

Remedial Investigation/Feasibility Study/Cleanup Action Plan

Site Name:

Former ConocoPhillips Facility No. 255353 (AOC #1396)

Site Address:

600 Westlake Avenue North Seattle, Washington

Alternate Location Info:

Parcel #'s 4088803355 and 1987200015;

latitude: 47.624981; longitude: -122.337989;

Section 30, Township 4N, Range 4E.

Ecology Facility Site ID No .:

46445373

Voluntary Cleanup Program Project

NW1714

No.: Order No.:

Not Applicable

Consent Decree No.:

Not Applicable

Prepared By:

Elisabeth Silver

ATC Group Services LLC

6347 Seaview Avenue

Elexabel &

NW Seattle, WA 98107

Prepared For:

Ed Ralston

Phillips 66 Company

Remediation

Management 76

Broadway

Sacramento, CA 95818

Signature:

2-16-18

Date:

Table of Contents

Acı	rony	ms and	Abbreviations	iv	
Exe	ecut	ive Sun	nmary	5	
1.0		Introduction			
2.0		Genera	al Site Information	8	
3.0		Backg	round	9	
	3.1 P66 Property D		operty Description and Background	9	
	3.2	Adjoinii	ng Properties/Facilities	9	
	3.3	Propert	y Land Use History	9	
	3.4	Future	Property Land Use	10	
	3.5	Geolog	ic and Hydrogeologic Setting	10	
		3.5.1	Geology and Hydrogeology	10	
		3.5.2	Regional Geology and Hydrogeology	11	
		3.5.3	2005 Baseline Geotechnical Evaluation	11	
	3.6	Releas	e Discovery	11	
4.0		Summa	ary of Historical Environmental Actions	13	
4.1 Historical Investigation and Remediati		Historic	cal Investigation and Remediation Activities	13	
		4.1.1	Westlake Ave N and Mercer Street	15	
		4.1.2	Valley Street	15	
		4.1.3	Terry Avenue North	15	
	4.2	Current	t AS/SVE Remediation System	16	
5.0		Terres	trial Ecological Evaluation	17	
6.0		Constituents of Concern			
	6.1 Conceptual Site Model		otual Site Model	18	
	6.2 Contaminant Fate and Transport		ninant Fate and Transport	18	
		6.2.1	Transport Mechanisms Affecting Distribution of Petroleum Hydrocarbons In The Subs		
		6.2.2	Environmental Fate in the Subsurface	19	
7.0		Feasib	ility Study		
	7.1	Clean-ı	up Standards	20	
		7.1.1	Soil Cleanup Levels	20	
		7.1.2	Groundwater Cleanup Levels	20	
		7.1.3	Points of Compliance	20	
		7.1.4	Remedial Action Objectives	21	
	7.2	Identific	cation and Evaluation of Clean-up Alternatives	21	
		7.2.1	Cleanup Action Alternatives – Soil	21	
		7.2.1.1	Air Sparge/Soil Vapor Extraction	21	

i

		7.2.1.2	Biodegradation	22	
		7.2.1.3	Soil Excavation and Treatment Or Disposal	.22	
		7.2.1.4	Summary of Remedial Technologies For Soil	22	
	7.3	Cleanup Action Alternatives - Groundwater			
		7.3.1	Passive Bioremediation with Groundwater Monitoring	23	
		7.3.2	Summary of Remedial Technologies for Groundwater	23	
	7.4	Selection	ection Criteria - Preferred Remedial Alternatives		
	7.5	Selection	Selection of Preferred Remedial Alternative		
		7.5.1	Short-Term Effectiveness	23	
		7.5.2	Long-Term Effectiveness	23	
		7.5.3	Reduction of Toxicity	23	
		7.5.4	Implementational Feasibility	23	
		7.5.5	Economic Feasibility	24	
		7.5.6	Compliance with ARARs	24	
		7.5.7	Community Concerns	24	
		7.5.8	Permanency of Solution	24	
8.0	Cleanup Action Plan		p Action Plan	25	
	8.1	Remed	iation Description	25	
	8.2	Remediation Methodology		25	
		8.2.1	Source Removal Excavation	25	
		8.2.2	Monitoring	25	
		8.2.3	Protection Monitoring	25	
		8.2.4	Performance Monitoring	25	
		8.2.5	Remediation Confirmation Monitoring	25	
	8.3	Additional Required Planning and Documentation			
		8.3.1	Engineering Design Report	26	
		8.3.2	Compliance Monitoring Plan	26	
		8.3.3	Construction Plans and Specifications	26	
		8.3.4	Permit Requirements	26	
9.0		Conclusions			
10.0		References			
	Lim	itations.		31	

LIST OF FIGURES

Figure	1.	Vicinity	Map
i iqui c	١.	VICITILY	ινιαρ

- Figure 2. Site Layout
- Figure 3 Cross Section Transects and Parcel Locations Figure 4. Utility Infrastructure
- Figure 5 Cross Section A-A'
- Figure 6. Cross Section B-B'
- Figure 7. Groundwater Conditions Map with Rose Diagram (12/12/17)
- Figure 8. Groundwater Analytical Map (12/12/17–12/13/17)
- Figure 9. Current Soil Conditions Map
- Figure 10. Conceptual Site Model

LIST OF TABLES

Table 1. Summary of Historical Groundwater Gauging and Laboratory Analytical Data

Table 2. Summary of Current Soil Impacts

APPENDICES

Appendix A Historical Property Land Use Information

Appendix B Boring Logs

Appendix C Historical Cross Sections

Appendix D Historical Tables
Appendix E Historical Figures

Appendix F Remediation System Restart Report May 3, 2017

Appendix G Terrestrial Ecological Evaluation

AOC 1396 iii February 16, 2018

Acronyms and Abbreviations

ARAR Applicable or Relevant and Appropriate Requirements

bgs below ground surface

COC Contaminant/Chemical of Concern

CSID Cleanup Site Identification number

CSM Conceptual Site Model

CUL clean-up levels

Ecology Washington State Department of Ecology

FOC Fraction of Organic Carbon

FSID Facility Site identification number

MTCA Model Toxics Control Act

mg/kg milligrams per kilogram

PID Photoionization detector

PSD particle size distribution

QAPP Quality Assurance Project Plan

RAO Remedial Action Objective
RCW Revised Code of Washington
SAP Sampling and Analysis Plan

TEE Terrestrial Ecological Evaluation

TPH total petroleum hydrocarbon

VCP Voluntary Cleanup Program

WAC Washington State Administrative Code

AOC 1396 iv February 16, 2018

Executive Summary

This report presents the results of a Remedial Investigation, Feasibility Study, and CAP (RI/FS/CAP) performed for the former service station property (Facility No. 255353; AOC #1396). The former property address is 600 Westlake Avenue North in Seattle, Washington. The intent of the RI/FS/CAP is to meet the requirements of the Washington State Model Toxics Control Act (MTCA) as implemented in the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC).

The former service station property is located on the southwest portion of the Seattle City block bordered by Westlake Avenue to the west, Terry Avenue to the East, Valley Street to the North and Mercer Street to the South. The service station on the parcel in the southwest corner of the block was originally constructed by Union Oil Company of California (Unocal) in 1965 and was referred to as the Westlake 76 station, Tosco Corporation acquired the Westlake 76 station from Unocal in 1997. Tosco subsequently was acquired by Phillips Petroleum in 2001, which ultimately merged with Conoco to form ConocoPhillips (COP) in 2002, Phillips 66 was spun off from COP in 2012. The station was demolished in 2009. As the last owner of an active station at the Property was ConocoPhillips, the Property is referred to herein as the former COP property.

The former COP property is located in a primarily commercial area with apartment units. The former COP property is currently vacant, and is used as a construction staging area for redevelopment work occurring at the property to the east. The northern half of the city block is covered with asphalt.

The west-adjacent property is occupied by the Allen Institute. The east-adjacent property is an active construction site. To the north is museum of history and industry (MOHAI) and Lake Union Park, and to the south is a multi-story commercial and residential building.

Historical research indicates that the former COP station included four 10,000-gallon fuel underground storage tanks (USTs), two pump islands with product dispensers, and the station building (which had been converted into a convenience store). The parcel immediately adjacent to and east of the service station was also owned by COP. It was formerly occupied by a "Denny's" restaurant with an associated parking area, and is now used for construction support and contains ATC's AS/SVE system compound. Historical uses of the COP-owned parcels also include a lumber mill (which occupied the entire block), and subsequently by a creamer and a brewery.

The entire City block is currently owned by City Investors, and the Site is currently zoned SM-SLU 85/65-160 (Seattle Mixed-South lake Union). The 85 refers to the maximum allowed non-residential height, 65 ft is the base residential height, and 160 ft is the maximum allowed residential height.

Based on the results of previous investigations, a release of approximately 80,000 gallons of supreme leaded gasoline at the Westlake 76 station was confirmed in May 1980 following inventory discrepancies. The release occurred from a leaking product line just south of the western pump island. Upon discovery of the release, the USTs and product piping were immediately replaced, two product recovery trenches were installed on the service station property, and product recovery and monitoring wells were installed. Recovery of free product began in June 1980 and continued until October 1982, when it was discontinued due to minimal recovery. In May 2001, a contractor broke a gasoline product line during removal of waste oil and heating oil USTs at the station. An estimated 600 gallons of unleaded gasoline was released. The contractor had a vacuum truck on site and recovery of free product was initiated immediately from the UST excavation. Approximately 500 gallons of free product were removed from the excavation at that time.

Several subsurface investigations, soil-vapor investigations, and excavation activities, were conducted at the Site between 1980 and 2017. Based on the results of the investigations, the constituents of concern (COCs) for soil and groundwater at the Site include gasoline-range hydrocarbons and benzene, toluene, ethylbenzene, and total xylenes (BTEX) compounds, and lead. The area of impacted soil and groundwater in the vicinity and downgradient of the former COP station is referred to as the Site.

Since the initial release response in 1980, large scale remediation has taken place at the Site, including excavation activities in Westlake Avenue, and at all but the southeast corner of the City block. An AS/SVE system was installed in 1988 utilizing existing recovery trenches and wells, and a second one was installed in 2003. A third, post Phase II AS/SVE system was installed in the ROWs surrounding the City block following completion of Phase II activities, and has operated since 2013.

Routine periodic groundwater monitoring and sampling has been conducted at the Site since January 1988. Analytical data indicates that concentrations of TPH-G and/or BTEX have remained until the most recent sampling event above MTCA Method A cleanup levels in well MWR-5.

DRAFT 5 February 16, 2018

Based on the results of the investigations conducted to date, soil containing concentrations of TPH-G, BTEX, and lead above MTCA Method A cleanup levels remain in soil on the southeast portion of the block, and in the ROWs surrounding the block.

Complete exposure pathways for human and ecological receptors based on the current and planned land use for the Site include 1): human health protection from drinking water; 2) human health protection from soil to groundwater (leaching); 3) human health protection from direct soil contact; 4) human health protection from direct groundwater contact; and 5) human health protection from vapor inhalation. "Human health protection from soil to surface water," and "human health protection from groundwater to surface water" exposure pathways are considered incomplete since wells between the Site and the nearest surface water body (Lake Union) are not impacted. Additionally, terrestrial and ecological receptors are not at risk due to the petroleum release at the Site, and the Site qualifies for an exclusion from further TEE.

Three cleanup alternatives were evaluated in the feasibility study that will satisfy all of the minimum threshold requirements for the remedial action objectives (RAOs), including: 1) secondary source (soil) treatment technologies; 2) groundwater treatment technologies; and secondary source (soil) removal technologies. The following remedial action technologies were developed for detailed evaluation for each of these cleanup alternatives:

- Soil Vapor Extraction (SVE)
- Soil Biodegradation
- Soil Removal (by Excavation) and Off-Site Disposal
- Passive Groundwater Biodegradation and Monitored Natural Attenuation (MNA)

Based on a comparative evaluation of the ability to attain the RAOs, analysis of the screening criteria, and through a disproportionate cost analysis, Soil Removal (by Excavation) and Off-Site Disposal, with SVE were selected as the preferred technologies for soil, and Passive Groundwater Biodegradation and MNA for groundwater. These technologies will be protective of human health and the environment, comply with MTCA, and mitigate each complete exposure pathway of concern.

DRAFT 6 February 16, 2018

1.0 Introduction

ATC has prepared this report on behalf of Phillips 66 Company (P66) to document historical investigation and remedial activities that have been performed at the former P66 facility (located on the south half of the City block that is bounded on the north by Valley Street, to the east by Terry Avenue North, to the south by Mercer Street, and to the west by Westlake Avenue North) and those properties and ROWs on or around the block (including portions of Westlake Avenue North, Valley Street, Terry Avenue North, and Mercer Street). This City block is also known as City Block #77 (and will be referred to as City Block #77 herein).

The Property is defined as the south half of City Block #77, and the Site is defined as the areas of the Property, City block #77, and surrounding ROWs that have been historically impacted by releases on the Property. The historical understanding between COP/Phillips and the City of Seattle was that the Site also encompassed soil from depths at or below 7.5-feet below ground surface (bgs) beneath the ROW adjacent to COP's property, and from depths at or below 5.5-feet bgs beneath the northern half of City Block 77, and beneath the ROW adjacent to the northern half of City Block 77.

The Site is currently enrolled in the Washington State Department of Ecology's (Ecology) Voluntary Cleanup Program (VCP) and has been assigned VCP No. NW1714.

The background and previous investigation and interim remediation activities described in this report are a summary of historical investigations and documents prepared by ATC and previous consultants. The Site is shown relative to surrounding physical features on **Figure 1**. The Site layout and boundaries are shown on **Figure 2**.

DRAFT 7 February 16, 2018

2.0 General Site Information

Project Consultant: ATC Group Services LLC
 Primary Consultant Contact: Elisabeth Silver, LG

6347 Seaview Avenue NW

Seattle, Washington 98107

Office: 206-781-449

Direct/Cell: 206-4191-9754

Email: elisabeth.silver@atcassociates.com

Ecology Site Manager: Roger Nye

Northwest Regional Office 3190 160th Avenue SE

Bellevue, Washington 98008

Office: 425-649-7000

Current Owner/Operator: City Investors XI, LLC

Responsible Party: Phillips 66 Company

Ed Ralston – Program Manager

Remediation Management

76 Broadway

Sacramento, California 95818

Office: 916-558-7633 Cell: 916-257-3141

Email: ed.c.ralston@p66.com

DRAFT 8 February 16, 2018

3.0 Background

This section provides a description of the former COP property features and location; a summary of historical property use; a description of the local geology, hydrogeology, and land use pertaining to the Property and Site; a summary of previous investigations at the Site; and a current understanding of contaminant distribution beneath the Site.

3.1 P66 Property Description and Background

City Investors XI, LLC (City Investors) is the current owner of the Property that includes all of City Block #77. The eastern portion of the north half of City Block #77 was formerly occupied by the Brace Lumber Mill. The eastern half of the southern portion of the block was previously occupied by a Denny's restaurant. A former Union 76-branded gasoline service station (previously owned by Union Oil Company of California [Unocal]) previously occupied the southwest portion of City Block #77. The City currently holds easements for public rights-of-way on the streets and avenues surrounding the block. All of the parcels that comprise the City block are shown on **Figure 3**.

All previous facilities on City Block #77 have been removed and/or demolished. The southern half of the block is used by GLY Construction as a construction staging area and the north half of the block is currently used as a parking lot. The ATC AS/SVE system compound is present in the southeastern corner of the Property block. As part of the Mercer Cleanup Project (MCP), the City acquired a 70-foot wide strip of land from P66 located along on the north side of Mercer Street between Terry Avenue North and Westlake Avenue North. The approximate western two-thirds of the former COP property is occupied by construction equipment and several above ground storage/treatment tanks utilized as part of a construction dewatering system associated with the development of the city block east across Terry Avenue.

3.2 Adjoining Properties/Facilities

The Site is located in a mixed-use district that includes various businesses (both retail and commercial land uses), open space (Public Park), public use property (museum), and transportation corridors. Most surrounding properties are zoned either "Seattle Mixed" (SM) or "Commercial 2" (C2).

- North bordered by Valley Street; with South Lake Union Park across Valley Street
- South bordered by Mercer Street; with office buildings across Mercer Street
- East bordered by Terry Avenue N; with a construction Site across Terry Avenue N
- West bordered by Westlake Avenue N; with the Allen Institute for Brain Science across Westlake Avenue N.

Underground City sanitary sewer and storm sewer lines are located beneath Westlake and Terry Avenues N. Electrical conduits run beneath Westlake Avenues N, and Valley and Mercer Streets. Communication and Gas lines run beneath Valley and Mercer Streets. All utility layouts are depicted on **Figure 4.**

A search of Ecology water well records was performed in January 2018 by ATC utilizing the Washington State Department of Ecology well reports database. The search included water wells located within a one- mile radius of the Site. The search identified no domestic wells within one mile from the Site.

3.3 Property Land Use History

The entire city block is currently owned by City Investors. The parcels that comprise the block are shown on **Figure 3**. Prior to its initial development as a lumber mill, most, if not all of the city block that includes the former COP property, as well as the surrounding City street rights-of-way, were within the Lake Union shoreline. The area was reclaimed using undocumented fill materials.

In 2006 and 2007, in conjunction with Mercer Corridor Project (MCP), the City widened Mercer Street, narrowed Valley Street, and made other major modifications in City ROW abutting the former COP property and the City Investors property.

3.3.1 Southern Parcels

The former service station on the previously COP-owned parcel in the southwest corner of the block, referred to as the Westlake 76 station, was originally constructed by Union Oil Company of California in 1965. The station included four 10,000-gallon fuel underground storage tanks (USTs), two pump islands with product dispensers, and the station building (which had been converted into a convenience store). The parcel immediately adjacent to and east of the service station was also owned by COP. It was

DRAFT 9 February 16, 2018

formerly occupied by a Denny's restaurant with associated parking, and is now used for construction support and the AS/SVE system compound. Historical uses of the COP-owned parcels include a lumber mill (which occupied the entire block), a creamery, and a brewery. Historical property use information is included in **Appendix A**.

3.3.2 Northern Parcels

Historical uses of the northern parcels include development and operation of lumber mills as early as 1904 and retail gasoline and automobile service stations as early as 1930 (SCS Engineers, "Underground Storage Tank Investigation, Westlake Avenue UST Site, Site Investigation and Tank Removal Summary Report," June 18, 1990). The northwest portion of the block included an operating Union 76 service station from about 1930 to at least 1964, and possibly to 1972, when the City of Seattle acquired the Property from Unocal. At some time around 1950, the station was called McKale's, and also was a used car sales, service and detailing business. The USTs associated with the former service station were not removed until 1990.

According to the SCS report: "All of the underground tanks on the Property, except for the 500-gallon waste oil tank, were abandoned and not in use since at least 1972, when the City of Seattle acquired the Site. Based on available information, it appears that the USTs were abandoned sometime between 1959 and 1972. The former 500- gallon waste oil tank was actively used by the [then] current property tenant until its removal in January 1990."

Automobile service and detailing operations occupied the former service station buildings intermittently during the period between the City's acquisition of the Property and the City's sale of the Property to City Investors in 2001. Buildings and other aboveground structures associated with the former service station were demolished in June 2005, and the area was paved with asphalt. A vacant building, formerly associated with the lumber mill, was removed from the eastern half of the City Investors property in 2005, which is paved with asphalt.

3.4 Future Property Land Use

City Investors purchased the entire city block and plans to develop the entire property. Redevelopment will include construction for Google LLC. As part of the redevelopment activities, the southeast corner of the block, which was not excavated during Phase II activities in 2009, will be excavated. This work is anticipated to occur in late 2018 or early 2019.

3.5 Geologic and Hydrogeologic Setting

Historically, the subject Site was a wetland and shoreland area of Lake Union. The land was reclaimed in the 1800s using undocumented fill material to bring the surface grade as much as 15-20 feet above the elevation of the Lake. The areas addressed in this RI/FS/CAP are located as close as approximately 200 feet south of Lake Union, and are at a surface elevation of approximately 20 feet above Mean Sea Level (MSL).

The former COP parcels are relatively flat and level and are covered by asphalt, concrete, and unpaved areas. The northern parcels are of mixed elevations and are covered entirely by asphalt and concrete. The City street rights-of-way are flat and covered entirely by asphalt and concrete.

3.5.1 Geology and Hydrogeology

Based on the findings of previous Site investigations, the subject Site is underlain by mixed fill materials that include silt, silty sand, sand, gravel, and organic debris in the form of wood debris (from the former lumber mills that occupied the entire City block) and peat. The wood debris layer ranged in thickness from 0.5 feet to 10 feet, and was encountered at depths ranging from approximately 9 feet to 20 feet bgs. In the areas of the Site that have been excavated as part of Phase II activities, backfill material is present to 15 to 25 feet bgs. Below the fill materials, native sands, silty sands, silts, and clay have been encountered to the maximum total depth explored on Site, which is 70 feet bgs. Geologic cross-sections of the City block, and the City of Seattle rights-of-way are shown on **Figures 5** and **6**. Refer to **Figure 3** for the cross- section transect locations. Historical Boring Logs and Cross Sections are included in **Appendices B and C**, respectively.

Groundwater has been encountered at depths ranging from approximately 5 feet to 13.5 feet bgs, depending on the surface elevation and seasonal groundwater fluctuations. The groundwater gradient was historically relatively flat but recently, during construction and dewatering operations, has ranged up to approximately 0.04 ft/ft, and is generally to the north, toward Lake Union. The most recent

DRAFT 10 February 16, 2018

groundwater contour map, with a Rose Diagram, is included on Figure 7.

3.5.2 Regional Geology and Hydrogeology

According to a report prepared by GeoEngineers ("Supplemental Report of Geoenvironmental Services, Subsurface Contamination Study, Unocal Service Station 5353," dated July 1, 1991) the historic shoreline of Lake Union extended south of the former COP property and south of Mercer Street. In the late 1800s, lumber mills and related businesses and industries occupied the south end of Lake Union. The lumber mills were typically constructed over the water on pilings. Sawdust and wood waste generated by the mills were discarded into the lake for years, which left thick layers of wood debris. As the wood debris accumulated, the southern shoreline of the lake gradually filled in, and the mills shifted their locations northward to remain over the water. As a result, the area around the southern arm of Lake Union includes localized areas of mixed fill material to 40 feet bgs or deeper, and native soil beneath the mixed fill.

Regionally, the groundwater gradient is towards Lake Union. However, localized groundwater gradient anomalies may be present in areas of incongruent fill materials, subsurface foundations or other manmade structures, local groundwater pumping, or other localized anomalous conditions.

3.5.3 2005 Baseline Geotechnical Evaluation

In December 2005, Delta performed geotechnical exploration activities included drilling and installing one deep well (DW-1) on the former COP property near the northeast corner of the station building, advancing two soil borings along the southern boundary of the former COP property (DB-01-06 and DB-02-06), and advancing three soil borings within Westlake Avenue North, west of the COP property (DB-03-06 through DB-05-06). Soil samples were collected from each of the borings for specific geotechnical analyses, to supplement existing geotechnical data.

The samples were submitted for core photography and for chemical and geotechnical analyses to determine the following: vertical extent of hydrocarbons, physical soil characteristics, vertical and horizontal hydraulic conductivities in the saturated zone, air permeability in the unsaturated zone, general corrosion properties, organic carbon content, soil pH, and visual observations on characteristics of wood in the samples. The samples were submitted for specific geotechnical analyses, including moisture content (ASTM D2216), grain size (ASTM D422), specific gravity (ASTM D854), hydraulic conductivity (ASTM D5084), and unconsolidated, undrained triaxial compression testing (ASTM D2850).

Results of geotechnical analyses for core samples from DW-1 were reported directly to URS by PTS GeoLabs. Results of geotechnical analyses for core and soil samples from DB-01-06 through DB-05-06 were reported to Delta. The following is a summary of those results.

From all of the samples analyzed, the percent gravel (greater than 4,750 microns) ranged from 0.0% to 58.0%. Samples for percent retained in fine sand (425 to 75 microns) ranged from 1.0% to 55.2%. Percent retained in fine silt (13 to 9 microns) ranged from 2.0% to 7.2%. Percent retained in clay (less than 3.2 microns) ranged from 4.0% to 25.1%.

Moisture content results identified significantly higher moisture content in the soil samples from 20 feet bgs in borings DB-02-06 and DB-03-06. These soil samples consisted of woody debris and peat. The remaining samples analyzed for moisture content consisted of inorganic soils and the moisture contents ranged from 13.73% in DB-01-06 at 10 feet bgs (DB-01-06-d10) to 35.41% in DB-03-06 at 25 feet bgs (DB-03-06-25).

Specific gravity, flexible-wall hydraulic conductivity, and unconsolidated, undrained triaxial strength were analyzed in core samples from soil borings DB-01-06, DB-03-06, and DB-05-06 from depths ranging between 32.5 feet bgs and 36 feet bgs (DB-01-06-32.5-33, DB-01-06-33-33.5, DB-03-06-34.5-36, and DB-05-06-34-36). Results of specific gravity analyses indicated values ranging from 2.72 to 2.74. Hydraulic conductivity values ranged from 9.84x10⁻⁷ centimeters per second (cm/s) in the sample from DB-01-06 at 33 to 33.5 feet bgs (DB-01-06-33-33.5 to 2.06x10⁻³ cm/s in the sample from DB-03-06 at 34.5 to 36 feet bgs (DB-03-06-34.5-36). The average hydraulic conductivity in the analyzed samples was 5.16x10⁻⁴ cm/s. Results for unconsolidated, undrained triaxial strength reported shear failure in samples from DB-01-06 (DB-01-06- d32.5-33 and DB-01-06-d33-33.5) and DB-03-06 (DB-03-06-34.5-36), and bulging failure in the sample from DB-05-06 (DB-05-06-34-36).

3.6 Release Discovery

In May 1980, a release of approximately 80,000 gallons of supreme leaded gasoline at the Westlake 76 station was confirmed by Unocal following inventory discrepancies over an approximate 4-month period. The release occurred from a leaking product line just south of the western pump island. Upon discovery

DRAFT 11 February 16, 2018

of the release, the USTs and product piping were immediately replaced, two product recovery trenches were installed on the service station property, and product recovery and monitoring wells were installed. Recovery of free product began in June 1980 and continued until October 1982, when it was discontinued due to minimal recovery. Additional Site investigation and remediation efforts were performed that are discussed in Section 4.0.

Tosco Corporation subsequently acquired the Westlake 76 station from Unocal in 1997. Tosco subsequently was acquired by Phillips Petroleum in 2001, which ultimately merged with Conoco to form ConocoPhillips in 2002, and Phillips 66 was spun off from ConocoPhillips in 2012. In May 2001, a contractor broke a gasoline product line during removal of the waste oil and heating oil USTs at the station. An estimated 600 gallons of unleaded gasoline was released. The contractor had a vacuum truck on Site and recovery of free product was initiated immediately from the UST excavation. Approximately 500 gallons of free product were removed from the excavation at that time.

Other investigations have confirmed the presence of petroleum products released from historical operations on other parts of the city block, including the service station formerly located on the northwestern portion and the lumber mill formerly located on the northeastern portion of the block.

Releases of petroleum products and related compounds are present from the sources described above and potentially from other sources in the area, as well as the City of Seattle rights-of-way surrounding the block on which the ConocoPhillips and City Investors properties are located.

DRAFT 12 February 16, 2018

4.0 Summary of Historical Environmental Actions

A summary of historical investigation and remediation activities is included in the sections below. Historical groundwater and soil data is summarized in **Tables 1 and 2**, respectively. Historical Tables and Figures are included in **Appendices D and E**, respectively.

4.1 Historical Investigation and Remediation Activities

In May 1980, Unocal discovered that approximately 80,000 gallons of supreme leaded gasoline was released from a product line south of the western pump islands at the Westlake 76 Station to the subsurface over a four-month period. In response to the release the underground storage tanks (USTs) and product lines were replaced. Two recovery trenches and numerous recovery wells installed at the Property removed a total of approximately 41,900 gallons of liquid phase hydrocarbons (LPH) between June 1980 and October 1992.

In 1988, an initial SVE system was installed utilizing the then existing recovery wells and trenches. Approximately 4,262 pounds of gasoline was recovered by the SVE system between June 1998 and August 1990, when the system was shut down due to decreasing extracted vapor concentrations. In February 1990, five USTs were removed from the former Unocal service station on the City Investors property located at the southeast corner of Westlake Avenue North and Valley Street. The USTs ranged from 550 gallons to 5,000 gallons in capacity and were previously used to store used motor oil and gasoline. Approximately 800 cubic yards of petroleum contaminated soil was excavated during removal of the USTs.

Between January 1991 and July 1993, approximately 465 gallons of LPH was recovered during periodic manual/passive LPH removal efforts. The initial SVE system continued to operate through May 1995.

In May 2001, a gasoline product line was ruptured during the removal of waste oil and heating oil USTs at the Westlake 76 Station. An estimated 600 gallons of supreme unleaded gasoline was released. Approximately 500 gallons of product was immediately removed from the excavation utilizing a vacuum truck. Throughout the year, vacuum trucks and hand bailing were used for fluid recovery from adjacent monitoring wells. Approximately 4 gallons of LPH was manually recovered. Approximately 12,100 gallons of impacted groundwater was removed by vacuum truck.

In 2003, a new AS/SVE system was installed at the Westlake 76 Station that included an AS/SVE trench, SVE wells, and several deep AS wells. The system became operational in August 2003. Approximately 1,410 tons of petroleum impacted soil was removed and transported for treatment during the installation of the remediation system trenches and wells.

Further investigations conducted in 2004 and 2005 indicated petroleum impacts remained in soil and groundwater in various areas of the Site. In addition to residual impacts from the 1980 release on the Westlake 76 Station, these investigations indicated the presence of petroleum products released from past operations on the City Investors property, including the McKale's/Union 76-branded gasoline service station and the former Brace Lumber Mill and Denny's restaurant. Additional investigation also indicated that petroleum products were released during past operations of service station and/or fuel storage facilities formerly located on neighboring properties, including the former Rosen property located at 961-965 Mercer Street, south of the former COP property. Releases of petroleum products on and from these properties and potentially other sources had impacted the City street and utility ROWs surrounding Block #77.

Between July 2006 and April 2007, pursuant to the April 2007 Settlement Agreement between COP and the City, COP implemented the first phase of the Westlake/Mercer Cleanup Project (herein referred to as Phase I). Phase I was performed as an independent remedial action and designed and completed on an expedited basis, as required to meet the City's timeline for construction of the South Lake Union Streetcar line and to avoid disruption of the Streetcar line due to remedial action at the Site. The Phase I remedial activities included; 1) installation of steel shoring, excavation and off-Site disposal of petroleum-impacted soil from the eastern lanes of Westlake Avenue North, and installation of AS/SVE wells and associated conveyance piping back to the P66 property boundary and connection to the then existing above ground AS/SVE system; 2) installation of SVE and enhanced fluid recovery (EFR) wells in Terry Avenue North and installation of associated conveyance piping back to the P66 property and connection to the then existing above ground AS/SVE system; 3) soil and groundwater sampling and analysis; and 4) backfilling and surface restoration. A total of approximately 16,172 tons of soil was excavated from the Westlake and Terry Avenue North ROWs, between Mercer and Valley Streets. Influent vapor samples indicated that the petroleum hydrocarbon impact was highest in those SVE wells completed in Terry Avenue North. Information regarding the Phase I cleanup project is provided in URS Corporation's

DRAFT 13 February 16, 2018

Phase I Close-Out Report, prepared in 2007.

Between November 2007 and August 2008, biweekly enhanced fluid recovery was performed utilizing the recovery wells in Terry Avenue North. A total of 28,142 gallons of impacted groundwater was removed from the wells during this time. Cumulative petroleum hydrocarbon removal from September 2003 through March 2008 was approximately 1,940 pounds. Total LPH recovered from June 1980 through the end of the third quarter 2008 was approximately 43,632 gallons. Information regarding the recovery of petroleum impacted fluids and vapor between November 2007 and August 2008 is provided in Delta's On-Site Environmental Assessment – Horizontal and Vertical Delineation report prepared in 2005.

In September 2008, the Westlake 76 Station was demolished, all above-ground structures were removed, and all of the existing conveyance piping for the remediation wells were cut and capped in their respective ROWs to facilitate Phase II of the MCP excavation activities (herein referred to as Phase II).

Between November 2008 and June 2009, Phase II of the MCP was implemented, whereas City Block #77 (with the exception of the southeast corner) was excavated to depths up to 25 feet bgs. A soil/cement/bentonite (SCB) gravity wall was installed along the south, east, and north boundaries of City Block #77 (**Figure 4**). The SCB gravity wall, in conjunction with the previously installed sheet pile wall along the west property boundary, provided shoring for Phase II excavation activities and continues to serve as a hydraulic barrier. Backfill and surface restoration activities were completed in July 2009. A total of approximately 54,450 tons of soil was excavated from the Site during the Phase II excavation activities and transported off-Site for disposal. Information regarding the Phase II Remedial Activities is provided in URS Corporations Phase II Soil Sampling Report, prepared in 2009.

Confirmation soil sampling was conducted during the Phase II excavation activities to document conditions at the base of the excavation and to assess whether additional excavation was required to achieve cleanup levels or other project requirements. A total of 244 samples were collected from 65 sampling cells. On a cell by cell basis, P66 evaluated the data and assessed whether or not Site conditions and/or project objectives required additional excavation. Cells in the southeast corner of the excavation extended to 15 feet bgs, and the remaining excavation continued downward until residual concentrations were below Ecology's MTCA Method A Cleanup Levels.

Soils encountered during the Phase I and Phase II excavation activities generally consisted of sandy fill down to depths of at least 5 feet bgs. Fill between 5 feet to 25 feet bgs consisted of highly variable compositions of silty sand, sandy silt, sand, silt to silty clay, clayey silt, sand with clay, sandy gravel, and intermittent thin layers of peat/clay. The fill material also includes variable proportions of wood or wood chips/wood debris, and sawdust, as thick as 5 to 11 feet.

As part of the MCP, numerous SVE and AS wells were installed in Terry Avenue North, Mercer Street, Valley Street, and Westlake Avenue North. In July 2013, numerous remediation wells were installed in the Valley Street ROW under the oversight of SDOT as part of the MCP. Between August and November 2013, all of the remediation wells/conveyance piping located in the Mercer and Valley Street ROWs and the Westlake and Terry Avenue ROWs were connected to a new above ground AS/SVE treatment system currently located on the southeast portion of the block.

Historical remedial actions performed during the MCP construction included removal of petroleum hydrocarbon impacted soil within the P66 designated Area of Mercer and Valley Streets and Westlake and Terry Avenues North. Soil removal actions were completed during installation and/or upgrades of various subsurface utilities, including electrical and transmission duct banks and vaults, water, storm, and sanitary sewer systems.

Additionally, numerous AS/SVE remediation wells and associated conveyance piping (installed within excavated trenches) were completed in the P66 designated Area of Mercer and Valley Streets prior to the MCP construction. P66 also excavated soil along Terry Avenue during the MCP construction in order to install conveyance piping connected to the AS/SVE remediation wells installed in Valley Street.

Groundwater monitoring has been conducted at the Site since 1988. Groundwater monitoring has been conducted on a quarterly basis from the current monitoring well network since at least 1995 through December 2012. A baseline monitoring event was conducted in November 2013 prior to starting the currently operating remediation system. Historical groundwater analytical results are included on **Table 1**. The most recent groundwater sampling event showed no concentrations above Method A cleanup levels (**Figure 8**).

Numerous monitoring wells were also abandoned during the MCP construction. The remedial actions and well abandonment activities conducted during the MCP construction along Mercer Street, Westlake Avenue North, Valley Street, and Terry Avenue North is summarized in the following sections.

DRAFT 14 February 16, 2018

4.1.1 Westlake Ave N and Mercer Street

In June 2006, the City oversaw the abandonment of numerous groundwater monitoring wells located in the P66 Area of Westlake Avenue North, including MW-8, MW-13 through MW-17, MW-27, MW-42, MW-44, MW-70, MW-84, MW-98, MW-99, MW-105, and MW-205. Between December 2010 and January 2011, the City reportedly oversaw the abandonment of groundwater monitoring wells located in the P66 Area of Mercer Street prior to soil excavation activities.

The majority of the soil excavation activities within Westlake Avenue North occurred between July 2006 and April 2007 during Phase I activities, prior to the MCP. However, some subsurface utilities were installed and/or upgraded within the "P66 Area" of Westlake Avenue North between January 2011 and May 2012. Approximately 1,183 tons of soil from within the P66 area and below 7.5 feet bgs was removed.

In January 2011, a vault box was installed on the north side of Mercer Street to route the future AS/SVE conveyance piping to be installed in Mercer Street. Between May and June, 2011 the City oversaw the installation of eight 1-inch diameter AS wells to approximately 20 feet bgs, designated MAS-20 through MAS-27, and eight 1-inch diameter SVE wells to approximately 8 feet bgs, designated MSVE-10 and MSVE-13 through MSVE-19 in Mercer Street, including the 70 foot easement. Also excavated were the conveyance piping trenching in Mercer Street, in order to install the conveyance piping from the wells to the vault box.

In March and April, 2012 the City oversaw the installation of 19 1-inch diameter AS wells to approximately 20 feet bgs, designated MAS-1 through MAS-19, and 11 1-inch diameter SVE wells to approximately 8 feet bgs, designated MSVE-1 through MSVE-9, MSVE-11 and MSVE-12 within Mercer Street. Also excavated was the conveyance piping trenching in Mercer Street, in order to install the conveyance piping from the wells to the vault box installed in January, 2011. Approximately 916 tons of soil was removed during the well and conveyance pipe installation activities in Mercer Street.

All AS/SVE remedial well installation activities in Westlake Avenue North occurred between July 2006 and April 2007, prior to the MCP work. A total of 21 AS wells and 9 SVE wells were installed. Between August and November 2013, all of the remediation wells/conveyance piping located in the Mercer and Valley Street ROWs and the Westlake and Terry Avenue ROWs were connected to new above ground AS/SVE treatment system currently located on the former COP property.

4.1.2 Valley Street

Remedial actions performed during the MCP, including the removal of petroleum impacted soil and the installation of numerous AS/SVE remediation wells and associated conveyance piping trenching, occurred within Valley Street between January 2013 and July 2013. In June 2006, the City abandoned monitoring well MW-204 located in Valley Street within the P66 Area. Between December 2010 and January 2011, the City reportedly oversaw the abandonment of additional groundwater monitoring wells located in the P66 Area of Valley Street (including MW-86, MW-87, MW-88), prior to soil excavation activities.

Subsurface utilities, including electrical and transmission duct banks and vaults, water, storm, and sanitary sewer systems were installed and or upgraded within the P66 Area of Valley Street between January 2013 and November 2013. Approximately 3,746 tons of soil was documented as removed.

In July 2013, the City oversaw the installation of 14 1-inch diameter air sparge wells to approximately 20 feet bgs, designated VAS-1 through VAS-14, and eight 1-inch diameter soil vapor extraction wells to approximately 8 feet bgs, designated VSVE-1 through VSVE-7, and VSEVE-9 within the Valley Street ROW. CardnoATC also oversaw the excavation of trenches within Valley Street in order to install conveyance piping from the wells. The conveyance piping trench was excavated toward the southwest corner of the intersection of Valley Street and Terry Avenue North, and was terminated on the west side of Terry Avenue North, approximately 20 feet south of the intersection. Locations of the AS/SVE wells installed in Valley Street are shown on **Figure 4**.

4.1.3 Terry Avenue North

Limited improvements were conducted during the MCP in Terry Avenue. Remedial actions performed on Terry Avenue North during the MCP included well abandonment activities and removal of soil during the installation of conveyance piping associated with the AS/SVE wells located along Valley Street between December 2010 and October, 2013. In June 2006, the City abandoned well MW-36, MW-47 and MW-101, located in the P66 Area of Terry Avenue North. Between December 2010 and January 2011, the City oversaw the abandonment of additional groundwater monitoring wells located in the P66 Area of

DRAFT 15 February 16, 2018

Terry Avenue North (including MW-10, MW-69, MW-103, and MW-202) prior to soil excavation activities.

Trenching activities for the conveyance piping connected to the AS/SVE remediation wells installed in Valley Street began in the northwest corner of Terry Avenue on September 23, 2013. These trenching activities were conducted under the supervision of CardnoATC. The trench was excavated to approximately 3-feet bgs. A total of 182.36 tons of soil was transported to Waste Management for disposal.

All AS/SVE remedial well installation activities in Terry Avenue occurred between July 2006 and April 2007, prior to the Phase II work. A total of 15 SVE wells were installed. No AS wells were installed in Terry Avenue North. Locations of the AS/SVE wells installed in Terry Avenue North are shown in **Figure 4**.

4.2 Current AS/SVE Remediation System

The AS/SVE system consists of two blowers that are capable of extracting soil vapors from a total of 36 vertical wells (19 in Mercer Street, 17 in Terry Avenue) and 16 horizontal wells (7 in Valley Street, 9 in Westlake Avenue). The AS system is capable of supplying compressed air to a total of 62 air sparge wells (27 in Mercer Street, 14 in Valley Street, 21 in Westlake Avenue). The SVE blowers discharge vapors to an off-gas treatment system that uses granular activated carbon (GAC) to reduce air emissions to permitted levels (under Puget Sound Clean Air Agency [PSSCA] permit Registration No. 29548). Recovered water from the SVE moisture separators is also treated with GAC before discharging to the King County sewer system (under Discharge Authorization No. 4262-01, expiration: 6/30/2018). The SVE/AS system equipment summary, SVE/AS well identification, and system performance and analytical summaries are included in **Appendix F**.

The total petroleum hydrocarbon (TPH) mass recovered to date is 3,039 lbs. The SVE/AS system was most recently in operation in December 2017 in an effort to mitigate potential rebounding vapor concentrations. Due to diminished returns, the AS/SVE system has recovered the majority of mass possible.

The current monitoring well network consists of 14 wells, including MWR-1 through MWR-6, MW-41, MW-45, MW-50, MW-54, MW-209 through MW-211, and SMW-3. All other wells have either been destroyed or decommissioned due to construction activities. Depth to groundwater typically fluctuates between 9 and 12 feet bgs over much of the area. Based on depth to groundwater measurements, it is apparent that groundwater flow is not consistent beneath the P66 property, but generally appears to flow towards the north. Groundwater flow direction is likely impacted by subsurface hydrogeologic barriers installed during remedial excavation activities completed in 2008 and/or the current dewatering activities taking place near the Site.

DRAFT 16 February 16, 2018

5.0 Terrestrial Ecological Evaluation

When soil has been impacted by the release of a hazardous substance, a terrestrial ecological evaluation must be considered as described in WAC 173-340-7490. The goal of the terrestrial ecological evaluation is to protect terrestrial ecological receptors from exposure to contaminated soil that has the potential to cause adverse effects.

A completed terrestrial ecological evaluation (TEE) is provided in **Appendix G**. Using the Pathway Analysis (WAC 173-340-7492(2)(b), the simplified evaluation may be ended, as no potential exposure pathways exist from soil contamination to ecological receptors. This is based on the Property being zoned as commercial with future use expected to remain commercial. With a commercial or industrial use, only small mammals and birds are considered for exposure. As all soil and groundwater impacts are below ground surface, small mammals and birds cannot come in contact with contamination.

DRAFT 17 February 16, 2018

6.0 Constituents of Concern

Based on the results of the investigations conducted at the Site, the constituents of concern (COCs) in soil that currently exceed MTCA Method A soil cleanup levels on the former COP property, on the northern parcels, and in the City of Seattle ROWs at the Site include TPH-G, BTEX compounds, and total lead. COCs have likely degraded significantly over time, due to removal of most source material, and remediation systems operation. Soil sample results and soil boring locations with concentrations exceeding the MTCA Method A soil cleanup levels are listed on **Table 2**. Historical soil exceedances have not been confirmed as remediated are depicted on **Figure 8**.

Groundwater COCs that exceed MTCA Method A groundwater cleanup levels on the former COP property in City of Seattle right-of-way, and on the northern parcels include TPH-G and BTEX compounds. For the past several years, only well MWR-5, located in the southeast portion of the block, has had concentrations above cleanup levels. In the most recent sampling event, in December 2017, all concentrations were below cleanup levels.

6.1 Conceptual Site Model

A Conceptual Site Model is a summary that describes all of the known or suspected sources of contamination, the exposure pathways, and the current and reasonably likely future human or environmental receptors. The entire Site historically was comprised of soil impacts from approximately 5 to 20 feet bgs. Currently, most impacts are beneath the Mercer Street and Westlake Ave N ROWs, with the remainder on the south east corner of the block. Groundwater impacts are limited to well MWR-5, in the southeast corner of the block, although this well was clean when last sampled in December 2017. As shown on the Conceptual Site Model on **Figure 10**, no exposure pathway exists for free product, or for surface water and sediment, as these secondary sources are not present at the Site. Potential exposure pathways are possible from the secondary sources of shallow soil, subsurface soil, and dissolved product in groundwater. Shallow soil (less than 15 ft bgs) exposure pathways include Ingestion, Dermal Contact, and Vapor Inhalation. Potential subsurface soil (more than 15 ft bgs) exposure pathways include Ingestion, Dermal Contact, and Vapor Inhalation.

HUMAN HEALTH

Current human receptors are limited to Construction or Excavation workers.

ENVIRONMENT

The Site is an urban setting with paved surfaces. Stormwater drainage is routed to the City of Seattle CSO system. The only potential environmental exposure pathway is groundwater discharging to surface water in Lake Union. This exposure pathway is not complete, as evidenced by the lack of impacts detected to date in the monitoring well network located between the Site and Lake Union.

6.2 Contaminant Fate and Transport

This section includes a discussion of the transport mechanisms and environmental fate of petroleum hydrocarbons in the subsurface. Contaminant transport and fate refers to the physical, chemical and biological processes that impact the movement of contaminants within the subsurface, and how these contaminants may be altered while they are transported. Contaminants rarely move at the rate of groundwater due to a variety of processes and they generally are altered when moving through aquifer materials due to various processes.

6.2.1 Transport Mechanisms Affecting Distribution of Petroleum Hydrocarbons In The Subsurface

Subsurface transport mechanisms that affect the distribution of contaminant mass in the subsurface include the physical and chemical characteristics of the subsurface materials (e.g., porosity, permeability, and organic carbon content), the hydraulics of the flow system (e.g., advection, hydraulic conductivity, and gradient), the nature of the contaminants (e.g., solubility), and the natural processes that tend to remove or degrade the contaminant mass (e.g., advection, dispersion, partitioning, and biological transformation).

Petroleum contamination in the subsurface may exist in four separate phases, including subsurface vapor (i.e., in soil gas), residual contamination (i.e., contaminants physically or chemically sorbed onto

DRAFT 18 February 16, 2018

soil particles), aqueous (i.e., contaminants dissolved in pore water or groundwater), and as light non-aqueous phase liquids (LNAPL). Each phase exists in equilibrium in the subsurface with the other phases, and the relative ratio of total subsurface contamination by petroleum hydrocarbons between the four phases is influenced by the following factors:

- Sorption (transfer between contaminant and solids leads to "retardation"),
- Dissolution/precipitation (transfer between liquid and contaminant), and
- Volatilization (transfer from liquid or solid phase of contaminant to gas phase).

Petroleum hydrocarbons documented in soil and groundwater beneath the Site have been transported from source areas and distributed throughout the Site primarily by dispersive transport mechanisms within the saturated zone. Dispersion spreads the hydrocarbon mass in three dimensions as the groundwater flows away from the source area(s). The vertical and lateral extent of the hydrocarbon "plume" depends on the volume of the release and the physical properties of the subsurface (such as soil density, particle size, and seepage velocity).

Volatilization of the contaminant plume can result in mass removal of hydrocarbons by releasing vapor into the vadose (unsaturated) zone. Sorption of contaminants onto soil particles or interstitial soil spaces can "retard" and immobilize contaminants (sorbed contaminants cannot transport via advection). Residual contamination, although not necessarily broken down quickly over time, is generally immobile.

6.2.2 Environmental Fate in the Subsurface

The most significant fate process for petroleum hydrocarbons in the subsurface is biodegradation (i.e., natural attenuation). Biological degradation of contaminants predominantly occur under a variety of environmental conditions in the dissolved, residual, and vapor phases, and to a lesser degree, in the LNAPL phase. Degradation products of petroleum constituents are generally less toxic than their parent species. Petroleum hydrocarbons that are the most mobile (having the least viscosity and most solubility in water), such as aromatics (i.e. benzene), are also the most easily biodegraded. Because petroleum constituents contain thousands of carbon compounds, there is a vast array of biochemical transformations that occur in the soil and groundwater media. The alteration and destruction of petroleum constituents occur by microbial enzyme catalytic reactions on the contaminant substrate or by direct digestion of contaminants as an electron donor or acceptor. Any number of reactions can occur within the subsurface by microorganisms that change the chemical distribution and concentrations of the contaminants. The time frame over which these reactions occur vary depending on any number of limiting factors, primarily the availability of oxygen. For example, BTEX constituents are rapidly degraded under aerobic conditions (oxygen present) but tend to persist for several years and/or decades under the anoxic conditions (oxygen deficient) typical of most subsurface environments. As noted above, COCs have likely degraded significantly over time, due to removal of the majority of source material, and remediation systems operation.

DRAFT 19 February 16, 2018

7.0 Feasibility Study

The objective of the FS is to evaluate viable remedial alternatives and recommend to Ecology a preferred remedial cleanup action at the Site in accordance with WAC 173-340-350(8) that is protective of both human health and the environment, based on the results of the RI. This FS includes the development, screening, and evaluation process for numerous remedial alternatives that are implementable and capable of achieving the remediation objectives.

The FS is used to screen cleanup alternatives and eliminate those that are not technically possible, those with costs that are disproportionate under WAC 173-340-360(3)(e), or those that will substantially affect the future planned business operations at the Property. Based on the screening, this FS evaluates the most practicable remedial alternative to recommend a cleanup action for the Site in conformance with WAC 173-340-360 through 173-340-390.

7.1 Clean-up Standards

The cleanup standards for the Site, as defined in WAC 173-340-700, consist of establishing cleanup levels as well as the points of compliance at which those cleanup levels are to be attained. The cleanup standards must be protective of human health and the environment, and must comply with applicable laws and regulations.

7.1.1 Soil Cleanup Levels

The target soil cleanup levels for petroleum hydrocarbon impacts present on the City Investors property, present on the former COP property, or originating on the former COP property and/or the northern parcels and present in the abutting City of Seattle ROWs, are proposed to be the MTCA Method A cleanup levels for the respective COCs. These are as follows:

- TPH-G = 30 mg/kg
- Benzene = 0.03 mg/kg
- Toluene = 7 mg/kg
- Ethylbenzene = 6 mg/kg
- Xylenes = 9 mg/kg
- Lead = 250 mg/kg

7.1.2 Groundwater Cleanup Levels

The target groundwater cleanup levels for petroleum hydrocarbon impacts present on the City Investors property, present on the former COP property, or originating on the former COP property and/or the northern parcels and present in the abutting City of Seattle Rows, are proposed to be the MTCA Method A cleanup levels for the respective COCs. These are as follows:

- TPH-G = 800 μg/L
- Benzene = 5 μg/L
- Toluene = 1,000 μg/L
- Ethylbenzene = 700 μg/L
- Xylenes = 1,000 μg/L
- Lead = 15 μg/L

7.1.3 Points of Compliance

Points of compliance are defined in WAC 173-340-200 as the locations where the cleanup levels established in accordance with WAC 173-340-720 through 173-340-760 will be attained to meet the requirements of MTCA. Conditional points of compliance can be defined in accordance with WAC 173-340-720(8)(c) if the cleanup levels for groundwater cannot be met within a reasonable restoration time frame. If this were the case, an institutional control would need to be implemented at the Site that precludes the use of groundwater in the shallow water-bearing zone as a potable water source. At that point in time when the cleanup levels have been reached and maintained at the defined points of compliance, the Site is no longer considered to be a threat to human health or the environment and can be closed. The points of compliance for the proposed cleanup action for soil and groundwater are as follows:

Soil - The proposed points of compliance for soil are defined in WAC 173-340-740(6)(b) as being throughout the City Block 77, and in the ROWs surrounding the Site. In the proposed remediation on the City Investors/former COP property, the points of compliance for soil will be the depth and horizontal extent of the excavation required to remove essentially all of the soil with hydrocarbon concentrations

DRAFT 20 February 16, 2018

exceeding MTCA Method A cleanup levels to the extent reasonably practicable. As significant amounts of impacted soil have already been excavated, the point of compliance is where impacted soils still remain. If removal of all impacted soil above MTCA Method A is not reasonably practicable, then institutional controls may be required to address residual contamination in the future.

Groundwater - The proposed point of compliance for groundwater is groundwater within the shallow water-bearing zone at the Site.

7.1.4 Remedial Action Objectives

Remedial action objectives (RAOs) are general administrative goals for a cleanup action that address the overall MTCA cleanup process. The intent of the RAOs for the Site is to provide cost-effective remedial alternatives that effectively mitigate and minimize threats to, and provide adequate protection of, human health and the environment. In addition, RAOs are designated in order to:

- Implement administrative principals for cleanup (WAC 173-340-130),
- Meet the requirements, procedures, and expectations for conducting an FS and developing cleanup action alternatives as discussed in WAC 173-340-350 through 173-340-370.
- Develop cleanup levels (WAC 173-340-700 through 173-340-760) that are protective of human health and the environment.

Specifically, RAOs must include the following threshold requirements as specified in WAC 173-340-360(2)(a):

- Protect human health and the environment,
- Comply with cleanup levels (WAC 173-340-700 through 760), Comply with applicable state and federal laws (WAC 173-340-710),
- Provide for compliance monitoring (WAC 173-340-410 and 173-340-720 through 760), and
- Mitigate risks to human health and the environment, bring the Property soil and groundwater into compliance with the established cleanup levels for each of the COCs, and obtain a No Further Action (NFA) determination from Ecology.

WAC 173-340-360(2)(b) also requires the cleanup action alternative to:

- Use permanent solutions to the maximum extent practicable.
- Provide for a reasonable restoration time frame, and
- Consider public concerns on the proposed cleanup alternative.

7.2 Identification and Evaluation of Clean-up Alternatives

7.2.1 Cleanup Action Alternatives – Soil

A focused group of remedial alternatives that have been proven to be applicable for soil remediation at similar Sites have been examined. General remedial technologies to be discussed include:

- Air Sparge/Soil Vapor Extraction
- Biodegradation
- Soil excavation and treatment or disposal

Detailed descriptions and assumptions of each remedial technology are presented. The applicability and potential effectiveness of each remedial technology with respect to the Site are examined. The technologies that are most applicable to Site conditions are carried forward for development of remedial alternatives.

In-situ treatment of soils at similar Sites can include soil vapor extraction (SVE), soil flushing, chemical oxidation, and biodegradation. Each of these methods will be discussed below.

7.2.1.1 Air Sparge/Soil Vapor Extraction

Air-sparge with soil vapor extraction is an effective technique for the removal of volatile hydrocarbons such as gasoline. By placing a vacuum on vadose-zone wells, soil vapors are removed from the subsurface for treatment and/or discharged above grade. The hydrocarbon-laden vapors are replaced by clean atmospheric air with a higher oxygen content than soil gases in the undisturbed state. AS/SVE would not be as appropriate for a Site with high concentrations of diesel or with significant fractions of oil-range petroleum products.

The Site currently has a functioning AS/SVE system. Originally a different SVE system began operating at the Site in 1988. The different systems have been effective in removing petroleum hydrocarbons within their areas of influence, although concentrations in influent samples have diminished greatly in the

DRAFT 21 February 16, 2018

last couple of years. This technology requires a long time frame to obtain Site closure. It requires routine maintenance visits, quarterly air sampling, annual permit fees, and monthly electricity bills. The cost of a continued operation of the remediation system has been spread out over a number of years but is substantial. Due to diminished recovered volatile hydrocarbons, the system will not be operated continuously, but will instead be pulsed periodically.

Continued operation of the AS/SVE at the Site until excavation activities occur would be effective and would be less disruptive to City streets and utility infrastructure then an alternative such as excavation. The remaining impacts are mostly along the perimeter of the Site hydrocarbon plume, and have an acceptable remediation time frame using AS/SVE as opposed to more highly impacted source areas.

7.2.1.2 Biodegradation

Biodegradation, as mentioned above, is a component of both AS/SVE and soil flushing when those techniques are used for remediation of petroleum hydrocarbons. If an active biodegradation system is installed and operated, it typically uses either AS/SVE or soil flushing to mobilize oxygen and nutrients to the soils of interest. Biodegradation differs from these other methods only in the emphasis that is placed on biological versus physical processes. Biological systems typically are designed with lower flow rates of air or water. Like AS/SVE and soil flushing, biodegradation is most effective on low to medium weight petroleum hydrocarbons and is not as effective for heavier-end petroleum hydrocarbons. Biodegradation would be effective at the Site for the same reasons discussed under AS/SVE, but as an option, biodegradation suffers from the same limitations of time to restoration and verification of influence in heterogeneous soils.

7.2.1.3 Soil Excavation and Treatment Or Disposal

Soil excavation can remove all soils exceeding target cleanup levels to the extent reasonably practicable. Its implementation is fairly straightforward in concept and results are achieved quickly. Practical considerations including excavation costs, disposal costs, and Site disruptions need to be weighed when considering excavation as an alternative. Soil excavation is not normally practicable when thin or deep layers of contamination require excessive amounts of clean "overburden" to be stripped to accomplish removal. Since the hydrocarbon impacted soils at the Site are relatively shallow and consist of impacted vadose zone soils as well as a relatively thick smear zone, soil excavation is generally considered to be a practicable option to address soil contamination on City block #77. Soil excavation of any impacts remaining in the ROW would not be practicable.

Excavation of contaminated soils in the southeast corner of the Site would remove petroleum hydrocarbon impacted soil to below MTCA Method A cleanup levels. The excavation alternative would remove the majority of the hydrocarbon mass, and would be the fastest pathway towards Site closure. Furthermore, future groundwater monitoring could be reduced since so much of the source material will have been removed. The initial cost of soil excavation is greater than other alternatives. However, when compared to the long term costs of in-situ remediation system installation and operation, the total cost of excavation is comparable or lower. Excavation is considered to be a favorable technology for use in the southeast corner of the Site.

7.2.1.4 Summary of Remedial Technologies For Soil

Excavation and removal of petroleum hydrocarbon impacted soils is considered to be the most practicable remediation alternative for the southeast portion of the Site, but not for in the ROW. Excavation is preferred due to its ease of implementation, permanency of solution, and verifiable effectiveness.

Because of the nature of the soil impacts in the ROW and the constraints of active streets and utility infrastructure, continued operation of the existing AS/SVE system is the more practicable approach for remediation of soil in this area of the Site.

7.3 Cleanup Action Alternatives - Groundwater

Groundwater at the Site remains impacted at only one location, at well MWR-5 in the southeast portion of the block. This is in an area where excavation of all impacted soil is planned for late 2018 to early 2019. It is ATCs technical opinion that following the excavation activities, no groundwater impacts will remain at the Site.

A focused group of remedial alternatives for groundwater that have been proven to be applicable at similar Sites have been examined. However, based on the above data, the general remedial technology to be discussed includes passive biodegradation and groundwater monitoring.

The applicability and potential effectiveness of the remedial technology with respect to the Site is

DRAFT 22 February 16, 2018

examined below, and will be carried forward for development of remedial alternatives.

7.3.1 Passive Bioremediation with Groundwater Monitoring

For comparative purposes, a scenario in which there is no active remediation will be examined. Passive biodegradation is an appropriate response at this Site, if groundwater cleanup goals are expected to be met within a reasonably acceptable time frame, due to the planned excavation activities. A groundwater monitoring program should be continued with any soil remedial option undertaken, and testing for natural attenuation parameters should be considered, if necessary, to provide data that could potentially help facilitate Site closure.

7.3.2 Summary of Remedial Technologies for Groundwater

Because excavation and removal of contaminated soils from the Site is considered to be the most practicable remediation alternative, subsequent groundwater remediation will be required in the southeast portion of the Site to confirm that groundwater impacts have also been addressed.

7.4 Selection Criteria - Preferred Remedial Alternatives

Remedial alternatives have been evaluated in accordance with WAC 173-340-350(6) and 173-340-360. Factors in the evaluation process include, but are not limited to:

- Short- and long-term effectiveness
- Reduction of toxicity and mobility through treatment
- Economic feasibility
- Implementational feasibility
- Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)
- Institutional controls
- Community concerns
- Permanency of the remedial solution

7.5 Selection of Preferred Remedial Alternative

A group of remedial alternatives has been screened and evaluated. Relevant selection criteria listed in WAC 173-340-360(4) through (9), as applicable, include impact on human health and the environment, short- and long-term effectiveness, reduction of toxicity and mobility through treatment, implementation and economic feasibility, and community concerns. The preferred remedial alternatives have been tentatively identified, and a discussion will be included which describes how the preferred alternatives meet the relevant requirements outlined in WAC 173-340-360.

7.5.1 Short-Term Effectiveness

A soil excavation program would offer immediate effectiveness in the removal of hydrocarbons from soil and groundwater in the southeast portion of the Site. A significant portion of the total remaining hydrocarbon mass at the Site could be removed using this approach.

Remediation of soil in the remaining parts of the ROW using AS/SVE could reasonably be expected to reduce the concentrations of dissolved hydrocarbons in soil to below MTCA Method A cleanup levels.

7.5.2 Long-Term Effectiveness

Since the preferred soil and groundwater remedial options depend on mass removal of the highest hydrocarbon concentrations, this option would provide long-term effectiveness. Once the majority of hydrocarbon mass is removed, it will no longer be present to contribute to the dissolved hydrocarbon plume. The preferred option of AS/SVE would also remove hydrocarbon mass by a combination of vapor removal and enhanced biodegradation of hydrocarbons in soils at the groundwater interface and dewatered smear zone. Therefore, this alternative would also provide long-term effectiveness.

7.5.3 Reduction of Toxicity

Each of the preferred active remediation options would achieve a reduction in toxicity by removing petroleum hydrocarbons and related compounds present in soil and groundwater.

7.5.4 Implementational Feasibility

The preferred soil and groundwater remedial options are feasible to implement. Soil excavation will present a challenging construction project, but it has been performed successfully during the Phase I and II remediation projects previously conducted at the Site. The Site property already contains necessary AS/SVE remediation equipment.

DRAFT 23 February 16, 2018

7.5.5 Economic Feasibility

The preferred remedial alternatives are considered to be high cost methods. However, they are also expected to be the most effective and they are considered the most practicable alternatives due to their removal of petroleum hydrocarbon mass and their potential for successful remediation of areas distal to the source location.

7.5.6 Compliance with ARARs

The preferred remediation options would achieve compliance with applicable or relevant and appropriate requirements (ARARs).

7.5.7 Community Concerns

The proposed remedial options are not considered to create community concerns because each responds to the destruction or removal of contaminants without generating significant air emissions or discharges of toxic compounds to surface waters. The preferred options do involve capture and destruction of wastes, but do not involve the generation of significant amounts of odors or dust, which would be potential community concerns.

7.5.8 Permanency of Solution

The preferred remedial options, once they have achieved the target cleanup levels, will have done so permanently. If the target cleanup goals cannot reasonably be achieved through the implementation of these actions within a reasonably acceptable time frame, Site-specific MTCA Method B cleanup levels or other risk-based cleanup approaches and/or institutional controls may need to be considered to provide a permanent solution for appropriate areas of the Site.

DRAFT 24 February 16, 2018

8.0 Cleanup Action Plan

8.1 Remediation Description

The remediation at the Site will be conducted by the owners' contractor and will consist of the following activities: Removal of all existing structures and facilities on the southeast corner of the Site;

- Excavation of all soils containing hydrocarbon concentrations exceeding MTCA Method
 A cleanup levels to the extent reasonably practicable in the southeast corner of the Site;
- Performing erosion control, management of groundwater, and Site security during excavation activities:
- Performing compliance monitoring, soil sampling, and air monitoring during excavation activities;
- Performing laboratory analysis of soil samples to document compliance with cleanup goals;
- Transporting of impacted soils off site to a licensed disposal facility; and
- Backfilling the excavations with non-contaminated fill material;
- ; and

Activities to be conducted by ATC will include:

- Continued intermittent operation of the existing AS/SVE system until excavation activities occur;
- Performing compliance groundwater monitoring;
- Oversight of excavation activities; and
- Determination of post-excavation sample locations.

8.2 Remediation Methodology

The following sections describe the proposed remediation alternative. Specifications for the proposed remediation project will be created in the Engineering Design Report, which is a document to be completed as additional required work.

8.2.1 Source Removal Excavation

Soil containing COCs at concentrations exceeding MTCA Method A cleanup levels will be excavated from the southeast corner of the Site. Soils will be excavated to the extent reasonably practicable, and will be transported offsite for disposal at a licensed facility. It is estimated that approximately 5,000 tons of soil will be excavated and removed from the Site during this phase of work.

8.2.2 Monitoring

The proposed remediation project will be monitored in order to comply with the requirements of WAC 173-340-410, and will include protection, performance, and confirmation monitoring. A Compliance Monitoring Plan will be prepared for the project that details the monitoring requirements for the project. The basic monitoring elements are described in the following subsections.

8.2.3 Protection Monitoring

Protection monitoring refers to monitoring of soil, ambient air, and quality of water managed during remediation activities. This monitoring will be conducted during remediation activities to ensure protection of human health and the environment. Specific details of these activities will be presented in the Compliance Monitoring Plan.

8.2.4 Performance Monitoring

Soil sampling and testing will be observed to monitor the performance of the excavation activities. Groundwater samples will be collected to document conditions prior to remediation. Performance monitoring will be ongoing during remediation system operation, and will provide data to determine when remediation goals have been met and compliance monitoring may begin. Specific details of these activities will be presented in the Compliance Monitoring Plan.

8.2.5 Remediation Confirmation Monitoring

Confirmation monitoring will be performed to document compliance with remediation goals to confirm that target cleanup levels are met in soil and groundwater. Confirmation soil samples will be collected from

DRAFT 25 February 16, 2018

the limits of excavations, and groundwater samples will be collected for a period of time after active remediation is complete. Confirmation soil samples may also be collected following operation of AS/SVE systems to confirm that soil cleanup levels have been met. Specific details of these activities will be presented in the Compliance Monitoring Plan.

8.3 Additional Required Planning and Documentation

8.3.1 Engineering Design Report

An Engineering Design Report (EDR) will need to be prepared for the proposed remediation by a competent engineering consultant. The EDR will contain information to be used for the development of construction plans and specifications, and to document the criteria used for design elements of the remediation project. The EDR shall include information required under WAC 173-340-400(a).

8.3.2 Compliance Monitoring Plan

A Compliance Monitoring Plan (CMP) shall be prepared in accordance with the requirements of WAC 173-340-410. The CMP will specify the monitoring activities to be performed during the remediation project, and will include the elements of a Sampling and Analysis Plan as detailed in WAC 173-340-820. The CMP must include the following elements:

- The purpose and objectives of data collection;
- The rationale of the sampling approach;
- The responsibilities for the sampling and analysis activities;
- The specifications for sample identification;
- Types, quantities, and locations of samples;
- Sample container requirements;
- Quality assurance/quality control (QA/QC) procedures;
- Collection, schedule, and chain-of-custody procedures; and
- Documentation of samples.

8.3.3 Construction Plans and Specifications

Construction plans and specifications will be prepared following preparation of the EDR. The plans and specifications will include information as required by WAC 173-340- 400(4)(b), and will be prepared under the supervision of a Washington licensed Professional Engineer.

8.3.4 Permit Requirements

The proposed remediation project will be conducted under MTCA and must comply with applicable federal and state laws as described under WAC 173-340-360(2) and WAC 173-340-710(1)(a). State laws that likely will apply to the proposed remediation in addition to MTCA include the following:

- Washington Clean Air Act (RCW 70.94);
- Soil Waste Management Act (RCW 70.95);
- Washington State Environmental Policy Act (SEPA) (RCW 43.21);
- Water Pollution Control Act (RCW 90.48);
- Shoreline Management Act (RCW 90.58):
- Washington Department of Ecology stormwater regulations.

City of Seattle requirements that likely will apply to the proposed remediation include those relating to grading/erosion control, stormwater drainage, street use, shoreline substantial development, and land use, as generally applicable to similar projects conducted in the City.

If and to the extent that the proposed remediation activities are conducted under a consent decree with Ecology and the Office of the Attorney General, they would be exempt from the procedural requirements of most of the above laws, i.e., obtaining state and local government permits or approvals, although they would remain subject to environmental review under SEPA. However, the remediation activities would still be required to comply with the substantive requirements of the above laws and regulations.

If and to the extent that the proposed remediation activities are conducted as independent remedial actions, and/or under Ecology's Voluntary Cleanup Program, and/or prior to obtaining a consent decree, the relevant state and local government permits and approvals generally required under the above laws and regulations would need to be obtained

In March 2008, ConocoPhillips did obtain Land Use Permits from the City of Seattle authorizing excavation of soil for remediation of the former COP property and the City Investors property. Specifically, the City issued a Determination of Nonsignificance with Conditions under SEPA and a

DRAFT 26 February 16, 2018

Shoreline Substantial Development Permit (required because a portion of the City Investors property is located within 200 feet of Lake Union, and therefore within the shoreline area).

Complying with the substantive requirements of the above laws and regulations and/or obtaining additional permits and approvals required for the proposed remediation project will involve development of much of the same information as the Engineering Design Report and the construction plans and specifications for the project, discussed above.

DRAFT 27 February 16, 2018

9.0 Conclusions

ATC prepared this RI/FS/CAP for the former service station property (Facility No. 255353; AOC #1396) Site located at 600 Westlake Avenue North in Seattle, Washington. The report was prepared to document historical investigation and remediation activities, and to describe the selected cleanup action. The Site is comprised of the southern 2 parcels of the City block, the northern parcels and surrounding ROWs below 5.5 ft bgs, and the ROWs surrounding the southern parcels below 7.5ft

Based on the results of previous investigations, a release of approximately 80,000 gallons of supreme leaded gasoline at the Westlake 76 station was confirmed in May 1980 following inventory discrepancies. The release occurred from a leaking product line just south of the western pump island. Upon discovery of the release, the USTs and product piping were immediately replaced, two product recovery trenches were installed on the service station property, and product recovery and monitoring wells were installed. Recovery of free product began in June 1980 and continued until October 1982, when it was discontinued due to minimal recovery. In May 2001, a contractor broke a gasoline product line during removal of waste oil and heating oil USTs at the station. An estimated 600 gallons of unleaded gasoline was released. The contractor had a vacuum truck on Site and recovery of free product was initiated immediately from the UST excavation. Approximately 500 gallons of free product were removed from the excavation at that time.

Since the initial release response in 1980, several large scale remedial activities have been conducted at the Site, including excavation activities in Westlake Avenue, and at all but the southeast corner of the City block. An AS/SVE system was installed in 1988 utilizing existing recovery trenches and wells, and a second one was installed in 2003. A third AS/SVE system was installed in the ROWs surrounding the City block following completion of Phase II activities, and has operated since 2013.

Based on a review of historical information, petroleum impacted soil may remain in the ROW in Westlake Ave and in Mercer and Valley Streets. Impacted soil also remains below 15 feet bgs in the southeast corner of the former COP parcel (Phase II excavation), and in the unexcavated, southeast parcel of the City block. Impacted groundwater has only been detected in the last several years at well MWR-5. However, groundwater was below cleanup levels in this well during the most recent sampling event in December 2017. Concentrations of COCs in groundwater monitoring wells in the ROWs surrounding the Site have remained below cleanup levels for the past several years.

Based on a review of available remedial strategies in the feasibility study, excavation and AS/SVE were selected to remediate remaining soil and groundwater impacts. The excavation will be comprised of removal of approximately 5,000 tons of soil containing COCs at concentrations exceeding MTCA Method A cleanup levels from the southeast corner of the Site. Because of the nature of the soil impacts in the ROW and the constraints of active streets and utility infrastructure, continued periodic operation of the existing AS/SVE system will also be conducted.

Groundwater confirmation monitoring will be performed to document compliance with remediation goals to confirm that target cleanup levels are met in groundwater. Confirmation groundwater samples will be collected for a period of time after active remediation is complete.

It is ATCs technical opinion that excavation, AS/SVE, and continued compliance groundwater monitoring will most successfully remediate remaining soil and groundwater impacts, and allow for an eventual NFA for the Site. The preferred remedial options, once they have achieved the target cleanup levels, will have done so permanently. If the target cleanup goals cannot reasonably be achieved through the implementation of these actions within a reasonably acceptable time frame, Site-specific MTCA Method B cleanup levels or other risk-based cleanup approaches and/or institutional controls may need to be considered to provide a permanent solution for appropriate areas of the Site.

DRAFT 28 February 16, 2018

10.0 References

Roger Lowe Associates, 1980. Progress Report Monitoring & Recovery Operations, Westlake and Mercer Gasoline Spill. December 23, 1980.

SCS Engineers, 1991. Investigation of Monitoring Wells at Westlake Site. January 9, 1991.

SCS Engineers, 1991. Site Investigation Report, 630 Westlake Avenue, Seattle, Washington. May 21, 1991.

GeoEngineers, Inc., 1992. Supplemental Report of Geoenvironmental Services Subsurface Contamination Study, Unocal Service Station 5353. July 7, 1992.

GeoEngineers, Inc., 1994. Supplemental Site assessment, Rosen Site. May 27, 1994.

GeoEngineers, Inc., 1994. Report of Geoenvironmental Services Results of Ground Water Monitoring, Unocal Service Station 5353. June 10, 1994.

GeoEngineers, Inc., 2003. ConocoPhillips 76 Service Station 5353. January 31, 2003.

Delta Environmental Consultants, Inc., 2005. *Limited Off-Site Environmental Assessment Horizontal and Vertical Delineation, ConocoPhillips Company Service Station 5353.* August 29, 2005.

Delta Environmental Consultants, Inc., 2005. *Limited Off-Site Environmental Assessment Horizontal and Vertical Delineation, ConocoPhillips Company Service Station 5353.* November 30, 2005.

Delta Environmental Consultants, Inc., 2007. Westlake-Mercer Cleanup Project – Phase 1 Compliance Report, ConocoPhillips Company Service Station 5353. June 12, 2007.

Delta Environmental Consultants, Inc., 2007. Westlake-Mercer Cleanup Project – Phase 1 Environmental Monitoring Report, ConocoPhillips Company Service Station 5353. July 16, 2007.

Delta Environmental Consultants, Inc., 2007. Demolition Summary Report, Brace Lumber Building, ConocoPhillips Company Service Station 5353. October 16, 2007.

Stantec Consulting Corporation, 2008. *Cleanup Action Plan, Westlake/Mercer Cleanup Project*. April 9, 2008.

Stantec Consulting Corporation, 2009. *Well Installation Report, Former ConocoPhillips Facility No. 255353.* March 27, 2009.

URS Corporation, 2009. Westlake/Mercer Cleanup Project – Phase 2 Soil Sampling Report, RM&R Site No. 255353. December 21, 2009.

Stantec Consulting Corporation, 2011. Well Installation Report for On-Site Replacement Monitoring Wells and Soil Vapor Extraction Wells, ConocoPhillips RM&R #1396. January 25, 2011.

ATC Associates Inc., 2011. Summary of Environmental Assessment and Remediation Activities, COP 1396 – 255353. June 17, 2011.

Cardno ATC, 2014. Remedial Actions Summary Report – Mercer Corridor Project, Former Phillips 66 Facility No. 255353 (AOC # 1396). September 2, 2014.

DRAFT 29 February 16, 2018

Cardno ATC, 2015. Soil and Groundwater Conditions Assessment Report, Phillips 66 Facility No. 255353 (AOC #1396). February 17, 2015.

Cardno ATC, 2015. High Intensity Targeted Source Removal Technical Memorandum, Phillips 66 Facility No. 255353 (AOC #1396). August 28, 2015.

ATC Group Services LLC, 2017. Remediation System Restart Report, Phillips 66 Facility No. 255353 (AOC 1396). May 3, 2017.

DRAFT 30 February 16, 2018

Limitations

This report has been prepared for the Property located at 600 Westlake Ave N in Seattle, Washington. Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with customary principles and practices in the fields of environmental science and engineering. This warranty is in lieu of all other warranties either expressed or implied. This company is not responsible for the independent conclusions, opinions, or recommendations made by others based on the records review, Site inspection, field exploration, and laboratory test data presented in this report.

DRAFT 31 February 16, 2018

FIGURES

DRAFT 32 February 16, 2018

SITE VICINITY MAP

PHILLIPS 66 FACILITY NO. 255353 (AOC 1396) 600 WESTLAKE AVENUE N SEATTLE, WA

PROJECT NUMBER:	Z076000073	DATE: 5/3/17	FIGURE
APPROVED BY:	KS	DRAWN BY: BK	1

6347 Seaview Avenue NW Seattle, Washington 98107 Ph: (206) 781-1449 Fax: (206) 781-1543

S:\Projects\76\75000 COP\1396 SEATTLE\G-4 G-5 - Standard\3_STDELIN.dwg

ojects\76\75000 COP\1396 SEATTLE\G-4 G-5 - Standard\XSECTLOCS.dwg

NOTES

1. LOCATIONS OF SITE FEATURES CONSTRUCTED FOR THE P-66 REMEDIATION SYSTEM (REMEDIATION COMPOUND, ON-SITE TRENCHES, TERRY AVE. TRENCH EXTENSION) HAVE NOT BEEN SURVEYED AND ARE APPROXIMATE.

2. LOCATIONS OF ALL OTHER SITE AND AREA FEATURES ARE BASED ON PLANS SUPPLIED BY SDOT, AND HAVE NOT BEEN VERIFIED BY THE PROJECT FINGINFER

PHILLIPS 66 FACILITY NO. 255353 600 WESTLAKE AVENUE NORTH SEATTLE, WA PROJECT NUMBER: Z076000073 DATE: 5/3/17 FIGURE
APPROVED BY: KS DRAWN BY: BK

6347 Seaview Avenue NW
Seattle, Washington 98107
Ph: (206) 781-1449 *** Fax: (206) 781-1543

<u>LEGEND</u>

SP

SP - POORLY GRADED SAND, WITH OR WITHOUT GRAVEL

 $\operatorname{\mathsf{ML}}$ - SANDY SILT OR CLAYEY SILT, WITH OR WITHOUT GRAVEL

FILL

CL - CLAY WITH OR WITHOUT SILT

 $\ensuremath{\mathsf{SM}}$ - $\ensuremath{\mathsf{SILTY}}$ $\ensuremath{\mathsf{SAND}},$ $\ensuremath{\mathsf{WITH}}$ $\ensuremath{\mathsf{OR}}$ $\ensuremath{\mathsf{WITHOUT}}$ $\ensuremath{\mathsf{GRAVEL}}$

BORING

¥ APPROXIMATE FIRST ENCOUNTERED WATER LEVEL

APPROX. VERTICAL SCALE, FT 50 100

APPROX. HORIZONTAL SCALE, FT

CROSS SECTION A - A'

PHILLIPS 66 FACILITY NO. 255353 (AOC 1396) 600 WESTLAKE AVENUE NORTH SEATTLE, WA

LOCATION OF THE SOIL BORINGS AND IT IS
POSSIBLE THAT SUBSURFACE CONDITIONS
BETWEEN THE SOIL BORINGS MAY VARY FROM
THOSE INDICATED.

2. THE BORING LOGS AND RELATED INFORMATION
DEPICT SUBSURFACE CONDITIONS ONLY AT THE
SPECIFIC LOCATIONS AND DATES INDICATED.
SOIL CONDITIONS AND WATER LEVELS AT OTHER
LOCATIONS MAY DIFFER FROM CONDITIONS
OCCURING AT THESE BORING LOCATIONS. ALSO,
THE PASSAGE OF TIME MAY RESULT IN A CHANGE
IN THE CONDITIONS AT THESE BORING LOCATIONS.

LEGEND

SP - POORLY GRADED SAND, WITH OR WITHOUT GRAVEL

ML - SANDY SILT OR CLAYEY SILT, WITH OR WITHOUT GRAVEL

CL - CLAY WITH OR WITHOUT SILT

SM - SILTY SAND, WITH OR WITHOUT GRAVEL

GW, GM - WELL GRADED GRAVEL, WITH OR WITHOUT SILT

☑ APPROXIMATE FIRST ENCOUNTERED WATER LEVEL

CROSS SECTION B - B'

PHILLIPS 66 FACILITY NO. 255353 (AOC 1396) 600 WESTLAKE AVENUE NORTH SEATTLE, WA

BORING

WELL SCREEN

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THE SECTIONS WERE GENERALIZED FROM AND INTERPOLATED BETWEEN THE SOIL BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE SOIL BORINGS AND IT IS POSSIBLE THAT SUBSURFACE CONDITIONS BETWEEN THE SOIL BORINGS MAY VARY FROM THOSE INDICATED.
- 2. THE BORING LOGS AND RELATED INFORMATION DEPICT SUBSURFACE CONDITIONS ONLY AT THE SPECIFIC LOCATIONS AND DATES INDICATED. SOIL CONDITIONS AND WATER LEVELS AT OTHER LOCATIONS MAY DIFFER FROM CONDITIONS OCCURING AT THESE BORING LOCATIONS. ALSO, THE PASSAGE OF TIME MAY RESULT IN A CHANGE IN THE CONDITIONS AT THESE BORING LOCATIONS.

S:\Projects\76\75000 COP\1396 SEATTLE\G-4 G-5 - Standard\GW_121217.dwg

S:\Projects\76\75000 COP\1396 SEATTLE\G-4 G-5 - Standard\GWA_121217.dwg

*** Fax: (206) 781-1543

NProjects/76/75000 COP\1396 SEATTLE\G-4 G-5 - Standard\PESOILMP.dwg

600 WESTLAKE AVENUE NORTH SEATTLE, WA

TABLES

DRAFT 33 February 16, 2018

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (µa/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ug/L)	DTW (feet)	SPH (feet)	GWE (feet)
MTCA	Method A															
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
CI-1	03/08/07	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.30	0.00	
	06/13/07	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	6.75	<1			10.91	0.00	
	09/12/07	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	<1			10.99	0.00	
	12/19/07	<50	<236	<472	<1	<1	<1	<3	<1	<1	<1			10.31	0.00	
	03/18/08 05/09/08	3,140	<236 <0.238	<472 <0.476	476 <0.238	6.470 <0.5	4.59 <0.5	1.83 <0.5	9.96	<1 <1	<5 <5	<1 1.26	<1 <1	9.85 12.76	0.00	
	06/03/08	<50 <50	<0.236	<472	<0.236	<0.5	<0.5	<3	<3 <1	<5	<5 <1	<1	<236	11.73	0.00	
29.97	08/05/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	11.38	0.00	18.59
	11/05/08	<50.0	<240	<481	< 0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<240	10.81	0.00	19.16
	02/25/09	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	-	<5.00	<1.00	<1.00	<243	10.82	0.00	19.15
	05/17/09	<50.0	<243	<485	< 0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<243	11.93	0.00	18.04
	08/16/09 11/17/09	<50.0	<240	<490	<0.50	<0.50	<0.50	cessible <2.0	<1.0	<5.0	<1	<1	<240	9.67	0.00	20.3
	02/22/10	<50.0	357	422	<1.0	<1.0	<1.0	<3.0		<1.0	1.2	<0.10	<77.7	8.38	0.00	21.59
	05/24/10	<50.0	432	400	<1.0	<1.0	<1.0	<3.0		<1.0	0.19	<0.10	205	NM	0.00	NM
	08/17/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	2.0	<0.10	<77.7	9.88	0.00	20.09
	11/15/10	<50.0	<76.9	<385	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<76.9	8.88	0.00	21.09
21.2	02/27/11	=0	0.10	40.5					ecommissio					10.01		
CI-2	03/08/07	<50	<243	<485 <472	<0.5	<0.5	<0.5	<3	<1	<5 -5	<1			10.91	0.00	
	06/13/07 09/12/07	<50 <50	<236 <240	<472 <481	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 <1			9.86 10.06	0.00	
	12/19/07	<50	<236	<472	<1	<1	<1	<3	<1	<1	<1			10.07	0.00	
	03/18/08	3,350	<236	<472	566	7.04	4.76	1.93	10.1	<1	<5	<1	<1	10.00	0.00	
	05/09/08	< 50	<0.238	<0.476	<0.238	<0.5	<0.5	<0.5	<3	<1	<5	1.26	<1	10.68	0.00	
	06/03/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	9.22	<1	<236	9.96	0.00	
28.98	08/05/08	<50	<236	<472	0.52	<0.5	<0.5	<3	<1.00	<5	<1.00	<1.00	<236	10.13	0.00	18.85
	11/05/08 02/25/09	<50.0 <50.0	<240 <240	<481 <481	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	<1.00 <1.00	<1.00 <1.00	<240 <240	9.74 9.90	0.00	19.24 19.08
	05/17/09	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	1.72	<1.00	<238	11.37	0.00	17.61
	08/17/09	100.0	1200	10	40.000	10.000		cessible	11.00	40.00		11.00	1200			
	11/17/09	<50.0	<240	<490	< 0.50	<0.50	<0.50	<2.0	<1.0	<5.0	1.4	<1	<240	9.58	0.00	19.40
	02/22/10	<50.0	507	559	<1.0	<1.0	<1.0	<3.0	-	<1.0	0.72	<0.10	<77.7	8.82	0.00	20.16
	05/24/10	<50.0	712	643	<1.0	<1.0	<1.0	<3.0		<1.0	2.2	<0.10	313	9.17	0.00	19.81
	08/17/10 11/15/10	<50.0 <50.0	<76.9 <78.4	<385 <392	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	1.7 <10.0	<0.10 <10.0	<76.9 <78.4	9.65 8.90	0.00	19.33 20.08
	02/27/11	<50.0	0.4</td <td><392</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td></td> <td>ecommissio</td> <td></td> <td><10.0</td> <td><10.0</td> <td><!--0.4</td--><td>0.90</td><td>0.00</td><td>20.06</td></td>	<392	<1.0	<1.0	<1.0		ecommissio		<10.0	<10.0	0.4</td <td>0.90</td> <td>0.00</td> <td>20.06</td>	0.90	0.00	20.06
CI-3	03/08/07	<50	<255	<510	<0.5	<0.5	< 0.5	<3	<1	<5	<1			9.46	0.00	
	06/13/07	<50	<238	<476	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.43	0.00	
	09/12/07	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.28	0.00	
	12/19/07	3,570	<236	<472	16.000	5.2	5.7	8.9	<1	<1	<1			8.58	0.00	
	03/18/08	3,340	<236	<472	555	6.86	4.78	1.90	10.1	<1	<5 -	<1	<1	10.54	0.00	
	05/09/08 06/03/08	<50	<0.238	<0.476	<0.238	<0.5	<0.5	<0.5	<3 nable to sam	<1	<5	1.26	<1	8.45	0.00	
29.04	08/05/08	2,410			19.6	6.47	7.71	10.4	<1	<5				9.72	0.00	19.32
		,		ı				ed on Propel	Station pro		to sample.		I			
MW-3	02/14/88													9.77	Trace	9.61
19.38	05/15/88													9.36	0.00	10.02
	07/20/88													NM 0.04	NM	10.34
	04/14/89 10/27/89					-								9.04	Trace 0.00	10.34
	02/01/90					-								NM	NM	
	05/01/90					-								9.13	0.00	10.25
	06/15/90					-								NM	NM	
	12/07/90													8.99	0.00	10.39
	10/10/01	14,100	4,060	1,990	1,070	<25	1,040	292						10.11	0.00	9.27
	12/28/01 03/08/02	3,340	1,810 	<500	92.6	4.62	146	51.2						9.61 NM	0.00 NM	9.77
	06/24/02													NM	NM	
	09/26/02 ^c	10,500	1,820	<500	326	14.0	685	447						10.96	0.00	8.42
	12/12/02		<u></u>											NM	NM	
	03/13/03	17,200	1,440	<595	86.6	38.1	434	798						7.87	0.00	11.51
	06/12/03													NM	NM	
	09/19/03													NM NM	NM NM	
	01/14/04 03/30/04	3.040	1,950	 <285	57.1	 <5	24.3	23.57						9.90	0.00	9.48
	06/22/04	3,040												NM	NM	9.40
L	09/29/04								over with c				·			·
MW-3A	03/17/05	1,610	<251	<502	2.54	1.23	30.9	156.8						11.00	0.00	
29.09	06/01/05	1,030 ^j	<241 ^j	<483	5.21	<1	27.8	66.0	<1					10.29	0.00	
	07/25/05	702	<250	<500	4.60	0.860	23.0	47.1	1.06	2.16				10.56	0.00	10.07
	11/07/05 02/23/06	647 759	<243 1.12	<485 <0.5	4.77 4.14	0.890 0.740	35.2 51.3	33.8 38.9	<1 <1	5.83	4.10			10.22 10.37	0.00	18.87 18.72
	05/10/06	654	<260	<0.5 < 521	3.60	1.35	51.3	57.5	<1	13.3	9.14			10.57	0.00	18.56
	08/30/06	160	<236	<472	0.550	0.580	8.93	3.45	<1	7.03	11.6			11.35	0.00	17.74
	12/12/06	610	<243	<485	0.930	0.700	13.3	14.3	<1	12.3	9.05			10.39	0.00	18.70
	03/06/07	<50	<236	<472	<0.5	<5	<5	<3.00	<1	<5	2.36			10.18	0.00	18.91
	06/15/07	<50	<250	<500 ^r	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			10.51	0.00	18.58
	09/14/07	79.4	<250	<500	<0.5	<0.5	2.56	4.82	<1	<5	2.86			7.71	0.00	21.38
	12/19/07 03/17/08	<50	<236	<472	<1	<1 Iı	<1 naccessible	<3 in dumpster	<1 area	<1	3.43			8.71	0.00	20.38
	06/01/08				r.			e enelosure,		ample					Page	
•							3 Zugi	ranne Y	10 00						- rage	

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
0.54.	08/04/08				Co	overed/burie	d in garbage	enclosure,	unable to sa	mple						
	11/04/08							e enclosure,								
	11/18/08								ecommissior							
MW-8	07/26/05	81,600	641	<500	4,700	5,280	4,270	15,450	<1	1,010				9.96	0.00	
28.82	11/02/05 02/22/06	41,000 72,800	506 ^g 623 ^g	<485 <490	4,540 2,760	955 6,240	3,240 3,020	12,000 13,400	<1,000 ^{q,r}	1,040	21.8			10.04 9.61	0.00	18.78 19.21
	05/09/06	87,600	1,140	<485	2,940	6,510	3,470	13,870	<200	834	22.5			9.81	0.00	19.01
	06/12/06	, ,	,	ı.					ecommission	ned					,4	Į.
MW-13	02/14/88													11.87	0.00	9.86
21.73	05/15/88 07/20/88													11.43 NM	0.00 NM	10.30
	04/14/89													11.10	0.00	10.63
	10/27/89													11.36	0.03	10.39
	02/01/90													10.97	0.00	10.76
	05/01/90 06/15/90													11.13 NM	0.00 NM	10.60
	12/07/90													11.11	0.00	10.62
	06/16/05	1,820	880 ^f	1,100 ^f	2.91	<1	<1	<2	<1					11.86	0.00	9.87
	07/26/05					•		ot recharge a						12.06	0.00	
20.00	11/01/05	125	<238	<476	1.19	<0.5	<0.5	<1	<2					12.16	0.00	-12.16
30.88	02/22/06 05/08/06	227 236	<272 <243	<543 <485	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<1 <1	11.9 38.2			12.08	0.00	 -12.08
	08/31/06	<100	<243	<485	1.24	<0.5	7.64	6.68	<1	6.00	48.9			12.62	0.00	-12.62
	09/25/06	·			•			stroyed durin		struction activ	vities					•
MW-14	02/14/88													9.65	0.00	9.63
19.28	05/15/88 07/20/88													8.95 NM	0.00 NM	10.33
	04/14/89													8.95	0.00	10.33
	10/27/89													9.16	0.00	10.12
	02/01/90													9.15	0.00	10.13
	05/01/90													8.99	0.00	10.29
	06/15/90 12/07/90													NM 9.04	0.00	10.24
	06/02/05							collect samp						8.35	0.00	10.24
	06/16/05					Not	enough wat	er in well to	sample					8.60	0.00	10.68
	06/13/06								ecommissior	1						
MW-15 20.48	02/14/88 05/15/88													10.62 10.18	0.00	9.86 10.30
20.46	07/20/88													NM	NM	10.30
	04/14/89													9.96	0.00	10.52
	10/27/89													10.28	0.00	10.20
	02/01/90													10.17	0.00	10.31
	05/01/90 06/15/90													10.18 NM	0.00 NM	10.30
	12/07/90													10.13	0.00	10.35
	06/02/05			U.		Well casing	is broken -	unable to ga	uge or samp	ple						
	06/13/06								ecommissior							
MW-16 21.19	02/14/88 05/15/88													11.15 10.76	0.00	10.04 10.43
21.19	07/20/88													NM	NM	10.43
	04/14/89													10.54	0.00	10.65
	10/27/89													10.80	0.00	10.39
	02/01/90													10.60	0.00	10.59
	05/01/90 06/15/90													10.59 NM	0.00 NM	10.60
	12/07/90													10.58	0.00	10.61
	06/02/05							collect samp						10.95	0.00	10.24
	06/16/05	<500	4,000 ^{h,i}	16,000¹		135	<5 0.340	<5	<10	<5	 -0.5			10.86	0.00	10.33
30.26	07/26/05 11/01/05	358 <50	8,320 ^c <236	20,700 <472		42.6 8.00	0.340 <0.5	<0.2 0.600	1.25 <1.00	<1 <2	<0.5			11.08 11.10	0.00	 19.16
30.20	02/21/06	137	<278	1,080		4.09	<0.5	<0.5	<3.00	<1	<1	157		10.84	0.00	19.42
	05/09/06	98.4	<238	<476		2.43	<0.5	<0.5	<3.00	<1	<1	4.33		11.12	0.00	19.14
	06/13/06						ı		ecommissior					11.50	T 0.07	
MW-17 21.28	02/14/88 05/15/88													11.56 11.22	0.07 0.04	9.77 10.09
21.20	07/20/88													NM	NM	10.09
	04/14/89													10.75	0.00	10.53
	10/27/89													11.22	0.00	10.06
	02/01/90					-								10.71	0.00	10.57
	05/01/90 06/15/90													10.90 NM	0.00 NM	10.38
	12/07/90													10.78	0.00	10.50
	06/02/05	<u> </u>						at 2.2 feet be								
	06/12/06		_			-			ecommissior							
MW-18	02/14/88					-								11.11	0.00	9.98
21.09	05/15/88 07/20/88													10.78 NM	0.06 NM	10.36
	04/14/89													10.20	0.00	10.89
	10/27/89					-				-				10.83	0.00	10.26
														40.40	Troop	10.67
	02/01/90 05/01/90							Table 1						10.42 10.61	Trace 0.pgge	

Sample	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE		Total Lead			DTW (fact)	SPH	GWE
I.D.	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
Oloui	06/15/90													NM	NM	
	12/07/90													10.36	0.00	10.73
	06/02/05	6,600	18.000 ^{f,i}	28.800 ⁱ	403	434	91.9	779	<1					10.83	0.00	10.26
	07/26/05	1,400	6,930	13,200	35.2	3.98	6.23	33.4	<1	30.9				11.19	0.00	
30.08	11/07/05	2,660	271 ^f	<505	84.4	28.2	28.7	314	<4					11.37	0.00	18.71
	02/22/06	10,800	2,090 ^p	<505	345	217	56.4	697	<20.0 ^q	80.2	386			10.60	0.00	19.48
	05/10/06	1,450	269 ^p	<481	102	5.32	19.0	57.4	<4	122	64.8			11.85	0.00	18.23
	08/29/06	1,250	377 ^p	1,030	298	7.42	13.5	72.2	<1	107	1,360			11.65	0.00	18.43
	12/12/06 03/06/07	4,360 856	856 <266	1,800 <532	301 140	28.7 5.00	44.9 7.20	281 67.1	<1 <10	69.2 <50	70.2 15.3			10.68 11.14	0.00	19.40 18.94
	06/14/07	330	<236	<472	8.67	0.72	2.02	4.84	<1	44.9	73.4			11.14	0.00	18.84
	09/14/07	458	<243	<485	15.6	16.3	3.23	6.46	<1	16.4	226.0			11.62	0.00	18.46
	12/17/07					Well	compromise	ed, unable to					ı			
	03/17/08						•	ed, unable to	•							
	06/01/08							ed, unable to								
	08/10/08					ell contamin										
	11/02/08 05/17/09	3,370	1,220	4,320	281	ell contamir 3.95	29.4	258	<1.0	10 62.6	93.1	4.77	695	11.65	0.00	18.43
	08/16/09	690	910	2,200	120	0.77	3.1	28	<1.0	42	1,100	<5.0	800	13.45	0.00	16.63
	11/15/09	2,300	760 ^Y	1,200	470 ^H	1.3	40	180	<1.0	61	57	<1.0	800 ^Y	11.63	0.00	18.45
	02/21/10	18,400	3,440	2,900	768	289	274	3,280		123	33.8	0.38	6,210	10.53	0.00	19.55
	05/23/10	9,700	2,870	2,330	819	109	174	2840	-	128	39.2	0.26	3,930	10.89	0.00	19.19
	08/15/10	9,200	461	891	789	129	115	2240		104	40.4	3.30	1,480	11.15	0.00	18.93
	11/14/10 02/27/11	16,600	598	936	1180	158 Well	343	4390 ed, unable to	eample	146	23.7	<10.0	3,900	10.33	0.00	19.75
	02/27/11					vvell	compromise		sample Not Sample	d						
	08/29/11								Not Sample							
MW-19	02/14/88													11.24	0.23	9.91
20.97	05/15/88	-							-					11.07	0.44	10.25
	07/20/88													NM	NM	
	04/14/89													10.78	0.57	10.65
	10/27/89													10.96	Trace	10.01
	02/01/90 05/01/90													11.04 10.76	Trace 0.43	9.93 10.55
	06/15/90													10.76	0.43	10.55
	12/07/90													10.70	0.00	10.03
	06/02/05						Unable to	collect samp		1			ı	10.95	0.00	10.02
	06/16/05	117,000	31,000 ^{f,i}	<12,000 ⁱ	391	380	121	21,960	<50					10.92	0.00	10.05
	07/26/05	96,400	4,050 ^d	2,340	201	229	<20	16,590	<1	805				12.14	0.00	
29.93	11/07/05	72,000	4,070 f	<990	436	520	504	13,700	<40					11.00	0.00	18.93
	02/22/06 05/10/06	18,900 45,900	13,900 ^{g,p} 5,520	<5,210 <1,000	288 373	33.8 171	146 164	1,760 8,760	<20.0 ^q	491 1,700	81.0 64.8			10.69 11.09	0.00	19.24 18.84
	08/29/06	3,530	1,220 ^p	<495	156	72.4	66.1	1,020	<100	251	20.9			11.71	0.00	18.22
	12/12/06	68,400	2,720	<481	688	731	286.0	10,700	<1	452	78.6			10.92	0.00	19.01
	03/06/07	47,800	2,330	<495	560	192	480	12,000	10	873	40.4			10.80	0.00	19.13
	06/14/07	28,100	8140 ^g	<481	279	130	96.9	4,860	<1	308	53.4			10.96	0.00	18.97
	09/14/07	22,300	1,530	1,050	98.4	27.8	128	2,710	<1	511	34.0			11.22	0.00	18.71
	12/17/07							ed, unable to								
	03/18/08 06/01/08	32,400 22,400	 822	 <758	202.00	218 18.6	89.1 140	127 3,280	4,650 <1	<1 337	304	72.7 19.40	25 5,010	10.81 8.25	0.00	19.12 21.68
	08/10/08	26,800	022	30</td <td>180</td> <td>34.8</td> <td>140</td> <td>2,390</td> <td><20</td> <td>210</td> <td>30.20</td> <td>25.50</td> <td>3,010</td> <td>12.05</td> <td>0.00</td> <td>17.88</td>	180	34.8	140	2,390	<20	210	30.20	25.50	3,010	12.05	0.00	17.88
	11/02/08	19,700	<245	<490	78.6	14.5	90.4	2,390	<1.00	<200	25.80	8.22	549	11.62	0.00	18.31
	02/22/09	50,700	4,440	<481	470.0	33.7	280	7,900		83.5	24.80	5.45	19,500	10.50	0.00	19.43
	05/17/09	61,200	2,140	<485	202.0	37.6	343	12,300	<1.00	63.7	28.30	1.41	20,900	11.43	0.00	18.50
	08/16/09					Insufficient v								13.90	0.00	16.03
	11/15/09	53,000	12,000 ^Y	<490	530 ^H	10	490 ^H	8,500 ^H	<1.0	950 ^H	41	1.4	21,000 ^Y	11.20	0.00	18.73
	02/21/10 05/23/10	46,400 44,400	7,090 7,100	1,660 2,010	319 312	7.7 5.8	688 687	7,820 6,990		517 543	9.5 9	0.33	21,300 21,400	10.44 10.98	0.00	19.49 18.95
	08/15/10	33,500	2,470	954	293	4.9	354	4,950		67.7	20.9	1.8	12,200	11.14	0.00	18.79
	11/14/10	29,500	1,640	<388	436	9.5	496	4,190		432	<10.0	<10.0	12,000	10.27	0.00	19.66
	02/27/11					Well		ed, unable to	sample							
	08/29/11								Not Sample							
MINION	06/14/11	,			1				Not Sample		1		1	D	,	
MW-24 21.49	02/14/88 05/15/88													Dry Dry		
21.49	05/15/88													Dry		
	04/14/89													10.71	0.00	10.78
	10/27/89	-		-			-		-					Dry		
	02/01/90													Dry		
	05/01/90													11.36	0.66	10.66
	06/15/90													NM	NM	
	12/07/90 06/02/05													Dry Dry		
	06/02/05													Dry		
	55, 15,00													D.y		
MW-27 ^a	06/16/05								-					Dry		
	06/13/06								ecommissio							
MW-32A	11/04/91	52,000	<1,000			10,000	10,000	2,000	10,000							
20.70	12/29/93	19,000	2,900	1,300		6,300	990	940	1,700					10.73	0.00	9.97
	04/07/94	11,000 9,900	2,100	1,300		3,900	150	490	590					10.65	0.00	10.05
	07/14/94	3,300	1,700	1,500	l	5,600	54	T586Ne 1	500					10.72	0. pg ge	3 9.98

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (µg/L)	Toluene (µa/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
_	Method A															
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
	10/25/94	19,000	1,100	1,000		4,600	2,300	560	2,300					11.46	0.00	9.24
	03/08/95	21,000	2,300	2,300		5,800	1,700	990	2,900					11.29	0.00	9.41
	06/06/95	-							-					NM	NM	
	09/07/95	20,000	2,500	1,600		4,200	470	730	2,000					11.27		9.43
	12/08/95	11,000	1,200	<750		1,600	86	420	910					10.61		10.09
	04/01/96 06/25/96	7,900 7,500	1,400 1,250	1,000 <750		2,200 1,200	58 60.4	300 217	490 435					10.90 10.98		9.80 9.72
	09/27/96	7,050	1,040	<750		1,570	37.4	264	416					11.37		9.33
	03/28/97													11.26		9.44
	06/30/97													10.89		9.81
	09/08/97					-			1					11.67	0.00	9.03
	12/19/97								-					11.42	0.00	9.28
	03/16/98 06/26/98													11.30 11.29	0.00	9.40 9.41
	09/23/98													11.29	0.00	8.73
	12/17/98													11.09	0.00	9.61
	03/31/99								1					10.47	0.00	10.23
	06/30/99													9.60	0.00	11.10
	12/08/99													11.07	0.00	9.63
	06/20/00	7,010	1,740	 <750	4,430	136	438	 182						11.40 10.90	0.00	9.30 9.80
	12/19/00 ^b 06/15/01 ^b	13,700	2,810	<750 <846	2,370	11.2	272	31.1						11.31	0.00	9.80
	06/15/01 06/26/01 ^b	15,500	1,620	<750	8,780	1,110	1,230	1,020	-					11.85	0.00	8.85
	09/07/01 ^b	17,100	4,220	822	5,870	19.9	684	110	-					10.81	0.00	9.89
	10/10/01													NM	NM	
	12/28/01	12,200	4,260	711	3,570	180	537	393						11.29	0.00	9.41
	03/08/02 06/24/02	16,400	4,140	769 577	4,900	142	619	247 59.1						11.49	0.00	9.21
	06/24/02 09/26/02 ^c	6,850 6,580	2,040 3,740	670	2,820 1,930	7.43 31.4	221 204	59.1 89.7						11.56 12.88	0.00	9.14 7.82
MW-32A	12/12/02	6,750	3,530	528	1,450	55.6	229	283						12.72	0.00	7.98
contd.	03/13/03	13,000	2,550	<581	1,990	222	419	806						10.95	0.00	9.75
	06/12/03	17,400	2,730	<500	4,830	200	745	262						11.92	0.00	8.78
	09/19/03	1,420	<294	<588	64.2	42.7	7.49	135						12.67	0.00	8.03
	01/14/04	1,580	316	<253	28.9	4.13	13.1	32.5						11.33	0.00	9.37
	03/30/04 06/22/04	7,310 3,330	838 1,470	<276 381	18.3 149	<10 <10	209 72.5	122 43.8						12.39 12.62	0.00	8.31 8.08
	09/29/04	330	<242	<484	13	1.6	3.7	39						9.20	0.00	11.50
	12/29/04	1,500	592	<478	71	<5	30.9	31.2						12.24	0.00	8.46
	03/17/05	<100	<239	<478	<1	<1	<1	<2	-					12.31	0.00	8.39
	06/01/05	205	<237	<473	13.2	<1	5.55	6.16	<1					11.76	0.00	8.94
00.44	07/25/05	277	<250	<500	11.2	0.270	7.04	2.83	<1	2.28				12.17	0.00	
30.14	11/08/05	217	<250 400	<500 <505	6.84 <0.5	0.810	0.660	<3.00	<1		1 12			11.69 11.44	0.00	18.45
	02/23/06 05/08/06	<50 2.740 ^j	1,030 ^p	<500	<0.5 157	<0.5 1.65	<0.5 179	<3.00 85.5	<1 <1	<1 47.4	1.12 1.43			12.54	0.00	18.70 17.60
	08/30/06	197	<243	<485	13.8	<0.5	12.3	<3.00	<1	10.9	<1			12.71	0.00	17.43
	12/13/06	1,770	<250	<500	128.0	7.05	129.0	51	<5	<25	<1			11.65	0.00	18.49
	03/08/07	596	<248	<495	38.5	<.05	31.3	5.30	<1	18.5	1.26			11.45	0.00	18.69
	06/15/07	296	<250	<500 ^r	14.2	<0.5	3.26	<3.00	<1	12.1	<1			12.05	0.00	18.09
	09/14/07	358	<245	<490	25.5	<0.5	9.29	<3.00	<1	6.85	<1			13.11	0.00	17.03
	12/18/07 03/17/08	64.8 290	<236 <236	<472 <472	3.3 <236	<1 <0.5	<1 <0.5	<3 <0.5	<1 <3	<1 <1	3.55 <5	4.4	 <1	10.17 11.09	0.00	19.97 19.05
	06/02/08	215	284	<472	<0.5	<0.5	<0.5	<3	<1	<5	415	<1	265	11.41	0.00	18.73
	08/04/08		<236	<472							334	<1	<236	11.23	0.00	18.91
	11/05/08	528	<238	<476	< 0.500	< 0.500	0.65	<3.00	<1.00	<5.00	2.32	<1.00	281	11.20	0.00	18.94
MW-33	11/04/04	11 000	41 000	ı	EE0.					omissioned a					1	
20.75	11/04/91 12/29/93	11,000 7,200	<1,000 1,100	 <750	550 560	490 100	240 250	1,300 1,100						10.82	0.00	9.93
	04/07/94	3,500	1,000	1,100	220	1.5	80	190						10.60	0.00	10.15
	03/08/95	4,900	1,400	2,000	650	<25	320	420	-					11.16	0.00	9.59
	06/06/95		-											NM	NM	
	09/07/95	9,700	1,400	820	550	140	230	620						11.20	0.00	9.55
	12/08/95 04/01/96	13,000 5,200	1,900 960	1,800 <750	800 630	240 33	280 130	760 270						NM 11.00	0.00	9.75
	06/25/96	2,700	1,030	<750 <750	230	24.6	46.5	61.1						11.00	0.00	9.75
	09/27/96	5,150	1,190	<750	1,190	237	86.3	272	-					11.13	0.00	9.62
	03/28/97													11.19	0.00	9.56
	06/30/97													10.66	0.00	10.09
	09/08/97													10.48	0.00	10.27
	12/19/97 03/16/98													NM NM	NM NM	
	06/26/98													11.18	0.00	9.57
	09/23/98													11.90	0.00	8.85
	12/17/98													11.03	0.00	9.72
	03/31/99													10.38	0.00	10.37
	06/30/99		-											9.52	0.00	11.23
	12/08/99 06/20/00													10.97 11.33	0.00	9.78 9.42
	12/19/00							cessible						NM	NM	9.42
	06/15/01							Present						12.72	2.50	10.03
	06/26/01													NM	NM	
	09/07/01						LPH	Prepable 1						NM	0. p gge	4

Sample	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE	-		Dissolved		DTW	SPH	GWE
I.D. MTCA	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-	-	
Giodi	10/10/01													NM	NM	
	12/28/01	141,000	25,200	2,680		5,360	32,500	3,410	22,700		-			11.21	0.00	9.54
	03/08/02	126,000	31,400	3,420		2,660	21,600	3,420	24,800					11.37	0.00	9.38
	06/24/02 09/26/02	205,000	51,700	14,000		1,510	14,200	3,770 Present	28,900					11.36 12.45	0.00	9.39 8.38
	12/12/02													12.43	0.00	8.41
	03/13/03					-								10.59	0.00	10.16
MW-33	06/12/03	30,900	4,170	<562	396	526	474	3,890						11.65	Sheen	9.10
contd.	09/19/03 01/14/04	125 524	<291 <135	<581 <271	0.704 17	<0.5 3.7	<0.5 7.65	4.30 31						6.70 12.03	0.00	14.05 8.72
	03/30/04	2,680	725	<256	218	14.7	53.2	150.4						12.49	0.00	8.26
	06/22/04	3,500	1,330	443	197	12.1	99.2	217.3						12.66	0.00	8.09
	09/29/04 12/29/04	290 2,860	290 795	<511 <491	12 91	1.9 30.9	5.6 49.4	22 169.3						9.60 12.14	0.00	11.15 8.61
	03/17/05	106	<239	<478	8.23	1.23	4.6	9.55						12.07	0.00	8.68
	06/01/05	<100	<262	<524	2.03	<1	<1	<2	<1					11.21	0.00	9.54
30.16	07/25/05 11/01/05	79.3 <50	<250 <236	<500 <472	3.27 0.800	0.230 <0.5	1.95 <0.5	1.78 <1	<1 <2	1.27				11.73 6.50	0.00	23.66
00.10	02/23/06	582	<255	<510	145	4.75	5.50	<15.0	<5	<5	1.00			11.49	0.00	18.67
	05/08/06	242	<240	<481	4.29	<0.5	0.7	1.78	<1	2.13	<1			11.79	0.00	18.37
	08/30/06 12/12/06	874 11,200	<250 <243	<500 <485	200 163	10.0 41.2	26.2 45.2	56.0 175	6.79 <5	17.1 <25	<1 <1			12.43 11.52	0.00	17.73 18.64
	03/07/07	867	<260	< 521	65	2.48	54.8	84.6	<1	23.8	<1			8.45	0.00	21.71
	06/15/07	535	<245	<490 ^r	32.5	<0.5	0.550	17.5	1.38	21.8	<1			12.03	0.00	18.13
	09/14/07 12/19/07	235 176	<250 <236	<500 <472	29.4 40.0	1.45 <1	<0.5 <1	19.8 4.3	1.23 <1	6.62 1.30	<1 8.85			12.07 10.22	0.00	18.09 19.94
	03/18/08	82.9	<236	<472	<236	1.17	0.68	2.08	<3	<1	<5	7.38	<1	11.22	0.00	18.94
	06/03/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	5.41	<1	<236	11.43	0.00	18.73
	08/04/08 11/04/08	55.3	<236	<472	1.16	<0.5 Well	0.910 buried unde	<3 r gravel from	<1 station dec	<5 ommission	3.84 unable to sa	<1 mple	<236	12.10	0.00	18.06
MW-34	11/04/91	40,000	<1,000		23,000	18,000	2,600	14,000								
21.42	10/07/93	4,200	1,600	970	1,400	480	120	440							-	
	12/29/93 04/07/94	52,000 9,800	2,200 1,400	<750 <750	15,000 4,500	11,000 930	1,500 260	7,000 840						11.01 10.88	0.00	10.41 10.54
	07/14/94	5,700	1,200	<750 <750	980	420	210	820						10.66	0.00	10.54
	10/25/94	13,000	4,100	1,900	6,500	170	680	1,000						11.78	0.00	9.64
	03/08/95	8,200	1,100 2,300	480 <750	2,400	1,500 1,000	250	1,300 1,200						11.62 11.73	0.00	9.80 9.69
	06/06/95 09/07/95	9,100 18,000	1,800	930	4,200 4,800	2,300	330 560	2,000						11.73	0.00	9.85
	12/08/95	68,000	2,900	1,600	12,000	9,200	1,200	5,500						10.92	0.00	10.50
	04/01/96	10,000	1,900	<750	5,500	580	520	1,200						11.21	0.00	10.21
	06/25/96 09/27/96	13,700 16,300	1,160 1,030	<750 <750	4,190 5,010	1,110 2,520	393 541	1,740 1,310						11.19 11.58	0.00	10.23 9.84
	03/28/97													11.47	0.00	9.95
	06/30/97 ^b	2,970	311	<750	1,930	15.7	271	531						11.19	0.00	10.23
	09/08/97 ^b 12/19/97	8,390	455 	<750 	3,920	645	567	1,270 						11.74 NM	0.00 NM	9.68
	03/16/98													NM	NM	
	06/26/98 ^b	76,900	3,090	<750	13,400	11,100	2,310	9,080						11.42	0.00	10.00
	09/23/98 ^b 12/17/98 ^b	9,040 80,900	3,000 5,470	799 1,380	3,540 14,200	243 10,800	636 3,110	1,650 11,800						12.23 11.35	0.00	9.19 10.07
	03/31/99 ^b	33,400	1,910	<750	5,970	1,740	1,400	3,820						10.85	0.00	10.57
	06/30/99 ^b	28,500	4,840	984	4,340	1,320	1,490	3,610						10.18	0.00	11.24
	12/08/99 ^b 06/20/00 ^b	62,400 25,000	2,500 <250	<1,360 <750	12,900 6,360	7,440 480	3,240 2,190	9,210 3,930						11.33 11.68	0.00	10.09 9.74
	12/19/00													NM	NM	9.74
	06/15/01 ^b	25,800	4,780	<883	5,300	90	1,930	2,190						11.85	0.00	9.57
	06/26/01 09/07/01 ^b	17,800	4,510	722	3,540	44.9	1,510	2,180						NM 11.86	NM 0.00	9.56
	10/10/01													NM	NM	9.50
	12/28/01	19,000	8,400	752	5,320	1,200	406	1,010						11.46	0.00	9.96
MW-34	03/08/02 06/24/02	59,200 12,500	8,550 4,200	661 614	7,200 2,140	8,610 651	2,190 659	8,200 1,160						11.70 11.91	0.00	9.72 9.51
contd.	09/26/02 ^c	13,800	6,270	<1,160	5,840	21.8	280	87						12.80	0.00	8.62
	12/12/02	14,500	11,000	681	5,130	44.7	333	224						12.98	0.00	8.44
	03/13/03 06/12/03	25,600 13,000	6,480 2,880	<500 <500	6,030 1,590	668 735	775 450	1,130 1,360						11.67 12.04	0.00	9.75 9.38
	09/19/03	351	<301	<602	9.91	11.7	6.48	34.6						12.83	0.00	8.59
	01/14/04	160	<122	<245	23.7	<0.5	2.11	<1						12.00	0.00	9.42
	03/30/04 06/22/04	15,100 6,760	1,120 1,900	<300 <238	3,060 2,320	238 14.3	564 305	846.6 279.8						12.62 12.88	0.00	8.80 8.54
	09/29/04	310	306	<238 < 505	10	<0.5	395 3.5	8.2						12.88	0.00	10.04
	12/29/04	2,590	481	<504	320	<10	83.8	101.4						12.67	0.00	8.75
	03/17/05	<100	<239	<478	<1	<1	<1	<2						12.66	0.00	8.76
	06/01/05 07/25/05	143 <50	<237 <250	<474 <500	<1 0.210	<1 <0.2	5.34 1.85	4.87 1.31	<1 <1	<0.5				11.81 11.80	0.00	9.61
30.58	11/07/05	219	<245	<490	8.46	<0.5	0.58	4.86	<1					11.92	0.00	18.66
	02/22/06	95.9	<255	< 510	6.27	9.27	2.10	10.2	<1. ^{q,r}	<1	1.32			11.48	0.00	19.10
	05/08/06 08/30/06	489 254	<250 <245	<500 <490	14.7 32.8	<0.5 0.880	9.15 4.82	2.36 5.45	<1 <1	8.04 12.1	<1 <1			12.84 12.70	0.00	17.74 17.88
	12/13/06	2,240	<250	<500	211	<2.5	25.0	₹ á 5l 0 1	<5	<25	<1			11.66	0. pg ge	

