidance for Remediation of Petroleum Contaminated Sites,* Toxics Cleanup Program. Publication No. 10-09-057. September.
- ______. 2017a. *Model Remedies for Sites with Petroleum Contaminated Soils,* Toxics Cleanup Program. Publication No. 15-09-043. December.
- _____. 2017b. Washington State Well Log Viewer. Accessed at https://fortress.wa.gov/ecy/waterresources/map/WCLSWebMap/default.aspx. December 29.
- Western Regional Climate Center. 2017. Reviewed online at Western Regional Climate Center Website. www.wrcc.dri.edu/htmlfiles/westwinddir.html. December.


FIGURES





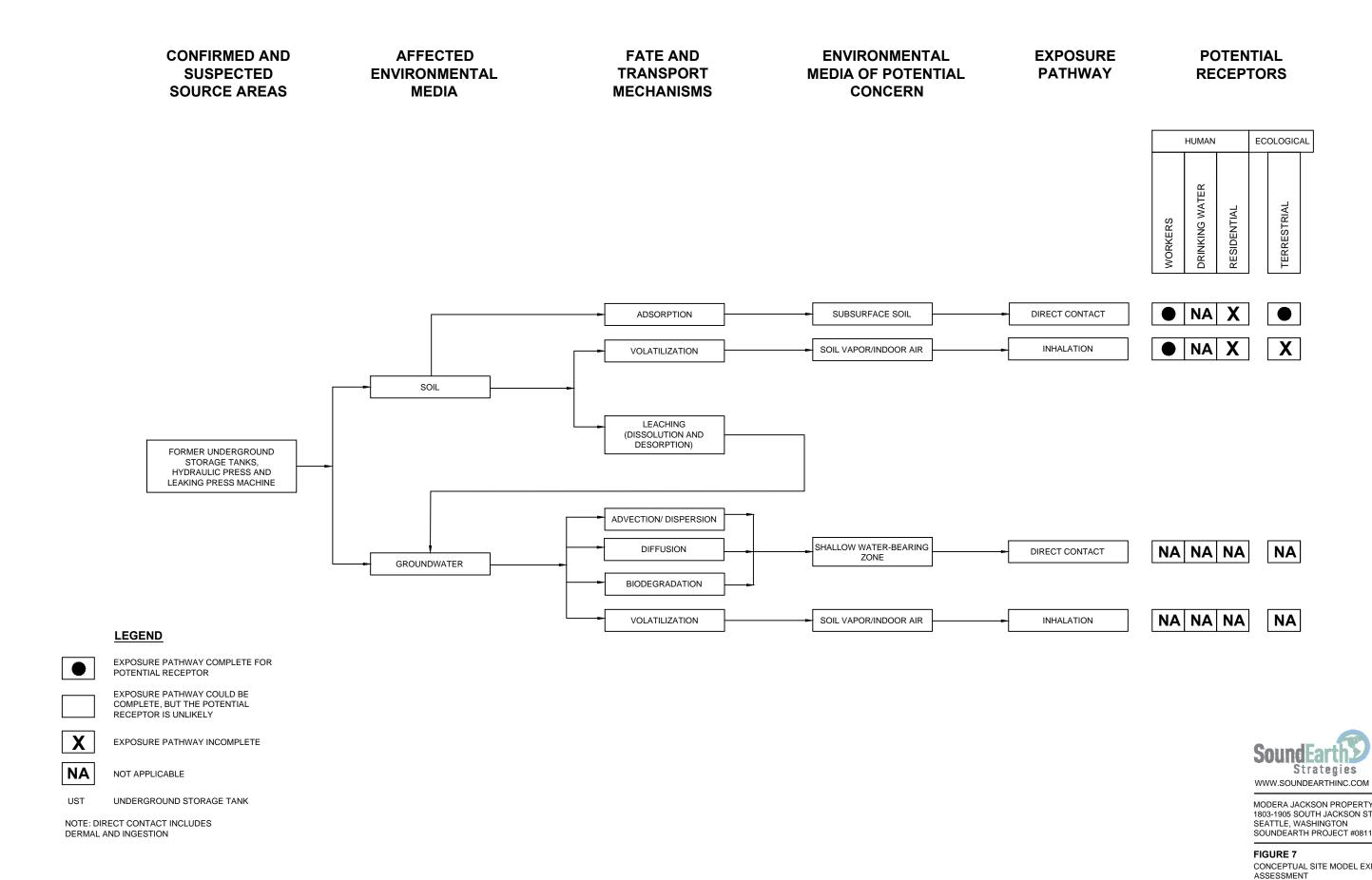
MODERA JACKSON PROPERTY 1803-1905 SOUTH JACKSON STREET SEATTLE, WASHINGTON SOUNDEARTH PROJECT #0811-005

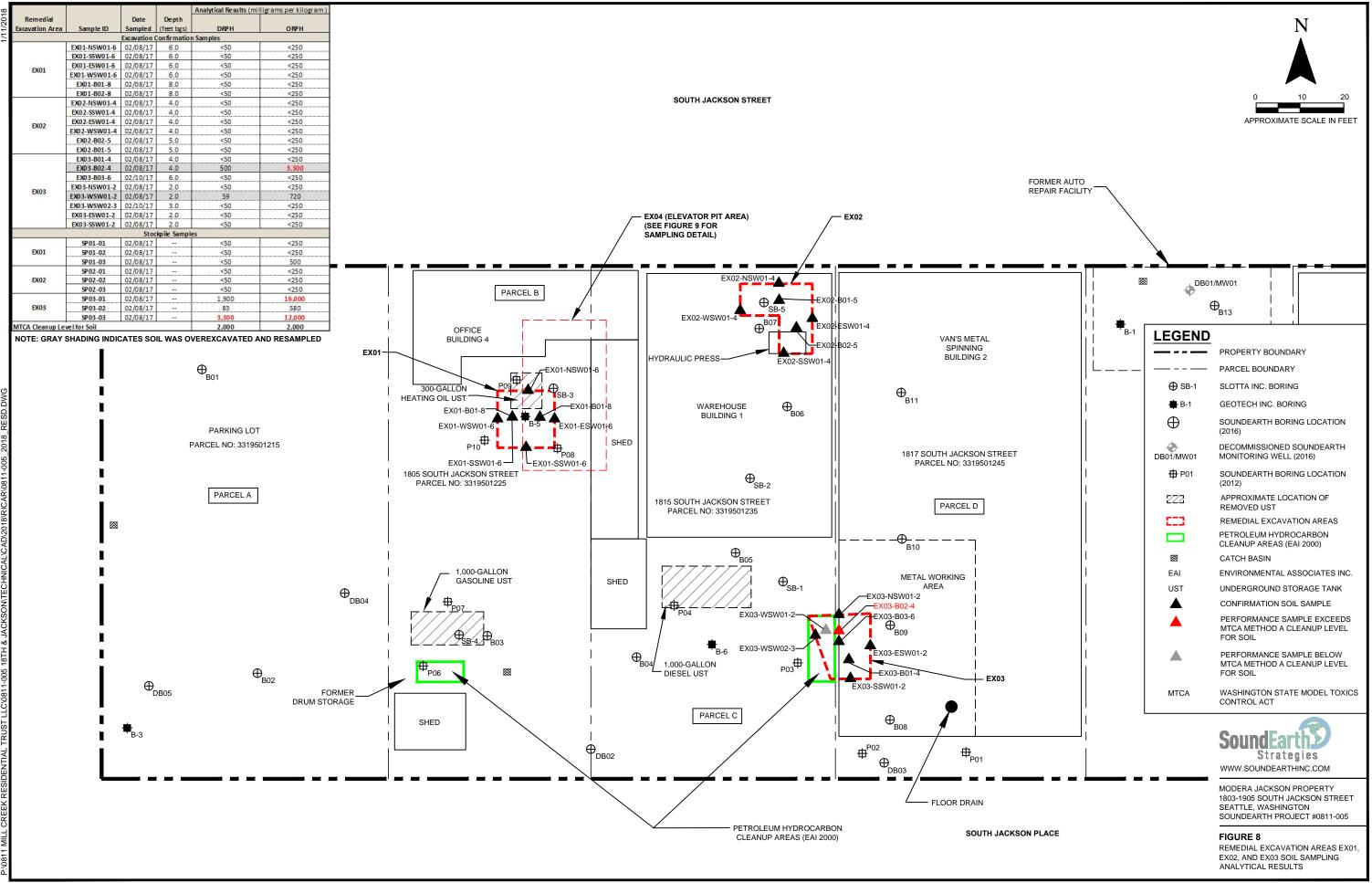

FIGURE 5 GEOLOGIC CROSS SECTION A-A'

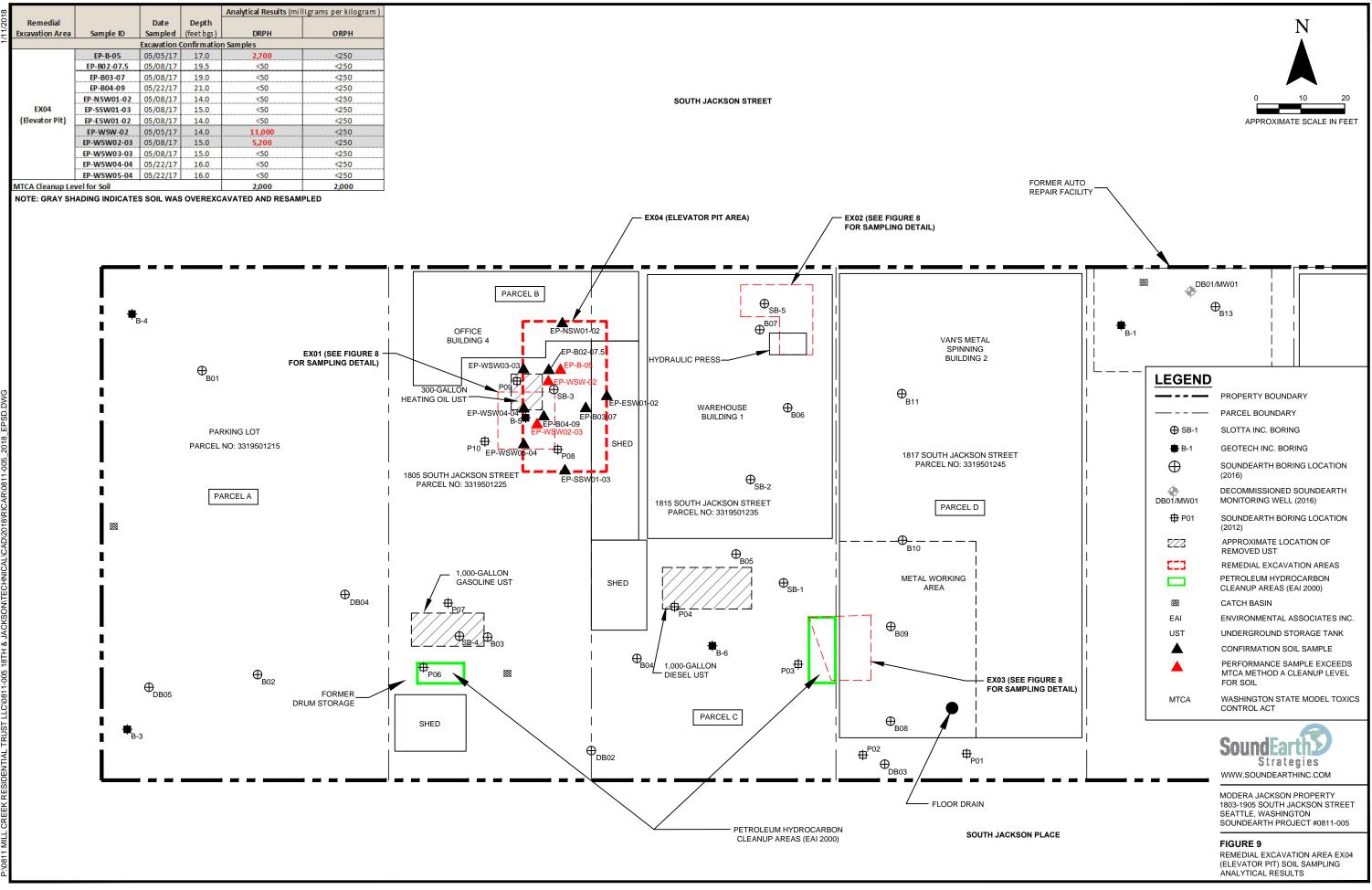


В

В'




MODERA JACKSON PROPERTY 1803-1905 SOUTH JACKSON STREET SEATTLE, WASHINGTON SOUNDEARTH PROJECT #0811-005


FIGURE 6 GEOLOGIC CROSS SECTION B-B'

MODERA JACKSON PROPERTY 1803-1905 SOUTH JACKSON STREET SEATTLE, WASHINGTON SOUNDEARTH PROJECT #0811-005

CONCEPTUAL SITE MODEL EXPOSURE ASSESSMENT

TABLES

Table 1 Soil Analytical Results for TPH, VOCs, PCBs, and RCRA 8 Metals Modera Jackson Property 1803 to 1905 South Jackson Street Seattle, Washington

				Sample							An	alvtical Results (r	nilligrams per kilogr	am)							
Sample Location	Sample ID	Sampled By	Sample Date	Depth (feet bgs)	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Total Xylenes ⁽³⁾	VOCs ⁽⁴⁾	Total PCBs ⁽⁵⁾	Arsenic ⁽⁶⁾	Barium ⁽⁶⁾	Cadmium ⁽⁶⁾	Chromium ⁽⁶⁾	Lead ⁽⁶⁾	Mercury ⁽⁶⁾	Selenium ⁽⁶⁾	Silver ⁽⁶⁾
SB-1	B-1 @ 9'	Slotta	09/28/12	(Teet bgs) 9.0		<25	<50	Delizene	Toldelle					Arsenic				Leau	wiercury	Seleman	511761
SB-2	B-2 @ 8'	Slotta	09/28/12	8.0		<25	<50														
SB-2 SB-3	B-3 @ 7.5'	Slotta	09/28/12	7.5		<25	<50														
SB-4	B-4 @ 9'	Slotta	09/28/12	9.0	<3.0	<25	<50	< 0.030	<0.050	<0.050	<0.20										
SB-5	B-5 @ 4'	Slotta	09/28/12	4.0		110	260					ND	<0.50	3.1		<0.50	25	63	0.066		
	P01-04		12/13/12	4		<50	<250					ND									
P01	P01-15.5	SoundEarth	12/13/12	15.5								ND									
P02	P02-07	SoundEarth	12/13/12	7		<50	<250					ND									
P02	P02-15.5	SoundEarth	12/13/12	15.5								ND									
P03	P03-04	SoundEarth	12/13/12	4		<50	<250														
F03	P03-07	SoundLarth	12/13/12	7		<50	<250														
P04	P04-08	SoundEarth	12/13/12	8		<50	<250														
P05	P05-04	SoundEarth	12/13/12	4		<50	<250														
FUS	P05-07	SoundLarth	12/13/12	7		<50	<250					ND									
P06	P06-10	SoundEarth	12/14/12	10	<2			<0.02	< 0.02	<0.02	<0.06										
P07	P07-10	SoundEarth	12/14/12	10	<2			<0.02	< 0.02	<0.02	<0.06										
P08	P08-05	SoundEarth	12/14/12	5		<50	<250														
FUO	P08-10	SoundLantin	12/14/12	10								ND									
P09	P09-07	SoundEarth	12/14/12	7		<50	<250														
P10	P10-08	SoundEarth	12/14/12	8		<50	<250														
P01-P05	P01-P05Comp01	SoundEarth	12/13/12	varies										1.56	29.0	<1	10.7	2.02	<0.1	<1	<1
P01-P10	P01-P10Comp01	SoundEarth	12/14/12	varies										2.02	35.7	<1	12.3	3.78	<0.1	<1	<1
B01	B01-4.0	SoundEarth	06/02/16	4.0		<50	<250														
B02	B02-4.0	SoundEarth	06/02/16	4.0		<50	<250							2.36		<1	18.3	4.43	<1		
B03	B03-4.0	SoundEarth	06/02/16	4.0	<2	<50	<250	<0.02	<0.02	<0.02	<0.06			1.45		<1	11.6	2.2	<1		
200	B03-8.0	boundEditin	00,02,10	8.0	<2			<0.02	<0.02	<0.02	<0.06										
_	B04-4.0			4.0		<50	<250						<0.2								
B04	B04-8.0	SoundEarth	06/02/16	8.0		<50	<250														
	B04-12.0			12.0				<0.03	<0.05	<0.05	<0.2	ND									
B05	B05-4.0	SoundEarth	06/02/16	4.0		<50	<250														
	B05-10.5			10.5		<50	<250														
B06	B06-4.0	SoundEarth	06/01/16	4.0		<50	<250														
B07	B07-3.0	SoundEarth	06/01/16	3.0		<50	<250						<0.2								
B08	B08-4.0	SoundEarth	06/01/16	4.0		<50	<250														
	B08-6.0			6.0		<50	<250	<0.03	<0.05	<0.05	<0.2	ND									
B09	B09-6.0	SoundEarth	06/01/16	6.0				<0.03	<0.05	<0.05	<0.2	ND									
B10	B10-6.0	SoundEarth	06/01/16	6.0				<0.03	<0.05	<0.05	<0.2	ND									
B12	B12-4.0	SoundEarth	06/02/16	4.0										2.03		<1	11.2	4.72	<1		
B13	B13-4.0	SoundEarth	06/02/16	4.0		<50	<250							1.24		<1	12.7	<2	<1		
B16	B16-4.0	SoundEarth	06/02/16	4.0		<50	<250							1.32		<1	11.4	1.63	<1		
B17	B17-4.0	SoundEarth	06/01/16	4.0				<0.03	<0.05	<0.05	<0.2	ND									
DB01	DB01-3.5	SoundEarth	06/21/16	3.5		<50	<250														
DB02	DB02-3.5	SoundEarth	06/21/16	3.5	(7)	<50	<250	(7)	(7)	(7)	(7)		(7)	(7)		(7)	(7)	(7)	(7)		
MTCA Method	A Cleanup Level fo	or Soil			100 ⁽⁷⁾	2,000 ⁽⁷⁾	2,000 ⁽⁷⁾	0.03 ⁽⁷⁾	7 ⁽⁷⁾	6 ⁽⁷⁾	9 ⁽⁷⁾	N/A ⁽⁹⁾	1 ⁽⁷⁾	20 ⁽⁷⁾	N/A	2 ⁽⁷⁾	2,000 ⁽⁷⁾	250 ⁽⁷⁾	2 ⁽⁷⁾	400 ⁽⁸⁾	400 ⁽⁸⁾

NOTES:

SoundEarth chemical analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington. Slotta chemical analyses conducted by ALS Environmental of Everett, Washington.

⁽¹⁾Analyzed by Method NWTPH-Gx.

⁽²⁾Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B or 8260C.

⁽⁴⁾Analyzed by EPA Method 8260C. See laboratory report for list of analytes.

⁽⁵⁾Analyzed by EPA Method 8082A.

⁽⁶⁾Analyzed by EPA Method 6020 or 200.8.

⁽⁷⁾MTCA Cleanup Regulation, Method A Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

⁽⁸⁾MTCA Cleanup Regulation, Chapter 173-340 of WAC, CLARC, Soil, Method B, Non cancer, CLARC Website <https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx>.

 $\ensuremath{^{(9)}}\xspace$ There are multiple cleanup levels for the various VOCs included within this suite of analyses.

-- = not analyzed

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons EPA = U.S. Environmental Protection Agency

- GRPH = gasoline-range petroleum hydrocarbons
- MTCA = Washington State Model Toxics Control Act
- N/A = not applicable

ND = not detected above the laboratory reporting limit NWPTH = Northwest Total Petroleum Hydrocarbon ORPH = oil-range petroleum hydrocarbons PCB = polychlorinated biphenyl RCRA = Resource Conservation and Recovery Act SoundEarth = SoundEarth Strategies, Inc. Slotta = Slotta Design and Consulting TPH = total petroleum hydrocarbons VOC = volatile organic compound

Table 2 Groundwater Analytical Results for TPH, BTEX, and MTCA 5 Metals Modera Jackson Property 1803 to 1905 South Jackson Street Seattle, Washington

										Analyti	cal Results (microgram	ns per liter)								
Sample			Sample							Total		Arse	enic	Cad	mium	Chro	mium ⁽⁵⁾	Le	ad ⁽⁵⁾	Me	rcury ^(>)
Location	Sample ID	Sampled By	Date	GRPH ⁽¹⁾	DRPH ⁽²⁾	ORPH ⁽²⁾	Benzene ⁽³⁾	Toluene ⁽³⁾	Ethylbenzene ⁽³⁾	Xylenes ⁽³⁾	VOCs ⁽⁴⁾	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
DB01/MW01	MW01-20160623	SoundEarth	06/23/16	<100	<50	<250	<1	<1	<1	<3											
DB02	DB02-20160621	SoundEarth	06/21/16	<100 ^{cf}	<80	<400	<1 ^{cf}	<1 ^{cf}	<1 ^{cf}	<3 ^{cf}								-			
DB04	DB04-20160902	SoundEarth	09/02/16								ND	10.7	3.03	<1	<1	80.6	1.14	10.0	<1	<1	<1
DB05	DB05-20160902	SoundEarth	09/02/16								ND	23.2	2.84	1.60	<1	277	<1	25.7	<1	<1	<1
MTCA Cleanu	p Level for Ground	water ⁽⁶⁾		1000	500	500	5	1,000	700	1,000	N/A ⁽⁷⁾		5		5		50		15		2

NOTES:

Bold font indicates concentrations of total metals detected above the MTCA cleanup level as a result of turbidity in reconnaissance sample.

(1)Analyzed by Method NWTPH-Gx.

(2) Analyzed by Method NWTPH-Dx.

⁽³⁾Analyzed by EPA Method 8021B.

(4) Analyzed by EPA Method 8260C.

(5) Analyzed by EPA Method 200.8. Samples submitted for dissolved metals analysis were filtered by the laboratory prior to analysis.

(6) MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 720-1 Method A Cleanup Levels for Groundwater, revised November 2007. ⁽⁷⁾There are multiple cleanup levels for the various VOCs included within this suite of analyses.

Laboratory Note:

^{cf}The sample was centrifuged prior to anlaysis.

< = not detected above the laboratory reporting limit BTEX = benzene, toluene, ethylbenzene, and total xylenes DRPH = diesel-range petroleum hydrocarbons EPA = U. S. Environmental Protection Agency GRPH = gasoline-range petroleum hydrocarbons MTCA = Washington State Model Toxics Control Act N/A = not applicable NWTPH = Northwest Total Petroleum Hydrocarbon ORPH = oil-range petroleum hydrocarbons SoundEarth = SoundEarth Strategies, Inc. TPH = total petroleum hydrocarbons VOC = volatile organic compound WAC = Washington Administrative Code

Table 3 Excavation Soil Sample Analytical Results for DRPH and ORPH Modera Jackson Property 1803 - 1905 South Jackson Street Seattle, Washington

						Analytical Results (mil	ligrams per kilogram)
Remedial Excavation		Sampled	Date	Depth		· · ·	
Area	Sample ID	By	Sampled	(feet bgs)	Sample Type	DRPH ⁽¹⁾	ORPH ⁽¹⁾
			Excavatio	on Confirmation	Samples		
	EX01-NSW01-6	SoundEarth	02/08/17	6.0	Confirmation	<50	<250
	EX01-SSW01-6	SoundEarth	02/08/17	6.0	Confirmation	<50	<250
EX01	EX01-ESW01-6	SoundEarth	02/08/17	6.0	Confirmation	<50	<250
EXUI	EX01-WSW01-6	SoundEarth	02/08/17	6.0	Confirmation	<50	<250
	EX01-B01-8	SoundEarth	02/08/17	8.0	Confirmation	<50	<250
	EX01-B02-8	SoundEarth	02/08/17	8.0	Confirmation	<50	<250
	EX02-NSW01-4	SoundEarth	02/08/17	4.0	Confirmation	<50	<250
	EX02-SSW01-4	SoundEarth	02/08/17	4.0	Confirmation	<50	<250
EX02	EX02-ESW01-4	SoundEarth	02/08/17	4.0	Confirmation	<50	<250
EAUZ	EX02-WSW01-4	SoundEarth	02/08/17	4.0	Confirmation	<50	<250
	EX02-B02-5	SoundEarth	02/08/17	5.0	Confirmation	<50	<250
	EX02-B01-5	SoundEarth	02/08/17	5.0	Confirmation	<50	<250
	EX03-B01-4	SoundEarth	02/08/17	4.0	Confirmation	<50	<250
	EX03-B02-4	SoundEarth	02/08/17	4.0	Performance	500 [×]	3,300
	EX03-B03-6	SoundEarth	02/10/17	6.0	Confirmation	<50	<250
51/00	EX03-NSW01-2	SoundEarth	02/08/17	2.0	Confirmation	<50	<250
EX03	EX03-WSW01-2	SoundEarth	02/08/17	2.0	Performance	59 [×]	720
	EX03-WSW02-3	SoundEarth	02/10/17	3.0	Confirmation	<50	<250
	EX03-ESW01-2	SoundEarth	02/08/17	2.0	Confirmation	<50	<250
	EX03-SSW01-2	SoundEarth	02/08/17	2.0	Confirmation	<50	<250
	EP-B-05	SoundEarth	05/05/17	17.0	Performance	2,700	<250
	EP-B02-07.5	SoundEarth	05/08/17	19.5	Confirmation	<50	<250
	EP-B03-07	SoundEarth	05/08/17	19.0	Confirmation	<50	<250
	EP-B04-09	SoundEarth	05/22/17	21.0	Confirmation	<50	<250
	EP-NSW01-02	SoundEarth	05/08/17	14.0	Confirmation	<50	<250
EX04 ⁽²⁾	EP-SSW01-03	SoundEarth	05/08/17	15.0	Confirmation	<50	<250
(Elevator Pit)	EP-ESW01-02	SoundEarth	05/08/17	14.0	Confirmation	<50	<250
-	EP-WSW-02	SoundEarth	05/05/17	14.0	Performance	11,000	<250
	EP-WSW02-03	SoundEarth	05/08/17	15.0	Performance	5,200	<250
	EP-WSW03-03	SoundEarth	05/08/17	15.0	Confirmation	<50	<250
	EP-WSW04-04	SoundEarth	05/22/17	16.0	Confirmation	<50	<250
	EP-WSW05-04	SoundEarth	05/22/17	16.0	Confirmation	<50	<250
			St	tockpile Sample	es		
	SP01-01	SoundEarth	02/08/17			<50	<250
EX01	SP01-02	SoundEarth	02/08/17			<50	<250
	SP01-03	SoundEarth	02/08/17			<50	500
	SP02-01	SoundEarth	02/08/17			<50	<250
EX02	SP02-02	SoundEarth	02/08/17			<50	<250
	SP02-03	SoundEarth	02/08/17			<50	<250
	SP03-01	SoundEarth	02/08/17			1,900 [×]	16,000
EX03	SP03-02	SoundEarth	02/08/17			83 ^x	580
	SP03-03	SoundEarth	02/08/17			3,300 [×]	12,000
MTCA Cleanup Level f	or Soil ⁽³⁾			-	·	2,000	2,000

NOTES:

Red denotes concentration exceeds MTCA cleanup level for soil.

Gray shading indicates that soil was overexcavated and resampled.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

⁽¹⁾Analyzed by Method NWTPH-Dx.

⁽²⁾Depths in the sample ID were referenced from the grade surrounding the excavation at the time of sample collection. Actual sample depth is referenced from the pre-excavation grade.

⁽³⁾MTCA Cleanup Regulation, Chapter 173-340-900 of WAC, Table 740-1 Method A Cleanup Levels for Soil, Unrestricted Land Uses, revised November 2007.

Laboratory Note:

^xThe sample chromatographic pattern does not resemble the fuel standard used for quantitation.

-- = not analyzed/not applicable

< = not detected at a concentration exceeding the laboratory reporting limit

bgs = below ground surface

DRPH = diesel-range petroleum hydrocarbons

MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbons ORPH = oil-range petroleum hydrocarbons

SoundEarth = SoundEarth Strategies, Inc.

WAC = Washington Administrative Code

PROPERTY PHOTOGRAPHS

PROPERTY PHOTOGRAPHS

Modera Jackson Property 1803–1905 South Jackson Street Seattle, Washington Project No.: Date: Drawn By: Chk By: 0811-005-06 January 3, 2018 CJT CER

Photograph 1. Looking west. Location of remedial excavation area EX01 near former heating oil UST.

Photograph 3. Looking south. Location of remedial excavation area EX03 near former leaking press machine.

Photograph 5. Looking north. Northern portion of remedial excavation area EX02. No PCS observed.

Photograph 2. Looking north. Location of remedial excavation area EXO2 near former hydraulic press in Building 1.

Photograph 4. Looking northeast. Final extent of remedial excavation area EX01. No PCS observed.

Photograph 6. Looking north. Gray-stained PCS visible on northwestern sidewall of remedial excavation area EX03.

PROPERTY PHOTOGRAPHS

Modera Jackson Property 1803–1905 South Jackson Street Seattle, Washington Project No.: Date: Drawn By: Chk By: 0811-005-06 January 3, 2018 CJT CER

Photograph 7. Looking north. Final extent of remedial excavation area EX03.

Photograph 9. Looking northwest. Final extents of EX01, EX02, and EX03 prior to mass excavation of Property.

Photograph 11. Looking southwest. Gray-stained PCS visible on bottom and west sidewall of elevator pit area.

Photograph 8. Looking southeast. Loading out stockpiled class III soil from remedial excavation area EX03.

Photograph 10. Looking northwest. Removal of asphalt for surficial soil screening.

Photograph 12. Looking south. Removal of remaining PCS on west sidewall of elevator pit once elevator footing is in place.

APPENDIX A BORING LOGS

So	U		Ear	gies Pro Lo Da Su We Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ns: Asph 3: 21'S V: 22'E CER	-005 6 alt of NW parce of NW parce		BORING LOG LOG BO Site Address: 1803-1905 S Seattle, Was Water Depth At Time of Drilling Water Depth After Completion	outh Jackson Street hington feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic [Description	Well Detail/ Water Depth
0			75	2.6		Asphalt SM		Asphalt Moist, medium dense, sil gravel, brown, no hydroc Moist, medium dense, fin silt, little gravel, brown, n (20-65-15).	arbon odor (45-50-5). ne to medium SAND, littl	e
5			100	3.6 3.8	B01-4.0 B01-8.0	SP SM ML		Moist, medium dense, fin silt, light brown, no hydro Moist, dense, fine SAND, brown, no hydrocarbon c Moist, stiff SILT, trace fin brown, no hydrocarbon c	ocarbon odor (15-85-0). some silt, trace gravel, odor (30-65-5). e to medium sand, light	
	/ 1							Boring terminated at 8 fe backfilled with bentonite asphalt.	et below ground surface and patched with	9,
Drilling Sampl Hamm Total E Total V	g Eq ler Ty ler Ty Borir Well	o./Driller uipmer ype: ype/We ng Dept Depth: ID No.:	nt: Night: Ih:	8	Well Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger D I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite 	Notes/Comments:	1 of 1

So)U	nd Sti	Earl	Pro Lo Da Jies Su We Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/V viewed by: te Completed:	0811- CJT 6/2/1 ns: Asph 3: 23' N V: 36' E CER	-005 6 alt of SW parce of SW parce		BORING LOG B02 LOG Site Address: 1803-1905 So Seattle, Wash Water Depth At Time of Drilling	uth Jackson Street ington feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	Description	Well Detail/ Water Depth
-			100	4.2 2.4		Asphalt SP SM		Asphalt Dry, loose SAND, some brown, no hydrocarbon Dry, medium dense, silty brown with orange mott odor (35-50-15).	odor (25-50-25). y SAND, little gravel,	
- 5 -			100	1.9	B02-4.0 B02-8.0	SP		Dry, medium dense, fine silt, trace gravel, brown/ odor (15-80-5).	e to medium SAND, little orange, no hydrocarbon	
Drillin Samp Hamn Total Total	Drilling Co./Driller: Sta Drilling Equipment: Ge		В	Wel Scru Ibs Filte feet bgs Sur feet bgs Ann	I/Auger Di I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bg inches Asphalt Bentonite 	s	1 of 1	

So	U		Eart	i e S Kerrieren Suria Su	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ns: Asph 5: 7' N o V: 7' W o CER	-005 6 nalt of catch basin of catch basin	1	BORING LOG B03 ite Address: 1803-1905 Sou Seattle, Washir Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic De	escription	Well Detail/ Water Depth
0			50	2.3		Asphalt SP		Asphalt Moist, medium dense SANE silt, trace coal, brown, no h 50-30).		
5-			50	2.1	B03-4.0	SP		Moist, medium dense SANI silt, brown, no hydrocarbor		
	$\left \right\rangle$		100	2.3		SM		Moist, very dense SAND, so light brown/tan, no hydroca		
			100	2.5	B03-8.0			Moist, dense, fine to mediu silt, little gravel, light brown odor (25-60-15).		
			100	2.1	B03-12.0	ML SP		Moist, medium stiff SILT, lit no hydrocarbon odor (80,20 Moist, medium dense, grav brown, no hydrocarbon odo	0,0). elly SAND, little silt,	
_								Boring terminated at 12 fee surface, backfilled with ben with asphalt.	t below ground Itonite and patched	
	g Eq er T er T Borir Vell	ype/We ng Dept Depth:	nt: G ight: :h: 1 	2	lbs Filte feet bgs Ann feet bgs Ann	I/Auger D I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite 	Notes/Comments:	of 1

So)U		Eart rateg	I C C C C C C C C C C C C C C C C C C C	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ns: Asph 3: 28'S W: 6'W o CER	-005 6 alt of SW corne of SW corne	er of building	BORING LOG B04 Site Address: 1803-1905 Sou Seattle, Washin Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic D	escription	Well Detail/ Water Depth
0 -			75	2.4		Asphalt SP SM		Asphalt Moist, medium dense SAN silt, brown, no hydrocarbo Moist, medium dense SAN	on odor (15-50-35).	
-	$\left(\right)$			1.9	B04-4.0	SM		gravel, light brown, no hyc 5). Moist, medium dense SAN		
5			100	2.9		SP		gravel, light brown, no hyc 5). Moist, dense SAND, little s brown/tan, no hydrocarbor	drocarbon odor (30-65- silt, trace gravel, light	
-	$\left(\right)$			2.2	B04-8.0	SM		Moist, dense SAND, little s brown with orange mottlin odor (20-75-5). Wet, medium dense SAND	ig, no hydrocarbon	
- 10	$\left\langle \right\rangle$		100	2.7		SP-GP		hydrocarbon odor (35-60-5 Dry, dense SAND and GRA no hydrocarbon odor (20-4	5). AVEL, some silt, brown,	
-	\bigwedge		100		B04-12.0			Dry, very dense SAND and brown, no hydrocarbon oc	l GRAVEL, some silt, dor (20-40-40).	
-								Boring terminated at 12 feored	et below ground ntonite and patched	
Drillin Samp Hamm Total Total	g Eq ler Ty ner T Borir Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: ((ight: - :h: 1	2	Weil Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger D I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite 	Notes/Comments:	of 1

So)U	nd Sti	Eart	i e s Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ns: Asph 3: 3.5' S V: 22' W CER	-005 6 alt of SE buildi of SE buildi	ng corner	BORING LOG B05 LOG Site Address: 1803-1905 Sou Seattle, Washi Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic D	Description	Well Detail/ Water Depth
0 -			50	2.1		Asphalt GM-SM		Asphalt Dry, loose SAND and GR/ no hydrocarbon odor (20-	AVEL, little silt, brown, 40-40).	
5				2.0	B05-4.0	SP		Dry, medium dense SANE light brown/tan, no hydro), little silt, little gravel, carbon odor (15-70-15).	
-			75	2.1		SM		Dry to moist, dense, silty hydrocarbon odor (40-50-	SAND, little gravel, no 10).	
-	$\left\langle \right\rangle$		100	1.8	B05-8.0	SM		Dry to moist, dense, silty hydrocarbon odor (40-50-	SAND, little gravel, no 10).	
10 —	\bigwedge		100		B05-10.5			Moist, dense, fine to medi trace gravel, light brown, (25-70-5).	ium SAND, some silt, no hydrocarbon odor	-
-								Boring terminated at 10.5 surface, backfilled with be with asphalt.	feet below ground entonite and patched	
Drillin Samp Hamm Total Total	g Eq ler T ner T Borir Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: G C ight: ih: 1 	0.5	Well Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger D I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite 		of 1

So	U		Eart	i e s Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/1/1 ns: Conc 5: 31' N N: 11' W CER	-005 6 crete of SE cornel of SE corne	r of building	BORING LOG B06 LOG Site Address: 1803-1905 Sou Seattle, Washin Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic D	Description	Well Detail/ Water Depth
0			75	2.3		Concrete SM		Concrete slab Dry, loose, silty SAND, tra hydrocarbon odor (40-55-		
_	$\Big \Big $		100	2.2	B06-4.0	SM		Dry, loose, silty SAND, litt brown/tan, no hydrocarbo		
5—			100	2.4	2004.0			Dry, medium dense, silty light brown/tan, no hydro Dry, loose, silty SAND, litt brown/tan, no hydrocarbo	carbon odor (35-55-10). tle fine gravel, light	
-	$\left \right\rangle$		100	2.0	B06-8.0			Dry, dense SAND, some s light brown, no hydrocarb	silt, little fine gravel, bon odor (30-60-10).	
- 10 —								Boring terminated at 8 fee backfilled with bentonite a concrete.	et below ground surface, and patched with	
-										
Drillin Sampl Hamm Total I Total V	g Eq ler Ty ner T Borir Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: H C ight: :h: 8 		Weil Scr Ibs Filte feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/1 inches feet bgs inches Concrete Bentonite 		of 1

Sol		Eart	i e S Kerrieren Sultan Kerrieren Sultan Kerieren Sultan Kerrieren Sultan Kerrieren Sultan Kerrieren Sultan K	oject: oject Number: gged by: te Started: rface Conditio II Location N/S II Location E/N viewed by: te Completed:	0811 CJT 6/1/1 ns: Conc 5: 50' N V: 14' W CER	-005 6 crete of SE corner of SE corne	on Property r of building er of building	BORING B07 LOG B07 Site Address: 1803-1905 Sou Seattle, Washi Water Depth At Time of Drilling Water Depth After Completion	ngton feet bgs
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic [Description	Well Detail/ Water Depth
0		25	1.8		Concrete SM		Concrete slab Dry, loose, SAND, some s light brown, no hydrocarl	silt, little fine gravel, bon odor (30-60-10).	
-		100	2.6	B07-3.0	SM		Dry, loose, silty SAND, tra brown, no hydrocarbon o	ace fine gravel, light dor (40-55-5).	
5-		100	2.3	B07-6.0			Moist, dense SAND, som brown/gray, no hydrocarl	e silt, trace gravel, bon odor (30-65-5).	
-							Refusal at 6 feet below gr with bentonite and patch	ound surface, backfilled ed with concrete.	
Drilling E Sampler Hammer Total Bor Total We	Drilling Co./Driller: Standard Proprint Drilling Equipment: Hand Probe Dring Equipment: Hand Probe Core tube Core tube Lammer Type/Weight: Iotal Boring Depth: 6 Iotal Well Depth: Iotate Well ID No.:			Well Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger D I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed:	/1 inches feet bgs inches Concrete Bentonite 		of 1

So)U	nd Str	ateg	i e s Re	oject: oject Number: gged by: te Started: rface Conditio ell Location E/ viewed by:	0811 CJT 6/1/1 ons: Conc S: 5'No W: 14'E CER	-005 6 crete f SW corner of SW corne	on Property of building er of building	LOG Site Address: 1803-1908 Seattle, W Water Depth At Time of Drilling Water Depth	/ashington feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	Da PID (ppmv)	te Completed: Sample ID	USCS Class	Graphic	Lithologic I	After Completion	I feet bgs Well Detail/ Water Depth
De (feet	ЦЦ	Blow	Rec			01833	Gra			
0			25	1.6		Concrete SP		Concrete slab Dry, loose, fine to coarse fine gravel, gray, no hydr		
_			100	1.6		SP		Dry, loose, fine to coarse fine gravel, gray/brown, r (10-85-5).	no hydrocarbon odor	
5	$\left\langle \right\rangle$		100	2.0	B08-4.0	SM		Dry, loose, silty SAND, tr brick, red/brown, no hydr Dry, medium dense, silty brown, no hydrocarbon c	rocarbon odor (35-60- SAND, trace fine gray odor (40-55-5).	5). vel,
-	/				B08-6.0	ML		Dry, stiff to very stiff SIL gravel, brown, no hydroc	arbon odor (55-40-5).	ne
-								Refusal at 6 feet below g with bentonite and patch		lled
10										
15										
Drillir Drillin Samp Hamn Total Total	ig Equ ler Ty ner Ty Borin Well	./Drillen uipmen ype: ype/We ng Dept Depth: ID No.:	t: Ha Co ight: h: 6 		We Scr Ibs Filt feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed:	/1 inches feet bgs inches Concrete Bentonite	Notes/Comments	

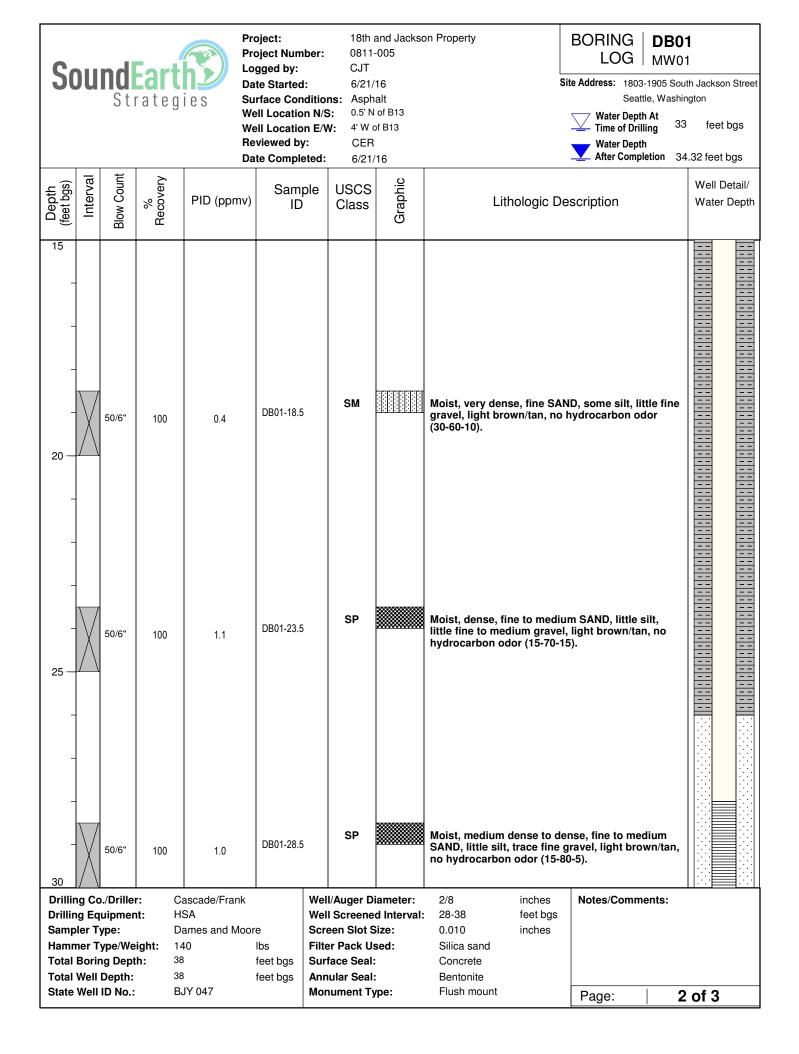
Soi	un	dE Stra	art ateg	i e s Re	Dject: Dject Number: gged by: te Started: rface Conditio II Location N/S II Location E/N viewed by: te Completed:	0811 CJT 6/1/1 ns: Conc 5: 24' N N: 10' E CER	-005 6 crete of SW corne of SW corne	er of building	BORING B09 LOG B09 Site Address: 1803-1905 Sou Seattle, Washi Water Depth At Time of Drilling Water Depth After Completion	ngton feet bgs
Depth (feet bgs)		Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic E	Description	Well Detail/ Water Depth
0			25	1.1		Concrete SM		Concrete slab Dry, loose, silty SAND, tra no hydrocarbon odor (40-	ace fine gravel, brown, -55-5).	
					B09-3.0	SM		Dry, loose SAND, some s brown/red, no hydrocarbo		
5-			75	2.2	B09-6.0			Dry, loose SILT and SANI brown, no hydrocarbon o Dry, dense SAND, some s brown, no hydrocarbon o	dor (45-45-10). silt, little fine gravel,	
-								Refusal at 6 feet below gr with bentonite and patche		
10 —										
		rillor		tondard Broke "			innete	/1 inches	Notes/Comments:	
Drilling Sampler Hammer Total Bo Total We	rilling Co./Driller:Standard Properrilling Equipment:Hand Probeampler Type:Core tubeammer Type/Weight:otal Boring Depth:6otal Well Depth:tate Well ID No.:			and Probe ore tube	Well Scr Ibs Filte feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed:			of 1

So	U	nd Sti	Eart	i e s Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811 CJT 6/1/1 ns: Conc 5: 42.5 N: 14' E CER	-005 6 crete N of SW cor of SW corne	on Property ner of building er of building	LOG Site Address: 1803-1	g feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic E	Description	Well Detail/ Water Depth
0			20	1.6		Concrete SM		Concrete slab Dry, loose SILT and SANI brown, no hydrocarbon o	D, trace fine gravel, dor (46-46-8).	light
			100	2.0	B10-3.0	SM		Dry, medium dense to ver trace fine gravel, light bro odor (45-50-0).	ry dense, silty SAN wn/tan, no hydroc	D, arbon
5-			100	1.5	B10-6.0			Dry, dense to very dense, gravel, light brown, no hy 15).	silty SAND, little fi drocarbon odor (4	ine 0-45-
-								Refusal at 6 feet below gr with bentonite and patche		cfilled
- 10 —										
-										
Drilling Equipment: Hand Pr				We Scr Ibs Filto feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/1 inches feet bgs inches Concrete Bentonite 	Notes/Commer	1 of 1	

So)U	nd Str	ateg	i e s Re	oject: oject Number: gged by: te Started: rface Conditic Il Location N/ ell Location E/ viewed by: te Completed	0811 CJT 6/1/1 ons: Conc S: 75' N W: 13' E CER	-005 6 crete of SW corne of SW corne	son Property BORING B11 LOG Site Address: 1803-1905 South Jackson Stree Seattle, Washington Water Depth At Time of Drilling feet bgs Water Depth After Completion feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	0	Lithologic Description Well Detail/ Water Dept
0			75	1.4		Concrete SM		Concrete slab Dry, loose to medium dense SAND, some silt, trace fine gravel, light brown, no hydrocarbon odor (35-60-5).
-	$\left \right\rangle$		100	1.1	B11-2.5	ML-SM		Dry, stiff SILT, some sand, trace fine gravel, light brown, no hydrocarbon odor (50-45-5).
5—	$\left \right\rangle$		100	1.2	B11-5.0			
								Refusal at 5.5 feet below ground surface, backfilled with bentonite and patched with concrete.
15 Jamme Co./Driller: Standard Probe/Russell Drilling Co./Driller: Standard Probe/Russell Drilling Equipment: Hand Probe Sampler Type: Core tube Hammer Type/Weight: Total Boring Depth: 5.5 Total Well Depth: State Well ID No.:						II/Auger D II Screene reen Slot S er Pack Us rface Seal: nular Seal nument Ty	d Interval: Size: sed: : :	/1 inches I: feet bgs inches Concrete Bentonite Page: 1 of 1

So	U		Eart	i e s Re	Dject: Dject Number: gged by: te Started: rface Conditio II Location N/S II Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ns: Asph 5: 22' N N: 25' E CER	-005 6 alt of SE corne of SE corne	on Property BORING B12 LOG Site Address: 1803-1905 South Jackson St Seattle, Washington water Depth At Time of Drilling feet bgs Water Depth After Completion feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail Water Dep
0			50	0.7 0.6		Asphalt SP		Asphalt Dry, loose SAND, some gravel, little silt, trace coal, brown to gray, no hydrocarbon odor (15-50- 35).
5			100	0.4	B12-4.0	SP SM		Dry, loose SAND, some gravel, little silt, trace coal, brown to gray, no hydrocarbon odor (15-50- 35). Dry, medium dense, silty SAND, little fine gravel, light brown/tan, no hydrocarbon odor (35-50-15). Dry, dense SAND, some silt, little to some gravel,
			100 100	1.9 2.1	B12-8.0			light brown/tan, no hydrocarbon odor (25-50-25). Dry, dense SAND, some silt, little gravel, light brown/tan, no hydrocarbon odor (35-50-15).
	X		100	1.5	B12-11.5			Boring terminated at 11.5 feet below ground surface, backfilled with bentonite and patched with asphalt.
Drilling Sampl Hamm Total E Total V	g Eq er T er T Borir Vell	ype/We ng Dept	nt: G C ight: h: 11 	1.5	Well Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite Page: 1 of 1

