#### **Technical Memorandum**

**TO:** Mohsen Kourehdar, PE, Washington State Department of Ecology

**FROM:** Christine Kimmel, LG, and Sierra Mott

**DATE:** January 23, 2018

**RE:** Groundwater Quality Results

Dry Season 2017 Long-Term Compliance Monitoring

Cascade Pole Site, Olympia, Washington

At the request of Mr. Don Bache of the Port of Olympia, we are providing the Washington State Department of Ecology (Ecology) with the results of the Dry Season groundwater sampling event conducted in October 2017 at the Cascade Pole site (Site). Groundwater sampling was conducted as part of the Long-Term Groundwater Compliance Monitoring (LTGCM) program outlined in the amendment to Consent Decree No. DE 00TCPSR-753.

#### **Groundwater Monitoring**

Groundwater elevation measurements were collected on October 11, 2017, and are presented in Table 1. All interior perimeter well groundwater elevations achieved the current hydraulic control goals identified for the Site, except for one well (LW-4R). The groundwater elevation of 15.96 feet (ft) mean lower low water (MLLW) measured at well LW-4R during the October 2017 event exceeded the goal of elevation 15.5 ft MLLW.

A total of 15 water quality samples (14 wells and 1 quality assurance sample) were collected during the dry season sampling event. Samples were collected from the following well pairs: PZ-12 and PZ-13, LW-3 and PZ-17, LW-4R and PZ-18, and MW-02S and PZ-19. Samples were also collected from interior monitoring wells MW-01S, MW-01D, MW-02D, MW-05S, MW-05D, and CW-13. The locations of the sampled wells are shown on Figures 1 and 2.

Groundwater samples were submitted to Analytical Resources Inc. (ARI), located in Tukwila, Washington for analysis of polycyclic aromatic hydrocarbons (PAHs) using US Environmental Protection Agency (EPA) Method 8270D, with select ion monitoring (SIM); follow-up PCP analysis was conducted using EPA Method 8041A if PCP results from initial analyses using EPA Method 8270D(SIM) were below reporting limits at the higher reporting limit; gasoline-range total petroleum hydrocarbons (TPH-G) using Method NWTPH-G; and diesel-range (TPH-D), oil-range TPH (TPH-O), and creosote-range total petroleum hydrocarbons using Method NWTPH-Dx.

#### **Analytical Results**

Analytical results were compared to the cleanup screening levels based on protection of marine surface water previously established for the Site. To evaluate the analytical data for the carcinogenic PAHs (cPAHs), the toxicity equivalency quotients (TEQ) of individual cPAHs were calculated and summed for comparison to the benzo(a)pyrene cleanup level using the methodology established in Washington Administrative Code (WAC) 173-340-708. To calculate the TEQ, the toxicity equivalency



factor (TEF) for a given cPAH compound was multiplied by the compound concentration, or half the reporting limit for compounds that were not detected above the laboratory reporting limit, and the resulting values were summed. The analytical results for the Dry Season sampling event (October 2017) are summarized in Table 2.

An internal data quality evaluation was performed by Landau Associates, Inc. (LAI) on all groundwater analytical data to determine acceptability of the analytical results. The laboratory reports are included in Attachment 1. The data quality evaluation conducted included the following review:

- Chain-of-custody records
- Holding times
- Laboratory method blanks
- Surrogate recoveries
- Laboratory matrix spikes and matrix spike duplicates
- Blank spikes/laboratory control samples
- Laboratory and field duplicates
- Completeness
- Overall assessment of data quality.

The analytical results for the Dry Season monitoring event indicate concentrations below the respective laboratory reporting limits for exterior wells PZ-13, PZ-18, and PZ-19 and interior wells PZ-12, MW-1D, and CW-13. Low-level concentrations below the cleanup screening levels were reported for interior wells LW-4R, MW-02S, MW-02D, MW-05S, and MW-05D. Low-level concentrations of acenaphthene (1.5  $\mu$ g/L) and 1-methylnaphthalene (1.4  $\mu$ g/L) at concentrations below the screening levels were detected at exterior well PZ-17; however, these concentrations are within the historical range for this well. Creosote was reported slightly above the cleanup screening level (500  $\mu$ g/L) at interior shallow well LW-3 (654  $\mu$ g/L).

Analytical results from shallow interior well MW-01S indicate the following compounds were detected at concentrations above the respective cleanup screening levels: TPH-G (33,900  $\mu$ g/L), TPH-D (10,300  $\mu$ g/L), TPH-O (774  $\mu$ g/L), creosote (40,300  $\mu$ g/L), along with PCP (5,510  $\mu$ g/L), total cPAHs (0.71  $\mu$ g/L), and naphthalene (5,080  $\mu$ g/L). The Dry Season concentration results are within historical ranges for well MW-01S.

\* \* \* \* \* \*

The next semiannual sampling event is planned for early 2018 and will include both groundwater elevation monitoring and groundwater quality sample collection at the following well pairs: PZ-12 and PZ-13, LW-3 and PZ-17, LW-4R and PZ-18, and MW-02S and PZ-19, along with samples from interior shallow and deep wells MW-01S, MW-01D, MW-02D, MW-05S, MW-05D, and CW-13.

2

The results of the Dry Season sampling event (October 2017) and the pending wet season sampling event (early 2018), will be presented in an annual progress report that will summarize the LTGCM program.

#### Limitations

This technical memorandum has been prepared for the exclusive use of the Port of Olympia for specific application to the long-term compliance monitoring project at the Cascade Pole Site. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

\* \* \* \* \* \*

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Christine Kimmel

Christine B. Kimmel, LG

LADERA MOH

Associate

Sierra M. Mott Project Scientist

CBK/SMM/tam

P:\021\041\R\Semiannuals\October 2017 LTGCM\October 2017 LTGCM TM 012318.docx

**Attachments** 

Figure 1 Paired Shallow Groundwater Monitoring Network Well Locations

Figure 2 Deep and Shallow Groundwater Monitoring Well Pairs

Table 1 Groundwater Elevations

Table 2 Summary of Current Analytical Results

Attachment 1 Laboratory Data

## Table 1 Groundwater Elevations Cascade Pole Site Port of Olympia, Washington

| Collection Date          | Well ID          | Depth to<br>Groundwater<br>(ft) (a) | Top of Well Casing<br>Elevation (MLLW) | Groundwater<br>Elevation<br>(MLLW) (a) | Maximum<br>Elevation Goal<br>(b) | Goal Exceeded? |
|--------------------------|------------------|-------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|----------------|
| 10/11/2017               | PZ-13            | 7.32                                | 19.50                                  | 12.18                                  |                                  | No             |
| 10/11/2017               | PZ-12            | 5.04                                | 19.00                                  | 13.96                                  | 15.50                            |                |
| 10/11/2017               | PZ-17            | 7.04                                | 20.48                                  | 13.44                                  |                                  | No             |
| 10/11/2017               | LW-3             | 5.55                                | 19.83                                  | 14.28                                  | 15.50                            |                |
| 10/11/2017               | PZ-18            | 6.89                                | 21.20                                  | 14.31                                  |                                  | Yes            |
| 10/11/2017               | LW-4R            | 6.06                                | 22.02                                  | 15.96                                  | 15.50                            |                |
| 10/11/2017               | PZ-19            | 14.91                               | 23.67                                  | 8.76                                   |                                  | No             |
| 10/11/2017               | MW-02S           | 16.64                               | 31.96                                  | 15.32                                  | 15.50                            |                |
| 10/11/2017               | MW-02S           | 16.64                               | 31.96                                  | 15.32                                  | 15.50                            | No             |
| 10/11/2017               | MW-02D           | 17.53                               | 31.81                                  | 14.28                                  |                                  |                |
| 10/11/2017<br>10/11/2017 | MW-01S<br>MW-01D | 6.93<br>8.11                        | 21.64<br>21.72                         | 14.71<br>13.61                         |                                  |                |
| 10/11/2017               | MW-05S           | 13.89                               | 29.45                                  | 15.56                                  | 16.50                            | No             |
| 10/11/2017               | MW-05D           | 11.11                               | 26.50                                  | 15.39                                  |                                  |                |

Abreviations and Acronyms:

ft = feet

ID = identification

MLLW = mean lower low water

-- = not measured

#### Notes:

- (a) Below top of PVC well casing.
- (b) Short-term hydraulic control goal is 15.5 feet along the majority of the cutoff wall alignment and 16.5 feet adjacent to Budd Inlet.

Table 2
Summary of Current Analytical Results
Groundwater Compliance Monitoring
Cascade Pole Site
Port of Olympia, Washington

|                                                       | Cleanup           | PZ-12      | PZ-13      | PZ-17      | PZ-18      | PZ-19      | LW-3       | LW-4R      |
|-------------------------------------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|
|                                                       | Screening         | 17J0190-16 | 17J0190-06 | 17J0190-07 | 17J0190-08 | 17J0190-09 | 17J0190-10 | 17J0190-11 |
|                                                       | Levels (a)        | 10/12/2017 | 10/12/2017 | 10/11/2017 | 10/11/2017 | 10/12/2017 | 10/11/2017 | 10/11/2017 |
| POLYCYCLIC AROMATIC HYDROCARBONS (PA                  | <br>  Hs) (110/1) |            |            |            |            |            |            |            |
| EPA Method SW8270D / SW8270D-SIM                      | <br>              |            |            |            |            |            |            |            |
| Naphthalene                                           | 4900              | 1.0 U      | 2.1        | 4.2        |
| 2-Methylnaphthalene                                   |                   | 1.0 U      |
| Acenaphthylene                                        |                   | 1.0 U      |
| Acenaphthene                                          |                   | 1.0 U      | 1.0 U      | 1.5        | 1.0 U      | 1.0 U      | 1.0 U      | 1.0 U      |
| Dibenzofuran                                          |                   | 1.0 U      |
| Fluorene                                              |                   | 1.0 U      |
| Pentachlorophenol                                     | 3                 | 10.0 U     | 10 U       | 10.0 U     |
| Phenanthrene                                          |                   | 1.0 U      |
| Anthracene                                            |                   | 1.0 U      |
| Fluoranthene                                          |                   | 1.0 U      |
| Pyrene                                                | 2600              | 1.0 U      |
| Benzo(a)Anthracene                                    |                   | 0.10 U     |
| Chrysene                                              |                   | 0.10 U     |
| Benzo(a)Pyrene                                        |                   | 0.10 U     |
| Indeno(1,2,3-cd)Pyrene                                |                   | 0.10 U     |
| Dibenz(a,h)Anthracene                                 |                   | 0.10 U     |
| Benzo(g,h,i)Perylene                                  |                   | 1.0 U      |
| 1-Methylnaphthalene                                   |                   | 1.0 U      | 1.0 U      | 1.4        | 1.0 U      | 1.0 U      | 1.2        | 1.0 U      |
| Total Benzofluoranthenes                              |                   | 0.20 U     |
| cPAH TEQ (b)                                          | 0.1 (c)           | ND         |
| cPAH TEQ (b) (Using 1/2 RL for ND)                    | 0.1 (c)           | 0.076      | 0.076      | 0.076      | 0.076      | 0.076      | 0.076      | 0.076      |
| PENTACHLOROPHENOL (µg/L) EPA Method SW8041A/SW8270C,D |                   |            |            |            |            |            |            |            |
| Pentachlorophenol                                     | 3                 | 0.25 U     |
| PETROLEUM HYDROCARBONS                                |                   |            |            |            |            |            |            |            |
| Method NWTPH-Gx (μg/L) Gasoline                       | 1,000             | 100 U      | 165        | 100 U      |
| Method NWTPH-Dx (μg/L)                                |                   |            |            |            |            |            |            |            |
| Diesel                                                | 500               | 100 U      | 209        | 100 U      |
| Motor Oil                                             | 500               | 200 U      |
| Creosote Oil                                          | 500               | 200 U      | 654        | 200 U      |

Table 2
Summary of Current Analytical Results
Groundwater Compliance Monitoring
Cascade Pole Site
Port of Olympia, Washington