I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl-	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ug/L)	DTW (feet)	SPH (feet)	GWE (feet)
MTCA	Method A	Gasoline	Diesei	Oil	(ua/L)	(ua/L)	benzene	Xvienes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
O.ou.	03/07/07	1,010	<240	<481	81.7	<5	7.50	181	<10	<50	1.98			10.75	0.00	19.83
	06/15/07	806	<250	<500 °	141	1.01	4.02	<3.00	<1	6.79	<1			12.39	0.00	18.19
	09/13/07	727	<238	<476	59.2	0.680	27.1	<3.00	<1	14.6	4.25			13.24	0.00	17.34
	12/19/07	53.4	<236	<472	<1	<1	<1	<3	<1	<1	1.69			10.50	0.00	20.08
	03/17/08	2040	<236	<472	499	235	1.48	10.5	<3	<1	<5	18.60	<1	11.64	0.00	18.94
	06/02/08	1,280	<240	<481	55.1	1.26	5.07	<3	<1	<5	37.20	<1	356	11.84	0.00	18.74
	08/04/08 11/05/08	1,890	<238	<476	23.2	1.2	Unable 104	to unlock	<1.00	8.55	1.41	<1.00	1,060	 12.20	0.00	18.38
	11/05/06	1,090	<230	<470	23.2			or Damaged					1,000	12.20	0.00	10.30
MW-35	11/04/91	24,000	<1,000			440	2,600	610	4,300							
20.10	12/29/93	4,200	1,000	<750		580	40	200	720					10.23	0.00	9.87
	04/07/94	5,300	870	<750		480	51	140	550					9.91	0.00	10.19
	07/14/94	8,100	890	<750		980	79	150	600		-			10.13	0.00	9.97
	10/25/94 03/08/95	2,800 2,600	1,300 1,200	1,200 1,300		360 400	3.6 <25	100 120	82 83					10.87 10.67	0.00	9.23 9.43
	06/06/95	810	1,000	930		62	1.4	27	36					10.67	0.00	9.43
	09/07/95													10.87	0.00	9.23
	12/08/95					-			-					NM	NM	
	04/01/96					-			-					NM	NM	
	06/25/96	1,620	850	<750		68.2	1.11	26.7	17.6					11.11	0.00	8.99
	09/27/96	959	524	<750		38.8	0.990	10.4	6.18		-			10.64	0.00	9.46
	03/28/97 ^b 03/28/97	1,370	333 <250	<750 <750		161 250	2.36 2.62	31.9 49.1	10.7 8.04					11.28 11.28	0.00	8.82 8.82
	03/28/97 06/30/97 ^b	1,800 1,900	<250 <250	<750 <750		348	<2.52	49.1 85	7.31					10.19	0.00	9.91
	06/30/97 ^b	4,200	<250	<750		1,460	16.2	231	68.2					10.19	0.00	9.91
	12/19/97													NM	NM	
	03/16/98 ^b	905	361	<750		410	4.24	<2.5	<5.00					10.64	0.00	9.46
	06/26/98 ^b	1,300	682	<750		600	<10	45.1	<20.0					10.65	0.00	9.45
	09/23/98 ^b	665	659	<750		243	<2.5	<2.5	<5.00					11.38	0.00	8.72
	12/17/98 ^b 03/31/99	699	572	<750		402	<2.5	10.8 ed by vehicle	9.99					10.49 NM	0.00 NM	9.61
	06/30/99							ed by vehicle						NM	NM	
	12/08/99							ed by vehicle						NM	NM	
	06/20/00							ed by vehicle						NM	NM	
	12/19/00						Obstructe	ed by vehicle						NM	NM	
	06/15/01													NM	NM	
	06/26/01 ^b	504	464	<750	11.3	27.5	5.52	28.4						10.60	0.00	9.50
	09/04/01 ^b	263	903	<564	2.36	<0.5	<0.5	<1						10.54	0.00	9.56
	10/10/01 12/28/01	 691	1,160	<500	28.7	0.898	14.1	13.2						NM 10.54	NM 0.00	9.56
	03/08/02	638	1,100	<500	16.2	0.090	7.05	6.91						10.54	0.00	9.38
	06/24/02	000	1,100	1000	10.2	0.000		ed by vehicle		l				NM	NM	
	09/26/02 ^b	555	1,420	<500	9.49	<2	1.78	<1.50						11.90	0.00	8.20
	12/12/02							ed by vehicle						NM	NM	
	03/13/03	13,500	1,430	<500	749	153	791	2,160						9.87	0.00	10.23
	06/12/03 09/19/03	3,930 517	973	<562 <746	338 7.29	21.2	49.9	222 14.6						11.91 12.18	0.00	8.19
MW-35	09/19/03	614	<373 142	<256	1.45	4.32 <0.5	1.86 0.657	0.568							0.00	7.92
contd.	03/30/04	541	196		1.70									11 22	0.00	
	06/22/04	526		<257	<1	<1	<1	<2						11.33 11.69	0.00	8.77 8.41
	00/20/04		210	<257 <238	<1 1.27	<1 <1	<1 <1	<2 <2						11.33 11.69 11.91	0.00 0.00 0.00	8.41 8.19
	09/29/04	250												11.69	0.00	8.41
	12/29/04	250 280	210 248 <255	<238 <487 <510	1.27 0.50 <1	<1 <0.5 <1	<1 1.1 <1	<2 2.1 <2						11.69 11.91 11.77 10.64	0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46
19.45	12/29/04 03/17/05	250 280 168	210 248 <255 <239	<238 <487 <510 <478	1.27 0.50 <1 <1	<1 <0.5 <1 <1	<1 1.1 <1 <1	<2 2.1 <2 <2		 	 			11.69 11.91 11.77 10.64 10.88	0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57
19.45	12/29/04 03/17/05 06/01/05	250 280 168 334	210 248 <255 <239 <238 ^j	<238 <487 <510 <478 <475 ^j	1.27 0.50 <1 <1 7.06	<1 <0.5 <1 <1 <1	<1 1.1 <1 <1 2.11	<2 2.1 <2 <2 <2 <2	 1.21	 	 		 	11.69 11.91 11.77 10.64 10.88 10.11	0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
19.45	12/29/04 03/17/05 06/01/05 07/25/05	250 280 168 334 296	210 248 <255 <239 <238 ^j <250	<238 <487 <510 <478 <475 ⁱ <500	1.27 0.50 <1 <1 7.06 2.09	<1 <0.5 <1 <1 <1 <1 0.280	<1 1.1 <1 <1 <1 2.11 0.980	<2 2.1 <2 <2 <2 <2 1.15	 1.21 1.14	 0.970				11.69 11.91 11.77 10.64 10.88 10.11 10.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
19.45	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05	250 280 168 334 296 243	210 248 <255 <239 <238 ^j <250 <245	<238 <487 <510 <478 <475 ^j <500 <490	1.27 0.50 <1 <1 7.06 2.09 1.22	<1 <0.5 <1 <1 <1 0.280 0.870	<1 1.1 <1 <1 <1 2.11 0.980 1.17	<2 2.1 <2 <2 <2 <2 1.15 3.89	 1.21 1.14 <1	 0.970			 	11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
	12/29/04 03/17/05 06/01/05 07/25/05	250 280 168 334 296	210 248 <255 <239 <238 ^j <250	<238 <487 <510 <478 <475 ⁱ <500	1.27 0.50 <1 <1 7.06 2.09	<1 <0.5 <1 <1 <1 <1 0.280	<1 1.1 <1 <1 <1 2.11 0.980	<2 2.1 <2 <2 <2 <2 1.15	 1.21 1.14	 0.970				11.69 11.91 11.77 10.64 10.88 10.11 10.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06	250 280 168 334 296 243 <50	210 248 <255 <239 <238 ^j <250 <245 315	<238 <487 <510 <478 <475 <500 <490 <485	1.27 0.50 <1 <1 7.06 2.09 1.22 <0.5	<1 <0.5 <1 <1 <1 0.280 0.870 <0.5	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5	<2 2.1 <2 <2 <2 <2 1.15 3.89 <3.00	 1.21 1.14 <1 <1	 0.970 <1	 1.95			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06	250 280 168 334 296 243 <50 <50 120	210 248 <255 <239 <238 <250 <245 315 <236 <245 <248	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <495	1.27 0.50 <1 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5	<1 <0.5 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <0.280 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 <2.1.15 3.89 <3.00 <3.00 <3.00 <3.00	 1.21 1.14 <1 <1 <1 <1 <1		 1.95 2.01 1.35	 		11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07	250 280 168 334 296 243 <50 <50 120 181 89.1	210 248 <255 <239 <238 <250 <245 315 <236 <245 <248 <253	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <495 <505	1.27 0.50 <1 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 13.0	<1 <0.5 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <0.280 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 1.1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 2.1 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00	 1.21 1.14 <1 <1 <1 <1 <1 <1	 0.970 <1 <1 <5 <5 <5	 1.95 2.01 1.35 <1 2.55			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.95
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07	250 280 168 334 296 243 <50 <50 120 181 89.1 <50	210 248 <255 <239 <238 ¹ <250 <245 315 <236 <245 <245 <245 <248 <253 <245	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <495 <495 <490	1.27 0.50 <1 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 13.0	<1 <0.5 <1 <1 0.280 0.870 <0.5 <0.5 <0.5 1.25 <0.5 0.720 <0.5	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00			 1.95 2.01 1.35 <1 2.55			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.95
19.45 28.90	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50	210 248 <255 <239 <238 ¹ <250 <245 315 <236 <245 <248 <253 <245 <245 <255	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <495 <495 <495 <495 <510	1.27 0.50 <1 <1 <1 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5	<1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <0.280 <0.870 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 <1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00			 1.95 2.01 1.35 <1 2.55 <1 4.62			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.95 18.46
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50 72.60	210 248 <255 <239 <238' <250 <245 315 <2245 <248 <253 <245 <245 <253 <245 <253 <245 <253 <255 <255 <255	<238 <487 <510 <478 <475 <500 <490 <485 <490 <495 <505 <490 <495 <505 <490' <472	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 13.0 <0.5 <0.5 <0.5 <0.5	<1 <0.5 <1 <0.5 <1 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <0.280 <0.870 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00			 1.95 2.01 1.35 <1 2.55 <1 4.62 2.26			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 18.47 17.72 18.67 18.95 18.95 18.24 19.37
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50	210 248 <255 <239 <238 ¹ <250 <245 315 <236 <245 <248 <253 <245 <245 <255	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <495 <495 <495 <495 <510	1.27 0.50 <1 <1 <1 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5	<1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <0.280 <0.870 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 1.1 <1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 2 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00			 1.95 2.01 1.35 <1 2.55 <1 4.62			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.95 18.46
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 06/15/07 12/18/07	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50 72.60 59.60	210 248 <255 <239 <250 <245 315 <245 <245 <248 <253 <245 <248 <253 <245 <248 <253 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <245 <255 <245 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <255 <25	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <485 <495 <505 <472 <490 <485 <472 <472 <497 <497 <497 <497 <497 <497 <497 <497	1.27 0.50 <1 -1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 13.0 <0.5 2.31 <236	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	<2 2.1 <2 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00			 1.95 2.01 1.35 <1 2.55 <1 4.62 2.26			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34
	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50 72.60 59.60 75.8	210 248 <255 <239 <238 ¹ <250 <245 315 <236 <245 <245 <248 <253 <245 <253 <245 <253 <245 <253 <245 <250 <245 <250 <260 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270 <270	<238 <487 <510 <478 <477 <500 <490 <485 <472 <490 <490 <490 <490 <490 <490 <490 <490	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5 <2.5 4.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 <1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.00 <4.					 	11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.21 10.21 10.43 11.18 10.23 10.44 10.66 9.53 9.93 10.44	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 08/04/08	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50 72.60 59.60 75.8 70.1 94.8	210 248 <255 <239 <250 <245 315 <245 <245 <245 <245 <253 <245 <253 <245 <225 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <236 <23	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <485 <505 <491 <495 <505 <472 <472 <472 <476 <476	1.27 0.50 <1 <1, 7.06 2.09 1.22 <0.5 1.30 <0.5 13.0 <0.5 2.31 <236 <0.5 <0.5 <0.5 <0.5	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 <1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 or Damaged	1.21 1.14 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0.970 <1 <5 <5 <5 <45 <41 <41 <45 <5 <5 <5 6.34 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	 1.95 2.01 1.35 <1 2.55 <1 4.62 2.26 <5 191 4.64 229 at a later date		 	11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.86 10.07	0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 01/05/08	250 280 168 334 296 243 <50 <50 120 181 89.1 <50 <50 <55 72.60 59.60 75.8 70.1 94.8	210 248 <225 <239 <238 <250 <245 315 <236 <245 <245 <245 <245 <253 <245 <255 <236 <236 <236 <236 <236 <236 <236 <238 <21,000	<238 <487 <510 <478 <477 <500 <490 <485 <472 <490 <485 <505 <490 <480 <472 <490 <472 <472 <472 <476	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 1.1 2.11 0.980 2.15 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<pre><2 2.1 <2 <2 <2 1.15 3.89 <3.00 <1.00 </pre>		0.970 <1 <5 <5 <5 <34 <1 <1 <5 <5 <5 <5 <5 <5 <5 <1 <1 <5 <5 <5 <5 <5 <5 <1 <1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	 1.95 2.01 1.35 <1 2.55 <1 4.62 2.26 <5 191 4.64 229			11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 10.46 10.86 10.07	0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90 MW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 06/03/08 08/04/08 11/05/08	250 280 168 334 296 243 <50 -50 120 181 89.1 -50 -50 72.60 59.60 75.8 70.1 94.8	210 248 <2255 <239 <238 <250 <245 <245 <245 <245 <245 <245 <245 <253 <245 <253 <245 <253 <245 <253 <236 <236 <238 < < < < < < < <	<238 <487 <510 <478 <477 <500 <490 <485 <490 <490 <495 <510 <472 <472 <472 <472 <472 <476	1.27 0.50 <1 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 or Damaged 1.0 <0.5</pre>						11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.21 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.86 10.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34 18.47 17.72 18.67 18.95 18.46 18.24 19.37 18.94 18.44 18.04 18.83
28.90 MW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 08/03/08 11/05/08	250 280 168 334 296 243 <50 550 120 181 89.1 <550 72.60 59.60 75.8 70.1 94.8	210 248 <2255 <239 <238 <250 <245 315 <236 <245 <245 <248 <2253 <245 <236 <236 <236 <236 <236 <236 <236 <237 <419 <238 <41,000 370 410	<238 <487 <510 <478 <477 <500 <490 <490 <495 <495 <495 <490 <495 <495 <472 <472 <472 <472 <472 <476 < 940 960	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 13.0 <0.5 2.31 <236 <0.5 <0.5 <0.5 <0.5 <0.7 <0.7	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 or Damaged 1.0 <0.5 <0.5 <0.5</pre>	1.21 1.14 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1					11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.86 10.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.96 18.24 19.37 18.97 18.94 18.44 18.04 18.83
28.90 VIW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 08/04/08 11/05/91 12/30/93 07/15/94	250 280 168 334 296 243 <50 120 181 89.1 <550 72.60 59.60 75.8 70.1 94.8 1,000 <100 <50	210 248 <2255 <239 <2250 <245 315 <2245 <2245 <2248 <2253 <2245 <2255 <236 <236 <236 <236 <236 <479 <236 <238 <1,000 370 410 670	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <485 <505 <491 <472 <472 <472 <472 <472 <476 <476 <476 <477 <477 <477 <477 <477	1.27 0.50 <1 7.06 2.09 1.22 <0.5 1.30 <0.5 13.0 <0.5 2.31 <236 <0.5 <0.5 2.31 <236 <0.7 0.7 1.2	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 <1 2.11 0.980 1.17 <0.5 <0.5 0.890 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <1.00 <3.00 <1.00 <1.0</pre>						11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.86 10.07	0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90 MW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 08/03/08 11/05/08 11/05/08	250 280 168 334 296 243 <50 120 181 89.1 <50 72.60 59.60 75.8 70.1 94.8 1,000 <100 <100 <50 <50 <50	210 248 <225 <239 <238 <250 <245 315 <236 <245 <245 <245 <253 <245 <253 <245 <253 <245 <253 <245 <253 <245 <253 <270 <270 <270 <270 <270 <270 <270 <270	<238 <487 <510 <478 <477 <500 <490 <485 <472 <490 <485 <490' <510 <472 <472 <472 <476 <476 <476 <476 <476 <476 <476 <476	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 2.05 2.31 <0.5 <0.5 2.31 <236 <0.5 <0.5 <1.5 <0.5 <1.5 <0.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 1.1 2.11 0.980 <p><0.5</p> <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <1.00 <3.00 <1.00 <1.0</pre>	1.21 1.14 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1					11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 10.46 10.86 10.07	0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 08/04/08 11/05/91 12/30/93 07/15/94	250 280 168 334 296 243 <50 120 181 89.1 <550 72.60 59.60 75.8 70.1 94.8 1,000 <100 <50	210 248 <2255 <239 <2250 <245 315 <2245 <2245 <2248 <2253 <2245 <2255 <236 <236 <236 <236 <236 <479 <236 <238 <1,000 370 410 670	<238 <487 <510 <478 <475 <500 <490 <485 <472 <490 <485 <505 <491 <472 <472 <472 <472 <472 <476 <476 <476 <477 <477 <477 <477 <477	1.27 0.50 <1 7.06 2.09 1.22 <0.5 1.30 <0.5 13.0 <0.5 2.31 <236 <0.5 <0.5 2.31 <236 <0.7 0.7 1.2	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 <1 2.11 0.980 1.17 <0.5 <0.5 0.890 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <1.00 <3.00 <1.00 <1.0</pre>						11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.86 10.07	0.00 0.00	8.41 8.19 8.33 9.46 8.57 9.34
28.90 MW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 11/05/91 12/30/93 07/15/94 03/08/95 06/06/95 12/08/95	250 280 280 168 334 296 243 <50 120 181 89.1 <50 <50 72.60 59.60 75.8 70.1 94.8 1,000 <100 <50 <50 <50 <50 <50 <	210 248 <2255 <239 <238 <250 <245 345 345 <246 <245 <245 <248 <253 <253 <245 <253 <236 <236 <236 <236 <237 <410 670 560 <250	<238 <487 <510 <478 <477 <500 <490 <485 <447 <490 <495 <490 <495 <490 <472 <472 <472 <472 <472 <472 <476 <76 <76 <750 <750	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1	<1 1.1 1.1 2.11 0.980 1.17 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 column 3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5.00 <5						11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 10.44 10.66 9.53 9.95 10.46 10.86 10.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.67 18.95 18.46 18.24 19.37 18.94 18.94 18.95 18.94 18.95 18.94 18.95 18.95 18.95 18.95 18.95 18.95 18.96 18.97 18.97 18.97 18.97 18.98
	12/29/04 03/17/05 06/01/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 01/05/08 11/05/08 11/05/08 11/05/94 03/08/95 06/06/95 09/07/95 12/08/95 04/01/96	250 280 280 168 334 296 243 <50 120 181 89.1 <50 72.60 59.60 75.8 70.1 94.8 1,000 <100 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	210 248 <225 <239 <238 <250 <245 315 <236 <245 <245 <245 <255 <236 <245 <255 <236 <275 <236 <275 <236 <275 <236 <275 <236 <275 <236 <276 <276 <276 <276 <276 <276 <276 <27	<238 <487 <510 <478 <477 <500 <490 <485 <485 <490 <485 <490 <490 <495 <490 <472 <490 <472 <472 <472 <476 <476 <476 <476 <476 <476 <476 <476	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 2.31 <0.5 <0.5 2.31 <0.5 <0.5 2.31 <236 <0.5 <1.22 2.6 1.30 <0.5 <1.5 <1.1 <0.5	<1	<1 1.1 1.1 2.11 0.980 <p><0.5</p> <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><2 2.1 <2 2.1 <2 <2 <2 1.15 3.89 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <1.00 <3.00 <1.00 <1.0</pre>						11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 9.53 9.93 10.46 10.07	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34
28.90 MW-36	12/29/04 03/17/05 06/01/05 07/25/05 11/07/05 02/23/06 05/08/06 08/30/06 12/13/06 03/08/07 06/15/07 09/14/07 12/18/07 03/18/08 06/03/08 11/05/91 12/30/93 07/15/94 03/08/95 06/06/95 12/08/95	250 280 168 334 296 243 <50 <50 120 181 89.1 <550 72.60 59.60 75.8 70.1 94.8 1,000 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	210 248 <2255 <239 <238 <2250 <245 315 <236 <245 <245 <253 <245 <253 <245 <253 <245 <253 <245 <253 <245 <255 <236 <236 <479 <236 <238 <4100 <670 <560 <250 <250 <510	<238 <487 <500 <476 <500 <485 <472 <490 <490 <510 <510 <472 <472 <472 <472 <476 <510 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	1.27 0.50 <1 7.06 2.09 1.22 <0.5 2.53 1.30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	<1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 1.1 <1 1.1 <1 2.11 0.980 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	<pre><2 2.1 </pre> <pre><2 2.1 </pre> <2 <2 <2 <2 <2 .3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <1.00 <0.5 <1.0 <0.5 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.21 1.14 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1					11.69 11.91 11.77 10.64 10.88 10.11 10.42 10.22 10.21 10.43 11.18 10.23 9.95 10.44 10.66 10.86 10.07 9.42 7.98 9.32 9.07 7.92 8.11 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8.41 8.19 8.33 9.46 8.57 9.34 9.23 9.24 18.47 17.72 18.95 18.46 18.24 19.37 18.97 18.97 18.93 18.94 18.83 8.38 9.82 8.48 8.73 9.89 9.89 9.80 9.8

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A p Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	06/30/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						6.88	0.00	10.92
	09/08/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						9.21	0.00	8.59
	12/19/97 ^b	<50 56.6	<250 287	<750 <750	0.606 <0.5	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						10.09 9.29	0.00	7.71 8.51
	03/16/98 ^b 06/26/98 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						8.47	0.00	9.33
	09/23/98 ^b	<50	<250	<750	0.737	<0.5	<0.5	1.13						9.89	0.00	7.91
	12/17/98 ^b	<50	288	<750	0.533	<0.5	<0.5	<1.00						10.00	0.00	7.80
	03/31/99 ^b 06/30/99 ^b	<50 <50	321 <250	<750 <750	0.759 1.29	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						8.96 8.44	0.00	8.84 9.36
	12/08/99 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						10.05	0.00	7.75
	06/20/00 ^b	172	<250	<750	<0.5	0.583	1.78	11.1						8.47	0.00	9.33
	12/19/00 ^b	106	<250	<750	0.529	1.51	1.08	7.14						9.50	0.00	8.30
	06/15/01 ^b 06/26/01	<50 	298	<750 	0.691	0.648	0.530	1.53						8.00 NM	0.00 NM	9.80
	09/07/01 ^b	<50	<250	<500	0.897	<0.5	<0.5	<1.00						8.70	0.00	9.10
	10/10/01													NM	NM	
	12/28/01	<50	387	<500	0.773	0.748	<0.5	1.78						9.57	0.00	8.23
	03/08/02 06/24/02													NM NM	NM NM	
	09/26/02	<100	<250	<500	0.735	<2	<1	<1.50						10.16	0.00	7.64
	12/12/02								-					NM	NM	
	03/13/03	<50	<250	<500	0.830	<0.5	<0.5	<1.00						9.34	0.00	8.46
	06/12/03 09/19/03	 <50	 <287	 <575	1.44	0.561	<0.5	<1.00						NM 10.23	NM 0.00	7.57
	01/14/04													NM	NM	
	03/30/04	<100	<133	<267	<1	<1	<1	<2						9.46	0.00	8.34
MW-36	06/22/04	 <50	 <250	 <500	0.90									NM 0.79	NM	
contd.	09/29/04 12/29/04	<50	<250	<500	0.90	<0.5	<0.5	<1.0						9.78 NM	0.00 NM	8.02
	03/17/05	<100	<246	<492	<1	<1	<1	<2						8.66	0.00	9.14
	06/02/05	<100	e	e	<1	<1	<1	<2	<1					7.70	0.00	10.10
	06/16/05		82 ^t	<250	 0.550					 -0 F				7.71	0.00	10.09
27.21	07/25/05 11/08/05	<50 <50	<250 <243	<500 <485	0.550 <0.5	<0.2 <0.5	<0.2 <0.5	<0.5 <3.00	<1 <1	<0.5				8.15 8.81	0.00	18.40
	02/24/06	<50	<255	<510	<0.5	<0.5	<0.5	<3.00	<1	<1	3.37	-		8.62	0.00	18.59
	05/09/06	<50	<243	<485	<0.5	<0.5	<0.5	<3.00	<1	<1	10.7			7.55	0.00	19.66
MW-37	06/13/06 11/05/91	21,000	<1,000		810	2,400	470	3,300	ecommissio 	nea 				T		
21.01	12/30/93	2.,000	11,000	l	, 0.0	_,		Present					1	10.59	0.40	10.74
	04/07/94	92,000	18,000	<750	660	3,600	1,500	9,500						10.49	0.08	10.58
	07/15/94 10/26/94	330,000 170,000	1,700,000 35,000	260,000 7,500	18,000 14,000	44,000 30,000	7,700 4,400	44,000 26,000							0.25 0.17	
	03/08/95	34,000	3,200	1,400	3,100	2,400	1,200	6,700						11.94	0.00	9.07
	06/06/95	45,000	4,600	2,500	3,700	2,400	1,300	7,900						11.76	0.01	9.26
	06/06/95 09/07/95	90,000			5,100	6,000	2,400	14,000						11.76 11.17	0.01	9.26 9.84
	12/08/95													10.22	0.00	10.79
	04/01/96			ı		ı	LPH	Present					ı	10.79	0.02	10.24
	06/25/96							Present						10.82	0.20	10.35
	09/27/96 03/28/97 ^b	60,100	7,570	789	1,530	2,180	1650	Present 7,440						11.47 11.14	0.05 0.25	9.58 10.07
	03/28/97	297,000	45,100	<8,250		13,200		22,900						11.14	0.25	10.07
	06/30/97					•		Present		•				10.80	0.02	10.23
	09/08/97							Present Present						11.41	0.23	9.78
	12/19/97 03/16/98							Present						11.28 11.11	0.02	9.75 9.91
	06/26/98						LPH	Present						11.32	0.01	9.70
	09/23/98	<u> </u>		-		-		Present						12.01	0.03	9.02
	12/17/98 03/31/99							Present Present						11.00 NM	Trace Trace	10.01
	06/30/99							Present						DRY	0.30	
	12/08/99													11.11		9.90
	06/20/00 12/19/00						 I PH	 Present						11.50 11.50	0.50	9.51 9.91
MW-37	12/19/00 06/15/01 ^b							Present						11.50	0.50	9.91
contd.	06/26/01													NM	NM	
	09/07/01 ^b	159,000	22,100	14,600	3,420	12,600	4,440	27,000						11.43	0.00	9.58
	10/10/01 12/28/01 ^b						LPH	 Present						NM 11.00	NM 0.20	10.17
	03/08/02							Present						11.61	0.40	9.72
	06/24/02					1		cessible	_			_	1	NM	NM	
	09/26/02													12.38	0.00	8.63
	12/12/02 03/13/03													12.35 11.10	0.00	8.66 9.91
	06/12/03	1,450	474	<568	22.9	43.2	15.8	85.5						11.61	0.00	9.40
	09/19/03	141	<298	<595	<0.5	<0.5	<0.5	1.01						11.95	0.00	9.06
	01/14/04	471 572	<127 180	<255	4.56 5.77	<0.5	9.01	27.75						12.12	0.00	8.89
	03/30/04 06/22/04	572 737	180 487	<281 294	5.77 3.26	<1 3.66	<1 1.46	1.53 14.25						12.73 12.29	0.00	8.28 8.72
						<0.5	0.67									10.12
	09/29/04	190	419	<496	< 0.5	<0.5	0.67	1.3						10.89	0.00	10.12

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A				_	4.000						4.5				
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	03/17/05	250	259	<476	<1	1.27	<1	4.22						12.18	0.00	8.83
	06/02/05	137	<238	604	<1	<1	<1	<2	<1					10.87	0.00	10.14
	07/26/05	59.4	<250	<500	<0.2	<0.2	<0.2	<0.50	<1	0.520				11.37	0.00	
30.09	11/07/05	<50	<243	<485	<0.5	<0.5	<0.5	<3.00	<1					14.71	0.00	15.38
	02/22/06	1,830	<248	<495	32.4	63.8	19.6	284	<5 ^q	15.0	1.66			11.14	0.00	18.95
	05/10/06 08/29/06	<50 91.2	<243 <258	<485 <515	<0.5 2.59	<0.5 1.61	<0.5 1.19	<3.00 12.4	<1 <1	<1 <5	<1 1.30			12.49 12.18	0.00	17.60 17.91
	12/12/06	686	<238	<476	5.46	11.2	5.87	60.4	<1	<5	<1			11.17	0.00	18.92
	03/06/07	64.6	<266	<532	<0.5	1.14	1.02	5.76	<1	<5	<1			10.20	0.00	19.89
	06/14/07	121	<236	<472	1.56	<0.5	0.5	<3.00	<1	<5	<1			12.18	0.00	17.91
	09/14/07	<50	<245	<490	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			13.09	0.00	17.00
	12/17/07	3,130	<240	<481	54.0	72.00	27	600.00	<1		18.80			10.90	0.00	19.19
	03/18/08 06/01/08	750	<236 <238	<472 <476	249 4.9	2.16 2.52	1.16 5.77	3.32 158	51.40	<1 7.31	<5	92.10	<1 343	11.04 11.90	0.00	19.05 18.19
	08/10/08	1,370 1,450	<240	<481	51.3	1.7	13.4	115	<1 <1	18.10	3.31	<1 <1	444	12.45	0.00	17.64
	11/02/08	685	<245	<490	3.6	0.54	4.58	38	<1.00	10.30	1.77	<1.00	<245	11.80	0.00	18.29
	02/22/09	2,380	<238	<476	35.2	49.0	52.4	391		21.00	5.44	<1.00	692	12.40	0.00	17.69
	05/17/09	1,840	<236	<472	12.5	2.37	35.5	199	<1.00	16.30	1.37	<1.00	459	12.35	0.00	17.74
	08/16/09	1,100	840	<480	4.7	0.53	3.7	47	<1.0	5.9	<5.0	<5.0	650	14.12	0.00	15.97
	11/15/09	1,300	440 ^Y	<480	12.0	2.9	19	88 4 F20	<1.0	20	1.5	<1	530 ^Y	11.65	0.00	18.44
	02/21/10 05/23/10	4,120 2,260	958 810	649 522	161 80.6	66.6 13.6	184 106	1,530 706		15.7 13.3	0.85 2.2	<0.10 <0.10	1,030 1140	11.00 11.15	0.00	19.09 18.94
	08/15/10	2,350	<79.2	<396	51.0	2.6	47.0	415		16.7	4.3	0.64	598	11.13	0.00	18.66
	11/14/10	5,580	111	<388	94.3	10.3	151	1270		22.5	<10.0	<10.0	912	10.70	0.00	19.39
	02/27/11	,,,,,,					compromise		sample		•		•			
	06/14/11						-		Not Sample							
BANA/ CC	08/29/11	4.000	4 000			0.0	0.5		Not Sample		1		1		0.00	1
MW-38 16.52	11/05/91 03/08/95	<1,000	<1,000		<0.5	0.6	<0.5	0.5						 NM	0.00 NM	
10.52	06/06/95													NM	NM	
	09/07/95													NM	NM	
	12/08/95													NM	NM	
	04/01/96													NM	NM	
	06/25/96													NM	NM	
	09/27/96							4.00						NM	NM	7.00
	03/28/97 06/30/97	<50 	<250	<750 	<0.5	<0.5	<0.5	<1.00						9.23 NM	0.00 NM	7.29
	09/08/97									-				NM	NM	
	12/19/97													NM	NM	
	03/16/98													NM	NM	
	06/26/98													NM	NM	
	09/23/98													NM	NM	
	12/17/98 03/31/99													NM NM	NM NM	
	06/30/99					-								NM	NM	
	12/08/99					-								NM	NM	
	06/20/00					1			1					NM	NM	
	12/19/00					1			1					NM	NM	
	06/15/01													NM	NM	
	06/26/01 09/07/01													NM NM	NM NM	
	10/10/01													NM	NM	
	12/28/01	<50	403	<500	0.636	1.33	0.554	2.59						8.96	0.00	7.56
	03/08/02					-								NM	NM	
	06/24/02													NM	NM	
	09/26/02 ^c	<100	282	<500	0.743	<2	<1 	<1.50						8.87 NM	0.00 NM	7.65
	12/12/02 03/13/03	 <50	 <250	<500	<0.5	<0.5	<0.5	<1.00						7.84	0.00	8.68
	06/12/03													NM	NM	
	09/19/03	<50	<250	<500	0.704	1.42	0.722	3.72	-					8.90	0.00	7.62
	01/14/04													NM	NM	
	03/30/04	<100	<133	<266	<1	<1	<1	<2						8.09	0.00	8.43
	06/22/04 09/29/04					Linable to l	 ocate due to	road constru	 ection activit	ioc				NM NM	NM NM	
	12/29/04	1			1									NM	NM	
	03/17/05	<100	<250	<499	<1	<1	<1	<2	-					8.32	0.00	8.20
MW-38	06/02/05							ed by vehicle								
contd.	06/16/05							ed by vehicle			1	1	1			
26.04	07/26/05	<50	<250	<500	<0.2	<0.2	<0.2	<0.5	<1	<0.5				7.60	0.00	8.92
26.01	11/07/05 02/21/06	<50	<253	<505	<0.5	<0.5	<0.5 Well obstru	<3.00 cted by vehi	<1 cle					8.11	0.00	17.90
	05/09/06	<50	<250	<500	<0.5	<0.5	<0.5	<3.00	<1	<1	<1			5.82	0.00	20.19
	08/30/06	<80	<245	<490	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			7.02	0.00	18.99
	12/13/06	<50	<250	<500	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			8.56	0.00	17.45
	03/07/07	<50	<250	<500	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			7.92	0.00	18.09
	06/14/07	<50	<240	<481	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			6.37	0.00	19.64
	09/12/07	<50	<240	<481	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			6.93	0.00	19.08
	12/17/07 03/17/08	-					cessible, we cessible, we									
	06/02/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	3.77	<1	<236	6.71	0.00	19.30
	08/05/08							rkedrangernwe				· · · · · ·			₽age	
																• •

Sample I.D.	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE	Naphtha-		Dissolved		DTW (feet)	SPH (foot)	GWE (foot)
	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
	11/04/08	<50.0	<245	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	5.99	<1.00	<236	7.86	0.00	18.15
	02/24/09	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00		<5.00	1.78	<1.00	<240	7.25	0.00	18.76
	05/17/09	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	1.71	<1.00	<238	7.13	0.00	18.88
	08/17/09	<50	<240	<470	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	5.9	<5.0	<240	20.00	0.00	6.01
	11/16/09	<50.0	<240	<480	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	4.9	<1	<240	7.37	0.00	18.64
	02/22/10 05/23/10	<50.0	149	423	<1.0	<1.0	<1.0	<3.0	 Vell Destrov	<1.0	5.9	<0.10	<75.5	8.30	0.00	17.71
MW-40	11/05/91	<1,000	<1,000		5.8	0.7	0.5	0.8								
20.89	10/07/93	930	1,800	1,900	36	1.8	2.1	5.3								
	12/30/93	1,500	5,400	4,200	34	1.1	11	7.4						10.68	0.00	10.21
	04/07/94	1,200	2,200	2,000	29	1.1	6.9	2.6		-				9.35	0.00	11.54
	07/15/94	1,000	2,100	2,500	27	0.8	1.2	1.7						10.68	0.00	10.21
	10/26/94 03/08/95	1,200 960	2,900 2,600	2,600 2,600	20 11	0.53 <0.5	0.77 11	2.0 <1.0						11.22 10.98	0.00	9.67 9.91
	06/06/95	1,500	2,300	1,600	6.8	4.3	4.1	21						11.18	0.00	9.71
	09/07/95	650	13,000	66,000	11	0.91	0.57	<1.0						11.08	0.00	9.81
	12/08/95	500	1,400	4,800	2.7	3.00	<0.5	<1.0						10.30	0.00	10.59
	04/01/96	520	3,200	13,000	1.2	<0.5	0.55	<1.0						10.56	0.00	10.33
	06/25/96	500	2,700	8,460	<0.5	9.82	<0.5	<1.00						10.69	0.00	10.20
	09/27/96 03/28/97	602	3,550	9,860	0.604	41.1	0.525	<1.0						10.95 10.92	0.00	9.94 9.97
	06/30/97													NM	NM	9.91
	09/08/97													NM	NM	
	12/19/97 ^b	325	3,260	12,600	<0.5	0.504	0.663	2.44						11.11	0.00	9.78
	03/16/98									-				NM	NM	
	06/26/98													NM	NM	
	09/23/98 12/17/98 ^b	384	2,840	9,620	 <0.5	<0.5	<0.5	<1.00						NM 10.86	0.00	10.03
	03/31/99		2,040							-				NM	NM	
	06/30/99													NM	NM	
	12/08/99													NM	NM	
	06/20/00													NM	NM	
	12/09/00									-				NM	NM	
	12/19/00 06/15/01													NM NM	NM NM	
	06/26/01													NM	NM	
	09/07/01													NM	NM	
	10/10/01													NM	NM	
	12/28/01	449	4,000	5,090	2.12	2.19	1.38	3.88						10.75	0.00	10.14
	03/08/02													NM NM	NM NM	
	06/24/02 09/26/02	331	2,810	3,470	1.92	<2	<1	<1.50		-				12.69	0.00	8.20
	12/12/02													NM	NM	
	03/13/03	509	2,010	2,010	<0.5	<0.5	0.630	1.77						11.30	0.00	9.59
	06/12/03													NM	NM	
	09/19/03	259	393	1,120	2.64	3.01	1.39	6.77		-				12.46	0.00	8.43
MW-40 contd.	01/14/04 03/30/04	627	863	3,360	3.69	 <1	 <1	<2						NM 11.55	NM Sheen	9.34
conta.	06/22/04			3,300	3.09					-				NM	NM	9.34
	09/29/04	390	32,800	219,000	<0.5	<0.5	<0.5	<1.0						12.03	Sheen	8.86
	12/29/04													NM	NM	
	03/17/05	402	758	4,130	<1	<1	<1	<2						11.89	Sheen	9.00
	06/02/05	433	692 ^{f,j}	3,760	<1	<1	<1	<2	<1					11.30	0.00	9.59
30.08	07/26/05 11/07/05	216 269	596° <243	1,600 <485	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.500 3.58	<1 <1	<0.5				11.35 11.66	0.00	 18.42
55.06	02/23/06	397	<243	546	<0.5	<0.5	<0.5	<3.00	<1	<1	7.35					
	05/10/06	207	<238	<476	<0.5	<0.5	<0.5	<3.00	<1	<1	1.84			12.50	0.00	17.58
	08/29/06	81.5	<236	<472	0.940	<0.5	<0.5	<3.00	<1	<5	2.01			12.87	0.00	17.21
	12/12/06	540	<243	<485	2.51	0.600	0.520	<3.00	<1	<5	<1			11.92	0.00	18.16
	03/07/07	216	<250 <240	<500	<0.5	<0.5	<0.5	<3.00	<1	<5 -5	1.08			10.63	0.00	19.45
	06/14/07 09/14/07	179 65.8	<240 <250	<481 <500	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3.00 <3.00	<1 <1	<5 <5	1.05 <1			11.71 12.08	0.00	18.37 18.00
	12/17/07	203	<236	<472	<1	<1	<1	<2	<1		7.37			10.10	0.00	19.98
	03/17/08	411	<236	<472	<236	<0.5	<0.5	<0.5	<3	<1	<5	4.10	<1			
	06/02/08	272	<240	<481	<0.5	0.68	<0.5	<3	<1	<5	6.39	<1	<240	11.22	0.00	18.86
	08/04/08	149	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	12.5	<1	<236	14.00	0.00	16.08
	11/03/08	350	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	4.97	<1.00	<240	12.50	0.00	17.58
	02/23/09 05/17/09	330 281	<240 <238	<481 <476	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	7.09 4.64	<1.00 <1.00	<240 <238	11.96 13.85	0.00	18.12 16.23
	08/16/09	201	\ZJU	\ -1 10			olume of wa				7.04	×1.00	~230	17.95	0.00	12.13
	11/15/09							cessible	, 00.mail	. •-						
	02/21/10	609	1,070	771	1.9	<1.0	<1.0	6.1		2.1	3.9	0.39	711	10.52	0.00	19.56
	05/23/10	480	861	909	<1.0	<1.0	<1.0	<3.0		<1.0	7.7	0.25	810	10.66	0.00	19.42
	08/15/10	500	100					6.0	Inaccessible		400	40.0	00-	40.0=	0.00	00.01
	11/14/10 02/27/11	500	109	<388	<1.0	<1.0	<1.0	<3.0	 Decomission	<1.0	<10.0	<10.0	235	10.07	0.00	20.01
MW-41	11/05/91	<1,000	<1,000		67	<0.5	<0.5	<0.5								
27.00	12/29/93	<100	<250	<750	4.6	<0.5	<0.5	<0.5						11.24	0.00	15.76
	07/14/94	<100	<250	<750	10	<0.5	<0.5	<0.5						10.81	0.00	16.19
	10/25/94	<50	500	<750	<0.5	<0.5	<0.5	<1.0						13.69	0.00	13.31
ı	03/08/95	<50	<250	<750	1.6	<0.5	<0.5	T∕a1bRe 1						14.72	₽age	9 12.28

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ug/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ug/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
Groun	06/06/95	<50	<250	<750	<0.5	<0.5	<0.5	<1.0						15.02		11.98
	09/07/95	<50	<250	<750	<0.5	<0.5	<0.5	<1.0		-				15.02		12.00
	12/08/95	<50	<250	<750	<0.5	<0.5	<0.5	<1.0						16.30		10.70
	04/01/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.0						15.02		11.98
	06/25/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						15.07		11.93
	09/27/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						15.42	0.00	11.58
	03/28/97													15.27 NM	0.00 NM	11.73
	06/30/97 06/02/05	<100	<237	<474	<1	<1	<1	<2	<1					15.48	0.00	11.52
	07/26/05	<50	258°	977	<0.2	<0.2	<0.2	<0.50	<1	<0.5				15.88	0.00	
36.25	11/02/05	<50	<238	<476	<0.5	<0.5	<0.5	<3.00	<1					15.89	0.00	20.36
	02/23/06	<50	<250	<500	<0.5	<0.5	<0.5	<3.00	<1	<1	1.32			15.26	0.00	20.99
	05/09/06	<50	<253	<505	<0.5	<0.5	<0.5	<3.00	<1	<1	1.56			15.47	0.00	20.78
	08/30/06 12/12/06	<80 <50	<240 <243	<481 <485	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3.00 <3.00	<1 <1	<5 <5	<1 8.79			15.90 15.81	0.00	20.35
	03/07/07	<50	<263	<526	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			15.38	0.00	20.87
	06/14/07	79.2	<236	<472	<0.5	<0.5	<0.5	<3.00	<1	<5	<1			15.45	0.00	20.80
	09/13/07	<50	<236	<472	<0.5	<0.5	<0.5	<3.00	<1	<5	2.56			15.61	0.00	20.64
	12/18/07	<50	<236	<472	<1	<1	<1	<3	<1	<1	2.73			15.46	0.00	20.79
	03/17/08	<50 <50	<236 <236	<472 <472	<236 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <3	<3 <1	<1 <5	<5 <1	<1 <1	<1 <236	15.33 15.31	0.00	20.92
	08/04/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	15.59	0.00	20.66
	11/04/08	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<245	15.80	0.00	20.45
	02/24/09	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00		<5.00	<1.00	<1.00	<240	15.60	0.00	20.65
	05/17/09	<50.0 <50	<250 470	<500 <480	<0.500 <0.50	<0.500 <0.50	<0.500 <0.50	<3.00 <2.0	<1.00 <1.0	<5.00 <5.0	2.05 <5.0	<1.00 <5.0	<250 <240	15.78 16.25	0.00	20.47
	08/16/09 11/15/09	<50 <50	<280	<480 <560	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0 <5.0	<5.0	<5.0	<240 <280	16.25	0.00	19.75
	02/21/10	<50.0	98.4	<379	<1.0	<1.0	<1.0	<3.0	71.0	<1.0	1.8	<0.10	<75.8	15.50	0.00	20.75
	05/23/10	<50.0	<76.9	<385	<1.0	<1.0	<1.0	<3.0		<1.0	0.35	<0.10	<76.9	15.42	0.00	20.83
	08/16/10							ble to gauge				1				
	11/15/10 02/28/11	<50.0 <50.0	<77.7 <77.7	<388 <388	<1.0 <1.0	1.8 <1.0	<1.0	<3.0 <3.0		<1.0	<10.0 <10.0	<10.0	<77.7 <77.7	15.24 15.09	0.00	21.01 21.16
	06/14/11	<50.0 <50.0	<82.5	<412	<1.0	<1.0	<1.0 <1.0	<3.0		<1.0	0.51	<0.10	11.1</td <td>15.13</td> <td>0.00</td> <td>21.10</td>	15.13	0.00	21.10
	08/29/11	<50.0	<84.2	<421	<1.0	<1.0	<1.0	<3.0		<1.0	<0.10	<0.10	<84.2	15.19	0.00	21.06
	12/05/11	<50.0	<85.1	<426	<1.0	<1.0	<1.0	<3.0		<10.0	0.16	0.11	<85.1	15.32	0.00	20.93
	02/15/12	<50.0	<76.2	<381	<1.0	<1.0	<1.0	<3.0		2.0	<10.0	<10.0	<76.2	15.19	0.00	21.06
	05/16/12 08/14/12	<50.0 <50.0	<81.6 <88.9	<408 <444	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	<10.0 <10.0	<10.0 <10.0	<81.6 <88.9	14.92 15.10	0.00	21.33 21.15
MW-42	11/05/91	<1,000	<1,000		180	2.9	0.8	4.7								
20.34	12/30/93	<100	1,300	2,400	570	0.5	<0.5	0.7						9.62	0.00	10.72
	04/07/94	<200	840	1,100	620	<1	<1	<1						9.36	0.00	10.98
	07/15/94 10/26/94	<100 92	540 1,300	850 2,500	490 530	0.6 0.55	<0.5 <0.5	0.5 <1.0						9.26 9.92	0.00	11.08 10.42
	03/08/95	130	670	1,200	790	<25	<25	<50						9.45	0.00	10.42
	06/06/95	120	920	1,500	500	<0.56	<0.5	<1.0						9.37	0.00	10.97
	09/07/95	3,000	780	1,200	210	4.1	42	230						9.50	0.00	10.84
	12/08/95	200 180	1,300	1,900	380 280	<2	<2	<4.0						8.95	0.00	11.39
	04/01/96 06/25/96	150	650 720	<750 <750	150	0.52 <0.5	<0.5 <0.5	<1 <1						9.03 9.07	0.00	11.31 11.27
	09/27/96	<250	534	<750	228	<2.5	<2.5	<5.00						9.12	0.00	11.22
	03/28/97					-			-					9.09	0.00	11.25
	06/30/97													8.92	0.00	11.42
	09/08/97 12/19/97													9.57 NM	0.00	10.77
	03/16/98													9.53	0.00	10.81
	06/26/98					-								9.51	0.00	10.83
	09/23/98													9.96	0.00	10.38
	12/17/98 03/31/99													9.10	0.00	11.24
	03/31/99													9.00 8.60	0.00	11.34 11.74
	12/08/99					-								8.00	0.00	12.34
	06/20/00					1			-					NM	NM	
	12/19/00													NM 0.44	NM	
	06/15/01 06/26/01													9.41 NM	0.00 NM	10.93
	09/07/01													9.66	0.00	10.68
	10/10/01													NM	NM	
	12/28/01													10.28	0.00	10.06
	03/08/02 06/24/02													9.75 NM	0.00 NM	10.59
	09/26/02													10.81	0.00	9.53
MW-42	12/12/02													10.89	0.00	9.45
contd.	03/13/03													9.77	0.00	10.57
	06/12/03	400	e	e	467	-4		Sampled	-4	1	ı	1		NM 0.52	NM 0.00	10.92
	06/02/05 06/16/05	198 	e 97 ^f	e <250	4.67	<1 	<1 	<2 	<1 					9.52 9.34	0.00	10.82 11.00
	07/26/05	117	<250	<500	2.95	0.340	<0.2	0.900	<1	<0.5				9.81	0.00	10.53
28.66	11/02/05	179	<236	<472	8.22	<0.5	<0.5	<3.00	<1					10.18	0.00	19.00
	02/22/06	193	<248	<495	2.23	<0.5	<0.5	<3.00	<1 ^q	<1	<1			9.66	0.00	19.00
	05/09/06 06/12/06	185	<250	<500	3.62	1.37	0.580	<3.00	<1 ecommission	<1 ned	<1			9.64	0.00	19.02
	00/12/00							rable Pe	JUI CONTINUO SIU	iiou					Page 1	U

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ug/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A D Level for Indwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
MW-43	11/05/91	<1,000	<1,000		86	3.4	0.6	2.7								
21.04	12/30/93	340	320	<750	82	0.5	11	100								
	07/14/94	360	<250	<750	31	<0.5	4.6	74	-					10.70	0.00	10.34
	10/26/94	160	580	<750	9.1	<0.5	<0.5	<1.0						11.34	0.00	9.70
	03/08/95 06/06/95	<50 <50	650 690	2,400 1,500	25 8.2	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0						11.35 11.45	0.00	9.69 9.59
	09/07/95	<50	<250	850	10	<0.5	<0.5	<1.0	-					11.14	0.00	9.90
	12/08/95	<50	960	3,100	37	<0.5	<0.5	<1.0						10.85	0.00	10.19
	04/01/96	<50	300	<750	4.5	<0.5	<0.5	<1.0						10.98	0.00	10.06
	06/25/96 09/27/96	<50 <50	370 339	<750 <750	2.57 4.4	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						11.06 11.33	0.00	9.98 9.71
	03/28/97	<50	<250	<750	5.89	0.884	<0.5	2.47						11.13	0.00	9.91
	06/30/97 ^b	<50	<250	<750	59.2	<0.5	<0.5	<1.00	-					7.08	0.00	13.96
	09/08/97 ^b 12/19/97	83	<250	<750 	35.5	<0.5	2.10	3.08						11.46 NM	0.00 NM	9.58
	03/16/98 ^b	76.3	408	<750	26.5	<0.5	<0.5	<1.00						11.09	0.00	9.95
	06/26/98 ^b	<50	346	<750	69.6	<0.5	<0.5	<1.00						11.26	0.00	9.78
	09/23/98 ^b	<50	267	<750	9.05	<0.5	<0.5	<1.00						11.75	0.00	9.29
	12/17/98 ^b	<50 <50	<250 267	<750 <750	33.0 9.84	<0.5 <0.5	<0.5 0.782	<1.00 2.47						11.07 10.97	0.00	9.97 10.07
	03/31/99 ^b 06/30/99 ^b	146	253	<750	28.2	7.47	2.95	17.5						9.97	0.00	11.07
	12/08/99 ^b	<50	<250	<750	20.5	<0.5	<0.5	<1.00	-					11.06	0.00	9.98
	06/20/00 ^b	<50	<250	<750	3.79	<0.5	<0.5	<1.00						11.40	0.00	9.64
	12/19/00 ^b 06/15/01 ^b	55.9 <50	253 405	<749 <750	2.97 0.670	0.948 <0.5	0.730 <0.5	4.78 1.22						11.40 11.32	0.00	9.64 9.72
	06/26/01		-											NM	NM	
	09/07/01 ^b	<50	<293	<587	<0.5	<0.5	<0.5	<1.00	-					11.46	0.00	9.58
MW-43 contd.	10/10/01 12/28/01	 52	 487	 <500	 5.61	1.18	0.558	3.34						NM 11.17	NM 0.00	9.87
conta.	03/08/02													NM	NM	
	06/24/02		-											NM	NM	
	09/26/02 ^c 12/12/02	<100	303	<500 	0.669	<2 	<1 	<1.50 						12.28 NM	0.00 NM	8.76
	03/13/03	<50	<321	<641	0.883	<0.5	<0.5	<1.00						11.20	0.00	9.84
	06/12/03													NM	NM	
	09/19/03 01/14/04	<50 	<291	<581 	1.76	<0.5	<0.5	<1.00						12.37 NM	0.00 NM	8.67
	03/30/04	<100	<129	<258	<1	<1	<1	<2						11.95	0.00	9.09
	06/22/04													NM	NM	
	09/29/04 12/29/04	180	<249	<499 	3.6	<0.5	<0.5	<1.0 						12.00 NM	0.00 NM	9.04
	03/17/05	<100	<250	<501	2.2	<1	<1	<2						11.69	0.00	9.35
	06/02/05	<100	e	e	15	<1	<1	<2	<1					11.18	0.00	9.86
	06/16/05 07/26/05	 <50	<50 <250	<250 <500	4.24	<0.2	<0.2	<0.500	 <1	<0.5				11.16 11.70	0.00	9.88
30.21	11/01/05	<50	<236	<472	<0.2	<0.5	<0.5	<1.00	<2					11.45	0.00	18.76
	02/21/06	<50	<281	<562	1.16	<0.5	<0.5	<3.00	<1	<1	<1			10.99	0.00	19.22
	05/09/06 08/31/06	<50 <100	<236 <236	<472 <472	1.13 <0.5	<0.5 <0.5	<0.5 <0.5	<3.00 <3.00	<1 <1	<1 <5	<1 <1			11.40 11.90	0.00	18.81 18.31
	12/13/06	<50	<240	<481	10.3	<0.5	<0.5	<3.00	<1	<5	<1			10.87	0.00	19.34
	03/06/07					0.5			ecommissio	1	ı					
MW-44 18.73	11/05/91 07/15/94	<1,000 <100	<1,000 <250	<750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5						8.35	0.00	10.38
10.73	10/26/94	<50	280	<750	<0.5	<0.5	<0.5	<1.0						9.81	0.00	8.92
	03/08/95	<50	290	940	<0.5	<0.5	<0.5	<1.0	-					9.44	0.00	9.29
	06/06/95 09/07/95	<50 <50	<250 <250	820 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	1.60 <1.0						8.28 7.94	0.00	10.45 10.79
	12/08/95	<50	520	2,500	<0.5	<0.5	<0.5	<1.0						8.09	0.00	10.79
	04/01/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.0						7.98	0.00	10.75
	06/25/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.00	-					7.90	0.00	10.83
	09/27/96 03/28/97	<50 <50	<250 <250	<750 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						8.28 8.07	0.00	10.45 10.66
	06/30/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						7.84	0.00	10.89
	09/08/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						8.65	0.00	10.08
MW-44	12/19/97 ^b 03/16/98 ^b	<50 60.0	<250 310	<750 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						8.51 8.43	0.00	10.22 10.30
contd.	06/26/98 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00	-					8.37	0.00	10.36
	09/23/98 ^b	<50	343	<750	<0.5	<0.5	<0.5	<1.00						9.30	0.00	9.43
	12/17/98 ^b 03/31/99 ^b	<50 <50	271 <250	<750 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.00 <1.00						8.10 8.18	0.00	10.63 10.55
	03/31/99 ^b 06/30/99 ^b	<50 <50	393	<750 <750	<0.5	0.619	<0.5	1.21						8.18	0.00	10.55
	12/08/99 ^b	<50	281	<750	<0.5	<0.5	<0.5	<1.00						8.52	0.00	10.21
	06/20/00 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.00						9.53	0.00	9.20
	12/19/00 ^b	301 <50	330 468	<750 <841	<0.5 <0.5	1.64 <0.5	2.76 <0.5	22.1 <1.00						9.20 8.44	0.00	9.53 10.29
	06/15/01 ^b 06/26/01	<50	400	<041	<0.5	<0.5	<0.5	<1.00						NM	NM	
	09/07/01 ^b	10,300	4,250	849	1,050	6.97	945	51.0	-					9.48	0.00	9.25
	10/10/01 12/28/01	90.6	823	 <500	10.9	1.40	0.644	4.04						9.31	NM 0.00	9.42
	03/08/02													NM	NM	
	06/24/02		-					Table 1						NM	MaMge 1	1

Note	Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
10,000 1,0	Cleanup	Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
COUNTY C	Groui		<100	1,600	569	14.2	<2	<1	<1.50						10.79	0.00	7.94
March Property P																	
Company Comp																	
0.074006																	
		01/14/04															
12/2014 1/10 1/20																	
0000005																	
08/1906																	
17 17 17 17 17 18 18 18																	
197195																	
DESCRIPTION 1988 15	27.97		<50														
0879906 -880 -280 -281 -485																	
10,00007 10,000																	
COMPAND CONTROL CONT			100	1210	V-101	νο.σσσ	٧٥.٥				10			l			
MW-44 MW-44 MW-45 MW-4																	
MW-44 68/1709 650 6240 6480 6050 6050 6250 6250 6250 650 650 650 650 650 650 625																	
Control 17/16/19 15/00	MW-44																
105/2410		11/16/09											<1	<240			17.02
18 17 10 15 10 18 18 18 18 18 18 18																	
11/15/10 c.50 c.77.7 c.388 c.10 c.10 c.10 c.10 c.10 c.10 c.10 c.77.7 c.77.																	
1000 1000																	
1107/13										ecomission							
MW-45 11/190																	
38.09 1209114 <100																	
MW45 100	36.09																
08/10/15 1:00																	
1207/15 100																	
18.11 12/993 11/000 2,000 500 1,000 370 2,200			V100			<1.0	V1.0	V1.0							10.00	0.00	20.01
12/29/33 11,000						<1.0									15.25	0.00	20.84
0407794 16,000 830 <750 2,500 620 580 2,500 8.22 0.00 8.22 0.71494 25,000 850 1,100 4,000 750 870 3,600 8.39 0.00 9.72 10/25/94 19,000 1,000 4750 4,000 230 320 3,000 9.80 0.00 9.01 10/10/10 9.80 0.00 9.01 10/10/10 9.80 0.00 8.31 10/10/10 9.80 0.00 8.31 10/10/10															8 70	0.00	9.32
1071494 25,000 850 1,100 4,000 750 870 3,600 8.39 0.00 9.72	10.11																
0907/01 <50		07/14/94		850	1,100				870						8.39	0.00	9.72
10/10/01																	
12/28/01 17,300 2,210 597 2,130 73,4 1,330 2,970 9,03 0,00 9,08																	
1926/06/2 2,420 1,190 547 394 3.41 204 106 10,20 0.00 7,91																	
12/12/102 Obstructed by vehicle											1						
03/13/03 3,590 2,050 6500 219 133 99.4 368 8.05 0.00 10.06			2,420	1,190	547		394				-						
09/19/03 583 <298 <595 1.93 2.25 5.65 38.6 10.68 0.00 7.43			3,590	2,050	<500		219										
01/14/04 360																	
03/30/04 303 234 <240 <1 <1 <1 <2 10.19 0.00 7.92																	
06/22/04 151 365 358 < 1 < 1 < 1 < 2 10.34 0.00 7.77																	
12/29/04 207 248 498 2.90 41 41 9.04 9.40 0.00 8.71										<2					10.34		
27.52																	
27.52																	
27.52																	
02/21/06																	
05/08/06 198 540 <500 1.06 <0.5 0.980 2.70 <1 1.69 <1 8.79 0.00 18.73	27.52																
08/30/06 104 <248 <495 < 0.5 <0.5 <0.500 <3 <1 <5 <1 9.84 0.00 17.68						ļ											
12/12/06 25,900 662 <485 64.1 23.8 330 5,020 <5 278 10.8 9.13 0.00 18.39																	
06/15/07 12,500 439 439 481 16.8 2.77 178 1,590 <1 330 1.77 8.85 0.00 18.67		12/12/06	25,900	662	<485		64.1	23.8	330	5,020	<5	278			9.13	0.00	18.39
09/13/07 23,400 328 <481 65.3 16.9 303 3,740 <1 246 6.85 9.07 0.00 18.45																	
12/17/07 Unable to sample, well under water Unable to sample Unable to sample, well under water Unable to sample Unable to																	
O6/03/08 Control of the control			20,400	520	\ 1 01	1							0.00				
08/05/08 64.4 <236			<50	<236	<472	<236					<1	<5	<1	<1			
11/03/08 Well under water, unable to sample.			64.4	<236	<i>∠</i> 472	<0.5					-5	1 30	<i>-</i> 1	<236			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			U4.4	~ 230	N#12	.υ.υ					_ \3	1.08	<u> </u>	\ 230			
08/16/09 250 570 <480 <0.50 <0.50 <0.50 <2.0 <1.0 100 <5.0 <5.0 1200 16.92 0.00 10.60 11/15/09 1000 2,200° <480		02/22/09					< 0.500	<0.500	<3.00						11.44	0.00	8.38
11/15/09 1000 2,200 ^Y <480 3.9 2.2 11 28 <1.0 14 9.2 <1 2,100 ^Y 9.12 0.00 18.40 02/21/10 745 1,160 832 3.9 <1.0																	
02/21/10 745 1,160 832 3.9 <1.0 34 23.2 14.5 4.7 <0.10 566 8.46 0.00 19.06																	
														,			

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ug/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ug/L)	Naphtha- lene	Total Lead	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
MTCA	Method A Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
Groui	08/16/10	319	<77.7	<388	<1.0	<1.0	5.8	<3.0		7.5	7.2	0.37	177	8.80	0.00	18.72
	11/16/10	1,880	106	<388	5.8	1.3	43.1	212		28.4	<10.0	<10.0	547	8.15	0.00	19.37
	02/28/11	10,500	347	<388	17.6	3.3	172.0	479		150.0	<10.0		2,750	8.66	0.00	18.86
										150.0			2,750			
	06/14/11	3,230	137	<396	1.7	<1.0	46.8	34			1.8	<0.10		8.85	0.00	18.67
	08/29/11	1,790	119	<421	<1.0	<1.0	5.1	<3.0		36.5	0.4	<0.10	489	8.62	0.00	18.90
	12/05/11	19,900	298	<426	20.5	5.7	327	2,240		213	2.1	0.34	6,960	7.80	0.00	19.72
	02/15/12	14,000	219	<404	11.6	2.7	203	631		206.0	<10.0	<10.0	2,470	9.05	0.00	18.47
	05/15/12	3,920	211	<421	<5.0	<5.0	77.0	122		75.4	<10.0	<10.0	1,330	8.14	0.00	19.38
	08/14/12	1,600	206	<430	<1.0	<1.0	7.3	<3.0		33.7	<10.0	<10.0	676	8.78	0.00	18.74
	06/29/17								ell dewater							
	12/13/17	<100			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		14.05	0.00	13.47
MW-46	11/05/91	<1,000	<1,000		<0.5	0.6	<0.5	1.2								
16.91	07/15/94	<100	270	1,200	<0.5	<0.5	<0.5	<0.5						7.15	0.00	9.76
	10/25/94	<50	1,500	7,300	<0.5	<0.5	<0.5	<1.0						8.51	0.00	8.40
	03/08/95	<50	720	3,600	<0.5	<0.5	<0.5	<1.0						8.00	0.00	8.91
	06/06/95	<50	<250	1,400	<0.5	<0.5	<0.5	<1.0						7.30	0.00	9.61
	09/07/95	<50	710	5,600	< 0.5	< 0.5	< 0.5	<1.0						7.80	0.00	9.11
	12/08/95	<50	1,400	14,000	< 0.5	< 0.5	< 0.5	<1.0	-					8.32	0.00	8.59
	04/01/96	<50	<400	2,800	< 0.5	<0.5	< 0.5	<1.0						7.04	0.00	9.87
	06/25/96	<50	440	2,090	<0.5	<0.5	<0.5	<1.0						7.85	0.00	9.06
	09/27/96	<50	267	<750	0.518	<0.5	<0.5	<1.0						7.57	0.00	9.34
	03/28/97	<50	<250	<750	<0.5	1.25	<0.5	2.06						7.25	0.00	9.66
	06/30/97													7.12	0.00	9.79
	09/08/97													8.82	0.00	8.09
	12/19/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1.0						9.40	0.00	7.51
	03/16/98													NM	NM	
	06/26/98													NM	NM	
	09/23/98													NM	NM	
	12/17/98 ^b	<50	354	<750	<0.5	<0.5	<0.5	<1.0						9.20	0.00	7.71
	03/31/99													NM	NM	
	06/30/99													NM	NM	
	12/08/99													NM	NM	
	06/20/00													NM	NM	
	12/19/00	226	277	<750	<0.5	2.18	2.53	18.0						12.70	0.00	4.21
	06/15/01 ^b	<50	295	<750	<0.5	<0.5	<0.5	1.39						7.19	0.00	9.72
	06/15/01							1.39		-				NM	NM	9.12
	09/07/01													NM	NM	
	10/10/01													NM	NM	
	12/28/01						Covered	d by asphalt						NM	NM	
			ı	1	1	ı	1	T .		1		1				
	03/08/02 06/24/02				-									NM NM	NM NM	
	09/26/02							e to locate						NM	NM	
	12/12/02											l		NM	NM	
MW-46	03/13/03							by asphalt						NM	NM	
	06/12/03				1			a by aspirali				l		NM	NM	
contd.	09/19/03							d by asphalt						NM	NM	
	01/14/04						Covered		oring Discor	ntinued				INIVI	INIVI	
	01/14/04						Abandanad			comissioned	at a later dat					
NAVA/ 47	44/05/04	4 000	4.000		F 0				- To be dec	omissioned	at a later dat			ı		ı
MW-47	11/05/91	<1,000	<1,000		5.2	0.5	<0.5	<0.5								
19.83	12/30/93	<100	310	<750	2.0	<0.5	<0.5	1.0						9.50	0.00	10.33
	04/07/94	<100	300	<750	2.5	<0.5	<0.5	<0.5						10.47	0.00	9.36
	07/14/94	<100	290	<750	1.6	<0.5	<0.5	<0.5						10.51	0.00	9.32
	10/25/94	51	270	<750	1.8	<0.5	<0.5	<1.0						11.02	0.00	8.81
	03/08/95	<50	330	1,600	5.3	<0.5	<0.5	<1.0						10.88	0.00	8.95
	06/06/95	70	380	780	15	0.59	<0.5	2.3						10.91	0.00	8.92
	09/07/95	<50	260	<750	1.7	<0.5	<0.5	<1.0					-	10.76	0.00	9.07
	12/08/95	740	580	2,000	<0.5	<0.5	<0.5	<1.0						10.40	0.00	9.43
	04/01/96	<50	<250	<750	4.4	<0.5	<0.5	<1.0						10.67	0.00	9.16
	06/25/96	110	400	<750	14.4	<0.5	<0.5	<1.0						10.71	0.00	9.12
	09/27/96	<50	<250	<750	4.34	<0.5	<0.5	<1.0					-	10.85	0.00	8.98
	03/28/97 ^b	64.5	<250	<750	7.61	<0.5	<0.5	1.57						10.92	0.00	8.91
	03/28/97	177	<250	<750	52.6	<0.5	<0.5	<1						10.92	0.00	8.91
	06/30/97													NM	NM	
	09/08/97													NM	NM	
	12/19/97													NM	NM	-
	03/16/98								-					NM	NM	-
	06/26/98 ^b	<50	356	<750	27.3	<0.5	<0.5	<1						10.78	0.00	9.05
	09/23/98													NM	NM	-
	12/17/98 ^b	<50	<250	<750	3.34	<0.5	<0.5	1.12						10.61	0.00	9.22
	03/31/99													9.65	0.00	10.18
	06/30/99													NM	NM	-
	12/08/99													NM	NM	-
	06/20/00 ^b	<50	<250	<750	<1.30	<0.5	<0.5	<1						10.94	0.00	8.89
Ī	12/19/00 ^b	1,310	357	<750	<0.5	6.10	10.6	77.3						11.20	0.00	8.63
	06/15/01	<50	591	<952	0.709	0.504	<0.5	1.18						10.98	0.00	8.85
	06/26/01													NM	NM	
	09/07/01 ^b	<50	356	<500	<0.5	<0.5	<0.5	<1						11.14	0.00	8.69
	10/10/01													NM	NM	
	12/28/01	181	542	<500	7.64	1.49	4.79	37.8						10.90	0.00	8.93
	03/08/02													NM	NM	
	06/24/02							Table 1						NM	Nabole 1	
•							•——	, I GDIC I				•——				

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ug/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (µa/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A				_											
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
0.04	09/26/02 ^c	106	747	<500	2.36	<2	<1.00	<1.5						11.85	0.00	7.98
MW-47	12/12/02													NM	NM	
contd.	03/13/03	75.5	<284	<568	<0.5	<0.5	<0.5	<1						10.91	0.00	8.92
	06/12/03 09/19/03	76.8	<294	<588	3.41	<0.5	<0.5	1.14						NM 12.05	0.00	7.78
	01/14/04													NM	NM	
	03/30/04	272	262	980	<1	<1	<1	<2	-					11.81	0.00	8.02
	06/22/04 09/29/04	200	329	735	<0.5	<0.5	<0.5	 <1						NM 11.87	0.00	7.96
	12/29/04									-				NM	NM	
	03/17/05	166	<248	<495	<1	<1	<1	<2						11.62	0.00	8.21
	06/01/05 07/25/05	217 162	<252 <250	616 ^t <500	<1 <0.2	<1 <0.2	<1 <0.2	<2 <0.5	1.3 1.18	<0.5				11.25 11.36	0.00	8.58
29.34	11/04/05	99.2	<236	<472	<0.5	<0.5	<0.5	<1	<1					11.42	0.00	17.92
	02/22/06	73.5	<238	<476	<0.5	<0.5	<0.5	<3	1.06	<1	<1			11.24	0.00	18.10
	05/09/06 06/13/06	97.8	<236	<472	<0.5	<0.5	<0.5	<3	<1 ecommission	<1 ned	<1			11.41	0.00	17.93
MW-48	06/01/05	357	294 ⁹	<494	<1	<1	<1	<2	<1					9.40	0.00	
27.98	07/25/05	334	<250	<500	<0.2	<0.2	<0.2	<0.5	<1	<0.5				9.48	0.00	
	11/04/05 02/22/06	278 6,460	<236 <258	<472 < 515	<0.5 139	<0.5 26.8	<0.5 219	<1 1140	<1 <20.0 ^q	41	 <1			9.35 9.41	0.00	18.63 18.57
	05/09/06	325	<236	<472	<0.5	<0.5	<0.5	<3	<20.0 ¹	<1	<1			9.41	0.00	18.86
	08/30/06	176	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1			10.40	0.00	17.58
	12/13/06 03/06/07	275	<240	<481	<0.5	<0.5	0.870	4.44 De	<1 ecommission	<5 ned	<1					
MW-49	07/25/05	313	2,060	6,590	<0.2	<0.2	<0.200	0.3	<1	0.550				3.82	0.00	
22.36	11/02/05	<50	<236	<472	0.200	<0.5	0.660	1.06	<2					3.60	0.00	18.76
	02/24/06 05/11/06	380 201	457 2,550 ^p	<556 625 ^p	<0.5 <0.5	<0.5 <0.5	3.45 <0.5	9.35 <3	<1 <1	1.52 <1	1.69 2.21			3.59	0.00	 18.77
	08/31/06	<100	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	5.73			4.73	0.00	17.63
	12/13/06	197	<240	679	<0.5	<0.5	<0.5	<3	<1	<5	3.33			4.03	0.00	18.33
	03/07/07 06/13/07	232 178	<236 <238	<472 <476	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1.85 2.42			3.47 3.59	0.00	18.89 18.77
	09/12/07	68.7	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	2.47			3.76	0.00	18.60
	12/19/07	308	<236	<472	<1	<1	<1	<3	<1	<1	13			2.59	0.00	19.77
	03/18/08 06/03/08	<50 51.8	<236 <236	<472 <472	<236 1.38	<0.5 <0.5	<0.5 <0.5	<0.5 <3	<3 <1	<1 <5	<5 6.12	12.9 <1	<1 <236	3.12 3.55	0.00	19.24 18.81
	08/06/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	28.1	<1	<236	4.09	0.00	18.27
	11/04/08					Wel	l under wate	r, unable to						3.13	0.00	19.23
	11/18/08 11/20/12	4,130	1,900	<100	6.0	2.8	105	612	ecommission 	nea 99.3	3.7	<3.0	2,500	4.37		23.15
	11/06/13	281	<400	<400	<1.0	1.3	<1.0	<3.0	<1.0		<10.0	<10.0	<400	10.50	0.00	Note Z
28.06	07/29/14	000		1		4.0	4.0		Well was dr		40.0	40.0	T	40.05	0.00	40.00
27.91	12/08/14 03/23/15	323 917			6.2 2.0	<1.0 <1.0	1.6 20.4	<3.0 53.8	<1.0		<10.0	<10.0		10.95 9.23	0.00	16.96 18.68
	06/22/15	474			5.1	<1.0	18.3	<3.0						10.57	0.00	17.34
	09/10/15	150												10.11 8.09	0.00	17.80
	12/07/15 06/28/16	748			2.1	<1.0	20.3 Unat	3.4 ole to access		auged or san				0.09	0.00	19.82
	12/13/16							ole to access		auged or san						
MW-50	10/10/01	8,970	2,200 3,460	<606		674	221	382 991	779					11.11 10.45	0.00	8.69
19.80	12/28/01 03/08/02	23,200	3,400	<500		1,630	3,690 Obstructe	ed by vehicle	4,480					NM	0.00 NM	9.35
	06/24/02	8,290	1,970	556		414	23	314	2,010					10.84	0.00	8.96
	09/26/02 12/12/02							ed by vehicle ed by vehicle						NM NM	NM NM	
	03/13/03	12,200	1,810	<588		733	127	523	1,100					9.93	0.00	9.87
	06/12/03	6,450	1,740	<500		448	13.7	299	286					11.27	0.00	8.53
	09/19/03 01/14/04	4,440 29,700	<250 1,970	<500 <258	1	51.7 308	315 502	26.1 312	462 6,180					12.05 11.81	0.00	7.75 7.99
	03/30/04	3,330	867	<241		21.8	<5	21.9	226.4					11.65	0.00	8.15
	06/22/04	2,130	874	<237		14.2	2.4	27.9	85.11					11.79	0.00	8.01
	09/29/04 12/29/04	3,600 1,570	1,330 745	<502 <611	-	92 9.69	62 3.88	100 9.98	520 27.62					11.71 11.01	0.00	8.09 8.79
	03/17/05	1,420	1,060	506		5.82	2.41	10.6	30.59					11.26	0.00	8.54
	06/01/05	1,710	528 ^g	<503		20.3	10.7	42.3	84.7	8.01	7.04			10.58	0.00	9.22
29.32	07/25/05 11/01/05	1,500 634	<250 380 ^g	<500 <472	1	16.8 15.9	3.23 2.49	36.9 0.52	50.11 2.19	4.29 5.62	7.04			10.90 10.60	0.00	18.72
_5.52	02/21/06	1,430	<272	<543		139	15.4	16.7	28.20	<5	7.05	1.33		10.56	0.00	18.76
	05/08/06	1,550 ^j	1,870	<485		28.4	2.13	24.7	35.06	3.88	9.48	<1		10.81	0.00	18.51
	08/29/06 12/12/06	264 1,650	<248 <243	<495 <485	1	8.55 80.9	0.780 2.75	6.87 18.9	7.26 41.9	4.23 3.93	<5 17.4	<1 1.62		11.58 10.61	0.00	17.74 18.71
	03/08/07	1,650	<240	<481		51.3	1.06	14.1	33.6	2.92	35.9	<1		10.53	0.00	18.79
	06/15/07	1390 J	333	<495 ^r		28.0	1.00	6.46	5.20	1.85	40.5	<1		10.74	0.00	18.58
	09/13/07 12/18/07	439 886	<240 <236	<481 <472	-	4.36 1.10	<0.5 <1	0.650 4	<3 <3	1.89	10.3 6.9	<1 2.94		10.90 9.63	0.00	18.42 19.69
	03/18/08	77.6	<236	<472	<236	1.02	0.58	1.85	<3	<1	<5	<1	<1	11.39	0.00	17.93
	06/03/08	4.555	-			ered by traile				•			46.1			
	08/05/08 11/03/08	1,260 1,250	<236 <236	<472 <472	3.94 <0.500	0.50 <0.500	8.42 3.69	9.76 4.84	2.06 <1.00	<5 <5.00	4 <1.00	<1 <1.00	494 478	11.28 10.79	0.00	18.04 18.53
	11/18/08	.,200	1200	\-71Z	-0.000			Deqonopoiss		10.00	-1.00	-1.00	-7.0		Page 1	4

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A				_											
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500		-	
0.04	11/15/09	630	2,900°	<490	2.3	0.74	0.65	<2.0	<1.0	660 ^H	1.1	<1	3000	11.88	0.00	17.44
	02/21/10	<50.0	1,280	457	<1.0	<1.0	<1.0	4.9		62.8	0.61	<0.10	392	11.02	0.00	18.30
	05/23/10	57.4	1320	433	<1.0	<1.0	<1.0	<3.0		60.4	0.92	<0.10	1080	10.72	0.00	18.60
	08/16/10	<50.0 <50.0	158 102	<392	<1.0	<1.0	<1.0	<3.0 <3.0		33.4	0.63	0.18	181 102	11.07 10.43	0.00	18.25
	11/16/10 02/28/11	74.8	102	<388 <388	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0		35.6 19.2	<10.0 <10.0	<10.0	114	10.43	0.00	18.89 18.57
	06/14/11	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0			0.52	<0.10		10.06	0.00	19.26
	08/29/11	65.1	<86.0	<430	<1.0	<1.0	<1.0	<3.0		15	0.19	0.12	88.2	10.65	0.00	18.67
	12/05/11 02/15/12	71.6 85.0	<86.0 110	<430 <426	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		10.2 20.5	0.53 <10.0	<0.10 <10.0	<86.0 154	10.15 11.35	0.00	19.17 17.97
	05/15/12	97.9	<80.0	<400	<1.0	<1.0	<1.0	<3.0		16.1	<10.0	<10.0	87.3	10.36	0.00	18.96
	08/14/12	138	117	<430	<1.0	<1.0	<1.0	<3.0		11.4	<10.0	<10.0	143	10.75	0.00	18.57
MW-51	10/10/01	671	11,700	2,150	10.1	10.4	7.75	16.6						11.68	0.00	8.90
20.58	12/28/01 03/08/02	631 102	2,170 2,350	3,100 1,610	37.0 6.22	75.6 5.89	30.4 3.84	81.2 10.4						11.20 11.38	0.00	9.38 9.20
	06/24/02	57.7	2,650	1,730	1.28	1.42	0.699	2.51						11.60	0.00	8.98
	09/26/02 ^c	<100	1,660	875	0.848	<2	<1	<1.5						12.18	0.00	8.40
	12/12/02 03/13/03	<50 <50	2,050 693	781 <625	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1						12.28 11.05	0.00	8.30 9.53
	06/12/03													NM	NM	9.55
	09/19/03	52.4	<250	<500	1.47	1.81	0.544	3.59						12.42	0.00	8.16
	01/14/04	73.5	<139	<278	<0.25	0.804	<0.5	<1						11.79	0.00	8.79
	03/30/04 06/22/04	<100 104	404 129	401 <237	<1 <1	<1 <1	<1 <1	<2 <2						12.22 12.10	0.00	8.36 8.48
	09/29/04	150	<242	<484	<0.5	<0.5	<0.5	<1						12.20	0.00	8.38
	12/29/04	<100	<257	<514	<1	<1	<1	<2						11.80	0.00	8.78
	03/17/05 06/01/05	<100 <100	<240	<481 <520	<1 <1	<1 <1	<1 <1	<2 <2	 <1					11.58 11.62	0.00	9.00 8.96
	07/25/05	<50	408 ^t 697 ^c	826	<0.2	<0.2	<0.2	<0.5	<1	<0.5				11.74	0.00	
29.75	11/04/05	<50	<238	<476	<0.5	<0.5	<0.5	<1	<1					11.80	0.00	17.95
	11/04/05 02/22/06		1,290 ^{l,f}	536 l,f										11.64		
	02/22/06	<50 <50	<248 <245	<495 <490	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<1 <1	<1 3.71			11.64	0.00	18.11 17.93
	08/30/06	<80	<245	<490	<0.5	<0.5	<0.5	<3	1.20	<5	2.81			12.23	0.00	17.52
	12/12/06	<50	<243	<485	< 0.5	<0.5	<0.5	<3	<1	<5	<1			11.70	0.00	18.05
	03/07/07 06/15/07	<50 <50	<258 <245	<515 <490 ^r	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 <1			11.61 11.77	0.00	18.14 17.98
	09/13/07	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	<1			11.95	0.00	17.80
100/54	12/19/07	<50	<236	<472	<1	<1	<1.00	<3	<1	<1	20.60			11.17	0.00	18.58
MW-51 contd.	03/18/08 06/03/08	<50	<236 V	<472 Vell cover	<0.5 ed by const	<0.5 ruction vehic	<0.5 les and sem	<3 i-trucks, una	<1 ble to samp	<5 le	<1	<1	<1	11.71		18.04
Contai	08/05/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	1.40	<236	11.98	0.00	17.77
	11/04/08	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00		<5.00	<1.00	<1.00	<236	11.83	0.00	17.92
	02/22/09 05/17/09	<50.0 <50.0	<236 <240	<472 <481	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	<1.00 2.36	<1.00 <1.00	<236 <240	15.32 12.97	0.00	14.43 16.78
	08/16/09	\\00.0	\2+0	N-101				ter to fill sam			2.00	V1.00	\Z+0	14.80	0.00	14.95
	11/15/09	<50	<240	<490	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0 ^H	<1	<1	<240	11.81	0.00	17.94
	02/21/10 05/23/10	<50.0 <50.0	1,040 1270	1,550 1610	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		2.4 <1.0	6.1 .47	<0.10 <0.10	<76.9 346	11.52 11.40	0.00	18.23 18.35
	08/17/10	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0		<1.0	1.4	0.10	346	11.59	0.00	18.16
	11/16/10	<50.0	<76.9	<385	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<76.9	10.42	0.00	19.33
	02/27/11 06/14/11					W		ised, not sar		itored or ac-	onlad					
	08/29/11							Compromis Compromis								
MW-52	10/10/01	13,400	1,460	<582	1,150	<10	827	793						10.79	0.00	
	12/28/01 03/08/02	7,900 10,100	1,690 2,790	595 <602	634 814	5.87 6.30	509 602	479 387						10.22 10.42	0.00	
	06/24/02	9,820	2,790	640	1,250	<25	757	448						10.42	0.00	
	09/26/02 ^c	6,600	3,530	<500	943	21.7	600	284						11.51	0.00	
	12/12/02	1,170	7,350	638	120	0.822	73.9	7.30						11.61	0.00	
	03/13/03 06/12/03	4,540 	1,530	<568 	272	52.7	236	210						9.59 NM	0.00 NM	
	09/19/03	<u> </u>						ed by vehicle					·	NM	NM	
	01/14/04	905	<126	<252	16.6	0.532	39.6	2.45						11.00	0.00	
	03/30/04 06/22/04	738 1,600	462 593	<253 <248	16.8 161	<1 <10	18.4 70.1	24.66 <20	<u></u>					11.47 11.50	0.00	
	09/29/04	290	<253	<507 r	4.9	<0.5	4.8	2.3						11.45	0.00	
	12/29/04	844	272	<507	28.7	<1	17	9.22	-					10.75	0.00	
	03/17/05 06/01/05	752 503	<238 <249 ^j	<477 <498 ^j	18.9 28.3	<1 <1	17.6 19	3.75 7.06	 <1					11.00 10.30	0.00	
	07/25/05	401	368	<498 ⁹	14.5	<0.2	8.24	3.12	<1	2.37				10.60	0.00	
29.06	11/08/05	243	<243	<485	6.47	0.860	9.39	4.69	<1					10.41	0.00	18.65
	02/23/06	91.8	587	<495	<0.5	<0.5	< 0.5	<3	<1	<1	<1	<1		10.38	0.00	18.68
	05/08/06 08/30/06	<250 ^s 178	290° <236	<490 <472	<0.5 10.3	<0.5 1.14	0.560 8.04	<3 11	<1 <1	<1 <5	<1 <1	<1 <1		10.48 11.33	0.00	18.58 17.73
	12/13/06	215	<245	<490	5.82	<0.5	4.20	<3	<1	<5	1.02	1.02		10.37	0.00	18.69
	03/06/07	140	-050	-500	0.000			onstruction e		-						
	06/15/07 09/13/07	146 57.7	<250 <250	<500 <500	0.620 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 <1			10.23 10.36	0.00	18.83 18.70
MW-52	12/17/07			•			Unable	e to locate								
contd.	03/17/08	<50	<238	<476	<238	<0.5	<0.5	T≊0bFe 1	<3	<1	<5	97.6	<1	9.85	Φ@ge 1	5 19.21

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A															
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
	06/02/08	52.70	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	6.14	<1	<236	10.14	0.00	18.92
	08/04/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	8.43	<1	<236	11.08	0.00	17.98
	11/05/08 11/18/08	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	ecommissio	<5.00	17.80	<1.00	<236	10	0.00	19.06
MW-53	03/13/03	14,000	1,030	<625	398	143	501	1,170						11.17	0.00	9.58
20.75	06/12/03	9,700	1,370	<500	553	197	431	1,270						12.05	0.00	8.70
	09/19/03	1,470	<250	<500	29.3	6.61	28.5	111						12.85	0.00	7.90
	01/14/04	2,770	181	<264	173	3.79	91.7	127.1	-					11.70	0.00	9.05
	03/30/04	3,580	686	<237	257	49.7	125	204.8						12.26	0.00	8.49
	06/22/04	4,820	750	<240	363	85.2	188	425						12.23	0.00	8.52
	09/29/04 12/29/04	240 2,650	311 655	<509 <491	1.9 225	<0.5 11.9	1.4 92.8	6.7 123.4						12.60 11.70	0.00	8.15 9.05
	03/17/05	1,560	293	<515	106	3.25	40.9	61.3						12.97	0.00	7.78
	06/01/05	3,120	381 ^g	493 ^f	205	5.98	120	236.9	1.88					11.22	0.00	9.53
30.38	07/25/05	450	310 ^b	<500	20.4	0.610	8.96	13.14	<1	9.15				11.75	0.00	
	11/04/05	1,510	<236	<472	164	<2.5	59.4	28.2	<5.00					11.49	0.00	18.89
	02/22/06	2,770	<248	<495	183	5.65	77.2	173	<5.00 ^q	30.0	1.16			11.04	0.00	19.34
	05/08/06 08/30/06	559 1,980	<245 <236	<490 <472	66.6 188	<1 4.50	21.2 61.2	9.06 112	<2.00	8.24 38.7	1.32 <1			11.54 12.32	0.00	18.84 18.06
	12/12/06	1,960	<245	<472	33.8	<0.5	2.20	4.38	<1 <1	<5	3.34			11.07	0.00	19.31
	03/07/07	<50	<236	<472	2.86	<0.5	<0.5	<3	<1	<5	1.44			11.17	0.00	19.21
	06/15/07	71.4	<238	<476 ^r	1.11	<0.5	0.590	<3	<1	<5	<1			11.42	0.00	18.96
	09/13/07	<50	<238	<476	0.970	<0.5	<0.5	<3	<1	<5	2.62			11.64	0.00	18.74
	12/17/07	404	.000	470	.000	0.00		to locate	0.50	- A		04.0				
	03/17/08 06/02/08	121 176	<236 <236	<472 <472	<236 17.4	8.96 <0.5	<0.5 6.51	3.69 <3	3.58 <1	<1 <5	<5 35.60	81.9 <1	<1 <236	10.89 11.64	0.00	19.49 18.74
	08/04/08	382	<236	<472	63.2	2.34	18.5	17.7	<1	5.36	21.90	<1	<236	12.35	0.00	18.03
	11/040/8	117	<236	<472	6.65	<0.500	2.92	<3.00	<1.00	<5.00	<1.00	<1.00	<236	11.34	0.00	19.04
	11/18/08							missioned								
	11/20/12	183	180	<100	<1.0	<1.0	<1.0	<3.0		6.5	6.4	<3.0	250	8.88	0.00	20.44
	11/06/13 07/29/14	185	540	<400	<1.0	<1.0	<1.0	<3.0	<1.0	r in well con	<10.0 ; well was no	<10.0	530	12.55	0.00	16.77
29.00	12/08/14	<100		I	<1.0	<1.0	<1.0	<3.0	<1.0		14.0	<10.0		14.07	0.00	14.93
20.00	03/27/15	<100			<1.0	<1.0	<1.0	<3.0						12.05	0.00	16.95
	06/22/15	<100			<1.0	<1.0	<1.0	<3.0						12.79	0.00	16.21
	09/10/15	<100			<1.0	<1.0	<1.0	<3.0						12.54	0.00	16.46
	12/07/15	<100			<1.0	<1.0	<1.0	<3.0						12.01	0.00	16.99
	06/28/16 12/14/16	<100			<1.0	<1.0	<1.0	<3.0	auged or Sa	impled.				10.7	0.00	18.30
MW-54	06/16/05	206	130 ^f	410	4.82	<1	2.09	10.27	<1					9.09	0.00	18.91
28.00	07/25/05	177	<250	<500	5.26	0.280	0.680	3.11	<1	0.990				9.51	0.00	18.49
	11/18/05	75.8	<243	<485	0.560	0.530	4.19	10.8	<1					9.73	0.00	18.27
	02/23/06	<50	695	<472	<0.5	<0.5	<0.5	<0.5	<1	<1	1.04			9.44	0.00	18.56
	05/08/06	<50	328 ^p	<500	<0.5	<0.5	<0.5	<3	<1	<1	1.41			9.31	0.00	18.69
	08/29/06 12/12/06	<80 <50	<236 <248	<472 <495	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 2.69			10.33 9.69	0.00	17.67 18.31
	03/06/07	<50	<263	<526	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.40	0.00	18.60
	06/15/07	<50	<243	<485 °	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.25	0.00	18.75
	09/13/07	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.59	0.00	18.41
	12/18/07	<50	<236	<472	<1	<1	<1	<3	<1	<1	1.13			8.53	0.00	19.47
	03/18/08	<50	<236	<472	<236	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	9.06		18.94
	06/03/08 08/05/08	<50	<236	<472	<0.5	able to samp <0.5	le, well unde <0.5	r water <3	<1	<5	2.37	<1	<236	9.68	0.00	18.32
	11/03/08	<50	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	8.64	<1.00	<236	8.72	0.00	19.28
	02/22/09							d under garb								
	05/17/09							d under garb								
	08/16/09	280	<240	<480	<0.50	<0.50	1.4	2.5	<1.0	<5.0	<5.0	<5.0	310	11.78	0.00	16.22
	11/15/09 02/21/10	<50 <50.0	<240 178	<470 434	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<2.0 <3.0	<1.0	<5.0 <1.0	1.8 1.1	<1 0.24	<240 <75.8	9.78 9.20	0.00	18.22 18.80
	05/23/10	<50.0 <50.0	144	384	<1.0	<1.0	<1.0	<3.0		<1.0	4.4	0.24	92.8	8.64	0.00	19.36
	08/16/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	5.7	0.12	<77.7	9.30	0.00	18.70
	11/17/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	8.76	0.00	19.24
	02/28/11	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0		<77.7	9.23	0.00	18.77
	06/14/11	<50.0	<84.2	<421	<1.0	<1.0	<1.0	<3.0			1.2	<0.10		8.50	0.00	19.50
	08/29/11 12/05/11	<50.0 <50.0	<84.2 <84.2	<421 <421	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <10.0	0.58 0.70	<0.10 0.18	<84.2 <84.2	9.13 8.90	0.00	18.87 19.10
	02/16/12	<50.0 <50.0	<84.2 <75.8	<379	<1.0	<1.0	<1.0	<3.0		2.4	<10.0	<10.0	<84.2 <75.8	9.98	0.00	18.02
	05/15/12	<50.0	<75.5	<377	<1.0	<1.0	<1.0	<3.0	-	4.0	<10.0	<10.0	<75.5	8.38	0.00	19.62
	08/14/12	<50.0	<87.9	<440	<1.0	<1.0	<1.0	<3.0	-	<1.0	<10.0	<10.0	<87.9	9.40	0.00	18.60
MW-55	06/16/05	2,240	3,100 ^{f,i}	<2,500 ⁱ	<2	<2	<2	<4	<2					10.53	0.00	18.69
29.22	07/25/05	1,850	1,390 ^a	<500	0.480	1.69	2.57	1.99	<1	908				10.92	0.00	18.30
	11/01/05	814	699 ⁿ	<526	0.360	2.12	<0.500	<1	<2	117				11.11	0.00	18.11
	02/21/06 05/08/06	278 190	353 358	<562 <500	<0.5 <0.5	1.35 0.550	<0.500 <0.500	<3 <3	<1 <1	117 64.9	<1 <1			10.62 11.47	0.00	18.60 17.75
	08/29/06	<80	268	<495	1.42	0.910	0.720	6.95	<1	104	<1			12.23	0.00	16.99
	12/12/06	60.1	<243	<485	<0.5	<0.5	<0.5	<3	1.06	39.1	<1			11.51	0.00	17.71
	03/06/07	<50	<243	<485	<0.5	<0.5	<0.5	<3	<1	<5	<1			10.73	0.00	18.49
	06/15/07	<50	<245	<490 ^r	<0.5	<0.5	<0.5	<3	<1	7.19	<1			11.46	0.00	17.76
	09/13/07	<50	<243	<485	<0.5	<0.5	<0.5	<3	<1	<5	<1			11.99	0.00	17.23
	12/18/07	<50	<236	<472	<1	<1	<1	Taføle 1	<1	3.60	2.31	2.31		10.42	ው@ge 1	6 18.80

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-	-	
	03/18/08	<50	<238	<476	<238	<0.5	<0.5	<0.5	<3	<1	<5	1.00	<1	11.03	0.00	18.19
	06/03/08 08/05/08	<50	<236	<472	<0.5	<0.5	<0.5 Vehicle pa	<3 irked over we	<1 ell	6.88	1.30	<1	<236	11.23 11.76	0.00	17.99 17.46
	11/02/08	51.8	<245	<490	<0.5	<0.5	<0.5	<3.00	<1.00	10.1	1.16	<1.00	<245	11.75	0.00	17.47
MW-56	11/18/08 06/16/05	135	210 ^f	380 ^f	<1	<1	<1	<2	ecommission 1.29	ned 				10.91	0.00	18.79
29.70	07/25/05	220	<250	<500	3.81	<0.2	3.96	<0.5	<1	<0.5				11.24	0.00	18.46
	11/03/05	130	<236	<472	7.28	<0.5	1.70	2.33	<2					11.03	0.00	18.67
	02/22/06 05/08/06	285 120	<248 <248	<495 <495	3.69 <0.5	0.690 <0.5	0.870 <0.5	<3 <3	2.79 <1	<1 <1	<1 <1			10.96 11.19	0.00	18.74 18.51
	08/30/06	449	<243	<485	36.7	<0.5	4.02	<3	1.67	<5	1.85			11.96	0.00	17.74
	12/12/06	609	<245	<490	2.72	0.570	5.12	<3	3.56	<5	<1			11.11	0.00	18.59
	03/06/07 06/15/07	279 106	<250 <245	<500 <490 ^r	<0.5 1.94	<0.5 <0.5	<0.500 0.650	<3 <3	2.20 1.53	<5 10.1	<1 <1			10.96 11.11	0.00	18.74 18.59
	09/13/07	<50	<250	<500	<0.5	<0.5	<0.500	<3	<1	<5	<1			11.30	0.00	18.40
	12/18/07 03/18/08	51.30 92.90	<236 <236	<472 <472	<1 <236	<1 1.01	<1.00 0.62	<3 1.83	<1	<1 <1	2.99	5.97	 <1	9.83 10.68	0.00	19.87 19.02
	06/03/08	73.80	<236	<472	<0.5	<0.5	<0.5	<3	<3 <1	<5	<5 <1	<1	<236	11.12	0.00	18.58
	08/05/08	98.4	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	1.46	<1	<236	11.60	0.00	18.10
	11/03/08 11/18/08	312	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00 ecommission	<5.00	<1.00	<1.00	<236	11.11	0.00	18.59
MW-57	06/16/05	16,900	1.800 ^f	<1,200	525	2,310	327	2,188	<20					10.54	0.00	18.77
29.31	07/25/05	11,400	418 ^b	571	614	2,680	436	2,647	<1	98.0				10.83	0.00	18.48
	11/08/05 02/23/06	3,980 10,800	<245 877	<490 <495	328 909	497 1,570	100 381	525 2,230	<10 <20	92.0	4.38			10.62 10.59	0.00	18.69 18.72
	05/08/06	12,200	426	<485	538	960	281	1,671	<1	94.0	2.09			10.70	0.00	18.61
	08/30/06	2,620	<248	<495	249	37.9	77.4	350	<1	28.9	1.24			11.55	0.00	17.76
	12/13/06 03/08/07	39,400 21,600	422 267	<495 <472	1,200 1,130	5,020 2,330	1,150 876	6,590 4,610	<5 <40	266 291	5.18 9.81			10.55 10.44	0.00	18.76 18.87
	06/15/07	19,800	<245	<490 ^r	699	1,010	660	3,350	<20	256	1.77			10.65	0.00	18.66
	09/14/07 12/18/07	34,900 221	349 <236	<495 <472	1,470	2,400	1,270	6,520	<1 <1	<500 1.60	27.60 200			10.82 9.60	0.00	18.49 19.71
	03/18/08	23,100	340	<476	<1 4,660	<1 942	<1 1,610	<3 878	4,190	<1	<200	199	1.92	10.18	0.00	19.71
	06/03/08	173	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	49.8	<1	<236	10.56	0.00	18.75
	08/04/08 11/05/08	7,580 76.2	<236 <238	<472 <476	433 <0.500	154 <0.500	399 <0.500	1,860 <3.00	<1 <1.00	87.2 <5.00	322 12.8	<1 <1.00	1,510 367	11.17 10.49	0.00	18.14 18.82
	11/18/08	70.2	\250	NATIO	VO.300	₹0.500	VO.300		ecommission		12.0	V1.00	301	10.43	0.00	10.02
MW-58	06/16/05	3,970	420 ^f	<250	628	499	143	541	<5					11.71	0.00	18.98
30.69	07/25/05 11/07/05	7,750 1,350	673 ^b <248	<500 <495	1,420 147	1,610 123	379 37.2	1,687 177	<1 <4	57.0 				11.85 11.84	0.00	18.84 18.85
	02/22/06	28,700	<258	<515	2,570	3,980	906	4,200	<50 ^{q,r}	166	1.21			11.54	0.00	19.15
	05/08/06 08/30/06	11,700 9,010	<238 <245	<476 <490	959 2,070	1,150 347	314 736	1,644 2,950	<1 <1	107 <250	1.04 2.09			11.81 12.54	0.00	18.88 18.15
	12/13/06	17,000	268	<485	1,720	241	767	2,930	<5	178	<1			11.37	0.00	19.32
	03/08/07	3,790	<245	<490	423	367	100	548	<20	<100	13.0			11.84	0.00	18.85
	06/15/07 09/13/07	2,220 260	<243 <238	<485 ^r <476	328 20.8	175 5.73	54.0 5.50	333 10	<1 <1	12.3 <5	<1 <1			11.72 12.25	0.00	18.97 18.44
	12/19/07	111	<236	<472	7.9	<1	1.60	7	<1	1.2	71.50			10.20	0.00	20.49
	03/17/08	486	<236	<472	<236	116.0	<0.5	22.30	8.68	<1	<5	3.29	<1	11.38	0.00	19.31
	06/02/08 08/04/08	2,350 2,680	<236 <236	<472 <472	328 ^x 533	2.45 1.94	167 ^x 154	215 231	<1 <1	10.60 19.20	19.30 6.82	<1 <1	472 539	11.78 12.44	0.00	18.91 18.25
	11/04/08	1,310	<236	<472	130	1.46	80.9	99.7	<1.00	8.62	3.47	<1.00	355	12.12	0.00	18.57
MW-59	11/18/08 06/16/05	10,100	1.700 ^f	<1,200	519	<10	176	725.2	ecommission <10	ned I	T			12.00	0.00	18.73
30.73	07/25/05	4,680	253	<500	307	1.24	181	201	<4	64.3				12.30	0.00	18.43
	11/08/05	919	<250	<500	10.3	<0.5	28.8	41.0	<1					12.05	0.00	18.68
	02/22/06 05/08/06	1,630 968	<248 322	<495 <500	89.8 27.9	<2.5 0.510	105 53.2	<15 89.44	<5 ^{q,r}	9.80 6.27	1.83 1.04			12.15	0.00	18.58
	08/30/06	830	<236	<472	27.1	<0.5	61.7	82.8	<1	<5	1.82			13.01	0.00	17.72
	12/13/06	1,280	<243	<485	76.3	1.35	50.7	24.8	<1	13.5	2.18			12.05	0.00	18.68
	03/06/07 06/15/07	129 87.8	<245 <245	<490 <490 ^r	2.22 8.24	<0.5 <0.5	1.12 0.740	<3 <3	<1 <1	<5 <5	<1 <1			11.90 12.12	0.00	18.83 18.61
	09/13/07	<50	<238	<476	<0.5	<0.5	<0.5	<3	<1	<5	1.13			12.29	0.00	18.44
	12/18/07 03/17/08	80.20 126	<236 <236	<472 <472	<1 <236	<1 <0.5	<1 <0.5	<3 <0.5	<1 <3	<1 <1	16.60 <5	142.00	 <1	10.95 11.68	0.00	19.78 19.05
	06/02/08	184	<240	<472	<0.5	<0.5	<0.5	<3	<3 <1	<5	32.10	<1	<240	12.09	0.00	18.64
	08/04/08	213	<236	<472	5.64	<0.5	0.51	<3	<1	<5	132	<1	270	12.60	0.00	18.13
	11/05/08 11/18/08	280	<238	<476	<0.500	<0.500	<0.500	<3.00 De	<1.00 ecommission	<5.00 ned	2.29	<1.00	<238	11.90	0.00	18.83
MW-60	06/16/05	64,300	4,300 ^{f,i}	<5,000 ⁱ	4,100	6,820	2,260	10,610	<40					11.54	Sheen	18.77
30.31	07/25/05	48,800	2,820 ^b	791	3,670	4,730	1,570	7,720	<1	299				11.87	0.00	18.44
	11/07/05 11/07/05	78,100 	311 [†] 490 ^{I,f}	<472 <962	5,260	6,550 	2,950	16,200	<200					11.53	0.00	18.78
	02/24/06	56,900	973	<510	5,020	89.6	2,750	14,600	<40	721	5.09			11.61	0.00	18.70
	05/08/06 08/30/06	48,800 40,700	1,150 406p	<476 <521	3,660 5,350	179 434	1,780 2,610	8,500 10,300	<1 <1	473 472	3.21 2.56			11.72 12.59	0.00	18.59 17.72
	12/12/06	56,400	406p 417	<521 <505	4,630	58.6	2,840	11,200	<5	<500	2.14			11.64	0.00	18.67
	03/07/07	27,700	<245	<490	1,780	84.8	652	4,870	<40	350	1.09			11.44	0.00	18.87
	06/15/07 09/14/07	41,200 52,200	957 346	<476 ^r <500	2,870 3,260	119 42.2	1,200 1,680	6,970 10,100	<40 <1	880 632	1.11 1.41			7.01° 11.88	0.00	23.30 ^v 18.43
	12/18/07	29,300	361	<476	2,000	14.0	1,300	\$ a669 1	<1	320	20.30			10.59	0.00 Φ@ge 1	
										•						

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ug/L)	Toluene (µa/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Wethod A	Gasonne	Diesei	Oil	(uu/L)	(UU/L)	benzene	Avienes	(uu/L)	iene	(UU/L)	Leau	(uu/L)	(leet)	Heeti	(leet)
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		-
	03/18/08	24,700	464	<472	5,480	2,490	30.9	1,460	3,710	<1	210	1.67	<1	11.36	0.00	18.95
	06/03/08	24,900	432	<472	2,890	13.8	1,400	2,510	<1	<200	19.30	<1	7,830	11.51	0.00	18.80
	08/04/08 11/05/08	29,400 23,300	680 740	<472 <476	3,330 2,220	59.2 24.6	2,180 1,760	3,830 2,440	<40.0 <1.00	377 267	1.65 2.14	<1 <1.00	5,030 <476	12.22 11.54	0.00	18.09 18.77
	11/18/08	23,300	740	<476	2,220	24.0	1,760	, -	ecommissio		2.14	<1.00	<470	11.54	0.00	10.77
MW-61	11/01/05	<50	<236	<472	10.0	<0.5	<0.5	<1	<2					11.39	0.00	18.85
30.24	02/21/06	<50	<250	<500	2.80	<0.5	<0.5	<3	<1	<1	<1			10.90	0.00	19.34
	05/09/06	<50	<240	<481	3.39	<0.5	<0.5	<3	<1	<1	<1			11.36	0.00	18.88
	08/31/06	<100	<250	<500	0.600	<0.5	<0.5	<3	<1	<5	<1			11.66	0.00	18.58
	12/13/06	<50	<238	<476	1.31	<0.5	<0.5	<3	<1	<5	<1			10.68	0.00	19.56
MW-62	03/06/07 11/01/05	<50	<243	<485	0.470	<0.5	<0.5	<1	ecommission <2	nea				10.79	0.00	18.95
29.74	02/21/06	<50	<275	<549	<2.50	<2.5	<2.5	<15	<5	 <5	<1			10.79	0.00	19.22
20	05/09/06	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<1	<1			10.71	0.00	19.03
	08/31/06	<100	<248	<495	<0.5	<0.5	<0.5	<3	<1	<5	1.13			11.76	0.00	17.98
	12/13/06	<50	<243	<485	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.89	0.00	19.85
	03/06/07								ecommissio		_		1			
MW-63	11/01/05	<50	<250	<500	1.00	<0.5	<0.5	<1	<2					10.44	0.00	18.99
29.43	02/21/06 05/09/06	<50 <50	<278 <245	<556 <490	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<1 <1	5.98 1.43			10.26 10.41	0.00	19.17 19.02
	08/31/06	<100	<245	<490 <495	<0.5	<0.5	<0.5	<3	<1	<5	2.52			11.90	0.00	17.53
	12/13/06	<50	<243	<485	0.59	<0.5	<0.5	<3	<1	<5	<1			9.99	0.00	19.44
	03/06/07					J.			ecommissio					J.		
MW-64	11/01/05	<50	<250	<500	41.9	<0.5	<0.5	<1	<2					9.82	0.00	18.91
28.73	02/21/06	84.9	<272	<543	32.4	<0.5	<0.5	<3	<1	<1	<1			9.48	0.00	19.25
	05/09/06	133 ^t	<248	<495	55.8	<0.5	<0.5	<3	<1	<1	<1			9.60	0.00	19.13
	08/31/06 12/13/06	<100 <50	<243 <240	<485 <481	6.00 14.7	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 <1			11.10 9.22	0.00	17.63 19.51
	03/06/07	\30	\240	V401	14.7	V 0.5	V 0.3		ecommissio					3.22	0.00	13.31
MW-65	11/04/05	857	<236	<472	0.740	0.740	12.9	7.80	<1	-				9.23	0.00	18.44
27.67	02/23/06	1,000	638	<495	<0.5	1.83	15.3	8.34	<1	4.32	<1			9.13	0.00	18.54
	05/09/06	1,220 ^j	<236	<472	<0.5	0.680	7.72	3.04	<1	2.52	<1			8.67	0.00	19.00
	08/30/06	261	<248	<495	<0.5	<0.5	11.2	3.42	<1	<5	<1			9.90	0.00	17.77
1414/00	03/06/07	50	0.40	405	0.5	0.5		1	ecommissio	1	1		1	10.50	0.00	10.15
MW-66 28.65	11/07/05 02/24/06	<50 <50	<243 <253	<485 <505	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1		 <1			10.50 10.28	0.00	18.15 18.37
20.03	05/09/06	<50	<272	<543	<0.5	<0.5	<0.5	<3	<1	<1 ^r 1.85	<1			10.20	0.00	18.45
	08/30/06	<80	<248	<495	<0.5	<0.5	<0.5	<3	<1	<5	<1			11.51	0.00	17.14
	03/06/07								ecommissio		ı		ı			
MW-67	11/04/05	78.1	<238	<476	<0.5	<0.5	0.77	1.44	<1					9.33	0.00	18.31
27.64	02/23/06	<50	<255	<510	<0.5	<0.5	<0.5	<3	<1	<1	<1			9.15	0.00	18.49
	05/09/06	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<1	<1			8.81	0.00	18.83
	08/30/06 03/06/07	<80	<275	<549	<0.5	<0.5	<0.5	<3 D	<1 ecommission	<5 ned	1.75			9.55	0.00	18.09
MW-68	11/04/05	437	<236	<472	8.11	0.790	<0.5	<3	1.21					11.30	0.00	17.93
29.23	02/22/06	248	<255	<510	19.0	1.70	<0.5	5.08	<1	<1	<1			11.15	0.00	18.08
	05/09/06	184	<238	<476	2.46	0.570	<0.5	<3	<1	<1	<1			11.33	0.00	17.90
	08/30/06	168	<258	<515	1.29	2.08	<0.5	<3	1.02	<5	8.45			11.72	0.00	17.51
	12/13/06	401	<245	<490	115	<1.00	<1.00	<6	<2	<10	<1			11.26	0.00	17.97
MW-69	03/06/07	.50	000	470	0.5	0.5	0.5		ecommissio				1	0.40	0.00	40.57
27.67	11/07/05 02/23/06	<50 <50	<238 <236	<476 <472	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	 <1	3.54			9.10 9.02	0.00	18.57 18.65
21.01	05/09/06	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<1	1.01			8.34	0.00	19.33
	08/30/06	<80	<255	<510	<0.5	<0.5	<0.5	<3	<1	<5	<1			9.54	0.00	18.13
	03/06/07							De	ecommissio	ned						
MW-70	11/02/05	24,800	<236	<472	29.8	3.60	697	1,540	<1					12.60	0.00	18.54
31.14	02/23/06 05/09/06	8,290 15,500	<287 <266	<575 <532	33.3 108	2.00 <10	428 905	537 1,315.6	<4 <20	91.8 233	3.47 2.18			12.04 12.37	0.00	19.10 18.77
	06/12/06	15,500	<200	<332	100	< 10	903		ecommissio		2.10			12.37	0.00	10.77
MW-71	11/03/05	18,100	5,880 ^g	<472	240	59.3	925	1,750	<20					11.61	0.00	18.81
30.42	02/23/06	21,800	1,770 ^g	<485	190	28.0	848	1,710	<20	341	3.25			11.23	0.00	19.19
	05/10/06	25,100	733 ^p	<495	195	<20	803	1,338	<40	410	2.54			11.71	0.00	18.71
	08/29/06	15,400	664 ^p	<476	207	4.61	698	834	<1	364	8.19			12.27	0.00	18.15
	12/12/06	11,300	609	<476	127	68.2	237	512	<1	151	1.55			11.25	0.00	19.17
	03/07/07	22,100	567	<490	211	<20	836	1220	<40	691	2.33			11.19	0.00	19.23
	06/14/07 09/14/07	19,200 7,230	851 ^g 901	<490 <485	186 128	2.67 2.00	647 329	667 122	<1 <1	326 200	2.89 1.49			11.41 11.60 ^w	0.00	19.01 18.82
	12/17/07	16,500	823	<472	200	17.00	600	694	<1		4.76			10.81	0.00	19.61
	03/17/08	15,900	1070	<472	5710	124	2.70	454	259	<1	190	2.47	<1	8.74	0.00	21.68
	06/02/08	9,480	566	<472	94	24.5	291	328	<1	156	2.03	<1	4,280	11.82	0.00	18.60
	08/04/08	4,140	550	<472	31.7	1.06	103	62.3	<1	89.4	2.97	<1	1,860	12.45	0.00	17.97
	11/03/08	5,820	524	<485	49.2	1.03	69	10.4	<1.00	68.7	1.56	<1.00	2,450	11.90	0.00	18.52
	02/23/09	11,600	828	<481	136	2.3	358	213		193	2.25	<1.00	4,340	11.70	0.00	18.72
	05/17/09 08/16/09	13,400 2,300	1,380 660	<481 <480	104 37	2.38 <0.50	260 56	201 14	<1.00 <1.0	151 11	2.21 <5.0	<1.00 <5.0	5,820 1,700	12.46 14.22	0.00	17.96 16.20
	11/15/09	2500	940°	<480 <470	6.2	0.6	25	6.5	<1.0	6.2	1.3	<5.0 <1	1,700	11.65	0.00	18.77
	02/21/10	6,390	3,990	4,500	97.1	1.9	403	101		126	9.0	0.80	4,980	11.60	0.00	18.82
	05/23/10	2,550	3,860	4,440	39.7	3.8	84.0	12.7		56.4	134	.45	4,410	11.08	0.00	19.34
	08/15/10	5,130	912	729	99.1	<1.0	148	12.1		128	14.8	.87	2,710	11.69	0.00	18.73
	11/14/10	244	541	2,600	<1.0	1.8	<1.0	<3.0		3.3	14.5	<10.0	267	10.90	0.00	19.52
	02/27/11							Table 1 ^D	Decomission	ed					Page 1	8

Sample	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE	•	Total Lead			DTW	SPH	GWE
I.D. MTCA	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-	-	
MW-72	11/03/05	71.3	<236	<472	0.980	<0.5	<0.500	2.32	<2					10.33	0.00	19.99
30.32	02/23/06	1,900	408 ^g	<500	11.0	1.22	98.2	25.3	<2	37.3	1.61			10.84	0.00	19.48
	05/10/06 08/29/06	1,540 ^j 810	<250 <253	<500 <505	8.20 6.28	1.12 <0.5	70.4 10.2	<6 <3	<2 <1	48.9 48.4	<1 <1			11.60 12.08	0.00	18.72 18.24
	12/12/06	970	<250	<500	3.29	<0.5	1.95	<3	<1	12.5	<1			11.11	0.00	19.21
	03/07/07	560	<260	<521	5.45	0.59	38.5	<3	<1	6.68	<1			11.02	0.00	19.30
	06/14/07	1,140	<255	<510	5.29	<0.5	2.72	<3	<1	10.0	1.97			11.43	0.00	18.89
	09/14/07	239	<250	<500	1.76	<0.5	<0.500	<3	<1	<5	<1			11.47	0.00	18.85
	12/17/07 03/17/08	489 983	<238 <236	<476 <472	1.8 407	<1 3.3	<1.00 <0.5	<2 4.34	<1 <3	 <1	1.13 <5	 <1	 <1	10.67 11.02	0.00	19.65 19.30
	06/02/08	1,160	<238	<476	2.89	<0.5	4.77	<3	<1	<5	<1	<1	474	11.65	0.00	18.67
	08/04/08	330	<236	<472	0.81	<0.5	<0.5	<3	<1	6.4	<1	<1	247	12.51	0.00	17.81
	11/03/08	577	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	278	11.80	0.00	18.52
	02/23/09 05/17/09	780 786	<243 634	<485 <476	<0.500 3.55	<0.500 <0.500	<0.500 24.1	<3.00 <3.00	<1.00	<5.00 8.92	<1.00 2.14	<1.00 <1.00	3,130 962	11.80 12.38	0.00	18.52 17.94
	08/16/09	170	<240	<490	<0.50	<0.50	0.82	<2.0	<1.00	<5.0	<5.0	<5.0	<240	14.21	0.00	16.11
	11/15/09	110	430 [°]	2,500	<0.50	0.77	<0.50	<2.0	<1.0	<5.0	33	<1	<240	11.71	0.00	18.61
	02/21/10	258	1,810	1,720	<1.0	1.7	<1.0	<3.0		2.3	5.1	<0.10	803	11.15	0.00	19.17
	05/23/10 08/15/10	329 330	6,100 641	2,250 3,460	2.3 1.4	<1.0 <1.0	<1.0 3.1	<3.0 <3.0		<1.0 <1.0	10.6 14.7	<0.10 .12	5,630 236	11.33 11.63	0.00	18.99 18.69
	11/14/10	261	159	749	<1.0	<1.0	1.6	<3.0		<1.0	<10.0	<10.0	147	10.87	0.00	19.45
	02/27/11	,				J.		D	ecomissione							
MW-73	11/03/05	1,070 ^m	249 ^g	<472	23.1	1.74	3.58	4.74	<2					11.50	0.00	18.61
30.11	02/23/06 04/10/06	2,420 2.460 ^j	731 ⁹ <236	<500 <472	13.2 9.56	2.13 2.19	4.52 4.51	<3 2.44	<1 <1	<1 1.06	2.27 1.97			11.32 11.67	0.00	18.79 18.44
	08/29/06	1,130 ^j	<236	<472	12.60	2.19	1.89	<3	<1	<5	1.76			12.27	0.00	17.84
	12/12/06	2,360	<243	<485	14.50	2.01	4.32	<3	<1	<5	3.01			11.35	0.00	18.76
	03/07/07	2,260	<236	<472	17.5	1.47	2.72	3.11	<1	<5	1.16			11.31	0.00	18.80
	06/14/07 09/14/07	2,450 1,380	<260 <236	<521 <472	11.6 12.1	1.56 1.88	2.63 0.650	<3 <3	<1 <1	<5 <5	2.16 1.60			11.59 11.77	0.00	18.52 18.34
	12/17/07	2,390	<236	<472	18.0	1.40	3.300	1.40	<1		4.95			10.70	0.00	19.41
	03/17/08	2,670	<238	<476	707	10.1	1.35	2.16	<3	<1	<5	2.15	1.17	11.20	0.00	18.91
	06/02/08	2,260	<236	<472	15.8	0.76	1.14	<3	<1	<5	3.81	1.00	767	11.61	0.00	18.50
	08/04/08 11/03/08	1,250 1,790	<236 <243	<472 <485	10.3 21.3	1.15 1.38	<0.5 <0.500	<3 <3.00	<1 <1.00	<5 <5.00	11.50 6.74	<1 <1.00	465 466	12.73 11.80	0.00	17.38 18.31
	02/23/09	2,800	<240	<481	25.6	2.05	1.59	<3.00		<5.00	4.82	2.00	7,510	11.56	0.00	18.55
	05/17/09	1,510	<243	<485	9.97	1.00	0.73	<3.00	<1.00	<5.00	5.34	<1.00	430	12.96	0.00	17.15
	08/16/09	1,200	430	<480	5.0	<0.50	<0.50	<2.0	<1.0	<5.0	<5.0	<5.0	1,100	14.65	0.00	15.46
	11/15/09 02/21/10	2,700 2,190	1,100 [°] 946	<480 624	26 39	2.4	3.8	<2.0 6.9	<1.0	<5.0 2.4	6.4 7.8	3.9	1,500 [°] 1,110	11.63 11.27	0.00	18.48 18.84
	05/23/10	2260	1030	659	31.2	2.2	2.1	<3.0		<1.0	5.7	3.5	1670	6.63	0.00	23.48
	08/15/10	1960	173	<392	37.3	1.8	1.7	<3.0		3.3	6.9	2.0	671	11.59	0.00	18.52
	11/14/10 02/27/11	1,410	407	1670	26.0	3.4	<1.0	<3.0	 ecommission	<1.0	22.1	<10.0	733	10.65	0.00	19.46
MW-74	11/04/05	2,160 ^j	<245	<490	14.2	1.53	13.0	3.35	<1					11.79	0.00	18.56
30.35	02/23/06	3,320	<245	<490	11.0	1.37	17.3	3.50	<1	27.9	5.42			11.35	0.00	19.00
	05/10/06	3,320 ^j	<240	<481	13.8	2.29	17.3	4.04	<1	27.8	1.94			11.70	0.00	18.65
	08/29/06 03/06/07	618 ^J	<253	<505	33.9	4.55	8.18	<3 cy Witback o	<1	21.6	2.71			13.12	0.00	17.23
	06/14/07					NOL ACC		ccessible	O I Sti uction							
	09/12/07						Not A	ccessible								
	12/17/07					Not A		overed for s	treet car							
	03/17/08 06/03/08						vvell p	aved over A	bandoned w	ell						
MW-75	11/08/05	<50	<238	<476	<0.5	<0.5	<0.5	<3	<1					10.12	0.00	17.99
28.11	02/24/06	<50	<253	<505	<0.5	<0.5	<0.5	<3	<1	<1	<1			10.30	0.00	17.81
	05/11/06	<50	<240	<481	1.52	<0.5	<0.5	<3 De	<1	<1	<1			9.53	0.00	18.58
MW-76	06/12/06 11/08/05	84.6	<245	<490	0.700	<0.5	<0.5	<3	commissior <1	1ea				9.42	0.00	17.66
27.08	02/24/06	<50	394	752	<0.5	<0.5	<0.5	<3	<1	<1	4.30			9.57	0.00	17.51
	05/11/06	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<1	<1			8.50	0.00	18.58
	08/30/06 03/06/07	<80 	<236	<472 	<0.5	<0.5	<0.5	<3 	<1 	<5 	1.78			10.02 9.43	0.00	17.06 17.65
	06/13/07					-		ccessible		-				9.43	0.00	17.05
	09/12/07						Not A	ccessible								
	12/17/07			4=0				during atter	•					7.49		
	03/18/08 06/02/08	<50 <50	<236 <236	<472 <472	<236 <0.5	<0.5 0.52	0.55 <0.5	<0.5 <3	<3 <1	<1 <5	<5 1.31	20.80 <1	<1 <236	7.46 7.10	0.00	19.62 19.98
	08/05/08	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	4.82	<1	<240	7.60	0.00	19.48
					•			Well aband	doned in Oct							
MW-77	11/04/05	<50	<236	<472	<0.5	<0.5	0.540	<3	<1					8.65	0.00	17.88
26.53	02/23/06 05/11/06	<50 <50	<238 <238	<476 <476	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<1 1.08	<1 <1			8.86 8.11	0.00	17.67 18.42
	06/12/06	\JU	~200	N#10	√υ.υ	~0.0	~0.0		commission		<u> </u>		i	0.11	0.00	10.42
MW-78	11/04/05	<50	<236	<472	0.590	0.760	0.730	<3	<1					8.30	0.00	18.15
26.45	02/23/06	<50	1,800 ^p	<490	<0.5	0.660	<0.500	<3	<1	<1	<1			8.48	0.00	17.97
	05/11/06 06/12/06	<50	<243	<485	<0.5	<0.5	<0.5	<3 De	<1 ecommission	<1 ned	<1			7.91	0.00	18.54
MW-79	11/04/05	<50	<236	<472	0.620	<0.5	0.67	1.41	<1					8.61	0.00	18.19
26.80	02/23/06	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<1	<1			8.59	0.00	18.21
1	05/11/06	<50	<248	<495	<0.5	<0.5	<0.5	Tanole 1	<1	<1	<1			8.18	Φ 99e 1	9 18.62

Micros M	8.21 8.31 7.42 7.62 8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.93 8.03 7.94 7.57 8.37 8.46 8.90 8.30 7.44 6.52 8.62 8.62 8.79 8.63 7.94 7.57	8.21 0.00 8.31 0.00 7.42 0.00 7.62 0.00 8.57 0.00 8.18 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.61 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.63 0.00 8.79 0.00 8.31 0.00 7.57 0.00 8.37 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.90 0.00 8.90 0.00 8.79 0.00 8.70 0.00 8.70 0.00 8.70 0.00 8.70 0.00	18.03 18.92 18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.99
MV-80	8.21 8.31 7.42 7.62 8.57 8.18 5.43 6.52 8.10 7.35 7.97 8.51 7.93 8.03 7.94 7.57 8.37 8.41 7.28 8.40 8.30 8.40 8.50 8.50 8.60	8.21 0.00 8.31 0.00 7.42 0.00 7.62 0.00 8.57 0.00 8.18 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.61 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.62 0.00 8.63 0.00 8.79 0.00 8.31 0.00 7.57 0.00 8.37 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.90 0.00 8.90 0.00 8.79 0.00 8.70 0.00 8.70 0.00 8.70 0.00 8.70 0.00	18.13 18.03 18.92 18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
Milky Milk	8.31 7.42 7.62 8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.93 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.49 8.30 8.30 8.41 7.35 8.41 7.93 8.41 7.94 8.41 7.95 8.40 8.60 8.70	8.31 0.00 7.42 0.00 7.62 0.00 8.57 0.00 8.18 0.00 5.43 0.00 6.52 0.00 8.10 0.00 7.97 0.00 8.51 0.00 7.93 0.00 7.94 0.00 8.37 0.00 8.38 0.00 7.28 0.00 8.41 0.00 8.46 0.00 8.79 0.00 8.79 0.00 8.73 0.00 8.74 0.00 8.75 0.00 8.79 0.00 8.51 0.00 7.94 0.00 8.55 0.00 8.50 0.00 8.55 0.00 8.67 0.00	18.03 18.92 18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.99
28.34 02/306 500 c248 c448 c489 c4.5	8.31 7.42 7.62 8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.93 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.49 8.30 8.30 8.41 7.35 8.41 7.93 8.41 7.94 8.41 7.95 8.40 8.60 8.70	8.31 0.00 7.42 0.00 7.62 0.00 8.57 0.00 8.18 0.00 5.43 0.00 6.52 0.00 8.10 0.00 7.97 0.00 8.51 0.00 7.93 0.00 7.94 0.00 8.37 0.00 8.38 0.00 7.28 0.00 8.41 0.00 8.46 0.00 8.79 0.00 8.79 0.00 8.73 0.00 8.74 0.00 8.75 0.00 8.74 0.00 8.75 0.00 8.75 0.00 8.51 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.67 0.00	18.03 18.92 18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.99
06/09/06 650 6236 6472 40.5 40.5 40.5 43 51 51 51 51 51 51 51 5	7.42 7.62 8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.97 8.51 7.93 8.03 7.94 7.57 8.37 8.41 7.28 8.46 8.90 8.79 8.15 7.31 7.94 8.53 8.40 7.46 8.79 8.15 7.31 7.91 8.53 8.65 8.79 8.79 8.79 8.79 8.79 8.79 8.79 8.79 8.79 8.79 8.70	7.42 0.00 7.62 0.00 8.57 0.00 8.57 0.00 8.57 0.00 8.57 0.00 5.43 0.00 6.52 0.00 8.62 0.00 7.97 0.00 8.51 0.00 7.93 0.00 8.03 0.00 7.94 0.00 7.57 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.79 0.00 8.53 0.00 7.31 0.00 7.94 0.00 8.53 0.00 7.51 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.67 0.00	18.92 18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 17.81 17.81 17.81 17.81 17.81 17.81 17.81 17.81
083006 e80 e258 e515 e.º	7.62 8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.97 8.51 7.93 8.03 7.94 7.57 8.37 8.41 7.28 8.40 8.40 8.79 8.15 7.31 7.34 8.53 8.63 8.63 8.63 8.64 8.64 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	7.62 0.00 8.57 0.00 8.57 0.00 8.57 0.00 8.57 0.00 8.57 0.00 8.18 0.00 8.62 0.00 8.62 0.00 8.10 0.00 7.97 0.00 8.51 0.00 7.93 0.00 8.03 0.00 7.57 0.00 8.41 0.00 8.41 0.00 8.46 0.00 8.30 0.00 8.79 0.00 8.06 0.00 8.79 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.55 0.00 8.67 0.00	18.72 17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.80 18.93 17.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
12/13/06 -50	8.57 8.18 5.43 6.52 8.62 8.10 7.35 7.97 8.51 7.93 8.03 7.57 8.41 7.28 8.37 8.41 7.28 8.46 8.90 8.30 7.46 8.90 8.15 7.97 8.15 7.93 8.41 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.51 7.94 8.53 8.66 8.79 8.67 8.60 8.67 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77	8.57 0.00 8.18 0.00 5.43 0.00 6.52 0.00 8.60 0.00 8.61 0.00 7.35 0.00 8.51 0.00 7.93 0.00 8.03 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.90 0.00 8.79 0.00 8.79 0.00 8.73 0.00 8.74 0.00 8.75 0.00 8.74 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.76 0.00 8.87 0.00 8.87 <td>17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91</td>	17.77 18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91 18.75 17.31 17.91
0307070 500 c243 c485 c40.5 c40.5 c40.5 c40.5 c3 c1 c5 c1 c c c c c c c c	8.18 5.43 6.52 8.62 8.10 7.35 7.93 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.40 8.30 8.30 7.94 7.57 8.41 7.28 8.40 8.51 8.62 8.79 8.51 7.93 8.63 8.79	8.18 0.00 5.43 0.00 6.52 0.00 8.62 0.00 8.10 0.00 7.97 0.00 8.51 0.00 7.93 0.00 7.94 0.00 8.37 0.00 8.38 0.00 7.28 0.00 8.41 0.00 8.46 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.73 0.00 8.73 0.00 8.74 0.00 8.75 0.00 8.79 0.00 8.51 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.67 0.00	18.16 20.91 19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
09/12/07 c50 c240 c481 c0.5 c0.5 c0.5 c3 c1 c5 1.60	8.652 8.62 8.10 7.35 7.97 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.30 7.46 8.90 8.30 7.46 8.90 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	6.52 0.00 8.62 0.00 8.10 0.00 8.11 0.00 7.97 0.00 8.51 0.00 7.93 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.41 0.00 7.28 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.53 0.00 7.31 0.00 7.31 0.00 7.31 0.00 7.31 0.00 7.31 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.67 0.00	19.82 17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 17.81 18.59 6.21 17.66 17.54
12/18/07 c50 c236 c472 c1 c1 c1 c3 c1 c1 c7 c7 c1 c1 c1 c3 c1 c5 c1 c1 c1 c3 c1 c5 c1 c1 c1 c3 c4 c5 c1 c1 c1 c3 c4 c5 c4 c2 c3 c4 c5 c4 c5 c4 c4 c4 c236 c8 c8 c8 c4 c2 c0 c5 c0 c5 c3 c4 c5 c5 c1 c5 c4 c3 c4 c5 c4 c3 c4 c5 c4 c3 c4 c5 c4 c3 c4 c4 c3 c4 c4 c3 c4 c4	8.62 8.10 7.35 7.97 8.51 7.93 8.03 7.94 8.41 7.28 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.94 8.53 8.40 7.62 8.55 8.67	8.62 0.00 8.10 0.00 8.10 0.00 7.35 0.00 7.35 0.00 8.51 0.00 8.93 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 8.46 0.00 8.90 0.00 8.70 0.00 8.79 0.00 8.79 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.55 0.00 8.67 0.00	17.72 18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
MW-81 Control Contro	8.10 7.35 7.97 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.49 8.30 8.30 8.40 8.79 8.15 7.31 8.40 7.60 8.79 8.15 7.91 8.60 8.79 8.79 8.70	8.10 0.00 7.35 0.00 7.97 0.00 8.51 0.00 7.93 0.00 8.03 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 8.48 0.00 8.90 0.00 8.30 0.00 8.74 0.00 8.75 0.00 8.75 0.00 8.75 0.00 8.53 0.00 8.54 0.00 8.55 0.00 8.55 0.00	18.24 18.99 18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
080908 <	7.97 8.51 7.93 8.03 7.94 7.57 8.41 7.28 8.46 8.90 8.30 7.46 8.99 8.15 7.31 7.31 7.62 20.00 8.55 8.67	7.97 0.00 8.51 0.00 7.93 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.53 0.00 8.53 0.00 8.53 0.00 7.31 0.00 8.53 0.00 8.54 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.37 17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 17.81 17.81 17.81 17.81
1104/08 50.0 2236 4472 40.500 40.500 50.500 \$3.00 < 1.00 \$4.00 \$3.00 3.66 \$1.00 \$226 \$0.57729 \$0.0 \$2.26 \$0.0 \$2.24 \$481 \$0.500 \$0.500 \$0.500 \$0.500 \$3.00 < 1.00 \$5.00 \$2.83 \$1.00 \$2.24 \$0.5000 \$0.5000 \$0	8.51 7.93 8.03 7.94 7.57 8.37 8.41 7.28 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.40 7.94 8.53 8.66 7.94 8.53 8.67 7.94 8.67 8.79 8.79 8.79 8.70	8.51 0.00 7.93 0.00 8.03 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 8.46 0.00 8.90 0.00 8.30 0.00 8.79 0.00 8.79 0.00 8.15 0.00 7.31 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.55 0.00 8.55 0.00 8.67 0.00	17.83 18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
Color	7.93 8.03 7.94 7.57 8.37 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 8.53 8.40 7.62 20.00 8.55 8.67	7.93 0.00 8.03 0.00 8.03 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 8.42 0.00 8.46 0.00 8.90 0.00 8.30 0.00 8.74 0.00 8.06 0.00 8.79 0.00 8.51 0.00 7.94 0.00 8.53 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.41 18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
05/17/09 <50.0 <240 <481 <0.500 <0.500 <0.500 <3.00 <1.00 <5.00 <2.83 <1.00 <240 <480 <0.50 <0.500 <0.500 <0.500 <0.50 <0.50 <0.50 <5.00 <5.00 <5.00 <5.0 <5.0 <240 <480 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.	8.03 7.94 7.57 8.37 8.41 7.28 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 4.92 20.00 8.55 8.67	8.03 0.00 7.94 0.00 7.57 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.30 0.00 7.46 0.00 8.09 0.00 8.79 0.00 8.79 0.00 8.79 0.00 8.53 0.00 8.53 0.00 8.53 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.31 18.40 18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
11/16/09	7.57 8.37 8.41 7.28 8.46 8.90 8.79 8.15 7.31 7.94 8.53 8.40 2.0.00 8.55 8.67	7.57 0.00 8.37 0.00 8.41 0.00 7.28 0.00 8.46 0.00 8.90 0.00 8.90 0.00 8.06 0.00 8.79 0.00 8.79 0.00 8.53 0.00 8.53 0.00 8.53 0.00 7.31 0.00 8.53 0.00 8.54 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.77 17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
MV-81 11/30/95 .550 .2236 .472 .40.2 .40.5 .0.840 .2.05 .40.5 .4	8.37 8.41 7.28 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	8.37 0.00 8.41 0.00 8.41 0.00 8.46 0.00 8.90 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.15 0.00 8.15 0.00 7.94 0.00 8.53 0.00 8.40 0.00 7.62 0.00 8.55 0.00 8.67 0.00	17.84 17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
MW-81 11/03/05 <50 <236 <472 <0.2 <0.5 <0.840 <2.05 <2.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	8.41 7.28 8.46 8.90 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	8.41 0.00 7.28 0.00 8.46 0.00 8.47 0.00 8.30 0.00 7.46 0.00 8.79 0.00 8.15 0.00 7.31 0.00 7.35 0.00 8.53 0.00 8.53 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.80 18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
05/09/06 <50 <248 <495 <0.5 <0.5 <0.5 <0.5 <3 <1 <1 <1 <	7.28 8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	7.28 0.00 8.46 0.00 8.90 0.00 8.90 0.00 7.46 0.00 8.79 0.00 8.79 0.00 7.31 0.00 7.31 0.00 7.31 0.00 7.31 0.00 7.31 0.00 8.53 0.00 8.53 0.00 8.53 0.00 8.60 0.00 8.60 0.00 8.60 0.00 8.60 0.00	18.93 17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66
08/30/06	8.46 8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	8.46 0.00 8.90 0.00 8.30 0.00 8.30 0.00 8.06 0.00 8.79 0.00 8.15 0.00 7.31 0.00 8.53 0.00 8.40 0.00 7.62 0.00 8.55 0.00 8.55 0.00 8.67 0.00	17.75 17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
12/13/06 <50	8.90 8.30 7.46 8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	8.90 0.00 8.30 0.00 7.46 0.00 8.06 0.00 8.79 0.00 8.15 0.00 7.31 0.00 7.94 0.00 8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.31 17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
03/07/07 <50	8.30 7.46 8.06 8.06 8.15 7.31 7.94 8.53 8.53 8.62 20.00 8.55 8.67	8.30 0.00 7.46 0.00 8.06 0.00 8.79 0.00 8.15 0.00 7.31 0.00 7.94 0.00 8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.91 18.75 18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
09/12/07 c50 c240 c481 1.08 c0.5 c0.500 c3 c1 c5 c1	8.06 8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67	8.06 0.00 8.79 0.00 8.15 0.00 7.31 0.00 8.53 0.00 8.40 0.00 7.62 0.00 8.55 0.00 8.67 0.00	18.15 17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
12/18/07 <50 <236 <472 <1 <1 <1.00 <3 <1 <5 1.82	8.79 8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67 4.92 5.12	8.79 0.00 8.15 0.00 7.31 0.00 8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.42 18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
03/18/08 <50 <236 <472 <236 <0.5 <0.5 <0.5 <3.3 <1 <5 <1.82 <1 <0.600/2008 <50 <238 <476 <0.5 <0.5 <0.5 <0.5 <3.3 <1 <5 <1 <1 <238 <1 <238 <1 <238 <1 <238 <1 <5 <1 <1 <238 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <5 <1 <1 <238 <1 <1 <1 <238 <1 <5 <1 <1 <1 <238 <1 <5 <1 <1 <1 <238 <1 <1 <1 <1 <238 <1 <1 <1 <1 <1 <1 <1 <	8.15 7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67 4.92 5.12	8.15 0.00 7.31 0.00 7.94 0.00 8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.06 18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
06/02/08 <50 <238 <476 <0.5 <0.5 <0.5 <0.5 <0.5 <3 <1 <5 <1 <1 <238	7.31 7.94 8.53 8.40 7.62 20.00 8.55 8.67 4.92 5.12	7.31 0.00 7.94 0.00 8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.90 18.27 17.68 17.81 18.59 6.21 17.66 17.54
11/04/08	8.53 8.40 7.62 20.00 8.55 8.67 4.92 5.12	8.53 0.00 8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.68 17.81 18.59 6.21 17.66 17.54
02/23/09 <50.0 <240 <481 <0.500 <0.500 <0.500 <3.00 <5.00 2.32 <1.00 <240 <481 <0.500 <0.500 <0.500 <3.00 <5.00 3.27 <1.00 <240 <240 <481 <0.500 <0.500 <0.500 <3.00 <1.00 <5.00 3.27 <1.00 <240 <240 <481 <0.500 <0.500 <0.500 <0.500 <3.00 <1.00 <5.00 3.27 <1.00 <240 <240 <240 <470 <0.50 <0.50 <0.50 <0.50 <0.50 <2.0 <1.0 <5.0 <5.0 <5.0 <5.0 <5.0 <240 <470 <0.50 <0.50 <0.50 <0.50 <2.0 <1.0 <5.0 <5.0 <5.0 <5.0 <5.0 <220 <1.0 <5.0 <5.0 <5.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	8.40 7.62 20.00 8.55 8.67 4.92 5.12	8.40 0.00 7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	17.81 18.59 6.21 17.66 17.54
05/17/09 <50.0 <240 <481 <0.500 <0.500 <0.500 <3.00 <1.00 <5.00 3.27 <1.00 <240 <481 <0.500 <0.500 <0.500 <0.500 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <240 <470 <0.50 <0.50 <0.50 <0.50 <0.50 <2.0 <1.0 <5.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <2.0 <1.0 <5.0 <5.0 <5.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	7.62 20.00 8.55 8.67 4.92 5.12	7.62 0.00 20.00 0.00 8.55 0.00 8.67 0.00	18.59 6.21 17.66 17.54
08/17/09 <50 <240 <470 <0.50 <0.50 <0.50 <2.0 <1.0 <5.0 7.90 <5.0 <240 <470 <0.50 <0.50 <0.50 <0.50 <2.0 <1.0 <5.0 <5.0 5.3 <1 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240 <240	20.00 8.55 8.67 4.92 5.12	20.00 0.00 8.55 0.00 8.67 0.00	6.21 17.66 17.54
MW-82 11/03/05 16,300 1,850 0 0 0 0 0 0 0 0 0	8.67 4.92 5.12	8.67 0.00	17.54
MW-82	4.92 5.12	, in the second	
MW-82	5.12	4.92 0.00	1Ω 70
05/11/06			10.70
Not accessible - blocked by field office trailer 12/11/06 5,590 <240 <481 244 50.7 184 815 <1 27.4 1.28			
12/11/06	4.88		18.82
06/13/07 12,100 <243 <485 630 179 375 1,800 <1 154 1.27	5.53		
09/12/07 10,200 <240 <481 627 30.8 354 1,610 <1 29 <1 12/19/07 6,030 <236 <472 360 51 230 840 <1 42 2.65 03/18/08 8,570 <236 <472 1,940 407 22.5 250 751 <1 27.9 <1 <1 06/03/08 7,640 <236 <472 570 8,71 316 1,190 <1 36.0 1.69 <1 1,950 08/06/08 12,000 <236 <472 326 18 254 1,890 <1 79.8 1.28 <1 868 11/040/8 20,900 <238 <476 1,050 177 549 3,760 <1.00 75.2 <1.00 <1.00 3,370 11/18/08	4.99		
12/19/07 6,030 <236 <472 360 51 230 840 <1 42 2.65	4.93 5.25		
03/18/08 8,570 <236 <472 1,940 407 22.5 250 751 <1 27.9 <1 <1 <1 <	4.36		
08/06/08 12,000 <236 <472 326 18 254 1,890 <1 79.8 1.28 <1 868 11/040/8 20,900 <238	4.98		
11/040/8 20,900 <238 <476 1,050 177 549 3,760 <1.00 75.2 <1.00 <1.00 3,370	5.00		
11/18/08 Decommissioned	5.47		
MW-83	4.75	4.75 0.00	18.95
05/11/06 2,820 550 ^p <500 163 172 66.6 259.9 <4 14.3 4.96	4.71		
	4.84		
	5.02 5.88		
03/06/07			
06/13/07 Not accessible			-
09/12/07 Not accessible 12/19/07 1,030 358 593 <1 <1 1.6 1.2 <1 <1 1.73	6.34		17.29
12/19/07 1,030 358 593 <1 <1 1.6 1.2 <1 <1 1.73	6.34		17.29
06/03/08 Well under construction debris			-
08/06/08 Well under construction debris.		0.05	10.00
MW-84 11/02/05 95.5 <236 <472 10.2 <0.5 <0.500 <3 <1 28.51 02/22/06 189 <266 <532 53.4 0.550 <0.500 <3 <1 <1 <1 <1	9.85 9.63		
05/09/06 143 <250 <500 29.7 0.810 <0.500 <3 <1 <1 <1 <	9.58		
06/12/06 Decommissioned			•
MW-85 11/02/05 108 <236 <472 3.25 0.740 2.19 5.68 <1 28.29 02/22/06 69.8 <248 <495 5.47 0.770 0.850 <3 <1 <1 <1 <	9.80 9.29		
28.29 02/22/06 69.8 <248 <495 5.47 0.770 0.850 <3 <1 <1 <1 < 05/09/06 69.5 <245 <490 4.56 0.720 0.800 <3 <1 <1 <1 <	9.29		
08/29/06 <80 <248 <495 <	10.57		
09/20/06 Decommissioned during construction activities			
MW-86 11/02/05 3,010 <248 <495 508 5.09 5.26 31.5 <1 27.55 02/21/06 7,880 <2669 <538 2,640 5.65 10.2 31.9 <5 <5 <1	9.28 9.29		
27.55 02/21/06 7,880 <269° <538 2,640 5.65 10.2 31.9 <5 <5 <1 05/09/06 7,980 <240 <481 2,740 <25 64.0 104 <50 287 <1	8.85		
08/29/06 2,690 ^j <253 <505 1,640 6.58 9.78 29.2 2.62 <5 1.32	10.12		
12/11/06	9.61		
03/07/07 7,370 <243 <485 2,530 <10 10.8 <60 <20 <100 <1 06/13/07 7,300 <243 <485 2,430 7.40 11.9 26.9 <5 <25 <1	0.00		
00/13/07 7,300 <243 <463 2,450 7.40 11.9 20.9 <3 <25 <1 09/12/07 5,410 <240 <481 1,860 5.55 8.31 25.0 1.56 <5 <1	9.23	9.11 0.00	
12/18/07 4,540 <238 <476 1,400 5.60 9.90 T295E 1 <1 1.40 1.32	9.01	6.52 (P) (Q)	