Sou		Eart	i e S Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/ ell Location E/N viewed by: te Completed:	0811 CJT 6/2/1 ons: Asph S: 1'N o W: 16.5' CER	-005 6 alt f catch basin E of catch ba	Water Deptil At
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Dept
0		75	1.7		Asphalt SM		Asphalt Dry, loose SAND, some silt, little gravel, orange/tan, no hydrocarbon odor (30-60-10). Dry, dense SAND, some silt, little gravel, light brown/tan, no hydrocarbon odor (30-55-15).
5		100	1.6	B13-4.0	SM		Dry, very dense, silty SAND, trace fine gravel, light brown/tan, no hydrocarbon odor (40-55-5). Dry, very dense, silty SAND, little fine gravel, light brown/tan, no hydrocarbon odor (40-50-10).
		100	2.0	B13-8.0			Dry, very dense, silty SAND, little to some fine to medium gravel, light brown/tan, no hydrocarbon odor (35-40-25).
10-		100	1.3				Moist, very dense SAND, some silt, little gravel, light brown/tan, no hydrocarbon odor (30-55-15). Moist, very dense SAND, some silt, trace fine gravel, light brown/tan, no hydrocarbon odor (30- 65-5).
		100	1.8	B13-12.0	SP SM		Dry, medium dense, medium to coarse SAND, trace silt, light brown, no hydrocarbon odor (5- 95-0). Dry, very dense SAND, some silt, trace fine gravel, light brown, no hydrocarbon odor (30-65- 5).
- 15							Boring terminated at 13 feet below ground surface, backfilled with bentonite and patched with asphalt.
Drilling Co Drilling Eq Sampler Ty Hammer T Total Borir Total Well State Well	uipmer ype: ype/We ng Dept Depth:	nt: G C ight: h: 10 	3	We Scr Ibs Filt feet bgs Sur feet bgs Ann	II/Auger D II Screene reen Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Asphalt Bentonite Page: 1 of 1


So	u	nd Str	ateg	i e S Re	oject: oject Number: gged by: te Started: rface Conditio ell Location N/S ell Location E/N viewed by: te Completed:	0811- CJT 6/1/10 ns: Conc S: 21' N W: 24' E 0 CER	-005 6 crete of SW corne of SW corne	on Property er of building er of building	BORING B14 LOG B14 Site Address: 1803-1905 Sou Seattle, Washir Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic E	Description	Well Detail/ Water Depth
0			100	1.6		Concrete SM		Concrete slab Dry, medium dense SANI light brown, no hydrocarl Dry, medium dense, silty gravel, light brown, no hy 5).	oon odor (47-47-6). fine SAND, trace fine	
5-	$\left \right\rangle$		100	1.6	B11-3.0 B11-5.5			Dry, medium dense to de fine gravel, light brown, n (45-50-5).	nse, silty SAND, trace o hydrocarbon odor	
								Refusal at 5.5 feet below backfilled with bentonite concrete.		
10										
Drilling Co./Driller:Standard ProbeDrilling Equipment:Hand ProbeSampler Type:Core tubeHammer Type/Weight:Total Boring Depth:5.5Total Well Depth:State Well ID No.:			ore tube	Wel Scr Ibs Filte feet bgs Sur feet bgs Ann	I/Auger Di I Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed:	/1 inches feet bgs inches Concrete Bentonite 		of 1	

So	U		Eart	i e s Re	Dject: Dject Number: gged by: te Started: rface Conditio Il Location N/ Il Location E/ viewed by: te Completed:	0811 CJT 6/2/1 ons: Grav S: 23'S W: 5'W o CER	-005 6 el of SW corne of SW corne	er of building	BORING B15 LOG B15 Site Address: 1803-1905 Sou Seattle, Washir Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic D	escription	Well Detail/ Water Depth
0			100	1.8		SP		Dry, loose SAND, little silt brown, no hydrocarbon of Dry, loose SAND, some gr brick fragments, brown, n (15-60-25). Dry, medium dense SAND	dor (20-60-20). ravel, little silt, trace o hydrocarbon odor	
5-			100	1.9	B15-4.0	314		Moist, dense to very dens gravel, light brown/tan, no 65-5).) hydrocarbon odor (30- e, silty SAND, little	
-	$\left\langle \right\rangle$		100	1.9	B15-8.0			Moist, very dense SAND, s gravel, light brown/tan, no 60-5). Moist, very dense SAND, s) hydrocarbon odor (35-	
	\wedge		100	1.6				light brown, no hydrocarb	on odor (35-55-10).	
-										
Drilling Sampl Hamm Total I Total V	Drilling Co./Driller: Standard Probe/Chris Drilling Equipment: GeoProbe Sampler Type: Core tube Hammer Type/Weight: Ibs Total Boring Depth: 9 feet bgs				We Scr Ibs Filt feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/2 inches feet bgs inches Bentonite Bentonite 	Notes/Comments: Page: 1	of 1

Sou		Eart	i e s Re	pject: pject Number: gged by: te Started: rface Conditio II Location R/ viewed by: te Completed:	0811- CJT 6/2/10 ons: Grave S: 23'S of W: 1'E of CER	-005 6 el of SE corner f SE corner	r of building	BORING LOG B16 ite Address: 1803-1905 Sou Seattle, Washir Water Depth At Time of Drilling Water Depth After Completion	
Depth (feet bgs) Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic De	escription	Well Detail/ Water Depth
		75	0.6 0.5		SM		Dry, loose SAND, some silt, brown, no hydrocarbon odd Dry, medium dense SAND, s light brown/orange, no hydr 15). Dry, dense SAND, some silt light brown/tan, no hydroca	or (30-55-15). some silt, little gravel, rocarbon odor (30-55- t, trace fine gravel,	
5-		100	0.7	B16-4.0	SM		Moist, very dense SAND, so gravel, light brown/tan, no h 70-5). Dry, very dense SAND, som	hydrocarbon odor (25-	
-		100	1.0 1.0	B16-7.5			light brown/tan, no hydroca Dry, very dense SAND, som light brown/tan, no hydroca	arbon odor (30-60-10). ne silt, little gravel,	
		100	1.1	B16-12.0	SM-ML		Dry, very dense, silty SAND brown/tan, no hydrocarbon), little gravel, light odor (40-50-10).	
			0.9				Boring terminated at 13 feet surface, backfilled with ben		
Drilling Co Drilling Eq Sampler Ty Hammer T Total Borir Total Well State Well	uipmer ype: ype/We ng Dept Depth:	nt: G C sight: th: 13 	3	We Scr Ibs Filt feet bgs Sur feet bgs Ann	II/Auger Di II Screene reen Slot S er Pack Us rface Seal: nular Seal: nument Ty	d Interval: bize: sed:	/2 inches feet bgs inches Bentonite Bentonite 	Notes/Comments:	of 1

Strategies Project: Project Num Logged by: Date Started Surface Cor Well Location Reviewed by Date Completion Reviewed by Reviewed by Revi						CJT d: 6/1/16 site Address: 1803-1905 Son seattle, Washi on N/S: Approximate center of building on E/W: by: CER LCCU Site Address: 1803-1905 Son Seattle, Washi Time of Drilling Water Depth At Time of Drilling Water Depth				
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	Description	Well Detail/ Water Depth
0			5	1.6	B17-2.0 B17-4.0	Concrete SM		Concrete slab No recovery Dry, medium dense to de fine gravel, brown/gray, (40-55-5).	ense, silty SAND, trace no hydrocarbon odor	
5								Refusal at 4 feet below g with bentonite and patch	round surface, backfilled led with concrete.	
10 — - - - 15										
Drillin Drillin Samp Hamn Total Total	Drilling Co./Driller:Standard Probe/RussellDrilling Equipment:Hand ProbeSampler Type:Core tubeHammer Type/Weight:Total Boring Depth:4feet bgs5Total Well Depth:feet bgs6			We Scr Ibs Filt feet bgs Sun feet bgs Ann	II/Auger D II Screene reen Slot S er Pack Us rface Seal: nular Seal: nular Seal:	d Interval: Size: sed: : :	/1 inches feet bg: inches Concrete Bentonite 		of 1	

So)U	nd Str	ateg	i e S Re	oject: oject Number gged by: te Started: rface Conditi ell Location N ell Location E viewed by: te Completed	: 0811 CJT 6/21/ ons: Asph /S: 0.5' N /W: 4' W o CER	-005 (16 alt of B13 of B13	on Property	Water Dept Time of Dril	tle, Washir h At ling ³³ h	th Jackson Street
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	c Description		Well Detail/ Water Depth
0		50/6"	100	1.0	DB01-3.5 DB01-8.5	SM		Dry, dense, silty SAND, gravel, light brown/tan, 55-15). Dry, medium dense to o gravel, light brown/tan, 50-10).	, no hydrocarbon od	dor (30-	
- 15	$\left \right\rangle$	50/6"	100	1.1	DB01-13.5	ML-SM		Moist, dense SILT and medium gravel, light br odor (45-45-10).	SAND, little fine to rown/tan, no hydroc	arbon	
Drillin Drillin Samp Hamn Total Total	g Eq ler Ty ner T Borir Well	o./Driller uipmen ype: ype/We ng Dept Depth: ID No.:	t: ⊢ □ ight: 1 h: 3 3	8	e Sc Ibs Fil feet bgs Sc feet bgs Ar	ell/Auger D ell Screene creen Slot S iter Pack U urface Seal unular Seal onument Ty	d Interval: Size: sed: :	2/8inche28-38feet b0.010incheSilica sandConcreteBentoniteFlush mount	ogs		of 3

Cr	יור	ndl	Eart	Pr	oject: oject Number gged by:	: 0811 CJT	-005	on Property	BORING LOG	DB0 ⁻ MW01	
J	JU	St	rateg	ies Su	ite Started:		nalt			tle, Washin	
				W	ell Location N ell Location E eviewed by:	-	l of B13 of B13		Water Depti Time of Dril	ling ³³	feet bgs
					te Completed				After Comp		.32 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	Description		Well Detail/ Water Depth
30		26 50/6"	100	1.0	DB01-33.5	SP-SM		Wet, medium dense, find silt, trace fine to mediun silt with sand, light brow odor (20-75-5).	n gravel, thin lense	es of	
- 40 - - - 45								Boring terminated at 38 surface and completed a	feet below ground as MW01.		
Drillir Samp Hamr Total	ng Eq bler T ner T Borir	o./Drille uipmer ype: ype/We ng Dept Depth:	nt: H D sight: 14 sh: 38 38	3	re We Ibs Fil feet bgs Su feet bgs An	ell/Auger D ell Screene reen Slot S ter Pack Us rface Seals nular Seal	d Interval: Size: sed: :	2/8inches28-38feet bg0.010inchesSilica sandConcreteBentonite	s	ents:	
State	Well	ID No.:	B	JY 047	Mo	onument Ty	ype:	Flush mount	Page:	3	of 3

So	u	nd Str	ar	Pr Lo Da Dies Su Wu Wu Re	oject: oject Number: gged by: tte Started: trface Conditionel Location N/ ell Location E/ eviewed by: tte Completed	0811 CJT 6/21/ Ons: Asph S: 32'S W: 1'W o CER	-005 (16 alt of SW corne		BORING DB0 LOG DB0 Site Address: 1803-1905 Sou Seattle, Washi Water Depth At Time of Drilling 15 Water Depth After Completion 24	uth Jackson Street ngton 9 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	Description	Well Detail/ Water Depth
		25 38 50/6"	100	1.6	DB02-3.5 DB02-8.5	SM SP/GP		to coarse gravel, brown, (25-50-25).	AND, little silt, brown, no	
15		50/6"	50	2.3	DB02-13.5	GP	<u>ororor</u>	Moist, very dense GRAV brown, no hydrocarbon	EL, little sand, little silt, odor (15-20-65).	
Drilling Drilling Sample Hamme Total B Total W State W	g Equ er Ty er Ty Sorin Vell [iipmen pe: pe/We g Dept Depth:	it: ight: h:	25	re We Ibs Filt feet bgs Su feet bgs An	II/Auger D II Screene reen Slot S ter Pack U rface Seal: nular Seal nument Ty	d Interval: Size: sed: :	/8 inches feet bg inches Concrete Bentonite 		of 2

So)U		Eart	i e S Kerrieren Suria Su	oject: oject Number: gged by: te Started: rface Conditio ell Location N/: ell Location E/N viewed by: te Completed:	0811 CJT 6/21/ ons: Asph S: 32'S W: 1'W o CER	-005 (16 alt of SW corne of SW corne		BORING LOG DB0 LOG Site Address: 1803-1905 Sou Seattle, Washi Water Depth At Time of Drilling 19 Water Depth After Completion 24	ith Jackson Street ngton 9 feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic	Description	Well Detail/ Water Depth
15 - - 20 - - - - - - - -		34 50/6"	100	1.6	DB02-18.5 DB02-24.0	SP/GP SP		Wet, dense, gravelly SA hydrocarbon odor (15-5 Wet, medium dense SAI gravel, brown, no hydro Wet, dense, gravelly SA hydrocarbon odor (15-5	0-35). ND, little silt, trace fine carbon odor (15-80-5). ND, little silt, brown, no	∠ ↓
								Boring terminated at 25 surface. Reconnaissanc DB02-20160621 collecte bentonite.	feet below ground e groundwater sample d. Boring backfilled with	
Drillin Samp Hamn Total Total	ig Eq ler T ner T Borir Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: H D sight: 1 th: 24	5	e We lbs Filt feet bgs Sur feet bgs Ann	II/Auger D II Screene reen Slot S er Pack Us face Seal: nular Seal: nument Ty	d Interval: Size: sed: :	/8 inches feet bg inches Concrete Bentonite 	js	? of 2

So	U	nd Sti	Earl	Pr Lo Da Dies Su Wu Wu Re	oject: oject Number gged by: inface Condit ell Location N ell Location E eviewed by: inte Completer	r: 0811 CJT 9/2/1 ions: Asph I/S: 8'So E/W: 11'E CER	-005 6 nalt of SW buildin of SW buildi	-	BORING LOG Site Address: 1803- Seatt Water Depth Time of Drill Water Depth After Comple	le, Washing 1 At ing	n Jackson Street
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample	USCS Class	Graphic	Lithologic	Description		Well Detail/ Water Depth
	X	55/6" 30 50/6"	50	0.0	DB03-5.0 DB03-10.0 DB03-15.0	SM		Dry, medium dense, silt light brown, no hydroca Dry, dense SAND, some light brown, no hydroca	e silt, little fine grav irbon odor (30-60-1) irbon odor (30-60-1)	o). el, 0). ravel,	
20 Drilling Sample Hamme Total B Total V State V	g Equ er Ty er Ty Borin Vell I	uipmer /pe: /pe/We /g Dept Depth:	ight:	36.5	W So Ibs Fi feet bgs So feet bgs An	ell/Auger D ell Screene creen Slot S lter Pack U urface Seal nnular Seal onument Ty	ed Interval: Size: sed: : :	/8 inches feet by inches Bentonite 	gs		of 2

So)U		Ear	pr Lo Da gies Su WW WW Re	oject: oject Number: ogged by: ate Started: urface Conditic ell Location N/ ell Location E/ eviewed by: ate Completed	0811 CJT 9/2/1 ons: Asph S: 8'S o W: 11'E CER	-005 6 alt f SW buildin of SW buildi	- Mater Deptir At
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Depth
20	X	14 20 25	100	0.1	DB03-20.0	SP		Dry to moist, loose SAND, trace to little silt, light brown, no hydrocarbon odor (15-85-0).
25	\setminus	50/6"	100	0.0	DB03-25.0	ML		Moist, very stiff SILT, little fine sand, trace clay, light brown, no hydrocarbon odor (85-15-0).
30	\setminus	50/6"	100	0.0	DB03-30.0	ML		Moist, very stiff SILT, little clay, trace fine sand, gray, no hydrocarbon odor (95-5-0).
35 —	$\left \right\rangle$	25 50/6"	100	0.0		ML		Moist, very stiff SILT, little clay, trace fine sand, gray, no hydrocarbon odor (95-5-0).
- 40								Boring terminated at 36.5 feet below ground surface, backfilled with bentonite.
Drillin Drillin Samp Hamn Total Total	ig Eq ler T ner T Borii Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: :ight: :h:	L Cascade/Frank HSA Dames & Moore 140 36.5 	We Sci Ibs Filt feet bgs Sui feet bgs Ani	II/Auger D II Screene reen Slot S er Pack U rface Seal: nular Seal nument Ty	d Interval: Size: sed: :	/8 inches feet bgs inches inches inches Bentonite Page: 2 of 2

So)U		Eart rateg	Pr Lo Da Jies Su Wu Re	oject: oject Number gged by: tte Started: trface Conditionel El Location N. ell Location E/ eviewed by: tte Completed	: 0811 CJT 9/2/1 ons: Asph /S: 35' N W: 9' W o CER	-005 6 nalt of SE fence of SE fence	Water Deptil At
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Depth
0		18 25 30	90	0.5	DB04-5.0	SM		Moist, medium dense SAND, some silt, little fine to medium gravel, light brown, no hydrocarbon odor (30-60-10).
10	\setminus	50/6"	60	0.2	DB04-10.0	SM		Dry to moist, dense SAND, some silt, little to some fine to medium gravel, light brown, no hydrocarbon odor (30-45-25).
	\mathbf{X}	25 50/6"	100	0.2	DB04-15.0	SP		Dry to moist, loose SAND, trace silt, trace fine gravel, light brown, no hydrocarbon odor (5-90- 5).
Drillin Samp Hamn Total Total	ig Eq ler T ner T Borir Well	o./Drillen uipmer ype: ype/We ng Dept Depth: ID No.:	nt: H light: 1 h: 3		We Sc Ibs Fil feet bgs Su feet bgs An	ell/Auger D ell Screene reen Slot S ter Pack Us rface Seals nular Seal nument Ty	d Interval: Bize: sed: : :	/8 inches feet bgs feet bgs inches Bentonite Page: 1 of 2

So	DU		Earl	I i e s Karaka K	oject: oject Number: gged by: tte Started: trface Conditionell Location N/ ell Location E/ eviewed by: tte Completed	0811 CJT 9/2/1 Ons: Asph S: 35' N W: 9' W 0 CER	-005 6 nalt of SE fence of SE fence of	Water Deptil At
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Depth
20 -	X	50/6"	100	0.0		SP		Dry to moist, medium dense SAND, trace silt, light brown, no hydrocarbon odor (5-95-0).
25 — - - -		50/6"	100	0.0	DB04-25.0	SP		Dry to moist, medium dense, fine to medium SAND, little silt, light brown, no hydrocarbon odor (15-85-0).
30	X	50/6"	100	0.0		SP SM		Dry to moist, medium dense SAND, little silt, light brown, no hydrocarbon odor (15-85-0). Dry to moist, medium dense, fine SAND, some silt, light brown, no hydrocarbon odor (40-60-0).
35 —	$\left \right\rangle$	50/6"	100	0.2	DB04-35.0	ML SM		Moist, medium stiff SILT, little sand, light brown, no hydrocarbon odor (80-20-0). Wet, medium stiff SILT and fine SAND, light brown, no hydrocarbon odor (50-50-0).
								Boring terminated at 36.5 feet below ground surface. Reconnaissance groundwater sample DB04-20160902 collected. Boring backfilled with bentonite.
Drillin Drillin Samp Hamn Total Total	ig Eq ler T ner T Borii Well	o./Drille uipmer ype: ype/We ng Dept Depth: ID No.:	nt: F light: 1 th: 3	86.5	We Sci Ibs Filt feet bgs Su feet bgs An	II/Auger D II Screene reen Slot S ter Pack U rface Seal nular Seal nument Ty	d Interval: Size: sed: :	/8 inches feet bgs inches inches inches Bentonite Page: 2 of 2

So	U	nd Sti	Eart	i e s Re	oject: oject Number: gged by: ite Started: irface Conditio ell Location N/: ell Location E/ eviewed by: ite Completed:	0811 CJT 9/2/1 ns: Asph S: 8' N o W: 12' E CER	-005 6 nalt of SW fence of SW fence	Water Deptil At
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Depth
	\mathbf{X}	8 10 10	100	0.0	DB05-5.0	SM		Dry, medium dense, silty SAND, little fine to medium gravel, light brown, no hydrocarbon odor (40-45-15).
	\setminus	50/6"	100	0.0	DB05-10.0	SP/GP		Dry, dense SAND, some gravel, little silt, light brown, no hydrocarbon odor (20-45-35).
		50/6"	100	0.7	DB05-15.0	SM SP		Dry, dense SAND, little to some gravel, little silt, light brown, no hydrocarbon odor (25-50-25). Dry to moist, loose, fine to medium SAND, trace silt, light brown, no hydrocarbon odor (5-95-0).
	g Eq er Ty er Ty Borir Nell	ype/We ng Dept Depth:	nt: H D ight: 1 ih: 3	6.5	We Scr Ibs Filt feet bgs Sur feet bgs Ann	II/Auger D II Screene een Slot S er Pack Us face Seals nular Seal nument Ty	d Interval: Size: sed: :	/8 inches feet bgs feet bgs inches Bentonite Page: 1 of 2

So)U		Eart	i e s Karaka Ka	oject: oject Number gged by: Ite Started: Inface Conditi ell Location N ell Location E eviewed by: Ite Completed	 0811 CJT 9/2/1 ons: Asph I/S: 8' No /W: 12' E CER 	-005 6 alt of SW fence of SW fence	Water Depth At
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppmv)	Sample ID	USCS Class	Graphic	Lithologic Description Well Detail/ Water Depth
20 -	X	50/6"	100	0.0		SM SM/ML		Dry to moist, medium dense SAND, little to some silt, trace fine gravel, light brown, no hydrocarbon odor (25-70-5). Moist, dense, fine SAND with silt, trace gravel, light brown, no hydrocarbon odor (40-55-5).
25 —	X	50/6"	100	0.0	DB05-25.0	SP		Dry, loose, fine to coarse SAND, little fine gravel, light brown to tan, no hydrocarbon odor (0-90- 10). Dry, loose to medium dense, fine SAND, little silt, trace fine gravel, light brown, no hydrocarbon odor (10-85-5).
30	\mathbf{X}	50/6"	50	0.0		SP		Moist, medium dense, fine to medium SAND, little silt, light brown, no hydrocarbon odor (10-90-0).
35 —	\setminus	50/6"	100	0.6	DB04-35.0	SP		Wet, medium dense, fine to medium SAND, little silt, light brown, no hydrocarbon odor (10-90-0).
-								Boring terminated at 36.5 feet below ground surface. Reconnaissance groundwater sample DB05-20160902 collected. Boring backfilled with bentonite.
Drillin Samp Hamn Total Total	ig Eq ler T ner T Borii Well	D./Drille Juipmer Type: Type/We ng Dept Depth: ID No.:	nt: F E sight: 1 th: 3		W So Ibs Fi feet bgs Su feet bgs Ar	ell/Auger D ell Screene creen Slot S lter Pack Us urface Seals nuular Seal onument Ty	d Interval: Size: sed: :	/8 inches hotes/Comments: feet bgs inches Bentonite Page: 2 of 2

APPENDIX B LABORATORY ANALYTICAL REPORTS

Remedial Investigation - Soil Laboratory Analytical Reports

Friedman & Bruya, Inc. #606020

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 13, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr. Roberts:

Included are the results from the testing of material submitted on June 2, 2016 from the SOU_0811-005-01_ 20160602, F&BI 606020 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0613R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 2, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005-01_ 20160602, F&BI 606020 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
606020 -01	B06-4.0
606020 -02	B06-8.0
606020 -03	B07-3.0
606020 -04	B07-6.0
606020 -05	B08-4.0
606020 -06	B08-6.0
606020 -07	B09-3.0
606020 -08	B09-6.0
606020 -09	B10-3.0
606020 -10	B10-6.0
606020 -11	B11-2.5
606020 -12	B14-3.0
606020 -13	B14-5.5
606020 -14	B17-2.0
606020 -15	B17-4.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/16 Date Received: 06/02/16 Project: SOU_0811-005-01_ 20160602, F&BI 606020 Date Extracted: 06/06/16 Date Analyzed: 06/06/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B06-4.0 606020-01	<50	<250	94
B07-3.0 606020-03	<50	<250	93
B08-4.0 606020-05	<50	<250	91
B08-6.0 606020-06	<50	<250	91
Method Blank 06-1148 MB	<50	<250	93

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B08-6.0 06/02/16 06/03/16 06/03/16 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005-01_ 20 606020-06 060336.D GCMS4 JS	es 0160602, F&BI 606020
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 99 107 104	Lower Limit: 62 55 65	Upper Limit: 142 145 139	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Compounds: Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane 4-Methyl-2-pentan	hane er (MTBE) ethene ene (EDC) une e de	$\begin{array}{c} \text{mg/kg (ppm)} \\ <0.5 \\ <0.5 \\ <0.05 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.5 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.05 \\ <0.5 \end{array}$	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	loropropane oroethene ochloromethane omoethane (EDB) enzene izene ietrachloroethane ene ietrachloroethane ene ietrachloroethane enzene methylbenzene ietrachloroethane chloropropane toluene	mg/kg (ppm) <0.05 <0.025 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	pene oropene	<0.05 <0.05 <0.05 <0.05 <0.05 <0.5	1,2,4-Tri Hexachl Naphtha	chlorobenzene orobutadiene	<0.3 <0.25 <0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B09-6.0 06/02/16 06/03/16 06/03/16 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005-01_ 20 606020-08 060337.D GCMS4 JS	es 0160602, F&BI 606020
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 107 103	Lower Limit: 62 55 65	Upper Limit: 142 145 139	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane 4-Methyl-2-pentan	hane er (MTBE) ethene ene (EDC) une e de	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ \end{array}$	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	loropropane oroethene ochloromethane omoethane (EDB) enzene izene ietrachloroethane ene ietrachloroethane ene ietrachloroethane enzene methylbenzene ietrachloroethane chloropropane toluene	$\begin{array}{c} (0.05) \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.$
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	pene propene	<0.05 <0.05 <0.05 <0.05 <0.5	1,2,4-Tri Hexachl Naphtha	chlorobenzene orobutadiene	<0.25 <0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B10-6.0 06/02/16 06/03/16 06/03/16 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005-01_ 2 606020-10 060338.D GCMS4 JS	es 0160602, F&BI 606020
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 108 104	Lower Limit: 62 55 65	Upper Limit: 142 145 139	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluor ome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorie Benzene Trichloroethene 1,2-Dichloropropan Bromodichloromethane 4-Methyl-2-pentan	hane er (MTBE) ethene eene (EDC) une e de de nane one	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ \end{array}$	1,3-Dich Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dich	loropropane oroethene ochloromethane omoethane (EDB) enzene detrachloroethane ene denzene methylbenzene methylbenzene detrachloroethane chloropropane toluene toluene toluene dylbenzene methylbenzene methylbenzene methylbenzene dorobenzene lorobenzene lorobenzene omo-3-chloropropane	$\begin{array}{c} < 0.05 \\ < 0.025 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.$
cis-1,3-Dichloropro Toluene trans-1,3-Dichloroj 1,1,2-Trichloroetha 2-Hexanone	oropene	<0.05 <0.05 <0.05 <0.05 <0.5	Hexachle Naphtha	chlorobenzene orobutadiene alene chlorobenzene	<0.25 <0.25 <0.05 <0.25

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B17-4.0 06/02/16 06/03/16 06/04/16 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005-01_ 2 606020-15 060339.D GCMS4 JS	es 0160602, F&BI 606020
Surrogates: 1,2-Dichloroethane	-d4	% Recovery: 99	Lower Limit: 62	Upper Limit: 142	
Toluene-d8 4-Bromofluorobenz	ene	108 104	55 65	145 139	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5	1.3-Dich	loropropane	<0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		<0.25	o-Xylene	<u>þ</u>	<0.05
Methylene chloride		<0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propyl		< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK) 1,2-Dichloroethane	(FDC)	<0.5 <0.05	2-Chloro	ichloropropane	<0.05 <0.05
1,1,1-Trichloroetha		<0.05 <0.05	4-Chloro		<0.05
1,1-Dichloropropen		< 0.05		ylbenzene	<0.05
Carbon tetrachlori		< 0.05		imethylbenzene	<0.05
Benzene		< 0.03		lbenzene	<0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometl		< 0.05	1,4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	<0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		<0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	<0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 06/03/16 06/03/16 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005-01_ 2 06-1089 mb 060327.D GCMS4 JS	es 0160602, F&BI 606020
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 107 104	Lower Limit: 62 55 65	Upper Limit: 142 145 139	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Dichloroethane 1,2-Dichloropropen Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentane cis-1,3-Dichloroprop	hane r (MTBE) thene e ene (EDC) ne e le e ane one	$\begin{array}{c} < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < $	Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibro 1,2,4-Tri	nzene ertachloroethane ene vlbenzene rm benzene enzene methylbenzene etrachloroethane chloropropane toluene	< 0.05 < 0.025 < 0.05 < 0.25 < 0
trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	-	<0.05 <0.05 <0.5	Naphtha 1,2,3-Tri	alene chlorobenzene	<0.05 <0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B07-3.0 06/02/16 06/08/16 06/09/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_0811-005-01_ 20160602, F&BI 606020 606020-03 1/50 060830.D GC7 MP
Surrogates: TCMX	% Recovery: 75 d	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	<0.2		
Aroclor 1232	<0.2		
Aroclor 1016	<0.2		
Aroclor 1242	<0.2		
Aroclor 1248	< 0.2		
Aroclor 1254	< 0.2		
Aroclor 1260	<0.2		
Aroclor 1262	<0.2		
Aroclor 1268	<0.2		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/08/16 06/09/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_0811-005-01_ 20160602, F&BI 606020 06-1153 mb 1/5 060829.D GC7 MP
Surrogates: TCMX	% Recovery: 85	Lower Limit: 29	Upper Limit: 154
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	<0.02		
Aroclor 1016	<0.02		
Aroclor 1242	<0.02		
Aroclor 1248	<0.02		
Aroclor 1254	<0.02		
Aroclor 1260	<0.02		
Aroclor 1262	<0.02		
Aroclor 1268	<0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/16 Date Received: 06/02/16 Project: SOU_0811-005-01_20160602, F&BI 606020

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 6	306071-02 (Matri	x Spike)							
			Sample	Percent	Percent				
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)		
Diesel Extended	mg/kg (ppm)	5,000	11,000	75 b	109 b	63-146	37 b		
Laboratory Code: I	Laboratory Code: Laboratory Control Sample								
			Percent						
	Reporting	Spike	Recovery	Accep	tance				
Analyte	Units	Level	LCS	Crite	eria				
Diesel Extended	mg/kg (ppm)	5,000	105	79-1	44				

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/16 Date Received: 06/02/16 Project: SOU_0811-005-01_20160602, F&BI 606020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 606059-01 (Matrix Spike)

Reporting Spike Recourt Recourty Recourty Accept and MSD Accept and Criteria (Limit 20) Analyte Units 2 4.05 40 16 10.128 6 Main Sectors mgkg (pm) 2.3 4.05 40 40 10.128 6 Bronnerthame mgkg (pm) 2.3 4.05 60 66 10.183 6 Bronnerthame mgkg (pm) 2.3 4.05 80 65 10.183 6 Chatter mgkg (pm) 2.3 4.05 81 78 10.163 2 Chatter mgkg (pm) 2.5 -4.05 81 78 10.163 2 Actors mgkg (pm) 2.5 -4.05 89 84 21.153 3 Antise mgkg (pm) 2.5 -4.05 88 84 21.153 3 Li J.Pichterschame mgkg (pm) 2.5 -4.05 88 84 21.15 3 <tr< th=""><th>Laboratory Code. 000039-</th><th>of (Matrix Spike)</th><th></th><th>Sample</th><th>Percent</th><th>Percent</th><th></th><th></th></tr<>	Laboratory Code. 000039-	of (Matrix Spike)		Sample	Percent	Percent		
Analyte Units Level (Wet wt) MS MSD Criteria (Limit 20) Charmethane mg/st (pm) 2.5 -0.5 48 48 10.128 0 Charmethane mg/st (pm) 2.5 -0.5 48 48 10.128 0 Renomethane mg/st (pm) 2.5 -0.5 48 48 10.138 4 Trahordburomethane mg/st (pm) 2.5 -0.5 81 78 10.168 4 Trahordburomethane mg/st (pm) 2.5 -0.5 81 78 10.168 4 Trahordburomethane mg/st (pm) 2.5 -0.5 81 78 10.168 1 Actors mg/st (pm) 2.5 -0.6 88 84 25.145 3 Itanua 2.5 Dichloresthane mg/st (pm) 2.5 -0.05 88 84 25.145 5 Itanua 2.5 Dichloresthane mg/st (pm) 2.5 -0.05 88 84 25.145 <th></th> <th>Departing</th> <th>Cuilco</th> <th></th> <th></th> <th></th> <th>Accentance</th> <th>חחח</th>		Departing	Cuilco				Accentance	חחח
	A . A .						-	
Chorsnethane mg/kg (ppm) 2.5 -0.5 48 48 19.126 0 Brommethane mg/kg (ppm) 2.5 -0.5 48 48 10.176 5 Brommethane mg/kg (ppm) 2.5 -0.5 48 48 10.176 5 Acetone mg/kg (ppm) 2.5 -0.5 81 78 10.165 4 Acetone mg/kg (ppm) 2.5 -0.5 82 60 10.165 1 10	5			· /				. ,
Vinyl chorde mg/kg (ppm) 2.5 -0.63 68 65 19.138 6 Chorochiane mg/kg (ppm) 2.5 -0.3 7.8 68 10.13 3 Chorochiane mg/kg (ppm) 2.5 -0.3 7.8 68 10.13 4 Actoon mg/kg (ppm) 2.5 -0.3 83 62 10.16 2 Li-Dehthorochine mg/kg (ppm) 2.5 -0.3 83 62 10.16 1 Hexare mg/kg (ppm) 2.5 -0.3 10 10 10 10 1 Hexare mg/kg (ppm) 2.5 -0.05 7.7 7.4 14.13 4 Li-Dehthorochine mg/kg (ppm) 2.5 -0.05 63 63 10.15 5 Li-Dehthorochine mg/kg (ppm) 2.5 -0.05 73 77 10.16 15 Li-Dehthorochine mg/kg (ppm) 2.5 -0.05 74 78 11.14 1								
Benimeshtane might (ppm) 2.5 -0.5 7.1 66 10.16.3 5 Trichloredination methane might (ppm) 2.5 -0.5 7.1 66 10.17.6 3 Trichloredination methane might (ppm) 2.5 -0.05 63 62 10.10.0 2 Hoarse might (ppm) 2.5 -0.05 63 62 10.10.0 1 Hoarse might (ppm) 2.5 -0.05 83 80 10.13.8 1 Hoarse might (ppm) 2.5 -0.05 83 80 10.13.8 1 L2 Dichloredinate might (ppm) 2.5 -0.05 83 80 10.13.8 1 2.5 Dichloredinate might (ppm) 2.5 -0.05 83 80 10.13.8 1 2.5 Dichloredinate might (ppm) 2.5 -0.05 81 88 10.14.1 1 2.5 Dichloredinate might (ppm) 2.5 -0.05 81 82								
Charsentane mg/kg (ppm) 2.5 -0.5 1.4 60 1.17.8 0 Arctione mg/kg (ppm) 2.5 -0.5 4.8 4.8 10.10.8 4 Arctione mg/kg (ppm) 2.5 -0.5 4.8 4.8 10.10.8 4 Hexane mg/kg (ppm) 2.5 -0.5 4.8 4.8 10.11.8 1 Methyle busylether(HMTBE) mg/kg (ppm) 2.5 -0.05 6.8 6.8 4.8 2.8<								
Actione mg/kg (ppm) 2.5 -0.5 81 78 10-183 4 Hearse mg/kg (ppm) 2.5 -0.05 63 62 10-100 2 Hearse mg/kg (ppm) 2.5 -0.05 63 62 10-100			2.5		71	69		3
1.1.D.B.Aborsethene mg/kg (ppm) 2.5 -0.05 6.3 6.2 10.10 1.0 Methyle nethorize mg/kg (ppm) 2.5 -0.5 102 10.1 10.156 1.1 Methyle nethorize mg/kg (ppm) 2.5 -0.05 80 80 10.1 10.156 1.1 Methyle nethorize mg/kg (ppm) 2.5 -0.05 83 80 19.140 41 1.1.D.Dehlorsethane mg/kg (ppm) 2.5 -0.05 83 84 2.1.146 1 2.5. Dehlorsopropane mg/kg (ppm) 2.5 -0.05 83 84 10.158 3.1.15 2.5. Dehlorsopropane mg/kg (ppm) 2.5 -0.05 81 80 10.156 3.1.15 2.5. Dehlorsopropene mg/kg (ppm) 2.5 -0.05 81 80 11.15 11.15 1.1.D.Techlorsocthane mg/kg (ppm) 2.5 -0.05 80 87 2.145 2.145 1.1.D.Techlorsocthane mg/kg (ppm) 2.5 -0.05 80 87 2.145 2.145 2.145 2.	Trichlorofluoromethane							
Hear mg/kg (ppn) 2.5 -0.25 4.0 4.5 1.0								
Methyle chloride mg/kg (ppn) 2.5 0.05 02 01 0.16 (d) 1 Methyl Louyi der (MTBE) mg/kg (ppn) 2.5 4.065 77 74 14.137 4 1.1 Dohlorenthene mg/kg (ppn) 2.5 4.065 83 84 10.148 3 1.1 Dohlorenthene mg/kg (ppn) 2.5 4.057 83 82 21.145 1 2.5 Loblorenthene mg/kg (ppn) 2.5 4.057 84 88 19.147 7 2.5 Loblorenthene mg/kg (ppn) 2.5 4.057 84 88 19.147 7 2.5 Loblorenthene mg/kg (ppn) 2.5 4.057 7 6 9.164 1 Benzene mg/kg (ppn) 2.5 4.057 77 7 9.141 1 Benzene mg/kg (ppn) 2.5 4.057 94 94 23.1435 2 1.5 Dohlorenthene mg/kg (ppn) 2.5 4.057 94 94 23.								
Methig Labury ether (MTBE) migk (ppn) 2.5 4.05 80 81 21-16 3 1.1. Dichloresthane migk (ppn) 2.5 4.05 83 80 19-140 4 1.2. Dichlorproprine migk (ppn) 2.5 4.05 83 80 19-140 4 2.2. Dichlorproprine migk (ppn) 2.5 4.05 83 82 21-15 3 Charoform migk (ppn) 2.5 -0.5 84 81 12-16 3 1.1. Dichlorrothane migk (ppn) 2.5 -0.05 87 77 71 10-156 3 1.1. Dichlorrothane migk (ppn) 2.5 -0.05 70 77 10-156 3 10								
trans.iz.bichloroethene mg/kg (ppm) 2.5 -0.05 73 74 1.137 4 2.2.Dichloropropane mg/kg (ppm) 2.5 -0.05 63 63 10.148 3 2.2.Dichloropropane mg/kg (ppm) 2.5 -0.05 63 63 10.148 3 2.5.Dichloropropane mg/kg (ppm) 2.5 -0.05 84 84 2.5 14.0 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81 80 17.140 1 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81 80 21.142 1 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81 80 21.142 1 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81 80 21.155 5 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81 80 21.155 5 1.1.Dichloropropane mg/kg (ppm) 2.5 -0.05 81								
1.1-Dichlorechanemg/kg (ppm)2.5-0.05838019-1404cis 1.2-Dichlorechenemg/kg (ppm)2.5-0.05838425-1355Chorofarmmg/kg (ppm)2.5-0.05838221-14512-Dichlorechenemg/kg (ppm)2.5-0.05838221-14512-Dichlorechenemg/kg (ppm)2.5-0.05797710-15631.1-Dichlorechenemg/kg (ppm)2.5-0.0577769-1641Carbon terzachoritariomg/kg (ppm)2.5-0.05818023-1355Enzenemg/kg (ppm)2.5-0.05818031-1355Enzenemg/kg (ppm)2.5-0.05848621-13021.2-Dichlorepropanemg/kg (ppm)2.5-0.05848621-13021.2-Dichlorepropanemg/kg (ppm)2.5-0.05848610-20521.2-Dichlorepropanemg/kg (ppm)2.5-0.05848610-20521.2-Dichlorepropanemg/kg (ppm)2.5-0.05848610-20521.2-Dichlorepropanemg/kg (ppm)2.5-0.05777551.1331311.2-Dichlorepropanemg/kg (ppm)2.5-0.05787531.1331311.2-Dichlorepropanemg/kg (ppm)2.5-0.05787531.14<	trans-1,2-Dichloroethene							
cis L2 Dichlørøchenemg/kg (ppm)2.5-0.0588842.5 1.3552 Butanone (MEK)mg/kg (ppm)1.20.0583822.1.4.512 Butanone (MEK)mg/kg (ppm)2.5-0.05827812.1.6051.1.1 Frichlørøcthanemg/kg (ppm)2.5-0.05877710.13631.1.1 Frichlørøcthanemg/kg (ppm)2.5-0.05877710.1363Benzenemg/kg (ppm)2.5-0.0388832.912941.2.Dichlørøcthanemg/kg (ppm)2.5-0.05948930.1355Benzenemg/kg (ppm)2.5-0.05948923.1553Dibromomethanemg/kg (ppm)2.5-0.05808722.14521.2.Dichlørørøpanemg/kg (ppm)2.5-0.05899124.1553Dibromomethanemg/kg (ppm)2.5-0.05817828.14331.3.Dichlørørøpanemg/kg (ppm)2.5-0.05828331.31721.1.1.2.Trichlørøcthanemg/kg (ppm)2.5-0.05828331.31722.1.2.Dichlørørøpanemg/kg (ppm)2.5-0.05828331.31722.1.2.Dichlørørøpanemg/kg (ppm)2.5-0.05828331.31722.1.2.Dichlørøføpanemg/kg (ppm)2.5-0.05828331.317	1,1-Dichloroethane			< 0.05	83	80	19-140	
Chlordornmg/k (ppm)2.5-0.05838221.41512.5 Untanov (MEK)mg/k (ppm)2.5-0.05827812.16051.2. Dichlorgorpenemg/k (ppm)2.5-0.05827812.16011.1. Dichlorgorpenemg/k (ppm)2.5-0.05818017.14011.1. Dichlorgorpenemg/k (ppm)2.5-0.02818021.19221.1. Dichlorgorpenemg/k (ppm)2.5-0.02888621.139221.2. Dichlorgorpenemg/k (ppm)2.5-0.02898723.1533Dibronomethanemg/k (ppm)2.5-0.05899424.155533								
2-Butanone (MEX) mg/kg (ppm) 12.5 -0.05 94 88 19.147 7 1.1.J. Ebrichloroethane mg/kg (ppm) 2.5 -0.05 79 77 10.15.6 3 1.1.J. Ebrichloroethane mg/kg (ppm) 2.5 -0.05 77 76 9.164 1 Carbon tetrachloride mg/kg (ppm) 2.5 -0.05 81 80 22.13 2 Trichloroethane mg/kg (ppm) 2.5 -0.05 81 80 21.15 3 3 Dibromomethane mg/kg (ppm) 2.5 -0.05 88 87 23.145 2 Obtomomethane mg/kg (ppm) 2.5 -0.05 94 91 24.143 3 Tatuse.15.Dichloropropene mg/kg (ppm) 2.5 -0.05 81 73 72 23.13 3 Tatuse.15.Dichloropropene mg/kg (ppm) 2.5 -0.05 81 31.13 3 3 Tatuse.15.Dichloropropane mg/kg (ppm) 2.5<								
1.2. Dichloroethane (EDC) mg/kg (ppn) 2.5 -0.05 78 78 12-100 5 1.1. Dichloroethane mg/kg (ppn) 2.5 -0.05 71 76 9-164 1 Carbon tertachloride mg/kg (ppn) 2.5 -0.05 77 76 9-164 1 Benzene mg/kg (ppn) 2.5 -0.03 86 83 29-129 4 Benzene mg/kg (ppn) 2.5 -0.05 94 89 30-135 5 Bromodichloromethane mg/kg (ppn) 2.5 -0.05 94 89 30-135 5 Bromodichloromethane mg/kg (ppn) 2.5 -0.05 80 87 23-145 5 Tohene mg/kg (ppn) 2.5 -0.05 70 77 25-140 5 Tohene mg/kg (ppn) 2.5 -0.05 81 82 14-14 5 Tohene mg/kg (ppn) 2.5 -0.05 85 83 31-137 2 Tohene mg/kg (ppn) 2.5 -0.05 87 85 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1.1.1 Erichloroperhanemg/kg (ppn)2.5-0.05?9?710-1563Carbon tetrachloridemg/kg (ppn)2.5-0.05?7?69-1641Carbon tetrachloridemg/kg (ppn)2.5-0.02888621-1392Trichloroperhanemg/kg (ppn)2.5-0.02888621-13922Envennemg/kg (ppn)2.5-0.02888621-139233Bromodichloromethanemg/kg (ppn)2.5-0.05949128-14555Abdrijl Z, permanonemg/kg (ppn)2.5-0.05949128-1433 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1.1-Dichloropropene mg ² kg (ppm) 2.5 -0.05 81 80 17.140 1 Benzene mg ⁴ kg (ppm) 2.5 -0.05 77 76 9.164 1 Benzene mg ⁴ kg (ppm) 2.5 -0.02 88 86 21.139 2 1.2-Dichlorophane mg ⁴ kg (ppm) 2.5 -0.05 94 89 30.135 3 Bromodichloromethane mg ⁴ kg (ppm) 2.5 -0.05 89 94 24.155 3 Dhromomethane mg ⁴ kg (ppm) 2.5 -0.05 89 94 24.155 3 Cis 1.3-Dichloropropene mg ⁴ kg (ppm) 2.5 -0.05 81 78 28.149 3 1.12-Tichloroethane mg ⁴ kg (ppm) 2.5 -0.05 88 86 10-205 2 1.2-Dichloropropane mg ⁴ kg (ppm) 2.5 -0.05 87 82 28.140 3 1.2-Dichloroethane mg ⁴ kg (ppm) 2.5 -0.05 87 82 28.150 2 1 1.2-Dichloroethane mg ⁴ kg (ppm)								
Carbon tertachloride mg ¹ kg (ppm) 2.5 -0.03 86 83 291 (29) 4 Trichlorechnen mg ¹ kg (ppm) 2.5 -0.02 88 86 21-139 2 L-Dichlorporpane mg ¹ kg (ppm) 2.5 -0.02 88 86 21-139 2 Bromodichløromethane mg ¹ kg (ppm) 2.5 -0.05 90 87 23-145 3 Dibromorethane mg ¹ kg (ppm) 2.5 -0.05 99 94 28-144 3 Tollene mg ¹ kg (ppm) 2.5 -0.05 99 94 28-144 3 Tollene mg ¹ kg (ppm) 2.5 -0.05 79 77 3-130 3 Tanse 1.3 Dichloropropene mg ¹ kg (ppm) 2.5 -0.05 88 86 10-205 2 1.4.2 Trichlorechnane mg ¹ kg (ppm) 2.5 -0.05 87 82 28-143 4 1.4.3 Dichloropropane mg ¹ kg (ppm) 2.5 -0.05 87 82 81 3 13 1.4.2 Dichloropropane mg ¹ k								
Benzene mg/kg (ppn) 2.5 -0.03 86 83 21-129 4 1.2-Dichloropropane mg/kg (ppn) 2.5 -0.02 86 86 21-135 5 1.2-Dichloropropane mg/kg (ppn) 2.5 -0.05 90 87 23-155 5 Dibromotchiane mg/kg (ppn) 2.5 -0.05 89 87 23-155 5 Dibromotchiane mg/kg (ppn) 2.5 -0.05 89 87 23-155 5 Othersprese mg/kg (ppn) 2.5 -0.05 94 91 28-144 3 Toluene mg/kg (ppn) 2.5 -0.05 81 78 28-149 4 1.1.2 Trichloropropane mg/kg (ppn) 2.5 -0.05 83 83 13-137 2 2.4 Hexanne mg/kg (ppn) 2.5 -0.05 87 85 28-150 2 1.5 Dichloropropane mg/kg (ppn) 2.5 -0.05 87 83 31-137<								
Trichlorechenemg/kg (ppm)2.5-0.0588862.1.392Bromadichloromethanemg/kg (ppm)2.5-0.0590872.3.15.53Diboromethanemg/kg (ppm)2.5-0.0589872.3.14.534.Methyl-2 pentanonemg/kg (ppm)2.5-0.0589872.3.14.531.1.2.5 Trichloropropenemg/kg (ppm)2.5-0.0581782.6.14.331.1.2.5 Trichloropropenemg/kg (ppm)2.5-0.0581782.6.14.941.1.2.5 Trichloropropenemg/kg (ppm)2.5-0.05848610.20.522.16acnonemg/kg (ppm)2.5-0.05848331.157222.16bcanonemg/kg (ppm)2.5-0.05878228.142442.16bcanonemg/kg (ppm)2.5-0.05878228.142441.1.2.5 Trichlorochanamg/kg (ppm)2.5-0.05878228.142441.1.2.5 Trichlorochanamg/kg (ppm)2.5-0.05827832.137441.1.2.5 Trichlorochanamg/kg (ppm)2.5-0.05827931.134441.1.2.5 Trichlorochanamg/kg (ppm)2.5-0.05827931.134441.1.2.5 Trichlorochanamg/kg (ppm)2.5-0.05827931.13444<								
Bromodichioromethane mg/kg (ppm) 2.5 0.05 90 87 23.155 3 4 Methyl -2 pentanone mg/kg (ppm) 1.2.5 -0.05 89 97 23.145 5 15.13-Dichloropropene mg/kg (ppm) 2.5 -0.05 94 91 28.143 3 Toluene mg/kg (ppm) 2.5 -0.05 81 78 28.149 4 1.1.2 Trichloroethane mg/kg (ppm) 2.5 -0.05 81 78 28.149 4 1.2.5 Lichloropropane mg/kg (ppm) 2.5 -0.05 82 83 31.137 2 2.Hexanone mg/kg (ppm) 2.5 -0.05 85 82 28.150 2 1.2.Dibromothane (EDB) mg/kg (ppm) 2.5 -0.05 85 82 28.137 4 1.1.1.2-Tertachloroethane mg/kg (ppm) 2.5 -0.05 82 79 37.134 4 1.1.1.2-Tertachloroethane mg/kg (ppm) 2.5 -0.05 8	Trichloroethene		2.5		88		21-139	
Dbromonethane mg/kg (ppm) 2.5 -0.05 98 87 23-145 2 cis 1.3 Dichloropropene mg/kg (ppm) 2.5 -0.05 99 94 91 28-144 3 Toluene mg/kg (ppm) 2.5 -0.05 79 77 35-130 3 trans-1.3 Dichloropropene mg/kg (ppm) 2.5 -0.05 88 86 10-05 2 1.1.2 Trichloropropane mg/kg (ppm) 2.5 -0.05 85 83 31-137 2 1.2 Dichloropropane mg/kg (ppm) 2.5 -0.05 87 85 28-150 2 1.2 Dibromoethane (EDB) mg/kg (ppm) 2.5 -0.05 79 78 29-133 3 1.1.2 Tertrachoroethane mg/kg (ppm) 2.5 -0.05 79 78 29-137 4 1.2 Dibromoethane mg/kg (ppm) 2.5 -0.05 79 78 39-143 3 1.4 Dibromoethane mg/kg (ppm) 2.5 -0.05		mg/kg (ppm)						
4-Methyl-2-pentanonemg/kg (ppn)1.2.5-0.5.999424.155515:13-Dichloropropenemg/kg (ppn)2.5-0.05949128.1443Toluenemg/kg (ppn)2.5-0.05817828.14941.1.2.Trichloropenenemg/kg (ppn)2.5-0.05888610-20522.Hexanonemg/kg (ppn)12.5-0.05888610-20521.3-Dichloropropanemg/kg (ppn)2.5-0.05878528.15021.2-Dichloropropanemg/kg (ppn)2.5-0.05878528.15021.2-Dichoronethane (EDB)mg/kg (ppn)2.5-0.05878528.14241.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05888131.13721.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05827931.13441.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05807733.13441.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05828031.14221.3-Dichlorophylenzenemg/kg (ppn)2.5-0.05828031.13441.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05828031.13441.1.2-Tetrachloroethanemg/kg (ppn)2.5-0.05828031.13441.1.2-Tetrachloroethanemg/kg (ppn)2.5<								
cis 1.3-Dichloropropene mg/kg (ppn) 2.5 <0.05								
Toluene mg/kg (ppm) 2.5 0.05 79 77 35.130 3 Trans-1.3-Dichloropropene mg/kg (ppm) 2.5 0.05 88 86 10.205 2 1.1.2 Trichloropropane mg/kg (ppm) 2.5 0.05 88 86 10.205 2 1.3 Dichloropropane mg/kg (ppm) 2.5 0.05 85 88 31.137 2 Tetrachlorothene mg/kg (ppm) 2.5 0.05 87 85 28.150 2 Dibromochhoromethane mg/kg (ppm) 2.5 0.05 79 78 32.129 1 Chlorobenzene mg/kg (ppm) 2.5 0.05 79 78 32.137 4 Chlorobenzene mg/kg (ppm) 2.5 0.05 82 79 33.134 1 oxylene mg/kg (ppm) 2.5 0.05 82 79 31.143 1								
trans-13-Dichloropropenemg/kg (ppm)2.5<0.05817826.14941.1.2.Trichloropropenemg/kg (ppm)2.5<0.05								
1,1,2 Trichloroethaneng/kg (ppm)2.5<0.05888610-20522-Hexanoneng/kg (ppm)2.5<0.05								
2-Hexanone mg/kg (ppm) 12.5 <0.5								
1.3-Dichloropropane mg/kg (ppm) 2.5 -0.05 85 83 31-137 2 Dibromochloromethane mg/kg (ppm) 2.5 -0.055 77 75 20-133 3 1.2-Dibromochloromethane mg/kg (ppm) 2.5 -0.05 85 82 28-142 4 Chlorobenzene mg/kg (ppm) 2.5 -0.05 79 78 32-137 4 Chlorobenzene mg/kg (ppm) 2.5 -0.05 82 79 32-137 4 Chlorobenzene mg/kg (ppm) 2.5 -0.05 82 79 34-166 1 or Xylene mg/kg (ppm) 2.5 -0.05 80 77 33-134 4 Styrene mg/kg (ppm) 2.5 -0.05 82 80 31-142 2 Isopropylbenzene mg/kg (ppm) 2.5 -0.05 82 81 35-137 21 Isopropylbenzene mg/kg (ppm) 2.5 -0.05 82 80 31-142 2 Isopropylbenzene mg/kg (ppm) 2.5 -0.05	2-Hexanone				94	91		
Dibromechloremethane mg/kg (ppm) 2.5 <0.05 87 85 28-150 2 1.2-Dibromechane (EDB) mg/kg (ppm) 2.5 <0.05	1,3-Dichloropropane			< 0.05	85		31-137	
1.2-Dibromoethane (EDB) mg/kg (ppm) 2.5 -0.05 85 82 28-142 4 Chlorobenzene mg/kg (ppm) 2.5 -0.05 79 78 32-137 4 L1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 -0.05 78 76 31-143 3 mp-Xylene mg/kg (ppm) 5 -0.05 80 77 33-134 4 o-Xylene mg/kg (ppm) 2.5 -0.05 80 77 33-134 4 Styrene mg/kg (ppm) 2.5 -0.05 82 80 31-142 2 Bromoform mg/kg (ppm) 2.5 -0.05 82 79 21-156 4 Bromobenzene mg/kg (ppm) 2.5 -0.05 82 79 34-130 4 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 -0.05 82 79 34-130 4 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 -0.05 82 80 18-149 2 1.2.3-Trichloropropane mg/kg (ppm) 2.5 -0.05								
Chlorobenzene mg/kg (ppm) 2.5 <0.05								
Ethylbenzeneng/kg (ppm)2.5<0.05827932.13741,1,2. Tetrachloroethanemg/kg (ppm)2.5<0.05								
1,1,í.2-Tetrachloroethane ng'kg (ppm) 2.5 <0.05								
mp-Xylenemg/kg (ppm)5<0.1807934.1361o-Xylenemg/kg (ppm)2.5<0.05								
o Xylene mg/kg (ppm) 2.5 <0.05								
Styrene mg/kg (ppm) 2.5 <0.05 83 81 35.137 2 Isopropylbenzene mg/kg (ppm) 2.5 <0.05								
Bromotorm mg/kg (ppm) 2.5 <0.05 82 79 21-156 4 n-Propylbenzene mg/kg (ppm) 2.5 <0.05	Styrene							
n-Propylbenzene mg/kg (ppm) 2.5 <0.05								
Bromobenzene mg/kg (ppm) 2.5 <0.05								
1,3,5 Trimethylbenzene mg/kg (ppm) 2.5 <0.05								
1,1,2,2-Tetrachloroethanemg/kg (ppm)2.5<0.05858128-14051,2,3-Trichloropropanemg/kg (ppm)2.5<0.05								
1,2,3 Trichloropropanemg/kg (ppm)2.5<0.05838125-14422-Chlorotoluenemg/kg (ppm)2.5<0.05								
2-Chlorotoluene mg/kg (ppm) 2.5 <0.05								
tert-Butylbenzenemg/kg (ppm)2.5<0.05848230-13721,2,4 Trimethylbenzenemg/kg (ppm)2.5<0.05								4
1,2,4 Trimethylbenzene mg/kg (ppm) 2.5 <0.05	4-Chlorotoluene	mg/kg (ppm)		< 0.05	82	80	31-136	
sec-Butylbenzene mg/kg (pm) 2.5 <0.05 85 82 23-145 4 p-Isopropyltoluene mg/kg (pm) 2.5 <0.05								
p-Isopropyloluene mg/kg (ppm) 2.5 <0.05 82 80 21-149 2 1,3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05								
1,3-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 80 77 30-131 4 1,4-Dichlorobenzene mg/kg (ppm) 2.5 <0.05								
1,4-Dichlorobenzenemg/kg (pm)2.5<0.05797729-12931,2-Dichlorobenzenemg/kg (ppm)2.5<0.05	p-isopropyitoiuene							
1,2-Dichlorobenzene mg/kg (ppm) 2.5 <0.05 81 77 31-132 5 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5								4
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 <0.5 80 75 11-161 6 1,2.4 Trichlorobenzene mg/kg (ppm) 2.5 <0.25								
1,2,4 Trichlorobenzene mg/kg (ppm) 2.5 <0.25 80 77 22-142 4 Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25								
Hexachlorobutadiene mg/kg (ppm) 2.5 <0.25 77 76 10-142 1 Naphthalene mg/kg (ppm) 2.5 <0.05								
Naphthalene mg/kg (ppm) 2.5 <0.05 82 80 14-157 2	Hexachlorobutadiene		2.5	< 0.25				
1,2,3-Trichlorobenzene mg/kg (ppm) 2.5 <0.25 81 79 20-144 2	Naphthalene	mg/kg (ppm)						
	1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	81	79	20-144	2