|                                                                         | Cleanup<br>Screening<br>Levels (a) | MW-01S<br>17J0190-12<br>10/12/2017 | MW-02S<br>17J0190-13<br>10/11/2017 | MW-05S<br>17J0190-14<br>10/11/2017 | Dup of MW-05S<br>PZ-30<br>17J0190-15<br>10/11/2017 | MW-01D<br>17J0190-03<br>10/12/2017 | MW-02D<br>17J0190-04<br>10/11/2017 | MW-05D<br>17J0190-05<br>10/11/2017 |
|-------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| POLYCYCLIC AROMATIC HYDROCARBONS (PA                                    | l<br>ιHs) (μg/L)                   |                                    |                                    |                                    |                                                    |                                    |                                    |                                    |
| Naphthalene                                                             | 4900                               | 5,080                              | 2.8                                | 9.7                                | 10.6                                               | 1.0 U                              | 75.0                               | 3.1                                |
| 2-Methylnaphthalene                                                     | 4300                               | 618                                | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 11.0                               | 1.0 U                              |
| Acenaphthylene                                                          |                                    | 7.8                                | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 1.0 U                              | 1.0 U                              |
| Acenaphthene                                                            |                                    | 255                                | 1.9                                | 9.1                                | 9.1                                                | 1.0 U                              | 17.2                               | 7.0                                |
| Dibenzofuran                                                            |                                    | 76.0                               | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 5.2                                | 1.0 U                              |
| Fluorene                                                                |                                    | 75.6                               | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 5.4                                | 1.9                                |
| Pentachlorophenol                                                       | 3                                  | <b>5,510</b> J                     | 10.0 U                             | 10.0 U                             | 10.0 U                                             | 10.0 U                             | 10.0 U                             | 10.0 U                             |
| Phenanthrene                                                            | J                                  | 69.3                               | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 4.4                                | 1.0 U                              |
| Anthracene                                                              |                                    | 14.5                               | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 1.0 U                              | 1.0 U                              |
| Fluoranthene                                                            |                                    | 16.7                               | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 1.0 U                              | 1.0 U                              |
| Pyrene                                                                  | 2600                               | 7.9                                | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 1.0 U                              | 1.0 U                              |
| Benzo(a)Anthracene                                                      | 2000                               | 1.33                               | 0.10 U                             | 0.10 U                             | 0.10 U                                             | 0.10 U                             | 0.10 U                             | 0.10 U                             |
| Chrysene                                                                |                                    | 1.26                               | 0.10 U                             | 0.10 U                             | 0.10 U                                             | 0.10 U                             | 0.10 U                             | 0.10 U                             |
| Benzo(a)Pyrene                                                          |                                    | 0.44                               | 0.10 U                             | 0.10 U                             | 0.10 U                                             | 0.10 U                             | 0.10 U                             | 0.10 U                             |
| Indeno(1,2,3-cd)Pyrene                                                  |                                    | 0.12                               | 0.10 U                             | 0.10 U                             | 0.10 U                                             | 0.10 U                             | 0.10 U                             | 0.10 U                             |
| Dibenz(a,h)Anthracene                                                   |                                    | 0.10 U                             | 0.10 U                             | 0.10 U                             | 0.10 U                                             | 0.10 U                             | 0.10 U                             | 0.10 U                             |
| Benzo(g,h,i)Perylene                                                    |                                    | 1.0 U                              | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 1.0 U                              | 1.0 U                              |
| 1-Methylnaphthalene                                                     |                                    | 418                                | 1.0 U                              | 1.0 U                              | 1.0 U                                              | 1.0 U                              | 12.7                               | 1.2                                |
| Total Benzofluoranthenes                                                |                                    | 1.03                               | 0.20 U                             | 0.20 U                             | 0.20 U                                             | 0.20 U                             | 0.20 U                             | 0.20 U                             |
| cPAH TEQ (b)                                                            | 0.1 (c)                            | 0.70                               | ND                                 | ND                                 | ND                                                 | ND                                 | ND                                 | ND                                 |
| cPAH TEQ (b) (Using 1/2 RL for ND)                                      | 0.1 (c)                            | 0.71                               | 0.076                              | 0.076                              | 0.076                                              | 0.076                              | 0.076                              | 0.076                              |
| , , , ,                                                                 | , ,                                |                                    |                                    |                                    |                                                    |                                    |                                    |                                    |
| PENTACHLOROPHENOL (µg/L) EPA Method SW8041A/SW8270C,D Pentachlorophenol | 3                                  | NA                                 | 0.36                               | 0.25 U                             | 0.25 U                                             | 0.25 U                             | 0.25 U                             | 0.25 U                             |
| PETROLEUM HYDROCARBONS Method NWTPH-Gx (μg/L) Gasoline                  | 1,000                              | 33,900                             | 100 U                              | 100 U                              | 100 U                                              | 100 U                              | 188                                | 100 U                              |
| Method NWTPH-Dx (μg/L) Diesel Motor Oil Creosote Oil                    | 500<br>500<br>500                  | 10,300<br>774<br>40,300            | 100 U<br>200 U<br>200 U            | 100 U<br>200 U<br>200 U            | 100 U<br>200 U<br>200 U                            | 100 U<br>200 U<br>200 U            | 100 U<br>200 U<br><b>299</b>       | 100 U<br>200 U<br>200 U            |

# Table 2 Summary of Current Analytical Results Groundwater Compliance Monitoring Cascade Pole Site Port of Olympia, Washington

| ı                                     |            | 1          |
|---------------------------------------|------------|------------|
|                                       | Cleanup    | CW-13      |
|                                       | Screening  | 17J0190-02 |
|                                       | Levels (a) | 10/11/2017 |
| POLYCYCLIC AROMATIC HYDROCARBONS (PAI | Us\ /a./1\ |            |
| EPA Method SW8270D / SW8270D-SIM      | ns) (μg/L) |            |
| Naphthalene                           | 4900       | 1.0 U      |
| 2-Methylnaphthalene                   | 4500       | 1.0 U      |
| Acenaphthylene                        |            | 1.0 U      |
| Acenaphthene                          |            | 1.0 U      |
| Dibenzofuran                          |            | 1.0 U      |
| Fluorene                              |            | 1.0 U      |
| Pentachlorophenol                     | 3          | 10.0 U     |
| Phenanthrene                          | J          | 1.0 U      |
| Anthracene                            |            | 1.0 U      |
| Fluoranthene                          |            | 1.0 U      |
| Pyrene                                | 2600       | 1.0 U      |
| Benzo(a)Anthracene                    |            | 0.10 U     |
| Chrysene                              |            | 0.10 U     |
| Benzo(a)Pyrene                        |            | 0.10 U     |
| Indeno(1,2,3-cd)Pyrene                |            | 0.10 U     |
| Dibenz(a,h)Anthracene                 |            | 0.10 U     |
| Benzo(g,h,i)Perylene                  |            | 1.0 U      |
| 1-Methylnaphthalene                   |            | 1.0 U      |
| Total Benzofluoranthenes              |            | 0.20 U     |
| cPAH TEQ (b)                          | 0.1 (c)    | ND         |
| cPAH TEQ (b) (Using 1/2 RL for ND)    | 0.1 (c)    | 0.076      |
| (-) ()                                | (-/        |            |
| PENTACHLOROPHENOL (μg/L)              |            |            |
| EPA Method SW8041A/SW8270C,D          |            |            |
| Pentachlorophenol                     | 3          | 0.25 U     |
| ·                                     |            |            |
| PETROLEUM HYDROCARBONS                |            |            |
| Method NWTPH-Gx (μg/L)                |            |            |
| Gasoline                              | 1,000      | 100 U      |
|                                       |            |            |
| Method NWTPH-Dx (μg/L)                |            |            |
| Diesel                                | 500        | 100 U      |
| Motor Oil                             | 500        | 200 U      |
| Creosote Oil                          | 500        | 200 U      |

## **Laboratory Report**



30 October 2017

Christine Kimmel Landau Associates, Inc. 130 2nd Avenue S. Edmonds, WA 98020

RE: Cascade Pole

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

17J0190

N/A



I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Accreditation # 66169

Self Bothe



|   | Seattle/Edmonds (425) 778-0907 |
|---|--------------------------------|
| 7 | Tacoma (253) 926-2493          |
|   | Spokane (509) 327-9737         |

Portland (503) 542-1080

### **Chain-of-Custody Record**

| Date | 16 | 12/2017 |
|------|----|---------|
| Page |    | of      |

|                                                                                                      | .9                 |                                                                         |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------|--|--|--|
| Project Name Part of Oympia Project No. 0021041.010.011                                              | Testing Parameters |                                                                         |  |  |  |
| Project Location/Event Cascade Poll, Dry Season                                                      | Testing Parameters | Turnaround Time                                                         |  |  |  |
| Accelerated                                                                                          |                    |                                                                         |  |  |  |
| Send Results To Chris Kimmel, Dan Bache Dani Figure Son Send Results To Chris Kimmel, Dan Bache Dani | 7.5-25-99          |                                                                         |  |  |  |
| Torgensen 5                                                                                          |                    |                                                                         |  |  |  |
| Sample I.D. Date Time Matrix Containers                                                              | 70,000             | / Observations/Comments                                                 |  |  |  |
| TripBlank-20171011 - M20 2 X                                                                         |                    | X Allow water samples to settle, collect                                |  |  |  |
| CW-13-20171011 10/11/17 1330 1 10 XX                                                                 | XX                 | aliquot from clear portion                                              |  |  |  |
| MW-010-20171012 10/12/17 1145                                                                        | XXX                | NWTPH-Dx - run acid wash silica gel cleanup                             |  |  |  |
| MW-020-20171011 10/11/17/1545                                                                        |                    |                                                                         |  |  |  |
| MW-050-20171011 10/11/17/1445 XX                                                                     | XXX                | Analyze for EPH if no specific product                                  |  |  |  |
| PZ-13-20171612 NI2/17940 XX                                                                          | XXX                | identified                                                              |  |  |  |
| PZ-17-20171011 10/11/17:10                                                                           | $\times$           | VOC/BTEX/VPH (soil):                                                    |  |  |  |
| PZ-18-20171011 1011/17 18:00                                                                         | XXX                | non-preserved                                                           |  |  |  |
| PZ-19-20171012 10/12/17/10:40                                                                        | XXX                | preserved w/methanol                                                    |  |  |  |
| LW-3-20171011 10/11/17/17/20 XX                                                                      | XXX                | • 10                                                                    |  |  |  |
| LW-4R-20171011 10/11/17 1815                                                                         | XXX                | preserved w/sodium bisulfate                                            |  |  |  |
| MW-015-2017101210/12/1711+8                                                                          | XXX                | Freeze upon receipt                                                     |  |  |  |
| MW-025-20171011 10/11/17 1505                                                                        | XXX                | Dissolved metal water samples field filtered                            |  |  |  |
| MW-055-2017101110/11/17 1315                                                                         | VXX                | other Runail Sampus for<br>PCR using \$270, IF<br>result = ND, then and |  |  |  |
| PZ-30-20171011 10/11/171320 XX                                                                       | XXX                | PUE USING SOLTO, IT                                                     |  |  |  |
| PZ-12-20171012 10/13/17 925 1                                                                        | XXX                | enly then run PCP                                                       |  |  |  |
| PE-12 20171012 10/12/11/128                                                                          |                    | by 80+1.                                                                |  |  |  |
|                                                                                                      |                    | 1980 11.                                                                |  |  |  |
|                                                                                                      |                    |                                                                         |  |  |  |
| Special Shipment/Handling or Storage Requirements & Coclers white; VOAs are                          | not preserved      | Method of Shipment drop - off                                           |  |  |  |
| Relinquished by Received by                                                                          | Relinquished by    | Received by                                                             |  |  |  |
| Signature Latin Myself Signature Atm Am                                                              | Signature          | Signature                                                               |  |  |  |
| Printed Name Fate Ganglite Printed Name Stephanic Fishy                                              | Printed Name       | Printed Name                                                            |  |  |  |
| Company LA Company ARI                                                                               | Company            | Company                                                                 |  |  |  |
| Date 10/12/2017 Time 13:45 Date 10/12/17 Time 13:45                                                  | Date Time          | Date Time                                                               |  |  |  |
| pare 1./1. 1                                                                                         |                    |                                                                         |  |  |  |



## Cooler Receipt Form

| ARI Client: Landan                                               | Project Name: Port of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Olympia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| COC No(s): NA                                                    | Delivered by: Fed-Ex UPS Courier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hand Dalivared Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Assigned ARI Job No: 17 JO190                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Preliminary Examination Phase:                                   | Tracking No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Were intact, properly signed and dated custody seals attached    | to the outside of to cooled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Were custody papers included with the cooler?                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Were custody papers properly filled out (ink, signed, etc.)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for ch     | nemistry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Time. 1545                                                       | o L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| If cooler temperature is out of compliance fill out form 00070F  | т , , , , т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emp Gun ID#: <u>0002565</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Cooler Accepted by:                                              | Date: 10 172 / 17 Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Complete custody form                                            | s and attach all shipping documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Log-In Phase:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Was a temperature blank included in the cooler?                  | I The state of the | GEZ NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| What kind of packing material was used? Bubble Wr                | ap Wet Ice Gel Packs Baggies Foam Blo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ck Paper Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Was sufficient ice used (if appropriate)?                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Were all bottles sealed in individual plastic bags?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES (NO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Did all bottles arrive in good condition (unbroken)?             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Were all bottle labels complete and legible?                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Did the number of containers listed on COC match with the num    | nber of containers received?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Did all bottle labels and tags agree with custody papers?        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Were all bottles used correct for the requested analyses?        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Do any of the analyses (bottles) require preservation? (attach p | reservation sheet, excluding VOCs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Were all VOC vials free of air bubbles?                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Was sufficient amount of sample sent in each bottle?             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Date VOC Trip Blank was made at ARI                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Was Sample Split by ARI: NA YES Date/Time:                       | Equipment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Split by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Samples Logged by: SF                                            | 10/12/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Dat                                                              | ver of discrepancies or concerns **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| , , , ojest manag                                                | er of discrepancies or concerns **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Sample ID on Bottle Sample ID on COC                             | Sample ID on Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONTRACTOR OF PERSONS AND ADDRESS AND ADDRES |  |  |  |  |
|                                                                  | Sample ID on Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample ID on COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| . 1                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 3 1/3                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Additional Notes, Discrepancies, & Resolutions:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                  | A (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| A Section 1997                                                   | 15 Marie 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| By: Date:                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Small Air Bubbles Peabubbles LARGE Air Bubbles                   | Small → "sm" (<2 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| -2mm 2-4 mm > 4 mm                                               | Peabubbles $\Rightarrow$ "pb" ( 2 to < 4 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                  | Large > "lg" (4 to < 6 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                  | Headspace → "hs" (>6 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ti N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |





Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### ANALYTICAL REPORT FOR SAMPLES

| Sample ID           | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|---------------------|---------------|--------|-------------------|-------------------|
| Trip Blank-20171011 | 17J0190-01    | Water  | 11-Oct-2017 00:00 | 12-Oct-2017 13:45 |
| CW-13-20171011      | 17J0190-02    | Water  | 11-Oct-2017 13:30 | 12-Oct-2017 13:45 |
| MW-01D-20171012     | 17J0190-03    | Water  | 12-Oct-2017 11:45 | 12-Oct-2017 13:45 |
| MW-02D-20171011     | 17J0190-04    | Water  | 11-Oct-2017 15:45 | 12-Oct-2017 13:45 |
| MW-05D-20171011     | 17J0190-05    | Water  | 11-Oct-2017 14:45 | 12-Oct-2017 13:45 |
| PZ-13-20171012      | 17J0190-06    | Water  | 12-Oct-2017 09:40 | 12-Oct-2017 13:45 |
| PZ-17-20171011      | 17J0190-07    | Water  | 11-Oct-2017 17:10 | 12-Oct-2017 13:45 |
| PZ-18-20171011      | 17J0190-08    | Water  | 11-Oct-2017 18:00 | 12-Oct-2017 13:45 |
| PZ-19-20171012      | 17J0190-09    | Water  | 12-Oct-2017 10:40 | 12-Oct-2017 13:45 |
| LW-3-20171011       | 17J0190-10    | Water  | 11-Oct-2017 17:20 | 12-Oct-2017 13:45 |
| LW-4R-20171011      | 17J0190-11    | Water  | 11-Oct-2017 18:15 | 12-Oct-2017 13:45 |
| MW-01S-20171012     | 17J0190-12    | Water  | 12-Oct-2017 11:48 | 12-Oct-2017 13:45 |
| MW-02S-20171011     | 17J0190-13    | Water  | 11-Oct-2017 15:05 | 12-Oct-2017 13:45 |
| MW-05S-20171011     | 17J0190-14    | Water  | 11-Oct-2017 13:15 | 12-Oct-2017 13:45 |
| PZ-30-20171011      | 17J0190-15    | Water  | 11-Oct-2017 13:20 | 12-Oct-2017 13:45 |
| PZ-12-20171012      | 17J0190-16    | Water  | 12-Oct-2017 09:25 | 12-Oct-2017 13:45 |

Analytical Resources, Inc.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### Case Narrative

#### **Chlorinated Phenols - EPA Method SW8041A**

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/ LCSD and RPD recoveries were within control limits.