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A			500		4 000	700	4 000	00	400	45	45	500			
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			-
	03/18/08	6,290	<236	<472	457	1,950	7.10	9.36	27.9	<1	<5	<1	<1	8.95	0.00	18.60
	06/03/08	5,340	<236	<472	1,380	7.19	12.60	28.40	<1	<5	<1	<1	533	8.60	0.00	18.95
	08/05/08	4,090	<236	<472	612	7.18	7.23	30.70	<1	<5	<1	<1	356	9.25	0.00	18.30
	11/04/08 02/24/09	2,430 4,750	<245 <240	<490 <481	232 1,300	<5.00 6.48	4.90 7.67	25.60 29.70	<1.00	<5.00 <5.00	<1.00 <1.00	<1.00 <1.00	545 4,760	9.28 8.90	0.00	18.27 18.65
	05/17/09	10,300	<243	<485	3,380	22.40	87.70	95.00	<1.00	<5.00	<1.00	<1.00	767	11.02	0.00	16.53
MW-86	08/17/09	1,800	440	<480	1500	23	45	71	<1.0	<5.0	<5.0	<5.0	2,100	12.62	0.00	14.93
contd.	11/16/09	2,700	1,000°	<480	2,100 ^H	42	76	200	<1.0	<5.0	<1	<1	1,600°	9.41	0.00	18.14
	02/22/10 05/24/10	1,550 1,440	1,940 1,970	1,640 1,710	906 719	10.5 7.4	41.2 23.3	90.5 66.1		1.8	0.48 .51	<0.10 <0.10	1,190 1,960	9.18 8.32	0.00	18.37 19.23
	08/16/10	1,270	87.6	<388	331	6.0	10.6	48.6		1.9	.63	.25	533	9.15	0.00	18.40
	11/15/10 02/27/11	1,460	<77.7	<388	263	6.8	6.7	46.3	 ecommissio	2.2	<10.0	<10.0	540	8.92	0.00	18.63
MW-87	11/02/05	<50	<245	<490	2.35	1.28	1.33	6.61	<1					8.40	0.00	18.34
26.74	02/21/06	<50	<263 ^q	<526	<0.5	<0.5	<0.5	<3	<1	<1	<1			8.55	0.00	18.19
	05/09/06	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1.0	<1	<1			7.98	0.00	18.76
	08/29/06 12/11/06	<80 <50	<248 <245	<495 <490	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1.0 <1.0	<5 <5	<1 <1			9.33 8.96	0.00	17.41 17.78
	03/07/07	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1.0	<5	<1			8.44	0.00	18.30
	06/13/07	162	<243	<485	<0.5	<0.5	<0.5	<3	<1.0	<5	<1			8.17	0.00	18.57
	09/12/07 12/18/07	<50	<240	<481 <481	<0.5	<0.5	<0.5	<3	<1.0	<5	<1			8.27	0.00	18.47
	03/18/08	<50 <50	<240 <236	<481 <472	<1 <236	<1 <0.5	<1 <0.5	<3 <0.5	<1.0 <3	<1 <1	2.95 <5	 <1	 <1	7.50 8.09	0.00	19.24 18.65
	06/03/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	7.80	0.00	18.94
	08/05/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	8.44	0.00	18.30
	11/04/08 02/24/09	<50.0 <50.0	<243 <236	<485 <472	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	1.46 1.27	<1.00 <1.00	<243 <236	8.75 7.70	0.00	17.99 19.04
	02/24/09	<50.0 <50.0	<236 <240	<472 <481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00 <5.00	<1.00	<1.00	<236 <240	10.92	0.00	15.82
	08/17/09	<50	<240	<480	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	<5.0	<5.0	<240	11.10	0.00	15.64
	11/16/09	<50	<240	<490	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	1.3	<1	<240	8.74	0.00	18.00
	02/22/10 05/24/10	<50.0 <50.0	643 543	860 675	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	3.3 0.86	<0.10 <0.10	<76.6 263	8.40 7.50	0.00	18.34 19.24
	08/16/10	<50.0 <50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0		<1.0	1.4	<0.10	<78.4	8.35	0.00	18.39
	11/15/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	8.00	0.00	18.74
MW-88	02/27/11 11/07/05	14,700	<240	<481	546	<50	2,230	1,400	ecomission <100	ed 				8.75	0.00	18.53
27.28	02/21/06 05/10/06	20,500	****D	<476	768	<50	LPH 2,590	Present 1,121	<100	734	1.97		l	8.75 8.38	Sheen 0.00	18.53 18.90
	08/29/06	20,300	418 ^p	<470	700	<50		Present	<100	734	1.97			9.77	0.00	17.51
	12/13/06	16,600	316	<485	208	<10	1,170	1,620	<20	255	2.2			9.30	0.00	17.98
MW-89	03/06/07 11/03/05	1,110	<236	<472	10.3	8.20	82.5	170	ecommission <2					3.92	0.00	19.10
23.02	02/24/06	49,900	1,180 ^g	<515	188	916	2,050	7,950	<20	860	23.4			4.36	0.00	18.66
	05/11/06	24,300	3,040 ^p	<495	96.0	352	1,200	3,452	<40	365	37.4			4.37	0.00	18.65
	08/31/06 12/11/06	463 1,100	<245 <248	<490 <495	6.85 3.21	15.4 14.6	40.9 38.1	82.2 87.9	<1 <1	59.8 50.8	12.2 6.6			5.41 4.83	0.00	17.61 18.19
	03/08/07	2,640	<250	<500	13.4	14.8	206	396	<10	122	290			4.10	0.00	18.92
	06/13/07	2,450	<236	<472	21.6	72.2	148	816	<1	596	12.5			4.41	0.00	18.61
	09/13/07	102	<238	<476	<0.5	7.65	5.87	<3	<1	63.2	35.5			4.57	0.00	18.45
	12/19/07 03/18/08	210 522	<236 <236	<472 <472	1.4 260	<1 0.89	<1 1.66	3.3 13.90	<1 7.62	4.7 <1	145.0 57.0	875.0	 <1	3.19 3.93	0.00	19.83 19.09
	06/03/08	818	<236	<472	4.84	0.64	16.50	23.50	<1	97.8	38.5	<1	357	4.40	0.00	18.62
	08/06/08	601	<236	<472	1.79	1.22	15.70	24.50	<1	70.4	10.9	<1	276	4.96	0.00	18.06
	11/04/08 11/18/08	4,590	<236	<472	2.27	1.55	150.00	214.00 De	<1.00 ecommission	61.2	16.4	<1.00	1,610	4.49	0.00	18.53
MW-90	11/10/06	3.840 ^m	444 ⁹	<490	70.8	2.94	244	792	<4	neu				4.22	0.00	18.68
22.90	02/21/06	19,800	504 ^g	<538	218	10.0	805	2,400	<20	187	5.59			4.33	0.00	18.57
	05/11/06	10,200	1,170 ^p	<495	125	6.90	348	1,222	<10	91.3	2.87			4.07	0.00	18.83
	08/29/06 03/06/07						 blocked by blocked by 									
	06/13/07	9,180	<248	<495	118	1.90	194	1,290	<1	166	2.14			4.14	0.00	18.76
	09/12/07	3,870	<240	<481	46.3	1.15	64.0	645	<1	58.0	4.64			4.36	0.00	18.54
	12/17/07	4.000	.000	470	007		romised, una			- 4	440	0.00		3.43	0.00	19.47
	03/18/08 06/03/08	1,060 536	<236 <236	<472 <472	367 8.06	11.4 <0.5	<0.5 1.41	3.11 8.92	17.3 <1	<1 5.27	14.3 3.23	8.29 <1	<1 <236	3.90 4.10	0.00	19.00 18.80
	08/06/08	422	<236	<472	7.2	<0.5	0.91	5.63	<1	15.1	17.6	<1	<236	4.60	0.00	18.30
	11/03/08	1,460	<391	<781	9.49	<0.500	6.75	8.45	<1.00	15.9	2.86	<1.00	<391	4.25	0.00	18.65
MW-91	11/18/08 11/03/05	9,390	0 000g	<472	56.2	6.45	319	De 414	ecommission <10	ned 	l		l	4.13	0.00	19.00
23.13	02/24/06	6,080	2,230 ⁹ 487 ⁹	<472 <515	21.0	2.67	177	414	<10	188	2.39			4.13	0.00	18.62
	05/11/06	5,900	931 ^p	<485	14.9	14.5	106	162.7	<4	171	1.49			4.33	0.00	18.80
	08/29/06			-			- blocked by									
	03/06/07 06/13/07	1,180	<236	<472	<0.5	t accessible 0.770	- blocked by 0.580	/ heavy equip	oment <1	91.6	1.80			4.36	0.00	 18.77
	09/12/07	160	<240	<472	<0.5	<0.5	<0.500	<3	<1	13.2	1.05			4.60	0.00	18.53
	12/19/07	316	<236	<472	<1	<1	<1	<3	<1	4.2	4.13			3.48	0.00	19.65
	03/18/08	646	<236	<472	253	0.98	<0.5	5.16	<3	<1	12.0	3.32	<1	4.00	0.00	19.13
	06/03/08 08/06/08	359 163	<236 <236	<472 <472	2.42 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 21.9	3.00 3.04	<1 <1	<236 <236	4.33 4.85	0.00	18.80 18.28
	11/03/08	252	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	101.00	<1.00	<236	4.39	0.00	18.74
1	11/18/08		-					Table De	ecommissio	ned					Page 2	1

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (µa/L)	Ethyl- benzene	Total Xvienes	MTBE (ua/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A	Gasonne	Diesei	Oil	(uu/L)	(UU/L)	Delizerie	Avielles	(uu/L)	iene	(uu/L)	Leau	(uu/L)	Heen	Heen	Heen
	Level for	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		
	ndwater	40.000	0	.470	005	00.4	750	040	-00					40.00	0.00	40.70
MW-92 28.98	11/02/05 02/22/06	12,300 4,360	338 ⁹ <248	<472 <495	925 261	83.4 8.60	756 111	940 127	<20 <5	36.0	3.58			10.28 10.13	0.00	18.70 18.85
20.00	05/10/06	5,580	<240	<481	458	11.2	122	97.6	<20	38.4	2.69			10.22	0.00	18.76
	08/31/06	3,770	<243	<485	770	25.0	197	103	<1	55.1	3.36			11.34	0.00	17.64
	12/13/06	1,190	<238	<476	23.2	0.730	23.6	14.7	<1	5.05	<1			10.12	0.00	18.86
	03/08/07 06/13/07	525 662	<250 <238	<500 <476	7.68 30.2	<0.5 <0.5	8.90 8.98	4.70 <3	<1 <1	<5 <5	<1 <1			9.86 10.20	0.00	19.12 18.78
	09/13/07	1,150	<238	<476	39.9	1.19	35.1	<3	<1	5.18	<1			10.20	0.00	18.68
	12/18/07	1,410	<238	<476	79.0	1.20	14.0	3.10	<1	4.30	3.64			9.26	0.00	19.72
	03/17/08	1,490	<236	<472	355	51.6	1.14	22.6	5.67	<1	<5	2.41	<1	10.02	0.00	18.96
	06/03/08	682	<236	<472	4.71	<0.5	5.6	<3	<1	<5	1.48	<1	244	10.21	0.00	18.77
	08/05/08 11/03/08	546 1,030	<238 <238	<476 <476	5.77 56.50	0.54 4.87	2.48 6.400	<3 6.06	<1 <1.00	<5 6.8	7.64 2.59	<1 <1.00	<238 375	10.75 10.47	0.00	18.23 18.51
	11/18/08	1,000	1200	V-17-0	00.00	4.01	0.400		ecommissio		2.00	V1.00	0/0	10.47	0.00	10.01
MW-93	11/02/05	79.3	<248	<495	0.370	0.570	0.720	2.35	<2	-				7.06	0.00	18.68
25.74	02/21/06	1,200	3,580 ^p	<526	2.38	0.780	3.25	3.18	<1	1.71	1.16			7.25	0.00	18.49
	05/10/06 08/31/06	1,200 ^J 204	1,540 <243	<472 <485	<0.5 <0.5	0.790 0.610	2.04 1.55	1.70 <3	<1 <1	2.04 <5	<1 2.98			6.90 8.15	0.00	18.84 17.59
	12/13/06	1,120	<253	<505	<0.5	0.670	2.54	3.18	<1	<5	1.25			7.54	0.00	18.20
	03/07/07	1,010	3,490	<500	11.60	0.760	2.91	3.59	<1	<5	<1			6.99	0.00	18.75
	06/13/07	1,330	822 ^{g, p}	1,250	<0.5	0.680	1.77	3.01	<1	5.40	1.66			6.94	0.00	18.80
	09/13/07	303	267	616	<0.5	<0.5	1.37	<3	<1	5.43	1.05			7.26	0.00	18.48
	12/17/07 03/17/08	1,200	541	1,660	464	<0.5	<0.5	cate on site r	nap <3	<1	<5	<1	<1	6.79	0.00	18.95
	06/03/08	1,320	429	<472	6.56	<0.5	3.62	1.44	<1	<5	<1	<1	613	6.63	0.00	19.11
	08/06/08	847	1,140	1,270	<0.5	0.51	1.44	<3	<1	<5	2.69	<1	946	7.50	0.00	18.24
	11/03/08	1,110	564	842	<0.500	<0.500	1.43	<3.00	<1.00	<5.00	2.95	<1.00	535	5.87	0.00	19.87
MW-94	11/18/08 11/02/05	393	277 ⁹	<472	1.74	0.750	30.2	4.62	ecommission <2	nea				3.21	0.00	18.69
21.90	02/24/06	172	<248	<495	<0.5	<0.5	<0.5	<3	<1	<1	4.81			3.38	0.00	18.52
	05/11/06	236	360	<500	<0.5	<0.5	<0.5	<3	<1	1.60	10.4			3.10	0.00	18.80
	08/31/06	<100	<250	<500	<0.5	<0.5	<0.5	<3	<1	<5	<1			4.30	0.00	17.60
	12/13/06	159	<243	<485	<0.5	<0.5	<0.5	<3	<1	<5	4.24			3.76	0.00	18.14
	03/07/07 06/13/07	1,720 2,340	<248 <250	<495 <500	1.88 <0.5	<0.5 <0.5	33.6 0.710	<3 <3	<1 <1	93.8 96.7	<1 2.13			3.16 3.21	0.00	18.74 18.69
	09/12/07	521	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	<1			3.48	0.00	18.42
	12/19/07	285	<236	<472	1,010	<1.00	<1	<1.00	<3	<1	<1	12.90		2.54	0.00	19.36
	03/17/08	2,490	255	<472	1,010	1.33	<0.5	31.5	<3	<1	46.6	2.65	<1	2.89		19.01
	06/02/08 08/06/08	637	<236	<472	0.58	<0.5	0.80	ut not sample	ed <1	<5	3.80	<1	294	5.15 3.68	0.00	16.75 18.22
	11/03/08	037	<230	<412	0.56			r, unable to		<0	3.00	<u> </u>	294	3.23	0.00	18.67
	11/18/08							De	ecommissio	ned			· ·			l.
MW-95	11/02/05	545	<236	<472	1.06	0.910	1.18	9.87	<1					13.50	0.00	18.49
31.99	02/23/06 05/09/06	278 326	240 ⁹ <255	<481 <510	9.67 2.91	5.57 0.730	7.88 1.40	19.20 15.78	<1 <1	3.31 5.56	<1 <1	<1 <1		13.00 13.35	0.00	18.99 18.64
	08/30/06	94.3	<248	<495	2.31	0.730	1.40	^u	"	^u	<1	<1		13.82	0.00	18.17
	12/12/06	1,330	<243	<485	52.9	14.5	32.9	119	<1	10.6	<1	<1		12.98	0.00	19.01
	03/07/07	60.2	<250	<500	3.87	<0.5	1.31	10.5	<1	<5	<1	<1		12.87	0.00	19.12
	06/14/07	215	<236	<472	4.12	<0.5	1.60	41.7	<1	<5	<1	<1		13.10	0.00	18.89
	09/13/07 12/18/07	<50.0 <50	<238 <238	<476 <476	<0.5 <1	<0.5 <1	<0.500 <1	<3 <3	<1 <1	<5 <1	<1 <1	<1 <1		13.18 12.45	0.00	18.81 19.54
	03/17/08	<50	<236	<472	<236	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	12.43	0.00	19.30
	06/03/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	8.78	0.00	23.21
	08/04/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	14.02	0.00	17.97
	11/04/08 02/24/09	<50.0 <50.0	<248 <240	<495 <481	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	<1.00 <1.00	<1.00 <1.00	<248 <240	13.75 13.50	0.00	18.24 18.49
	05/17/09	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<240	14.01	0.00	17.98
	08/16/09	<50	<240	<480	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	<5.0	<5.0	<240	15.67	0.00	16.32
	11/15/09	110	<240	<480	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	<1	<1	<240	13.62	0.00	18.37
	02/21/10	<50.0	202	<388	<1.0	<1.0	<1.0	<3.0		<1.0	0.58	<0.10	<77.7	13.01	0.00	18.98
	05/23/10 08/16/10	<50.0 56.5	80.0 <78.4	<392 <392	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 4.5		<1.0 <1.0	0.47 0.28	<0.10 <0.10	83.2 <78.4	13.18 13.45	0.00	18.81 18.54
	11/15/10	85.7	<77.7	<388	<1.0	<1.0	<1.0	23.7		<1.0	<10.0	<10.10	97.0	12.85	0.00	19.14
	02/27/11					l .			ecomission							
MW-96	11/02/05	3,230	501 ^g	<472	172	75.1	65.0	714	<4					6.28	0.00	18.70
24.98	02/21/06 05/11/06	6,190	5,570	<971	392	136	LPH 152	Present 1.057	<10	90.8	1.20	1.20		6.43 6.20	0.02 0.01	18.57 18.78
	08/29/06	0,180	5,570	<3/1	332	130	-	Present	<10	JU.0	1.20	1.20	<u></u>	7.48	0.01	17.04
	12/11/06							Present						6.76	0.30	18.22
	03/06/07				_	Not a		construction	materials	_	_					
	06/13/07							ccessible								
	09/12/07 12/17/07							ccessible ccessible								
	03/17/08					Bu		nstruction ma	aterial							
	06/03/08							onstruction d								
	08/06/08	-	_					nstruction de		_	_	-				
	11/04/08 11/18/08					V	/ell under co	nstruction de	ebris. ecommissio	ned						
MW-97	11/18/08	17,600	441 ⁹	<490	121	38.2	1,010	1,860	ecommissioi <1	nea 				11.70	0.00	18.65
	02/22/06	39,900	811 ^g	<500	350	32.8	1,840	3,730	<40	735	21.6			11.17	0.00	19.18
30.35				<498	264	65.5	1,740	7 a660 1	<50	768	12.0			11.60		2 18.75

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ug/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ug/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Method A	Gasonne	Diesei	- Oil	(uu/L)	(uu/L)	Delizerie	Avienes	(uu/L)	iene	(UG/L)	Leau	(uu/L)	Песи	Heeti	Heen
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	08/30/06	6,580	456 ⁹	<485	82.4	6.40	749	401	<1	516	7.48			12.17	0.00	18.18
MW-98	09/25/06 11/02/05	25,800	<250	<500	1,880	4,080	680	ommissioned 3,760	a auring con	struction act	vities 			11.85	0.00	18.62
30.47	02/22/06	173,000	360 ^g	<556	14,000	30,500	4,090	22,200	<400	888	49.9			11.24	0.00	19.23
	05/09/06	186,000	651 ^p	<472	12,700	29,000	4,800	22,560	<1,000	11,800	50.0			11.44	0.00	19.03
1414.00	06/12/06	040	0.40	405	1.04	0.050	44.4		ecommission		1		1	10.57	0.00	40.77
MW-99 29.34	11/02/05 02/22/06	910 4,910	<243 <240	<485 <481	1.84 28.4	0.850 <2.5	11.1 203	73.8 811	<1 <5	80.8	14.0			10.57 10.23	0.00	18.77 19.11
20.04	05/09/06	3,370	<248	<495	14.0	<5	82.5	521.3	<10	59.7	6.57			10.43	0.00	18.91
	06/12/06								ecommissio							
MW-101 28.10	07/25/05 11/04/05	6,960 2,960	432 ^b <236	<500 <472	39.1 53.8	61.4 44.8	88.0 72.1	429 464	<5 <5	19.7				9.45 9.65	0.00	18.65 18.45
20.10	02/23/06	4,890	<250	<472 <500	99.4	16.9	150	768	<4	27.5	<1			9.65	0.00	18.53
	05/09/06	1,120	<238	<476	14.2	1.62	27.1	136.7	<2	6.06	<1			9.13	0.00	18.97
	06/13/06								ecommissio	ned						
MW-102 23.86	07/25/05 11/03/05	10,200	4 700 g	<472	471	12.0	Well could 492	not be locate 1,490	ed <20					5.10	0.00	 18.76
23.00	02/24/06	11,400	1,730 ^g 294 ^g	<532	471	3.96	473	1,160	<4	90.4	4.54			5.29	0.00	18.57
	05/11/06	2,810 ^j	370 ^p	<490	97.6	<2	35.8	177.6	<4	22.9	1.71			5.01	0.00	18.85
	08/31/06	2,430	<236	<472	212	<2.5	101	208	<5	29.5	2.71			6.29	0.00	17.57
	12/11/06 03/08/07	13,600 10,000	243 257	<485 <500	608 366	30.6 25.8	609 448	1,190 1,240	<1 <20	118 183	6.08 3.58			5.70 5.16	0.00	18.16 18.70
	06/13/07	8,080	275 ^g	<476	320	2.26	182	894	<1	139	4.54	-		5.12	0.00	18.74
	09/12/07	8,800	246	<481	428	2.38	426	792	<1	90.2	30.8			5.41	0.00	18.45
	12/19/07 03/18/08	13,500 9,840	289 347	<472 <472	400 2770	160 291	570 1.5	1,320 371	<1 746	140 <1	14.9 99.4	24.2	1.75	4.56 4.92	0.00	19.30 18.94
	06/03/08	660	359	<472	208	<0.5	78.5	239	<1	85.9	29.00	<1	2,170	5.15	0.00	18.71
	08/06/08	3,310	276	<472	138	0.79	43.2	69	<1	54.2	54.10	1.14	1,240	5.63	0.00	18.23
	11/04/08	8,720	497	<472	232	1.23	366	248.0	<1.00	108	19.20	1.36	2,920	4.30	0.00	19.56
MW-103	11/18/08 07/26/05	<50	<250	<500	<0.2	<0.2	<0.2	<0.5	commission	ned <0.5				8.61	0.00	
27.22	11/07/05	<50	<243	<485	<0.5	<0.5	<0.2	<3	<1 <1					8.82	0.00	18.40
	02/24/06	<50	<250	<500	<0.5	<0.5	<0.5	<3	<1	<1	<1	-		8.66	0.00	18.56
	05/09/06	<50	<248	<495	<0.5	<0.5	<0.5	<3	<1	<1	<1			7.84	0.00	19.38
	08/30/06 12/13/06	<80 <50	<248 <243	<495 <485	^u <0.5	^u <0.5	^u <0.5	^u	^u <1	^u <5	<1 <1			6.01 9.00	0.00	21.21 18.22
	03/06/07	\ 30	\Z+0	N-100	\0.5	νο.σ	VO. 5		ecommission		<u> </u>			3.00	0.00	10.22
MW-105	07/26/05	62,000	821 ^b	<500	1,970	7,460	2,640	12,750	<1	723				10.88	0.00	
29.61	11/02/05	66,100	495 ^g	<538	1,370	6,430	2,360	12,300	<1	400				10.94	0.00	18.67
	02/22/06 05/09/06	50,000 62,300	332 ^g 867 ^p	<495 <472	1,200 1,200	2,810 5,070	1,990 2,210	8,540 10,550	<50 ^{q,r} <100	498 440	5.13 9.54			10.59 10.69	0.00	19.02 18.92
	06/12/06	, , , , , ,	007	l	. ,	- /	,		ecommissio				l I			
MW-200	11/07/05	533	<250	<500	4.39	1.21	8.65	22.1	5.03					11.22	0.00	18.47
29.69	02/22/06 05/10/06	2,560 1.440 ^j	270 ^g <245	<490 <490	38.4 25.1	2.38 0.620	57.3 35.5	70.9 12.82	1.84 1.57	60.7 45.2	1.60 <1			11.15 11.29	0.00	18.54 18.40
	08/29/06	471 ^j	<236	<472	7.10	2.00	31.3	28.2	1.11	53.0	<1			11.95	0.00	17.74
	12/12/06	1,630	<245	<490	7.12	1.30	20.0	27.9	1.90	25.0	1.05			11.29	0.00	18.40
	03/06/07 06/14/07	<50 262	<260 <243	<521 <485	<5 3.63	<5 <0.5	<5.00 1.61	<3 <3	1.12 <1	<5 <5	1.73 1.87			11.05 11.08	0.00	18.64 18.61
	09/14/07	<50	<245	<490	<0.5	<0.5	<0.500	<3	<1	<5	<1			11.25	0.00	18.44
	12/17/07	327	<240	<481	1.5	<1	18.00	10	<1		9.24	-		9.60	0.00	20.09
	03/17/08	2.000	070	-404	07.5			l- buried by r		00.0	0.40	-,4	4.000			
	06/01/08 08/10/08	2,390 1,140	270 <238	<481 <476	27.5 10.4	1.07 0.85	55.20 21.20	16.6 6.7	<1 <1	92.8 45.3	2.46 7.41	<1 <1	1,220 616	8.13 12.10	0.00	21.56 17.59
	11/02/08	1,170	~200	<u> </u>	10.7			ooded. Unab					010			
	02/22/09	4,570	5,550	<481	17.1	2.12	58.0	45.4		134	1.82	<1.00	1,820	11.45	0.00	8.25
	05/17/09	7,160	396 330	<476 <480	71.4	3.72	224.0	363 11	<1.00 <1.0	273	10.4	<1.00	1,820 810	9.85	0.00	19.84
	08/16/09 11/15/09	1,800 2,300	890 [°]	<480 <490	<0.50 8.3	<0.50 <0.50	12 30	17	<1.0	22 59	5.8 8	<5.0 <1	1,000°	14.22 11.35	0.00	15.47 18.34
	02/21/10	8,170	3,160	1,300	116	2	445	151		510	4.2	0.59	5,000	11.02	0.00	18.67
	05/23/10	4.000	000	200				ooded. Unab				0.70	4.000			
	08/15/10 11/15/10	4,290	608	<388	89.7	1.0 North lane	of Mercer fl	1.0 ooded. Unab	le to sample	388	6.2	0.70	1,820	11.36	0.00	18.33
	02/27/11						2o.o. II		ecomission							
MW-201	11/07/05	56.8	974 ^f	4,180	<0.5	<0.5	0.990	9.49	<1					9.81	0.00	19.51
29.32	02/22/06	199	464 ^h	1,460	27.6	14.2	<0.500	<3	<1	<1	9.78			10.76	0.00	18.56
	05/10/06 08/29/06	221 114	<250 <248	<500 <495	27.1 19.1	14.6 10.6	<0.500 <0.500	<3 <3	<1 <1	<1 <5	3.01 2.16			11.12 11.64	0.00	18.20 17.68
	12/12/06	223	<245	<490	16.3	1.79	<0.500	<3	<1	<5	3.88			11.65	0.00	17.67
	03/06/07	174	<260	<521	25.6	1.46	<5.00	<3	<1	<5	2.54	-		11.65	0.00	17.67
	06/14/07 09/14/07	206 125	<245 <245	<490 <490	20.4 21.4	0.870 0.750	<0.500 <0.500	<3 <3	<1 <1	<5 <5	<1 1.87			10.89 11.16	0.00	18.43 18.16
	12/17/07	120	<240	<490	Z1.4			le- well unde		<5	1.07					18.16
	03/18/08	281	<236	<472	<236	11	0.58	<0.5	<3	<1	<5	6.72	1.28	10.63	0.00	18.69
	06/01/08	196	<238	<476	18.3	7.40	<0.5	<3	<1	<5	19.80	2.29	<238	10.90	0.00	18.42
	08/10/08 11/02/08	125	<243	<485	17.7	1.14 North Jane	<0.5	<3 ooded. Unab	<1 le to sample	<5	13.30	3.73	<243	11.90	0.00	17.42
	02/22/09	157	<238	6,530	11.5	<0.500	< 0.500	<3.00		<5.00	8.43	<1.00	<238	10.90	0.00	4.20
	05/17/09	173	<248	<495	12.4	<0.500	<0.500	<3.00	<1.00	<5.00	11.8	1.28	<248	12.10	0.00	17.22
	08/16/09	230	570	3,300	2.7	<0.50	<0.50	<2.0	<1.0 <1.0 ^H	<5.0	95	<5.0	<240	13.87	0.00	15.45
I	11/15/09	73	<240	<480	12 ^H	<0.50 ^H	<0.50 ^H	15 2 b9e 1	<1.∪	<5.0 ^H	14	2.30	<240	10.88	Φ9ge 2	3 18.44

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (µa/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
MTCA N	Method A															
	Level for dwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	02/21/10	<50.0	655	1,970	3.8	<1.0	<1.0	5.3		<1.0	9.1	<0.10	<79.2	10.56	0.00	18.76
	05/23/10	56.8	639	1670	9.7	<1.0	<1.0	<3.0		<1.0	5.9	<0.10	353	10.64	0.00	18.68
	08/15/10	<50.0	113	451	8.7	<1.0	<1.0	<3.0		<1.0	4.4	<0.10	<79.2	10.98	0.00	18.34
-	11/15/10 02/27/11					North lane	of Mercer fi	ooded. Unab	ecomission							
MW-202	11/04/05	247	<240	<481	0.630	0.880	<0.5	1.80	<1					12.77	0.00	17.78
30.55	02/22/06	<50	<253	<505	<0.5	<0.5	<0.5	<3	<1 ^{q,r}	<1	1.71			12.35	0.00	18.20
	05/10/06	<50	<250	<500	<0.5	<0.5	<0.5	<3	<1	<1	<1			12.43	0.00	18.12
	08/29/06	<80	<253	<505	<0.5	<0.5	<0.5	<3	<1	<5	9.54			12.76	0.00	17.79
	12/12/06	<50 <50	<243 <253	<485 <505	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 1.04			12.24 12.23	0.00	18.31
•	03/08/07	<50 <50	<238	<476	<0.5	<0.5	<0.5	<3	<1	<5 <5	<1			12.23	0.00	18.32 18.11
•	09/14/07	<50	<250	<500	<0.5	<0.5	<0.5	<3	<1	<5	1.43			12.54	0.00	18.01
	12/19/07	<50	<240	<481	<1	<1	<1.00	<3	<1	<1	<1			12.12	0.00	18.43
	03/18/08	<50	<236	<472	<236	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	12.42	0.00	18.13
	06/02/08	<50	<240	<481	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<240	12.47	0.00	18.08
-	08/05/08 11/05/08	<50 <50.0	<248 <243	<495 <485	<0.5 <0.500	<0.5 <0.500	<0.5 <0.500	<3 <3.00	<1 <1.00	<5 <5.00	<1 <1.00	<1 <1.00	<248 <243	12.65 12.52	0.00	17.90 18.03
	02/25/09	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00		<5.00	<1.00	<1.00	<243	12.80	0.00	17.75
	05/17/09	<50.0	<236	<472	< 0.500	<0.500	<0.500	<3.00	<1.00	<5.00	12.90	<1.00	<236	13.63	0.00	16.92
	08/16/09	<50	<240	<470	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	7.50	<5.0	<240	15.32	0.00	15.23
	11/15/09	<50	<240	<470	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	2.3	<1	<240	12.54	0.00	18.01
	02/21/10 05/23/10	<50.0 <50.0	82.8 <78.4	<381 <392	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	1.1 .91	<0.10 <0.10	<76.2 <78.4	12.23 12.33	0.00	18.32 18.22
	08/18/10	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0		<1.0	1.8	<0.10	<78.4	12.60	0.00	17.95
	11/16/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	11.68	0.00	18.87
										omissioned a						
MW-203 26.63	11/08/05 02/24/06	<50 <50	<238 <260	<476 <521	1.14 <0.5	<0.5 <0.5	0.780 <0.5	<3 <3	<1 <1	 <1	 <1			8.24 8.05	0.00	18.39 18.58
20.03	05/09/06	<50 <50	<248	<495	<0.5	<0.5	<0.5	<3	<1	<1	<1			6.99	0.00	19.64
	08/30/06	<80	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1			8.30	0.00	18.33
•	12/13/06	<50	<258	<515	<0.5	<0.5	<0.5	<3	<1	<5	<1			8.46	0.00	18.17
	03/07/07	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<5	<1			7.67	0.00	18.96
	06/13/07 09/12/07							ccessible ccessible								
-	12/19/07	<50	<236	<472	<1	<1	<1.00	<3	<1	<1	1.69			7.49	0.00	19.14
•	03/18/08	<50	<236	<472	<236	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	6.95	0.00	19.68
	06/02/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<236	6.24	0.00	20.39
05.04	08/05/08	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	1.66	<1	<236	6.94	0.00	19.69
25.94	11/04/08 02/25/09	<50.0 <50.0	<236 <240	<472 <481	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	272.00 3.21	<1.00 <1.00	<236 <240	7.05 5.54	0.00	18.89 20.40
	05/17/09	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	4.03	<1.00	<236	7.00	0.00	19.63
	08/17/09	<50	<240	<490	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	<5.0	<5.0	<240	7.95	0.00	17.99
	11/16/09	<50	<240	<480	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0	4.3	<1	<240	7.92	0.00	18.02
	02/22/10 05/24/10	<50.0 <50.0	<77.7 <76.9	<388 <385	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	0.16 1.9	<0.10 <0.10	<77.7 <76.9	7.44 6.34	0.00	18.50 19.60
-	08/18/10	<50.0	<78.4	<392	<1.0	<1.0	<1.0	<3.0		<1.0	.84	<0.10	<78.4	7.12	0.00	18.82
•	11/15/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	7.84	0.00	18.10
	02/27/11					Well comp	romised, una	able to samp								
MM/ 204	06/14/11	705	-006	-470	24.5	0.550	22.2		Not sample					10.05	0.00	10.00
MW-204 28.13	11/03/05 02/21/06	725 3,120	<236 <287 ^q	<472 <575	34.5 388	0.550 <2.5	23.3 221	13.6 87.0	<2 <5	42.2	1.63			10.05 10.09	0.00	18.08 18.04
	05/09/06	2,990 ^j	<236 ^p	<472	343	9.05	144	84.7	<5	50.6	<1			9.40	0.00	18.73
100	06/13/06								ecommission							
MW-205 28.08	11/02/05 02/22/06	735 3,950	<236 <245	<472 <490	0.750 7.60	<0.5 <2.50	23.2 307	20.6 116	<1 <5 ^{q,r}	 82.0	3.64			9.34 9.22	0.00	18.74 18.86
20.00	05/10/06	1,530	<236	<472	2.68	<1.00	86.8	30.04	<5 " <2	38.5	1.31			9.19	0.00	18.89
<u> </u>	06/13/06	,							ecommission							
MW-206	11/03/05	93.4	<236	<472	2.23	<0.5	2.86	2.84	<2					12.60	0.00	18.94
31.54	02/23/06	<50	279 ^p	<490	7.57	0.560	<0.5	<3	<1	<1	1.24			12.40	0.00	19.14
<u> </u>	05/10/06 08/29/06	<50 <80	<263 <266	<526 <532	8.54 1.63	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<1 <5	1.04 1.84			12.75 13.25	0.00	18.79 18.29
	06/23/00	100		1002	1.00	10.0		ater to sampl		, ,,	7.0-7		•	10.36	0.00	21.18
	09/14/07						Lack of wa	ater to sampl	e					10.67	0.00	20.87
]	12/17/07	<50	293	1,020		<1	<1	<1	<2	<1		6.16	لتبط	9.50	0.00	22.04
-	03/17/08 06/02/08	<50	331	1,080	<236	<0.5	<0.5	<0.5 water to sam	<3	<1	<5	852.00	<1	9.76 10.91	0.00	21.78 20.63
 	08/04/08							vater to sam						10.91	0.00	20.63
•	11/03/08	<50	<243	564	< 0.500	<0.500	<0.500	<3.00	<1.00	<5.00	14.80	1.65	<243	9.03	0.00	22.51
	02/23/09					-		ell dry								
	05/17/09							ell dry						10.80	0.00	19.74
<u> </u>	08/16/09 11/15/09	<50	1,400°	10,000	<0.50	<0.50	<0.50	ell dry <2.0	<1.0	<5.0	330	<1	330	11.48 9.60	0.00	20.06 21.94
	02/21/10	<50.0			<1.0	<1.0	<1.0	<1.0		<1.0		<0.10		9.32	0.00	22.22
	05/23/10	<50.0			<1.0	<1.0	<1.0	<1.0		<1.0	7810	<0.10		9.48	0.00	22.06
]	08/15/10		F 00-	40.1	'			ell dry						10.88	0.00	20.66
1		<50.0	5,990	49,100	<1.0	<1.0	<1.0	<3.0	 Decomission	1.0	58.1	<10.0	546	6.85	0.00	24.69
l l	11/14/10 02/27/11															
MW-207	11/14/10 02/27/11 11/04/05	<50	<281	<562	2.82	<0.5	<0.5	<3	<1					13.79	0.00	16.86
MW-207 30.65	02/27/11		<281 <248 <250	<562 <495 <500	2.82 3.52 1.85	<0.5 2.05 1.86	<0.5 <0.5 <0.5			1	 <1 <1			13.79 13.64 13.81	0.00 0.00 P@e 2	17.01

Sample	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE	Naphtha-		Dissolved		DTW	SPH	GWE
I.D. MTCA I	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
0.04	08/29/06	<80	<253	<505	<0.5	<0.5	<0.5	<3	<1	<5	1.22			14.40	0.00	16.25
	12/12/06	<50	<248	<495	1.21	<0.5	<0.5	<3	<1	<5	<1			14.07	0.00	16.58
	03/07/07	<50	<263	<526	0.960	<0.5	<0.5	<3	<1	<5	<1			13.88	0.00	16.77
	06/15/07	<50	<238	<476 ^r	<0.5	<0.5	<0.5	<3	<1	<5	<1			13.84	0.00	16.81
	09/14/07	<50	<245	<490	<0.5	<0.5	<0.5	<3	<1	<5	<1			13.88	0.00	16.77
	12/19/07 03/18/08	<50 <50	<236 <236	<472 <472	<1 <236	<1 <0.5	<1 <0.5	<3 <0.5	<1 <3	<1 <1	<1 <5	 <1	 <1	13.70 14.28	0.00	16.95 16.37
	06/02/08	<50	<238	<476	<0.5	<0.5	<0.5	<3	<1	<5	<1	<1	<238	14.52	0.00	16.13
	08/05/08	<50	<238	<476	<0.5	<0.5	<0.5	<3	<1	<5	1.58	<1	<238	14.66	0.00	15.99
	11/05/08	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	1.02	<1.00	<240	13.85	0.00	16.80
	02/23/09							cessible								
	05/17/09							cessible								
	08/17/09 11/15/09							cessible cessible								
	02/21/10	<50.0	681	536	<1.0	<1.0	<1.0	<3.0		<1.0	0.20	<0.10	<92.0	13.81	0.00	16.84
	05/24/10	1				J.	Inac	cessible				J.	ı			
	08/15/10								Decommiss	1	ī					
MW-208	11/07/05	1,980	<250	<500	20.2	4.40	35.2	143	<1		2.47			11.44	0.00	18.84
30.28	02/22/06 05/10/06	11,900 13,400	<243 <236	<485 <472	131 185	35.4 29.2	450 785	1,610 2,358	<20 <20	96.8 184	2.17 1.80			11.11 11.52	0.00	19.17 18.76
	08/30/06	21,800	276 ⁹	<495	213	93.9	1,590	5,960	<1	521	2.88			12.10	0.00	18.18
	12/12/06	21,800	542	<490	78.6	18.2	949	3,780	<20	315	1.28			11.09	0.00	19.19
	03/08/07	34,000	454	<500	212	25.2	1,660	5,360	40.0	838	<1			11.02	0.00	19.26
	06/14/07	57,400	591 ^g	<472	241	52.6	3,520	12,900	<20	2,110	1.74			11.22	0.00	19.06
	09/14/07 12/17/07	63,000 8,770	1,120 <238	<490 <476	93.7 30.0	44.2 1.4	2,360 470	8,480 1,310	<1 <1	1,080	<1 2.97			11.40 10.63	0.00	18.88 19.65
	03/18/08	23,200	512	<472	6,180	35.2	5.58	756	2,280	<1	210	217.00	<1	10.91	0.00	19.37
	06/01/08	17,200	310	<472	29.2	10.3	856 ^x	2200 ^x	<1	256 ^x	7.91	<1	7,460	12.22	0.00	18.06
	08/10/08	40,600	115	<485	52.1	31	1,490	4,920	<10	414	6.23	1.56	12,600	12.30	0.00	17.98
	11/02/08	32,700	988	<490	10.9	23.5	947	3,150	<1.00	21.4	1.80	1.41	12,500	11.80	0.00	18.48
	02/23/09 05/17/09	18,000	652	<476	4.72	6.26	700	cessible 2,100	<1.00	274	3.84	<1.00	7,330	12.15	0.00	 18.13
	08/16/09	22,000	<240	<480	4.72			e to analyst		214	<5.0	<5.0	11,000	13.92	0.00	18.13
	11/15/09	28,000	5,600°	<470	8.9	5.6	630 ^H	2,400 ^H	<1.0	280 ^H	4	<1	10,000°	11.70	0.00	18.58
	02/21/10	23,700	1,250	472	6.4	<5.0	679	1,980		222	6.1	0.16	8,870	11.05	0.00	19.23
	05/23/10	18,500	1,200	<385	7.0	2.1	341	1750		173	42.7	.29	6,550	11.20	0.00	19.08
	08/15/10 11/14/10	14,800	699	<392	3.4	<1.0	<1.0	<3.0		<1.0	3.90	0.50	5,760	11.44	0.00	18.84
	02/27/11															
	11/20/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0	<3.0	<3.0	<100	6.89	0.00	21.11
	11/06/13	281	<400	<400	<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0	<400	10.43	0.00	Note Z
28.05	07/29/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		14.81	0.00	13.24
27.88	12/08/14 03/23/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0		<10.0	<10.0		11.40 9.91	0.00	16.48 17.97
	06/22/15	<100			<1.0	<1.0	<1.0	<3.0						10.43	0.00	17.45
	09/10/15	<100			2.1	<1.0	<1.0	<3.0	-					10.59	0.00	17.29
	12/07/15	<100			2.9	<1.0	<1.0	<3.0						9.60	0.00	18.28
	06/28/16 12/15/16	<100		l	1.9	<1.0	<1.0	Not G	auged or Sa	ampled.	l			9.80	0.00	18.08
MW-209	11/05/08	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<238	9.22	0.00	18.66
27.00	02/23/09	100.0	1200	10	10.000	10.000		cessible	11.00	40.00	11.00	11.00	1200			
	05/17/09															
	08/17/09	9 Inaccessible														
	11/17/09 02/22/10	<50.0	251	<388	<1.0	<1.0	<1.0	cessible <3.0		<1.0	1.3	<0.10	<77.7	9.30	0.00	 17.70
	05/24/10	<50.0	192	<396	<1.0	<1.0	<1.0	<3.0	-	<1.0	1.1	<0.10	137	8.04	0.00	18.96
	08/18/10	<50.0	86.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	1.3	<0.10	<77.7	8.86	0.00	18.14
	11/16/10	<50.0	85.1	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	9.45	0.00	17.55
	03/01/11	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0		<77.7	9.26	0.00	17.74
	06/15/11 08/30/11	<50.0 <50.0	<82.5 <80.0	<412 <400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0	0.19 0.35	<0.10 0.17		8.10 9.09	0.00	18.90 17.91
	12/06/11	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0	-	<10.0	0.33	0.17	<82.5	9.50	0.00	17.50
	02/15/12	<50.0	103	<412	<1.0	<1.0	<1.0	<3.0	-	2.1	<10.0	<10.0	<82.5	9.70	0.00	17.30
	05/16/12	<50.0	<79.2	<396	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<79.2	8.08	0.00	18.92
	08/15/12	<50.0	117	<426	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	85.6	8.80	0.00	18.20
	11/21/12 11/06/13	<100 <400	<100 <400	<100 <400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	 <1.0	<4.0	<3.0 <10.0	<3.0 <10.0	<100 <400	9.00 9.66	0.00	18.00 17.34
	07/29/14	<100	<400 	<400	<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0	<400	10.36	0.00	16.64
26.88	12/09/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		9.61	0.00	17.27
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						8.90	0.00	17.98
	06/23/15	<100			<1.0	<1.0	<1.0	<3.0						8.98	0.00	17.90
	09/11/15	<100			<1.0	<1.0	<1.0	<3.0						9.75	0.00	17.13
	12/07/15 06/28/16	<100			<1.0	<1.0	<1.0	<3.0 Not G	 auged or Sa	 ampled				8.77	0.00	18.11
	12/15/16	<100			<1.0	<1.0	<1.0	<3.0						9.60	0.00	17.28
MW-210	11/05/08	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<243	8.60	0.00	18.10
26.70	02/25/09	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00		<5.00	<1.00	<1.00	<240	5.90	0.00	20.80
	05/17/09	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<245	8.61	0.00	18.09
	08/17/09 11/17/09	<50 <50	<240 <240	<280 <490	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50 ^H	<2.0 <2.0	<1.0 <1.0	<5.0 <5.0	<5.0 1.3	<5.0 <1	<240 <240	9.60 8.15	0.00	17.10 18.55
	02/22/10	<50.0	154	<381	<1.0	<1.0	<1.0	<2.0 T āb ie 1	<1.0	<1.0	0.31	0.21	<76.2	8.73	0.00 0-90e 2	
	UZ/ZZ/TU	V.UC>	104	<301	<1.0	<1.0	<1.0	ı ∄ 131€ 1		<1.0	บ.งา	∪.∠ I	0.2</td <td>0.13</td> <td>. ₩age</td> <td>4</td>	0.13	. ₩age	4

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ug/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-	-	
	05/24/10	<50.0	190	<385	<1.0	<1.0	<1.0	<3.0		<1.0	.45	<0.10	150	7.65	0.00	19.05
	08/18/10 11/16/10	<50.0	<78.4 85.1	<392	<1.0 <1.0	<1.0 <1.0	<1.0	<3.0		<1.0	.36 <10.0	<0.10 <10.0	<78.4 <77.7	8.54	0.00	18.16
	03/01/11	<50.0 <50.0	<77.7	<388 <388	<1.0	<1.0	<1.0 <1.0	<3.0 <3.0	<u></u>	<1.0 <1.0	<10.0	<10.0	<77.7	8.81 8.77	0.00	17.89 17.93
	06/15/11	<50.0	<86.0	<430	<1.0	<1.0	<1.0	<3.0			0.27	<0.10		7.73	0.00	18.97
	08/30/11	<50.0	<87.0	<435	<1.0	<1.0	<1.0	<3.0		<1.0	<0.10	<0.10	<87.0	8.67	0.00	18.03
	12/06/11 02/15/12	<50.0 <50.0	<86.2 <82.5	<412 <412	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 2.1	<0.10 <10.0	0.22 <10.0	<82.5 <82.5	8.95 9.20	0.00	17.75 17.50
	05/16/12	<50.0 <50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<83.3	7.64	0.00	19.06
	08/15/12	<50.0	<85.1	<426	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<85.1	8.43	0.00	18.27
	11/21/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0	<3.0	<3.0	<100	6.42	0.00	20.28
	11/06/13 07/29/14	<400 <100	<400	<400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0 <1.0		<10.0 <10.0	<10.0 <10.0	<400 	9.42 10.72	0.00	17.28 15.98
26.56	12/09/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		9.39	0.00	17.17
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						8.54	0.00	18.02
	06/23/15	<100			<1.0	<1.0	<1.0	<3.0						8.76	0.00	17.80
	09/11/15 12/07/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						9.45 8.50	0.00	17.11 18.06
	06/28/16	<100			<1.0	<1.0	<1.0		auged or Sa					6.50	0.00	10.00
	12/15/16	<100			<1.0	<1.0	<1.0	<3.0						8.90	0.00	17.66
MW-211	11/05/08	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00	<240	7.23	0.00	19.32
26.55	02/25/09 05/17/09	<50.0 <50.0	<240 <236	<481 <472	<0.500 <0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<1.00	<5.00 <5.00	<1.00 4.72	<1.00 <1.00	<240 <236	8.19 9.10	0.00	18.39 17.45
	08/17/09	<50.0 <50	<240	<472 <490	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00 <5.0	<5.0	<1.00 <5.0	<236	9.74	0.00	16.81
	11/17/09	<50	<240	<480	<0.50	< 0.50	<0.50	<2.0	<1.0	<5.0	<1	<1	<240	8.24	0.00	18.31
	02/22/10	<50.0	146	<385	<1.0	<1.0	<1.0	<3.0		<1.0	0.42	<0.10	<76.9	7.91	0.00	18.64
	05/24/10 08/18/10	<50.0 <50.0	115 <77.7	<388 <388	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<u></u>	<1.0 <1.0	.46 .34	.29 .13	85.1 <77.7	7.56 8.42	0.00	18.99 18.13
	11/15/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	8.37	0.00	18.18
	03/01/11	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0		<77.7	8.54	0.00	18.01
	06/15/11	<50.0	<84.2	<421	<1.0	<1.0	<1.0	<3.0			0.12	<0.10		5.61	0.00	20.94
	08/30/11 12/06/11	<50.0 <50.0	<84.2 <83.3	<421 <417	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <10.0	<0.10 <0.10	<0.10 0.15	<84.2 <83.3	8.48 8.83	0.00	18.07 17.72
	02/15/12	<50.0	<75.5	<377	<1.0	<1.0	<1.0	<3.0		2.1	<10.0	<10.0	<75.5	9.10	0.00	17.45
	05/16/12	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		4.0	<10.0	<10.0	<83.3	7.65	0.00	18.90
	08/15/12	<50.0	<88.9	<444	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<88.9	8.42	0.00	18.13
MW-806	12/13/17 11/02/05	<100 61.8	 <245	 <490	<1.0 1.57	<1.0 <0.5	<1.0 2.94	<3.0 10.3	 <2		<10.0	<10.0		12.51 7.58	0.00	14.04
26.28	02/24/06	117	<238	<476	<0.5	0.910	1.49	4.24	<1	<1	2.16			7.71	0.00	18.57
	12/11/06															
MW-X	11/02/05	760	252 ^f	<472	114	0.730	Abandoned of 14.0	7.16	- To be deco	omissioned a	at a later date	e. 		9.65	0.00	18.72
28.37	02/21/06	700	252	\ 1 12	1.1-	0.730		sing damage		o collect sar	nple			3.03	0.00	10.72
SMW-2S	07/25/05					Casing	damaged - ι	unable to coll						8.28		
	11/02/05 11/21/12	<100	<100	<100	<1.0	<1.0	1 .10		Not monitore	ed <4.0	-20	<3.0	<100	6.70	0.00	19.85
	11/06/13	<400	<400	<400	<1.0	<1.0	<1.0 <1.0	<3.0 <3.0	<1.0		<3.0 <10.0	<10.0	<400	9.45	0.00	17.10
	07/29/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		12.24	0.00	14.31
26.48	12/09/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		28.9	<10.0		9.67	0.00	16.81
	03/23/15 06/22/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						8.77 8.91	0.00	17.71 17.57
	09/11/15	<100			<1.0	<1.0	<1.0	<3.0						9.51	0.00	16.97
	12/07/15			•				II Was Subm				•				
	06/28/16 12/15/16	<100		l	<1.0	<1.0	Unal <1.0	ole to access	well, not ga	auged or san	npled.			8.80	0.00	17.68
MW-212	09/30/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		14.23	0.00	
29.09	12/09/14										<10.0	<10.0		12.83	0.00	16.26
		<100			<1.0	<1.0	<1.0	<3.0	<1.0							
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0	<1.0 					11.53	0.00	17.56
	06/22/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0 					12.15	0.00	16.94
		<100			<1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<3.0	<1.0 						0.00	
	06/22/15 09/11/15 12/07/15 06/28/16	<100 <100 <100			<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In	<3.0 <3.0 <3.0 accessible D Not G	<1.0 ue to Parker	 d Vehicle Ov ampled	 ver Monumer	 t		12.15 11.87	0.00 0.00 0.00	16.94 17.22
MW. 242	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16	<100 <100 <100			<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In	<3.0 <3.0 <3.0 accessible D Not G <3.0	<1.0 ue to Parker auged or Sa	 d Vehicle Ov ampled 	 er Monumer	 it		12.15 11.87	0.00 0.00 0.00	16.94 17.22 18.49
MW-213 27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14	<100 <100 <100			<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In	<3.0 <3.0 <3.0 accessible D Not G	<1.0 ue to Parker	 d Vehicle Ov ampled	 ver Monumer	 t		12.15 11.87	0.00 0.00 0.00	16.94 17.22 18.49
	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16	<100 <100 <100 <100 <100 105 <100 364			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 18.7	<3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 18.5	<1.0 ue to Parker auged or Sa <1.0 <1.0	 d Vehicle Ov ampled 	 ver Monumer 11.0 12.8	 tt <10.0 <10.0		12.15 11.87 10.60 11.63 10.40 9.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00	16.94 17.22 18.49 16.95 17.96
27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ^{aa}	<100 <100 <100 <100 <100 105 <100 364 453			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 18.7	<3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <2.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ovampled	 'er Monumer 11.0 12.8 		 	12.15 11.87 10.60 11.63 10.40 9.39 9.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11
27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ²⁸	<100 <100 <100 <100 <100 105 <100 364 453 150			<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 18.7 16.8 6.1	<3.0 <3.0 <3.0 <3.0 Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ovampled	 rer Monumer 11.0 12.8 	 tt <10.0 <10.0		12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11
27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ⁵⁰ 6/23/2015 ⁵⁰ 9/11/2015 ⁶⁰	<100 <100 <100 <100 <100 105 <100 364 453			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 18.7	<3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <2.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ovampled	 'er Monumer 11.0 12.8 		 	12.15 11.87 10.60 11.63 10.40 9.39 9.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11
27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ^{bb} 9/11/2015 ^{cc} 9/11/2015 ^{cc} 12/07/15	<100 <100 <100 <100 <100 105 <100 364 453 150 638 <100 <100			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<3.0 <3.0 <3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parkee auged or Sa <1.0 <1.0	d Vehicle Ov mpled	ver Monumer 11.0 12.8			12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 6.67	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11 17.37 17.37 20.68
27.35	06/22/15 09/11/15 12/07/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 12/08/14 12/08/14 12/08/15 6/23/2015 ^{bb} 9/11/2015 ^{cc} 9/11/2015 ^{cc} 9/11/2015 ^{cc} 12/07/15 06/28/16	<100 <100 <100 <100 105 <100 364 453 150 638 <100 <100 <250			<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 1.2 2.3	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<3.0 <3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.0 3.0 3.1 <3.0 3.1 <3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ov mpled				12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 9.98 9.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49
27.35	06/22/15 09/11/15 12/07/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ^{bb} 9/11/2015 ^{bd} 9/11/2015 ^{dd} 12/07/15 06/28/16 12/15/16	<100 <100 <100 <100 105 <100 363 453 150 638 <100 <250 408			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2 2.3 41.8	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 16.8 6.1 <1.0 1.4 5.5 8.7	<3.0 <3.0 <3.0 <3.0 <3.0 scressible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.1 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ov mpled				12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 6.67 9.41 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11 17.37 17.37 20.68 17.94 18.35
27.35	06/22/15 09/11/15 12/07/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 12/08/14 12/08/14 12/08/15 6/23/2015 ^{bb} 9/11/2015 ^{cc} 9/11/2015 ^{cc} 9/11/2015 ^{cc} 12/07/15 06/28/16	<100 <100 <100 <100 105 <100 364 453 150 638 <100 <100 <250			<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 1.2 2.3	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<3.0 <3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.0 3.0 3.1 <3.0 3.1 <3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0	d Vehicle Ov mpled				12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 9.98 9.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49
27.35	06/22/15 09/11/15 12/07/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ³⁶ 6/23/2015 ⁵⁶ 9/11/2015 ⁵⁷ 12/07/15 06/28/16 12/15/16 06/29/17	<100 <100 <100 <100 <100 105 <100 364 453 150 638 <100 <100 <200 408 <100			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2 2.3 41.8 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 18.7 16.8 6.1 <1.0 <1.0 1.4 <1.0 5.5 8.7 <1.0	<3.0 <3.0 <3.0 <3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.0 3.1 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	<1.0 ue to Parket auged or Sa <1.0 <1.0	d Vehicle Ovampled	rer Monumer 11.0 12.8			12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 6.67 9.41 9.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11 17.37 17.37 20.68 17.94 18.35 9.54
27.35	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 12/08/14 12/23/2015 ³⁶ 6/23/2015 ³⁶ 9/11/2015 ³⁶ 9/11/2015 ³⁶ 9/11/2015 ³⁶ 06/28/16 12/07/15 06/28/16 12/15/16 06/29/17 12/13/17 10/06/14 12/08/14	<100 <100 <100 <100 <100 <100 <100 <100			<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2 2.3 41.8 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 18.7 16.8 6.1 <1.0 <1.0 5.5 8.7 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<3.0 <3.0 <3.0 <3.0 <3.0 Not G 3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.1 3.1 3.0 3.0 3.2 3.2 3.2 3.0 3.0 3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0 <1.0 <1.0 <1.0	d Vehicle Ov mpled				12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 6.67 9.41 9.00 17.81 15.13 12.14 10.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11 17.37 17.37 20.68 17.94 18.35 9.54 12.22
27.35 MW-214	06/22/15 09/11/15 12/07/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 03/23/15 6/23/2015 ³⁶ 6/23/2015 ⁵⁶ 9/11/2015 ⁵⁶ 9/11/2015 ⁵⁶ 12/07/15 06/28/16 12/15/16 06/29/17 12/13/17 10/06/14 12/08/14 03/23/15	<100 <100 <100 <100 <100 <100 <100 364 453 150 638 <100 <100 <100 <100 <100 <100 <100 <10			<1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2 2.3 41.8 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 18.7 16.8 6.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	<3.0 <3.0 <3.0 3.0 accessible D Not G <3.0 <3.0 <3.0 <3.0 <3.0 18.5 27.8 3.1 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	<1.0					12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 6.67 9.41 9.00 17.81 15.13 12.14 10.84 9.45	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 17.37 17.37 20.68 17.94 18.35 9.54 12.22 16.49 17.88
27.35 MW-214	06/22/15 09/11/15 12/07/15 06/28/16 12/13/16 10/06/14 12/08/14 12/08/14 12/23/2015 ³⁶ 6/23/2015 ³⁶ 9/11/2015 ³⁶ 9/11/2015 ³⁶ 9/11/2015 ³⁶ 06/28/16 12/07/15 06/28/16 12/15/16 06/29/17 12/13/17 10/06/14 12/08/14	<100 <100 <100 <100 <100 <100 <100 <100			<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 4.9 70.6 43.1 9.4 2.2 3.4 1.2 2.3 41.8 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 Well Was In <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 18.7 16.8 6.1 <1.0 <1.0 5.5 8.7 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<3.0 <3.0 <3.0 <3.0 <3.0 Not G 3.0 <3.0 <3.0 <3.0 <3.0 <3.0 3.1 3.1 3.0 3.0 3.2 3.2 3.2 3.0 3.0 3.0	<1.0 ue to Parker auged or Sa <1.0 <1.0 <1.0 <1.0 <1.0	d Vehicle Ov mpled				12.15 11.87 10.60 11.63 10.40 9.39 9.24 9.24 9.98 9.98 6.67 9.41 9.00 17.81 15.13 12.14 10.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	16.94 17.22 18.49 16.95 17.96 18.11 18.11 17.37 17.37 20.68 17.94 18.35 9.54 12.22

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ua/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (ua/L)	Naphtha- lene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A D Level for Indwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	06/28/16							Not G	auged or Sa	ampled						
	12/15/16	<100			<1.0	<1.0	<1.0	<3.0						8.50	0.00	18.83
MW-215	10/06/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		12.25	0.00	
27.21	12/08/14 03/23/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0		<10.0	<10.0		11.14 9.82	0.00	16.07 17.39
	06/23/15	<100			<1.0	<1.0	<1.0	<3.0						9.98	0.00	17.23
	09/11/15	<100			<1.0	<1.0	<1.0	<3.0						10.26	0.00	16.95
	12/07/15	<100			<1.0	<1.0	<1.0	<3.0						6.24	0.00	20.97
	06/28/16	400		1	4.0	1.0	1.0		auged or Sa	ampled			1	0.00	0.00	47.04
	12/15/16 06/29/17	<100			<1.0	<1.0	<1.0	<3.0	/ell dewater	 od				9.30	0.00	17.91
	12/13/17	<100			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		15.75	0.00	11.46
MW-216	10/03/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		21.94	0.00	
29.68	12/09/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		13.97	0.00	15.71
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						12.43	0.00	17.25
	06/22/15 09/12/15	<100 <100			2.3 1.4	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						12.85 12.68	0.00	16.83 17.00
	12/07/15	<100			10.3	<1.0	<1.0	<3.0						11.57	0.00	18.11
	06/28/16	<250			<0.50	< 0.50	<0.50	<1.5						13.01	0.00	16.67
	12/13/16	<100			<1.0	<1.0	<1.0	<3.0						10.70	0.00	18.98
MM 047	12/12/17	<100			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		21.15	0.00	8.53
MW-217 30.08	10/03/14 12/09/14	<100 <100			1.8 6.1	9.1 <1.0	1.0 <1.0	5.3 <3.0	<1.0 <1.0		<10.0 14.7	<10.0 <10.0		23.64 13.42	0.00	 16.66
50.00	03/23/15	<100			4.5	<1.0	<1.0	<3.0						12.87	0.00	17.21
	06/22/15	105	-		4.8	<1.0	1	<3.0						13.13	0.00	16.95
	9/12/2015 ^{ee}	<100			<1.0	<1.0	<1.0	<3.0						12.42	0.00	17.66
	9/12/2015 ^{II}	197			4.4	<1.0	2.3	<3.0						12.42	0.00	17.66
	12/07/15 06/28/16	182 <250			1.6 <0.50	<1.0 <0.50	3.0 <0.50	<3.0 <1.5						11.37 12.95	0.00	18.71 17.13
	12/13/16	<100			<1.0	<1.0	<1.0	<3.0						11.35	0.00	18.73
	12/12/17	226			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		19.67	0.00	10.41
MW-218	10/03/14	492			<1.0	3.0	<1.0	8.4	<1.0		<10.0	<10.0		20.62	0.00	
29.64	12/09/14	616			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		13.05	0.00	16.59
	03/23/15 06/22/15	353 560			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 5.6						11.71 12.29	0.00	17.93 17.35
	9/12/2015 ⁹⁹	614			<1.0	<1.0	1.1	11.2		-				11.94	0.00	17.70
	9/13/2015 ^{hh}	258			<1.0	<1.0	1.2	11.4		-				11.94	0.00	17.70
	12/07/15	180			<1.0	<1.0	<1.0	<3.0						10.96	0.00	18.68
	06/28/16 12/13/16	06/28/16 Not Gauged or Sampled														
	12/13/16	<100			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		15.72	0.00	13.92
MW-219	10/06/14	147			<1.0	1.2	2.0	4.4	<1.0		<10.0	<10.0		14.18	0.00	
27.41	12/09/14	197			1.0	<1.0	2.4	5.8	<1.0		<10.0	<10.0		10.98	0.00	16.43
	03/23/15	<100			1.0	<1.0	<1.0	<3.0						9.91	0.00	17.50
	06/22/15 09/10/15	<100 <100			1.0 <1.0	<1.0 <1.0	<1.0 1.1	<3.0 <3.0						9.75 10.52	0.00	17.66 16.89
	12/07/15	<100			<1.0	<1.0	<1.0	<3.0		-				9.78	0.00	17.63
	06/28/16								auged or Sa	ampled						
	12/13/16	<100			<1.0	<1.0	<1.0	<3.0						9.90	0.00	17.51
01414.0	12/13/17	<100			<1.0	<1.0	<1.0	<3.0			<10.0	<10.0		14.99	0.00	12.42
SMW-3 29.03	03/08/95 06/06/95	<50 <50	400 <250	2,500 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1						10.25 10.23	0.00	
25.05	09/07/95	<50	300	<750	<0.5	<0.5	<0.5	<1						10.89	0.00	
	12/08/95	<50	300	<750	<0.5	<0.5	<0.5	<1						10.36	0.00	
	04/01/96	34,000	4,000	2,300	6,400	42	2,100	3,000						10.07	0.00	
	06/25/96	<50	320	<750	<0.5	<0.5	<0.5	<1						10.19	0.00	
	09/27/96 03/28/97	<50 <50	<250 <250	<750 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1						11.12 10.19	0.00	
	06/30/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1						10.19	0.00	
	09/08/97 ^b	<50	<250	<750	<0.5	<0.5	<0.5	<1						10.85	0.00	
	12/19/97 ^b	<50	521	<750	<0.5	<0.5	<0.5	<1						9.67	0.00	
	03/16/98 ^b	50.1	<250	<750	<0.5	<0.5	<0.5	<1						9.28	0.00	
	06/26/98 ^b 09/23/98 ^b	<50 <50	500 <250	<750 <750	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1 <1						8.87 9.88	0.00	
	12/17/98 ^b	<50	293	<750	<0.5	<0.5	<0.5	<1						9.22	0.00	
	03/31/99 ^b	<50	360	<750	<0.5	<0.5	0.53	4.97						9.01	0.00	
	06/30/99b	<50	639	<750	<0.5	0.609	<0.5	1.32						9.55	0.00	
	12/08/99 ^b	<50	<484	<1,450	<0.5	<0.5	<0.5	<1						8.75	0.00	
	06/20/00 ^b 12/19/00	<50 	<250	<750	<0.5	0.585	<0.5	1.86						8.89 NM	0.00 NM	
	06/15/01 ^b	<50	368	<866	<0.5	<0.5	<0.5	<1						7.23	0.00	
	06/26/01													NM	NM	
	09/07/01 ^b	<50	385	<571	<0.5	<0.5	<0.5	<1						9.19	0.00	
	10/10/01													NM	NM	
	12/28/01	<50	1,160	<500	<0.5	0.902	<0.5	2.78						8.89 NIM	0.00	
	03/08/02 06/24/02													NM NM	NM NM	
	09/26/02	<100	<250	<500	1.83	<2	<1.00	<1.5						10.32	0.00	
														NM	NM	
	12/12/02															
	03/13/03	<50 	<250	<500 	<0.5	<0.5	<0.5	<1 Table 1						10.99 NM	0.00 Nade 2	 7

Sample	Sample	TPH-	TPH-	TPH- Oil	Benzene	Toluene	Ethyl-	Total	MTBE		Total Lead			DTW (foot)	SPH (feet)	GWE
I.D. MTCA	Date Method A	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	09/19/03	<50	<287	<575	<0.5	<0.5	<0.5	<1						11.00	0.00	
	01/14/04													NM	NM	
	03/30/04 06/22/04	<100 	<119 	<238	<1 	<1 	<1 	<2 						10.42 NM	0.00 NM	
	09/29/04	56	<242	<483	<0.5	<0.5	<0.5	<1.0						11.67	0.00	
	12/29/04													NM	NM	
	03/17/05 06/01/05	<100 <100	<248 <249	<495 <498	<1 <1	<1 <1	<1 <1	<2 <2	 <1					11.68 10.62	0.00	
	07/25/05	<50	<250	<500	<0.2	<0.2	<0.2	<0.5	<1	<0.5				11.19	0.00	
29.03	11/08/05	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1					11.77	0.00	17.26
	02/24/06	<50	<278	<556	<0.5	<0.5	<0.5	<0.5	<1	<1	<1			11.84	0.00	17.19
	08/30/06 10/11/06	<80 <50	<243 <243	<485 <485	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <1	<1 <1			10.70	0.00	18.33
	12/13/06	<50	<236	<472	<0.5	<0.5	<0.5	<3	<1	<5	<1			12.14	0.00	16.89
	03/08/07	<50	<250	<500	<0.5	<0.5	<0.5	<3	<1	<5	<1			11.68	0.00	17.35
	06/13/07	06/13/07 Not Accessible 09/12/07 Not Accessible														
	12/17/07 Not Accessible 03/17/08 Unable to locate															
01004.0																
SMW-3 contd.	06/02/08 08/05/08	<50 <50	<236 <236	<472 <472	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<3 <3	<1 <1	<5 <5	<1 4.54	<1 <1	<236 <236	9.05 7.64	0.00	19.98 21.39
27.40	11/04/08	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00		<5.00	5.88	<1.00	<238	9.70	0.00	17.70
	02/25/09	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00		<5.00	<1.00	<1.00	<240	9.90	0.00	17.50
	05/17/09 08/17/09	<50	<250	<490	<0.50	<0.50	<0.50	<2.0	lot Accessib <1.0	e <5.0	<5.0	<5.0	<250	10.10	0.00	17.30
	11/17/09	<50 <50	<240	<490	<0.50	<0.50	<0.50	<2.0	<1.0	<5.0 <5.0	1.2	<5.0	<240	9.53	0.00	17.87
	02/22/10	<50.0	107	605	<1.0	<1.0	<1.0	<3.0		<1.0	0.26	<0.10	<76.2	9.90	0.00	17.50
	05/24/10 08/18/10	<50.0 <50.0	255 <77.7	510 <388	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	.42	<0.10 <0.10	100 <77.7	8.50 9.29	0.00	18.90 18.11
	11/16/10	<50.0 <50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.10	<77.7	10.11	0.00	17.29
	03/01/11	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0		<77.7	9.85	0.00	17.55
	06/15/11	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0			0.21	<0.10		8.55	0.00	18.85
	08/30/11 12/06/11	<50.0 <50.0	<86.0 <82.5	<430 <412	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<u></u>	<1.0 <10.0	0.13 0.13	0.14 0.38	<86.0 <82.5	9.63 10.13	0.00	17.77 17.27
	02/15/12	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0		2.1	<10.0	<10.0	<82.5	10.22	0.00	17.18
	05/16/12	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		2.9	<10.0	<10.0	<83.3	8.64	0.00	18.76
	08/15/12 12/13/17	<50.0 <100	<85.1 	<426 	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0	<10.0 <10.0	<10.0 <10.0	<85.1 	9.30 10.82	0.00	18.10 16.58
SMW-4	03/08/95	39,000	4,100	5,100	13,000	<250	2,400	8,200						8.14	0.00	
	06/06/95	41,000	5,500	<750	9,400	44	2,700	4,900	-					8.90	0.00	
	09/07/95 12/08/95	40,000	1,500	920	 8,100	 57.0	2,600	3,600						8.99 7.56	0.00	
	04/01/96	<50	<250	<750	<0.5	<0.5	<0.5	<1	-					8.13	0.00	
	06/25/96	28,100	2,680	630	3,900	81.4	1,710	1,710						8.20	0.00	
	09/27/96 03/28/97	28,600	2,460	<750 	6,090	<0.5	2,060	1,730						8.62 8.20	0.00	
	06/30/97								-					8.06	0.00	
	09/08/97													9.00	0.00	
	12/19/97 03/16/98						LPH 	Present 						9.41 9.09	0.04	
	06/26/98							Present						8.76	Trace	
	09/23/98							Present						9.96	0.05	
	12/17/98 03/31/99							Present Present						10.22 8.70	Trace Trace	
	06/30/99							Present						8.20	Trace	
	12/08/99							cessible						NM	NM	
	06/20/00 12/19/00							cessible cessible						NM NM	NM NM	
	06/15/01							cessible						NM	NM	
	06/26/01													NM	NM	
	09/07/01 10/10/01						Inac	cessible 		l				NM NM	NM NM	
	12/28/01			i				cessible		1			i	NM	NM	
	03/08/02													NM	NM	
	06/24/02 09/26/02													NM NM	NM NM	
	12/12/02													NM	NM	
	03/13/03						-							9.55	0.00	
	06/12/03 09/19/03													NM 10.58	0.00	
	01/14/04													10.58 NM	NM	
	07/25/05	14,500	6,490	1,110	2,120	<20	908	<50	<1	312				9.04	Sheen	
28.33	11/02/05	17,200	3,210	<472	2,440	<50	1,390	<300	<100	442	 15.9			10.10	0.00	18.23
	02/24/06 05/11/06	17,800 18,700	3,160 ⁹ 1,520	<472 <490	2,730 2,130	13.4 <25	1,330 1,120	<60 <150	<20 <50	442 531	15.8 29.4			5.07 9.29	0.00	23.26 19.04
	08/31/06	8,190	651g	<495	1,800	11.9	1,000	1,350	<10	366	20.0			10.56	0.00	17.77
Charat 4	12/13/06	16,800	682	<472	1,880	<20	1,240	1,550	<40	465	9.5			9.27	0.00	19.06
SMW-4 contd.	03/08/07 06/13/07	16,500 13,000	1,010 963 ^g	<490 <495	2,000 2,070	<20 14.4 ^J	1,480 1,720	1,820 42.6 ^J	40.0 <1	991 1,160	7.42 7.74			9.19 9.21	0.00	19.14 19.12
oonia.	09/13/07	15,000	834	<476	2,170	16.3	1,800	2,410	<1	598	7.57			9.45	0.00	18.88
	12/19/07	12,400	904	<472	1,400	4.8	640	1 3579 1	<1	310	8.66			8.51	ም Ձge 2	8 19.82

Table 1 Summary of Historical Groundwater Gauging and Laboratory Analytical Data Phillips 66 Site No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington

Sample I.D.	Sample Date	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (ug/L)	Toluene (ua/L)	Ethyl- benzene	Total Xvlenes	MTBE (µa/L)	Naphtha- Iene	Total Lead (ug/L)	Dissolved Lead	Kerosone (ua/L)	DTW (feet)	SPH (feet)	GWE (feet)
Cleanup	Method A Level for ndwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-	-	
	03/17/08	1,630	<236	<472	78.1	1.23	1.34	8.17	<1	5.71	3.82	3.82	<1	8.92	0.00	19.41
	06/03/08	14,600	753	<472	1,330	6.02	866	15.40	<1	292	10.40	<1	3,840	8.98	0.00	19.35
	08/06/08 11/03/08	10,300 15,800	959 1,400	<472 <472	1,210 1,290	5.29 6.95	782 1,620	<3 24.40	<1 <1.00	454 <500	9.96 12.30	7.91 8.88	3,280 5,450	9.47 9.41	0.00	18.86 18.92
	11/18/08	10,000	1,400	\41Z	1,200	0.55	1,020		ecommission		12.50	0.00	3,430	3.41	0.00	10.52
SMW-5	07/25/05	3,110	835 ^b	<500	40.2	0.790	41.8	21.48	<1	24.6				10.40	0.00	
29.17	11/02/05	1,950 ^m	1,930 ^{f,g}	<490	52.9	3.43	58.0	64.8	<2					10.51	0.00	18.66
	02/22/06 05/11/06	3,530 3,140	<248 1,110	<495 <500	176 140	<2.5 2.95	31.8 53.6	18.5 31.1	<5 <5	50.0 49.2	4.21 <1			10.42 10.59	0.00	18.75 18.58
	08/31/06	942	248p	<472	51.8	1.73	9.01	11.3	<1	30.3	2.12			11.45	0.00	17.72
	12/13/06	3,780	318	<472	177.0	6.62	93.9	53.4	<2	60.8	<1			10.42	0.00	18.75
	03/08/07	2,560	<236	<472	80.4	0.840	8.81	6.35	<1	51.3	2.12			10.27	0.00	18.90
	06/13/07 09/13/07	2,850 J 1,350	301 ^g 258	<485 <476	61.2 35.0	0.880 1.43	8.21 19.5	5.43 <3	<1 <1	17.2 18.2	<1 <1			10.15 10.29	0.00	19.02 18.88
	12/18/07	3,610	264	<472	150.0	8.10	140.0	41.20	<1	66.0	1.83			8.45	0.00	20.72
	03/17/08	3,450	288	<472	1,110	93.9	1.03	20.4	4.28	<1	15.7	<1	<1	9.75	0.00	19.42
	06/03/08	1,580	<236	<472	24.4	0.89	12.9 17.1	5.15 4.78	<1	9.06	2.72	<1	682 941	10.11 10.70	0.00	19.06 18.47
	08/05/08 11/03/08	2,050 2,890	259 280	<472 <476	18.2 6	1.28 1.03	21.5	5.59	<1 <1.00	6.2 8.59	1.54 1.14	<1 <1.00	1190	10.70	0.00	19.17
	11/18/08	2,000	200	V-17-0		1.00	21.0		ecommission			V1.00	1100		0.00	10.17
	11/21/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0	<3.0	<3.0	<100	9.16	0.00	18.24
	11/06/13 07/29/14	<400 <100	<400 	<400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0 <1.0		<10.0 <10.0	<10.0 <10.0	<400	10.10 10.85	0.00	17.30 16.55
27.32	12/09/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		119	<10.0		9.94	0.00	17.38
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						9.39	0.00	17.93
	06/23/15 09/11/15	<100			<1.0	<1.0	<1.0	<3.0						9.39	0.00	17.93
	12/07/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						10.25 8.78	0.00	17.07 18.54
	06/28/16	V100			<1.0	V1.0		Sampled						9.09	0.00	18.23
	12/15/16	<100			<1.0	<1.0	<1.0	<3.0						10.20	0.00	17.12
MWR-1 29.91	11/17/10	<50.0 <50.0	<77.7 <77.7	<388 <388	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0	<10.0 <10.0	<10.0	<77.7 <77.7	9.75 10.23	0.00	20.16 19.68
29.91	03/03/11 06/15/11	<50.0 <50.0	<83.3	<388 <417	<1.0	<1.0	<1.0	<3.0		<1.0	1.5	<0.10	11.1</td <td>10.23</td> <td>0.00</td> <td>19.68</td>	10.23	0.00	19.68
	08/30/11	<50.0	<86.0	<430	<1.0	<1.0	<1.0	<3.0		<1.0	0.51	<0.10		10.97	0.00	18.94
	12/06/11	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		<10.0	0.68	0.62	<83.3	10.80	0.00	19.11
	02/16/12 05/15/12	<50.0 <50.0	<81.6 <81.6	<408 <408	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 3.8	<10.0 <10.0	<10.0 <10.0	<81.6 <81.6	10.51 10.20	0.00	19.40 19.71
	08/15/12	<50.0	<85.1	<426	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<85.1	10.20	0.00	19.71
	11/20/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0	<3.0	<3.0	<100	8.82	0.00	21.09
	11/06/13	<400	<400	<400	<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0	<400	12.04	0.00	17.87
29.86	07/29/14 12/08/14	<100			<1.0	<1.0	<1.0	<3.0	Well was dr	y 	<10.0	<10.0		12.51	0.00	17.35
20.00	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						11.13	0.00	18.73
	06/22/15	<100			<1.0	<1.0	<1.0	<3.0						12.43	0.00	17.43
	09/11/15 12/07/15	<100 <100			<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						12.01 10.58	0.00	17.85 19.28
	06/28/16	<100			<1.0	V1.0		Sampled						12.21	0.00	17.65
	12/14/16	<100			<1.0	<1.0	<1.0	<3.0						10.35	0.00	19.51
MANAGE O	06/29/17	50.0	77.7	000	1 40	4.0	1 40		lot accessib		1447	100		0.00	0.00	00.47
MWR-2 28.25	11/17/10 03/01/11	<50.0 <50.0	<77.7 <77.7	<388 <388	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	11.7 16.0	<10.0	<77.7 <77.7	8.08 8.61	0.00	20.17 19.64
20.20	06/14/11	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0			3.1	<0.10		8.67	0.00	19.58
	08/29/11	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		<1.0	0.35	0	<87.0	9.32	0.00	18.93
	12/06/11 02/16/12	<50.0 <50.0	<86.0 <81.6	<430 <408	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<10.0 2.0	1.3 <10.0	<0.10 <10.0	<86.0 <81.6	9.09 8.97	0.00	19.16 19.28
	05/15/12	<50.0	<75.8	<379	<1.0	<1.0	<1.0	<3.0		3.8	<10.0	<10.0	<75.8	8.62	0.00	19.63
	08/15/12	<50.0	<84.2	<421	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<84.2	9.05	0.00	19.20
	11/20/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0	<3.0	<3.0	<100	7.32	0.00	20.93
	11/06/13 07/29/14	<400	<400	<400	<1.0	<1.0	<1.0	<3.0 0.65 foot of	<1.0 water in wel	l can: well w	<10.0 as not samp	<10.0	<400	10.33	0.00	17.92
28.16	12/08/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		12.51	0.00	15.65
-	03/23/15				-	*	-	Coul	d Not Locate							
	06/22/15								d Not Locate							
	09/10/15 12/07/15								d Not Locate d Not Locate							
	06/28/16							Not G	auged or Sa	ampled						
1414/5 0	12/14/16	F0.0	00.0			4 :			d Not Locate		40.0	40.0	4 4 4 4	0.00	0.00	40.01
MWR-3 29.76	11/17/10 03/01/11	<50.0 <50.0	83.6 <77.7	<385 <388	<1.0 <1.0	1.4 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <1.0	<10.0 <10.0	<10.0	1,140 <77.7	9.82 10.17	0.00	19.94 19.59
20.70	06/15/11	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0			0.74	<0.10		10.17	0.00	19.58
	08/30/11	<50.0	<88.9	<444	<1.0	<1.0	<1.0	<3.0		<1.0	0.38	<0.10	<88.9	10.87	0.00	18.89
	12/06/11	<50.0	<86.0	<430	<1.0	<1.0	<1.0	<3.0		<10.0	<0.10	<0.10	<86.0	10.63	0.00	19.13
	02/16/12 05/15/12	<50.0 <50.0	<81.6 <81.6	<408 <408	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		2.0 <1.0	<10.0 <10.0	<10.0 <10.0	<81.6 <81.6	10.51 10.22	0.00	19.25 19.54
			<87.0	<435	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<87.0	10.22	0.00	19.34
	08/15/12	<50.0								<4.0	<3.0	<3.0	<100	9.86	0.00	19.90
	08/15/12 11/20/12	<100	<100	<100	<1.0	<1.0	<1.0	<3.0		<4.0						
	08/15/12 11/20/12 11/06/13			<100 <400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0	<1.0		<10.0	<10.0	<400	11.52	0.00	18.24
29.67	08/15/12 11/20/12 11/06/13 07/29/14	<100	<100					<3.0			<10.0					18.24 17.15
29.67	08/15/12 11/20/12 11/06/13	<100 <400 <100 <100	<100 <400	<400	<1.0	<1.0	<1.0	<3.0	<1.0 Well was dr	 y		<10.0	<400	11.52	0.00	17.15 18.69

Table 1 Summary of Historical Groundwater Gauging and Laboratory Analytical Data Phillips 66 Site No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington

Sample	Sample	TPH-	TPH-	TPH-	Benzene	Toluene	Ethyl-	Total	MTBE	Naphtha-	Total Lead	Dissolved	Kerosone	DTW	SPH	GWE
I.D.	Date	Gasoline	Diesel	Oil	(ua/L)	(ua/L)	benzene	Xvlenes	(ua/L)	lene	(ua/L)	Lead	(ua/L)	(feet)	(feet)	(feet)
Cleanup	Method A Level for Idwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500			
	09/11/15	<100			<1.0	<1.0	<1.0	<3.0						11.99	0.00	17.68
	12/07/15	<100			<1.0	<1.0	<1.0	<3.0						10.34	0.00	19.33
	06/28/16								auged or Sa	ampled						
	12/14/16	<100			<1.0	<1.0	<1.0	<3.0						10.35	0.00	19.32
MWR-4	11/17/10	141	<76.9	<385	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	140	8.98	0.00	19.90
28.88	03/01/11 06/14/11	<50.0 <50.0	<77.7 <85.1	<388 <426	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0	<10.0 0.63	<0.10	132	9.44 9.32	0.00	19.44 19.56
	08/29/11	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0		<1.0	0.03	0	<82.5	10.02	0.00	18.86
•	12/06/11	<50.0	<83.3	<417	<1.0	<1.0	<1.0	<3.0		<10.0	<0.10	0.29	<83.3	9.78	0.00	19.10
	02/16/12	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0		2.0	<10.0	<10.0	<82.5	10.72	0.00	18.16
	05/15/12	<50.0	<81.6	<408	<1.0	<1.0	<1.0	<3.0		3.8	<10.0	<10.0	<81.6	9.32	0.00	19.56
	08/15/12 11/20/12	<50.0 <100	<82.5 <100	<412 <100	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0 <4.0	<10.0 <3.0	<10.0 <3.0	<82.5 <100	9.82 9.31	0.00	19.06 19.57
ŀ	11/20/12	<400	<400	<400	<1.0	<1.0	<1.0	<3.0	<1.0	<4.0	<10.0	<10.0	<400	11.02	0.00	17.86
	07/29/14	1100	1100	1100	V1.0	ν1.0	V1.0		Well was dr		110.0	V10.0	1100	11.02	0.00	17.00
28.80	12/08/14	<100			<1.0	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		12.06	0.00	16.74
	03/23/15	<100			<1.0	<1.0	<1.0	<3.0						10.53	0.00	18.27
	06/22/15	<100 <100	-		<1.0	<1.0	<1.0	<3.0						11.55 11.30	0.00	17.25 17.50
	09/11/15 12/07/15	<100	<u></u>		<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0						10.07	0.00	18.73
ŀ	06/28/16	\100			<u> </u>	×1.0	<u> </u>		auged or Sa		ļ			10.01	0.00	10.73
	12/14/16	<100			<1.0	<1.0	<1.0	<3.0						9.50	0.00	19.30
MWR-5	11/17/10	15,900	423	<388	199	371	592	3,710		157	<10.0	<10.0	5,080	7.91	0.00	19.36
27.27	02/28/11	21,800	368	<388	195	444	642	3,430		143	<10.0		4,650	8.60	0.00	18.67
	06/14/11	22,700	323	<400	192	383	719	4,340			4.1	0	7.000	7.82	0.00	19.45
ŀ	08/29/11 12/05/11	35,400 30,500	478 235	<408 <412	244 211	271 450	861 1,140	4,500 5,960		338 193	0.95 1.3	0.62 0.52	7,060 9,580	8.50 7.75	0.00	18.77 19.52
ŀ	02/16/12	9,490	160	<396	68.7	9.1	218	1,090		88.2	<10.0	<10.0	2,330	8.93	0.00	18.34
	05/15/12	27,900	298	<404	181	160	813	4,830		226	<10.0	<10.0	4,650	8.01	0.00	19.26
	08/14/12	7,720	329	<440	60.5	3.80	244	1,280		81.3	<10.0	<10.0	2,560	8.62	0.00	18.65
	11/20/12	35,500	15,500	<100	306	471	1,520	10,700		342	5.8	<3.0	20,500	5.11	0.00	22.16
ŀ	11/06/13 07/29/14	3,820	<400	<400	23.0	<1.0	150	286	<1.0 /ell dewatere	 ad	<10.0	<10.0	1,100	9.45	0.00	17.82
27.12	12/08/14	20,400			<1.0	2.1	430	1,400	<1.0		<10.0	<10.0		10.54	0.00	16.58
	03/23/15	11,900			31.0	1.4	459	1,030	<1.0		<10.0	<10.0		8.98	0.00	18.14
	06/22/15	14,700			22.9	<10.0	455	843						9.98	0.00	17.14
	09/10/15	10,700			35.0	1.1	223	644						9.51	0.00	17.61
ŀ	12/07/15 06/28/16	10,800		l	14.9	<1.2	232	Well Submer 519	ged Under S	Surrace vvate	er 			9.54	0.00	17.58
•	12/14/16	51,900			45.6	7.4	1,920	6,350						8.45	0.00	18.67
•	06/29/17	0.,000				1	.,020		/ell dewatere	ed.			<u>l</u>	0.10	0.00	10.07
	12/13/17	713			<1.0	<1.0	2.4	20.3			<10.0	<10.0		13.94	0.00	13.18
MWR-6	11/16/10	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<77.7	10.10	0.00	19.15
29.25	02/28/11	<50.0	<77.7	<388	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0		<77.7	10.89	0.00	18.36
ŀ	06/14/11 08/29/11	<50.0 <50.0	<80.8 <87.0	<404 <435	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0		<1.0	1.3 0.3	<0.10 <0.10		10.11 10.75	0.00	19.14 18.50
ŀ	12/05/11	<50.0	<82.5	<412	<1.0	<1.0	<1.0	<3.0		<10.0	0.54	0.11	<82.5	9.48	0.00	19.77
ļ	02/16/12	<50.0	<75.5	<377	<1.0	<1.0	<1.0	<3.0		2.8	<10.0	<10.0	<75.5	11.90	0.00	17.35
	05/15/12	<50.0	<81.6	<408	<1.0	<1.0	<1.0	<3.0		3.8	<10.0	<10.0	<81.6	10.26	0.00	18.99
[08/14/12	<50.0	<85.1	<426	<1.0	<1.0	<1.0	<3.0		<1.0	<10.0	<10.0	<85.1	10.45	0.00	18.80
}	11/20/12 11/06/13	<100 <400	<100 <400	<100 <400	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0	<4.0	<3.0 <10.0	<3.0 <10.0	<100 <400	9.59 11.77	0.00	19.66 17.48
	07/29/14	< 4 00	<400	<400	<1.0	<1.0	<1.0		/ell dewatere		< 10.0	< 10.0	<400	11.77	0.00	17.40
29.12	12/08/14	<100			5.1	<1.0	<1.0	<3.0	<1.0		<10.0	<10.0		12.51	0.00	16.61
	03/23/15	<100			1.7	<1.0	<1.0	<3.0						11.66	0.00	17.46
	06/22/15	<100			1.6	<1.0	<1.0	<3.0						12.38	0.00	16.74
	09/11/15	<100			<1.0	<1.0	<1.0	<3.0						11.98	0.00	17.14
ŀ	12/07/15 06/28/16	<100 <250			1.9 <0.50	<1.0 <0.50	<1.0 <0.50	<3.0 <1.5						10.89 11.75	0.00	18.23 17.37
ŀ	12/14/16	<100			<1.0	<1.0	<1.0	<3.0						10.85	0.00	18.27
ŀ	06/29/17				-1.0	-11.0	-1.0		/ell dewatere		1			. 0.00	0.00	
·		<u> </u>														
Cleanup	Method A Level for Idwater	1000/800 ^k	500	500	5	1,000	700	1,000	20	160	15	15	500	-		

Table 1 Page 30

Table 1

Summary of Historical Groundwater Gauging and Laboratory Analytical Data

Phillips 66 Site No. 255353 (AOC 1396) 600 Westlake Avenue N. Seattle, Washington

NOTES:

μg/L = micrograms per liter

mg/L = milligrams per liter

TOC = Relative top of casing elevation

DTW = Depth to water

SPH = Separate-phase hydrocarbon thickness

GWE = Groundwater table elevation relative to DTW data; corrected for SPH where applicable using a specific gravity of 0.80

<n = Below the detection limit

"--" = Not analyzed, sampled, or reported

NM = Not Measured

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx

BTEX Compounds - Analysis by EPA Method 8020A, 8021B or 8260B

Total Lead Analysis via EPA Method 6020.

Values in BOLD are detectable concentrations exceeding the MTCA Method A groundwater cleanup level.

^a Top of casing elevations shown prior to November 2005 based on information provided by a previous consultant. All TOC elevations were re-surveyed between November 1 and November 15, 2005 relative to N.A.V.D. 1988 using a City of Seattle benchmark by Delta Environmental Consultants. All wells were again surveyed on December 8, 2015 by Cardno WRG.

- ^b Well was not purged prior to sample collection.
- $^{\rm c}$ TPH-Diesel and TPH-Oil did not resemble chromatogram used for quantitation.
- ^d Well casing was trimmed down during monument replacement in December 2004. New TOC elevation surveyed on January 27, 2005.
- ^e Quality control failed due to laboratory error, Quantitative analytical results not reported.
- ^f Contaminant does not appear to be "typical" product.
- ⁹ Chromatogram suggests that this may be overlap from the gasoline range.
- ^h Chromatogram suggests that this may be overlap from the motor oil range.
- ^H Anlaysis was performed outside of the method specified holding time
- ^j Surrogate recovery outside advisory QC limits due to matrix interference.
- k MTCA Method A Cleanup Level for TPH-Gasoline is 1,000 ug/L if benzene is not detectable in the groundwater sample. Otherwise, the action level is 800 ug/L.
- ¹ Samples analyzed using Northwest Method NWTPH-Dx without acid/silica gel cleanup.
- m Surogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present.
- ⁿ Detected hydrocarbons due mainly to cleanup artifact. There is no diesel present.
- ° DO meter was unavailable.
- ^p The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- ^q Analyte had a high bias in the associated calibration verification standard.
- Laboratory Control Sample and/or Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.
- s Dilluted due to matrix effect.
- ^tThe total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range.
- ^u Due to laboratory error, the samples were not analyzed for EPA 8260B compounds.
- ^v Possible field error.
- WDTW not recorded prior to sampling. Approximate value based on last quarter's initial DTW and when sampling began
- ^xThe benzene and ethyl benzene concentrations were outside the calibration range of the instrument. A new concentration was measured during a second run, but this run was outside of the holding time for the sample. The laboratory still considers this value to be more accurate than the original estimated value listed in the lab report.
- ^YThe Chromatogram response resembles a typical fuel pattern
- ^Z Well casings for MW-45 and MW-54 were compromised and repaired during installation of remediation conveyance piping. Wells were re-surveyed in July 2014.
- ^{aa} Sample collected prior to High Intensity Targeted Extraction Event on June 23, 2015.
- bb Sample collected immediately after High Intensity Targeted Extraction Event on June 23, 2015.
- ^{cc} Sample collected prior to High Intensity Targeted Extraction Event on September 11, 2015.
- dd Sample collected immediately after High Intensity Targeted Extraction Event on September 11, 2015.
- ee Sample collected prior to High Intensity Targeted Extraction Event on September 12, 2015.
- ^{ff} Sample collected immediately after High Intensity Targeted Extraction Event on September 12 , 2015.
- ⁹⁹ Sample collected prior to High Intensity Targeted Extraction Event on September 13, 2015.
- hh Sample collected immediately after High Intensity Targeted Extraction Event on September 13 , 2015.
- "-- $^{u_{\text{"}}}$ = Due to laboratory error, the samples were not analyzed for EPA 8260B compounds.

Table 2 Summary of Current Soil Impacts Phillips 66 Facility No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington

	Sample	Comple	TDU 01		VOCs ² (r	ng/kg)		
Sample ID	Depth (feet)	Sample Date	TPH-G ¹ (mg/kg)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Lead ³ (mg/Kg)
MW-45-3	7.5	10/29/91	1,900	6.1	56	63	370	980
MW-45-5	15.0	10/29/91	24	1.8	3.5	2.6	15	
MW-54-5	5	06/07/05	37	1.9	3.8	1.2	4.2	91.5
MW-54-10	10	06/07/05	12	0.95	0.21J	0.19J	0.76	94.1
SB-21-10	10	07/21/05	22.5	1.02	<0.221	2.61	1.53	3.87
B-A1-15	15	11/14/06	103	0.00307	<0.00133	0.0116	<0.00888	8.25
C-A1-15	15	11/27/06	55.7	0.0134	0.0618	0.191	1.88	18.7
C-B2-15	15	11/27/06	<4.55	0.0359	<0.00176	<0.00468	<0.0117	4.27
D-B1-15	15	01/10/07	<4.22	0.147	<0.0844	<0.0844	<0.253	2.68
D-B2-15	15	01/10/07	<5.50	0.301	<0.110	<0.110	<0.330	31.1
D-C1-15	15	01/10/07	103	0.251	1.20	2.11	8.87	8.44
D-C2-15	15	01/10/07	32.5	0.0462	0.146	0.623	2.99	4.73
E-A1-15	15	01/10/07	<4.15	0.645	<0.0829	<0.0829	<0.249	9.16
E-A2-15	15	01/10/07	6.28	0.0661	<0.0836	0.115	0.266	4.21
E-B1-15	15	01/10/07	<5.06	0.0466	<0.101	<0.101	<0.304	7.92
E-B2-15	15	01/10/07	13.0	0.0677	0.169	0.216	1.01	8.37
F-A2-15	15	01/15/07	127	<0.0248	<0.0826	0.3250	4.53	12.1
F-A3-15	15	01/15/07	121	0.0852	<0.0878	0.747	6.00	21.1
F-B2-15	15	01/15/07	101	0.105	<0.0937	<0.0937	2.21	7.16
F-C3-15	15	01/15/07	17.2	0.0943	<0.0881	0.121	0.663	12.9
G-A1-15	15	01/17/07	25.7	0.0564	<0.0972	0.194	0.463	4.39
G-A2-15	15	01/17/07	442	0.340	0.991	6.72	19.8	13.8
G-B1-15	15	01/17/07	138	0.374	0.424	1.12	4.05	12.7
G-B2-15	15	01/17/07	212	0.552	2.86	2.65	13.4	13.0
G-B3-15	15	01/16/07	6.85	0.892	<0.0908	<0.0908	<0.272	34.9
G-C1-15	15	01/17/07	589	0.714	8.04	6.95	23.4	32.9
G-C2-15	15	01/17/07	332	2.82	7.85	4.63	18.9	5.15
G-C3-15	15	01/16/07	120	0.164	1.05	1.51	9.15	13.2
H-A1-15	15	01/18/07	1,070	1.32	15.0	14.5	79.0	11.7
H-A2-15	15	01/18/07	67	0.446	1.26	0.995	5.63	3.96
H-A3-15	15	01/18/07	1,760	1.77	25.6	26.9	145	16.6
H-B1-15	15	01/18/07	2,550	1.71	32.5	34.6	211	4.89
H-B3-15	15	01/18/07	1,800	2.79	45.2	35.2	198	8.23
H-C1-15	15	01/18/07	298	1.43	1.19	5.85	15.3	17.0
H-C2-15	15	01/18/07	5,520	9.23	<0.0951	119	592	8.13
H-C3-15	15	01/18/07	38	0.134	0.756	0.568	3.09	11.6
A-A1-14	14	12/14/06	22.0	0.427	0.347	0.548	1.87	4.22
A-A2-15.5	15.5	12/14/06	190	<0.833	3.6	10.8	43.1	10.2
A-A3-15.5	15.5	12/14/06	194	<0.869	4.42	10.4	41.7	17.2
A-B1-15.5	15.5	12/14/06	216	<0.415	0.837	3.90	12.7	3.81
A-B2-15.5	15.5	12/14/06	324	<0.891	12.5	10.6	49.5	81.0
A-C1-15.5	15.5	12/14/06	390	<0.499	<0.499	8.37	14.1	12.3
A-C2-15.5	15.5	12/14/06	91.9	0.862	1.28	1.58	6.75	55.3
A-C3-15.5	15.5	12/14/06	34.8	0.115	0.369	0.395	1.20	2.92
G5	14*	03/25/09	1,120J	2.73J	14.9J	11.7J	49.0J	161
G6	14*	03/25/09	306J	0.468J	1.79J	3.40J	13.5J	188
G7	14*	03/24/09	145J	0.0938	0.669	1.18	4.64	55.2J
G8	14*	03/24/09	553J	0.201J	2.02	3.80	16.5J	58.4J
G9	14*	03/24/09	895J	0.297J	4.24J	5.08J	27.1J	85.1J
G10	14*	03/23/09	181J	0.0317	0.669	2.70	4.93	88.0
H5	14*	03/19/09	51.0J/172J	0.298J/0.703J	0.453J/2.08J	0.784J/2.98J	2.80J/ 10.9J	59.6J/30.0J
H6	14*	03/24/09	245J	0.129	1.15	2.10	8.11	55.5J
H7	14*	03/24/09	214J	0.0874	0.768	1.58	5.89	96.3J
H8	14*	03/24/09	528J	0.157	2.17	3.91	17.3	156J
H9	14*	03/19/09	139J	<0.235	<1.17	<1.17	4.56	15.4J
17	14*	03/19/09	44.7	0.0115	0.107	0.115	2.93	11.6J
19	14*	03/24/09	609J	0.0772	3.03	4.66	23.6	91.1J
I10	14*	03/23/09	111J	0.0642	<1.16	<1.16	<3.48	76.7
J5	14*	03/24/09	520	0.0102	0.0303	1.36	11.5	52.3J
J7	14*	03/19/09	84.4J	0.0283	0.177	0.192	0.739	192J
J8	14*	03/19/09	18.2J	0.0140	0.0104	0.0122	0.102	298J
K5	14*	03/20/09	56.2J	0.056J	0.186	0.632J	1.58J	74.9

Table 2

Summary of Current Soil Impacts Phillips 66 Facility No. 255353 (AOC 1396) 600 Westlake Avenue North

Seattle, Washington

	Sample	Sample	TPH-G ¹		VOCs ² (n	ng/kg)		Lead ³
Sample ID	Depth (feet)	Date	(mg/kg)	Benzene	Toluene	Ethyl-benzene	Total Xylenes	(mg/Kg)
K9	14*	03/23/09	132	0.00539	<0.285	0.919	2.72	386J
C8	14*	04/16/09	7.07J/13.1J	0.0460/ 0.0214	0.00798/0.00246	0.0954J/0.0317	0.458/0.554	3.23J/3.73J
MWR-5@10'	10	11/03/10	255	0.134	3.860	7.670	31.600	21.4
SVER-2@2.5'	2.5	10/29/10	<6.7	< 0.0034	< 0.0034	< 0.0034	<0.0103	410
B-213-10'	10.0	10/01/14	130	<0.0547	< 0.0547	<0.0547	<0.164	35.9
B-215-10'	10.0	10/01/14	<9.3	0.274	< 0.963	< 0.963	<0.289	6.9
B-218-10'	10.0	10/03/14	635	<0.0578	<0.0578	<0.0578	<0.173	11.2
B-218-15'	15.0	10/03/14	55.5	0.0092	0.009	<0.0048	<0.0145	54.2
B-218-20'	20.0	10/03/14	272	0.0129	0.0418	<0.0064	0.973	74
MTCA Method A Clea	anup Level		100 ⁴ /30 ⁵	0.03	7.0	6.0	9.0	250

Notes:

- 1. Total Petroleum Hydrocarbons as gasoline range hydrocarbons (TPH-G) by NWTPH-Gx/8021.
- 2. Volatile Organic Compounds (VOCs) by EPA Method 8260, prepared by EPA Method 5035/5030B.
- 3. Total lead analyzed by EPA Method 6010, prepared by EPA Method 3050.
- 4. MTCA Method A Cleanup Level for gasoline mixtures without benzene and the total of ethylbenzene, toluene and xylene are less than 1% of the gasoline mixture.
- 5. MTCA Method A Cleanup Level for all other mixtures of gasoline.

Gasoline-range hydrocarbon and total lead results reported in milligrams per kilogram (mg/kg). VOCs reported in micrograms per kilogram (µg/kg).

- < = less than stated laboratory method reporting limit.
- 184 / 148 = Primary / Duplicate sample.
- NA = Not Analyzed.
- J = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- 14* = Sample depth shown is elevation in feet above City of Seattle datum.

Bold values indicate the reported concentration exceeds the corresponding MTCA Method A Cleanup Level.

APPENDICES

DRAFT 34 February 16, 2018

APPENDIX A

DRAFT February 16, 2018

Westlake Site

600 Westlake Avenue N Seattle, WA 98109

Inquiry Number: 5159511.9

January 16, 2018

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

01/16/18

Site Name: Client Name:

Westlake Site ATC Group Services LLC
600 Westlake Avenue N 6347 Seaview Avenue N.W.
Seattle, WA 98109 Seattle, WA 98107
EDR Inquiry # 5159511.9 Contact: Nasrin Bastami

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2011	1"=500'	Flight Year: 2011	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1990	1"=500'	Acquisition Date: July 10, 1990	USGS/DOQQ
1985	1"=500'	Flight Date: June 19, 1985	NRWA
1980	1"=500'	Flight Date: July 08, 1980	USDA
1977	1"=500'	Flight Date: September 05, 1977	USGS
1969	1"=500'	Flight Date: June 30, 1969	USGS
1965	1"=500'	Flight Date: June 30, 1965	USGS
1943	1"=500'	Flight Date: March 05, 1943	DIA
1936	1"=500'	Flight Date: January 01, 1936	KCDOT

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Westlake Site 600 Westlake Avenue N Seattle, WA 98109

Inquiry Number: 5159511.3

January 17, 2018

Certified Sanborn® Map Report

Certified Sanborn® Map Report

01/17/18

Site Name: Client Name:

Westlake Site ATC Group Services LLC 600 Westlake Avenue N 6347 Seaview Avenue N.W. Seattle, WA 98109 Seattle, WA 98107

EDR Inquiry # 5159511.3 Contact: Nasrin Bastami

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by ATC Group Services LLC were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 7486-4CDE-9935

PO# NA

Project Z076000073 - Westlake Site

Maps Provided:

1969

1950

1917

1905

1893

1888

Sanborn® Library search results

Certification #: 7486-4CDE-9935

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

✓ University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

ATC Group Services LLC (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1969 Source Sheets

Volume 4, Sheet 440 1969

Volume 4, Sheet 468 1969

1950 Source Sheets

Volume 1, Sheet xxxx 1950

Volume 4, Sheet 440

Volume 4, Sheet 468 1950

1917 Source Sheets

Volume 4, Sheet 440 1917

Volume 4, Sheet 468 1917

1905 Source Sheets

Volume 3, Sheet 281 1905

Volume 3, Sheet 282

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1893 Source Sheets

Volume 2, Sheet 74 1893

Volume 2, Sheet 74 1893

1888 Source Sheets

Volume 1, Sheet 33 1888

Certified Sanborn® Map

Volume 4, Sheet 468 Volume 4, Sheet 440 Volume 1, Sheet xxxx

5159511 - 3

page 8

281

282

0 Feet

150

(g)

The certified Sanborn Library search results in this report can be authentic www.edmer.com/sanborn and entering the certification number. Only Data Resources Inc. (EDR) is authorized to grant rights fromerical maps by The Sanborn Library LLC, the copyright holder for the collection

Outlined areas indicate map sheets within the collection.

Volume 2, Sheet 74 Volume 2, Sheet 74

600

300

APPENDIX B

DRAFT February 16, 2018

G
0.
_
G
Z
Υ
0
$\mathbf{\omega}$

Environmental Consultants 2950 Northup Way Bellevue, Wa 98004 (206) 822-5800 FAX (206) 889-2267 SCS ENGINEERS DATE COMPLETED: 1/28/91 DATE STARTED: 1/28/91 6 1/4" I.D. MW-1 TOTAL DEPTH: 19' 10" HOLE/WELL#: DIAMETER: GEOLOGIST/ENGINEER: D. VENCHIARUTTI PROJECT: CITY OF SEATTLE JOB NUMBER: 0489021.02 LOCATION: WESTLAKE DRILLER: HOKKAIDO

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			•		- :- - :-
	COMPLETION DETAIL	SAMPLE #	BLOW COUNTS/ 18"	USCS	DESCRIPTION
					Asphalt
	4				
			,	Ę,	Gravel fill, 1/2" - 1" gravel.
		٠.			brown silf.
	-Chip		•		
		19630	4	Gm	Sandy gravel, 1/2" - 1"
		208			gravel, sifty brown soil, some grey clay. HNin O pom
			•		
	Sand Sand			 	
	Filter Seck				
111	*** ::	19632 19633	F	SC	Silty grey clay, with med.
5					HNu Oppm. Water
-13 -13	≋				
_	*** !!!! ***			SC	Sand, med. coarse, silty with grey clay. Wet.
<u>‡</u>			•	,	HNu 0 ppm.
15					
-1e	***				
17				sc	Medium coarse sand with some clay, grey, plastic.
8	**************************************				HNu 0 ppm.
Sediment		9		i	Grey plastic clay. Decomposed wood and
50	\$))))	963 4 75 4 75	•	HO	peat. HNu 0 ppm.

PROJECT: CITY OF SEATTLE

LOCATION: WESTLAKE

JOB NUMBER: 0489021.02

HOLEWELL#: MW-2 DIAMETER: 6 1/4" I.D.

TOTAL DEPTH: 14'4"

SCS ENGINEERS Environmental Consultants 2950 Northup Way Bellevue, Wa 98004

(206) 822-5800 FAX (206) 889-2267

GEOLOGISTENGINEER: D. VENCHIARUTTI DATE STARTED: 1/30/91

DRILLER: HOKKAIDO

DATE COMPLETED: 1/30/91

__

DRILLRIG: MOBIL B-61

SAMPLING DEVICE: SPLIT SPOON

<u>0</u> _ DRILLING METHOD: HOLLOW STEM AUGER PAGE:

рертн (РЕЕТ)	SAMPLE	COMPLETION DETAIL	SAMPLE #	BLOW COUNTS/ 18"	USCS SYMBOL	DESCRIPTION
• -					Gm	Asphalt Silty gravel soil, cobbles to 1". Some organic debris.
0 0		2" PVC Carrent Chip Casing Signification Casing Sig				
. re 0			19284 19285	98	Gm	Dark green silt, with cobbles and assorted debris. Dry. HNu 0 ppm
		2" PVC Screen Size Size	19286 19287	. 38	Sm	Wet, clay rich green silt with some coarse sand. Concrete debris occur.
5 2 5 5		Sediment				
4 ti 6		Trap ————————————————————————————————————	19288	25	သွ	Concrete debris still present. Less sandy, more clay rich, plastic. Very wet. HNu 0 ppm
19 02						

SAMPLING DEVICE: SPLIT SPOON DATE COMPLETED: 1/29/91 <u>e</u> 1/29/91 6 1/4" I.D. MW-3 TOTAL DEPTH: 17' GEOLOGIST/ENGINEER: D. VENCHIARUTTI DATE STARTED: HOLEWELL#: DIAMETER: DRILLING METHOD: HOLLOW STEMAUGER PAGE: PROJECT: CITY OF SEATTLE MOBIL B - 61 JOB NUMBER: 0489021.02 LOCATION: WESTLAKE DRILLER: HOKKAIDO DRILL RIG:

SCS ENGINEERS Environmental Consultanta 2950 Northup Way Bellevue, Wa 98004 (206) 822-5800

(206) 822-5800 FAX (206) 889-2267

SAMPLE COUNTS/ USCS DESCRIPTION 18" SYMBOL	OL Grass; on brown clayish silt. 10% gravel to 1". Green brown silt with some gray clay. Wood chips. 10% pebbles to 1". HNu 0 ppm.	Green-grey plastic clay, with minor silt. Wet. HNu 0 ppm. 11 OH	
			19645 19 OH
	0	Screen Sand Sorgen Size Size Size Size Size Size Size Size	Sediment Trap
SAMPLE	-		
DEPTH (FEET)	0 - 0 6 4 m m	/	4 4 9 C 8 C 8

6 1/4" I.D. **MW-4** HOLEWELL#: DIAMETER: PROJECT: CITY OF SEATTLE JOB NUMBER: 0489021.02 LOCATION: WESTLAKE

Environmental Consultants SCS ENGINEERS

2950 Northup Way Bellevue, Wa 98004

(206) 822-5800 FAX (206) 889-2267

1/29/91 GEOLOGIST/ENGINEER: D. VENCHIARUTTI DATE STARTED:

DRILLER: HOKKAIDO

DATE COMPLETED: 1/29/91

TOTAL DEPTH: 15'

SAMPLING DEVICE: SPLIT SPOON e. DRILLING METHOD: HOLLOW STEMAUGER PAGE: MOBIL B - 61 DRILL RIG:

Complete							
2" PVC Cement Ce	DEPTH (FEET)		COMPLETION DETAIL		BLOW COUNTS/ 16"	USCS SYMBOL	DESCRIPTION
2" PVC Blank Casing Casing Casing Size Screen 3010 Slot Size Sadiment Sediment Trap Trap OH 19636 19636 19637 6 19639 19639 4 OH	0 -					gC	Concrete Grey silty of Petro hydro HNu 20 - 2
Sediment Sediment 19636 14 GC - Sand Size Screen Screen Size 19637 6 19638 19639	N 99						
Screen Sand Filter Screen Screen Pack 19637 6 19638 19638 Trap — 19640 4 OH —	4 10 0			19636	14	ပ္ပ	 Gravel and cobbles to 6", with grey silty clay. Strong gas odor. HNu 50 -100 ppm.
Sediment P 19639 4 OH 19640 4 OH						သွ	
Sediment P 19639 4 OH 19640 19640	\$ \$ \$			19637 19638	9		
19639 19640 4 OH	i		Sediment		•		
F 8 6 8	5			1963 1963 1964 1963 1963 1963 1963 1963 1963 1963 1963	4	요 -	 Plastic, grey silty clay. Some decomposed wood. Wet. HNu ← ppm.
19 02	t 81	-11					
	20 - 20						

MW-5 HOLEWELL#: PROJECT: CITY OF SEATTLE LOCATION: WESTLAKE

(206) 822-5800 FAX (206) 889-2267 2950 Northup Way Bellevue, Wa 98004

Environmental Consultants

SCS ENGINEERS

6 1/4" I.D. TOTAL DEPTH: 17' 4" DIAMETER:

GEOLOGIST/ENGINEER: D. VENCHIARUTTI DATE STARTED: 1/31/91

JOB NUMBER: 0489021.02

DATE COMPLETED: 1/31/91 DRILLER: HOKKAIDO

SPLIT SPOON SAMPLING DEVICE:

_ e. E DRILLING METHOD: HOLLOW STEMAUGER PAGE: MOBIL B - 61 DRILL RIG:

SAMPLE	当	COMPLETION DETAIL	ON DET,	AIL.	SAMPLE #	BLOW COUNTS/ 18"	USCS	DESCRIPTION
			4			•	1 1 1	Asphalt
		2" PVC Blank		Cement			ರ	Green clay rich fill. Sand, silt and gravel mix. HNu 10 ppm.
		Casing	7.0	Chip Bentonite				
					19289 19290	38	용	Green-grey clay, very plastic. Some organic
								debris. Dry, some petro hydrocarbon vapors. HNu 5 - 7 ppm.
				-Sand				
			***	Filter	19291	80	H _O	Green/grey plastic clay. Some cand. Organics present. Dry. HNt. 250 ppm.
		Screen 010 Slot			19292	·	3	Water Water

			**					
		######################################	**					
		Sediment	**					
		Trap			19294	=	용	Very wet. Residual sand,
								with clay washed away. Smell of petroleum hydrocarbons - Wood debris
								common.

BORING LOG

PROJECT: CITY OF SEATTLE HOLEWELL#: BH-4
LOCATION: WESTLAKE DIAMETER: 6 1/4" I.D.
JOB NUMBER: 0489021.02 TOTAL DEPTH: 8'

SCS ENGINEERS Environmental Consultants 2950 Northup Way Bellevue, Wa 98004

(206) 822-5800 FAX (206) 889-2267

> SAMPLING DEVICE: SPLIT SPOON DATE COMPLETED: 1/230/91 1/30/91 GEOLOGIST/ENGINEER: D. VENCHIARUTTI DATE STARTED: DRILL RIG. MOBIL B - 61 DRILLER: HOKKAIDO

OF: 1

DRILLING METHOD: HOLLOW STEMAUGER PAGE: 1

DEPTH SAMPLE (FEET)	COMPLETION DETAIL	SAMPLE #	BLOW COUNTS/ 18"	USCS	DESCRIPTION
) B	AsphaltBrown sifty soil with 1" - 2" gravel.
T T				[]	
4 r0		- 19279 - 19280	25	OL.	Green clay rich silt with cobbles and some organics.
		2007	8	7	HNu 0 ppm.
		19282	23	5	Same as above, but with more sandy silt, less clay.
					HNu 0 ppm. T.D. = 8'
·6 &		# 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
4			_		
5 &					
1 1				200000000	
62					
20					

SOIL CLASSIFICATION SYSTEM

Σ	MAJOR DIVISIONS		GROUP	GROUP NAME
COABSE	GRAVEL	CLEAN GRAVEL	ВW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
GRAINED			ФР	POORLY-GRADED GRAVEL
SOILS	MORE THAN 60% OF COARSE FRACTION	GRAVEL WITH FINES	В	SILTY GRAVEL
NAUT NOON	RETAINED ON NO. 4 SIEVE		၁၅	CLAYEY GRAVEL
RETAINED ON NO. 200 SIEVE	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND
		3	SP	POORLY-GRADED SAND
8.	MORE THAN 50% OF COARSE FRACTION	SAND WITH FINES	NS.	SILTY SAND
	PASSES NO. 4 SIEVE		SC	CLAYEY SAND
LL 22	SILT AND CLAY		ML	SILT
GRAINED		INCHGANIC	כר	CLAY
SOILS	LESS THAN 50	ORGANIC	ОГ	OHGANIC SILT, ORGANIC CLAY
24 24 24 24 24 24 24 24 24 24 24 24 24 2	SILT AND CLAY		HW	SILT OF HIGH PLASTICITY, ELASTIC SILT
PASSES NO. 200		INCHEANIC	Н	CLAY OF HIGH PLASTICITY, FAT CLAY
	LIQUID LIMIT 50 OR MORE	ORGANIC	НО	ORGANIC CLAY, ORGANIC SILT
H	HIGHLY ORGANIC SOILS	S.	PT	PEAT

NOTES:

- 1. Field classification is based on visual examination of soil in general accordance with ASTM D2488-84.
- 2. Soil classification using laboratory tests is based on ASTM D2487-85.
- 3. Descriptions of soil density or consistency are based on interpretation of blowcount data, visual appearance of soils, and/or test data.

SOIL MOISTURE MODIFIERS:

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp, but no visible water
- Wet Visible free water or saturated, usually soil is obtained from below water table

SOIL CLASSIFICATION SYSTEM

FIGURE A-1

LABORATORY TESTS:

Chemical Analysis S

FIELD SCREENING TESTS

Headspace vapor concentration data given in parts per million

Sheen classification system:

No Visible Sheen SS

Moderate Sheen Slight Sheen S SS

Heavy Sheen S

Not Tested

SOIL GRAPH:

Soil Group Symbol (See Note 2) SE

Distinct Contact Between Soil Strata

Gradual or Approximate Location of Change Between Soil Strata

Water Level DI Bottom of Boring

BLOW-COUNT/SAMPLE DATA:

300-pound hammer falling 30 inches. Blows required to drive a 2.4-inch I.D. other indicated distances using a split-barrel sampler 12 inches or

X 22 42

undisturbed sample Location of relatively

Location of disturbed sample

Location of sampling attempt with no recovery

Location of sample obtained

10

(ASTM D-1586) procedures in general accordance with Standard Penetration Test

attempt with no recovery Location of SPT sampling

26 □

140-pound hammer falling 30 inches.

or other indicated distances using

(SPT) split-barrel sampler 12 inches Blows required to drive a 1.5-inch I.D.

Location of grab sample

mn

weight of hammer or against weight "P" indicates sampler pushed with of drill rig.

NOTES:

- 1. The reader must refer to the discussion in the report text, the Key to Boring Log Symbols and the exploration logs for a proper understanding of subsurface conditions.
- 2. Soil classification system is summarized in Figure A-1.