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/16 Date Received: 06/02/16 Project: SOU_0811-005-01_20160602, F&BI 606020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

<i>y</i>	ory control Sample		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	52	10-146
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	78 87	27-133 22-139
Bromomethane	mg/kg (ppm)	2.5	97	38-114
Chloroethane	mg/kg (ppm)	2.5	106	10-163
Trichlorofluoromethane	mg/kg (ppm)	2.5	88	10-196
Acetone	mg/kg (ppm)	12.5	102	52-141
1,1-Dichloroethene Hexane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	95 95	47-128 43-142
Methylene chloride	mg/kg (ppm)	2.5	121	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	108	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	104	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	106	68-115
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	88 111	52-170 72-113
Chloroform	mg/kg (ppm)	2.5	103	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	108	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	101	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	62-131
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	107 100	69-128 60-139
Benzene	mg/kg (ppm)	2.5	100	68-114
Trichloroethene	mg/kg (ppm)	2.5	109	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	112	72-127
Bromodichloromethane	mg/kg (ppm)	2.5	109	72-130
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm)	2.5 12.5	109 113	70-120 45-145
cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	113	75-136
Toluene	mg/kg (ppm)	2.5	98	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	99	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	104	75-113
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm)	12.5 2.5	111 100	33-152 72-130
Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	98	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	106	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	104	74-132
Chlorobenzene	mg/kg (ppm)	2.5	97	76-111
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100 94	64-123 69-135
m,p-Xylene	mg/kg (ppm)	5	99	78-122
o-Xylene	mg/kg (ppm)	2.5	98	77-124
Styrene	mg/kg (ppm)	2.5	102	74-126
Isopropylbenzene	mg/kg (ppm)	2.5	100	76-127
Bromoform n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 103	56-132 74-124
Bromobenzene	mg/kg (ppm)	2.5	99	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	101	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	101	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	99	61-137
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 101	74-121 75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	101	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	101	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	103	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	100	70-132
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 96	75-121 74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	98	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	95	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	96	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	90	50-153
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 99	63-140 63-138
-,-,- 11101010001120110		2.0	50	00 100

ENVIRONMENTAL CHEMISTS

Date of Report: 06/13/16 Date Received: 06/02/16 Project: SOU_0811-005-01_20160602, F&BI 606020

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 606053-16 1/50 (Matrix Spike) 1/50

Ŭ			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	0.8	< 0.2	76	50-150
Aroclor 1260	mg/kg (ppm)	0.8	< 0.2	77	50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	83	85	55-130	2
Aroclor 1260	mg/kg (ppm)	0.8	85	89	58-133	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

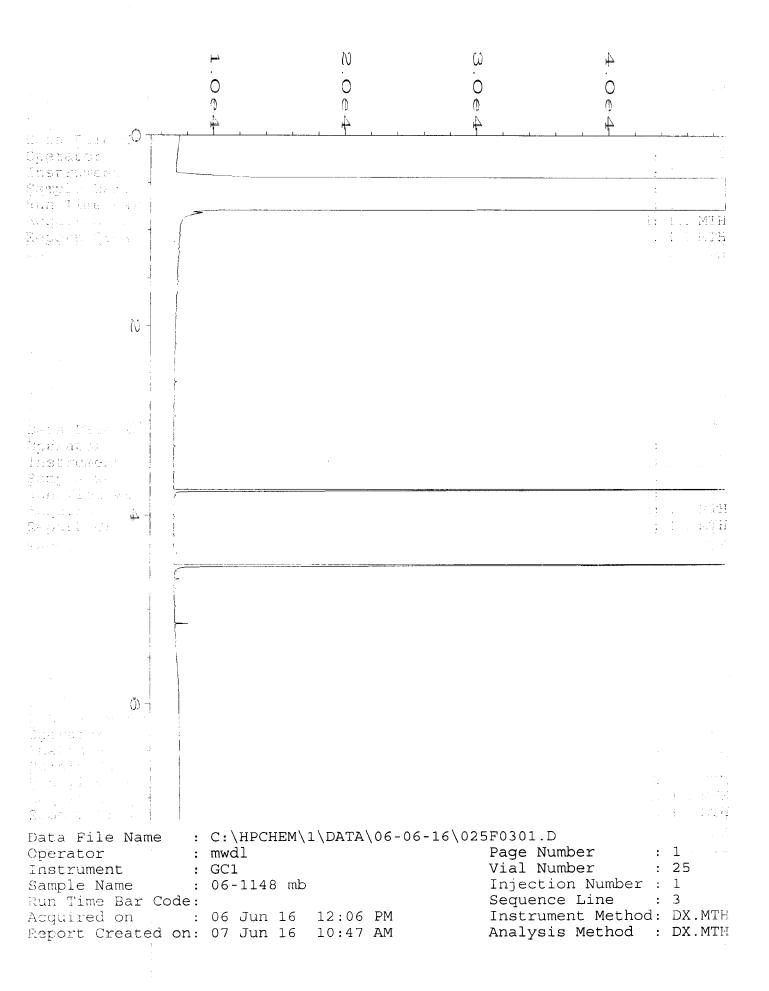
nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

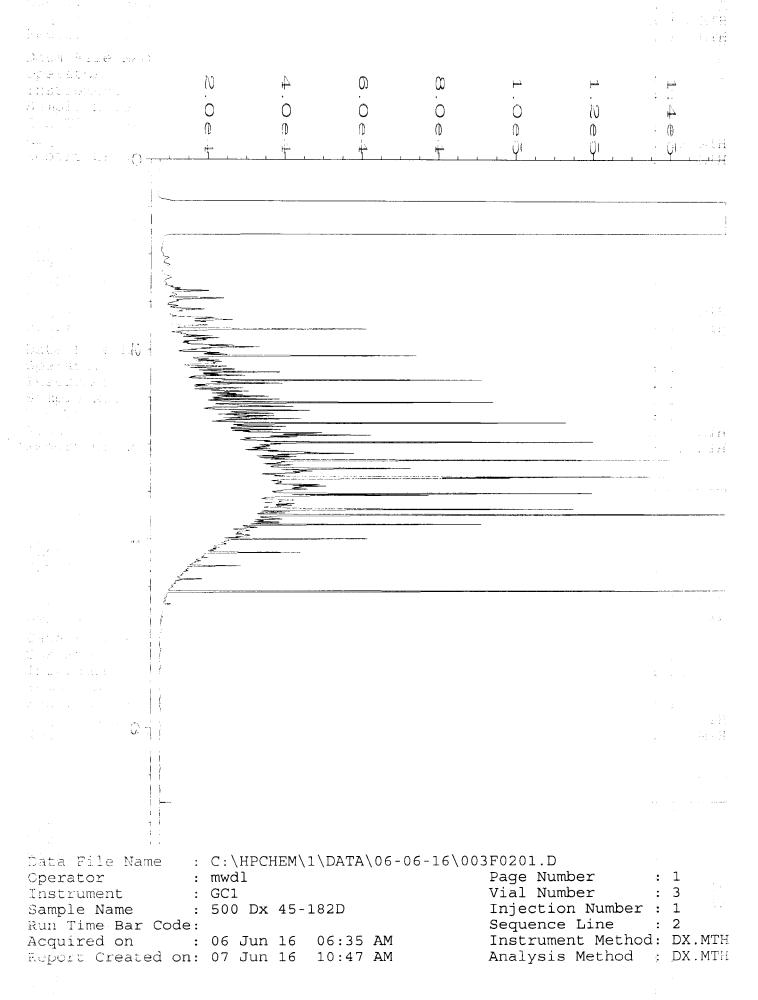
ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


No mu Alexandria Alexandria	상태가 있는 것 					
99.00 199.00 199.00		مىمە •	N	ω	4	
	en oliv Boli Barlon Rol Barlon Antonia	0 0	O O A	0 @	0 4	
		<u></u>		uu		
		,				
	Salar (
						· · · · ·
 4.15. 5.15. 5.15. 4.15. 5.15. 5.15. 5.15. 			• • • • • • • • • • • • • • • • • • •			
Opérato Instrum Sample	ent (: mwdl : GC1 : 606020-01	1\DATA\06-06	-16\036F0501.D Page Nu Vial Nu Injecti Sequenc	mber : on Number :	1 36 1 5
Acquire	d on	: 06 Jun 16 1: 07 Jun 16	02:32 PM 10:46 AM	Instrum	ent Method:	

1			
64	- -	 15	
		. *	


	i==.à •	N	ω.		
	O Ø	O @	0 0 0 0		
0 Dana kaba Magu					_
The transport					
Ruo Time ras i Abgustas un i Report Chesnip				• .	
en e					
Sengelo (* 1997) Roje Nijne (* 1997) Nego (* 1997) Roparo (* 1997)					
	<u>}</u>	·····			
1					
0					
				-	
Data File Name Operator Instrument Sample Name	: mwdl : GC1 : 606020-03	1\DATA\06-06-1	Page Number Vial Number Injection Numb	er : 1	
Run Time Bar Co Acquired on Report Created	: 06 Jun 16		Sequence Line Instrument Met Analysis Metho		

na series de la companya de la comp Norma de la companya de Norma de la companya de		10 0 0 4	ω	4.0e4	۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰
Cremente de la Cremente de Contractor de Con				:	ra La 1 Not 12
					۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰ ۱۰
A CRACH Samula A CL Samula A Saut Argula Pa	2			• • • • •	
Operator Instrument	: mwdl				L
Run Time Bar (Acquired on Report Created	Code: : 06 Jun 1	6 02:55 PM	Sequenc Instrum	e Line : 5 ent Method: I s Method : I	5 DX.MTH

an An an Anna				
an a		<i>К.</i> (А	
	•			
	0	0 (0.0.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	0	0 (Ď Ū	
Data File Spe	· · · · · · · · · · · · · · · · · · ·	₩ <u></u>		
Operator 0 7 7			:	
Semple Marka				
Run Time Par 1				· · · · · · · · · · · · · · · · · · ·
and the second second				
			:	E. MTH
				the second
				1
onte Pilo kej				
Operation Instrumen			-	
Right thanks and 1				
	·····	and a state of the		111
· · · · · · · · · · · · · · · · · · ·				
3				
let hat have the state of the s				
lleath ar Brithe ⊕ - Cheireana				
A solit i Neasan				
Rayes Costange La C				· . · · · · · · · · · · · · · · · · · ·
Data File Name :	C.\HPCHEM\1\	DATA\06-06-16\03	39F0501.D	
	mwdl	(00 00 10(00		: 1
Instrument :	GC1		Vial Number	: 39
+	606020-06		Injection Number	
Run Time Bar Code:	06 Jun 16 0	3.06 DM	Sequence Line Instrument Method	: 5 אס ארא
Acquired on : Report Created on:		0:46 AM		DX.MTH
segure stadow off.			<u>د</u>	

Sheeder .

Send Report to <u>_R</u>	b Roberts. Cla	are Tochil	lin		SAME	PLERS (signate	Par		11	K			102	age *		_ of
	SoundEarth S				PROJ	ECT NA	ME/NO).).		100		PO#			dard (2		
	311 Fairview A			2000	-	18th and	d Jacks	on Pro	perty		0811	l-005-0	01	RUS Rush c			
City, State, ZIP	<u>Seattle, Washi</u>	ngton 98			REM4	ARKS				<u></u>	<u> </u>			Disp Retu	SAMPL ose afte rn sam call wit	er 30 da ples	ys
							<u> </u>				A	NALYSI	es req	UESTED			<u> </u>
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-D _x	NWTPH-GE	BTEX by 8021B	VOCe by 8260	SVOCs by 8270	CVOCe by 8260B	MTCA 5 Metals by EPA 200.8	PCBs by EPA 8082	613/	e R K m Notes
806-4.0	BOLO	4.0	016	6/1/16	0933	5011	5	×									
BOL0 - 8:0	Boie	8.0	42		1000	(1			[†				
807-3.0	807	3.0	03		1035			X	-				<u> </u>	<u> </u>	×		
807-6.0	307	6.0	04		1105										\frown		
B08-4.0	BOE	4.5	os		1305			×									
BOS-6,0	808	6.0	06		1330			×			X						
B09-3.0	Bog	3.0	07		1345		1	*						<u> </u>			
B09-6.0	Bog	6.0	08		1410		1				X						
810-3.0	310	3,0	04		1445												
810-60	810	6.0	ior	J.	1510		1				X			<u>├</u> ──┤		-Æ	,
						•¥1					L1	l		amples	receiv	od at _	-7
Friedman & Bruya,		SIC	JNAT	-		0.		JT NAM	ME		T	CON	MPAN	Y	DA	TE	TI
012 16th Avenue W	est	2 UN	$\overline{\mathcal{A}}$	17	9	Clare		Win			5	undto	vi		6/2	216	077
Seattle, WA 98119-2	029	100		rp		Moches	ιĿ.	del			F	5 Bho	-		6/2	11,	or

60602C Send Report to <u>Rok</u> Company S				S.	SAMP PROJ	LERS (s	ignatu ME/NC	re) ([]).	lar ;	in	ME	PO #		Stan	dard (2	Z. ROUND Weeka)	
	ll Fairview A			2000	_	18th and	d Jacks	on Pro	perty		0811	1-005-0	1	RUS Rush c		authoriz	æd by:
City, State, ZIP <u>S</u> Phone # <u>206-306</u>				-1907										Disp Retu	ose afte Irn sam	E DISP(or 30 day ples th instru	78
										1	A	NALYSI	CS REQ	UESTED			
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-D _x	NWTPH-Gx	BTEX by 8021B	VOCe by 8260	SVOCe by 8270	CVOCs by 8260B	MTCA 5 Metals by EPA 200.8	PCBs by EPA 8062	r Hoj	Notes
B11-2,5	Bu	2.5	ルを	5/1/16	1555	Juil 1	5			<u> </u>	 		<u> </u>			1	~
814-3,0	B14	7.0	12		1755	1	1						[
B14-5,5	814	5,5	\boldsymbol{v}		1810												
817-20	817	2.0	14		1935												
817-4.0	817	4,0	is l	1.	1940	SV	V				\times					- V -	
					7											·	
······					a	-	6	1									
									16					rece	ived at	12	_°C

Friedman & Bruya, Inc.	SIGNATURE		······································		
-	Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	lan mo	Chare Tochlin	Sankarth	6/2/11,	0725
Seattle, WA 98119-2029	Received by				0.00
	poaring	Michael E-chil	1 FGBn	6/2/16	0725
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COC.DOC					

Friedman & Bruya, Inc. #606053

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 14, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr. Roberts:

Included are the results from the testing of material submitted on June 3, 2016 from the SOU_0811-005-01_20160603, F&BI 606053 project. There are 24 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0614R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 3, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005-01_20160603, F&BI 606053 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
606053 -01	B16-4.0
606053 -02	B16-7.5
606053 -03	B16-20.0
606053 -04	B15-4.0
606053 -05	B15-8.0
606053 -06	B13-4.0
606053 -07	B13-8.0
606053 -08	B13-12.0
606053 -09	B11-5.0
606053 -10	B12-4.0
606053 -11	B12-8.0
606053 -12	B12-11.5
606053 -13	B05-4.0
606053 -14	B05-8.0
606053 -15	B05-10.5
606053 -16	B04-4.0
606053 -17	B04-8.0
606053 -18	B04-12.0
606053 -19	B03-4.0
606053 -20	B03-8.0
606053 -21	B03-12.0
606053 -22	B01-4.0
606053 -23	B01-8.0
606053 -24	B02-4.0
606053 -25	B02-8.0

A 200.8 internal standard failed the acceptance criteria for samples B13-4.0, B12-4.0, B03-4.0 and B02-4.0 due to matrix interferences. The data were flagged accordingly. The sample was diluted and reanalyzed.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053 Date Extracted: 06/03/16 Date Analyzed: 06/03/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
B03-4.0 606053-19	< 0.02	< 0.02	< 0.02	< 0.06	<2	79
B03-8.0 606053-20	<0.02	<0.02	< 0.02	<0.06	<2	80
Method Blank 06-1124 MB	< 0.02	< 0.02	< 0.02	<0.06	<2	79

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053 Date Extracted: 06/06/16 Date Analyzed: 06/06/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
B16-4.0 606053-01	<50	<250	89
B13-4.0 606053-06	<50	<250	90
B05-4.0 606053-13	<50	<250	92
B05-10.5 606053-15	<50	<250	92
B04-4.0 606053-16	<50	<250	99
B04-8.0 606053-17	<50	<250	89
B03-4.0 606053-19	<50	<250	94
B01-4.0 606053-22	<50	<250	88
B02-4.0 606053-24	<50	<250	88
Method Blank ^{06-1148 MB}	<50	<250	93

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B16-4.0 06/03/16 06/08/16 06/10/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-01 606053-01.074 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.32		
Cadmium	<1		
Chromium	11.4		
Lead	1.63		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B13-4.0 06/03/16 06/08/16 06/10/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-06 606053-06.075 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	1.24		
Cadmium	<1		
Chromium	11.5 J		
Lead	1.43 J		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B13-4.0 06/03/16 06/08/16 06/13/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-06 x2 606053-06 x2.037 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<2		
Cadmium	<2		
Chromium	12.7		
Lead	<2		
Mercury	<2		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-4.0 06/03/16 06/08/16 06/10/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-10 606053-10.076 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.03		
Cadmium	<1		
Chromium	10.1 J		
Lead	4.17 J		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B12-4.0 06/03/16 06/08/16 06/13/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-10 x2 606053-10 x2.038 ICPMS1 SP
A] (Concentration		
Analyte:	mg/kg (ppm)		
Arsenic	<2		
Cadmium	<2		
Chromium	11.2		
Lead	4.72		
Mercury	<2		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-4.0 06/03/16 06/08/16 06/10/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-19 606053-19.077 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic Cadmium Chromium Lead Mercury	1.45 <1 10.5 J 1.87 J <1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B03-4.0 06/03/16 06/08/16 06/13/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-19 x2 606053-19 x2.039 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<2		
Cadmium	<2		
Chromium	11.6		
Lead	2.20		
Mercury	<2		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-4.0 06/03/16 06/08/16 06/10/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-24 606053-24.078 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	2.36		
Cadmium	<1		
Chromium	15.8 J		
Lead	3.88 J		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B02-4.0 06/03/16 06/08/16 06/13/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-24 x2 606053-24 x2.040 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<2		
Cadmium	<2		
Chromium	18.3		
Lead	4.43		
Mercury	<2		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 06/08/16 06/08/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 I6-367 mb I6-367 mb.028 ICPMS1 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Cadmium	<1		
Chromium	<5		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-12.0 06/03/16 06/03/16 06/03/16 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategi SOU_ 0811-005-01_ 2 606053-18 060335.D GCMS4 JS	es 20160603, F&BI 606053
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	101	62	142	
Toluene-d8		108	55	145	
4-Bromofluorobenz	ene	106	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5		loropropane	< 0.05
Chloromethane		<0.5		loroethene	<0.025
Vinyl chloride		< 0.05		ochloromethane	<0.05
Bromomethane		<0.5		omoethane (EDB)	<0.05
Chloroethane		<0.5	Chlorobe		<0.05
Trichlorofluoromet	hane	<0.5	Ethylber		< 0.05
Acetone		< 0.5		etrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		<0.25	o-Xylene		< 0.05
Methylene chloride		< 0.5	Styrene	.11	< 0.05
Methyl t-butyl ethe trans-1,2-Dichloroe		< 0.05	Bromofo	lbenzene	<0.05 <0.05
1,1-Dichloroethane		<0.05 <0.05		lbenzene	<0.05 <0.05
2,2-Dichloropropan		<0.05 <0.05	Bromobe		<0.05 <0.05
cis-1,2-Dichloroeth		< 0.05		imethylbenzene	<0.05 <0.05
Chloroform	ene	< 0.05		'etrachloroethane	<0.05
2-Butanone (MEK)		<0.5		ichloropropane	<0.05
1,2-Dichloroethane	(EDC)	<0.05	2-Chloro		<0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlori		< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03		lbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	<0.05
Bromodichlorometh	nane	< 0.05		lorobenzene	<0.05
Dibromomethane		< 0.05		lorobenzene	<0.05
4-Methyl-2-pentan		<0.5		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro	pene	< 0.05		ichlorobenzene	<0.25
Toluene		< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tri	ichlorobenzene	<0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applic 06/03/16 06/03/16 Soil mg/kg (ppr		Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_ 0811-005-01_ 2 06-1089 mb 060327.D GCMS4 JS	es 20160603, F&BI 606053
Surrogates:		% Recovery:	Lower Limit:	Upper Limit:	
1,2-Dichloroethane	-d4	98	62	142	
Toluene-d8		107	55	145	
4-Bromofluorobenz	ene	104	65	139	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		<0.5		loroethene	<0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		<0.5	1,2-Dibr	omoethane (EDB)	<0.05
Chloroethane		< 0.5	Chlorobe	enzene	<0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	<0.05
Acetone		< 0.5	1,1,1,2-T	etrachloroethane	<0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		<0.1
Hexane		<0.25	o-Xylene	<u>)</u>	<0.05
Methylene chloride		<0.5	Styrene		<0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propyl		< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		etrachloroethane	< 0.05
2-Butanone (MEK)		<0.5	1,2,3-111 2-Chloro	ichloropropane	< 0.05
1,2-Dichloroethane 1,1,1-Trichloroetha		<0.05 <0.05	4-Chloro		<0.05 <0.05
1,1-Dichloropropen		<0.05 <0.05		ylbenzene	<0.05 <0.05
Carbon tetrachlorio		<0.05		imethylbenzene	<0.05
Benzene	uc	< 0.03		lbenzene	<0.05
Trichloroethene		< 0.02		pyltoluene	<0.05
1,2-Dichloropropan	e	< 0.05		lorobenzene	< 0.05
Bromodichlorometh		< 0.05		lorobenzene	< 0.05
Dibromomethane		< 0.05		lorobenzene	<0.05
4-Methyl-2-pentan	one	< 0.5		omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	<0.25
Toluene		< 0.05	Hexachl	orobutadiene	<0.25
trans-1,3-Dichlorop		< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	<0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	B04-4.0 06/03/16 06/08/16 06/09/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 606053-16 1/50 060831.D GC7 MP
Surrogates: TCMX	% Recovery: 85 d	Lower Limit: 29	Upper Limit: 154
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221	<0.2		
Aroclor 1232	<0.2		
Aroclor 1016	<0.2		
Aroclor 1242	<0.2		
Aroclor 1248	<0.2		
Aroclor 1254	<0.2		
Aroclor 1260	<0.2		
Aroclor 1262	<0.2		
Aroclor 1268	<0.2		

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 06/08/16 06/09/16 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005-01_ 20160603, F&BI 606053 06-1153 mb 1/5 060829.D GC7 MP
Surrogates: TCMX	% Recovery: 85	Lower Limit: 29	Upper Limit: 154
	Concentration		
Compounds:	mg/kg (ppm)		
Aroclor 1221	< 0.02		
Aroclor 1232	<0.02		
Aroclor 1016	<0.02		
Aroclor 1242	< 0.02		
Aroclor 1248	< 0.02		
Aroclor 1254	< 0.02		
Aroclor 1260	< 0.02		
Aroclor 1262	<0.02		
Aroclor 1268	<0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 606031-09 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	92	69-120
Toluene	mg/kg (ppm)	0.5	99	70-117
Ethylbenzene	mg/kg (ppm)	0.5	102	65-123
Xylenes	mg/kg (ppm)	1.5	101	66-120
Gasoline	mg/kg (ppm)	20	95	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	606071-02 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	11,000	75 b	109 b	63-146	37 b
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	105	79-1	44		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 605458-01 x10 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<10	105	113	70-130	7
Cadmium	mg/kg (ppm)	10	<10	102	107	70-130	5
Chromium	mg/kg (ppm)	50	416	0 b	165 b	70-130	200 b
Lead	mg/kg (ppm)	50	111	98 b	149 b	70-130	41 b
Mercury	mg/kg (ppm	10	<10	85	90	70-130	6

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	Percent Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	106	85-115
Cadmium	mg/kg (ppm)	10	104	85-115
Chromium	mg/kg (ppm)	50	107	85-115
Lead	mg/kg (ppm)	50	104	85-115
Mercury	mg/kg (ppm)	10	98	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 606059-01 (Matrix Spike)

Laboratory Code. 000039	or (matrix spike)		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	17	16	10-142	6 6
Chloromethane	mg/kg (ppm)	2.5	<0.5	48	48	10-126	Ő
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	50	47	10-138	6
Bromomethane	mg/kg (ppm)	2.5	< 0.5	68	65	10-163	5
Chloroethane	mg/kg (ppm)	2.5	<0.5	71	69	10-176	3
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	48	48	10-176	0
Acetone	mg/kg (ppm)	12.5	<0.5	81	78 62	10-163	4
1,1-Dichloroethene	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	63 43	62 45	10-160 10-137	2 5
Hexane Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5	<0.25	43	43	10-156	1
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	<0.05	89	86	21-145	3
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	<0.05	77	74	14-137	4
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	83	80	19-140	4
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	65	63	10-158	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	88	84	25-135	5
Chloroform	mg/kg (ppm)	2.5	< 0.05	83	82	21-145	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	94	88	19-147	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	82	78	12-160	5
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	79	77	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	81	80	17-140	1
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	77 86	76 83	9-164 29-129	1 4
Benzene Trichloroethene	mg/kg (ppm)	2.5 2.5	<0.03 <0.02	86 88	83 86	29-129 21-139	4 2
1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.02	00 94	89	30-135	5
Bromodichloromethane	mg/kg (ppm)	2.5	<0.05	90	87	23-155	3
Dibromomethane	mg/kg (ppm)	2.5	<0.05	89	87	23-145	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	<0.5	99	94	24-155	5
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	94	91	28-144	3
Toluene	mg/kg (ppm)	2.5	< 0.05	79	77	35-130	3
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	81	78	26-149	4
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	88	86	10-205	2
2-Hexanone	mg/kg (ppm)	12.5	<0.5	94	91 83	15-166	3 2
1,3-Dichloropropane	mg/kg (ppm)	2.5	<0.05	85 77	83 75	31-137	2
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.025 <0.05	87	75 85	20-133 28-150	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	<0.05	85	82	28-142	4
Chlorobenzene	mg/kg (ppm)	2.5	<0.05	79	78	32-129	1
Ethylbenzene	mg/kg (ppm)	2.5	<0.05	82	79	32-137	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	78	76	31-143	3
m,p-Xylene	mg/kg (ppm)	5	< 0.1	80	79	34-136	1
o-Xylene	mg/kg (ppm)	2.5	< 0.05	80	77	33-134	4
Styrene	mg/kg (ppm)	2.5	< 0.05	83	81	35-137	2
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	82	80	31-142	2
Bromoform	mg/kg (ppm)	2.5 2.5	< 0.05	82	79	21-156	4
n-Propylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	84 82	81 79	23-146	4
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05	82 82	79 80	34-130 18-149	4 2
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	<0.05	85	81	28-140	5
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	<0.05	83	81	25-144	2
2-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	81	78	31-134	$\tilde{4}$
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	82	80	31-136	2
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	84	82	30-137	2
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	79	10-182	4
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	85	82	23-145	4
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	82	80	21-149	2
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	80	77	30-131	4
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	79	77	29-129	3
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.5	81 80	77 75	31-132 11-161	5 6
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.25	80 80	75 77	22-142	6 4
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	80 77	76	10-142	4
Naphthalene	mg/kg (ppm)	2.5	<0.25	82	80	14-157	1 2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	<0.25	81	79	20-144	2
-,-,		2.0	-0120			~~	~

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

5			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	52	10-146
Chloromethane	mg/kg (ppm)	2.5	78	27-133
Vinyl chloride	mg/kg (ppm)	2.5	87	22-139
Bromomethane Chloroethane	mg/kg (ppm)	2.5 2.5	97 106	38-114 10-163
Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	2.5	88	10-105
Acetone	mg/kg (ppm)	12.5	102	52-141
1.1-Dichloroethene	mg/kg (ppm)	2.5	95	47-128
Hexane	mg/kg (ppm)	2.5	95	43-142
Methylene chloride	mg/kg (ppm)	2.5	121	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	108	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	104	67-127
1,1-Dichloroethane	mg/kg (ppm)	2.5	106	68-115
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	88 111	52-170 72-113
Chloroform	mg/kg (ppm)	2.5	103	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	103	57-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	101	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	107	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	100	60-139
Benzene	mg/kg (ppm)	2.5	108	68-114
Trichloroethene	mg/kg (ppm)	2.5	109	64-117
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm)	2.5 2.5	112 109	72-127 72-130
Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	109	72-130
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	113	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	112	75-136
Toluene	mg/kg (ppm)	2.5	98	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	99	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	104	75-113
2-Hexanone	mg/kg (ppm)	12.5	111	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	100	72-130
Tetrachloroethene Dibromochloromethane	mg/kg (ppm)	2.5 2.5	98 106	72-114 74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm) mg/kg (ppm)	2.5	100	74-125
Chlorobenzene	mg/kg (ppm)	2.5	97	76-111
Ethylbenzene	mg/kg (ppm)	2.5	100	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	94	69-135
m,p-Xylene	mg/kg (ppm)	5	99	78-122
o-Xylene	mg/kg (ppm)	2.5	98	77-124
Styrene	mg/kg (ppm)	2.5	102	74-126
Isopropylbenzene Bromoform	mg/kg (ppm)	2.5 2.5	100 99	76-127 56-132
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	103	74-124
Bromobenzene	mg/kg (ppm)	2.5	99	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	101	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	101	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	99	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	98	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	101	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	102	73-130
1,2,4 Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	101 103	76-125 71-130
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5	103	70-132
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	98	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	96	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	98	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	95	58-138
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	96	64-135
Hexachlorobutadiene	mg/kg (ppm)	2.5	90	50-153
Naphthalene	mg/kg (ppm)	2.5	101	63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	99	63-138

ENVIRONMENTAL CHEMISTS

Date of Report: 06/14/16 Date Received: 06/03/16 Project: SOU_0811-005-01_20160603, F&BI 606053

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 606053-16 1/50 (Matrix Spike) 1/50

·			Sample	Percent	
	Reporting	Spike	Result	Recovery	Control
Analyte	Units	Level	(Wet Wt)	MS	Limits
Aroclor 1016	mg/kg (ppm)	0.8	< 0.2	76	50-150
Aroclor 1260	mg/kg (ppm)	0.8	< 0.2	77	50-150

Laboratory Code: Laboratory Control Sample 1/5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	83	85	55-130	2
Aroclor 1260	mg/kg (ppm)	0.8	85	89	58-133	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Semple Nate Sin Tinte our en Seguent d'est	<i>⊢</i> ()	C	: E 1171 G./K
$O \rightarrow O$		0 0 4	0 4
Bata file 19			· · · ·
			194 1979 -
			8.
unit de la constant La tradición de la constant La constant de la constant			
Data File Name : Operator : Instrument :	C:\HPCHEM\1\DATA\06 mwdl GC1 606053-01	Page N Vial N	D umber : 1 umber : 40 ion Number : 1

Lines III - 111 Dege Rei - 114 Overstere Sugeisere Sugeisere Nigeisere		N O 0	ω Ο Ω		े श्राव दिने स्रा
					 人,是
Data File Name Operator Instrument Sample Name Run Time Bar Cod Acquired on Report Created o	: mwdl : GC1 : 606053-06 e: : 06 Jun 16	\1\DATA\06-06- 03:28 PM 10:46 AM	Page Nu Vial Nu Injecti Sequenc Instrum	mber : 1	MTH

1.13

erra Prio Nava Deerator Lasurasa Saglette Rag fise is Acquired Report Cos	- - 0 0 4	N 0 10 4	0 0 4	4 0 4 4	
1997 - 19					NI - N
Rum (Thire) sha Argeletala (1) Gegéleta series S				3.	A TH A TH
	}				
12 · 12 · 12 · 12 · 12 · 12 · 12 · 12 ·					Server - A - A - A - A - A - A - A - A - A -
Data File Name Operator Instrument Sample Name Run Time Bar Co Acquired on Report Created	: mwdl : GC1 : 606053-13 ode: : 06 Jun 16	03:40 PM	Sequence	ber : n Number : Line : nt Method:	5 DX.MTH

Data Fire dae George Sc Teoremage: Constantes Const Name 1106 - Const Name 1106 - Const	0 0 4	N 0 4	ω Ο Φ 4	4 0 4	
					<u> </u>
Deter 211. Notes Deter 211. Notes Soor to State Auto Inter Inter Auto Inter Inter	~			÷.	
	-				· · · ·
Data File Name Operator	: mwdl	\1\DATA\06-06-	Page Numl	ber :	1
Instrument Sample Name Run Time Bar Cod Acquired on Report Created c	: 606053-15 le: : 06 Jun 16		Injection Sequence Instrumen	ber : n Number : Line : nt Method: Method :	1 5 DX.MTH

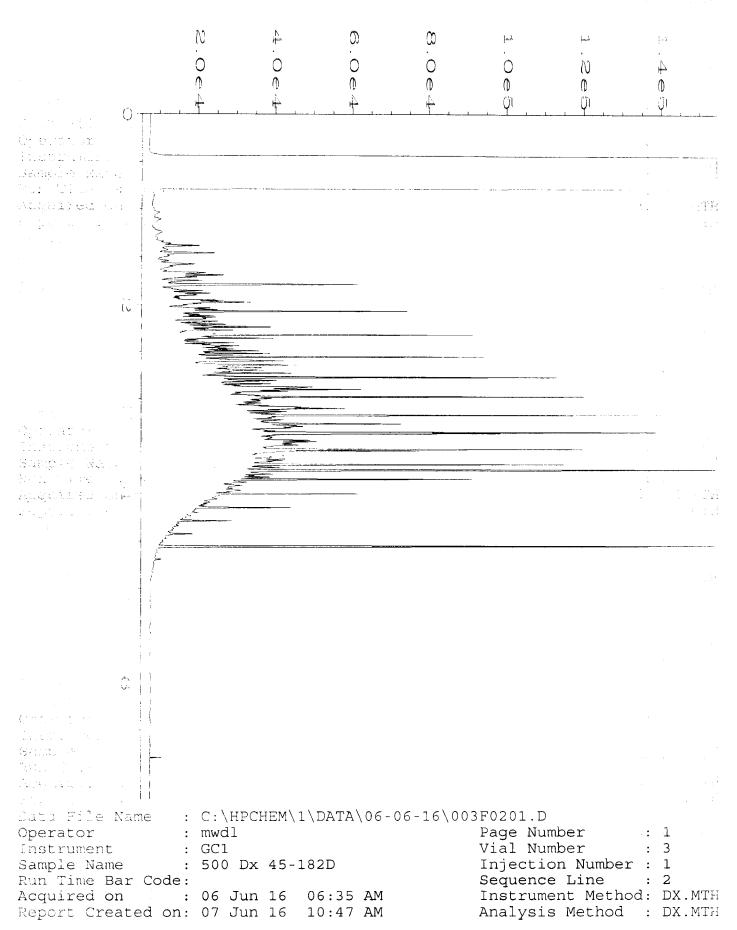
ukaput Heri Reis Teas Aar Toteri teri aar Hitt	* * "			: 1 : 1 1 2. 内 阳 : 2. 内阳
	⊣	N	ω	. · · ·
	0	0	O	
о. 			4 	U
na segue de la composition de				
				,
Osca Filise dan Dese ter				
e Records and the second s	1			1 · · ·
erun Titere ≜komotiseen titere M	-			1991年
	4			
2 Marshall Anna A				: 3 د 4 د
uete filo 🖶			· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·
n - Constant Marine Angel Marine Angel Marine Angel Marine Angel				 :
C.				
				ار به
naradan sering sering sering Tanan sering				
Data File Nat Operator Instrument Sample Name Run Time Bar Acquired on	: mwd] : GC1 : 6060 Code:	053-16	Page Nu Vial Nu Injecti Sequenc	imber : 1 and
Report Creat				s Method : DX.MTH

-

til 222 oc Doerkoon lastitueen. Garrie do		1.0e	N 0 0	ພ 0 0	4 0 0	
	0 					
sebent or						1911 - 1914 - 1914 - 1914
				<u> </u>		
losi Operio Illaticae:						
Pepart					:	े हेले.
			<u> </u>		<u></u> ,	
			. <u></u>		Paramo king V	
					:	
	0					
in the second se	4					114
						:
Data File Operator Instrument Sample Nar	:	C:\HPCHEM\ mwdl GC1 606053-17	1\DATA\06-06-1	6\045F0501.D Page Numbe Vial Numbe Injection	r :	45
Run Time H Acquired o	Bar Code: on :			Sequence L Instrument Analysis M	ine : Method:	5 DX.MTH
antific transfer Solto transfer Solto						

1. A.			

Oata Sile i Operator Tosto rea	0 	1. O 0 4	N 0 0 4	ω	4. 0 e :		· .
alati ila Munici ele Alegoni di s						- - 	h
]
Deca Mirit Operator Transtator					:		
kennette Koppenter en 1						1 1 200 	
	+						
							ton a st
Catalor - Co Catalor - Co Catalor - Co Alternation - Co Conta	0						
						- 1 - 41 - 1 21	
Operator Instrument Sample Nam Run Time B Acquired o	: e : ar Code: n :	mwdl GC1 606053-19	04:25 PM	Injectio Sequence Instrume	ber : ber : n Number : Line : nt Method: Method :	1 5 DX.MT	
aka basa basa Ngalakas Ngalakas							


Acquired on Report inter-				et en 1971 1971 - Parl	
) @	N. ○	₩.	4. 0	
			4 	U 4 	
Jate Stie Stal Oparator Statistor Statistor					
Addund Teresson in a second se					, Th
					A.
Cate 2 de de la				 -	
Antonio de la construcción Antonio de la construcción Martine de la constru					
0) -					
Operator Data File Name Operator Instrument Sample Name Run Time Bar Con Acquired on	: mwdl : GC1 : 606053-22 de: : 06 Jun 16	04:36 PM	Injecti Sequenc Instrur	umber : 1 umber : 47 lon Number : 1 ce Line : 5 ment Method: DX.MT	
Report Created	on: 07 Jun 16	10:47 AM	Analysi	is Method : DX.MT	Η

	Г. О е	N ○ @	3.0 0. • •		
o de la competencia de la comp	₩ <u></u>				
Donas Palas da E	······				
AGG					
Detter for a la l				naanaanan maanan ahaan ka maanan ah	анана – тапа
Bandrida de la Avigu crea de la C				- 	
Petra de la					
Operator : Instrument : Sample Name : Run Time Bar Code:	mwdl GC1 606053-24	1\DATA\06-06-16`	Page Number Vial Number Injection Num Sequence Line	: 48 ber : 1 : 5	
Acquired on : Report Created on:			Instrument Me Analysis Meth		.MTH .MTH

Dataline Marte Dataline Marte Instructure Gargero dese Acquires d Regoire de se ente		ω	4 • • • •
Acquintes Acquintes Acquintes			
Angoines Mendel est			
Data File Name Operator Instrument Sample Name Run Time Bar Cod Acquired on Report Created c	e: : 06 Jun 16 12:06 PM	6-16\025F0301.D Page Numbe Vial Numbe Injection Sequence L Instrument Analysis M	r : 25 Number : 1 ine ; 3 Method: DX.MTH