Per the COC instructions, samples were allowed to settle and sample volumes were collected from the clear portion.

#### Semivolatiles - EPA Method SW8270D

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements with the exception of Pentachlorophenol which was out of control high in the associated CCAL. All associated samples which contain analyte have been flagged with a "Q" qualifier for the 10/20/17 analysis.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/ LCSD and RPD recoveries were within control limits.

Per the COC instructions, samples were allowed to settle and sample volumes were collected from the clear portion.

#### Polynuclear Aromatic Hydrocarbons (cPAH only) - EPA Method SW8270D-SIM

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

Analytical Resources, Inc.



Landau Associates, Inc.

Project: Cascade Pole

130 2nd Avenue S.

Project Number: 0021041.010.011

Edmonds WA, 98020

Project Manager: Christine Kimmel

30-Oct-2017 14:42

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/ LCSD and RPD recoveries were within control limits.

Per the COC instructions, samples were allowed to settle and sample volumes were collected from the clear portion.

#### Gasoline Range Organics - WA-Ecology Method NW-TPHG

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/ LCSD and RPD recoveries were within control limits.

#### Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx (Ac/Si cleaned)

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/ LCSD and RPD recoveries were within control limits.

Per the COC instructions, samples were allowed to settle and sample volumes were collected from the clear portion.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### Trip Blank-20171011 17J0190-01 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 00:00

 Instrument: NT2
 Analyzed: 13-Oct-2017 11:44

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 97.5 % Surrogate: 4-Bromofluorobenzene 80-120 % 95.8 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

CW-13-20171011 17J0190-02 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 13:30

 Instrument: NT2
 Analyzed: 13-Oct-2017 12:04

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 98.4 % Surrogate: 4-Bromofluorobenzene 80-120 % 95.8 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### CW-13-20171011 17J0190-02 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 13:30

 Instrument: NT6
 Analyzed: 20-Oct-2017 02:30

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared. Tr Oct 2017           |            | -        |                    |        |       |       |
|---------------------------------|------------|----------|--------------------|--------|-------|-------|
| Analyte                         | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Naphthalene                     | 91-20-3    | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8   | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9    | 1        | 1.0                | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6    | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9   | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7    | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5    | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8    | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7   | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8    | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0   | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0   | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3    | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9   | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8    | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5   | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3    | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2   | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0    | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |            |          | 54.4-120 %         | 81.6   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |            |          | 49.3-128 %         | 96.3   | %     |       |
| Surrogate: p-Terphenyl-d14      |            |          | 60-120 %           | 91.4   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

CW-13-20171011 17J0190-02 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 13:30

 Instrument: NT8
 Analyzed: 19-Oct-2017 19:19

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 60.4   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 98.9   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### CW-13-20171011 17J0190-02 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/11/2017 13:30

 Instrument: FID4
 Analyzed: 20-Oct-2017 23:28

| Sample Preparation: | Preparation Method: EPA 3510C SepF<br>Preparation Batch: BFJ0359<br>Prepared: 13-Oct-2017 | Sample Size: 500 mL<br>Final Volume: 1 mL  |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Sample Cleanup:     | Cleanup Method: Silica Gel<br>Cleanup Batch: CFJ0129<br>Cleaned: 20-Oct-2017              | Initial Volume: 1 mL<br>Final Volume: 1 mL |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid<br>Cleanup Batch: CFJ0128<br>Cleaned: 20-Oct-2017           | Initial Volume: 1 mL<br>Final Volume: 1 mL |

|                              | Cicanca: 20 Oct 2017 | i mai voiame. i | ine      |                    |        |       |       |
|------------------------------|----------------------|-----------------|----------|--------------------|--------|-------|-------|
| Analyte                      |                      | CAS Number      | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Diesel Range Organics (C12-C | 224)                 |                 | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C2 | (4-C38)              |                 | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12 | ?-C22)               | 8001-58-9       | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl       |                      |                 |          | 50-150 %           | 103    | %     |       |



Landau Associates, Inc. Project: Cascade Pole Project Number: 0021041.010.011 130 2nd Avenue S. Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> CW-13-20171011 17J0190-02 (Water)

**Phenols** 

Sampled: 10/11/2017 13:30 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 17:29

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 45.5   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 51.1   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

MW-01D-20171012 17J0190-03 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/12/2017 11:45

 Instrument: NT2
 Analyzed: 13-Oct-2017 12:25

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 96.6 % Surrogate: 4-Bromofluorobenzene 80-120 % 95.4 %



Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

#### MW-01D-20171012 17J0190-03 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 11:45

 Instrument: NT6
 Analyzed: 19-Oct-2017 18:47

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 1                               | The volume of the |          |                    |        |       |       |  |  |
|---------------------------------|-------------------|----------|--------------------|--------|-------|-------|--|--|
| Analyte                         | CAS Number        | Dilution | Reporting<br>Limit | Result | Units | Notes |  |  |
| Naphthalene                     | 91-20-3           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Acenaphthylene                  | 208-96-8          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Acenaphthene                    | 83-32-9           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| 2-Methylnaphthalene             | 91-57-6           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Dibenzofuran                    | 132-64-9          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Fluorene                        | 86-73-7           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Pentachlorophenol               | 87-86-5           | 1        | 10.0               | ND     | ug/L  | U     |  |  |
| Phenanthrene                    | 85-01-8           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Anthracene                      | 120-12-7          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Carbazole                       | 86-74-8           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Fluoranthene                    | 206-44-0          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Pyrene                          | 129-00-0          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Benzo(a)anthracene              | 56-55-3           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Chrysene                        | 218-01-9          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Benzo(a)pyrene                  | 50-32-8           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Indeno(1,2,3-cd)pyrene          | 193-39-5          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Dibenzo(a,h)anthracene          | 53-70-3           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Benzo(g,h,i)perylene            | 191-24-2          | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| 1-Methylnaphthalene             | 90-12-0           | 1        | 1.0                | ND     | ug/L  | U     |  |  |
| Surrogate: 2-Fluorobiphenyl     |                   |          | 54.4-120 %         | 71.1   | %     |       |  |  |
| Surrogate: 2,4,6-Tribromophenol |                   |          | 49.3-128 %         | 81.6   | %     |       |  |  |
| Surrogate: p-Terphenyl-d14      |                   |          | 60-120 %           | 83.1   | %     |       |  |  |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-01D-20171012 17J0190-03 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/12/2017 11:45

 Instrument: NT8
 Analyzed: 19-Oct-2017 19:46

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 54.5   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 74.7   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### MW-01D-20171012 17J0190-03 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 10/12/2017 11:45

 Instrument: FID4
 Analyzed: 20-Oct-2017 23:49

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

|                                  | realied: 20 Oct 2017 | i mai voiame. | ine      |                    |        |       |       |
|----------------------------------|----------------------|---------------|----------|--------------------|--------|-------|-------|
| Analyte                          |                      | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Diesel Range Organics (C12-C24)  |                      |               | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C3 | 8)                   |               | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22 | 2)                   | 8001-58-9     | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl           |                      |               |          | 50-150 %           | 110    | %     |       |



Landau Associates, Inc.

Project: Cascade Pole

130 2nd Avenue S.

Project Number: 0021041.010.011

Edmonds WA, 98020

Project Manager: Christine Kimmel

30-Oct-2017 14:42

#### MW-01D-20171012 17J0190-03 (Water)

**Phenols** 

 Method: EPA 8041A
 Sampled: 10/12/2017 11:45

 Instrument: ECD8
 Analyzed: 24-Oct-2017 17:47

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL Prepared: 17-Oct-2017 Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 45.3 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 51.6 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-02D-20171011 17J0190-04 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 15:45

 Instrument: NT2
 Analyzed: 13-Oct-2017 12:45

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL

Prepared: 13-Oct-2017 Final Volume: 10 mL

|                                   |            |          | Reporting |        |       |       |
|-----------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                           | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100       | 188    | ug/L  |       |
| HC ID: GRO                        |            |          |           |        |       |       |
| Surrogate: Toluene-d8             |            |          | 80-120 %  | 95.6   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %  | 92.0   | %     |       |



Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

#### MW-02D-20171011 17J0190-04 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 15:45

 Instrument: NT6
 Analyzed: 19-Oct-2017 19:20

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepured: Tr Get 2017           | i mai voiame. |          |                    |        |       |        |
|---------------------------------|---------------|----------|--------------------|--------|-------|--------|
| Analyte                         | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes  |
| · ·                             |               | 1        |                    |        |       | 110105 |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | 75.0   | ug/L  |        |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U      |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | 17.2   | ug/L  |        |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | 11.0   | ug/L  |        |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | 5.2    | ug/L  |        |
| Fluorene                        | 86-73-7       | 1        | 1.0                | 5.4    | ug/L  |        |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U      |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | 4.4    | ug/L  |        |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U      |
| Carbazole                       | 86-74-8       | 1        | 1.0                | 5.3    | ug/L  |        |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U      |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U      |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U      |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U      |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U      |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | 12.7   | ug/L  |        |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 79.0   | %     |        |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 91.7   | %     |        |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 89.8   | %     |        |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-02D-20171011 17J0190-04 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 15:45

 Instrument: NT8
 Analyzed: 19-Oct-2017 20:12

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 64.2   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 110    | %     |       |

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-02D-20171011 17J0190-04 (Water)

| Potro | aum     | Hydrocarbon |    |
|-------|---------|-------------|----|
| retro | ieu iii | nvarocarbon | 18 |

 Method: NWTPH-Dx
 Sampled: 10/11/2017 15:45

 Instrument: FID4
 Analyzed: 21-Oct-2017 00:13

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | 299    | ug/L  |       |
| HC ID: CREOSOTE                    |            |          |                    |        |       |       |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 102    | %     |       |

Analytical Resources, Inc.



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### MW-02D-20171011 17J0190-04 (Water)

**Phenols** 

 Method: EPA 8041A
 Sampled: 10/11/2017 15:45

 Instrument: ECD8
 Analyzed: 24-Oct-2017 18:05

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL Prepared: 17-Oct-2017 Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 48.6 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 53.4 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-05D-20171011 17J0190-05 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 14:45

 Instrument: NT2
 Analyzed: 13-Oct-2017 13:05

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

| Analyte                           | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|-----------------------------------|------------|----------|--------------------|--------|-------|-------|
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100                | ND     | ug/L  | U     |
| Surrogate: Toluene-d8             |            |          | 80-120 %           | 95.8   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %           | 94.3   | %     |       |



Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

#### MW-05D-20171011 17J0190-05 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 14:45

 Instrument: NT6
 Analyzed: 19-Oct-2017 19:53

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 1 repared. 14-0ct-2017          | i mai volume. | 7.5 IIIL |            |        |       |       |
|---------------------------------|---------------|----------|------------|--------|-------|-------|
|                                 | a.a.v. 1      |          | Reporting  |        |       |       |
| Analyte                         | CAS Number    | Dilution | Limit      | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0        | 3.1    | ug/L  |       |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0        | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0        | 7.0    | ug/L  |       |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0        | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0        | 1.9    | ug/L  |       |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0       | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0        | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0        | 3.0    | ug/L  |       |
| Fluoranthene                    | 206-44-0      | 1        | 1.0        | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0        | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0        | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0        | 1.2    | ug/L  |       |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 % | 75.2   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 % | 89.5   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %   | 87.8   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-05D-20171011 17J0190-05 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 14:45

 Instrument: NT8
 Analyzed: 19-Oct-2017 20:38

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

| 11000110011                           | I III (CIMIII) |          |                    |        |       |       |
|---------------------------------------|----------------|----------|--------------------|--------|-------|-------|
| Analyte                               | CAS Number     | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3        | 1        | 0.10               | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9       | 1        | 0.10               | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |                | 1        | 0.20               | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8        | 1        | 0.10               | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5       | 1        | 0.10               | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3        | 1        | 0.10               | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |                |          | 31-120 %           | 47.7   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |                |          | 10-125 %           | 90.0   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### MW-05D-20171011 17J0190-05 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 10/11/2017 14:45

 Instrument: FID4
 Analyzed: 21-Oct-2017 00:34

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |  |  |  |
|---------------------|------------------------------------|----------------------|--|--|--|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |  |  |  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |  |  |  |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |  |  |  |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |  |  |  |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |  |  |  |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |  |  |  |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |  |  |  |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |  |  |  |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 91.0   | %     |       |

Analytical Resources, Inc.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-05D-20171011 17J0190-05 (Water)

**Phenols** 

 Method: EPA 8041A
 Sampled: 10/11/2017 14:45

 Instrument: ECD8
 Analyzed: 24-Oct-2017 18:22

Sample Preparation: Prep

Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Prepared: 17-Oct-2017 Sample Size: 500 mL Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 46.7 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 50.8 %

Analytical Resources, Inc.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

PZ-13-20171012 17J0190-06 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/12/2017 09:40

 Instrument: NT2
 Analyzed: 13-Oct-2017 13:25

Sample Preparation: Prepara

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

|                                   |            |          | Reporting |        |       |       |
|-----------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                           | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100       | ND     | ug/L  | U     |
| Surrogate: Toluene-d8             |            |          | 80-120 %  | 96.3   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %  | 92.1   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### PZ-13-20171012 17J0190-06 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 09:40

 Instrument: NT6
 Analyzed: 19-Oct-2017 20:26

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 11cparca. 14-0ct-2017           | i mai voiume. | 7.5 IIIL |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
|                                 | CACN          | D.1      | Reporting<br>Limit | D. It  | TT '4 | N     |
| Analyte                         | CAS Number    | Dilution | Limit              | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 80.2   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 90.1   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 91.3   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

PZ-13-20171012 17J0190-06 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/12/2017 09:40

 Instrument: NT8
 Analyzed: 19-Oct-2017 21:05

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 60.3   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 82.1   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### PZ-13-20171012 17J0190-06 (Water)

| I | Petro | leum | Hydrocarbons |  |
|---|-------|------|--------------|--|
| 1 | cuo   | leum | nvurocarbons |  |

 Method: NWTPH-Dx
 Sampled: 10/12/2017 09:40

 Instrument: FID4
 Analyzed: 21-Oct-2017 00:58

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 102    | %     |       |

Analytical Resources, Inc.