KEY TO BORING LOG SYMBOLS

FIGURE

a C C V H C	DODING 100	
חטטעוט	DUMING L	PAGE 1 OF 3
PROJECT CIRCLE K	J	LOCATION 12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -	0	ASING TOP ELEVATION -
START 4/19/94 7.59	FINISH	SH 4/19/94 11:35
SAMPLER DJD	MONITORING	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC. 10-	CASCADE DRILL	ING INC. 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 15' LON	G SPLIT SPOON

Well Construction Details	Monument			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2. Presect	
Unified Soil Clossificotion		35					
Lithologic Description	Ashaltic Concrete	Mottled Light Brownish Groy (107R 6/2) Hedium to Fine Sult Wrose Hedium to Fine Sult Troce Hedium to Fine Rounded Grovel Troce Cloy, Medium Dense to Dense Worlt (5,60:30.5) Till			Slight increase in Grovel		
Depth Below Surface, feet						725	35
Becaing (ppm)		10.2	14.3	10.5	13 5	13.9	12 4
Sample Depth Interval, feet							
PENETRATION RESULTS BLOWS 6"/6"/6"		10/32/35	15/27/37	50-5"	32/50	100-3"	34/80

	CIAICO	
S S S S S S S S S S S S S S S S S S S	BURING LOG	
PROJECT CIRCLE K #1436		LOCATION 12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
4/1	FIN	ISH 4/19/94 11.35
SAMPLER DJD	MONITORIN	4G DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRI	LLING INC. 10-1/4" HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5" LC	SAMPLE EVERY 5' WITH 3" X 1.5' LONG SPLIT SPOON

Well Construction Details	Filter Sand (Colorado Silea 10/20 Sand) Filter Pyc Screen (0 020 inch slots)
Unified Soil Classification	
Lithologic Description	No Sample-Rock in Shoe No Sample-Pushing a Rock Drill Past Rock in Shoe-Smoll Sample
Depth Below Surface, feet	
(wdd) bulpoey	NS NS 11 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1 1 1
Sample Depth interval, feet	
PENETRATION RESULTS BLOWS 6" /6" /6"	60 35/50 100 100 50/50

SEACOR	BORING LOG	LOG BORING: MW-3
PROJECT CIRCLE K #1476		LOCATION 12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
START 4/19/94 7:59	FIN	FINISH 4/19/94 11:35
SAMPLER DJD	MONITORII	NG DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRI	TOR AND EQUIPMENT CASCADE DRILLING INC 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 15' L(SNG SPLIT SPOON

Well Construction Details	Filter Sand (Colorado Silica 10/20 Sand) Screen (0.020 inch slots) Bottom Cap
Unified Soil Classification	
Lıthologic Description	Groyish Brown (107R 5/2) Coarse to Fine Sub-reawded Grows Tine Silft Dense, Wet (107R 5/2) Trace Silft England Grows Tines Silft England Grows Trace Growel Dense, Wet (107R 5/2) Coarse to Fine Sand A Lutte Silf Trace Growel Dense, Most (5 70 250) Light Groy (107R 7/2) Groyish Brown (107R 5/2) Silft. Thinly Lammated at 75 feet Sampler advanced to 76 feet Sampler advanced to 76 feet Growel Dense, Most (5–70 25 0) Borng termanater and and Trace Sand Day (0 10 90 0 and the grown deline and the grown three of approximately 65 feet Growndwater encountered at approximately 65 feet during dailing Borng converted to a groundwater monitoring well on 4/19/94
Depth Below Surface, feet	8
Reading (ppm)	10.7
Sample Depth	
PENETRATION RESULTS BLOWS 6"/6"/6"	50/50

WA SEATTLE BORING: MW-4 OF 3 si PAGE 1 1ST AVE. MICROTIP PID /4"HSA LOCATION12660 1ST AVE CASING TOP ELEVATION SH 4/19/94 FINISH 4/19/94

MONITORING DEVICE MICRO
CASCADE DRILLING INC. 10-1
3" X 1.5" LONG SPLIT SPOON LOG BORING SUBCONTRACTOR AND EQUIPMENT COMMENTS SAMPLE EVERY 5' WITH PROJECT CIRCLE K SURFACE ELEVATION START 4/19/94 1. SEACOR ONO SURFACE START 4/ SAMPLER

Well Construction Details	Wonument Monument	 Bentonite		Filter Sand (Colorado Silica		2. Prepack	
Unified Soil Classification			₹.				
Lithologic Description	Ashaltic Concrete	Groysh Brown (107R 5/2) Medium to Fine Sand Some Silt Dense, Most (0,75,25 0)	Light Graysh Brown (10YR 6/2) Medium to Fine Sand Some Sill. Rare Fine Rounded Gravel Dense, Most (5,70,250) Til	Light Groysti Brown (107R 6/2) Medium to Fine Sond Some Silt A Little Fine Gravel Trace Clay Dense, Most, (12,50,35.3)	Sight Docreose of Grovel		
Depth Below Surfoce, feet	0	, 			11111	725	36
PID Reading (ppm)		20 6	18 4	19 8	12 0	0 6	17.7
Sample Depth Interval, feet							
PENETRATION RESULTS BLOWS 6"/6"/6"		27/50	20	16/50	50-2"	27/50	35/50

	בעונםסמ	BORING: MW-4
SEACOR	BORING FOG	
PROJECT CIRCLE K		LOCATION 12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
START 4/19/94 1:54	FINI	FINISH 4/19/94
SAMPLER DJD	MONITORIN	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC. 10-1,	CASCADE DRII	LING INC. 10-1/4" HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5' LO	NG SPLIT SPOON

Well Construction Details	Filter Sand (Colorado Silica 10/20 Sand) Soreen (0020 meth slots)
Unified Soil Clossificotion	
Lithologic Description	Grayah Brown (1018 5/2) Coorse to Fire Rounded Sond Some Sit. Troce Coorse to Fire Rounded Gravel Trace Cloy Dense, Morst. (10 57,30.3)
Depth Below Surface, feet	\$\frac{1}{2}\frac{1}{2
Reading (ppm)	9 3 9 3 9 4 9 8 9 8
Sample Depth Interval, feet	
PENETRATION RESULTS BLOWS 6"/6"/6"	50 50 70 60

	OMIGOG	
SEACOR	BURING LUG	
PROJECT CIRCLE K #1476		LOCATION 12660 1ST AVE S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
START 4/19/94 759	FIN	FINISH 4/19/94 11:35
SAMPLER DJD	MONITORIN	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC. 10-	CASCADE DRI	LING INC. 10-1/4" HSA
COMMENTS SAMPLE EVERY 5' WITH	3 X 1.5 LC	NG SPLII SPOON

Well Construction Details	Filter Sand (Colorado Silica 10/20 Sand) Filter PVC Screen (0020 inch slots) Bottom Cap
Unified Soil Classification	
Lithologic Description	Groyish Brown (107R 5/2) Coarse to Fine Rounded Grovel Trace Goty Dense Molet (10,57,30,3) Groved Grovel Some Sit. Trace Goy Dense, Worst (0,80,18 2) Borng terminated at 80 feet Sompler advanced to 81 feet Borng converted to a groundwater monitoring well on 4/19/94
Depth Below Surface, feet	65
Geoding (ppm)	10.9
Sample Depth Interval, feet	
PENETRATION RESULTS BLOWS 6"/6"/6"	55 50 35/50

SEACOR	BURING LUG PAGE 1 OF 3
PROJECT CIRCLE K #1476	LOCATION12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -	CASING TOP ELEVATION -
START 4/20/94 12 30	FINISH 4/20/94
SAMPLER DJD	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	FOR AND EQUIPMENT CASCADE DRILLING INC 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5' LONG SPLIT SPOON

Well Construction Details	Monument	Concrete Sentonite Seal		A STATE OF THE STA		mmannaquma	(0 010 mch
Unified Soil Classification		35					
Lithologic Description	Asholbe Concrete	Groyish Brown (107K 5/2), Coorse to Fine Sand with some Silt, Trace Course to Fine Rounded Grovel, Trace Silt, Very Danse, Most (10,45,40.5) Tat,			Slight Increase in Gravel		
Depth Below Surface, feet	0		- 1-1-1-1 6	5.	70	255	35
(mgg) gaibbə9 (mgg)		8	10.1	130	8	12.7	10.5
Sample Depth							
PENETRATION RESULTS BLOWS 6"/6"/6"		27/50	95	48/50	09	20	20

OC VEN	DODING 100 BORING WW-5
SEACON	DUKING LUG PAGE 2 OF 3
PROJECT CIRCLE K #1476	LOCATION 12660 1ST AVE S. SEATTLE, WA
SURFACE ELEVATION -	CASING TOP ELEVATION -
START 4/20/94 12:30	FINISH 4/20/94
SAMPLER DJD	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	TOR AND EQUIPMENT CASCADE DRILLING INC. 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5' LONG SPLIT SPOON

Well Construction Details				2. Prepack Filter PVC Screen (0 010 inch		
Unitied Soil Clossification						
Lithologic Description	Sight Increase in Fines. Hydrocorbon-like odor	Sheen Test Negative		Increase in Sand	Gray (107R 6/1) Medium to Fine Sand with some Silt. Troce Medium to Fine Rounded Gravel. Very Dense, Worst (10 60 30 0) hydrocorbon-like adar	
Depth Below Surface, feet	8	4	45	 	55	8
Reading (ppm) PID	>2500	976 284 >2500	>2500	>2500	>2500	1236
Sample Depth later						
PENETRATION RESULTS BLOWS 6"/6"/6"	7.3	100/100	100	100	100	80

SEACOR	BORING LOG BAGE 3 OF 3
PROJECT CIRCLE K #1476	LOCATION 12660 1ST AVE. S. SEATTLE, WA
SURFACE ELEVATION -	CASING TOP ELEVATION -
START 4/20/94	FINISH 4/20/94
SAMPLER DJD	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	FOR AND EQUIPMENT CASCADE DRILLING INC. 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5" LONG SPLIT SPOON

Well Construction Details		<u> </u>		Screen (0.010 inch slots)				Softom Cap
loS be fication								
Lithologic Description			Coorse to Fine Sond (10 70,20,0)	Sight Increase in Sit. (1055,350)	Very Dark Gray (107R 3/1) Medium to Fine Sand. Trace Sift. Yery Dense, Yery Most. (090,100)			Borng terminated at 90 feet Sampler advanced to 90 75 feet Groundwater encountered at approximately 80 feet during diffing Bonng converted to a groundwater monitoring well on 4/20/94
n Below ce, feet	Depth	9	65	2			88	95,
(ppm)			1216		>2500	>2500	28 5	۷ ک
e Depth			7.7.7.7					
PENETRATION RESULTS	BLOWS 6"/6"/6"		75	100	100	99	75	75

SEACOR	BORING LOG	LOG BORING: MW-6 PAGE 1 OF 2
PROJECT CIRCLE K #1476		LOCATION 12660 1ST AVE S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
START 4/20/94 7:21	NIE	FINISH 4/20/94
SAMPLER DJD	MONITORIN	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRI	FOR AND EQUIPMENT CASCADE DRILLING INC. 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 15" L(ING SPLIT SPOON

Well Construction Details			<u>\$</u>	Filter Sand (Colorado Silica (Colorado Silica 8/12 Sond)		anananan dan kan	
Unitied Soil notioolilieeolO		3					
Lithologic Description	Ashaluc Concrete	Groy (107R 5/1) Course to Fine Sond with Some Silt, a Utile Rounded Grovel Very Dense, Haist, (12.50, 28.0) Tal	Grayish Brown (101R 5/2)				Gray (107R 5/1), Medum to Fine Sond With Some Sit Trace Coorse to Fine Rounded Gravel Trace Clay Vary Donse Most (10 65 20 5)
Depth Below Surface, feet	0 —		111111111	1.1.5	, , , ,	725	11111111111111111111111111111111111111
Old (mqq) gniboəA		89	8	4.1	4 2	11 5	7.1
Somple Depth Interval, feet							
PENETRATION RESULTS BLOWS 6"/6"/6"	V.	24/50	16/50	09	77	85	62

MA SEATTLE MW-6 2 OF 2 BORING: တ LOCATION12660 1ST AVE. S
CASING TOP ELEVATION
FINISH 4/20/94
MONITORING DEVICE MICROTIP PID
T CASCADE DRILLING INC. 10-1/4" HSA
H 3" X 1.5' LONG SPLIT SPOON PAGE 1ST AVE. LOG BORING SUBCONTRACTOR AND EQUIPMENT COMMENTS SAMPLE EVERY 5' WITH #1476 ELEVATION /20/94 7:2 PROJECT CIRCLE K SURFACE ELEVATION START 4/20/94 7 SAMPLER DJD SEACOR

Well Construction Details	1 1111111111111111111111111111111111111							=
Unified Soil Clossification	75-556							,
Lithologic Description	Some as Above	Some as Above, Hydrocarbon-fike Odor. Sheen Test Negative	Some as Above, Hydrocarbon-fike Odor	Some as Abowe, Very Small Headspace Somple for PID Reading	Some as Above	SAND and SUT, Gray (107R 6/1), Medium to Fine, Troce Medium to Fine Rounded Gravet, Troce Chay, Very Dense, Wet, (10 53 45 2)	Some as Above	a bod sto satural backs
Depth Below Surface, feet	35	40	45	1112 1112 1113		65	=/0
Old (mqq) gailbos9	18 4	>2500	1215	730	512	1234	319	18 4
Sample Depth								
ENETRATION RESULTS BLOWS 6" /6" /6"	52	09	09	28	58	20	19	52

	בעד באזמסם	BORING, Al-1
SEACOR	BURING LUG	PAGE 1 OF 3
PROJECT CIRCLE K #1476	LOCATIO	LOCATION12660 1ST AVE S. SEATTLE, WA
SURFACE ELEVATION -	CASING	CASING TOP ELEVATION -
START 4/21/94 7:07	FINISH	1/20/94
SAMPLER DJD	MONITORING DEVICE MICROTIP PID	E MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC. 10-1/4"HSA	CASCADE DRILLING IN	5. 10-1/4"HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1 5' LONG SPL	T SPOON

Well Construction Details	Monument Wellhead Concrete						KXI_IXX
Unified Soil Classification	3						
Lithologic Description	Ashaltic Concrete Gray (1078. 3/1) Medium to Fire Sand and Sik. Trace Fine Rounded Gravel Dense. Most. (10.50 40.0) Till.		Rock in Shos	Molified, Very Dense, Some as Above, Hydrocarbon-like Odor			
Depth Below Surface, feet			1.5	20	75		35
geaqing (ppm) PID	44	516	48 8	>2500	648	2120	
Sample Depth							
PENETRATION RESULTS BLOWS 6' /6" /6"	17/20/32	35/50	65-2"	75	75	06	

WA SEATTLE 2 OF 3 BORING: AI-1 S PAGE 1ST AVE. MONITORING DEVICE MICROTIP PID CASCADE DRILLING INC 10-1/4" HSA 3" X 1 5' LONG SPLIT SPOON ELEVATION 94 LOCATION12660 CASING TOP ELE ISH 4/21/94 LOG BORING SUBCONTRACTOR AND EQUIPMENT COMMENTS SAMPLE EVERY 5' WITH CIRCLE K #1476 ELEVATION /21/94 7:07 SEACOR 220 SURFACE START 4/ SAMPLER PROJECT

Well Construction Details				See of the second of the secon			Screen (0 020 inch slots)
Unified Soil Classification							
Lithologic Description	Hydrocarban-like Odor	No Odor Detected	ı	Very Dork Gray, (107R 3/1), S.M. and Weddum to Fine Sand, Trace Gray, Trace Gravel, Dense, Most. (5 25.63 5)	Groyesh Brown (10/R 5/2) Coarse to Fine Sand, Irsos Medium to Fine Rounded Gravel, Iroce Sill, Very Dense Wel.		
Depth Below Surface, feet	33	4	200	33		3	م أبليا
Meading (ppm)	>2500	76.6	24.5	10 4	189	190	
Sample Depth							
PENETRATION RESULTS BLOWS 6"/6"/6"	100-2"	100	20	100	38/50	62	

	באומסת	
DON'S DON'S	BORING FOG	LUG PAGE 3 OF 3
PROJECT CIRCLE K #1476		LOCATION12660 1ST AVE S. SEATTLE, WA
SURFACE ELEVATION -		CASING TOP ELEVATION -
START 4/21/94 7.07	FIN	FINISH 4/21/94
SAMPLER DJO	MONITORII	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRI	LLING INC 10-1/4" HSA
COMMENTS SAMPLE EVERY 5' WITH	3" X 1.5' LO	AMPLE EVERY 5' WITH 3" X 1.5' LONG SPLIT SPOON

Well Construction Details	Filter Sand (Colorodo Silico 8/12 Sand) 8/12 Sand) 2 Prepack Screen	Bottom Cap
Unified Soil Clossification		
Lithologic Description	Groysh Brown, (107R 5/2) Medium to Fine Sand and Sit, Toce Fine Rounded Grovel, Yery Dense, Yery Most, (10 50 40.0) Groyish Brown, (107R 5/2) Coarse to Fine Sand, Trace Medium to Fine Rounded Grovel, Trace Sit, Yery Danse, Most, (15 70 15 0)	Borng terrwrated at 70 feet Sampler advanced to 70 feet Groundwater encountered at approximately 60.5 feet during dralling Soring converted to a groundwater monitoring well on 4/21/34.
Depth Below Surface, feet	70	
PID (mqq) (ppm)	8 9	φ φ
Sample Depth Interval, feet		
PENETRATION RESULTS BLOWS 6"/6"/6"	75-3"	8

	BORINGMW-Z
SECON	BOHING LOG
PROJECT CIRCLE K STORE #1476	LOCATION 12880 18T AVENUE SOUTH
SURFACE EL FVATION	CASING TOP ELEVATION 97.17**
START 10/26/94 0643	FINISH 10/26/84 0835
SAMPLER RM/DJD	MONITORING DEVICE MICROTIP PID ML-2000
	CASCADE DRILLING INC.; CME 75: 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET Y	WPLED EVERY 5 FEET WITH A 2.5' ID X 1.5' LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVI	ED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE

Well Construction Details		Weilhead	Seal		2" Blank PVC Cosing		.1
United Soil Clossification		₹.			NS		NS.
Lithologic Description	Asphalt	Sily Sand, brown, (107R 5/3), very fine to fine grained, (0.80.20.0)** Moist	Occasional gravel	Occasional cobbles (2,80,18,0)	Sand with Silt, gray (100R 5/1), very fine to fine grained well graded, moist (0.90,10,0)	Occasional gravet	Sifty Sand, grayish brown, (101R 5/2), very fine to fine grained (0 80 20,0)
Depth Below Surface, feet	0		2	5	2 2	25	8 25
Seading (ppm)	1	27	24	2 11 2	27 4	18 5 5	1 4 1
Somple Depth I	-						
PENETRATION RESULTS BLOWS 6"/6"/6"		100	001	500	150	100	130

CECOD	
SECON	BURING LUG PAGE 2 OF 3
PROJECT CIRCLE K STORE #1476	LOCATION SEATTLE, MASHINGTON
SURFACE ELEVATION -	CASING TOP ELEVATION 87.17**
START 10/26/94 0643	FINISH 10/26/94 0835
SAMPLER RM/DJD	MONITORING DEVICE MICROTIP PID ML-2000
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRILLING INC.; CME 75; 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET N	MPLED EVERY S FEET WITH A 2 5"1.D. X 1.5" LONG SPLIT SPOON SAMPLER
INED WITH RRASS SIFEVI	IED WITH RBASS SI FEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE

Well Construction Details							Filter Sand (RMC Lonestor
lio2 bethinU Clossification		<u> </u>	11111111	Ws/ws		SP-SM/5G	W.
Lithologic Description	Occasional gravel and occasional cobbles (380170)	Sond with Silt, groysth brown, (107R 5/2), very fine to medium granned, occosional gravet malst, (3,90,7,0)		Wet		Sand with Silt and Clay, groyrah brown, (107R 5/2), very fine to fine grained, occasional grovel moist, (385 12,10)	Salt with Sond, groy (10YR 6/1) very fine to fine sord most (0,10,90,0)
Depth Below Surface, feet	35	04	45	200	555		65
geogiud (bbw)	151	13 1	10 7		11 6	13.5	12 23
Sample Depth Interval, feet	<u> </u>						
PENETRATION RESULTS BLOWS 6" /6" /6"	130	110	110	125	130	110	115

MW-7 97.17** B ML-2000 9 PROJECT CIRCLE K STORE #1476

SURFACE ELEVATION

SURFACE ELEVATION

START

10/26/94 0643

SAMPLER

SAMPLER

SUBCONTRACTOR AND EQUIPMENT

COMMENTS

SAMPLED EVERY 5 FEET WITH A 2.5 1 D X 1.5 1.0 NG SPLIT SPOON SAMPLER

LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30 STROKE BORING LOCATION 12860 1ST AVENUE SOUTH CASING TOP ELEVATION PAGE 507 BORING SECOR

Well Construction Details					** Note Cosing top elevation relative to SECOR temporary benchmark with an assigned elevation of 100 00 feet
United Soil	ا [پر ا ا	WS	_		
Lithologic Description		Sily Sand, brown, very fine to fine grained, occasional gravel, most (\$80.17,0)	Solunoted		Boring terminated at 88 feet Groundwater encountered at approximately 80 feet during drilling Boring converted to a groundwater monitoring well on 10/26/34 • Munsell (1990) Soil Color Charls •• Percentage of soil lypes shown in this order (0,50,45,5), gravel sand, sift, and clay
Depth Below Surface, feet		75			
PID (ppm)	153	158		o o	
Sample Depth Interval, feet					
PENETRATION RESULTS BLOWS 6" /6" /6"	110	06	06	හ ග	

BORING MW-8 PAGE 1 OF 3	LOCATION SEATTLE, MASHINGTON OR ROSE		MONITORING DEVICE MICROTIP PID ML-2000	CASCADE DRILLING INC.: CME 75: 8-1/4 OD HSA	AMPLED EVERY 5 FEET WITH A 2.5" I.D. X 1.5" LONG SPLIT SPOON SAMPLER	WED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE
BOHING TOG	LO	FINISH	MONITORING	CASCADE DRILLING	WITH A 2.5. I.D. X 1.5	EVES DRIVEN BY A 140
SECOR	PROJECT CIRCLE K STORE #1476	START 10/27/94 1021	ER A	SUBCONTRACTOR AND EQUIPMENT	COMMENTS SAMPLED EVERY 5 FEET	LINED WITH BRASS SLE

Well Construction Details	_	Wellfreed Wellfr	Seed in the latest terms and the latest terms are also also also also also also also also		2. Blank PVC Cosing		
Unified Soil Classification				₹			
Lithologic Description	Asphatt	Silty Sond, groyrsh brown, (10YR 5/2)*, very fine to fine grained, moist (0,80,20,0)**		Occasional Grovel, subangular—subrounded		Wet, no gravel	
Depth Below Surface, feet	0			1.13	8 	725	35
Reoding (ppm)		s 8		t) 4	8 6	7 2 2	20
Somple Depth Interval, feet							
PENETRATION RESULTS BLOWS 6"/6"/6"		8	140	011	120	160	140

	BORING MW-8
SECON	BUHING LUG PAGE 2 OF 3
PROJECT CIRCLE K STORE #1476	LOCATION 12860 18T AVENUE SOUTH
SURFACE FI EVATION -	CASING TOP ELEVATION 88.82**
START 10/27/94 1021	FINISH 10/27/94 1221
SAMPLER RM/DJD	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRILLING INC.; CME 75: 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET N	MPLED EVERY 5 FEET WITH A 2.5" I.D. X 1.5" LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVI	IED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE

Well Construction Details	Seal Seal	2° Blank Pvc Casing	 		
Unified Soil Classification	i	Σ ₀	, 35 55 1		3 5
Lithologic Description	(7,75,20,0)	Occosional rounded cobbles (5,75,20,0)	Sand with Sill, graysch brown, (107R 5/2) fine grained, poorly graded, wet, (0,90,10,0)	Sity Sand grayish brown (10YR 5/), fine grained, occasional gravel, most (5 75 20 0)	Occasional subrounded cobbles
Depth Below Surface, feet	35	£ 05,	55	89 - - - - - - - - - - - - - - - - - - -	65
"Sample Depth Interval, feet Interval, feet PID	4 4.0	38	-	27	2 2 2
PENETRATION RESULTS BLOWS 6"/6"/6"	140	95	75	85	85

MW-8 98.82** n P PROJECT CIRCLE K STORE #1476

SURFACE ELEVATION

SURFACE ELEVATION

START 10/27/94 1021

SAMPLER

SAMPLER

SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.: CME:75 8-1/4 OD HSA

CONAMENTS SAMPLED EVERY 5 FEET WITH A 2.5 1 D X 15' LONG SPLIT SPOON SAMPLER

LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30' STROKE BORING LOCATION SEATTLE WASHINGTON CASING TOP ELEVATION PAGE. 507 BORING SECOR

Well Construction Details		PVC Casing	2. PVC Screen (0 010 inch slots)	Sond	#2/12)	Bottom Cap	** Note Casing top elevation relative to SECOR temporary benchmark with an assigned elevation of 100 00 feet	111111
Unified Soil Classification		보	 	NS-dS				
Lithologic Description	Silt, brown, trace sand, maist	Sandy Silt brown, occasional gravel, (0.20,80,0)	Sand with Silt brownish gray wet, (0 90 10 0)	Seturated	Sond with Silt, graysh brown (10YR 5/2) very fine to fine grained, poorly groded no odor (090 100)	Bonng terminated at 95 feet	Groundwater encountered of approximately 83 feet during drilling Boring converted to a groundwater monitoring well on 10/28/94 • Munsell (1990) Sad Color Charts • Percentage of soil types shawn in this order (0.50.45.5) grovel sand slit and clay	
Depth Below Surface, feet	0/	7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	▶ 88 1	> % 	, , , ,	95	001	
Reading (ppm)	7 25	12	625	879	26 3			
Sample Depth							· · · · · · · · · · · · · · · · · · ·	
PENETRATION RESULTS BLOWS 6"/6"/6"	06	9	09	09	09			

MW-8 99.57** MICROTIP PID ML-2000 P, STARI INZOLET VILLE DID
SAMPLER DID
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.; CME 75: 8-114 OD HSA
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.; CME 75: 8-114 OD HSA
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.; CME 75: 8-114 OD HSA
SUBCONTRACTOR AND EQUIPMENT SEET WITH A 2.5 'LD X 1.5' LONG SPLIT SPOON SAMPLER
COMMENTS SAMPLED EVERY 5 FEET WITH A 2.5 'LD X 1.40 LB. HAMMER, 30' STROKE BORING 12680 1ST AVENUE SOUTH SEATTLE, WASHINGTON PAGE _ LOCATION MONITORING DEVICE 907 BORING PROJECT CIRCLE K STORE #1476 SURFACE ELEVATION START 10/25/94 0931 SECOR

Well Construction Details		Concrete Wellington	Bentonite		Pvc Cosing		
Unitied Soil Clossification				₹.			
Lithologic Description	Asphaltic concrete	Sity Sond, light groyish brown (107R 6/2)», fine to medium gramed sand maist (0,75 25,0)»		Light gray, (107R 6/1) occasional line gravet			
Depth Below Surface feet	0			1		725	35
(mqq) gniboss (Ilq		09.	77	4 8	4. 0.	9	9
Sample Depth							
PENETRATION RESULTS BLOWS 6"/6"/6"		09	00	50/65	100	75	. 22

B-MW 99.57** 띡 PROJECT CIRCLE K STORE #1476

SURFACE ELEVATION

SURFACE ELEVATION

SURFACE ELEVATION

START 10/25/84 0931

START 10/25/84 1445

SAMPLER MILLER

SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.: CME 75: 8-1/4 OD HSA

COMMENTS SAMPLED EVERY 6 FEET WITH A 2 5' 1D. X 15' LONG SPLIT SPOON SAMPLER

LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30' STROKE P, BORING 12680 IST AVENUE SOUTH SEATTLE, WASHINGTON PAGE. 100 BORING SECOR

UTUNAL	Well Construction Details	Seal Seal Seal Seal Seal Seal Seal Seal		Filter Sand (RMC Lonestar #2/12) 2" PVC 2" PVC Screen Casing (0 010 inch slots)
	Classification			
משששבנו	ho2 bailinU	Z5		
ארבר בים בעונגבו בין ע וזה בהי יוען	Lithologic Description	Salty Sand with Gravel, groysh brown, (107R 5/2), fine to coarse rounded gravel, fine to medium sand, moist, (20,50,30,0)	Sight increase in gravets	No sample recorded
2000	Depth Below Surface, feet		52	02
9	Keading (ppm)	4 4 8 8 0	5 2 2	h
דוואכה	Sample Depth			
	PENETRATION RESULTS BLOWS 6"/6"/6"	85 85	S S	No blow count

PAGE 3 OF 3 PAGE 3 OF 3 PAGE 3 OF 3 PAGE 3 OF 3 SURFACE ELEVATION START 10/25/84 0931 SAMPLER DJD SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.; CME; 75 8-1/4 OD HSA COMMENTS SAMPLED FLEEVE MITTER A 2 5 1 0 0 1 5 1 000 SUBJECT	
ATION 2860 18T AVENUE 500 ATION CASING TOP ELEVATION 10.25.04 1445 MONITORING DEVICE MICROTIP PID R AND EQUIPMENT CASCADE DRILLING INC.; CME; 75 8-1/4 OD I	PAGE 3 OF 3
ATION — CASING TOP ELEVATION — 10/25/94 1445 —	LOCATION 12060 1ST AVENUE SOUTH
MONITORING DEVICE MICROTIP PID R AND EQUIPMENT CASCADE DRILLING INC.; CME; 75 8-1/4 OD I	CASING TOP ELEVATION 88.57**
R AND EQUIPMENT CA	
R AND EQUIPMENT CA	ING DEVICE MICROTIP PID ML-2000
COMMENTS SAMPLED EVERY & FEET WITH A 2 K! I D. Y 15' LONG SPIT SPOON SAMPLED	ALLING INC.; CME: 75 8-1/4 OD HSA
COMMUNICATION DAMPER OF THE WILL OF STATE OF THE OF	X 1.5' LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE	1 140 LB. HAMMER, 30' STROKE

	Well Construction Details	- 2" Blank	2" PVC Screen (0 010 inch	Filter Sand (RMC Lonestar #2/12)		** Note Casing top elevation relative	with an assigned elevation of 100 00 feet
	Unitied Soil Classification	75		 			
	Lithologic Description	Suly Sand, groyah brown, (107R 5/2), line to medum	Occosional cobble	Sand, graysh brown (10NR 5/2) fine to coorse grand, accessoral suit acturated, (0,98,2,0) hydrocarbon-like odor		Boring terminated at 95 feet Sampler advanced to 96 5 feet Groundwater encountered at approximately 85 feet during adming Boring converted to a groundwater monitaning well on 10/25/94	• Munsell (1990) Soil Color Charts • Percentage of soil types shown in this order (0.50 45.5) gravel, sand, silt, and clay
	Depth Below Surface feet	 				8	100
(1	Old mag) poibos?	37 S	125	_>2500	225	742	
,	Sample Deptit						
	RESULTS BLOWS 6"/6"	65 07		 89	. 22	70	

JR BORING MW-10 PAGE 1 OF 3	ORE #1476	0/27/94 0628 FINISH 10/27/94 0835	R. MILLER MON I TO	R AND EQUIPMENT CA	
SECOR	PROJECT CIRCLE K ST	LE.	SAMPLER R. MILLER	SUBCONTRACTOR AND	COMMENTS SAMPLED

	Well Construction Details	Account of the state of the sta	Weilhead day	Seq	- 2. Blank			
	Unified Soil Classification		35					
	Lithologic Description	Asphaltic concrete	Sity Sand, light groyish brown, (107R 5/2)*, very fine to fine groined sand, moist (0,80,200)**				¥	Moist
	Depth Below Surface, feet	0		111111	15		25	30 35
	Reading (ppm)		101	7 6	7.3	8 7	4 &	4 8
1 L	Somple Depth interval, feet							
	PENETRATION RESULTS BLOWS 6"/6"/6"		65	120	ಕ ಕ	00	132	100

MW-10 100.56** SAMPLER R. MILLER
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.; CME 75: 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET WITH A 2 5' LD, X 1.5' LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB, HAMMER, 30' STROKE Ŗ, PAGE 2 BORING CASING TOP ELEVATION 10/27/94 0835 LOCATION MONITORING DEVICE 507 BORING PROJECT CIRCLE K STORE #1476 SURFACE ELEVATION START 10/27/94 0628 SAMPLER R. MILLER SECOR

Well Construction Details	Seal Bentonite Seal PVC Casing PVC
We	
Unified Soil Classification	MS
Lithologic Description	Occosional subrounded cobbie and gravel
Depth Below Surface, feet	35
(wdd) buipoəy	0.
Sample Depth	
PENETRATION RESULTS BLOWS 6"/6"/6"	20/20 200 200 130

MW-10 100.56** OF 3 PROJECT CIRCLE K STOBE #1478

SURFACE ELEVATION

SURFACE ELEVATION

SURFACE ELEVATION

START

10/27/94 0628

SAMPLER

SAMPLER

SUBCONTRACTOR AND EQUIPMENT

COMMENTS. SAMPLED EVERY 5 FEET WITH A 2.5" I.D. X 1.5" LONG SPLIT SPOON SAMPLER

LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE PAGE 3 BORING LOCATION SEATTLE MASHINGTON
CASING TOP ELEVATION 507 BORING SECOR

Well Construction Details	Seal 2" Blank PVC Casing					** Note Casing top elevation relative to SECOR temporary benchmark with an assigned elevation of	
Unified Soil Classification	NS.	 	SP-Sk				
Lithologic Description		Sand with Suit, graysh brown (101R 5/2), very fine to ture grained, poorly graded moist, (0,90,10,0)	Soturated			Boring terminated at 95 feet. Sampler advanced to 95 5 feet Groundwater encountered at approximately 82 5 feet during drilling. Boring converted to a groundwater monitoring well on 16/28/94 • Munsell (1990) Soil Color Charts • Percentage of soil types shown in this order (0 50 45 5), gravel, sond, self, and clay	
Depth Below Surface, feet	2		√ √ ⁸		08	11 11 11 11 11	105
Reading (ppm)	. 7.	<u>.</u>	7.7	105	1 28	56	755
Sample Depth Interval, feet							
PENETRATION RESULTS BLOWS 6"/6"/6"	120	120	0	09	09	70	

MW-11 99.72** SAMPLER RILLER
SUBCONTRACTOR AND EQUIPMENT CASCADE DRILLING INC.: CME 75: 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET WITH A 2.5 '1.D. X 1.5' LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30' STROKE P BORING LOCATION SEATTLE WASHINGTON
CASING TOP ELEVATION 10/26/94 1415 MONITORING DEVICE 507 BORING PROJECT CIRCLE K STORE #1478.
SURFACE ELEVATION
START 10/26/94 1103
SAMPLER R MILLER SECOR

Well Construction Details		Concrete Mellined Mel	Seal on the Seal o		S Blank		
Unified Soil Clossification			·····	3			
Lithologic Description	Asphalt	Silly Sand, groyah brown (107R 5/2), very fine grained, occasional cabbles moist, (0,80,20,0).		With gravel and cobbles		No Recovery	No (ecovary
Depth Below Surface, feet	0		11/11/1	1117111	20	25	30 35
Reoding (ppm)		<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u></u>	25 4	4 4 4	ž	13 6
Sample Depth							
PENETRATION RESULTS BLOWS 6" /6" /6"		75	150	150	120	150	No blow count recorded 175

BORING MW-11 PAGE 2 OF 3	LOCATION SEATTLE WASHINGTON BO.72** CASING TOP ELEVATION 89.72** FINISH 10/26/94 1415 MONITORING DEVICE MICROTIP PID ML-2000 SCADE DRILLING INC.: CME. 75: 8-1/4 OD HSA 2.5 · LD. X 15 · LONG SPLIT SPOON SAMPLER VEN BY A 140 LB. HAMMER, 30 · STROKE	
BORING LOG	CA WITH A	
SECOR	PROJECT CIRCLE K STORE #1476 SURFACE ELEVATION START 1028/04 1103 SAMPLER R. MILLER SUBCONTRACTOR AND EQUIPMENT COMMENTS SAMPLED EVERY 5 FEET LINED WITH BRASS SLEE	

Well Construction Details	Seal Internal Control of the Control	2" Blank PVC Casing				Filter Sand (RMC Lonestor #2/12) 2" PVC Screen (0 010 nnch slots)
Unified Soil Clossification	35					
Lithologic Description	Suly Sand very five to fine grained, occosional gravel, moist, (10 50 40 0) Suly Sond, graysh brown, (107R 5/2), very fine to medium grained, occosional rounded gravel and cobbless, (0,70,30 0)	Increase in gravels			(5.70,25,0)	
Depth Below Surface, feet	35	45	20	55	- 9 	65
geogiuā (bbw) bID	113 5	8 6	72 2	12 2	8 6	50 9
Sample Depth						
PENETRATION RESULTS BLOWS 6"/6"/6"	200	160	170	170	160	51.

SECOR	BORING LOG
	LANE OF S
PROJECT CIRCLE K STORE 31476	LOCATION 12880 1ST AVENUE SOUTH
SURFACE ELEVATION	CASING TOP ELEVATION 99,72**
START 10/26/94 1103	FINISH 10/26/94 1415
SAMPLER R MILLER	MONITORING DEVICE MICROTIP PID ML-2000
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRILLING INC.: CME 75; 8-1/4 OD HSA
COMMENTS SAMPLED EVERY 5 FEET IN	COMMENTS SAMPLED EVERY 5 FEET WITH A 2.5° I.D. X 1.6' LONG SPLIT SPOON SAMPLER
LINED WITH BRASS SLEEVI	ED WITH BRASS SLEEVES DRIVEN BY A 140 LB. HAMMER, 30" STROKE

Well Construction Details	2" Blank PVC Casing	2" PVC Screen (0 010 inch slots)	Filter Sand (RMC Lonestar #2/12)	** Note Casing top elevation relative to SECOR temporary benchmark with an assigned elevation of 100 00 feet	
Unified Soil Clossificotion	NS-MS				
Lithologic Description	Sond with Silt, groysh brown, (10YR 5/2), very fine to medium graned, occasional large rounded cobbles accasional gravel (2,90.8.0)	Soturated		Boring terminated at 90 feet Sampler advanced to 90 5 feet Graundwater encountered at approximately 80 feet during adming Boring converted to a groundwater monitoring well on 10/26/34 • Munsell (1990) Soil Color Charts • Munsell (1990) Soil Color Charts • Percentage of soil types shown in this order (0.50 45.5) gravel, sand, sill, and clay	
Depth Below Surface reet	5 5		8		105
PID (ppm)	2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 42 3	10 8	12 3	
Sample Depth Interval, feet					
PENETRATION RESULTS BLOWS 6"/6"/6"	1000	06	80	8	

MW-12 91.63** P. S. PAGE 1 BORING LOCATION REALTE WASHINGTON CASING TOP ELEVATION **507** BORING SECOR

Monument Wellhead				Z, Blank	38	
Silly Sond with Grove, dark brown (107R 4/3)*, wood debria, loose dry (fill)	Grovelly Sond with Silt dork groyrah brown (2.5Y 4/2) medium subrounded grovel, fine sond dry (30,50,20.0)**	-20 Decressed gravel (20 50 20 0)	Sond with Gravel and Silt, dark gray (2.57 4/2), poorty (20.70 10.0) -30	Dark graynsh brown (2.5Y 4/2)	to fine grovel, fine sand, very dense dry (25,50,15,0)	Sand with Gravel, dark gray (2.57 4/2), poody graded, medium to fine gravel, fine sand, trace sitt, dry (15,80.5 o)
2 8	£ 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 8 22	52		2 + 2	22
		for 6" fo		20	.9	93 for 6
	Silly Sond with Grovel, don't brown (10/R 4/3)*, wood Sul	2 8 Crowelly Sond with Grovel, don't brown (10/18 4/3)*, wood Sully Sond with Sully don't groysh brown (2.57 4/2) medium subrounded growel, fine sond dry (30,300.20 0)**	2 8 (10) Sond with Ground, dark brown (107R 4/3)*, wood Sully Sond with Ground, dark brown (107R 4/3)*, wood Sully Sond with Sully dark ground brown (25Y 4/2) medium authrounded grows, fine sond day (30,50,200 0)** 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 8 4 3 10 Crossly Sord with Crossly dark brown (107R 4/3), wood 934 4 3 10 Crossly Sord with Crossly forth brown (127 4/2) 5 2 5 2 5 2 5 4 3 5 5 2 5 5 5 2 5 5 5 2 5 5 5 2 5 5 5 5	2 8	6

CECOP	BORING MW-12
SECUIL	BURING LUG
PROJECT CIRCLE K STORE #1478	LOCATION SEATTE, WASHINGTON
SURFACE ELEVATION .	CASING TOP ELEVATION 91.63**
START 4/18/95 0945	FINISH - 4/19/96 -1135
SAMPLER E. CHAPMAN	MONITORING DEVICE MICROTIP PID
SUBCONTRACTOR AND EQUIPMENT	CASCADE DRILLING, INC.; CME 75:8.25" O.D. HSA
COMMENTS BORING SAMPLED EVERY 5	DRING SAMPLED EVERY 5' USING A DAMES & MOORE TYPE SPLIT
SPOON SAMPLER LINED WITH BRASS SLEEVES	LEEVES EÇOLOGY WELL #ABZ 483

Well Construction Details	Bentonite Seal Property Seal Prope	Filter Sand	Z PVC Screen (0 010 inch slots)		**Note: casing top elevation relative to SECOR temporary benchmark with an assigned elevation of 100 00 feet
Unified Soil Clossification	8		3 5		
Lithologic Description	Dark grögsak brown (2.5Y 4/2) medium gravel medium sand, (30.65.5.0)	Driller notes change in panetration rate	Sond with Grower very dark groy (2 3V N3/0), well graded coorter to fine gravet, coarse to fine black specified sand trace sill wet (30.65.5.0)		Borng terminated at 95 feet Gourdenter EB 77 and B2 feet during drilling Borng converted to a groundester monitoring well on 4/18/95. • Munell (1990) Soil Color Charts • Preventings of soil types shown in this order (0.50.45,5) grovel, sond, silt, and stay based on field observations.
Depth Below	22	▶	D 88		8
(mqq) pnibossi Olq	7 - 7 2 8 8	86 Z	H 85 75*	또 또 # - #	# 5 ° -
PENETRATION RESULTS BLOWS BLOWS G'/6"/6" Goding	93 for 6" 22 22 82 for 6" 22 22 88 for 6" 22 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	85 for 6 22 22 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	for	82 for 6' 82 for 6' Blow rounts	*Sample recovered below minimum required for laboratory analysis

BORING/WELL NO: SB-1/DAS-6 Ite, WA PAGE 1 OF 1	Location Map	See Figure 2	,	LITHOLOGY / DESCRIPTION	· manufacture of the second of	Air-knifed/vac-cleared to 5' on 6/7/05 (Sand with gravel fill material, compacted)		el; grey, 70% medium to coarse		gravel, brown-gray in color)		, 70% silt, 25% sand, 5% gravel, sheen	Poorly Graded SAND with Silt and Gravel; trace brick fragments and glass shards	debris at 13') % well-graded sand, 30% clayey erate plasticity	-	Own	(grades finer (sawdust), light brown)		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ůž.	TER: 2" : 20' KUP: Flush	EASTING	LITH	Asphalt (6")	Air-knifed/vac- (Sand with gra		Silty SAND with Gravel; grey,	sand, 15% silt, 15% gravel	(grades less g		SILT with Sand; grey, 70% silt, moderate plasticity, sheen		(fibrous wood debris at 13') Silty SAND; grey, 60% well-graded sand, silt. 10% gravel. moderate plasticity		Wood debris; dark brown	(grades finer (BOTTOM OF HOLE	
0-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Depth (feet) Recovery A Interval Interval Soil Type		2 1	e 4	SW SW	7	ω o	10 - 10	WI WI	12 SP-SM	SM SM	22	16 WDFil	8 2	20	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12	7	Penetration (blows/6")				9 61	23	/ ю 4 п		100		*****	300			(2000)	.,	- 5.5
F NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	rype: E: PACK:	ELEVATION	PID Reading (mgq)				0.2		59.1	496	9.1	3.5		16.5	6.0	3.3	1.7		
PROJECT LOGGED	DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture fraging				Moist		Moist	Moist	Mot	Wet	Moist		Sat	Sat	Sat		
	ta	iental ts, Inc.		Static Water Level					40				9:30 6/7/05							
	Dell	Environmental Consultants, Inc.		Well Completion Mell Completion Backfill Casing	·oue	°0				TOUITE	BEN		it Sanakisa	The second second	Maria de la companya		DNAS			

BORING/WELL NO: SB-2 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	es casaciana es el escolo (es) de aminomo mantes es el 5 em (el escolo de la casaciana esco	Air-knifed/vac-cleared to 20" on 6/6/05. Encountered concrete at 20"; cored on 6/7/05.	Air-knifed/vac-cleared to 5'. (Compact sand and gravel fill)	A manufacture of the state of t	SILT; brown-grey, 95% silt, 5% fine sand, firm, non-plastic		(grades more brown in color with trace gravel, 90% silt, 5% fine sand, 5% gravel)	Poorly Graded SAND with Silt; brown-grey; 85% fine to medium sand, 10% silt, 5% gravel	grades more gravel (10%))	(Urban Redevelopment's PID reads 8.5 ppm)	d sample at 12.5 ft to 14 ft)			WDFill Wood debris; coarse, approx. 2" to 3" fragments	(Shoe sample-direct PID screen, could not	remove from shoe) (Wood debris grades to sawdust, brown, soft) Graded SAND; grey, 100% fine sand	@ 20.		
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 6/8/2005 TER: 8" . 20'			Ė	Asphalt (4")			100000000000000000000000000000000000000	SILT; brown-grey, 94		(grades more 90% silt, 5%	Poorly Graded SAND with Silt; bromedium sand, 10% silt, 5% gravel	arom separation	(Urban Redev	(Driller missed sample at			Wood debris; coarse	(Shoe sample	Poorly	BOTTOM OF HOLE		
-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP	NORTHING	Recovery & P P P P P P P P P P P P P P P P P P		Conc.			ML	3		SP-SM			Acc.				8	SP			
WA255-3510-1 C. Fleming	CDI HSA SS	N N N		Penetration (blows/6") (bepth (feet)			<u>ν</u> ω	4	7 7 2			5 × 4	. 9 4	4 2 6		1 - 2		36	12 18	£ 4 8	4 (7	22
	METHOD:		ELEVATION	gnibsəA OI9 (mqq)					0.0		0.0	0.1	3	0.1			3.2	0	e S	6:0			
PROJECT NO LOGGED BY:	DRILLER: DRILLING SAMPI INC	CASING TYPE: SLOT SIZE: GRAVEL PACK	1-30	Moisture freshro					Moist		Moist	Moist	14/04	Sat		Wet	Sat			Sat			
	ta	iental ts, Inc.		Static Water Level		12								13:25 6/8/05									
	Delt	Environmental Consultants, Inc		Well Completion Casing Casing	.or	COI				Section 1997			TINC	ВЕИТ					978				

BORING/WELL NO: SB-3A/DAS-7 Ittle, WA PAGE 1 OF 1	Location Map	See Figure 2	LITHOLOGY / DESCRIPTION	Air-knifed/vac-cleared to 5' SILT; grey, 95% silt, 5% trace sand, firm, non-plastic (grades green-grey in color) Well Graded GRAVEL; brown, with peat and sand, wet Poorly Graded SAND; green-grey, with light brown sand lenses, 100% fine to medium sand (grades grey medium sand, visible sheen) (grades trace coarse gravel (subrounded)) (as above, grades more fine gravel)	D; grey 2" thickness) D; grey : @ 21.5"
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ER:	TER: 2" : 20' :KUP: Flush EASTING	Ē	Air-knifed/vac-cleared to SILT; grey, 95% silt, 5% trace s SILT; grey, 95% silt, 5% trace s Grades green-grey in co Well Graded GRAVEL; brown, Poorly Graded SAND; green-gr sand lenses, 100% fine to med (grades grey medium sa (grades trace coarse gra (grades trace coarse gra (as above, grades more	(no recovery) Poorly Graded SAND; grey PEAT; dark brown (2" thickness) Poorly Graded SAND; grey BOTTOM OF HOLE @ 21.5"
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP: TING	Soil Type	SP	g g
	DATE HOLE HOLE	WELL WELL CASIN	Secovery Sa Interval		
-3510-1 ling			Depth (feet)	<u> </u>	- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
WA255-3510-1 C. Fleming		0.020 2-12	Penetration (blows/6")	8 8 4 4 9 4 5 7 4 5 7 5 7 5 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100/3" 70/6" 15 50/4" 44 13 15 6
T NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: F SLOT SIZE: C GRAVEL PACK: 2 ELEVATION	PID Reading (ppm)	5.0 2.0 338 338	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLIN	CASING TY SLOT SIZE: GRAVEL PA EL	Moisture Tentent	Damp Damp Wet Wet	
Į.	ta		Static Water Level	15:05	4
	Del	Environmental Consultants, Inc	Well Completion Casing Casing	Conc	dnas

BORING/WELL NO: SB-4 Itle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	the state of the s	cleared to 5'				Silty SAND, brown, 60% well-graded sand, 25% silt,	5% wood debris, siignt plasticity	Well Graded SAND; black, with sawdust, 60% sand,	30% sawdust, 10% gravel-subrounded Silty SAND: brown-grev, 50% well graded sand, 30% silt.	y fines		st); black, with trace sand		(grades coarser wood debris)	(trace reddish-brown silt at 13.8')	(grades finer wood debris (sawdust), reddish-brown			Poorly Graded SAND with Gravel; grey, 85% medium	Well Graded SAND; grey, with clayey silt	olay) D; gray, 80% fine sand,		@ 21.5'
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ED: 6/7/2005 TER: 8"	ER:	EASTING	LIT	Asphalt (4")	Air-knifed/vac-cleared to			1 2		10% gravel, 5% woo			10% gravel, 10% clay fines	Control of the second of the s	WDFIII Wood debris (sawdust); black, with trace	to the second se	(grades coars	(trace reddish	(grades finer	at 15.3')				(grades less clay) Poorly Graded SAND; gray, 80% fine		BOTTOM OF HOLE
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery on Interval on Type						SMS		SW	SW			WDF			277			33 330	SP	SM	S		
WA255-3510-1 C. Fleming				(blows/6") Depth (feet)			2 -	۳ ا	4	- 5	2 2 3 2 6	.		0 0 1	- t	1 4 –	3 2 1 2	13 -	2 7	4 15 8	3 16 -	4 17 -	18 18	9 19 1		21 - 1	22—
NO: WA2	ETHOD:	METHOD: SS PE: NA NA CK: NA	ELEVATION	PID Reading (mpq) Penetration			-				9.	3.5		103.8	11.7		3.5		9.0	0.7	ontitie 7.00	0.3	<u>ر</u>	-	9.0	0.5	
PROJECT N	(0	SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture fnetho							Moist	Moist		Moist	Wet		Sat		Sat	Sat		Sat	ţco	Cal	Sat		
	ta	ental s, Inc.		Static Water Level	, c						2.50				13:50	6/7/05											
	Delt	Environmental Consultants, Inc		Well Completion Casing Casing	:oı	100		147.00 12.00 10.00	5-10-7-13 5-10-7-13 5-10-7-13				19 (Sec.)		3	ITING	ВЕИТО			and any and a second a second and a second and a second and a second and a second a	V 2	Carabana de la Caraba			777	1207	

ConocoPhillips 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	6/7/2005 Location Map 8" 20'		EASTING	LITHOLOGY / DESCRIPTION	Asphalt (4")	Air-knifed/vac-cleared to 5'	The second secon			Well Graded SAND with Silt: brown, 70% well graded	sand, 25% silt, 5% wood debris, non-plastic	Silty SAND with Gravel; grey, 60% well graded sand, 20% gravel, 20% silt	F 100	SILT, grey, with trace brick fragments, hard	(grades more sand)		Wood debris (sawdust)	(grades fifter to coarser in texture) (grades darker to lighter in color)		(as above, with 15% fine sand, 5% silt)			Well Graded SAND; grey, with trace brown silt,	95% well-graded sand, 5% slit Poorly Graded SAND; grey	BOTTOM OF HOLE @ 20'	
ä	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP		Soil Type						SW-SM		SM		M	d.			E C					SW	S G		
CLIENT: LOCATIO	DATE	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	ORTHING	Recovery Sam Interval		H	\parallel																			
510-1 g			N	Depth (feet)		-	2	8	4	2	9	7	0	9	2	£ ;	7	13	4	15	16	. 8	19	20	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	A A A	7	Penetration (blows/6")						က	4 κ	4 4 4	0 00	Иω	დ 4	7 7 7	e 5	28	∞ 4 ı	ر د ۲ ہے	9 7	∠ 6 ;	2 0 9	12		
NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: P SLOT SIZE: P GRAVEL PACK: N	ELEVATION	PID Reading (mgq)						9.6		23.3	12.4		0.3	0.6			2.7	2.7	3.8	0	18.2	9.0		
PROJECT NO LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK	·***	Moisture Content						Moist		Moist			Sat	Sat		1	Wet	Sat	Sat		Sat	Sat		
	ta	ental s, Inc.		Static Water Level										N	13:50											
	Delt	Environmental Consultants, Inc.		Well Completion Gasing Casing	-ou	იე [10.21			7.18			äı	INO	TN∃8) <u> </u>				

BORING/WELL NO: SB-6/VE-6 ile, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	With the American Committee of the Commi	cleared to 5' on 6/7/05	A second section of the second				:0% sand, 20% silt	(~2" thick wood debris at 7", coarse)	Poorly Graded SAND; brown, 100% medium sand	Slity SAND, brown, with trace graver, but will sailu, 35% slit, 5% coarse gravel, mild sheen	(grades grey in color at 9')	7; grey, 95% medium sand, 5% silt		rey, soft					@15.5"						
ConocoPhillips 600 Westlake Ave N, Seattle, WA): 6/8/2005 ER: 8" 15.5'		EASTING	ПТН	Asphalt (4")	Air-knifed/vac-cleared to 5'	And the second s			Andrew Control of the	Silty SAND; brown, 80% sand, 20% silt	(~2" thick woo	Poorly Graded SANE	35% silt, 5% coarse g	(grades grey in	Poorly Graded SANL		Silty SAND; brown-grey, soft				WDFill Wood debris	ROTTOM OF HOLE						
10-1 CLIENT: LOCATION:		WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Depth (feet) Recovery & ## Depth (feet) Recovery of ## Depth (feet) Application of ## Depth (feet)		-	2	3	4	2	WS 9		SP 8	NIC		10 SP		WS .	12	13	14-	15 WDFil	16	17	18	19	20	7	22
WA255-3510-1 C. Fleming		PVC 0.020 2-12	7	Penetration ("Ə\swold)						-	0 8 0	ω 4	4 4	0 ~	7	ო ო	4	←:~	- 70	ω 4	5 2	ဖ ဖ							
NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: F SLOT SIZE: (GRAVEL PACK: 2	ELEVATIO	PID Reading (mpm)							4.0		5.2	198			11.0		0.8			0.2							
PROJECT	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK		enuteioM fnetnoO							Moist Wet		Moist	Moist		Moist	Sat		Sat			Moist							
	elta	nental ts, Inc.		Static Water Level													K	8:00	5										
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	.ວເ	00	1	TIN	OTN:	BE			i i			a	NA 	S	9	1				South or as it was					

Seattle, WA PAGE 1 OF 1	Location Map	Spee Figure 2			LITHOLOGY / DESCRIPTION	A CONTRACT OF THE PARTY OF THE	Air-knifed/vac-cleared to 5'			The second secon	The second secon	Silty SAND; grey with trace roots, 60% fine to	n sand, 40% slit (grades finer sand with trace coarse	gravel-subrounded)	The state of the s								(as above, grades more sand (30%))		Poorly Graded SAND; grey, 100% fine sand	SILT; clayey with 10% fine sand, soft, wet	DLE @ 20'	
Conocol 600 Wes				EASTING	302	Asphalt (4")	Air-knifed/	4					medium sand, 40% silt (grades finer sar	gravel-su					WDFill Wood debris			(as above)	(as above		1		BOTTOM OF HOLE @ 20'	
10-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DEPTH: CASING STICK	NORTHING	Depth (feet) Recovery & Depth (feet) Soil Type			2	3	4	2	e sw			8	6	10		12 WD	13	14	15	16	17	18 SP	20 ML	21	22
WA255-3510-1 C. Fleming		SS	A S	z	Penetration (blows/6")			,-			c	777	ი ო	m n	o 0	ოო		m 01 +	- 2 -	- 2 -	4 ∞ ξ	2 ~ 0	5 7 £	- n φ	9 9 9	0 W		
T NO:	: 3 METHOD:	SAMPLING METHOD:	ZE: T:	ELEVATION	PID Reading (mgq)					40		22.1		29.4		5.3	0.1	1.0		0.1		0.1	0.0	0.0		0.0		
PROJECT NO LOGGED BY:	DRILLER: DRILLING	SAMPLING ME	SLOT SIZE: GRAVEL PA		Moisture frentent		- 11)					Moist		Moist		Moist	Moist	Moist	Sat			Wet	Sat	Sat		Sat		
	ţ		nental ts, Inc.		Static Water Level					(8)		nate to the							6/8/05							- 10 -2		ii e
	Del)	Environmental Consultants, Inc.		Well Completion Casing Casing	.sr	100) 	****			in the const	******		75.5°,		ЭЛІТЕ	ЕИТС	3 12.7		200.00	1 200	in the same	None e		1 - 18/15	1	

BORING/WELL NO: SB-8 attle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		Air-knifed/vac-cleared to 5'			t, 5% fine sand, firm, non-plastic	o cohple)	(algono a	(grades 10% medium sand, slight plasticity)	Poorly Graded SAND with silt; grey, 80% medium sand, 10% silt, 10% well graded gravel	of modium to	coarse sand, 20% well graded gravel, loose	Poorly Graded SAND with silt and gravel; grey,	Wood debris and cobble (~3"), subrounded; dark brown to tan	(wood on public finer to coarser wood debris)	Coppe, men to coaled wood dealed			Е @ 20'	
Conoco 100 Wes): 6/9/2005 ER: 8" 20'	ER: NA NA (UP: NA	EASTING		Asphalt (4")	Air-knifed/va			SILT; grey, 95% silt,	(alddon anorth antonia)	(grades trace	(grades 10%			coarse sand, 20%) or solicity	oli adua (il)			BOTTOM OF HOLE	
	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Depth (feet) Recovery Depth (feet) Soil Type			3 8	4	2 WI		8	6	10 SP-SM	172	13	14————SP-SM	15 WDFill	16-	17	20 00	20	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	4 4 4 4 4 4	7	Penetration (blows/6")					0.4	ເດ ເດ ເ	ဂဖ	0 0 7	10 0	രഹ	ა ი ლ	23	1 ~ 0	.9/05-6	36	19	7		
	METHOD:		ELEVATION	PID Reading (mgq)					5.9	1	7.	2.1	3.7		3.0	i	3.3		30.7	63.8	9.0		
PROJECT NO	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content		3			Damp	Ć		Moist	Moist	Wet	Vat.	Wet		C	Lamp	Damp	Damp		
	ta	ental s, Inc.		Static Water Level										7:50									
	Dell	Environmental Consultants, Inc.		Mell Completion Casing Casing	:51	100 H	N. North Special	e e e e e e e e e e e e e e e e e e e			Acceptance	no mate.	ОЙТЕ	BENT		n earth out		440,200			47-		

BORING/WELL NO: SB-9/DAS-8 le, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	The second secon	cleared to 5'		A CALAMATA AND A CALA		monatory due to the property of the control of the	Poorly Graded SAND; light brown, 90% fine sand, 5% coarse sand, 5% silt	SILT; brown-grey, trace roots, non-plastic, firm	Poorly Graded SAND; light brown, 90% fine sand, 5% coarse sand, 5% silt	reav. 60% cilt 40% fine cand	90704 DIII	Poorly Graded SAND; grey, 100% medium sand	Silty SAND; grey, 70% sand, 20% silt, 10% gravel, moderate to heavy visible sheen	Poorly Graded SAND with Gravel; 85% medium sand, 15% gravel	Silty SAND with Gravel; grey, 70% sand, 50% silt, 15% well graded gravel	Poorly Graded SAND with Silt; grey, wood debris,	50% sand, 10% silt, 5% gravel, 35% wood debris Wood debris	With Sill, as above	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 6/9/2005 FER: 8" 20'	., ., _	EASTING	LITH	Concrete (6")	Air-knifed/vac-cleared to	The second secon				Poorly Graded SAND; lig 5% coarse sand, 5% silt	SILT; brown-grey, tra	Poorly Graded SAND; lig 5% coarse sand, 5% silt	Condy Oll T. brown	Sandy SILT; prown-grey, 60% silt, 5% gravel (~3/4")	Poorly Graded SAND				M Poorly Graded SANE	50% sand, 10% silt,	SP-SM Poorly Graded SAIND With Sill, as above	BOTTOM OF HOLE @ 20'	
D-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery S a lnterval E Soil Type		-	2	3	4	2	SP 6	8 ML	ds 6	10	MIL WIL	SP	13 SM	15 SP	17 SM	18————————————————————————————————————	19————————————————————————————————————	20 SP-8	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12		Penetration (blows/6") (bepth (feet)						m	4 W O G	0 4 (27		- St.	ကြေထာင		A result of the first	50.	314500		
	ETHOD:		ELEVATION	PID Reading (mqq)							1.5	3.2	3.2	0	o. X	333	187.0	49.0	27.0	9.0	(3.0		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING T SLOT SIZE GRAVEL F		Moisture frentent							Dıy	Damp	Dıy	Moiot	MOIST	Wet	Wet	Wet	Wet	Wet Sat		Sat		
	elta	rental ts, Inc.		Static Water Level												12:25	90/6/9							
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	່ວເ	col						TIE	зЕИТОИ	3		as a well-	was a superior	178 Sec. 1		QNAS				

BORING/WELL NO: SB-10/DAS-9 Rtle, WA PAGE 1 OF 1	у Мар	See Figure 2		LITHOLOGY / DESCRIPTION	The Control of the Co	-cleared to 5'					SILT; brown, 95% silt, 5% fine sand, firm to hard	Silty SAND; brown, 80% fine sand, 20% silt	D) blown, nace graver, 90 % medium avel	(peat lense, dark brown, ~1" thickness) Poorly Graded SAND; brown-grey, fine sand, soft		th gravel)		; coarse	Poorly Graded SAND; grey, 85% medium sand, 5% silt, 5% coarse gravel, 5% coarse sand	od debris	(grades saturated at wood debris/silt interface)			: @ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	: 6/9/2005 ER: 8" 20'		EASTING	Ė	Concrete (8")	Air-knifed/vac-cleared to		200			SILT; brown, 95% si	Silty SAND; brown,	sand, 5% silt, 5% gravel	(peat lense, or Poorly Graded SAN	And the state of t	(as above, with gravel)		WDFill Wood debris; timber, coarse	Poorly Graded SAND; grey, 85% m 5% coarse gravel, 5% coarse sand	(wood debris)	Orades satur	Wood	(wood debris)	BOTTOM OF HOLE @ 20'	5; , ,
ä	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type							₹/	NS C	ה ה	SP				WDFill	S S	WDFi		WDFill			
CLIENT: LOCATION:	DATE HOLE HOLE	WELL WELL CASIN	NORTHING	Recovery lnterval																			is a		
3510-1 ng		5	ON	Depth (feet)	H	+	2	£ 1	4	2	9	7	8	6	10	2 2	13 13	44	15	17	18	19	20	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12		Penetration (blows/6")						8	നഗ	2 4	2 8	ကက	0 8 1	ი 4 ა	∠ 4 <	t ∞ က (m ω 4 α	1 4	r (0 (0	9 % 1	· E		
NO: BY:	METHOD:	229	ELEVATION	PID Reading (ppm)							1.0	c	7.0	17.0	203		283	197		2.0			0.7		
PROJECT LOGGED	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture Content							Dny		INIOISE		Damp				Wet		Sat	\$	Wet		
	elta			Static Water Level												N									
	Del	Environmental Consultants, Inc		Well Completion Casing Casing	.on	100	3,51	Message and the second				- 100 m	aTIN	OTN:	18	Park Service of the Sale	and our starts				QNA	III			

BORING/WELL NO: SB-11/DAS-10 Seattle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		Air-knifed/vac-cleared to 5'	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			% silt, 5% fine sand		Well Graded SAND with Gravel, brown, 80% sand, 20% gravel	Gravel; grey, 70% fine sand, 15% silt,	Well Graded SAND with Gravel; brown	The state of the s	SW-SM Poorly Graded SAND with Silt; grey, 80% medium sand, WDFill 10% silt, 10% gravel, wood debris at 12.6' to 13' SW-SM Poorly Graded SAND with Silt; grey, 80% medium sand,	avel	Silty SAND with Gravel; grey, 65% medium-fine sand, 20% silt, 15% gravel		Wood debris, brown, with fine sand and trace silt,	85% wood debris, 10% fine sand, 5% silt	DLE @ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	άż	TH: 20' AETER: 2" TH: 20' ICKUP: Flush			Asphalt (3")	Air-knifed/			and the second s	L SILT; brown, 95%		SW 20% gravel	Silty SAND with Gravel; grey, 15% gravel, hard	SW Well Graded SAN		Webrill 10% silt, 10% graws North 10% silt, 10% graws North Graded S.	10% slit, 10% gravel	SM Silty SAND with 0 20% silt, 15% gra	WDFill Wood debris	Wood debris; bro	85% wood debris	BOTTOM OF HOLE	#20
10-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Depth (feet) Recovery and Interval and Type			2	3	4	5 MIL		8	9 SM	11 S	12	13 WE SW	14	S S		18	19	21	22
WA255-3510-1 C. Fleming	CDI	SS PVC 0.020 2-12	7	Penetration (blows/6")						0.4.	72 4	စ္ ၈၊	ကတေလ	ი ო 4	1 0.1	~ w 4 0	.9/08	6 6	12 28 53/6"		100/6"		
NO: BY:	METHOD:	SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION	PID Reading (ppm)						0.0	(0.0	0.0	0.4	9	247	8.2	1.2	2.7	32	7.9		
PROJECT NO LOGGED BY:	DRILLER: DRILLING	SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Sontent						Dny	d	אמ	<i>Damp</i>	Damp	14/24	Wet		Sat		Wet	Sat		
	<u>t</u> a	ental ts, Inc.		Static Water Level												X							
	Del	Environmental Consultants, Inc.		Vell Completion Casing Casing	.ən	oĵ.	71000			24320 11-00	Sept.	ЭТІМО	DTN38		1000			Arm and the		GNAS			

ConocoPhillips 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	6/10/2005 Location Map 8" 20'	20' See Figure 2 20' P: Flush	EASTING	LITHOLOGY / DESCRIPTION	Asphalt (3")	Air-knifed/vac-cleared to 5'				Well Graded SAND with Silt and Gravel; brown,	60% sand, 30% gravel, 10% silt		sand, 15% silt, 15% gravel, slight to moderate plasticity		(grades no gravel, grey, hard from 10.3' to 10.5')	5% silt, 5% wood debris, 5% gravel	(visible sheen)		Poorly Graded SAND with Gravel and wood debris; grey, 50% fine to medium sand, 40% wood debris, 15% gravel,	5% silt (grades less wood debris (30%), brown-grey)	(as above, grading more clayey silt (~10%))		Sawdust (4" thickness)	Poorly Graded SAND; grey, with wood debris	BOTTOM OF HOLE @ 20'	
ä	田田田田	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type	4	1 1			1 t_	SW-SM	<u> </u>	SM			0	77. 11-							WDFill	SP		
CLIENT: LOCATION:	DATE HOLE HOLE	WELL	NORTHING	Recovery Sample Interval				\prod		(EX)	% (A) (数 (A) (数				25 or 2	3 323 23			250 1004			- No.				
510-1 g			NO	Depth (feet)		-	2	m .	4 ,	n 9) 1			, 5	2	£	12	13	4	15	16	17	80	9 6	2 2	22
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12	-	Penetration ("3\swold)						2 2	2 7	4 4	2 8	4 ಬ	9 (o က u	2 7 2	31	8 2	4 0	44	4 0	m 70	იიი		
T NO:			LEVATION	PID Reading (mqq)						0.2	0.4	1.2		272	0	000	330 78		87	147		83	6	22.8		
PROJECT NO LOGGED BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK	Ш	enutaioM frent						Moist						Wet			Sat	Sat		Sat	Wet	Wet		0
		ental s, Inc.	0	Static Water Level											\supset	9.30 6/10/05										
	elta)	Environmental Consultants, Inc		Well Completion Casing Casing		1			I		T			1	1		1			1		I				
		Cor		Backfill ≦	່ວນ	၀၁		A CONTRACTOR	1131.129 p.	Switz (Paris)	ing and the second	a.	TINOT	BEN.	30000 10000	kating				14		c	INAS			

BORING/WELL NO: SB-13 PAGE 1 OF 1	Location Map	9 9	See Figure 2		LITHOLOGY / DESCRIPTION		o-cleared to 5'	The second secon		TO DECEMBER AND A STATE OF THE PARTY OF THE		y, 80% silt, 20% sand, low plasticity	SAND with silt; grey, 80% fine to medium sand,	ravel at 7 Et to 7 71)	(wood depris at 7.5 to 7.7) AND; grey, 80% well-graded sand, 20% silt	and languages	(grades 10% gravel with brown fine sand lenses)		(as above, with fine wood debris (3" lense), brown)	Wood debris, coarse (~3" fragments), timber with	saturated grey sand and slit Mood debrie: reddish-brown fine wat decomposed	Silty SAND with wood debris; 60% well graded sand,	debris oarse sawdust	Silty SAND with wood debris; 40% well graded sand, 30% silt 30% wood debris		Wood debris; reddish-brown, fine, moist Poorly Graded SAND; grey, 95% fine to medium sand,		Poorly Graded SAND with silt; grey Poorly Graded SAND; grey, 95% fine to medium sand,		E @ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	LED: 6/10/2005	ć	IETER: NA FH: NA ICKUP: NA	EASTING		Asphalt (4")	Air-knifed/vac-cleared to	100 mm - 100				SILT with sand; grey, 80% silt,	SM SAND with silt; grey	10% silt, 10% tine g	Sillty S	100 F colores	(grades 10%		(as above, wi		Saturated grey sand and silt				מיים פוני מיים	Fill Wood debris; reddis	5% silt	SM Poorly Graded SAN Poorly Graded SAN	5% silt	BOTTOM OF HOLE	
10-1 CLIENT: LOCATION:	DATE DRILLED: HOLF DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Depth (feet) Recovery & Depth (feet) Soil Type		-	2	e e	4	2	ML	7 SP-SM	8	WS 8W	10	ar ar		7	13- WDFill	14	15 SM	WDFI	WS SW	17	18 WDFill	19	SP-SM		21	22
WA255-3510-1 C. Fleming	CDI		<u> </u>	z	Penetration ("8/swold)			-			~ ო	4 %	1,4	ο α	0 4 .	4 0 4	4 0	100	⊘ ←	2 0	ю r	201	იო	2 +	- m ·	4 6	9;	15			
TNO: BY:	METHOD	SAMPLING METHOD:	IYPE: E: PACK:	ELEVATION	PID Reading (mqq)							1.0	, C	7.	2.2	4	<u>.</u>	1.8		1.1		0.2		<u>-</u>	:	1.7		1.1			
PROJECT NO LOGGED BY:	DRILLER:	SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		enutaioM frentent							Moist	Mariot	INOISE		Moint	INOISI	Wet		Sat	Wet		NOISI	Sat	5	Moist	3	Wet			
	<u>+</u>	2	nental ts, Inc.		Static Water Level											2		\triangleright	14:30 6/10/05												
		2	Environmental Consultants, Inc.		Weil Completion Casing Casing	.ou	o၅									- a tii	NO.	TN38		1-41-51						100 700		Andreas de la companya de la company	V		

BORING/WELL NO: SB-14/VE-7	deMid	בספתפי ונופל		See Figure 2			LITHOLOGY / DESCRIPTION		-cleared to 5'		The second secon			Clayey SILT; grey, slightly mottled orange, 5-10% clay, trace organics, moderate plasticity, dense, moist	(as above, with increased organics, trace coarse sand)		Clayey SILT; dark grey, changes to wood at 8.3' Silty SAND; 5% silt, coarse sand, with wood fragments	SAND; grey, fine to medium, with 5-10% silt, moist, wet at 10.5' depth	se cand 5-10% eilt lonce wet	ופ סמווק, טרוטיט סווי, וסססטן, יייסנ	with wood fragments)	ottom 4" degraded wood, peat)))	PEAT; degraded wood/peat (poor recovery)	th silt		nanges to peat at 19'		E @ 20'	
ConocoPhillips 600 Westlake Ave N. Seattle. WA	6/13/2005				15' UP: Flush		5	Asphalt (2")	Air-knifed/vac-cleared	Commence of the second				Clayey SILT; grey, s trace organics, mod	(as above, wit		Clayey SILT; dark g Silty SAND, 5% silt,	SAND; grey, fine to wet at 10.5' depth	Silty SAND: gray fir	omy odivo, gray, into saira,	(as above, w	(as above bottom		PEAT; degraded wo	Wood fragments with silt		Wood fragments; changes		BOTTOM OF HOLE	y
CLIENT:	ü	HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NG	Soil Type		Т		П	ТТ				CL-ML	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	NS N					\ 	\ <u>\</u> \		WDFill				\Box
12 5	2 2	ŠÏ	¥	3	≶ ∂	NORTHING	Recovery Sample				\parallel					(34)		捜 (2)	7.33 22					19 (MA) (D) H				100		\square
-3510-1							Depth (feet)		+	2-	۳ ا	4		n 0	7	- 0	, o	10-	<u>+</u>	12-	1 5	4	15-	16-	17-	18	19-	-02	21-	22-
WA255-3510-1		HSA	SS	PVC	0.020	7	Penetration (blows/6")							~ ~ ~	- 8	ოო	4 % (7 m m	m +		8 1	υ 4 rc	יטע	3 50/5"	10	5 6 5	7 2 /	∞		2.0
NO.		METHOD:		YPE:	E: PACK:	ELEVATION	PID Reading (mqq)							3.4		3.4	16.0	399		25.0		က်	19.9	6.0		24.1	2.5			
PROJECT NO	LOGGED I	DRILLING	SAMPLIN	CASING TYPE:	SLOT SIZE: GRAVEL PACK:		Moisture Content							Moist		Moist	Moist		Wet	Wet	3	Met	Wet	Moist		Moist				
		ת בי		125.55			Static Water Level											\bowtie	7:57	CD/C1/0										
	1	٥	2	Environmental	Consultants, Inc.		Well Completion Casing	-ouc	23	TNE		1	1					QNA2		П						ЭТІИ	ENTO	3		

BORING/WELL NO: SB-15/DAS-12 ile, WA PAGE 1 OF 1	Location Map See Figure 2		LITHOLOGY / DESCRIPTION	and the second s	cleared to 8'		Management of the second secon	The second district of the second sec	ALL THE PROPERTY OF THE PROPER			fine, trace medium, with <5% silt, se, dry	(as above, changes to sandy silt at 10.0', blue-grey,	and organics, dense, plastic, moist)	(as above, with large wood fragment (>6"), loose, wet)	Silty SAND; blue-grey, 10-15% silt, fine to medium sand, wood fragments, trace fine gravel, loose, wet	9	ey, fine sand, 5-10% silt, loose,		sand slightly coarser with increasing	changes to peat with wood fragments	: @ 20,		
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ER: 8" 20' ER: 20' ER: 2" 20' ER: 2" 20'		LITH	Asphalt (2")	Air-knifed/vac-cleared to	-						SAND; grey-brown, fine, tra trace fine gravel, loose, dry	(as above, ch	and organics	(as above, with	Silty SAND; blue-gre wood fragments, tra	Silty SAND; as above	Silty SAND; blue-grey, fine	non-plastic, wet	(as above, sa fine gravel)	(as above, ch at 19.25')	BOTTOM OF HOLE		
i z	급 든 품 든 품 첫		Soil Type									S	/:	N N				-			/=			
CLIENT: LOCATION:	DATE CHOLE IN WELL I WELL I CASIN	NORTHING	Recovery of interval of											4 3										-
3510-1		_	Depth (feet)		÷	-5	က်	4	Š	<u>΄</u>		ထ် တ်	19	·	12	13	4	15	17	- 8	19	2 5	22	4
WA255-3510-1 J. North	CDI HSA SS PVC 0.020		Penetration ("8\swold)		-							4 4 "	ဂ ဖ ၊	^ /	N - 1	2 7	w 01 v	1 m m	4 4	∞ ~ u	. w m m			
	ETHOD:	ELEVATION	PID Reading									0.0		9.5	87.7	146		· ·	0.0	6.0	0.0			
PROJECT NO	DRILLER: DRILLING MET SAMPLING ME CASING TYPE: SLOT SIZE: GRAVFI PACK		Moisture fraging									Dry		Moist	Wet	Wet	Wet		Wet					
			Static Water Level					2, 11			<u>t</u> a			N	10:25 6/13/05							-	32	
	Delta Environmental Consultants, Inc.		Mell Completion Casing Casing			1	1.1																	
			Backfill ≦	.or	cor		ç					TINOTI	BEN				- California (Carlos California	. No. 1		ДИА	S			

BORING/WELL NO: SB-17 Ile, WA PAGE 1 OF 1	Location Map	Series Series	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'				Sandy Gravelly SII T: grave and browns moffled	_ ;⊆	(as above, grading siltier with depth; grades to wood debris at 7.75')	Sandy Gravelly SILT; as above, with organics, grades to	ist	(as above, sand decreases to <5% at ∼10.5')	(no recovery, large flake of wood only)	wood debrie)	n wood/log)	(poor recovery, wood fragment)	wood dobrie water)	y, wood debits, water)	ice Sandy Silt; as above	1.001	indy silt; wet	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	5: 6/14/2005 ER: 8"			KUP: NA EASTING	<u> </u>	Asphalt (2")	Air-knifed/vac-cleared				T IIS villeyers whose	15-20% fine to medium gravel, dens	(as above, grading silt) wood debris at 7.75')	Sandy Gravelly SILT		(as above, sar	(no recovery,	(no recovery wood debrie)		(poor recovery		(pool lecovery, wood	Wood debris with trace		Wood debris with Sandy Silt, wet	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	ноге рертн:	WELL DIAMETER: WELL DEPTH:	CASING STICKUP:	Soil Type	L.					Local		S GM	SM/	CL-ML			MO HIS	5							.	
CLIENT: LOCATIC	DATE	HOLE	WELL	NORTHING	Secovery Samulations of Samulations	\parallel	7 9		+			Jan.			1830						1280						
510-1				ž	Depth (feet)		-	2	8	4	5	9	7		6	10	<u> </u>	12	13	4	15	16	17	\$ 	19	20	
WA255-3510-1 J. North	CDI	SS	A A	AN 7	Penetration ("8/swold)						C	9 7 8	9 9 1	~ ² 2 «	ာတ	2 2 2	100/2"	4	4 4	4 50/6"	400/E"	2/001	100/3"	2	17 17 9)	· 1
	METHOD: 1		YPE:	GRAVEL PACK: N	PID Reading (ppm)			-		<u></u>		0	0	c)	0	0)	5.8	4.7							
PROJECT NO LOGGED BY:	DRILLER: DRILLING	SAMPLING	CASING TYPE: SLOT SIZE:	GRAVEL F	Moisture Content							Moist	Moist	Moiet		Moist	Moist		Moist	Moist		Wet	Mat		Wet		
	π	2			Static Water Level													7.				K					
		5	Environmental		Well Completion Casing		io)	- 1 (a) 1							a wall	ETINO	BENTC	I							100 may 100 mg		I.

BORING/WELL NO: SB-18 attle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	A residence of manufacture of the state of t	c-cleared to 5'				Silty SAND; grey, 15-20% silt, fine to medium sand,	grades to sandy sitt at 5.75, with organic fragments, moderate plasticity, dense, moist	(as above, grades to silty sand, 5-10% silt at 7.75', with charred organic fragments, loose)	(as above, changes to sandy clayey silt at 9.25')	Silty SAND: grey/brown 10-15% silt fine to medium	parse gravel, non-plastic, loose, wet	(as above, bottom in wood at 12.25')				ilt; grey, wet	work	, vov.	(as above, grades to clayey silt, silty sand at 19', bottom in fine to medium silty sand, 5-10% silt)		E @ 20.	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	5: 6/14/2005 ER: 8"	ER: (UP:	EASTING	П	Asphalt (2")	Air-knifed/vac-cleared to	A COMMISSION OF THE PARTY OF TH	A CONTRACT OF A		Silty SAND; grey, 1	grades to sandy sitt at 5.75, with moderate plasticity, dense, moist	(as above, g with charrec	(as above, c	Silty SAND: gray/h	sand, with fine to coarse	(as above, b	(no recovery)		(no recovery)	Wood debris with Silt; grey, wet	Mood debris/DEAT: wat		(as above, g bottom in fir	10	BOILDIM OF HOLE @ 20	
: ION	DATE DRILLED: HOLE DIAMETER:	MOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	0000	Soil Type						SM		SM		7	SM		PT.	WDFill		WDF						
10-1 CLIENT: LOCATION:	DATE	WELL WELL CASIN	NORTHING	Pepth (feet)		<u></u>	2 0	n 2	1	2	9	7	8	nous of	10	11	13		15	16	17	18	61	20	21	22
WA255-3510-1 J. North	CDI HSA Se	NA N		Penetration (blows/6")						2 2	чю	4 ro	4 4 W	4 %	, m	5 2 7	~ ε ε	w 4 z	- 0 0	7 th C	35	4 4	. 9 27 8		7265	-
	METHOD:		ELEVATION	PID Reading (mqq)						Ç	<u>n</u>	8.0	0.0		0.0	0.4	N. C.			2.2	i	0.0	2.0			
PROJECT NO LOGGED BY:	DRILLER: DRILLING	SAMPLING ME CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture Content						40:04	MOISI	Moist	Moist		Wet	Wet		Wet	Wet	Wet		Wet	Wet			
	ta			Static Water Level									77	D	×											
	Del	Environmental Consultants, Inc.		Well Completion Backfill Casing	:ou	•၁								3	TINC	ВЕИТ				Note: 1			-22/2			

BORING/WELL NO: MW-54 tle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION	It (4") (4" asphalt layer at 8" below surface grade)	cleared to 5'	(sand fill with broken concrete, bricks, and other debris)			Poorly Graded SAND; brown, with trace wood debris, (charcoal-like) and brick fragments at 7.5' to 8'		(grades more well-graded, subrounded gravel, no charcoal)	(as above, with 5%-10% sandy silt lenses)				(grades finer wood debris (sawdust))	(grades coarser wood debris)		D; grey, fine sand	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 6/7/2005 ER: 8" 20'		EASTING	Ė	Asphalt (4") (4" asphalt lay	Air-knifed/vac-cleared to 5	(sand fill with to other debris)			Poorly Graded SANE (charcoal-like) and b		(grades more no charcoal)	(as above, wit	The second secon		WDFill Wood debris; brown	(grades finer	(grades coars		Poorly Graded SAND; grey, fine sand	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery S Hotelral D Soil Type						SP	5 m. 1					WDFi				ds /		
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12		Penetration (blows/6") Depth (feet)		- 5	က်	4	3	4 4 W		6 0 0 0		1 4 5 w	. v. v.	4 9		2 16	0 & 0	21 19	21 21	22
NO: BY:	METHOD:		ELEVATION	PID Reading (ppm)						0.0	0.1	0.1	0.3	0.0		0.1	0.1	9.0	0.0	0.1		
PROJECT NO LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK:		enutaioM frentent	d .				<u> </u>	Moist	Moist	Wet		Sat		Sat	Sat	Sat		Sat		
	elta	nental ts, Inc.		Static Water Level								N								-1 -		
	Del	Environmental Consultants, Inc		VVell Completion Backfill Casing	olic	9) '11'	N38							DNAS								

BORING/WELL NO: MW-55 Ite, WA PAGE 1 OF 1	Location Map		See Tiguie A		LITHOLOGY / DESCRIPTION		Air-knifed/vac-cleared to 5' (Medium sand and concrete debris)	10 (10 miles)	y, tall		, 80% silt, 20% fine sand, firm,	Poorly Graded SAND with Gravel; brown-grey, 85% fine to medium sand, 15% well-graded gravel, subrounded		with cedar odor		SP-SM Poorly Graded SAND with Silt; grey, 90% fine sand,	(grades finer wood debris (sawdust-like), reddish-brown))			(grades tan sawdust with trace fine sand and silt)	Silty SAND; brown, with gray medium sand lenses, 80% medium sand, 20% silt, soft	st)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			ER: 2" 20' KUP: Flush		Ę	Asphalt (4")	Air-knifed/vac-cleared to 5' (Medium sand and concret		Poorly Graded SAIND, tall		SILT with Sand; grey, 80% silt, non-plastic	Poorly Graded SANE to medium sand, 15%		WDFill Wood debris; fibrous with cedar odor		Poorly Graded	0.00					WDFill Wood debris (sawdust)	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type				<u>, </u>		M	g.		WDFi		SP-SM			Serie Sana Series	District Indian	SM	WDFi		,,,
CLIENT: LOCATIC	DATE	HOLE	WELL	NORTHING	Recovery and Interval	H		+	+									inter Paul G					H	$+\!\!+\!\!\!+\!\!\!\!+$
1510-1 ng				ON .	Depth (feet)		2 7	е е	4	2	9	7 8		10	2 2	13 13	14	15	16	2 2	2 6	20	21	22
WA255-3510-1 C. Fleming	CDI	SS	0.020 2-12		Penetration (blows/6")					2	ω 4	0 2 4	100/1"	20	9 38	9 7 0	0 4 κ	ω ∞ α	2 4 6	3	9 9	0 0		
NO: BY:	METHOD:	THOD:	72	ELEVATION	PID Reading (mgq)				së:		2.0	16.8	0 80	0.00		33.3	9.	0.0	0.0	0.0	C	9.		
PROJECT	DRILLER: DRILLING	SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture Content						Moist	Moist	Domn	Camp	1 1 2 3	Moist Wet	MOISE	Damp		Moist				
	elta		4:		Static Water Level				.,						7:25 6/9/05									
	Del	2	Environmental Consultants, Inc.		Well Completion Casing Casing	ာပ	T. Cor	BEI							QNAS									

ConocoPhillips 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	6/9/2005 Location Map R: 8" 20'		EASTING	LITHOLOGY / DESCRIPTION	Asphalt (4")	Air-knifed/vac-cleared to 5'				SILT; grey-green, 85% silt, 5% fine sand, 10% coarse gravel, firm, non-plastic	(grades trace fine gravel)		Poorly Graded SAND with Gravel; dark brown Well Graded SAND with Gravel; grey, 80% well graded sand, 20% well-graded gravel	(as above)		(as above)	(grades brown, decomposed organic (wood debris) at 15.5')	(wood debris, grades sawdust)	Poorly Graded SAND; grey, fine sand Wood debris; peat-like, organic soil	Poorly Graded SAND with Silt; brown, some wood debris	BOTTOM OF HOI F @ 20'		
ä	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP		Soil Type	Ì		1 1 1			Z Z		-	SW				WDFill		SP-OL	SP-SM			
CLIENT: LOCATION:	DATE HOLE HOLE	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	RTHING	Recovery Sample Interval		\prod				364 35		100 100 1			100		AND SECOND			国			\prod
510-1 ig			ON	Depth (feet)	1	- 1	2 6	4	2	9	7	0 0	 	7 = 2	7 6	5 4	15 6	17	18	19	20	21	22
WA255-3510-1 C. Fleming	CDI HSA SS	PVC 0.020 2-12	_	Penetration ("dows/6")					-	e v ∠	1 4 4	m m =	4 4 10 1	23	ოო	- ₄ 4	25 15 6	N 8 1	0 4 m	~ ~ «)		
NO: BY:	METHOD:		ELEVATION	PID Reading (ppm)						7.3	11.5	38.0	21.0	7.0		3.2	8.4	3.8	1.7	2.4			
PROJECT NO LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture Content		-				Dry	Dny	Dry	Moist	Wet		Wet Sat	Sat Wet	Wet		Sat			
	elta	ental s, Inc.		Static Water Level											12:25	6/9/05		35					
	Del	Environmental Consultants, Inc.		Well Completion Backfill Casing	.on	၀၁ ြ	BEN	1						DNAS]		

ConocoPhillips BORING/WELL NO: MW-57 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	6/10/2005 Location Map 8"			EASTING	LITHOLOGY / DESCRIPTION	Asphalt (4")	Air-knifed/vac-cleared to 5'					Poorly Graded SAND with Silt and Gravel; light brown, 60% sand, 30% well-graded gravel, moderate plasticity			Wood debris- dark brown decomposed with	larger fragments	Silty SAND with wood debris and trace brick fragment; brown-gray, 50% sand, 25% silt with clay fines.	25% wood debris	(grades trace wood debris, cobble)	(grades gray in color with 15% fine gravel, moderate plasticity)	Wood debris and Gravel with Sand; coarse gravel	(no recovery)	Mond dobrin with Donals Orange CAND	wood depits with Footly Gladed SAND	Well Graded SAND with Silt; grey, wood fibers and	redaisn-brown sawdust	BOTTOM OF HOLE @ 20"
ä	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:		Soil Type			1	1 1			SP-SM			WDFill		SM	1			WDFill				SW-SM		
CLIENT: LOCATION:	DATE	HOLE	WELL	NORTHING	Recovery Sample Interval			\prod	\prod								33 18										
510-1 g				<u> </u>	Depth (feet)		+	2	m	4	2	9	7	8	0	10	=	12	4 6	5 4	15	16	38	1 6	20	27	22
WA255-3510-1 C. Fleming	CDI	SS	0.020	_	Penetration ("8\swold)					5	2	7 7 4	n m m	5 5	2 4	25	1 2 5	12	4 ε	4 0 m 4	36) မ က	441	- 9	ဖ စ		
NO: BY:	METHOD:	THOD:	4CK:	ELEVATION	PID Reading (mqq)						(2.0	~	9	38.0	11.0	21.1		259.0	30.0	39.0		0	-	1.0		
PROJECT NO LOGGED BY:	DRILLER: DRILLING	SAMPLING ME CASING TYPE:	SLOT SIZE GRAVEL PA	11.27.1 20	Moisture Content						:	Moist	Moiet	NO.	Dry	Wet			Wet	Wet	Wet	Wet	14/04	2011	Wet		
	π <u>+</u>	ental	s, Inc.		Static Water Level													K	12:25 6/10/05								
		Environmental	Consultants, Inc.		Well Completion Casing Casing	.on	•၅	TN38		Ť				T I		! L_	UL MD	IAS									

BORING/WELL NO: SB-16/MW-58 rtle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	The state of the s	-cleared to 5'			Silty SAND; grey-brown, fine sand, 5-10% silt, 2" thick dense silt lense at 5.75' to 5.95', loose, moist	grey-brown, fine sand, 5-10% silt,		The manufacture of the state of	(as above to 10.8', changes to blue-grey clayey silt, wood fragments at 10.5' to 11.0')	Sandy Gravelly SILT; dark brown to grey, fine to medium sand, fine to medium gravel, 10-15% organics, trace	se, wet tal debris (pulley)	Silty SAND; grey/mottled, wood fragments, poor recovery	(as above, poor recovery)	(as above, changes to wood fragments at 17.75', coarse, angular wood fragments with silt)	and PEAT with trace fine sand and silt	三億 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA		., ., _	EASTING	רווו	Asphalt (2")	Air-knifed/vac-cleared to			Silty SAND; grey-brown, fine sand, 2" thick dense silt lense at 5.75 to 8	SAND/Silty SAND; grey-brown, fine loose, moist	(as above)		(as above to wood fragme	Sandy Gravelly SIL sand, fine to mediur	brick fragments, loose, wet SAND; fine with metal debris (pulley)	Silty SAND; grey/m	(as above, p	(as above, cl	Wood fragments ar	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery on Interval on Type					SM	SM	SM								T A		
WA255-3510-1 J. North			z	Depth (feet)			3 2	4	φ 2 Ω		ω 	6	6	- 1 - 1 - 1			- 5t - 6t - 1	1	-	20 –	
WA255-3	CDI HSA SS	PVC 0.020 2-12	7	Penetration ("8\swold)		Į.			4 4	4 4 m	ω 4	2 ~	ო ო ₹	1 m m	100/0"	<u> </u>) W 4 4	10 10 24 24	も 6 6 6 6	m 	
T NO:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	TYPE: ZE: PACK:	ELEVATION	PID Reading					0.2	0.1		0.0	9.6	455	1	1/8	25.3	15.4	3.0		
PROJECT NO	DRILLER: DRILLING SAMPLING	CASING TY SLOT SIZE: GRAVEL PA		enuteioM frentent	\$.				Moist	Moist		Moist	Moist	Wet		Moist	Wei	Wet	Wet		
	elta	520		Static Water Level							7 2 2		- 18 - 18	12:00	6/10/05						
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	;ouc:	P 3.	TINOTNE	18						'ND	∀ S						

BORING/WELL NO: MW-59 Seattle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		Air-knifed/vac-cleared to 5'			Sandy SILT; grey/mottled, 10-15% sand, with fine to	coalse glavel, while organic, delise, molst	(as above, sand decreasing)	(as above, changes to peat at 8.5', dark brown/red)	Silty SAND; grey, 15-20% silt, fine sand, trace fine gravel,		(as above, fine sand, 15-20% silt, dark grey, moist to wet at 12")	(as above, silt decreasing, loose, saturated, slight visible sheen)		(as above, with gravel and concrete debris, loose, visible sheen)	SAND; greys, coarse, 5-10% silt, fine to coarse gravel,	sitt lense 5" thick, gravelly SAND, fine to coarse, loose, wet, with concrete	Wood debris with SILT; grades to sandysilt/silt at 19.25', thinly bedded, non-plastic, loose; wet	OLE @ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA		ER: 2" 20' UP: Flush		ב	Asphalt (2")	Air-knifed/v			Sandy SILT; grey	coarse graver, wir	(as above,	(as above,	Silty SAND; grey,	dense, moist	(as above, fine sand moist to wet at 12")	(as above, slight visit	(as above)	(as above, with	SAND; greys, co	silt lense 5" thick, gravell loose, wet, with concrete	Wood debris with	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery Soil Type			3 2		SM SM	9	7	8	SM		2	13	41	15	77	18	19	20	22
WA255-3510-1 J. North	CDI HSA SS	PVC 0.020 2-12		Penetration (blows/6") Depth (feet)		_	2 8	4	_						1 6 4 4								
r NO: BY:	МЕТНОD: З МЕТНОD:	TYPE: ZE: . PACK:	ELEVATION	PID Reading (ppm)						7.0	0.1	0.5		t 0.0	87	281	4		10	8.5	0.8		
PROJECT NO	DRILLER: DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content						Moist	Moist	Moist		Moist	Wet	5 Wet	Wet	10/10		Wet	Wet		
	elta	ental s, Inc.		Static Water Level				2					F	5-2-714	N	6/10/05							
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	.эно	0 3	ТІИОТИ	38		П					dn⊅	rs							

BORING/WELL NO: MW-60 fte, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			Sandy SILT; grey/mottled, 10-15% fine to medium sand, fine to medium gravel, moderate plasticity, dense, moist	(as above, gravel increasing)	(as above, increasing plasticity, sand decreasing, 5-10% clay, bottom in wood debris)	Wood debris/Brick; ash fragments, grey, grades to fine sandy silt, low plasticity, dense, moist	(as above, grades to silty sand, grey, 5-15% silt, fine to coarse sand, with brick fragments, loose,	neerly in the coarse sand, 5-10% silt, with it, loose, wet	(as above, silt increasing to 10-15%, with gravel, wet, visible sheen)	grey, fine to medium sand, 10-15% silt, with e gravel, loose, wet	bble		: @ 20.	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 6/14/2005 ER: 8" 20'		EASTING	<u> </u>	Asphalt (2")	Air-knifed/vac-cleared to			Sandy SILT; grey/mo	(as above, gra	(as above, inc 5-10% clay, t	Wood debris/Brick; ash fragments, gre sandy silt, low plasticity, dense, moist	(as above, grafine to coarse	Silty SAND; grey, fine to coarse fine to coarse gravel, loose, wet	(as above, silt incre wet, visible sheen)	Silty SAND; grey, fine to mediun fine to coarse gravel, loose, wet	Wood/PEAT with cobble	Wood debris	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type					SM		es Sam unite mais i	WDFill	MS S	<u> </u>			WDFill	WDFill		\Box
CLIENT: LOCATIO	DATE	WELL	NORTHING	Recovery Sample Interval	-	H														
1510-1			ON	Depth (feet)		+	3 8	4	5 9	7	ω σ	9	2 4	13	15	16	17	9 6	20—	
WA255-3510-1 J. North	CDI HSA SS	PVC 0.020 2-12		Penetration (blows/6")					ω 4	п п	4 76/6"	7 01	17 7 9 9	0 0 0 0	7 - 2 0	.26/6"	∞ ∞	9 7 7 8	·	
	ETHOD:	YPE: E: ACK:	ELEVATION	PID Reading (mqq)					0.0	0	5.2	143	244	205	270	9.0	52	4.2		
PROJECT NO	DRILLER: DRILLING SAMPLING	CASING TYI SLOT SIZE: GRAVEL PA		Moisture Content				*	Moist	Moiet	Moist	Moist	Wet	Wet	Wet	Wet	Wet	Wet		
	elta			Static Water Level									11:40	6/14/05						
	Del	Environmental Consultants, Inc		Vell Completion Casing Casing	ouc:	9 B	TINOTNE						dn⊳	/s						

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	SYMBOLS	TYPICAL SOIL DESCRIPTIONS
	GW		Well graded gravels or gravel-sand mixtures, little or no fines
GRAVELS	GP	4, i	Poorly graded gravels or gravel-sand mixtures, little or no fines
	Ø		Silty gravels, gravel-sand-silt mixtures
	OO		Clayey gravels, gravel-sand-clay mixtures
	SW		Well graded sands or gravelly sands, little or no fines
	SP		Poorly graded sands or gravelly sands, little or no fines
SANDS	SM		Silty sands, sand-silt mixtures
	SC/SM		Clayey sands with a touch of gravel
	SC		Clayey sands, sand-clay mixtures
	M		Inorganic silts and very fine sands, rock flour, silty or clayey sands or clayey silts with slight plasticity
SILTS & CLAYS	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
LL<50	ОГ		Organic silts and organic silty clays of low plasticity
	M		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils elastic silts
SILTS & CLAYS	S		Inorganic clays of high plasticity, fat clays
LL>50	ЮН		Organic clays of medium to high plasticity, organic silty clays, organic silts
HIGHLY ORGANIC SOILS	PT		Peat and other highly organic soils
FILL MATERIAL	FILL		
ASPHALT/Concrete	ē.		
BENTONITE			Water Level - First Encounter
SAND			Static Water Level

BORING/WELL NO: SB-19 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		eared to 5'			sand		se, moist, ~10" recovery	Clayey SILT; gray, poor recovery, with fine sand, loose/ moist	fine to medium, trace fine gravel,	(As above, moisture increases at ~10')	Silty SAND: dark gray, sand fine to coarse, with fine to	silt, loose, wet	As above, with wood debris at ~13.5', increasing silt and clay at ~13.5' dense, wet)	wel)	SAND: cand fine to medium 5-10% cilt	, ,	recovery)		(Poor recovery, wood with sand/silty sand, fine to medium, loose, wet)		20.
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING	ншп	Asphalt (3") Concrete (10")	Air-knifed/vac-cleared to	SILT with Gravel; dense		SAND with Silt; medium sand	Silty SAND; gray/brown	gravel, 10-15 % silt, loose, moist,		Silty SAND; gray, sand fine dense, moist	(As above, mois	Silly SAND: dark gray, s	medium gravel, 5-10% silt, loose, wet	(As above, with wood debris at silt and clay at ~13.5' dense, v	(1" recovery, gravel)	Wood Debris with Silty SAND: sand fine to	loose, wet, poor recovery	(As above, poor recovery)	į	(Poor recovery, wood medium, loose, wet)	0	BOILOM OF HOLE @
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery & B Interval & C Soil Type							WS \	CL/ML	NS NS												
WA255-3514-1 J. North	CDI D: HSA D: SS	N N N N N N N N N N N N N N N N N N N	NC	Penetration (blows/6") Depth (feet)			2 -	ြ ဗ	4 1	7 5—	12 6—	5 7—	5 6 8	_		2 12 -	2 2	4 m	7		5 17 19 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 20 -	21 –	22—
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION	Moisture Content TREADING							Moist 0.6	Moist 4.9	Moist 6.1	0	5	Wet 178	Wet 49	Wet 18		Wet 3.3	Wet 2.4		1.6		
)elta	Environmental Consultants, Inc.		Well Completion Static Education Water Care Garage Level																					
		⊡ §		Sackfill ⊗	ouc:)								atil	иоти	B E									

BORING/WELL NO: SB-20 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		eared to 5'				Clayey SILT; gray, with fine to coarse sand and fine to coarse gravel, dense, moist		recovery)	10-15% silt, sand fine to coarse, dense,	(As above, grading finer with depth to fine silty sand/sandy silt, gray, dense, wet)	(As above, gravel coarsening, loose, wet)	(Poor recovery, gravel, all fines washed out)	(As above, few bits of gravel, 1" recovery)	(As above, poor recovery, most fines gone, with wood fragments. [Driller reports voids])	Sandy GRAVEL; gray, 10-15% fine silt, gravel to coarse, loose, wet	SAND; gray, medium to coarse, with trace fine gravel and 5% silt, loose, wet		20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 7/21/2005 FR: 8" 20'		EASTING	LTH	Asphalt (3") Concrete (10")	Air-knifed/vac-cleared to	Gravelly SAND; gray		Silty CLAY; gray	Clayey SILT; gray, with fine		(As above, poor recovery)	Silty SAND; gray, 10-15 wet at 9'	(As above, grad sand/sandy silt,	(As above, grav	(Poor recovery,	(As above, few t	(As above, poor fragments. [Drill	Silty Sandy GRAVEL; grafine to coarse, loose, wet	SAND; gray, medium to silt, loose, wet		BOTTOM OF HOLE @	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery & Borovery of Type						C		CL/ML	M	¥	WB OW	WB CW	₩ O	ØB U					\exists
WA255-3514-1 J. North	<i>T</i>			(heeth (feet)	, ',	' - -	2	3	4	2 2	 မ	7	8 0 8 0	0 1 1	4 4		5 7	8 5 9 1 1 1	1 7 2				
NO: WA:	DRILLER: CDI DRILLING METHOD: HSA SAMPLING METHOD: SS	YPE: NA :: NA ACK: NA	ELEVATION	PID Reading (mqq)						2.0		0.6	4.0	2.3	0.0	ς 4 α			0.0	0.2 16	!		\dashv
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK:	Ш	Moisture frentent						Moist)	Moist		Wet	Wet	†0/V	Net C	Wet	Wet	Wet			
	Ita	nental its, Inc.		Static Water Level									\triangleright										
	De	Environmental Consultants, Inc.		Well Completion Casing Casing	ouc.	ာ၁								BLING	BENL								

BORING/WELL NO: SB-21 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		eared to 5'	Silty SAND/Sandy SILT; gray, with some gravel			Clayey SILT; gray, with fine to coarse sand, trace fine gravel, dense, moist			(As above, sand increasing, clay decreasing, loose, wet)	vood fragments, sand fine to	Silty SAND; gray, 5-10% silt, sand fine to coarse, trace fine to medium gravel, loose, wet		(As above, with brick and trace wood fragments)	(As above, gray, 10-15% silt, sand fine to medium, loose, wet, trace fine gravel)	poor recovery ~ 8")	0% silt, loose wet		20'	
onocol		ER: NA NA (UP: NA	EASTING	ншп	Asphalt (3") Concrete (10")	Air-knifed/vac-cleared to	Silty SAND/Sandy SILT		Silty CLAY; gray	Clayey SILT; gray, with gravel, dense, moist	(As above)		(As above, sand loose, wet)	Silty SAND; gray, with wood fragments, coarse, dense, wet	Silty SAND; gray, 5-10% silt, to medium gravel, loose, wet	(As above)	(As above, with	(As above, gray, 10-15% silt, loose, wet, trace fine gravel)	(As above, poor	Sandy SILT; gray, 20-30% silt, loose wet		BOTTOM OF HOLE @ 20'	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	(D	Soil Type						CL/ML			∑ S	₩ S		Ø S	S	∑ Ø	⊠ S	¥	1		\dashv
CLIENT: LOCATIO	DAT HOL HOL	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	ORTHING	Secovery and plants of the covery and plants o			٠		+		+				+	+	\mathbf{H}	Н	Н		+		\dashv
514-1			Z	Depth (feet)		-	2 2))	4	5 6	1	- 0	0 0	10	11 12 1	13 —	4	15 16 1 1	17	19 6	20—	21 —	22
WA255-3514-1 J. North	CDI HSA SS	A A A		Penetration ("8/swold)						ကက၊		2 2	m 0/ 2	7 5	2 3	N 0 8	ω ω 4	4 K	3 7	3 0	7		
NO: 3Y:	HOD: THOD:		LEVATION	PID Reading (ppm)						31		5.0	140	12	7	4							
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK	Ш	Moisture Sontent						Moist		Moist	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet			
	ta	ental s, Inc.		Static Water Level									\bowtie										
	el el	Environmental Consultants, Inc		Well Completion Casing Casing																			
		Ço E		Backfill S	ouc.	၁								alin	BENLO								

te, WA PAGE 1 OF 1 Location Map See Figure 2	LITHOLOGY / DESCRIPTION	um, trace coarse in shoe, with fine in 10-15% silt, sand	Wood debris; with silt and fine sand, poor recovery (~ 4") (Wood filled shoe, no other recovery) Wood debris; coarse with silt and sand, dense, wet (Wood filled shoe) Sandy SILT; with wood debris (As above)
ConocoPhillips 600 Westlake Ave N, Seattle, WA D: 7/21/2005 ER: 8" ER: 20' ER: NA KUP: NA EASTING	Ĕ	Silty SAND with Gravel; gray Sandy SILT; gray, sand fine to medi loose, moist, poor recovery Clayey SILT; gray, wood fragments dense, moist Silty SAND; gray, with wood debris, loose, moist (As above)	Wood debris; with silt and fine (Wood filled shoe, no o Wood debris; coarse with silt a (Wood filled shoe) (Wood filled shoe) (As above) (As above)
1 CLIENT: Cor LOCATION: 600 DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DEPTH: WELL DEPTH: CASING STICKUP:	Recovery Sa Interval © De Soil Type	\(\begin{array}{cccccccccccccccccccccccccccccccccccc	
PROJECT NO: WA255-3514-1 LOGGED BY: J. North DRILLER: CDI DRILLING METHOD: HSA SAMPLING METHOD: SS CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA ELEVATION	Content (ppm) Penetration (blows/6") Depth (feet)	ω4τ0 ων <u>+</u>	12 10 10 10 10 10 10 10 10 10 10
PROJE LOGG LOGG ENTEL SAMPI Environmental Consultants, Inc. GRAVI	Mell Completion Static Casing Water Level Moisture	Moist Moist Moist Moist	Wet Wet Wet

BORING/WELL NO: SB-1R Location Map	See Figure 1	LITHOLOGY / DESCRIPTION	eared to 5'		Silty SAND; gray 10-15% silt, sand fine to medium, loose, wet (from surface H2O drag down)	Silty SAND; gray/brown, 15-20% silt, sand fine to medium, with fine to medium sand, loose, moist to wet	Sandy SILT; gray, sand fine to medium, 15-25% silt, low plasticity, dense, moist	Sandy SILT; gray, sand fine to coarse, with fine to coarse gravel, low plasticity, dense, moist			(As above, changes to peat at 14')	Slough/wood debris; chips with dust, poor recovery	to medium gravel, wet	and sawdust)	2" recovery)	100	
Conoco 600 We 0: ER:		Ŧ	Asphalt (3") Air-knifed/vac-cleared to		Silty SAND; gray 10-15% silt, sand wet (from surface H2O drag down)	Silty SAND; gray/brown, 15-20% silt, sand fin with fine to medium sand, loose, moist to wet	Sandy SILT; gray, sand plasticity, dense, moist	Sandy SILT; gray, sand fine to coa gravel, low plasticity, dense, moist	(As above)	(As above)	(As above, chan	Slough/wood debris; ch	Wood debris; trace fine to medium gravel, wet	(As above, chips and sawdust)	(As above, 2" re	OCTTOM OF HOLE ® 20	
CLIENT: Co LOCATION: 600 DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP: NORTHING	Recovery and Interval of Soil Type			NS NS							<u> </u>					
WA255-3513-1 J. North CDI HSA SS	4 4 4 Z	Penetration (blows/6") Depth (feet)		3 8 3 7		2 8 6	2 3 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		<u>2 + 0</u>		8 8 6 2	m	50-0" 16 5		2 0	20 21	
PROJECT NO: LOGGED BY: DRILLER: DRILLING METHOD: H SAMPLING METHOD: 8	CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATION	Content Content PID Reading (ppm)			Moist 0	Moist 0	Moist 0	27	Wet 120	Wet 72 1	Wet 18	Wet 3.4	Wet 3.2	Wet 2.8			
<u>ta</u>	Environmental SLG	Static Water Level Moisture				<u> </u>	~~~	N									
De	Enviror Consulta	Well Casing Date	.ono				'	Э.	TINOTI	BEN	'	' '	'				

BORING/WELL NO: SB-4R ttle, WA PAGE 1 OF 1	Location Map	See Figure 1		LITHOLOGY / DESCRIPTION			leared to 5		Silty SAND/Sandy SILT; gray, 10-20% silt, sand fine to medium, trace coarse and fine gravel, loose, moist	ClayeyY SILT; gray/blue gray, with fine to medium sand and fine gravel, dense, moist	(As above, with wood fragments, grades into silty sand at ~7.5', brown, loose, wet)	PEAT; dark brown, with fine to medium sand and fine to	wet	(As above, poorly degraded wood fragments/wire, poor recovery, very loose, wet)	(Overdrilled 1' between samples)	(As above, with fine to medium gravel, loose, wet)	Wood debris; pale orange, poorly degraded, large fragments to sawdust, loose, wet	(As above, more degraded; grades to fine sand at ~15.5', loose, wet)	Silty SAND; gray; sand fine, trace medium and coarse, loose,				20,	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING	島	Asphalt (3")	() () () () () () () () () () () () () (Alf-Kniled/vac-cleared to		Silty SAND/Sandy SIL		(As above, with sand at ~7.5', t	PEAT; dark brown, with	medium gravel, loose, wet	(As above, pool poor recovery,	(Overdrilled 1' b	(As above, with	Wood debris; pale orange, poorly fragments to sawdust, loose, wet	(As above, more degr at ~15.5', loose, wet)	Silty SAND; gray; sand	Wet	(As above)		BOTTOM OF HOLE @	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery & Becovery & Soil Type		П			SS \	CL/ML									SMS					
WA255-3513-1 J. North	CDI HSA : SS	& & & X Z Z	z	Penetration (blows/6") Depth (feet)			2 6	ლ —	ю ю ю 4 го 1 , 1	e 7	3 7 7 8		<u>π ω</u>			10 13 -	0 0 4 r			. 12 1		20 7	21	22—
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION	Moisture Content PID Reading (ppm)					0.3		0.2	 4.0	1.2		0.4	4.5	0.2	7.1		0.2	0.1	0.2		-
)elta	Environmental (Sonsultants, Inc.		Well Completion Static Kill og Water Back Som Case Level																				
		Cor		Backfill €	ouc.	ာ၁							3.	LINO1	BEN.									