Second Contractor

and Nac

606053					SAMPL	E CHA	IN O	F CUS	STOD	ŶY				HE Q	6/3/16	154	1/ BI 3
Send Report to <u>Ro</u>	<u>b Roberts, Cla</u>	are Tochil	lin		SAM	PLERS (signati	ire	1. 1	nt	•]	Page#_		
CompanyS	SoundEarth S	trategies,	Inc.		PRO	JECT NA	ME/N	0.				20#			ndard (2	ROUND TIN Works)	ME
Address 28	311 Fairview A	Avenue E	<u>, Suite</u>	2000		18 th an	d Jack	son Pro	operty		0811	-005-0	1			authorized h	by:
City, State, ZIP <u>S</u> Phone # <u>206-306</u>			102 06-306	-1907	REM	REMARKS							SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions				
									1	1	A	NALYSI	ES REQ	UESTEL)	r	
Sample ID	Sample Location	Sample Depth	Lab ID	Data Samp		Matrix	# of Jars	NWTPH-D _X	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CVOCs by 8260B	MTCA 5 Metals by EPA 200.8	PCBs by EPA 8082	X-perk 6/3/16 Notes	2R πα ₅
B16-410	B16	4.0	0/E	6/2	116 0850	50.1	5	X		<u>+</u>				×			
B16-7.5	Elle	7.5	02	1	0915		1			<u> </u>							
B16-12,0	BILO	12.0	03		0940					<u> </u>							
815-410	B15	4.0	oy		1020												
B15-8.0	B15	8.0	05		1035			1									
B13-410	313	410	06		1100			×						\times			
813-8.0	B13	8.0	07		1135												
813-1210	BIZ	12.0	08		1205			1					<u> </u>				
BI1-5.0	BIL	5.0	09		1125												
B12-4,0	BIZ	4,0	101	J	1305	V	V	†						×		-V	

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY		r —
	P-line 1 11 d	1	COMPANY	DATE	TIME
3012 16th Avenue West	Reinquisned by: lun Int	Clare Tochilin	Sandiath	6/2/16	min
Seattle, WA 98119-2029	Received by:	7000		4.3.10	0705
Seattle, WA 98119-2029	S. Om	5.268rn	FAR. T	1.2.1	
DL (900) 995 9999	Relinguished by:	2 2 0 0	10 stake	6:3:16	0 1. 05
^D h. (206) 285-8282					1
En (800) 800 5011	Received by:			3	
Fax (206) 283-5044			Samples received	at°	C
FORMS\COC\COC.DOC					

606053				SA	AMPLE									HE (0/3/K	, (vs4/BI
Send Report to <u>Rob</u>	Roberts, Cla	are Tochi	lin		SAMP	LERS (signatu (te Va	L	1al	м			1	Page #		
	oundEarth S				PROJ	ECT NA	ME/NO).		100	i	PO #		Star	dard (2	ROUNE Weeks	TIME
	1 Fairview A			2000	-	18 th an	d Jacks	on Pro	perty		081	l-005-0	1	RUS Rush c		authori	zed by:
City, State, ZIP <u>S</u> e	eattle, Washi				REMA	RKS					<u> </u>			SAMPLE DISPOSAL Dispose after 30 days Return samples			
Phone #206-306-	<u>1900 </u>	x #2	<u> 06-306</u>	-1907					·····							ples th instru	ictions
									1		A	NALYSE	S REQ	UESTEL)	·····	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-G x	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CVOCs by 8260B	MTCA 5 Metals by EPA 200.8	PCBs by EPA 8082	Ha	Notes
312-8,0	B12	8.0	2r E	61216	1330	501	5			-						1	
B12- 11.5	BIZ	11.5			1345	1	1										
B05-410	805	40	23/3	5	1400			×									
B05-810	BUS	8,0	24 14		416												}
BO5 -10,5	805	10,5	1-15		1415			×	<u> </u>								+
B04-410	BOY	4,0	26'5		1435			X							X		
B04-8.0	Boy	5:0	2717		1440			×	†								
804-12.0	B04	12.0	2818		1453			_(\times						
B03-4.0	BU3	410	2919		1506			×	\times	\times	-			\times			
BU3. 8.0	803	8.0	3,20		1530		t	<u> </u>	×	×							d

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: law Sit	Clac Tachilin	SandBerth	1.12/1/2	0705
Seattle, WA 98119-2029	Received by: Q.	S. Obpry	FIR T	6.2.11	
Ph. (206) 285-8282	Relinquished by:		1012122.	031/6	07.05
Fax (206) 283-5044	Received by:	· · · · · · · · · · · · · · · · · · ·	Samples received	at	c
FORMS\COC\COC.DOC		······································	L		

Send Report to <u>Rob Roberts, Clare Tochilin</u> CompanySoundEarth Strategies, Inc.PROJECT NAME/NO.PO #Address2811 Fairview Avenue E, Suite 200018th and Jackson Property0811-005-01City, State, ZIPSeattle, Washington 98102REMARKSPhone #206-306-1900Fax #206-306-1907Sample IDSampleLabDateIDDateTimeMatrix Lab DateTime Lab DateDate Lab Date </th <th>606053</th> <th></th> <th></th> <th></th> <th>S</th> <th>AMPLE</th> <th></th> <th></th> <th></th> <th></th> <th>Y</th> <th></th> <th></th> <th></th> <th>HE 61</th> <th>13/16</th> <th>3 of S</th>	606053				S	AMPLE					Y				HE 61	13/16	3 of S
Company SoundEarth Strategies, Inc.Address2811 Fairview Avenue E, Suite 2000PROJECT NAME/NO.PO #City, State, ZIP Seattle, Washington 9810218th and Jackson Property0811-005-01Phone #206-306-1900Fax #206-306-1907Sample IDSample LabDateTime SampledMatrix# of Jars $X + of$ Wark		<u>Roberts, Cla</u>	<u>re Tochil</u>	lin		SAMI	PLERS (signatu	ve m	~	Jore	R			I	Page #	
Address2811 Fairview Avenue E, Suite 200018th and Jackson Property0811-005-01Rush charges authorized by:City, State, ZIPSeattle, Washington 98102REMARKSSAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructionsSAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructionsPhone #206-306-1900Fax #206-306-1907AnALYSES REQUESTEDSAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructionsSample IDSample LocationSample DepthLab IDDate SampledTime Sampled DateMatrix H of Jars# of JarsHVHNotes HE0/3 - 1/2_CE0/31/2_C AII/E L/2/Lb1/5/4550 /r So /r So /rSo /r So /r So /r So /rSo /r So /r So /r So /rNotes	Company <u>So</u>	undEarth St	rategies,	Inc.						/		I	20#		Stan	dard (2	
City, State, $2IP$ <u>Seattle, Washington 98102</u> Phone # <u>206-306-1900</u> Fax # <u>206-306-1907</u> Sample ID Sample Lab Date Sampled Natrix # of Hat Watrix # of Ha	Address2811	<u>1 Fairview A</u>	venue E	<u>, Suite</u>	2000		18 th an	d Jacks	on Pro	perty		0811	-005-0)1			authorized by:
Sample IDSample LocationSample DepthLab IDDate SampledTime SampledMatrix# of JarsX 					-1907		REMARKS						Dispose after 30 days Return samples				
BO3-12.0 BO3 12.0 21 E 6/2/16 1545 50.1 5 BO1-4.0 BO1 4.0 22 [610 X										Г	I	A	NALYSI	ES REQ			
BOI-4.0 BOI 4.0 22 [1610 X	Sample ID	4	Depth	ID	Sampled	Sampled	Matrix	1	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	CVOCs by 8260B	MTCA 5 Metals by EPA 200.8	PCBs by EPA 8082	Notes HOLD-
BOI-4.0 BOI 4.0 22 [1610 X	1303-120		12.0	21 8	6/2/16	1545	50.1	5	· · · · · · ·								
	801-4.0	BOI							×								
801-8.0 801 610 23 1615	801-8.0	801	8,5	23		1615								<u> </u>		·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B02-410	BOZ	4,5	24		1630			\times						\times		
BOZ-810 BOZ 8.0 251 V 1640 V V	802-810	B02	8.0	251	V	1640		У									ł
CST 6:276						CST	2.0										
							-//6										
		· · · · · · · · · · · · · · · · · · ·															
															\vdash		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	TO A MIT	
- ·	Relinguished by		COMPANY	DATE	TIME
3012 16th Avenue West	la ler	Clore Tach.In	Sond Bath	6/3/11	0705
Seattle, WA 98119-2029	Received by: S. OM	5.850m	FtB, Inc.	6.3.16	07:05
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:		Samples received	3	
FORMS\COC\COC.DOC			Samples received		

Friedman & Bruya, Inc. #606382

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 28, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on June 21, 2016 from the SOU_0811-005_ 20160621, F&BI 606382 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0628R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 21, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20160621, F&BI 606382 project. Samples were logged in under the laboratory ID's listed below.

SoundEarth Strategies
DB01-3.5
DB01-8.5
DB01-13.5
DB01-18.5
DB01-23.5
DB01-28.5
DB01-33.5
DB02-3.5
DB02-8.5
DB02-13.5
DB02-18.5
DB02-24.0

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/28/16 Date Received: 06/21/16 Project: SOU_0811-005_20160621, F&BI 606382 Date Extracted: 06/23/16 Date Analyzed: 06/23/16 and 06/24/16

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
DB01-3.5 606382-01	<50	<250	91
DB02-3.5 606382-08	<50	<250	94
Method Blank 06-1272 MB2	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 06/28/16 Date Received: 06/21/16 Project: SOU_0811-005_ 20160621, F&BI 606382

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: (606374-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	101	107	73-135	6
Laboratory Code: 1	Laboratory Contro	ol Sampl	le				
			Percent				
	Reporting	Spike	Recovery	Acceptar	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	105	74-139)		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

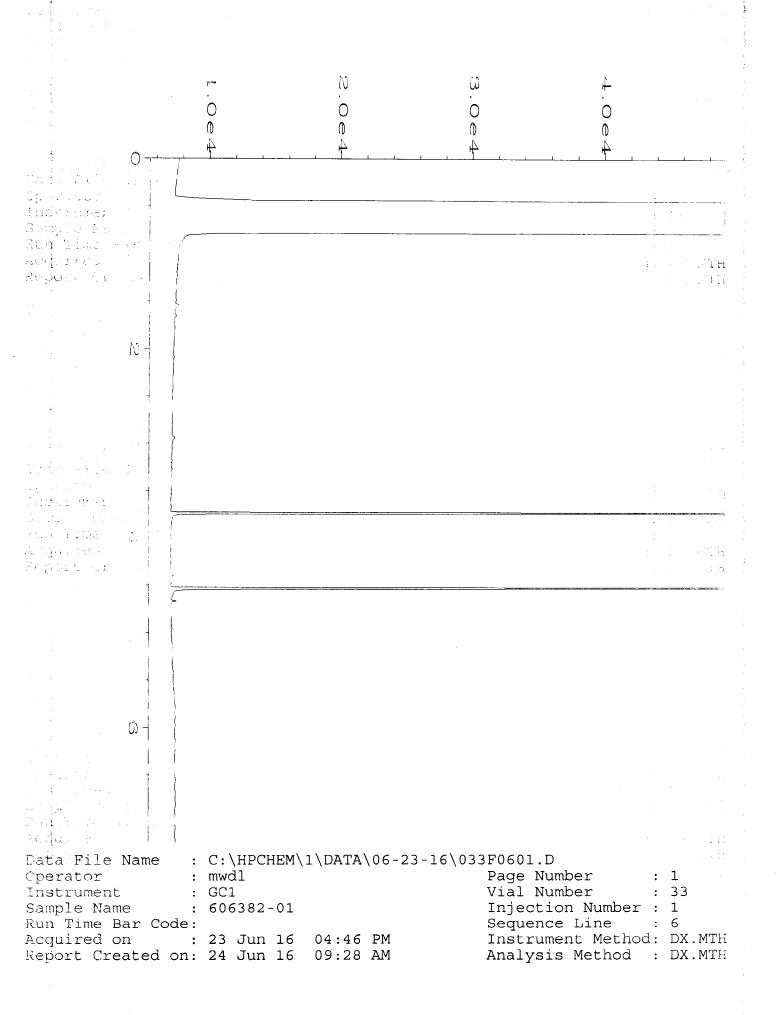
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

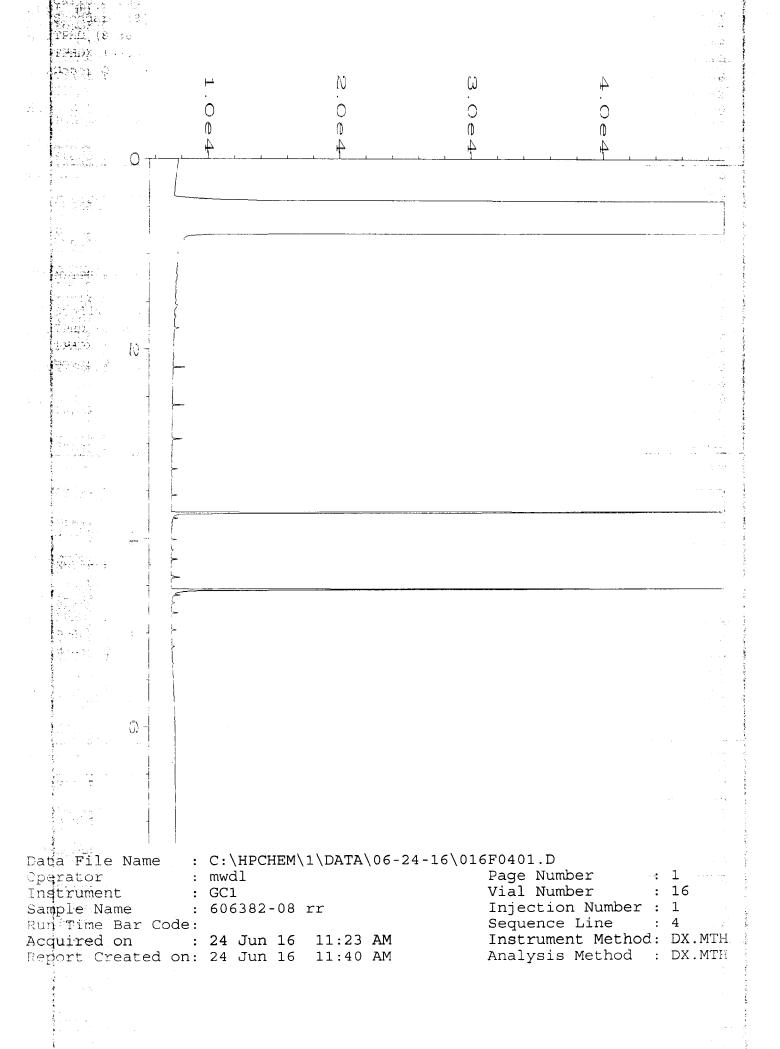
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

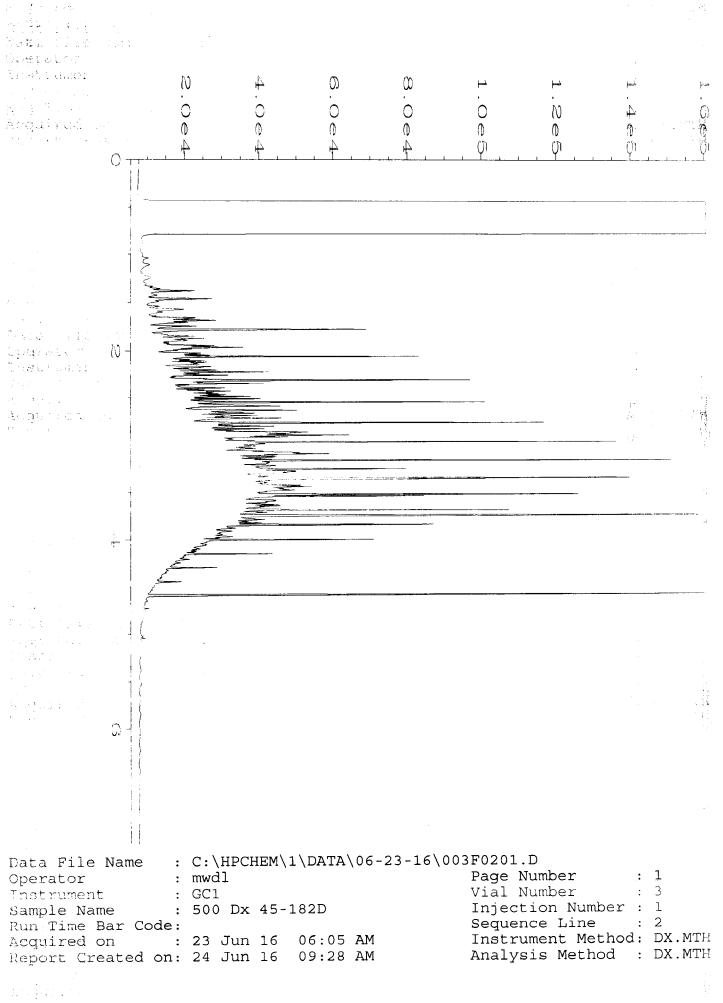
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

. .

lagticaen Sampto Natio				
Ruf luma Sag				
Acquined an Report Costa a s	H	iv	ĹĴ	an an an Arthur L
· .	O	O	O	O
	O A	0	0	0 N
0				₩ <u>></u> l
ener Barranda en el del del del del del del del del del				
Respective Research				- 114 - 114
Report Created in	}			
	- -			
	>			
Rabins en en Acquins en en	}			
	<u>}</u>			- d
	\$			
. O –	}			
	\$			
	Ś			
		1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6\032E0601 D	
Operator	: mwdl	1\DATA\06-23-1	Page Numbe	
Instrument Sample Name		2		Number : 1
Run Time Bar Coo Acquired on	: 23 Jun 16		Instrument	Line : 6 Method: DX.MTH
Peport Created o	on: 24 Jun 16	09:28 AM	Analysis M	1ethod : DX.MTH

606382				S	AMPLE	CHAI	N OF	CUS	TOD	Y	ме	- 0	6/21	/16 ^{CI}	2/VS2	MD .	2
Send Report to <u>Rob</u>	Roberts Cla	re Tochil	in		SAMP	LERS (s	ignatu	ref Da	u 1	Tat	5				age #		
_	undEarth St		t.			PROJECT NAME/NO.						PO #		Stand	$\frac{1}{4}$	eeks)	115
					- 18 th and Jackson Property										arges aut		y:
	1 Fairview A			2000	- REMA	RKS		-,		[AMPLE I		 L
City, State, ZIP <u>Se</u>		ngton 98	102									Dispose after 30 days Return samples					
Phone # <u>206-306-</u>	<u>1900 </u>	x # <u>2(</u>	<u>)6-306</u>	-1907										Will c	all with i	nstruction	ns
											Al	NALYSI	ES REQU	ESTED			
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HOLD			Notes	9
DB01-3.5	0801	3.5	DIAE	6/21/16	0900	50.1	5	X	\triangleright				X		Ć	Danal	(FC
DBU1-8.5	11 11	8.5	02	1	0910	1	1	\sim					X			us mak	
DB01-13.5	11 N	13,5	03		0920								X			per, CT	
0801 -18.5	10 M	18.5	04		0935								\mathbf{X}			6/23/1	
DB01-23.5	р. ^{уу}	23.5	05}		0945								X			ма	
0001-28.5	A 15	28.5	06		0950								X				
D801-33.5	15 N.	33.5	07	4	1000								X				
DB02-3.5	DBOD	3.5	08		1345			$\langle \cdot \rangle$	\mathcal{P}				$\left \times\right $				
DB02-85	1	8.5	09		1350			0					\times				
D802-13.5	V	13,5	10		1400	¥	\checkmark						\times			<u>.</u>	
	·	••••							•			Same	les rec	eived a	nt_4	°C	
Friedman & Bruya, In	Daliment		INAT		,	<u> </u>		NT NA				10	MPAN	Y	DAT		
3012 16th Avenue We	Beasing A		lau	v Tora	5	Cla	<u>~,1</u>	och	ilm_		Sa	ME	th		6/24		,40
Seattle, WA 98119-20.	29 Relinqui	-	A	6		Mu	#	ay)	rton	<u>l</u>	/	-B.	Inc	-	6/21	10 16	40
Ph. (206) 285-8282	Received	-															
Fax (206) 283-5044	Received	. by :															

606382				SA	MPLE	CHAI	N OF	CUS	TOD	Y	м	Ē	06/6	1/19	•	C	2
Send Report to <u>Rob Rol</u>	berts Clar	e Tochili	in		SAMP	LERS (s	ignatur	1 Day		or	1				0 —	ROUND	of
Company Sound					PROJ	ECT NA	ME/NO		·/		P	0#		Stand	lard (2	Weeks)	
	airview Av	-		2000	-	18 th and	l Jacks	on Proj	perty		081	1-005		Rush ch			zed by:
City, State, ZIPSeatt				2000	REMA	REMARKS SAMPLE DISPOSAL Dispose after 30 days											
Phone # <u>206-306-190</u>	<u>)0 </u>	# <u>20</u>	<u>6-306</u>	-1907								Return samples Will call with instructions					
											Al	VALYSE	S REQU	JESTED			
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	HOLD				Notes
DB02-18.5	DBU Z	18.5	IIAE	6/21/10	405	Soil	5						X				
DB02-24.0 0	DB02	24,0	12/	6/21/16	1415	Soil	5						X				
-			/	9	r /												
						14/10	ø										
					-												
												Sam	nles re	ceived			
	r															<u></u> c	
Friedman & Bruya, Inc. 3012 16th Avenue West	Relinquist	ned by:	NATU		1	Clai		IT NAI				1.	<u>א MPAN</u> גע ב	Y		ATE	TIME
Seattle, WA 98119-2029	Received b		bu	In	^.	1	Ĭ-1	Clal	<u> </u>		$\frac{SO}{1}$	UVE	with T		11		
Ph. (206) 285-8282	Relinquish	ned by				the ?	14	J	Jun		+t	-/5	en	<u> </u>	6/2	10	1640
Fax (206) 283-5044	Received b	y:		·													·

Remedial Investigation – Groundwater Laboratory Analytical Reports

Friedman & Bruya, Inc. 606383

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 30, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on June 21, 2016 from the SOU_0811-005_ 20160621, F&BI 606383 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0630R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 21, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20160621, F&BI 606383 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
606383 -01	DB02-20160621

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/21/16 Project: SOU_0811-005_20160621, F&BI 606383 Date Extracted: 06/22/16 Date Analyzed: 06/22/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
DB02-20160621 cf 606383-01	<1	<1	<1	<3	<100	91
Method Blank 06-1243 MB	<1	<1	<1	<3	<100	91

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/21/16 Project: SOU_0811-005_20160621, F&BI 606383 Date Extracted: 06/24/16 Date Analyzed: 06/24/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
DB02-20160621 606383-01 1/1.6	<80	<400	83
Method Blank 06-1285 MB	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/21/16 Project: SOU_0811-005_ 20160621, F&BI 606383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code:	606383-01 (Duplica	ate)		
	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	91	65-118
Toluene	ug/L (ppb)	50	92	72-122
Ethylbenzene	ug/L (ppb)	50	92	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	99	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/21/16 Project: SOU_0811-005_ 20160621, F&BI 606383

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	109	121	61-133	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

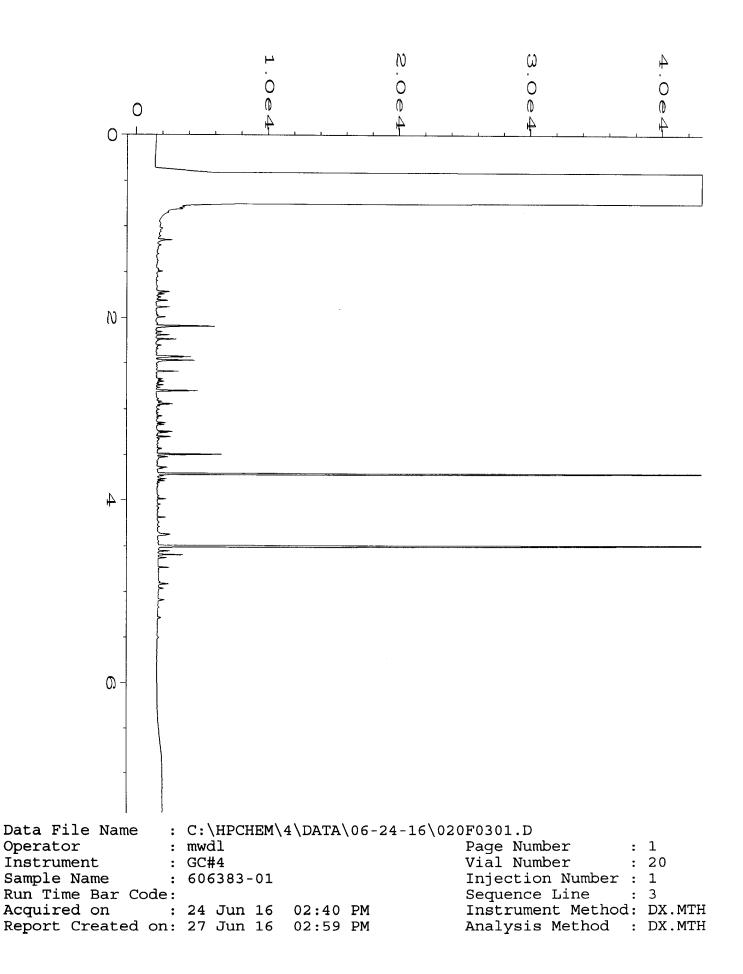
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

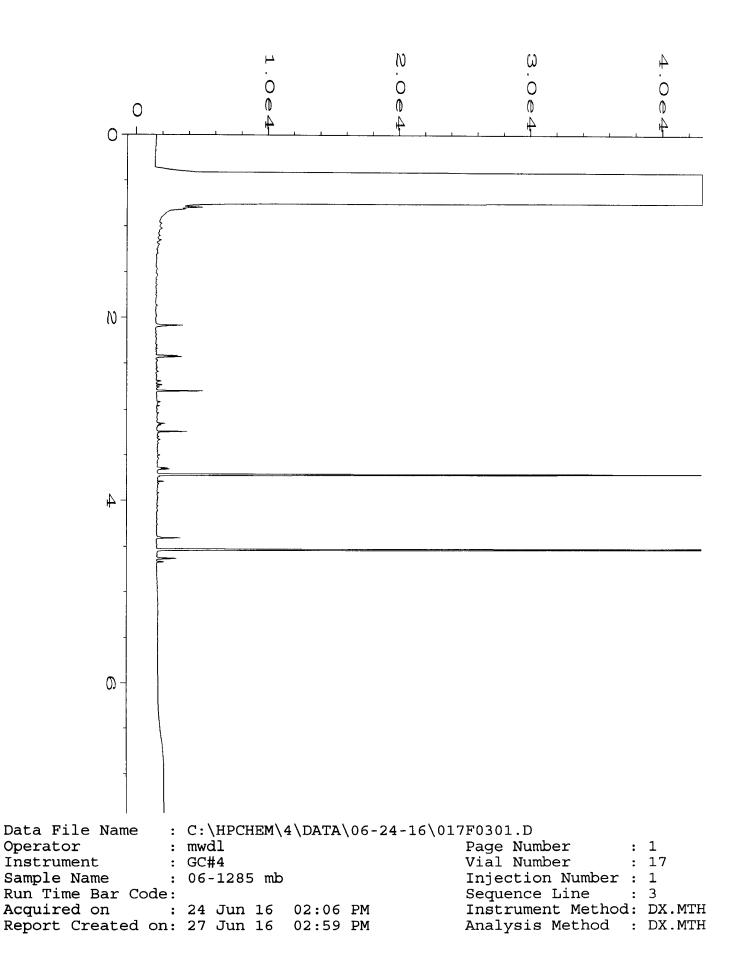
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

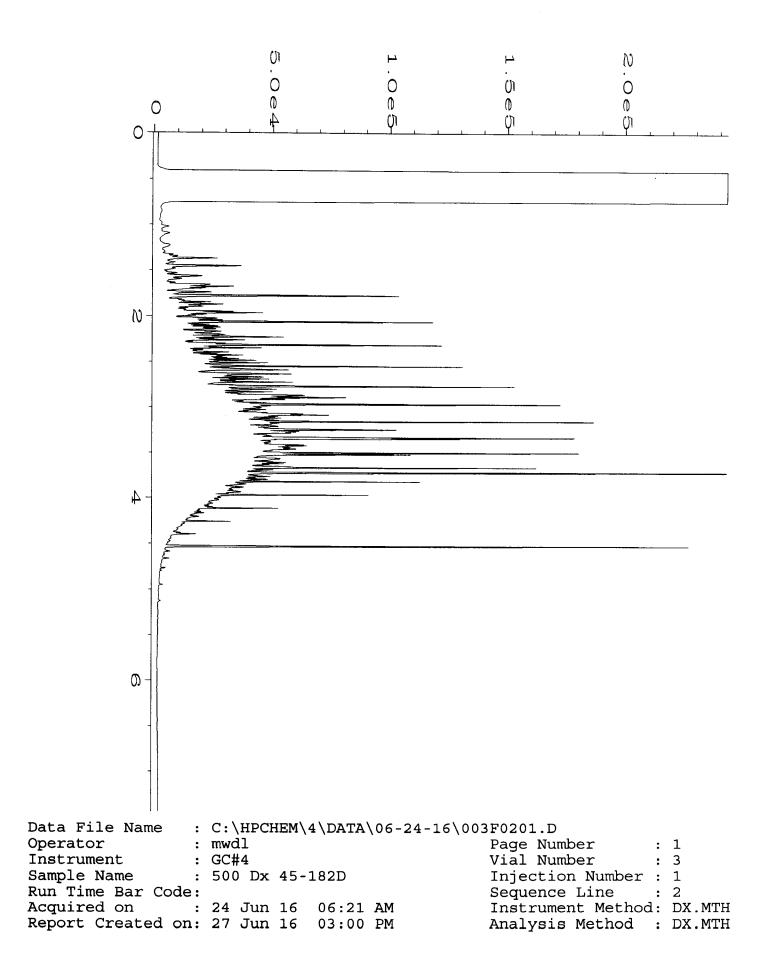
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

606383				SA	MPLE	CHAI	N OF	CUS	STOD	Y L	E6/2	21/16		V	1/A0.	3	1
Send Report to <u>Rob R</u>	► oberts. Clare	e Tochili	in	`	SAMP	LERS (s	ignatu	re)	an	Tal	7.		┓		age #		_ of D TIME
	ndEarth Stra				PROJI	PROJECT NAME/NO. PO # 18 th and Jackson Property 0811-005						Standard (2 Weeks) RUSH / WCEK Rush charges authorized by:					
Address <u>2811</u>	Fairview Av	<u>enue E,</u>	Suite	2000		REMARKS											
City, State, ZIP <u>Seat</u> Phone # 206-306-19		-		1007									SAMPLE DISPOSAL Dispose after 30 days Return samples				
T none #200-300-1	<u></u> rax	#20	6-306-	.1907		······			•							h instr	uctions
									1		1A	VALYSE	S REQI	JESTED			
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270					Notes
DBU2-20160621	D802		OIA-D	6/2116	1430	HzO	4	X	X	X							
												Sa		receive			
Friedman & Bruya, Inc			JNATI	URE			PRI	NT NA	ME			COM	IPAN	Y	DA	T TE-1	C TIME
3012 16th Avenue West	Relinquis	hed by.	v^-	Ind		Clare		oculi		,	5		Pot			1/16	1640
Seattle, WA 98119-2023		E	\sim	$\overline{\mathbf{x}}$	$\rightarrow -$	the	HT	an		n		FB	Tim		6/2	T.	1446
Ph. (206) 285-8282	Relinquis						- (/					-		•	
Forms\coc\coc.doc	Received b	by :				•		-									

Friedman & Bruya, Inc. #606424

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 30, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on June 23, 2016 from the SOU_0811-005_ 20160623, F&BI 606424 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0630R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 23, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20160623, F&BI 606424 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
606424 -01	MW01-20160623

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/23/16 Project: SOU_0811-005_20160623, F&BI 606424 Date Extracted: 06/24/16 Date Analyzed: 06/24/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
MW01-20160623 606424-01	<1	<1	<1	<3	<100	95
Method Blank 06-1245 MB	<1	<1	<1	<3	<100	86

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/23/16 Project: SOU_0811-005_20160623, F&BI 606424 Date Extracted: 06/24/16 Date Analyzed: 06/24/16

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 47-140)
MW01-20160623 606424-01	<50	<250	85
Method Blank 06-1285 MB	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/23/16 Project: SOU_0811-005_ 20160623, F&BI 606424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 606424-01 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene ug/L (ppb) <1 <1 nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes ug/L (ppb) <3 <3 nm Gasoline <100 ug/L (ppb) <100 nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	92	65-118
Toluene	ug/L (ppb)	50	93	72-122
Ethylbenzene	ug/L (ppb)	50	93	73-126
Xylenes	ug/L (ppb)	150	91	74-118
Gasoline	ug/L (ppb)	1,000	97	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/30/16 Date Received: 06/23/16 Project: SOU_0811-005_ 20160623, F&BI 606424

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	109	121	61-133	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

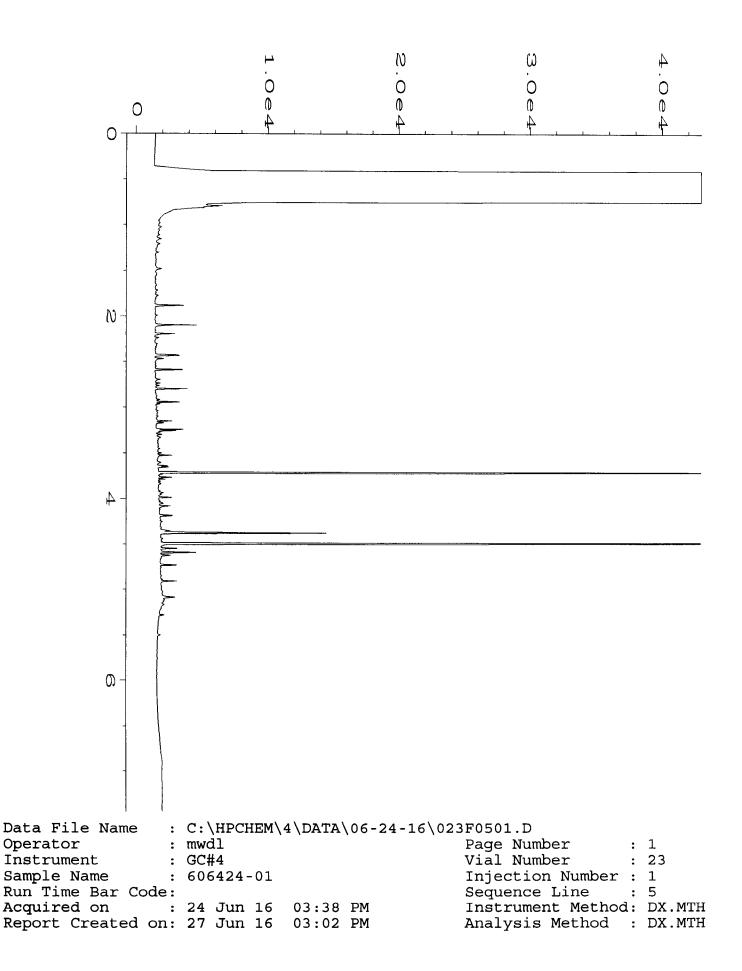
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

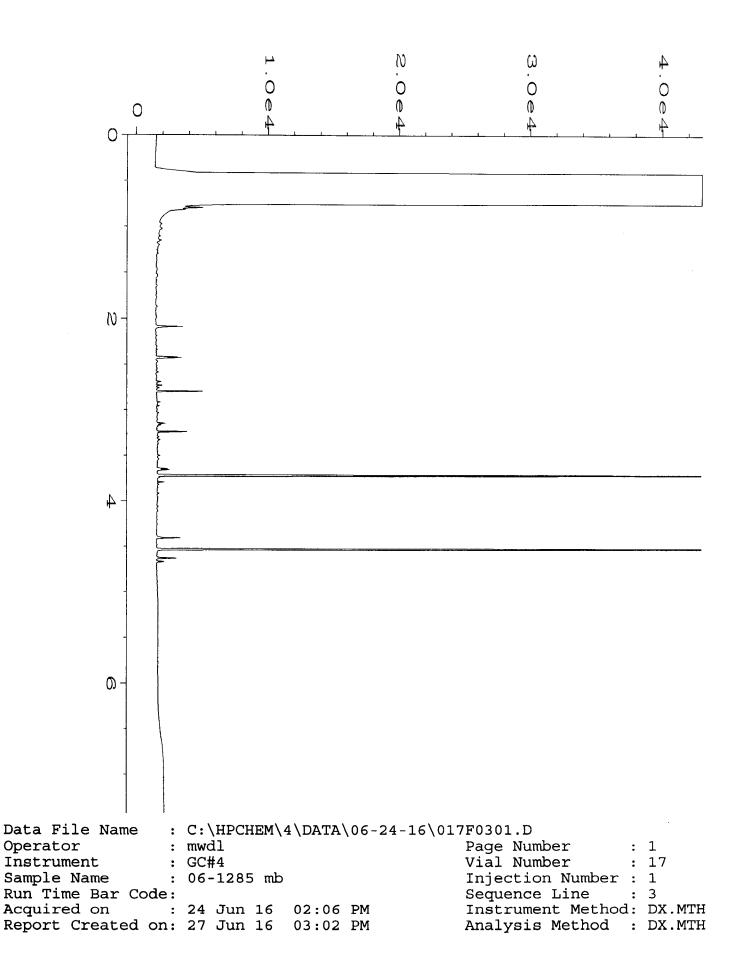
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

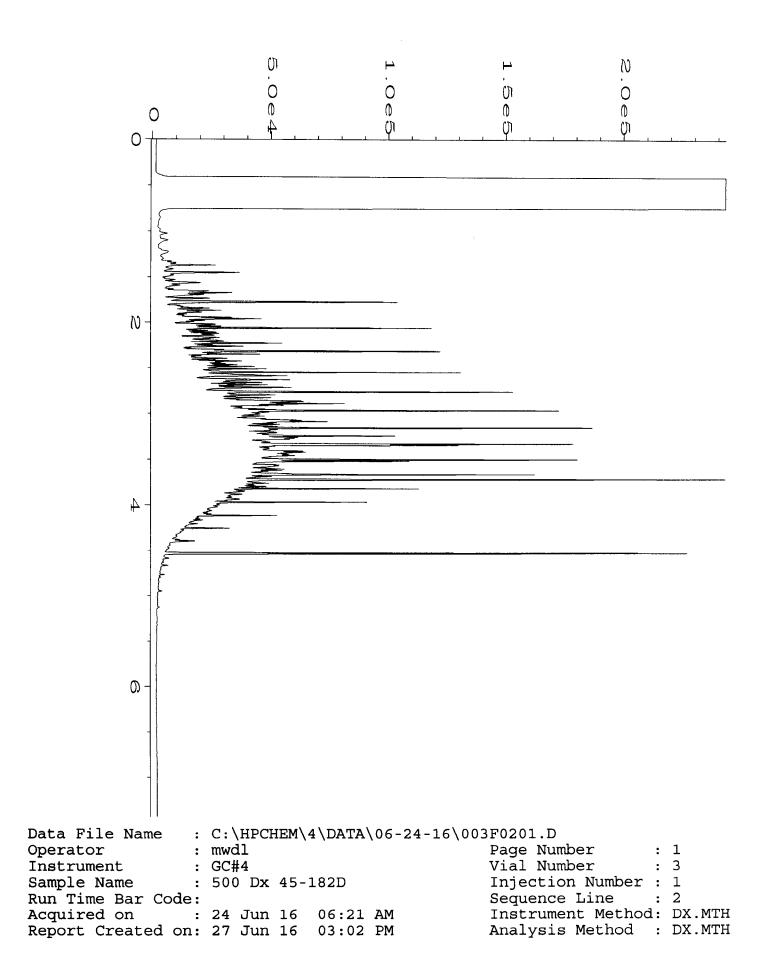
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

606424	L		·	SA	MPLE			-	,		-15-1	NE	- 0	6. [23]	<u> 1</u> 6	"the
Send Report to _Rob]	Roberts, Cla	re Tochil	in		SAMP	LERS (s	signatu	$r^{(e)}$	an	Tie	L.					of ROUND TIME
Company <u>Sou</u>	undEarth St	rategies.	Inc.		PROJ	ECT NA	ME/NO).				20#		Star		Weeks)
	l Fairview A	_		2000	_	18 th and	d Jacks	on Pro	perty		08	11-005				authorized by:
City, State, ZIP <u>Sea</u> Phone # <u>206-306-1</u>			102)6-306	-1907	REMA	RKS								Disp Retu	ose afte urn sam	E DISPOSAL r 30 days ples h instructions
									1	T	Ā	NALYSI	CS REQI	UESTED)	· · · · · · · · · · · · · · · · · · ·
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270				Notes
MW01-20160623	MWOI		01 A-D	6/23/16	0935	H=U	4	\times	×	\times						
					·····											
					5	61	3/16									
							2/6									
														/.		
	L		<u>.</u>					•					Sam	ples re	ceived	at_ <u>5</u> ∘c

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by law Turk	Clar Tochin	Soundkarth	10/23/16	1045
Seattle, WA 98119-2029	Received by: M/M/2	Whan Phair	FIBI	6/23/10	1041
Ph. (206) 285-8282	Relinquished by:			1110	/ - / -
Fax (206) 283-5044	Received by:			-	
FORMS\COC\COC.DOC					

Friedman & Bruya, Inc. #609055 and additional

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 13, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on September 2, 2016 from the SOU_0811-005_ 20160902, F&BI 609055 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0913R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 2, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
609055 -01	DB04-20160902
609055 -02	DB05-20160902

A 200.8 internal standard failed the acceptance criteria for the samples due to matrix interferences. In addition, the chromium calibration standard did not pass the acceptance criteria for the full concentration analysis of the samples. The data were flagged accordingly. The samples were diluted and reanalyzed.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DB04-20160902 09/02/16 09/08/16 09/08/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 609055-01 609055-01.115 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	10.7		
Cadmium	<1		
Chromium	47.7 J ca		
Lead	10.0		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed:	DB04-20160902 09/02/16 09/08/16 09/09/16	Client: Project: Lab ID: Data File:	SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 609055-01 x10 609055-01 x10.035
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Chromium	80.6		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DB05-20160902 09/02/16 09/08/16 09/08/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 609055-02 609055-02.117 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	23.2		
Cadmium	1.60		
Chromium	116 J ca		
Lead	25.7		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	DB05-20160902 09/02/16 09/08/16 09/09/16 Water	Client: Project: Lab ID: Data File: Instrument:	SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 609055-02 x10 609055-02 x10.036 ICPMS2
Matrix.		instrument.	ICPM52
Units:	ug/L (ppb)	Operator:	SP
Analyte:	Concentration ug/L (ppb)		
Chromium	277		

5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 09/09/16 09/09/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_0811-005_ 20160902, F&BI 609055 I6-595 mb2 I6-595 mb2.040 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

DB04-2016 09/02/16 09/06/16 09/06/16 Water ug/L (ppb)	0902	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005_ 2016 609055-01 090633.D GCMS4 JS	
-d4 zene	% Recovery: 98 98 106	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
ethane hane er (MTBE) ethene eene (EDC) me e de de nane one pene	$ \begin{array}{c} <1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <$	Tetrachl Dibromo 1,2-Dibry Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2-Dibr 1,2,4-Tri Hexachl	oroethene ochloromethane omoethane (EDB) enzene izene izene etrachloroethane ene vlbenzene methylbenzene enzene methylbenzene itoluene toluene toluene toluene glbenzene methylbenzene itoluene orobenzene lorobenzene lorobenzene omo-3-chloropropane chlorobenzene orobutadiene	$ \begin{array}{c} <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1 $
ine	<1 <1 <10			<1
	09/02/16 09/06/16 Water ug/L (ppb) -d4 -d4 -d4 -ene -ene -ene -ene (EDC) -ene -ene -ene -ene -ene -ene -ene -en	$\begin{array}{cccc} 09/06/16 \\ 09/06/16 \\ Water \\ ug/L (ppb) \end{array} & & & & & & \\ & & & & & & \\ & & & & &$	$\begin{array}{ccccccc} 09/02/16 & Project: \\ 09/06/16 & Lab ID: \\ 09/06/16 & Data File: \\ Water & Instrument: \\ ug/L (ppb) & Operator: \\ \\ & & & & & & \\ & & & & & \\ & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DB05-2016 09/02/16 09/06/16 09/06/16 Water ug/L (ppb)	0902	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005_ 2016 609055-02 090634.D GCMS4 JS	
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 98 97 105	Lower Limit: 57 63 60	Upper Limit: 121 127 133	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropropan cis-1,2-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropropan Bromodichlorometh Dibromomethane 4-Methyl-2-pentan cis-1,3-Dichloropro Toluene trans-1,3-Dichloropro	hane er (MTBE) ethene ene (EDC) une e de hane one pene	$<1 \\ <10 \\ <0.2 \\ <1 \\ <1 \\ <1 \\ <10 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$	Tetrachl Dibromo 1,2-Dibry Chlorobe Ethylber 1,1,1,2-T m,p-Xyld o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dich 1,2-Dibr 1,2,4-Tri	nzene etrachloroethane ene dibenzene rm benzene enzene methylbenzene etrachloroethane chloropropane toluene toluene toluene dibenzene methylbenzene lorobenzene lorobenzene lorobenzene omo-3-chloropropane chlorobenzene orobutadiene	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
1,1,2-Trichloroetha 2-Hexanone	-	<1 <10		chlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Date Received:Not ADate Extracted:09/00Date Analyzed:09/00Matrix:Wate	6/16	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategie SOU_0811-005_ 2016 06-1804 mb 090615.D GCMS4 JS	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8	% Recovery: 98 99	Lower Limit: 57 63	Upper Limit: 121 127	
4-Bromofluorobenzene	106	60	133	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane			loropropane	<1
Chloromethane	<10		oroethene	<1
Vinyl chloride Bromomethane	<0.2 <1		ochloromethane omoethane (EDB)	<1 <1
Chloroethane	<1 <1	Chlorobe		<1 <1
Trichlorofluoromethane	<1	Ethylber		<1
Acetone	<10		etrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xyle		<2
Hexane	<1	o-Xylene	2	<1
Methylene chloride	<5	Styrene	11	<1
Methyl t-butyl ether (MT			lbenzene	<1
trans-1,2-Dichloroethene 1,1-Dichloroethane	<1 <1	Bromofo n-Propyl		<1 <1
2,2-Dichloropropane	<1	Bromobe		<1
cis-1,2-Dichloroethene	<1		methylbenzene	<1
Chloroform	<1		etrachloroethane	<1
2-Butanone (MEK)	<10		chloropropane	<1
1,2-Dichloroethane (EDC		2-Chloro		<1
1,1,1-Trichloroethane	<1	4-Chloro		<1
1,1-Dichloropropene Carbon tetrachloride	<1 <1		ylbenzene	<1 <1
Benzene	<0.35		methylbenzene Ibenzene	<1 <1
Trichloroethene	<0.55	0	pyltoluene	<1
1,2-Dichloropropane	<1		lorobenzene	<1
Bromodichloromethane	<1	1,4-Dich	lorobenzene	<1
Dibromomethane	<1		lorobenzene	<1
4-Methyl-2-pentanone	<10		omo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1		chlorobenzene	<1
Toluene	<1 e <1	Hexachl Naphtha	orobutadiene	<1 <1
trans-1,3-Dichloropropen 1,1,2-Trichloroethane	<pre><1 </pre>		chlorobenzene	<1 <1
2-Hexanone	<10	1,2,0 111		~

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/16 Date Received: 09/02/16 Project: SOU_0811-005_ 20160902, F&BI 609055

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 608555-02 (Matrix Spike)

Laboratory Co	ue. 000555-02		JIKC)	Democrat	Percent		
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Arsenic	ug/L (ppb)	10	<1	102	104	70-130	2
Cadmium	ug/L (ppb)	5	<1	107	108	70-130	1
Chromium	ug/L (ppb)	20	<1	103	104	70-130	1
Lead	ug/L (ppb)	10	<1	97	100	70-130	3
Mercury	ug/L (ppb)	10	<1	94	96	70-130	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	97	85-115
Cadmium	ug/L (ppb)	5	106	85-115
Chromium	ug/L (ppb)	20	102	85-115
Lead	ug/L (ppb)	10	99	85-115
Mercury	ug/L (ppb)	10	94	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/16 Date Received: 09/02/16 Project: SOU_0811-005_ 20160902, F&BI 609055