Landau Associates, Inc. Project: Cascade Pole Project Number: 0021041.010.011 130 2nd Avenue S. Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> PZ-13-20171012 17J0190-06 (Water)

**Phenols** 

Sampled: 10/12/2017 09:40 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 18:58

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 48.6   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 52.6   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> PZ-17-20171011 17J0190-07 (Water)

**Volatile Organic Compounds** 

Sampled: 10/11/2017 17:10 Method: NWTPHg Instrument: NT2 Analyzed: 13-Oct-2017 13:45

Preparation Method: EPA 5030 (Purge and Trap) Sample Preparation:

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

|                                   |            |          | Reporting |        |       |       |
|-----------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                           | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100       | ND     | ug/L  | U     |
| Surrogate: Toluene-d8             |            |          | 80-120 %  | 96.8   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %  | 95.2   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### PZ-17-20171011 17J0190-07 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 17:10

 Instrument: NT6
 Analyzed: 19-Oct-2017 20:59

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared. 14-Oct-2017           | i mai voiume. | 7.5 IIIL |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
|                                 | CACN          | D'I d'   | Reporting<br>Limit | D. It  | TT '4 | N     |
| Analyte                         | CAS Number    | Dilution | Limit              | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | 1.5    | ug/L  |       |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | 1.4    | ug/L  |       |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 82.0   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 101    | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 91.8   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### PZ-17-20171011 17J0190-07 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 17:10

 Instrument: NT8
 Analyzed: 19-Oct-2017 21:31

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 61.8   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 54.5   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole
130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### PZ-17-20171011 17J0190-07 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 10/11/2017 17:10

 Instrument: FID4
 Analyzed: 21-Oct-2017 01:19

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Cicance                            | 20 Oct 2017 1 mai | voidine. 1 | III .    |                    |        |       |       |
|------------------------------------|-------------------|------------|----------|--------------------|--------|-------|-------|
| Analyte                            | CAS               | Number     | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Diesel Range Organics (C12-C24)    |                   |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |                   |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 800               | 1-58-9     | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |                   |            |          | 50-150 %           | 90.8   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

### PZ-17-20171011 17J0190-07 (Water)

**Phenols** 

Sampled: 10/11/2017 17:10 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 19:16

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 53.4   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 57.9   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

PZ-18-20171011 17J0190-08 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 18:00

 Instrument: NT2
 Analyzed: 13-Oct-2017 14:06

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 96.6 % Surrogate: 4-Bromofluorobenzene 80-120 % 94.7 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### PZ-18-20171011 17J0190-08 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 18:00

 Instrument: NT6
 Analyzed: 19-Oct-2017 21:32

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 11cparca: 14-0ct-2017           | i mai voiume. | 7.5 IIIL |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
|                                 | CACN          | D.1 '.   | Reporting<br>Limit | D. It  | TT '4 | NI (  |
| Analyte                         | CAS Number    | Dilution | Limit              | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 74.7   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 89.2   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 81.1   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### PZ-18-20171011 17J0190-08 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 18:00

 Instrument: NT8
 Analyzed: 19-Oct-2017 21:57

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

| 110pulou. 10 301 2017                 | I IIIWI YOUWIIIW |          |           |        |       |       |
|---------------------------------------|------------------|----------|-----------|--------|-------|-------|
|                                       |                  |          | Reporting |        |       |       |
| Analyte                               | CAS Number       | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3          | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9         | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |                  | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8          | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5         | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3          | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |                  |          | 31-120 %  | 57.5   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |                  |          | 10-125 %  | 79.0   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### PZ-18-20171011 17J0190-08 (Water)

| I | Ontro | laum  | Hydrocarbons |
|---|-------|-------|--------------|
| ı | etro  | ieu m | Hydrocarbons |

 Method: NWTPH-Dx
 Sampled: 10/11/2017 18:00

 Instrument: FID4
 Analyzed: 21-Oct-2017 01:43

| C1- D               | D                                                                |                      |
|---------------------|------------------------------------------------------------------|----------------------|
| Sample Preparation: | Preparation Method: EPA 3510C SepF<br>Preparation Batch: BFJ0359 | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017                                            | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel                                       |                      |
|                     | Cleanup Batch: CFJ0129                                           | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017                                             | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid                                    |                      |
|                     | Cleanup Batch: CFJ0128                                           | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017                                             | Final Volume: 1 mL   |

| Cleaned: 20-Oct-2017               | rinai voiume: | IIIL     |                    |        |       |       |
|------------------------------------|---------------|----------|--------------------|--------|-------|-------|
| Analyte                            | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Diesel Range Organics (C12-C24)    |               | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |               | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9     | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |               |          | 50-150 %           | 78.9   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> PZ-18-20171011 17J0190-08 (Water)

**Phenols** 

Method: EPA 8041A Sampled: 10/11/2017 18:00 Instrument: ECD8

Analyzed: 24-Oct-2017 19:34

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL Prepared: 17-Oct-2017 Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 56.1 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 60.9 %



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011

Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

PZ-19-20171012 17J0190-09 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/12/2017 10:40

 Instrument: NT2
 Analyzed: 13-Oct-2017 14:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 96.4 % Surrogate: 4-Bromofluorobenzene 80-120 % 93.2 %



Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

#### PZ-19-20171012 17J0190-09 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 10:40

 Instrument: NT6
 Analyzed: 19-Oct-2017 22:05

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared. Tr Oct 2017           | I mai voiame. | -        |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
| Analyte                         | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 74.2   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 94.8   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 92.7   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

PZ-19-20171012 17J0190-09 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/12/2017 10:40

 Instrument: NT8
 Analyzed: 19-Oct-2017 22:23

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

| 110puleur 10 300 2017                 | I III ( OIWIII ) |          |           |        |       |       |
|---------------------------------------|------------------|----------|-----------|--------|-------|-------|
|                                       |                  |          | Reporting |        |       |       |
| Analyte                               | CAS Number       | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3          | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9         | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |                  | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8          | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5         | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3          | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |                  |          | 31-120 %  | 57.2   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |                  |          | 10-125 %  | 82.2   | %     |       |



Landau Associates, Inc.
Project: Cascade Pole
130 2nd Avenue S.
Project Number: 0021041.010.011
Reported:
Edmonds WA, 98020
Project Manager: Christine Kimmel 30-Oct-2017 14:42

#### PZ-19-20171012 17J0190-09 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 10/12/2017 10:40

 Instrument: FID4
 Analyzed: 21-Oct-2017 03:12

| Sample Preparation: | Preparation Method: EPA 3510C SepF<br>Preparation Batch: BFJ0359<br>Prepared: 13-Oct-2017 | Sample Size: 500 mL<br>Final Volume: 1 mL  |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Sample Cleanup:     | Cleanup Method: Silica Gel<br>Cleanup Batch: CFJ0129<br>Cleaned: 20-Oct-2017              | Initial Volume: 1 mL<br>Final Volume: 1 mL |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid<br>Cleanup Batch: CFJ0128<br>Cleaned: 20-Oct-2017           | Initial Volume: 1 mL<br>Final Volume: 1 mL |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 84.0   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> PZ-19-20171012 17J0190-09 (Water)

**Phenols** 

Method: EPA 8041A Sampled: 10/12/2017 10:40 Instrument: ECD8

Analyzed: 24-Oct-2017 19:51

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL Prepared: 17-Oct-2017 Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 45.5 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 50.8 %



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### LW-3-20171011 17J0190-10 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 17:20

 Instrument: NT2
 Analyzed: 13-Oct-2017 14:46

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

|                                   |            |          | Reporting |        |       |       |
|-----------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                           | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100       | 165    | ug/L  |       |
| HC ID: GRO                        |            |          |           |        |       |       |
| Surrogate: Toluene-d8             |            |          | 80-120 %  | 97.2   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %  | 96.5   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### LW-3-20171011 17J0190-10 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 17:20

 Instrument: NT6
 Analyzed: 19-Oct-2017 22:38

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 11cparca. 14-0ct-2017           | i mai voiume. | 7.5 IIIL |            |        |       |       |
|---------------------------------|---------------|----------|------------|--------|-------|-------|
|                                 | CACA I        | D.1      | Reporting  | D. I.  | TT '4 | N     |
| Analyte                         | CAS Number    | Dilution | Limit      | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0        | 2.1    | ug/L  |       |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0        | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0        | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0        | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0        | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0       | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0        | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0        | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0        | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0        | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0        | 1.2    | ug/L  |       |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 % | 84.1   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 % | 102    | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %   | 85.2   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### LW-3-20171011 17J0190-10 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 17:20

 Instrument: NT8
 Analyzed: 19-Oct-2017 22:50

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

| 1100000011                            | I III (CIMIII) |          |           |        |       |       |
|---------------------------------------|----------------|----------|-----------|--------|-------|-------|
|                                       |                |          | Reporting |        |       |       |
| Analyte                               | CAS Number     | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3        | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9       | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |                | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8        | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5       | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3        | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |                |          | 31-120 %  | 63.7   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |                |          | 10-125 %  | 31.9   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### LW-3-20171011 17J0190-10 (Water)

| I | Ontro | laum  | Hydrocarbons |
|---|-------|-------|--------------|
| ı | etro  | ieu m | Hydrocarbons |

 Method: NWTPH-Dx
 Sampled: 10/11/2017 17:20

 Instrument: FID4
 Analyzed: 21-Oct-2017 03:36

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | 209    | ug/L  |       |
| HC ID: DRO                         |            |          |                    |        |       |       |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | 654    | ug/L  |       |
| HC ID: CREOSOTE                    |            |          |                    |        |       |       |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 94.7   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> LW-3-20171011 17J0190-10 (Water)

**Phenols** 

Sampled: 10/11/2017 17:20 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 20:09

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 63.1   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 67.7   | %     |       |



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011

Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

LW-4R-20171011 17J0190-11 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 18:15

 Instrument: NT2
 Analyzed: 13-Oct-2017 15:07

Sample Preparation: Preparation Metho

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

|                                   |            |          | Reporting |        |       |       |
|-----------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                           | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Gasoline Range Organics (Tol-Nap) |            | 1        | 100       | ND     | ug/L  | U     |
| Surrogate: Toluene-d8             |            |          | 80-120 %  | 96.2   | %     |       |
| Surrogate: 4-Bromofluorobenzene   |            |          | 80-120 %  | 93.3   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### LW-4R-20171011 17J0190-11 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 18:15

 Instrument: NT6
 Analyzed: 19-Oct-2017 23:11

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared. 14-Oct-2017           | i mai voiume. | 7.J IIIL |                    |        |       |        |
|---------------------------------|---------------|----------|--------------------|--------|-------|--------|
| Analyte                         | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes  |
| ·                               |               | Dilution |                    |        |       | 110103 |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | 4.2    | ug/L  |        |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U      |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | ND     | ug/L  | U      |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U      |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U      |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U      |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U      |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U      |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U      |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U      |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U      |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U      |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U      |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U      |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U      |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U      |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | ND     | ug/L  | U      |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 78.1   | %     |        |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 91.6   | %     |        |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 86.1   | %     |        |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

LW-4R-20171011 17J0190-11 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 18:15

 Instrument: NT8
 Analyzed: 19-Oct-2017 23:16

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 56.7   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 84.5   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### LW-4R-20171011 17J0190-11 (Water)

Petroleum Hydrocarbons

 Method: NWTPH-Dx
 Sampled: 10/11/2017 18:15

 Instrument: FID4
 Analyzed: 21-Oct-2017 03:57

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
| - *                 | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 96.0   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

LW-4R-20171011 17J0190-11 (Water)

**Phenols** 

 Method: EPA 8041A
 Sampled: 10/11/2017 18:15

 Instrument: ECD8
 Analyzed: 24-Oct-2017 20:27

Sample Preparation: Preparation

Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Prepared: 17-Oct-2017 Sample Size: 500 mL Final Volume: 50 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 87-86-5 U 0.25 ND Pentachlorophenol1 ug/L Surrogate: 2,4,6-Tribromophenol 26-120 % 47.0 % Surrogate: 2,4,6-Tribromophenol [2C] 26-120 % 49.9 %

Analytical Resources, Inc.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

MW-01S-20171012 17J0190-12 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/12/2017 11:48

 Instrument: NT2
 Analyzed: 13-Oct-2017 15:30

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 0.4 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes 2500 Gasoline Range Organics (Tol-Nap) 1 33900 ug/L HC ID: GRO Surrogate: Toluene-d8 80-120 % 96.2 % Surrogate: 4-Bromofluorobenzene 80-120 % 98.4 %



Landau Associates, Inc.

Project: Cascade Pole

130 2nd Avenue S.