BORING/WELL NO: SB-5R tle, WA PAGE 1 OF 1 Location Map	See Figure 1	LITHOLOGY / DESCRIPTION		eared to 5'	Clayey SILT; gray, with fine to coarse gravel and sand, ~20% silt, dense, moist	recovery)	(As above, with wood debris, poorly degraded, loose, moist)	(As above (wood), grades to clayey silt at ~9', gray, dense, with fine sand and gravel, moist)	Clayey SILT; with fine to medium gravel and wood fragments, wet, poor recovery	PEAT with fine Sand; dark brown, loose, wet, poor recovery	Wood debris; poorly degraded, loose, wet, poor recovery	(As above, all wood debris, wet, loose, 6" recovery)	debris, 10-15% silt, loose, wet,	Silty SAND; gray, 10-15% silt, sand fine to coarse, loose, wet		20.	
noco We			Asphalt (3")	Air-knifed/vac-cleared to	Clayey SILT; gray, with ~20% silt, dense, moist	(As above, poor recovery)	(As above, with loose, moist)	(As above (woodgray, dense, wit	Clayey SILT; with fine to wet, poor recovery	PEAT with fine Sand; da	Wood debris; poorly de	(As above, all w	Silty SAND; with wood debris, poor recovery (~8")	Silty SAND; gray, 10-15 wet	(As above)	BOTTOM OF HOLE @ 20'	
CLIENT: Co LOCATION: 600 DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP: NORTHING	Secovery Sample of the solution of the solutio			J				ਰ \	4			₩S .				
WA255-3513-1 J. North CDI HSA	SS A A A A A A A A A A A A A A A A A A	Penetration (blows/6") Depth (feet)		3 8	4 rv r	16 5	7 8 7 8 6		2 3 3 4 5 7 7 1	, 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	£ 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 2 16— 2 17—		6 19 11 20 -	24	
PROJECT NO: LOGGED BY: DRILLER: DRILLING METHOD:	SAMPLING METHOD: S CASING TYPE: N SLOT SIZE: N GRAVEL PACK: N ELEVATION	Moisture Content Teading (mpd)			Moist 0.6	Moist 4.9	Moist 6.1	C	Wet 2.6	Wet 1.3	Wet 1.0	Wet 0	Wet 0	Wet 0	Wet 0		
	nental its, Inc.	Well Completion Static Static Cassing Case Cevel							> 								
]	Backfill Sel	Conc.					121	TINOTN	38							

BORING/WELL NO: MW-54R tle, WA PAGE 1 OF 1 Location Map	See Figure 1		LITHOLOGY / DESCRIPTION		eared to 5'		-	Silty SAND; gray/brown, with fine to medium gravel, sand fine to medium, 10-15% silt, loose, moist				(As above, silt increases to 25% then decreases at ~9.5' to ~10%, gravel increases, sand coarse.		i fragments at ~11")	hanges to wood/peat at ∼12′	wdust)		(6" recovery; 100% wood fragments, sawdust and chips)	6" recovery)	(As above, more degraded peat, dark orange/brown,		(As above,changes to fine silty sand at ~19', 10% sand, loose, wet)		@ 20'	
noco We	ER: CUP:	EASTING	ншП	Asphalt (3")	Air-knifed/vac-cleared to		4.	Silty SAND; gray/brown, with fine to to medium, 10-15% silt, loose, moist	(As above)		(AS above)	(As above, silt ir at ~9.5' to ~10%	loose, wet)	(As above, wood fragments at	Silty SAND/GRAVEL, changes to wood/peat	(2" recovery, sawdust)		(6" recovery; 100	(As above, 6" re	(As above, more	6" recovery)	(As above,changes to f 10% sand, loose, wet)		BOTTOM OF HOLE @	
CLIENT: C LOCATION: 6 DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery and Interval Soil Type				\blacksquare	WS .	∑ S		SM	≥ S		NS N								SM			
WA255-3513-1 J. North CDI	H SS AN		Penetration (blows/6") Depth (feet)			1 დ I		22 4 rd	4 S		N (1 (າ ກ	2 0 10 1	2	5 12 1		9 4 4 1 1	4 5 15—	4 0	- ∞	0 6	7 5 -3	2 2 2	I 6	7.7.
PROJECT NO: LOGGED BY: DRILLER:	DRILLING METHOD: P SAMPLING METHOD: S CASING TYPE: P SLOT SIZE: P	ELEVATION	Moisture Content PID Reading (ppm)					Moist 0.0	Moist 0.0)	0.1	Wet 0.0		Wet 0.0	Wet 0.0	(Wet 0.0	Wet 0.0	Wet 0.0	0:0					
(<u>+</u>	nental its, Inc.		Static Water Level					<u><</u>		<u>:</u>				<u>-</u>											
	Environn		Well Completion Casing Casing	ouc:	o								ЭШ	4OTN	38										

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	SYMBOLS	TYPICAL SOIL DESCRIPTIONS
GRAVELS	G G G G G G G G G G G G G G G G G G G		Well graded gravels or gravel-sand mixtures, little or no fines Poorly graded gravels or gravel-sand mixtures, little or no fines Silty gravels, gravel-sand-silt mixtures Clayey gravels, gravel-sand-clay mixtures
SANDS	SW SM SC/SM		Well graded sands or gravelly sands, little or no fines Poorly graded sands or gravelly sands, little or no fines Silty sands, sand-silt mixtures Clayey sands with a touch of gravel Clayey sands, sand-clay mixtures
SILTS & CLAYS LL<50	OL OL		Inorganic silts and very fine sands, rock flour, silty or clayey sands or clayey silts with slight plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays Organic silts and organic silty clays of low plasticity
SILTS & CLAYS LL>50	O C M		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils elastic silts Inorganic clays of high plasticity, fat clays Organic clays of medium to high plasticity, organic silty clays, organic silts
HIGHLY ORGANIC SOILS	PT		Peat and other highly organic soils
FILL MATERIAL	FILL		
ASPHALT/Concrete BENTONITE SAND	φ.		Water Level - First Encounter Static Water Level

ConocoPhillips 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	10/10/2005 Location Map 8.5" 20'		EASTING 1269264.7	LITHOLOGY / DESCRIPTION	Asphalt/Concrete (16")	Air-knifed/vac-cleared to 5'			Sandy GRAVEL; brown-gray, rounded pebbles, coarse to fine sand	(As above, with wood debris)	Silty SAND; gray-green, fine			Sandy SILT; green, with rounded gravel	SILT; gray-green, stiff, moist	Sandy GRAVEL: round pebbles, with silt		(As above, with wood debris)	Sandy GRAVEL; gray with white, coarse to fine sand, angular		BOTTOM OF HOLE @ 20'	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	ග .	Soil Type			<u> </u>		₽ B	\longrightarrow	⊗ TT				¥							\square
CLI		WE	NORTHING 231529.4	Recovery of planterval of planterval																		Ш
3515-1 her	Cascade Drilling, Inc. HSA SS			Depth (feet)	, -	- (, , ,	o 4		9	7	ω σ		<u> </u>		6t 4 .	15 .	16 —	17 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		24 25	
WA255-3515-1 B. Pletcher	Cascad HSA : SS	PVC 0.010" 2-12	z	Penetration ("6/swold")					4	ω 4	0	. 5			2 3	ı — — — — — — — — — — — — — — — — — — —	. 7 /	N	·	N - N		
l NO: BY:	DRILLER: DRILLING METHOD: H SAMPLING METHOD: 3	rype: E: PACK:	ELEVATION 30.24	PID Reading (mqq)						0	0	0	C	>	0	0	0	0	0	0		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:	_	Moisture Content					Moist		Moist Wet			Moist	Moist		Moist	Sat	Sat			
	Ita	ental s, Inc.		Static Water Level							\bowtie											
	Del	Environmental Consultants, Inc.	,	Well Completion Casing Casing	ouc.	၁ 🎆	Ben								IAS							

BORING/WELL NO: MW-62 Ie, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	(9)	cleared to 5'			gray, fine					, fine sand	medium	grades to gray, fine sand with clay)	SAND and SILT with Clay; gray, fine sand, wood	fragments, wet (Grades fine to medium sand, saturated) SAND; gray, fine, wood fibers, some silt, saturated		(As above, grades to coarse sand)	, wet brown, firm	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING 1269266.0	H H H	Asphalt/Concrete (~16")	Air-knifed/vac-cleared to			Silty SAND; brown to gray, fine		SAND; gray, fine		(As above)	SAND with Clay; gray, fine sand	SAND; brown, fine to medium	(As above, grades to gray, fin Clayey SAND; gray, fine to medium	SAND and SILT with	fragments, wet (Grades fine to SAND; grav, fine, woo		(As above, gra	SW SAND; coarse to fine, wet ML Clayey SILT; reddish brown, firm Wood Wood fragments	느	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	IING 2.3	Interval of Soil Type	Т			П	\ ₩S		\ \partial \\ \partial \qual \			ပ္တ 	SP	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SC-SM	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		П	SW		+
	Cascade Drilling, Inc. 11 HSA BSS R	7 7 0	NORTHING 231582.3	Depth (feet) Recovery Recovery Property Recovery Application Depth (feet)			27 6	2 4	2	9	7	8	6	10	<u>+</u>	13 12	14	15	16	18	19	27 2	22
WA255-3515-1 M. Smith/L. Brock	Cascade HSA	PVC 0.010" 2-12	z	Penetration ("a/swold)					2	m w	440		က ဖ	3.2	3 2		N W	10		4 ∞ α	4 0 4		
T NO:	DRILLER: DRILLING METHOD: I	TYPE: ZE: .PACK:	ELEVATION 29.74	PID Reading						2.1	1.8		2.1	0	c	>	7.5		13.2	5.1	17.2		
PROJECT NO: LOGGED BY:	DRILLER DRILLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content													Wet	Sat			Wet Dry		
	elta	nental ts, Inc.		Static Water Level							\triangleright				\bowtie								
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	ouc.	ာ၁	Inad								QNA	S S							

BORING/WELL NO: MW-63 tle, WA PAGE 1 OF 1	Мар	See Figure 2			LITHOLOGY / DESCRIPTION	(")	clasted to 5'			Silty SAND; brown, fine, with gravel and 6-inch cobbles,			trace fine sand, stiff	e sand, wood debris			Wood debris; loose, porcelain chips in dark gray silty sand		Silty SAIND; dark gray, coarse to line, angular, rew rounded pebbles			@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ED: 10/11/2005 ETER: 8.5"			EASTING 1269267.3	HII	Asphalt/Concrete (18")	Air-knifed/vec-cleared to					(As above)	Clayey SILT; brown, trace fine sand, stiff	Sandy SILT: gray, fine sand, wood debris			Wood debris; loose, p				(As above)	BOTTOM OF HOLE	
5-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231635.8	Depth (feet) Recovery Amount of the control of th			2 0) 4 	SM	9		₩ ₩	10	12	13	41	15	17	82	70 20	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher		SAMPLING METHOD: SS CASING TYPE: PVC	SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 29.43	Moisture Content (ppm) (ppm) Penetration (blows/6")					Moist 2	N (V	Moist 14.5 3	12.7 1 Moist 2	Wet 12.5		4 0	8 0	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2. 2. 2. 3. 3. 4.		0.1 8 8 8		
<u>a. 1</u>			45		Well Completion Static Static Water Water Completion Completi	.conc.		BEN							GNAS								

BORING/WELL NO: MW-64 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	18")	cleared to 5'			SAND with Clay: greenish-gray fine sand		(As above, medium sand, thin layers, moist)	increasing clay content)		y, fine sand, moist	(As above, fine to medium sand)	medium		easing clay, wet	(As above, with small wood fragments) ; gray, fine to medium, saturated		e sand)	(As above, with wood fragments)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ë		EASTING 1269268.9	島	Asphalt/Concrete (~18")	Air-knifed/vac-cleared to			SAND with Clay. gre		(As above, me	(As above, inc		SAND with Clay; gray, fine sand, moist	(As above, fin	SAND; gray, fine to medium		SAND; fine, with increasing clay, wet	(As above, with small wood fragi	-	(As above, fine sand)	(As above, wit	BOTTOM OF HOLE	
CLIENT: CLOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231704.6	Recovery & B Interval & C					C.							S S								
WA255-3515-1 M. Smith/L. Brock		.: SS PVC 0.010" 2-12	Z	Penetration (blows/6") Depth (feet)	,		7 6) 4	. 6	. 4 4	. 2 2 7		- 6 - 9	101	4 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 13 .	4 4 4 .		വ	- 3 3 - 18 - 18	8 8 5	. 20 Z	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 28.73	Moisture Content PID Reading (mqq)						0	Moist 0		0	<i>Moist</i> 0	- OV		0	Wet	Sat 0	0	Sat 0	Sat 0		
	elta			Static Static Water Level											N									
		Env		Well Completion Casing Casing	couc	71	l 9 g								DNA	'S								

BORING/WELL NO: MW-65 ttle, WA PAGE 1 OF 1	Location Map	i.	See Figure Z		LITHOLOGY / DESCRIPTION			-cleared to 5'			Silty CLAY; green-gray, stiff, few rounded pebbles					(Auger drilling at an angle due to wood debris,	mple)		(Wood plug put in bottom of auger to advance										@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/11/2005 ER: 8.5"			EASTING 1269624.9	Ė	Concrete (18")	:	Air-knifed/vac-cleared to			Silty CLAY; green-gr		(As above)				unable to sample)		(Wood plug pu										BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231697.1	Secovery and property and prope						J																			
WA255-3515-1 B. Pletcher	CDI HSA	SS	oVC 0.010" 2-12		Penetration (blows/6") Depth (feet)			2	 	 2	2 +	ц	<u></u>	<u>8</u>	6	10 1		<u>+</u> - 	12—	1	2	14	15—	1 9	 	17 —	18	 		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 27.67	Moisture Content PID Reading (ppm)						<i>Moist</i> 0		0																	
	מוס	3	Environmental (Sonsultants, Inc.		Well Completion Static Kiting Water Control of the												 													
)	Con		Well Garing	'ouc	ာ၅	ent.	8							1 1		dn/	/S											_

ConocoPhilips BORING/WELL NO: MW-66 600 Westlake Ave N, Seattle, WA PAGE 1 OF 1	10/11/2005 Location Map 8.5"	See Figure 2	EASTING 1269623.0	LITHOLOGY / DESCRIPTION	(18")	ای مقارمان میں المرقادی	Air-knifed/vac-cleared to 5				SAND; tan to medium brown, medium to fine	(As above with pea gravel)	SAND; tan to light brown, medium, with pea gravel	SAND; brown, medium, with pea gravel	(As above, dark brown, less gravel, with clay)	SAND; brown, medium to fine, with wood fragments	SAND; medium to fine, with increasing silt	Cilty OI AV. 400/ oceand amoralisms to fine amorate	7, 10% sand, medium to line, moist	(0,040,0)	above)	(As above sand increasing to 20%)		Silty CLAY; medium brown, with wood fragments	(As above, dark brown, with increasing wood)	SAND; gray, medium		(Continued drilling to 22', sampling terminated at 20')		BOTTOM OF HOLE @ 22'
CLIENT: ConocoPhillips LOCATION: 600 Westlake A	: R:	E DEPTH: L DIAMETER: L DEPTH: NG STICKUP:		ि पिरिस्पक्षा है Soil Type	Concrete (18")		AIR			\ \ \	SP SAND; tan	(As	SAND; tan	SAND; bro	(As	SAND; bro	SAND; me				er)	\\	Wood Wood fragments	CL Silty CLAY	(As	SP SAND; gre		<u>S</u>		ВОТТОМ
WA255-3515-1 (M. Smith/L. Brock	4	SS 5.010" 2-12	NORTHING 231609.1	Penetration (blows/6") Depth (feet) Recovery & a		-	2	3	4	<u> </u>	2	9 9	7 7	8 6	9 9	10 10	10 1,0		9 13	_	6 15		16	17	18	19 19	27	2 2	7	22
PROJECT NO: LOGGED BY:		SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 28.65	Moisture Content PID Reading (mqq)								0	0		0	0	Wet		MOIST 0		0		Moist 0	(0	Wet	>			
	Jelta	Environmental Consultants, Inc.		Well Completion Static King Water Consider Static Water Consider Static																										
		ш Ö		§ Ilijysea		ouc.	ာ		gue	98									αN	IAS										

BORING/WELL NO: MW-67 attle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION		o coron to E			المروم مروزة لمعم فإنم طفيت يتمام	CEAT, glay, suit, blocky, with slit and line sailu			; brown, with gravel, wet (As above, with wood fragments)		10	d sawdust		weathered			oor recovery	medium	@ 20,	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	LED: 10/12/2005 ETER: 8.5" TH: 20'		EASTING 1269625.6		Concrete (18")	of borcolo posyholical riv			Old Bitter Core. VA IO	OLAT, glay, still, blo	(As above)	(As above)	SAND; brown, with gravel, wet (As above, with wood fra		GRAVEL; brown, wet	Wood fragments and sawdust		Sawdust, brown, unweathered	(As above)		Wood fragments, poor recovery	Wood Chips SAND; gray, fine to medium	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DEPTH: WELL DEPTH: CASING STICKUP:	NORTHING 231654.7	Recovery a laterval of Soil Type						3			S S		₽ 	Mood						S S		
WA255-3515-1 M. Smith/L. Brock			NO 23	(blows/6") Depth (feet)	-	+	5 -	m <	1 10	9	6 7	8		0. 22		12	4 4 4 £	 	- 15 - 15 - 15 - 15	1 1	2 %	20 19	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22
	METHOD:		ELEVATION 27.64	Penetration					U	0.5	9.0		0.5 5	0.5	0.6		8.0	, 20/6" 0.5	.9/09	16.2	5.9 6	2.4		
PROJECT NO: LOGGED BY:		CASING SLOT SI. GRAVEL		Static Water Level Moisture Content					70,00	NON	Moist		Wet	Wet										
	Delta	Environmental Consultants, Inc.		Well Completion Backfill Casing Wat	conc		Ber								QNA:									

BORING/WELL NO: MW-68 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'				h clay	h rocks)			y and silt	orown, fine	urated)	(Grades gray with large wood fragments)				vith wood fragments	(As above, with wood fragments) ; gray, fine	@ 20.5'	
) We	ED: 10/11/2005 ETER: 8.5" H: 20.5'		EASTING 1269584.8	Ę	Concrete (18")	Air-knifed/vac-cleared to				SAND; gray, fine, with clay	(As above, with rocks)	SAND: grav fine	טווול, טומל, טווס	Wood fragments SAND; gray, with clay and	SAND; dark gray to brown, fine	(As above, saturated)	(Grades gray v		Wood fragments	(As above)	SAND; brown, fine, with wood fragments	(As above, with SAND; gray, fine	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	<u>ق</u> .	Soil Type					\Box	S III	_	O.	5	Wood SP-SM	S S				Mood		S D		.	
5 C	A H H	W WE	NORTHING 231536.4	Recovery of Interval																				_
515-1 /L. Brock			_	Depth (feet)		- ,) 4 	+ r.)) (c	1	1 ∞	I	9 0	<u>+</u>	12	13	4	15 1	16 1	&	19 02	22	
WA255-3515-1 M. Smith/L. Brock	CDI HSA SS	PVC 0.010" 2-12		Penetration ("6\swold")						4 4	7 6 7		- 6	9 5	6.50/6") 5	7 41	23 70/3"		37	50/4" 9	12 17 20 23		1
'NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	:: ::	ELEVATION 29.23	PID Reading (ppm)						1.0	1.2		1.8	2.5		9.0	17.1		21.9	65.8	3.6	1.0		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content								Moist	MOISI		Wet	Sat								
	ta			Static Water Level										\triangleright										
	Del	Environmental Consultants, Inc.	,	Well Completion Casing Casing	.ouc	PO	Bent.									QNA:								

BORING/WELL NO: MW-69 ttle, WA PAGE 1 OF 1	Location Map	C C	See Figure Z		LITHOLOGY / DESCRIPTION		cleared to 5'			Silty CLAY; green-gray, few pebbles, some rounded					Silty SAND; green-gray, coarse to fine sand, with round pebbles	, well-graded angular sands, with silt,		(As above, with less gravel, more silt)	h wood chips)		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/11/2005 ER: 8.5"			EASTING 1269585.8	ГТН	Concrete (~18")	Air-knifed/vac-cleared to			Silty CLAY; green-gr	gravel, stiff	(As above)	(As above)	(As above)	Silty SAND; green-gr round pebbles	Gravelly SAND; gray, well-graded with rounded 1/4"-1" grayel		(As above. wit	(As above, with wood chips)	Wood Wood chips	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231756.2	Recovery & Berovery of Britainal of Type					\					WS S	S S				Mood		$\frac{1}{1}$
): WA255-3515-1 B. Pletcher	CDI ETHOD: HSA	ETHOD: SS	E: PVC 0.010" :K: 2-12	ELEVATION 27.67	PID Reading (ppm) Penetration (blows/6") Depth (feet)	,		7 6) 4 I		7.5 2.6 -	1.3	4.7 2 2 4.7 1 8 1 0	4.3		1.3	2 14-	0 - E	2.2 3 18-	1.3 2 19-	21-	22
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:		SLOT SI; GRAVEL		Static Water Level Confent					Moist		Moist	Moist		Sat	teS		Sat	Sat	Sat		
		5	Environmental Consultants, Inc.		Well Completion Casing Casing	puog		ieg.							GNAS							

BORING/WELL NO: MW-70 ttle, WA PAGE 1 OF 1	Location Map		See Figure 2		LITHOLOGY / DESCRIPTION	3")	10000000000000000000000000000000000000	sand fill light brown with round cobbles)			SAND; greenish gray, fine to very fine, angular, trace silt	w round 1" gravel)	grades to light brown)		parse sand						Silty SAND; gray, medium to fine, angular, with wood debris		ne, trace silt, wood debris	@ 20,	
ConocoPhillips 600 Westlake Ave N, Seattle, WA		:TER: 8.5" 4: 20'		EASTING 1269300.3		Asphalt/Concrete (18")	a ct Lordon control	(Silty sand fill			SAND; greenish gray	(As above, few round 1"	(As above, gra		Wood Wood debris, with coarse sand	Wood debris		Clayey SILT; green	Wood debris				SAND; medium to fine, trace	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231395.4	Secovery on Interval on Type						S S				Moo			₩ W	Wood		NS NS		S		
WA255-3515-1 B. Pletcher		HSA : SS	PVC 0.010" 2-12	z	Penetration (blows/6") Depth (feet)			2	 က	4	4 9 5 8 1 9	4 0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 -			3 3 13 1		2 3	1 16 – 2 2 17 –	0 4 E	8 19 19 1	2 Z Z	22—
PROJECT NO: LOGGED BY:	DRILLER:	DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 31.14	Moisture Content Ingase					Moist	Moist 11.7	Moist 10.1		Moist 30.8	Wet 625	1//et		Moist 179		Damp 10.4	Sat 21.2	Sat 39.3	Sat 20.7		
<u> </u>		ם ב	Environmental Sonsultants, Inc.		Static Water Level																				
			Env		Well Completion Casing Casing	conc	3	Ben				ΤΤ				ДИA	s								

BORING/WELL NO: MW-71 I, Seattle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION	e (~12")	Air-knifed/vac-cleared to 5'				e to medium		(As above with some clay)	e to medium	SAND; gray to brown, fine, some greenish clay	e to medium		s, coarse	(As above, with sawdust)	Coarco	5, COALSE	(6		OLE @ 20'	
CLIENT: ConocoPhillips LOCATION: 600 Westlake Ave N, Seattle, WA	DATE DRILLED: 10/12/2005 HOLE DIAMETER: 8.5"	HOLE DEPTH: 20' WELL DIAMETER: 2" WELL DEPTH: 20' CASING STICKUP: 0	EASTING 1269362.6		Asphalt/Concrete (~12")	Air-knifed/				SP SAND; gray, fine to medium		(As above	SAND; gray, fine to medium	SAND; gray to bi	SAND; gray, fine to medium		Wood Wood fragments, coarse	(As above	Wood framents	ממונים ביים ביים ביים ביים ביים ביים ביים ב	(As above)		BOTTOM OF HOLE	
WA255-3515-1 CLIENT: M. Smith/L. Brock LOCATIC			NORTHING 231418.9	(blows/6") Depth (feet) Recovery & a linterval © Deferval		- c	N 6	4	F 4	n (c	7 41	8 8	6	12 10 114	16 11	12	32 13		15		17	2 00	21	22
PROJECT NO: WA25 LOGGED BY: M. Sn		SAMPLING METHOD: SS CASING TYPE: PVC SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 30.42	Penetration						2.8	 3.4		3.8 16		4	42.7 20		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	+ 6	15.4	11.9			
	Delta			Well Completion Static Completion Casing Water Case Case Case Case Case Case Case Case	conc		98									∀ \$	 							

BORING/WELL NO: MW-72 rtle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	2")	cleared to 5'		Silty SAND; light brown and gray, medium to fine,					des gray)	Silty SAND; gray, medium to fine, angular				sovery		ilty	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	.: ::		EASTING 1269418.6	ПТН	Asphalt/Concrete (12")	Air-knifed/vac-cleared to		Silty SAND; light brov	angular	(ayode ad)	(As above)	(As above)	(As above, grades gray)	Silty SAND; gray, me		Wood chips		Wood chips, poor recovery	Wood	Wood debris, gray, silty PEAT	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231417.7	Recovery & a lnterval & o				∑ So								Mood				TA L		
WA255-3515-1 B. Pletcher	CDI : HSA		NO	Penetration (blows/6")	, ,	- 0	' u	 52	4 4 	4 4 ∠		4 9 0	ε 4 ι 10 -		0	1 & & 1 & & 1 & 4 1 1	2 2 3	0 4 ε	2 3 7 7 8	000	. 2	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING ME I HOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 30.32	Moisture Content PID Reading				Moist	7:7	2.4		3.7	Wet 2.1	Sat 18	te S	3.5	Sat 1.4	<i>Sat</i> 1.2	Sat 1.6	Sat 0.7		
	elta	Environmental Consultants, Inc.		Static Static Water									 									
		Envi		Well Completion Casing Dayletion	Conc	.tn	98							QNA	s							

BORING/WELL NO: MW-73 (tle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION	2")	plasted to 5'				SAND; gray, fine to medium, with some rocks				, fine	th pebbles			turated)			NWO	wn		@ 20,	
ConocoPhillips : 600 Westlake Ave N, Seattle, WA	LED: 10/12/2005 AETER: 8.5" TH: 20'		EASTING 1269478.3		Asphalt/Concrete (12")	Air-knifed/vec-cleared to					(As above)	(No recovery)		SAND; gray to black, fine	SAND; gray, fine, with pebbles	d Wood fragments		(As above, saturated)	(As above)		Wood fragments, brown	SAND; gray, fine Wood fragments, brown	SAND; gray, fine	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231415.5	Recovery & Both Both Both Both Both Both Both Both						- S						Wood						SP	S S		
WA255-3515-1 M. Smith/L. Brock	CDI HSA SS			Penetration (blows/6") Depth (feet)		-	5 -	ლ —	4	2 4	4 4		8 8	7 10	5 7 11	12 12—	26 13 —	13 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^	16 3	ı	16 10 19 1	10 5	24	
PROJECT NO: \	:ТНОВ:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 30.11	Moisture Content PID Reading (ppm)						7.3	£.			Wet 495	, , , ,			Sat	Sat	3.7	Sat 1.3		7.8		
PR OJ				Static Water Level														,							
	De	Environmental Consultants, Inc.		Well Completion Casing Casing	conc	7	Ber								dnA	'S									

BORING/WELL NO: MW-74 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION	cleared to 5'		SAND; light brown, medium to fine, trace silt, angular				ades to gray)		sdiu			greenish-gray, fine to very fine, angular, saturated	PEAT SAND CLAY; gray, plastic, stiff, with trace organics	@ 20'
ConocoPhillips 600 Westlake Ave N, Seattle, WA	5. 10/12/2005 ER: 8.5"	20' ER: 2" 20'		EASTING 1269577.3	·LIT	Air-knifed/vac-cleared to		SAND; light brown, r	(As above)	(As above)		(As above, grades to gray)	(As above)	Wood debris/wood chips	Wood chips	PEAT	SAND; greenish-gra	PEAT SAND CLAY; gray, plastic,	BOTTOM OF HOLE
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH:	CASING STICKUP:	NORTHING 231388.2	Secovery Barrelral Briterval Soil Type			a o						Mood		H	ds S	F 8 8	
WA255-3515-1 B. Pletcher	CDI : HSA	2: SS PVC 0.010"	2-12		Penetration (blows/6") Depth (feet)	- 2	w 4	8 4 4		8 8 9 9	3 10 -		2 12—	4 E 2 13 T T T T T T T T T T T T T T T T T T T	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 & 4 	2 2 2 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	22 27
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD: CASING TYPE: SLOT SIZE:	GRAVEL PACK:	ELEVATIC 30.35	Moisture Content PID Reading (ppm)			Moist 1.3	1.0	1.5	Wet 2.4	773	Sat	13.1 Wet	4.4 Wet	3.4 Wet	3.6 Sat	2.1	
)elta	_	Consultants, Inc.		Well Completion Static Kitili go Water Gaaa Level	Sent Conc						UND ∀							

BORING/WELL NO: MW-75 Hie, WA PAGE 1 OF 1	Location Map	C C C C C C C C C C C C C C C C C C C			LITHOLOGY / DESCRIPTION		cleared to 5'			(Fill material: gravel and brick with gray silt and				e, few pebbles					(As above, with less silt, more sand)	Silty SAND; gray, coarse to fine angular sand, with rounded pebbles and wood debris		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/13/2005 TER: 8.5"			EASTING 1269319.9		Grass	Air-knifed/vac-cleared to		(No recovery)	(Fill material: c	fine sand)	(As above)	PEAT	Silty SAND; gray, fine, few pebbles	(As above)		(As above)	(As above)	(As above, wit	Silty SAND; gray, co	(As above)	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231943.9	Recovery & Borovery of Borlerval of Type					Ē			PT	S									
WA255-3515-1 B. Pletcher	CDI HSA	SS	.010" 2-12		Penetration (blows/6") Depth (feet)	,	_		 5 -) () () () () () () () () () () () () ()	5 7		9	2 2 2			~ ~	15	0		2 3 19 20 20 1	21 21	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING 17PE: SLOT SIZE: GRAVEL PACK:	ELEVATION 28.11	Moisture Content Teading Manager Content Content Manager Manag						Moist 2.3	Moist	1.6	<i>Sat</i> 1.4	Sat 1.2	Sat	<u>+</u>	<i>Sat</i> 1.0	Sat 1.1	Sat Sat			
	ν 1		Environmental Consultants, Inc.		pletion Static Water Level								\supset										
)	Envi		Well Completion Casing	conc	31	Be							QNAS	3							

BORING/WELL NO: MW-76 ttle, WA PAGE 1 OF 1	Мар	See Figure 2)		LITHOLOGY / DESCRIPTION		cleared to 5'			Silty SAND; medium to fine, angular, with brick				(As above, gray, less silt, wood debris)	l wood debris	Silty SAND; gray, coarse to fine, with brick and wood	h less debris)	Silty SAND; coarse to fine, few pebbles, less debris			@ 20.	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ED: 10/13/2005 :TER: 8.5"			EASTING 1269395.0		Grass	Air-knifed/vac-cleared to			1	(As above)	(As above)		(As above, gra	SAND; with brick and wood debris	1	(As above, with less debris)	Silty SAND; coarse t		(As above)	BOTTOM OF HOLE	
15-1 CLIENT: LOCATION:		HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231928.3	Depth (feet) Recovery A Interval Soil Type	H	- (8	4	NS SW	9	8	6	10	11 SP	13 SM	41 51	19	18	19	20	22
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher	:THOD:	SAMPLING METHOD: SS CASING TYPE: PVC		ELEVATION 27.08	Penetration ("8/swold)					Moist 2	- ~	1.3 1 2 Wet	.	1.0 1	Sat 3 1.2 5 6	9 % %		ro 4 rc		0 0 0		
) 			Environmental SI Consultants, Inc.		Well Completion Static Static Static Cas ing Water Cas Cas Case Case Case Case Case Case C	onoO	36	98							DINAS							

BORING/WELL NO: MW-77 THE, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION			cleared to 5			medium		h pebbles, some clay)	ine, moist ades gray)	some clay, moist		h medium sand)		(As above, increasing clay, some wood fragments)				(As above, sand more consolidated)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	.ED: 10/13/2005 ETER: 8.5" H: 20'		EASTING 1269453.9		Grass	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	Alf-knifed/vac-cleared to			SAND; brown, fine to medium		(As above, with pebbles,	Silty SAND; brown, fine, moist (As above, grades gray)	SAND; gray, fine, so		(As above) (As above, with medium	(As above)	(As above, inc	(As above)	(As above)		(As above, sa	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type						\ Q			SM	SP										
	DATE HOLI HOLI	WEL WEL CASI	NORTHING 231937.2	Depth (feet) Recovery Recovery A Interval		<u></u>	2	3	4	2	9	7	8 0	0 7	2	12	13	41	15 16	17	18 0	20	21	22
WA255-3515-1 M. Smith/L. Brock	CDI HSA SS	PVC 0.010" 2-12	_	noitstafion ("3/swold)						12	18 15	12 7	3 12		← ,	(w 	2 2	4	. — — —		2		
	METHOD: G METHOD:		ELEVATION 26.53	PID Reading (mgq)							0	0	0		0	0	0	0				0		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content									Moist	Moist		Wet	Wet							
	elta	ental ts, Inc.		Static Water Level												\Rightarrow								
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	ວແວງ		nea									QNA2								

BORING/WELL NO: MW-78 , WA PAGE 1 OF 1	Location Map	i	See Figure Z		LITHOLOGY / DESCRIPTION		4	eared to 5			inde come Hite confi	, ille, till, tolled clay	, fine, some silt, some				es to gray sand)			(As above, grades dark gray to black sand) (As above, grades tan to gray with some	d pebbles)		some clay and wood fragments)	with pebbles)	200		
CLIENT: ConocoPhillips LOCATION: 600 Westlake Ave N, Seattle, WA	10/13/2005		METER: 2" 7TH: 20' TICKUP: 0	EASTING 1269537.3		Grass	10 00 ALC 3: 00 1 2: 0	Alr-Knired/vac-cleared				Orice, igniciglay to tan, inte, stin, soling day	SAND; light gray to tan, fine, organic material	(As above)		(As above)	(As above, grades to gray SAND; gray, fine, with silt			(As above, grade (As above, grade	medium sand and pebbles)	(As above)	(As above, with some	(As above, with p	© HICH HOLD WOTTON		
CLIENT: LOCATION	DATE DRILLED:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231935.1	Recovery on Interval on Type								SP-SM														
WA255-3515-1 M. Smith/L. Brock			PVC 0.010" 2-12	NC	Penetration (blows/6") Depth (feet)	,		2 –	ا «	4	25	0 C C	5 7 -	9 8	9 9—	3 10 -		2 12 -	3 6 13 13		4 15 -	4 16 -	13 17 – 4	0 7		21 –	22 –
PROJECT NO: LOGGED BY:	DRILLER:	SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 26.45	eruteioM fineo Theading PID Reading (mqq)							0.0	0:0		Wet 0.0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Sat 0.0	0.0		0.0	0.0	0.0	0.0			
		סוומ	Environmental Consultants, Inc.		Well Completion Static Ei in Water C is in Level B C	Conc		Ben										IA2									

BORING/WELL NO: MW-79 attle, WA PAGE 1 OF 1	Мар				LITHOLOGY / DESCRIPTION			cleared to 5			m with Gravel		ades fine gravel)	GRAVEL; fine to medium sand		alt & pepper)	aturated)				.; fine gravel	(As above, increasing clay)	Sravel			: @ 20'	10' to 20'
ConocoPhillips 600 Westlake Ave N, Seattle, WA	:D: 10/14/2005 TER: 8.5"			EASTING 1269585.5	Ė	Grass	:	Alr-knired/vac-cleared to			SAND: fine to medium with Gravel		(As above, grades fine	SAND and GRAVEL		(As above, salt & pepper)	(As above, saturated)		(As above)		SAND and GRAVEL; fine gravel	(As above, inc	Clayey SAND with Gravel	(As above)		BOTTOM OF HOLE	*PID malfunctioned 10' to 20'
CLIENT: Sk LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMELER: WELL DEPTH: CASING STICKUP:	NORTHING 231942.0	Recovery & B Interval & COI Type				<u> </u>					MS N									S				
WA255-3515-1 M. Smith/L. Brock	CDI D: HSA		PVC 0.010" 2-12	NO	Penetration (blows/6") Depth (feet)			2	၂ က	4	10	12 6 –	23 7 —	22 8—		23 10 –	17 11 -	32 12 –	72/6" 13—	14—	15 —	37 16—	50/6	26	2 00	<u>2</u> 2	22—
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING LYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 26.80	Moisture Content Ingressible Meading (mdd)							0.4	0.4	Moist	0.3 Moist	Wet *	Wet Sat										
	<u>1</u> 12	2	Environmental Consultants, Inc.		Static Water Level											N											<u> </u>
		7	Envi		Well Completion Casing	ouc		nəg									dN⊅	'S									

BORING/WELL NO: MW-80 tle, WA PAGE 1 OF 1	Мар	i	See Figure 2		LITHOLOGY / DESCRIPTION			olealed to 5			Silty SAND; brown, 40% silt, coarse sand, with			ides gray)	h less silt)	Silty SAND, gray-black, 15-20% silt, coarse to fine sand, with brick and wood debris			Clayey SILT; green-gray, with trace fine sand, stiff, damp	Gravelly SAND; black-gray, coarse to medium sand	ay, 20% silt, coarse to fine sand,				@ 20,	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	:D: 10/14/2005			EASTING 1269583.8	ПТН	Grass	رور المراقبة ما ءزام	All-Killed/vac-cleared to				brick and gravel		(As above, grades gray)	(As above, with less silt)	Silty SAND, gray-black, 15 with brick and wood debris			Clayey SILT; green-g	Gravelly SAND; black		Iew 1/2 -1 glavels		(As above)	BOTTOM OF HOLE	
5-1 CLIENT: LOCATION:	DATE DRILLED: HOI E DIAMETER	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 232000.0				5	3	4	SM SW	9		8	0	10	11	12	13 ML	14 GP/SW	15 SM	17	18	19	27 23	22
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher	C H H	SAMPLING METHOD: SS	CASING TYPE: PVC SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 26.34	Moisture Content (mpq) Peading (ppm) Penetration (blows/6")							Moist 1.1 2	Wet 4.8 1	Ľ	2.5 6 Sat	1.0	-	1.2	۷ /	0.4	- ~	ю — —		Sat 0.3 2 1	, CV	
<u>a 3</u>			Environmental SI Consultants, Inc.		Well Completion Static Static Casing Water Case Case Case Case Case Case Case Case	Sonc		Benna					N N					NAS								

BORING/WELL NO: MW-81 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION		cleared to 5'			SAND; brown, coarse to fine, angular, trace pebbles,		ades gray)	ith brick, stiff		SILT; gray, coarse to fine, with gravel, pebbles and wood debris		Gravelly SAND; very coarse to medium sand, with brick and wood trace silt				@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ά	: 20' TER: 2"		EASTING 1269588.3		Grass	Air-knifed/vac-cleared to			SAND; brown, coarse	with wood debris	(As above, grades gray)	Clayey SILT; gray, with brick, stiff		SILT; gray, coarse to wood debris		Gravelly SAND; very coa				BOTTOM OF HOLE	
5-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 232055.9		H	- (7 8	4	2 SW	9		W W 0	10			15 SW	16	8 0			
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher	DRILLER: CDI DRILLING METHOD: HSA	SAMPLING METHOD: SS CASING TYPE: PVC	SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 26.21	Moisture Content Peading (ppm) Penetration (blows/6")						Moist 1.0 3	Wet 0.2 2		1.0	0.9 1 12 12 12 14 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0.1	0.9 2 3 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 W W	3 -	0.5 2 13 20 20	3 51	_
1d 27			:		Well Completion Static Static Casing Water Level	ouoo		98							QNAS							

BORING/WELL NO: MW-82 ttle, WA PAGE 1 OF 1	Map		See Figure 2			LITHOLOGY / DESCRIPTION		cleared to 5'			nedium				SAND: gray fine to medium with /20% neat/organics/	wood fragments at bottom of sample interval Wood fragments with Sand				sand and sawdust			eawdiet	salt & pepper (grades finer sand and gray in color)			@ 20'	
ConocoPhillips 600 Westlake Ave N. Seattle. WA	ED: 10/14/2005	ETER: 8.5" H: 20'	ER:		EASTING 1269537.6	HITI	Concrete (6")	Air-knifed/vac-cleared to			SAND; gray, fine to medium		(As above)		SAND: gray fine to n			100	wood rragments	Wood fragments with sand and sawdust		Sawdust SAND; salt & pepper	Mood fragments and camplest	SAND;	SAND; gray, fine		BOTTOM OF HOLE	
1 CLIENT:		HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231760.7	Recovery & B D D D D D D D D D D D D D D D D D D					S					PooM						S	TO OVA	S S				
WA255-3515-1 M. Smith/L. Brock	CDI	THOD: HSA	PVC	0.010 <: 10-20	ELEVATION 23.70	PID Reading (ppm) Penetration (blows/6")		 2		4	4	2,000 4 6	1,795	0	940 2	105 7 10	14 11	145 4 12	٥	7 7	51 10 15	23.7 50/6"		17 17. 50 20 48.	20	75 25 ¹⁹ 28 ₂₀ .	21.	22
PROJECT NO: LOGGED BY:	DRILLER:	DRILLING METHOD:		GRAVEL	ELE'	Moisture Content					Moist				, Sa													
			Environmental	Consultants, Inc.		Well Completion Static Static Water Caracian Water Bacasa Level	ouoç	Ber								NAS												

BORING/WELL NO: MW-84 le, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	()		sleared to 5'			Sandy Clayey SILT; grey mottled with some brown, soft			dium, firm, some 1"-2" rounded gravel				ne 1/2" pebbles, firm	me sand, firm	wood chips)	"gravel, medium sand, some silt				@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ED: 10/17/2005 TER: 8.5" t: 20'		EASTING 1269309.9	ГІТН	Asphalt/Concrete (12")		Air-knifed/vac-cleared to			Sandy Clayey SILT; g			Silty SAND; gray, medium, firm,				Sandy SILT; gray, some	Clayey SILT; gray, some	(As above with wood chips)	Sandy				BOTTOM OF HOLE	
CLIENT: logenson LOCATION:	ig, Inc. DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231756.8	Recovery & B Interval & Coil Type						\ ₹			WS S				M			d _D					
O: WA255-3515-1 <i>K.</i> Johnson/B.Hogenson	DRILLER: Cascade Drilling, Inc. DRILLING METHOD: HSA SAMPLING METHOD: SS	PE: PVC 0.010" CK: 10-20	ELEVATION 28.51	PID Reading (ppm) Penetration (blows/6")			2-	-e -	4	2 5-	13.6 2 6-	19.6 3 7-	0 0	N 0	11.1 2	- 0	7		9.4 5 15-	9.5 9 16-	_	8.0 9 18-	7 19-	21-	22-
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:		EL	Static Water Level Moisture Content							Damp		Damp		Moist		Moist	Moist	Moist	Sat					
	De	Environmental Consultants, Inc.		Well Completion Casing Casing	'ou	၀၁	eut.	8								QNA8									

BORING/WELL NO: MW-85 tle, WA PAGE 1 OF 1	Мар		Z aligale Z		LITHOLOGY / DESCRIPTION	8")	cleared to 5.					SAND and CLAY; gray, fine sand, with wood fragments	n Clay		sand		(grading more moist with more fine sand)		It & pepper	urated)	wood from month)	(As above with wood hagmens)	(velo poisso	CLAY; gray, with trace sand and wood fragments	@ 20'	
ConocoPhillips I: 600 Westlake Ave N, Seattle, WA	LED: 10/17/2005 METER: 8.5"			EASTING 1269298.8		Asphalt/Concrete (~18")	Air-knifed/vac-cleared to					SP SAND and CLAY; gra	SAND; gray, fine, with Clay		CLAY; gray, with fine sand				SAND with CLAY; salt & pepper	(As above, saturated)	this oxedo ov	(As above with	roti avode av		BOTTOM OF HOLE	
WA255-3515-1 CLIENT: M. Smith/L. Brock LOCATION:		HOLE DEPTH:	WELL DIAME I EK: WELL DEPTH: CASING STICKUP:	NORTHING 231813.2	Depth (feet) Recovery British and a second of the second			2	e	4	2	S		8	JO 6	10	11 SC	12	13	41	15	16	- 4	19 CL	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: M. Smith/L. Bro	:THOD:		CASING TYPE: PVC SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 28.29	Moisture Content PID Reading (ppm) Penetration (blows/6")						ע	8.5 4	10.6		9.2 2	<i>Moist</i> 3 6.6 4	က	Moist 8.3 5	Wet 6.8 8	۷ ح	Ю	8.2	7.3 8	6.8 6.8		
<u>a </u>		_	Environmental S Sonsultants, Inc.		Well Completion Static Ckiiii ga Water Ba a C Level	ouoo	it.	Ber									MD									

BORING/WELL NO: MW-86 PAGE 1 OF 1	Мар		See Figure 2	.4	LITHOLOGY / DESCRIPTION	(,	Air-knifed/vac-cleared to 5'			Silty SAND: gray, fine to medium, firm		Sandy SILT; gray, fine sand, firm, damp	Silty SAND; fine, soft, moist	above, saturated)	(As above, grades to medium sand)	ove)	ove)	ove)	ove)	ove)	HOLE @ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	:D: 10/17/2005	TER: 8.5" I: 20'		EASTING 1269416.4		Concrete (14")	Air-knife			Silty SAND: g		Sandy SILT; g	Silty SAND; fir	(As abc	(As abc	(As above)	(As above)	(As above)	(As above)	(As above)	BOTTOM OF HOLE	
TT: TION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type					\ ⊠ ⊠		ML	SM									
WA255-3515-1 CLIENT: K.Johnson/B.Hogenson LOCATION:		HOLE	WELL WELL CASII	NORTHING 231852.5	Sample Recovery lnterval									Н								\mathbb{H}
515-1 n/B.Hoger	Cascade Drilling, Inc.			Σ Z	Depth (feet)	,	-	2 6	o 4	2	9	7	o o	£ :	12 1	13	41 51	1 9	3 4	6 8	2 2	22
WA255-3515-1 K.Johnson/B.H	Sascade	HSA SS	PVC 0.010" 10-20		Penetration ("a/swold)					က	ကက	000	0 0 0	ω 4 τ	4 0 0	7 2 2 9	0 + 0	T 2 2	4 ← ω	- 2 2		
		DRILLING METHOD: F SAMPLING METHOD: S	YPE: F	ATION 55	PID Reading (mpm)						59.3	7.14	32.5	39.7	10.6	0.8	7.3	7.3	9.1	0.9		
PROJECT NO: LOGGED BY:	DRILLER:	DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content						Dry	<i>Damp</i>	Moist	Sat								
		ella e			Static Water Level									\bowtie								
			Environmental Consultants, Inc.		Well Completion Casing Casing	ouc.	po 🏻	tn s 8							GNAS							

BORING/WELL NO: MW-87 (tle, WA PGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		abared to 5'				h clay			above, increasing clay)							h pebbles	h sawdust and gravel	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING		Concrete (14")	Air-knifed/ver-deared to				SAND; gray, fine, with clay	(As above)		(As above, inc			Sawdust	(As above)	(As above)		SAND; gray, fine, with pebbles	SAND; gray, fine, with sawdust	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH:	NORTHING	Secovery and Interval of Type						OS III						Wood				\ Q			
WA255-3515-1 M. Smith/L. Brock	CDI HSA	SS PVC 0.010"	07-01	Penetration ("a)/swold) Depth (feet)			0 °	o 4		0 0	5 2		2 - 2	9 0			9 13 —	6 15—	6 16		£	20 27 17 1	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD: CASING TYPE: SLOT SIZE:	GRAVEL PACK: ELEVATION 26.74	Moisture Content PID Reading (ppm)						11.6	11.0	Moist	15.6 Wet	7.5	Wet	6.0 	11.1	10.2	8.5	7.1	7.3		
	e Ita			Static Water Level										\bowtie									
		Environmental Consultants. Inc.		Well Completion Casing	ouog		ger	1	'	'				' 	JUN	/S							

BORING/WELL NO: MW-88 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'		& pepper sand, fine	y, fine sand , fine in color)	iding trace clay and pebbles)	SAND; brown mixed with salt & pepper sand, trace clay		Clayey SAND; brown mixed with salt & pepper sand	ıalı gravel	above, increasing gravel)	fine gravel	, trace gravel	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA		+. 20' :TER: 2" +. 20' XUP: 0	EASTING 1269554.4	<u></u>	Asphalt/Concrete (16")	Air-knifed/vac-cleared to		SAND with Clay; salt & pepper sand, fine	CLAY with Sand; gray, fine sand SAND; salt & pepper, fine (grades brown in color)	(As above, grading trace	SAND; brown mixed	(As above)	Clayey SAND; brown	SAND; fine, some small gravel	(As above, inc	SAND and GRAVEL; fine gravel	SAND; salt & pepper, trace gravel	BOTTOM OF HOLE	
CLIENT:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231832.3	Recovery & B Interval & C Soil Type				S	δ 0				SC	S S					
WA255-3515-1 M. Smith/L. Brock	CDI : HSA	5: SS PVC 0.010" 10-20	Z	Penetration (blows/6") Depth (feet)		N	ω 4 	4 -	4 0		6 10 0	7 4 4 4 7 11 - 12 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 13 1		6 16 5	9 9 9 17	3 7 19 - 20 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	21 22 1	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 27.28	Moisture Content Content Confend Confe				C	2,000	Moist 1,530	Wet 273	102	37.7	20.4	11.4	12.8	7.3		
	elta	Environmental Consultants, Inc.		Mpletion Static Static Water Water															- -
		Envi		Well Casing Casing Deltion	ouog	Bent						QNAS							

BORING/WELL NO: MW-89 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION		cleared to 5'				Silty SAND: some clay some wood debris saturated					(Refuest of snoon due to wood debris)		12' for next sample interval)		ecovery)			ı		, firm			@ 19.5'		
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/18/2005 ER: 8.5"	19.5' ER: 2" 18'		1269468.1	5	Concrete (7")	Air-knifed/vac-cleared to				Silty SAND: come of	, ,		Wood debris (large)		(Refissal of sp.		(Drilling to 12'		(Wood, poor recovery)			Silty CLAY; gray, firm		Silty SAND; medium, firm			BOTTOM OF HOLE		
CLIENT: son LOCATION:		HOLE DEPTH: WELL DIAMETER: WELL DEPTH:	CASING STICKUP: NORTHING	231666.1	Recovery and Interval of Soil Type									Wood			Н		П				\ \ \		MS			\prod		
WA255-3515-1 CLIENT: K.Johnson/B.Hogenson LOCATION:	Cascade Drilling, Inc. HSA	, ¹ 0			(blows/6") (beet) (feet)		-	2	e e	4	5	9	-	•		=	9	11	12		9		9 4		<u> </u>	4 0	6	20	21	22
T NO: WA:	:THOD:	SAMPLING METHOD: SS CASING TYPE: PVC SLOT SIZE: 0.010"	PACK: 10-20 ELEVATION	23.02	PID Reading (ppm)							10.2		27.8	9.2	50/4				15.5	6	4 W		8.5	8.9	7.1				
PROJECT NO: LOGGED BY:	DRILLER	4	GRAVEL PACK: ELEV/		Static Water Level Moisture Content							Sat								Wet			Sat		Sat					
	Deli	Environmental			Backfill Completion Casing	.ouo:) July	8									ال	NAS]				

BORING/WELL NO: MW-90 tle, WA PAGE 1 OF 1	Мар	Ĺ	See rigure z		LITHOLOGY / DESCRIPTION		1 1 1	cleared to 5				ay debris	SAND and CLAY; gray, with wood fragments	and sawdust				, fine to medium	alt & pepper	(As above, grading less gravel)	with some wood fragments)	salt & pepper (As above, grades to gray with increasing silt)			@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/18/2005 FR: 8.5"			EASTING 1269498.0		Concrete (~6")	(()) / (()) (())	All-Killed/vac-clealed to				CLAY with SAND; gray Wood fragments and debris	SAND and CLAY; gra	Wood fragments		Sawdust and gravel		SAND; salt & pepper, fine to medium	SAND with Gravel; salt & pepper	(As above, gra	(As above, wit	SAND; salt & pepper (As above, gra	(As above)		BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOI F DIAMFTER [.]	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231737.2	Recovery and Interval of Soil Type	H						CL	S	Mood				S								
WA255-3515-1 M. Smith/L. Brock	CDI	SS	PVC 0.010" 10-20	Ž (Penetration (blows/6") Depth (feet)			2	3	4	7		~	2 +	6	10—	11 11	3 12	5 4 13		36/6" 16	17 17 30 18	19	29 20	21	
PROJECT NO: V	HOD:		CASING TYPE: H SLOT SIZE: C GRAVEL PACK: 1	ELEVATION 22.90	Moisture Content PID Reading (mpd)							803		224	75.0 0	76.8		67.8	, 6, 89		20	01	20			
	\(\frac{1}{2}\)	3			Static Water Level								N													
		7	Environmental Consultants, Inc.		Well Completion Casing	ესიე	an	eg								1A2							1			

BORING/WELL NO: MW-91 PAGE 1 OF 1			See Figure 2		CRIPTION						-	ris, some sand,	ted		easing wood	wood chips)	(24				um, firm								
	Мар		S O O		LITHOLOGY / DESCRIPTION		Air-knifed/vac-cleared to 5'				-	Clayey SIL I; gray, with black wood debris, some sand, soft	Silty SAND; fine to medium, soft, saturated		SAND; medium to coarse, trace silt, increasing wood	split-spoon is					SAND; gray to brown, fine to medium, firm		mostly fine)			Е @ 18.5'			
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/18/2005			EASTING 1269494.3		Concrete (6")	Air-knifed/va				i	Clayey SIL I; gray, soft	Silty SAND; fine to		SAND; medium to			Wood Chips		(As above)	Silty SAND; gray to		(As above, mostly fine)			BOTTOM OF HOLE			
TZ: NOIT:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type							M	SM		SP	Wood					\ S S								
CLIENT:). DATE	HOLE	WELL WELL CASII	NORTHING 231688.6	Recovery and Interval of	H	\parallel		+	H	₩	\mathbb{H}	+	H	Н	\mathbb{H}	H						\mathbb{H}			H	H	+	+
WA255-3515-1 CLIENT: K.Johnson/B.Hogenson LOCATION:	Cascade Drilling, Inc.			NC 2,	Depth (feet)		-	2	_ε	4	2	9		80	6	9	7		1 6	5 5	<u> </u>	Ω ;	1 9	2 %	2 !	100	8	21	22
WA255-3515-1 K.Johnson/B.H	Cascade		PVC 0.010" 10-20	7	Penetration (blows/6")						(ω - -	ε 4)	ω 4		- 2		ღ ი	9		0 1	ထတ	о				
.NO: BY:		DRILLING METHOD: SAMPLING METHOD:	YPE: E: PACK:	ELEVATION 23.13	PID Reading (mgq)							12.1	4	:	12.2	1 8.) : :	7.7		10.1	8.6		10.1	9.5					
PROJECT NO: LOGGED BY:	DRILLER:	DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:	1	enuteioM frentent							Sat	Sat	5															
	+2	מומ	iental ts, Inc.		Static Water Level						\triangleright																		
		בע	Environmental Consultants, Inc.		Well Completion Casing Casing	ouc	306	8								I I	 												

BORING/WELL NO: MW-92 le, WA PAGE 1 OF 1	Мар		See Figure 2		LITHOLOGY / DESCRIPTION		Seared to 5.				Pebbly SAND; yellow-brown, medium, trace fines, firm, damp				(As above, grades medium to coarse) (As above, with brick)	1	(As above, with brick and wood debris)	with fine pebbles	sand, som	(As above, grades fine to medium sand) LAY; brown-gray, firm		e silt	@ 20'	
ConocoPhillips N: 600 Westlake Ave N, Seattle, WA	10/18/2005	METER: 8.5"				Asphalt (~3")	Air-knifed/vac-cleared to				SP Pebbly SAND; yellow- firm, damp				(As above, grades me (As above, with brick)	41:	(As above, with	SAND; gray, coarse, with fine pebbles	MI SIITY SAND; gray, line sand,	(As above, grades fine CL Silty CLAY; brown-gray, firm		Wood Wood Chips SP SAND; gray, fine, trace	BOTTOM OF HOLE (
5-1 CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DEPTH: WELL DEPTH:	NORTHING 231777.7	Recovery © D D D D D D D D D D D D D D D D D D			2 6) 4				8											
WA255-3515-1 K. Johnson		THOD: HSA		ELEVATION 28.98	PID Reading (ppm) Penetration (blows/6") Depth (feet)						9.8	4 5	8 8	8 4	23.5 5 10 50/4" 11	1,500 4 12	xo	∞ ω	42.5 1 15	34.3	33.0 8 18	0 4	4 20	22
PROJECT NO: LOGGED BY:		DRILLING METHOD:		GRAVEL TACK	Moisture Toontent					ı	Damp				Moist 2	Č	Sat		Sar 4		· · ·			
			Environmental Consultants, Inc.		Well Completion Static Static Mater Mater Backing Cale Cevel	.0	noo	Sent								INAS	 							

BORING/WELL NO: MW-93	Map		See Figure 2			LITHOLOGY / DESCRIPTION	("5	1 the property of the property	יטופשופט וט ט					(grading more clay with some wood and pebbles)		(2" organic layer at 9', brown, grades to salt & pepper sand)	SAND; gray and salt & pepper, trace wood fragments	t)		vood fragments	with wood			(No recovery, wood in augers)		P		@ 20'	
ConocoPhillips 600 Westlake Ave N. Seattle WA	D: 10/18/2005	ER:	: 20'		EASTING 1269463.3	H	Asphalt/Concrete (~6")	of bosonia confusion and	און				SILT with Clay; gray			(2" organic layer at salt & pepper sand)	SAND; gray and salt	(As above, wet)		Clayey SAND; with wood fragments	SAND: salt & nepper with wood		Wood fragments	(No recovery,		Wood chips and Sand		BOTTOM OF HOLE	
CLIENT:	DATE DRILLED:	HOLE DIAMETER:	MOLE DEPTH:	WELL DEPTH: CASING STICKUP:	NORTHING 231803.6	Recovery a lnterval of Soil Type		П				П	W W	ML-CL			S S			\ S	d.	5	Mood					П	\Box
WA255-3515-1 M. Smith/l. Brock					NOR 2318	Depth (feet)		+	2	e e	4	2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8	6	10	-	12	13	41	15	16	17	- α	5 6	20	21	
WA255-3515-1 M Smith/l Bro	CDI	HSA	SS	0.010"	7	Penetration ("8/swold)							ოო	7		0 4	3	5 7	5 6	4 0		4 4	†						
T NO:	:	DRILLING METHOD:	SAMPLING METHOD:	ZE: PACK:	ELEVATION 25.74	PID Reading (mqq)							282	87	;	92	4 4	1		9.4		8.3	,	∞ ∞		7.3			
PROJECT NO:	DRILLER	DRILLIN	SAMPLING MET	SLOT SIZE: GRAVEL PA		enutaioM frent								Wet				Wet											
	_	<u>ת</u>)	nental ts, Inc.		Static Water Level								\rightarrow															
		<u>Ф</u>		Environmental Consultants, Inc.		Well Completion Casing Casing	conc	300	Be							I I	IAS												

BORING/WELL NO: MW-94 HIE. WA PAGE 1 OF 1	Map		i	See Figure 2		LITHOLOGY / DESCRIPTION		1					h wood fragments	SAND with Clay and Gravel; with wood fragments									SAND; gray, fine, with sawdust							@ 20'	
ConocoPhillips 600 Westlake Ave N. Seattle. WA	D: 10/18/2005	ë.		ER: 2"			Concrete (~6")	(), (); (); ()	All-Killed/vac-clealed to				Sandy GRAVEL; with wood fragments	SAND with Clay and		(As above)	Wood fragments		Sawdust			(As above)	Silty SAND; gray, fin		Sawdust	SILT; fine	Sawdust	Silty SAND; fine	Silty SAND; fine	BOTTOM OF HOLE	
CLIENT:	DATE DRILLED:	HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH:	91	Soil Type			_				g U	SP-SC		\ 	Mood					_	NS N	$\frac{1}{2}$	Mood	¥	Wood	W W	WS WS		
		웃	오	₩ ₩ Ç	NORTHING 231762 0	Recovery and Interval and Interval			+							Н															
WA255-3515-1 M. Smith/L. Brock) 					(teet) (teet)			2	° (°	\ \ \	t 	2 '			' ∞	6	10	<u>+</u>		' 	13	41	15—			17		79 -	21 - 12	
WA255-3515-1 M. Smith/L. Bro	CDI	HSA	SS	0.010"		Penetration (blows/6")							m m		<u> </u>		ოო	3 2		0 N		S 4) / (9 0	20		7		
NO:	<u>:</u> 1	DRILLING METHOD:	SAMPLING METHOD:	YPE: E: PΔCK:	ELEVATION 21 90	gnibsəA QIq (mqq)							7	3	22	Í	62	44		25		17	:	20		7	Ç	7	23		
PROJECT NO:	DRILLER	DRILLING	SAMPLIN	CASING TYPE: SLOT SIZE:		Moisture frentent							Wet	Sat																	
		<u>π</u>		ental ts, Inc.		Static Water Level							\Rightarrow																		
		<u>(</u>		Environmental Consultants, Inc.		Mell Completion Casing Date	ესიე	310	eg.								MD	AS													

BORING/WELL NO: MW-95 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	(,)	cleared to 5'								(As above, grades gray, with some pebbles)					(As above, with some wood debris, some silt)	ļ	-	d catcher)		@ 18'				
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/19/2005 ER: 8.5" 18'		EASTING 1269300.3	Ė	Asphalt/Concrete (16)	Air-knifed/vac-cleared to			SAND. fine coff	SAIND, IIITE, SOIL		(As above)		(As above, gra		(As above)	(As above)		(As above, wit	Silty SAND; gray, soft		(Wood plugged catcher)		BOTTOM OF HOLE				
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231351.1	Recovery and Interval and Soil Type			П	П	5	o O						Ш				NS NS					П	Ш	П	
515-1 on			NORTHIN 231351.1	Depth (feet)	7	- 8	8	4	22	9	1		↓ ↓ ↓ · · · · · · · · · · · · · · · ·	0	10	=	12	13	41	15	16	17	18	19	20	27	22	4
WA255-3515-1 K. Johnson	CDI HSA SS		z	Penetration ("6/swold)					0	- 1 5		30	17 7		· ω (2 8	∞ ∞	5		9 8	9 0	8 20/6"						
CT NO: :D BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	TYPE: !E: PACK:	ELEVATION 31.99	PID Reading (mqq)						0		2.3	o C	7.0	0.1		0	0.1		0								
PROJECT NO: LOGGED BY:	DRILLER DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content						Dry						Moist		Wet		Wet								
	elta	ental ts, Inc.		Static Water Level													\triangleright											
	Del	Environmental Consultants, Inc.		Well Casing Casing Casing	conc	Bent									NAS													

BORING/WELL NO: MW-96 ite, WA PAGE 1 OF 1	Location Map	S de Fizi			LITHOLOGY / DESCRIPTION			clealed to 5		d fragments		U	n clay and gravel		SAND and CLAY; gray, with gravel, trace wood (Brown liquid present at 10')			ith wood fragments			or recovery)		pepper, fine	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/19/2005 TER: 8.5"			EASTING 1269443.6		Concrete (~6")	از ا	All-Killed/Vac-clealed to		CLAY, gray with wood fragments		Silty CLAY; gray to tan	SAND; gray, fine, with clay		SAND and CLAY; gray, with grave (Brown liquid present at 10')	Wood fragments		SAND with Gravel; with wood fragments	(As above)	-	(As above, poor recovery)	(No recovery)	SAND; gray to salt & pepper, fine	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231776.6	Recovery and Interval Descovery Soil Type					70			SP-SC		SC	Mood		S					S S		
WA255-3515-1 M. Smith/L. Brock	CDI HSA	SS	<u>.</u> . 0		Penetration (blows/6") Depth (feet)			2	3	 5	9	5 4			10 10	4	12	3 13			3 5 6)	23 19	20	
 	:THOD:			ELEVATION 24.98	Moisture Content PID Reading (mpd)					<u> </u>	40 3	150		7.6	Sat 34	Wet 5	מים	28		7.7		0.00	- C		
PR OJ	1 T	_			Static Water Level									 											
			Environmental Consultants, Inc.		Well Completion Casing Casing	ouog		Ben								QNA	'S								

BORING/WELL NO: MW-97 Ie, WA PAGE 1 OF 1	Location Map		See Figure 2		LITHOLOGY / DESCRIPTION		sleared to 5'				ne gravel,soft, damp				(As above with some wood debris)	t, soft				(As above, grades blackish, with wood debris)		(No recovery, catcher plugged by wood)		(No recovery, catcher plugged by wood)	(poom yano	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/19/2005		ER: 2" 20' (UP: 0	EASTING 1269306.9	LITH	Concrete (16")	Air-knifed/vac-cleared to				Silty SAND; gray, some gravel,soft, damp				(As above with	SAND; gray, some silt, soft	(As above)			(As above, grac		(No recovery, c		(No recovery, c	(Hammered through wood)	BOTTOM OF HOLE @ 20'	
CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231488.9	Recovery of property of proper						NS N					S S					Mood						
WA255-3515-1 K. Johnson	CDI METHOD HSA	OE SS	PVC 0.010" 10-20	NOL	Penetration (blows/6")			2	8 	 - L	9 2	8		51 4		20 80 0 10 1	7 7		13 –	2 15 -	3 2 16	3 50/3" 17—	18—	50/2" 19—	20 —	21—	22 —
PROJECT NO: LOGGED BY:	DRILLER:		CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 30.35	Moisture Content PID Reading (ppm)						Damp 11		38	34		Moist 38	Wet 29		4.8	2.1							
		סוומ	Environmental Consultants, Inc.		Well Completion Static Killing Water Cas in Water Cas Cas Level	ețe.	 suo;		98	 							QNA:										

BORING/WELL NO: MW-98 Location Map See Figure 2	LITHOLOGY / DESCRIPTION	Asphalt/Concrete (~10") Air-knifed/vac-cleared to 5' Air-knifed/vac-cleared to 5' SAND; gray, fine, some silt, some gravels to 1.5",	no gravel) moist) saturated)	, firm, moist oris; brown, wet	Silty SAND; brown, fine to medium, firm, wet (As above, grades gray) BOTTOM OF HOLE @ 20'
ConocoPhillips 600 Westlake Ave N, Seattle, WA D: 10/19/2005 Location rER: 8.5" : 20' rER: 2" KUP: 0 1269304.9		Asphalt/Concrete (~10") Air-knifed/vac-cleared to SAND; gray, fine, some silt, sor		(As above) (As above) Gravelly CLAY; gray, firm, moist PEAT and Wood debris; brown, wet	Silty SAND; brown, fine to mec (As above, grades gray) BOTTOM OF HOLE @ 20'
CLIENT: Cor LOCATION: 60C DATE DRILLED: HOLE DIAMETER: WELL DIAMETER: WELL DIAMETER: CASING STICKUP: CASING STICKUP: 231539.7	Recovery on Interval of Oli Type	φ ₀		년 	∑
WA255-3515-1 K. Johnson CDI HSA : SS PVC 0.010"	Penetration ("a/swold) Depth (feet)	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	71 01 8 01 01	ω 4 Γ 4 ® ®	8 1 1 4 8 1 0 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PROJECT NO: LOGGED BY: DRILLER: DRILLING METHOD: H SAMPLING METHOD: S CASING TYPE: SLOT SIZE: SLOT SIZE: GRAVEL PACK: GRAVEL PACK: 30.47	Moisture Content Ingling PID Reading	Dry-	, , ιν 4	4 .	Wet <20
Delta Environmental Consultants, Inc.	Well Completion Static Static Backiill Water Level				

BORING/WELL NO: MW-99 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION			ciealed to 5				wn, fine, firm, damp	Sandy SILT; brown-gray, some pebbles, firm, moist	ne, firm, moist	=	turated)		y, wet	wood debris	SILT; some fine sand, wood debris		od debris				@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/20/2005 ER: 8.5"	20' FR: 2"		EASTING 1269309.4		Concrete (14")	() / F (); / F ()	All-Killed/vac-cleared to				Silty SAND; gray-brown, fine, firm, damp	Sandy SILT; brown-c	SAND; green-gray, fine, firm, moist		(As above, saturated)		Sandy GRAVEL; gray, wet	Silty GRAVEL; some wood debris	Gravelly SILT; some		Silty SAND; fine, wood debris	(As above)		(As above)	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DEPTH: CASING STICKUP:	NORTHING 231666.6	Recovery and Interval De Soil Type		П					₩S	M	S S				<u>ъ</u>	W9	M		WS N					
WA255-3515-1 K. Johnson	CDI HSA	SS		Z ``	Penetration (blows/6") Depth (feet)			2	က က	 4 	2	9	13 7		13 6	3 10	14 3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 12 —	13 13	15 14		4 C C	12 8 18 —	10		27	
.: .: .:		SAMPLING METHOD: S		ELEVATION 29.34	Content						<u> </u>	Damp 0 8	Moist 0	5	-	Sat 54		Wet 7.2 1.	° °		0	0	0.1		0		
PR(,			Static Water Level							De	W	Ň	\square	<u> </u>		<u> </u>									
)	Environmental Consultants, Inc.		Well Completion Casing Casing	' 21	ToJ	-Jue	1								J. J	AS								1	

BORING/WELL NO: MW-200 ttle, WA PAGE 1 OF 1	Location Map	i L	See Figure Z		LITHOLOGY / DESCRIPTION		10000000000000000000000000000000000000	clealed to 5			ilt, firm				n, moist to wet		AT					wet some silt, dense	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/20/2005 ER: 8.5"			EASTING 1269486.6		Concrete (14")	المركبة المراتبة الم	All-Killed/vac-clealed to			SAND; gray, some silt, firm	(As above)		(As above)	Silty SAND; gray, firm, moist to wet	(As above)	Wood debris with PEAT	(As above)	(As above)	(As above)		SILT; brown, dense, wet SAND; brown-gray, some silt, dense	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231455.8	Recovery and Interval on Type						S S				WS N		Wood	-PT				SP		
WA255-3515-1 K. Johnson	CDI HSA	SS	.010" 10-20		Penetration (blows/6") Depth (feet)	1		2 0	o 4		10 16 16		6 11 8	6 6	4 4 4 0t 	4 1 1 1	6 12 9	10 13 —	 13 15 15 15 15 15 15 15 15 15 15 15 15 15	17 16 17	50-2" 17	23 19 19 1	25 20 1 12	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 29.69	Moisture Content Teading (Mpd)					1	<i>Dny</i> 28.6	64.6		165	Moist- Wet 23.8	, 0	0.00	12.9	6.1	1.0	9:0	Wet		
	<u>4</u>		Environmental (Sonsultants, Inc.		Static Water Level										Image: second content of the content									
	Č)	Envii		Well Completion Casing Casing	' 2	noO	Bent.								QNA	'S							

BORING/WELL NO: MW-201 He. WA PAGE 1 OF 1	Map		See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			It, dense, dry											(Refusal at 16 due to wood debris)	@ 16:					
ConocoPhillips 600 Westlake Ave N. Seattle. WA	5: 10/20/2005			EASTING 1269551.8		Concrete (14")	Air-knifed/vac-cleared to			SAND: arav, some silt, dense, dry		(As above)	(As above)		(As above)	(As above)		Wood debris	(As above)	2000	(Refusal at 16	BOLLOM OF HOLE					
CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231454.0	Recovery & a lnterval of a lost Type					S S								Wood						<u> </u>			
WA255-3515-1 K. Johnson	CDI	D: HSA DD: SS	PVC 0.010" 10-20	NOI	Penetration (blows/6")	, ,	' 		4	10 5 -	23 30	12 7	Ω	-6 -8	01 8 6	6 7	15 12 15 1.	13 13	50/3" 14 —	15—	16—	17 —	18	19—	50 —	21 -	52
PROJECT NO:			CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 29.32	Moisture Sontent					Dry	7.7	8.6		12.0	12.8		9 <i>dt</i> 10.2	10.2									
	+	ספומ	Environmental Consultants, Inc.		Well Completion Static Static Static Static Water Completion Static Water Completion Static		onoo	tre						NAS													

BORING/WELL NO: MW-202 Rttle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION	walk	-cleared to 5'			some silt, soft	(As above, grades to yellow-brown, firm)	damp)		V-:	01St)					(As above, with wood debris)		wood debris)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ED: 10/20/2005 TTER: 8.5"	ER: :UP:	EASTING 1269635.2		Concrete (~20") sidewalk	Air-knifed/vac-cleared to			SAND; gray-brown, some silt,	(As above, gra	(As above, da			(As above, moist)	SAND; gray, firm			Peat	(As above, wi		(As above, no wood debris)	BOTTOM OF HOLE	
15-1 CLIENT:		WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231465.2	Depth (feet) Recovery A Interval Soil Type		2 2) 4	2	SP 9		80	50	10		12	13	41	15————————————————————————————————————	10	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: K. Johnson	THOD:	CASING TYPE: PVC SLOT SIZE: 0.010" GRAVEL PACK: 10-20	ELEVATION 30.55	Content (ppm) Penetration (blows/6")				10	7. 4.3	5.2	5.3	2	38	21	0 23	9 6	10		0		0 1 7		
PRO.		Environmental SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT		Well Completion Static Static Scrim Water Water Date Completion Completion Notes Devel Moisson Completion Comp	ouc.	D Belle			DV		Damp												

BORING/WELL NO: MW-203 tle, WA PAGE 1 OF 1	Мар	See Figure 2			LITHOLOGY / DESCRIPTION		cleared to 5'			h silt and shells, soft		Sandy GRAVEL; (possibly pulverized brick), yellow,	soft, wet Gravelly SAND; gray, with some shells, soft, wet		(As above, grades dark gray, 30% shells)	h shells and fine sand)		//no sample)				@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/21/2005 TER: 8.5"			EASTING 1269640.0	ПТНО	Gravel (parking lot)	Air-knifed/vac-cleared to			SAND; gray, fine, with silt and shells,		Sandy GRAVEL; (pos	soft, wet Gravelly SAND; gray,		(As above, gra	(As above, with shells		(Poor recovery/no sample)	(No recovery)			BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231924.1	Recovery and Interval objectively Soil Type	H				S S		GP	S	1									
WA255-3515-1 K. Johnson				NO X	(blows/6") (blows/6")	 	- c	1 m	4	2 2		8 °	_	2	4 °C		41 4 10 1		5 17	2 18	19	20	22
l	CDI METHOD: HSA	METHOD: SS	0.010" ACK: 10-20	ELEVATION 26.63	PID Reading (ppm) Penetration					0	0 4 70 4	t 0		0 4 π	0	4 8 4	0 10	4 (0 0	(0 10	-	
PROJECT NO LOGGED BY:	DRILLER:	SAMPLING	SLOT SIZ GRAVEL	ш	ص م ∩ ∩ O					Dry		- Wet	Wet										
			Consultants, Inc		Well Completion Static Static Water Cassing Cassing	93:	Concre	Bent							DNAS								

BORING/WELL NO: MW-204 tle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION	2")	clasted to 5'					, firm, damp	Sandy SILT; gray, some gravel, firm, damp to moist		t)				', no sample)	'i wet			@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA				EASTING 1269363.1	HIL	Asphalt/Concrete (~12")	Air-knifed/vec-cleared to				(No recovery)	Gravelly SAND; gray, firm, damp	Sandy SILT; gray, so		(As above, wet)	(No recovery)			(Poor recovery, no sample)	Silty SAND: gray, soft wet			BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231872.5	Recovery 8 3 10 10 10 10 10 10 10 10 10 10 10 10 10							S S	M											
NO: WA255-3515-1 BY: K. Johnson	DRILLER: CDI DRILLING METHOD: HSA	SAMPLING METHOD: SS CASING TYPE: PVC	SLOT SIZE: 0.010" GRAVEL PACK: 10-20	ELEVATION 28.13	PID Reading (ppm) Penetration (blows/6")		<u> </u>		. 4	-	n n	2,000 6 7 8 8 8 8	1,615 4 9-	350 4 10.		81.5 1 12.	2 - 0	m m	0 2 15.	0 4 4 16.	3 3 4	юι	21-	22.
PROJECT NO: LOGGED BY:	DRILLER: DRILLING		٠:	В	Static Water Water Level Content							Damp	Damp- Moist		Wet					Wet				
		Envire	Consul		Well Completion Casing Casing)C.	roJ	Bent.	l					ı		NAS							I	'

BORING/WELL NO: MW-205 le, WA PAGE 1 OF 1	Location Map	Sop Eige	0000		LITHOLOGY / DESCRIPTION	alk		cleared to 5'			Sandy SILT; gray-brown, fine to coarse sand, with fine to medium gravel, trace wood fragments, loose, wet	1	ı gravel) / silty sand at 7.75')	fine to coarse gravel, trace clay,		(As above, with wood fragments)				with trace silt and fine gravel		edium, trace silt, loose		y, fine, loose, wet		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	.: E.S.	H: 20'		EASTING 1269335.2	ГІТН	Concrete (20") sidewalk		Air-knifed/vac-cleared				V	(Grades to gray silty sand at	Silty SAND; gray, with fine loose, moist	(As above)	(As above, with	(As above)		(As above)	SAND; fine to coarse, with	(As above)	SAND; gray, fine to medium, trace		Sandy SILT; dark gray, fine, loose, wet		BOTTOM OF HOLE	
-1 CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DEATH: WELL DEPTH: CASING STICKUP:	NORTHING 231784.9	Depth (feet) Recovery A Interval Soil Type			2	3	4	 W			W S S S S S S S S S S S S S S S S S S S	10	1	12	13	41	15 SW	119	17	SP SP	19 ML	20	27	22
PROJECT NO: WA255-3515-1 LOGGED BY: J. North		SAMPLING METHOD: SS	SLOT SIZE: 0.010" GRAVEL PACK: 2-12	ELEVATION 28.08	Moisture Content (ppm) (ppm) Penetration (blows/6")						Wet 0 3	4	Wet 300 10	Moist 850 6	7 2	. 8	8 C C C C C C C C C C C C C C C C C C C		15		4 c	14	21	> 6		.,	
			Environmental SI SI Consultants, Inc.		Well Completion Static Killing Water Cas in Cas	ouog		atino	Depu							J ND											

BORING/WELL NO: MW-206 /A PAGE 1 OF 1	Мар		See Figure 2			LITHOLOGY / DESCRIPTION			red to 5				Silty SAND; dark gray, sand fine to medium, with fine to	agments, dense, moist	(As above, with clay stringer, cobbles)	m, with clay, dense, moist	covery)					SAND; brown, fine to medium, with wood fragments	vood fragments, thin silty sand		ood debris and peat)			dish-brown, wet	.0	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	10/24/2005	ETER: 8.5" H: 20'	ËR:		EASTING 1269226.9	ГІТНОГ	Asphalt/Concrete (12")	,	Air-knited/vac-cleared to					coarse gravel and snell fragments, dense, moist	(As above, with cla	Silty SAND; fine to medium, with clay,	(As above, poor recovery)		(As above, wet)	(As above)			PEAT; dark brown, with wood fragments, thin silty	(5)	(Poor recovery, wood debris			Wood and Peat; dark reddish-brown, wet	BOTTOM OF HOLE @ 20'	
CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER:	WELL DIAMETER:	CASING STICKUP:	4ING 3.0	Recovery & B Interval O Soil Type		П	Τ		П	T	S S	Τ		SM-CL				П		\Q			П				П	
					NORTHING 231423.0				2	8	4	-	2	9		8	0 0					4	10	0					H	7
WA255-3515-1 J. North						(beet) (feet)									15			6 5	5		4 ,	4 4		13.16	71	18	19	20	21	22
WA255-: J. North		HSA SS		2-12	NO	Penetration (blows/6")							20/6"			7 7			23	- 2		9 7				9/05				
T NO:		DRILLING METHOD: SAMPI ING METHOD:	TYPE:		ELEVATION 31.54	PID Reading (mqq)							r	<u>ლ</u>	5.4	0) i	8.1	7	<u>†</u>	∞	y	900	6.2	•	გ ნ.				
PROJECT NO: LOGGED BY:	DRILLER:	DRILLING SAMPI IN	CASING TYPE:	GRAVEL		Moisture frentent								Moist	Moist	Moist		Moist	Wet		Wet	14/04	MAG	Wet		Wet	Wet			
	+	<u>a</u>	ental			Static Water Level												\triangleright												
			Environmental	Consultants, Inc.		Well Completion Casing Casing	ouog		y y										QNA											

BORING/WELL NO: MW-207 e, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		- U				SAND: arav. fine to medium. trace silt. loose. moist									(As above, grades to peat and wood debris at 14.75')		bris at 16')	e, wet trace sand and fine gravel, loose)	DOOF FECOVERY		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA): 10/24/2005 ER: 8.5" 20'		EASTING 1269623.7	ГТН	Asphalt/Concrete (14")) () () () () () () () () () (All-Killed/vac-cleared to			SAND: grav. fine to m		(As above)	(As above)		(As above)	(As above, wet)		(As above)	(As above, grad	Peat and wood debris		Wood fragments; loose, wet (As above, with trace sand	Wood debris and Silt: poor recovery		BOTTOM OF HOLE	
Ż	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP		Soil Type						SP-SM									/	/TA	Wood					
CLIENT: LOCATION:	DATE HOLE HOLE	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231383.3	Recovery Samularian																					H	
515-1				Depth (feet)	,	<u>.</u>	7	က	4	5	9	- 2 8	8	6	10-	<u></u>	12	13-	4-	15-		17.			2 2	22
WA255-3515-1 J. North		PVC 0.010" 2-12	NC	Penetration ("8/swold)						∞	8 7 7 3		_	7 2 2	_		14 20	20	, 5 , 9		8 20/6"	50/3"	50/2"	1 5 5		
r NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	CASING TYPE: PVC SLOT SIZE: 0.010 GRAVEL PACK: 2-12	ELEVATIO 30.65	PID Reading (mqq)							11.5	7.6		9.3	2.2		0	0		>	0		0	0		
PROJECT NO: LOGGED BY:	DRILLER: DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Sontent							Moist	Moist		Moist	Moist		Wet	Wet	7 7 7	wer	Wet		Wet	Wet		
	elta			Static Water Level												\bowtie										
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	conc		Ren									UD U	AS									

BORING/WELL NO: MW-208 A PAGE 1 OF 1	Map		See Figure 2)		LITHOLOGY / DESCRIPTION		1	ed to 5'				Silty SAND; blue-gray, fine to coarse sand, with fine			SAND with Silt; fine to medium sand, trace fine to medium gravel loose, moist		no gravel)	wn, loose, moist		2" silt stringer)		i, loose, moist to wet od fragments)				od, unable to sample)	n, with wood fragments, dense		,0	
ConocoPhillips .: 600 Westlake Ave N. Seattle. WA	10/25/2005		7TH: 20' METER: 2"		EASTING 1269312.1		Asphalt/Concrete (14")	71 - 3: 1	Air-knited/vac-cleared				SM Silty SAND; blue-gray, fine	gravel, dense, stiff, moist		SP-SM SAND with Silt; fine to me	, , , , , , , , , , , , , , , , , , , ,	(As above, grades no	Wood fragments; dark brown, loose,		(Wood debris with		PT PEAT; with sand stringers, loose, moist to wet (As above, with wood fragments)		Wood Wood		(Drilling through wood, unable to	PT PEAT; dark reddish-brown, with wood fragments,		BOTTOM OF HOLE @ 20'	
15-1 CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231464.4	0			2	3	4	-	S 2	9		8			10,		12	13	14	15	16	17	: 4	19	20	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: J. North		METHOD:	SAMPLING METHOD: SS CASING TYPE: PVC		ELEVATION 30.28	tnətnoO								Moist 11.2 6	Moist 17.2 5	Œ	Moist 44.7 5		Moist 2,000 10	10	7 5	42.5	Wet 7	Wet 1.9 20 13	22.3 50/6" Wet		Wet	Wet 7.3 8	16		
PRC				Consultants, Inc.		Well Completion Static Static Cassing Water Level Moisture	conc		pues											QNA				<u>s</u>	<u> </u>		<u>s</u>	<u> </u>			

BORING/WELL NO: SB-23 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION	12")	10000000000000000000000000000000000000	2			, fine to medium					(9	increasing clav)		/e. moist)		(Wood plug in bottom of sampler)	above with wood chips		grades brown, saturated)		ind brown and fine	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	5: 10/13/2005 ER: 8.5"	Ċ		EASTING 1269291.0	רונוּ	Asphalt/Concrete (~12")	Air Anifordian riv	All-Nilled/vac			SAND; salt & pepper, fine to medium		(As above)	(As above)	(2000 01)	(Grades to fine)	oni evode sA)		(Sand as above, moist)		Wood	SAND: as above with		(As above, gra		SAND and CLAY; sand brown and fine	BOTTOM OF HOLE	
CLIENT: LOCATION:	c. DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DEPTH: CASING STICKUP:	NORTHING 231509.3	Recovery and Interval Coil Type						SP	+								Н	Mood		S S			SC		\prod
WA255-3515-1 M. Smith/L.Brock	Cascade Drilling, Inc. HSA	SS			Penetration (blows/6") Depth (feet)			2	3	4	9	9 2			7			4 4	4 12	<u> </u>		10	20 16	<u>ი</u> ი	12 18	<u> </u>	2 2	22
PROJECT NO: V LOGGED BY: N	DRILLER: DRILLING METHOD: H	SAMPLING METHOD: SS		ELEVATION 31.1	Moisture Content PID Reading (mqq)							0	0		0		0 5 N/et	0	Moist	0	0		0	Sat 0	Sat	0		
4 7	E TO	,	Environmental Sous Inc.		Mater Static Water Level																							
)	Con		Well Completion Casing Casing	ouc.	ာ၁									3.	TINO	BENT										

BORING/WELL NO: SB-24 tte, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	2")		cleared to 5'				, fine to medium, with pebbles, moist		with increasing clay		ne to medium, moist	grades to salt & pepper)	wn-gray, wet)		h wood fragments) , fine, angular		e to medium, saturated)		above, with wood fragments)				@ 20,	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ċċ		EASTING	HEI	Asphalt/Concrete (~12")		Air-knifed/vac-cleared				SAND; brown to gray, fine	(As above)	SAND; gray, fine, witl		SAND; gray to tan, fine to medium, moist	(As above, gra	(As above, bro		(As above, with wood fragments) SAND, salt & pepper, fine, angular		(As above, fine		(As above, with	-	(As above)		BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery a Dinterval of Coil Type		П		П	П	Ц	S S													П			П	
WA255-3515-1 M. Smith/L.Brock	Cascade Drilling, Inc. HSA SS		NOR	Depth (feet)	H	<u>-</u>	2	8	4	2		7	ω ω	6	10	7		13	41	15	16	1		281	19	20	21	22
WA255-3515-1 M. Smith/L.Bro	Cascade: HSA	Y X X	Z	Penetration (blows/6")							<i></i>	0 0		<u>−</u> ω	0 6		ო ო	က		<u>ო</u>		၀ ၈	0.4		4 0	10		
F NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	rype: E: Pack:	ELEVATION	PID Reading (mpq)							0	c	>	0	2,000	1	860	140		144	0	0	0		0			
PROJECT NO: LOGGED BY:	DRILLER DRILLING SAMPLIN	CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Sontent							Moist	Moist			Moist		Wet				Sat							
	elta	ental ts, Inc.		Static Water Level												\bowtie												
	Del	Environmental Consultants, Inc.		Well Completion Casing Casing	uc.	၀၁									371	NOT	BEN											

BORING/WELL NO: SB-25 Ite, WA PAGE 1 OF 1	Location Map See Figure 2			LITHOLOGY / DESCRIPTION	8")	cleared to 5'			o fine				pebbles			ofine, with silt	2" cobble)	reased silt)	to fine, with silt	gravels)		od debris, some gravel)		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/13/2005 ER: 8.5" 20' FR: NA		EASTING 1269294.0	Ė	Asphalt/Concrete (~18")	Air-knifed/vac-cleared			SAND; gray, coarse to fine		(As above)		Silty CLAY; gray, with pebbles		(As above)	Silty SAND; coarse to fine, with silt	(As above with 2"	(As above, increased silt)	SAND; gray, medium to fine, with silt	(As above, few gravels)		(As above, wood debris,	Wood	BOTTOM OF HOLE	
CLIENT: LOCATION:	rilling, Inc. DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER:	WELL DEPTH: CASING STICKUP:	NORTHING 231638.6	Depth (feet) Recovery and Interval and Inter		2	9	4	SW SW	9	7	8	WI WI	10	11	12 SM	13	14 ML	15 SM	16	_ 0	0 0	Mood	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher	DRILLER: Cascade Drilling, Inc. DRILLING METHOD: HSA SAMPLING METHOD: SS CASING TYPE: NA		ELEVATION 30.3	Moisture Content Content (mdd) Penetration Penetration (label)						2;	1.0 2		0.7	0.6		0.8		5 2 2	1.0	Sat 0.5 2 3	Sat 0.6 1	11 2	0.8 12 12		
<u></u>	~	Environmental Consultants, Inc.		Well Completion Static Static Cassing Water Cass Cassing Cassi	ouc:										OLNE	18									1

BORING/WELL NO: SB-26 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			-gray, fine	cobble)	od debris)	een) fine		Clayey SILT; green-gray, with wood debris	to fine, some silt, with rounded	(Ac obour 4 proposed)			(As above, with some wood debris)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING 1269295.1	Ē	Asphalt/Concret (18")	Air-knifed/vac-cleared			Silty SAND; greenish-gray, fine	(As above, 2" o	(As above, wood debris)	Clayey SILT; gray-green				Silty SAND; coarse to fine		Clayey SILT; green-g	SAND; gray, medium to fine, pebbles	tim chodo ov)	in (20 above, with		(As above, wit	BOTTOM OF HOLE	
CLIENT: LOCATION:	Cascade Drilling, Inc. DATE DRILLED: HSA HOLE DIAMETER: SS HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231696.1	Depth (feet) Recovery An Interval Soil Type	-	2	m .	4	SW	9		8 WI	6	10	11	12———SM	13	14 ML	15 SW	16	17	\$2 ¢	50	27 27	22
PROJECT NO: WA255-3515-1 LOGGED BY: B. Pletcher	HOD:	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ELEVATION 29.9	Moisture Content PID Reading (ppm) Penetration (blows/6")					Moist 1	-	4 2 6	ე	č.	Moist 6.7 1	<u>~</u>	1.7	Sat 2 1.0 2	7	1.0		0.5	ო	1.6 2 Sat 1		
	Delta	Environmental Consultants, Inc.		Well Completion Static Static Cassing Water Cassing Ca	Conc.											E									

BORING/WELL NO: SB-27/MW-83 (tle, WA PAGE 1 OF 1	Location Map	i i	See rigure z		LITHOLOGY / DESCRIPTION		cleared to 5'			Silty SAND; gray, medium to fine sand, 20% silt, few gravels			(As above, with wood debris)	Wood with coarse to fine sand, poor recovery	increasing wood, poor recovery)	SILT; green, few pebbles, with wood debris, soft			wood debris) with fine sand, stiff, wet	edium to fine	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/14/2005 ER: 8.5"			EASTING 1269390.9	占	Concrete (8")	Air-knifed/vac-cleared to			Silty SAND; gray, me few gravels				Wood with coarse to	(As above, inc	Clayey SILT; green,	(As above)	(As above)	(As above, no wood debris) Clayey SILT; green, with fine sand,	Silty SAND; gray, medium to fine	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231668.2	Recovery & Borovery of Borol Type		Н			\Signature		WS-MS		Mood		¥				SW		
WA255-3515-1 B. Pletcher	CDI HSA		5.010" 2-12		Penetration (blows/6") Depth (feet)	,		N 60	4	2 -	7 0	9 8 8 8 8	4 K	3 2 C) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ю r0 4	2 2 2 2 4 5 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 7 2 16 1 1		6 6 6 19 — — — — — — — — — — — — — — — — — —	2 2	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 23.63	Moisture Content PID Reading (ppm)					Wet 860	Wet	Sat	20	<i>Sat</i> 11	Sat 62	Sat 10	Sat 13	3.5	3.0 Wet	Sat 0.5		_
	<u>4</u>				Static Water Level							Image: section of the content of the										
		7	Environmental Consultants, Inc.		Well Completion Casing pletion	ouoo	Bent		<u> </u>					 	//AS					'		

BORING/WELL NO: SB-28 PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION		c-cleared to 5'					ay		vet)	SAND; black, mud with sheen, may be inorganic, more metallic	& pepper			medium	er, fine	(As above with some clay)		ith sawdust)	er, fine	<20% wood fragments)		E @ 20'	peu
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/14/2005 ER: 8.5"		EASTING 1269534.5	5	Concrete (6")	Air-knifed/vac-cleared to					Gravelly SAND; gray		(As above, wet)	SAND; black, mud metallic	SAND; gray to salt & pepper	(As above)		SAND; gray, fine to medium	SAND; salt & pepper, fine	(As above wi		(As above with sawdust)	SAND; salt & pepper, fine	(As above, <		BOTTOM OF HOLE	* PID malfunctioned
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:		Soil Type							SP																
CLIENT: LOCATIO		WELI WELI CASI	NORTHING 231816.9	Recovery and Interval				Н			Н		H	Н			+		\mathbb{H}			Н	+			Н	+
515-1 L.Brock	Cascade Drilling, Inc. HSA		NO 83	Depth (feet)		- (N (,	4	2	9	+	-	8 6	9	=	12	13	4	15	16	1	ά	2 (20 1	2 2	22
WA255-3515-1 M. Smith/L.Brock	Cascade HSA	0	_	Penetration ("a/swold")						C	100		e 4	007	7 7					12 7	∞ ∞		0 1		7 7		
.NO: BY:	THOD:		ELEVATION 24.6	PID Reading (mgg)							*																
PROJECT NO: LOGGED BY:	DRILLER: DRILLING	SAMPLING ME CASING TYPE: SLOT SIZE: GRAVEL PACK	ш	Moisture Content								Wet															
	ta	iental ts, Inc.		Static Water Level											\bowtie												
)el	Environmental Consultants, Inc.		Backfill Completion																							
	Ш	ш 8		Backfill §	ouc:	၁									ATIN	ЕИТО	18										

BORING/WELL NO: SB-29 Ittle: WA PAGE 1 OF 1	Map		S STIEDITE	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		LITHOLOGY / DESCRIPTION			-cleared to 5'			SAND; gray to black, fine, with clay and pebbles	oist)		GRAVEL; with wood fragments and concrete, saturated		agments	ragments						sampler stuck in augers)			y, fine	. @ 20'	
ConocoPhillips 600 Westlake Ave N. Seattle. WA	0: 10/14/2005		20'		EASTING 1269535.1	шп	Concrete (6")		Air-knifed/vac-cleared			SAND; gray to black	(As above, moist)		GRAVEL; with wood		SAND; with wood fragments	Sawdust and wood fragments	(As above)		(As above)	(As above)		(No recovery, sampler	Sawdist	1000	SAND (2" thick); gray, fine	BOTTOM OF HOLE	
:: 	DATE DRILLED:	HOLE DIAMETER:	HOLE DEPTH:	WELL DEPTH: CASING STICKUP:		Soil Type						SP			Q GP		SP	V Pook									SP		
WA255-3515-1 CLIENT: M. Smith/L. Brock LOCATION:	Inc.		HOLE	WELL	NORTHING 231797.6	Depth (feet) Recovery Recovery Recovery			2	3	4	U U			8 0	-	2 ;		7 9	2	14	15	16	17	18	19	20	21	22
WA255-3515-1 M. Smith/L.Brod	Sascade	HSA	SS V	(Penetration ("a/swold)						2 2		ı ε 4	ω ω ·	4	6	00		9		13	4 (,	_	+ 4	0		
	:	METHOD:	HOD:	ZE: 7	ELEVATION 24.2	PID Reading (mgq)						945		574	89 89	`	8.0	5.3	.,	7.4	0		2.6	-		3.3			
PROJECT NO:	DRILLER:	DRILLIN	SAMPLING MET	SLOT SIZE: GRAVEL PA		Moisture fontent							Moist		Sat														
	_	<u>m</u>		nental ts, Inc.		Static Water Level									\bowtie														
		Φ C)	Environmental Consultants, Inc.		Mell Completion Casing Casing																							
			•			Backfill <u>§</u>	'ouc	ງງ								∃.	INO.	BENI											

BORING/WELL NO: SB-30 ttle, WA PAGE 1 OF 1	Location Map	See Figure 2			LITHOLOGY / DESCRIPTION		cleared to 5'	2			Sandy SILT; green-brown, fine sand, with wood debris	Silty SAND: dark brown coarse to fine sand with	ישון, טמנוסט נט וווס סמווט, שונו					(Poor recovery, wood debris)		(Poor recovery, wood debris)	some wood)				Silty SAND: aray, medium to fine, 30-40% silt		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ά	20'		EASTING 1269409.7	<u> </u>	Concrete (6")	Air-knifed/vac-cleared				Sandy SILT; green-k	Silty SAND: dark bro	wood debris		(As above)		Wood	(Poor recover		(Poor recover	(No recovery, some wood)		Sawdust		Silty SAND; gray, me		BOTTOM OF HOLE	
CLIENT: LOCATION:		HOLE DEPTH:	WELL DEPTH: CASING STICKUP:	NORTHING 231698.2	Recovery and Interval Coil Type			H	Н		M	No		Н			Mood	Н							≥S.		H	
WA255-3515-1 B. Pletcher	Cascade Drilling, Inc. HSA	0 1			Penetration (blows/6") Depth (feet)	,	-	2 0	n 1	4	2 2 2	9 2 3		8 8	0 0	10	7	2 4			1 2 15		9 1	4 0		19	8 8	2 2
PROJECT NO: W. LOGGED BY: B.	DRILLER: Caso DRILLING METHOD: HSA	SAMPLING METHOD: SS		ELEVATION 23.8							st 2 000	į D	0.9		>	0 6 4		392	ı	0			0		*	2.9 1)	
PRO. LOGO	ta	_	_		Static Water Level Moio						Moist	MACIE		Moist		Wet	Sat		Sat			Sat	}		Sat			
))	Environmental Consultants, Inc.		Well Completion Casing Casing	ouc.	cc									ELIN	OŁN	38										

BORING/WELL NO: SB-31 ttle, WA PAGE 1 OF 1	Location Map		See Figure 2		LITHOLOGY / DESCRIPTION		.	deared to 5			Silty CLAY; gray mottled with some brown, 5-10% sand, few rounded pebbles, firm, damp	Clayey SAND; gray, medium sand, firm, damp			SAND; gray, medium to coarse, soft		Wood chips Silty SAND; gray, medium to coarse, soft		(As above, with some wood chips)		Poorly-Graded GRAVEL with Sand; gray, soft, fine gravel	=1 with Sand: grav	2" diameter)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/17/2005 FR: 8.5"		ER: NA			Concrete (8")		Air-knife/vac-cleared			Silty CLAY; gray mottled with sor few rounded pebbles, firm, damp	Clayey SAND; gray,			Silty SAND; gray, me		Wood chips Silty SAND; gray, me	-	(As above, wil		Poorly-Graded GRA	Well-Graded GRAVEL with Sand: grav	(Gravel up to 2" diameter)	BOTTOM OF HOLE	
WA255-3515-1 CLIENT: K.Johnson/B.Hogenson LOCATION:	g, Inc. DATE DRILLED: HOLF DIAMFTER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH:	NORTHING 231777 6	Recovery on Interval of Soil Type						\ _{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}	S			MS		MS				GP GP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
WA255-3515-1 K.Johnson/B.H.	Cascade Drilling, Inc.	HOD: SS	⊄	NOIT)	(ppm) Penetration (blows/6") Depth (feet)			2-	۳ - ۳	4	0.	ю ю 4		(N ← N			4 4	.3 1 15-	0.00		രവ	7 19-	27 21	22 –
PROJECT NO: LOGGED BY:	DRILLER:	SAMPLING METHOD: SS		ELEVATION 29.1	Moisture freading						<i>Damp</i> 11.0	<i>Damp</i> 11.8	, ,	<u>-</u>	Moist 11.6	<i>Sat</i> 11.9		12.6	10.3	10.6	Sat				
		מומ	Environmental Consultants, Inc.		Well Completion Static Static Water Mac School Completion Completi	'ou	00						3.	INO	BENI							'MD	Y S		

BORING/WELL NO: SB-32 tle, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			Silty SAND: gray, firm, damp, large wood debris		(saturated, increasing wood debris)	some silt, trace wood debris, soft	(Poor recovery due to rock in split-spoon) (Wood debris)								e fine sand, firm	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA): 10/17/2005 ER: 8.5" 20'		EASTING 1269517.7	ПТН	Concrete (6")	Air-knifed/vac-cleared to			Silty SAND: gray, firm		(saturated, incl	Gravelly SAND; gray, some	(Poor recovery (Wood debris)	Wood		(As above)	(As above)	\\\\\\\\\\	(As above)	(As above)	SILT; gray, with some fine	BOTTOM OF HOLE	
CLIENT: Hogenson LOCATION:		WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231780.2	Depth (feet) Recovery And Depth (feet) Recovery And Depth (feet)			2 6) 4	2 S	9		SW S	10	11 Wood	12	13	15	16	17	9 6	20	21	72
PROJECT NO: WA255-3515-1 LOGGED BY: K. Johnson/B. I	ETHOD:	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ELEVATION 24.0	Moisture Content (ppm) PID Reading (ppm) Penetration (blows/6")					Moist 1.216		Sat 94.0 2 4	105 2		7	0 4	5 6 6	· / 8	12.2	നന		(0		
3d		Environmental CA Consultants, Inc.		Well Completion Static	Conc.								LONILE	NEB									

BORING/WELL NO: SB-33 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			st	ist		Silty CLAY; gray, wood fragments, saturated	coarse				h sand)				pepper, fine to medium	coming silty at 20')	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING 1269426.1	Ē	Concrete (6")	Air-knifed/vac-cleared			CLAY; gray, stiff, moist	Silty CLAY; gray, moist	Wood fragments (3")	Silty CLAY; gray, woo	Wood Wood fragments, coa	(As above)		(As above)	(As above, with sand)		SILT; gray		SAND; salt & pepper	(As above, becoming	BOTTOM OF HOLE	
CLIENT: LOCATION:	orilling, Inc. DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231723.9	Depth (feet) Recovery and Interval and Inter			1 E	4	JO J		Wood	CL CL	10 Wood	1	12	13	4-	15	16 ML		9 P	20	21	22
PROJECT NO: WA255-3515-1 LOGGED BY: M. Smith/L. Brock	DRILLER: Cascade Drilling, Inc. DRILLING METHOD: HSA SAMPLING METHOD: SS	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ELEVATION 23.5	Moisture Content PID Reading (ppm) Penetration (blows/6")					Moist 1 500 2	Moist 2 2	2	15.6 7	15.4 8	10 17	23	15.6 19		23	11.3 22	11.3	9 7	01		
	Delta	Environmental Consultants, Inc.		Well Completion Static Static Water Cas in Cas Level	ouc.	2							31IN	O.I.N.S	18									1

BORING/WELL NO: SB-34 rte, WA PAGE 1 OF 1	Мар	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'		ne, soft, saturated	ıris	Ši.					e, firm			@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	: 10/18/2005 ER: 8.5" 20'		EASTING 1269459.4	Ė	Concrete (7")	Air-knifed/vac-cleared		Clayey Silty SAND; fine, soft, saturated	Silty SAND PEAT and Wood debris	Wood with brick debris	Wood chips	Wood chips		Silty CLAY; gray, soft	Silty SAND; gray, fine, firm	SAND; gray, firm		BOTTOM OF HOLE	
CLIENT: Hogensor LOCATION:	H H H	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231700.0	Depth (feet) Recovery A Interval Depth (a)		- 2 %	4	SC/SM	Z SM SM PT	poo _M	10 11	12	13	15		17 SW	00	20	22
PROJECT NO: WA255-3515-1 LOGGED BY: K. Johnson/B. I	HOD:	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ELEVATION 23.0	Moisture Content (ppm) PID Reading (ppm) Penetration (blows/6")				Sat 609 1	942 4	9 207		10.3	10.	8.4 0	8.4 7	7.8 8	7.4 9	N.	
<u> </u>	Delta	Environmental S Consultants, Inc.		Well Completion Static Cackfill Cacaca Cacac	Conc.						IINOIN:								

BORING/WELL NO: SB-35 tle, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	(")	cleared to 5'				ne gravei			SAND; gray to salt & pepper, fine, moist to wet	pepper, fine, some silt, saturated			(As above, with clay and wood fragments)	SAND; gray, fine, with clay and wood fragments					agments		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA			EASTING 1269444.6	Ė	Asphalt/Concrete (~8")	Air-knifed/vac-cleared			X 10 1130	Siity CLAY; gray, some gravei	(As above)	CLAY	SAND; gray to salt &	SAND; gray to salt & pepper, fine,	(As above)			SAND; gray, fine, with		(As above)	Mood fragmonts	wood Iragments	Sawdust and wood fragments		BOTTOM OF HOLE	
CLIENT: LOCATION:	Inc. DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231824.2	Recovery on Interval of Soil Type					į,	3			S				SP-SC					DOOAA				
WA255-3515-1 M. Smith/L.Brock	Cascade Drilling, Inc. D: HSA D: SS	N N N A A A	NO	Penetration (blows/6") Depth (feet)			1 m) 4		N (N (2 2		0 0	17 10—		5 12 1	5 13		7 7 8 15 —	9 16	_	7 2 18 1	10 19 19 19 1	17 20—	21 –	22—
PROJECT NO: LOGGED BY:	DRILLER: Cas DRILLING METHOD: HS, SAMPLING METHOD: SS	CASING TYPE: N. SLOT SIZE: N. GRAVEL PACK: N.	ELEVATI 27.9	Moisture Content PID Reading (ppm)						15.6	10.5		Moist 310	Sat 31		15	7 9	Sat	6.5	7.2		5.9				
	elta	Environmental Consultants, Inc.		Static Water Level										}												<u> </u>
		Env		Well Completion Casing Detication	ouc:	o 🎆								alin	OLNE	8										

BORING/WELL NO: SB-36 ttle, WA PAGE 1 OF 1	Location Map		N D D D D D D D D D D D D D D D D D D D		LITHOLOGY / DESCRIPTION			cieared to 5		SAND; yellow-brown, medium, some pebbles, soft		athered, firm	arse, soft		(Mixed IIII: sarid, clay, brick debris)	(Poor recovery, fill material, moist)	d, soft		(As above with wood debris, poor recovery)	ind and pebbles	SAND; green-gray, fine, some clay, soft					@ 30 ₁		
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ά			EASTING 1269384.3	LITH	Asphalt (2")	() / F (3) (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Alf-Kniled/vac-cleared to		SAND; yellow-brown		Silty CLAY; gray, weathered, firm	SAND; medium to coarse, soft	(A.M.)	(IVIIXed IIII: sar	(Poor recovery	Silty SAND; fine sand, soft		(As above with	Wood debris; with sand and pebbles	Silty SAND; green-gr					BOTTOM OF HOLE		
CLIENT: LOCATION:	nc. DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231793.2	Recovery & Berovery of Briterial of Type					S		CL	S				S			Mood	S							\blacksquare
WA255-3515-1 K. Johnson	Cascade Drilling, Inc. HSA	SS	ζ ζ ζ		Penetration (blows/6") Depth (feet)	I		2	ا «	 4	0 2	4 - C		7 7 0	50/6"	2 7		7	3 47 5		1 0 1		<u> </u>	7	- + c		21	22—
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METHOD:	SAMPLING METHOD:	CASING LIFE: SLOT SIZE: GRAVEL PACK:	ELEVATION 29.5	Moisture Content PID Reading (ppm)					Moist	12.2	Moist 21.3	Moist	642		Moist	Wet 730		225	27.2		12.6	17.8		12.9			
	<u>6</u>	5	Environmental Consultants, Inc.		Static Water Level																							
	Ŏ)	Envi		Well Completion Casing Casing	conc.									311	NOTI	138											

BORING/WELL NO: SB-37 tle, WA PAGE 1 OF 1	Location Map	i i i i i i i i i i i i i i i i i i i	See Figure Z		LITHOLOGY / DESCRIPTION			cleared to 5				soft, damp					saturated)		(As above, grades black in color, oily)	(As above, grades medium brown)			wn, soft	ides gray, fine sand)		.VC @	07.00	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	5: 10/18/2005 ER: 8.5"			EASTING 1269377.2	ПТН	Asphalt/Concrete (8")	(())	All-Killed/vac-clealed to				Silty SAND; gray, sof	(As above)	((As above)		(As above, sat		(As above, gra	(As above, gra	Wood debris		Silty SAND; gray-brown, soft	(As above, grades		E LOUI E MOTTOR		
CLIENT: LOCATION:	:. DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231753.2	Recovery a linterval o Soil Type		Н	Н				SM	Н		\blacksquare						Wood		WS N			H	Н	$\frac{1}{1}$
WA255-3515-1 K. Johnson	Cascade Drilling, Inc. HSA				Penetration (blows/6") Depth (feet)			2	e e	4	22	9		8	0 0 0	70		2 1			17 - 15	ω 	2 !	7 - 2	19	50	72	22
PROJECT NO: W. LOGGED BY: K.	DRILLER: Caso DRILLING METHOD: HSA	SAMPLING METHOD: SS	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ATION 8.	fneshron PID Reading (mqq)							Moist 202	740		1,900		1,380 2 Sat 3	1,700		27 1	24		32 2	788	24 2 2	N		
PROL	<u>π</u>	3			Static Water Level							Ž					\supset											
	4		Environmental Consultants, Inc.		Well Completion Casing Casing	conc.									1	ILE	AOTN	98										

BORING/WELL NO: SB-38 THe, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION		cleared to 5'			SAND; gray, with some clay and small gravel	y, moist		y, fine sand	h wood) turated)				d fragments	(No recovery, wood in augers)		agments	@ 20'	
conoco 00 We	÷.		EASTING 1269480.5		Concrete (6")	Air-knifed/vac-cleared to			SAND; gray, with sor	SAND with Clay; gray, moist		SAND with Clay; gray, fine sand	(As above, with wood) (As above, saturated)		(As above)	(No recovery)	Silty CLAY; with wood fragments		Wood chips	Sawdust and wood fragments	BOTTOM OF HOLE	
1		WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231796.0	Recovery & Differval of Type					MS	S				1			ਹ ੇ	Mood				
WA255-3515-1 M. Smith/L.Brock	Cascade Drilling, Inc. HSA	0 4 4 4		Penetration (blows/6") Depth (feet)	,	- c	3 8	4	2 2	വ	10 /	4 V	_	9 9	4 7 7 Ct	<u></u> თ	£ 4 0	7 16	9 18		 21—	
PROJECT NO: LOGGED BY:		SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK:	ELEVATION 25.1	Moisture Content Instruction Government Instruction Content Instruction Content Instruction Instructio					c		-	7			7		9		9			
	elta	Environmental Consultants, Inc.	l	ion Static Water Level						\supset												
	۵	Envire		Well Completion Casing Casing	'ouc))	1		l			I	3T	INO.	BENJ						l	

BORING/WELL NO: SB-39 tte, WA PAGE 1 OF 1	Location Map	See Figure 2		LITHOLOGY / DESCRIPTION	3,)	cleared to 5'					n, fine sand, dry				SAND; gray to salt & pepper, with clay, moist to wet	SAND; gray to salt & pepper, some clay, wet			gments, saturated			SAND; gray to salt & pepper, fine-grained		@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	ά		EASTING 1269370.9	H	Asphalt/Concrete (~8")	Air-knifed/vac-cleared to					Gravelly SAND; brown, fine sand,		(As above)	SAND: grav	SAND; gray to salt &	SAND; gray to salt &	SAND: grav fine wet	orie, gray, ilie, we	SAND; with wood fragments, saturated	Sawdust (3")	(No recovery)	SAND; gray to salt &	CLAY (3")	BOTTOM OF HOLE	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231731.4	Recovery & Soil Type					П		S S									Wood		S	J J		П
WA255-3515-1 M. Smith/L.Brock	Cascade Drilling, Inc. HSA SS		NOF	Depth (feet)		- (7 "	, ,	4	2 2	9 6		8	9 8	10	2	27	13	4	16	2 5		50	21	22
WA258 M. Smi	Casca D: HSA DD: SS	A A A	NO.	Penetration ("a/swold)								N 4 ·	4		∞ ←			t 4		- N W			17		
ST NO: D BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD:	S TYPE: N IZE: N L PACK: N	ELEVAT 29.4	PID Reading (mqq)							2	7		7	- 0.5		 	0.5		1.6		(2:1		
PROJECT NO: LOGGED BY:	DRILLE DRILLIN SAMPLI	CASING TYPE: SLOT SIZE: GRAVEL PACK		Moisture Content							(Dy			Moist- Wet	Wet	Wet	2	Sat						
	Ita	nental ts, Inc.		Static Water Level											N										
		Environmental Consultants, Inc.		Well Completion Casing Casing	ouc.	o									BLIN	ENTO									

BORING/WELL NO: SB-40 tle: WA PAGE 1 OF 1	Мар		See Figure 2		LITHOLOGY / DESCRIPTION			cleared to 5'			olddin boo yelo	i day and tabble	m, stiff	ist		moist			some sawdust and organics) is and sawdust			agments		wood in hole)		wood in hole)			@ 21.5'
ConocoPhillips 600 Westlake Ave N. Seattle. WA	D: 10/19/2005			EASTING 1269353.4	HEIT	Asphalt (~2")		Air-knifed/vac-cleared			CAND: dec velo ditu oni vere cibblo	שוא, שווים, שואס,	CLAY; gray and brown, stiff	Silty CLAY; gray, moist		CLAY; gray, with silt, moist		Silty CLAY; gray	(As above, Mixed wood debri		Sawdust with SAND	Sawdust and wood fragments		(No recovery, wood in hole)		(No recovery, wood in hole)	TO OW	0000	BOTTOM OF HOLE
CLIENT: LOCATION:	DATE DRILLED:	HOLE DIAMETER: HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	(J	Soil Type						0	5	귕	_	_	_	_		V Poo M	_				_	_	_	_		Ш
CLIE		⁻ 로	WEI CAS	NORTHING 231699.7	Secovery and Interval of						Ш	\blacksquare	\coprod			\blacksquare								Н	ł		Н	\coprod	Ш
515-1 L.Brock	Cascade Drilling, Inc.			Ζ ``	Depth (feet)		_	2	3	4	5	- 9	7	8	6	10—	1	1	1 6	5 2	1 1 	C	2	17 —	18—	19—	20 —	21 —	
WA255-3515-1 M. Smith/L.Brock	Cascade	HSA SS	& & & & & & & & & &	7	Penetration (blows/6")						7	0 0 0	2 2		4 4		~ 8	17 26		17 23	17		10		55/6"				
NO:		DRILLING METHOD: HS, SAMPLING METHOD: SS	3 TYPE: size: L PACK:	ELEVATION 29.0	PID Reading (mgq)							0	ď	o	211	7	615	136		18.7	16		15		1.3	C	Þ		
PROJECT NO:	DRILLER:	DRILLING SAMPLING	CASING TYPE: SLOT SIZE: GRAVEL PACK	3	Moisture Sontent									Moist		Moist		Wet											
	+	מום	ental ts, Inc.		Static Water Level																								
		ב ט	Environmental Consultants, Inc.		Well Completion Casing																								
			۳ ŏ		§ Backfill §	'ou	၀၅										HE	NOTV	138										

BORING/WELL NO: SB-41 rtle, WA PAGE 1 OF 1	Location Map	C C			LITHOLOGY / DESCRIPTION		10000000000000000000000000000000000000	2			firm, dry		fine, trace silt, damp			oist)	n, moist to wet		Sandy SILT; gray, with some pebbles, dense	medium, with some pebbles, soft				(As above, with wood debris)	@ 20'	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/20/2005 ER: 8.5"			EASTING 1269308.2		Concrete (12")	Postodo ociópositad viv	All-Killed/vac			Sandy SILT; brown, firm, dry		SAND; brown-gray, fine, trace	(As above)		(As above, moist)	Silty SAND; fine, firm, moist to wet		Sandy SILT; gray, w	SAND: grav. fine to r		(As above)		(As above, wi	BOTTOM OF HOLE	
CLIENT: LOCATION:	:. DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231622.9	Recovery a Differval of Soil Type			T			M		as B				WS WS		¥	\					Н	
WA255-3515-1 K. Johnson	Cascade Drilling, Inc. HSA			N N	(blows/6") (feet)			2	8	4	2	9 1 1 6) o	Σ -	2 7	4 2 2 2 2 2 2 2	13	44	10 15	5 [<u> </u>) 4		20 20	22
CT NO: WA	DRILLER: Caso DRILLING METHOD: HSA	SAMPLING METHOD: SS	CASING 1 YPE: NA SLOT SIZE: NA GRAVEL PACK: NA	ELEVATION 29.9	PID Reading (ppm)							0	0 12 1	0	5	0	64.8	4.5		<u>ო</u>	<u>ო ო</u>	0		0 10		
PROJECT NO: LOGGED BY:	DRILLEI DRILLIN				Static Water Level Moisture						Dry		Damp			Moist	Moist- Wet			Sat						
		ב ב	Environmental Consultants, Inc.		Well Completion Casing S S S S S S S S S S S S S S S S S S S	conc.									311	NOIN										

BORING/WELL NO: SB-42 ttle, WA PAGE 1 OF 1	Location Map	i i	See rigure z		LITHOLOGY / DESCRIPTION		17 04	2				rown, soft, damp	ay, firm, damp		above, dark gray, moist)		ft, wet									@ 20')	
ConocoPhillips 600 Westlake Ave N, Seattle, WA	D: 10/21/2005 ER: 8.5"		ER: NA NA (UP: NA	EASTING 1269426.8		Asphalt (2")	() /P (); () "; ()	All-Killed/vac-cleared				Silty SAND; yellow-brown, soft,	Sandy SILT; dark gray, firm, damp		(As above, da		Silty SAND; gray, soft, wet	(As above)		(As above)	(As above)		(As above)	(As above)		BOTTOM OF HOLE		
CLIENT: LOCATION:	. DATE DRILLED: HOLE DIAMETER:	HOLE DEPTH:	WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING 231800.5	Recovery a planterval b poil Type						П	SM	M				NS N					1						\prod
WA255-3515-1 K. Johnson	Cascade Drilling, Inc. HSA			NO S3	(blows/6") Depth (feet)		++	2	3	4	2	0 0		<u>ه</u> ر	ευ <u>ξ</u>	2 :	8 8 2 5		5 7	- 0 - 7		2 [19	8 3	57	22
PROJECT NO: WA2 LOGGED BY: K. Jo	Casc METHOD: HSA	SAMPLING METHOD: SS	CASING TYPE: NA SLOT SIZE: NA GRAVEL PACK: NA	LEVATION 29.4	Penetration							16.4	23.6 5	8.3		450 2	0	7	0 + 2	0		0	0		0	N		_
PROJECT LOGGED	DRILLER: DRILLING	SAMPLING	SLOT SIZE: GRAVEL PACK:	ш	Moisture from							Damp	Damp		Moist		Wet											
	<u>π</u>	5	mental ints, Inc.		Static Water Level												 											
	4)	Environmental Consultants, Inc.		Well Completion Casing pletion	Conc.									311	NOT	NB8	1	ı			1						

BORING/WELL NO: EFR-1 Location Map	LITHOLOGY / DESCRIPTION			ority many many and the state of the state o	Sand, daily gaily brown, 20-30 % mes, very me sand, 10% fine to coarse sand, trace gravel and brick debris, loase.			Clay, dark gray, low plasticity,trace very fine sand, trace gravel, firm.											
ConocoPhillips Westlake- Terry Ave D: 12/5/2006 FER: 8" 16.5' FER: 2" FER: 2" TER: 15' KUP: NA EASTING		Brick Surface						Clay, dark gray, lo gravel, firm.					Wood debris						
CLIENT: Cor LOCATION: We DATE DRILLED: HOLE DIAMETER: WELL DIAMETER: WELL DEPTH: WELL DEPTH: CASING STICKUP:	Soil Type			2	<u> </u>			占											
CLIENT: LOCATION: DATE DRILL HOLE DIAM HOLE DEPT WELL DEPT WELL DEPT CASING STI	Interval <u>ō</u>																		
ĬĖ.	Recovery San Interval											П							
1 Her J Acc	Depth (feet)	1 1	3	4 6	9	8	6	10—1	1.1	13—	14	15—	16—	17 —	18—	19—	20——	21—	22—
	Penetration (blows/6")			c	ν			3 8	4			_							
PROJECT NO: LOGGED BY: DRILLER: DRILLING METHOD: SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATION	PID Reading (mqq)			c	Þ			4				0							
PROJECT NO: LOGGED BY: DRILLER: DRILLING MET SAMPLING MET SAMPLING SAMPLING TYPE: SLOT SIZE: GRAVEL PACK	Moisture fontent			\$ \$ 	dall			moist				wet							
DELTA Environmental Consultants, Inc.	Static Water Level										\triangleright								
ELTA Environmental consultants, Inc	oletion			I						TT		ı							
E L Envir	Well Completion Casing Casing				<u></u>														
ں تا ن	Backfill <u>®</u>				31	INOTNE	건												

BORING/WELL NO: EFR-2 PAGE 1 OF 1	Location Map		LITHOLOGY / DESCRIPTION						Land on Branch (00)	Clay, dark gray, nign plasticity, trace-10% very line sand, trace gravel, trace Fe02 staining, trace organics (roots),	y soft.					Silt, dark olive gray, moderate, plasticity, clayey, trace-10%	very fine to coarse sand, trace gravel, trace organics, stiff.						et, very dense.								
CLIENT: ConocoPhillips LOCATION: Westlake- Terry Ave	DRILLED: 12/5/2006 DIAMETER: 8" DEPTH: 15.5' DIAMETER: 2" DEPTH: 15' NG STICKUP: NA	EASTING	Soil Type	Gravel surface						trace gravel, trace Fe(trace brick debris, very soft.					ML Silt, dark olive gray, m	very fine to coarse sar					_	ML Wood debris at 15 feet, very dense								
531 Miller	ed Access on PVC	NORTHING	Depth (feet) Recovery & T		 2	+	e e	4	2		0	7	8))	10	11	72	7	13———	14	15.		16—	17	18	19	?	20	21	7.7
<u></u>	METHOD: 3 METHOD: YPE: ::	ELEVATION	PID Reading (ppm) Penetration (blowol6")						C	- -						0	4 1						0 50/6	0/00							
PROJECT NO: LOGGED BY:	DRILLER: DRILLING METI SAMPLING METI SAMPLING METI CASING TYPE: CASING TYPE: SLOT SIZE: GRAVEL PACK:		Static Water Moisture Moisture Content						1	damb damb				<u> </u>		moist						<u> </u>	wet		<u> </u>	 					
	DEL Enviro Consult		Well Casing pletion								3.	LINC) LN	38										•		-			•		

BORING/WELL NO: EFR-3 PAGE 1 OF 1		LITHOLOGY / DESCRIPTION							Sandy silt, light gray, 20% very fine to medium sand, trace					Silt, very dark gray, clayey, moderate plasticity, trace-10% very fine to medium sand, soft					At 15 feet, increasing sand and gravel, abundant wood							
ConocoPhillips Westlake- Terry Ave		ГІТНОС	Gravel surface						Sandy silt, light gray, 20%	gravel, tirm				Silt, very dark gray, clayey, very fine to medium sand.					At 15 feet, increasing sand	,						
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DEPTH: WELL DEPTH: CASING STICKUP:	or Interval Soil Type	ML					ī	ML	П				ML					M						Π	
	ted Access PVC NORTE	Depth (feet)			2	3	4	2	9	7	8	6	10	= ;	71.	13	14	15	16	17.	18	19	00	000	21	22
WA255-3531 Mattthew Miller	Cascade HAS-Limited Av Split Spoon 2" Sch 40 PVC 0.010 2x12	Penetration ("a\swold)						4	4 4				7	0 0				0	0 %	,						
NO: 3Y:	DRILLER: DRILLING METHOD: SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATION	PID Reading (mqq)						ı					0					C	ı							
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK:	Moisture Sontent						damp	<u> </u>				moist					wet								
	ental s, Inc.	Static Water Level		_												\forall									_	
	DELTA Environmental Consultants, Inc.	Well Completion Casing		T						T				T					1							
	D E	Backfill ⊗							3	TINOT	BEM.	ı									 					

BORING/WELL NO: TSVE-1 PAGE 1 OF 1	Location Map	LITHOLOGY / DESCRIPTION						bress enity view sine cand	trace- 5% fine to coarse sand, trace- 5% gravel, calishe,					Silt, dark grayish brown, 20-40% very fine to fine	sand, trace medium to coarse sand, trace fine gravel, stiff																	
ConocoPhillips Westlake- Terry Ave	12/5/2006 8" 11.5' 2" 10' NA EASTING		Brick surface					Silty cand dark gravich	trace- 5% fine to coarse	loose				Silt, dark grayish brown,	sand, trace medium to c																	
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	Soil Type						20	5					ML																		
531 Miller	Cascade DATE HAS-Limited Access HOLE Split Spoon HOLE 2" Sch 40 PVC WELI 0.010 WELI 2x12 CASII NORTHING	Oepth (feet)		 2		m H	4	2	l l	+	 8		<u> </u>	10	17	- :	12	13	-	41	15	-	16	17	-	18	19	+	50	21	72	77
WA255-3531 Mattthew Miller		Penetration ("a/swold")	1					٣	ာက	4				4	2	∞																
.NO: BY:	METHOD: S METHOD: YPE: E: PACK: ELEVATION	I Beading (mqq)	4					c)					0																		
PROJECT NO:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK:	Moisture Content						200	da F					moist																		
	4	Static Water Level																														
	DELTA Environmental Consultants, Inc.	Sackfill Completion			T	T			T	T		T	T											T	T				T			
	ں " ن	Sackfill §				EMT	a																									

BORING/WELL NO: TSVE-2 PAGE 1 OF 1	Location Map		LITHOLOGY / DESCRIPTION							Silty sand, dark greenish gray, 20% fines, very fine to fine	sand,tracefine to coarse sand, trace fine gravel, loose						Silty sand, dark greenish gray, 20% fines, very fine to fine	sand, tracefine to coarse sand, trace fine gravel, loose														
ConocoPhillips Westlake- Terry Ave	12/5/2006 8" 11.5' 2" 10' NA	EASTING	ГПНО	Asphalt surface						Silty sand, dark greenish	sand,tracefine to coarse						Silty sand, dark greenish	sand, tracefine to coarse														
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DEPTH: CASING STICKUP:	חוואפ	Recovery San Interval Do Soil Type							SM							SM															
531 Miller	Cascade DATE HAS-Limited Access HOLE Split Spoon HOLE 2" Sch 40 PVC WELL 0.010 WELL 2x12 CASI		Depth (feet)	+		1	e e	4	-	2	9	ļ ,		 	0		10	17	+	12	13—	+	14	15	-	16	17	18	19	20—	21	22
WA255-3531 Mattthew Miller			Penetration (blows/6")							2	ကက)					က	4	9													
- NO: BY:	G METHOD: G METHOD: TYPE: E: PACK:	ELEVATION	PID Reading (ppm)							0							0															
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Content							moist							wet															
	4		Static Water Level																													
	DELTA Environmental Consultants, Inc.		Well Completion Casing Casing				<i>\$\$ 11111</i>	<i>11111</i>	I	I		I			I	I			****]							
	D E En Cons		Backfill S				ΙN	38		-111111							111															

BORING/WELL NO: TSVE-3	del		LITHOLOGY / DESCRIPTION							Silty sand, olive gray, 30-40% fines, very fine to fine sand,	nace medium to coalse sand, 5% graver nace reoz stannig, medium dense					Silt. dark grav. low plasticity. 30-40% very fine sand, trace	ivel. hydrocarbon sheen, on																	
ConocoPhillips	ER: 8" Location Map ER: 8" 11.5' ER: 2" 10' CUP: NA	EASTING	ГІТНОГО	Brick surface						Silty sand, olive gray, 30-40%	medium dense					Silt. dark grav. low plasticity.	fine to coarse sand, trace gravel, hydrocarbon sheen, on	sample, firm																
CLIENT:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery a primary linterval by Type							WS						Σ					1		П		T			—			П		Ţ	_
WA255-3531	Š l	NON PON	Penetration (blows/6") Depth (feet)			1	e 8	4	u	0	9 7	7	α	- -	6	10		2	12	13	2	14	7.5	2	16	74	 	18	(19	20	<u> </u>	21	
PROJECT NO: W	ETHOD:	ELEVATION	Moisture Content PID Reading (ppm)							damp 0						wet 1537																		_
A C	***		Static Water Level		T	<u> </u>			T	о			<u> </u>					 							<u> </u>	T	 		T			<u> </u>		
	DELTA Environmental Consultants, Inc.		Well Completion Casing Casing				LN	38			<u> </u>								<u> </u>			1			1		<u> </u>	1					1	

BORING/WELL NO: TSVE-4 PAGE 1 OF 1		LITHOLOGY / DESCRIPTION							sticity, trace gravel, stiff						Clay, very dark gray, low plasticity, trace wood debris, stiff,																
ConocoPhillips Westlake- Terry Ave	ER: 8" Location Map ER: 2" 10' UP: NA EASTING		Asphalt surface						Silt, very dark gray, low plasticity, trace gravel, stiff						Clay, very dark gray, low p	nydrocarbon odor															
CLIENT: LOCATION:	BSS HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP: NORTHING	Secovery & marker of the soling of the solin							ML					1	CF																
-3531 w Miller	ed Acce	Depth (feet)		<u></u>	2	· ·	,	4	2	9	7	8	6	+	10	1	12	73	2	14	15	76	2	17——	18	2	19	20		21	22
WA255-3531 Mattthew Miller	Cascade HAS-Limited Ad Split Spoon 2" Sch 40 PVC 0.010 2x12	Penetration (blows/6")							ω -	4 ડ					_ε	ည															
'NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATION	gnibsəA OI9 (mqq)	i						0						375																
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING ME CASING TYPE: SLOT SIZE: GRAVEL PACK ELEY	Moisture Sontent							dry						damp																
		Static Water Level														>															
	DELTA Environmental Consultants, Inc.				I	l							T	Τ															I		
	D E I Envi	Well Casing Sackfill Completion					BENL	ı																							

BORING/WELL NO: TSVE-5 PAGE 1 OF 1 Location Map	LITHOLOGY / DESCRIPTION	Asphalt surface Silt, dark gray, low plasticity, 30-40% very fine to fine sand, trace medium to coarse sand, 10% gravel, trace organics, firm At 10', dark olive gray, 10-20% very fine sand and trace fine to coarse sand, trace gravel, trace organics, stiff
ConocoPhillips Westlake- Terry Ave : 12/5/2006 ER: 8" 11.5' ER: 2" 10' UP: NA EASTING	LT	Asphalt surface Silt, dark gray, low platrace medium to coar firm to coarse sand, trace
CLIENT: Co LOCATION: We DATE DRILLED: BSS HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP: NORTHING	Recovery & Soil Type	
s-3531 sw Miller de imited Acce soon 40 PVC	Depth (feet)	
HOD: HOD: ATION	PID Reading (ppm) Penetration (blowo\6")	
PROJECT NO: LOGGED BY: DRILLER: DRILLING METHOD: SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATIC	Moisture Sontent	wet
DELTA Environmental Consultants, Inc.	Static Water Level	<u> </u>
DEL Enviro Consult	Well Completion Casing Casing	

BORING/WELL NO: TSVE-6 PAGE 1 OF 1	Location Map	LITHOLOGY / DESCRIPTION									Clay, dark gray, medium to high plasticity, silty, 5-20% very fine to coarse sand, trace gravel and organics, very soft					At 10', low to medium plasticity, trace- 10% very fine to	, trace organics, firm															
ConocoPhillips Westlake- Terry Ave	12/5/2006 8" 11.5' 2" 10' NA EASTING	ПТНО	Gravel surface								Clay, dark gray, medium fine to coarse sand, trac					At 10', low to medium pla	coarse sand, trace feO2															
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DEPTH: CASING STICKUP:	Recovery San Interval 6					Ι							П																	П	
531 Miller	Cascade DATE HAS-Limited Access HOLE Split Spoon HOLE 2" Sch 40 PVC WELL 0.010 WELL 2x12 CASII NORTHING	Depth (feet)		<u></u>	+	7	3	4	+	2	9	7	8	6	+	10	11		12	13—	7	<u>+</u>	15-	1	2	17	18	19	N N	21	22]
WA255-3531 Mattthew Miller		Penetration ("al/swold)								_						2	ი -	4														
·NO: BY:	METHOD: G METHOD: YPE: E: PACK: ELEVATION	PID Reading								0						0																
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEY	Moisture Sontent								damb						moist																
	4	Static Water Level																														
	DELTA Environmental Consultants, Inc.	Well Completion Casing			T		***							<u> </u>		T		 														\rfloor
	D E Env Cons	Backfill S					Τì	BEN						1111111		1																

BORING/WELL NO: TSVE-7 PAGE 1 OF 1	Мар	LITHOLOGY / DESCRIPTION									Clay, dark gray, medium to high plasticity, silty, 10% very	fine to coarse sand, trace gravel fe02 staining, organics,							Clay, dark gray, medium to high plasticity, silty, 10% very	fine to coarse sand, trace gravel fe02 staining, organics,																
ConocoPhillips Westlake- Terry Ave	ER: 8" Location Map ER: 2" 10' CUP: NA EASTING	ГІТНОС	Gravel surface								Clay, dark gray, medium to	fine to coarse sand, trace g	נומכם סווכה מפסווס, וווווו						Clay, dark gray, medium to	fine to coarse sand, trace g	llace blick debils, IIIII															
CLIENT: LOCATION:	BATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP: NORTHING	Recovery Sa Interval 6										1																						П		
3531 v Miller	ed Acce	Depth (feet)		-	+	2	33)	4	+	Ω	9			8		6	10	2	1	+	12	13	<u> </u>	14	74	2	16	!	17	18	2	19		21	 77
WA255-3531 Mattthew Miller		noitartene9 ("8/swold)									7	ကက	2						4 (ကင	٧															
· NO: BY:	METHOD: 3 METHOD: YPE: E: PACK: ELEVATION	PID Reading (ppm)									0								0																	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEV	enutaioM fontent									damb								moist																	
	4	Static Water Level																																		
	DELTA Environmental Consultants, Inc.							<i> </i>	1111 888	T			I			I		I			 											I				
	D E Envi	Well Completion Casing						ENT	9																											

BORING/WELL NO: TSVE-8 PAGE 1 OF 1	Location Map	LITHOLOGY / DESCRIPTION								Silt, dark gray, moderate plasticity, trace very fine sand,	נימן						Siny sand dark gray, 30-40% lines, very line medium sand, trace coarse sand, trace gravel, clayey, very soft																
ConocoPhillips Westlake- Terry Ave	12/6/2006 8" 11.5' 2" 10' NA EASTING	ГІТНОГ	Asphalt surface							Silt, dark gray, moderate plasticity.	נומכים טומיהו, חונפוטפטי					27 00 · · · · · · · · · · · · · · · · · ·	Siny sand dark gray, 30-40% lines, very line med trace coarse sand, trace gravel, clayey, very soft																
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DIAMETER: WELL DEPTH: CASING STICKUP:	Soil Type			П					MC					1 1	2	<u> </u>	1		_			1				П	T			T	П	
0 3	RTH	Recovery Sample Interval			H				Ħ															H					+				
WA255-3531 Mattthew Miller	Cascade HAS-Limited Access Split Spoon 2" Sch 40 PVC 0.010 2x12 NC	Depth (feet)		<u></u>	2	٣)	4 	5	9			Г Ф	6	10	2	<u>+</u>	12—	13)	14 	15-	4	<u> </u>	17—	ά.	<u> </u>	19—	00	0	21–	22—	
WA255-3531 Mattthew Mill	Cascade HAS-Limitec Split Spoon 2" Sch 40 P 0.010 2x12	Penetration (blows/6")							ď	9 4 и	ר					0																	
'NO: BY:	DRILLER: DRILLING METHOD: SAMPLING METHOD: CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEVATION	PID Reading (ppm)							C)						0																	
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK: ELEY	Moisture Content							damp	<u>}</u>						wet																	
	4	Static Water Level															\forall																
	DELTA Environmental Consultants, Inc.	npletion						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		T	I			I	I				П	I			I				I						
	D E Envi	Vell Completion Casing Casing					SENT																										

BORING/WELL NO: TSVE-9 PAGE 1 OF 1			LITHOLOGY / DESCRIPTION	plasticity, 10-20% very fine to	fine sand, feO2 staining, asphalt debris						Silty Sand, dark gray, 20-30% tines, very tine to tine sand, trace medium to coarse sand, trace gravel, loose					(L)	Silt, dark gray, low plasticity, thin interbedded clay lense (F), 20% very fine sand, trace gravel, stiff, hydrocarbon odor														
ConocoPhillips Westlake- Terry Ave	D: 12/6/2006 Location Map ER: 8" 11.5' ER: 2" (UP: NA	EASTING	ГІТНОГО	Asphalt surface Silt. dark greenish grav. low i	fine sand, feO2 staining, asp					000 00	Silty Sand, dark gray, 20-30% tines, very tine to the took trace medium to coarse sand, trace gravel, loose						Silt, dark gray, low plasticity, thin interbedded clay lense 20% very fine sand, trace gravel, stiff, hydrocarbon odor														
CLIENT: LOCATION:	DATE DRILLED: HOLE DIAMETER: HOLE DEPTH: WELL DEPTH: CASING STICKUP:	NORTHING	Recovery & graph of the soil Type	×	П		Ţ	П		2	Σ ₀	П		П		:	Ē				П								I		T
3531 / Miller	ted Acce	NORT	Depth (feet)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	3	4	7	<u> </u>	9		8	6	10	2	-	12	13	7	4-	15-	16		17	18	19	20	7	7	22
WA255-3531 Mattthew Miller			Penetration ("8/swold)							ကျ	w 4					ı,	2														
TNO: BY:	s METHOD: G METHOD: TYPE: E: PACK:	ELEVATION	PID Reading (ppm)							0						0															
PROJECT NO: LOGGED BY:	DRILLER: DRILLING MET SAMPLING MET CASING TYPE: SLOT SIZE: GRAVEL PACK:		Moisture Sontent	_						damb						moist								_							
	4		Static Water Level																												
	DELTA Environmental Consultants, Inc.		Oasing ompletion	I						I] T			1	I	 															
	D E Envi		Well Completion Casing				Į.	BEN																							

100	Xue		
		3.1	

Parcel 27 Morcast 16-20 15,-16 Lotton 8-12 4-8 0 DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION 0,0 OF 0:1 0.4 0, 0 ò 620 LOGGER N. Badon Collected Sample -13.0-15.0 Sample P27-B3-284.0 @0935 COMMENTS Drilling; Kasey SHEET P27-83-@0950 P27-B3 15" 10 acetatelinas SOIL BORING LOG BORING NUMBER P27-B3 ascade SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE, MINERALOGY Greenish dive gray to dark gray, dense Aine graved, little dense , Moist, fine to neaturn Sand and Silt (SM), some fine OCATION CL-clayard Sandy reenish gray, greenish gray, dense, wet, tremsition to greenish gray, FINISH fire Clay and Sand, fine Subtounded Hoist, Fine to medium. Sand, Some fine graved. dune, ucist, some fine Subrangidas gravel 314749. MA. P3.10 gravel, wet at n/w' CL, clay and Sand, 3 gray, dende just. SOIL DESCRIPTION reds DRILLING CONTRACTOR START 0907 graved, angular to medium H Sit (SM) DRILLING METHOD AND EQUIPMENT GROPTOBE BLOOD Phase graved Moist trace Conider STANDARD PENETRATION TEST RESULTS 2,12 6-6-67 (N) 0.8, 34" 3.5 2.6 5.5 RECOVERY (FT) Mercer SAMPLE NUMBER AND TYPE WATER LEVELS JAVRETN ELEVATION PROJECT 35 DEPTH BELOW SURFACE (FT) 5 23 5 0

REV 11:89 FORM D1566

No.	N. N. W.	Di Sin	No.	acar.
關				

P27-B2 314749. M. 73.10

OF

SHEET

SOIL BORING LOG

LOCATION Panel 27, DEAR MERCEY 49th , KOX'4 Carada DRILLING CONTRACTOR Conider Phase I PROJECT MERCEN

ELEVATION

LOGGER N. Baden Start 1.5" 10 actate FINISH 1125 START (10 Groposte 6600 DRILLING METHOD AND EQUIPMENT WATER LEVELS

		T IONYO			MOITGIGGGGG IICG	OTING
NO (T:		SAMITLE		STANDARD	SOIL DESCRIPTION	COMMICIALIS
HT BELC F) BOARF	JAVAE	ABER BAYT (YABVO	PENETRATION TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
DEF	INI	NUN	DBR (TT)	9- Q-	MINERALOGY	Pro
			33,		SC, Sandard Clayoline may to calected P27-B- mensh gray, dence to hard, 2,0-4.0 choist, five to medin, some _ @ 1130 five praved	Calected P27-18- 0-4' 2,0-4.0 0.3 @ 1130 ambient=
17.	7		1.2		4.6-5.8'- organica-wood Clay(cl) greenish gray dense, moist, some fine sand, little coase, subangilar gravel	4-8,
(0)	·		161		SC, Sandy Chay, greensh gray, dense, noist, fine to nedim, some nedim, subrangular	8-12 000 ambjurt=
7	7	! !	7.		SC, Sandy Clay, greenish gray clende, moist to wet, his to medium, Sove fine to nedium, show fine to needium, to be aborquear graved	Collected 6.0 (2-16) P27-B2-B.O. 150' (2-16) @ 11:27 @ 11:27 @ 15' @ 15'
			-0		No record	Soft, not Picking up Sample wol reda
12	7	-	-	The second secon	The second secon	

(8 30)

NO CLUMM

REV 11:89 FORM D1566

MBER SHEET (OF)		P27-BS near Freadst find	Colling Kasey (Dollar) actore livers	COMMENT	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	hille motes odor	Stong from 8.9 Sample 80H8	One Soil Sample	7 5 g 2	Label Leboate Soil and Laber FD and HS/MSD per direction 180 PM			
314749. PH. P3.10 127-135	SOIL BORING LOG		LLING CONTRACTOR OF CASCACE DOCO 4 TODS WILS "1D START OSCO	DESCRIPTION	SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY. SOIL STRUCTURE, MINERALOGY	SM Sand ind Silt, clive gray, demost stop noist, his to rediller grained, some incedient to the Sub-argular graved	SM, Sand and Silt olivegring to dank my, wet, loose, Since his to medium subangilon anand.						
	5/08	mider	Q		PENETRATION TEST RESULTS O O O 6.6.6.	1.3	9.0						
	2/2	PROJECT METO	ELEVATION DRILLING METHOD AND EQUIPMENT	SAMPLE SAMPLE	DRFACE (FT URFACE (FT VAVETN		.50	9	3	7	3	 8	

REV 11/89 FORM D1566

(8 30)

- Stand 12/- 8 10.1 4,0 0 4-81 DEPTH OF CASING, DRILLING RATE.
DRILLING FLUID LOSS,
TESTS AND INSTRUMENTATION

FIT OF dis N. Baden Tester 9 0 GA BOH S Grille 10.01-12.0 COMMENTS Hear corner of Kasey SHEET LOGGER Showil 227-BI-P27-BI-D77-FI Sunda @110S SOIL BORING LOG 2 Lling acetax PORING NUMBER シング DI certie hubergues Might SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY trace medium graved DRILLING METHOD AND EQUIPMENT (NO probe 6/00) 4 rods with 1,5"10 yellavis LOCATION ascade Eccuy in wied, menst mast medium stiff sc), trace - More FINISH 1 Same 3 9 d and Clark excen £, 10052, Hedin AA.73.10 SOIL DESCRIPTION 1 Most, Fall Wiff grass and DRILLING CONTRACTOR. The to medium -M-SC, Sand and - Same as 4 ind Sit well win Brand O Q Fagran 0 SI4749. B 8-17-02 3 START Phraet Medi Way 4210015h Banne Drawn MON. Silt change P000M Sand (the 12 2.3 100x THE Cerrider STANDARD PENETRATION TEST RESULTS 6-6-6 (N) 2668 158. (0) 30 RECOVERY (FT) 1. Mercer SAMPLE NUMBER AND TYPE WATER LEVELS NAVRETVAL ELEVATION PROJECT DEPTH BELOW SURFACE (FT) 3 0 3 5 5

(8 30)

REV 11,89 FORM D1586

72	COX			RECOVERY (FT)	3	130	
,	LEAC	Į	SAMPLE	NUMBER AND TYPE		D	
	ON S METHO	LEVELS	;	JAVABTUI	7		>
	PROJECT ELEVATIO DRILLING	WATER	W(DEPTH BELC T) BOATRUS	7 7 7 7	7	

WBER SHEET OF	IG LOG	ing; Kasey (Driller) tade lingus 1000 1000000	COMMENTS	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION	PI-BI-2.0-4.0 0.0 diller notes very SAFF soil to dill through	000	Difference (e.71	note: one soil semple collected @ p.M.'s direction due to direction due to di, 11179 chinaent				
314749. AP. P3. 10 P-B1	SOIL BORING LOG	Phase II LOCATION BAKEd 1 DRILLING CONTRACTOR CANCED DATING START 1305 FINISH 1310	SOIL DESCRIPTION	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	SH, SAN and SILT, dark brown to olive gray, hard, Stahlly Maired, sche medium subanglar grave.	SM, SAND and SILT, yellowsh - orange to Orive gray, pland - slightly Morst to dry, fine				i.		
	2/5/08	CT MENCER (BDICHER DRI	w -		3.6	3.0-						

REV 11-89 FORM D1566

B2 SHEET OF	BORING LOG	Facult Marcer St. near 8th Avic	aletate liners		COMMENTS	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	PI-82-2.0-4,0			0.2			PI-B2-9.0-11.0 0.2		I diller notes upper in sorchote	HO8=,21			,	,	Ţ	,	Τ' -		7	REV 11-89 FORM 01586
SIA749, AM. P3.10 M-82	SOIL BORI	Phase II LOCATION FOUR	CONTRACTOR. Caseadle	START	SOIL DESCRIPTION	N N O N	SM, SAME and SILTyellowsh.	Live to rediend, loose to redien	giver france	same as 0-4"		The state of the s	Same us 0-4"	さすちら										2		(8 30)
CARTILL	2/5/08	PROJECT MENCER (BINICIAL PA	ELEVATION DRILLING METHOD AND EQUIPMENT CAC	REVELS	., SAMPLE	SURFACE (F) NUMBER NUMB		2,1	>		2.0		7.7					 · · · · · · · · · · · · · · · · · · ·	<u> </u>				(J.)	T		

	.87	0

SHEET BORING NUMBER PI - B3 314749. Ap. P3.10

OF

SOIL BORING LOG

LOGGER N.Buden Kasey (eniller DRILLING CONTRACTOR CRYCALE DIVILING, Kasen (Anilly) DRILLING METHOD AND EQUIPMENT Green Je (0000, 4 rods 14 1.5" 10 Chetake Marsh WATER LEVELS FINISH COMO Phaset PROJECT MOJCER CONIDER WATER LEVELS ELEVATION

SOLINAME LO SUBFACE (FT STAND) S		
INTERVAL NUMBER NUMB		
	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION PID
	41 Asphaelt end corse juddien Mel, lose, Olive grad 1905 SAM and SICT (SM) - Kinish Brange to tight van, SMTF, ddy, Thirte	A-B3-2.0-4.0 0.2
Sand Sand Sand Sand Sand Sand Sand Sand	Still (S	9
	sand and Silt (SM), little clay, gelbush crange to me vish, year, stir fine to medany mained, moist some fine, automorales opened	@ 08 05 (Soil Sough)
		HOR.
	1	
	l T	
		,
T		

REV 11:89 FORM D1566.