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Percent

Laboratory Code: 609072-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	91	10-172
Chloromethane	ug/L (ppb)	50	<10	88	25-166
Vinyl chloride	ug/L (ppb)	50	<0.2	101	36-166
Bromomethane	ug/L (ppb)	50	<1	125	47-169
Chloroethane	ug/L (ppb)	50 50	<1	120	46-160
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	50 250	<1 <10	102 95	44-165 10-182
1,1-Dichloroethene	ug/L (ppb)	230 50	<10	93 97	60-136
Hexane	ug/L (ppb)	50	36	109 b	52-150
Methylene chloride	ug/L (ppb)	50	<5	102	67-132
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	93	74-127
trans-1,2-Dichloroethene	ug/L (ppb)	50	<1	90	72-129
1,1-Dichloroethane	ug/L (ppb)	50	<1	96	70-128
2,2-Dichloropropane	ug/L (ppb)	50	<1	90	36-154
cis-1,2-Dichloroethene	ug/L (ppb)	50	<1	89	71-127
Chloroform 2-Butanone (MEK)	ug/L (ppb)	50 250	<1 <10	92 104	65-132 10-129
1,2-Dichloroethane (EDC)	ug/L (ppb) ug/L (ppb)	230 50	<10	93	69-133
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	85	60-146
1,1-Dichloropropene	ug/L (ppb)	50	<1	90	69-133
Carbon tetrachloride	ug/L (ppb)	50	<1	85	56-152
Benzene	ug/L (ppb)	50	12	92 b	76-125
Trichloroethene	ug/L (ppb)	50	<1	85	66-135
1,2-Dichloropropane	ug/L (ppb)	50	<1	99	78-125
Bromodichloromethane	ug/L (ppb)	50	<1	90	61-150
Dibromomethane 4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50 250	<1 <10	93 95	66-141 10-185
cis-1,3-Dichloropropene	ug/L (ppb)	50	<10	91	72-132
Toluene	ug/L (ppb)	50	3.0	95	76-122
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	100	76-130
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	103	68-131
2-Hexanone	ug/L (ppb)	250	<10	125	10-185
1,3-Dichloropropane	ug/L (ppb)	50	<1	105	71-128
Tetrachloroethene	ug/L (ppb)	50	<1	95	10-226
Dibromochloromethane 1.2-Dibromoethane (EDB)	ug/L (ppb)	50 50	<1	98 99	70-139 69-134
Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	99 95	69-134 77-122
Ethylbenzene	ug/L (ppb)	50 50	33	93 b	69-135
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	91	73-137
m,p-Xylene	ug/L (ppb)	100	190	91 b	69-135
o-Xylene	ug/L (ppb)	50	11	89 b	60-140
Styrene	ug/L (ppb)	50	<1	94	71-133
Isopropylbenzene	ug/L (ppb)	50	4.0	90	65-142
Bromoform	ug/L (ppb)	50 50	<1	89 00 b	65-142
n-Propylbenzene Bromobenzene	ug/L (ppb) ug/L (ppb)	50 50	11 <1	99 b 99	58-144 75-124
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	38	96 b	66-137
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	106	51-154
1,2,3-Trichloropropane	ug/L (ppb)	50	<1	108	53-150
2-Chlorotoluene	ug/L (ppb)	50	<1	123	66-127
4-Chlorotoluene	ug/L (ppb)	50	<1	103	65-130
tert-Butylbenzene	ug/L (ppb)	50	<1	95	65-137
1,2,4 Trimethylbenzene	ug/L (ppb)	50 50	97 2.2	96 b	59-146
sec-Butylbenzene p-Isopropyltoluene	ug/L (ppb) ug/L (ppb)	50 50	2.2	94 95	64-140 65-141
p-isopropyitoluene 1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	2.1 <1	95 97	65-141 72-123
1.4-Dichlorobenzene	ug/L (ppb)	50 50	<1	96	69-126
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	99	69-128
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	117	32-164
1,2,4 Trichlorobenzene	ug/L (ppb)	50	<1	99	66-136
Hexachlorobutadiene	ug/L (ppb)	50	<1	87	60-143
Naphthalene	ug/L (ppb)	50 50	8.9	108	44-164
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	99	69-148

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/16 Date Received: 09/02/16 Project: SOU_0811-005_ 20160902, F&BI 609055

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Percent	Percent			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RPD	Acceptance	Recovery	Recovery	Spike	Reporting	
Chloronchane ugT, (ppb) 50 94 89 45.156 Bronnorthane ugT, (ppb) 50 128 118 55.143 Chloronchane ugT, (ppb) 50 121 116 58.143 Chloronchane ugT, (ppb) 250 100 103 35.131 Li Dicharonchene ugT, (ppb) 50 98 98 67.1357 Acteone ugT, (ppb) 50 92 92 68 64.147 Trans-L2 Dichloronchene ugT, (ppb) 50 92 93 89.121 Li Dichoronchane ugT, (ppb) 50 92 93 89.123 Li Dichoronchane ugT, (ppb) 50 92 93 89.123 Li Dichoronchane ugT, (ppb) 50 92 93 89.123 Z-Dichloronchane ugT, (ppb) 50 92 93 89.123 Li Dichloronchane ugT, (ppb) 50 91 91 77.129 Z-Dichloronchane ugT, (ppb) 50 92 93 89.123 Li Dichloronchane	Limit 20)	Criteria	LCSD	LCS	Level	Units	Analyte
Vinyl chloride ugl. (pph) 50 103 97 50-143 Chloroethane ugl. (pph) 50 128 118 65-143 Chloroethane ugl. (pph) 50 106 104 50-163 Acetone ugl. (pph) 50 106 103 33-131 1.1-Dichloroethene ugl. (pph) 50 99 101 57-137 Methyler chloride ugl. (pph) 50 93 96 64-147 Tarsa 1.2-Dichloroethene ugl. (pph) 50 93 96 75-133 Methyler chloride ugl. (pph) 50 90 90 90 90 1.1-Dichloroethene ugl. (pph) 50 92 93 80-123 1.1-Dichloroethene ugl. (pph) 50 92 91 75-13 1.2-Dichloroethene ugl. (pph) 50 92 91 75-13 1.2-Dichloroethene ugl. (pph) 50 92 93 81-33 1.2-Dichloroethene <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						
Broinnethane ugl. (pp) 50 121 118 55-143 Chlorothare ugl. (pp) 250 106 104 30-150 Acctione ugl. (pp) 50 98 99 67-138 L1-Dichlorothene ugl. (pp) 50 98 101 57-137 Methylene chloride ugl. (pp) 50 91 103 38-143 Methylene chloride ugl. (pp) 50 92 92 68-128 11-Dichlorothane ugl. (pp) 50 97 98 79-121 22-Dichloropropane ugl. (pp) 50 92 93 80-123 11-Dichlorothane ugl. (pp) 50 92 93 80-123 22-Dichloropropane ugl. (pp) 50 92 91 73-132 13.1-Trichlorothane ugl. (pp) 50 88 90 83-130 1.1.2-Dichlorothane ugl. (pp) 50 87 92 63-138 1.1.2-Dichlorothane ugl. (pp)	5						
Chlorosthane ug/l. (pp) 50 12 116 58.146 Acctone ug/l. (pp) 250 106 104 50-150 Acctone ug/l. (pp) 50 98 99 67-136 Hexane ug/l. (pp) 50 99 101 57-137 Methyler chloride ug/l. (pp) 50 93 96 64-147 Trans-1.2 Dichlorosthane ug/l. (pp) 50 97 98 79-121 2.2 Dichloropropane ug/l. (pp) 50 97 98 79-121 2.2 Dichloropropane ug/l. (pp) 50 92 98 68-123 2.2 Dichloropropane ug/l. (pp) 50 92 91 73-132 2.3 Dichlorosthane ug/l. (pp) 50 92 91 73-132 1.4 Dichlorosthane ug/l. (pp) 50 92 91 73-132 1.4 Dichlorosthane ug/l. (pp) 50 92 93 81-102 1.4 Dichlorosthane ug/l. (pp)	6						
Trichloroduromethane ug/L (pp) 250 106 104 50-150 Acctone ug/L (pp) 50 98 99 67-136 Hexane ug/L (pp) 50 99 101 57-137 Methylene chloride ug/L (pp) 50 91 102 39-148 Methyl thery (HTB) ug/L (pp) 50 92 92 68-123 1.1-Dichloroethane ug/L (pp) 50 93 96 64-147 2.2-Dichloroethane ug/L (pp) 50 97 98 79-121 2.2-Dichloroethane ug/L (pp) 50 90 90 80-123 2.1-Dichloroethane ug/L (pp) 50 92 91 73-132 Chloroform ug/L (pp) 50 92 91 73-132 1.1-Dichloroethane ug/L (pp) 50 92 69-134 1.2-Dichloropropene ug/L (pp) 50 92 69-134 1.2-Dichloropropene ug/L (pp) 50 93	8						
Acetone ug/L (pp) 250 100 103 53.131 1.1-Dichloroethene ug/L (pp) 50 98 99 67.136 Hexane ug/L (pp) 50 98 101 57.137 Methylen chloride ug/L (pp) 50 93 96 64.147 Tams-1.2 Dichloroethane ug/L (pp) 50 97 98 79.121 2.2 Dichloropropane ug/L (pp) 50 90 90 80.123 2.2 Dichloropropane ug/L (pp) 50 92 93 80.121 2.2 Dichloropropane ug/L (pp) 50 92 93 80.123 2.1 Dichloroethane (DC) ug/L (pp) 50 88 90 83.130 1.1.1 Frichloroethane (Ug/L (pb) 50 88 91 77.129 Carbon tetrachloride ug/L (pb) 50 87 89 1.1.2 Dichloropropane ug/L (pb) 50 93 93 82.125 Carbon tetrachloride ug/L (pb) 50 <td>4 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 2						
1.1-Dichloroethene ug/L (ppb) 50 98 99 67.136 Hexane ug/L (ppb) 50 101 102 39.148 Methyl tehr (MTED) ug/L (ppb) 50 92 92 68.128 Hothyl tehr (MTED) ug/L (ppb) 50 92 92 68.128 1.1-Dichloroethene ug/L (ppb) 50 92 93 80-123 2.2-Dichloroethane ug/L (ppb) 50 92 93 80-123 Chloroform ug/L (ppb) 50 92 93 80-123 1.2-Dichloroethane ug/L (ppb) 50 92 91 73.132 1.2-Dichloroethane ug/L (ppb) 50 92 91 73.132 1.2-Dichloroethane ug/L (ppb) 50 92 91 73.132 1.1-Dichloroethane ug/L (ppb) 50 92 93 80.123 1.2-Dichloroethane ug/L (ppb) 50 92 93 81.130 1.1-Dichloroethane ug/L (ppb) 50 92 93 81.133 1.1-Dichloroethane	3						
Hexane ug/L (ppb) 50 99 101 57.137 Methyle chorde ug/L (ppb) 50 101 102 39.148 Methyle chorde ug/L (ppb) 50 92 92 68.128 1.1-Dichlorechane ug/L (ppb) 50 97 98 79.121 2.2-Dichloropropane ug/L (ppb) 50 97 98 79.121 2.2-Dichloropropane ug/L (ppb) 50 92 93 80.121 2.Butanone (MEK) ug/L (ppb) 50 92 91 77.129 2.Butanone (MEK) ug/L (ppb) 50 88 91 77.129 Carbon tetrachloride ug/L (ppb) 50 87 87 80.120 1.1-Dichloropropane ug/L (ppb) 50 82 93 81.133 Dichloropropane ug/L (ppb) 50 87 87 88 120 Carbon tetrachloride ug/L (ppb) 50 93 93 81.133 121 121-121	1						
Methylene chlorideug/L (npb)5010110239-148Methyl tehryl (her) (hpp)50939664-147trans-1.2.Dichloroethaneug/L (npb)50979879-1212.2.Dichloroethaneug/L (npb)50909080-1231.1.Dichloroethaneug/L (npb)50929380-1232.2.Dichloroethaneug/L (npb)50929380-1232.Butanone (MEK)ug/L (npb)50929173-1321.1.Dichloroethaneug/L (npb)50889083-1301.1.Dichloroethaneug/L (npb)50889175-158Benzeneug/L (npb)50878780-1201.1.Dichloropropaneug/L (npb)50979887-123Carbon tetrachlorideug/L (npb)50939381-133Benzeneug/L (npb)50939381-133Dibromoethaneug/L (npb)50959572-122I.2.Dichloropropaneug/L (npb)50939381-133Dibromoethaneug/L (npb)50959572-122trans-1.3.Dichloropropeneug/L (npb)50959572-122trans-1.3.Dichloropropeneug/L (npb)50969676-1211.3.Dichloropropeneug/L (npb)50959572-122trans-1.3.Dichloropropeneug/L (npb)50969681-13<	2						
trans-1.2.Dichloroethane ug/L (ppb) 50 92 92 68-128 1.Dichloropropane ug/L (ppb) 50 105 105 53-143 2.2.Dichloropropane ug/L (ppb) 50 90 90 80-123 Chloroform ug/L (ppb) 50 92 93 80-121 2.Batranone (MEK) ug/L (ppb) 50 92 91 73-132 1.2.Dichloroethane ug/L (ppb) 50 92 91 73-132 1.1.Dichloroethane ug/L (ppb) 50 92 92 68-134 1.2.Dichloropropane ug/L (ppb) 50 93 93 82-125 Dibromomethane ug/L (ppb) 50 92 93 81-132 Dibromomethane	1	39-148		101	50		Methylene chloride
1.1-Dichloroethane ugL (ppb) 50 97 98 79-121 2.2-Dichloropropane ugL (ppb) 50 105 55.143 cis.1.2-Dichloroethane ugL (ppb) 50 90 90 80 2-Butchoroethane ugL (ppb) 50 92 93 80.121 2-Butchoroethane ugL (ppb) 50 92 91 73.132 1.1-Dichloropropene ugL (ppb) 50 92 91 77.129 Carbon tetrachloride ugL (ppb) 50 88 91 77.129 Carbon tetrachloride ugL (ppb) 50 92 69.134 Trichloroethane ugL (ppb) 50 87 87 80.120 1.2-Dichloropropane ugL (ppb) 50 92 69.134 131 Trichloroethane ugL (ppb) 50 92 69.134 132 Dihomomethane ugL (ppb) 50 93 93 82.132 Dihomomethane ugL (ppb) 50 90 92 65.138 Dihomomethane ugL (ppb) 50 <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3						
22-Dichloropropane ug/L (ppb) 50 90 90 80123 Chloroform ug/L (ppb) 50 92 93 80121 2-Butanone (MEK) ug/L (ppb) 50 92 91 73132 1.1-Dichloroethane (EDC) ug/L (ppb) 50 92 91 73132 1.1-Dichloroethane ug/L (ppb) 50 92 91 75158 Benzene ug/L (ppb) 50 92 92 68133 Chloroethane ug/L (ppb) 50 92 92 68134 Chloroethene ug/L (ppb) 50 92 92 68134 Chloroethene ug/L (ppb) 50 92 93 81142 2-Dichloropropane ug/L (ppb) 50 93 93 82125 Dibronomethane ug/L (ppb) 50 93 93 82132 Chloropropane ug/L (ppb) 50 93 93 82132 Chloromethane ug/L (ppb) 50 90 92 65138 Cis1-3-Dichloropropane ug/L (ppb) <	0	68-128	92	92	50	ug/L (ppb)	trans-1,2-Dichloroethene
cis.1.2 Dichloroethene ug/L (ppb) 50 90 90 80 123 2 Butanone (MEK) ug/L (ppb) 250 102 103 57.149 1.2 Dichloroethane (EDC) ug/L (ppb) 50 92 91 73.132 1.1-Trichloroethane ug/L (ppb) 50 88 90 83.130 1.1-Dichloropropene ug/L (ppb) 50 88 91 75.158 Benzene ug/L (ppb) 50 87 87 80.120 1.2 Dichloropropane ug/L (ppb) 50 97 98 77.123 Bromodichloromethane ug/L (ppb) 50 97 98 81.133 Dibromomethane ug/L (ppb) 50 93 93 82.122 Cis.1.3 Dichloropropene ug/L (ppb) 50 95 72.122 trans.1.4 Dichloropropene ug/L (ppb) 50 101 101 75.143 1.2 Dichloropropane ug/L (ppb) 50 93 93 82.122 trans.	1						
Chloroform ug/L (ppb) 50 92 93 80-121 2-Butanone (MEK) ug/L (ppb) 50 92 91 73-132 1,1-Trichloroethane (EDC) ug/L (ppb) 50 88 90 83-130 1,1-Dichloropropene ug/L (ppb) 50 91 91 77-129 Carbon tetrachloride ug/L (ppb) 50 92 92 69-134 Trichloroethene ug/L (ppb) 50 97 98 77-123 Benzene ug/L (ppb) 50 92 93 84-133 Diboromethane ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 93 93 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 95 95 72-122 Tolacene ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 105 103 76-126 1.1.2 Trichloroethane ug/L (ppb) 50 96 96 76-121 Diboronochonethane	0						
2-Butanone (MEK) ug/L (ppb) 50 92 91 73-132 1.2-Dichloropentame (EDC) ug/L (ppb) 50 88 90 83-130 1.1-Dichloropropene ug/L (ppb) 50 91 91 77-129 Carbon tetrachloride ug/L (ppb) 50 92 92 63-134 Trichloroethene (Ug/L (ppb) 50 92 93 81-134 1.2-Dichloropropene ug/L (ppb) 50 92 93 81-133 Benzene ug/L (ppb) 50 92 93 81-133 Bromodichloromethane ug/L (ppb) 50 92 93 81-133 Dibromomethane ug/L (ppb) 50 93 93 93 82-125 Attention (Ug/L (ppb) 50 93 93 93 82-125 Attention (Ug/L (ppb) 50 93 93 93 82-132 Dibromomethane ug/L (ppb) 50 93 93 93 82-132 Dibromomethane ug/L (ppb) 50 93 93 93 Attention (Ug/L (ppb) 50 95 72-122 trans.1,3-Dichloropropene ug/L (ppb) 50 91 101 101 75-124 2-Hexanone ug/L (ppb) 50 102 100 80-136 1.1.2-Trichloroethane ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 103 76-126 Trans.1,3-Dichloropropene ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 103 76-126 Trans.1,3-Dichloropropene ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 98 84-133 1.3-Dichloropropene ug/L (ppb) 50 98 99 88 82-125 Trans.1,3-Dichloropropene ug/L (ppb) 50 97 96 83-114 2-Hexanone ug/L (ppb) 50 98 99 88 82-125 Chloroethene ug/L (ppb) 50 99 98 88 24-125 Chloroethene ug/L (ppb) 50 91 99 98 88 24-125 Chlorobenzene ug/L (ppb) 50 94 94 77-124 1.1.2-Tictrachloroethane (ug/L (ppb) 50 96 95 83-125 Chlorobenzene ug/L (ppb) 50 96 95 83-125 Chlorobenzene ug/L (ppb) 50 94 94 77-124 1.1.2-Tictrachloroethane (ug/L (ppb) 50 96 95 83-125 Chlorobenzene ug/L (ppb) 50 96 95 84-119 Isopropylbenzene ug/L (ppb) 50 96 99 101 74-136 1.3-Dichloropropane ug/L (ppb) 50 96 96 76.121 1.3-Ticthoroethane (ug/L (ppb) 50 96 99 101 74-136 1.3-Ticthoroethane (ug/L (ppb) 50 99 102 80-121 1.3-Ticthoroethane (ug/L (ppb) 50 99 101 74-136 1.3-Ticthoroethane (ug/L (ppb) 50 96 96 96 77 77-124 1.3-Ticthoroethane (ug/L (ppb) 50 96 96 96 77 77-124 2.2-Hirachloroethane (ug/L (ppb) 50 96 96 97 77-124 2.2-Hirachloroethane (ug/L (ppb) 50 96 97 77-124 2.2-Hirachloroethan	0						
1.2-Dichloroethane (EDC) ug/L (ppb) 50 92 91 73-132 1.1-Tirchihoroethane ug/L (ppb) 50 91 91 77-129 Carbon tetrachloride ug/L (ppb) 50 92 92 68 91 Carbon tetrachloride ug/L (ppb) 50 92 92 69-134 Trichloroethene ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 97 98 77-123 Dibromomethane ug/L (ppb) 50 93 93 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 95 95 72-122 trans-1.3 Dichloropropene ug/L (ppb) 50 102 100 80-136 1.1.2 Trichloroethane ug/L (ppb) 50 102 100 80-136 1.2.1 chioropropene ug/L (ppb) 50 102 100 80-136 1.2.1 chichloropropene ug/L (ppb) 50 102 100 80-136 1.2.2 chichloropropene ug/L (ppb) 50 103 76-124 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						
1,1-Trichloroptpane ug/L (ppb) 50 88 90 83-130 1,1-Dichloropropene ug/L (ppb) 50 91 91 77-129 Carbon tetrachloride ug/L (ppb) 50 88 91 75-158 Benzene ug/L (ppb) 50 87 87 80-120 1/2-Dichloropropane ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 97 98 81-133 Dibromomethane ug/L (ppb) 50 93 93 82-132 4-Methyl-2-pentanone ug/L (ppb) 50 93 93 82-132 Toluene ug/L (ppb) 50 93 93 82-132 Toluene ug/L (ppb) 50 102 100 80-136 1,1,2 Trichloroptpane ug/L (ppb) 50 102 100 80-136 1,2 Dibhomoethane ug/L (ppb) 50 105 103 76-126 2 Hexanon ug/L (ppb) 50 96 96 66-121 Dibromoethane (EDB)	1						
1,1-Dichloropropene ug/L (ppb) 50 91 91 77-129 Carbon tetrachloride ug/L (ppb) 50 88 91 75-158 Benzene ug/L (ppb) 50 87 87 80-120 1.2-Dichloropropane ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 97 98 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 93 93 83-132 10ibromomethane ug/L (ppb) 50 93 93 82-132 1.1_2-Trichloroptopene ug/L (ppb) 50 93 93 82-132 1.1_2-Trichloroptopene ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 101 101 76-126 1.3-Dichloropropane ug/L (ppb) 50 103 76-126 1.3-Dichloropropane ug/L (ppb) 50 103 76-126 1.3-Dichloropropane ug/L (ppb) 50 96 96 76-121 Dibromochhane (EDB) <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1						
Carbon tetrachloride ug/L (ppb) 50 88 91 7-158 Benzene ug/L (ppb) 50 92 92 69-134 Trichloroethene ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 92 93 81-133 Dibromomethane ug/L (ppb) 50 92 93 82-125 A-Methyl-2pentanone ug/L (ppb) 50 93 93 82-122 Toluene ug/L (ppb) 50 93 93 82-132 Toluene ug/L (ppb) 50 93 93 82-132 Tamas-1.3-Dichloropropene ug/L (ppb) 50 102 100 80-136 1,1,2-Trichloroethane ug/L (ppb) 50 103 76-126 -Hexanone ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1,2-Dibromochloromethane ug/L (ppb) 50 97 96 83-114 Ethrylbenzene ug/L (ppb) <td>2 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2 0						
Benzene ug/L (pp) 50 92 92 92 60-134 Trichloroptene ug/L (pp) 50 87 87 80-120 L2-Dichloroptopane ug/L (pp) 50 97 98 77-123 Bromodichloromethane ug/L (pp) 50 92 93 81-133 Dibromomethane ug/L (pp) 50 93 93 82-125 4-Methyl-2-pentanone ug/L (pp) 50 93 93 82-132 Toluene ug/L (pp) 50 95 72-122 trans-1,3-Dichloropropene ug/L (pp) 50 102 100 80-136 1,1.2 Trichloroptnane ug/L (pp) 50 102 100 80-136 1,1.2 Trichloroptopane ug/L (pp) 50 105 103 76-124 2-Hexanone ug/L (pp) 50 96 96 76-121 1.3-Dichloroptopane ug/L (pp) 50 97 96 83-114 1.2-Dibromochethane (EDB) u	3						
Trichoroethene ug/L (pp) 50 87 87 87 87 80-120 1.2-Dichloropropane ug/L (pp) 50 97 98 77-123 Bromodichhoromethane ug/L (pp) 50 92 93 81-133 Dibromomethane ug/L (pp) 50 93 93 82-125 A-Methyl-2-pentanone ug/L (pp) 50 93 93 82-132 Toluene ug/L (pp) 50 93 95 72-122 Trans.1,3-Dichloropropene ug/L (pp) 50 102 100 80-136 1,1,2-Trichloroethane ug/L (pp) 50 101 101 75-124 2-Hexanone ug/L (pp) 50 105 103 76-126 1,3-Dichloropropane ug/L (pp) 50 96 96 76-121 Dibromochhane (EDB) ug/L (pp) 50 97 96 83.14 Lehylbenzene ug/L (pp) 50 94 94 84-127 Chloroberzene ug/L (pp) 50 93 92 81.121	0						
1.2-Dichloropropane ug/L (ppb) 50 97 98 77-123 Bromodichloromethane ug/L (ppb) 50 92 93 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 93 93 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 93 93 82-132 tois 1.3-Dichloropropene ug/L (ppb) 50 95 95 72-122 trans-1.3-Dichloropropene ug/L (ppb) 50 102 100 80-136 1.1.2.Trichloroethane ug/L (ppb) 50 102 103 76-124 2-Hexanone ug/L (ppb) 50 105 103 76-126 1.3-Dichloropropane ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1.2-Dichoropene ug/L (ppb) 50 96 96 77-124 Dibromochloromethane ug/L (ppb) 50 94 94 77-124 1.1.2-Tetrachloroethane ug/L (ppb) 50 94 94 87-125	0						
Bromodichloromethane ug/L (ppb) 50 92 93 81-133 Dibromomethane ug/L (ppb) 50 93 93 82 125 AMethyl-Zpentanone ug/L (ppb) 50 93 93 82 125 cls 1.3 Dichloropropene ug/L (ppb) 50 95 95 72-122 trans-1.3 Dichloropropene ug/L (ppb) 50 102 100 80-136 1,1,2 Trichloroethane ug/L (ppb) 50 118 119 60-136 1.3 Dichloropropane ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1.2 Dibromoethane (EDB) ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 97 96 83-125 Chlorobenzene ug/L (ppb) 50 94 94 87-124 1,1,2 Tetrachloroethane ug/L (ppb) 50 93 92 81-123 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						
Dibromomethane ug/L (ppb) 50 93 93 82-125 4-Methyl-2-pentanone ug/L (ppb) 50 90 92 65-138 cis 1,3-Dichloropropene ug/L (ppb) 50 95 95 72-122 trans-1,3-Dichloropropene ug/L (ppb) 50 102 100 80-136 1,1,2-Trichloroethane ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 105 103 76-126 1,3-Dichloropropane ug/L (ppb) 50 96 96 76-121 Dibromochharoe(EDB) ug/L (ppb) 50 98 99 84-133 1,2-Ditromochane (EDB) ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 94 94 84-127 mp-Xylene ug/L (ppb) 50 96 95 83-125 o-Xylene <	1						
4-Methyl-2-pentanone ug/L (pb) 250 90 92 65-138 cis-1,3-Dichloropropene ug/L (pb) 50 93 93 82-132 trans-1,3-Dichloropropene ug/L (pb) 50 95 95 72-122 trans-1,3-Dichloropropene ug/L (pb) 50 102 100 80-136 1,1.2-Trichloropthane ug/L (pb) 50 101 101 75-124 2-Hexanone ug/L (pb) 50 105 103 76-126 1,3-Dichloroptopane ug/L (pb) 50 96 96 76-121 Dibromochloromethane ug/L (pb) 50 97 96 83-114 Ethylbenzene ug/L (pb) 50 97 96 83-114 Ethylbenzene ug/L (pb) 50 94 94 87-126 1,1.1.2-Tetrachloroethane ug/L (pb) 50 94 94 83-125 ox/ylene ug/L (pb) 50 94 94 87-124 1,1.1.2-Tetrachloroe	Ō						
cis-1.3-Dichloropropene ug/L (ppb) 50 93 93 82-132 Toluene ug/L (ppb) 50 95 95 72-122 trans-1,3-Dichloropropene ug/L (ppb) 50 102 100 80-136 1,1.2-Trichloroethane ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 50 105 103 76-126 Tetrachloropropane ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1,2-Ditromoethane (EDB) ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 94 94 77-124 1,1,12-Tetrachloroethane ug/L (ppb) 50 93 92 81-121 1,1,2-Tetrachloroethane ug/L (ppb) 50 93 92 81-121 1,1,2-Tetrachloroethane ug/L (ppb) 50 93 92 81-121 1,1,2-Tetrachloroethane ug/L (ppb) 50 94 94 77-124 <	2						
trans-1,3-Dichloropropene ug/L (ppb) 50 102 100 80-136 1,1,2-Trichloroethane ug/L (ppb) 50 101 101 75-124 2-Hexanone ug/L (ppb) 250 118 119 60-136 1,3-Dichloropropane ug/L (ppb) 50 105 103 76-126 Tetrachloroethane ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1.2-Dibromoethane (EDB) ug/L (ppb) 50 97 96 83-114 1.1,1.2-Tetrachloroethane ug/L (ppb) 50 94 94 77-124 1,1,1.2-Tetrachloroethane ug/L (ppb) 50 94 94 84-127 np-Xylene ug/L (ppb) 50 94 94 84-127 styrene ug/L (ppb) 50 93 92 81-121 Styrene ug/L (ppb) 50 94 94 84-127 Isopropylbenzene ug/L (ppb) 50 92 91 74-136 B	0	82-132	93	93	50		cis-1,3-Dichloropropene
1,1,2-Trichloroethaneug/L (ppb)5010110175-1242-Hexanoneug/L (ppb)25011811960-1361,3-Dichloropropaneug/L (ppb)5010510376-126Tetrachloroetheneug/L (ppb)50969676-121Dibromochloromethaneug/L (ppb)50999882-125Chlorobenzeneug/L (ppb)50979683-114Ethylbenzeneug/L (ppb)50949477-1241,1,2-Tetrachloroethaneug/L (ppb)50949484-127nmp-Xyleneug/L (ppb)50939281-121o-Xyleneug/L (ppb)50939281-121Styreneug/L (ppb)50949485-117Bromoformug/L (ppb)50949185-117Bromoformug/L (ppb)509910174-136n-Propylbenzeneug/L (ppb)509910174-136Bromoformug/L (ppb)509910174-1361,2,2-Tetrachloroethaneug/L (ppb)50969678-1231,2,2-Tetrachloroethaneug/L (ppb)509910174-1361,2,2-Tetrachloroethaneug/L (ppb)509910174-1361,2,2-Tetrachloroethaneug/L (ppb)50969678-1231,2,2-Tetrachloroethaneug/L (ppb)509910280-121	0	72-122				ug/L (ppb)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2						
1.3-Dichloropropane ug/L (ppb) 50 105 103 76-126 Tetrachloroethene ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1.2-Dibromoethane (EDB) ug/L (ppb) 50 99 98 82-125 Chlorobenzene ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 94 94 77-124 1.1.1.2-Tetrachloroethane ug/L (ppb) 50 94 94 84-127 m.p-Xylene ug/L (ppb) 50 94 94 84-127 m.p-Xylene ug/L (ppb) 50 93 92 81-121 Styrene ug/L (ppb) 50 96 95 83-125 Isopropylbenzene ug/L (ppb) 50 94 91 85-117 Bromoform ug/L (ppb) 50 92 91 74-136 Bromoform ug/L (ppb) 50 99 101 74-136 Bromobenzene ug/L (ppb) <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0						
Tetrachlorothene ug/L (ppb) 50 96 96 76-121 Dibromochloromethane ug/L (ppb) 50 98 99 84-133 1.2-Dibromochlane (EDB) ug/L (ppb) 50 97 96 83-114 Chlorobenzene ug/L (ppb) 50 97 96 83-114 Ethylbenzene ug/L (ppb) 50 94 94 77-124 1,1,1.2-Tetrachloroethane ug/L (ppb) 50 94 94 84-127 mp-Xylene ug/L (ppb) 50 93 92 81-121 o-Xylene ug/L (ppb) 50 94 91 85-117 Isopropylbenzene ug/L (ppb) 50 94 91 85-117 Bromoform ug/L (ppb) 50 92 91 74-136 n-Propylbenzene ug/L (ppb) 50 92 91 74-136 n.2,3-Trimethylbenzene ug/L (ppb) 50 99 1001 74-136 1,2,3-Trinethylbenzene ug/L	1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2						
1.2-Dibromoethane (EDB)ug'L (ppb)50999882-125Chlorobenzeneug/L (ppb)50979683-114Ethylbenzeneug/L (ppb)50949477-1241.1.1.2-Tetrachloroethaneug/L (ppb)50949484-127m.p-Xyleneug/L (ppb)50939281-121o-Xyleneug/L (ppb)50949185-117styreneug/L (ppb)50949185-117Isopropylbenzeneug/L (ppb)50929174-136n-Propylbenzeneug/L (ppb)509910174-136Bromoformug/L (ppb)509910174-136n-Propylbenzeneug/L (ppb)509910280-1211,3.5-Trimethylbenzeneug/L (ppb)50969678-1231,1.2.2-Tetrachloroethaneug/L (ppb)5010710866-1261,2.3-Trichloropropaneug/L (ppb)509810077-1274-Chlorotolueneug/L (ppb)50969778-128tert-Butylbenzeneug/L (ppb)50969580-1231,2.4-Trimethylbenzeneug/L (ppb)50969580-1231,2.4-Trimethylbenzeneug/L (ppb)50969580-1231,2.4-Trimethylbenzeneug/L (ppb)50969580-1231,2.4-Trimethylbenzeneug/L (ppb)50969580-12	0 1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						
Ethylbenzeneug/L (ppb)50949477-1241,1,1,2-Tetrachloroethaneug/L (ppb)50949484127mp-Xyleneug/L (ppb)100969583125o-Xyleneug/L (ppb)50939281-121Styreneug/L (ppb)50969584119Isopropylbenzeneug/L (ppb)50949185-117Bromoformug/L (ppb)50929174-136n-Propylbenzeneug/L (ppb)509910174-126Bromoformug/L (ppb)509910280-1211,3,5-Trimethylbenzeneug/L (ppb)50969678-1231,1,2,2-Tetrachloroethaneug/L (ppb)5010510866-1261,2,3-Trichloroppaneug/L (ppb)509810077-1274-Chlorotolueneug/L (ppb)50969778-128tert-Butylbenzeneug/L (ppb)50969580-1231,2,4-Trimethylbenzeneug/L (ppb)50969580-123	1						
1,1,2-Tetrachloroethaneug/L (ppb)50949484-127m.p. Xyleneug/L (ppb)100969583-125o-Xyleneug/L (ppb)50939281-121Styreneug/L (ppb)50969584-119Isopropylbenzeneug/L (ppb)50949185-117Bromoformug/L (ppb)50929174-136n-Propylbenzeneug/L (ppb)509910174-126Bromobenzeneug/L (ppb)509910280-1211,3,5Trimethylbenzeneug/L (ppb)50969678-1231,2,2-Tetrachloroethaneug/L (ppb)5010510866-1261,2,3-Trichloropropaneug/L (ppb)509810077-1272-Chlorotolueneug/L (ppb)50969778-128tert-Butylbenzeneug/L (ppb)50969778-1281,2,4-Trimethylbenzeneug/L (ppb)50969778-128	0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŏ						
Styrene ug/L (ppb) 50 96 95 84-119 Isopropylbenzene ug/L (ppb) 50 94 91 85-117 Bromoform ug/L (ppb) 50 92 91 74-136 n-Propylbenzene ug/L (ppb) 50 92 91 74-136 Bromobenzene ug/L (ppb) 50 99 101 74-126 Bromobenzene ug/L (ppb) 50 99 102 80-121 1,1,2.2-Tetrachloroethane ug/L (ppb) 50 96 96 78-123 1,2,3-Trichloropopane ug/L (ppb) 50 107 109 67-124 2-Chlorotoluene ug/L (ppb) 50 98 100 77-127 4-Chlorotoluene ug/L (ppb) 50 96 97 78-128 1,2,4-Trimethylbenzene ug/L (ppb) 50 96 95 80-123	1	83-125	95	96	100		m,p-Xylene
Styrene ug/L (ppb) 50 96 95 84-119 Isopropylbenzene ug/L (ppb) 50 94 91 85-117 Bromoform ug/L (ppb) 50 92 91 74-136 n-Propylbenzene ug/L (ppb) 50 92 91 74-136 Bromobenzene ug/L (ppb) 50 99 101 74-126 Bromobenzene ug/L (ppb) 50 99 102 80-121 1,1,2.2-Tetrachloroethane ug/L (ppb) 50 96 96 78-123 1,2,3-Trichloropopane ug/L (ppb) 50 107 109 67-124 2-Chlorotoluene ug/L (ppb) 50 98 100 77-127 4-Chlorotoluene ug/L (ppb) 50 96 97 78-128 1,2,4-Trimethylbenzene ug/L (ppb) 50 96 95 80-123	1						
Bromoform ug/L (ppb) 50 92 91 74-136 n-Propylbenzene ug/L (ppb) 50 99 101 74-136 Bromobenzene ug/L (ppb) 50 99 101 74-136 Bromobenzene ug/L (ppb) 50 99 102 80-121 1,3,5-Trimethylbenzene ug/L (ppb) 50 96 96 78-123 1,1,2,2-Tetrachloroethane ug/L (ppb) 50 105 108 66-126 1,2,3-Trichloropropane ug/L (ppb) 50 98 100 77-124 2-Chlorotoluene ug/L (ppb) 50 96 97 78-128 tert-Butylbenzene ug/L (ppb) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (ppb) 50 96 95 80-123	1	84-119				ug/L (ppb)	Styrene
n-Propylbenzene ug/L (pp) 50 99 101 74-126 Bromobenzene ug/L (pp) 50 99 102 80-121 1,3,5-Trimethylbenzene ug/L (pp) 50 96 96 78-123 1,1,2,2-Tetrachloroethane ug/L (pp) 50 105 108 66-126 1,2,3-Trichloropropane ug/L (pp) 50 107 109 67-124 2-Chlorotoluene ug/L (pp) 50 98 100 77-127 4-Chlorotoluene ug/L (pp) 50 96 97 78-128 tert-Butylbenzene ug/L (pp) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (pp) 50 95 79-122	3						
Bromobenzene ug/L (ppb) 50 99 102 80-121 1,3,5-Trimethylbenzene ug/L (ppb) 50 96 96 78-123 1,1,2,2-Tetrachloroethane ug/L (ppb) 50 105 108 66-126 1,2,3-Trichloropopane ug/L (ppb) 50 107 109 67-124 2-Chlorotoluene ug/L (ppb) 50 98 100 77-127 4-Chlorotoluene ug/L (ppb) 50 96 97 78-128 tert-Butylbenzene ug/L (ppb) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (ppb) 50 95 79-122	1						
1,3,5-Trimethylbenzene ug/L (pp) 50 96 96 78-123 1,1,2,2-Tetrachloroothane ug/L (pp) 50 105 108 66-126 1,2,3-Tichloroorpopane ug/L (pp) 50 107 109 67-124 2-Chlorotoluene ug/L (pp) 50 98 100 77-127 4-Chlorotoluene ug/L (pp) 50 96 97 78-123 tert-Butylbenzene ug/L (pp) 50 96 97 78-123 1,2,4-Trimethylbenzene ug/L (pp) 50 96 95 80-123	2						
1,1,2,2-Tetrachloroethaneug/L (ppb)5010510866-1261,2,3-Trichloropropaneug/L (ppb)5010710967-1242-Chlorotolueneug/L (ppb)509810077-1274-Chlorotolueneug/L (ppb)50969778-128tert-Butylbenzeneug/L (ppb)50969580-1231,2,4-Trimethylbenzeneug/L (ppb)50959579-122	3						
1,2,3-Trichloropropane ug/L (pb) 50 107 109 67-124 2-Chlorotoluene ug/L (pb) 50 98 100 77-127 4-Chlorotoluene ug/L (pb) 50 96 97 78-128 tert-Butylbenzene ug/L (pb) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (pb) 50 95 95 79-122	0 3						
2-Chlorotoluene ug/L (ppb) 50 98 100 77-127 4-Chlorotoluene ug/L (ppb) 50 96 97 78-128 tert-Butylbenzene ug/L (ppb) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (ppb) 50 95 95 79-122	3 2						
4-Chlorotoluene ug/L (pp) 50 96 97 78-128 tert-Butylbenzene ug/L (pp) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (ppb) 50 95 95 79-122	2						
tert-Butylbenzene ug/L (ppb) 50 96 95 80-123 1,2,4-Trimethylbenzene ug/L (ppb) 50 95 95 79-122	1						
1,2,4 Trimethylbenzene ug/L (ppb) 50 95 95 79-122	1						
	0						
sec-Butylbenzene ug/L (ppb) 50 94 93 80-125	1	80-125	93	94	50	ug/L (ppb)	sec-Butylbenzene
p-Isopropyltoluene ug/L (ppb) 50 95 93 81-123	2						
1,3-Dichlorobenzene ug/L (ppb) 50 98 98 85-116	0	85-116					
1,4-Dichlorobenzene ug/L (ppb) 50 97 96 84-121	1						1,4-Dichlorobenzene
1,2-Dichlorobenzene ug/L (ppb) 50 99 99 85-116	0						
1,2-Dibromo-3-chloropropane ug/L (ppb) 50 109 110 57-141	1						
1.2.4 Trichlorobenzene ug/L (ppb) 50 97 97 72-130	0						
Hexachlorobutadiene ug/L (ppb) 50 85 84 53.141 Value 50 50 104 144 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1						
Naphthalene ug/L (ppb) 50 104 104 64-133 1.2.3-Trichlorobenzene ug/L (ppb) 50 97 97 65-136	0						
1,2,3 ⁻ Trichlorobenzene ug/L (ppb) 50 97 97 65-136	U	00-130	97	97	50	ug/L (ppb)	1,2,3-1110110F0DenZene

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

6090 Send Report to <u>Ro</u>		lare Toc	hilin		SAMP	LERS (a	signatu	re)	u:	hel	r-				Page #	OUND TI
CompanySoundEarth Strategies. Inc.Address2811 Fairview Avenue E. Suite 2000			PROJI	SAMPLERS (signature) PROJECT NAME/NO. 18th and Jackson Property			F	PO # 0811-005		Standard (2 Weeks) RUSH Rush charges authorized by						
City, State, ZIP <u>Sea</u> Phone # <u>206-306-1</u>		ngton 98 x #2(-1907	REMA	RKS		<u> </u>						Disp Retu	ose afte Irn samj	E DISPOSA r 30 days ples h instructio
									Г	т <u> </u>	Al	NALYS	ES REQ	UESTED	, , ,	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	MUG 5 Mutals			Note
DB04-20160902	D804		or A	912/16	1/215	Heb	5				X		X			
DB05-20160902	dbuz			9/2/16	1420	tho	5				×		\times			
									·							
				CJ F												
					2016											
· · · ·																

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: Con Tat	Clare TousAr	SandEurph	9/2/16	1645
Seattle, WA 98119-2029	Received	Euclar	FR	Chin	16 T
Ph. (206) 285-8282	Relinquisted by:			- 16/12	
Fax (206) 283-5044	Received by:		Samples	received at	9 °C
FORMS\COC\COC.DOC			•		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 16, 2016

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the additional results from the testing of material submitted on September 2, 2016 from the SOU_ 0811-005_ 20160902, F&BI 609055 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

L

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0916R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 2, 2016 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_20160902, F&BI 609055project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
609055 -01	DB04-20160902
609055 -02	DB05-20160902

The samples were filtered at Friedman and Bruya on September 13, 2016 at 12:01. The data were flagged accordingly.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DB04-20160902 f 09/02/16 09/13/16 09/13/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005_ 20160902, F&BI 609055 609055-01 609055-01.080 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	3.03		
Cadmium	<1		
Chromium	1.14		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	DB05-20160902 f 09/02/16 09/13/16 09/13/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005_ 20160902, F&BI 609055 609055-02 609055-02.081 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	2.84		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank f Not Applicable 09/13/16 09/14/16 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	SoundEarth Strategies SOU_ 0811-005_ 20160902, F&BI 609055 I6-603 mb I6-603 mb.017 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Arsenic	<1		
Cadmium	<1		
Chromium	<1		
Lead	<1		
Mercury	<1		

ENVIRONMENTAL CHEMISTS

Date of Report: 09/16/16 Date Received: 09/02/16 Project: SOU_0811-005_20160902, F&BI 609055

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 609054-02 (Matrix Spike)

Laboratory Co	1000000000000000000000000000000000000	matrix Sp	IKC)	_	_		
				Percent	Percent		
	Reporting	Spike	Sample	Recov ery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	6.95	107	111	70-130	4
Cadmium	ug/L (ppb)	5	<1	96	100	70-130	4
Chromium	ug/L (ppb)	20	2.52	115	116	70-130	1
Lead	ug/L (ppb)	10	<1	80	81	70-130	1
Mercury	ug/L (ppb)	10	<1	87	89	70-130	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	88	85-115
Cadmium	ug/L (ppb)	5	104	85-115
Chromium	ug/L (ppb)	20	105	85-115
Lead	ug/L (ppb)	10	103	85-115
Mercury	ug/L (ppb)	10	96	85-115

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

609053- Brad Report to Roberts: Class Tabilia			AMPLE CHAIN OF CUSTODY				NE 09			Par					
Company <u>BoundBarth Strategies Ins.</u> Address <u>2811: Pairview Avenue II. Some 200</u> City, State, ZIP <u>Bestile. Weshington 20100</u> Phone # <u>206-206-1900</u> Per # <u>206-206-1907</u>				PROJECT NAME/NO.				PO7 6611-666			Right () West				
											BADEFLE DEBROBAL. Dispess offer 80 days Return complex • WE call with instructions				
Sample ID	Sampia Longtion	Semaje Dopis	la D	Date Banapited	Teo Benyisi	Matria	e d Jan							31	Notes
DB04-20160902	D804	-	och	ARN	a ns	Hu	5				X	—	ک ا	$\overline{\mathcal{Q}}$	
0805-20160902	0305			A1216			4				X		X		2 des
		·													alorile as
				Ra			 						┢		
		+		2-3	Cercile										
					- Cla								┼	╋╌╋╸	
		1						\mathbb{N}						╉──╂─	
													†—	<u></u>	
	· · · · · · · · · · · · · · · · · · ·												\square		

"**riffili i k**andr"

· •			/		
Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by On Tech	Clare Tourk	Sandlerph	5/2/16	1645
Seattle, WA 98119-2029	Received to	Euclian	ED	Ch (
Ph. (206) 285-8282	Relinquisted by:	- Hicigan			the T
Fax (206) 283-5044	Received by:		Pamala		4
FORMENCOCNCOC.DOC				s received at	<u>7</u> •c

Excavation – Soil Laboratory Analytical Reports

Friedman & Bruya, Inc. #702117

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 10, 2017

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on February 8, 2017 from the SOU_ 0811-005_ 20170208, F&BI 702117 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0210R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 8, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies 0811-005 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
702117 -01	EX01-WSW01-6
702117 -02	EX01-SSW01-6
702117 -03	EX01-NSW01-6
702117 -04	EX01-B01-8
702117 -05	EX01-ESW01-6
702117 -06	EX01-B02-8
702117 -07	SP01-01
702117 -08	SP01-02
702117 -09	SP01-03
702117 -10	EX02-B01-5
702117 -11	EX02-SSW01-4
702117 -12	EX02-ESW01-4
702117 -13	EX02-B02-5
702117 -14	EX02-WSW01-4
702117 -15	EX02-NSW01-4
702117 -16	SP02-01
702117 -17	SP02-02
702117 -18	SP02-03
702117 -19	SP03-01
702117 -20	SP03-02
702117 -21	EX03-B01-4
702117 -22	EX03-B02-4
702117 -23	EX03-NSW01-2
702117 -24	EX03-WSW01-2
702117 -25	EX03-ESW01-2
702117 -26	EX03-SSW01-2
702117 -27	SP03-03

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/17 Date Received: 02/08/17 Project: SOU_0811-005_20170208, F&BI 702117 Date Extracted: 02/08/17 Date Analyzed: 02/08/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
EX01-WSW01-6 702117-01	<50	<250	89
EX01-SSW01-6 702117-02	<50	<250	96
EX01-NSW01-6 702117-03	<50	<250	96
EX01-B01-8 702117-04	<50	<250	97
EX01-ESW01-6 702117-05	<50	<250	87
EX01-B02-8 702117-06	<50	<250	88
SP01-01 702117-07	<50	<250	88
SP01-02 702117-08	<50	<250	93
SP01-03 702117-09	<50	500	93
EX02-B01-5 702117-10	<50	<250	94
EX02-SSW01-4 ⁷⁰²¹¹⁷⁻¹¹	<50	<250	95

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/17 Date Received: 02/08/17 Project: SOU_0811-005_20170208, F&BI 702117 Date Extracted: 02/08/17 Date Analyzed: 02/08/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
EX02-ESW01-4 702117-12	<50	<250	95
EX02-B02-5 702117-13	<50	<250	94
EX02-WSW01-4 702117-14	<50	<250	95
EX02-NSW01-4 702117-15	<50	<250	92
SP02-01 702117-16	<50	<250	93
SP02-02 702117-17	<50	<250	95
SP02-03 702117-18	<50	<250	95
SP03-01 702117-19	1,900 x	16,000	89
SP03-02 702117-20	83 x	580	95
EX03-B01-4 702117-21	<50	<250	100
EX03-B02-4 702117-22	500 x	3,300	90