Project Number: 0021041.010.011

Edmonds WA, 98020

Project Manager: Christine Kimmel

30-Oct-2017 14:42

#### MW-01S-20171012 17J0190-12 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 11:48

 Instrument: NT6
 Analyzed: 19-Oct-2017 23:44

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared: 11 Oct 2017           | i mai voiame. | -        |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
| Analyte                         | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | 4830   | ug/L  | Е     |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | 7.8    | ug/L  |       |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | 159    | ug/L  | Е     |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | 167    | ug/L  | E     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | 76.0   | ug/L  |       |
| Fluorene                        | 86-73-7       | 1        | 1.0                | 95.0   | ug/L  | E     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | 4540   | ug/L  | E     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | 69.3   | ug/L  |       |
| Anthracene                      | 120-12-7      | 1        | 1.0                | 14.5   | ug/L  |       |
| Carbazole                       | 86-74-8       | 1        | 1.0                | 30.3   | ug/L  |       |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | 16.7   | ug/L  |       |
| Pyrene                          | 129-00-0      | 1        | 1.0                | 7.9    | ug/L  |       |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | 1.6    | ug/L  |       |
| Chrysene                        | 218-01-9      | 1        | 1.0                | 1.5    | ug/L  |       |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | 125    | ug/L  | E     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 62.6   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 77.3   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 60.5   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

#### MW-01S-20171012 17J0190-12 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/12/2017 11:48

 Instrument: NT8
 Analyzed: 19-Oct-2017 23:43

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | 1.33   | ug/L  |       |
| Chrysene                              | 218-01-9   | 1        | 0.10      | 1.26   | ug/L  |       |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | 1.03   | ug/L  |       |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | 0.44   | ug/L  |       |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | 0.12   | ug/L  |       |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 43.7   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 51.6   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

#### MW-01S-20171012 17J0190-12 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/12/2017 11:48

 Instrument: FID4
 Analyzed: 21-Oct-2017 04:21

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

|                                                  | ·· <del>- ·</del> · · |          |                    |        |       |       |  |
|--------------------------------------------------|-----------------------|----------|--------------------|--------|-------|-------|--|
| Analyte                                          | CAS Number            | Dilution | Reporting<br>Limit | Result | Units | Notes |  |
| Diesel Range Organics (C12-C24)                  |                       | 1        | 100                | 8440   | ug/L  | Е     |  |
| HC ID: DRO<br>Motor Oil Range Organics (C24-C38) |                       | 1        | 200                | 774    | ug/L  |       |  |
| HC ID: RRO<br>Creosote Range Organics (C12-C22)  | 8001-58-9             | 1        | 200                | 33200  | ug/L  | E     |  |
| HC ID: CREOSOTE                                  |                       |          |                    |        |       |       |  |
| Surrogate: o-Terphenyl                           |                       |          | 50-150 %           | 88.4   | %     |       |  |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### MW-01S-20171012 17J0190-12RE1 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 11:48

 Instrument: NT6
 Analyzed: 20-Oct-2017 13:33

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| I mai voidine. 0.5 mL |                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS Number            | Dilution                                                                                                                                          | Reporting<br>Limit                                                                                                                                                                       | Result                                                                                                                                                                                                                                                                                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 91-20-3               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                                                                                                                                   |                                                                                                                                                                                          | 5000                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 208-96-8              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 83-32-9               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | 255                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 91-57-6               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | 618                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 132-64-9              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | 97.8                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                   | 50.0                                                                                                                                                                                     | 75.6                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 87-86-5               | 50                                                                                                                                                | 500                                                                                                                                                                                      | 5510                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q, D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 85-01-8               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | 82.2                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 120-12-7              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 86-74-8               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 206-44-0              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 129-00-0              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56-55-3               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 218-01-9              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50-32-8               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 193-39-5              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 53-70-3               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 191-24-2              | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90-12-0               | 50                                                                                                                                                | 50.0                                                                                                                                                                                     | 418                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                   | 5441200/                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    | D.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                                                                                   | 54.4-120 %                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    | D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D1, U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                                                                                                                                   | 34.4-120 %<br>49.3-128 %                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    | DI<br>DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1, U<br>D1, U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | 86-73-7<br>87-86-5<br>85-01-8<br>120-12-7<br>86-74-8<br>206-44-0<br>129-00-0<br>56-55-3<br>218-01-9<br>50-32-8<br>193-39-5<br>53-70-3<br>191-24-2 | 86-73-7 50<br>87-86-5 50<br>85-01-8 50<br>120-12-7 50<br>86-74-8 50<br>206-44-0 50<br>129-00-0 50<br>56-55-3 50<br>218-01-9 50<br>50-32-8 50<br>193-39-5 50<br>53-70-3 50<br>191-24-2 50 | 86-73-7     50     50.0       87-86-5     50     500       85-01-8     50     50.0       120-12-7     50     50.0       86-74-8     50     50.0       206-44-0     50     50.0       129-00-0     50     50.0       56-55-3     50     50.0       218-01-9     50     50.0       50-32-8     50     50.0       193-39-5     50     50.0       53-70-3     50     50.0       191-24-2     50     50.0       90-12-0     50     50.0 | 86-73-7         50         50.0         75.6           87-86-5         50         500         5510           85-01-8         50         50.0         82.2           120-12-7         50         50.0         ND           86-74-8         50         50.0         ND           206-44-0         50         50.0         ND           129-00-0         50         50.0         ND           56-55-3         50         50.0         ND           218-01-9         50         50.0         ND           50-32-8         50         50.0         ND           193-39-5         50         50.0         ND           53-70-3         50         50.0         ND           191-24-2         50         50.0         ND           90-12-0         50         50.0         418 | 86-73-7         50         50.0         75.6         ug/L           87-86-5         50         500         5510         ug/L           85-01-8         50         50.0         82.2         ug/L           120-12-7         50         50.0         ND         ug/L           86-74-8         50         50.0         ND         ug/L           206-44-0         50         50.0         ND         ug/L           129-00-0         50         50.0         ND         ug/L           56-55-3         50         50.0         ND         ug/L           218-01-9         50         50.0         ND         ug/L           50-32-8         50         50.0         ND         ug/L           53-70-3         50         50.0         ND         ug/L           53-70-3         50         50.0         ND         ug/L           90-12-0         50         50.0         A18         ug/L |

Analytical Resources, Inc.

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

## MW-01S-20171012 17J0190-12RE1 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/12/2017 11:48

 Instrument: FID4
 Analyzed: 24-Oct-2017 13:50

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

|                                    | Reporting  |          |          |        |       |       |  |
|------------------------------------|------------|----------|----------|--------|-------|-------|--|
| Analyte                            | CAS Number | Dilution | Limit    | Result | Units | Notes |  |
| Diesel Range Organics (C12-C24)    |            | 10       | 1000     | 10300  | ug/L  | D     |  |
| HC ID: DRO                         |            |          |          |        |       |       |  |
| Motor Oil Range Organics (C24-C38) |            | 10       | 2000     | ND     | ug/L  | U     |  |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 10       | 2000     | 40300  | ug/L  | D     |  |
| HC ID: CREOSOTE                    |            |          |          |        |       |       |  |
| Surrogate: o-Terphenyl             |            |          | 50-150 % | 109    | %     |       |  |



## MW-01S-20171012 17J0190-12RE2 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 11:48

 Instrument: NT6
 Analyzed: 20-Oct-2017 14:12

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 11cpared: 14-0ct-2017           | i mai voiume. | ).5 IIIL |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
| Aughto                          | CAS Number    | Dilution | Reporting<br>Limit | Dagult | Units | Notes |
| Analyte                         | CAS Number    | Dilution | Lillit             | Result | Units | Notes |
| Naphthalene                     | 91-20-3       | 100      | 100                | 5080   | ug/L  | D     |
| Acenaphthylene                  | 208-96-8      | 100      | 100                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 100      | 100                | 270    | ug/L  | D     |
| 2-Methylnaphthalene             | 91-57-6       | 100      | 100                | 657    | ug/L  | D     |
| Dibenzofuran                    | 132-64-9      | 100      | 100                | 103    | ug/L  | D     |
| Fluorene                        | 86-73-7       | 100      | 100                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 100      | 1000               | 5880   | ug/L  | Q, D  |
| Phenanthrene                    | 85-01-8       | 100      | 100                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 100      | 100                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 100      | 100                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 100      | 100                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 100      | 100                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 100      | 100                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 100      | 100                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 100      | 100                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 100      | 100                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 100      | 100                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 100      | 100                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 100      | 100                | 442    | ug/L  | D     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         |        | D1    | D1, U |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         |        | D1    | D1, U |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           |        | D1    | D1, U |

Analytical Resources, Inc.



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

MW-02S-20171011 17J0190-13 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 15:05

 Instrument: NT2
 Analyzed: 13-Oct-2017 15:50

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 98.4 % Surrogate: 4-Bromofluorobenzene 80-120 % 94.0 %



## MW-02S-20171011 17J0190-13 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 15:05

 Instrument: NT6
 Analyzed: 20-Oct-2017 00:17

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 11cparca. 14-0ct-2017           | i mai voidine. | 7.5 IIIL |                    |        |       |       |
|---------------------------------|----------------|----------|--------------------|--------|-------|-------|
| Analyte                         | CAS Number     | Dilution | Reporting<br>Limit | Result | Units | Notes |
| ·                               |                | Dilution |                    |        |       | Notes |
| Naphthalene                     | 91-20-3        | 1        | 1.0                | 2.8    | ug/L  |       |
| Acenaphthylene                  | 208-96-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9        | 1        | 1.0                | 1.9    | ug/L  |       |
| 2-Methylnaphthalene             | 91-57-6        | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7        | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5        | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8        | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8        | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3        | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8        | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3        | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2       | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0        | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |                |          | 54.4-120 %         | 84.0   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |                |          | 49.3-128 %         | 100    | %     |       |
| Surrogate: p-Terphenyl-d14      |                |          | 60-120 %           | 90.4   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

## MW-02S-20171011 17J0190-13 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 15:05

 Instrument: NT8
 Analyzed: 20-Oct-2017 00:09

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

| Trepared. To Set 2017                 | I IIIWI YOUWIIIW | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |        |       |       |
|---------------------------------------|------------------|-----------------------------------------|-----------|--------|-------|-------|
|                                       |                  |                                         | Reporting |        |       |       |
| Analyte                               | CAS Number       | Dilution                                | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3          | 1                                       | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9         | 1                                       | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |                  | 1                                       | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8          | 1                                       | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5         | 1                                       | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3          | 1                                       | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |                  |                                         | 31-120 %  | 54.7   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |                  |                                         | 10-125 %  | 23.9   | %     |       |

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

## MW-02S-20171011 17J0190-13 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/11/2017 15:05

 Instrument: FID4
 Analyzed: 21-Oct-2017 04:42

| Sample Preparation: | Preparation Method: EPA 3510C SepF<br>Preparation Batch: BFJ0359<br>Prepared: 13-Oct-2017 | Sample Size: 500 mL<br>Final Volume: 1 mL  |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Sample Cleanup:     | Cleanup Method: Silica Gel<br>Cleanup Batch: CFJ0129<br>Cleaned: 20-Oct-2017              | Initial Volume: 1 mL<br>Final Volume: 1 mL |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid<br>Cleanup Batch: CFJ0128<br>Cleaned: 20-Oct-2017           | Initial Volume: 1 mL<br>Final Volume: 1 mL |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 97.5   | %     |       |

Analytical Resources, Inc.



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> MW-02S-20171011 17J0190-13 (Water)

**Phenols** 

Sampled: 10/11/2017 15:05 Method: EPA 8041A Instrument: ECD8 Analyzed: 27-Oct-2017 14:42

Sample Preparation: Preparation Method: EPA 3510C SepF

Sample Size: 500 mL Preparation Batch: BFJ0362

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | 0.36   | ug/L  |       |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 52.7   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 57.2   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

MW-05S-20171011 17J0190-14 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 13:15

 Instrument: NT2
 Analyzed: 13-Oct-2017 16:10

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 95.7 % Surrogate: 4-Bromofluorobenzene 80-120 % 93.6 %



## MW-05S-20171011 17J0190-14 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 13:15

 Instrument: NT6
 Analyzed: 20-Oct-2017 00:50

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Prepared: 14-Oct-2017           | Final volume: ( | ).5 IIIL |                    |        |       |       |
|---------------------------------|-----------------|----------|--------------------|--------|-------|-------|
|                                 | CACN            | D'I d'   | Reporting<br>Limit | D. It  | TT '  | N     |
| Analyte                         | CAS Number      | Dilution | LIIIII             | Result | Units | Notes |
| Naphthalene                     | 91-20-3         | 1        | 1.0                | 9.7    | ug/L  |       |
| Acenaphthylene                  | 208-96-8        | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9         | 1        | 1.0                | 9.1    | ug/L  |       |
| 2-Methylnaphthalene             | 91-57-6         | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9        | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7         | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5         | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8         | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7        | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8         | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0        | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0        | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3         | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9        | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8         | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5        | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3         | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2        | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0         | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |                 |          | 54.4-120 %         | 77.9   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |                 |          | 49.3-128 %         | 95.4   | %     |       |
| Surrogate: p-Terphenyl-d14      |                 |          | 60-120 %           | 85.4   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

## MW-05S-20171011 17J0190-14 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 13:15

 Instrument: NT8
 Analyzed: 20-Oct-2017 00:35

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       | ·          |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 67.2   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 78.9   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole
130 2nd Avenue S.
Project Number: 0021041.010.011
Reported:
Edmonds WA, 98020
Project Manager: Christine Kimmel 30-Oct-2017 14:42

## MW-05S-20171011 17J0190-14 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/11/2017 13:15

 Instrument: FID4
 Analyzed: 21-Oct-2017 05:06

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

|                                    |            |          | Reporting |        |       |       |
|------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                            | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Diesel Range Organics (C12-C24)    |            | 1        | 100       | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200       | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200       | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %  | 82.6   | %     |       |

Analytical Resources, Inc.