SK149. AM. P3. 10 P24-B1

. PO

SHEET

SOIL BORING LOG

LOCATION Parcel 24 news Mescer and 8th Avre, ELEVATION

BRILLING METHOD AND EQUIPMENT CHECKED LODO 4, rocks and 1.5" ID acted to linens Corvidor Phase I Merces PROJECT

45 LOGGER NIBACION	COMMENTS	DEPTH OF CASING, DRILLING RATE, ORILLING FLUID LOSS, TESTS AND INSTRUMENTATION P (D)	P24-81-2,0-4.0 0.1	0.0	124-81-9.0-11.0 0.1 0903	refluence in							T	7	т т ,	7
START O830 FINISH 0845	SOIL DESCRIPTION	SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT. RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	220	A Silterial	3 3 3	fire gives			1				'	1		
	STANDARD	TEST RESULTS 6'-6'-6' (N)	y		Taylor and the same of the sam			2.460.		*						
		HECOVERY (FT)	3.0	4.0	ω Ο											
1	SAMPLE	NUMBER AYYT QUA														
-WATER LEVELS	:	INTERVAL	\longrightarrow		<u>→</u>				•	**************************************						
WATER	WO	DEPTH BEL	1	. 7	0		1 - 1	<u>S</u>	1-1	70%	3 .		3		Ii-	
7		With the second	W. C.							V VVIII I I I I I I I I I I I I I I I I		territoria de la comoción de la como		-		

REV 11-89 FORM D156

	0
	33
10 100	EST No.
機關	
四四	UH

SHEET BORING NUMBER 124-BS SATA, AL PS.10

OF

SOIL BORING LOG

LOCATION PRICE 174 Mercer St. +9 th AND DRILLING CONTRACTOR (CAREACLO Prave I PROJECT NENCER CONIDER ELEVATION

DRILLING METHOD AND EQUIPMENT GROPPICE 6000 4' COCK and 1.5" ID
WATER LEVELS

S LOGGER N. Backson	COMMENTS	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION PLD	- 0	P24-B3 - 6.0-8.0 P24-B3 - 6.0-8.0 P24-B3 - 6.0-8.0 - FD P24-B3 - 6.0-8.0 - FD	2.0	0	1.0	P24- R3-24-23 \$\sqrt{213} \qu	
START (015 FINISH 1035	SOIL DESCRIPTION	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	0.0.6 dark brownskecyed organies 0.6-4'-ML, Silt, some clay, 11the fine Sand, dark brown to light oran caff Mightly woist	1976	Sift some Clay(Me), yellowish orange mottled light sown, very shift, west to slightly most some nection intenguer grown, little fine sound	Sitt, Sone Clay (ML) dark brown to Olive gray, Shot, little binoto Hactium Sand, there medium Subrangular gravel	333	ingular grade with the moist 20-21.2 dork become withed greenen grad Sitt Asone Cingmi) little line Sond trace fine subjugated graved 21.2-24.0 - Sond and Silk(SN)greensh face fine subjugated sporel, we take trace fine subjugated sporel, we take	
	STANDARD	RESULTS 6'-6'-6' (N)	, (The state of the s	Western to the second of the		
		RECOVERY (FT)	18.	1.27	40,	7:0	15.		
	SAMPLE	ASBMUN BAYT GNA							
EVELS	"	INTERVAL	\rightarrow			\rightarrow		> ->	
WATER LEVELS	WO	DENTABEL) BOARAUS	· · · · · · · · · · · · · · · · · · ·	S	0 0	1 5	- 1 - 1 - 1	22	2
> 1				· *** ********************************	*	***************************************	A CONTRACTOR OF THE STATE OF TH		**************************************

REV 11,89 FORM D158.

					5
Ÿ					
1			1		9
-		2		N. STEELS	0
	1			4	

OF BORING NUMBER 124- B.2 SHAM. RA. P3.10

SOIL BORING LOG

axade Drilling, Kazey (diller Plage It Mercer Caridor PROJECT

DRILLING METHOD AND EQUIPMENT EXCEPTOSE (POD) WATER LEVELS ELEVATION

DAILLING CONTRACTOR CASCADE Drilling

WATER LEVELS	EVELS				START (346 FINISH	LOGGER N. Backen
WC (T:	SAMPI	MPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
OEPTH BELC F) BOARROE (F)	NTERVAL	AND TYPE	ECONERY	FENE HATION TEST RESULTS 6'-6'-6'	SOIL NAME, USCS GROUP : MOISTURE CONTENT, REL OR CONSISTENCY, SOIL ST MINERALOGY	DEPTH OF CASING, DRILLING RATE. DRILLING FLUID LOSS. TESTS AND INSTRUMENTATION
		,	30		o-o-s Topsoil and glass o-s - 4- Sond and Sitt (sn) by Ellewish brange to clive opay, wadium dense the to watium graines	100
7.0		~	3.5	1.	Medin Steer	Sample ptt-82-40-6.0 Sample ptt-82-40-6.0 Get of rock in 0-4: Sample Cots of rock in 0-4: Sample
[0]	>		2,8		1 1 4 11 4 11	0.0
7		4	4.0		12-14 Same in alrore with Some Coarse another some Coarse angular to subjudgate to	00
5	× -	, w	3.6'		con constitution	P24-82-(20-20.0 0.0) P24-82-(8.0-20.0-FB
3	>		4.0		Sand and Silt (SM), yellow ish orling to 16th open, whist to wet at 21.3, the to Medium opain ed some medium Subrangular opanel, deure	V21.3'
3.						
1 1						

REV 11-89 FORM D1586

Santes	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 8.5 10/14/08 BOREHOLE DEPTH (ft): 20.0 STATIC DTW (ft): Not Encountered WELL DEPTH (ft): 20.0 WELL CASING DIAMETER (in): 2 LOGGED BY: SM CHECKED BY: DH	Weil	ConcreteEentonite												
1 1	EASTING (#): LONGITUDE: TOC ELEV (#): BOREHOLE DI WELL DEPTH BOREHOLE DI CHECKED BY:	rliqəQ (jəəl)		 	ر ا		6	π <u>.</u>	50	25	<u> </u>	8	1 1	355	1 1
FOLE N	8 B I tered \ 2 C	Headspace DIG (units)			0	0	0	0	0						
BOREP	0/14/00 ncoun ER (in):	wol8 JnuoO			ιζ	3 m C	±∞±	Nww	9 8 2						
7 Р 200	#): 8.5 1 Not EI	beruseeM Recov. (feet)													
WELL / PROBEHOLE / BOREHOLE NO: WW-209 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 8.5 10/14/08 STATIC DTW (ft): Not Encounte WELL CASING DIAMETER (in): 2 LOGGED BY: SM	Time Sample ID			ŧ	940 MW-209-7	3	,	ş						
WEI	·····	Sample													
PROJECT: Former CP 5353 (1396) LOCATION: 600 Westlake Ave N., Seattle WA PROJECT NUMBER: 01CP.01396.60	DRILLING: STARTED 10/10/08 COMPLETED: 10/10/08 INSTALLATION: STARTED COMPLETED: COMPLETED: DRILLING COMPANY: Cascade Drilling DRILLING EQUIPMENT: HSA DRILLING METHOD: Split Spoon SAMPLING EQUIPMENT:	Description	SAND; brown; fill material, concrete and gravel	SILTY CLAY FINE GRAVEL; ML	SANDY CLAY WITH SILT SOME GRAVEL ; ML; gray	SAND WITH CLAY SOME SILT; SM; gray; wet; fine gravel	SANDY SILT; ML; gray; wet; sheen; gravel	SILT WITH FINE GRAVEL; ML; gray; wet; sheen	Borehole terminated at 20 feet.						
rmer 00 We	STARTE: STARTE PANY: Ca PMENT: HOD: Spil	naca		ğ	ML	SM	₫	Z				v======			
CT: Fo	ATION ACOM S EQUI S METH	Graphic Log			0.06 200300000							<u> </u>			1 1
PROJEC LOCATI PROJEC	DRILLING: STARTED INSTALLATION: STARTED DRILLING COMPANY: Casca DRILLING EQUIPMENT: HSA DRILLING METHOD: Split SK SAMPLING EQUIPMENT:	& amiT htgaQ (teat)	Assessment		ហ			70	20	25	00/01/21 1 2 2	98	OCT 08.GPJ	600 J 0000 +0	C MSIO : CTC

i NO:	NORTHING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 9 10/14/08 BOREHOLE DEPTH (ft): 20.0 STATIC DTW (ft): Not Encountered WELL DEPTH (ft): 20.0 WELL CASING DIAMETER (in): 2 BOREHOLE DIAMETER (in): 14 LOGGED BY: SM CHECKED BY: DH	(units) Depth (feet) Construction	ConcreteManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManualManual<th></th><th>6</th><th>⊈</th><th>15</th><th>20</th><th>52</th><th>- - - - - - - - - -</th><th>35</th>		6	⊈	15	20	52	-	35
BOREHOLE PAGE 1 OI	14/08 ncountere ER (in): 2	Wold Count Headspace PID		0.3	73.9	0 11 41	4 rv rv O	rv ∞ <u>−</u>			
OLE/I	t): 9 10/° Not E1 AMETE	Measured Recov. (feet)									
WELL / PROBEHOLE / BOREHOLE NO. WW-210 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 9 STATIC DTW (ft): N WELL CASING DIAN LOGGED BY: SM	Time Sample ID Method		1 1	ı	ı	1155 MW-210-15				
WEL	NORTI LATITI GROI INITI/ STAT WELL	Sample									
PROJECT: Former CP 5353 (1396) LOCATION: 600 Westlake Ave N., Seattle WA PROJECT NUMBER: 01CP.01396.60	DRILLING: STARTED 10/10/08 COMPLETED: 10/10/08 INSTALLATION: STARTED COMPLETED: COMPLETED: DRILLING COMPANY: Cascade Drilling DRILLING EQUIPMENT: HSA DRILLING METHOD: Split Spoon SAMPLING EQUIPMENT:	Description	SAND WITH GRAVEL; dark gray; fill material, concrete	SAND SOME CLAY WITH ROOTS ML	Wood debris	No recovery - wet	SILTY SAND; SM; gray, wet	SILTY SAND; SM; gray; wet Borehole terminated at 20 feet.			
0 We	STAI STAI PANY: PMEN HOD: \$	naca		Ā			S N	NS SW			
FOIL FOIL	ATION COM EQUI	Graphic Log	1 1		espesi (1915) Mgasii (1915) Mgasii (1915)		7.7.7		, , , , , , , , , , , , , , , , , , , 		
PROJEC LOCATIC PROJEC	DRILLING: STARTED 1 INSTALLATION: STARTED DRILLING COMPANY: Casca DRILLING EQUIPMENT: HSA DRILLING METHOD: Split Si SAMPLING EQUIPMENT:	& emiT rltqeQ (feet)		Ċ		-01	ή	20.	25	000	DRM 304 5363 (1396) OCT 08.0 Ö

Soorthee	NORTHING (ft): EASTING (ft): LATITUDE: CONGITUDE: CONGITUDE: CONGITUDE: TOC ELEV (ft): TOC ELECKED BY: SM CHECKED BY: DH	Well Construction	ConcreteEentonite				Sand						
ö	EASTING (ft): LONGITUDE: TOC ELEV (ft BOREHOLE I WELL DEPTI- BOREHOLE I	ritqeQ (feet)	2 //	ئ ا	· · · · · · · ·	'' ' '' 	6	10	20	25		, , , , , , , , , , , , , , , , , , ,	35
OLE N	tered \ 2	eosdsbseH Old (stjun)		0	0			٥	0				
BORE! PAGE	14/08 ncoun	wola JunoO			æ Ç	Ć	~ ~ ~	o o C	4 rv c	,			
10LE / 1	ft): 9 10/ Not El	Measured Recov. (feet)											
WELL / PROBEHOLE / BOREHOLE NO: NW-211 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 9 10/14/08 STATIC DTW (ft): Not Encounte WELL CASING DIAMETER (in): 2 LOGGED BY: SM	Time Sample ID		ı	1252 MANAL-211-7			ı	1				
WEL	NOR LATTI GROI INITI/ STAT WELI	Sample											
PROJECT: Former CP 5353 (1396) LOCATION: 600 Westlake Ave N., Seattle WA PROJECT NUMBER: 01CP.01396.60	DRILLING: STARTED 10/10/08 COMPLETED: 10/10/08 INSTALLATION: STARTED COMPLETED: COMPLETED: DRILLING COMPANY: Cascade Drilling DRILLING EQUIPMENT: HSA DRILLING METHOD: Split Spoon SAMPLING EQUIPMENT:	Description	Sandy fill material, concrete & brick	SILT SOME CLAY WITH GRAVEL ML:	gray; dry	SILTY SAND FINE GRAVEL; SM; gray;	wet SAND WITH SILT FINE GRAVEL; SM; gray; wet	SILT WITH CLAY FINE GRAVEL; ML; gray, wet	SAND WITH SILT; SM; gray, wet; woody debris @ bottom Rorehole ferminated at 20 feet				
0 We	STAF STAF PANY: PMEN: HOD: S	naca		Ę		S S		7	S. S				
T: Fo N: 60 T NUN	TION: COMI EQUI	Graphic Log		\$160 \$160 \$160					72.00 72.00 72.00 72.00	 	· · · · · · · · · · · · · · · · · · ·		
PROJECT: Formal LOCATION: 600 V PROJECT NUMBE	DRILLING: STARTED INSTALLATION: STARTED DRILLING COMPANY: Casca DRILLING EQUIPMENT: HSA DRILLING METHOD: Split St SAMPLING EQUIPMENT:	& amiT htqəQ (təət)	- '	· ' L			-01	15-	50-			9	SEO FORM 304 5353 (1396)

	^{этн (ft)} : 18.0): 18.0 МЕТЕR (in): 8	Well	Concrete Bentonite 'Z' dia. PVC	— 10-20 sand	2" dia. PVC w/ 0.010" slot
Ö	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 18.0 WELL DEPTH (ft): 18.0 BOREHOLE DIAMETER (in): 8 CHECKED BY:	hiqəD (fəəf)		2	715-
SEHOLE NC	7	Count Headspace PID (units)	∞.	# M D	. S.
OLE / BOREH	t): EV (ft): (ft): 15 11/2/ (ft): 10 11/4/ G DIAMETER TP/RM	Measured Recov. (feet) Blow		7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	0
WELL / PROBEHOLE / BOREHOLE NO: MWR-1 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 15 11/2/10 STATIC DTW (ft): 10 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Time Sample ID	805 MWR-1@2.5		194 MWR-1@15'
WEL	NOR LATI GRC INITI STA	Sample			
COP 1396 600 Westlake Avenue N, Seattle 212302587	STARTED 10/29/10 COMPLETED: 11/2/10 STARTED 10/29/10 COMPLETED: 11/2/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	GRAVEL; GW; brown; fine to coarse-grained; moist; no staining; well graded; no fines, no HC odor (fill material)	No recovery in sampler	SAND; SP; brown; medium-grained; loose; saturated; no staining; poorly graded; non cohesive, no HC odor (fill material) Hole terminated at 18 feet.
	STA : STA IPANY HOD:	nece	M _O		Q.
	ATION A CON B EQU B METI	Graphic Log			
PROJECT: LOCATION: PROJECT NUMBER:	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	& amiT dyqaU (feet)	802	935 10:	GEO FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GDT 11/10/10

		Well	Concrete	Bentonite	-10-20 sand -2" dia. PVC w/ 0.010" slot	
 &): DEPTH (1 1 (ft): 17, DIAMETE	Ö	Š V	₩ 5. ↓ [
Ö -	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DI WELL DEPTH BOREHOLE DI CHECKED BY:	Depth (feet)	<i>///////</i>	ro Freezenski	Di Di	5
HOLE N	2	Headspace PID (units)	0.8	o O	0.0	
BOREH PAGE	11/2/1 11/4/10 ETER (ii	(feet) wold funo		9 15 3 23 23	e 6 t	
HOLE 7-2)): EV (ft): (ft): 12 1 (ft): 8 1 2 3 DIAME	Measured Recov.	ĪO		5	
WELL / PROBEHOLE / BOREHOLE NO:	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 8 11/4/10 STATIC DTW (ft): 8 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Time Sample ID	1000 MWR-2@2.5	1420 NS	1430 MWR-2@10'	
WEI	NOF LAT GRC INIT STA WEL	Sample				
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle PROJECT NUMBER: 212302587	STARTED 10/29/10 COMPLETED: 11/2/10 STARTED 10/29/10 COMPLETED: 11/2/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	GRAVEL ; GP; brown; moist; no staining; poorly graded; <3% sand, no HC odor, perched water @ 2.1' to 2.4' (fill material)		GRAVELLY SAND; SP; brown; loose; non cohesive, no HC odor (fill material)	Hole terminated at 17 feet.
BE SE	STA STA STA IPANY IPMEN HOD:	nece	9		S	
: Z	ATION S COM S EQU	Graphic Log				
PROJECT: LOCATION: PROJECT N	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	& əmiT htqəQ (təət)	1000	, n	01/01/11 TG5.17 64 00 01/01/11 TG5.17	GEO FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR IN

	гн (ft): 17.0 17.0 IETER (in): 8	Well	Concrete			
7 70:	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 17.0 WELL DEPTH (ft): 17.0 BOREHOLE DIAMETER (in): 8 CHECKED BY:	htdəQ (feet)		2	• • • • • • • • • • • • • • • • • • •	ξ.
WELL / PROBEHOLE / BOREHOLE NO: MWR-3 PAGE 1 OF 1	7	wold frood froodspace DIQ (stinu)	<u>.</u>	8 9 10 10	νοο 	
R-3	EV (ft): (ft): 11 11 (ft): 10 17 S DIAMET TP/RM	Measured Recov. (feet)	2	ī.	ō	
L/PROBEHC	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 11 11/2/10 STATIC DTW (ft): 10 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Time Sample ID	820 MWR-3@2.5	1100 MWR-3@5'	1110 MWR-3@10'	
WEI		Sample				
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle PROJECT NUMBER: 212302587	STARTED 10/29/10 COMPLETED: 11/2/10 STARTED 10/29/10 COMPLETED: 11/2/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	SILTY SAND; SM; brown; moist; no staining; <5% fine gravel, no HC odor (fill material)	SAND WITH SOME GRAVEL; SP; brown; loose; moist; no staining; poorly graded; non cohesive, no HC odor (fill material)		Hole terminated at 17 feet.
/BER:	STA APANY IIPMEN HOD: UIPME	naca	S	S.		
;;	ATION A CON B EQU B MET	Graphic Log				
PROJECT: LOCATION: PROJECT N	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	& amiT Atged (feet)	820	1100 5-	01/01/11 TG	GEO FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GD 30 40 71 71 71

	17.0 (in): 8	Well	— Concrete	← Bentonite 2" dia. PVC	— 10-20 sand	2" dia. PVC w/ 0.010" slot	<u> </u>
40LE NO:	2	Headspace PID (units) Depth (feet)	£.	1.1	1.0	15-	<u></u>
OLE / BOREH	t): EV (ft): (ft): 11 11/2/10 (ft): 9 11/4/10 3 DIAMETER (in TP/RM	Measured Recov. (feet) Wold Count		15 17 17	9779		
WELL / PROBEHOLE / BOREHOLE NO: MWR-4 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 111/2/10 STATIC DTW (ft): 9 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Time Sample ID	840 MWR-4@2.5	1300 MWR-4@5'	1310 MWR-4@10'		
WEL	NOR LATE GRC INIT STA WEL	Sample					
COP 1396 500 Westlake Avenue N, Seattle 212302587	STARTED 10/29/10 COMPLETED: 11/2/10 STARTED 10/29/10 COMPLETED: 11/2/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	GW; brown; fine to coarse-grained; moist; no staining; well graded; no HC odor (fill material)	SAND WITH TRACE GRAVEL; SP; brown; medium-grained; medium dense; moist; no staining; poorly graded; non cohesive, no HC odor (fill material)			Hole terminated at 17 feet.
	\ \^` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	naca	MÐ	SP			
: Ž L	ATION S COM S EQUI	Graphic Log					
PROJECT: LOCATION: PROJECT NUMBER:	DRILLING: STARTE INSTALLATION: STARTE DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT:	& əmiT ArqəQ (1991)	840	1300 5	1310 10-	TLE, WA.GPJ SECOR INTL.GDT 11/10/10 22 25 75 76	GEO FORM 304 COP 1396 SEAT

© U		Well	Concrete	-Bentonite \2" dia. PVC	10-20 sand	-2" dia. PVC w/ 0.010" slot	
 		Con	S S	F Bei		-	
ö -	EASTING (ff): LONGITUDE: TOC ELEV (ff): BOREHOLE DEPTH (WELL DEPTH (ff): 17 BOREHOLE DIAMETI CHECKED BY:	Depth (1991)		ر ا	P 2	م 	<u></u>
HOLE NO	7.	Headspace PID (units)	9.	0.7	22.9		
OLE / BOREH	: 1 11/3/1 3 11/4/10 METER (i	Recov. (feet) Blow trong		r 2	1 L		
WELL / PROBEHOLE / BOREHOLE NO:	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 111/3/10 STATIC DTW (ft): 8 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Sample ID Measured	945 WWR-5@2.5	0101 0 8N	1020 MWR-5@10'		
WEI	NOR LATI GRC INIT STA WEL	Sample					
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle PROJECT NUMBER: 212302587	STARTED 10/28/10 COMPLETED: 11/3/10 STARTED 10/28/10 COMPLETED: 11/3/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	SILTY SAND ; SM; brown; moist; no staining; poorly graded; <5% coarse sand, no HC odor (fill material)		SAND WITH SILT; SM; gray; medium-grained; loose; moist; no staining; poorly graded; non cohesive, HC odor, wood debris (fill material)		Hole terminated at 17 feet.
ABER:	STA IFPANY IFMEN HOD:	naca	∑ _Ø		MS		
I.: NO:	G EQU G MET	Graphic Log					0. 0. 0.
PROJECT: LOCATION: PROJECT N	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	& əmiT Afqəd (feet)	930	1010 5-	1020 10-	. LE, WA.GPJ SECOR INTL.GDT 11/10/10 6 7 7 7	GEO FORM 304 COP 1396 SENT

SECOR): DEPTH (ft): 18.0 1 (ft): 18.0 DIAMETER (in): 8 7:	Well	— Concrete	EBentonite		2" dia. PVC w/ 0.010" slot	
10LE NO:	7	Headspace PID (units) Depth Depth (feet)	5.0	0.7	7.0	Di 15-	
HOLE / BOREH	(ft): : 14 11/3/10): 10 11/4/10 DIAMETER (in) P/RM	Measured Recov. (feet) Mow Count		w w 4			
WELL / PROBEHOLE / BOREHOLE NO: MWR-6 PAGE 1 OF 1	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 14 11/3/10 STATIC DTW (ft): 10 11/4/10 WELL CASING DIAMETER (in): 2 LOGGED BY: TP/RM	Sample ID	1400 MWR-6@2.5	900 MWR-6@5'	910 MWR-6@10'		
COP 1396 600 Westlake Avenue N, Seattle 212302587	ED 10/28/10 COMPLETED: 11/3/10 ED 10/28/10 COMPLETED: 11/3/10 Cascade Drilling, Inc. Air knife/Hollow stem auger Hollow stem auger : Split spoon/PID	Description	SILTY SAND WITH GRAVEL; SM; orangeish olive gray; medium to coarse-grained; moist; fine to coarse gravel, trace medium stiff clay, black staining, slight HC odor (fill material)	SILTY SAND; gray with black; medium-grained; loose; moist; trace clay, no HC odor, wood debris (fill material)	CLAYEY SILT; SC; gray with black; low plasticity, moist; trace sand, no HC odor, wood debris (fill material		Hole terminated at 18 feet.
MBER:	STAI MPANY: JIPMEN THOD:	naca	NS NO CONTRACTOR OF CONTRACTOR		S S S S S S S S S S S S S S S S S S S		
ON:	IG: LATION IG CON IG EQU IG MET	Graphic Log					
PROJECT: LOCATION: PROJECT NUMBER:	DRILLING: STARTE INSTALLATION: STARTE DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT:	& əmiT AtqəD (təət)	1345	900	910 10-	MA.GPJ SECOR INTL.GDT 11/10/10 22 52 53 75	CEO FORM 304 COP 1396 SE

NO:	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 7.0 WELL DEPTH (ft): 7.0 BOREHOLE DIAMETER (in): 1 CHECKED BY:	(units) Depth (feet) Construction	- sand - bentonite - 4" dia. PVC	5- w/ 0.020" slot	
OLE / BOREHOLE 1	1 4 1	Measured Recov. (feet) Blow Count Count Headspace	, t	0.00	
WELL/PROBEHOLE/BOREHOLE NO: SVER-1 PAGE 1 OF 1	ᄪᇎᄬᇎᇬᇎ	Sample ID	1150 SVER-1@2.5	1020 SVER-1@5'	
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle PROJECT NI IMBER: 212302587	STARTED 10/28/10 COMPLETED: 11/4/10 STARTED 10/28/10 COMPLETED: 11/4/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	SILTY SAND; SM; brown; fine to medium-grained; moist; trace gray stiff clay, no HC odor	SANDY SILT; ML; gray; fine to medium-grained; low plasticity; soft; moist; well graded sand, no HC odor	Hole terminated at 7 feet.
:: ::	DRILLING: STARTE INSTALLATION: STARTE DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT:	Graphic Log USCS	S S		
PROJECT: LOCATION:	DRILLING: ST. INSTALLATION: ST. DRILLING COMPANY DRILLING METHOD: SAMPLING EQUIPM	Depth (feet)	1140 1150 14	01/01/10	GEO FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GDT 1

	E 1 OF 1	Headspace PID (feet) Construction	2.0
HOLE / BORE	K - L PAGE 1): EV (ft): (ft): NE 11/4/10 (ft): NE 11/5/11 S DIAMETER (in) TP/RM	Measured Recov. (feet) Blow Count	ζο
	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): NE 11/4/10 STATIC DTW (ft): NE 11/5/10 WELL CASING DIAMETER (in): 4 LOGGED BY: TP/RM	Time Sample ID	1320 SVER-2@2.5 SVER-2@5'
>		Sample	
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle	ER: 212302587 STARTED 10/28/10 COMPLETED: 11/4/10 STARTED 10/28/10 COMPLETED: 11/4/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	SILTY SAND; gray; fine-grained; loose; moist; poorly graded; non cohsesive, no HC odor Hole terminated at 7 feet.
	STA STA STA STA IPANY IPMEN HOD:	naca	§S .
ا ت تا	S: ATION COM BEQUI	Graphic Log	
PROJECT: LOCATION:	PROJECT NUMBER: 21 DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING METHOD: SAMPLING EQUIPMENT	& əmiT htqəU (təət)	ED FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GDT 11/10/10 92 93 93 131 131 132 134 135 136 137 137 137 137 137 137 137

OLE NO:	1 OF 1 SECOR	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 7.0 WELL DEPTH (ft): 7.0 4 BOREHOLE DIAMETER (in): 10 CHECKED BY:	Headspace PID (feet) (feet)	sand	2.4 — bentonite — 4" dia. PVC	5	
OLE / BOREH	-3 PAGE)): EV (ft): (ft): NE 11/4/10 (ft): NE 11/5/10 3 DIAMETER (in): TP/RM	Measured Recov. (feet) Blow Count			0 m 4	
WELL / PROBEHOLE / BOREHOLE NO:	SVER	NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): NE 11/4/10 STATIC DTW (ft): NE 11/5/10 WELL CASING DIAMETER (in): 4 LOGGED BY: TP/RM	Time Sample ID		1110 SVER-3@2.5	1110 SVER-3@5'	
×		A 4 9 5 1 2 3 0	Sample				
	LOCATION: 600 Westlake Avenue N, Seattle PROJECT NUMBER: 212302587	STARTED 10/28/10 COMPLETED: 11/4/10 STARTED 10/28/10 COMPLETED: 11/4/10 ANY: Cascade Drilling, Inc. MENT: Air knife/Hollow stem auger DD: Hollow stem auger PMENT: Split spoon/PID	Description	SANDY GRAVEL WITH CLAY; GC; gray; medium to coarse-grained; moist; Slight HC odor		SILT WITH TRACE SAND; ML; gray; medium-grained; low plasticity; soft; moist; no HC odor, trace iron oxide staining	Hole terminated at 7 feet.
	BER:	STA STA PANY PMEN HOD:	naca	၁၅		¥	
	N. NOM	S EQL	Graphic Log				
PROJECT	LOCATION: PROJECT N	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	& əmiT Depth (feet)	1050	1100	01/01	SEO FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GDT 11/

NO:	EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 7.0 WELL DEPTH (ft): 7.0 BOREHOLE DIAMETER (in): 1 CHECKED BY:	(sainu) Mell Construction		5
OLE / BOREHOLE 1	4	Measured Recov. (feet) Blow Count Count Headspace	75.	13.7
WELL / PROBEHOLE / BOREHOLE NO: SVER-4 PAGE 1 OF 1	15 막은 독일	Sample Sample ID	900 SVER-4@2.5'	845 SVER-4@5'
PROJECT: COP 1396 LOCATION: 600 Westlake Avenue N, Seattle PROJECT NUMBER: 212302587	0 COMPLETED: 11/4/10 0 COMPLETED: 11/4/10 Drilling, Inc. Hollow stem auger em auger an/PID		SILTY SAND; SM; brown; fine to medium-grained; moist; poorly graded; <5% gravel, no HC odor	SANDY SAND; SM; gray; fine-grained; loose; moist; poorly graded; non cohesive, slight HC odor Hole terminated at 7 feet.
CT: ION: CT NUMBER:	DRILLING: START INSTALLATION: START DRILLING COMPANY: DRILLING EQUIPMENT: DRILLING METHOD: SAMPLING EQUIPMENT	Graphic Log USCS		
PROJECT: LOCATION: PROJECT N	DRILLING: INSTALLA DRILLING DRILLING SAMPLING	& əmiT htqəQ (təət)	845 000	0 FORM 304 COP 1396 SEATTLE, WA.GPJ SECOR INTL.GDT 11/10/10 9 7 70

Cardno ATC	Chaning the Future
9	

f 2													
б	2 5	MW-212	Well Construction				eter Sch 40 PVC	α.	2" dian	neter Sch 4	0 PVC	with 0.00	1" slots
; Page 1 CDI HS Auger 8-inch	2.5-inch OD Split Spoon	9/30/14		Conc	rete	Bentonite	nedium esive;	Sand				20% ve;	
Cardno ATC Project Name: P66-1396 Drilling Information Cardno ATC Project Number: 76.75118.1396 Drilling Contractor: Location: 600 Westlake Avenue Drilling Method: Seattle, WA Borehole Diameter:	formation	Mark Newman Well/Boring Designation: 25 ft bgs Surface Elevation: 20 ft bgs Start Date: End Date	Soil Classification/ Description	Surface: 16" Concrete Core Air knife to 5 ft below ground surface (bgs).			SILTY SAND; dark brown; 60% fine sand, 15% silt, 15% medium sand, 10% small gravel; slight induration; moderately cohesive; moist; no pretroleum-like odor (NPO).	Ac about. Indirections maint blood	As above, low recovery, most, ivi o.			SILTY SAND; Dark Brown with organics; 60% fine sand, 20% ciarse sand; 20% silt; weak induration; moderately cohesive; moist; NPO.	
o ATC		Mark Nev 25 ft bgs 20 ft bgs 15 ft bgs	USCS Classification				SM		Ö			SM	
Cardno			PID/FID Readings				0.3	C	7.0			15.4	
, 100		Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	Blow Counts				0 0 0	-	4 9 5			2 2	
Cardno ATC Shaping the Future		Logged by: Boring Dep GW Encou Static GW	Sample Interval										
Ca ATC Shaping t		Loggec Boring GW En Static (Notes:	Кесолегу										
			Depth (ft)		7	ω 4	6 6	യ ത	6 1	12 5	4	15 16	7 6

ardno TC
5

2" diameter Sch 40 PVC with 0.001" slots ; Page 2 of Well Construction MEDIUM SAND; grey/brown; 70% medium sand, 20% fine sand, 10% silt; weak induration; slightly cohesive; wet; NPO. SILT with FINE SAND; greenish grey; 60% silts, 30% fine sand, 10% clay; very cohesive; slight induration; saturated; NPO. **BORING LOG #: MW-212** 600 Westlake Avenue, Seattle, WA Soil Classification/ Description 76.75118.1396 9/30/2014 Boring terminated at 25 feet bgs. P66-1396 Cardno ATC Project Number: Cardno ATC Project Name: Location: Date: SW ML **USCS** Classification 0.4 3.1 PID/FID Readings 4 15 16 Blow Counts 4 ကက Shaping the Future Sample Interval Кесолегу 29 7 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 4 Depth (ft)

oup	e Firfiliza
Cal ATC	Chaning the Future
9	

	BORIN	BORING LOG #: MW-213; Page 1 of	3 ; Page 1	ο
Cardno ATC Project Name: P66-1396	966-1396	Drilling Information		
Cardno ATC Project Number: 76.75118.1396 Drilling Contractor:	6.75118.1396	Drilling Contractor:	CDI	
Location: 600 Westlake Avenue Drilling Method:	stlake Avenue	Drilling Method:	HS Auger	
Seattle, WA	WA	Borehole Diameter:	8-inch	
		Sampler Type:	2.5-inch OD	
			Split Spoon	

	MW-213	Well Construction		2" di	ame	eter	Sch	40 F	PVC	2	" di	am	ete	r S	ch	40 I	>V(C w	/ith	0.0	01'	" sl	ots			:: ! ::::::	1		1		:::::::::::::::::::::::::::::::::::::::					
	M 4 4		L	Concre	te	Bent	onite		Sar	nd																										
Event Information	Well/Boring Designation: Surface Elevation: Start Date: End Date: 70/1/14	Soil Classification/ Description	caped soil.	Air knife to 6.0 ft below ground surface (bgs).								SILTY SAND; dark grey; 60% fine sand, 10% coarse sand, 20%	gravel, 10% silt; moderate induration; slightly cohesive; moist;					SILTY SAND; light grey; 70% medium sand, 10% fine sand,	20% silt; moderate induration; slightly cohesive; moist; moderate	odor (MPO).								SILTY SAND; dark grey and light brown; 80% fine sand, 10%	medium sand, 10% silt; moderate induration; moderately	MPO.				100 minutes 2001 fine 2000 1000 1000 1000 1000 1000 1000 100	SILTT SAND, dalk grey, oo.% iine sand, 10% medium sand, 30% siit; alight induration; very cohesive; saturated; MPO	
	Mark Newman 20 ft bgs 10 ft bgs 12 ft bgs		Surface: landscaped soil.	Air knife to 6.0								SILTY SAND; o	gravel, 10% silt	NPO.				SILTY SAND; II	20% silt; mode	petroleum-like odor (MPO)								SILTY SAND; o	medium sand,	cohesive; wet; MPO.				. CIA & O XF = O	30% silt; alight	
	Mark N 20 ft b 10 ft b 12 ft b	noifsoification										SM						SM										SM							SM	
		PID/FID Readings										1.7						816										14.4							4.2	
	Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	Blow Counts										14	1	15				∞	10	13								10	10	10				,	4 4	2
	Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	Sample Interval																																		
	Logged Boring GW Er Static	К есолегу																	\triangleright																	
		Depth (ft)		<u>_</u>	2	i 	ဗ	4		2	,	o 		 - 	80		ი 		0t 	-	:	12		13	;	44	<u>ر</u>	2	16	2	17	<u> </u>	18		19	20

L.
Shaning the Future
0.

8		BORING L	BORING LOG #: MW-214; Page 1 of	4 ; Page 1	, of
ardno	ardno ATC Project Name: P66-1396		Drilling Information		
2	Cardno ATC Project Number: 76.75118.1396 Drilling Contractor:	8.1396 Drill	ling Contractor:	CDI	
	Location: 600 Westlake Avenue Drilling Method:	Avenue Drill	ling Method:	HS Auger	
ing the Future	Seattle, WA	Bor	Borehole Diameter:	8-inch	
		Sar	Sampler Type:	2.5-inch OD	
				Split Spoon	
	Event Information	rmation			

of 1			214	Well Construction		2" di	ameter	Sch 4	.0 PVC	2	" diam	neter S	Sch 40) PVC	with	0.00	1" slo	ts					
Je 1	ger	h OD	MW-214	noitaintenoù llaW	Cond	rete Be	ntonite			Sand													
BORING LOG #: MW-214 ; Page 1	Cardno ATC Project Name:P66-1396Drilling InformationCardno ATC Project Number:76.75118.1396Drilling Contractor:CDILocation:600 Westlake AvenueDrilling Method:HS AugerSeattle, WABorehole Diameter:8-inch	Sampler Type: 2.5-inch OD Split Spoon Event Information	Well/Boring Designation: Surface Elevation: Start Date: End Date: 70/1/1	Soil Classification/ Description	Sureface: landscaped soil. Air knife to 6.0 ft below ground surface (bgs).					SILTY SAND; olive grey; 60% fine sand, 10% medium sand, 30% silt; moderate induration; moderately cohesive; moist; NPO.			As above; wet; MPO.					SILTY SAND; olive grey; 60% fine sand, 15% medium sand,	25% silt; moderate induration; moderately cohesive; saturated; NPO.	in a termentia abenda ab 47 feathers	Boring terminated at 17 teet bgs.		
	ATC F		Mark Newman 17 ft bgs 10 ft bgs 12 ft bgs	LIONDO LIO DO CO	A S														% Z	Ċ	ă	+	
	4		Mai 17 1 12 1	USCS Classification						S			SM					SM					
	Cardno Cardno /			PID/FID Readings						10.8			2.0					0.4					
8	01		Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	Blow Counts						2 2			9	7				က	ε 4				
	the Fufu		Logged by: Soring Dep SW Encou Static GW Votes:	Sample Interval																			
	ATC Shaping the Future		Logged Boring GW Er Static (Notes:	Кесолегу									\triangleright										
				Depth (ft)	-	2 _	3	4	2	6 –	8	6		<u> </u>	12 —	13 —	41	15 —	16 —	17	18	5 6	<u> </u>
	7					1 1				1 1 1						· _ _	<u> </u>		<u> </u>	· 			

2	
Jp.	Entrino.
TC	Chaning the Entire
OA	ð

₹ MW-215 2" diameter Sch 40 PVC with 0.001" slots 2" diameter Sch 40 PVC Well Construction 2.5-inch OD San Split Spoon Bentonite HS Auger BORING LOG #: MW-215; Page 8-inch S 25% silt, 5% gravel; moderate induration; moderately cohesive; SILTY SAND with ORGANICS (wood chips); dark brown; 50% fine sand, 15% medium sand, 15% silt, 20% pulvarized wood chips; no induration; not cohesive; saturated; NPO. Well/Boring Designation:
Surface Elevation:
Start Date:
End Date: SILTY SAND; dark grey; 60% fine sand, 10% medium sand, **Drilling Information** Borehole Diameter: Drilling Contractor: Drilling Method: Sampler Type: As above; wet; strong petroleum-like odor (SPO). Air knife to 6.0 ft below ground surface (bgs) Soil Classification/ Description Location: 600 Westlake Avenue Seattle, WA **Event Information** 76.75118.1396 Boring terminated at 17 feet bgs. P66-1396 Sureface: landscaped soil. Cardno ATC Project Number: Cardno ATC Project Name: moist; NPO. Mark Newman 10 ft bgs 12 ft bgs SM SM SM **USCS** Classification 0.5 2.1 0.1 PID/FID Readings Boring Depth: GW Encountered Static GW Level: Notes: 2 3 9 2 2 2 2 2 2 Blow Counts onaping the Future Logged by: Sample Interval Кесолегу 9 7 13 4 15 16 17 9 19 20 Depth (ft) 0 $^{\circ}$ က 4 2 9 ∞

Cardno	ATC	Shaning the Future

f 2																											
o		۵ د	MW-216		Well Construction				2	2" dia	mete	r Sch	40 PV	'C			2"	dian	eter	Sch 4	0 PVC	with	0.001	l" slot	S	1	
e 1	rger	ch OD	×	4 4			Conc	ete	Bent	onit	e				Sa	and											
16; Pag	CDI HS Auger 8-inch	2.5-inch OD Split Spoon	tion:	10/2/14									0% fine ately									, NPO.					
BORING LOG #: MW-216; Page 1	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	Sampler Type:	Well/Boring Designation: Surface Elevation:	Start Date: End Date:	cation/ ion		se (bgs).						medium sand with 2				Ö					sand with pulverized wood chips; wet; NPO					
	Cardno ATC Project Name: P66-1396 Cardno ATC Project Number: 76.75118.1396 Location: 600 Westlake Avenue Seattle, WA	Event Information	man	JS	Soil Classification/ Description	Surface: 16" Concrete Core	Air knife to 6 ft below ground surface (bgs)						MEDIUM SAND with FINES; brown medium sand with 20% fine sand, 10% silt, 10% gravel; moderate induration; moderately	cohesive; moist; NPO		1	As above; slightly conesive; dry; NPO					SILTY SAND; silty sand with pulveri					
	ATC		Mark N	20 ft bgs 15 ft bgs	USCS Classification								SW			3	N N					SM					
	Cardno Cardno				PID/FID Readings								0.3				4.0					2.0					
8	Cardno ATC Shaping the Future		ott:	GW Encountered Static GW Level: Notes:	Blow Counts								7	7			4 4	2				20/2					
	Carar ATC Shaping the Future		ged by	Encou c GW ss:	Sample Interval																						
(ATC Shaping th		Logg	GW Stati Note	Весолегу																						
					Depth (ft)		 -	7	၂	4	וו	۱				 တ	10 –	7	12 –	13	41	15	16 –		18	19	20 –
	7				(#) 4taga		· 	, ,		7			_			<i></i>	_										⊢

2	
Ş	
ATC	
0	

2" diameter Sch 40 PVC with 0.001" slots BORING LOG #: MW-216; Page 2 of Well Construction SANDY SILT; olive grey; 60% silt, 20% fine sand, 20% medium sand; very cohesive; slight induration; saturated, NPO 600 Westlake Avenue, Seattle, WA Soil Classification/ Description 76.75118.1396 10/2/2014 Boring terminated at 25 feet bgs. Wood debris, very low recovery. P66-1396 Cardno ATC Project Number: Cardno ATC Project Name: Location: Date: M **USCS** Classification 0.2 ł PID/FID Readings 9/09 4 Blow Counts 7 2 Shaping the Future Sample Interval Кесолегу 29 36 39 7 22 23 24 25 26 27 28 30 31 33 34 35 37 38 4 Depth (ft)

2	
Ip.	Fiffire
iar TC	Shaning the Future
A	J.

8		BORIN	BORING LOG #: MW-217; Page 1 of	′; Page 1	of
dno	Cardno ATC Project Name: P66-1396	P66-1396	Drilling Information		
	Cardno ATC Project Number: 76.75118.1396 Drilling Contractor:	76.75118.1396	Drilling Contractor:	CDI	
	Location: 600 V	Location: 600 Westlake Avenue Drilling Method:	Drilling Method:	HS Auger	
ie ruture	Seattl	Seattle, WA	Borehole Diameter:	8-inch	
			Sampler Type:	2.5-inch OD	

J QO uo	MW-217	Well Construction		2" diameter Sch 40 PVC	<u> </u>	th 40 PVC with 0.001" slots
Cardno ATC Project Number: P66-1396 Drilling Information Cardno ATC Project Number: 76.75118.1396 Drilling Contractor: CDI Location: 600 Westlake Avenue Drilling Method: HS Auger Seattle, WA Borehole Diameter: 8-inch Sampler Type: 2.5-inch OD Split Spoon	istami Well/Boring Designation: Surface Elevation: Start Date: T0/3/1	Soil Classification/ Description	Surface: 16" Concrete Core Air knife to 5 ft below ground surface (bgs).	WELL GRADED SANDY SILT; olive grey; 60% silt, 35% fine sand, 5% gravel; low plasticity; moist; NPO.	SILTY SAND; greyish brown; 80% fine sand, 20% silt; no plasticity; moist; NPO.	SILTY SAND; silty sand with pulverized wood chips; wet; NPO. Low recovery.
AT OF AT	Nasrin Ba 25 ft bgs 20 ft bgs 15 ft bgs	USCS Classification		M	MS	NS NS
Cardr Cardr		PID/FID Readings		0.1	0.4	8.2
<u>0</u>	Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	Blow Counts		8 1 10 10	9 8 0	9 40 7 7
Cardno ATC Shaping the Future	Logged by: Boring Dep: GW Encour Static GW I	Sample Interval				
Cal ATC Shaping th	Logg Borir GW I Statir Note	Кесолегу				
		Depth (ft)	- 0	ω 4 π ω μ σ	0 0 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	£ 4 7 6 7 8 6 8

quo	
Car ATC	
9	
	Cardno

2" diameter Sch 40 PVC with 0.001" slots BORING LOG #: MW-217; Page 2 of Well Construction SANDY SILT; olive grey; 45% silt, 50% fine sand, 5% organics; low plasticity; saturated, NPO SILTY SAND; brown; 40% silt, 20% silt, 40% organics (wood 600 Westlake Avenue, Seattle, WA Soil Classification/ Description 76.75118.1396 10/3/2014 Boring terminated at 25 feet bgs. P66-1396 Cardno ATC Project Number: Cardno ATC Project Name: Location: Date: SM M **USCS** Classification 1.1 6.8 PID/FID Readings 4 9 14 17 7 Blow Counts Shaping the Future Sample Interval Кесолегу 25 29 36 39 7 22 23 24 26 27 28 30 31 33 34 35 37 38 4 Depth (ft)

ပိပိ	
Cardno ° ATC	Shaping the Future
9	

of 2			8) D) (6						
		00	MW-218	Well Construction	Col	ncrete	Ber	2" dia tonit	ameter e	Sch	40 F	VC		San		' diam	eter S	scn 40	PVC	with	0.001	" SIOT	S		
8; Page	CDI HS Auger 8-inch	2.5-inch OD Split Spoon	10/3/14											gravel;						ganics					
BORING LOG #: MW-218; Page 1	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	Sampler Type:	Well/Boring Designation: Surface Elevation: Start Date: End Date:	cation/ ion	ce (bgs).									sand, 35% siltm 5% gr						sand, 15% silt, 45% organics O.					
BORIN	Cardno ATC Project Name: P66-1396 Cardno ATC Project Number: 76.75118.1396 Location: 600 Westlake Avenue Seattle, WA	Event Information	Nasrin Bastami 25 ft bgs 20 ft bgs 15 ft bgs	Soil Classification/ Description	Surface: 16" Concrete Core Air knife to 8 ft below ground surface (bgs)									SILTY SAND; olive grey; 60% fine sand, 35% siltm 5% no plasticity: moist: SPO						SILTY SAND; olive grey; 35% fine sand, 15% (wood chips); no plasticity; wet; SPO.					
	o ATC		Nasrin Ba 25 ft bgs 20 ft bgs 15 ft bgs	USCS Classification										SM						SM					
	Cardn			PID/FID Readings										1221						31.0					
@	0		Logged by: Boring Depth: GW Encountered Static GW Level: Notes:	struoO wold										- 6	0 8					20/2"					
	Cardno ATC Shaping the Future		Logged by: Boring Depl GW Encour Static GW I Notes:	Sample Interval																					
	Cal ATC Shaping th		Logged Boring GW Er Static (Кесолегу																					
				Depth (ft)		7 - 1	 က 	 4 	 	, , , ,	 	7 -	8	 6 	10 -	<u>+</u> + + + + + + + + + + + + + + + + + +	12 -	13	 4t 	15	_ 16 _	17	1 18	1 9	- 1 - 20 - 1

Cardno ° ATC	
9	

2" diameter Sch 40 PVC with 0.001" slots BORING LOG #: MW-218; Page 2 of Well Construction SILTY SAND; dark brown; 80% organics, 20% silt, 10% sand; NPO; moist; low recovery. 600 Westlake Avenue, Seattle, WA Soil Classification/ Description 76.75118.1396 10/3/2014 Boring terminated at 25 feet bgs. Wood chips, very low recovery. P66-1396 Cardno ATC Project Number: Cardno ATC Project Name: Location: Date: SM M **USCS** Classification 86.0 1.1 PID/FID Readings 5/4" 2/3" Blow Counts Shaping the Future Sample Interval Кесолегу 26 29 36 39 7 22 23 24 25 27 28 30 31 33 34 35 37 38 4 Depth (ft)

0 0	
Cardno ° ATC	Shaping the Future
9	

			•			BORING	BORING LOG #: MW-219; Page 1	9 ; Pag	e 1 of	7
	Cal ATC Shaping th	Cardno ATC Shaping the Future	9	Cardn	o ATC	Cardno ATC Project Name: P66-1396 Cardno ATC Project Number: 76,75118.1396 Location: 600 Westlake Avenue Seattle, WA	Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	CDI HS Auger 8-inch		
						Event Information	Sampler Type:	2.5-inch OD Split Spoon	OD r	
	Logi Bori GW Stati Note	Logged by: Boring Dep GW Encou Static GW	Logged by: Boring Depth: GW Encountered Static GW Level: Notes:		Felicity W 20 ft bgs 15 ft bgs 14 ft bgs	poo,	Well/Boring Designation: Surface Elevation: Start Date: End Date:)/3/1	MW-219	
Depth (ft)	Весолегу	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification	Soil Classification/ Description	ion/		Well Construction	
-						Surface 16" Concrete Core. Water jet/vac truck to 8 ft below ground surface (bgs)	nd surface (bgs).		2" d	
- Z 									liamete ete Be	
် ဗ 									er Sch	
4										
2									/C 2"	
9 									diame	
- 7 -									eter S	
ω ·			2	26.2	ML	SANDY SILT; dark grey; 60% silt, 40% fine present; low plasticity; moist; NPO.	% fine sand, wood chips	sdi	ch 40 F	
ည င ်			7						VC w	
5 5									ith 0.0	
12									01" slo	
13									ts	
41										
- 15			9/09			No recovery; NPO; moist. Encountered solid wood	d solid wood.			
- 16										
- 17 -										
18										
- 19										
20	Щ		50/4			No recovery; NPO; wet.				

ਰ

APPENDIX C

DRAFT February 16, 2018

FIGURE 3 LOCATION OF MONITORING WELLS AND BOREHOLE INSTALLED DURING THIS INVESTIGATION

CROSS SECTION A - A'

LEGEND

SAMPLE LOCATION AND ANALYTICAL RESULT FOR TPH AS GASOLINE C7 TO C_{12} TPHG 2,100

LITHOLOGICAL CONTACT

WATER TABLE ON 5/2/94

CROSS SECTION LOCATION SHOWN ON FIGURE 2

CROSS SECTION B - B'

	DWN AJW_
SEACOR	APPR 6/7/94
	JOB# 5 15

FIGURE 3
CROSS SECTIONS A-A' AND E
CIRCLE K STORE #1476
12660 1ST AVENUE SOUTH
SEATTLE, WASHINGTON

APPENDIX D

DRAFT February 16, 2018

SUMMARY OF ANALYTICAL TEST RESULTS FOR TPH IN SOIL TABLE 4.

CLEANUP LEVEL ² (ppm)	200	200	200	200	200	200
(mdd) TIOS	38 8.6	290 33	750 73	500	450	390
TEST PARAMETER ¹	TPH TPH	TPH TPH	TPH TPH	TPH TPH	TPH TPH	ТРН
DATE OF COLLECTION	01/28/91 01/28/91	01/28/91 01/28/91	01/28/91 01/28/91	01/30/91 01/30/91	01/30/91 $01/30/91$	01/30/91 01/30/91
DEPTH (feet)	5 10	10 15	5	ഹയ	ഹയ	10
LOCATION	MW-1 MW-1	MW-4 MW-4	MW-3 MW-3	BH-1 BH-1	MW-2 MW-2	MW-5 MW-5
SAMPLE NO.	19631 19633	19637 19639	19642 19644	19280 19282	19285 19287	19290 19292

Notes: 1 TPH is Total Petroleum Hydrocarbons.

Model Toxics Control Act, 1991, Washington State Department of Ecology. \sim

TABLE 5. SUMMARY OF ANALYTICAL TEST RESULTS THAT EXCEEDED SOIL CLEANUP LEVELS FOR BTEX

SAMPLE NO.		LOCATION	DEPTH (feet)	DATE OF COLLECTION	TEST PARAMETER ¹	SOIL (ppm)	CLEANUP LEVEL ² (ppm)
19289		MW-5	ស	01/30/91	Benzene	0.56	0.5
19291		MW-5	10	01/30/91	Benzene Toluene Xylenes	11.0 57.0 87.0	0.5 40.0 20.0
19636		MW-4	10	01/29/31	Benzene Toluene	4.3	0.5
Notes:	-	Test para ethylbenz	Test parameter for BTEX i ethylbenzene, and xylene.	Test parameter for BTEX includes benzene, toluene, ethylbenzene, and xylene.	s benzene, t	oluene,	
	~	Model Tox Departmen	Model Toxics Control A Department of Ecology.	Model Toxics Control Act, 1991, Washington State Department of Ecology.	Washington	State	

TABLE 1

SOIL ANALYTICAL RESULTS SOIL BORING MW-12 Circle K Store # 1476 April 18, 1995

[Laboratory Analytical Results in milligrams per kilogram (mg/kg)]

12660 1st Avenue South, Seattle, Washington

Total Lead	(10)	(10)	
Total Xylenes	(0.1)	(0 1)	
Ethyl Benzene	(0 1)	(0 1)	
Toluene	(0 1)	(0 1)	
Benzene	(0 02)	(0 02)	
TPH as Gasoline	(5)	(5)	
Depth (feet)	55	70	
Soil Boring	MW-12	MW-12	

Notes

mg/kg = parts per multion TPH as Gasoline = total petroleum hydrocarbons in the gasoline range by Washington Department of

Ecology Method WTPH-G

Benzene, toluene, ethyl benzene, and total xylenes by EPA Method 5030A/8020 Total lead by EPA Method 7420

(5) indicates constituent not detected at or above the inclosed method reporting limit Soil cleanup levels from Model Toxics Control Act (MTCA) Method A cleanup regulations, Washington Administrative Code (WAC), Chapter 173-340-740(2)(a)(i) dated February 11, 1991 (revised December 1993)

TABLE 1 LIMITED OFF-SITE ASSESSMENT - SOIL ANALYTICAL RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
SB-19-2	07/21/05	2	<7.76	20.3 ^a	70.0	<0.00119	<0.00119	<0.00317	<0.00792	<0.000792	<0.00396	28.4
SB-19-4	07/21/05	4	<7.91	<10.0	<25.0	<0.00125	<0.00125	<0.00334	<0.00835	<0.000835	<0.00417	64.4
SB-19-5	07/21/05	5	<3.91	11.9 ^a	50.9	<0.00150	0.00218	<0.00400	<0.0100	<0.00100	<0.00500	95.1
SB-19-10	07/21/05	10	3,420	112 ^b	277	16.2	<1.55	76.8	123	<7.74	23.6	7.66
SB-19-15	07/21/05	15	<3.35	33.2 ^b	163	0.0110	0.00254	0.0878	0.151	<0.00126	0.0999	14.9
SB-19-20	07/21/05	20	4.46	35.5 ^a	109	0.0181	0.00140	0.0383	0.0595	<0.000862	0.0120	8.06
SB-20-2	07/21/05	2	15.3	<10.0	<25.0	0.00442	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	4.75
SB-20-4	07/21/05	4	8.74	29.2 ^a	56.9	0.0116	0.00189	<0.00339	<0.00847	<0.000847	<0.00424	7.21
SB-20-5	07/21/05	5	<7.65	<10.0	<25.0	<0.00625	<0.00625	<0.0167	<0.0417	<0.00417	<0.0208	5.68
SB-20-10	07/21/05	10	<10.5	12.8 ^a	<25.0	0.00232	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	7.23
SB-20-15	07/21/05	15	<3.91	10.4 ^a	<25.0	0.00836	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	15.7
SB-20-20	07/21/05	20	6.93	33.8 ^a	200	0.00696	<0.00132	<0.00351	<0.00877	<0.000877	<0.00439	4.21
SB-21-2	07/21/05	2	18.1	<10.0	<25.0	0.00516	<0.00150	<0.00400	0.0110	<0.00100	<0.00500	16.9
SB-21-4	07/21/05	4	10.2	21.6 ^a	60.1	0.0754	0.00542	0.00896	0.0255	<0.000766	<0.00383	95.1
SB-21-5	07/21/05	5	8.31	12.0 ^a	44.9	0.0442	0.00506	0.0165	0.0454	<0.00172	<0.00859	6.63
SB-21-10	07/21/05	10	22.5	22.4 ^b	38.0	1.02	<0.221	2.61	1.53	<1.11	0.95	3.87
SB-21-15	07/21/05	15	<3.94	<10.0	<25.0	0.00538	0.00296	<0.00400	<0.0100	<0.00100	<0.00500	2.23
SB-21-20	07/21/05	20	<3.96	<10.0	<25.0	0.00275	0.00601	0.00546	0.0237	<0.00100	<0.00500	22.8
SB-22-2	07/21/05	2	17.9	<10.0	<25.0	0.0666	<0.0283	<0.0283	<0.0849	<0.141	0.0723	190
SB-22-4	07/21/05	4	1,090	587 ^b	1,490	<0.658	<0.658	0.780	<1.97	<3.29	7.99	53.3
SB-22-5	07/21/05	5	758	169 ^b	467	3.44	<0.356	3.59	1.14	<1.78	9.98	50.9
SB-22-10	07/21/05	10	1,380	382 ^b	995	1.76	<0.360	5.78	2.69	<1.80	5.96	50.3
SB-22-15	07/21/05	15	99.0	12.4 ^b	29.7	0.241	<0.0745	0.350	0.672	<0.372	0.336	6.37
SB-22-20	07/21/05	20	16.5	12.9 ^a	<25.0	0.0112	0.00282	0.0167	0.0224	<0.000859	0.0190	7.12

TABLE 1 LIMITED OFF-SITE ASSESSMENT - SOIL ANALYTICAL RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

MTCA Method Level for Unro		•	30°	2,000	2,000	0.03	7	6	9	0.1	5	250
Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)

Notes:

mg/kg = milligrams per kilogram

<n = Below the detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020.

Values in BOLD are detectable concentrations exceeding the MTCA Method A soil cleanup level.

^a Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

^b Hydrocarbon pattern most closely resembles a jet fuel product.

^c MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

TABLE 3 TERRY AVE. SOIL ANALYTICAL RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

		Sample	TPH-	TPH-	TPH-	_		Ethyl-				
Sample I.D.	Sample Date	Depth (feet)	Gasoline (mg/kg)	Diesel (mg/kg)	Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
MTCA Method for Unrestricte			30 ^a	2,000	2,000	0.03	7	6	9	0.1	5	250
EFR1-5.0	12/05/06	5	10.5	<11.8	<29.4	0.00149	<0.00137	<0.00364	0.0221	<0.000911	<0.00911	145
EFR1-10.0	12/05/06	10	146	<11.8	<29.4	0.00326	<0.00147	0.172	0.0173	<0.000978	0.00185	101
EFR1-15.0	12/05/06	15	56.9	25.9	74.5	0.0218	0.01020	0.000864	-	<0.00219	0.465	19.8
EFR2-2.0	12/04/07	2	11.2	56.2	425	<0.00173	0.00198	<0.00461	<0.0115	<0.00115	<0.0115	28.8
EFR2-5.0	12/05/06	5	<7.01	<14.2	<35.6	<0.00184	<0.00184	<0.00491	<0.0123	<0.00123	<0.0123	10.1
EFR2-10.0	12/05/06	10	<5.13	<12.5	<31.2	<0.00140	<0.00140	<0.00372	<0.00931	<0.00931	<0.00931	6.00
EFR2-15.0	12/05/06	15	<5.55	<13.0	<32.5	<0.00140	<0.00140	0.00374	<0.00936	<0.000936	<0.00936	7.12
EFR3-5.0	12/05/06	5	17.1	346	1,650	0.00226	<0.00136	<0.00363	<0.00908	<0.000908	<0.00908	72.0
EFR3-10.0	12/05/06	10	<5.44	<12.5	<31.3	0.00239	<0.00145	<0.00387	<0.00968	<0.000968	<0.00968	163
EFR3-15.0	12/05/06	15	<34.2 ^b	414	816	<0.00976	<0.00976	<0.0260	<0.0651	<0.00651	<0.0651	216
TSVE5-5.0	12/05/06	5	7.71	27.5	229	0.00319	0.00296	0.0146	0.0815	<0.000816	0.0515	112
TSVE5-10.0	12/05/06	10	112	59.1	283	0.00369	0.00526	0.0433	0.196	<0.000878	0.00526	37.7
TSVE6-5.0	12/05/06	5	<6.03	<12.5	<31.4	<0.00148	<0.00148	<0.00395	<0.00987	<0.000987	<0.00987	13.0
TSVE6-10.0	12/05/06	10	<5.80	<12.4	<31.1	<0.00157	<0.00157	<0.00419	<0.0105	<0.00105	<0.0105	62.3
TSVE7-5.0	12/05/06	5	<5.69	<12.7	<31.9	<0.00151	<0.00151	<0.004003	<0.0101	<0.00101	<0.0101	9.20
TSVE7-10.0	12/05/06	10	<5.38	<13.1	<32.8	<0.00150	<0.00150	<0.00399	<0.00997	<0.000997	<0.00997	16.7
TSVE8-5.0	12/06/07	5	<4.87	<12.1	<30.3	<0.00147	<0.00147	<0.00392	<0.00979	<0.000979	<0.00979	8.98
TSVE8-10.0	12/06/07	10	<4.65	<12.4	<30.9	<0.00116	<0.00116	<0.00309	<0.00773	<0.000773	<0.00773	5.53
TSVE9-5.0	12/06/07	5	7.00	<11.2	<28.1	<0.00129	<0.00129	<0.00345	<0.00863	<0.000863	<0.00863	3.88
TSVE9-10.0	12/06/07	10	<5.36	<12.9	<32.2	<0.00152	<0.00152	<0.00406	<0.0101	<0.00101	<0.0101	1.58
TSVE1-2.0	12/05/07	2	<5.25	21.0	37.2	0.0791	<0.00151	<0.00403	<0.0101	<0.00101	<0.0101	67.5
TSVE1-5.0	12/05/07	5	6.73	<11.7	<29.1	0.0587	0.00471	0.0237	0.0239	<0.000763	<0.00763	13.10
TSVE1-10.0	12/05/07	10	6.84	<12.1	<30.3	0.0308	<0.00123	<0.00328	<0.00821	<0.000821	<0.00821	21.0
TSVE2-5.0	12/05/07	5	<4.29	<11.6	<28.9	0.0384	<0.00121	<0.00322	<0.00805	<0.000805	<0.00805	4.81
TSVE2-10.0 TSVE3-5.0	12/05/07	10	<4.97	<11.8	<29.5	0.0673	<0.00121	<0.00323	<0.00807	<0.000807	<0.00807	4.52
TSVE3-5.0 TSVE3-10.0	12/05/07 12/05/07	5 10	7.99 81.8	<11.5 114	<28.6 37.5	<0.00130 0.00599	<0.00130 <0.00139	<0.00346 0.000813	<0.00864 <0.000314	<0.000864 <0.000929	<0.00864 0.594	4.39 32.7
TSVE4-5.0	12/05/07	5	11.7	<12.5	37.5 <31.3	<0.00599	<0.00139	0.000813	<0.000314	<0.000929	<0.00887	6.23
TSVE4-10.0	12/06/07	10	69.2	26.1	<36.0	<0.00206	<0.00206	0.0133	< 0.0137	<0.00137	0.0374	10.4

Notes:

mg/kg = milligrams per kilogram

<n = Below the laboratory reporting limit or the method detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020.

^aMTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

Laboratory detection limits exceeded MTCA Method A Clean-up Levels.

Values in BOLD exceed the MTCA Method A soil cleanup level.

ConocoPhillips Site No 255353 600 Westlake Avenue N Seattle Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead
MTCA Method Level for Unro			30ª	2,000	2,000	0.03	7	6	9	0.1	5	250
TPW-1	07/26/07	1	<5.30	<11.8	<29.5	<0.0302	<0.00151	<0.00402	<0.010	<0.00101	<0.010	43.3
TPW-6	07/26/07	6	1,820	254	268	<2.41	<2.41	21.0	36.0	<12.1	26.0	74.9
TPE-1'	07/26/07	1	47.8	179	412	0.00369	<0.00153	0.00520	0.02250	<0.00102	<0.0102	49.3
TPE-6'	07/26/07	6	765	186	211	<2.53	<2.53	23.6	94.9	<12.7	16.2	86.1

Notes:

mg/kg = milligrams per kilogram

<n = Below the laboratory reporting limit or the method detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds MTBE (Methyl tert-Butyl Ether) and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020

^a MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil

Values in BOLD exceed the MTCA Method A soil cleanup level

Table 2
Soil Analytical Results
Former ConocoPhillips Facility No. 255353
600 Westlake Avenue North, Seattle, Washington

Sample ID	Sample Depth (feet)	Sample Date	TPH-g (mg/kg)	' —	TPH-o (mg/kg)	Kerosene (mg/kg)	TPH-d TPH-o Kerosene Benzene Toluene mg/kg) (mg/kg) (mg/kg) (mg/kg)	Toluene (mg/kg)	TPH-dTPH-oKeroseneBenzeneTolueneEthylbenzeneXylenesmg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)
MW-209-7		10/14/08	<6,19	<12.6	<31,5	<12.6	<12.6 <0.000895<0.000895	<0.000895	<0.00239	<0.00597	<0.00597 <0.000597	<0.00597
MW-210-15	15	10/14/08	<5.71	19.8	73.4	<12.3	<0.00116 <0.00116	<0.00116	<0.00310	0.0112	0.0112 <0.000776	<0.00776
MW-211-7	7	10/14/08	<5.59	×41.6	<29.1	<11.6	<0.00102 <0.00102	<0.00102	<0.00272	<0.00681	<0.00681 <0.000681	<0.00681
MTCA Method A Cleanup Level for Soil	A Cleanu	ıp Level	100	2,000	2,000	2,000	0.03	7	9	6	0.1	ន

Notes:

TPH-g = total petroleum hydrcarbons as gasoline quantified using Northwest Method NWTPH-Gx

TPH-d = total petroleum hydrcarbons as diesel quantified using Northwest Method NWTPH-Dx with acid/silica gel cleanup

TPH-o = total petroleum hydrcarbons as oil quantified using Northwest Method NWTPH-Dx with acid/silica gel cleanup

Benzene, toluene, ethylbenzene, and xylenes quantified using EPA Method 8260B

MTBE (Methyl tert-Butyl Ether) and Naphthalene quantified using EPA Method 8260B

Total Lead quantified using EPA Method 6020

Values in BOLD indicate detectable concentrations exceeding the MTCA Method A soil cleanup level.

MTCA = Model Toxics Cotnrol Act regulation (WAC 173-340)

		Sample	TPH-	TPH-	TPH-			Ethyl-				
	Sample	Depth	Gasoline	Diesel	Oil	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
SB-1-5	06/07/05	5	7.6	<26.1	<52.1	0.064	<0.24	0.095 ^g	0.57	<0.48	<0.24	13.9
SB-1-10	06/07/05	10	3,600 ⁱ	113°	<57.8	3.8 ^h	28 ^h	48 ^h	280 ^h	<28 ^h	34 ^h	16.6
SB-1-15	06/07/05	15	<30	<26.6	<53.2	0.17	<1.2	<1.2	<1.2	<2.3	<1.2	10.8
SB-1-20	06/07/05	20	<20	<97.2 ⁱ	<194 ⁱ	1.4	0.63 ^g	0.35 ^g	1.7	<2.4	0.37 ^g	61.5
SB-2-5	06/08/05	5	<6.6	<32.3	<64.6	<0.04	<0.3	<0.3	<0.3	<0.59	<0.3	14.6
SB-2-10	06/08/05	10	<5.7	<27.5	74.4	<0.034	<0.22	<0.22	<0.22	<0.44	<0.22	5.15
SB-2-12	06/08/05	12	<5.9	<29.2	<58.4	<0.035	<0.25	<0.25	<0.25	<0.49	<0.25	4.23
SB-2-20	06/08/05	20	<7.2	<34.7	<69.5	<0.043	<0.31	<0.31	<0.31	<0.62	<0.31	5.39
SB-3A-5	06/08/05	5	15	<29.9	<59.7	0.048	<0.27	<0.27	0.34	<0.55	<0.27	5.71
SB-3A-8	06/08/05	8	19	<31	<62	0.057	<0.34	<0.34	0.21 ^g	<0.67	0.1 ^g	4.04
SB-3A-10	06/08/05	10	14,000 ^h	486°	<51.8	6.9 ^h	240 ^h	140 ^h	790 ^h	<46 ^h	59 ^h	4.75
SB-3A-12	06/08/05	12	1,000 ^h	28.1 ^c	<52.2	0.61 ^h	6.4 ^h	8.4 ^h	59 ^h	<4.8 ^h	9.8 ^h	3.7
SB-3A-14	06/08/05	14	11	<28.1	<56.2	<0.036	0.17 ^g	0.14 ^g	0.97	<0.46	0.13 ^g	21.5
SB-3A-21	06/08/05	21	<6.2	<30.3	<60.7	<0.037	<0.26	<0.26	<0.26	<0.51	<0.26	<2.32
SB-4-5	06/07/05	5	9.7	<29.3	<58.6	0.041	<0.31	0.16 ^g	0.26 ^g	<0.62	<0.31	9.5
SB-4-10	06/07/05	10	1,200	193°	<215	270	62	34	170	<36	5.5 ^g	107
SB-4-15	06/07/05	15	<22	<109 ⁱ	<219 ⁱ	0.92	<1.5	<1.5	0.48 ⁹	<3.1	<1.5	109
SB-4-20	06/07/05	20	<6.6	<28.4	<56.9	0.15	<0.25	<0.25	<0.25	<0.49	<0.25	3.59
SB-5-5	06/07/05	5	21	<28.7	<57.5	0.22	0.25 ⁹	0.39	2.1	<0.55	0.11 ⁹	9.73
SB-5-10	06/07/05	10	<7.1	<32.8	<65.7	0.38	<0.31	<0.31	0.25 ⁹	<0.63	<0.31	79.3
SB-5-15	06/07/05	15	72 ⁱ	<57.6	<115	0.33	<0.68	0.25 ^g	1.3	<1.4	<0.68	108
SB-5-20	06/07/05	20	<6.2	<28.8	<57.5	<0.037	<0.26	<0.26	<0.26	<0.52	<0.26	1.81
SB-6-5	06/08/05	5	7.1	<27.5	<55	<0.035	<0.26	<0.26	0.078 ⁹	<0.51	<0.26	5.81
SB-6-9	06/08/05	9	1,800 ^h	235°	<57.7	<0.14	<1.2	5.6	20	<2.4	16	6.21
SB-6-10	06/08/05	10	39	214 ^d	190	0.07	<0.31	1.2	0.46	<0.62	0.51	671
SB-6-15	06/08/05	15	<6.9	<30.3	<60.6	<0.042	0.19 ^g	<0.32	<0.32	<0.64	<0.32	74.6
SB-7-5	06/08/05	5	42	<29	<57.9	1.9	0.25 ⁹	1.5	4.6	<0.54	<0.27	11.2
SB-7-10	06/08/05	10	<6.5	<31.6	<63.2	<0.039	<0.32	<0.32	<0.32	<0.65	<0.32	89.2
SB-7-15	06/08/05	15	48	<151	<301	1	<2	<2	0.85 ^g	<4.1	<2	161
SB-7-20	06/08/05	20	<8	<34.8	<69.6	<0.064	<0.53	<0.53	<0.53	<1.1	<0.53	4.23
SB-8-5	06/09/05	5 o	<6.5	<30.9	<61.9	<0.036	<0.3	<0.3	<0.3	<0.59	<0.3	16.4
SB-8-8 SB-8-10	06/09/05	8 10	<6.3	<31.1	<62.1	<0.034	<0.28	<0.28	<0.28	<0.57	<0.28	<2.49
SB-8-10 SB-8-12	06/09/05 06/09/05	10 12	<5.5 <5.7	<26 <27.6	<51.9 <55.3	<0.028 <0.026	<0.24 <0.21	<0.24 <0.21	<0.24 <0.21	<0.47 <0.43	<0.24 <0.21	20.2 40.1
SB-8-15	06/09/05	15	12	373 ^f	333 ^f	<0.026	<0.21	<0.21	<0.21	<1.8	<0.21	45.8
SB-8-18	06/09/05	18	8,600 ^h	3,400 ^f	1,220 ^f	<0.33	3.1				<2.8	21.2
SB-8-20	06/09/05	20	13	3,400	<100	<0.079	<0.66	<2.8 <0.66	<2.8 <0.66	<5.5 <1.3	<0.66	15.5
SB-9-5	06/09/05	5	<5.6	<26.4	<52.9	<0.079	<0.08	<0.00	<0.08	<0.56	<0.08	3.82
SB-9-8	06/09/05	8	<6	<29.8	<52.9 <59.6	<0.034	<0.25	<0.25	0.092 ^g	<0.50	<0.25	4.84
SB-9-9 SB-9-9	06/09/05	9	<5.6	<27.6	<55.3	<0.03	<0.23	<0.23	<0.24	<0.31	<0.23	<1.77
SB-9-9 SB-9-10	06/09/05	10	5.7	<26.9	<53.7	<0.028	<0.24	<0.24	0.4	<0.47	0.087 ^g	19.5
SB-9-10 SB-9-12	06/09/05	12	5.7 550 ^h	96.8°	<55.7 <55.3	<0.024	<1.2	<1.2	11	<2.3	5.3	5.15
SB-9-12 SB-9-14	06/09/05	14	8,200 ^h	1,240°	<50.2	38	270	110	610	<2.3 <86	3.3 37 ⁹	12.6
JD-3-14	00/09/00	14	0,200	1,270	<50.∠	ა0	2/0	110	010	<00	- 5,	12.0

		Sample	TPH-	TPH-	TPH-			Ethyl-				
Sample I.D.	Sample Date	Depth (feet)	Gasoline	Diesel	Oil (mg/kg)	Benzene (mg/kg)	Toluene	benzene (mg/kg)	Xylenes	MTBE	Naphthalene	
MTCA Method		` '	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
for Unrestricte			30 ⁹	2,000	2,000	0.03	7	6	9	0.1	5	250
SB-9-15	06/09/05	15	83	<29.2	<58.4	0.25	<0.23	0.44	0.29	<0.45	0.17 ⁹	<2.29
SB-9-17	06/09/05	17	12	<25.7	<51.3	0.037	0.086 ^g	<0.29	0.35	<0.57	<0.29	<1.92
SB-9-18	06/09/05	18	7.5	<27.6	<55.2	0.13	<0.23	<0.23	0.2 ^g	<0.46	<0.23	<1.94
SB-9-20	06/09/05	20	<6	<26.7	<53.3	<0.029	<0.24	<0.24	<0.24	<0.48	<0.24	<2.17
SB-10-5	06/09/05	5	<6	<27.9	<55.9	<0.031	<0.26	<0.26	<0.26	<0.52	<0.26	2.18
SB-10-10	06/09/05	10	4,600 ^h	1,910 ^c	<52.1	0.17	<0.29	1.6	7.8	<0.59	4.4	117
SB-10-12	06/09/05	12	40	<31.1	<62.3	1.7	<0.51	3.8	0.39 ^g	<1	4	<2.28
SB-10-15	06/09/05	15	<5.9	<27.8	<55.7	0.11	<0.27	<0.27	<0.27	<0.54	0.32	<2.29
SB-10-20	06/09/05	20	<6.3	<28	<55.9	<0.031	<0.26	<0.26	<0.26	<0.52	0.095 ^g	<2.2
SB-11-5	06/10/05	5	<5.6	<27.1	64.1	0.096	<0.27	<0.27	<0.27	<0.54	<0.27	23.7
SB-11-9.5	06/10/05	9.5	<5.6	<26.9	<53.7	<0.027	<0.22	<0.22	<0.22	<0.45	<0.22	<2.21
SB-11-11	06/10/05	11	55	90.9	172	0.32	1.3	0.52	4.4	<0.58	0.66	77.1
SB-11-12.5	06/10/05	12.5	420 ⁱ	45.3°	<55	2.3	<1.1	22	18	<2.2	41	31.6
SB-11-13	06/10/05	13	2,500 ^h	245°	<56.6	34 ^h	<5.6 ^h	730 ^h	390 ^h	<11 ^h	380 ^h	2.33
SB-11-14	06/10/05	14	6.7	<27.3	<54.6	<0.022	<0.18	<0.18	<0.18	<0.36	<0.18	<2.21
SB-11-15.5	06/10/05	15.5	<6.1	<29.7	<59.4	0.038	<0.26	<0.26	<0.26	<0.53	<0.26	<2.18
SB-11-20	06/10/05	20	69 ⁱ	54.1 ^{f,i}	<80.3 ⁱ	0.3	<0.54	0.47 ⁹	0.56	1.1	0.34 ^g	12.7
SB-12-5	06/10/05	5	7.5	<26.8	<53.7	<0.025	<0.21	<0.21	<0.21	<0.42	<0.21	<2.14
SB-12-9.5	06/10/05	9.5	<6	<28.5	<57.1	<0.026	<0.22	<0.22	0.088 ^g	<0.44	<0.22	70.1
SB-12-11	06/10/05	11	1,500 ^h	98.2	<58.8	<0.49 ^h	100 ^h	100 ^h	2,200 ^h	<8.1 ^h	230 ^h	8.68
SB-12-12.5	06/10/05	12.5	3,400 ^h	579°	<58.5	110 ^h	240 ^h	1,600 ^h	18,000 ^h	<24 ^h	1,400 ^h	9.02
SB-12-14 ^J	06/10/05	14	170			1.6	1.4	19	56	<1.8	10	
SB-12-15.5	06/10/05	15.5	180	38.9 ^c	<61.1	1.7	<1.1	22	51	<2.2	11	10.8
SB-12-20	06/10/05	20	33	39.3°	113	<0.037	0.19 ^g	0.47	1.7	<0.61	0.4	10.7
SB-13-5	06/10/05	5	8.8	<32.1	<64.3	<0.044	<0.36	<0.36	<0.36	<0.73	<0.36	3,700
SB-13-9.5	06/10/05	9.5	<5.9	<28.1	<56.1	0.12	<0.25	<0.25	<0.25	<0.49	<0.25	6.75
SB-13-11	06/10/05	11	<5.9	<28.5	<56.9	0.15	<0.23	<0.23	<0.23	<0.46	<0.23	<2.05
SB-13-12.5	06/10/05	12.5	<5.7	<28.6	<57.1	0.042	<0.21	<0.21	0.12 ⁹	<0.42	<0.21	<2.11
SB-13-15.5	06/10/05	15.5	<18	263 ^{e,i}	1,000 ⁱ	<0.15	<1.2	<1.2	<1.2	<2.5	<1.2	41
SB-13-20 SB-14-5	06/10/05	20	<6.8	<27.2	<54.4	<0.029	<0.24	<0.24	<0.24 0.098 ^g	<0.49	<0.24	<2.14
SB-14-5 SB-14-10	06/13/05 06/13/05	5 10	<0.0 7,900 ^h	<32 1,270 ^c	<64.1 58.1	<0.04 <1.4 ^h	<0.34 <12 ^h	<0.34 110 ^h	330 ^h	<0.67 <23 ^h	<0.34 52 ^h	<2.52 8.44
SB-14-10 SB-14-15	06/13/05	15	31	<30.9	<61.7	<0.034	<0.29	0.37	1.1	<0.57	0.19 ^g	4.11
SB-14-20	06/13/05	20	54	<89.9 ⁱ	<180 ⁱ	<0.15	<1.3	0.45 ^g	1.5	<2.5	1.2 ⁹	<7.32
SB-15-9	06/13/05	9	<5.5	<26.1	<52.3	<0.031	<0.26	<0.26	0.082 ^g	<0.52	0.074 ^g	4.7
SB-15-10	06/13/05	10	<6.5	<31	<61.9	<0.037	<0.31	<0.31	<0.31	<0.62	<0.31	9.68
SB-15-12	06/13/05	12	680 ^h	<28.6	<57.2	0.5	0.4 ⁹	4.4	3.7	<2.4	18	<1.99
SB-15-15	06/13/05	15	<6.1	<28.2	<56.3	0.2	<0.23	<0.23	<0.23	<0.45	0.56	<2.38
SB-15-20	06/13/05	20	<11	<54.6 ⁱ	<109 ⁱ	<0.11	<0.95	<0.95	<0.95	<1.9	<0.95	5.82
SB-16-5	06/13/05	5	7.6	<28.8	<57.6	<0.046	<0.38	<0.38	<0.38	<0.76	<0.38	3.63
SB-16-10	06/13/05	10	<5.6	<27.7	<55.5	<0.032	<0.27	<0.27	<0.27	<0.54	<0.27	<2.12
SB-16-12	06/13/05	12	8,700 ^h	82.4°	<59.4	<6.3 ^h	110 ^h	87 ^h	500 ^h	<100 ^h	54 ^h	23.7
SB-16-15	06/13/05	15	3,500 ^h	64.9 ^c	<60.7	18 ^h	100 ^h	61 ^h	300 ^h	<29 ^h	23 ^h	18.8
SB-16-20	06/13/05	20	<15	<73.4 ⁱ	<147 ⁱ	<0.16	<1.3	<1.3	<1.3	<2.7	<1.3	13.8

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene (mg/kg)	Toluene	Ethyl- benzene	Xylenes	MTBE (mg/kg)	Naphthalene	Total Lead (mg/kg)
MTCA Method		_ , _ ,	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
SB-17-5	06/14/05	5	<5.7	<26.7	<53.3	<0.031	<0.25	<0.25	<0.25	<0.51	<0.25	17.3
SB-17-9.5	06/14/05	9.5	<5.7	<28.5	<57	<0.031	<0.26	<0.26	<0.26	<0.52	<0.26	9.13
SB-17-11	06/14/05	11	<6.5	<31.6	<63.3	<0.033	<0.27	<0.27	<0.27	<0.55	<0.27	3.42
SB-17-18.5	06/14/05	18.5	36	437 ^{f,i}	925 ^{f,i}	<0.043	<0.36	<0.36	<0.36	<0.72	<0.36	9.2
SB-17-20	06/14/05	20	52 ⁱ	156 ^f	287 ^f	<0.039	<0.32	<0.32	<0.32	<0.65	0.15 ^g	9.18
SB-18-5	06/14/05	5	<5.8	<26.9	<53.8	<0.03	<0.25	<0.25	<0.25	<0.5	<0.25	3.01
SB-18-9.5	06/14/05	9.5	<5.7	<24.4	<48.8	<0.028	<0.23	<0.23	<0.23	<0.46	<0.23	<2.06
SB-18-11	06/14/05	11	<6.1	<28.7	<57.3	<0.034	<0.28	<0.28	<0.28	<0.56	<0.28	<2.17
SB-18-12.5	06/14/05	12.5	<6.3	<28.4	<56.9	<0.032	<0.27	<0.27	<0.27	<0.54	<0.27	13.2
SB-18-20	06/14/05	20	<6.3	<29.3	<58.6	<0.033	<0.27	<0.27	<0.27	<0.55	<0.27	<2.2
SB-18-20 SB-23-5	10/13/05	5	<5.04	<10.4	<26.1	<0.033°	<0.0524	<0.0524	<0.27	<0.100	<0.210	3.31
SB-23-3 SB-23-10	10/13/05	10	<5.04 6,360	<10.4 29.8 ^m	<26.6	4.07	24.6	77.8	377	<0.100	86.0	6.59
SB-23-15	10/13/05	15	<6.42	30.9 ^q	51.6 ^m	<0.0300	0.0887	<0.0806	<0.161	<0.100	<0.322	26.0
SB-23-20	10/13/05	20	<11.4	81.5 ^q	93.9 ^m	<0.0300	0.130	0.113	0.529	<0.100	<0.376	6.73
SB-24-5	10/13/05	5	<4.27	<11.5	<28.8	<0.0270	<0.0451	<0.0451	<0.0901	<0.0901	<0.180	2.61
SB-24-9	10/13/05	9	5,080	432 ^p	<56.5	9.00	39.7	108	529	<0.0906	102	8.82
SB-24-10	10/13/05	10	66.4	146 ^p	<29.2	12.0	176	146	809	<0.0964	46.7	8.26
SB-24-12	10/13/05	12	34.9	<12.7	<31.8	1.11	0.481	0.605	3.18	<0.102 ¹	0.274	5.64
SB-24-15	10/13/05	15	<7.50	39.5 ^q	60.1	0.417	0.160	0.173	0.718	<0.163 ¹	<0.326	25.0
SB-24-20	10/13/05	20	<10.0	32.0 ^q	62.3	0.100	<0.105	<0.105	<0.209	<0.100	<0.418	14.6
SB-25-5	10/13/05	5	<5.00	<10.6	<26.4	<0.0300	<0.0690	<0.0690	<0.138	<0.100	<0.276	2.67
SB-25-10	10/13/05	10	<3.87	<11.5	<28.8	0.0268	0.0868	0.0641	0.306	<0.0812	<0.162	11.1
SB-25-15	10/13/05	15	<4.34	<12.1	55.9	0.307	<0.0438	0.148	0.244	<0.0875	<0.175	21.0
SB-25-20	10/13/05	20	<4.25	<11.8	<29.4	0.0913	<0.0404	<0.0404	<0.0808	<0.0808	<0.162	3.72
SB-26-5	10/13/05	5	<4.48	27.0 ^f	93.9	0.0795	0.0470	0.0759	0.223	<0.0903	<0.181	13.6
SB-26-10	10/13/05	10	7.31	<13.0	<32.5	1.50	<0.0499	<0.0499	0.117	<0.0999	<0.200	5.25
SB-26-15	10/13/05 10/13/05	15 20	<4.52	<12.0	<30.0	0.0503	<0.0457	<0.0457	<0.0914	<0.0914	<0.183	2.03
SB-26-20		20	<3.84	<12.8 187 ^m	<32.1	<0.0300	<0.0531	<0.0531	<0.106	<0.100	<0.213	6.87
SB-27-5 SB-27-7	10/14/05 10/14/05	5 7	9,930 175	45.6 ^m	116 <28.9	42.5 31.5	377 276	135 118	745 625	<0.0754 <0.0810	108 36.5	20.1 28.3
SB-27-9	10/14/05	9	35.5	43.0 417 ^q	829	4.23	1.28	0.781	3.34	<0.0010	0.570	20.8
SB-27-10	10/14/05	10	167	1,100 ^m	3,670	1.52	9.26	4.67	24.5	<0.125 ¹	2.16	46.9
SB-27-15	10/14/05	15	44.8	130 ^m	231	0.211	1.76	0.858	4.53	<0.128 ¹	0.527	24.0
SB-27-20	10/14/05	20	<5.39	<13.1	<32.7	<0.0300	<0.0550	<0.0550	0.119	<0.100	<0.220	4.93
SB-28-5	10/14/05	5	903	1,790 ^m	4,120	0.0648	0.117	1.50	0.438	<0.106 ¹	11.6	49.4
SB-28-9	10/14/05	9	44.3	24.0	68.7	0.0739	<0.0560	0.0840	0.139	<0.112 ¹	0.238	6.88
SB-28-10	10/14/05	10	30.1	46.8 ^m	129	0.0747	<0.0429	0.580	0.113	<0.0858	2.97	31.9
SB-28-15	10/14/05	15	29.7	41.9 ^q	191	<0.0262	<0.0437	0.0507	<0.0874	<0.0874	0.427	10.2
SB-28-20	10/14/05	20	5.39	20.5 ^q	85.4	<0.0300	<0.0518	<0.0518	<0.104	<0.100	<0.207	5.63
SB-29-5	10/14/05	5	3,320	173 ^m	175	3.30	0.492	61.9	238	<0.103 ¹	30.9	19.0
SB-29-7	10/14/05	7	386	209 ^m	114	1.72	<0.0393	90.2	115	<0.0787	49.0	5.26
SB-29-10	10/14/05	10	26.8	39.9 ^q	77.6	0.572	0.0657	0.459	1.78	<0.101 ¹	<0.202	54.5
SB-29-15	10/14/05	15	101	1,150 ^q	169 ^m	0.678	0.209	1.74	6.19	<0.394 ¹	<0.788	127
SB-29-20	10/14/05	20	<10.0	142 ^q	82.6 ^m	0.183	0.124	<0.101	<0.203	<0.203 ¹	<0.406	62.7

		Camala	TDU	TDU	TDU			Ethan I				
	Sample	Sample Depth	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
SB-30-5	10/14/05	5	368	101 ^m	46.2	3.81	0.328	8.82	26.0	<0.111 ¹	4.08	13.0
SB-30-7	10/14/05	7	<6.68	31.7 ^q	35.6 ^m	<0.0300	0.116	<0.0677	<0.135	<0.100	0.271	68.1
SB-30-10	10/14/05	10	8.68	<15.6	<39.1	0.0556	0.151	0.191	0.780	<0.100	< 0.309	177
SB-30-16	10/14/05	16	137	57.7 ^m	138	0.425	1.14	4.88	23.1	<0.201 ¹	1.33	49.7
SB-30-20	10/14/05	20	<5.94	<13.9	<34.8	<0.0300	<0.0539	<0.0539	<0.108	<0.100	<0.216	6.40
SB-31-5	10/17/05	5	<4.69	<12.0	<30.0	0.0560	<0.0431	<0.0431	<0.0862	<0.0862	<0.0862	11.3
SB-31-10	10/17/05	10	<4.15	<11.7	<29.2	<0.0242	<0.0403	<0.0403	<0.0806	<0.0806	<0.0806	6.96
SB-31-15	10/17/05	15	<4.47	16.8 ^q	37.4	0.213	<0.0458	<0.0458	<0.0915	<0.0915	<0.0915	9.57
SB-31-20	10/17/05	20	<5.19	<11.5 ^q	40.3	0.0333	<0.0463	<0.0463	<0.0925	<0.0925	<0.0925	7.35
SB-32-5	10/17/05	5	1,880	297 ^m	236	1.17	1.27	77.9	212	<0.897 ¹	19.6	26.0
SB-32-7	10/17/05	7	2,640	335 ^m	273	1.81	<0.492	56.3	145	<0.985 ¹	21.2	17.3
SB-32-9	10/17/05	9	455	123 ^m	250	0.222	<0.309	5.99	20.8	<0.618 ¹	2.12	24.7
SB-32-12	10/17/05	12	120	920	1,560	<0.0300	<0.128	0.744	2.78	<0.100	<0.256	1,450
SB-32-16	10/17/05	16	<27.4	595 ^q	839	<0.0300	<0.245	0.387	1.33	<0.100	<0.490	170
SB-32-20	10/17/05	20	<4.36	<12.1	<30.3	<0.0271	<0.0451	<0.0451	<0.0903	<0.0903	<0.0903	2.35
SB-33-5	10/18/05	5	31.0	<11.7 50.6 ^q	<29.2	0.109	<0.0486	1.87	2.59	<0.0972	0.477	4.61
SB-33-15 SB-33-20	10/18/05 10/18/05	15 20	23.1 <4.49	<12.0	97.3 <29.9	<0.0299 <0.0254	0.749 <0.0423	<0.133 <0.0423	<0.267 <0.0845	<0.100 <0.0845	<0.267 <0.0845	22.6 1.72
				30.3 ^m								
SB-34-5 SB-34-15	10/18/05 10/18/05	5 15	343 <12.1	30.3 81.4 ^q	<30.4 184	0.488 < 0.0295	0.0795 <0.132	3.45 <0.132	6.30 <0.263	<0.0883 <0.0993	21.0 <0.263	9.42 39.9
SB-34-15 SB-34-20	10/18/05	20	<4.63	<11.9	<29.7	<0.0293	<0.132	<0.132	<0.263	<0.0993	<0.263	1.21
SB-35-5	10/18/05	5	26.4	<11.8		0.123	<0.0470		0.174	<0.0939	<0.0939	
SB-35-9	10/18/05	9	20.4 117	<11.6 41.3 ^m	<29.4 39.1	0.123	<0.0470	0.103 2.34	0.174	<0.0939	5.16	6.29 10.7
SB-35-10	10/18/05	10	430	50.8 ^m	52.3	0.151	<0.0510	0.758	0.148	<0.102 ¹	1.06	9.21
SB-35-15	10/18/05	15	7.51	<13.9 ^q	42.7	<0.0300	<0.0545	<0.0545	<0.109	<0.100	<0.109	8.06
SB-35-20	10/18/05	20	<7.82	40.2 ^q	<46.1	<0.0298	0.0909	<0.0758	<0.152	<0.0995	0.312	10.3
SB-36-5	10/18/05	5	9.73	<11.5	<28.7	<0.0246	<0.0410	<0.0410	<0.0819	<0.0819	<0.0819	10.3
SB-36-9	10/18/05	9	630	203 ^m	331	3.77 ^w	<0.983 ^w	23.7 ^w	<1.97 ^w	<1.97 ^{I,w}	<1.97 ^w	27.9
SB-36-12	10/18/05	12	2,750	132 ^m	72.7	5.70	<1.82	140	29.4	<3.63 ¹	47.4	22.1
SB-36-16	10/18/05	16	9.79	17.3 ^m	34.3	0.150	<0.0437	0.0516	<0.0874	<0.0874	0.109	6.82
SB-36-20	10/18/05	20	<4.37	<11.9	<29.7	<0.0262	<0.0437	<0.0437	<0.0874	<0.0874	<0.0874	3.72
SB-37-5	10/18/05	5	203	<11.5	<28.8	0.927	0.0572	4.33	9.63	<0.0893	0.935	118
SB-37-7	10/18/05	7	366	12.6 ^m	<30.7	1.40	0.527	3.10	15.4	<0.0910	3.75	27.7
SB-37-9	10/18/05	9	4,660	350 ^m	89.6	4.47	19.5	59.1	295	<0.354 ¹	20.9	27.7
SB-37-10	10/18/05	10	5,700	200 ^m	60.0	22.1	1.50	266	593	<0.384	94.5	26.8
SB-37-12	10/18/05	12	1,260	96.1 ^m	38.9	8.69	0.485	34.9	45.0	<0.330 ¹	11.5	12.0
SB-37-14	10/18/05	14	11.0	<11.9	<29.8	0.277	0.107	1.05	3.95	<0.0862	0.700	41.6
SB-37-15	10/18/05	15	17.1	<12.0	<30.0	0.244	<0.0431	0.522	1.12	<0.0862	0.143	20.3
SB-37-20	10/18/05	20	31.1	<12.6	<31.4	0.201	0.176	1.18	4.04	<0.100	0.573	9.39
SB-38-5	10/18/05	5	<4.31	<12.2	<30.5	<0.0236	<0.0394	<0.0394	<0.0788	<0.0788	<0.0788	34.1
SB-38-10 SB-38-15	10/18/05	10 15	12.4	27.1 ^q 23.9 ^q	82.4	<0.0299 <0.0267	<0.0521	<0.0521	<0.104	<0.100	<0.104	10.6
SB-38-15 SB-38-20	10/18/05 10/18/05	15 20	<4.34 <5.22	<13.0	60.0 <32.5	<0.0267	<0.0446 <0.0484	<0.0446 <0.0484	<0.0891 <0.0968	<0.0891 <0.0968	<0.0891 <0.0968	20.7 4.59
SB-39-3 SB-39-5	10/19/05 10/19/05	3 5	<6.45 <4.59	<108 <105	473 500	<0.0300 <0.0258	<0.0519 <0.0430	<0.0519 <0.0430	<0.104 <0.0860	<0.0999 <0.0860	<0.104 0.268	178 102
SB-39-10	10/19/05	10	<4.59 <3.88	<105 <12.5	<31.1	<0.0256	<0.0430	<0.0430	<0.0831	<0.0831	<0.0831	9.43
SB-39-15	10/19/05	15	<2.98	230 ^q	251	<0.0249	<0.0410	<0.0410	<0.0996	<0.0996	<0.0996	14.6
SB-39-20	10/19/05	20	<3.80	<11.7	<29.3	<0.0215	<0.0359	<0.0359	<0.0717	<0.0717	<0.0717	2.08
	,,	_~	.0.00								. 3.3. 17	

		Sample	TPH-	TPH-	TPH-			Ethyl-				
Sample I.D.	Sample Date	Depth (feet)	Gasoline (mg/kg)	Diesel (mg/kg)	Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	l otal Lead (mg/kg)
MTCA Method		, ,		(Hig/Kg)	(IIIg/Kg)			(IIIg/Kg)		(IIIg/Kg)		(IIIg/kg)
for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
SB-40-3	10/19/05	3	<6.96	27.9 ^q	83.7	<0.0243	<0.0406	<0.0406	<0.0811	<0.0811	<0.0811	56.0
SB-40-5	10/19/05	5	12.9	<11.3	<28.3	<0.0257	<0.0428	<0.0428	<0.0856	<0.0856	<0.0856	61.4
SB-40-9	10/19/05	9	131	44.2 ^m	<29.3	<0.0276	<0.0460	3.70	0.369	<0.0921	3.83	11.1
SB-40-10	10/19/05	10	363	<13.2	<33.1	0.313	<0.0457	7.26	8.15	<0.0914	2.74	8.86
SB-40-12	10/19/05	12	571	<13.8	<34.4	0.291	0.0510	14.6	42.0	<0.102 ¹	3.51	12.1
SB-40-15	10/19/05	15	99.8	62.9 ^q	74.9	0.260	0.0730	1.70	6.48	<0.114 ¹	0.775	4.64
SB-40-20	10/19/05	20	41.5	277 ^q	326	0.165	<0.137	0.181	0.723	<0.100	<0.275	42.9
SB-41-5	10/20/05	5	<4.31	<11.6	<29.0	<0.0252	<0.0420	<0.0420	0.139	<0.0841	<0.0841	3.45
SB-41-10	10/20/05	10	<4.87	40.4 ^m	33.0	<0.0300	<0.0500	<0.0500	<0.100	<0.100	<0.100	14.2
SB-41-12	10/20/05	12	44.2	<11.9	<29.9	0.0485	0.0732	0.133	2.96	<0.0950	1.76	8.61
SB-41-15	10/20/05	15	<4.32	<11.4	<28.5	2.09	<0.0420	<0.0420	<0.0840	<0.0840	<0.0840	3.24
SB-41-20	10/20/05	20	<4.50	<12.1	<30.3	0.120	<0.0455	<0.0455	<0.0909	<0.0909	<0.0909	14.1
SB-42-5	10/21/05	5	<4.49	<11.5	36.5	<0.0298	<0.0496	<0.0496	<0.0992	<0.0992	<0.0992	6.80
SB-42-7.5	10/21/05	7.5	<4.99	<12.3	<30.7	<0.0300	<0.0568	<0.0568	<0.114	<0.100	<0.114	4.67
SB-42-9	10/21/05	9	6.74	<12.2	<30.5	0.142	<0.0496	<0.0496	<0.0991	<0.0991	<0.0991	3.52
SB-42-10	10/21/05	10	101	302 ^m	1,300 ^m	0.149	<0.0424	<0.0424	0.127	<0.0849	0.115	34.2
SB-42-12	10/21/05	12	<4.68	66.4 ^m	254	<0.0273	<0.0456	<0.0456	<0.0911	<0.0911	<0.0911	11.4
SB-42-15	10/21/05	15	<5.28	<12.9	79.2	0.0615	<0.0569	< 0.0569	<0.114	<0.0409	<0.114	15.0
SB-42-20	10/21/05	20	<3.98	<11.3	<28.2	0.0426	<0.0374	< 0.0374	<0.0748	<0.0748	<0.0748	5.01
MW-54-5	06/07/05 ^b	5	37	<29.6	<59.1	1.9	3.8	1.2	4.2	<0.6	0.14 ^g	91.5
MW-54-10	06/07/05 ^b	10	<12	<29	<58	<0.052	<0.44	<0.44	<0.44	<0.87	<0.44	26.3
MW-54-15	06/07/05 ^b	15	12	<50.7	<101	0.95	0.21 ^g	0.19 ^g	0.76	<1.3	<0.67	94.1
MW-54-20	06/07/05 ^b	20	<6.2	<28.1	<56.2	<0.037	<0.27	<0.27	<0.27	<0.54	<0.27	2.01
MW-55-5	06/08/05	5	<6.7	<33.1	<66.2	<0.04	<0.3	<0.3	<0.3	<0.6	0.72	19.7
MW-55-9	06/08/05	9	<5.5	<25.6	<51.2	<0.033	<0.2	<0.2	<0.2	<0.41	<0.2	3.64
MW-55-15	06/08/05	15	31	233 ^f	<184	<0.44	<3.7	<3.7	<3.7	<7.3	45	23.2
MW-55-20	06/08/05	20	22	104 ^f	<102	<0.31	<2.6	<2.6	<2.6	<5.2	31	<3.89
MW-56-5	06/09/05	5	<6.3	<30.3	<60.6	<0.032	<0.27	<0.27	0.21 ⁹	<0.54	<0.27	5.23
MW-56-9	06/09/05	9	8.6 200 ⁱ	<30.6	<61.2	0.34	<0.28	0.17 ⁹	0.24 ⁹	<0.56	<0.28	4.41
MW-56-10	06/09/05	10		<27.6	<55.3	0.13	<0.25	2.8	<0.25	<0.49	0.92	4.5
MW-56-12 MW-56-15	06/09/05	12	<5.7 <6	<27.4 100 ^e	<54.7 278	0.13	<0.21	<0.21	<0.21	<0.42	<0.21	2.25
MW-56-18	06/09/05 06/09/05	15 18	<0 <11	<53.1	<106	<0.027 <0.064	<0.23 <0.54	<0.23 <0.54	<0.23 <0.54	<0.46 <1.1	<0.23 <0.54	2.91 9.83
MW-56-20	06/09/05	20	<16	<75.3	<151	<0.004	<1.1	<1.1	<1.1	<2.2	<1.1	9.63
MW-57-5	06/10/05	5	9.6	<27.1	<54.2	<0.029	<0.24	<0.24	<0.24	<0.49	<0.24	<1.89
MW-57-11	06/10/05	11	45	202 ^e	720	1.9 ⁱ	<0.44 ⁱ	2.2 ⁱ	7.1 ⁱ	<0.49	0.16 ^{g,i}	7.38
MW-57-12.5	06/10/05	12.5	410	54.5 ^e	<57.9	23 ^h	250 ^h	95 ^h	540 ^h	<5 ^h	53 ^h	13.6
MW-57-20	06/10/05	20	<6.3	408 ^f	1,540 ^f	<0.033	0.11 ^g	<0.27	<0.27	<0.54	0.19 ^g	172
MW-59-5	06/14/05	5	<6	<29	<58	<0.034	<0.29	<0.29	<0.29	<0.57	<0.29	5.1
MW-59-9.5	06/14/05	9.5	<9.5	<44.2 ⁱ	<88.4 ⁱ	0.055	<0.39	<0.39	<0.39	<0.78	<0.39	43.1
MW-59-11	06/14/05	11	7.6	<27.8	<55.7	0.057	0.22 ⁹	0.093 ^g	0.54	<0.56	0.22 ^g	4.73
MW-59-12.5	06/14/05	12.5	10	53.6 ^e	129	<0.03	<0.25	<0.25	0.13 ^g	<0.51	<0.25	5.65
MW-59-14	06/14/05	14	34	55.6°	<59.7	1.2	<0.28	2.9	0.56	<0.56	1.1	26.1
MW-59-15.5	06/14/05	15.5	230 ⁱ	<30.7	<61.4	0.92	<0.28	3.6	0.13 ^g	<0.57	3.9	<2.19
MW-59-17	06/14/05	17	310	208 ^c	<58.4	1.7	<1.3	7	16	<2.6	3.8	65.1
MW-59-20	06/14/05	20	<6.6	<35	<70	0.053	<0.34	<0.34	<0.34	<0.67	<0.34	9.28

		Sample	TPH-	TPH-	TPH-			Ethyl-				1
	Sample	Depth	Gasoline	Diesel	Oil	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
MW-60-5	06/14/05	5	<5.8	<26.2	<52.4	< 0.033	<0.27	<0.27	<0.27	<0.54	<0.27	<1.96
MW-60-9.5	06/14/05	9.5	13	<28.5	<57	0.17	<0.26	0.26	0.66	<0.52	<0.26	<2.22
MW-60-11	06/14/05	11	140 ⁱ	<27.3	<54.6	1	0.11 ^g	2.8	2.1	<0.71	0.13 ^g	<1.99
MW-60-12.5	06/14/05	12.5	7,100 ^h	570°	85.5	5.6 ^h	77 ^h	63 ^h	370 ^h	<24 ^h	29 ^h	20.2
MW-60-14	06/14/05	14	10,000 ^h	2,080°	362	65 ^h	380 ^h	190 ^h	980 ^h	<210 ^h	67 ^{g,h}	6.73
MW-60-15.5	06/14/05	15.5	14	192 ^e	999	0.37	0.3	0.3	1.2	<0.48	0.11 ^g	3.1
MW-60-20	06/14/05	20	37	439 ^{e,i}	862 ⁱ	0.52	2.2	0.56 ^g	2.4	<4.2	<2.1	67.9
MW-61-5	10/10/05	5	4.95	19.9 ^q	50.9	0.0593	<0.0350	0.0427	0.165	<0.0700	<0.0700	80.7
MW-61-10	10/10/05	10	4.06	<10.0	<25.0	0.523	<0.0354	0.0676	0.201	<0.0708	<0.142	11.9
MW-61-15	10/10/05	15	<3.51	<10.0	<25.0	0.422	<0.0391	<0.0391	<0.0782	<0.0782	<0.0782	8.81
MW-61-20	10/10/05	20	<3.78	<10.0	<25.0	<0.0228	<0.0379	<0.0379	<0.0759	<0.0759	<0.152	4.69
MW-62-5	10/10/05	5	<5.00	<10.0	33.7	0.0313	<0.0363	0.0429	<0.0725	<0.0725	<0.0725	6.40
MW-62-10	10/10/05	10	<5.00	<10.0	<25.0	<0.0212	<0.0354	<0.0354	<0.0708	<0.0708	0.0825	4.20
MW-62-15	10/10/05	15	<5.00	<10.0	<25.0	<0.0227	<0.0379	<0.0379	<0.0758	<0.0758	<0.0758	3.75
MW-62-20	10/10/05	20	<5.00	10.9 ^q	73.7	<0.0300	<0.0500	<0.0500	<0.100	<0.100	<0.100	9.83
MW-63-5	10/11/05	5	6.27	33.0 ^q	101	1.03	0.427	0.768	1.98	<0.100	<0.200	3,920
MW-63-10	10/11/05	10	<5.00	<10.0	<25.0	0.135	< 0.0337	< 0.0337	< 0.0673	< 0.0673	<0.135	39.6
MW-63-15	10/11/05	15	<5.00	15.6 ^q	36.4	0.402	<0.0354	<0.0354	<0.0708	<0.0708	<0.142	101
MW-63-20	10/11/05	20	<5.00	<10.0	32.0	0.162	<0.0500	<0.0500	<0.100	<0.100	<0.200	34.8
MW-64-5	10/11/05	5	<5.00	<10.0	<25.0	0.604	<0.0438	0.0804	0.427	<0.0876	1.79	4.50
MW-64-10	10/11/05	10	<5.00	<10.0	<25.0	1.84	<0.0424	<0.0424	<0.0847	<0.0847	<0.169	5.90
MW-64-15	10/11/05	15	<5.00	29.3 ^q	70.5	0.238	<0.0429	0.0439	0.0967	<0.0858	<0.172	20.3
DUP*	10/11/05	15	<5.00	255 ^m	216 ^m	0.0615	<0.0403	<0.0403	0.116	<0.0805	<0.161	10.9
MW-64-20	10/11/05	20	<5.00	<10.0	<25.0	<0.0214	<0.0357	<0.0357	<0.0715	<0.0715	<0.143	28.7
MW-65-5	10/11/05	5	15.2	<10.0	<25.0	<0.0223	<0.0371	0.0540	0.255	<0.0742	<0.148	4.35
MW-66-5	10/11/05	5	<5.00	15.3 ^q	91.3	0.931	0.128	<0.0389	0.0873	<0.0777	<0.155	6.34
MW-66-10	10/11/05	10	<5.00	<10.0	<25.0	0.136	<0.0393	<0.0393	<0.0787	<0.0787	<0.157	25.5
MW-66-15	10/11/05	15	<5.00	26.5 ^q	53.9	0.379	0.0796	<0.0433	<0.0866	<0.0866	<0.173	24.7
MW-66-20	10/11/05	20	<5.00	<10.0	<25.0	<0.0218	<0.0364	<0.0364	<0.0728	<0.0728	<0.146	1.27
MW-67-5	10/12/05	5	8.71	<12.6	<31.5	<0.0131	<0.101	<0.101	< 0.303	<0.0131	<0.101	12.7
MW-67-10	10/12/05	10	<7.45	27.8 ^q	85.8	<0.0151	<0.116	<0.116	<0.348	<0.0151	<0.116	13.8
MW-67-15	10/12/05	15	<40.6	471 ^m	221 ^m	<0.0969 ¹	<0.746	<0.746	<2.24	<0.0969	<0.746	7.07
MW-67-20	10/12/05	20	<4.56	<11.8	<29.6	<0.0277	<0.0922	<0.0922	<0.277	<0.0922	<0.0922	1.35
MW-68-5	10/11/05	5	4.49	<10.0	<25.0	0.602	0.0556	0.333	0.393	<0.0747	<0.149	35.2
MW-68-10	10/11/05	10	<3.83	<10.0	<25.0	0.423	<0.0389	0.0398	0.174	<0.0779	<0.156	140
MW-68-15	10/11/05	15	8.42	120 ⁿ	37.0 ^m	1.31	0.225	0.536	0.697	<0.0725	0.254	21.4
MW-68-20	10/11/05	20	<3.95	<10.0	<25.0	<0.0234	<0.0391	<0.0391	<0.0781	<0.0781	<0.156	1.43
MW-69-5	10/11/05	5	<5.00	<10.0	<25.0	<0.0248	<0.0414	<0.0414	<0.0828	<0.0828	1.20	57.1
MW-69-10	10/11/05	10	<5.00	<10.0	<25.0	<0.0212	<0.0354	<0.0354	<0.0707	<0.0707	<0.141	9.38
MW-69-15	10/11/05	15	<3.95	11.9 ^q	<25.0	<0.0243	<0.0405	<0.0405	<0.0809	<0.0809	<0.162	8.78
MW-69-20	10/11/05	20	<5.00	96.2 ^q	294	<0.0300	0.185	<0.0500	<0.100	<0.100	0.313	65.7
MW-70-5	10/12/05	5	<4.80	<10.7	<26.8	<0.0259	<0.0431	<0.0431	<0.0863	<0.0863	<0.173	3.73
MW-70-10	10/12/05	10	776	97.3 ^m	80.1	0.701	<0.331	23.9	1.52	<0.661 ¹	19.1	30.3
MW-70-15	10/12/05	15	508	<11.9	<29.7	<0.0283	<0.0472	<0.0472	<0.0945	<0.0945	<0.189	3.32
MW-70-20	10/12/05	20	30.2	<20.3	<50.7	<0.0302 ¹	<0.116	0.623	1.41	<0.0302	0.826	7.18
MW-71-5	10/12/05	5	<3.84	<10.8	<27.1	<0.0267	<0.0891	<0.0891	<0.267	<0.0891	<0.0891	2.73
MW-71-10	10/12/05	10	<4.33	<11.2	<28.0	0.189	<0.0861	0.314	0.262	<0.0861	<0.0861	5.39
MW-71-12	10/12/05	12	<4.55	<11.7	<29.3	<0.0273	<0.0910	<0.0910	<0.273	<0.0910	<0.0910	4.43
MW-71-15	10/12/05	15	888	135 ^m	298 ^m	1.02	0.724	9.97	29.1	<0.0623	6.49	7.10

		Sample	TPH-	TPH-	TPH-			Ethyl-				
	Sample	Depth	Gasoline	Diesel	Oil	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
MW-72-5	10/12/05	5	<3.82	<11.1	<27.9	<0.0257	<0.0857	<0.0857	<0.257	<0.0857	<0.0857	3.58
MW-72-10	10/12/05	10	<4.66	<11.1	<27.7	<0.0260	<0.0868	<0.0868	<0.260	<0.0868	<0.0868	5.42
MW-72-15	10/12/05	15	<22.9	219 ^q	403 ^m	0.533	<0.702	<0.702	<2.10	<0.0912	<0.702	124
MW-72-20	10/12/05	20	<11.8	109 ^q	99.6 ^m	<0.0405 ¹	<0.312	<0.312	<0.936	<0.0405	<0.312	20.9
MW-73-5	10/12/05	5	<5.05	<11.1	<27.7	<0.0288	<0.0960	<0.0960	<0.288	<0.0960	<0.0960	5.62
MW-73-10	10/12/05	10	4,530	45.0 ^m	<28.5	<0.0266	<0.0888	<0.0888	<0.266	<0.0888	<0.0888	3.54
MW-73-16	10/12/05	16	33.4	129 ^q	677	0.261	<0.443	<0.443	<1.33	<0.0576	<0.443	71.9
MW-73-20	10/12/05	20	<5.02	<12.0	<29.9	<0.0131	<0.100	<0.100	<0.301	<0.100	<0.100	2.45
MW-74-5	10/12/05	5	<4.84	<11.0	<27.6	<0.0291	<0.0969	<0.0969	<0.291	<0.0969	<0.0969	3.30
MW-74-10	10/12/05	10	14.2 ⁱ	54.8 ^m	<27.4 ^m	<0.0255	<0.0850	<0.0850	<0.255	<0.0850	<0.0850	4.77
MW-74-12	10/12/05	12	71.4	<11.9	<29.8	<0.0252	<0.0842	<0.0842	<0.252	<0.0842	<0.0842	1.79
MW-74-15	10/12/05	15	<8.40	<16.6 ^q	42.1 ^m	0.834	<0.139	<0.139	<0.418	<0.0181	<0.139	43.8
MW-74-20	10/12/05	20	<5.54	<14.1	<35.3	<0.0142	<0.109	<0.109	<0.327	<0.0142	<0.109	4.31
MW-75-7	10/13/05	7	<4.87	<11.6	<29.0	<0.0276	<0.0459	<0.0459	<0.0919	<0.0919	<0.184	6.59
MW-75-10	10/13/05	10	<5.80	<14.2	<35.6	<0.0134	<0.0516	<0.0516	<0.103	<0.0134	<0.206	11.4
MW-75-15	10/13/05	15	<4.56	<12.0	<30.1	<0.0256	<0.0426	<0.0426	<0.0853	<0.0853	<0.171	1.97
MW-75-20	10/13/05	20	<4.52	32.4 ^q	72.6	<0.0267	<0.0444	<0.0444	<0.0889	<0.0889	<0.178	8.36
MW-76-5	10/13/05	5	5.85	94.8 ^q	358	<0.0211	<0.0369	<0.0369	<0.0738	<0.0738	<0.148	36.9
MW-76-10	10/13/05	10	<4.86	<12.5	<31.2	<0.0282	<0.0469	<0.0469	<0.0938	<0.0938	<0.188	2.94
MW-76-15	10/13/05	15	<4.50	25.9 ^q	59.1	<0.0262	<0.0437	<0.0437	<0.0873	<0.0873	<0.175	124
MW-76-20	10/13/05	20	<4.43	<12.4	<31.0	<0.0300	<0.0542	<0.0542	<0.108	<0.100	<0.217	5.05
MW-77-7	10/13/05	7	<3.78	<11.0	<27.6	<0.0236	<0.0393	<0.0393	<0.0786	<0.0786	<0.157	6.50
MW-77-10	10/13/05	10	<4.41	<11.9	<29.8	<0.0258	<0.0430	<0.0430	<0.0861	<0.0861	<0.172	8.40
MW-77-15	10/13/05	15	<4.50	<12.0	<30.1	<0.0277	<0.0462	<0.0462	<0.0925	<0.0925	<0.185	7.19
MW-77-20	10/13/05	20	<4.74	<12.3	<30.7	<0.0268	<0.0447	<0.0447	<0.0894	<0.0894	<0.179	4.59
MW-78-5	10/13/05	5	<11.3	<20.6	59.5	<0.0300	<0.108	<0.108	<0.217	<0.100	<0.433	22.0
MW-78-10	10/13/05	10	<10.2	<18.1 ^q	<45.2	<0.0300	<0.0663	<0.0663	<0.133	<0.100	<0.265	27.0
MW-78-15 MW-78-20	10/13/05 10/13/05	15 20	<4.31 <4.14	<12.4 <11.9	<31.1 <29.8	<0.0300 <0.0286	<0.0570 <0.0477	<0.0570 <0.0477	<0.114 <0.0953	<0.100 <0.0953	<0.228 <0.191	7.14 5.68
											1	
MW-79-5	10/14/05	5	<3.70	14.9 ^m 19.6 ^m	<25.8	<0.0207	<0.0346	<0.0346	<0.0691	<0.0691	<0.0691° <0.118°	4.41
MW-79-10	10/14/05	10	<4.15 8.92	19.6 16.3 ^m	<26.1	<0.0300	<0.0591	<0.0591	<0.118	<0.100	<0.118 <0.0931°	2.05 2.14
MW-79-13 MW-79-15	10/14/05 10/14/05	13 15	<4.83	<11.3	<28.0 <28.3	<0.0279 <0.0198	0.0652 <0.0330	0.0931	0.573 <0.0660	<0.0931 <0.0660	<0.0931 <0.0660°	2.14
MW-79-13	10/14/05	20	<4.83 <5.08	72.1	39.9	<0.0198	<0.0508	<0.0508	<0.000	<0.100	<0.102°	2.07
MW-80-5				32.9 ^q								
MW-80-10	10/14/05 10/14/05	5	<6.11 <6.70	80.3 ^q	78.1 141	<0.0300 <0.0299	<0.0572 <0.0745	<0.0572 <0.0745	<0.114 <0.149	<0.100 <0.100	<0.229 <0.298	45.7 162
MW-80-10	10/14/05	10 15	<5.03	46.6 ^q	322	<0.0299	<0.0745	<0.0745	<0.0861	<0.100	<0.298	3.66
MW-80-13	10/14/05	20	<4.77	32.7 ^q	83.0	<0.0238	<0.0431	<0.0431	<0.0994	<0.0994	<0.172	22.1
MW-81-5 MW-81-10	10/14/05 10/14/05	5	6.73 ^h <4.75	11.9 ^q 11.9 ^u	29.2 <29.8	<0.0283 <0.0300	<0.0472 <0.0510	<0.0472 <0.0510	<0.0944 <0.102	<0.0944 <0.100	<0.0944° <0.102°	29.7 40.5
MW-81-10	10/14/05	10	<4.75 <6.70	86.2 ^q	<29.6 127	<0.0300	<0.0510	<0.0510	<0.102	<0.100	<0.102 <0.142°	63.4
MW-81-13		15 20	<4.32	68.3 ^q	188	<0.0300	<0.0711	<0.0711	<0.142	<0.100	<0.142 <0.0827°	9.39
	10/14/05	20										
MW-82-3 MW-82-5	10/14/05	3	28.2	26.6 ^m 344 ^m	30.9	1.10	0.0662	1.11	1.17	<0.0827 <0.914 ¹	0.712° 50.5°	5.50 15.4
MW-82-8	10/14/05	5 g	3,920 4,720	268 ^m	194	17.5	88.2	196	917	<0.914 <4.90 ¹		15.4
MW-82-8 MW-82-9	10/14/05 10/14/05	8 9	4,720 1,020	268 362 ^m	186 747	17.9 9.93	120 7.43	188 16.7	899 72.3	<4.90 <0.314 ¹	66.3 4.62	9.93 29.0
MW-82-10	10/14/05	10	588	175 ^m	343	4.20	7.43	11.3	44.7	<0.314 <0.257	3.38	31.0
MW-82-10	10/14/05	15	844	910 ⁿ	122 ⁿ	0.734	2.44	6.03	30.7	<0.257	1.89	8.26
MW-82-16	10/14/05	16	<4.76	<11.8 ^m	<29.5	0.754	<0.0484	<0.0484	0.106	<0.0968	<0.0968	2.39
MW-82-10	10/14/05	20	<4.70	<12.2	<30.5	<0.0291	<0.0484	<0.0484	<0.0969	<0.0969	<0.0908	3.53
IVI 4V-02-2U	10/14/03	20	\4.34	< 1Z.Z	<30.5	<0.0281	<0.0404	<0.0404	<0.0303	<0.0909	<0.19 4	ა.აა