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/17 Date Received: 02/08/17 Project: SOU_0811-005_20170208, F&BI 702117 Date Extracted: 02/08/17 Date Analyzed: 02/08/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
EX03-NSW01-2 702117-23	<50	<250	106
EX03-WSW01-2 ⁷⁰²¹¹⁷⁻²⁴	59 x	720	106
EX03-ESW01-2 702117-25	<50	<250	101
EX03-SSW01-2 702117-26	<50	<250	101
SP03-03 702117-27	3,300 x	12,000	83
Method Blank 07-284 MB	<50	<250	96
Method Blank 07-282 MB	<50	<250	112

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/17 Date Received: 02/08/17 Project: SOU_0811-005_20170208, F&BI 702117

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 7	702117-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	104	105	73-135	1
Laboratory Code: I	Laboratory Contro	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptar	ice		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	104	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 02/10/17 Date Received: 02/08/17 Project: SOU_0811-005_20170208, F&BI 702117

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 7	'02116-04 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	93	98	63-146	5
Laboratory Code: I	.aboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	92	79-1	44		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

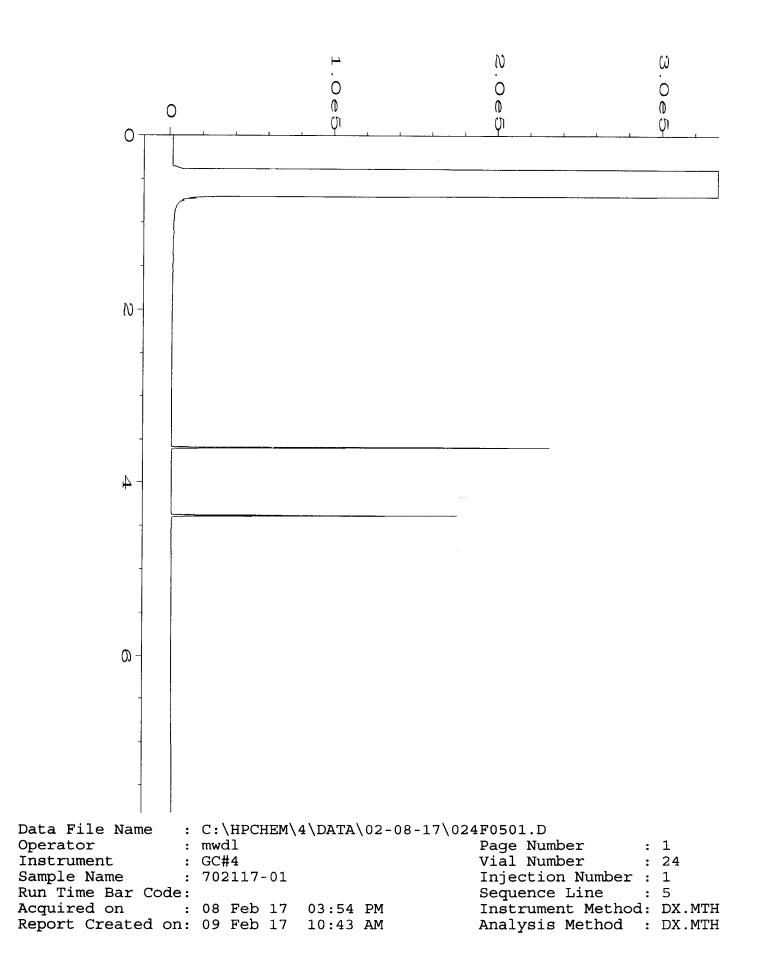
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

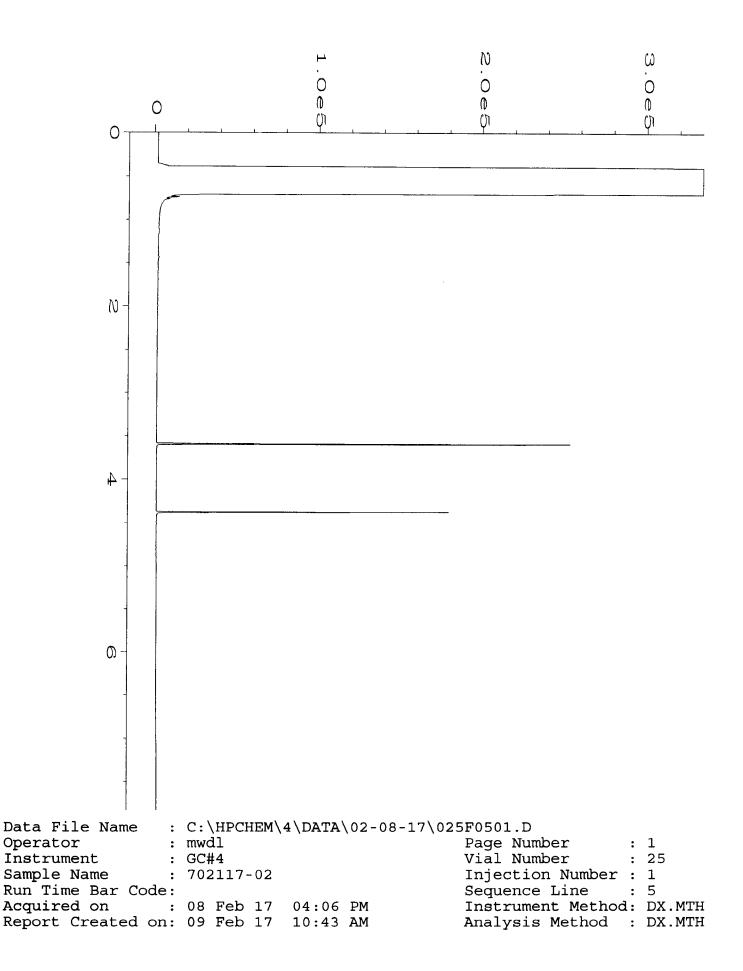
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

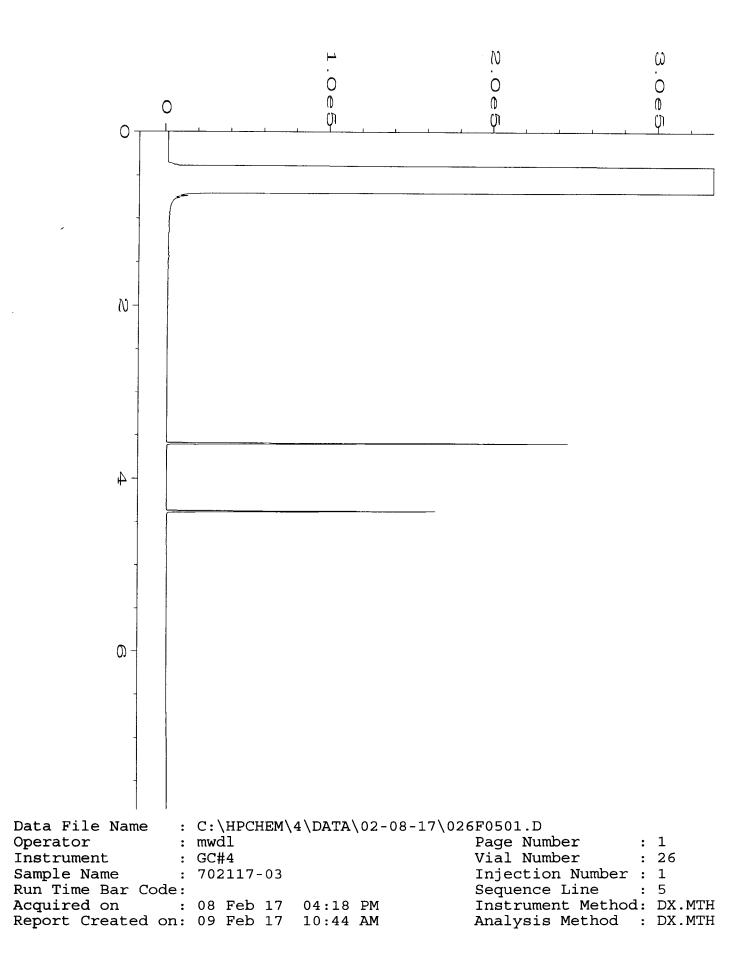
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

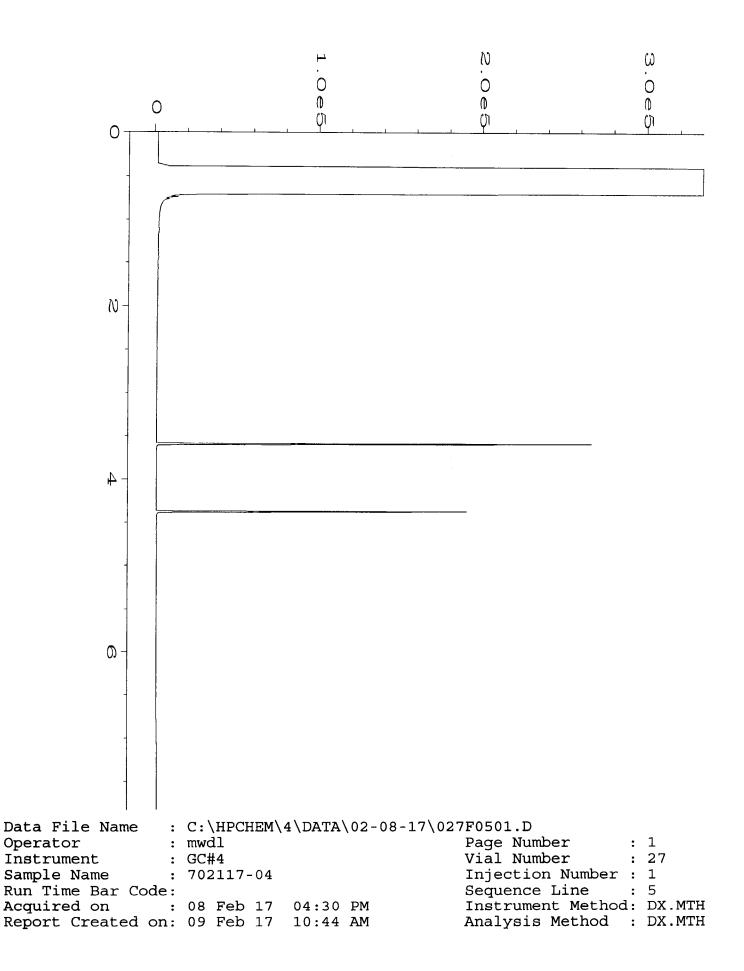
lc - The presence of the analyte is likely due to laboratory contamination.

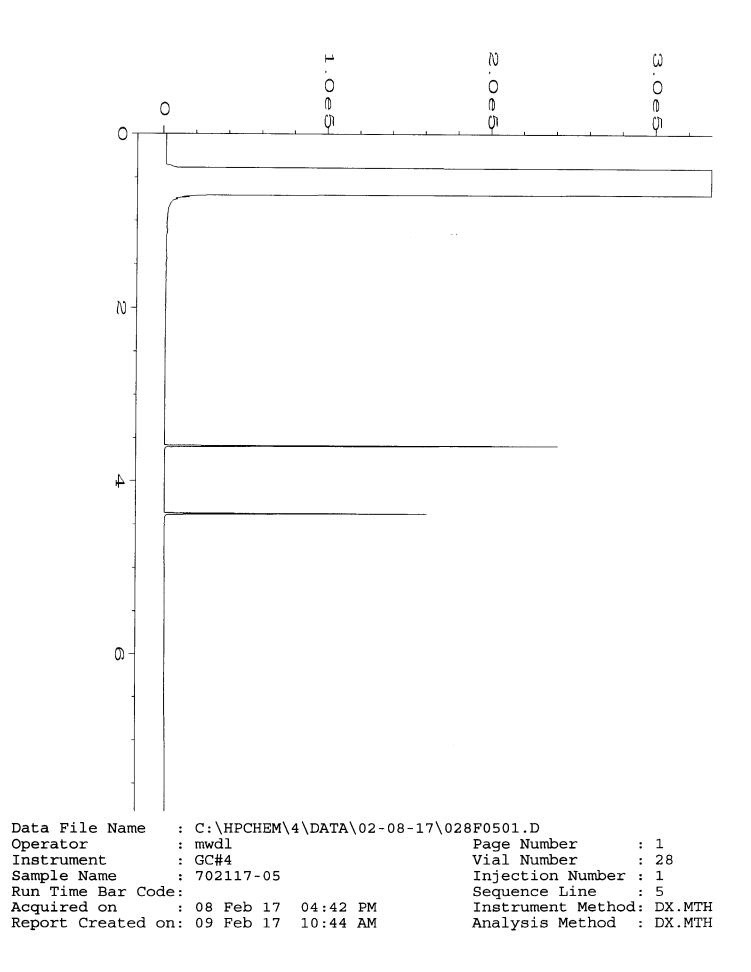
L - The reported concentration was generated from a library search.

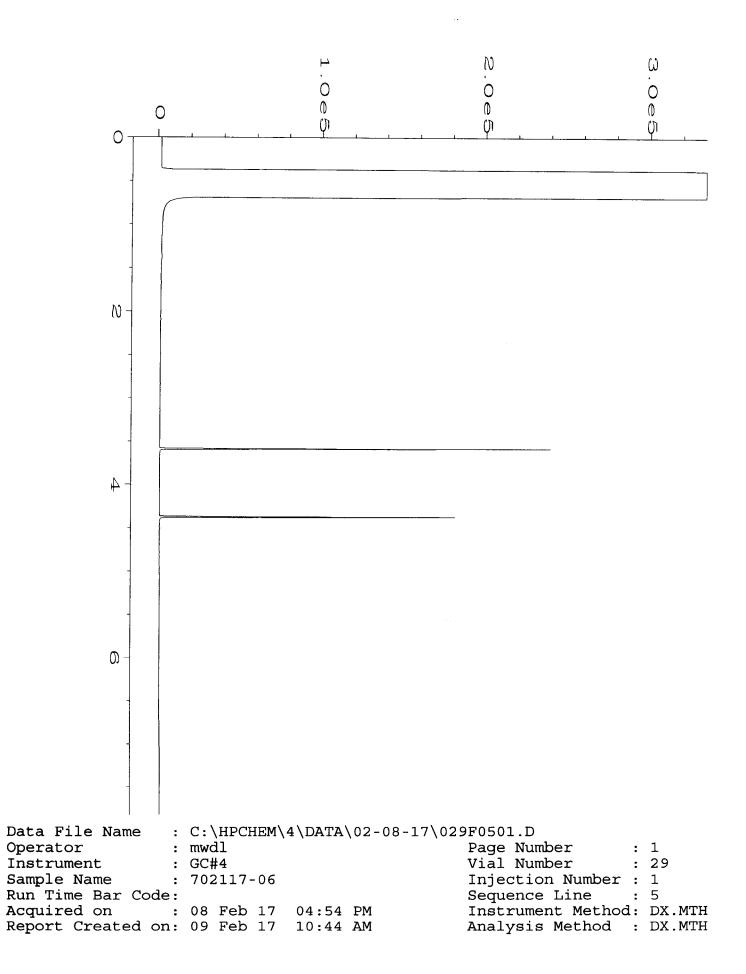

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

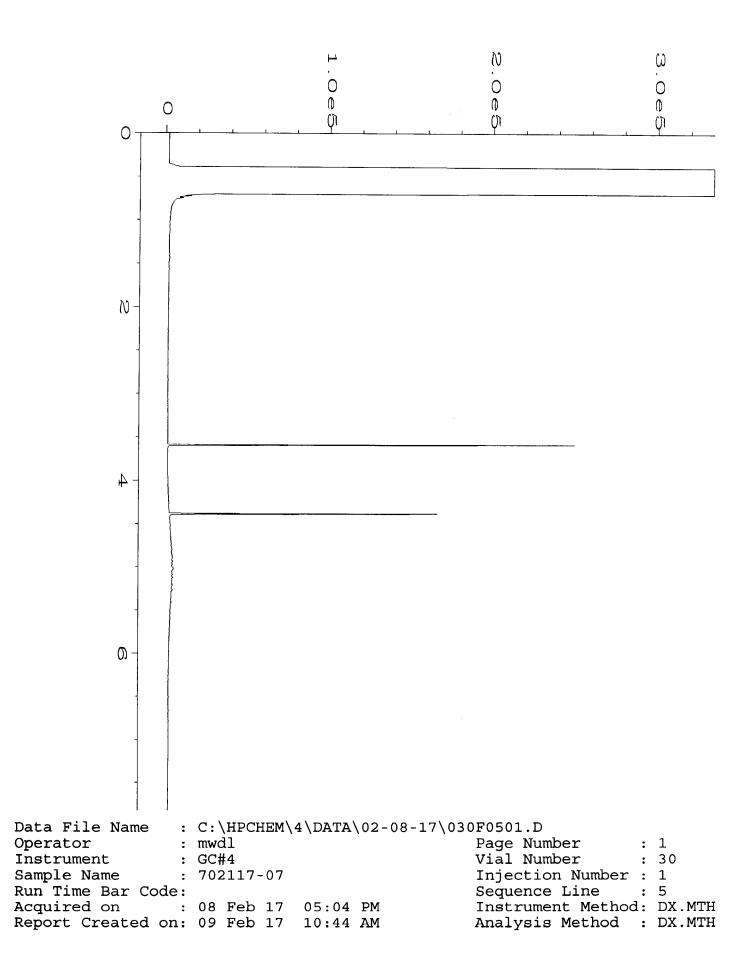

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

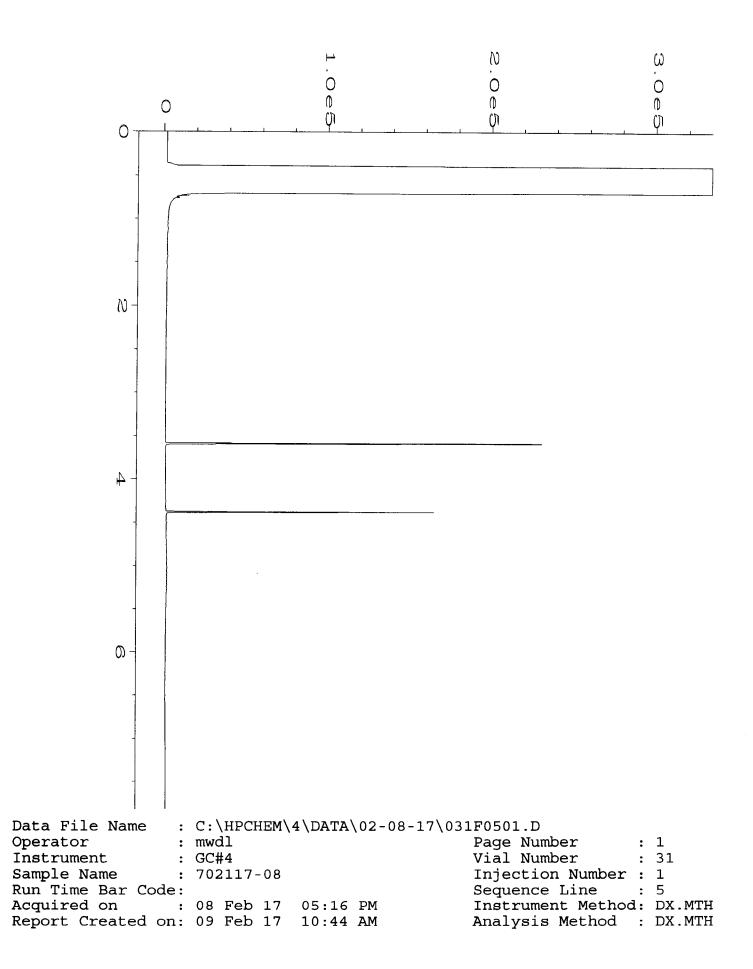

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

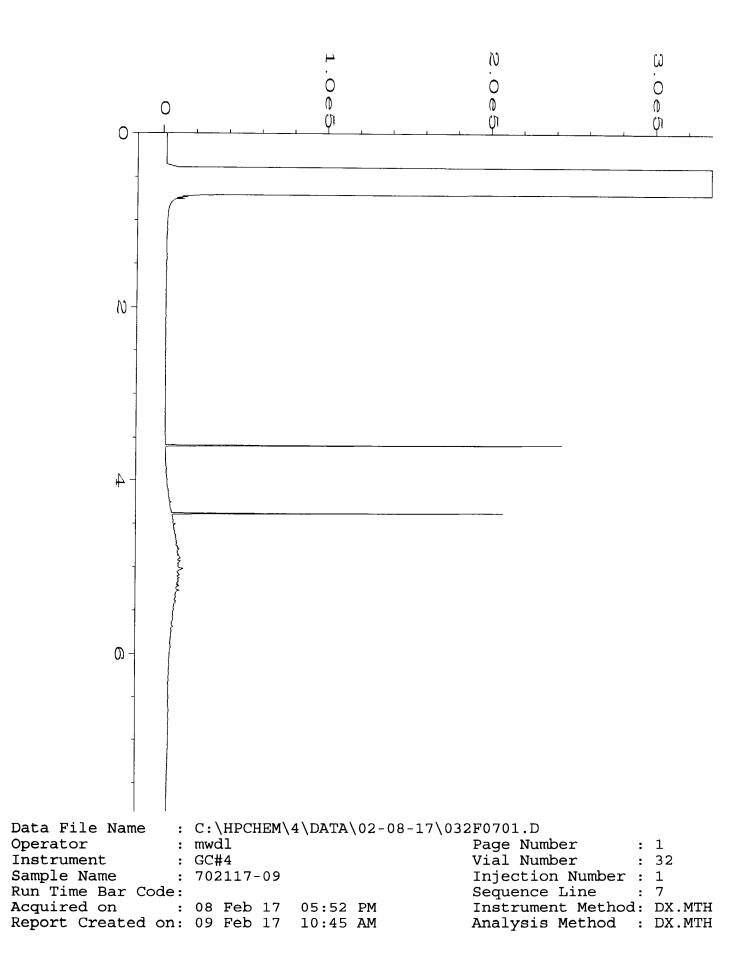

vo - The value reported fell outside the control limits established for this analyte.