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> MW-05S-20171011 17J0190-14 (Water)

**Phenols** 

Sampled: 10/11/2017 13:15 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 20:45

Preparation Method: EPA 3510C SepF Sample Preparation:

Preparation Batch: BFJ0362

Sample Size: 500 mL Prepared: 17-Oct-2017 Final Volume: 50 mL

|                                      |            |          | Reporting |        |       |       |
|--------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                              | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25      | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %  | 53.5   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %  | 53.8   | %     |       |



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

PZ-30-20171011 17J0190-15 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/11/2017 13:20

 Instrument: NT2
 Analyzed: 13-Oct-2017 16:30

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 97.7 % Surrogate: 4-Bromofluorobenzene 80-120 % 94.7 %



## PZ-30-20171011 17J0190-15 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/11/2017 13:20

 Instrument: NT6
 Analyzed: 20-Oct-2017 01:23

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| Trepared. 14-Oct-2017           | i mai voiume. | 7.5 IIIL |                    |        |       |       |
|---------------------------------|---------------|----------|--------------------|--------|-------|-------|
| Analyte                         | CAS Number    | Dilution | Reporting<br>Limit | Result | Units | Notes |
| ·                               |               | Dilution |                    | Result |       | Notes |
| Naphthalene                     | 91-20-3       | 1        | 1.0                | 10.6   | ug/L  |       |
| Acenaphthylene                  | 208-96-8      | 1        | 1.0                | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9       | 1        | 1.0                | 9.1    | ug/L  |       |
| 2-Methylnaphthalene             | 91-57-6       | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7       | 1        | 1.0                | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5       | 1        | 10.0               | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7      | 1        | 1.0                | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9      | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8       | 1        | 1.0                | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5      | 1        | 1.0                | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3       | 1        | 1.0                | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2      | 1        | 1.0                | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0       | 1        | 1.0                | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |               |          | 54.4-120 %         | 76.0   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |               |          | 49.3-128 %         | 93.8   | %     |       |
| Surrogate: p-Terphenyl-d14      |               |          | 60-120 %           | 87.0   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

## PZ-30-20171011 17J0190-15 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/11/2017 13:20

 Instrument: NT8
 Analyzed: 20-Oct-2017 01:02

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 61.2   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 73.4   | %     |       |

Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

## PZ-30-20171011 17J0190-15 (Water)

**Petroleum Hydrocarbons** 

 Method: NWTPH-Dx
 Sampled: 10/11/2017 13:20

 Instrument: FID4
 Analyzed: 21-Oct-2017 05:27

| Sample Preparation: | Preparation Method: EPA 3510C SepF |                      |
|---------------------|------------------------------------|----------------------|
|                     | Preparation Batch: BFJ0359         | Sample Size: 500 mL  |
|                     | Prepared: 13-Oct-2017              | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Silica Gel         |                      |
|                     | Cleanup Batch: CFJ0129             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid      |                      |
|                     | Cleanup Batch: CFJ0128             | Initial Volume: 1 mL |
|                     | Cleaned: 20-Oct-2017               | Final Volume: 1 mL   |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 93.3   | %     |       |



Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011 Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

> PZ-30-20171011 17J0190-15 (Water)

**Phenols** 

Sampled: 10/11/2017 13:20 Method: EPA 8041A Instrument: ECD8 Analyzed: 24-Oct-2017 21:03

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0362 Sample Size: 500 mL

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 56.2   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 60.6   | %     |       |



Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

PZ-12-20171012 17J0190-16 (Water)

**Volatile Organic Compounds** 

 Method: NWTPHg
 Sampled: 10/12/2017 09:25

 Instrument: NT2
 Analyzed: 13-Oct-2017 16:50

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BFJ0361 Sample Size: 10 mL Prepared: 13-Oct-2017 Final Volume: 10 mL

Reporting Limit Analyte CAS Number Dilution Result Units Notes U Gasoline Range Organics (Tol-Nap) 100 ND 1 ug/L Surrogate: Toluene-d8 80-120 % 97.3 % Surrogate: 4-Bromofluorobenzene 80-120 % 93.7 %



## PZ-12-20171012 17J0190-16 (Water)

Semivolatile Organic Compounds

 Method: EPA 8270D
 Sampled: 10/12/2017 09:25

 Instrument: NT6
 Analyzed: 20-Oct-2017 01:57

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BFJ0364 Sample Size: 500 mL Prepared: 14-Oct-2017 Final Volume: 0.5 mL

| 1 repared. 14-0ct-2017          | i mai voidine. | ).5 IIIL |            |        |       |       |
|---------------------------------|----------------|----------|------------|--------|-------|-------|
|                                 | GAGN. 1        | D'I -:   | Reporting  | D. It  | TT 1. | N     |
| Analyte                         | CAS Number     | Dilution | Limit      | Result | Units | Notes |
| Naphthalene                     | 91-20-3        | 1        | 1.0        | ND     | ug/L  | U     |
| Acenaphthylene                  | 208-96-8       | 1        | 1.0        | ND     | ug/L  | U     |
| Acenaphthene                    | 83-32-9        | 1        | 1.0        | ND     | ug/L  | U     |
| 2-Methylnaphthalene             | 91-57-6        | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzofuran                    | 132-64-9       | 1        | 1.0        | ND     | ug/L  | U     |
| Fluorene                        | 86-73-7        | 1        | 1.0        | ND     | ug/L  | U     |
| Pentachlorophenol               | 87-86-5        | 1        | 10.0       | ND     | ug/L  | U     |
| Phenanthrene                    | 85-01-8        | 1        | 1.0        | ND     | ug/L  | U     |
| Anthracene                      | 120-12-7       | 1        | 1.0        | ND     | ug/L  | U     |
| Carbazole                       | 86-74-8        | 1        | 1.0        | ND     | ug/L  | U     |
| Fluoranthene                    | 206-44-0       | 1        | 1.0        | ND     | ug/L  | U     |
| Pyrene                          | 129-00-0       | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)anthracene              | 56-55-3        | 1        | 1.0        | ND     | ug/L  | U     |
| Chrysene                        | 218-01-9       | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(a)pyrene                  | 50-32-8        | 1        | 1.0        | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene          | 193-39-5       | 1        | 1.0        | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene          | 53-70-3        | 1        | 1.0        | ND     | ug/L  | U     |
| Benzo(g,h,i)perylene            | 191-24-2       | 1        | 1.0        | ND     | ug/L  | U     |
| 1-Methylnaphthalene             | 90-12-0        | 1        | 1.0        | ND     | ug/L  | U     |
| Surrogate: 2-Fluorobiphenyl     |                |          | 54.4-120 % | 72.0   | %     |       |
| Surrogate: 2,4,6-Tribromophenol |                |          | 49.3-128 % | 90.0   | %     |       |
| Surrogate: p-Terphenyl-d14      |                |          | 60-120 %   | 83.6   | %     |       |

Analytical Resources, Inc.

Landau Associates, Inc.Project:Cascade Pole130 2nd Avenue S.Project Number:0021041.010.011Reported:Edmonds WA, 98020Project Manager:Christine Kimmel30-Oct-2017 14:42

PZ-12-20171012 17J0190-16 (Water)

Semivolatile Organic Compounds - SIM

 Method: EPA 8270D-SIM
 Sampled: 10/12/2017 09:25

 Instrument: NT8
 Analyzed: 20-Oct-2017 01:28

Sample Preparation: Preparation Method: EPA 3520C (Liq Liq)

Preparation Batch: BFJ0365 Sample Size: 500 mL Prepared: 16-Oct-2017 Final Volume: 0.5 mL

|                                       |            |          | Reporting |        |       |       |
|---------------------------------------|------------|----------|-----------|--------|-------|-------|
| Analyte                               | CAS Number | Dilution | Limit     | Result | Units | Notes |
| Benzo(a)anthracene                    | 56-55-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Chrysene                              | 218-01-9   | 1        | 0.10      | ND     | ug/L  | U     |
| Benzofluoranthenes, Total             |            | 1        | 0.20      | ND     | ug/L  | U     |
| Benzo(a)pyrene                        | 50-32-8    | 1        | 0.10      | ND     | ug/L  | U     |
| Indeno(1,2,3-cd)pyrene                | 193-39-5   | 1        | 0.10      | ND     | ug/L  | U     |
| Dibenzo(a,h)anthracene                | 53-70-3    | 1        | 0.10      | ND     | ug/L  | U     |
| Surrogate: 2-Methylnaphthalene-d10    |            |          | 31-120 %  | 57.1   | %     |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |            |          | 10-125 %  | 86.7   | %     |       |



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

## PZ-12-20171012 17J0190-16 (Water)

| p | etro | leum | Hydrocarbons |
|---|------|------|--------------|
| Г | eu o | leum | nvurocarbons |

 Method: NWTPH-Dx
 Sampled: 10/12/2017 09:25

 Instrument: FID4
 Analyzed: 21-Oct-2017 05:51

| Sample Preparation: | Preparation Method: EPA 3510C SepF<br>Preparation Batch: BFJ0359<br>Prepared: 13-Oct-2017 | Sample Size: 500 mL<br>Final Volume: 1 mL  |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|
| Sample Cleanup:     | Cleanup Method: Silica Gel<br>Cleanup Batch: CFJ0129<br>Cleaned: 20-Oct-2017              | Initial Volume: 1 mL<br>Final Volume: 1 mL |
| Sample Cleanup:     | Cleanup Method: Sulfuric Acid<br>Cleanup Batch: CFJ0128<br>Cleaned: 20-Oct-2017           | Initial Volume: 1 mL<br>Final Volume: 1 mL |

| Analyte                            | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Diesel Range Organics (C12-C24)    |            | 1        | 100                | ND     | ug/L  | U     |
| Motor Oil Range Organics (C24-C38) |            | 1        | 200                | ND     | ug/L  | U     |
| Creosote Range Organics (C12-C22)  | 8001-58-9  | 1        | 200                | ND     | ug/L  | U     |
| Surrogate: o-Terphenyl             |            |          | 50-150 %           | 96.8   | %     |       |



Landau Associates, Inc.
Project: Cascade Pole

130 2nd Avenue S.
Project Number: 0021041.010.011
Edmonds WA, 98020
Project Manager: Christine Kimmel
30-Oct-2017 14:42

PZ-12-20171012 17J0190-16 (Water)

Phenols

Sample Preparation:

 Method: EPA 8041A
 Sampled: 10/12/2017 09:25

 Instrument: ECD8
 Analyzed: 24-Oct-2017 21:21

Preparation Batch: BFJ0362 Sample Size: 500 mL

Preparation Method: EPA 3510C SepF

Prepared: 17-Oct-2017 Final Volume: 50 mL

| Analyte                              | CAS Number | Dilution | Reporting<br>Limit | Result | Units | Notes |
|--------------------------------------|------------|----------|--------------------|--------|-------|-------|
| Pentachlorophenol                    | 87-86-5    | 1        | 0.25               | ND     | ug/L  | U     |
| Surrogate: 2,4,6-Tribromophenol      |            |          | 26-120 %           | 48.6   | %     |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |            |          | 26-120 %           | 53.0   | %     |       |





**Reported:** 30-Oct-2017 14:42

#### **Volatile Organic Compounds - Quality Control**

#### Batch BFJ0361 - EPA 5030 (Purge and Trap)

Instrument: NT2 Analyst: PC

| QC Sample/Analyte                 | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes  |
|-----------------------------------|--------|--------------------|-------|----------------|------------------|--------------|----------------|------|--------------|--------|
| QC Sample/Analyte                 | Result | Ellilit            | Onits | Level          | Resuit           | 70KEC        | Lillits        | Ki D | Lillit       | TVOICS |
| Blank (BFJ0361-BLK1)              |        |                    | Prep  | ared: 13-Oct   | t-2017 Ana       | alyzed: 13-0 | Oct-2017 11    | :24  |              |        |
| Gasoline Range Organics (Tol-Nap) | ND     | 100                | ug/L  |                |                  |              |                |      |              | U      |
| Surrogate: Toluene-d8             |        | 4.78               | ug/L  | 5.00           |                  | 95.7         | 80-120         |      |              |        |
| Surrogate: 4-Bromofluorobenzene   |        | 4.68               | ug/L  | 5.00           |                  | 93.6         | 80-120         |      |              |        |
| LCS (BFJ0361-BS1)                 |        |                    | Prep  | ared: 13-Oct   | t-2017 Ana       | alyzed: 13-0 | Oct-2017 10    | :03  |              |        |
| Gasoline Range Organics (Tol-Nap) | 1120   | 100                | ug/L  | 1000           |                  | 112          | 72-128         |      |              |        |
| Surrogate: Toluene-d8             |        | 4.84               | ug/L  | 5.00           |                  | 96.9         | 80-120         |      |              |        |
| Surrogate: 4-Bromofluorobenzene   |        | 4.65               | ug/L  | 5.00           |                  | 93.0         | 80-120         |      |              |        |
| LCS Dup (BFJ0361-BSD1)            |        |                    | Prep  | ared: 13-Oct   | t-2017 Ana       | alyzed: 13-0 | Oct-2017 10    | :23  |              |        |
| Gasoline Range Organics (Tol-Nap) | 1130   | 100                | ug/L  | 1000           |                  | 113          | 72-128         | 1.03 | 30           |        |
| Surrogate: Toluene-d8             |        | 4.83               | ug/L  | 5.00           |                  | 96.5         | 80-120         |      |              |        |
| Surrogate: 4-Bromofluorobenzene   |        | 4.80               | ug/L  | 5.00           |                  | 96.0         | 80-120         |      |              |        |





#### Semivolatile Organic Compounds - Quality Control

#### Batch BFJ0364 - EPA 3510C SepF

Instrument: NT6 Analyst: JZ

| OC Samula/Amakuta               | D14    | Reportin | -        | Spike         | Source     | 0/DEC       | %REC        | חמת  | RPD   | N-4   |
|---------------------------------|--------|----------|----------|---------------|------------|-------------|-------------|------|-------|-------|
| QC Sample/Analyte               | Result | Lim      | it Units | Level         | Result     | %REC        | Limits      | RPD  | Limit | Notes |
| Blank (BFJ0364-BLK1)            |        |          |          | pared: 14-Oct | t-2017 Ana | alyzed: 19- | Oct-2017 16 | 5:34 |       |       |
| Naphthalene                     | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Acenaphthylene                  | ND     | 1.       | _        |               |            |             |             |      |       | U     |
| Acenaphthene                    | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| 2-Methylnaphthalene             | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Dibenzofuran                    | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Fluorene                        | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Pentachlorophenol               | ND     | 10       | 0 ug/L   |               |            |             |             |      |       | U     |
| Phenanthrene                    | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Anthracene                      | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Carbazole                       | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Fluoranthene                    | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Pyrene                          | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Benzo(a)anthracene              | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Chrysene                        | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Benzo(a)pyrene                  | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Indeno(1,2,3-cd)pyrene          | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Dibenzo(a,h)anthracene          | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Benzo(g,h,i)perylene            | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| 1-Methylnaphthalene             | ND     | 1.       | 0 ug/L   |               |            |             |             |      |       | U     |
| Surrogate: 2-Fluorobiphenyl     |        | 20.3     | ug/L     | 25.0          |            | 81.1        | 54.4-120    |      |       |       |
| Surrogate: 2,4,6-Tribromophenol |        | 34.3     | ug/L     | 37.5          |            | 91.6        | 49.3-128    |      |       |       |
| Surrogate: p-Terphenyl-d14      |        | 23.4     | ug/L     | 25.0          |            | 93.8        | 60-120      |      |       |       |
| LCS (BFJ0364-BS1)               |        |          | Pre      | pared: 14-Oct | t-2017 Ana | alyzed: 19- | Oct-2017 17 | 7:08 |       |       |
| Naphthalene                     | 18.3   | 1.       |          | 25.0          |            | 73.2        | 51.9-120    |      |       |       |
| Acenaphthylene                  | 20.1   | 1.       | 0 ug/L   | 25.0          |            | 80.5        | 56.5-120    |      |       |       |
| Acenaphthene                    | 22.0   | 1.       | 0 ug/L   | 25.0          |            | 87.8        | 60.9-120    |      |       |       |
| 2-Methylnaphthalene             | 18.3   | 1.       | 0 ug/L   | 25.0          |            | 73.2        | 56.5-120    |      |       |       |
| Dibenzofuran                    | 20.9   | 1.       |          | 25.0          |            | 83.5        | 61.9-120    |      |       |       |
| Fluorene                        | 22.1   | 1.       | 0 ug/L   | 25.0          |            | 88.3        | 62.3-120    |      |       |       |
| Pentachlorophenol               | 73.9   | 10.      | 0 ug/L   | 75.0          |            | 98.6        | 40.7-124    |      |       |       |
| Phenanthrene                    | 22.1   | 1.       | 0 ug/L   | 25.0          |            | 88.4        | 61-120      |      |       |       |
| Anthracene                      | 20.5   | 1.       | 0 ug/L   | 25.0          |            | 81.8        | 64.6-120    |      |       |       |
| Carbazole                       | 21.4   | 1.       | 0 ug/L   | 25.0          |            | 85.5        | 64.6-120    |      |       |       |
| Fluoranthene                    | 22.9   | 1.       | 0 ug/L   | 25.0          |            | 91.4        | 67.9-120    |      |       |       |

Analytical Resources, Inc.