	Comple	Sample	TPH-	TPH-	TPH- Oil	Donzono	Taluana	Ethyl-	Vylanaa	MTDE	Nanhthalana	Total Load
Sample I.D.	Sample Date	Depth (feet)	Gasoline (mg/kg)	Diesel (mg/kg)	(mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	(mg/kg)
MTCA Method		, ,										
for Unrestricte		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
MW-84-5	10/17/05	5	<4.55	<12.1	<30.3	0.0618	<0.0483	<0.0483	<0.0966	<0.0966	<0.0966	5.97
MW-84-10	10/17/05	10	<3.79	<11.0	<27.4	0.245	<0.0427	<0.0427	<0.0855	<0.0855	<0.0855	2.82
MW-84-15	10/17/05	15	<4.66	27.8 ^q	33.4	0.286	<0.0631	<0.0631	<0.126	<0.100	<0.126	10.5
MW-84-20	10/17/05	20	<4.00	20.3 ^q	128	0.0292	<0.0394	<0.0394	<0.0788	<0.0788	<0.0788	5.03
MW-85-5	10/17/05	5	4.78	14.0 ^q	<29.1	1.39	0.861	0.281	0.416	<0.0977	<0.0977	4.42
MW-85-10	10/17/05	10	<4.52	<12.4	<30.9	0.0308	<0.0466	<0.0466	<0.0932	<0.0932	<0.0932	10.8
MW-85-15	10/17/05	15	<2.98	<12.0	<30.0	<0.0206	<0.0343	<0.0343	<0.0686	<0.0686	<0.0686	3.60
MW-85-20	10/17/05	20	<4.43	<12.9 ^q	<32.2	<0.0215	<0.0359	<0.0359	<0.0717	<0.0717	<0.0717	7.01
MW-86-5	10/17/05	5	14.7	<11.3 ^q	36.1	0.785	<0.0413	0.160	0.584	<0.0827	<0.0827	4.87
MW-86-10	10/17/05	10	6.81	<11.7	<29.3	1.01	<0.0406	<0.0406	<0.0813	<0.0813	<0.0813	4.87
MW-86-15	10/17/05	15	<4.20	<11.8	<29.5	0.243	<0.0414	<0.0414	<0.0828	<0.0828	<0.0828	4.00
MW-86-20	10/17/05	20	<5.29	<12.9	<32.3	0.0380	<0.0500	<0.0500	<0.100	<0.100	<0.100	4.06
MW-87-5	10/17/05	5	<4.22	<11.3	61.4	0.154	<0.0410	<0.0410	<0.0821	<0.0821	<0.0821	9.05
MW-87-10	10/17/05	10	<4.70	14.9 ^q	41.0	0.110	<0.0281	<0.0281	<0.0561	<0.0561	<0.0561	7.11
MW-87-15	10/17/05	15	<6.83	541 ^q	383	<0.0299	<0.0743	<0.0743	<0.149	<0.100	<0.149	10.1
MW-87-20	10/17/05	20	<4.86	28.0 ^q	43.8	<0.0263	<0.0438	<0.0438	<0.263	<0.0876	<0.0876	54.6
MW-88-5	10/17/05	5	12.2	<11.2	<28.1	<0.0276	<0.0460	<0.0460	<0.0920	<0.0920	<0.0920	2.84
MW-88-7	10/17/05	7	4,710	347 ^m	242	<3.09 ^l	<5.15	198	813	<10.3 ¹	57.4	115
MW-88-9	10/17/05	9	2,200	164 ^m	156	0.501	0.632	31.6	131	<0.0962	10.7	15.8
MW-88-10	10/17/05	10	487	31.8	49.4	0.102	<0.0454	0.753	0.406	<0.0908	0.273	3.93
MW-88-15	10/17/05	15	6.19	<11.5	<28.9	<0.0241	<0.0402	0.0458	<0.0803	<0.0803	<0.0803	12.3
MW-88-20	10/17/05	20	<3.96	<11.2	<28.0	<0.0263	<0.0438	0.0490	0.117	<0.0875	<0.0875	6.18
MW-89-5	10/18/05	5	13.3	<12.1	<30.2	<0.0258	<0.0431	0.0990	0.208	<0.0861	<0.172	2.85
MW-89-12	10/18/05	12	44.9	41.5 ^q	72.3	0.124	0.144	0.185	0.376	<0.180 ^l	2.17	11.3
MW-89-15	10/18/05	15	<6.05	<11.4 ^q	<28.5	<0.0299	<0.0543	<0.0543	<0.109	<0.100	<0.217	6.37
MW-89-20	10/18/05	20	<5.36	<13.9	<34.8	<0.0299	<0.0525	<0.0525	<0.105	<0.100	<0.105	2.04
MW-90-5	10/18/05	5	410	554 ^m	680	1.95	0.105	46.3	79.7	<0.140 ¹	16.8	65.9
MW-90-7	10/18/05	7	476	2,180	3,450	2.08	<0.0833	8.99	22.7	<0.167 ¹	3.24	784
MW-90-10	10/18/05	10	64.6	4,640	9,130	0.142	<0.0749	1.90	5.85	<0.150 ¹	1.33	280
MW-90-15	10/18/05	15	10.4	116 ^q	227	0.986	0.395	0.860	2.34	<0.134 ¹	0.539	106
MW-90-20	10/18/05	20	<4.65	65.0 ^q	128	<0.0278	<0.0464	<0.0464	<0.0928	<0.0928	<0.0928	16.4
MW-91-5	10/18/05	5	99.6	43.3 ^p	51.9	0.344	0.0870	0.0891	0.361	<0.100	<0.102	81.4
MW-91-10	10/18/05	10	<6.05	62.8 ^q	135	0.379	0.176	0.125	0.297	<0.100	0.142	35.9
MW-91-15	10/18/05	15	<4.42	<11.6	<29.0	<0.0283	<0.0472	<0.0472	<0.0944	<0.0944	<0.0944	1.67
MW-91-18	10/18/05	18	<4.74	<12.1	<30.3	<0.0287	<0.0478	<0.0478	<0.0956	<0.0956	<0.0956	1.30
MW-92-5	10/18/05	5	<4.34	<10.5	<26.3	<0.0259	<0.0431	<0.0431	<0.0863	<0.0863	<0.0863	1.84
MW-92-10	10/18/05	10	7.31	47.9 ^m	<26.8	0.0813	<0.0423	0.156	0.202	<0.0847	<0.0847	42.7
MW-92-12	10/18/05	12	5,340	332 ^m	88.4	174	32.7	441	245	<0.165 ¹	125	44.9
MW-92-15	10/18/05	15	16.2	<12.4	<30.9	0.166	0.0582	0.163	0.247	<0.0896	<0.0896	9.45
MW-92-20	10/18/05	20	19.3	<13.3	<33.3	0.225	0.0743	0.265	0.317	<0.0990	0.129	3.66
MW-93-5	10/18/05	5	241	813 ^m	2,970	0.0579	0.0998	0.168	0.235	<0.0891	0.998	6.87
MW-93-7	10/18/05	7	312	3,570 ^m	12,500	0.0365	0.0823	0.870	0.263	<0.0848	<0.0848	17.4
MW-93-9	10/18/05	9	470	2,050 ^m	4,540	<0.0296	0.123	0.455	0.287	<0.100	0.460	79.4
MW-93-10	10/18/05	10	<4.39	155 ^q	480	<0.0298	<0.0505	<0.0505	<0.101	<0.100	<0.101	8.28
MW-93-15	10/18/05	15	<3.63	11.1 ^q	29.7	<0.0227	<0.0378	<0.0378	<0.0757	<0.0757	<0.0757	9.78
MW-93-20	10/18/05	20	<6.84	31.9 ^q	51.7	<0.0299	<0.0679	<0.0679	<0.136	<0.0998	<0.136	46.8

		Sample	TPH-	TPH-	TPH-			Ethyl-				
Sample I.D.	Sample Date	Depth (feet)	Gasoline (mg/kg)	Diesel (mg/kg)	Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
MTCA Method for Unrestricted		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
MW-94-5	10/18/05	5	1,000	233 ^m	530	<0.196 ¹	<0.327	11.4	3.16	<0.654 ¹	9.99	39.2
MW-94-7	10/18/05	7	418	528 ^m	1,680	<0.228 ¹	<0.380	4.16	<0.760	<0.760 ¹	4.89	34.6
MW-94-10	10/18/05	10	249	414 ^m	1,110	<0.247 ¹	<0.412	1.08	<0.823	< 0.823 I	1.84	29.2
MW-94-15	10/18/05	15	<8.52	249 ^q	547	<0.0298	<0.0993	<0.0993	<0.199	<0.100	<0.199	152
MW-94-20	10/18/05	20	<5.06 ^v	<14.7	<36.8	<0.0299	<0.0543	<0.0543	<0.109	<0.100	<0.109	6.79
MW-95-5	10/19/05	5	<4.70	48.4	<26.4	0.0346	<0.0508	<0.0508	<0.102	<0.100	<0.102	4.02
MW-95-10	10/19/05	10	<4.22	<11.4	<28.6	<0.0277	<0.0462	<0.0462	<0.0923	<0.0923	<0.0923	5.40
MW-95-15	10/19/05	15	<7.39	<12.6	<31.5	<0.0295	<0.0492	<0.0492	<0.0985	<0.0985	<0.0985	16.8
MW-96-5	10/19/05	5	141	524 ^m	2,220	<0.0299	<0.0518	<0.0518	<0.104	<0.100	<0.104	51.1
MW-96-7	10/19/05	7	840	1,190 ^m	3,710	0.587	0.250	8.39	52.7	<0.0896	4.09	19.5
MW-96-9	10/19/05	9	1,680	413 ^m	1,260	8.40	101	33.0	194	<0.0832	15.2	2.50
MW-96-10	10/19/05	10	99.9	344 ^m	1,040	1.90	7.34	2.51	16.0	<0.0743	1.31	5.32
MW-96-15	10/19/05	15	39.9	246 ^m	771	0.141	0.775	0.370	2.89	<0.107 ¹	0.651	9.16
MW-96-20	10/19/05	20	<6.37	31.4 ^q	72.7	<0.0294	<0.0533	<0.0533	<0.107	<0.100	<0.107	29.4
MW-97-5	10/19/05	5	5.93	<11.5	<28.8	<0.0300	<0.0525	0.0651	0.196	<0.100	<0.105	4.83
MW-97-9	10/19/05	9	84.8	<11.8	<29.5	0.137	<0.0466	0.436	<0.0931	<0.0931	0.482	7.87
MW-97-10	10/19/05	10	2,700	548 ^m	<57.6	0.191	<0.0443	8.32	3.21	<0.0886	5.05	6.19
MW-97-15	10/19/05	15	6.57	<13.0	<32.6	0.0684	<0.0610	<0.0610	<0.122	<0.100	0.321	3.67
MW-98-5	10/19/05	5	4.42	<11.4	<28.4	0.619	<0.0494	0.768	2.25	<0.0987	<0.0987	3.07
MW-98-7	10/19/05	7	13.9	<11.7	<29.2	0.270	<0.0453	0.263	1.11	<0.0907	<0.0907	8.57
MW-98-10	10/19/05	10	3,390	186 ^m	<27.9	10.0	105	69.6	394	<10.7 ^l	30.0	8.58
MW-98-12	10/19/05	12	5,650	529 ^m	<59.7	35.6	356	154	848	<8.95 ¹	47.3	16.9
MW-98-13.5	10/19/05	13.5	16,000	876 ^m	<302	50.2	270	117	579	<9.71 ¹	34.7	14.1
MW-98-15	10/19/05	15	58.2	<12.0	<30.1	0.596	1.78	1.27	5.69	<0.185 ¹	2.22	2.82
MW-98-20	10/19/05	20	33.8	14.1 ^q	<29.5	0.0295	0.168	0.0884	0.473	<0.0842	0.108	34.4
MW-99-5	10/20/05	5	14.5	<11.7	<29.2	0.0758	<0.0486	0.143	0.917	<0.0972	<0.0972	5.71
MW-99-9	10/20/05	9	56.2	30.4 ^m	<32.0	<0.0297	<0.0494	0.859	3.86	<0.0988	0.441	8.34
MW-99-10	10/20/05	10	249	<12.3	<30.7	0.147	0.0571	3.88	22.6	<0.102 ¹	2.32	9.23
MW-99-15	10/20/05	15	<4.34	<11.9	<29.8	0.201	<0.0460	0.0736	0.0984	<0.0920	<0.0920	13.6
MW-99-20	10/20/05	20	<9.83	<12.2	<30.5	<0.0274	<0.0457	<0.0457	<0.0913	<0.0913	<0.0913	13.5
MW-200-5	10/20/05	5	5.82	<11.4	<28.4	<0.0299	<0.0508	0.131	0.193	<0.100	<0.102	3.85
MW-200-7.5	10/20/05	7.5	17.1	<11.8	<29.6	0.0801	<0.0500	0.450	0.991	<0.100	0.176	3.70
MW-200-8.5	10/20/05	8.5	17.5	<12.0	<29.9	0.0735	<0.0471	0.498	1.38	<0.0943	0.517	3.35
MW-200-10	10/20/05	10	7.90	<12.4	<31.0	0.129	<0.0488	0.461	0.377	<0.0976	0.586	2.25
MW-200-15	10/20/05	15	<32.3 ¹	114 ^q	357 ^m	0.753	0.996	<0.405	<0.810	<0.100	<0.810	73.5
MW-200-20	10/20/05	20	<4.68	<12.5	<31.2	<0.0300	<0.0552	<0.0552	<0.110	<0.100	<0.110	2.79
MW-201-5	10/20/05	5	<4.18	<11.2	<28.1	0.112	<0.0465	<0.0465	<0.0929	<0.0929	<0.0929	2.17
MW-201-10	10/20/05	10	<4.94	<11.3	<28.1	<0.0286	<0.0476	<0.0476	<0.0953	<0.0953	<0.0953	53.4
MW-201-15	10/20/05	15	<30.2 ¹	60.4 ^q	<91.9	0.864	<0.323	<0.323	<0.645	<0.0992	<0.645	10.9

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead
MTCA Method for Unrestrict		•	30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250
MW-202-5	10/20/05	5	<4.62	<11.2	<28.0	<0.0262	<0.0437	<0.0437	<0.0874	<0.0874	<0.0874	5.57
MW-202-10	10/20/05	10	<5.05	<11.3	<28.3	<0.0278	< 0.0463	<0.0463	<0.0927	<0.0927	<0.0927	3.61
MW-202-15	10/20/05	15	<5.47	<11.7	<29.3	0.460	<0.0791	0.134	<0.158	<0.0997	<0.158	9.40
MW-202-20	10/20/05	20	57.3	209 ^m	<124	<0.0299	<0.351	<0.351	<0.701	<0.100	<0.701	<6.05
MW-203-5	10/21/05	5	<8.95	14.4 ^q	37.9	0.0769	<0.0818	<0.0818	<0.164	<0.100	<0.164	435
MW-203-10	10/21/05	10	<9.11	<15.2	<37.9	<0.0190	<0.0730	<0.0730	<0.146	<0.0190	<0.146	11,700
MW-203-15	10/21/05	15	<15.7	35.3 ^m	52.2	0.639	<0.118	<0.118	<0.237	<0.0308	<0.237	500
MW-203-20	10/21/05	20	<10.8	<17.6	<44.0	3.21	<0.116	<0.116	<0.232	<0.232 ¹	<0.232	426
MW-204-7	10/21/05	7	98.7	<11.3	<28.2	12.0	0.950	24.7	45.8	<0.896 ¹	6.58	6.65
MW-204-9	10/21/05	9	5,420	278 ^m	337	14.7	<0.480	162	< 0.960	< 0.960 l	63.4	8.07
MW-204-10	10/21/05	10	1,240	114 ^m	167	24.0	<0.457	17.2	75.0	< 0.913 l	6.61	8.34
MW-204-15	10/21/05	15	18.2	641 ^{q,m}	703 ^b	0.0529	<0.0601	0.0733	<0.120	<0.100	0.384	1,020
MW-205-5	10/24/05	5	<5.98	22.0 ^q	89.0	<0.0292	<0.0487	<0.0487	<0.0974	<0.0974	<0.0974	39.7
MW-205-9	10/24/05	9	432	67.3 ^m	<28.1	<0.114 ^{I,X}	<0.437 ^x	4.43 ^x	2.51 ^x	<0.114 ^{l,x}	2.08 ^x	7.60
MW-205-10	10/24/05	10	2,540	83.1 ^m	<28.4	<0.480 ¹	<0.800	56.6	149	<1.60 ^l	46.4	6.43
MW-205-15	10/24/05	15	17.1	<13.1	<32.7	<0.0298	< 0.0534	< 0.0534	<0.107	<0.100	0.205	4.97
MW-205-20	10/24/05	20	<4.61	<12.1	<30.2	<0.0283	<0.0472	<0.0472	<0.0945	<0.0945	<0.0945	10.6
MW-206-5	10/24/05	5	14.9 ^s	14.1 ^q	29.4	9.13	<0.0490	<0.0490	<0.0980	<0.0980	<0.0980	16.2
MW-206-10	10/24/05	10	<5.24	<11.2	<28.0	<0.0279	<0.0931	<0.0465	<0.0931	<0.0931	< 0.0931	2.95
MW-206-15	10/24/05	15	<9.88	48.9 ^q	119	<0.0300	<0.209	<0.105	<0.209	<0.0996	<0.209	187
MW-206-20	10/24/05	20	<23.3	89.7 ^q	169	0.385	<0.296	<0.296	<0.592	<0.0999	<0.592	74.9
MW-207-5	10/24/05	5	<5.02	<10.8	<27.1	<0.0255	<0.0425	<0.0425	<0.0849	<0.0849	<0.0849	43.9
MW-207-10	10/24/05	10	<4.46	<11.3	<28.2	<0.0279	<0.0464	<0.0464	<0.0928	<0.0928	<0.0928	2.85
MW-207-15	10/24/05	15	<4.67	21.9 ^q	<30.4	2.10	<0.108	<0.108	<0.215	<0.0280	<0.215	4.54
MW-208-5	10/25/05	5	17.9	24.7 ^m	<29.1	<0.0262	<0.0437	<0.0437	<0.0873	<0.0873	<0.0873	8.51
MW-208-10	10/25/05	10	211	<13.3	<33.3	1.17	<0.0764	2.16	19.2	<0.153 ¹	0.663	16.6
MW-208-15	10/25/05	15	<33.9 ¹	115 ^m	345	0.0507	<0.809	<0.404	<0.809	<0.100	<0.809	83.3
MW-208-20	10/25/05	20	<39.8 ¹	<48.3	<121	<0.0300	< 0.769	<0.385	<0.769	<0.100	< 0.769	6.70

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

Sample I D	Sample	Sample Depth	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
Sample I.D. Date (feet) MTCA Method A Soil Cleanup Level for Unrestricted Land Uses			30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250

Notes:

mg/kg = milligrams per kilogram

<n = Below the laboratory reporting limit or the method detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020.

Values in BOLD exceed the MTCA Method A soil cleanup level.

a Due to laboratory limitations, method reporting limits for benzene and MTBE exceed MTCA Method A soil cleanup levels for most samples.

^b Due to laboratory error, samples collected on June 7, 2005 were transferred from STL Seattle to STL Sacramento without ice or other cooling media and were received at STL Sacramento at 22°C. The TPH-G, BTEX, MTBE, and Naphthalene results for these samples may be biased low due to the higher temperature.

- ^c Chromatogram suggests this might be overlap from gasoline range.
- ^d Chromatogram suggests this might be aged or degraded diesel.
- ^e Chromatogram suggests this might be overlap from motor oil range.
- f Contaminant does not appear to be "typical" product.
- g Analyte was positively identified during analysis, but the associated numerical value is an estimated quantity and is less than the reporting limit.
- h Surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.
- Surrogate recovery outside advisory QC limits due to matrix interference.
- Due to low soil recovery during drilling at the 14-foot depth in SB-12, there was insufficient sample to analyze for NWTPH-Dx, lead, and dry weight.

Therefore a limited sample was submitted for analyses of NWTPH-Gx, BTEX, MTBE, and Naphthalene. Analytical results are based on wet weight for the sample.

- k MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.
- *Dup collected from MW-64 at the 15-foot depth.
- Laboratory reporting limit greater than MTCA Method A soil cleanup level for unrestricted land uses.
- ^m The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- ⁿ The hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.
- ^o The quality control spike blank associated with the analyte fell outside of normal acceptance criteria and was biased low. The result should be considered an estimate.
- PResults in the diesel organics range are primarily due to overlap from a gasoline range product.
- q Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.
- s The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range idenification and quantitation by EPA 8021B or 8260B is recommended.
- ^tResult not representative of gasoline but due to overlap from a Diesel Range Organic.
- ^uThis sample appears to contain or be saturated with diesel product.
- This analyte had a high bias in the associated calibration verification standard.
- w A 20x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- ^kA 10x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- Value shown reported using low soil method. Also detected at 0.0419 mg/kg.

TABLE 3 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 1 - ConocoPhillips Owned Parcels 600 Westlake Avenue North Seattle, Washington

SOIL CONTAMINANTS OF CONCERN												
	Sample		TDU 6	TDU D	TDU 6			Volatile O	rganic Com	pounds (mg	ı/kg)	
Well or Boring Number	Depth (feet)	Sample Date	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-O (mg/kg)	Lead (mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene	
SB-1-5	5.0	06/07/05	7.6	<26.1	<52.1	13.9	0.064	<0.24	0.095 ⁹	0.57	<0.24	
SB-1-10	10.0	06/07/05	3,600 ⁱ	113 ^c	<57.8	16.6	3.8 ^h	28 ^h	48 ^h	280 ^h	34 ^h	
SB-1-15	15.0	06/07/05	<30	<26.6	<53.2	10.8	0.17	<1.2	<1.2	<1.2	<1.2	
SB-1-20	20.0	06/07/05	<20	<97.2 ⁱ	<194 ⁱ	61.5	1.4	0.63 ^g	0.35 ⁹	1.7	0.37 ^g	
SB-3A-5	5.0	06/08/05	15	<29.9	<59.7	5.71	0.048	<0.27	<0.27	0.34	<0.27	
SB-3A-8	8.0	06/08/05	19	<31	<62	4.04	0.057	<0.34	<0.34	0.21 ^g	0.1 ^g	
SB-3A-10	10.0	06/08/05	14,000 ^h	486 ^c	<51.8	4.75	6.9 ^h	240 ^h	140 ^h	790 ^h	59 ^h	
SB-3A-12	12.0	06/08/05	1,000 ^h	28.1°	<52.2	3.7	0.61 ^h	6.4 ^h	8.4 ^h	59 ^h	9.8 ^h	
SB-4-5	5.0	06/07/05	9.7	<29.3	<58.6	9.5	0.041	<0.31	0.16 ^g	0.26 ^g	<0.31	
SB-4-10	10.0	06/07/05	1,200	193 ^c	<215	107	270	62	34	170	5.5 ⁹	
SB-4-15	15.0	06/07/05	<22	<109 ⁱ	<219 ⁱ	109	0.92	<1.5	<1.5	0.48 ^g	<1.5	
SB-4-20	20.0	06/07/05	<6.6	<28.4	<56.9	3.59	0.15	<0.25	<0.25	<0.25	<0.25	
SB-5-5	5.0	06/07/05	21	<28.7	<57.5	9.73	0.22	0.25 ⁹	0.39	2.1	0.11 ^g	
SB-5-10	10.0	06/07/05	<7.1	<32.8	<65.7	79.3	0.38	<0.31	<0.31	0.25 ⁹	<0.31	
SB-5-15	15.0	06/07/05	72 ⁱ	<57.6	<115	108	0.33	<0.68	0.25 ⁹	1.3	<0.68	
SB-6-9	9.0	06/08/05	1,800 ^h	235°	<57.7	6.21	<0.14	<1.2	5.6	20	16	
SB-6-10	10.0	06/08/05	39	214 ^d	190	671	0.07	<0.31	1.2	0.46	0.51	
SB-7-5	5.0	06/08/05	42	<29	<57.9	11.2	1.9	0.25	1.5	4.6	<0.27	
SB-7-15	15.0	06/08/05	48	<151	<301	89.2	1	<2	<2	0.85	<2	
SB-8-18	18.0	06/09/05	8,600	3,400	1,220	21.2	<0.33	3.1	<2.8	<2.8	<2.8	
SB-9-12	12.0	06/09/05	550 ^h	96.8°	<55.3	5.15	<0.14	<1.2	<1.2	11	5.3	
SB-9-14	14.0	06/09/05	8,200 ^h	1,240 ^c	<50.2	12.6	38	270	110	610	37 ⁹	
SB-9-15	15.0	06/09/05	83	<29.2	<58.4	<2.29	0.25	<0.23	0.44	0.29	0.17 ⁹	
SB-9-17	17.0	06/09/05	12	<25.7	<51.3	<1.92	0.037	0.086 ^g	<0.29	0.35	<0.29	
SB-9-18	18.0	06/09/05	7.5	<27.6	<55.2	<1.94	0.13	<0.23	<0.23	0.2 ^g	<0.23	
SB-10-10	10.0	06/09/05	4,600 ^h	1,910 ^c	<52.1	117	0.17	<0.29	1.6	7.8	4.4	
SB-10-12	12.0	06/09/05	40	<31.1	<62.3	<2.28	1.7	<0.51	3.8	0.39 ^g	4	
SB-10-15	15.0	06/09/05	<5.9	<27.8	<55.7	<2.29	0.11	<0.27	<0.27	<0.27	0.32	
SB-10-15	5.0	06/10/05	<5.6	<27.0	64.1	23.7	0.096	<0.27	<0.27	<0.27	<0.27	
SB-11-11	11.0	06/10/05	55	90.9	172	77.1	0.32	1.3	0.52	4.4	0.66	
SB-11-11	12.5	06/10/05	420 ⁱ	45.3°	<55	31.6	2.3	<1.1	22	18	41	
SB-11-12.5	13.0	06/10/05	2,500 ^h	245°	<56.6	2.33	2.3 34 ^h	<5.6 ^h	730 ^h	390 ^h	380 ^h	
SB-11-15	15.5	06/10/05	<6.1	<29.7	<59.4	<2.18	0.038	<0.26	<0.26	<0.26	<0.26	
SB-11-13.5	20.0	06/10/05	69 ⁱ	54.1 ^{f,i}	<80.3 ⁱ	12.7	0.038	<0.54	0.20 0.47 ⁹	0.56	0.26 0.34 ⁹	
SB-11-20 SB-12-11	11.0	06/10/05	1,500 ^h	98.2	<58.8	8.68	<0.49 ^h	<0.54 100 ^h	100 ^h	2,200 ^h	230 ^h	
SB-12-11 SB-12-12.5	12.5	06/10/05	3,400 ^h	98.2 579 ^c	<58.8 <58.5	9.02	<0.49 110 ^h	240 ^h	1,600 ^h	2,200 18,000 ^h	1,400 ^h	
SB-12-12.5 SB-12-14 ^j	14.0	06/10/05							·	•	•	
	15.5	06/10/05	170	 20 0 ^c		10.9	1.6	1.4	19	56 51	10	
SB-12-15.5	20.0	06/10/05	180	38.9°	<61.1	10.8	1.7	<1.1	22	51	11	
SB-12-20	9.5	06/10/05	33	39.3°	113	10.7	<0.037	0.19 ⁹	0.47	1.7	0.4	
SB-13-9.5 SB-13-11	11.0	06/10/05	<5.9 <5.9	<28.1 <28.5	<56.1 <56.9	6.75 <2.05	0.12 0.15	<0.25 <0.23	<0.25 <0.23	<0.25 <0.23	<0.25 <0.23	

TABLE 3 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 1 - ConocoPhillips Owned Parcels

600 Westlake Avenue North Seattle, Washington

Well or Boring	Sample		TPH-G	TPH-D	трн-о	Lead		Volatile O	rganic Com	pounds (mg	ı/kg)
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene
SB-13-12.5	12.5	06/10/05	<5.7	<28.6	<57.1	<2.11	0.042	<0.21	<0.21	0.12 ^g	<0.21
SB-14-10	10.0	06/13/05	7,900 ^h	1,270 ^c	58.1	8.44	<1.4 ^h	<12 ^h	110 ^h	330 ^h	52 ^h
SB-14-15	15.0	06/13/05	31	<30.9	<61.7	4.11	<0.034	<0.29	0.37	1.1	0.19 ^g
SB-14-20	20.0	06/13/05	54	<89.9 ⁱ	<180 ⁱ	<7.32	<0.15	<1.3	0.45 ⁹	1.5	1.2 ^g
SB-15-12	12.0	06/13/05	680 ^h	<28.6	<57.2	<1.99	0.5	0.4 ⁹	4.4	3.7	18
SB-15-15	15.0	06/13/05	<6.1	<28.2	<56.3	<2.38	0.2	<0.23	<0.23	<0.23	0.56
SB-16-12	12.0	06/13/05	8,700 ^h	82.4 ^c	<59.4	23.7	<6.3 ^h	110 ^h	87 ^h	500 ^h	54 ^h
SB-16-15	15.0	06/13/05	3,500 ^h	64.9 ^c	<60.7	18.8	18 ^h	100 ^h	61 ^h	300 ^h	23 ^h
SB-17-18.5	18.5	06/14/05	36	437 ^{f,i}	925 ^{f,i}	<0.36	<0.043	<0.36	<0.36	<0.36	9.2
SB-17-20	20.0	06/14/05	52 ⁱ	156 ^f	287 ^f	0.15 ⁹	<0.039	<0.32	<0.32	<0.32	9.18
MW-54-5	5.0	06/07/05	37	<29.6	<59.1	91.5	1.9	3.8	1.2	4.2	0.14
MW-55-15	15.0	06/08/05	31	233	<184	23.2	<0.44	<3.7	<3.7	<3.7	45
MW-56-9	9.0	06/09/05	8.6	<30.6	<61.2	4.41	0.34	<0.28	0.17 ⁹	0.24 ^g	<0.28
MW-56-10	10.0	06/09/05	200 ⁱ	<27.6	<55.3	4.5	0.13	<0.25	2.8	<0.25	0.92
MW-56-12	12.0	06/09/05	<5.7	<27.4	<54.7	2.25	0.13	<0.21	<0.21	<0.21	<0.21
MW-57-11	11.0	06/10/05	45	202 ^e	720	7.38	1.9 ⁱ	<0.44 ⁱ	2.2 ⁱ	7.1 ⁱ	0.16 ^{g,i}
MW-57-12.5	12.5	06/10/05	410	54.5 ^e	<57.9	13.6	23 ^h	250 ^h	95 ^h	540 ^h	53 ^h
MW-59-9.5	9.5	06/14/05	<9.5	<44.2 ⁱ	<88.4 ⁱ	43.1	0.055	<0.39	<0.39	<0.39	<0.39
MW-59-11	11.0	06/14/05	7.6	<27.8	<55.7	4.73	0.057	0.22 ^g	0.093 ^g	0.54	0.22 ^g
MW-59-14	14.0	06/14/05	34	55.6°	<59.7	26.1	1.2	<0.28	2.9	0.56	1.1
MW-59-15.5	15.5	06/14/05	230 ⁱ	<30.7	<61.4	<2.19	0.92	<0.28	3.6	0.13 ⁹	3.9
MW-59-17	17.0	06/14/05	310	208 ^c	<58.4	65.1	1.7	<1.3	7	16	3.8
MW-59-20	20.0	06/14/05	<6.6	<35	<70	9.28	0.053	<0.34	<0.34	<0.34	<0.34
MW-60-9.5	9.5	06/14/05	13	<28.5	<57	<2.22	0.17	<0.26	0.26	0.66	<0.26
MW-60-11	11.0	06/14/05	140 ⁱ	<27.3	<54.6	<1.99	1	0.11 ^g	2.8	2.1	0.13 ^g
MW-60-12.5	12.5	06/14/05	7,100 ^h	570°	85.5	20.2	5.6 ^h	77 ^h	63 ^h	370 ^h	29 ^h
MW-60-14	14.0	06/14/05	10,000 ^h	2,080°	362	6.73	65 ^h	380 ^h	190 ^h	980 ^h	67 ^{g,h}
MW-60-15.5	15.5	06/14/05	14	192 ^e	999	3.1	0.37	0.3	0.3	1.2	0.11 ^g
MW-60-20	20.0	06/14/05	37	439 ^{e,i}	862 ⁱ	67.9	0.52	2.2	0.56 ⁹	2.4	<2.1
MTCA Method Unrest	d A Soil Cle	•	30	2,000	2,000	250	0.03	7	6	9	5

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx. mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.
TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

^a Due to laboratory limitations, method reporting limits for benzene and MTBE exceed MTCA Method A soil cleanup levels for most samples.

Due to laboratory error, samples collected on June 7, 2005 were transferred from STL Seattle to STL Sacramento without ice or other cooling media and were received at STL Sacramento at 22°C. The TPH-G, BTEX, MTBE, and Naphthalene results for these samples may be biased low due to

the higher temperature.

Chromatogram suggests this might be overlap from gasoline range.

^d Chromatogram suggests this might be aged or degraded diesel.
^e Chromatogram suggests this might be overlap from motor oil range.

Contaminant does not appear to be "typical" product.

⁹ Analyte was positively identified during analysis, but the associated numerical value is an estimated quantity and is less than the reporting limit.

Surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Surrogate recovery outside advisory QC limits due to matrix interference.

Due to low soil recovery during drilling at the 14-foot depth in SB-12, there was insufficient sample to analyze for NWTPH-Dx, lead, and dry weight. Therefore a limited sample was submitted for analyses of NWTPH-Gx, BTEX, MTBE, and Naphthalene. Analytical results are based on wet weight for the sample.

ion the sample. ^k MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

Page 2 of 2

< 0.5 = Analyte not detected at or above the indicated method detection limit

MTCA = Model Toxics Control Act

ug/l = Micrograms per liter.

n/a = Not applicable

TABLE 4 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 2 - City Investors Owned Parcels 600 Westlake Avenue North Seattle, Washington

SOIL CONTAMINANTS OF CONCERN													
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile O	rganic Com	pounds (m	g/kg)		
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene		
B-1	11-12'	10/15/04	500				0.13	0.97	9.6	3.9			
B-2	11-12'	10/15/04	1,300				0.53	8.3	23	120			
B-5	6-8'	10/15/04	53	<50			7.3	0.4	1.1	2.2			
B-5	15-16'	10/15/04	8	<50			0.55	0.03	0.08	0.22			
B-6	7.5-8'	10/15/04	34	83		9	0.21	0.17	0.16	0.35			
B-8	10-11'	10/15/04	2,600			7	0.82	19	40	190			
B-8	12.5-13'	10/15/04	80				3.3	0.19	2.7	1.3			
B-9	7-8'	10/15/04	2,800				3.8	8.1	47	170			
B-10	7-8'	10/15/04	300				0.64	0.68	5.1	32			
B-11	7.5-8.5	10/15/04	510				0.5	3.9	8.2	37			
B-12	11.5-12'	10/15/04	83				0.05	0.13	0.33	2.3			
B-12	14-15'	10/15/04	30				0.05	0.09	0.09	0.1			
B-13	14-15'	10/15/04	<5				0.14	<0.1	<0.1	<0.3			
B-14	10-11.5'	10/15/04	1,300				3.2	2.8	33	52			
B-15	11-12'	12/10/04	11	81	540		0.06						
B-23	12-13.5'	12/10/04	270				2.4	1.6	11	3.8			
B-24	11-11.5'	12/10/04	60	290	290		0.3	0.98	0.39	1.3			
B-25	11-12'	12/10/04	2,000	360	360		6	79	44	240			
B-25	15-16'	12/10/04	4,000	1,400	1,400		10	200	120	720			
B-25	17-18'	12/10/04	2				0.1	0.17	<0.02	0.08			
B-101	8-9.5'	01/21/05	890				4.4	4.8	24	95			
B-101	8-9.5	01/21/05					<2	2	17	72	6		
B-101	9.5-10.5	01/21/05	340				1.4	1.8	6.2	22			
B-101	13.5-14	01/21/05					0.03	<0.02	<0.02	<0.06			
SB-27-5	5.0	10/14/05	9,930	187 ^b	116	20.1	42.5	377	135	745	108		
SB-27-7	7.0	10/14/05	175	45.6 ^b	<28.9	28.3	31.5	276	118	625	36.5		
SB-27-9	9.0	10/14/05	35.5	417 ^f	829	20.8	4.23	1.28	0.781	3.34	0.570		
SB-27-10	10.0	10/14/05	167	1,100 ^b	3,670	46.9	1.52	9.26	4.67	24.5	2.16		
SB-27-15	15.0	10/14/05	44.8	130 ^b	231	24.0	0.211	1.76	0.858	4.53	0.527		
SB-28-5	5.0	10/14/05	903	1,790 ^b	4,120	49.4	0.0648	0.117	1.50	0.438	11.6		
SB-28-9	9.0	10/14/05	44.3	24.0	68.7	6.88	0.0739	<0.0560	0.0840	0.139	0.238		
SB-28-10	10.0	10/14/05	30.1	46.8 ^b	129	31.9	0.0747	<0.0429	0.580	0.113	2.97		
SB-29-5	5.0	10/14/05	3,320	173 ^b	175	19.0	3.30	0.492	61.9	238	30.9		
SB-29-7	7.0	10/14/05	386	209 ^b	114	5.26	1.72	<0.0393	90.2	115	49.0		
SB-29-10	10.0	10/14/05	26.8	39.9 ^f	77.6	54.5	0.572	0.0657	0.459	1.78	<0.202		
SB-29-15	15.0	10/14/05	101	1,150 ^f	169 ^b	127	0.678	0.209	1.74	6.19	<0.788		
SB-29-20	20.0	10/14/05	<10.0	142 ^f	82.6 ^b	62.7	0.183	0.124	<0.101	<0.203	<0.406		
SB-30-5	5.0	10/14/05	368	101 ^b	46.2	13.0	3.81	0.328	8.82	26.0	4.08		

TABLE 4 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER Area 2 - City Investors Owned Parcels 600 Westlake Avenue North Seattle, Washington

SOIL CONTAMINANTS OF CONCERN												
Well or Boring	Sample		TPH-G	TPH-D	трн-о	Lead		Volatile O	rganic Com	pounds (m	g/kg)	
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene	
SB-30-10	10.0	10/14/05	8.68	<15.6	<39.1	177	0.0556	0.151	0.191	0.780	<0.309	
SB-30-16	16.0	10/14/05	137	57.7 ^b	138	49.7	0.425	1.14	4.88	23.1	1.33	
SB-32-5	5.0	10/17/05	1,880	297 ^b	236	26.0	1.17	1.27	77.9	212	19.6	
SB-32-7	7.0	10/17/05	2,640	335 ^b	273	17.3	1.81	<0.492	56.3	145	21.2	
SB-32-9	9.0	10/17/05	455	123 ^b	250	24.7	0.222	<0.309	5.99	20.8	2.12	
SB-32-12	12.0	10/17/05	120	920	1,560	1,450	<0.0300	<0.128	0.744	2.78	<0.256	
SB-33-5	5.0	10/19/05	31.0	<11.7	<29.2	4.61	0.109	<0.0486	1.87	2.59	0.477	
SB-34-5	5.0	10/19/05	343	30.3 ^b	<30.4	9.42	0.488	0.0795	3.45	6.30	21.0	
SB-35-5	5.0	10/19/05	26.4	<11.8	<29.4	6.29	0.123	<0.0470	0.103	0.174	<0.0939	
SB-35-9	9.0	10/19/05	117	41.3 ^b	39.1	10.7	0.282	<0.0470	2.34	0.106	5.16	
SB-35-10	10.0	10/19/05	430	50.8 ^b	52.3	9.21	0.151	<0.0510	0.758	0.148	1.06	
SB-36-9	9.0	10/19/05	630	203 ^b	331	27.9	3.77 ¹	<0.983 ¹	23.7 ¹	<1.97 ^l	<1.97 ¹	
SB-36-12	12.0	10/19/05	2,750	132 ^b	72.7	22.1	5.70	<1.82	140	29.4	47.4	
SB-36-16	16.0	10/19/05	9.79	17.3 ^b	34.3	6.82	0.150	<0.0437	0.0516	<0.0874	0.109	
SB-37-5	5.0	10/19/05	203	<11.5	<28.8	118	0.927	0.0572	4.33	9.63	0.935	
SB-37-7	7.0	10/19/05	366	12.6 ^b	<30.7	27.7	1.40	0.527	3.10	15.4	3.75	
SB-37-9	9.0	10/19/05	4,660	350 ^b	89.6	27.7	4.47	19.5	59.1	295	20.9	
SB-37-10	10.0	10/19/05	5,700	200 ^b	60.0	26.8	22.1	1.50	266	593	94.5	
SB-37-12	12.0	10/19/05	1,260	96.1 ^b	38.9	12.0	8.69	0.485	34.9	45.0	11.5	
SB-37-14	14.0	10/19/05	11.0	<11.9	<29.8	41.6	0.277	0.107	1.05	3.95	0.700	
SB-37-15	15.0	10/19/05	17.1	<12.0	<30.0	20.3	0.244	<0.0431	0.522	1.12	0.143	
SB-37-20	20.0	10/19/05	31.1	<12.6	<31.4	9.39	0.201	0.176	1.18	4.04	0.573	
SB-40-9	9.0	10/19/05	131	44.2 ^b	<29.3	11.1	<0.0276	<0.0460	3.70	0.369	3.83	
SB-40-10	10.0	10/19/05	363	<13.2	<33.1	8.86	0.313	<0.0457	7.26	8.15	2.74	
SB-40-12	12.0	10/19/05	571	<13.8	<34.4	12.1	0.291	0.0510	14.6	42.0	3.51	
SB-40-15	15.0	10/19/05	99.8	62.9 ^f	74.9	4.64	0.260	0.0730	1.70	6.48	0.775	
SB-40-20	20.0	10/19/05	41.5	277 ^f	326	42.9	0.165	<0.137	0.181	0.723	<0.275	
SB-42-9	9.0	10/21/05	6.74	<12.2	<30.5	3.52	0.142	<0.0496	<0.0496	<0.0991	<0.0991	
SB-42-10	10.0	10/21/05	101	302 ^b	1,300 ^b	34.2	0.149	<0.0424	<0.0424	0.127	0.115	
SB-42-15	15.0	10/21/05	<5.28	<12.9	79.2	15.0	0.0615	<0.0569	<0.0569	<0.114	<0.114	
SB-42-20	20.0	10/21/05	<3.98	<11.3	<28.2	5.01	0.0426	<0.0374	<0.0374	<0.0748	<0.0748	
MW-82-5	5.0	10/14/05	3,920	344 ^b	194	15.4	17.5	88.2	196	917	50.5 ^d	
MW-82-8	8.0	10/14/05	4,720	268 ^b	186	9.93	17.9	120	188	899	66.3	
MW-82-9	9.0	10/14/05	1,020	362 ^b	747	29.0	9.93	7.43	16.7	72.3	4.62	
MW-82-10	10.0	10/14/05	588	175 ^b	343	31.0	4.20	7.37	11.3	44.7	3.38	
MW-82-15	15.0	10/14/05	844	910°	122 ^c	8.26	0.734	2.44	6.03	30.7	1.89	
MW-82-16	16.0	10/14/05	<4.76	<11.8 ^b	<29.5	2.39	0.0552	<0.0484	<0.0484	0.106	<0.0968	
MW-89-12	12.0	10/18/05	44.9	41.5 ^f	72.3	11.3	0.124	0.144	0.185	0.376	2.17	
MW-90-5	5.0	10/18/05	410	554 ^b	680	65.9	1.95	0.105	46.3	79.7	16.8	

TABLE 4 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 2 - City Investors Owned Parcels

600 Westlake Avenue North Seattle, Washington

	SOIL CONTAMINANTS OF CONCERN													
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile O	rganic Com	pounds (mo	g/kg)			
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene			
MW-90-7	7.0	10/18/05	476	2,180	3,450	784	2.08	<0.0833	8.99	22.7	3.24			
MW-90-10	10.0	10/18/05	64.6	4,640	9,130	280	0.142	<0.0749	1.90	5.85	1.33			
MW-90-15	15.0	10/18/05	10.4	116 ^f	227	106	0.986	0.395	0.860	2.34	0.539			
MW-92-10	10.0	10/18/05	7.31	47.9 ^b	<26.8	42.7	0.0813	<0.0423	0.156	0.202	<0.0847			
MW-92-12	12.0	10/18/05	5,340	332 ^b	88.4	44.9	174	32.7	441	245	125			
MW-92-15	15.0	10/18/05	16.2	<12.4	<30.9	9.45	0.166	0.0582	0.163	0.247	<0.0896			
MW-92-20	20.0	10/18/05	19.3	<13.3	<33.3	3.66	0.225	0.0743	0.265	0.317	0.129			
MW-93-5	5.0	10/18/05	241	813 ^b	2,970	6.87	0.0579	0.0998	0.168	0.235	0.998			
MW-93-7	7.0	10/18/05	312	3,570 ^b	12,500	17.4	0.0365	0.0823	0.870	0.263	<0.0848			
MW-93-9	9.0	10/18/05	470	2,050 ^b	4,540	79.4	<0.0296	0.123	0.455	0.287	0.460			
MW-94-5	5.0	10/18/05	1,000	233 ^b	530	39.2	<0.196 ^a	<0.327	11.4	3.16	9.99			
MW-94-7	7.0	10/18/05	418	528 ^b	1,680	34.6	<0.228 ^a	<0.380	4.16	<0.760	4.89			
MW-94-10	10.0	10/18/05	249	414 ^b	1,110	29.2	<0.247 ^a	<0.412	1.08	<0.823	1.84			
MW-96-5	5.0	10/19/05	141	524 ^b	2,220	51.1	<0.0299	<0.0518	<0.0518	<0.104	<0.104			
MW-96-7	7.0	10/19/05	840	1,190 ^b	3,710	19.5	0.587	0.250	8.39	52.7	4.09			
MW-96-9	9.0	10/19/05	1,680	413 ^b	1,260	2.50	8.40	101	33.0	194	15.2			
MW-96-10	10.0	10/19/05	99.9	344 ^b	1,040	5.32	1.90	7.34	2.51	16.0	1.31			
MW-96-15	15.0	10/19/05	39.9	246 ^b	771	9.16	0.141	0.775	0.370	2.89	0.651			
MW-205-9	9.0	10/24/05	432	67.3 ^b	<28.1	7.60	<0.114 ^{a,m}	<0.437 ^m	4.43 ^m	2.51 ^m	2.08 ^m			
MW-205-10	10.0	10/24/05	2,540	83.1 ^b	<28.4	6.43	<0.480 ^a	<0.800	56.6	149	46.4			
MTCA Method Unrest	d A Soil Cle ricted Land	•	30	2,000	2,000	250	0.03	7	6	9	5			

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx.

mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.

TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

(A) = Urban Redevelopment, LLC Figure 2 indicates results were "below MTCA" cleanup levels

- (B) = Urban Redevelopment, LLC Figure 2 indicates a sample interval of 10 13 feet bgs; actual soil samples were collected at 10 11 feet bgs and 12.5 13 feet bgs
- (C) = Urban Redevelopment, LLC Figure 2 indicates a sample interval of 10 11 feet bgs; actual soil sample was 10 11.5 feet bgs.
- (D) = Urban Redevelopment, LLC Figure 3 and Figure 4 includes laboratory results that were not provided to Delta for verification.
- (E) = Urban Redevelopment, LLC Figure 2 indicates analytical result of 6 ug/kg for Benzene; Laboratory report indicates actual analytical result was 10 ug/kg for Benzene.
- (F) = Urban Redevelopment, LLC Figure 2 indicates results as "no indication."
- (G) = Laboratory report indicates the sample consists of Gasoline-range material.
- (H) = Laboratory reports sample not indicative of Diesel; analyzed against Motor Oil.
- ^a Laboratory reporting limit greater than MTCA Method A soil cleanup level for unrestricted land uses.
- ^bThe sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- The hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.
- The quality control spike blank associated with the analyte fell outside of normal acceptance criteria and was biased low. The result should be considered an estimate.
- Results in the diesel organics range are primarily due to overlap from a gasoline range product.

 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- g MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.
- The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range idenification and quantitation by EPA 8021B or 8260B is recommended.
- Result not representative of gasoline but due to overlap from a Diesel Range Organic.
- This sample appears to contain or be saturated with diesel product.
- ^kThis analyte had a high bias in the associated calibration verification standard.
- A 20x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- ^m A 10x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- Value shown reported using low soil method. Also detected at 0.0419 mg/kg.

< 0.5 = Analyte not detected at or above the indicated method detection limit

MTCA = Model Toxics Control Act

ug/l = Micrograms per liter.

n/a = Not applicable

TABLE 5 **CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER**

Area 3 - City of Seattle Rights-of-Way 600 Westlake Avenue North Seattle, Washington

SOIL CONTAMINANTS OF CONCERN													
Wall or Daring	Sample		TPH-G	TPH-D	TDU O	Land		Volatile O	rganic Com	pounds (m	g/kg)		
Well or Boring Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	TPH-O (mg/kg)	Lead (mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene		
SB-23-10	10.0	10/13/05	6,360	29.8 ^b	<26.6	6.59	4.07	24.6	77.8	377	86.0		
SB-24-9	9.0	10/13/05	5,080	432 ^e	<56.5	8.82	9.00	39.7	108	529	102		
SB-24-10	10.0	10/13/05	66.4	146 ^e	<29.2	8.26	12.0	176	146	809	46.7		
SB-24-12	12.0	10/13/05	34.9	<12.7	<31.8	5.64	1.11	0.481	0.605	3.18	0.274		
SB-24-15	15.0	10/13/05	<7.50	39.5 ^f	60.1	25.0	0.417	0.160	0.173	0.718	<0.326		
SB-24-20	20.0	10/13/05	<10.0	32.0 ^f	62.3	14.6	0.100	<0.105	<0.105	<0.209	<0.418		
SB-25-15	15.0	10/13/05	<4.34	<12.1	55.9	21.0	0.307	<0.0438	0.148	0.244	<0.175		
SB-25-20	20.0	10/13/05	<4.25	<11.8	<29.4	3.72	0.0913	<0.0404	<0.0404	<0.0808	<0.162		
SB-26-5	5.0	10/13/05	<4.48	27.0 ^f	93.9	13.6	0.0795	0.0470	0.0759	0.223	<0.181		
SB-26-10	10.0	10/13/05	7.31	<13.0	<32.5	5.25	1.50	<0.0499	<0.0499	0.117	<0.200		
SB-26-15	15.0	10/13/05	<4.52	<12.0	<30.0	2.03	0.0503	<0.0457	<0.0457	<0.0914	<0.183		
SB-31-5	5.0	10/17/05	<4.69	<12.0	<30.0	11.3	0.0560	<0.0431	<0.0431	<0.0862	<0.0862		
SB-31-15	15.0	10/17/05	<4.47	16.8 ^f	37.4	9.57	0.213	<0.0458	<0.0458	<0.0915	<0.0915		
SB-31-20	20.0	10/17/05	<5.19	<11.5 ^f	40.3	7.35	0.0333	<0.0463	<0.0463	<0.0925	<0.0925		
SB-41-12	12.0	10/20/05	44.2	<11.9	<29.9	8.61	0.0485	0.0732	0.133	2.96	1.76		
SB-41-15	15.0	10/20/05	<4.32	<11.4	<28.5	3.24	2.09	<0.0420	<0.0420	<0.0840	<0.0840		
SB-41-20	20.0	10/20/05	<4.50	<12.1	<30.3	14.1	0.120	<0.0455	<0.0455	<0.0909	<0.0909		
MW-61-5	5.0	10/10/05	4.95	19.9 ^f	50.9	80.7	0.0593	<0.0350	0.0427	0.165	<0.0700		
MW-61-10	10.0	10/10/05	4.06	<10.0	<25.0	11.9	0.523	<0.0354	0.0676	0.201	<0.142		
MW-61-15	15.0	10/10/05	<3.51	<10.0	<25.0	8.81	0.422	<0.0391	<0.0391	<0.0782	<0.0782		
MW-62-5	5.0	10/10/05	<5.00	<10.0	33.7	6.40	0.0313	<0.0363	0.0429	<0.0725	<0.0725		
MW-63-5	5.0	10/11/05	6.27	33.0 ^f	101	3,920	1.03	0.427	0.768	1.98	<0.200		
MW-63-10	10.0	10/11/05	<5.00	<10.0	<25.0	39.6	0.135	<0.0337	<0.0337	<0.0673	<0.135		
MW-63-15	15.0	10/11/05	<5.00	15.6 ^f	36.4	101	0.402	<0.0354	<0.0354	<0.0708	<0.142		
MW-63-20	20.0	10/11/05	<5.00	<10.0	32.0	34.8	0.162	<0.0500	<0.0500	<0.100	<0.200		
MW-64-5	5.0	10/11/05	<5.00	<10.0	<25.0	4.50	0.604	<0.0438	0.0804	0.427	1.79		
MW-64-10	10.0	10/11/05	<5.00	<10.0	<25.0	5.90	1.84	<0.0424	<0.0424	<0.0847	<0.169		
MW-64-15	15.0	10/11/05	<5.00	29.3 ^f	70.5	20.3	0.238	<0.0429	0.0439	0.0967	<0.172		
MW-66-5	5.0	10/11/05	<5.00	15.3 ^f	91.3	6.34	0.931	0.128	<0.0389	0.0873	<0.155		
MW-66-10	10.0	10/11/05	<5.00	<10.0	<25.0	25.5	0.136	<0.0393	<0.0393	<0.0787	<0.157		
MW-66-15	15.0	10/11/05	<5.00	26.5 ^f	53.9	24.7	0.379	0.0796	<0.0433	<0.0866	<0.173		
MW-68-5	5.0	10/11/05	4.49	<10.0	<25.0	35.2	0.602	0.0556	0.333	0.393	<0.149		
MW-68-10	10.0	10/11/05	<3.83	<10.0	<25.0	140	0.423	<0.0389	0.0398	0.174	<0.156		
MW-68-15	15.0	10/11/05	8.42	120 ^c	37.0 ^b	21.4	1.31	0.225	0.536	0.697	0.254		
MW-70-10	10.0	10/12/05	776	97.3 ^b	80.1	30.3	0.701	<0.331	23.9	1.52	19.1		
MW-70-15	15.0	10/12/05	508	<11.9	<29.7	3.32	<0.0283	<0.0472	<0.0472	<0.0945	<0.189		
MW-70-20	20.0	10/12/05	30.2	<20.3	<50.7	7.18	<0.0302 ^a	<0.116	0.623	1.41	0.826		
MW-71-10	10.0	10/12/05	<4.33	<11.2	<28.0	5.39	0.189	<0.0861	0.314	0.262	<0.0861		

TABLE 5 **CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER**

Area 3 - City of Seattle Rights-of-Way 600 Westlake Avenue North Seattle, Washington

Soil Contaminants of Concern													
Well or Boring	Sample		TPH-G	TPH-D	ТРН-О	Lead		Volatile O	rganic Com	pounds (m	g/kg)		
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene		
MW-71-15	15.0	10/12/05	888	135 ^b	298 ^b	7.10	1.02	0.724	9.97	29.1	6.49		
MW-72-15	15.0	10/12/05	<22.9	219 ^f	403 ^b	124	0.533	<0.702	<0.702	<2.10	<0.702		
MW-73-10	10.0	10/12/05	4,530	45.0 ^b	<28.5	3.54	<0.0266	<0.0888	<0.0888	<0.266	<0.0888		
MW-73-16	16.0	10/12/05	33.4	129 ^f	677	71.9	0.261	<0.443	<0.443	<1.33	<0.443		
MW-74-12	12.0	10/12/05	71.4	<11.9	<29.8	1.79	<0.0252	<0.0842	<0.0842	<0.252	<0.0842		
MW-74-15	15.0	10/12/05	<8.40	<16.6 ^f	42.1 ^b	43.8	0.834	<0.139	<0.139	<0.418	<0.139		
MW-82-3	3.0	10/14/05	28.2	26.6 ^b	30.9	5.50	1.10	0.0662	1.11	1.17	0.712 ^d		
MW-84-5	5.0	10/17/05	<4.55	<12.1	<30.3	5.97	0.0618	<0.0483	<0.0483	<0.0966	<0.0966		
MW-84-10	10.0	10/17/05	<3.79	<11.0	<27.4	2.82	0.245	<0.0427	<0.0427	<0.0855	<0.0855		
MW-84-15	15.0	10/17/05	<4.66	27.8 ^f	33.4	10.5	0.286	<0.0631	<0.0631	<0.126	<0.126		
MW-85-5	5.0	10/17/05	4.78	14.0 ^f	<29.1	4.42	1.39	0.861	0.281	0.416	<0.0977		
MW-85-10	10.0	10/17/05	<4.52	<12.4	<30.9	10.8	0.0308	<0.0466	<0.0466	<0.0932	<0.0932		
MW-86-5	5.0	10/17/05	14.7	<11.3 ^f	36.1	4.87	0.785	<0.0413	0.160	0.584	<0.0827		
MW-86-10	10.0	10/17/05	6.81	<11.7	<29.3	4.87	1.01	<0.0406	<0.0406	<0.0813	<0.0813		
MW-86-15	15.0	10/17/05	<4.20	<11.8	<29.5	4.00	0.243	<0.0414	<0.0414	<0.0828	<0.0828		
MW-86-20	20.0	10/17/05	<5.29	<12.9	<32.3	4.06	0.0380	<0.0500	<0.0500	<0.100	<0.100		
MW-87-5	5.0	10/17/05	<4.22	<11.3	61.4	9.05	0.154	<0.0410	<0.0410	<0.0821	<0.0821		
MW-87-10	10.0	10/17/05	<4.70	14.9 ^f	41.0	7.11	0.110	<0.0281	<0.0281	<0.0561	<0.0561		
MW-88-7	7.0	10/17/05	4,710	347 ^b	242	115	<3.09 ^a	<5.15	198	813	57.4		
MW-88-9	9.0	10/17/05	2,200	164 ^b	156	15.8	0.501	0.632	31.6	131	10.7		
MW-88-10	10.0	10/17/05	487	31.8	49.4	3.93	0.102	<0.0454	0.753	0.406	0.273		
MW-91-5	5.0	10/18/05	99.6	43.3 ^e	51.9	81.4	0.344	0.0870	0.0891	0.361	<0.102		
MW-91-10	10.0	10/18/05	<6.05	62.8 ^f	135	35.9	0.379	0.176	0.125	0.297	0.142		
MW-95-5	5.0	10/19/05	<4.70	48.4	<26.4	4.02	0.0346	<0.0508	<0.0508	<0.102	<0.102		
MW-97-9	9.0	10/19/05	84.8	<11.8	<29.5	7.87	0.137	<0.0466	0.436	<0.0931	0.482		
MW-97-10	10.0	10/19/05	2,700	548 ^b	<57.6	6.19	0.191	<0.0443	8.32	3.21	5.05		
MW-97-15	15.0	10/19/05	6.57	<13.0	<32.6	3.67	0.0684	<0.0610	<0.0610	<0.122	0.321		
MW-98-5	5.0	10/19/05	4.42	<11.4	<28.4	3.07	0.619	<0.0494	0.768	2.25	<0.0987		
MW-98-7	7.0	10/19/05	13.9	<11.7	<29.2	8.57	0.270	<0.0453	0.263	1.11	<0.0907		
MW-98-10	10.0	10/19/05	3,390	186 ^b	<27.9	8.58	10.0	105	69.6	394	30.0		
MW-98-12	12.0	10/19/05	5,650	529 ^b	<59.7	16.9	35.6	356	154	848	47.3		
MW-98-13.5	13.5	10/19/05	16,000	876 ^b	<302	14.1	50.2	270	117	579	34.7		
MW-98-15	15.0	10/19/05	58.2	<12.0	<30.1	2.82	0.596	1.78	1.27	5.69	2.22		
MW-98-10	20.0	10/19/05	33.8	14.1 ^f	<29.5	34.4	0.0295	0.168	0.0884	0.473	0.108		
MW-99-5	5.0	10/20/05	14.5	<11.7	<29.2	5.71	0.0758	<0.0486	0.143	0.917	<0.0972		
MW-99-10	10.0	10/20/05	249	<12.3	<30.7	9.23	0.147	0.0571	3.88	22.6	2.32		
MW-99-15	15.0	10/20/05	<4.34	<11.9	<29.8	13.6	0.201	<0.0460	0.0736	0.0984	<0.0920		

TABLE 5 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 3 - City of Seattle Rights-of-Way

600 Westlake Avenue North Seattle, Washington

	SOIL CONTAMINANTS OF CONCERN													
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile O	rganic Com	pounds (mg	g/kg)			
Number	Depth (feet)	Sample Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene			
MW-200-7.5	7.5	10/20/05	17.1	<11.8	<29.6	3.70	0.0801	<0.0500	0.450	0.991	0.176			
MW-200-8.5	8.5	10/20/05	17.5	<12.0	<29.9	3.35	0.0735	<0.0471	0.498	1.38	0.517			
MW-200-10	10.0	10/20/05	7.90	<12.4	<31.0	2.25	0.129	<0.0488	0.461	0.377	0.586			
MW-200-15	15.0	10/20/05	<32.3 ^a	114 ^f	357 ^b	73.5	0.753	0.996	<0.405	<0.810	<0.810			
MW-201-5	5.0	10/20/05	<4.18	<11.2	<28.1	2.17	0.112	<0.0465	<0.0465	<0.0929	<0.0929			
MW-201-15	15.0	10/20/05	<30.2 ^a	60.4 ^f	<91.9	10.9	0.864	<0.323	<0.323	<0.645	<0.645			
MW-202-15	15.0	10/20/05	<5.47	<11.7	<29.3	9.40	0.460	<0.0791	0.134	<0.158	<0.158			
MW-202-20	20.0	10/20/05	57.3	209 ^b	<124	<6.05	<0.0299	<0.351	<0.351	<0.701	<0.701			
MW-203-5	5.0	10/21/05	<8.95	14.4 ^f	37.9	435	0.0769	<0.0818	<0.0818	<0.164	<0.164			
MW-203-10	10.0	10/21/05	<9.11	<15.2	<37.9	11,700	<0.0190	<0.0730	<0.0730	<0.146	<0.146			
MW-203-15	15.0	10/21/05	<15.7	35.3 ^b	52.2	500	0.639	<0.118	<0.118	<0.237	<0.237			
MW-203-20	20.0	10/21/05	<10.8	<17.6	<44.0	426	3.21	<0.116	<0.116	<0.232	<0.232			
MW-204-7	7.0	10/21/05	98.7	<11.3	<28.2	6.65	12.0	0.950	24.7	45.8	6.58			
MW-204-9	9.0	10/21/05	5,420	278 ^b	337	8.07	14.7	<0.480	162	<0.960	63.4			
MW-204-10	10.0	10/21/05	1,240	114 ^b	167	8.34	24.0	<0.457	17.2	75.0	6.61			
MW-204-15	15.0	10/21/05	18.2	641 ^{f,b}	703 ^b	1,020	0.0529	<0.0601	0.0733	<0.120	0.384			
MW-206-5	5.0	10/24/05	14.9 ^h	14.1 ^f	29.4	16.2	9.13	<0.0490	<0.0490	<0.0980	<0.0980			
MW-206-20	20.0	10/24/05	<23.3	89.7 ^f	169	74.9	0.385	<0.296	<0.296	<0.592	<0.592			
MW-207-15	15.0	10/24/05	<4.67	21.9 ^f	<30.4	4.54	2.10	<0.108	<0.108	<0.215	<0.215			
MW-208-10	10.0	10/25/05	211	<13.3	<33.3	16.6	1.17	<0.0764	2.16	19.2	0.663			
MW-208-15	15.0	10/25/05	<33.9 ^a	115 ^b	345	83.3	0.0507	<0.809	<0.404	<0.809	<0.809			
MTCA Method Unrest	d A Soil Cle ricted Land		30	2,000	2,000	250	0.03	7	6	9	5			

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx. mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.

TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

^a Laboratory reporting limit greater than MTCA Method A soil cleanup level for unrestricted land uses.

 $< 0.5 = \mbox{Analyte}$ not detected at or above the indicated method detection limit MTCA = Model Toxics Control Act

ug/l = Micrograms per liter.

n/a = Not applicable

b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^cThe hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.

d The quality control spike blank associated with the analyte fell outside of normal acceptance criteria and was biased low. The result should be considered an estimate.

[®] Results in the diesel organics range are primarily due to overlap from a gasoline range product.

Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

g MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

h The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range idenification and quantitation by EPA 8021B or 8260B is recommended.

Result not representative of gasoline but due to overlap from a Diesel Range Organic.

This sample appears to contain or be saturated with diesel product.

^kThis analyte had a high bias in the associated calibration verification standard.

A 20x dilution was required to prevent instrument damage due to high concentrations of non target analytes.

ⁿA 10x dilution was required to prevent instrument damage due to high concentrations of non target analytes.

Value shown reported using low soil method. Also detected at 0.0419 mg/kg.

TABLE 6 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 1 - ConocoPhillips Owned Parcels

600 Westlake Avenue North Seattle, Washington

	GROUNDWATER CONTAMINANTS OF CONCERN													
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile (Organic Co	mpounds (ι	ıg/l)			
Number	Depth (feet)	Sample Date	(ug/l)	(ug/l)	(ug/l)	ıa/l) (ua/l)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene			
MW-45	n/a	07/25/05	564	< 250	< 500		18.6	14.6	16.7	113.2	7.51			
MW-50	n/a	07/25/05	1,500	< 250	< 500		16.8	3.23	36.9	50.11	4.29			
MW-51	n/a	07/25/05	< 50.0	697	826		< 0.200	< 0.200	< 0.200	< 0.500	< 0.500			
MW-52	n/a	07/25/05	401	368	< 500		14.5	< 0.200	8.24	3.12	2.37			
MW-53	n/a	07/25/05	450	310	< 500		20.4	0.61	8.96	13.14	9.15			
MW-54	n/a	07/25/05	177	< 250	< 500		5.26	0.28	0.68	3.11	0.99			
MW-55	n/a	07/25/05	1,850	1,390	< 500		0.48	1.69	2.57	1.99	908			
MW-57	n/a	07/25/05	11,400	418	571		614	2,680	436	2,647	98			
MW-58	n/a	07/25/05	7,750	673	< 500		1,420	1,610	379	1,687	57			
MW-59	n/a	07/25/05	4,680	253	< 500		307	1.24	181	201	64.3			
MW-60	n/a	07/25/05	48,800	2,820	791		3,670	4,730	1,570	7,720	299			
MTCA Method	A Ground	water Cleanup	800	500	500	n/a	5	1,000	700	1,000	160			

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx. mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.

TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

^a Due to laboratory limitations, method reporting limits for benzene and MTBE exceed MTCA Method A soil cleanup levels for most samples.

b Due to laboratory error, samples collected on June 7, 2005 were transferred from STL Seattle to STL Sacramento without ice or other cooling media

and were received at STL Sacramento at 22°C. The TPH-G, BTEX, MTBE, and Naphthalene results for these samples may be biased low due to the higher temperature.

^c Chromatogram suggests this might be overlap from gasoline range.

^d Chromatogram suggests this might be aged or degraded diesel.

^e Chromatogram suggests this might be overlap from motor oil range.

f Contaminant does not appear to be "typical" product.

Analyte was positively identified during analysis, but the associated numerical value is an estimated quantity and is less than the reporting limit.

h Surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Surrogate recovery outside advisory QC limits due to matrix interference.

Due to low soil recovery during drilling at the 14-foot depth in SB-12, there was insufficient sample to analyze for NWTPH-Dx, lead, and dry weight.

Therefore a limited sample was submitted for analyses of NWTPH-Gx, BTEX, MTBE, and Naphthalene. Analytical results are based on wet weight

k MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

< 0.5 = Analyte not detected at or above the indicated method detection limit

MTCA = Model Toxics Control Act

ug/l = Micrograms per liter.

n/a = Not applicable

TABLE 7 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 2 - City Investors Owned Parcels

600 Westlake Avenue North Seattle, Washington

		G	ROUNE	WATER	CONT	AMINAN	ITS OF C	ONCER	N					
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile	Organic Co	mpounds (ເ	ıg/l)			
Number	Sample Sample TPH-G TPH-D Lead Volatile Organic Compounds (ug/l)													
MW-49	n/a	07/25/05	313	2,060	6,590		< 0.200	< 0.200	< 0.200	0.3	0.55			
SMW-4	n/a	07/25/05	14,500	6,490	1,110		2,120	< 20.0	908	< 50.0	312			
SMW-5	n/a	07/25/05	3,110	835	< 500		40.2	0.79	41.8	21.48	24.6			
MTCA Method	A Groundy Level	water Cleanup	800	500	500	n/a	5	1,000	700	1,000	160			

< 0.5 = Analyte not detected at or above the indicated method detection limit

MTCA = Model Toxics Control Act

ug/l = Micrograms per liter.

n/a = Not applicable

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx. mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.

TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

(A) = Urban Redevelopment, LLC Figure 2 indicates results were "below MTCA" cleanup levels

(B) = Urban Redevelopment, LLC Figure 2 indicates a sample interval of 10 - 13 feet bgs; actual soil samples were collected at 10 - 11 feet bgs and 12.5 - 13 feet bgs

(C) = Urban Redevelopment, LLC Figure 2 indicates a sample interval of 10 - 11 feet bgs; actual soil sample was 10 - 11.5 feet bgs.

(D) = Urban Redevelopment, LLC Figure 3 and Figure 4 includes laboratory results that were not provided to Delta for verification.

(E) = Urban Redevelopment, LLC Figure 2 indicates analytical result of 6 ug/kg for Benzene; Laboratory report indicates actual analytical result was 10 ug/kg for Benzene.

(F) = Urban Redevelopment, LLC Figure 2 indicates results as "no indication."

(G) = Laboratory report indicates the sample consists of Gasoline-range material.

(H) = Laboratory reports sample not indicative of Diesel; analyzed against Motor Oil.

^a Laboratory reporting limit greater than MTCA Method A soil cleanup level for unrestricted land uses.

^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

c The hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.

d The quality control spike blank associated with the analyte fell outside of normal acceptance criteria and was biased low. The result should be considered an estimate.

^e Results in the diesel organics range are primarily due to overlap from a gasoline range product.

Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

⁹ MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range idenification and quantitation by EPA 8021B or 8260B is recommended.

Result not representative of gasoline but due to overlap from a Diesel Range Organic.

This sample appears to contain or be saturated with diesel product.

^kThis analyte had a high bias in the associated calibration verification standard.

A 20x dilution was required to prevent instrument damage due to high concentrations of non target analytes.

A 10x dilution was required to prevent instrument damage due to high concentrations of non target analytes.

Nalue shown reported using low soil method. Also detected at 0.0419 mg/kg.

TABLE 8 CONTAMINANTS OF CONCERN SOIL AND GROUNDWATER

Area 3 - City of Seattle Rights-of-Way

600 Westlake Avenue North Seattle, Washington

		G	ROUNE	WATER	R CONT	AMINAN	ITS OF C	ONCER	N		
Well or Boring	Sample		TPH-G	TPH-D	TPH-O	Lead		Volatile (Organic Co	mpounds (u	g/l)
Number	Depth (feet)	Sample Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene
MW-8	n/a	07/25/05	81,600	641	< 500		4,700	5,280	4,270	15,450	1,010
MW-16	n/a	07/25/05	358	8,320	20,700		42.6	0.34	< 0.200	1.25	< 0.500
MW-18	n/a	07/25/05	1,400	6,930	13,200		35.2	3.98	6.23	33.4	30.9
MW-19	n/a	07/25/05	96,400	4,050	2,340		201	229	< 20.0	16,590	805
MW-40	n/a	07/25/05	216	596	1,600		< 0.200	< 0.200	< 0.200	< 0.50	< 0.500
MW-41	n/a	07/25/05	< 50.0	258	977		< 0.200	< 0.200	< 0.200	< 0.50	< 0.500
MW-101	n/a	07/25/05	6,960	432	< 500		39.1	61.4	88	429	19.7
MW-105	n/a	07/25/05	62,000	821	< 500		1,970	7,460	2,640	12,750	723
MTCA Method	A Ground	water Cleanup	800	500	500	n/a	5	1,000	700	1,000	160

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by Northwest Method TPH-Gx. mg/kg = Milligrams per kilogram.

TPH-D = Total Petroleum Hydrocarbons as Diesel by Northwest Method TPH-Dx.

TPH-O = Total Petroleum Hydrocarbons as Heavy Oil by Northwest Method TPH-Dx.

Volatile Organic Compounds by EPA Method 8260B

< 0.5 = Analyte not detected at or above the indicated method detection limit MTCA = Model Toxics Control Act

ug/I = Micrograms per liter.

n/a = Not applicable

- a Laboratory reporting limit greater than MTCA Method A soil cleanup level for unrestricted land uses.
- ^b The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- The hydrocarbon concentration result in this sample is partially due to one or more individual peaks eluting in the diesel/heavy oil range.
- d The quality control spike blank associated with the analyte fell outside of normal acceptance criteria and was biased low. The result should be considered an estimate.
- ^e Results in the diesel organics range are primarily due to overlap from a gasoline range product.
- Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- ⁹ MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.
- ^h The total hydrocarbon result in this sample is primarily due to an individual compound eluting in the volatile hydrocarbon range idenification and quantitation by EPA 8021B or 8260B is recommended.

Result not representative of gasoline but due to overlap from a Diesel Range Organic.

- ^jThis sample appears to contain or be saturated with diesel product.
- KThis analyte had a high bias in the associated calibration verification standard.
- A 20x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- ^m A 10x dilution was required to prevent instrument damage due to high concentrations of non target analytes.
- Value shown reported using low soil method. Also detected at 0.0419 mg/kg.

TABLE 9 PHASE I EXCAVATION SOIL ANALYTICAL RESULTS

		Sample	TPH-	TPH-	TPH-			Ethyl-				
	Sample	Depth	Gasoline	Diesel	Oil	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricted		-	30ª	2,000	2,000	0.03	7	6	9	0.1	5	250
B-A1-3	11/02/06	3	<5.69	<11.5	<28.7	<0.00136	<0.00136	<0.00362	<0.00904	<0.000904	<0.00904	9.02
B-C2-1	11/02/06	1	40.7	13.4	61.3	<0.00136	<0.00136	<0.00364	<0.00909	<0.000909	<0.00909	97.0
C-A1-3	11/06/06	3	6.41	<12.5	<31.2	<0.00147	<0.00147	0.00633	0.0303	<0.000983	<0.00983	2.70
C-B1-3	11/06/06	3	49.0	108	346	0.0302	0.00263	0.00762	0.0173	<0.00121	0.168	17.6
C-C1-3	11/06/06	3	4.43	<11.5	38.2	<0.00139	<0.00139	<0.00371	<0.00928	<0.000928	<0.00928	5.34
D-A1-5	11/07/06	5	11.5	<11.3	<28.4	<0.00147	No Results	0.068	0.283	<0.000977	0.0168	3.08
A-A1-10	12/13/06	10	1,770	559	<29.8	0.204	0.250	18.7	44.0	<0.440	18.4	15.3
A-A2-10	12/13/06	10	16,000	508	<30.2	63.2	532	301	1,100	<45.4	56.8	4.26
A-A3-10	12/13/06	10	6,500	908	<30.3	8.94	103	106	399	<16.7	31.2	10.9
A-B1-10	12/13/06	10	223	86.2	<28.5	<0.0841	0.336	1.96	8.81	<0.421	2.05	4.33
A-B1-10 A-B2-10	12/13/06	10	3,050	194	<30.7	2.15	66.7	53.7	224	<10.3	12.9	4.66
A-B2-10 A-B3-10	12/13/06	10	117	<15.4	<30.7	2.39	9.37	2.40	9.79	<0.519	1.11	24.8
A-B3-10 A-C1-10	12/13/06	10	88.6	17.6	102	0.208	0.572	0.292	1.02	<0.475	<0.475	13.1
A-C2-10	12/13/06	10	283	<14.6	51.9	0.850	2.07	15.4	59.2	<0.428	4.83	7.50
A-C3-10	12/13/06	10	324	22.1	<29.9	0.198	0.194	3.50	6.35	<0.471	2.62	15.8
B-A1-10	11/14/06	10	<5.37	<13.2	<32.9	<0.00202	<0.00202	<0.00538	<0.0135	<0.00135	<0.0135	7.48
B-A2-10	11/14/06	10	<4.52	<11.5	<28.8	<0.00138	<0.00138	<0.00369	<0.00922	<0.000922	<0.00922	4.22
B-B1-10	11/14/06	10	<4.60	<12.2	<30.6	<0.00175	<0.00175	<0.00467	<0.0117	<0.00117	<0.0117	7.37
B-B2-10	11/14/06	10	<4.38	<12.5	<31.1	<0.00162	<0.00162	<0.00433	<0.0108	<0.00108	<0.0108	6.78
B-C1-10	11/14/06	10	19.0	<12.4	<31.1	<0.00181	<0.00181	0.0219	<0.0121	<0.00121	<0.0121	5.05
B-C2-10	11/14/06	10	<4.46	<11.9	52.9	<0.00165	<0.00165	<0.00441	<0.0110	<0.00110	<0.0110	5.58
C-A1-10	11/27/06	10	<4.14	<12.1	<30.2	<0.00171	<0.00171	0.0142	0.0455	<0.00114	<0.0114	3.79
C-A2-10 C-B1-10	11/27/06	10	10.8	<12.7	32.6	0.0633	0.00348	0.0356	0.0826	<0.00112	0.0252	7.05
C-B1-10 C-B2-10	11/27/06 11/27/06	10 10	17.6 <4.65	45.5 <12.2	67.2 <30.4	0.0798 0.00411	0.349 <0.00163	0.745 <0.00434	3.05 <0.0109	<0.00104 <0.00109	0.391 <0.0109	6.33 3.13
C-B2-10 C-C1-10	11/27/06	10	<4.80	<12.2	<30.4	0.00411	<0.00163	<0.00434	<0.0109	<0.00109	<0.0109	6.03
C-C2-10	11/27/06	10	<4.41	<12.0	<30.1	0.108	<0.00200	<0.00560	<0.0140	<0.00140	<0.0140	3.97
D-A1-10	12/21/06	10	56.9	16.1	<29.8	0.206	<0.0911	2.79	3.04	<0.0911	0.578	9.13
D-A2-10	12/21/06	10	71.8	<13.0	35.4	0.0763	0.701	1.08	4.57	<0.106	<0.530	11.0
D-B1-10	12/21/06	10	1,920	39.7	<29.2	1.44	31.0	43.3	202	<4.13	<20.6	6.04
D-B2-10	12/21/06	10	134	<12.1	<30.2	0.864	2.80	3.97	13.2	<0.0802	1.61	3.59
D-C1-10	12/21/06	10	27	<11.8	<29.5	0.411	<0.0976	2.33	0.397	<0.0976	0.654	2.76
D-C2-10	12/21/06	10	49	<11.9	<29.8	1.24	0.190	1.91	1.76	<0.0941	3.16	3.84
E-A1-10	12/21/06	10	2,510	43.2	<30.3	3.32	<4.49	48.5	238	<4.49	<22.5	8.04
E-A2-10	12/21/06	10	448	51.9	<31.2	0.149	<0.0927	0.293	7.11	<0.0927	2.22	5.35
E-B1-10	12/21/06	10	<4.35	<12.0	<29.9	<0.00139	<0.00139	<0.00370	<0.00926	<0.000926	<0.00926	9.55
E-B2-10 F-A1-10	12/21/06	10	9.14	<12.3	<30.7 <31.8	0.0727	0.0851 <0.00167	0.232 <0.00446	0.727	<0.0827	<0.413	14.8
F-A2-10	12/27/06 12/27/06	10 10	<5.11 5.51	<12.7 <11.5	<28.9	<0.00167 <0.00141	<0.00167	<0.00446	<0.0111 <0.00939	<0.00111 <0.000939	<0.0111 <0.00939	38.2 10.0
F-A3-10	12/27/06	10	21.1	<11.9	33.8	0.00372	0.0169	0.0712	0.249	<0.000939	0.050	10.0
F-B1-10	12/27/06	10	23.9	<12.1	<30.3	0.00372	0.0862	0.0381	0.202	<0.00101	0.0153	11.8
F-B2-10	12/27/06	10	10.0	<12.0	<29.9	<0.00147	<0.00147	<0.00393	<0.00983	<0.000983	0.0151	6.44
F-B3-10	12/27/06	10	<5.23	<12.8	<32.0	<0.00193	<0.00193	<0.00514	<0.0129	<0.00129	<0.0129	1.86
F-C1-10	12/27/06	10	11.5	<12.3	<30.7	<0.00148	<0.00148	0.459	0.207	<0.000988	0.236	6.52
F-C2-10	12/27/06	10	1,570	59.5	<29.2	0.328	<0.0834	8.07	23.9	<0.0834	21.2	10.9
F-C3-10	12/27/06	10	<4.72	36.2	42.1	<0.00170	<0.00170	<0.00454	<0.0113	<0.00113	<0.0113	6.18
G-A1-10	12/28/06	10	45.6	<12.1	<30.3	0.0337	0.00302	0.120	0.265	<0.00124	0.0535	4.21

TABLE 9 PHASE I EXCAVATION SOIL ANALYTICAL RESULTS

		Sample	TPH-	TPH-	TPH-			Ethyl-				
	Sample	Depth	Gasoline	Diesel	Oil	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestricted		-	30 ^a	2,000	2,000	0.03	7	6	9	0.1	5	250
G-A2-10	12/28/06	10	81.8	<12.1	<30.3	0.0402	0.135	0.999	4.54	<0.00109	0.610	8.47
G-A3-10	12/28/06	10	<4.68	<11.6	<28.9	<0.00175	<0.00175	<0.00465	<0.0116	<0.00116	<0.0116	3.69
G-B1-10	12/28/06	10	48.5	<12.7	<31.7	0.0734	0.322	0.635	3.02	<0.00109	<0.507	7.78
G-B2-10	12/28/06	10	<4.31	<11.9	<29.8	0.0174	<0.00151	0.00808	0.0318	<0.00101	<0.0101	6.96
G-B3-10	12/28/06	10	<3.94	<11.2	<28.0	<0.00154	<0.00154	<0.00409	<0.0102	<0.00102	<0.0102	16.6
G-C1-10	12/28/06	10	236	16.40	36.6	0.408	4.09	3.87	22.5	<0.00130	1.290	21.6
G-C2-10	12/28/06	10	136	<12.2	<30.5	0.298	2.30	2.14	12.4	<0.465	<2.33	15.4
G-C3-10	12/28/06	10	133	<11.8	<29.5	0.300	1.41	1.85	9.18	<0.0858	0.967	22.4
H-A1-10	12/29/06	10	310	13.0	<29.8	0.915	7.20	5.39	30.1	<0.00101	0.856	12.0
H-A2-10	12/29/06	10	432	13.8	35.0	1.65	13.1	9.63	54.9	<0.846	<4.23	17.3
H-A3-10	12/29/06	10	<4.77	<11.6	<29.1	<0.00171	<0.00171	<0.00456	<0.0114	<0.00114	<0.0114	5.57
H-B1-10	12/29/06	10	371	<11.9	<29.7	0.491	6.56	7.26	39.1	<0.846	<4.23	9.93
H-B2-10	12/29/06	10	459	17.6	65.4	0.681	5.28	5.28	30.5	<0.851	<4.25	26.7
H-B3-10	12/29/06	10	<5.23	<10.7	39.2	<0.00184	<0.00184	<0.00490	<0.0123	<0.00123	<0.0123	2.42
H-C1-10	12/29/06	10	266	44.5	<31.8	0.318	2.67	3.71	19.3	<0.00103	0.585	13.1
H-C2-10	12/29/06	10	3,120	136	<29.2	7.10	63.7	54.4	266	<0.934	25.6	6.03
H-C3-10	12/29/06	10	<4.69	<11.2	<27.9	0.00643	<0.00151	0.0114	0.0439	<0.00101	<0.0101	10.0
A-A1-14	12/14/06	14	22.0	<11.7	<29.3	0.427	0.347	0.548	1.87	<0.420	<0.420	4.22
A-A2-15.5	12/14/06	15.5	190	33.6	<29.5	<0.833	3.64	10.8	43.1	<4.16	4.41	10.2
A-A3-15.5	12/14/06	15.5	194	41.4	36.4	<0.869	4.42	10.4	41.7	<4.35	<4.35	17.2
A-B1-15.5	12/14/06	15.5	216	<12.4	<31.0	<0.415	0.837	3.90	12.7	<2.07	<2.07	3.81
A-B2-15.5	12/14/06	15.5	324	<12.4	<31.0	<0.891	12.5	10.6	49.5	<4.45	<4.45	81.0
A-B3-15.5	12/14/06	15.5	6.51	95.5	54.5	<0.0921	0.318	0.180	0.481	<0.460	<0.460	20.1
A-C1-15.5	12/14/06	15.5	390	16.4	<31.1	<0.499	<0.499	8.37	14.1	<2.49	<2.49	12.3
A-C2-15.5	12/14/06	15.5	91.9	22.7	107	0.862	1.28	1.58	6.75	<0.448	<0.448	55.3
A-C3-15.5	12/14/06	15.5	34.8	<11.8	<29.6	0.115	0.369	0.395	1.20	<0.399	<0.399	2.92
B-A1-15	11/14/06	15	103	18.4	43.7	0.00307	<0.00133	0.0116	<0.00888	<0.000888	<0.00888	8.25
B-A2-15	11/14/06	15	<3.77	<11.8	<29.4	<0.00149	<0.00149	<0.00397	<0.00992	<0.000992	<0.00992	4.01
B-B1-15	11/14/06	15	<4.70	12.8	<30.9	<0.00136	<0.00136	<0.00362	< 0.00904	<0.000904	<0.00904	5.94
B-B2-15	11/14/06	15	<4.81	<12.1	<30.2	<0.00160	<0.00160	<0.00425	<0.0106	<0.00106	<0.0106	7.37
B-C1-15	11/14/06	15	<4.12	<11.8	<29.5	<0.00131	<0.00131	<0.00350	<0.00875	<0.000875	<0.00875	8.50
B-C2-15	11/14/06	15	<4.41	<12.3	<30.8	0.00461	<0.00146	<0.00390	<0.00974	<0.000974	<0.00974	10.1
C-A1-15	11/27/06	15	55.7	55.4	61.2	0.0134	0.0618	0.191	1.88	<0.00101	0.0765	18.7
C-A2-15	11/27/06	15	<4.25	22.9	123	0.00186	0.00211	0.0112	0.0505	<0.00113	0.0128	8.42
C-B1-15	11/27/06	15	22.1	33.0	41.9	0.0231	0.0469	0.477	1.86	<0.00117	0.138	7.11
C-B2-15	11/27/06	15	<4.55	<12.1	<30.3	0.0359	<0.00176	<0.00468	<0.0117	<0.00117	<0.0117	4.27
C-C1-15	11/27/06	15	21.0	48.5	50.4	0.00993	0.0259	0.0611	0.270	<0.00122	0.0306	6.83
C-C2-15	11/27/06	15	<4.92	13.1	<30.0	0.018	<0.00181	<0.00482	0.0170	<0.00121	<0.0121	5.09
D-A1-15	01/10/07	15	<5.10	20.8	<32.5	<0.0306	<0.102	<0.102	<0.306	<0.102	<0.510	4.31
D-A2-15	01/10/07	15	<4.95	<12.9	<32.3	<0.0297	<0.0989	<0.0989	<0.297	<0.0989	<0.495	3.94
D-B1-15	01/10/07	15	<4.22	<11.9	<29.7	0.147	<0.0844	<0.0844	<0.253	<0.0844	<0.422	2.68
D-B2-15	01/10/07	15	<5.50	14.4	<35.4	0.301	<0.110	<0.110	<0.330	<0.110	<0.550	31.1
D-C1-15	01/10/07	15	103	<12.3	<30.8	0.251	1.20	2.11	8.87	<0.0901	0.921	8.44
D-C2-15	01/10/07	15	32.5	<12.1	<30.2	0.0462	0.146	0.623	2.99	<0.0943	<0.472	4.73
E-A1-15	01/10/07	15	<4.15	<11.8	<29.4	0.645	<0.0829	<0.0829	<0.249	<0.0829	<0.414	9.16
E-A2-15 E-B1-15	01/10/07	15 15	6.28	<12.3	<30.7	0.0661	<0.0836	0.115	0.266	<0.0836	<0.418	4.21
E-B1-15	01/10/07	15 15	<5.06	<12.4	<30.9	0.0466	<0.101	<0.101	<0.304	<0.101	<0.506	7.92 9.27
E-B2-15	01/12/07	15	13.0	<12.2	<30.5	0.0677	0.169	0.216	1.01	<0.0915	<0.458	8.37

TABLE 9 PHASE I EXCAVATION SOIL ANALYTICAL RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

	Sample	Sample Depth	TPH- Gasoline	TPH- Diesel	TPH- Oil	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphthalene	Total Lead
Sample I.D.	Date	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MTCA Method for Unrestrict			30 ^a	2,000	2,000	0.03	7	6	9	0.1	5	250
F-A1-15	01/15/07	15	<4.04	<11.6	<29.0	<0.0242	<0.0807	<0.0807	<0.242	<0.0807	<0.404	6.27
F-A2-15	01/15/07	15	127	19.7	<30.2	<0.0248	<0.0826	0.3250	4.53	<0.0826	1.17	12.1
F-A3-15	01/15/07	15	121	<12.3	<30.8	0.0852	<0.0878	0.747	6.00	<0.0878	1.20	21.1
F-B1-15	01/15/07	15	<4.16	<11.4	<28.6	<0.0250	<0.0832	<0.0832	< 0.250	<0.0832	<0.416	10.8
F-B2-15	01/15/07	15	101	<12.9	<32.3	0.105	< 0.0937	<0.0937	2.21	<0.0937	0.992	7.16
F-B3-15	01/15/07	15	8.60	<12.4	<31.0	<0.0256	<0.0855	<0.0855	<0.256	<0.0855	<0.427	6.48
F-C1-15	01/15/07	15	11.4	<10.8	<27.0	<0.0226	< 0.0753	<0.0753	<0.226	<0.0753	< 0.376	11.7
F-C2-15	01/15/07	15	12.5	<12.2	<30.4	<0.0263	<0.0877	<0.0877	0.357	<0.0877	<0.438	6.45
F-C3-15	01/15/07	15	17.2	<12.4	<31.1	0.0943	<0.0881	0.121	0.663	<0.0881	<0.441	12.9
G-A1-15	01/17/07	15	25.7	<12.4	<31.0	0.0564	< 0.0972	0.194	0.463	<0.0972	<0.486	4.39
G-A2-15	01/17/07	15	442	15.1	<30.7	0.340	0.991	6.72	19.8	<0.102	3.60	13.8
G-A3-15**	01/16/07	15	13.2	<11.7	<29.4	<0.0266	<0.0885	<0.0885	<0.266	<0.0885	< 0.443	5.43
G-B1-15	01/17/07	15	138	<12.4	<31.0	0.374	0.424	1.12	4.05	<0.0910	0.772	12.7
G-B2-15	01/17/07	15	212	<12.9	<32.2	0.552	2.86	2.65	13.4	<0.0940	1.13	13.0
G-B3-15**	01/16/07	15	6.85	<12.3	<30.7	0.892	<0.0908	<0.0908	< 0.272	<0.0908	< 0.454	34.9
G-C1-15	01/17/07	15	589	<11.6	<28.9	0.714	8.04	6.95	23.4	<0.0814	3.90	32.9
G-C2-15	01/17/07	15	332	<12.4	<31.1	2.82	7.85	4.63	18.9	<0.0927	2.05	5.15
G-C3-15**	01/16/07	15	120	52.0	<31.8	0.164	1.05	1.51	9.15	<0.0827	0.751	13.2
H-A1-15	01/18/07	15	1,070	26.1	<29.2	1.32	15.0	14.5	79.0	<0.0896	8.05	11.7
H-A2-15	01/18/07	15	67	<11.9	<29.8	0.446	1.26	0.995	5.63	<0.0942	0.502	3.96
H-A3-15	01/18/07	15	1,760	34.7	36.0	1.77	25.6	26.9	145	<0.0948	<19.0	16.6
H-B1-15	01/18/07	15	2,550	14.4	39.7	1.71	32.5	34.6	211	<0.0895	26.0	4.89
H-B2-15	01/18/07	15	<4.96	<12.0	36.0	<0.0298	<0.0992	<0.0992	<0.298	<0.0992	<0.496	10.3
H-B3-15	01/18/07	15	1,800	29.2	<28.9	2.79	45.2	35.2	198	<0.0827	<16.5	8.23
H-C1-15	01/18/07	15	298	<12.3	<30.9	1.43	1.19	5.85	15.3	<0.0850	2.85	17.0
H-C2-15	01/18/07	15	5,520	207	<30.1	9.23	< 0.0951	119	592	<0.0951	43.3	8.13
H-C3-15	01/18/07	15	38	<11.8	<29.4	0.134	0.756	0.568	3.09	<0.0834	<0.417	11.6

Notes:

mg/kg = milligrams per kilogram

<n = Below the laboratory reporting limit or the method detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020.

^a MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

Values in BOLD exceed the MTCA Method A soil cleanup level.

**Samples H-A3-15, H-B3-15, and H-C3-15 were incorrectly labeled in the COC and the Analytical Results. The correct idetification should be G-A3-15, G-B3-15, and G-C3-15.

Table 1 Summary of Soil Analytical Results Area 2 Westlake-Mercer

Sample File	B6 4/7/2009 4/3/200 12.5 14 0.00655 U 0.181 0.0175 UJ 1.18 U 0.00655 UJ 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419 52.7 U 50.7 U 50.7 U
Sample Elevation (PL above Cinc) First QC First	12.5 14 0.00655 U 0.181 0.0175 UJ 1.18 U 0.00655 UJ 0.181 0.00637 U 0.00512 69.0 J 37.8 U 82.0 188 249 419
Pried QC	0.00655 U 0.181 0.0175 UJ 1.18 U 0.00655 UJ 1.18 U 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
VOC (orangles) Controlled	0.0175 UJ 1.18 U 0.00655 UJ 1.18 U 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
Beautiful House Beautiful	0.0175 UJ 1.18 U 0.00655 UJ 1.18 U 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
Ethylbenzene 6 14.4 0.996 0.122 U 0.106 U 0.00315 U 0.0035 U 0.0025 U 0.0025 U 0.0025 U 0.0005 U 0.	0.0175 UJ 1.18 U 0.00655 UJ 1.18 U 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
Titleme No. 1	0.00655 UJ 1.18 U 3.66 U 3.53 U 0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
Xylenes, total 9 38.1 4.07 0.365 U 0.317 U 0.00789 U 0.00644 U 0.00789 U 0.00652 U NA NA NA NA 0.00332 0.00632 U NA NA NA 0.00332 0.00032 U 0.000333 U 0.00032 U 0.00032 U 0.00033 U 0.00032 U 0.00033 U 0.0003 U 0.00033 U 0.00033 U 0.0003 U 0.00033 U 0.0003 U 0.00033 U 0.0003 U 0.00033 U 0.0003 U 0.00033 U 0.00033 U 0.0003 U 0.00033 U 0.0003 U 0.00033 U 0.0003 U 0.00033	3.66 U 3.53 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
Methyl terher (NTBE) 0.1 NA NA NA NA NA NA NA 0.000789U 0.000644U 0.00053U 0.000659U 0.000652U NA NA 0.00053U 0.00053U 0.00053U 0.000679U 0.0006	0.00437 U 0.00512 69.0 J 37.8 J 82.0 188 249 419
THIS (mg/kg) Gasoline-Range 30 / 100	69.0 J 37.8 J 82.0 188 249 419
Gasoline-Range 30/100° 949 73.9 12.7 5.28 U 7.06 U 5.81 U 6.87 J 17.4 7.62 U NA NA 3.25 J 8.39 J 25.7 U 53.0 U 53.6 U 81.6 U 22.2 J 6.85 U 6.43 U 7.18 U 1,090 1,040 1.84 J 6.19 U 3.31 J 66.1 U Diesel-Range 2,000 74.8 172 J 16.8 11.5 U 12.9 U 11.9 U 12.3 U 13.5 U NA NA 26.0 92.2 338 97.0 170 270 54.1 U 12.9 U 12.7 U 12.9 U 12.7 U 12.9 U 12.7 U 12.3 U 13.5 U NA NA 48.5 16.2 33.8 97.0 170 270 54.1 U 12.9 U 12.7 U 12.9 U 12.7 U 12.9 U 12.7 U 12.3 U 13.5 U NA NA 14.5 16.9 U 37.0 37.0 37.0 37.0 37.1 J 16.8 11.5 U 12.9 U 12.7 U 12.9 U 12.8 U 31.5 U NA	82.0 188 249 419
Diesel-Range 2,000 74.8 172 J 16.8 11.5 U 12.9 U 11.9 U 12.7 U 12.3 U 13.5 U NA NA 26.0 92.2 33.8 97.0 170 270 54.1 U 12.9 U 12.7 U 12.9 U 12.6 U 13.7 11.4 U 12.4 U 70.2 J 52.8 U Lube Gil-Range 2,000 37.3 371 J 90.1 38.4 32.2 U 29.9 U 31.8 U 30.7 U 33.8 U NA NA 48.5 165 556 202 206 491 135 U 32.2 U 31.7 U 32.4 U 31.5 U 31.8 U 110 31.1 U 33.8 J 132 U Kerosene-Range 2,000 NA	82.0 188 249 419
Lube Oil-Range 2,000 37.3 371 J 90.1 38.4 32.2 U 29.9 U 31.8 U 30.7 U 33.8 U NA	249 419
Kerosene-Range 2,000 NA NA NA NA NA 12,9U 11,9U 12,7U 12,3U 13,5U NA NA 15,0U 37,0 56,5 48,1U 49,9U 53,2U 54,1U 12,9U 12,7U 12,9U 37,5U 65,4J 11,4U 12,4U 11,9U 52,8U	1
PAHs (mg/kg) Acenaphthene NE 0.0197 0.0121 U 0.0115 U 0.0115 U 0.0116 U NA NA NA NA NA NA NA NA NA N	
Acenaphthene NE 0.0197 0.0121 U 0.0115 U 0.0116 U NA	32.70 30.70
Acenaphthylene NE 0.0120 U 0.0121 U 0.0115 U 0.0116 U NA	1
Anthracene NE 0.0190 0.0121 U 0.0115 U 0.0116 U NA	NA NA
Benzo(a)anthracene th NE 0.0120 U 0.0121 U 0.0115 U 0.0116 U NA	NA NA
Benzu(u)pyricine (th) 0.1 0.0120 U 0.141 0.0510 0.0116 U NA NA NA NA NA NA NA	NA NA
Benzo(b)fluoranthene (10) NE 0.0120 U 0.0411 0.0325 0.0116 U NA	NA NA
	NA NA
Benzu(k)fluoranthene to NE 0.0120 0.0128 0.0255 0.0116 NA	NA NA
Benzo (ghi) perylene NE 0.0120 U 0.0698 0.0502 0.0205 NA	NA NA
Chrysgae 60 NE 0.0191 0.0779 0.0307 0.0116U NA	NA NA
Diberga h)anthracene NE	NA NA
Fluoranthene NE 0.0213 0.0121U 0.0151 0.0116U NA	NA NA
Fluorene NE 0.0329 0.0121	NA NA
Indeno(1,2,3-ed)pyrene ^(b) NE 0.0120 U 0.0328 0.0372 0.0131 NA	NA NA
I-Methylnaphthalene NE 0.882 0.0425 0.0425 0.0245 0.016U NA	NA NA
2-Methylnaphthlalonc NE 1.62 0.0640 0.0296 0.0116U NA	NA NA
Naphthalene 5 1.14 0.0224 0.0208 0.016U 0.00789U 0.0064U 0.00789U 0.0064U 0.00789U 0.00652U NA NA 0.00553U 0.0163U 0.0212U 21.2 U 0.0424U 0.0348 U 27.7 U 0.00703 U 0.00703 U 0.00753 U 5.94 6.30 0.00627 U 0.0065U 0.00617 U 0.0017 U 0.0017 U	0.0437 UJ 0.0512 U
Phonanthronc NE 0.104 0.0268 0.0119 0.0116U NA	NA NA
Pyrene NE 0.0246 0.0456 0.0266 0.0116U NA	NA NA
TTEC Concentration (c-PAHs) 0.1 0.000191 0.153 0.0608 0.00131 NA	NA NA
Total PAHs (mg/kg) ^c NE 3.8826 0.5976 0.3556 0.0336 NA NA 0.0148 NA	NA NA
Total Metals (mg/kg)	
Arsenic 20 NA NA 2.63 1.64 NA	NA NA
Barium NE NA NA 899 81.6 NA	NA NA
Cadmium 2 NA NA 0.569U 0.509U NA	NA NA
Chromium 19 (Cr ⁶⁻¹) / 2,000 (Cr ³⁻¹) NA NA 32.1 45.3 NA	NA NA
Lead 250 NA NA 41.1 4.97 53.3 12.8 15.6 12.6 12.3 147J 38.8J 412 13.3 289J 56.5J 136J 79.1J 19.4 15.2 5.00 8.04 16.5 22.7 36.4 54.0 25.4J 44.6	24.4 U 217 J
Sclenium NE NA NA 1.14U 1.02U NA	NA NA
Silver NE NA NA 0.569 U 0.509 U NA	NA NA
Mercury 2 NA NA 0.112U 0.106U NA	l na l na
TCLP Metals (mg/L)	INA INA
Lead 5 ^(d) NA	INA INA

Notes:
Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/cey/clarc/Reporting/CLARCReporting.aspx).
DUP - Field duplicate
J - Estimated value
NA - Not applicable
NE - Not established
PAtis - Polyunudear aromatic hydrocarbons
TPHs - Total petroluem hydrocarbons
TUB - Total petroluem hydrocarbons
U - Compound was analyzed for but not detected above the reporting limit shown.
U - Compound was analyzed for but not detected above the reporting limit shown.
THe Soil cleanup level is Concentration

**The soil cleanup level is One mork of benzene is not present and the total of ethylengene, roluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg

The soil Cleamp level is 100 mg/kg if Centrageness and concentration are concentration and the total of ethylbenzene, tolurne, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Total PAHsare the sum of PAHs detailed by the WAC 173-303-404 (Acenaphthene, acenaphthylene, fluorene, fluorene, fluorenthene, phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(b)fluoranthene, pyrene, chrysene, benzo(a)pyrene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,)perytene).

Note dibenzo ((a,e), (a,h), (a,l), and (a, ll) pyrenes and dibenzo(a,h) actions are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

^d WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

	T											,																	
Sample ID	1	U .	B7	1 '	B8	I	. B9	•	B10	l '	CI	C2	C3	1 '	C4	C5	(C6	C7	C8		C9			210	1	D1	D2	D3
Sample Date		4:7/2009	4/3/2009	4/7/2009	4/3/2009	4/9/2009	4/7/2009	4/3/2009	4/9/2009	6/5/2009	6/5/2009	6/8/2009	6/10/2009	6/10	0/2009	4/3/2009	4/7/2009	4/2/2009	4/2/2009	4/2/2009	4/9/2009	4/7/2009	4/2/2009	4/20/2009	4/9/2009	6/4/2009	6/4/2009	6/4/2009	6/10/2009
Sample Elevation (Ft. above Cit of Seattle Datum)	Cleanup Level	11.5	14	11.5	14	9	12	14	14	11	14	14	14		14	14	12	14	14	14	9	12	14	9	14	12	14	14	14
Field QC	<u>'.]</u>	1	1		1	l		i	l			l	}	Į	1	i e	1	1]	1 "	1	1 "	
		 	 	1	ļ	 	<u> </u>	1				ļ	1		(DUP)	<u> </u>	 	ļ	<u> </u>	<u>i</u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		
VOCs (mg/kg)	0.00			1							1	l	1			l	1			1	ł	1		1		i	i	i	1
Benzene	0.03	0.00322 UJ	0.350 U	0.00573 UJ	0.175 U	0.198 U	0.208 U	0.269 J	0.162 U	0.000955 U	0.00106 U	0.00138	0.000849 U	0.00114 U	0.00244	0.00439	0.00437 U	0.0255	0.00637	0.0218	0.00117 UJ	0.207 U	0.0398	0.00112 U	0.00474 U	0.000709 U	0.000740 U	0.000931 U	0.00102 U
Ethylbenzene	0 7	0.00858 UJ	1.75 U	0.0153 UJ	0.877 U	0.990 U	1.04 U	0.898 U	0.137 J	0.0168	0.0327	0.0964	0.00226 U	0.00303 U	0.00323 U	0.0369	0.0117 UJ	0.827 J	0.0151 UJ	0.0948 J	0.00312 UJ	1.03 U	0.365 J	0.00297 U	0.0126 UJ	0.00189 U	0.00197 U	0.00248 U	0.00273 U
Toluene	, ,	0.898 U	1.75 U	0.00573 UJ	0.877 U	0.990 U	1.04 U	0.898 U	0.808 U	0.00138	0.00119	0.00767	0.000849 U	0.00114 U	0.00121 U	0.00801	0.00437 UJ	0.204 J	1.00 U	0.0880 J	0.00117 UJ	1.03 U	0.157 J	0.00112 U	0.00474 UJ	0.000709 U	0.000740 U	0.00164	0.00102 U
Xylenes, total Methyl tert-butyl ether (MTBE)	0.1	0.0215 UJ 0.449 U	5.25 U 0.00395 U	0.0382 UJ 0.550 U	2.63 U	2.97 U	3.12 U	2.69 U	0.355 J	0.0593	0.0733	0.0348 J	0.00566 U	0.00757 U	0.0172	0.171	1.98 U	3.33	3.01 U	0.406 J	0.00780 UJ	3.10 U	1.43 J	0.00744 U	0.0316 UJ	0.00473 U	0.00494 U	0.00621 U	0.00682 U
	0.1	0.449 0	0.00393 U	0.550 U	0.00418 U	0.495 U	0.521 U	0.00502 UJ	0.00233 UJ	0.000637 U	9.000707 U	0.000559 U	0.000566 U	0.000757 U	0.000808 U	0.000822 U	0.00854	0.00375	0.00616	0.00492	0.000780 UJ	0.517 U	0.254 U	0.000744 U	0.00607	0.000473 U	0.000494 U	0.000621 U	0.000682 U
TPHs (mg/kg)			l	1				1					ļ	1		ĺ	1		1	1	l ·	1					1		ł
Gasoline-Range	30 / 100 ª	44.9 U	41.4 J	56.1 U	61.5 J	49.5 U	52.1 U	95.6 J	21.4 J	9.50	32.9	3.72 J	6.83 U	7.56 U	9.00 U	20.6	33.0 U	53.2 J	50.2 U	33.9 U	6.55 U	51.7 ป	32.8 J	1.83 J	49.7 U	5.44 U	6.16 U	2.27 J	8.05 U
Dicsel-Range	2,000	139	62.8	92.1	40.6 U	108	75.7	54.0	65.9	U 8.11	12.5 U	12.0 U	12.5 U	14.3 U	14.0 U	87.1	56.4	175	141	39.6 U	12.1 U	297	34.3 U	12.4 U	83.0	12.4 U	12.3 U	13.4 U	13.7 U
Lube Oil-Range	2,000	337	103 U	216	101 U	252	163	119 U	201	29.5 U	31.3 U	29.9 U	31.2 U	35.7 U	35.0 U	146	175	225	293	98.9 U	30.3 U	513	85.7 U	31.0 U	168	31.0 U	30.7 U	33.4 U	34.2 U
Kerosene-Range	2,000	43.3	41.2 U	47.9 U	40.6 U	46.4 U	47.3 U	47.7 U	35.4 U	11.8 U	12.5 U	12.0 U	12.5 U	14.3 U	14.0 U	15.9 U	35.1 U	88.9	45.8 U	39.6 U	12.1 U	86.9	34.3 U	12.4 U	46.3 U	12.4 U	12.3 U	13.4 U	13.7 U
PAHs (mg/kg)				1				l i										i	l	ļ	l	1	1	1	ĺ	1	İ		
Acenaphthene	NE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NE NE	NA NA	NA	NA	NA.	NA	NA NA	NA	NA	NA	NA	NA .	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	NE .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA.	NA	NA
Benzo(a)pyrene (b)	0.1	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (6)	NE NE	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE NE	NA	NA NA	NA 	NA	NA NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA
Chrysene (b)		NA NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (6)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Fluoranthene Fluorene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA V	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NE NE	NA NA			NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA .	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Indeno(1,2,3-cd)pyrene (b) I-Methylnaphthalene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA VA	NA	NA NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
2-Methylnaphthalene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Naphthalene	5	0.0215 UJ	0.0395 UJ	0.0382 UJ	17.5 U	0.0295 UJ	20.8 U	18.0 U	- 1.11	NA 0.0121	NA NA	NA NA	NA	NA	NA a a a a a a a a a	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA
Phenanthrene	NE NE	0.0213 03 NA	0.0393 03 NA	0.0382 UJ NA	NA	0.0293 03 NA	20.8 U NA	18.0 U NA	16.2 U NA	0.0121 NA	0.0581 NA	1.31 U	0.00566 U	0.00757 U	0.00808 U	0.0146	0.0291 UJ	0.0307 UJ	0.0377 UJ	0.0223 UJ	0.00780 UJ	0.0317 UJ	10.1 U	0.00744 U	0.0316 UJ	0.00473 U	0.00494 U	0.00621 U	0.00682 U
Pyrene	NF.	NA NA	NA NA	NA NA	NA I	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA	NA	NA NA	NA NA	NA V	NA 	NA	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA NA	NA NA	NA NA										NA	NA NA	NA	NA NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) °	NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA a a seu a	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
	INE	IVA	INA	NA.	NA.	NA NA	NA	NA	NA NA	0.0121	0.0581	NA	NA	NA	NA	0.0146	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)	l			l l		l l				[]]		1			
Arsenic	20	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA
Barium	NE NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA
Cadmium	2	NA V	NA	NA NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Chromium	19 (Cr ^{6*}) / 2,000 (Cr ^{3*})	NA .	NA TO T.	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Lead	250	20.3	79.5 J	64.0	51.2 J	35.0	39.4	118 J	126	14.9	7.77	5.41	6.36	17.3	23.5	62.3 J	31.6	45.8	67.5	59.7	5.78 U	96.7	144	4.14	483	3.43	3.80	20.6	41.7
Selenium	NE	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA
Silver	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP Metals (mg/L)				1 1				1			1													1					
Lead	5 ^(d)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:
Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clare/Reporting/CLARCReporting.aspx).
DUP - Field duplicate
J - Estimated value
NA - Not applicable
NE - Not established
PAtts - Polyundear aromalic hydrocarbons
TPHs - Total petroluem hydrocarbons
U - Compound was analyzed for but not detected above the reporting limit shown.
UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.
VOCs - Volatile organic compounds
TTES - Total Toxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Total PAHsare the sum of PAHs detailed by the WAC 173-303-040 (Acenaphthene, acenaphthylene, fluorene, anthracene, fluoranthene, phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, pyrene, chrysene, benzo(a)pyrene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,i)penylene).

Note dibenzo ((a,e), (a,h), (a,i), and (a,1)) pyrenes and dibenzo(a,i) acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

^d WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

2 . 15	ł	1 54		P.5	· · · · ·		г		T -				T			1		т							 		·		1	
Sample 1D	#	D4	1	D5	1	D6)7 	1 *	08	1	D9	Ð10	1	E1	E2	E3	1	E4		E5		1	E6	· ·	E7	1	E8	·	E9
Sample Date Sample Elevation (Ft. above City	MICA Method A Son	6/10/2009	4/3/2009	3/27/2009	4/3/2009	3/30/2009	4/3/2009	3/30/2009	4/3/2009	3/30/2009	4/3/2009	3/30/2009	4/9/2009	6/4/2009	6/4/2009	6/4/2009	6/4/2009	6/9/2009	6/4/2009	4/1/2009	3/27	7/2009	4/1/2009	3/27/2009	4/1/2009	3/27/2009	3/31/2009	3/27/2009	3/31/2009	3/27/2009
of Seattle Datum)	Cleanup Level	14	11.5	14	11.5	14	11.5	14	11.5	14	11.5	14	14	12	14	14	14	11	14	11.5		14	12	14	11.5	14	11.5	14	11.5	14
Field QC]		1	l	1	i		l	ł							1			1	1	(DUP)	f	1		1	l	ļ		l
VOCs (mg/kg)	i	i	i	*	<u> </u>				 		i	 					†	 	†	†	i	 ` 		 	 	 	 	 	i	1
Benzene	0.03	0.00191	0.00507 UJ	0.00815	0.265 U	0.0657	0.236 U	0.0619	0.00689 U	0.0730	0.00637 U	0.0205	0.00361 UJ	0.172 U	0.0307 J	0.000863 ป	0.00435	0.00146 U	6.84 J	0.00445 U	0.0174 J	0.00514 J	0.00587 U	0.648 J	0.00456 UJ	0.237	0.00188 U	0.0847	0.00224 U	0.161
Ethylbenzene	6	0.00253 U	0.0135 UJ	1.96	1.33 U	0.312	1.18 U	0.972	1.40 U	0.272	1.00 U	0.144	1.02 U	0.172 U	0.901 J	0.000303 U	0.00477	0.00388 UJ	50.5 J	0.0119 UJ	0.122 J	0.0454 J	0.00587 UJ	0.831 U	0.0122 UJ	0.816 U	0.00501 U	1.14	0.00224 UJ	1.15
Toluenc	7	0.000948 U	0.00507 UJ	0.0309	1.33 U	0.183	1.18 U	0.204	0.00689 UJ	0.162	0.00637 UJ	0.0563	0.00361 UJ	0.129 J	0.00466 J	0.000863 U	0.00105 U	0.00146 UJ	67.2 J	0.00445 UJ	0.0292 J	0.00842 J	0.00587 UJ	0.831 U	0.00456 UJ	0.816 U	0.00188 U	0.320	0.384 U	0.621 U
Xylenes, total	9	0.00632 U	0.0338 UJ	5.14	3.98 U	2.82	3.54 U	4.05	4.19 U	2.75 U	3.01 U	2.35 U	3.05 U	0.327 J	2.11 J	0.00575 U	0.00795	0.00971 UJ	281 J	0.0297 UJ	3.11 J	0.379 J	0.0392 UJ	2.49 U	0.0304 UJ	3.43	0.767 U	5.14	1.15 U	4.31
Methyl tert-butyl ether (MTBE)	0.1	0.000632 U	0.00338 UJ	0.000686 U	0.664 U	0.00187 U	0.591 U	0.00207 U	0.699 U	0.00382 U	0.0254	0.00343 U	0.508 U	0.00239 U	0.000612 U	0.000575 U	0.000698 U	0.000971 U	0.000605 U	0.00297 U	0.00102 U	0.000883 U	0.493 U	0.00449 UJ	0.458 U	0.00414 UJ	0.00456	0.00108 U	0.00408	0.00301 UJ
TPHs (mg/kg)						1																								
Gasoline-Range	30 / 100 ª	6.76 U	35.1 U	335	66.4 U	76.9 J	59.1 U	117 J	69.9 U	45.8 U	50.2 U	39.2 U	21.9 J	43.1 U	76.6	5.08 U	6.95 U	16.9 U	2,960	37.3 U	90.5 J	53.0 J	49.4 U	41.5 U	45.3 U	67.8 J	12.7 U	134 J	19.2 U	82.4 J
Diesel-Range	2,000	12.2 U	102	33.1	159	22.7 U	85.4	29.1	76.2	43.0 U	195	35.8 U	46.8 U	44.6	12.4 U	11.0 U	13.0 U	26.0	20.3	73.8	56.6 J	16.2 J	90.8	154	67.4	38.2 U	18.4 U	24.1	30.8	31.1 U
Lube Oil-Range	2,000	30.4 U	209	57.9	337	56.8 U	194	58.4 U	173	107 U	507	89.6 U	1170	102 U	30.9 U	27.5 U	32.5 U	73.3	30.0 U	163	85.0	33.2 U	149	309	145	95.4 U	46.0 U	43.9	53.7 U	77.8 U
Kerosene-Range	2,000	12.2 U	34.7 U	31.8	42.6 U	22.7 U	39.4 U	23.3 U	45.3 U	43.0 U	42.1 U	35.8 U	46.8 U	40.8 U	12.4 U	11.0 U	13.0 U	23.0 U	58.3	35.3 U	29.8	13.3 U	45.3 U	38.1 U	42.2 U	38.2 U	18.4 U	17.4 U	21.5 U	31.1 U
PAHs (mg/kg)				1																			T							
Acenaphthene	NE	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA.	NA	NA	NA .	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Acenaphthylene	NE	NA	NA	NA.	NA	NA	NA	NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA NA	NA	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA
Anthracene	NE	NA	NA	NA .	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA
Benzo(a)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA .	NA	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA NA	NA	NA NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	NA	NA	NA .	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA
Fluorene	NE NE	NA	NA	NA.	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene (b)	NE	NA	ŊĄ	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
i-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NE	NA .	NA	NA	. NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	5	0.00632 U	0.0338 UJ	0.137	0.0445 UJ	0.171	0.0366 UJ	8.23 U	0.0459 UJ	18.3 U	0.0424 UJ	15.7 U	0.0241 UJ	17.2 U	0.120	0.00575 U	0.00698 U	0.00971 UJ	10.8	0.0297 UJ	0.0947 J	0.0499 J	0.0392 UJ	0.0449 UJ	0.0304 UJ	16.3 U	0.0125 U	4.63 U	0.0149 UJ	12.4 U
Phenanthrene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Pyrenc	NE	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA .	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA .	NA ·	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) ^c	NE	NA	NA	0.137	NA .	0.171	NA	NA .	NA	NA	NA	NA	NA	NA	0.120	NA	NA	NA	10.8	NA	0.0947	0.0499	NA	NA	NA	NA	NA	NA	NA ·	NA
Total Metals (mg/kg)	[]]						1							l
Arsenic	20	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Barium	NE	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Cadmium	2	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA NA	NA	NA	NA	NA	NA	NA NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA NA	NA	NA	NA	NA NA	NA	NA
Lead	250	15.6	106 J	44.3 J	36.2 J	18.0	42.1 J	41.7	34.9 J	98.2	57,0 J	87.4	89.0	81.5	7.20	3.22	23.7	36.1	43.4	61.8	21.1 J	30.7 J	83.5	86.4 J	94.0	92.2 J	9.67 J	48.5 J	34.3 J	63.5 J
Selenium	NE NE	NA NA	NA	NA	NA NA	NA 	NA V	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA
Silver	NE 2	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA NA	NA	NA .	NA	NA	NA	NA	NA	NA
TCLP Metals (mg/L)	45			1					·	j								İ					1							
Lead	5 ^(d)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA ·	NA	NA	NA	NA	NA

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAHs - Polyrudear aromatic hydrocarbons

TPHs - Total petroluem hydrocarbons

TPHs - Total petroluem hydrocarbons

U - Compound was analyzed for but not detected above the reporting limit shown.

U - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volatile organic compounds

TTEC - Total Toxicity Equivalent Soil Concentration

The soil cleamp level is 10 mg/kg if became the contentration

The soil cleamp level is 10 mg/kg if became the contentration of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

The soil cleamp level is 100 mg/kg if became the contentration calculations.

Total PAHsare the sum of PAHs detailed by the WAC 173-303-040 (Accessphiltenes, accessphiltyene, fluorent, and benzo(g,h.)perylene). Note dibenzo (g,e.), (a,h.), (a,l.), and (a, 1)] pyrenes and dibenzo (a,l.) ardina are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

	_	ı	T							T		1				T ==	· · · · · · · · · · · · · · · · · · ·		T		T							· · · · · · · ·	T
Sample I		E10		FI 1	1	F2		F3		1	F4	1	75 1		F6	F7		F8	1	F9	F10	1	G1		G2 I	`	G3	G4	G5
Sample Date		3/27/2009	6/9/2009	6/4/2009	6/4/2009	6/2/2009	6/9/2009	5/29	9/2009	6/9/2009	4/21/2009	4/1/2009	3/27/2009	4/1/2009	3/27/2009	3/27/2009	3/31/2009	3/25/2009	3/31/2009	3/25/2009	3/27/2009	6/4/2009	6/4/2009	6/9/2009	6/2/2009	6/9/2009	5/29/2009	5/29/2009	3/25/2009
Sample Elevation (Ft. above Ci of Seattle Datur		14	9	11.5	14	14	11.5		14	10.5	14	11	14	12	14	14	10.5	14	11.5	14	14	10	14	11	14	H	14	14	14
Field Q	C:		l			1	l	İ	(DUP)	i	İ					j			1	1	1	1						1	1
VOCs (mg/kg)			† · · · · · · · ·		<u> </u>		i			i i		1			<u> </u>		i			<u> </u>	İ						i 	i i	i
Benzene	0.03	0.00708 UJ	0.00104 U	0.126 J	0.0191	0.00854	0.00249 UJ	0.0826 J	0.0431 J	0.00268 UJ	0.0905	0.00293 U	0.171 J	0.00564 ป	0.0847	0.181 U	0.00316 U	0.0375	0.00277 U	0.0236	0.00207 U	0.00292 U	0.000875 ป	0.000802 UJ	0.0876	0.0239	0.0368	0.000900 U	2.73 J
Ethylbenzene	6	0.977 U	0.00278 UJ	0.168 J	0.107	0.0101	0.00664 UJ	5.78	7.47	0.00716 UJ	0.215 U	0.00782 UJ	1.95 J	0.0150 U	3.20	0.906 U	0.00842 UJ	1.80	0.00738 UJ	0.675	0.00553 U	0.770 U	0.00233 U	0.158 U	0.00387	0.0318	0.00259	0,00240 U	11.7 J
Toluene	7	0.977 U	0.00104 UJ	0.842 U	0.0198	0.00544	0.567 U	2.13	1.74	0.672 U	0.0409 J	0.00293 UJ	0.906 J	0.00564 U	1.64	0.906 U	0.00316 UJ	0.956	0.00277 UJ	0.345	0.00207 U	0.770 U	0.00272	0.158 U	0.000916 U	0.0191	0.000770 U	0.000900 U	14.9 J
Xylenes, total	9	2.93 U	0.00694 ปร	0.548 J	0.322	0.0283	0.0166 UJ	31.1	34.6	0.0179 UJ	0.646 U	0.0195 UJ	7.58 J	0.0376 U	13.7	2.72 U	1.17 U	7.39	1.35 U	3.60	0.0138 U	2.31 U	0.00916	0.474 U	0.00610 U	0.292	0.00513 U	0.00600 U	49.0 J
Methyl tert-butyl ether (MTBE)	0.1	0.489 U	0.000694 U	0.00259 U	0.000669 U	0.000342 U	0.00166 UJ	0.000612 U	0.000614 U	0.00179 UJ	0.108 U	0.00195 U	0.00192 U	0.531 U	0.000772 ป	0.453 U	0.195 ป	0.000913 U	0.225 U	0.000683 U	0.00138 U	0.00195 U	0.000583 U	0.000535 UJ	0.000610 U	0.000737 U	0.000513 U	0.000600 U	0.000837 U
TPHs (mg/kg)					1	i	1								ł		l			i	1	į	1	1			ł		1
Gasoline-Range	30 / 100 °	73.2 J	9.02 U	13.7 J	10.1	3.02 J	23.9 U	449	613	27.9 Ư	10.8 U	21.1 U	267 J	50.6 ป	290 J	45.3 U	19.5 U	183 J	22.5 U	144	11.5	50.2 U	5.06 U	10.1 U	2.32 J	14.6 U	2.67 J	6.85 U	1,120 J
Diesel-Range	2,000	101	16.8 U	44.3 U	12.9 U	12.9 U	73.4	12.5 U	21.7	39.5 U	30.8	22.5 U	304	105	177	98.4	22.1 U	30.8	24.6 U	13.0 U	14.8	40.8 U	12.1 U	15.4 U	13.9 U	18.9 U	12.1 U	12.7 U	20.6
Lube Oil-Range	2,000	244	41.9 U	119	32.3 U	32.3 U	184	31.2 U	31.4 U	98.7 U	52.9	56.1 U	219	329	266	103 U	55.1 U	59.7 U	61.5 U	32.6 U	35.1 U	102 U	30.3 U	38.5 U	41.1	47.2 U	30.2 U	31.6 U	40.2
Kerosene-Range	2,000	45.6 U	16.8 U	44.3 U	12.9 U	12.9 U	32.3 U	33.5 J	74.3 J	39.5 U	16.0 U	22.5 U	43.0	44.9 U	83.5	41.3 U	22.1 U	23.9 U	24.6 U	13.0 U	14.0 U	40.8 U	12.1 U	15.4 U	13.9 U	18.9 U	12.1 U	12.7 U	33.6
PAHs (mg/kg)			l			İ			İ			i i		1			l		1	1		1	1	l				i	1
Acenaphthene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
Acenaphthylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene (b)	NE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA .	NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Benzo(b)fluoranthene (b)	NE	' NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE NE	NA 	NA 	NA NA	NA	NA V	NA	NA	NA	NA	NA 	NA	NA	NA	NA	NA	NA	NA	NA .	NA NA	NA	NA NA	NA	NA 	NA V	NA 	NA	NA NA	NA NA
Fluorene	NE	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA V	NA NA
Indeno(1,2,3-ed)pyrene (6)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA V	NA NA	NA .	NA	NA	NA NA	NA 	NA NA	NA 	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA
1-Methylnaphthalene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene Naphthalene	NE 5	19.5 U	0.00694 UJ	16.8 U	0.0570	0.00342 U	0.0166 UJ	2.66	4.37	0.0179 UJ	0.00888 UJ	0.0195 UJ	7.13 U	0.0376 UJ	0.126	18.1 U	0.0211 UJ	0,167	0.0185 UJ	0.123	0.0138 U	0.0195 UJ	0.00583 U	0.00535 UJ	0.00610 U	4.78 U	0.00513 U	0.00600 U	6.12
Phenanthrene	NE NE	NA NA	0.00094 03 NA	NA	0.0370 NA	0.00342 U NA	NA	NA	NA NA	0.0179 GJ NA	NA	0.0193 03 NA	NA	0.0376 03 NA	0.126 NA	NA	0.0211 CJ NA	NA	NA	NA	0.0136 U NA	NA	0.00383 U	0.00535 OF	NA NA	1.78 U NA	NA	NA	NA
Pyrene	NE NE	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.
TTEC Concentration (c-PAHs)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA	NA
Total PAHs (mg/kg) c	NE	NA NA	NA NA	NA NA	0.06	NA NA	NA NA	2.66	4.37	NA NA	NA NA	NA NA	NA NA	NA NA	0.13	NA NA	NA NA	0.167	NA NA	0.123	NA NA	NA NA	NA.	NA NA	NA .	NA NA	NA NA	NA NA	6.12
1.3.3/	142	14/4	110	11/4	0.00	11/4	13/1	2.00	4.57	110	LVA.	INA	INA	INA	0.13	1174	110	0.107	I'A	0.123	IVA	···	1100	1111	1167	17/1	1111	11/1	0.12
Total Metals (mg/kg)	20	NA	NA.	NA	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA	N/A	NA	NA	NA.	NA	NA	NA.	NA	NA.	NA NA	NA	NA	NA	NA	NA	NA
Arsenic Barium	NE ZU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	, ,	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA
Lead	250	100 J	12.3	101	3.96	3.41	46.3	20.8 J	19.6 J	1.90 U	28.8	15.5	84.8 J	42.3	88.2 J	36.4 J	1.27 J	61.6	35.9 J	23.1	25.7 J	1.95	1.78	0.791	163	23.9	29.8 J	10.2 J	161
Selenium	NE I	NA.	NA	NA.	NA	NA NA	NA	NA	NA NA	1.50 U	NA	NA NA	NA	NA	NA	NA	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
Silver	NE I	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA.	NA
Mercury	2	NA.	NA NA	NA.	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA .	NA.	NA
TCLP Metals (mg/L)																													
Lead	5 (d)	NA	NA	NA	NA	NA	NA NA	NA	NA .	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA.	NA NA	NA	NA	NA.	NA	NA
2000		347	I IA	14/1	17/4	I'A	11/1	11/1	14/4	17/1	1975	11/1	IVA	10/1	17/1	11/1	, na	11/1	1177	17/	17/4	17/1	· · · · · · ·			14/1	144	177.4	

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

NA - Not established

NL - Not established
PAHs - Polynuclear aromatic hydrocarbons
TPHs - Total petroluem hydrocarbons
U - Compound was analyzed for but not detected above the reporting limit shown.
UJ - Compound was analyzed for but not detected above the reporting limit shown.
The reporting limit is an estimated value.
VOCs - Volatile organic compounds
TEC - Total Toxicity Equivalent Soil Concentration

THE of Indian Toxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

Total PAHs are the sum of PAHs detailed by the WAC 173-303-040 (Acenaphthene, acenaphthylene, fluorene, anthracene, fluorenthene, benzo(a)nthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,i)perylene).