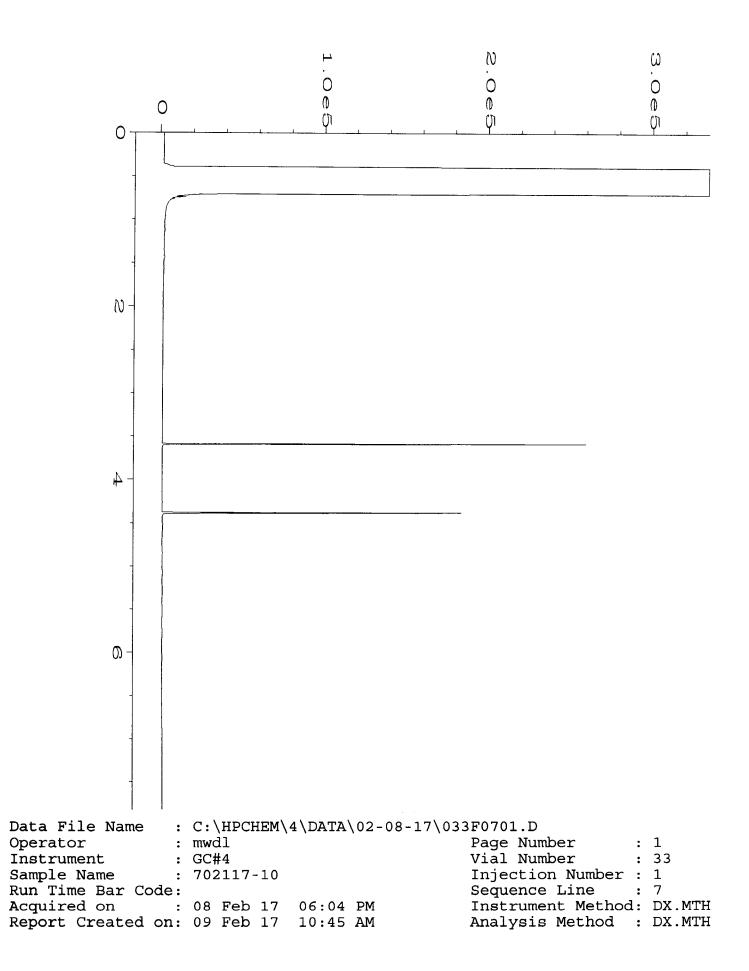

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

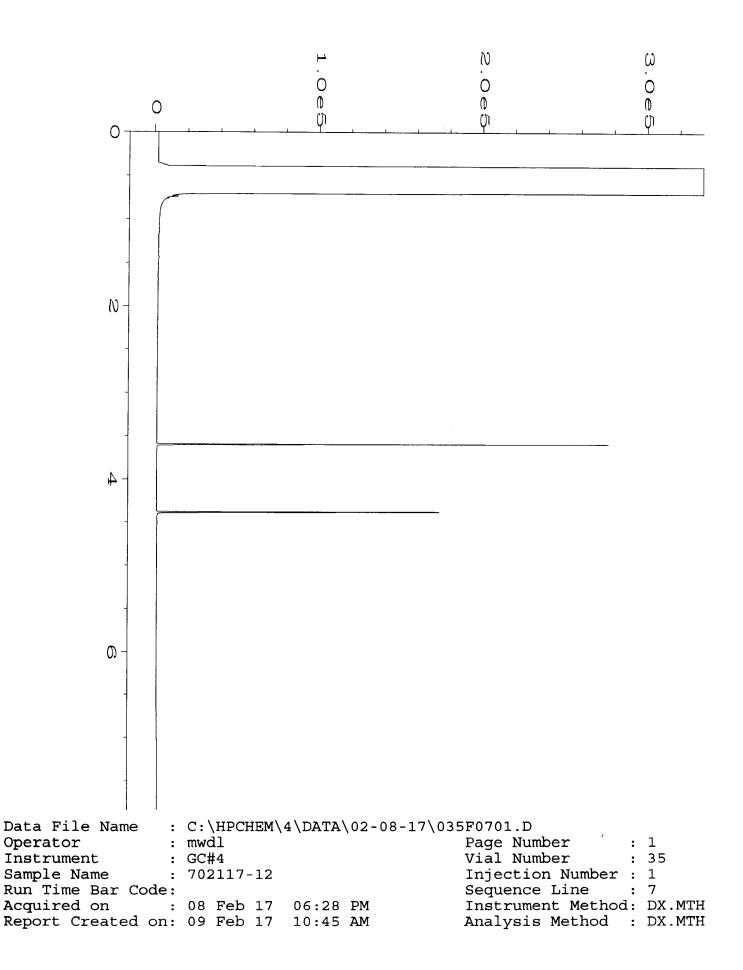


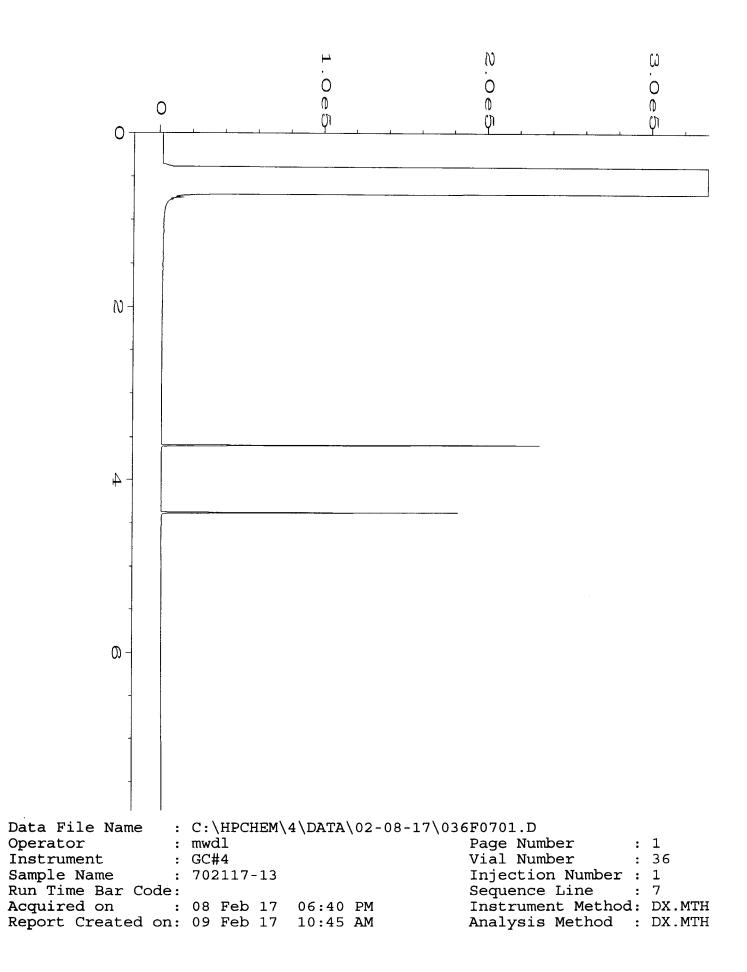


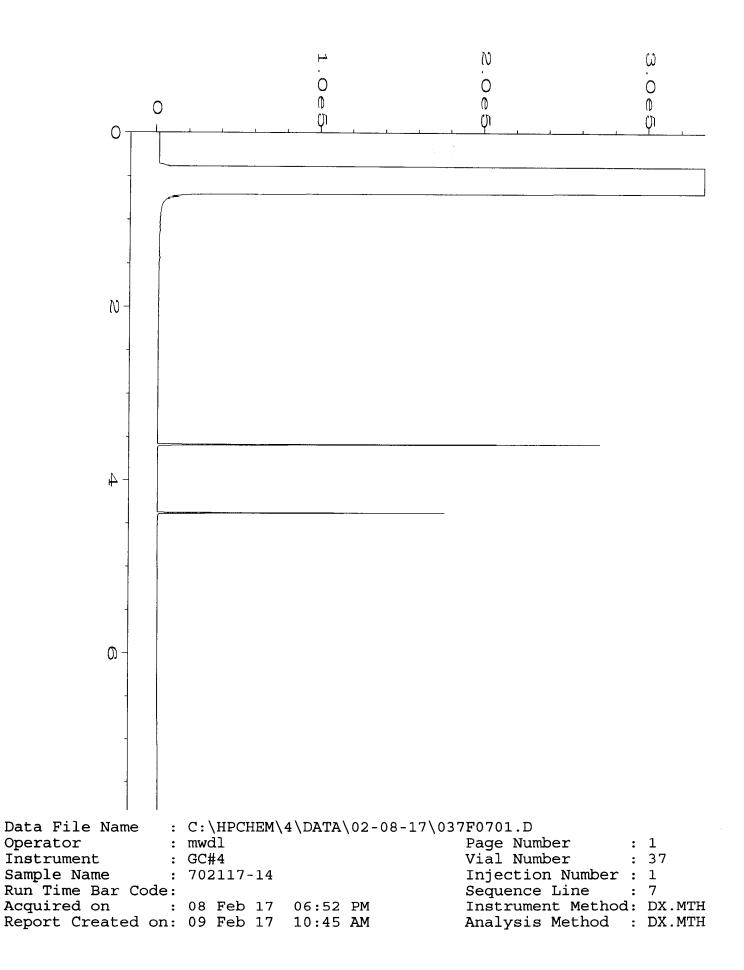


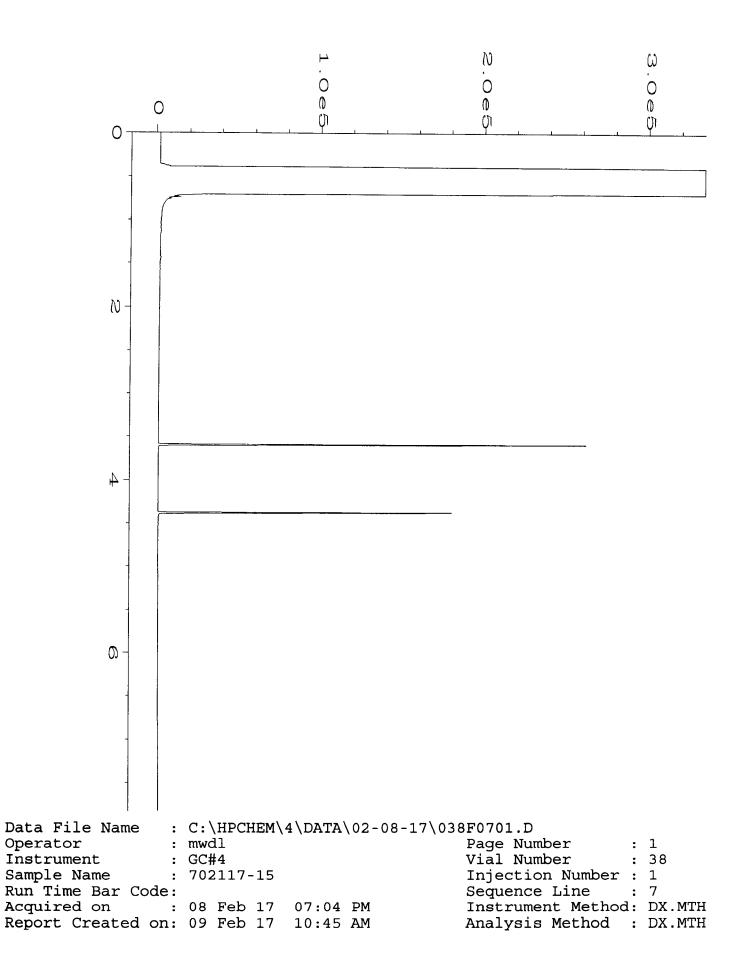


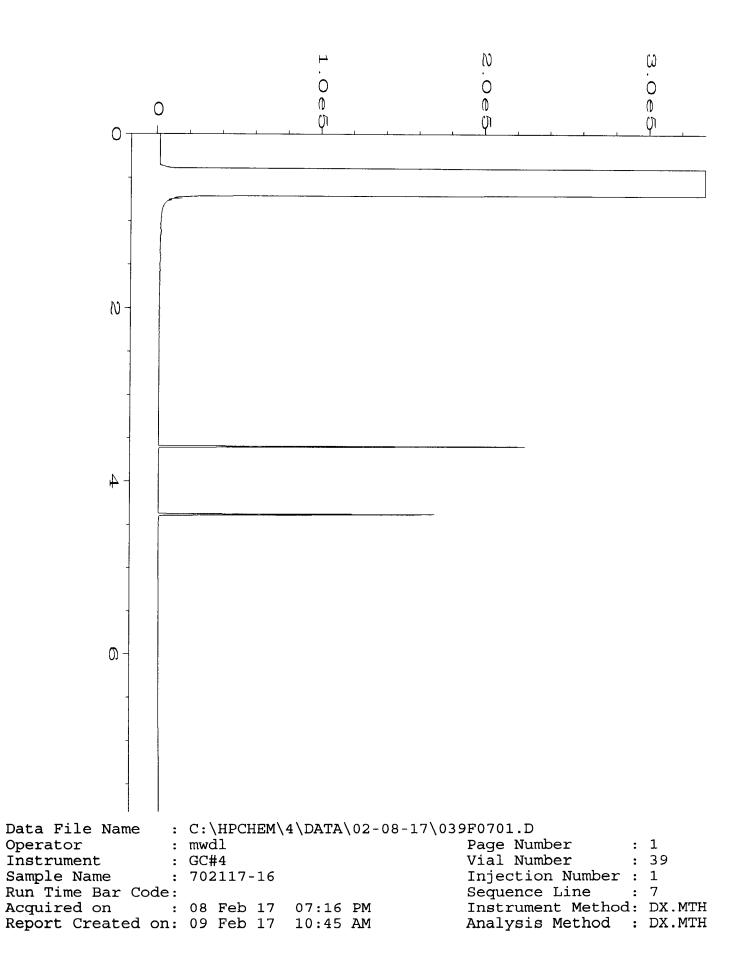


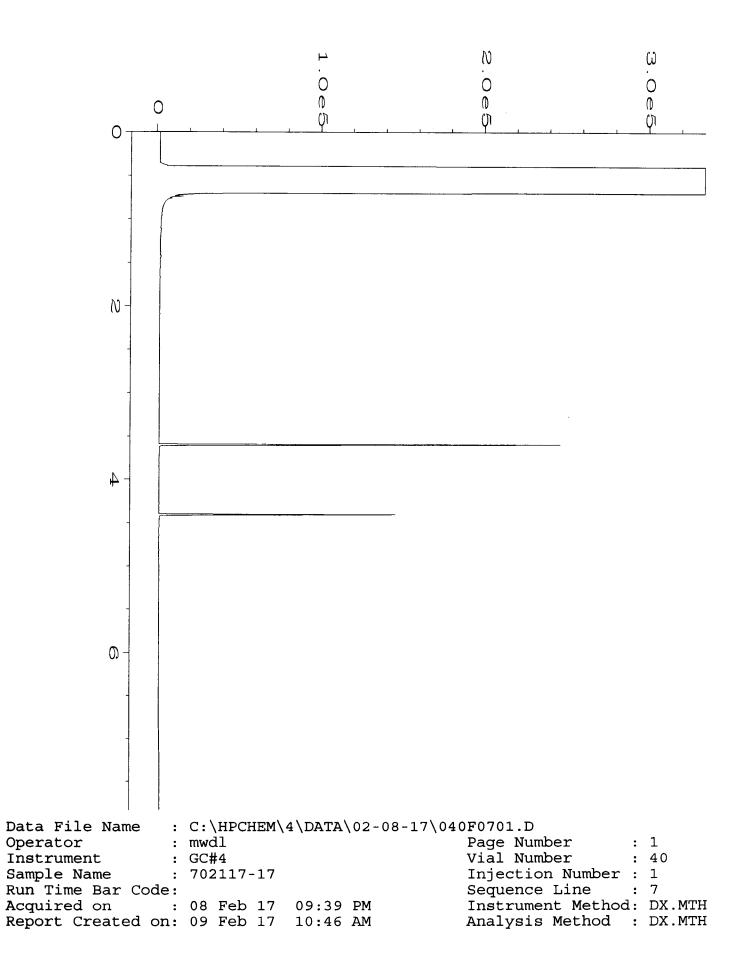


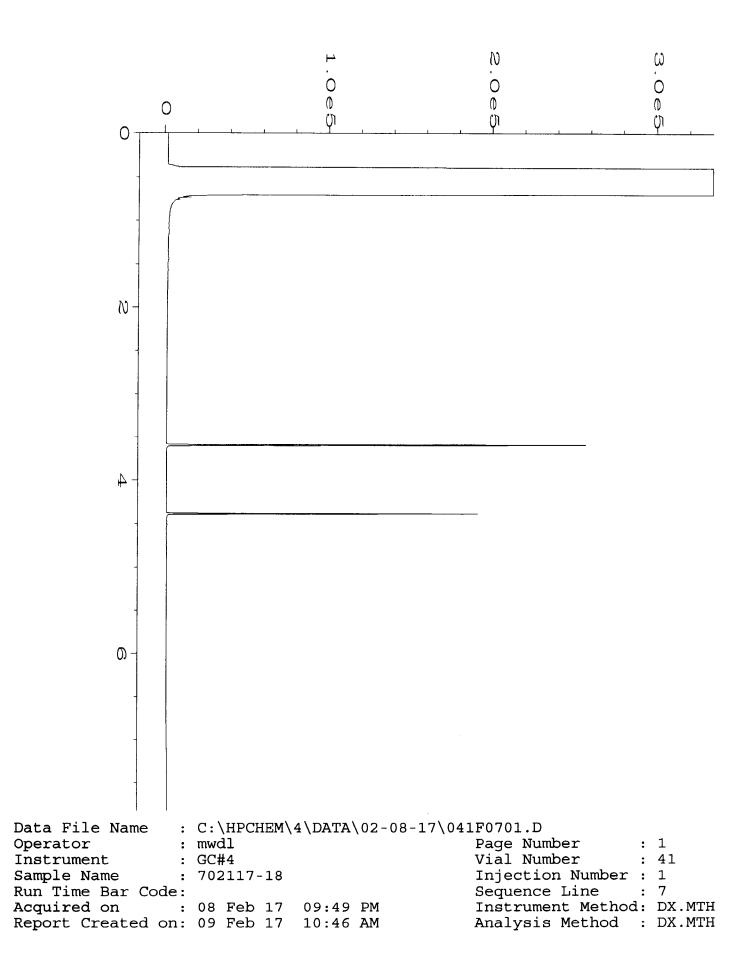


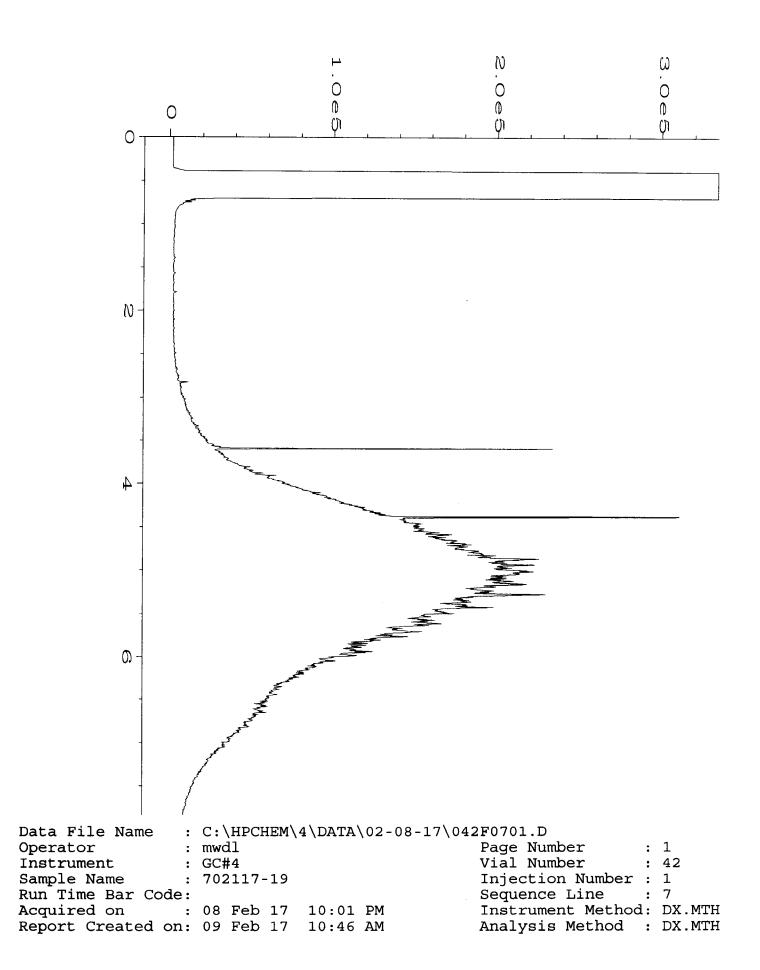


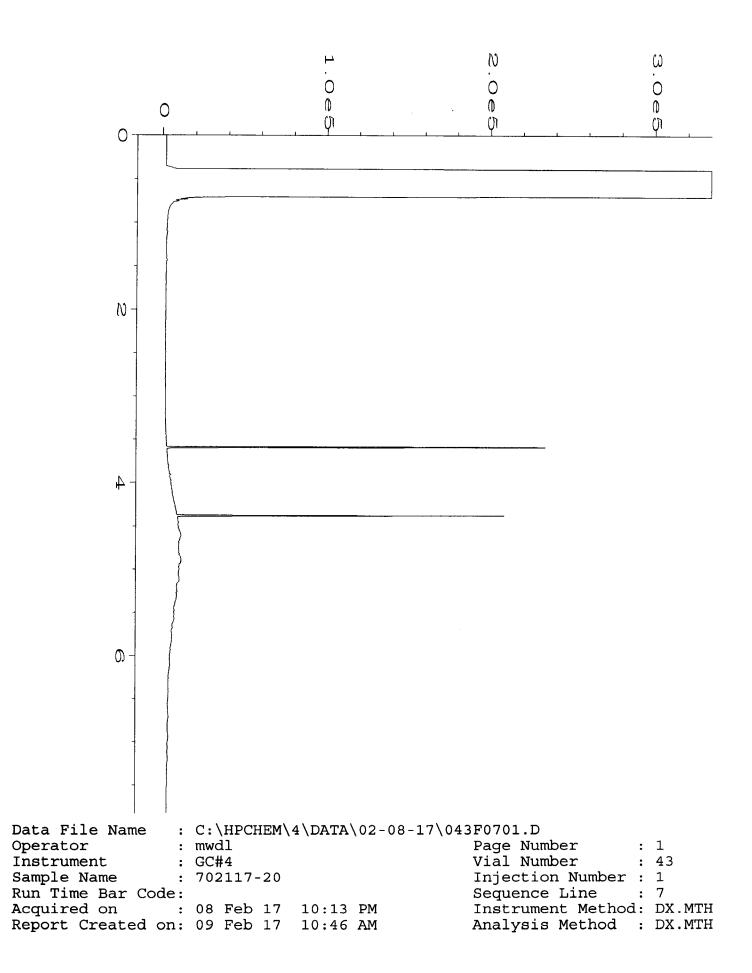


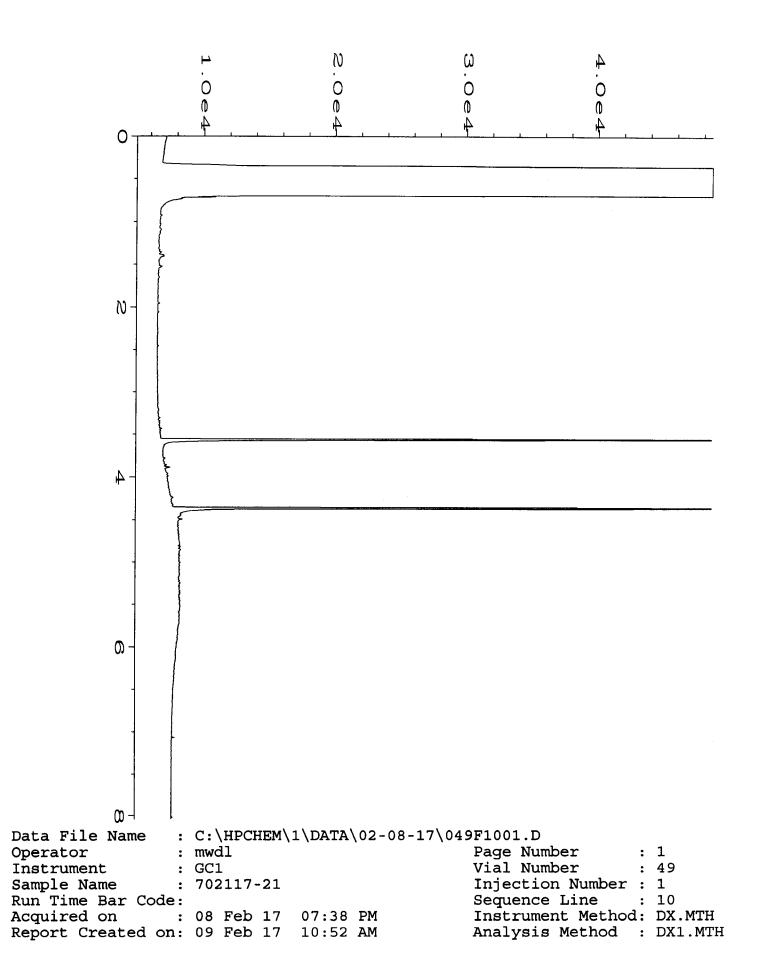


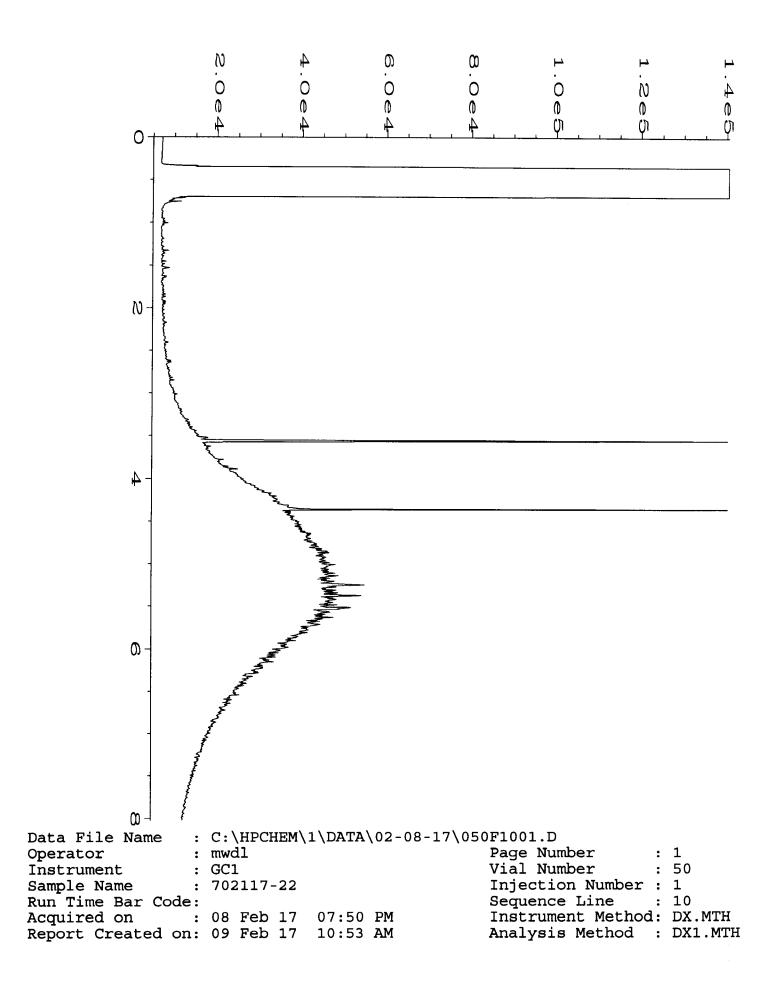


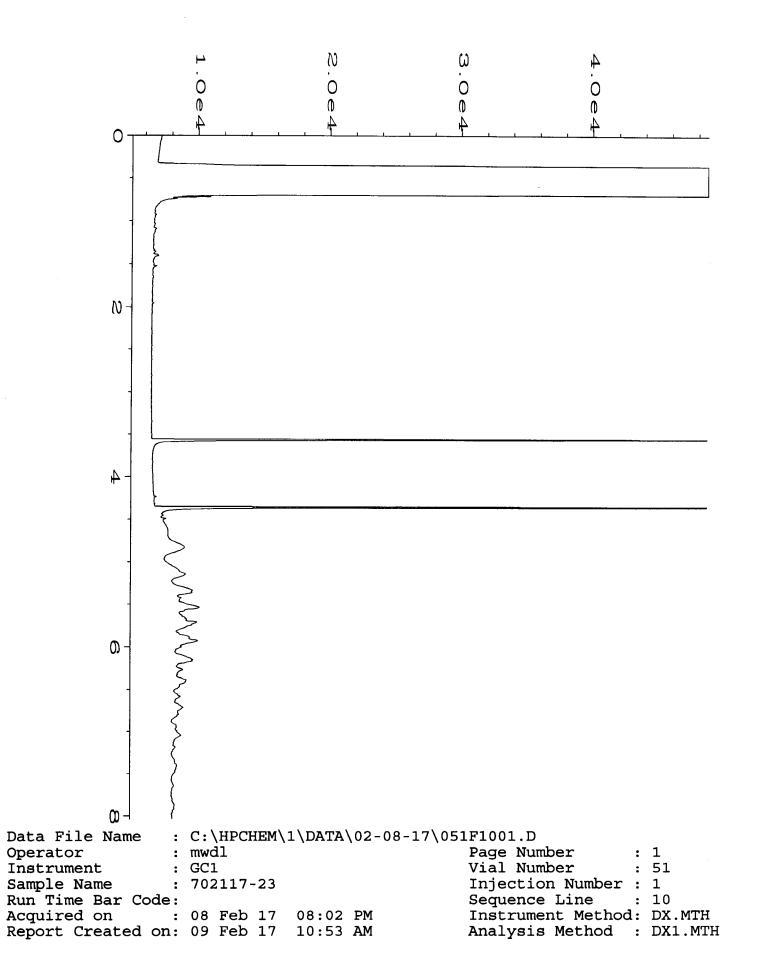


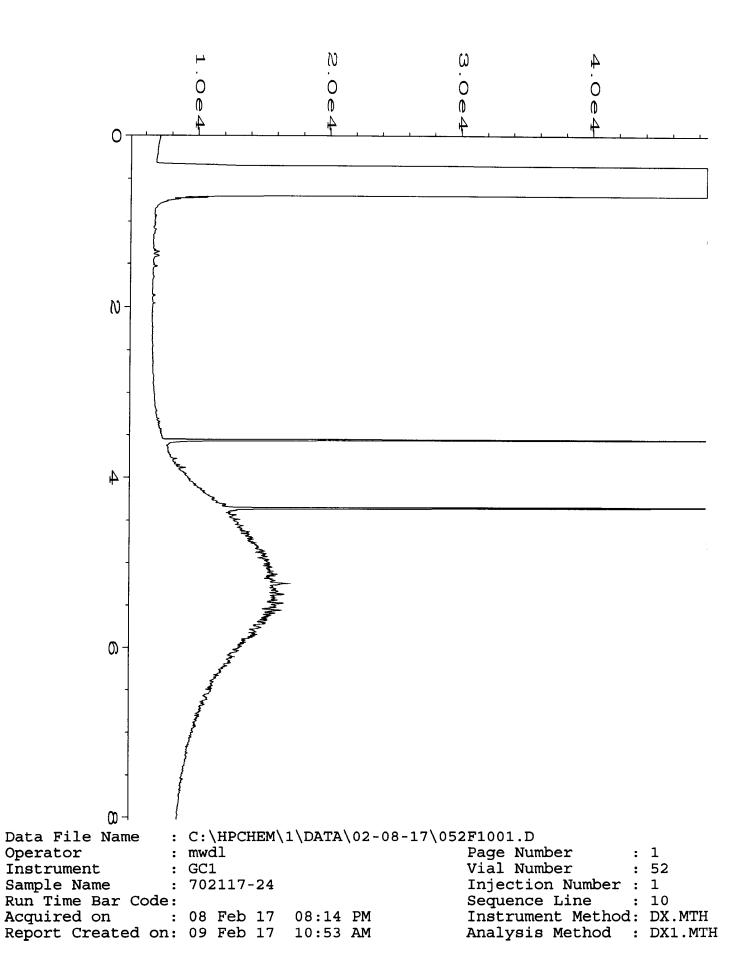


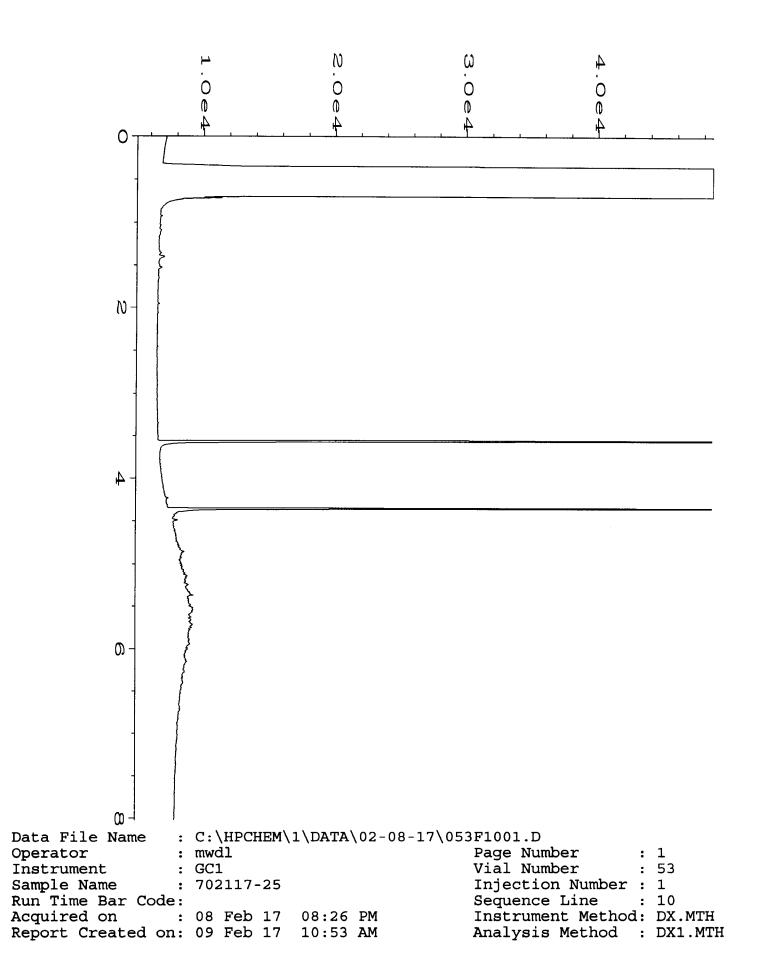


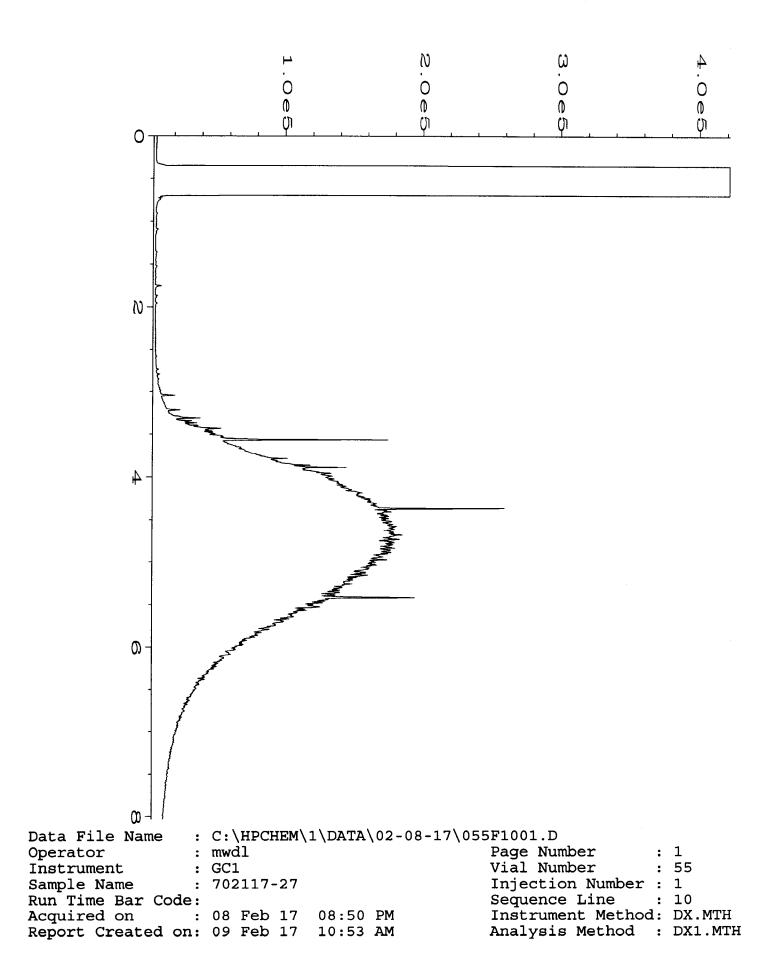


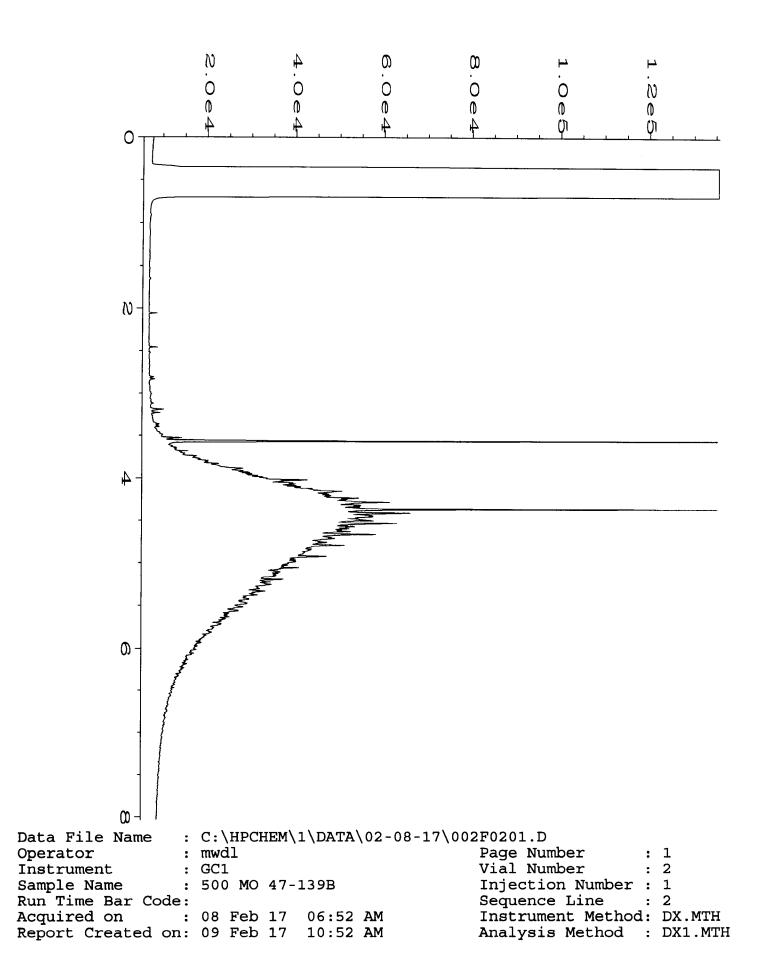


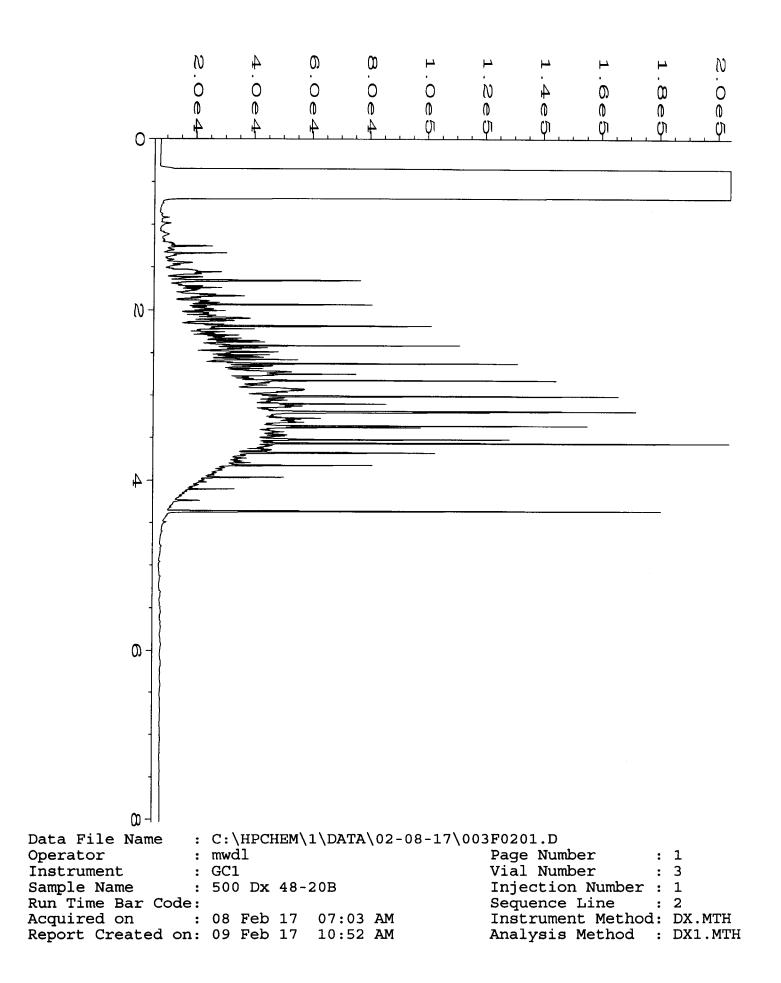












Send Report to <u>Ro</u>					PROJ	LERS (8	ME/NI	.re) [au j	al				TU	RNAROUND TIME
	oundEarth St				-			J. Jacksor				PO#			ard (2 Weeks)
City, State, Z IP <u>S</u> Phone # <u>206-306</u>		ngton 98	102		REMA	ARKS								S/ Dispos Ret urn	AMPLE DISPOSAL se after 30 days a samples all with instructions
									[т	<u>۸</u>	NALYE	S REQ	UESTED	······
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by state	SVOCs by 8270			Notes
Exoi-WSWEi-6	EXOI	6	01	218/17	0825	Soil	}	X							
EX01-55W01-6	1	6	02	1	0830	1	1	X							
EX01-NSWOI-C		6	03		0835			X				<u> </u>			
EXUI - BOI - 8		8	04		0838			X							· · · · ·
EXOI-ESWOI-6		6	05		0840			X							
EXOF BU2 - 8		8	06		0840			X							
SP01-01	EXUI SP		07		0845			X					•		
5901-02		-	80		0846			\mathbf{X}	•						Andyze per RR Hold per CF 2/5/
SP01-03	1 1		09		0847			X	······				<u> </u>		

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY		T
3012 16th Avenue West	Relinquished by: Nav Tikk	Clar Tochin	<u>COMPANY</u> Save Earth	DATE	TIME
Seattle, WA 98119-2029	Recetypethornali	Michael Ellel		2/8/17	1300
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044 MB\COC\COC.DOC	Received by:				

,

ĉ

702117 Send Report to <u>Rot</u>		are Tochi	lin		SAMPLE SAMF	PLERS (ml				Page	#	BC of
Company <u>So</u>	undEarth St	rategies,	Inc	·	PROJ	ECT NA 18	ME/NC).		,	Ι	PO #		RUSH_	TD	
ddress <u>281</u> Sity, State, ZIP <u>Se</u> Phone # <u>206-306-</u>		ngton 981			REM/	ARKS				I				SAN Dispose Return s	IPLE D after 30 amples	ISPOSAL) days
						T					A	NALYSES	REQUES	TED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sample		Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270				Notes
K02-55W01-4	EXUZ	4		218/	7 0942	Soil	1	\times								
EX02-ESW01-4	1	4	12	-	0944	1	1	\mathbf{X}								
2102-802-5		5	13		0946			X								
XU2-WSW01-4		4	14		0948			X								
202-NSW0]-4	1	4	15		0950			X								
5802-01	EXU2 SP	-	16		0955			X							5	Au
5802-02			17		0956			\mathbf{X}								Anclyze par RR. Hold par ET 2/51
SP02-03			18		0957			X							\rightarrow	
5903-01	EXO3 SP	-	19		1030			X								<u> </u>
5P03-02			20		- 1032			$\mathbf{\nabla}$					Sa	mples I	eceive	dat 4

	Relinquished by:	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	an jor	Clore Tochilin	SoundEarth	218/17	1300
Seattle, WA 98119-2029_	Received by	Michael E-Ghl	FGBm	4	1
Ph. (206) 285-8282	Relinquished by:				7
Fax (206) 283-5044	Received by:				
FORMS\COC\COC.DOC					

702117				SA	AMPLE							02	108	//7		<u>3</u> of OUND TI	Bos
Send Report to <u>Rob</u>	• Roberts; Cla	ure Tochi	ilin		SAMP	LERS (s	ignatu	rella	v 1	at	-		ſ	P	age #	<u>3</u> of	د
Company <u>So</u>		rategies,	Inc.	2000	PROJI	ECT NA	ME/NC).	- <u> </u>		F	PO #		Stan RUS	dard (2)		
City, State, ZIP <u>Se</u>	attle, Washii 1900 Faz		<u>102</u>)6-306	-1907	REMA	RKS								Dispo Retu	SAMPLE DISPOSAL ispose after 30 days eturn samples 'ill call with instructions		
									· · · · · · · · · · · · · · · · · · ·		Ål	VALYSE	S REQU	JESTED			
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270				Not	es
EX03-BOI-4	EXO 3	4	21	218/27	1040	Suil	1	\times				· · · · ·					
EX03-802-4		4	22	1	1042		1	\times									
EX03 - NSW01-2		2	23		1044			X									
EX03-WSW01-2		2	24		1046			\times								<u>-</u>	
EX03-ESW01-2		2	25		1048			\times	<u>.</u>								
EX03-55W 01-2		2	26		1050			\mathbf{x}									
5P03-03	EX03 SP		27	1	1055	+	-1-	\times									
					CF												
						218,	17						Sa	nples	receive	d at3	_°C

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by law Top t.	Clare Toch. In	Sandtarth	2/8/17	1300
Seattle, WA 98119-2029	Repetived by Zon	Michael E-chil	Fak	1	1
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044	Received by:				
FORMS\COC\COC_DOC	· · · · · · · · · · · · · · · · · · ·				

Friedman & Bruya, Inc. #702173

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 14, 2017

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on February 10, 2017 from the SOU_0811-005_20170210, F&BI 702173 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 10, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20170210, F&BI 702173 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
702173 -01	ED03-B03-6
702173 -02	ED03-WSW02-3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/17 Date Received: 02/10/17 Project: SOU_0811-005_20170210, F&BI 702173 Date Extracted: 02/13/17 Date Analyzed: 02/13/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 56-165)
ED03-B03-6 ⁷⁰²¹⁷³⁻⁰¹	<50	<250	105
ED03-WSW02-3 ⁷⁰²¹⁷³⁻⁰²	<50	<250	101
Method Blank 07-297 MB	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/17 Date Received: 02/10/17 Project: SOU_0811-005_20170210, F&BI 702173

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 7	'02173-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	91	96	63-146	5
Laboratory Code: I	.aboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	102	79-1	44		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

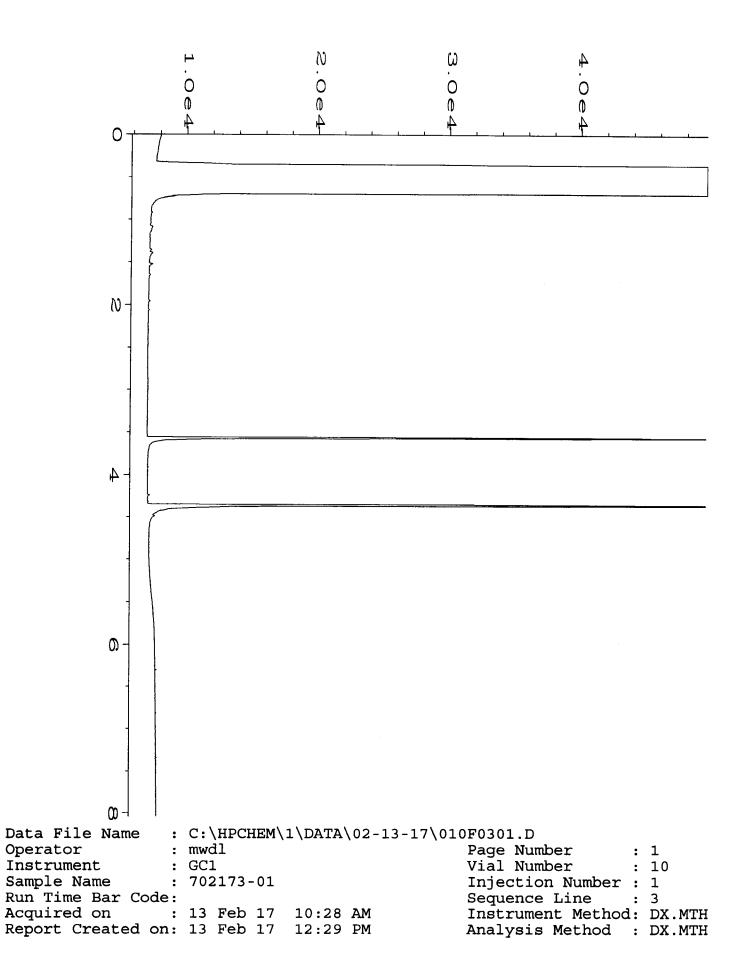
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

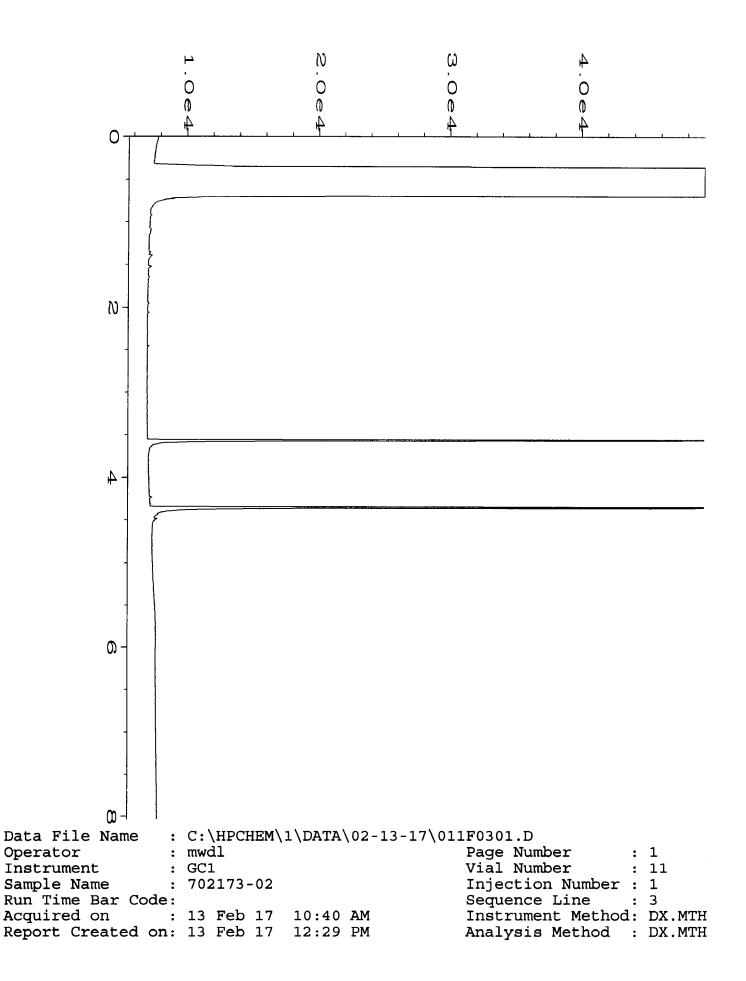
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

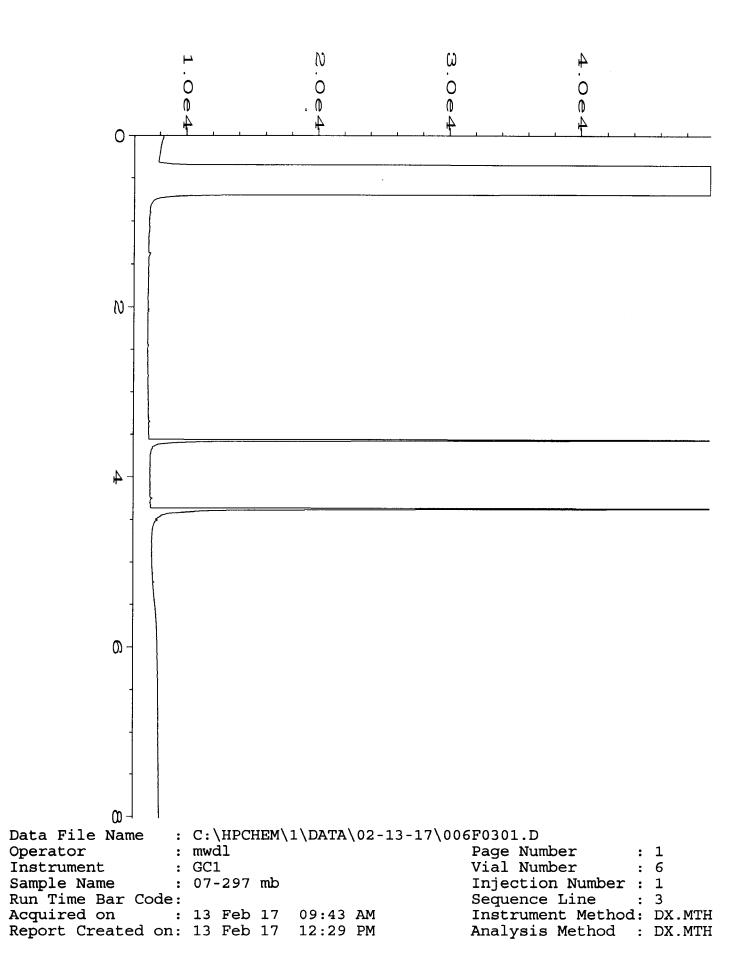
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

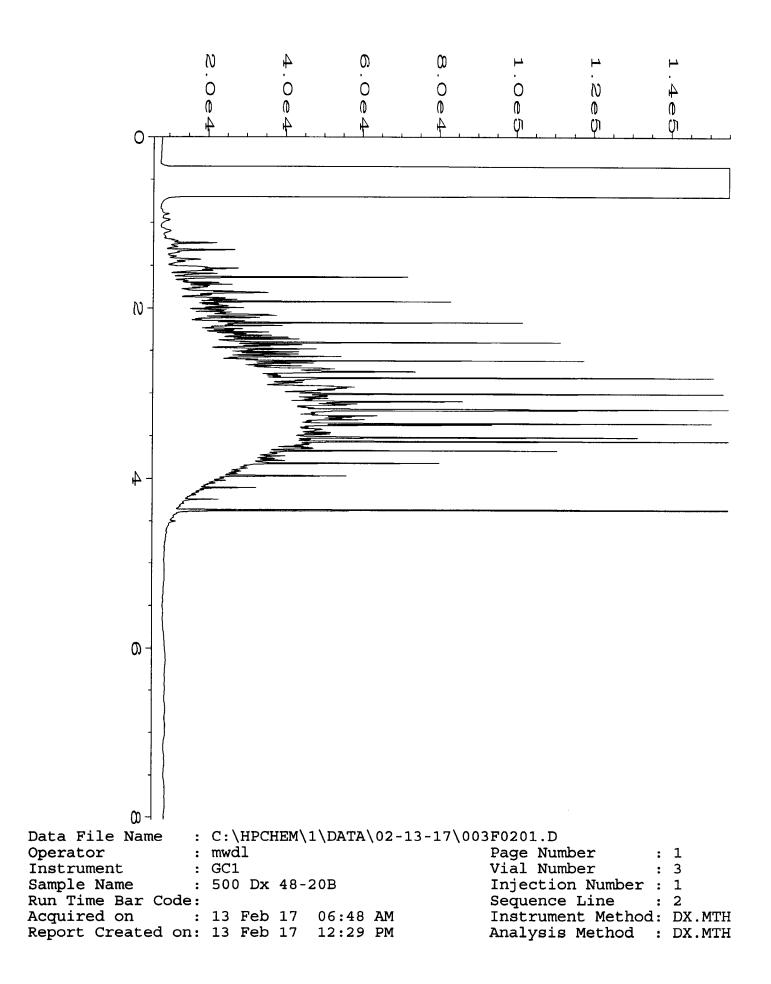
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

702173				S	AMPLE	CHAI	N OF	CUS	TOD	Y		ME O	2 /10	117		1 1 80
Send Report to <u>Rot</u>	<u> Roberts;</u> Cla	are Tochi	lin		SAMP	LERS (s	ignatur	re)	Da	Jor				T	age #	of
Company <u>So</u>					PROJ	ECT NA).			F	• 0#		Stan (RUS)	dard (2 H	COUND TIME Weeks)
Address 281	<u>1 Fairview A</u>	<u>venue E,</u>	Suite	2000	_		th and J	ackson			081	1-005		Rush cl	harges a	uthorized by:
City, State, ZIP <u>Se</u> Phone # <u>206-306-</u>				-1907	REMA	RKS		<u></u> ,, _,						Dispo Retu	ose afte: rn samp	E DISPOSAL r 30 days bles h instructions
												NALYSE	S REQU	JESTED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270				Notes
EX03-803-6 EX03-WSW02-3	EXU3	6	01	2/10/17	1240	soil	T	\times	· · · · · · · · · · · · · · · · · · ·							
EX03-W5W02-3	EX63	3	UZ.	ZADINY	1245	501	1	X								
					C3		(10/1	2								
	I	L	L	1												

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by: Clan Fert	Clare Tach Min	Sunta A	2110117	1355
Seattle, WA 98119-2029	Received by:	Nhan phan	FLBI	2/10/17	1355
Ph. (206) 285-8282	Relinquished by:				
Fax (206) 283-5044 FORMS\COC\COC.DOC	Received by:		Sampline race	west at 4	<u>•</u> C
			1		

Friedman & Bruya, Inc. #705113

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 9, 2017

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on May 5, 2017 from the SOU_0811-005_ 20170505, F&BI 705113 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0509R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 5, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20170505, F&BI 705113 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	SoundEarth Strategies
705113 -01	EP-WSW-02
705113 -02	EP-B-05

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/09/17 Date Received: 05/05/17 Project: SOU_0811-005_20170505, F&BI 705113 Date Extracted: 05/05/17 Date Analyzed: 05/05/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 56-165)
EP-WSW-02 ⁷⁰⁵¹¹³⁻⁰¹	11,000	<250	108
EP-B-05 705113-02	2,700	<250	97
Method Blank 07-990 MB	<50	<250	89

ENVIRONMENTAL CHEMISTS

Date of Report: 05/09/17 Date Received: 05/05/17 Project: SOU_0811-005_20170505, F&BI 705113

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 7	705104-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	82	92	63-146	11
Laboratory Code: 1	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	82	79-1	44		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

 $\ensuremath{\text{ip}}$ - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

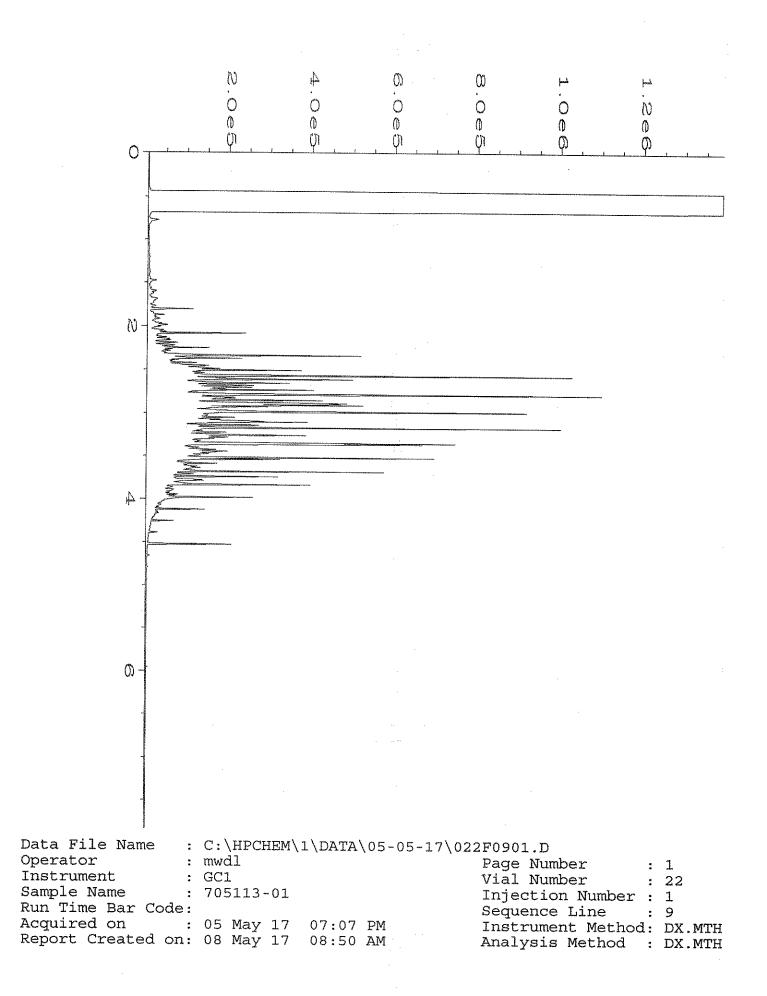
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

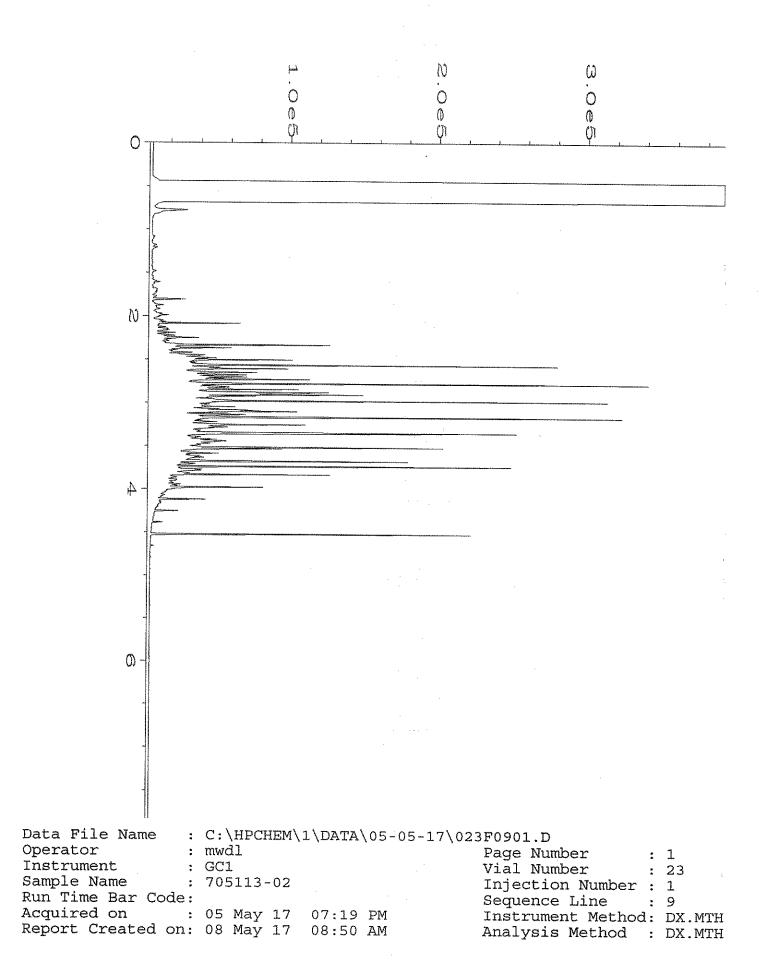
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

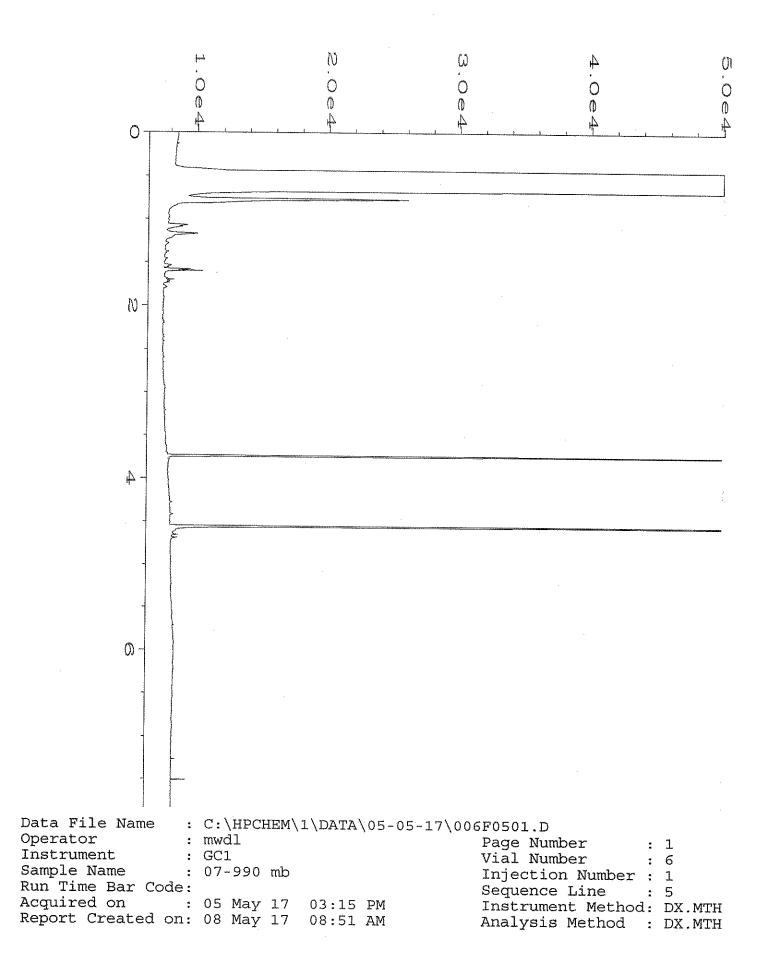
lc - The presence of the analyte is likely due to laboratory contamination.

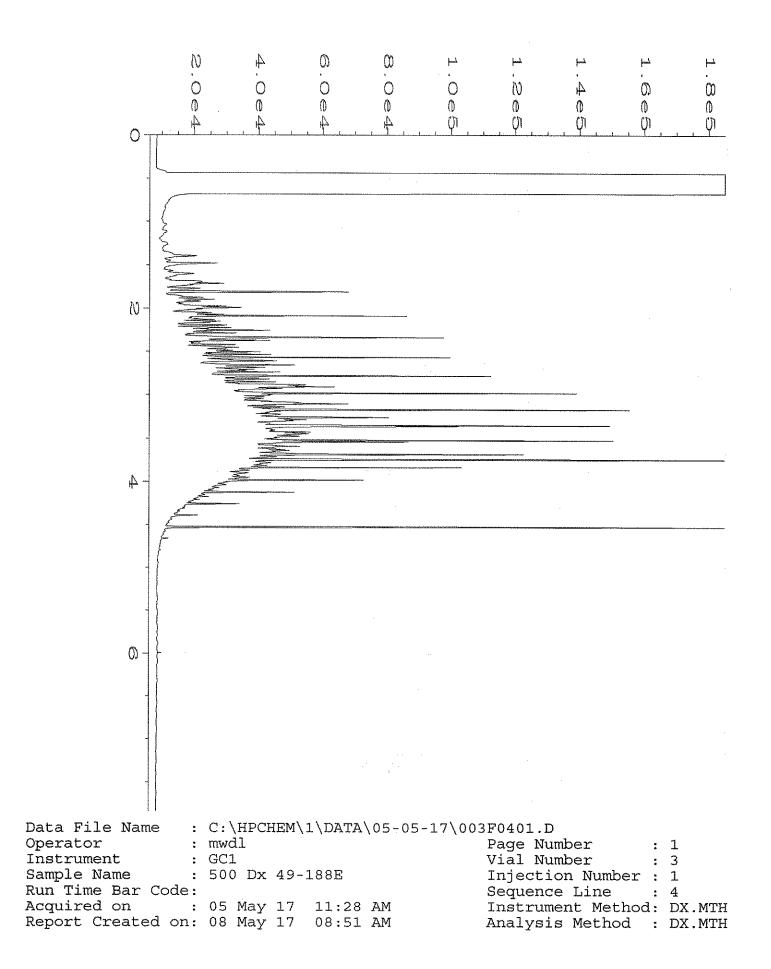
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

.