**Reported:** 30-Oct-2017 14:42

#### Semivolatile Organic Compounds - Quality Control

#### Batch BFJ0364 - EPA 3510C SepF

Instrument: NT6 Analyst: JZ

| QC Sample/Analyte                                                        | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------|--------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| LCS (BFJ0364-BS1)                                                        |        |                    | Prep  | ared: 14-Oct   | -2017 Ana        | lyzed: 19-0 | Oct-2017 17:   | :08  |              |       |
| Pyrene                                                                   | 22.9   | 1.0                | ug/L  | 25.0           |                  | 91.4        | 66.4-120       |      |              |       |
| Benzo(a)anthracene                                                       | 21.6   | 1.0                | ug/L  | 25.0           |                  | 86.3        | 65.9-120       |      |              |       |
| Chrysene                                                                 | 22.5   | 1.0                | ug/L  | 25.0           |                  | 90.0        | 61.5-120       |      |              |       |
| Benzo(a)pyrene                                                           | 23.9   | 1.0                | ug/L  | 25.0           |                  | 95.7        | 74-121         |      |              |       |
| Indeno(1,2,3-cd)pyrene                                                   | 23.6   | 1.0                | ug/L  | 25.0           |                  | 94.4        | 55.6-120       |      |              |       |
| Dibenzo(a,h)anthracene                                                   | 24.8   | 1.0                | ug/L  | 25.0           |                  | 99.2        | 55-120         |      |              |       |
| Benzo(g,h,i)perylene                                                     | 23.4   | 1.0                | ug/L  | 25.0           |                  | 93.4        | 49.4-120       |      |              |       |
| 1-Methylnaphthalene                                                      | 20.7   | 1.0                | ug/L  | 25.0           |                  | 82.6        | 54.4-120       |      |              |       |
| Surrogate: 2-Fluorobiphenyl                                              |        | 21.6               | ug/L  | 25.0           |                  | 86.3        | 54.4-120       |      |              |       |
| Surrogate: 2,4,6-Tribromophenol                                          |        | 39.3               | ug/L  | 37.5           |                  | 105         | 49.3-128       |      |              |       |
| Surrogate: p-Terphenyl-d14                                               |        | 24.0               | ug/L  | 25.0           |                  | 95.9        | 60-120         |      |              |       |
| LCS Dup (BFJ0364-BSD1) Prepared: 14-Oct-2017 Analyzed: 19-Oct-2017 17:41 |        |                    |       |                |                  |             |                |      | ·            |       |
| Naphthalene                                                              | 19.6   | 1.0                | ug/L  | 25.0           |                  | 78.3        | 51.9-120       | 6.76 | 30           |       |
| Acenaphthylene                                                           | 21.0   | 1.0                | ug/L  | 25.0           |                  | 83.9        | 56.5-120       | 4.11 | 30           |       |
| Acenaphthene                                                             | 22.6   | 1.0                | ug/L  | 25.0           |                  | 90.4        | 60.9-120       | 2.88 | 30           |       |
| 2-Methylnaphthalene                                                      | 19.3   | 1.0                | ug/L  | 25.0           |                  | 77.0        | 56.5-120       | 5.14 | 30           |       |
| Dibenzofuran                                                             | 21.6   | 1.0                | ug/L  | 25.0           |                  | 86.5        | 61.9-120       | 3.52 | 30           |       |
| Fluorene                                                                 | 22.7   | 1.0                | ug/L  | 25.0           |                  | 91.0        | 62.3-120       | 2.97 | 30           |       |
| Pentachlorophenol                                                        | 77.2   | 10.0               | ug/L  | 75.0           |                  | 103         | 40.7-124       | 4.34 | 30           |       |
| Phenanthrene                                                             | 22.9   | 1.0                | ug/L  | 25.0           |                  | 91.4        | 61-120         | 3.34 | 30           |       |
| Anthracene                                                               | 21.1   | 1.0                | ug/L  | 25.0           |                  | 84.4        | 64.6-120       | 3.14 | 30           |       |
| Carbazole                                                                | 21.9   | 1.0                | ug/L  | 25.0           |                  | 87.7        | 64.6-120       | 2.45 | 30           |       |
| Fluoranthene                                                             | 23.9   | 1.0                | ug/L  | 25.0           |                  | 95.5        | 67.9-120       | 4.37 | 30           |       |
| Pyrene                                                                   | 23.6   | 1.0                | ug/L  | 25.0           |                  | 94.4        | 66.4-120       | 3.20 | 30           |       |
| Benzo(a)anthracene                                                       | 22.9   | 1.0                | ug/L  | 25.0           |                  | 91.8        | 65.9-120       | 6.13 | 30           |       |
| Chrysene                                                                 | 23.2   | 1.0                | ug/L  | 25.0           |                  | 92.7        | 61.5-120       | 2.93 | 30           |       |
| Benzo(a)pyrene                                                           | 24.8   | 1.0                | ug/L  | 25.0           |                  | 99.0        | 74-121         | 3.48 | 30           |       |
| Indeno(1,2,3-cd)pyrene                                                   | 24.6   | 1.0                | ug/L  | 25.0           |                  | 98.2        | 55.6-120       | 3.97 | 30           |       |
| Dibenzo(a,h)anthracene                                                   | 25.6   | 1.0                | ug/L  | 25.0           |                  | 102         | 55-120         | 3.20 | 30           |       |
| Benzo(g,h,i)perylene                                                     | 24.1   | 1.0                | ug/L  | 25.0           |                  | 96.6        | 49.4-120       | 3.31 | 30           |       |
| 1-Methylnaphthalene                                                      | 21.4   | 1.0                | ug/L  | 25.0           |                  | 85.5        | 54.4-120       | 3.42 | 30           |       |
| Surrogate: 2-Fluorobiphenyl                                              |        | 22.2               | ug/L  | 25.0           |                  | 88.9        | 54.4-120       |      |              |       |
| Surrogate: 2,4,6-Tribromophenol                                          |        | 39.2               | ug/L  | 37.5           |                  | 105         | 49.3-128       |      |              |       |

Analytical Resources, Inc.



**Reported:** 30-Oct-2017 14:42

#### Semivolatile Organic Compounds - Quality Control

#### Batch BFJ0364 - EPA 3510C SepF

Instrument: NT6 Analyst: JZ

| QC Sample/Analyte          | Result                                            | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------|---------------------------------------------------|--------------------|-------|----------------|------------------|------|----------------|-----|--------------|-------|
| LCS Dup (BFJ0364-BSD1)     | Prepared: 14-Oct-2017 Analyzed: 19-Oct-2017 17:41 |                    |       |                |                  |      |                |     |              |       |
| Surrogate: p-Terphenyl-d14 | 2                                                 | 4.5                | ug/L  | 25.0           |                  | 98.1 | 60-120         |     |              |       |





**Reported:** 30-Oct-2017 14:42

#### Semivolatile Organic Compounds - SIM - Quality Control

#### Batch BFJ0365 - EPA 3520C (Liq Liq)

Instrument: NT8 Analyst: JZ

|                                       |        | Reporting |       | Spike        | Source    |              | %REC        |      | RPD   |       |
|---------------------------------------|--------|-----------|-------|--------------|-----------|--------------|-------------|------|-------|-------|
| QC Sample/Analyte                     | Result | Limit     | Units | Level        | Result    | %REC         | Limits      | RPD  | Limit | Notes |
| Blank (BFJ0365-BLK1)                  |        |           | Prep  | ared: 16-Oct | -2017 Ana | alyzed: 19-0 | Oct-2017 18 | :00  |       |       |
| Benzo(a)anthracene                    | ND     | 0.10      | ug/L  |              |           |              |             |      |       | U     |
| Chrysene                              | ND     | 0.10      | ug/L  |              |           |              |             |      |       | U     |
| Benzofluoranthenes, Total             | ND     | 0.20      | ug/L  |              |           |              |             |      |       | U     |
| Benzo(a)pyrene                        | ND     | 0.10      | ug/L  |              |           |              |             |      |       | U     |
| Indeno(1,2,3-cd)pyrene                | ND     | 0.10      | ug/L  |              |           |              |             |      |       | U     |
| Dibenzo(a,h)anthracene                | ND     | 0.10      | ug/L  |              |           |              |             |      |       | U     |
| Surrogate: 2-Methylnaphthalene-d10    |        | 2.00      | ug/L  | 3.00         |           | 66.6         | 31-120      |      |       |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |        | 3.15      | ug/L  | 3.00         |           | 105          | 10-125      |      |       |       |
| LCS (BFJ0365-BS1)                     |        |           | Prep  | ared: 16-Oct | -2017 Ana | alyzed: 19-0 | Oct-2017 18 | :27  |       |       |
| Benzo(a)anthracene                    | 2.24   | 0.10      | ug/L  | 3.00         |           | 74.6         | 37-120      |      |       |       |
| Chrysene                              | 2.39   | 0.10      | ug/L  | 3.00         |           | 79.8         | 48-120      |      |       |       |
| Benzofluoranthenes, Total             | 10.3   | 0.20      | ug/L  | 9.00         |           | 114          | 46-120      |      |       |       |
| Benzo(a)pyrene                        | 2.07   | 0.10      | ug/L  | 3.00         |           | 69.1         | 25-120      |      |       |       |
| Indeno(1,2,3-cd)pyrene                | 2.82   | 0.10      | ug/L  | 3.00         |           | 94.0         | 32-120      |      |       |       |
| Dibenzo(a,h)anthracene                | 2.27   | 0.10      | ug/L  | 3.00         |           | 75.7         | 21-120      |      |       |       |
| Surrogate: 2-Methylnaphthalene-d10    |        | 1.62      | ug/L  | 3.00         |           | 54.1         | 31-120      |      |       |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |        | 2.51      | ug/L  | 3.00         |           | 83.8         | 10-125      |      |       |       |
| LCS Dup (BFJ0365-BSD1)                |        |           | Prep  | ared: 16-Oct | -2017 Ana | alyzed: 19-0 | Oct-2017 18 | :53  |       |       |
| Benzo(a)anthracene                    | 2.19   | 0.10      | ug/L  | 3.00         |           | 73.0         | 37-120      | 2.20 | 30    |       |
| Chrysene                              | 2.29   | 0.10      | ug/L  | 3.00         |           | 76.3         | 48-120      | 4.51 | 30    |       |
| Benzofluoranthenes, Total             | 9.41   | 0.20      | ug/L  | 9.00         |           | 105          | 46-120      | 9.00 | 30    |       |
| Benzo(a)pyrene                        | 2.01   | 0.10      | ug/L  | 3.00         |           | 67.1         | 25-120      | 2.98 | 30    |       |
| Indeno(1,2,3-cd)pyrene                | 2.61   | 0.10      | ug/L  | 3.00         |           | 87.2         | 32-120      | 7.57 | 30    |       |
| Dibenzo(a,h)anthracene                | 2.23   | 0.10      | ug/L  | 3.00         |           | 74.2         | 21-120      | 1.92 | 30    |       |
| Surrogate: 2-Methylnaphthalene-d10    |        | 1.91      | ug/L  | 3.00         |           | 63.8         | 31-120      |      |       |       |
| Surrogate: Dibenzo[a,h]anthracene-d14 |        | 2.44      | ug/L  | 3.00         |           | 81.4         | 10-125      |      |       |       |

Analytical Resources, Inc.