Send Report to	- REMA	18 ARKS	^{3th} and •	O. Jacksor	1		I 08: 	NALYSE	SREQU	Star RUS Rush o Disp Retu Will	dard (2 A <u>Mcn</u> charges a SAMPLI sose after urn samp call with	Weeks) Jay 5/8 10 A authorized by: E DISPOSAL r 30 days bles
City, State, ZIP_ <u>Seattle</u> , Washington 98102 Phone # <u>206-306-1900</u> Fax # <u>206-306-1907</u> $Sample ID \qquad Sample Lab Date ID Sampled Lab Date Sampled Matrix # of Jare Sampled Matrix # of Jare Sample A Date Sample Sample A Date S$	Time	*e**		/TPH-Dx	CPH-Gx	8021B		<i>.</i>	S REQI	Disp Retu Will	ose after urn samp call with	r 30 days oles
Sample ID Sample Location Sample ID Lab Date Sampled Time Sampled Matrix # of Jars $\chi + f$ </td <td></td> <td></td> <td></td> <td>/TPH-Dx</td> <td>PH-Gx</td> <td>8021B</td> <td></td> <td><i>.</i></td> <td>S REQI</td> <td>UESTED</td> <td>)</td> <td></td>				/TPH-Dx	PH-Gx	8021B		<i>.</i>	S REQI	UESTED)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Matríx		/TPH-Dx	rPH-Gx	8021B	3260	8270	•			
EP-B-05 FP 5 02.1 5/5/10 1150 Sall 5 X Image: Constraint of the second				MN	LMN	BTEX by	VOCs by {	SVOCs by				Notes
13 Still Samples received at 3 Samples received at 3	1143	Soil	5	K								
B Still Samples received at 3	1150	50.1	5	X								
UT SKIIT Samples received at 3 Samples received at 3		<u> </u>										
Samples received at 3		· · · · · · · · ·							· ·	·····		
Samples received at		12-5	15/17						-			
Samples received at							· · ·					
					<u> </u>			~		Sampl	es rece	ived at
	. 							~				
	ą			Person.				*				and the second se
		<u>l</u>			<u> </u>	l	لنا	<u> </u>			L	
dman & Bruya, Inc. SIGNATURE		1150	1150 501 er7 c	1150 Sol 5 07 SKIM PRI Clare	1150 50.1 5 X 17 17 17 17 17 17 17 17 17 17	1150 50.1 5 X UP SKIIT PRINT NAME Clar Delinin	PRINT NAME Can Dadin	PRINT NAME Clan Dichijm Son	1150 50.1 5 X UP SKIIT UP SKIIT U	PRINT NAME COMPAN Clar Danie Clar Danie Studiecom	PRINT NAME COMPANY Clar John Sturd Earth	IISO 56.1 5 X IISO 56.1 S #37 5(117) IISO Samples recently Samples recently Samples recently PRINT NAME COMPANY DA DA DA

Ph. (206) 285-8282	Ph	(206)	285-8282
--------------------	----	-------	----------

Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by for Tor	Clare Tochim	Sound Earth	5/5/17	1300
Received Dalfin	ORISTIAN BALDELOUM	14-	5/15/17	1339
Relinquished by:		· · · · · · · · · · · · · · · · · · ·		
Received by.	DEID	FEBE	5-5-14	-14.15
	· · · · ·	· · ·	· ·	

Friedman & Bruya, Inc. #705140

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 10, 2017

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on May 8, 2017 from the SOU_0811-005_20170508, F&BI 705140 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0510R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 8, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20170508, F&BI 705140 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
705140 -01	EP-ESW01-02
705140 -02	EP-NSW01-02
705140 -03	EP-B02-07.5
705140 -04	EP-B03-07
705140 -05	EP-WSW02-03
705140 -06	EP-WSW03-03
705140 -07	EP-SSW01-03

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/10/17 Date Received: 05/08/17 Project: SOU_0811-005_20170508, F&BI 705140 Date Extracted: 05/08/17 Date Analyzed: 05/08/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EP-ESW01-02 705140-01	<50	<250	119
EP-NSW01-02 705140-02	<50	<250	103
EP-B02-07.5 ⁷⁰⁵¹⁴⁰⁻⁰³	<50	<250	101
EP-B03-07 ⁷⁰⁵¹⁴⁰⁻⁰⁴	<50	<250	101
EP-WSW02-03 705140-05	5,200	<250	108
EP-WSW03-03 705140-06	<50	<250	104
EP-SSW01-03 ⁷⁰⁵¹⁴⁰⁻⁰⁷	<50	<250	102
Method Blank ^{07-1000 MB}	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 05/10/17 Date Received: 05/08/17 Project: SOU_0811-005_20170508, F&BI 705140

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	705140-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	96	95	64-133	1
Laboratory Code: Laboratory Control Sample							
			Percent				
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	97	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

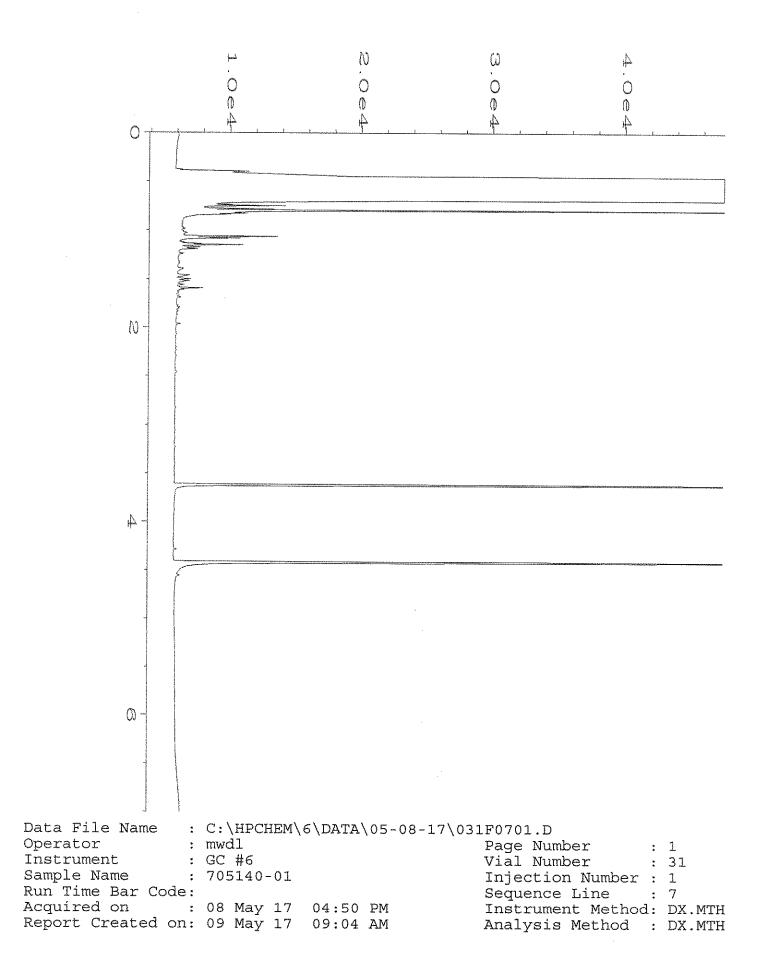
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

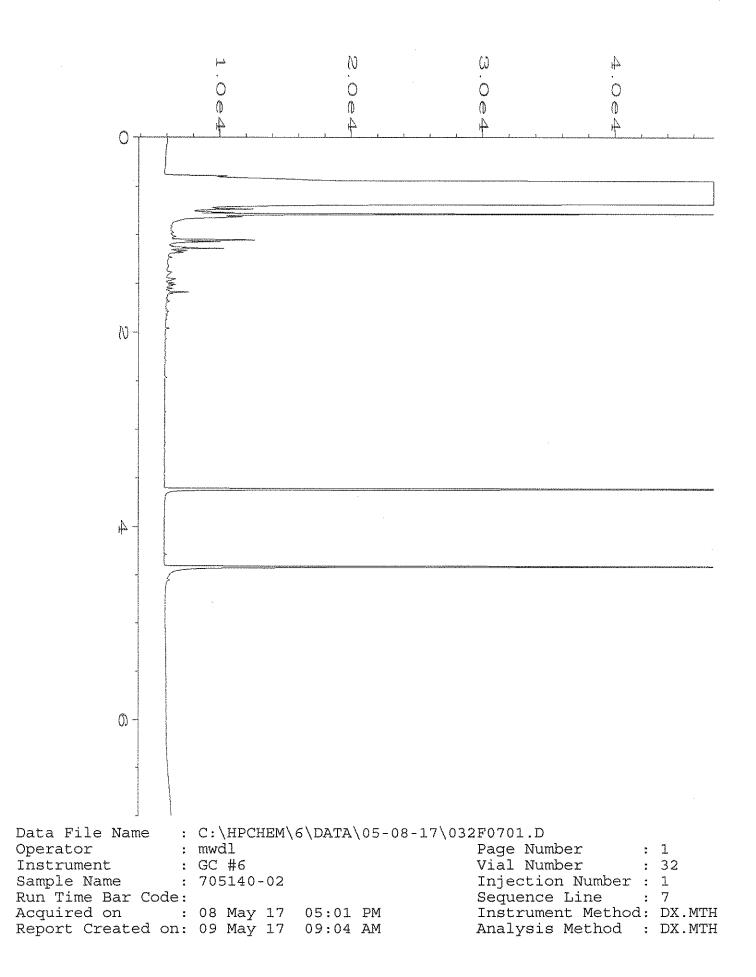
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

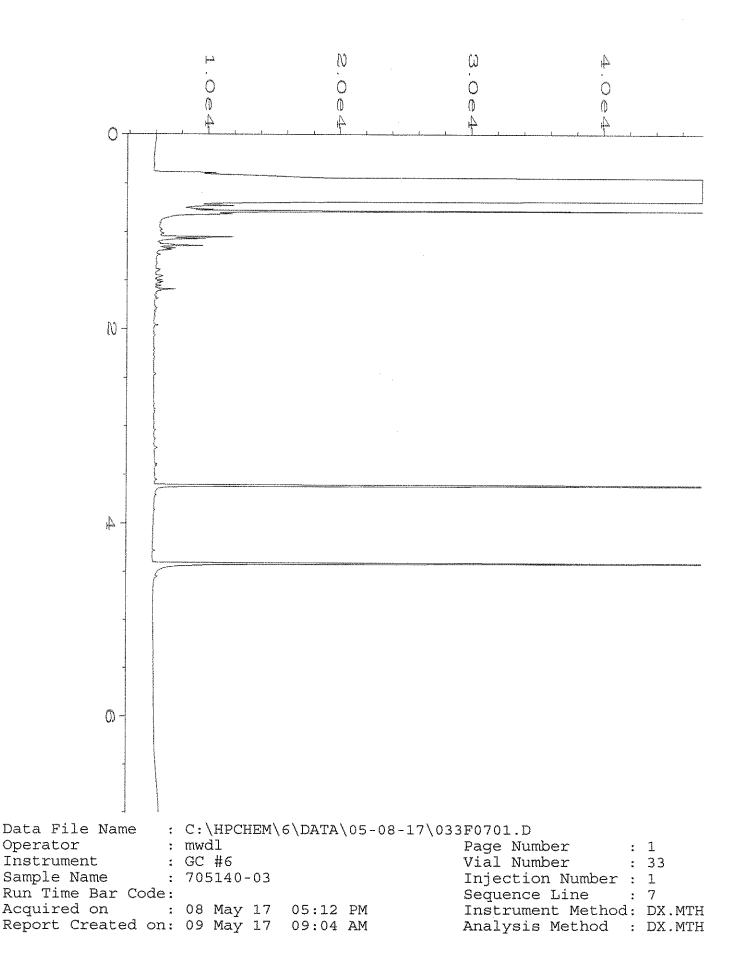
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

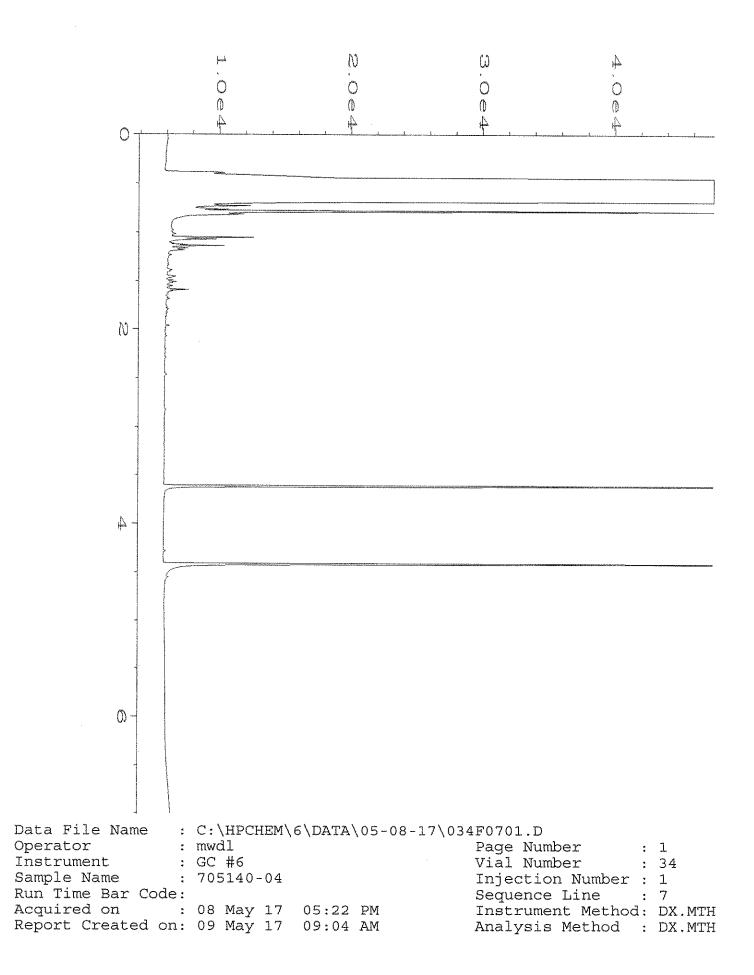
lc - The presence of the analyte is likely due to laboratory contamination.

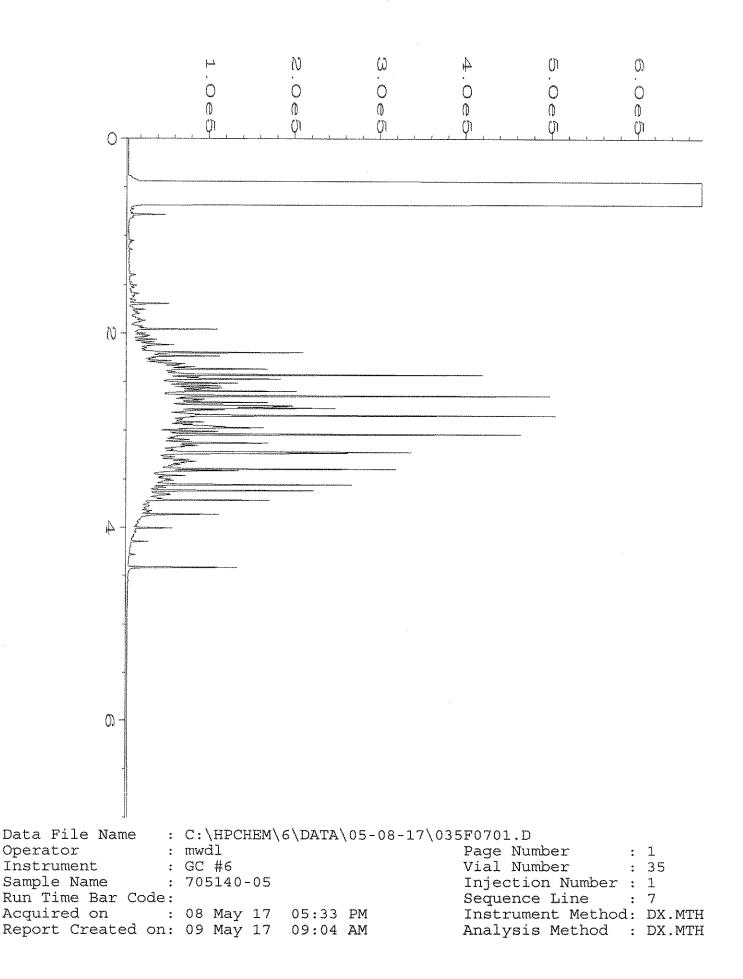
L - The reported concentration was generated from a library search.

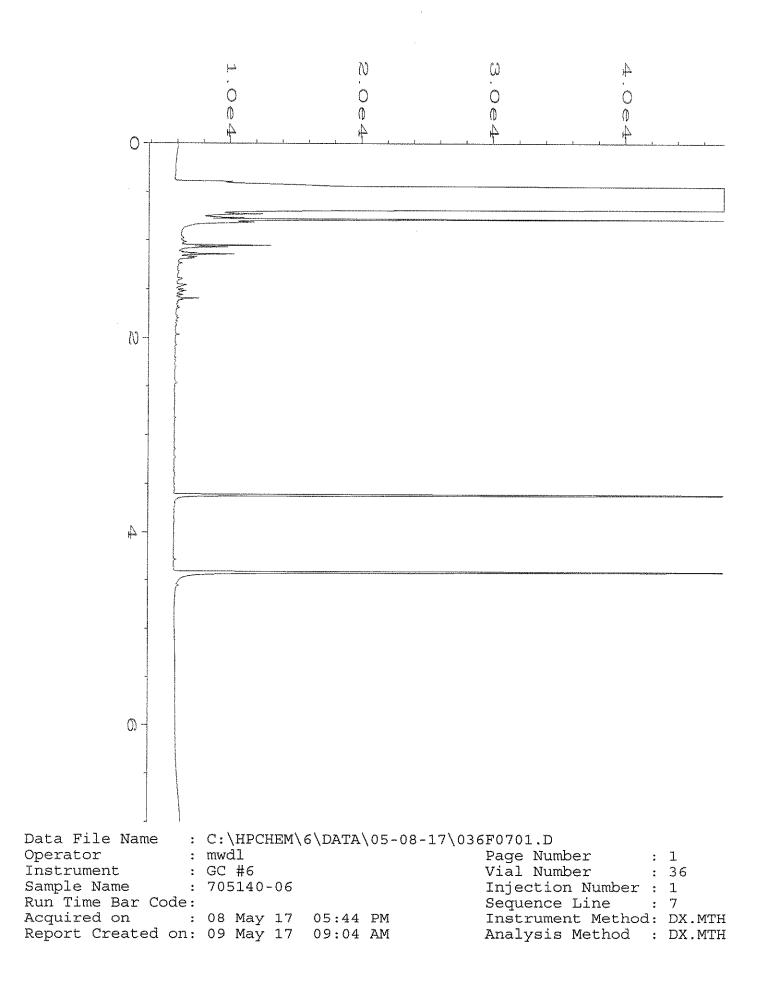

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

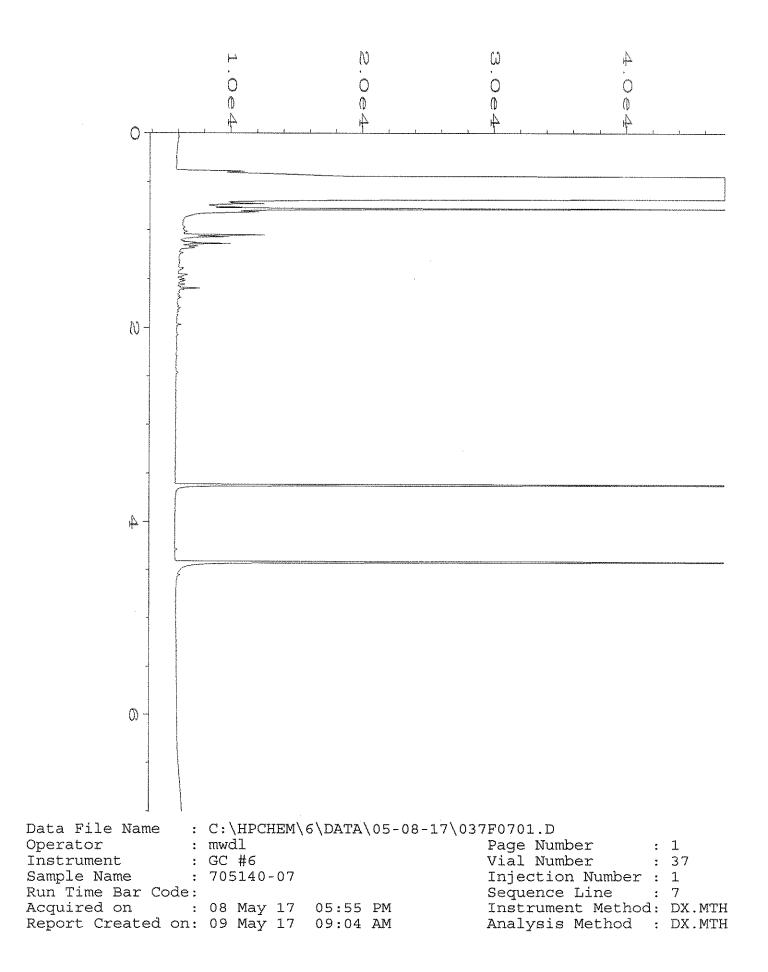

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

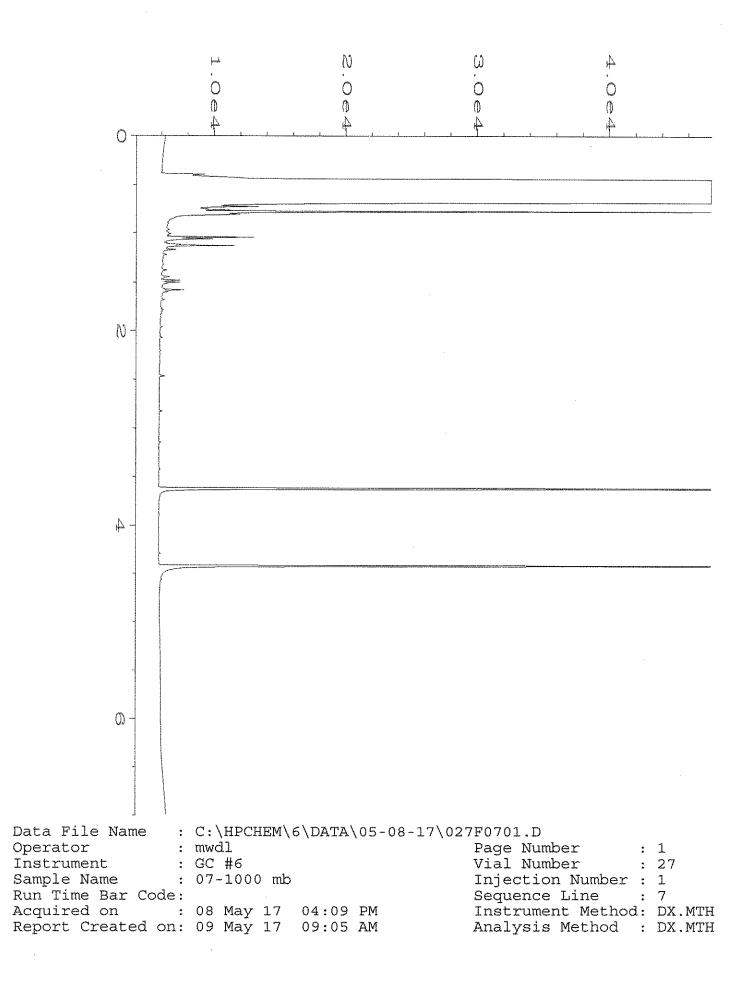

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

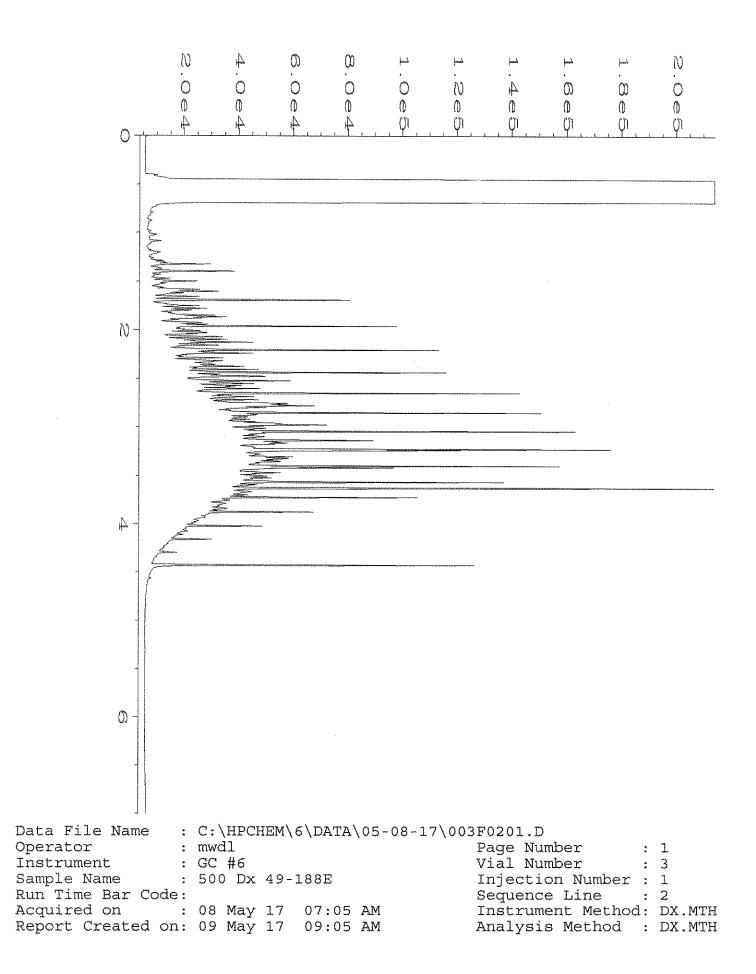

vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.









705140				S	AMPLE					1		ME	- 0.	510.	8/17	1 , D
Send Report to <u>Rob</u>	Roberts; Cl	are Toch	ilin		SAMI	PLERS (signati	ure la	U 4	Gn					Page #	of JND TIME
	undEarth St				PROJ	ECT NA	ME/N	0.	<u>/</u>		·	PO #			ndard (2 We	
	Fairview A			2000	-	18	th and	Jacksor	1		08	11-005	5		charges aut	
City, State, ZIP <u>Sea</u> Phone # <u>206-306-1</u>	<u>ittle, Washi</u>	ngton 98			REMA	ARKS					L		-	Ret	SAMPLE I pose after 3 urn samples l call with in	0 days
				,		*	T	l.			A	NALYS	ES REG	QUESTEI		
	()			***				Dx	ЗХ	21B		S.	-			••••••••••••••••••••••••••••••••••••••
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270	-			Notes
EP-ESW01-02	EP	2	01	518/17	1225	Soil	1	X				,	-			
EP-NSW01-02		2	02		1226	1		X								
EP-B02-07.5	· · · · ·	7.5	03		1315			X							-	
EP-803-07		1	dY		1320			X				· · ·				
FP-WW02-03		3	05		1346			X		· ·						
EP-WSW03-03	~	3	06		345			×		· .				·		
EP-JJW01-03	Į.	3	07		1415		4	X								·····
					~										· · · · · · · · · · · · · · · · · · ·	,
			~		G,	5/8	717					- / -				
					ф.			the state of the s							<u> </u>	······
						· .					LI]
Friedman & Bruya, In	77 . 1	SIC	INATI	URE				NT NAI	A			CO	MPAN	JY	DATE	TIME
3012 16th Avenue West		\mathcal{I}	an	The		<u> </u>	~	Tochi	lin			BARE			5/8/17	151D
Seattle, WA 98119-202	9 Relinqui	7	9-c	20		\subseteq	<u>)6</u> .	10			ļ Ī	-6-B	E		5-8-17	L 15.16
Ph. (206) 285-8282	Received								-							
Fax (206) 283-5044		- 4 -	• •	·····								Sa	ample	s receiv	replat Ψ	°C

i

FORMS\COC\COC.DOC

Friedman & Bruya, Inc. #705380

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 25, 2017

Rob Roberts, Project Manager SoundEarth Strategies 2811 Fairview Ave. East, Suite 2000 Seattle, WA 98102

Dear Mr Roberts:

Included are the results from the testing of material submitted on May 22, 2017 from the SOU_0811-005_20170522, F&BI 705380 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Clare Tochilin SOU0525R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 22, 2017 by Friedman & Bruya, Inc. from the SoundEarth Strategies SOU_0811-005_ 20170522, F&BI 705380 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	SoundEarth Strategies
705380 -01	EP-WSW04-04
705380 -02	EP-WSW05-04
705380 -03	EP-B04-09

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/17 Date Received: 05/22/17 Project: SOU_0811-005_20170522, F&BI 705380 Date Extracted: 05/22/17 Date Analyzed: 05/22/17

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EP-WSW04-04 705380-01	<50	<250	106
EP-WSW05-04 ⁷⁰⁵³⁸⁰⁻⁰²	<50	<250	106
EP-B04-09 ⁷⁰⁵³⁸⁰⁻⁰³	<50	<250	94
Method Blank ^{07-1119 MB}	<50	<250	134

ENVIRONMENTAL CHEMISTS

Date of Report: 05/25/17 Date Received: 05/22/17 Project: SOU_0811-005_20170522, F&BI 705380

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	705363-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	104	116	64-133	11
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent				
	Reporting	Spike	Recovery	y Accep	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	103	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

 ${\bf b}$ - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

 ${\rm d}$ - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The compound is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

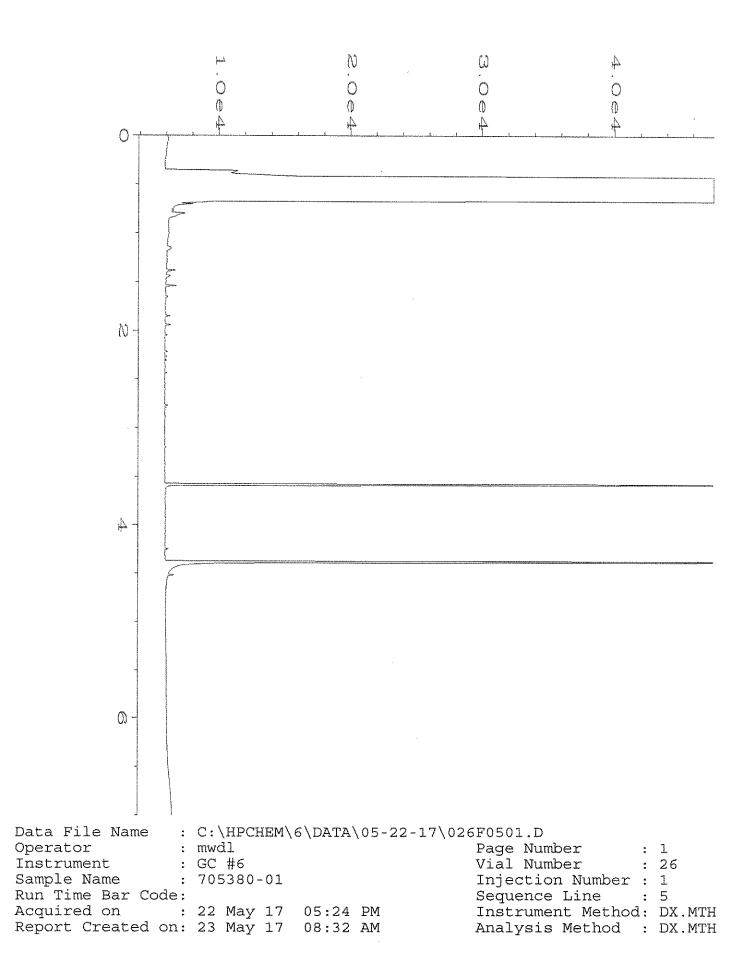
J - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

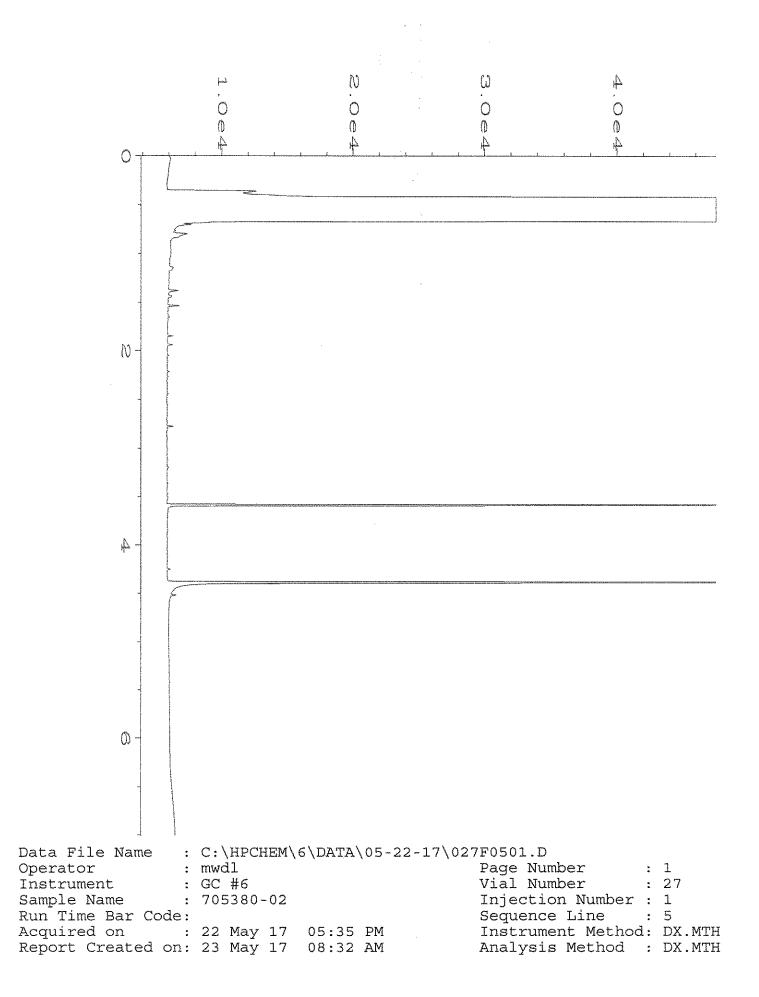
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

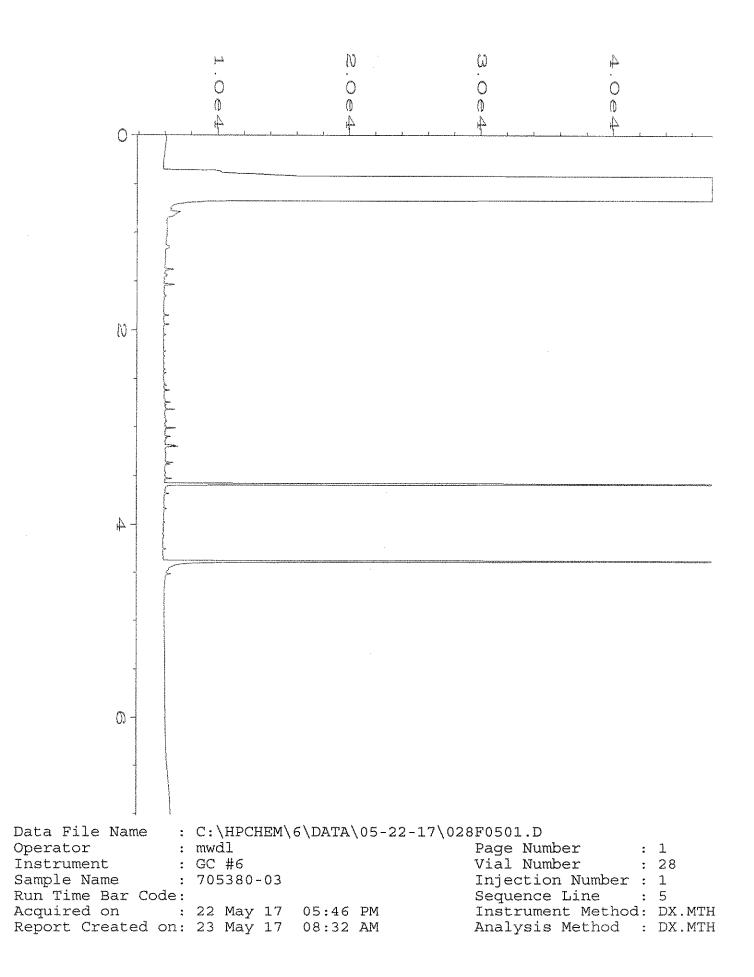
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

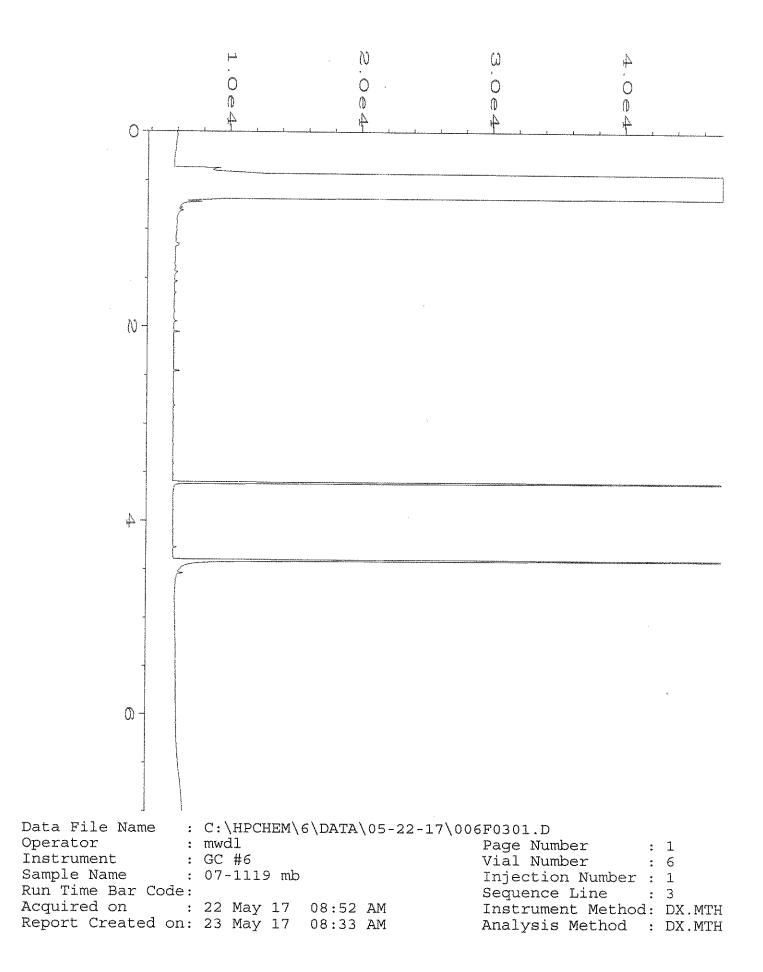
lc - The presence of the analyte is likely due to laboratory contamination.

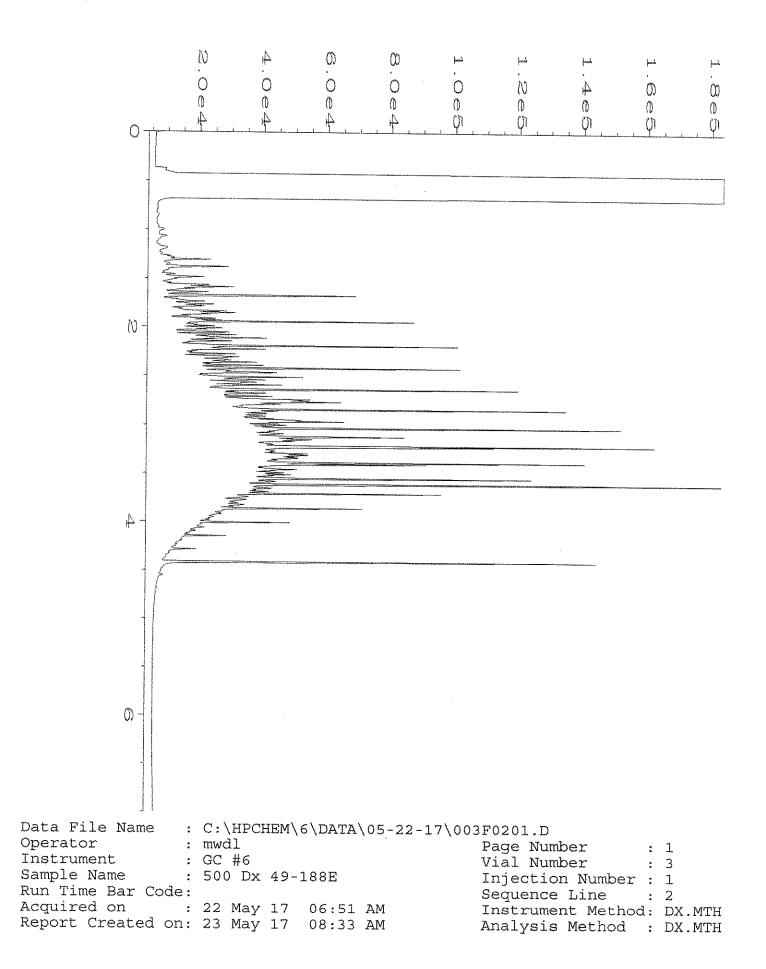
L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.


pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.


ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.


vo - The value reported fell outside the control limits established for this analyte.


x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Send Report to <u>Rot</u>	Roberts; Cl	are Toch	ilin		SAMP	LERS (s	ignatu	re) (l	en	P	~~~				Page # URNAH	ROUND	of TIME
Company <u>So</u>	undEarth St	rategies,	Inc.		- PROJ	ECT NA]	20#		RUS/	dard (2 H_24	Weeks)	(10 AM
Address 281	1 Fairview A	venue E,	Suite	2000			h and J	acksor	1		08	11-005			harges a		
City, State, ZIP <u>Se</u> Phone # <u>206-306-</u>			102)6-306	-1907	- REMA									Disp Retu	SAMPL ose afte urn samj call wit	er 30 day ples	ys
									1	1	A	NALYS	ES REQI	UESTED	<u>,</u>	1	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOCs by 8260	SVOCs by 8270					Notes
EP-WSW04-04 EP-WSW05-04	WSW	4	01	5/2Z/M	0936	Soil		\sim	· ·								<u> </u>
	New	4	02		0955		1	\propto									
EP-B04-09	B	9	03		1000		<u> </u>	\times									
										·						L	
														_			
					~ - - - ア									ļ			
					JT 5	2017											h
													Sam	ples r	eceive	dat .	4.

Friedman & Bruya, Inc.		PRINT NAME	COMPANY	DATE TIME	
3012 16th Avenue West	Relinquished by Clan La	Clac Tothin	Soundsarth	5/22/17 1150	/
Seattle, WA 98119-2029	Received by: How	HONGNAGU	FIL FBT	2	
Ph. (206) 285-8282	Relinquished by: /			· ·	
Fax (206) 283-5044	Received by:		······································	······································	
FORMS\COC\COC.DOC	L	*			

APPENDIX C TERRESTRIAL ECOLOGICAL EVALUATION

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name:

Facility/Site Address:

Facility/Site	No.
r aunity/One	110.

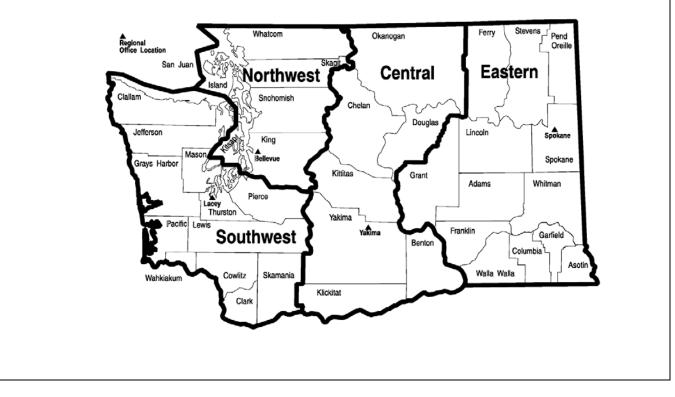
VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:				Title:
Organization:				
Mailing address:				
City:		Sta	te:	Zip code:
Phone:	Fax:		E-mail:	

Step 3: DOO	CUMENT EVALUATION TYPE AND RESULTS
A. Exclusior	n from further evaluation.
1. Does the	Site qualify for an exclusion from further evaluation?
	fes If you answered "YES," then answer Question 2.
	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is th	ne basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of C	ompliance: WAC 173-340-7491(1)(a)
	All soil contamination is, or will be,* at least 15 feet below the surface.
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to	Exposure: WAC 173-340-7491(1)(b)
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undevelop	ped Land: WAC 173-340-7491(1)(c)
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
acceptable to E * "Undevelope prevent wildlife # "Contiguous"	based on future land use must have a completion date for future development that is Ecology. d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area


В.	Simplified	evaluation.
1.	Does the S	Site qualify for a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 2 below.
	🗌 N Unkn	lo or or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.
2.	Did you co	onduct a simplified evaluation?
	🗌 Y	es If you answered "YES," then answer Question 3 below.
	🗌 N	lo If you answered " NO, " then skip to Step 3C of this form.
3.	Was furthe	er evaluation necessary?
	□ Y	es If you answered "YES," then answer Question 4 below.
	🗌 N	lo If you answered " NO, " then answer Question 5 below.
4.	lf further e	valuation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.
	Exposure /	Analysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway A	nalysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

C.	the problem	fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating n, and (2) selecting the methods for addressing the identified problem. Both steps isultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).
1.	Was there	a problem? See WAC 173-340-7493(2).
	Y	es If you answered "YES," then answer Question 2 below.
	□ N	⁰ If you answered " NO ," then identify the reason here and then skip to Question 5 below:
		No issues were identified during the problem formulation step.
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.		ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).
		Literature surveys.
		Soil bioassays.
		Wildlife exposure model.
		Biomarkers.
		Site-specific field studies.
		Weight of evidence.
		Other methods approved by Ecology. If so, please specify:
4.	What was	the result of those evaluations?
		Confirmed there was no problem.
		Confirmed there was a problem and established site-specific cleanup levels.
5.		already obtained Ecology's approval of both your problem formulation and esolution steps?
	□ Y	es If so, please identify the Ecology staff who approved those steps:
	□ N	0

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160 th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Southwest Region: Attn: VCP Coordinator	Eastern Region: Attn: VCP Coordinator
Attn: VCP Coordinator	Attn: VCP Coordinator

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

APPENDIX D WELL DECOMMISSIONING DOCUMENTATION

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report

AONITORING WELL REPORT	Well ID# <u>BJY 047</u> Start Card # <u>AE 41000</u>	
1) OWNER/PROJECT WELL NO Tame Secitite Borings Iddress 1803 S Jackson St ity Seaffle State WA Zip 981444	(6) LOCATION OF WELL By legal description: County <u><i>King</i></u> Latitude Longitu Township <u><i>24N</i></u> (N or S) Range <u><i>4E</i></u> (E or W) Se SW <u>1/4 of NW</u> 1/4 of above section.	1de
2) TYPE OF WORK	Street address of well location 1901 S Jack, Seattle	sonst
New construction Alteration (Repair/Recondition) Conversion Deepening	Tax lot number of well location	
3) DRILLING METHOD	(7) STATIC WATER LEVEL: Ft. below land surface. Date Artesian Pressure lb/sq. in. Date	
4) BORE HOLE CONSTRUCTION:	(8) WATER BEARING ZONES:	
pecial Standards Depth of Completed Well <u>38</u> ft.	Depth at which water was first found	· · · · · · · · · · · · · · · · · · ·
	From To Est. Flow Rat	swL
Vault Special Standards Water-tight cover		
Surface flush vault		
ft.		
Good Material PVC	(9) WELL LOG:	
Welded Threaded Glued	Ground Elevation	
	Material From	To SWL
Seal Sood		
ft. 500 Weil Seal:		
Material Bentonite		
TO ORO Amount Chip	- backfilled from	
ft. Clock Grout weight	bottom to top w/	
	bentonik chips O	38
Borehole diameter:		
2023 2023 2023 2023 2023 2023 2023 2023		
050		
Filter		
pack: Sies E. So S. Screen:	FEB 01 2017	
f. 9000 Harrial	DEPT OF ECOLOGY	
TO 0000 From ft. to	NWRO - WR	
t ave H ave		
Filter pack:	Date started 1/10/17 Completed 1/10	117
	WELL CONSTRUCTION CERTIFICATION:	
	I constructed and/or accept responsibility for construction of this compliance with all Washington well construction standards. M	s well, and its laterials used
5) WELL TESTS:	and the information reported above are true to my best knowled	ge and belief.
Primp Bailer Air Plowing Artesian Permeability YieldGPM	Type or Print Name JEREMPU CULLSDA License No.	2989

Permeability	Yield	GPM		Type or Prir
Conductivity	PH	······································		Trainee Na
Temperature of water	OF/C Dept	h artesian flow found	ft.	
Was water analysis done'?	No			Drilling Cor
By whom'?				(Signed)
Depth of strata to be analyzed. From		11.10	<u> </u>	
Remarks:				Address
			>	Registrat
Name Of Supervising Geologist/Engin	neer	Jound Barth	······	

Type or Print Name JEREMEY LULISDA License No. 2989	
Trainee Name License No.	
Drilling Company Hotacene Drilling InC.	
(Signed) License No. 2989	10
Ageress 11412 62nd Ave E Puppellup, U. 983	iB
Registration No. HOLDCDI044KH Date	

APPENDIX E DISPOSAL DOCUMENTATION

Ticket List By Customer\Order\Product

Ticket List By Customer\Order\Product

			02/01/2017 To 1876 7651	02/28/2017					
Date	TicketNo	Delivery Address	Vehicle		Timeln	TicketTime	Qty	Unit	S h i p
Scale SOUTH J <i>A</i>	Tickets ACKSON STREE	T DEV-VARIOUS VARIOL							
41097651 1192508									
2/10/17	1876090920	P:76:18TH & JACKSON PROPER	1876-7,EVERETT	SOIL GENERIC	9:13:01	9:32:37	26.64	TON	R
2/10/17	1876090923	P:76:18TH & JACKSON PROPER	1876-9,EVERETT	SOIL GENERIC	10:38:21	10:59:44	30.46	TON	R
2/10/17	1876090931	P:76:18TH & JACKSON PROPER	1875-8,EVERETT	GENERIC	0:00:00	13:57:59	32.25	TON	R
Product T Order Tota Customer	als 3					Qt Qt Qt	89.35 89.35 89.35	TON	
Grand Tot	tal	3				Qty	89.35	TON	

All Facilities

333439- South Jackson Street Development LLC

Ticket Facility & Ticke Date Number	et Contract	Truck #	Container	Material	Material Rate	Billing Quantity	Material Total	Tax Total	Total
02/09/2017 I 01 94624	2 LW-17033	SOIL		SW-CONT SOIL W/FUEL	45.00 F	17.31 TN	\$778.95	\$0.00	\$778.95
02/09/2017 I 01 94624	6 LW-17033	SOIL		SW-CONT SOIL W/FUEL	45.00 F	9.26 TN	\$416.70	\$0.00	\$416.70
05/22/2017 I 01 94994	7 LW-17033	01 FISCHER		SW-CONT SOIL W/FUEL	45.00 F	34.61 TN	\$1,557.45	\$0.00	\$1,557.45
05/22/2017 I 01 94996	4 LW-17033	01 FISCHER		SW-CONT SOIL W/FUEL	45.00 F	37.55 TN	\$1,689.75	\$0.00	\$1,689.75
05/22/2017 I 01 94998	4 LW-17033	01 FISCHER		SW-CONT SOIL W/FUEL	45.00 F	34.64 TN	\$1,558.80	\$0.00	\$1,558.80
Tickets Reported:	5 Items Reported:	5			Customer T	otals:	\$6,001.65	\$0.00	\$6,001.65
Material Summary	Weight Inbound Outbound	Volume Inbound Out	bound	Count Inbound Outbound	Billing Quantity	Mater To		Tax otal	Total
VH - SW-CONT SOIL W,	133.37 0.00 TN	0.00	0.00 YD	0.00 0.00	133.37 TN	l \$6,00	1.65 \$	50.00	\$6,001.65
				Casl	h Totals:				
				Invoice	e Totals:	\$6,	001.65	\$0.00	\$6,001.65
Tickets Reported:	5 Items Reported:	5		Repor	t Totals:	\$6,	001.65	\$0.00	\$6,001.65

Clea	DD=\ n Service and	Tele-Scan	B	
	H STREET E. PUVA			
Work Order = 179210-0	-4326 - (888) 565-56	Date 2		
Customer Dive & RAY				
Job Addings 1801 9	Jackson			
any state zie Countile	WA	Job Phone.		
Travel to Site	Do Site		Durap Dut Completed	Return To Shop
Sour (mg 500) 20 100	101-000	1230m	\	
	SPILL	CIPT	Tat	∎sw
opening Stram L	Cabore/		THUMPLING	
	JOB DESCR	RIPTION		
PT to pung	Run Wo	iter fi	in bille	
			Exearta	Linn
		_		
	OFF SITE			
LOCATION: (uthight				
Rionature (len 1	e, L			
1.44.0	and fees charged	for the servic	es rendered a:	s stated on this
A agree to pay all the costs statement. The terms are I services are required, solely reasonable costs for collection fees. If legal action is requi County Superior Court, State will be assessed a late fee of	ren the opinion of on including attorne red the parties agr of Washington. It one and a balf per	Pro Vac. to c ey fees and co ee to the ven is further agre	balance month ollect the debt osts and any co ue of the actio sed that any ac	ny. If collected , 1 agree to pay bllection agency n will be Pierce counts past due ulative
	CUSTON		or monthe odin	

B.O.L. # 58094 SHIPPING PAPER

DEL WERK DATE

6622 112th Street East Puyallup, WA 98373

				DELIVER	O DATE	7	JOR #	- 11	ñiă.	
SHIPPER	/ CUSTOMER			POINT O	F CONTA	(CT				
ADDRES	Faind Futh shally.	2		PHONE	<u>.</u>					
	(20) G Mikson			PHONE	-					
CITY, ST	ATE, ZIP GRENTILE VUE									
CARRIEF	TRANSPORTER			PHONE	ŧ					
CONSIGN	NEE / FACILITY			POINT OF CONTACT						
ADDRES				PHONE #						
CITY, STA	TE, ZIP									
				Contain	ers	Total				
НМ	US DOT Description (Including Proper Shipping Name, Hazard Class, a	and ID Number)	k	No	Туре	Quantity		MOL	CHLOR	рН
A	Not Reg & DOT			4	TT	250°ya(
В										
С										
D									_	
			<u> </u>							
Special H	andling Instruction and Additional Information:									
Placards	Provided YES NO									
SHIPPER	S CERTIFICATION: I hereby declare that the contents of this consignment	ent are fully and acc	urately de	scribed at	ove by pr	oper shipping nar	ne and are	e classi	fied. pack	ed,
marked. a	nd labeled, and are in all respects in proper condition for transport by his 3) PRINT OR TYPE NAME	ghway, vessel, and i SIGNATURE	rail accord	ling to app	licable int	ernational and na	tional gove	ernmen	t regulatio	INS.
		14	the second				MONT	2	N V	7
(CARRIER	A/TRANSPORTER) PRINT OR TYPE NAME	X SIGNATURE	1				MONT	н	YAC	YEAR
x 🔿	A war Laddama	x the	a	ve-			12	L.	(I)	Z
	NEE/FACILITY) PRINT OR TYPE NAME	SIGNATURE					MONT	Н	DAY	YEAR
X		X					j			