**Reported:** 30-Oct-2017 14:42

#### **Petroleum Hydrocarbons - Quality Control**

#### Batch BFJ0359 - EPA 3510C SepF

Instrument: FID4 Analyst: ML

| QC Sample/Analyte                  | Result | Reporting<br>Limit | Units  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes  |
|------------------------------------|--------|--------------------|--------|----------------|------------------|--------------|----------------|------|--------------|--------|
| QC Sample/Tenaryte                 | Result | Ellilit            | Cilita | Level          | resuit           | 70KEC        | Lillitis       | KI D | Limit        | 110103 |
| Blank (BFJ0359-BLK1)               |        |                    | Prepa  | ared: 13-Oct   | -2017 Ana        | lyzed: 20-0  | Oct-2017 21    | :13  |              |        |
| Diesel Range Organics (C12-C24)    | ND     | 100                | ug/L   |                |                  |              |                |      |              | U      |
| Motor Oil Range Organics (C24-C38) | ND     | 200                | ug/L   |                |                  |              |                |      |              | U      |
| Creosote Range Organics (C12-C22)  | ND     | 200                | ug/L   |                |                  |              |                |      |              | U      |
| Surrogate: o-Terphenyl             |        | 413                | ug/L   | 450            |                  | 91.8         | 50-150         |      |              |        |
| LCS (BFJ0359-BS1)                  |        |                    | Prepa  | ared: 13-Oct   | -2017 Ana        | ılyzed: 20-0 | Oct-2017 21    | :34  |              |        |
| Diesel Range Organics (C12-C24)    | 2420   | 100                | ug/L   | 3000           |                  | 80.6         | 56-120         |      |              |        |
| Surrogate: o-Terphenyl             |        | 436                | ug/L   | 450            |                  | 96.9         | 50-150         |      |              |        |
| LCS Dup (BFJ0359-BSD1)             |        |                    | Prepa  | ared: 13-Oct   | -2017 Ana        | ılyzed: 20-0 | Oct-2017 21    | :58  |              |        |
| Diesel Range Organics (C12-C24)    | 2570   | 100                | ug/L   | 3000           |                  | 85.7         | 56-120         | 6.11 | 30           |        |
| Surrogate: o-Terphenyl             |        | 443                | ug/L   | 450            |                  | 98.4         | 50-150         |      |              |        |





**Reported:** 30-Oct-2017 14:42

#### **Phenols - Quality Control**

#### Batch BFJ0362 - EPA 3510C SepF

Instrument: ECD8 Analyst: YZ

| QC Sample/Analyte                    | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-------|----------------|------------------|--------------|----------------|-------|--------------|-------|
| Blank (BFJ0362-BLK1)                 |        |                    | Prep  | ared: 17-Oct   | t-2017 Ana       | ılyzed: 24-0 | Oct-2017 16    | :35   |              |       |
| Pentachlorophenol                    | ND     | 0.25               | ug/L  |                |                  |              |                |       |              | U     |
| Surrogate: 2,4,6-Tribromophenol      |        | 0.794              | ug/L  | 2.50           |                  | 31.8         | 26-120         |       |              |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |        | 0.949              | ug/L  | 2.50           |                  | 38.0         | 26-120         |       |              |       |
| LCS (BFJ0362-BS1)                    |        |                    | Prep  | ared: 17-Oct   | t-2017 Ana       | alyzed: 24-0 | Oct-2017 16    | :53   |              |       |
| Pentachlorophenol                    | 1.21   | 0.25               | ug/L  | 2.50           |                  | 48.6         | 48-120         |       |              |       |
| Surrogate: 2,4,6-Tribromophenol      |        | 1.21               | ug/L  | 2.50           |                  | 48.3         | 26-120         |       |              |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |        | 1.41               | ug/L  | 2.50           |                  | 56.3         | 26-120         |       |              |       |
| LCS Dup (BFJ0362-BSD1)               |        |                    | Prep  | ared: 17-Oct   | t-2017 Ana       | alyzed: 24-0 | Oct-2017 17    | ':11  |              |       |
| Pentachlorophenol                    | 1.37   | 0.25               | ug/L  | 2.50           |                  | 54.6         | 48-120         | 12.40 | 30           |       |
| Surrogate: 2,4,6-Tribromophenol      |        | 1.24               | ug/L  | 2.50           |                  | 49.5         | 26-120         |       |              |       |
| Surrogate: 2,4,6-Tribromophenol [2C] |        | 1.43               | ug/L  | 2.50           |                  | 57.2         | 26-120         |       |              |       |





Landau Associates, Inc. Project: Cascade Pole 130 2nd Avenue S. Project Number: 0021041.010.011

Reported: Edmonds WA, 98020 Project Manager: Christine Kimmel 30-Oct-2017 14:42

### **Certified Analyses included in this Report**

| Analyte | Certifications |
|---------|----------------|
|         |                |

| EPA 8270D in Water           |                                     |
|------------------------------|-------------------------------------|
| Phenol                       | WADOE, DoD-ELAP, NELAP, CALAP       |
| bis(2-chloroethyl) ether     | WADOE, DoD-ELAP, NELAP, CALAP       |
| 2-Chlorophenol               | WADOE, DoD-ELAP, NELAP, CALAP       |
| 1,3-Dichlorobenzene          | WADOE, DoD-ELAP, NELAP, CALAP       |
| 1,4-Dichlorobenzene          | WADOE, DoD-ELAP, NELAP, CALAP       |
| 1,2-Dichlorobenzene          | WADOE, DoD-ELAP, NELAP, CALAP       |
| Benzyl alcohol               | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2,2'-Oxybis(1-chloropropane) | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2-Methylphenol               | WADOE,DoD-ELAP,NELAP,CALAP          |
| Hexachloroethane             | WADOE,DoD-ELAP,NELAP,CALAP          |
| N-Nitroso-di-n-Propylamine   | WADOE,DoD-ELAP,NELAP,CALAP          |
| 4-Methylphenol               | WADOE,DoD-ELAP,NELAP,CALAP          |
| Nitrobenzene                 | WADOE,DoD-ELAP,NELAP,CALAP          |
| Isophorone                   | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2-Nitrophenol                | WADOE, DoD-ELAP, NELAP, CALAP       |
| 2,4-Dimethylphenol           | WADOE, DoD-ELAP, NELAP, CALAP       |
| Bis(2-Chloroethoxy)methane   | WADOE, DoD-ELAP, NELAP, CALAP       |
| 2,4-Dichlorophenol           | WADOE, DoD-ELAP, NELAP, CALAP       |
| 1,2,4-Trichlorobenzene       | WADOE,DoD-ELAP,NELAP,CALAP          |
| Naphthalene                  | WADOE, DoD-ELAP, NELAP, CALAP, ADEC |
| Benzoic acid                 | WADOE,DoD-ELAP,NELAP,CALAP          |
| 4-Chloroaniline              | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2,6-Dinitrotoluene           | WADOE,DoD-ELAP,NELAP,CALAP          |
| Hexachlorobutadiene          | WADOE,DoD-ELAP,NELAP,CALAP          |
| 4-Chloro-3-Methylphenol      | WADOE,DoD-ELAP,NELAP,CALAP          |
| Hexachlorocyclopentadiene    | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2,4,6-Trichlorophenol        | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2,4,5-Trichlorophenol        | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2-Chloronaphthalene          | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2-Nitroaniline               | WADOE,DoD-ELAP,NELAP,CALAP          |
| Acenaphthylene               | WADOE,DoD-ELAP,NELAP,CALAP,ADEC     |
| Dimethylphthalate            | WADOE,DoD-ELAP,NELAP,CALAP          |
| Acenaphthene                 | WADOE,DoD-ELAP,NELAP,CALAP,ADEC     |
| 3-Nitroaniline               | WADOE,DoD-ELAP,NELAP,CALAP          |
| 2-Methylnaphthalene          | WADOE,DoD-ELAP,NELAP,CALAP,ADEC     |

Analytical Resources, Inc.





| l | Landau Associates, Inc. | Project: Cascade Pole             |                   |
|---|-------------------------|-----------------------------------|-------------------|
| l | 130 2nd Avenue S.       | Project Number: 0021041.010.011   | Reported:         |
| l | Edmonds WA, 98020       | Project Manager: Christine Kimmel | 30-Oct-2017 14:42 |

2,4-Dinitrophenol WADOE, DoD-ELAP, NELAP, CALAP Dibenzofuran WADOE, DoD-ELAP, NELAP, CALAP 4-Nitrophenol WADOE, DoD-ELAP, NELAP, CALAP 2.4-Dinitrotoluene WADOE, DoD-ELAP, NELAP, CALAP Fluorene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 4-Chlorophenylphenyl ether WADOE, DoD-ELAP, NELAP, CALAP Diethyl phthalate WADOE, DoD-ELAP, NELAP, CALAP 4-Nitroaniline WADOE, DoD-ELAP, NELAP, CALAP 4,6-Dinitro-2-methylphenol WADOE, DoD-ELAP, NELAP, CALAP N-Nitrosodiphenylamine WADOE, DoD-ELAP, NELAP, CALAP 4-Bromophenyl phenyl ether WADOE, DoD-ELAP, NELAP, CALAP Hexachlorobenzene WADOE, DoD-ELAP, NELAP, CALAP Pentachlorophenol WADOE, DoD-ELAP, NELAP, CALAP Phenanthrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Anthracene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Carbazole WADOE, DoD-ELAP, NELAP, CALAP, ADEC Di-n-butylphthalate WADOE, DoD-ELAP, NELAP, CALAP Fluoranthene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Pyrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Butylbenzylphthalate WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzo(a)anthracene 3,3'-Dichlorobenzidine WADOE, DoD-ELAP, NELAP, CALAP Chrysene WADOE, DoD-ELAP, NELAP, CALAP, ADEC bis(2-Ethylhexyl)phthalate WADOE, DoD-ELAP, NELAP, CALAP Di-n-Octylphthalate WADOE, DoD-ELAP, NELAP, CALAP Benzo(b)fluoranthene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzo(k)fluoranthene Benzo(a)pyrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Indeno(1,2,3-cd)pyrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibenzo(a,h)anthracene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzo(g,h,i)perylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzofluoranthenes, Total WADOE, DoD-ELAP, NELAP, CALAP, ADEC N-Nitrosodimethylamine WADOE, DoD-ELAP, NELAP, CALAP Aniline WADOE, DoD-ELAP, NELAP, CALAP 1-Methylnaphthalene WADOE.DoD-ELAP.NELAP.CALAP.ADEC Azobenzene (1,2-DP-Hydrazine) WADOE, DoD-ELAP, NELAP, CALAP Benzidine WADOE.DoD-ELAP WADOE, DoD-ELAP Retene Pyridine WADOE, DoD-ELAP

2,6-Dichlorophenol WADOE, DoD-ELAP

Analytical Resources, Inc.





|   | Landau Associates, Inc. | Project: Cascade Pole             |                   |
|---|-------------------------|-----------------------------------|-------------------|
| ١ | 130 2nd Avenue S.       | Project Number: 0021041.010.011   | Reported:         |
| l | Edmonds WA, 98020       | Project Manager: Christine Kimmel | 30-Oct-2017 14:42 |

| alpha-Terpineol            | WADOE, DoD-ELAP |
|----------------------------|-----------------|
| 1,4-Dioxane                | WADOE, DoD-ELAP |
| 2,3,4,6-Tetrachlorophenol  | WADOE, DoD-ELAP |
| Triphenyl Phosphate        | WADOE, DoD-ELAP |
| Butyl Diphenyl Phosphate   | WADOE, DoD-ELAP |
| Dibutyl Phenyl Phosphate   | WADOE, DoD-ELAP |
| Tributyl Phosphate         | WADOE, DoD-ELAP |
| Butylated Hydroxytoluene   | WADOE, DoD-ELAP |
| Tetrachloroguaiacol        | WADOE, DoD-ELAP |
| 3,4,5-Trichloroguaiacol    | WADOE, DoD-ELAP |
| 3,4,6-Trichloroguaiacol    | WADOE, DoD-ELAP |
| 4,5,6-Trichloroguaiacol    | WADOE, DoD-ELAP |
| Guaiacol                   | WADOE, DoD-ELAP |
| 1,2,4,5-Tetrachlorobenzene | WADOE, DoD-ELAP |

#### NWTPH-Dx in Water

Diesel Range Organics (C12-C24) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-C25) DoD-ELAP.NELAP.WADOE Diesel Range Organics (Tol-C18) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-24) DoD-ELAP, NELAP, WADOE Diesel Range Organics (C10-C28) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C24-C38) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C25-C36) DoD-ELAP, NELAP, WADOE Motor Oil Range Organics (C24-C40) DoD-ELAP, NELAP, WADOE Mineral Spirits Range Organics (Tol-C12) DoD-ELAP, NELAP, WADOE Mineral Oil Range Organics (C16-C28) DoD-ELAP, NELAP, WADOE Kerosene Range Organics (Tol-C18) DoD-ELAP, NELAP, WADOE JP8 Range Organics (C8-C18) DoD-ELAP, NELAP, WADOE JP5 Range Organics (C10-C16) DoD-ELAP, NELAP, WADOE JP4 Range Organics (Tol-C14) DoD-ELAP, NELAP, WADOE Jet-A Range Organics (C10-C18) DoD-ELAP, NELAP, WADOE Creosote Range Organics (C12-C22) DoD-ELAP, NELAP, WADOE Bunker C Range Organics (C10-C38) DoD-ELAP, NELAP, WADOE Stoddard Range Organics (C8-C12) DoD-ELAP, NELAP, WADOE Transformer Oil Range Organics (C12-C28) DoD-ELAP, NELAP, WADOE

#### NWTPHg in Water

Gasoline Range Organics (Tol-Nap) WADOE,DoD-ELAP
Gasoline Range Organics (2MP-TMB) WADOE,DoD-ELAP
Gasoline Range Organics (Tol-C12) WADOE,DoD-ELAP

Gasoline Range Organics (C6-C10) WADOE, ADEC, DoD-ELAP

Analytical Resources, Inc.





Gasoline Range Organics (C5-C12) WADOE, DoD-ELAP

| Code     | Description                                        | Number   | Expires    |
|----------|----------------------------------------------------|----------|------------|
| ADEC     | Alaska Dept of Environmental Conservation          | UST-033  | 09/01/2017 |
| CALAP    | California Department of Public Health CAELAP      | 2748     | 02/28/2018 |
| DoD-ELAP | DoD-Environmental Laboratory Accreditation Program | 66169    | 02/07/2019 |
| NELAP    | ORELAP - Oregon Laboratory Accreditation Program   | WA100006 | 05/11/2018 |
| WADOE    | WA Dept of Ecology                                 | C558     | 06/30/2018 |
| WA-DW    | Ecology - Drinking Water                           | C558     | 06/30/2018 |





[2C]

Landau Associates, Inc.Project: Cascade Pole130 2nd Avenue S.Project Number: 0021041.010.011Reported:Edmonds WA, 98020Project Manager: Christine Kimmel30-Oct-2017 14:42

#### **Notes and Definitions**

| U   | This analyte is not detected above the applicable reporting or detection limit.                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q   | Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF) |
| Е   | The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)                      |
| D1  | Surrogate was not detected due to sample extract dilution                                                                                                       |
| D   | The reported value is from a dilution                                                                                                                           |
| *   | Flagged value is not within established control limits.                                                                                                         |
| DET | Analyte DETECTED                                                                                                                                                |
| ND  | Analyte NOT DETECTED at or above the reporting limit                                                                                                            |
| NR  | Not Reported                                                                                                                                                    |
| dry | Sample results reported on a dry weight basis                                                                                                                   |
| RPD | Relative Percent Difference                                                                                                                                     |

Indicates this result was quantified on the second column on a dual column analysis.