Note dibenzo [(a,e), (a,h), (a,i), and (a, 1)] pyrenes and dibenzo(a,i) acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

Complete	J	G6	G7	G8	G 9	G10	T	н		H2	Н3	T	H4	T	Н5	Н6	Н7	H8	Н9	H10	· · · · · · · · · · · · · · · · · · ·	11		1 12	13	14	15	Ι	16
Sample II Sample Date		3/25/2009	3/24/2009	3/24/2009	3/24/2009	3/23/2009	6/4/2009		/2009	6/2/2009	5/29/2009	6/9/2009	5/29/2009	1	9/2009.	3/24/2009	3/24/2009	3/24/2009	3/19/2009	3/23/2009	6/3/2009		/2009	6/2/2009	5/29/2009	5/29/2009	3/19/2009	3/23/2009	3/19/2009
Sample Date Sample Elevation (Ft. above Cit	MICA Method A Son	N .		1	3/24/2009	3/23/2009	į.				l	0/9/2009	3/29/2009	i		l	3/24/2009	1	1	1	1			0/2/2007	3/2//2007	1	1	10	14
of Seattle Datum	Cleanup Level	14	14] 14	14	14	11.5		14	14	14	11	14	1	14	14	14	14	14	14	11		14	14	14	14	14	10	14
Field QC	:	1							(DUP)	l	1	l	L		(DUP)			1	1	<u> </u>		<u> </u>	(DUP)	<u> </u>	l	1	ļ.,		
VOCs (mg/kg)				T		1							1						ļ .										
Benzenc	0.03	0.468 J	0.0938	0.201 J	0.297 J	0.0317	0.0180	0.0571	0.0811	0.000894 U	0.000961 U	0.00272 UJ	0.0174	0.298 J	0.703 J	0.129	0.0874	0.157	0.235 U	0.0037 UJ	0.00123	0.194	0.247	0.000850 U	0.000643 U	0.000953 U	0.00125 U	0.00386 U	3.25
Ethylbenzene	6	3.40 J	1.18	3.80 J	5.08 J	2.70	0.0805 J	0.0409	0.0420	0.00238 U	0.00256 U	0.00726 UJ	3.89	- 0.784 J	2.98 J	2.10	1.58	3.91	1.17 U	0.437 U	0.00273	2.41	2.22	0.00227 U	0.00172 U	0.00254 U	0.00334 U	0.423 U	14.6
Toluene	7	1.79 J	0.669	2.02 J	4.24 J	0.669	0.575 U	0.00321	0.00346	0.000894 U	0.000961 U	0.535 U	1.63	0.453 J	2.08 J	1.15	0.768	2.17	1.17 U	0.437 U	0.00259	0.0552 J	0.131 J	0.000850 U	0.000643 U	0.000953 U	0.00125 U	0.423 U	8.57
Xylenes, total	9	13.5 J	4.64	16.5 J	27.1J	4.93	1.73 U	0.158	0.148	0.00596 U	0.00640 U	1.60 U	8.85	2.80 J	10.9 J	8.11	5.89	17.3	4.56	1.31 U	0.0138	12.8	10.4	0.00567 U	0.00429 U	0.00636 U	0.00836 U	1.27 U	78.3
Methyl tert-butyl ether (MTBE)	0.1	0.00145 U	0.00182 U	0.00230 U	0.00381 U	0.00210 U	0.00176 U	0.000414 U	0.000513 U	0.000596 U	0.000640 U	0.00181 U	0.000654 U	NA	NA NA	0.00170 U	0.00213 U	0.00414 U	NA	0.0123 J	0.000568 U	0.000638 U	0.000539 U	0.000567 U	0.000429 U	0.000636 U	NA	0,00257 U	NA
TPHs (mg/kg)		ł	1		l		l	1	1	j		l			1	l]		Į	1	l		1		İ				
Gasoline-Range	30 / 100 °	306 J	145 J	553 J	895 J	181 J	28.8 U	14.7	9,21	5.50 U	6.15 U	28.2 U	239 J	51.0 J	172 J	245 J	214 J	528 J	139 J	21.8 U	2.40 J	184	148	6.04 U	7.42	5.33 U	6.24 U	21.1 U	1,520
Diesel-Range	2,000	80.8	184	132	289 J	22.1	66.3	11.9 U	11.6 U	13.0 U	12.2 U	33.9 U	12.0 U	110	74.5	183	123	185	48.2 U	19.3 U	12.6 U	23.9	21.1	12.7 U	12.3 U	11.6 U	11.9 U	20.5 U	40.8
Lube Oil-Range	2,000	142	265	235	537 J	40.8	185	29.8 U	29.0 U	32.6 U	30.6 U	84.7 U	30.1 U	162	107	312	211	368	120 U	61.0	31.6 U	32.4	30.2 U	31.9 U	30.8 U	28.9 U 11.6 U	29.8 U 11.9 U	131 20.5 U	63.3 89.0
Kerosene-Range	2,000	37.1	95.9	85.8	170 J	15.4 U	30.0 U	11.9 U	11.6 U	13.0 U	12.2 U	33.9 U	12.0 U	71.2	55.3	96.6	60.9	101	48.2 U	19.3 U	12.6 U	33.2	25.2	12.7 U	12.3 U	11.6 U	11.90	20.5 0	69.0
PAHs (mg/kg)				1		l												l	l	NA.		NA NA	NA.	NA.	NA .	NA NA	NA.	NA	NA.
Acenaphthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Acenaphthylene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
Anthracene (b)	NE NE	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene (b)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA	NA.	NA.	NA	NA
Benzo(a)pyrene (b) Benzo(b)fluoranthene (b)	NE NE	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA	NA	NA.	NA
Benzo(k)fluoranthene (b)	NE	NA NA	NA	NA NA	NA.	NA	NA.	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Fluorene	NE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene (b)	- NE	NA	NA	NA	NA	NA	NA	NA	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
1-Methylnaphthalene	NE	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
2-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .	NA	NA	NA
Naphthalene	5	6.15 U	0.278	9.18 U	17.8 U	5.31 U	11.5 U	0.0591	0.0439	0.00596 U	0.00640 U	0.0181 UJ	0.0440	NA	NA	0.308	0.388	0.394	NA	8.73 U	0.00568 U	1.78 J	2.73 U	0.00567 U	0.00429 U	0.00636 U	NA	8.45 U	NA
Phenanthrene	NE	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 	NA 	NA	NA
Рутспе	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) °	NE	NA	0.278	NA	NA	NA	NA	0.0591	0.0439	NA	NA	NA	0.044	NA	NA	0.308	0.388	0.394	NA	NA	NA NA	1.78	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)	1	ll .				1				l			1		1		1	1		ł]	l	1					
Arsenie	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA .	NA	NA
Barium	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	19 (Cr ⁶) / 2,000 (Cr ³)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 0.55	NA	NA	NA (O.2.)	NA 2.02	NA
Lead	250	188	55.2 J	58.4 J	85.I J	88.0	39.1	2,37	2.60	6.59	81.8 J	2.78 J	46.7	59.6 J	30.0 J	55.5 J	96.3 J	156 J	15.4 J	4.25	11.0	6.72	7.10	2.57	164 J	19.2 J	69.2 J	2.03	32.7 J
Sclenium	NE	NA	NA NA	. NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Silver	NE	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	2	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA .	NA	NA NA	NA NA	NA.	NA	INA	IVA	INA	INA	IVA
TCLP Metals (mg/L)				1		l l	l								l	l	l					l	l	l				274	NA.
Lead	5 ^(d)	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ccy/clare/Reporting/CLARCReporting.aspx). DUP - Field duplicate
J - Estimated value
NA - Not applicable
NE - Not established
PAtts - Polyundear aromatic hydrocarbons
TPHs - Total petroluem hydrocarbons
TPHs - Total petroluem hydrocarbons
TPHs - Total petroluem hydrocarbons
U - Compound was analyzed for but not detected above the reporting limit shown.
UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.
VOCs - Volatile organic compounds
TTEC - Total roxicity Equivalent Soil Concentration

TTEC - Total roxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

The soil clearup level is 100 mg/kg if benzane is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Total PAHsers the sum of PAHs detailed by the WAC 173-303-040 (Acenaphthene, acenaphthylene, fluorene, and benzo(g),hi)perylene, benzo(b)fluoranthene, benzo(b)fluoranthene, pyrene, chrysene, benzo(b)greene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and benzo(g,h,l)perylene). Note dibenzo (g,e,b), (a,h), and, (a,1) pyrenes and dibenzo(g,a), acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

	1		·	T		T	1	T	r		T		T											T					
Sample ID	1	17	18	19	110	Ji	J2	J3	J4	J5	J6	J7	J8	J 9	J10	1	K1		K2	•	K3		K4	K5	K6	К7	K8	К9	K10
Sample Date Sample Elevation (Ft. above City	MICA Method A Son	3/19/2009	3/19/2009	3/24/2009	3/23/2009	6/3/2009	6/1/2009	5/29/2009	5/29/2009	3/24/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/23/2009	6/3/2009	6/3/2009	6/3/2009	6/3/2009	6/3/2009	6/3/2009	6/3/2009	6/3/2009	3/20/2009	3/20/2009	3/20/2009	3/20/2009	3/23/2009	3/20/2009
of Seattle Datum)	Cleanup Level	14	14	14	14	14	14	14	14	14	14	14	14	14	14	11.5	14	12	14	12	14	12	14	14	14	14	14	14	14
Field QC	:		ŀ			l											1	1									ĺ	1	
VOCs (mg/kg)		l		i i			 	i i				i i	1		i			1			 	 		 		<u> </u>		l	
Benzene	0.03	0.0115	0.00188 U	0.0772	0.0642	0.00754	0.000880 U	0.000893 U	0.00117 U	0.0102	0.00330	0.0283	0.0140	0.00502 U	0.00767 U	0.00192	0.0471	0.000674 U	0.000757 U	0.000990 U	0.000934 U	0,000865 U	0.000873 U	0.056 J	0.00194 U	0.00147 U	0.00133 U	0.00539	0.0015 U
Ethylbenzene	6	0.115	0.00503 U	4.66	1.16 U	0.0797	0.00235 U	0.00238 U	0.00313 U	1.36	0.00733	0.192	0.0122	0.0134 U	0.818 U	0.00258 U	0.238	0.00180 U	0.00202 U	0,00264 U	0.00249 U	0.00231 U	0.00233 U	0.632 J	0.00517 ป	0.00393 U	0.00354 U	0.919	0.00401 U
Toluene	7	0.107	0.00188 U	3.03	1.16 U	0.0885	0.000880 U	0.000893 U	0.00139	0.0303	0.00893	0.177	0.0104	0.00645	0.818 U	0.000967 U	0.00107	0.000674 U	0.000757 U	0.000990 U	0.000934 U	0.000865 U	0.000873 U	0.186	0.00194 U	0.00147 U	0.00133 U	0.285 U	0.0015 U
Xylenes, total	9	2.93	0.0126 U	23.6	3.48 U	0.703	0.00587 U	0.00596 ป	0.00783 U	11.5	0.0299	0.739	0.102	0.0385	2.46 U	0.00645 U	0.0635	0.00450 U	0.00505 U	0.00660 U	0.00623 U	0.00576 U	0.00582 U	1.58 J	0.0129 U	0.00983 U	0.00886 U	2.72	0.010 U
Methyl tert-butyl ether (MTBE)	0.1	NA	NA	0.00259 U	0.00529 U	0.000562 U	0.000587 U	0.000596 U	0.000783 U	0.00129 U	NA	NA:	NA	- NA	0.0132	0.000645 U	0.000683 U	0.000450 U	0.000505 U	0.000660 U	0.000623 U	0.000576 ป	0.000582 U	NΑ	NA	NA	NA	0.00133 U	NA
TPHs (mg/kg)	1																Ì	1											
Gasoline-Range	30 / 100 ³	44.7	13.6 U	609 J	HUJ	10.8	5.82 U	2.68 J	26.2	520	6.84 U	84.4 J	18.2 J	31.9 U	40.9 U	6.55 U	26.4	5.64 U	9.63	6.37 U	7.68 U	6.65 U	5.35 U	56.2 J	13.9	7.94	7.74 U	132	7.03 U
Diesel-Range	2,000	12.2 U	66.9	161	42.9 U	12.0 U	12.6 U	12.4 U	23.3	70.7	12.0 U	84.8	47.7	25.8 U	32.4 U	12.6 U	12.8 U	12.3 U	12.6 U	12.9 U	14.0 U	13.0 U	12.3 U	12.3 U	12.5 U	12.3 U	12.9 U	30.1	11.9 U
Lube Oil-Range	2,000	30.4 U	172	232	107 U	30.0 U	31.5 U	31.1 U	84.6	110	30.1 U	161	262	64.6 U	81.0 U	31.5 U	31.9 U	30.8 U	31.4 U	32.2 U	35.0 U	32.5 U	30.7 U	30.7 U	33.3	30.8 U	32.1 U	37.6 U	29.8 U
Kerosene-Range	2,000	12.2 U	23.4	92.2	42.9 U	12.0 U	12.6 U	12.4 U	15.6 U	87.6	12.0 U	54.7	19.7 U	25.8 U	32.4 U	12.6 U	12.8 U	12.3 U	12.6 U	12.9 U	14.0 U	13.0 U	12.3 U	12.3 U	12.5 U	12.3 U	12.9 U	15.I U	11.9 U
PAHs (mg/kg)	1							l																					
Acenaphthene	NE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NE	NA NA	NA	NA	N.A	NA	NA	NA	NA	NA	NA	NA .	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Anthracene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene (b)	NE	NA	NA	NA	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	´ NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE NE	NA V	NA	NA 	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA V	NA	NA	NA V	NA V	NA	NA	NA NA	NA	NA V
Fluorene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA NA
Indeno(1,2,3-cd)pyrene (6) 1-Methylnaphthalene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene	NE NE	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalone	5	NA NA	NA.	9.11 U	23.2 U	0.0280	0.00587 U	0.00596 U	0.00783 U	3.27 U	NA NA	NA NA	NA NA	NA NA	16.4 U	0.00645 U	0.110	0.00450 U	0.00505 U	0.00660 U	0.00623 U	0.00576 U	0.00582 U	NA NA	NA NA	NA NA	NA NA	5.69 U	NA NA
Phenanthrene	NE .	NA.	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA.	NA.	NA	NA	NA.	NA	0.00303 G	NA	NA	NA	NA	NA.	NA.	NA NA	NA	NA.	NA.
Pyrene	NE	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA	NA .	NA	NA.	NA NA	NA	NA .	NA	NA NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) °	NE	NA I	NA	NA NA	NA	0.028	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)				 			 					— ` "•				—·" ·	 ••••	 					 						
Arsenie	20	NA NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA	NA :	NA	NA	NA.	NA	NA	NA	NA	NA	NA
Barium	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	2	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA
Lead	250	11.6 J	242 J	91.1 J	76.7	2.68	8.44	36.4 J	97.9 J	52.3 J	6.76 J	192 J	298 J	212 J	38.3	3,40	5.91	8.07	4.00	2,41	4.53	7.98	3.09	74.9	15.8	8.81 J	22.6 J	386 J	103
Selenium	NE	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA.	NA.	NA NA	NA.	NA	NA.	NA	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA	NA.
Silver	NE	NA.	NA	NA NA	NA	NA	NA	NA.	NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NA .	NA.	NA NA	NA.	NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA
Mercury	2	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA.	NA.	NA	NA	NA	NA
TCLP Metals (mg/L)																													
Lead	5 ^(d)	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA
read	L		11/0	IVA.	INA	IVA	I IIA	INA	IVA	IVA	INA	INA 1	IVA	INA	INA	IVA	INA	I INA	INA	INM	IVA	INA.	I IVA	INV	IAV	INA	INA	IVA	INA

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAHs - Polyundear aromatic hydrocarbons

TPHs - Total petroluem hydrocarbons

U - Compound was analyzed for but not detected above the reporting limit shown.

U - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volatile organic compounds

TTEC - Total Toxicity Equivalent Soil Concentration

- The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

 These compounds are considered carcinogenic PAHs (cPAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

 *Total PAHsare the sum of PAHs detailed by the WAC 173-303-404 (Acenaphthene, acenaphthylene, alternative, fluorene, fluorenthene, benzo(a)nthracene, benzo(b)fluoranthene, benzo(b)fluoranthene, pyrene, chrysene, chrysene, benzo(a)pyrene, dibenz(a,b) actions are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.
- ^d WAC 173-303-090 Dangerous Waste Criteria, dated July 31, 2009.

Table 2 Summary of Soil Analytical Results Area 1 Westlake-Mercer

	<u>[</u>]			T		1	1	I	1	1	T			1			B2			B3		1	24	B5	T	В6
Sample ID:		A2	A3		A4 1/2009	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	ļ	C111 (2000)		•	1 . 20.2000	4/29/2009	, ,	4/24/2009	1	3/2009
Sample Date: Sample Elevation (Ft. above City	MTCA Method A Soil	4/28/2009	4/28/2009	4/22	72009	4/22/2009	4/22/2009	4/22/2009	4/22/2009	4/22/2009	4/6/2009	4/6/2009	4/6/2009	4/6/2009	4/6/2009	4/6/2009	4/28/2009	6/11/2009	5/4/2009	4/30/2009	4/28/2009	4/29/2009	4/24/2009	4/24/2009	4/2:	5/2009
of Seattle Datum):	Cleanup Level	14	14	1	14	14	14	14	14	14	14	14	14	14	14	14	14	4	7	9	14	9	14	14		14
Field QC:			ļ		(DUP)	1		l	ł						ĺ	ì	1					1				(DUP)
VOCs (mg/kg)						1																Ť T				
Benzene	0.03	0.00103 U	0.00115 U	0.00342	0.00325	0.000901 U	0.000915 U	0.000928 U	0.000846 U	0.000982 U	0.000691 U	0.000839 U	0.000752 U	0.000795 U	0.000715 U	0.000754 U	0.00110 U	NA	0.00233	0.0342	0.0186	0.000988 U	0.0307	0.0166	U 00100.0	0.000510 U
Ethylbenzene	6	0.00275 U	0.00306 UJ	0.00338 U	0.00282 U	0.00240 U	0.00244 U	0.00247 U	0.00226 U	0.00262 U	0.00184 U	0.00272	0.00201 U	0.00212 U	0.00191 U	0.00201 U	0.00293 U	NA	0.00345 UJ	0.00354	0.0122	0.00264 ∪	0.00241 U	0.00234 U	0.00268 U	0.00136 U
Toluene	7	0.00103 U	0.00115 UJ	0.00253	0.00167	0.000901 U	0.000915 U	0.000928 U	0.000846 U	0.000982 U	0.000691 U	0.000839 U	0.000752 U	6.000795 U	0.000715 U	0.000754 U	0.00110 U	NA	0.00129 UJ	0.00150	0.000704	0.000988 ∪	0.000903 U	0.000879 U	0.00100 U	0.000510 U
Xylenes, total	9	0.00687 U	0.00766 UJ	0.0159	0.00967	0.00601 U	0.00610 U	0.00619 U	0.00564 U	0.00655 U	0.00461 U	0.00662	0.00501 U	0.00530 U	0.00477 U	0.00503 ∪	0.00732 U	NA	0.00862 UJ	0.0136	0.00476	0.00659 U	0.00602 U	0.00586 U	0.00670 U	0.00340 U
Methyl tert-butyl ether (MTBE)	0.1	0.000687 U	0.000766 U	0.000844 U	0.000705 U	0.000601 U	U 016000.0	0.000619 U	0.000564 U	0.000655 U	0.000461 U	0.000559 U	0.000501 U	0.000530 U	0.000477 U	0.000503 U	0.000732 U	NA	0.000862 U	0.000723 U	0.000343 U	0.000659 U	0.000602 U	0.000586 U	0.000670 U	0.000340 U
TPHs (mg/kg)						ł			1												i			1		
Gasoline-Range	30 / 100 °	7.20 U	3.04 J	26.9	28.1	7.17 U	7.16 U	6.76 U	7.86 U	8.24 U	4.50 U	3.88 U	7.89 U	5.32 U	4.30 U	6.47 U	2.01 J	NA.	5.41 J	. 11.1	70.2 J	6.30 U	2.42 J	5.06 J	7.39 U	6.92 U
Diesel-Range	2,000	13.2 U	13.5 U	13.8 U	12.7 U	12.2 U	12.3 U	12.0 U	24.8	13.2 U	11.7 U	11.7 U	15.7 U	13.2 U	11.9 U	12.8 U	13.2 U	NA	15.5 U	13.4 U	75.9	13.2 U	76.3	11.4 Ú	13.1 U	12.7 U
Lube Oil-Range	2,000	33.0 U	33.9 U	34.4 U	31.7 U	30.5 U	30.7 U	29.9 U	69.2	32.9 U	29.3 U	29.2 U	39.3 U	33.0 U	29.8 U	32.1 U	33.1 U	NA	38.9 U	33.5 U	158	33.0 U	46.2	28.4 U	32.7 U	31.8 U
Kerosene-Range	2,000	13.2 U	13.5 U	13.8 U	12.7 U	12.2 U	12.3 U	12.0 U	12.4 U	13.2 U	11.7 U	11.7 U	15.7 U	13.2 U	11.9 U	12.8 U	13.2 U	NA	15.5 U	13.4 U	30.0	13.2 U	32.5	11.4 U	13.1 U	12.7 U
PAHs (mg/kg)				1		1			j							j		i i		l		1		i		1
Acenaphthene	NE .	NA	NA	NΑ	NA	NΛ	NA	NΛ	NA	NΑ	ÑΑ	NA	NA	NA	NΑ	NA	NA	NΛ	NΛ	NA	ÑΑ	NA	NA	NA	NA	NA
Acenaphthylene	NE	NA	NA	NA	NA	NΑ	NΑ	NΛ	NA	NΛ	NA	NA	NΑ	NΑ	NΛ	NΑ	NA	NA	NA	NA	NA.	NA	NΛ	NA	NA	NA
Anthracene	NE	NΑ	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NΑ	NA	NA	NA	NA	NΛ	NΑ	NA	NA ·	NΛ	NA.	NA
Benzo(a)anthracene (b)	NE	NA .	NA .	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene ^(b)	0.1	NA .	NA .	NΛ	NA	NΛ	NA	ÑΑ	NA.	NΛ	NA	NA	NA	NA.	NA .	NA	NA.	NA	NΛ	NA .	NΛ	NA	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NΛ	NΛ	NA	NA	NΛ	NA	NA .	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NΛ	NA	NΛ	NA	NA.	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NΛ	NΛ	NA	NA	NA	NA	NΑ	NA	NΑ	NΛ	NΛ	NΛ	NΑ	NΛ	NA	NA	NΛ	NΛ	NA	NΑ	NΛ	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NΛ	NA	NA	NA	NA .	NA	NA	NΛ	NA	NΛ	NΛ	NΛ	NΛ	NΑ	NA	NA	NΛ	NA	NA 	NΑ	NA	NA	NA	NΛ	NΛ
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 	NA	NΛ	NΛ	NA.	NA	NA	NA	NA.	NA.	NA.	NΛ	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene (b)	NE	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA 	NΛ	NA 	NA	NΛ	NΛ	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NΛ	NΛ	NA NA	NA NA	NA NA
Fluoranthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene (b) 1-Methylnaphthalene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA NA	NA NA
2-Methylnaphthalene	NE NE	NA NA	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA.	NA.	NA NA
Naphthalene	5	0.00687 U	0.00766 UJ	0.00844 U	0.00705 U	0.00601 U	0.00610 U	0.00619 U	0.00564 U	0.00655 U	0.00461 U	0.00559 U	0.00501 U	0.00530 U	0.00477 U	0.00503 U	0.00732 U	NA NA	0.00862 UJ	0.00723 U	0.00343 U	0.00659 U	0.00602 U	0.00586 U	0.00670 U	0.00340 U
Phenanthrene	NE NE	NA NA	NA NA	NA	NA NA	NA NA	NΛ	NA NA	NA	NA	NA	NA NA	NA.	NA.	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA.	NA	NA.
Pyrene	NE NE	NA.	NA.	NA.	NA NA	NA NA	NΛ	NΛ	NA.	NA.	NA.	NA NA	NA.	NA .	NA.	NA.	NA.	NA NA	NΛ	NA.	NA.	NA.	NΛ	NΛ	NA.	NA
TTEC Concentration (c-PAHs)	0.1	NA.	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NA.	NA.	NA	NA	NA.	NA	NΛ	NA	NA.	NA	NA	NΛ	NΛ	NA	NA	NA
Total PAHs (mg/kg) °	NE NE	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NΑ	NA.	NA.	NA .	NΛ	NA.	NA.	NA.	NA.	NA NA	NA.	NΑ	NA.	NA	NΛ	NA.	NA	NΛ
		****	****	11/1	1111		1771	1771	.,,,	1771	- 1771			177	,,,,							—				
Total Metals (mg/kg)	20	NA .	NA	NA	NA	NA .	NA .	NA	NA.	NA	NA	NA.	NA	NA	NA	NA .	NΛ	NΛ	NA	NA	NA	NA	NΛ	NΛ	NΑ	NA.
Arsenic Barium	20 NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	2	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA	NA .	NA NA	NA NA	NA NA
	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA.
Lead	250	4.77 J	105 J	49.3 3	44.2	20.4 J	7.95 J	2.58 J	42.9 J	4.69 J	38.7	17.5	69.8	6.36	10.7	13.6	11.13	12.6 J	274	7.20	23.8 J	8.18 J	5.72 J	3.26 J	9.30	6.52
Selenium	NE.	NΛ	NA .	NA NA	NA.	NA NA	NΛ	NA.	NA.	NA.	NA	NA.	NA .	NΛ	NA.	NA.	NA.	NA NA	NA.	NA	NA	NA	NA	NA .	NA	NA
Silver	NE NE	NΛ	NA.	NΛ	NA	NA .	NA.	NA.	NA.	NΛ	NA.	NA.	NA	NA.	NA	NA NA	NΛ	NA.	NA NA	NA	NA	NA	NA	NA	NA	NΛ
Mercury	2	NΛ	NA.	NA	īΝΛ	NA.	NA .	NA	NΑ	NA	NA.	NA	NA	NA.	NA	NA.	NA	NA.	NA	NΛ	NA	NA	NA	NA	NΛ	NA
TCLP Metals (mg/L)																										
Lead	ς (d)	NA	NΛ	NA	NA.	NA	NA	NA	NΛ	NA .	NΛ	NA	NA	NA.	NA .	NΑ	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/claro/Reponting/CLARCReponting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAHs - Polypusclear aromatic hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen daws analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volatile organic compounds

TEC - Total Toxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethy/benzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinoganic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration.

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethy/benzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinoganic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Total PAHs are the sum of PAHs deailed by the WAC-173-30-400 (Acenaphbene, accepability)ene, fluorene, anthracene, fluoranthene, plenanthrane, benzo(k)fluoranthene, pyrene, chrysne, benzo(a)pyrene, dibenz(a,h)anthracene, indenz(1,23-c.d)pyrene, and benzo(g,h,l)pyrene, and benzo

Table 2 Summary of Soil Analytical Results Area 1 Westlake-Mercer

Sample 1D		В7	R8	В9	B10	B11	B12		:13	<u> </u>		14		B15		CI		C2	C3	C4	1 2	C5	C6	67
Sample Date]	4/16/2009	4/16/2009	4/16/2009	4/15/2009	4/1/2009	4/1/2009	4/13/2009	4/1/2009	6/19/2009	4/16/2009	4/13/2009	4/1/2009	4/6/2009	5/12/2009	5/4/2009	5/4/2009	4/28/2009	4/28/2009	4/24/2009	4/29/2009	4/24/2009	4/23/2009	C7 4/16/2009
Sample Elevation (Ft. above City	MTCA Method A Soil Cleanup Level	1		İ	i	i	1				l	4/13/2009		1		3/4/2009		1	l	1	1		ł	1
of Seattle Datum):	Cleanup Level	14	14	14	14	14	14	10	14	2	7	9	14	14	4	9	14	14	14	14	7	14	14	14
Field QC:	1				<u> </u>	L								į						l				l
VOCs (mg/kg)																								I
Benzene	0.03	0.000907 U	0.000885 U	0.000979 U	0.00106 U	0.000919 U	0.00619 U	0.00647 U	0.00610 U	0.024 U	0.592 J	0.00443 U	0.00521 U	0.000918 U	0.00119 U	0.000963 U	0.0103 J	0.000994 U	0.000695 U	0.00354	0.000951 U	0.0225	0.000799 U	0.00134 U
Ethylbenzene	6	0.00242 U	0.00236 U	0.00261 U	0.00282 U	0.00245 U	0.0165 UJ	0.0172 U	0.0163 UJ	0.060 U	0.688 ∪	0.883 U	0.0139 UJ	0.00245 U	0.00318 U	0.00257 U	0.0186 J	0.00265 U	0.00185 U	0.00165 U	0.00254 U	3.10	0.00213 U	0.00357 U
Toluene	7	0.000907 U	0.000885 U	0.000979 U	0.00106 U	0.000919 U	0.00619 UJ	0.00849 J	1.08 U	0.060 U	0.688 U	0.883 U	0.992 U	0.000918 U	0.00119 U	0.000963 U	0.000856 UJ	0.000994 U	0.000695 U	0.000618 U	0.000951 U	0.00115	0.000799 U	0.00134 U
Xylenes, total	9	0.00605 U	0.00590 U	0.00652 U	0.00706 ∪	0.00613 U	0.0412 UJ	0.0431 U	0.0407 UJ	0.060 U	2.06 U	2.65 U	2.97 U	0.00612 U	0.00795 U	0.00642 U	0.00571 UJ	0.00663 U	0.00463 U	0.00412 U	0.00634 U	0.00649 ∪	0.00532 U	0.00893 U
Methyl tert-butyl ether (MTBE)	0.1	0.000835	0.000590 U	0.000652 U	0.000706 U	0.000613 U	0.00412 U	0.00431 U	0.00407 U	0.060 U	0.00247 U	0.00295 U	0.00347 U	0.000612 U	0.000795 U	0.000642 U	0.000571 UJ	0.000663 U	0.000463 U	0.000412 U	0.000634 U	0.000649 U	0.000532 U	0.00155
TPHs (mg/kg)				1	i		1														ł			i
Gasoline-Range	30 / 100 ^a	6.51 U	6.69 U	6.67 U	6.91 U	7.09 U	76.0 U	29.3 J	79.3 J	6.0 U	59.6 J	192 J	175 J	7.57 U	7.39 U	219 J	6.14 U	5.61 U	1.71 J	2.44 J	1.81 J	351 J	2.40 J	2.73 J
Diesel-Range	2,000	12.8 U	13.2 U	12.9 U	12.8 U	13.2 U	126	60.4 U	241	49	1,530	809-	755	13.6 U	13.3 U	11.7 U	10.8 U	12.1 U	12.2 U	12.3 U	12.0 U	17.3 U	13.9 U	18.2
Lube Oil-Range	2,000	85.5	33.0 U	32.3 U	32.1 U	33.1 U	242	151 U	121 U	62 U	291	433	252	34.0 U	33.2 U	29.2 U	27.0 ∪	30.1 U	30.4 U	30.8 U	30.1 U	48.1	34.8 U	51.1
Kerosene-Range	2,000	12.8 U	13.2 U	12.9 U	12.8 U	13.2 U	65.2 U	60.4 U	174	12.5 U	738	87.7	396	13.6 U	13.3 U	11.7 U	10.8 U	12.1 U	12.2 U	12.3 U	12.0 U	17.3 U	13.9 U	14.4 U
PAHs (mg/kg)	,. <u>.</u>																				1			l
Acenaphthene	NE NE	NA 	NA 	NA	NA 	NA	NA	NA	NA	NA	NΛ	NΑ	NΑ	NA	NA	NA	NA.	NA						
Acenaphthylene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA 	NA 	NA 	NA	NA	NA	NA	NA	NA	NΛ	NA
Anthracene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA _	NA NA	NA NA	NA NA	NA	NΛ	NΛ	NA NA	NΛ	NΛ	NA
Benzo(a)anthracene (b)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NΛ	NΛ	NΛ	NA	NA	NA NA	NΛ
Benzo(a)pyrene ^(b) Benzo(b)fluoranthene ^(b)	NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ
Benzo(k)fluoranthene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo (ghi) perylene	NE	NA NA	NA.	NA	NΛ	NA.	NA.	NA.	NA.	NΛ	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Chrysene (b)	NE NE	NA	NA.	NA	NΛ	NΛ	NA.	NA .	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA NA	NA ·	NA NA	NA.
Dibenz(a,h)anthracene (b)	NE	NA NA	NA	NΛ	NΑ	NΛ	NA.	NA.	NA.	NA	NA.	NΑ	NΛ	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA
Fluoranthene	NE	NA	NA	NΛ	NΑ	NA	NA	NΛ	NA	NA	NA .	NΛ	NA .	NA.	NA.	NA.	NA	N'A	NA.	NA	NA.	NA !	NA NA	NA.
Fluorene	NE	NA .	NΛ	NΛ	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA.	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-ed)pyrene (b)	NE	NA	NA	NA	NA	NΛ	NΛ	NA	NA .	NΑ	NA	NA	NA	NΑ	NA	NA	NΛ	NA	NΛ	NA	NΑ	NA	NA	NΛ
l-Methylnaphthalene	NE NE	NA	NA	NA	NΑ	NA :	NA	NA	NA	NΛ	NA	NΛ	NA	NA.	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NΛ
2-Methylnaphthalene	NE	NA	NA	NΛ	NΛ	NA	ΝA	NA	NA	NA	NΛ	NA	NA	NA :	NA	NA	NΛ	NA	NΑ	NA	NΛ	NA	NΛ	NA
Naphthalene	5	0.00605 U	0.00590 U	0.00652 U	0.00706 ∪	0.00613 U	0.0412 UJ	0.0431 UJ	21.6 U	0.06 U	13.8 U	17.7 U	19.8 U	0.00612 U	0.00795 U	0.00642 UJ	0.00571 UJ	0.00663 U	0.00463 U	0.00412 U	0.00634 U	0.0646	0.00532 U	0.00893 U
Phenanthrene	NE NE	NA	NA	NA	NΛ	NΛ	NΛ	NA	NA	NA	NA	NΛ	NΑ	NA.	NA	NA	NA .	NA	NΛ	NA	NA	NA	NA	NA
Pyrene	NE	NA	NA	NΛ	NΛ	NA NA	NΛ	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NΛ
TTEC Concentration (c-PAHs)	0.1	NA	NΛ	NA	NA	NA	NA	NA	NA .	NΛ	NA	NA	NΑ	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NΛ	NA
Total PAHs (mg/kg) ^c	NE .	NΛ	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA .	NA	NA	NA .	NA NA	0.0646	NA	NA
Total Metals (mg/kg)												1												
Arsenic	20	NA	NA	NA	NA	NA	NA	2.94 U	NA	NΛ	NA	2.01 U	NA	NA .	NA	NA	NΛ	NA	NA	NΑ	NA	NA	NA	NA
Barium	NE	NA	NA	NA	NΛ	NΑ	NA	34.7	NA	NA	NΛ	20.1 U	NΛ	NA	NA	NA	NΛ	NΛ	NA	NΛ	NA	NA	NA	NA
Cadmium	2	NA	NA	NA	NA	NΑ	NΛ	2.94 U	NΛ	NΑ	NΛ	2.01 U	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NA .	NA	NA	NΛ
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NA	NΛ	NΛ	NA	NΛ	3.26	NA	NA	NΛ	2.01 U	NΛ	NΛ	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA
Lead	250	8.96 J	6.57 J	3.07 J	4.36 J	3.56	136	36.6	11.6	3.4	19.8 J	12.5	13.1	27.8	6.25	6.46	1.81	8.91 J	8.72 J	4.36	3.05 J	39.5 J	23.2	23.3 J
Setenium	NE	NA	NΑ	NA .	NA	NΛ	NA	5.88 U	NA	NA	NA	4.02 U	NA	NΛ	NA	NA	NA	NA .	NΛ	NΛ	NA	NA	NA	NA
Silver	NE	NΛ	NA	NA	NA	NA	NA	2.94 U	NA NA	NA	NΛ	2.01 U	NA	NΛ	NA	NA	NA	NΑ	NΛ	NΛ	NA	NΛ	NA	NA
Mercury	2	NA	NA.	NA	NA	NA	NΑ	NΛ	NA	NA	NA	NΛ	NΑ	NΛ	NA	NA	NA	NΑ	NΛ	NΛ	NA	NΛ	NA	NA
TCLP Metals (mg/L)						Į.					ł	ľ				ļ						- 1		
Lead	5 ^(d)	NA	NA	NA	NΛ	NA	NA	NA	NA	NΛ	NA NA	NA	NΛ	ΝĄ	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NA

Notes:

Model Texics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ccy/clare/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAIS - Polymedear aromatic hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPH

Page 2 of 9

	V	1										·							· · · · · · · · · · · · · · · · · · ·			·			
Sample ID	1	1	C8	C9	C10	CH		12		CI3		C14	C15			Di			D2	D3	D4		D5		D6
Sample Date	MTCA Method A Soil	4/10	6/2009	4/16/2009	4/15/2009	4/15/2009	4/16/2009	4/1/2009	4/21/2009	4/16/2009	4/1/2009	4/6/2009	4/6/2009	5/12/2009	5/12/2009	5/4/2009	5/4	/2009	4/28/2009	4/28/2009	4/24/2009	4/29/2009	4/24	/2009	4/23/2009
Sample Elevation (Ft. above City of Seattle Datum):	Cleanup Level		14	14	14	14	9	14	6	9	14	14	14	- 4	7	9		14	14	14	14	9	1	4	14
Field QC		ļ	(DUP)	ì]		l					<u> </u>		1			-	(DUP)	1	ł	ļ	<u> </u>		(DUP)	1
VOCs (mg/kg)			 	<u> </u>	i					<u> </u>		†		† — — — — — — — — — — — — — — — — — — —	1				<u>† </u>	<u> </u>	1				t
Benzene	0.03	0.0460	0.0214	0.00193 UJ	0.00105 U	0.000775 U	0.158 U	0.00710 U	0.000917 U	0.0847	0.156 U	0.000834 U	0.000870 U	0.00112 U	0.00105 U	0.0342	0.108	0.0802	0.000715 U	0.000895 U	0.000770 ∪	0.00209	0.419 J	0.505	0.00120 U
Ethylbenzene	6	0.0954 J	0.0317	0.00515 UJ	0.00281 U	0.00207 U	0.0108 UJ	0.0189 UJ	0.00244 U	0.00693 UJ	2.00	0.00222 U	0.00232 U	0.00299 U	0.00279 U	0.118 J	0.855	0.674	0.00191 U	0.00239 U	0.00205 U	0.00384	4.93 J	4.99	0.00319 U
Toluene	7	0.00798	0.00246	0.00193 UJ	0.00105 U	0.000775 U	0.790 U	1.35 U	0.000917 U	0.00260 UJ	0.780	0.000834 U	0.000870 U	0.00112 U	0.00105 U	0.0595 J	0.139	0.131	0.000715 U	0.000895 U	0.000770 ∪	0.000640 ∪	0.0409 J	0.0241 J	0.00120 U
Xylenes, total	9	0.458	0.554	0.0129 UJ	0.00703 U	0.00517 U	0.0270 UJ	4.05 U	0.00611 U	0.0173 UJ	8.83	0.00682	0.00580 U	0.00747 U	0.00698 U	1.62	1.62	2.10	0.00477 U	0.00597 U	0.00513 U	0.00427 U	5.31 J	5.11	0.00797 U
Methyl tert-butyl ether (MTBE)	0.1	0.000541 U	0.000552 U	0.00129 U	0.000703 U	0.000517 U	0.00270 U	0.00473 U	0.000611 U	0.00173 U	0.00240 UJ	0.000556 U	0.000580 U	0.000747 U	0.000698 U	0.000814 U	0.000651 U	0.000578 UJ	0.000477 U	0.000597 U	0.000513 U	0.000427 U	0.000572 U	0.000649 U	0.000797 L
TPHs (mg/kg)																									
Gasoline-Range	30 / 100 °	7.07 J	13.1 J	10.5 ∪	6.66 U	6.57 U	39.5 U	68.6 U	5.37 U	33:4 U	186 J	5.49 U	6.07 U	6.66 U	7.22 U	10.8	218 J	89.9 J	6.74 U	5.53 U	2.92 J	2.17 J	1,080 J	838 J	8.40 U
Diesel-Range	2,000	208	145	15.9 U	12.8 U	13.0 U	818	4,870	12.3 U	415	353	12.3 U	15.0	12.2 U	12.8 U	12.8 U	132	117	12.7 U	11.7 U	11.7 U	12.0 U	23.1	20.3	13.7 U
Lube Oil-Range	2,000	542	384	39.8 U	32.1 U	32.5 U	202	11,300	30.7 U	87.3 U	423	30.8 U	32.0 U	30.5 U	32.0 U	32.0 U	199	173	31.8 U	29.3 U	29.2 U	30.0 U	38.1	34.4	34.4 U
Kerosene-Range	2,000	33.0	23.5	15.9 U	12.8 U	13.0 U	653	692	12.3 U	299	161	12.3 U	12.8 U	12.2 U	12.8 U	12.8 U	38.4	28.8	12.7 U	11.70	11.7 U	12.0 U	25.7	26.4	13.7 U
PAHs (mg/kg)					1				l				1		ł					1	1				
Acenaphthene	NE	NΛ	NA	NΑ	NA	NA	NΛ	NΛ	NΑ	NΑ	NA	NA	NA	NΛ	NA	NA	NΑ	NA	NA	NA	NΑ	NΑ	NΑ	NA	NA
Accnaphthylene	NE	NΛ	NA	NA	NA	NA :	NΑ	NA	ÑΑ	NA.	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
Anthracene	NE	NΛ	NA.	NA	NΑ	NA.	NA	NA	NΛ	NΑ	NA	NA .	NA	NΛ	NΛ	NA	NA	NA.	NA	NΛ	NΛ	NA	NΛ	NA	NA
Benzo(a)anthracene (b)	NE	NΑ	NA	NΛ	NΑ	NΛ	NA	NA	NA	NΑ	NΛ	NA	NA	NΑ	NΛ	NA.	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NA
Benzo(a)pyrene (b)	0.1	NΛ	NA.	NA	NΛ	NΛ	NA ·	NΑ	NA	NA.	NA	NA	NA	NΛ	NΛ	NA	NΛ	NΛ	NA "	NA	NA.	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NΛ	NA	NA .	NA .	NΛ	NA	NΛ	NA	NΛ	. NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	NA	NA	NΑ	NΑ	NA	NΛ	NΑ	NA	NA	NA	NA	NA	NA	NΑ	NΛ	NΛ	NA	NA	NA	NΛ	NA	NA	NΛ
Benzo (ghi) perylene	NE '	NA	NA NA	NΛ	NΛ	NA .	NA	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA	NΑ	NΛ	NA	NA	NA	NA	NA.	NA	NA
Chrysene (b)	NE	NΑ	NA	NA	NA	NΛ	NΛ	NA	NΑ	NA.	NA	NΑ	NA	NΛ	NA	NA.	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NΑ	NA	NΛ	NΛ	NA	NΛ	NA	NΛ	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE NE	NA	NA.	NΛ	NΑ	NA.	NΛ	NΑ	NA	NA.	NA	NA .	NA	NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA.	NA	NA
Fluorene	NE	NA	NΛ	NΑ	NA	NΛ	NA	NA	NΛ	NΛ	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene (b)	NE	NA	NΛ	NA	NΛ	NA	NA	NΑ	NA .	NΛ	NA	NA	NΛ	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NΛ	NA NA	NΛ	NA
1-Methylnaphthalene	NE	NΛ	NΛ	NA	ΝA	NA	NA	NΛ	NA	NΛ	NA	NΛ	NA	NA	NA	NΑ	NA	NA	NΛ	NA	NΛ	NA	NΛ	NA	NA
2-Methylnaphthalene	NE .	NΛ	NA 0.0025	NA 0.0120.111	NA 0.00703.L1	NA O DOSTATA	NA 0.0270.LLL	NA	NA	NA NA	NΛ	NA O COSSOCIAL	NA 0.00500.11	NA	NA 0.0000011	NA 0.0004	NA NA	NA	NA 0.00477.11	NA 0.00507.11	NA 0.00512.11	NA	NA 276	NA 2.07	NA 0.00707.LL
Naphthalene	5 NE	1.77 U	0.0935	0.0129 UJ	0.00703 U	0.00517 U	0.0270 UJ	0.0473 UJ	0.00611 U	0.0173 UJ	15.6 U	0.00556 U	0.00580 U	0.00747 U	0.00698 U	0.0904	2.17 U	1.94 U	0.00477 U	0.00597 U	0.00513 U	0.00427 U	3.75	3.27	0.00797 U
Phenanthrene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Pyrene TTEC Concentration (c-PAHs)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
· · · · · ·	NE	ľ	0.0935	i i	1			1						1	1 1		t .	į	1	1			3.75	3.27	NA NA
Total PAHs (mg/kg) °	NE	NA NA	0.0935	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NΛ	NΛ	0.0904	NA	NA	NA	NΛ	NA	NΛ	3.75	3.21	NA NA
Total Metals (mg/kg)		l													1 1										l
Arsenic	20	NA 	NΛ	NA 	NΛ	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NE .	NA 	NA	NA 	NA 	NA 	NA	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA 	NA	NΛ	NA	NΛ	NA
Cadmium	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NΛ	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NΛ	NA NA	NA	NA NA	NA	NA NA
Chromium Lead	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA 3.23 J	NA 3.73 J	NA 156 J	NA 4.10 J	4.19 J	NA U.2.1	NA 2220	NA L2L	NA 2.50 (NA 40.1	NA 19.4	NA 56.6	NA 4.24	NA 150	NA 4.61	NA	NA 3.15	NA 14.3 J	NA 14 8 1	NA	NA 2.74 J	NA 17.9 J	NA 18.6	NA 14.5
Selenium	NE 250	3.23 J NA	NA	NA 156 J	4.10 J NA	4.193 NA	11.2 J NA	2,330	1.31 NA	3.58 J	40.1	19.4 NA		4.24 NA	159 NA	4.61 NA	3.46 NA		14.3 J NA	14.8 J	3.20 J NA	2.74 J NA	17.9 J NA	NA	NA
Silver	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP Metals (mg/L)		1.17	11/4	11/1	11/15	- 10/1	IIA	IVA.	- IVA	OA.	IVA.	17/4	IVA.	INA	100	15/4	INA	11/1	100	11/1	11/1	INA	11/1	1971	11/1
	5 ^(d)	NA.	N.A.	1.00 U	NA	NA	NA	N/A	NΛ	NA	NA	NA	NI A	NA	NA	N	NA	NI A	NA	N/A	NA.	NA	NI A	NA	NA
Lead		I NA	NΛ	1.00 0	IN/A	NA	NA	NΛ	NΛ	NA	NA	ŅA	NA	NA	NA.	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NΛ	NA.

Notes:

Model Taxics Control Act (ATCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ccy/clarc/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NR - Not established

PR - Not established

PR - Total petrolusen hydrocarbons

TPHs - Total petrolusen hydrocarbons

TPHs - Total petrolusen hydrocarbons

TPHs - Total petrolusen hydrocarbons

TPHs - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total petrolusen hydrocarbons

TPH - Total PAHs are the sum of PAHs dealed by the WAC 173-303-410 (Accepablence, centaphthylene, fluorens hemosolish petrolusen) hydrocarbons

Total PAHs are the sum of PAHs dealed by the WAC 173-303-410 (Accepablence, acenaphthylene, fluorens hemosolish petrolusen) hydrocarbons

Total PAHs are the sum of PAHs dealed by the WAC 173-303-410 (Accepablence, acenaphthylene, fluorens hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hydrocarbons

Total PAHs are the sum of PAHs dealed by the WAC 173-303-410 (Accepablence, acenaphthylene, fluorens hemosolish petrolusen hemosolish petrolusen hemosolish petrolusen hemosolish p

Table 2 Summary of Soil Analytical Results Area I Westlake-Mercer

Sample ID:		D7	T 1	08			D9			D10	T		DII			1	D12		D13	D14	D15	Ι΄		E1	
Sample Date:		4/16/2009	5/4/2009	4/16/2009	5/4/2009	4/30/2009	4/28/2009	4/28/2009	4/16/2009	4/13/2009	4/15	5/2009	4/28/2009	4/13	3/2009	4/23/2009	4/21/2009	4/13/2009	4/13/2009	4/13/2009	4/6/2009	5/15/2009	5/15/2009	5/4/2009	5/4/2009
Sample Elevation (Ft. above City	MTCA Method A Soil Cleanup Level	14	,	14	1.5	,	o	12	14	14		0	12	Į.	14	6		14	14	14	14	,	7		14
of Seattle Datum):				'	"	 '	,	12	."		•	, 1	12		1	ľ	'	l '"	. '7		"	1	'	1	'
Field QC:		<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	(DUP)			(DUP)	 	ļ			<u> </u>	<u> </u>	ļ	<u> </u>		↓
VOCs (mg/kg)					1										!	1					1			1	
Benzene	0.03	0.00759	0.000927 U	0.0984	0.000924 U	0.00116 U	NA	NA	0.0368 U	0.0546 U	0.000787 U	0.000837 U	0.155	0.0705 J	0.0967 J	0.00133 U	0.207 U	0.0275 J	0.160 U	0.00292 U	0.000965 UJ	0.00114 U	0.00178	3.48	0.0139
Ethylbenzene	6	0.0342	0.00247 U	0.110 J	0.00246 U	0.00311 U	NA	NA	0.00325 UJ	0.273 U	0.00210 UJ	0.00223 U	0.0108 UJ	0.216 J	0.239 J	0.00355 UJ	1.03 U	0.215 J	0.00874 UJ	0.00778 UJ	0.00257 UJ	0.00304 U	0.00378 U	0.777 U	0.185
Toluene	7	0.00507	0.000927 U	0.0745 J	0.000924 U	0.00116 U	NA	NA	0.00122 UJ	0.273 ∪	0.000787 UJ	0.000837 U	0.132 J	0.280 J	0.328 J	0.00133 UJ	1.03 U	1.34 U	0.801 U	0.00292 UJ	0.000965 UJ	0.00114 U	0.00142 U	0.777 U	0.583 U
Xylenes, total	9	0.165	0.00618 U	0.620 J	0.00616 U	0.00777 U	NA	NA	0.00812 UJ	0.819 U	0.00525 UJ	0.00558 U	2.33 U	0.974 J	1.41 J	0.00888 UJ	3.10 U	0.899 J	2.40 U	2.15 U	0.00643 UJ	0.00760 U	0.00946 U	2.33 U	1.75 U
Methyl tert-butyl ether (MTBE)	0.1	0.000915 U	0.000618 U	0.00168 U	0.000616 U	0.000777 U	NΛ	NA	0.000812 UJ	0.137 U	0.000525 U	0.000558 U	0.00270 UJ	0.00310 U	0.00325 U	0.000888 U	0.00324 UJ	0.00253 U	0.00219 U	0.00194 U	0.000643 UJ	0.000760 U	0.000946 U	0.00218 UJ	0.00141 U
TPHs (mg/kg)			l	1				1			İ	İ			1		l			l				1	
Gasoline-Range	30 / 100 ª	14.5 J	7.33 U	121 J	7.61 U	19.1 U	NΑ	NA.	7.51 J	13.7 U	7.94 U	6.27 U	203	204 J	180 J	13.0 U	31.5 J	183 J	40.1 U	22.5 J	6.53 U	2.27 J	10.2	17.4 J	14.8 J
Diesel-Range	2,000	36.9	12.3 U	6,870	12.7 U	15.2 U	NΛ	NΛ	212	13.0 U	46.8	22.4	44,200	12,700 J	4,970 J	19.9	583	2,010	523	398	12.9 U	13.1 U	13.6 U	438	216
Lube Oil-Range	2,000	92.7	30.7 U	19,900	31.8 U	38.1 U	NA	NΛ	537	32.6 U	57.9	32.6 U	59,100	14,200 J	6,540 J	44.6 U	412	3,010	96.4	80.3 U	32.3 U	32.7 U	34.0 U	135	373
Kerosene-Range	2,000	15.8	12.3 U	1,030	12.7 U	15.2 U	NΛ	NΛ	33.1	13.0 U	14.3	13.0 U	8,490	2,070 J	790 J	17.8 U	336	334	37.0 U	32.1 U	12.9 U	13.1 U	13.6 U	37.2 U	35.3
PAHs (mg/kg)									l l							l !				l				· '	l
Acenaphthene	NE	NA 	NA	NΛ	NA	NΛ	NΛ	NA	NA	NΛ	NA	NA.	NΛ	NA	NA	NA	NA	NA	NA	NA	NA.	NA 	NA	NA	NA
Acenaphthylene	NE	NA	NΛ	NΛ	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NA 	NA	NA	NA
Anthracene	NE	NA NA	NA	NA	NΑ	NA .	NA	NA	NΛ	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NA 	NA	NA .	NA NA
Benzo(a)anthracene (b)	NE 0.1	NA .	NA	NA	NA	NA 	NA	NA NA	NA	NA.	NA	NA.	NA	NA 	NΛ	NA NA	NA 	NA	NA 	NΛ	NA NA	NΛ	NA	NA NA	NA
Benzo(a)pyrene (n)	0.1	NA 	NA	NA	NA NA	NA 	NA 	NA NA	NA 	NA 	NA	NA	NA	NA 	NΛ	NA	NA V	NA NA	NA	NA	NΛ	NΛ	NA	NA.	NA NA
Benzo(b)fluoranthene (b)	NE NE	NA NA	NΛ	NA NA	NA.	NA NA	NΛ	NA NA	NA NA	NΛ	NΛ	NA NA	NΛ	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA
Benzo(k)fluoranthene (0)	NE NE	NA NA	NA NA	NA NA	NA NA	NΛ	NΛ	NA NA	NA NA	NA NA	NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo (ghi) perylene	NE NE	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene (b) Fluoranthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorantiene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene (b)	NE NE	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA
1-Methylnaphthalene	NE NE	NA.	NA.	NA.	NA.	NA.	NA	NA NA	NA.	NA.	NA.	NA NA	NA ·	NA NA	NA.	NA	NA NA	NA.	NA.	NA.	NA	NA.	NA.	NA NA	NA.
2-Methylnaphthalene	NE NE	NΛ	NA.	NA.	NA.	NA.	NΑ	NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA.	NΛ	NA.	NA.	NA.	NA.	NA.	NA NA	NA.
Nanhthalene	5	0.0304	0.00618 U	5.96 U	0.00616 U	0.00777 U	NA.	NΛ	0.00812 U	5.46 U	0.00525 UJ	0.00558 U	15.5 U	18.0 U	0.0325 U	UU 88800.0	0.0324 UJ	0.0253 UJ	0.0219 UJ	0.0194 UJ	0.00643 U	0.00760 U	0.00946 U	15.5 U	11.7 U
Phenanthrene	NE	NA	NA	NA	NΑ	NΛ	NA i	NΛ	NΛ	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NA.	NA	NΛ	NA.	NA	NA	NA	NA
Pyrene	NE	NA	NA	NΑ	NA.	NA	NA.	NΛ	NΛ	NA	NA	NA.	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NΛ	NΛ	NA.	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NΛ	NA	NΑ	NA	NΛ	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA
Total PAHs (mg/kg) ^c	NE	0.0	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA	NA .	NA	NA .	NΛ	NA	NΛ	NA	NA	NA	NA
Total Metals (mg/kg)		0.0						1					71.7						.,,,						
Arsenic	20	NA	NA.	NA	NA :	NA	NΑ	NΑ	NΛ	3.34	NA.	NA.	NΛ	21,4	18.0	NΛ	NA	5.85	1.89 U	1.57 U	NA	NA	NA	NA	NA.
Arsenic Barium	NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.34 96.2	NA NA	NA NA	NA NA	21.4 516 J	237 J	NA NA	NA NA	3.83 106	1.89 U	1.57 U	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.663 U	NA NA	NA NA	NA.	2.29 U	2.30 U	NA NA	NA NA	2.14 U	1.89 U	1.57 U	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	45.1	NA NA	NA NA	NA NA	9.16	7.13	NA NA	NA NA	2.14 U 5.81	1.89 U	1.57 U	NA NA	NA NA	NA NA	NA NA	NA NA
Lead	250	19.4 J	3.04	250 J	12.0	1,130	485 J	186 J	837 J	4.50	10.5 J	13.1 J	4,660 J	6,410 J	3,440 J	7.40	34.5	560	9.06	2.61	5.78	4.38	3.86	2.70	39.0
Selenium	NE	NA.	NA	NA.	NA	NA NA	NA NA	NA NA	NA.	1.33 U	NA	NA NA	NA	4.58 U	4.60 U	NA	NA	4.27 U	3.78 U	3.14 U	NA	NA.	NA.	NA NA	NA
Silver	NE NE	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	0.633 U	NA NA	NA NA	NA NA	2.29 U	2.30 U	NA NA	NA.	2.14 U	1.89 U	1.57 U	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	2	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA NA	0.033 C	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA .	NA NA	NA.	NA	NA NA	NA NA	NA.	NA NA	NA NA
TCLP Metals (mg/L)																	••••								
Lead	5 (d)	NA .	NA.	1.00 U	NA I	1.00 U	. NA	NA	6.66	NA.	NA	NA	2.81	11.0	8.32	NA NA	NΛ	1.00 U	NA	NA :	NA.	NA	NA.	NA	NA.
Lead	, , ,	INA	14/7	1.000	14/	1.000	. 15/1	L IVA	0.00	14/4	11/1	INA I	4.01	11.0	0.34	17/1	11/1	1.00 ()	nA.		INA	140	1.7	A	1 11/4

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J. Estimated value

NA. Not assubhished

NE. Not established

PAIIs - Polyunedera anomatic hydrocarbons

TPIIs - Total petroluem hydrocarbons

TPIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarbons

TVIIs - Total petroluem hydrocarb

Table 2 Summary of Soil Analytical Results Area 1 Westlake-Mercer

	.II	1	1	1 .		1		· ·							T	I	1	r				r	Т	ı —	
Sample ID	II.	E2	E3	1	64 1	E5	E9	•	10		EII	1		12	E13	E14	E15			F1		F2	F3	F4	F5
Sample Date Sample Elevation (Ft. above City	MICA Method A 3011	4/29/2009	4/29/2009	4/29/2009	4/24/2009	4/24/2009	5/12/2009	5/11/2009	4/13/2009	4/22/2009	4/15/2009	4/13/2009	4/21/2009	4/13/2009	4/13/2009	4/13/2009	4/6/2009	5/22/2009	5/15/2009	5/4/2009	5/4/2009	4/29/2009	4/29/2009	4/27/2009	4/27/200
of Seattle Datum)	Cleanup Level	14	14	9	14	14	7	9	14	7	9	14	9	14	14	14	14	4	7	9	14	14	14	14	14
Field QC						1		İ																	1
VOCs (mg/kg)													l				F						I		
Benzene	0.03	0.000970 U	0.00101 U	0.000785 ∪	0.0381	0.00144 U	0.000951 U	0.00176 U	0.00443 U	0.00325 U	0.131 J	0.00358 U	0.00565 J	0.0291 J	0.206 U	0.00543 U	0.000859 U	0.00310	5.99	6.27	0.00102 U	0.00422	0.000855 U	0.0191	0.00182
Ethylbenzene	6	0.00259 U	0.00269 U	0.00209 U	0.0319 J	0.00383 U	0.00254 U	0.00469 U	0.0118 UJ	0.00866 U	0.0563 J	0.262 J	0.0138 UJ	0.112 J	0.0151 UJ	0.0145 UJ	0.00229 U	0.00385 U	0.989 U	0.700 U	0.0166	0.00574	0.00228 UJ	0.00927	0.00276 U
Toluene	7	0.000970 U	0.00101 U	0.000785 U	0.000626 U	0.00144 U	0.000951 U	0.00176 U	0.115 J	0.00325 U	0.0422 J	0.0514 J	0.00516 UJ	0.0609 J	0.00566 UJ	0.00543 UJ	0.000859 U	0.00144 U	0.989 U	0.700 U	0.00102 U	U 11100.0	0.000855 UJ	0.000926 U	0.00104 C
Xylenes, total	9	0.00647 U	0.00673 U	0.00524 U	0.319 U	0.00958 U	0.00634 U	0.0117 U	0.0295 UJ	0.0217 U	0.179 J	0.432 J	3.20 U	0.399 J	0.0378 UJ	0.0362 UJ	0.00573 U	0.00963 U	2.97 U	2.10 U	0.00779	0.00927	0.00570 UJ	0.00617 U	0.00690 U
Methyl tert-butyl ether (MTBE)	1.0	0.000647 U	0.000673 U	0.000524 U	0.000418 U	0.000958 U	0.000634 U	0.00117 U	0.00295 U	0.00217 U	0.000849 UJ	0.00239 U	0.00344 U	0.00310 U	0.00378 U	0.00362 U	0.000573 U	0.000963 U	0.00321 U	0.00281 U	0.000682 U	0.000740 U	0.000570 U	0.000617 U	0.000690
TPHs (mg/kg)			1	1		l		1	İ			ł					1		Į.						i
Gasoline-Range	30 / 100 °	2.10 J	6.04 U	1.55 J	1.92 J	15.6 U	6.49 U	8.89 J	41.8 J	39.5 U	9.63 J	104 J	21.3 J	1101	51.5 U	49.7 U	4.16 U	9.95 U	25.4 J	25.5 J	2.84 J	2.45 J	6.88 U	5.65 U	5.70 U
Diesel-Range	2,000	12.4 U	12.3 U	11.8 U	12.0 U	19.4 U	12.3 U	210	272	542	1,260	30,800	479	835	87.7	634	12.2 U	16.4 U	308	630	25.1	13.4 U	127 J	11.8 U	12.1 U
Lube Oil-Range	2,000	31.0 U	30.8 U	29.4 U	30.0 U	48.4 U	30.8 U	368	570	72.6 U	1,780	39,600	271	914	110 U	740	30.5 U	41.1 U	158	143	45.0	33.4 U	181 J	29.6 U	30.1 U
Kerosene-Range	2,000	12.4 U	12.3 U	11.8 U	12.0 U	19.4 U	12.3 U	36.3	47.7	311	420	5,200 J	285	99.5	44.0 U	73.1	12.2 U	16.4 U	140	49.6	12.6 U	13.4 U	31.2	11.8 U	12.1 U
PAHs (mg/kg)			ļ			l																			
Acenaphthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA ·	NA NA	NΛ	NΛ	NA NA	NA	NA NA	NΛ	NA	NA 	NA	NA 	NA NA	NA	NΑ	NA.	NA NA	NA
Acenaphthylene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	NA NA	NA NA	NA	NΛ	NA	NA 	N'A	NΛ	NA NA	NA 	NA	NA 	NA 	NΛ	NA
Anthracene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA	NA NA	NΛ	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NΛ
Benzo(a)anthracene (b)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene (b) Benzo(b)fluoranthene (b)	NE	NA NA	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene (b)	NE NE	NA NA	NA.	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo (ghi) perylene	NE	NA	NA.	NA.	NΑ	NA.	NA -	NA.	NA.	NA NA	NA.	NA.	NΛ	NA.	NA.	NA	NΛ	NA.	NA NA	NA.	NA NA	NΛ	NA.	NA.	NA.
Chrysene (b)	NE	NΛ	NΛ	NΑ	NA	NA	NA.	NΛ	· NA	NΑ	NA	NΑ	NA	NA	NA	NA	NA.	NΑ	NA.	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NΛ	NΛ	NA	NΑ	NA	NA	NA	NΑ	NA	NA	NA	NA.	NA	NA	NΑ	NA	NA.	NA	NA	NA	NA	NΛ	NA
Fluoranthene	NE	NA	NΑ	NA	NΛ	NA	NA .	NA .	NΛ	NA	NA	NA NA	NΛ	NA	NA	NA	NA	NA	NA NA	NΛ	NA.	NA	NΛ	NA	NΛ
Fluorene	NE	NA	NA	NA .	NA	NΑ	NA	NA	NΛ	NΑ	NΛ	NA NA	NA :	NΛ	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene (b)	NE	NΛ	NA	NΑ	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NΛ	NΛ	NΑ
l-Methylnaphthalenc	NE	NA	NΑ	NA.	NΛ	NΛ	NA	NΛ	NΛ	NΛ	NΛ	NΛ	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA.	NA	NA	NΛ	NA
2-Methylnaphthalene	NE	NA.	NΛ	NA	NΛ	NA	NA	NA	NΛ	NA	NΛ	NΛ	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NΛ
Naphthalene	5	0.00647 U	0.00673 U	0.00524 U	2.13 U	0.0133	0.00634 U	0.0117 UJ	19.2 U	0.0217 UJ	4.02 U	10.3 U	0.0344 UJ	19.2 U	0.0378 UJ	0.0362 UJ	0.00573 U	0.00963 U	0.0321 UJ	14.0 U	0.00682 U	0.00740 U	0.00570 U	0.0144	0.00690 U
Phenanthrene	NE	NA	NA	NΛ	NΛ	NΛ	NA .	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NΛ	NA.	N'A	NA
Pyrene	NE a.	NA .	NA NA	NA.	NA	NA	NA	NA NA	NΛ	NΛ	NΛ	NA .	NA	NA	NA 	NA	NΛ	NA	NΛ	NΛ	NA	NΛ	NA	NA	NΛ
TTEC Concentration (c-PAHs)	0.1	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NΑ	NΛ	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NA	NA NA	NA	NA	NA	NA
Total PAHs (mg/kg) ^c	NE	NA	NA	NΛ	NΛ	NA	NA	NA	NΛ	NΛ	N۸	NA	NΛ	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NA	0.0144	NA
Total Metals (mg/kg)			1							l				!									j		l .
Arsenic	20	NA	NΛ	NA 	NΛ	NΛ	NA 	NA	4.14	NA 	NΛ	28.3	NA	5.49	2.17 U	2.19 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NE 2	NA .	NA NA	NA NA	NA	NA	NA	NΛ	106	NΛ	NΛ	465	NΛ	84.1	30.4	21.9 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
Character	2	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	2.23	NA NA	NA	1.40 U	NA NA	2.32 U	2.17 U	2.19 U	NA NA	NA NA	NΛ	NA NA	NA NA	NA	NA NA	NΛ	NΛ
Chromium Lead	19 (Cr ⁶ *) / 2,000 (Cr ³ *) 250	NA 10.9 J	NA 24.5 J	NA 2.43 J	NA 2.30 J	NA 19.4 J	NA 2.76	NA 101	18.3	NA 9.04 J	NA 80.2 J	30.4 6,500	NA 74.7	13.7 227	2.17 U 21.1	2.19 U	NA 17.0	6.70	NA 15.0	NA 2.54	NA 11.5	64.1 J	NA 35.6 J	NA 3.13	NA 4.02
Selenium	NE	NA	24.5 J NA	2.43 J NA	2.30 J NA	19.4 J NA	2.76 NA	NA.	4.45 U	9.04 J NA	80.2 J NA	6,500 2.80 U	74.7 NA	4.64 U	4.34 U	33.6 4.38 U	17.0 NA		15.0 NA	2.54 NA	NA NA	64.1 J NA	35.63 NA	3.13 NA	4.02 NA
Silver	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4.43 U 2.23 U	NA NA	NA NA	2.80 U	NA NA	4.64 U 2.32 U	4.34 U 2.17 U	4.38 U 2.19 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.23 U NA	NA NA	NA NA	1.40 U NA	NA NA	2.32 U NA	2.17 U NA	2.19 U NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TCLP Metals (mg/L)	 	1111	- 1747	130		17/1	- 174			11/1	11/1	187	- IA	NA .		NA.	- '''	10/1	IVA	IVA	INA	NA.	100	11//	INA
Lead	5 (d)	NA	NA.	NA.	NΛ	NA	NA	NA	1.00 U	NA	NA	2.54	NA	1.00 U	NA	NA	NA	NA ·	· NA	NA	NA.	NA	NA .	NA	NA
Loud	J	11/1	100	17/1	1577	INA	ואח	19/1	1.000	IVA	IVA	4.34	INA	1.00 0	IVA	IVA	INV	11/1	INA	INA	INA	INA	INA	18/1	IVA

Netes:
Model Toxics Control Act (ATCA) Cleanup Regulation, chapter 173-340 WAC; NTCA Method A and B from Ecology website downloaded August 2009 (https://forrress.wa.gov/ecy/clarc/Reporting/CLARCReporting.aspx.)

DUP - Field duplicate

J - Estimated value
NA - Not applicable
NE - Not established
NE - Not established
NE - Not established
NE - Not established
U - Compound was analyzed for but not detected above the reporting limit shown.
U - Compound was analyzed for but not detected above the reporting limit shown.
U - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.
VOCs - Volatile organic compounds
TTEC - Total Toxicity Equivalent Soil Concentration

The soil clearup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xyleness is less than 1% of the gasoline mixture. The clearup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c=PAHs

Page 5 of 9

Table 2 Summary of Soil Analytical Results Area 1 Westlake-Mercer

Sample ID):	F8	F9	1	710	[F	11	1	F12			F13		F14		15	T	G1		T .	G2	1	G3		G4
Sample Date		5/12/2009	5/12/2009	5/12/2009	4/2/2009	4/22/2009	4/10/2009	4/21/2009	4/15/2009	4/10/2009	4/23/2009	4/21/2009	4/10/2009	4/10/2009	4/15/2009	4/6/2009	5/20/2009	5/4/2009	5/4/2009	5/21/2009	4/29/2009	5/21/2009		/2009	4/27/200
Sample Elevation (Ft. above City		7	7	0	14		14	7		14	25.2007		14	14		İ	3/20/2009	9	37-1/2007	372.112009	14	7		14	1
of Seattle Datum)	`	i '	'	,	14	, ,	14	'	,	14	l °	,	14	14	, ,	14	4	, ,	1 14	•	14	′		1	14
Field QC	:		<u> </u>	<u></u>	<u> </u>			<u> </u>						<u> </u>			1		<u> </u>	<u> </u>	<u> </u>	l		(DUP)	
VOCs (mg/kg)			1		1	1																			
Benzene	0.03	0.000906 U	0.000999 U	0.000928 U	0.00941 U	0.000737 U	0.0791	0.000620 U	0.203 U	0.0121	0.00105 UJ	0.233	0.0844	0.225 U	0.000777 U	1.23	0.00554	3.02	0.0925 J	0.000886 U	0.00418 U	0.000832 U	0.0132	0.0142 J	0.000935
Ethylbenzene	6	0.00242 U	0.00266 U	0.00248 U	0.0251 UJ	0.00196 U	0.0364	0.00165 U	U 8010.0	0.201 J	0.00279 UJ	0.0129 UJ	0.987 U	1.12 U	0.00207 U	32.2	0.00281 U	0.706 U	0.712 U	0.00236 U	0.175 J	0.00222 U	0.260 J	0.136 J	0.00249
Toluene	7	0.000906 U	0.000999 U	0.000928 U	0.00941 UJ	0.000737 U	0.0330	0.000620 U	1.01 U	1.26 U	0.00105 UJ	0.970 ∪	0.987 U	1.12 U	0.000777 U	0.617	0.00105 U	0.706 U	0.712 U	0.000886 U	0.797 U	0.000832 U	0.0867 J	0.0681 J	0.000935
Xylenes, total	9	0.00604 U	0.00666 U	0.00619 U	0.0628 UJ	0.00491 U	0.118	0.00414 U	3.04 U	3.77 U	0.00697 UJ	0.0322 UJ	0.474 J	0.371 J	0.00518 U	110	0.00703 U	2.12 U	2.13 U	0.00591 U	2.39 U	0.00555 U	0.451 J	0.215 J	0.00624
Methyl tert-butyl ether (MTBE)	0.1	0.000604 U	0.000666 U	0.000619 U	0.00628 U	0.000491 U	0.000867 U	0.000414 U	0.00270 U	0.00367 U	0.000697 UJ	0.00322 UJ	0.00283 U	0.00270 U	0.000518 U	0.0553 U	0.000703 U	0.00232 U	0.00349 U	0.000591 U	0.00279 U	0.000555 U	0.00192 U	0.00143 U	0.000624
TPHs (mg/kg)										1		l			İ		1			1	1				
Gasoline-Range	30 / 100 3	6.86 U	6.52 U	5.55 U	23.6 J	6.17 U	25.5 J	5.36 U	44.6 J	43.8 J	6.75 €	48.5 U	23.0 J	17.8 J	5.09 U	1,290	.6.73 U	15.6 J	46.1 U	5.64 U	40.4 J	5.74 U	32.5 J	31.8 J	5.64 U
Diesel-Range	2,000	12.0 U	12.1 U	12.7 U	2,120 J	27.9	535	12.2 U	747	13,000 J	12.5 U	350	538	150	11.9 U	15.1	12.8 U	565	534	11.7 U	80.6	12.1 U	2,560	1,840	11.80
Lube Oil-Range	2,000	30.0 U	30.3 U	31.7 U	2,830 J	39.5	746	30.6 U	436	23,300 J	31.3 U	305	471	271	29.8 U	31.0 U	31.9 U	195	599	29.3 U	98.0	30.2 U	5,060	3,220	29.5 U
Kerosene-Range	2,000	12.0 U	12.1 U	12.7 U	674 J	11.4 U	96.5	12.2 U	369	995 J	12.5 U	202	43.3 U	49.9 U	11.9 U	37.7	12.8 U	39.0	115	11.7 U	38.6 U	12.1 U	409	291	11.8 U
PAHs (mg/kg)		l													1 .				l	l					
Acenaphthene	NE NE	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA 	NA	NA 	NA	NA	NΛ	NA	NA	NA 	NA	NA	NA	NΑ	NA	NΛ	NA
Accnaphthylene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA .	NA 	NA	NA V	NA NA	NΛ	NA	NA	NA 	NA	NA	NA	NA	NA	NA.	NA 	NΛ	NA
Anthracene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NΛ	NA NA	NA _	NA NA
Benzo(a)anthracene (b) Benzo(a)pyrene (b)	0.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)pyrene Benzo(b)fluoranthene (b)	NE	NA NA	NA.	NA NA	NA -	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ΝA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA
Benzo (ghi) perylene	NE NE	NA.	NA.	NA.	NA.	NA	NA.	NA NA	NA.	NA .	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA	NA NA	NA NA	NA.
Chrysene (b)	NE	NΑ	NA	NA	NA	NΛ	NA.	NA	NA	NA NA	NA	NΛ	NΑ	NΛ	NA.	NA.	NΛ	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA
Dibenz(a,h)anthracene (b)	NE	NΑ	NΛ	NA	NA	NA	ΝA	NΛ	· NA	NA	NΛ	NA	NΛ	NA.	NA.	NA.	NΛ	NA.	NA.	NΛ	NA	NΛ	NΛ	NA	NA
Fluoranthene	NE	NΑ	NA	NA	NΛ	NA .	NA	NA .	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA.	NA	NA.	NA	NA.	NA	NA	NA
Fluorene	NE	NA	NA	NA	NA	NA	NA :	NΛ	NA	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NΛ	NA	NA	NA.	NA
Indeno(1,2,3-cd)pyrene (h)	NE	NΛ	NA	NΛ	NA	NA	NΛ	NΛ	NA	NΛ	NΛ	NΛ	NA	NΛ	NA	NΑ	NA	NA	NA	NA	NΑ	NA	NA	NA	NA
l-Methylnaphthalene	NE	NA	NA.	NA	NA	NΛ	NΛ	NΑ	NA	NA	NA	NA .	NA	NΛ	NΛ	NΛ	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NΛ
2-Methylnaphthalene	NE	NΑ	NA	NA	NA	NA	NA	NΑ	NΛ	NA	NA	NΛ	NΛ	NΛ	NA	NA	NA NA	NA	NΛ	NΛ	NA	NΛ	NA	NA	NΛ
Naphthalene	5	0.00604 U	0.00666 U	0.00619 U	0.0628 UJ	0.00491 U	0.0111	0.00414 U	20.3 U	0.0367 UJ	0.00697 U	0.0322 UJ	19.7 U	0.0270 UJ	0.00518 U	9.06	0.00703 U	14.1 U	0.0349 UJ	0.00591 U	15.9 U	0.00555 U	0.0192 UJ	0.0161 U	0.00624 L
Phenanthrene	NE	NA	NA.	NA	NΛ	NA.	NA	NA	NA	NΛ	NΛ	NA .	NA	NΛ	NA	NA	NA	NA	NA	NA	NΑ	NA .	NA	NA	NΛ
Pyrene	NE	NΛ	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NΛ	NΛ	NA	NΛ	NΑ	NΛ	NΛ	NA	NA .	NA	NA	NA	NA .	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA
Total PAHs (mg/kg) ^c	NE	NΛ	NA	NA	NΛ	NA	0.0111	NΛ	NA	NA	NA	NA	NΛ	NΛ	NΛ	9.06	NA	NA	NΛ	NΛ	NA	NΛ	NΛ	NA	NA
Total Metals (mg/kg)			1 1			l i																			
Arsenic	20	NΛ	NA	NA	NA .	NA	5.79	NA	NΛ	2.29	NA	NA	1.24 U	1.39 U	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ
Barium	NE	NΛ	NΛ	NA	NA	NΛ	114	ÑΑ	NΛ	29.3	NA	NA	13.6	30.8	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NA
Cadmium	2	NA	NA	NA	NΛ	NA	0.531	NΛ	NA	1.46 U	NA	NA	1.24 U	1.39 U	NA	NA	NΛ	NA	NΛ	NA	NA	NΛ	NA	NΛ	NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NΛ	NA	NA	NΛ	34.2	NA	NA	2.61	NΛ	NA	1.53	1.53	NA	NΛ	NA	NA	NA	NΛ	NA	NΛ	NA	NΛ	NΛ
Lead	250	1.80	1.85	1.37	205	19.3 J	357	2.49	164 J	1,590	1.69	24.7	54.0	41.0	1.47 J	16.8	3.76	5.71	24.3	1.45	7.65 J	2.37	2,050 J	881 J	3.60
Selenium	NE	NA	NA	NA	NA	NA	0.857 U	NΛ	NA	2.92 U	NΛ	NA	2.49 U	2.77 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	, NE	NA	NA 	NΛ	NA 	NA 	0.429 U	NA	. NA	1.46 U	NA	NA	1.24 U	1.39 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2	NΛ	NA	NA	NΛ	NA	NA .	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
TCLP Metals (mg/L)	(0)		l l]											l '								
Lead		NΑ	NA	NA .	NA	NΛ	NA	NΑ	1.00 U	1.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.56	2.13	NA

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ccy/claze/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAths - Polymetear aromatic hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

TPHs - Total petroluen hydrocarbons

UJ - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown.

TREC - Total Toxicity Equivalent Soil Concentration

The soil cleanup level Is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are consolidered carcinogenic PAths (c-PAths) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration.

To the soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, benzo(a) pyrene, and benzo(g, h.i.perylene, Note diffenzo (a, c), (a, h.), (a, i), and (a, l.) pyrenes and dihenzo(a), acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyze list. The wante characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-000.

WAC 173-303-000 - Dangerous Waste Criteria, dated July 31, 2009.

Table 2 Summary of Soil Analytical Results Area I Westlake-Mercer

Sample ID	.]	G5		G8	Т —	G9		;10	GII	1 6	12	T 6	12	1 614	Γ .	15	1	111		1	T	1	T		
Sample 1D Sample Date	J	4/27/2009	5/12/2009	4/20/2009	5/12/2009	4/20/2009	5/13/2009	4/2/2009	4/10/2009	4/21/2009	4/10/2009	4/21/2009	13 4/10/2009	G14 4/10/2009	4/15/2009	15 4/6/2009	5/19/2009	H1 5/4/2009	1 5/4/2000	H2	H3	H4	E/1/2000	H5	7/2009
Sample Elevation (Ft. above City of Seattle Datum) Field OC	Cleanup Level	14	7	14	7	14	7	14	14	9	14	9	14	14	9	14	3/19/2009	9	5/4/2009	4/30/2009 14	4/30/2009 14	4/27/2009	3/1/2009 7		//2009 14 (DUP)
VOCs (mg/kg)			<u> </u>		1	 	<u></u>	 	 	<u> </u>		 		1	<u> </u>	ļ	 	<u> </u>	ļ	 	<u> </u>				1 (501)
Benzene	0.03	0.00786	0.00173 U	0.436	0.00136 U	0.208 J	0.000964 U	0.00578 U	0.00101.0	0.00135 U	0.312 U	0.000849 U	0.144	0.00686 U	0.000791 U	0.0/82	0.00114 U	4.74	0.000938 U	0.0229	0.00108 U	0.0012011	0.000979 U	0.0103	0.0500
Ethylbenzene	6	0.00780	0.00173 U 0.00461 U	0.430 0.176 J	0.00136 U	1.30 U	0.000904 U 0.00257 U	0.00378 U	0.00101 U	0.00361 U	1.56 U	0.000849 U	0.144	0.00886 U 0.0183 UJ	0.000791 U	0.0682 0.508	0.00114 U 0.00304 U	0.820 U	0.000938 U 0.00250 U	0.0229 0.0143 UJ	0.00108 U 0.00289 U	0.00129 U 0.00345 U	0.000979 U 0.00261 U	0.0493 0.472	0.0500 0.369
Toluene	7	0.00105 U	0.00401 U	0.166 J	0.00304 U	0.169 J	0.00257 U	0.00578 U	0.221 U	0.00301 U	1.56 U	0.00220 U	0.303	0.00686 UJ	0.00211 U	0.0382	0.00304 U	0.820 U	0.00230 U	0.0143 CJ 0.107 J	0.00289 U	0.00343 U 0.00129 U	0.00281 U	0.472 0.00630 J	0.0204 J
Xylenes, total	,	0.0829	0.0115 U	0.705 J	0.00909 U	3.90 U	0.00643 U	0.0386 U	0.662 U	0.00903 U	4.67 U	0.00566 U	3.67 j	3.79 U	0.0139	0.644	0.00714 U	0.0320 UJ	0.00625 U	3.21 U	0.00708 U	0.00129 U	0.00653 U	0.00303	0.0204 3
Methyl tert-butyl ether (MTBE)	0.1	0.000698 U	0.00115 U	0.00216 UJ	0.000909 U	0.00250 UJ	0.000643 U	0.00386 U	0.000674 U	0.000903 U	0.00413 UJ	0.000566 U	0.00424 U	0.00457 U	0.000527 U	0.000410 U	0.000760 U	0.00320 U	0.00025 U	0.00358 U	0.00721 U	0.00002 U	0.000653 U	0.000887 U	0.000917 L
TPHs (mg/kg)	1	***********					0.0000 15 0	0.003000	0.00007770	0.000705	0.00113 03	5.500500 5	0.004240	0.001370	0.000327 0	0.0004100	0.0007000	0.00320 0	0.000025 0	0.00330 0	0.0007210	0.000002-0	0.000055 0	0.000007 0	0.000717
Gasoline-Range	30 / 100 a	6.25	14.7 U	184 J	12.8 U	63.9 J	6.29 U	48.5 U	11.0 U	9.85 U	306 J	5.42 U	155 J	20.8 J	5.73 U	17.2	7.03 U	28.1 J	6.92 U	20.5 J	6.80 U	7.79 U	6.09 U	78.4 J	81.8 J
Diesel-Range	2.000	11.8 U	19.0 U	165	17.8 U	8,440	11.9 U	59.2	32	14.7 U	5,610	12.2 U	1,130	385	12.0 U	17.2 11.8 U	12.8 U	317	11.3 U	263	12.7 U	13.6 U	11.9 U	64.1	101
Lube Oil-Range	2,000	29.4 U	47.6 U	205	44.5 U	7,520	29.8 U	124 U	52.6	36.7 U	9,450	30.4 U	1,640	208	29.9 U	29.5 U	32.0 U	104	28.2 U	738	31.8 U	34.0 U	29.7 U	99.6	117
Kerosene-Range	2,000	11.8 U	19.0 U	55.9	17.8 U	3,520	11.9 U	49.5 U	15.5 U	14.7 U	802	12.2 U	161	53.4 U	12.0 U	11.8 U	12.8 U	40.5 U	11.3 U	50.0 U	12.7 U	13.6 U	11.9 U	23.7	37.8
PAHs (mg/kg)						1 .,		<u> </u>	10.00					1 22	1 .2.0		12.00	1 .0.5 0			12	15.00	1		
Acenaphthene	NE	NA	NA	NA.	NΑ	NA	NA	NA	NA .	NΛ	NΛ	NA NA	NΑ	NA	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA NA	NA.
Acenaphthylene	NE	NA	NΛ	NΛ	NA.	NA.	NA	NA	NA	NΛ	NA	NA.	NA.	NA	NA	NA	NΑ	NA	NΛ	NA	NA	NA	NA.	NA NA	NA
Anthracene	NE	NA	NΛ	NA	NA	NA.	NA	NΛ	NΑ	NA	NΑ	NA	NA	NA	NA	NA	ΝA	NΑ	NA.	NΛ	NA	NA	NA	NA NA	NA
Benzo(a)anthracene (b)	NE	NΛ	ΝA	NΛ	NΛ	NA	NΛ	NΛ	NΑ	NA	NA.	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NΑ	NA	NΛ	NA NA	NA NA	NΛ
Benzo(a)pyrene (b)	0.1	NΛ	NΛ	NΛ	NΑ	NΑ	NA	NΛ	NΑ	NΑ	NΑ	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NA .	NΛ	NA.	NΛ	NΛ	NA	NA .	NA	NA :	NA	NΛ	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	NA	N'A	NΑ	NA	NΛ	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NΑ	NΑ	NA.	NΛ	NΛ	NΛ	NA	NA	NΛ
Benzo (ghi) perylene	NE	NΛ	NΑ	NA .	NA	NA .	NA	NA	NA	NΛ	NΛ	NA	NΛ	NΛ	NA	NA	NA.	NΛ	NA	NA	NA	NA	NA	NA .	NΛ
Chrysene (b)	NE	NA	NA	NΑ	NΛ	NΛ	NA	NA	NA .	NΑ	NA	NA	NA	NA	NA .	NΛ	NΑ	NA	NA	NΛ	NA	NA	NA .	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NΛ	NΑ	NA	NA	NA	NΛ	NA	NA.	NA	NA	NΛ	NA	NA	NA	NΛ
Fluoranthene	NE	NA	NA	NΑ	NΛ	NA.	NA	NA	NΛ	NA	NA	NA .	NΛ	NA	NA ·	NA	NA	NA	NA -	NA	NA	NA	NA	NA	NΛ
Fluorene	NE	NA	NΛ	NΛ	NA NA	NA .	NΛ	NA	NA	NA.	NA	NA	NΛ	NA.	NA	NA	ÑΛ	NA	NA.	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene (b)	NE	NΑ	NΛ	NΛ	NΛ	NΛ	NΛ	NA	NA	NΛ	NΑ	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NΛ	NA
i-Methylnaphthalene	NE I	NA .	NA	NΑ	NA	NΛ	NΛ	NA NA	NA.	NΛ	NA	NA .	NA	NA	NA	NA	NA	NA .	NΛ	NA	NA	NA.	NA	NA	NA
2-Methylnaphthalene	NE	NA	NA	NΛ	NΛ	NA	NΛ	NA	NΛ	NΛ	NA	NΛ	NΛ	NA	NΛ	NA	NΛ	NΛ	NΛ	NΛ	NA	NA	NΛ	NA	NΛ
Naphthalene	5	0.0519	0.0115 U	20.7 U	0.00909 U	26.0 U	0.00643 U	0.0386 UJ	0.00674 UJ	0.00903 UJ	31.2 U	0.00566 U	29.1 U	0.0457 UJ	0.00527 U	0.0421	0.00760 U	0.0320 UJ	0.00625 U	0.0358 UJ	0.00721 U	0.00862 U	0.00653 U	0.107	0.0833
Phenanthrene	NE	NΛ	NA	NΑ	NΛ	NΛ	NΛ	NA	NA	NA	NA	NA NA	NA	NA	NΛ	NΛ	NA .	NA	NΑ	NA	NA	NA	NA ·	NA	NA
Pyrene	NE	NΛ	NA	NΛ	NA	NΛ	NA	NA.	NA .	NA	NA	NA NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA.	NA	NA	NA	. NA
Total PAHs (mg/kg) ^c	NE NE	0.0519	NA	NA .	NΑ	NA	NA	NΑ	NA	NA	NΑ	NA .	NA	NA	NA	0.0421	NΑ	· NA	NA .	NΛ	NA	ΝA	NΛ	0.107	0.0833
Total Metals (mg/kg)													i		l				·					, 1	
Arsenie	20	NA	NΛ	NΛ	NΑ	NΛ	NA	NA	2.02	NA	3.72	NA	4.29	1.30 U	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NΛ	NA	NA
Barium	NE NE	NA	NΛ	NΑ	NΛ	NA	NA	NA	49.1	NΑ	26.3	NA	42.6	25.4	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	2	NA NA	NA	NA	NΛ	NA	NA	NA	0.329 U	NΑ	1.83 U	NA	1.35 U	1.30 U	NΛ	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NΛ	ΝA	NΛ	NA .	NA	NΛ	20.0	NA .	2.61	NΛ	6.37	1.78	NA	NA	NA	NΛ	NΛ	NΛ	NΛ	NA	NA	NΛ	NA
Lead	250	5.08	11.9	392	11.5	360	2.02	532	12.7	2.46	709	1.38	251	17.3	2.05 J	8.32	2.44	11.7	1.54	97.0	11.3	6.86	2.15	33.1	34.9
Selenium	NE	NA	NA	NA	NA	NA	NA	NA	0.658 U	NΛ	3.65 U	NA	2.71 U	2.59 U	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA
Silver	NE	NA	NA	NΛ	NA	NA 	NA	NA	0.329 U	NA	1.83 U	NΛ	1.35 U	1.30 U	NA	NA	NA	NA	NA .	NA.	NA	NA	NΛ	NA	NA
Mercury	2	NA	NΛ	NΛ	NΑ	NA	NΛ	NA	NA	NA	NΛ	NA ·	NA .	NA	NA	NA	NA	NΛ	NΛ	NΛ	NΛ	NA	NA	NΛ	NA
TCLP Metals (mg/L)	,																		İ					, 1	1
Lead	5 ^(d)	NA	NA	NΛ	NA	NΑ	NA	1.00 U	NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA .	NA	NA	NA

Notes:

Model Taxies Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clare/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NA - Not applicable

NE - Not established

PAIS - Polynuclear aromatic hydrocarbons

TPHs - Total perollucin hydrocarbons

TPHs - Total perollucin hydrocarbons

U - Compound was analyzed for but not detected above the reporting limit shown.

U - Compound was analyzed for but not detected above the reporting limit shown.

The post of the properties of the propert

Ci. LID		1111		T	H8		19	1	T			Т				Т			14	т .	115		11	T	12
Sample ID	1	H6	H7	1	1	1		H10	1/20/2000	HII	1			112	1		113 	1				1	;	1	4/30/2009
Sample Date Sample Elevation (Ft. above City		5/1/2009	4/9/2009	5/1/2009	4/8/2009	5/1/2009	4/8/2009	4/2/2009 14	4/28/2009	4/28/2009	4/8/2009	4/28/2009	4/15/2009	4/28/2009	4/10/2009	4/20/2009	4/10/2009	4/20/2009	4/10/2009	4/15/2009	4/10/2009	5/28/2009	5/28/2009	5/28/2009	
of Seattle Datum):	: Creatiup Devel	'	14	1 ′	14	i '	14	14	, ,	12	14	1 '	,	12	14	,	14	,	14	,	14	9	14	4	14
Field QC	1		1	1				<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u>L</u>				<u> </u>	<u> </u>
VOCs (mg/kg)			1			1			1																
Benzene	0.03	0.00128 U	0.00102 U	0.00107 U	0.677	0.000999 U	0.149	0.00218 U	0.00105 U	0.00260 UJ	0.771	0.00101 U	0.00537 U	NΛ	0.00795	0.00100 U	0.0628	0.000932 UJ	0.251 U	0.000740 U	0.114	0.00112 U	0.0508	0.00106 U	0.00390 U
Ethyłbenzene	6	0.00343 U	0.00273 U	0.00284 U	0.147 J	0.00266 U	0.0366 J	0.00582 U	0.00281 U	0.00694 UJ	2.41	0.00268 U	0.0143 UJ	NA	0.0112 UJ	0.00267 U	1.96	0.00248 UJ	1.26 U	0.00197 U	0.168 J	0.00298 U	0.0379 J	0.00282 U	0.0104 U
Toluene	7	0.00128 U	0.00102 U	0.00107 U	0.121 J	0.000999 U	0.103 J	0.00218 U	0.00105 U	0.00260 UJ	0.709 UJ	0.00101 U	0.00537 UJ	NA	1.03 U	0.00100 U	0.177	0.000932 UJ	1.26 U	0.000740 ∪	1.20 U	0.00112 U	0.0143	0.00106 U	0.00390 U
Xylenes, total	9	0.00856 U	0.00682 U	0.00711 U	0.449 J	0.00666 U	0.176 J	0.0146 U	0.00703 U	0.0173 UJ	9.27	0.00670 U	0.0358 UJ	NA	3.08 U	0.00668 U	9.64	0.00621 UJ	3.77 U	0.00493 U	0.996 J	0.00745 U	0.145 J	0.00704 U	0.0260 U
Methyl tert-butyl ether (MTBE)	0.1	0.000856 U	0.000682 U	0.000711 U	0.00230 U	0.000666 U	0.000596 UJ	0.00146 U	0.000703 U	0.00173 UJ	0.00243 UJ	0.000670 U	0.00358 UJ	NA NA	0.00281 U	0.000668 U	0.000998 U	0.000621 UJ	0.00368 UJ	0.000493 U	0.00370 U	0.000745 U	0.000675 U	0.000704 U	0.00260 U
TPHs (mg/kg)			1			l .		l	-		ł	1	i		1			Ì	· ·	İ	İ			ł	
Gasoline-Range	30 / 100 °	10.3 U	4.24 J	5.93 U	204 J	5.94 U	8.70	12.3 J	6.85 U	6.56 J	214 J	6.72 U	42.2 U	NA	16.5 J	6.12 U	133 J	6.93 U	49.5 J	5.21 U	48.6 J	7.56 U	2.20 J	5.82 U	15.0 J
Diesel-Range	2,000	16.0 U	13.7 U	11.2 U	3,410	11.7 U	113	226	NΛ	NA	864	13.0 U	4,680	NA	6,290	12.2 U	135	12.3 U	3,300	12.4 U	191	13.8 U	12.7 U	11.5 U	364
Lube Oil-Range	2,000	40.0 U	34.3 U	28.0 U	3,360	29.1 U	125	306	NΑ	NA	1240	32.6 U	11,300	NA	11,200	30.5 U	182	30.7 U	3,780	31.10	438	34.5 U	31.6 U	28.8 U	649 J
Kerosene-Range	2,000	16.0 U	13.7 U	11.2 U	1340	11.7 U	43.8	81.5	NA	NA	279	13.0 U	1,040	NA NA	1,010	12.2 U	43.8	12.3 U	512	12.4 U	54.3 U	13.8 U	12.7 U	11.5 U	68.3
PAHs (mg/kg)			1			1					ļ			1	1										İ
Acenaphthene	NE	NΑ	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NΛ	NA.	NA	NA .	NA	NA	NΛ	NΑ	NA	NΛ	NA
Accnaphthylene	NE	NΛ	NΑ	NA	NA	NΛ	NA	NΑ	NΑ	NA	NΑ	NA	NA	NA	NA	NΛ	NA	NA.	NΛ	NA	NΛ	NA	NA	NA	NA
Anthracene	NE	NΛ	NΛ	NA	NA	NA	NΑ	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NΛ	NA.	NA	NA	NA	NA	NΛ	NA	NA NA
Benzo(a)anthracene (b)	NE	NΛ	NA	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NΛ	NΛ	NA NA	NΛ	NΛ	NA	NA	NA NA	NΛ	NA	NA	NA	NA	NA NA	NΛ	NA NA	NA	NA.
Benzo(b)fluoranthene (b)	NE NE	NΛ	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA.	NA NA	NA	NA NA
Benzo(k)fluoranthene (b)	NE NE	NA NA	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo (ghi) perylene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene (b) Dibenz(a,h)anthracene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluoranthene	NE NE	NA NA	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.
Fluorene	NE NE	NA NA	NA	NA.	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA.	NA.	NA NA	NA NA	NA.	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA NA
Indeno(1,2,3-cd)pyrene (b)	NE	NA	NA	NΛ	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA.	NA	NΛ	NΛ	NA	NA	NΛ	NA
I-Methylnaphthalene	NE	NA	NA	NΛ	NΑ	NΛ	NΑ	NA	NΛ	NA	NA	NA.	NA	NA	NA	NΛ	NA	NΛ	NA	NA	ΝA	NA	NA	NΛ	NA
2-Methylnaphthalene	NE	NΑ	NΛ	NA	NA	NA .	NA	NA	NA I	NA	NA	NΛ	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NΛ	NA	NA
Naphthalene	5	0.00856 UJ	0.00682 U	0.00711 U	13.4 UJ	0.00666 U	2.44 U	0.0214	0.00703 U	0.0173 UJ	15.6 U	0.00670 U	0.0358 UJ	NA	0.0281 UJ	0.00668 U	3.29 U	0.00621 UJ	0.0368 UJ	0.00493 U	0.0370 UJ	0.00745 U	0.0351	0.00704 U	0.0260 ∪
Phenanthrene	NE	NΑ	NΛ	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NΛ	NΛ	NA	NA	NA	NA .	NA	NA	NA .	NΛ	NA	NA	NA
Pyrene	NE	NA	NΑ	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA .	NΛ	NA	NA .	NA	NA	NA	NA	NA	NΛ	NA	NA	NA.
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NΛ	NΛ	NA	NA	NA	NΑ	NA	NA	NA	NA	NΛ	NA	NA :	NA	NA	'NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) °	NE	NA	NA NA	NA	NA .	NA .	NA	0.0214	NA	NA	NΛ	NA .	NΛ	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA	0.0	NA	NA
Total Metals (mg/kg)																									
Arsenic	20	NA	NA	NΛ	NA	NA	NA	NΛ	NΛ	NΛ	NA	NA NA	NA	NA	17.6	NA	6.63	NA.	3.32	NA	4.47	NA	NA	NA	NA
Barium	NE NE	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA.	NA.	NA	NA NA	NA	NA.	78.2	NA.	121	NA NA	22.0	NA NA	48.8	NA.	NΛ	NA.	NA.
Cadmium	2	NA NA	NA	NA	NA.	NA.	NΛ	NΛ	NA NA	NA	NA	NA NA	NA	NA	1.61 U	NA NA	0.653 U	NA.	1.61 U	NA	1.31 U	NA	NA	NA	NA.
Chromium	19 (Cr ⁶ *) / 2,000 (Cr ³ *)	NΛ	NA	NΛ	NΛ	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	16.1	NA	34.9	NA	4.16	NA	11.3	NΛ	NA	NA	NA.
Lead	250	1.45	16.6	1.28	332	2.05	377	112	2.39 J	18,900 J	1,450	1.61 J	1,010 J	120 J	1,740	2.68	87.5	1.60	745	1.54 J	196	9.91 J	5.71 J	1.32 J	307
Selenium	NE	NA	NA	NA	NA NA	NA	NA	NA	NΑ	NA	NΛ	NΑ	NA	NA	3.22 U	NΛ	1.31 U	NA	3.21 U	NA	2.63 U	NΛ	NA	NA	NA
Silver	NE	NA	NA.	NA	NA	NA	NA	NA	NA	NΛ	NA	NΑ	NΛ	NA .	1.61 U	NΛ	0.653 U	NA	1.61 U	NΛ	1.31 U	NA	NA	NA	NA
Мегсигу	2	NΑ	NA NA	NA	NA	NA	NA	NΛ	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA	NA
I'CLP Metals (mg/L)																									
Lead	5 ^(d)	NA	NA.	NA	NA	NA	NA	NA	NΛ	57.7	7.47	NA	1.00 U	NA	10.3	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
								<u></u>													<u> </u>				السنننس

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/claro/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established

PAlls - Polynuclear annuasic hydrocarhons

THIS - Total pertulueuh hydrocarhons

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volaile organic compounds

TTEC - Total Toxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if herazon is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration

Toxical PAHs are the sum of PAHs detailed by the WAC (173-340 (Accemplakene, accemphatyleen, (uncorantene, hencofts)fluoranthene, pyrene, chrysene, chorocialyyrene, dibenz(a,h)anthracene, indexo(1,2,3-c,f)pyrene, and benzo(g,h)perylene, Note dibenzo ((a,c.), (a,b.), (a,j.), and (a,l.)) pyrenes and dibenzo(a) acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC (173-303-100.

		1	F																 			
Sample ID	II .	13		1			15	16	17	18	19		110		111	112	· ·	13	1	14		15
Sample Date Sample Elevation (Ft. above City	MICA MEIROU A SOII	4/30/2009	5/28/2009	5/28/2009	5/28/2009	5/1/2009	5/1/2009	4/8/2009	4/8/2009	4/8/2009	4/8/2009	4/13/2009	4/8/	2009	4/9/2009	4/9/2009	4/20/2009	4/10/2009	4/20/2009	4/10/2009	4/15/2009	4/10/2009
of Seattle Datum)	Cleanup Level	14	4	7	9	14	14	14	14	14	14	9		14	14	14	9	14	9	14	9	14
Field QC									ĺ	Ī				(DUP)	1	i .		-	1	1	İ	
VOCs (mg/kg)			i						<u> </u>					i	İ	İ						1
Benzene	0.03	0.000943 U	0.00101 U	0.00224 U	0.0259	0.00864	0.00104 ป	0.00112 ป	0.0225 U	0.00403	0.00582 UJ	0.00640 U	4.16 J	0.157 J	0.00204 UJ	0.00543 UJ	0.000858 U	0.0560 J	0.000998 U	0.0128	0.00150 U	0.00852 U
Ethylbenzene	6	0.00252 U	0.00270 ∪	0.00712	0.777	0.128	0.00278 U	0.00299 U	0.112 U	0.0342	1.16 U	1.36 U	11.7 J	4.55 J	0.00544 UJ	0.0145 UJ	0.00229 U	0.859 J	0.00266 ∪	1.36 U	0.00400 UJ	1.83 U
Toluene	7	0.000943 U	0.00101 U	0.00224 UJ	0.0552 J	0.00208	0.00104 U	0.00112 U	0.112 U	0.00648	1.16 U	0.00640 UJ	0.722	0.743 J	0.00204 UJ	0.00543 UJ	0.000858 U	1.59 U	0.000998 U	1.36 U	0.00150 UJ	1.83 U
Xylenes, total	9	0.00629 U	0.00676 ∪	0.0176	1.94	0.155	0.00695 U	0.00748 U	0.337 U	0.106	3.49 U	4.09 U	9.79 J	4.16 J	0.0136 UJ	0.0362 UJ	0.00572 U	3.17 J	0.00665 U	4.08 U	0.0100 UJ	5.48 U
Methyl tert-butyl ether (MTBE)	0.1	0.000629 U	0.000676 U	0.00199	0.230 U	0.000680 U	0.000695 U	0.000748 U	0.0562 U	0.000954 U	0.00388 UJ	0.681 U	0.00290 U	0.00191 U	0.00136 UJ	0.00362 UJ	0.000572 U	0.00476 U	0.000665 U	0.00382 U	0.00100 U	0.00568 U
TPHs (mg/kg)																						
Gasoline-Range	30 / 100 °	6.40 U	6.30 U	14.8 U	49.9 J	305	3.33 J	8.74 U	5.62 U	7.35 J	58.2 U	20.2 J	740 J	279 J	3.95 J	56.0 U	5.86 U	96.2 J	0.11 U	92.8 J	9.26 U	104 J
Diesel-Range	2,000	12.7 U	12.5 U	46.6	106	12.4 U	12.4 U	14.3 U	11.5 U	44.3	51.1 U	129	697	571	33.5	322	11.6 U	315	11.9 U	3,840	15.6 U	2,490
Lube Oil-Range	2,000	31.7 U	31.4 U	124	128	31.0 U	30.9 U	35.6 U	28.7 ∪	64.6	128 U	272	1,110	857	69.1	666 J	29.0 U	503	29.8 U	6,050	39.0 U	4,250
Kerosene-Range	2,000	12.7 U	12.5 U	21.0 U	48.7	12.4 U	12.4 U	14.3 U	11.5 U	17.4 U	51.1 U	55.7 U	264	224	18.3 U	46.3 U	11.6 U	60.8 U	11.9 U	614	15.6 U	333
PAHs (mg/kg)																						
Acenaphthene	NE	NA	NA	NΛ	NΛ	NΛ	NΛ	NΛ	ÑΑ	NA	NΛ	NA	NA	NA	NΑ	NA NA	NΛ	NA	NΛ	NA	NA	NA
Acenaphthylene	NE	NA NA	NA	NΛ	NΛ	NΛ	NA	NA	NA	NA NA	NΛ	NΛ	NΑ	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA
Anthracene	NE	NA	NΛ	NA.	NΛ	NA	NΛ	NΛ	NA	NA	NΛ	NA	NA	NA	NΛ	NA.	NA	NΛ	NA	NA	NΑ	NA NA
Benzo(a)anthracene (b)	NE	NA	NA	ÑΛ	NΛ	NA	NΛ	NA	NA .	NΛ	NΑ	NΑ	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NΛ
Benzo(a)pyrene (6)	0.1	NA :	NA .	NA 	NΛ	NA	NA	NA	NΛ	NA	NΛ	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA 	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NA	NA	NΛ	NA ·	NΛ	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA.	NA NA
Benzo(k)fluoranthene (b)	NE NE	NΛ	NA VI	NA	NA	NA	NA	NA	NA	NA	NA I	NA 	NA	NA	NA 	NA 	NA	NA	NA	NΛ	NA	NA VI
Benzo (ghi) perylene	NE NE	NA NA	NA NA	NΛ	NA NA	NA	NA	NA	NA	NA NA	NΛ	NΛ	NΛ	NA	NΛ	NA .	NA NA	NA	NA NA	NΛ	NA NA	NA
Chrysene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene (b) Fluoranthene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene	NE NE	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA I	NA NA	NA NA	NA NA	NA.	NA.	NA .	NA NA
Indeno(1,2,3-cd)pyrene (b)	NE NE	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	NA NA	NA.
I-Methylnaphthalene	NE NE	NA NA	NA.	NΛ	NA.	NΑ	NA NA	NA.	NA NA	NA.	NA.	NA NA	NA.	NA.	NA.	NA NA	NA.	NA.	NA NA	NA	NA.	NA.
2-Methylnaphthalene	NE	NA.	NA	NΛ	NΑ	ΝA	NΛ	NΑ	NA	NA	NΑ	NA NA	NA	NA NA	NA	NA	NΛ	NA	NΛ	NA	NΛ	NA
Naphthalene	5	0.00629 U	0.00676 U	0.0149 UJ	9.19 U	0.0279	0.00695 U	0.00748 U	2.25 U	4.70 U	23.3 U	27.2 U	381 J	163 J	4.20 U	0.0362 UJ	0.00572 U	31.8 U	0.00665 U	0.0382 UJ	0.0100 UJ	0.0568 UJ
Phenanthrene	NE	NA	NA	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NΑ	NΛ	NA.	NA	NA	NΛ	NΑ	NA	NA	NA	NA
Pyrene	NE	NA	NA	NΑ	NA	NΑ	NA	NA	NA .	NΛ	NΛ	NA	NA	NA	NΛ	NA .	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NΛ	NA	NA	NA	NΛ
Total PAHs (mg/kg) °	NE	NA	NA	NA	NA	0.0279	NA	NA	NA	NA :	NA	NA	381	163	NA	NA	NA	NA	NΛ	NA	NΛ	NA
Total Metals (mg/kg)														, , , , , , , , , , , , , , , , , , , ,								
Arsenic	20	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	5.57	NΛ	NA	NA	NA	NA	2.72	NΛ	2.14 U	NA	7.02
Barium	NE	NA	NA NA	NA	NΛ	NΑ	NA	NΛ	NA	NA	NΛ	32.2	NΑ	NA	NA	NΛ	NA	39.0	NΛ	21.4 U	NA	46.5
Cadmium	2	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NΛ	2.93 U	NΛ	NA	NA	NA	NA	2.19 U	NΛ	2.14 U	NΛ	1.85 U
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA	7.38	NA -	NΛ	NA	NA	NA	5.35	NA	2.14 U	NA	8.69
Lead	250	6.47	2.67 J	65.9 J	45.7	38.9	32.5	77.1	5.43	39.7	60.7	91.6	323	243	48.2	242	1.48	76.3	2.44	566	3.40 J	1,800
Selenium	NE	NΛ	NA	NA	NΛ	NΛ	NA	NA	NA	NA	NA	5.86 U	NA	NA NA	NA	NΛ	NA -	4.38 U	NΛ	4.27 U	NA	3.70 U
Silver	NE	NA	NΛ	NA	NΛ	NΛ	NΑ	NΛ	NA	NΛ	NA	2.93 U	NA	NA	NA	NA	NA	2.19 ∪	NΛ	2.14 U	NA .	1.85 U
Mercury	2	NA	NA	NA	NA	NΛ	NA	NA	NA.	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
TCLP Metals (mg/L)	l				i						ļ											
Lead	5 ^(d)	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	1.4

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clarc/Reporting/CLARCReporting.asps).

DUP - Field duplicase

J - Estimated value

NA - Not applicable

NE - Not established

PAIIs - Pollynuclear aromatic hydrocarbons

TPIIs - Total petroluen hydrocarbons

TPIIs - Total petroluen hydrocarbons

TPIIs - Total petroluen hydrocarbons

TPIIs - Total petroluen hydrocarbons

UJ - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volaulie organic compounds

TTEC - Total Toxicity Equivalent Soil Concentration

The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Total PAHs are the sum of PAHs detailed by the WAC 173-303-404 (Acenaphthene, acenaphthylene, fluorene, anthracene, fluorambene, phenandrene, benzo(kylluorambene, benzo(kylluorambene, pyrene, chrysene, benzo(a)pyrene, dibenz(a,b)andracene, indeno(1,2,3-c.d)pyrene, and benzo(g,b.i)perylene; Note dibenzo (g.e.) (a,b), (d.i), and (a,1)] pyrenes and dibenzo(a,b) andracene, indeno(1,2,3-c.d)pyrene, and benzo(g,b.i)perylene; Note dibenzo (g.e.) (a,b), (d.i.), and (a,1)] pyrenes and dibenzo(a,b) andracene, indeno(1,2,3-c.d)pyrene, and benzo(g,b.i)perylene; Note dibenzo (g.e.) (a,b), (d.i.), and (a,1)] pyrenes and dibenzo(a,b) andracene, indeno(1,2,3-c.d)pyrene, and benzo(g,b.i)perylene; Note dibenzo (g.e.) (a,b), (d.i.), and (a,1)] pyrenes and dibenzo(a,b) andracene, benzo(a) and are not typically included in the PAH analyze list. The waste characterization is determined based on an exce

Table 2 Summary of Soil Analytical Results Area 1 Westlake-Mercer

Sample ID	4 1		[1	T .		J2		<u> </u>	J3	.J4	1	15	I 16	J7	1	18	T	o	J10	T	11	l r	12		J13
Sample Date		5/28/2009	5/28/2009	5/28/2009	5/28/2009	5/28/2009	5/1	/2009	5/1/2009	5/1/2009	6/3/2009	5/1/2009	4/8/2009	4/8/2009	4/10/2009	4/8/2009	4/10/2009	4/8/2009	4/7/2009	4/14/2009	4/7/2009	4/14/2009	4/7/2009	4/14/2009	4/7/2009
Sample Elevation (Ft. above City o	MTCA Method A Soil Cleanup Level	a	14	1 4	7	9		14	14	14	0	14	14	14	0	14	9	14		0		9		0	
Seattle Datum) Field QC	Cleanup Level	,	14	"	'	,		(DUP)	14	14	9	14	14	14	,	14	9	14	14		14	9	14	,	14
VOCs (mg/kg)					Î						i				i i								<u> </u>		<u> </u>
Benzene	0.03	0.00101 U	0.00637	0.000912 U	0.00930	0.0300	0.0147	0.0125	0.00515	0.00427	0.00111 U	0.0616	0.00105 U	0.00344 U	0.00636 U	0.00465 U	0.00583 U	0.00309	0.00104 UJ	0.000956 U	0.00444 U	0.00102 U	0.330 ป	0.000793 UJ	0.203 U
Ethylbenzene	6	0.00326	2,66	0.00243 U	0.0396	0.187 J	0.132 J	0.0108 J	0.0538	0.00533	0.00296 U	0.0961 J	0.00281 U	0.00918 U	0.0170 UJ	0.0124 UJ	0.0315	0.0153	0.0944 U	0.00255 U	1.19 U	0.00102 U	1.65 U	0.00212 U	1.01 U
Toluene	7	0.00250	0.921	0.000912 U	0.0124	0.187 J	0.264 J	0.0565 J	0.00114 U	0.00236	0.00111 U	0.0215	0.00105 U	0.00344 U	0.00636 UJ	1.13 U	0.00583 U	0.00485	0.00104 UJ	0.000956 U	1.19 U	0.00102 U	1.65 U	0.000793 U	1.01 U
Xylenes, total	9	0.00644	19.6	0.00608 U	0.201	0.708 J	0.314 J	0.0255 J	0.0819	0.0147	0.00740 U	0.361	0.00703 U	0.0229 U	0.0424 UJ	3.40 U	0.0389 U	0.0364	0.283 U	0.00638 U	3.57 U	0.00680 U	4.95 U	0.00529 U	3.10
Methyl tert-butyl ether (MTBE)	0.1	0.000674 U	0.0544 U	0.000608 U	0.00313 U	0.00387 U	0.00206 U	0.00236 U	0.000760 U	0.000644 U	0.000740 U	0.000806 U	0.000703 U	0.00356	0.00729	0.00945	0.00400	0.00180 U	0.000696 UJ	0.000638 U	0.00296 U	0.000680 U	0.00259 UJ	0.000529 UJ	0.00302 U
TPHs (mg/kg)					Ì	Ì															<u> </u>				
Gasolinc-Range	30 / 100 ª	5.61 U	270 J	6.20 U	11.4 J	18.3 J	83.3 J	69.8 J	5.48 J	5.43 J	6.52 U	16.4	5.78 U	19.1 U	77.7 U	56.4 U	66.2 U	184 J	4.72 U	4.73 J	59.4 U	6.13 U	266 J	5.86 U	50.7 U
Diesel-Range	2,000	12.9 U	13.1 U	12.5 U	157	233	1,030	654	13.3 U	12.5 U	12.3 U	143	11.5 U	30.4	58.6 U	79.3	56.0 U	46.4	12.3 U	12.2 U	54.1 U	12.4 U	112	12.1 U	370
Lube Oil-Range	2,000	32.3 U	32.7 U	31.3 U	301	321	2,570 J	930 J	33.2 U	31.3 U	30.7 U	35.4	28.9 U	68.5 U	146 U	150	140 U	87.8	30.9 U	30.5 U	135 U	30.9 U	247	30.2 U	673
Kerosene-Range	2,000	12.9 U	13.1 U	12.5 U	36.9 U	49.6	213	165	13.3 U	12.5 U	12.3 U	18.7	11.5 U	27.4 U	58.6 U	54.6 U	56.0 U	29.6 U	12.3 U	12.2 U	54.1 U	12.4 U	59.8 U	12.1 U	118
PAHs (mg/kg)																									
Acenaphthene	NE	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	- NA	NA
Acenaphthylene	NE	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA .	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA NA	· NA	NA.	NA.	NA.	NA.	NA NA
Anthracene	NE	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA	NA.	NA.	NA.	NA NA
Benzo(a)anthracene (h)	NE	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene ^(h)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	5	0.00674 U	1.50 J	0.00608 U	0.0313 UJ	19.7 U	12.6 U	0.0236 UJ	0.0171	0.00644 U	0.00740 U	0.145	0.00703 U	0.0229 UJ	0.0424 UJ	0.0310 UJ	0.0389 UJ	11.8 U	0.00696 UJ	0.00638 U	23.8 U	0.00680 U	33.0 U	0.00529 UJ	20.3 U
Phenanthrene	NE	NA	NA	NA	NA	NA NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA 1.50	NA NA	NA NA	NA NA	NA	NA	NA 0.0151	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg) ^c	NE	NA	1.50	NA	NA	NA	NA	NA	0.0171	NA	NA	0.145	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)	ļ															1]]						
Arsenic	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	1.87 U	NA	1.57	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.5	NA	21.4	NA	NA	NA	NA	NA	NA	NA	NA .
Cadmium	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.87 U	NA	1.48 U	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	2.73	NA	2.32	NA	NA	NA	NA	NA	NA	NA	NA
Lead	250	12.6 J	4.63 J	2.36 J	156J	136 J	122	124	7.48	13.9	2.29	65.1	10.5	196	9.49	268	17.4	389	44.5	1.60 J	390	1.70 J	82.8	1.55 J	149
Selenium	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.74 U	NA	2.96 U	NA	NA.	NA	NA	NA	NA	NA	NA
Silver	NE	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.87 U	NA	1.48 U	NA	NA.	NA	NA	NA	NA	NA	NA ·
Mercury	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP Metals (mg/L)		į														1	J								
Lead	5 ^(d)	NA	NA	NA.	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA I	NA	NA	NA	NA	NA.

Notes

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clare/Reporting/CLARCReporting.aspx).

DUP - Field duplicate
J - Estimated value

NA - Not applicable

NA - Not applicable NE - Not established

PAHs - Polynuclear aromatic hydrocarbons

TPHs - Total petroluem hydrocarbons

U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volatile organic compound

TTEC - Total Toxicity Equivalent Soil Concentration

*The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

b These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

*Total PAHs are the sum of PAHs detailed by the WAC 173-303-040 (Acenaphthene, acenaphthylene, fluoranthene, phracene, anthracene, fluoranthene, benzo(g,h,i)perylene).

Note dibenzo [(a,e), (a,h), (a,i), and (a,1)] pyrenes and dibenzo(a,j) acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

^d WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

Table 2 Summary of Soil Analytical Results Area 1

C 1 II		ı	11.4				1/1		T 1/2	T	1 10	T	т								.	1 7510	T
Sample ID Sample Date	.]	4/14/2009	4/7/2009	4/14/2009	4/7/2009	6/1/2009	K1 6/1/	/2009	K2 6/1/2009	K2 5/1/2009	K3 5/1/2009	K4 6/1/2009	K4 5/5/2009	K5 5/5/2009	K6 4/8/2009	4/8/2009	K7 4/3/2009	4/8/2009	K8 4/3/2009	4/8/2009	(9 4/3/2009	K10 4/8/2009	SCB-4 3/3/2009
Sample Elevation (Ft. above City of	MICA Method A Son	11.1.2007	ì			0/1/2007	1	2007	0/1/2007		1	0/1/2007	1	1	1	1	Ī	1	1		1	1	3/3/2007
Seattle Datum	Cleanup Level	9	14	9	14	9	1	14	9	14	14	9	14	14	10.5	10.5	14	11.5	14	11.5	14	14	26.5
Field QC		<u> </u>		ļ	<u> </u>	<u>ļ</u>	<u> </u>	(DUP)	<u> </u>	<u>!</u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>			<u> </u>
VOCs (mg/kg)		i							1	i	1		I		l		ļ	l	{	I]	1
Benzene	0.03	0.000719 U	0.0169	0.000877 U	0.133 U	0.00104 U	0.000977 U	0.000967 U	0.000551 U	0.825	0.00653	0.00104 U	0.0941	0.00124 U	0.00422 UJ	0.00261 U	0.00163 U	0.00610 U	0.379 U	0.00542 UJ	0.00529	0.250 U	0.00540
Ethylbenzene	6	0.00192 U	0.9.77	0.00234 U	0.666 U	0.00277 ป	0.0188	0.0216	0.00147 U	0.0138 UJ	0.00608	0.00278 U	0.0774	0.00330 U	1.16 U	0.00697 UJ	0.00434 U	0.0163 U	1.90 U	0.0145 UJ	0.0117 UJ	1.25 U	0.0403
Toluene	7	0.000719 U	0.292 U	0.000877 U	0.666 U	0.00104 U	0.000977 U	0.000967 U	0.000551 U	0.855 J	0.00100 U	0.00104 U	0.109	0.00131	1.16 U	0.00261 UJ	0.00163 U	0.00610 U	1.90 U	0.00542 UJ	0.631 U	1.25 U	0.00155 U
Xylenes, total	9	0.00479 U	4.25	0.00585 U	2.00 U	0.00692 U	0.0258	0.0394	0.00367 U	0.0344 UJ	0.0264	0.00695 U	0.0841	0.00825 U	3.48 U	0.0174 UJ	0.0109 U	0.0407 U	5.69 U	0.0361 UJ	1.89 U	3.75 U	0.0473
Methyl tert-butyl ether (MTBE)	0.1	0.000479 U	0.00124 U	0.000585 U	0.00257 UJ	0.000692 U	0.000651 U	0.000645 U	0.000367 U	0.00344 UJ	0.000670 U	0.000695 U	0.000581 U	0.000825 U	0.579 U	0.00174 U	0.00109 U	0.00488	0.00654 U	0.00361 U	0.00292 U	0.00288 U	NA
TPHs (mg/kg)				1		1	1	1	1		l	İ	1	1									
Gasoline-Range	30 / 100 ^a	5.71 U	113 J	6.29 U	57.1 J	6.43 U	36.9	36.8	4.48 U	36.0 J	7.01 U	6.78 U	11.1	8.08	57.9 U	27.1 U	10.9 U	53.5 U	94.8 U	54.2 U	14.1 J	62.5 U	13.6 U
Diesel-Range	2,000	11.9 U	137	12.0 ປ	686	12.1 U	12.2 U	12.4 U	12.3 U	1,080	13.0 U	12.5 U	11.9 U	155	54.0 U	105	17.5 U	102	59.7 U	147	87.3	57.4 U	13.7 U
Lube Oil-Range	2,000	29.7 U	220	30.1 U	392	30.3 U	30.5 U	31.0 U	30.6 U	744	32.4 U	31.2 U	29.8 U	317	135 U	242	43.7 U	123	149 U	363	245	143 U	34.3 U
Kerosene-Range	2,000	11.9 U	65.9	12.0 U	413	12.1 U	12.2 U	12.4 U	12.3 U	97.4	13.0 U	12.5 U	11.9 U	29.5	54.0 U	27.6	17.5 U	46.2 U	59.7 U	48.6 U	34.5 U	57.4 U	NA
PAHs (mg/kg)																							
Acenaphthene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA	NA	NA	NA
Acenaphthylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene (b)	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo (ghi) perylene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene (b)	NE	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene (b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NE	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorenc	NE	NA	NA.	NA	NA	NA	NA	NA .	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene(b)	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Naphthalene	5	0.00479 U	5.83 U	0.00585 U	13.3 U	0.00692 U	0.0295	0.0399	0.00367 U	0.0344 UJ	0.00670 U	0.00695 U	0.00581 U	0.00825 U	0.0281 UJ	0.0174 UJ	0.0109 U	0.0407 UJ	0.0654 UJ	0.0361 UJ	0.0292 UJ	0.0288 UJ	NA
Phenanthrene	NE	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NE	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TTEC Concentration (c-PAHs)	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total PAHs (mg/kg)°	NE	NA	NA	NA	NA	NA	0.0295	0.0399	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals (mg/kg)																~							
Arsenic	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	NE	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA
Cadmium	2	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	19 (Cr ⁶⁺) / 2,000 (Cr ³⁺)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	250	1.48 J	218	1.57 J	66.0	1.46	4.50	5.49	2.57	153	5.53	2.42	7.12	11.6	17.1 U	64.2	316 J	30.0	23.2 J	79.4	125 J	22.4 U	NA
Selenium	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TCLP Metals (mg/L)																							
Lead	5 ^(d)	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	J	1771	. 144	1111	11/1	1771	11/1	14/1	14/1	III	177	14/1	INA	11/2	INA.	IIA	IVA	IIA I	147	, NA	11/4	IVA	

Notes:

Model Toxics Control Act (MTCA) Cleanup Regulation, chapter 173-340 WAC; MTCA Method A and B from Ecology website downloaded August 2009 (https://fortress.wa.gov/ecy/clare/Reporting/CLARCReporting.aspx).

DUP - Field duplicate

J - Estimated value

NA - Not applicable

NE - Not established PAHs - Polynuclear aromatic hydrocarbons

TPHs - Total petroluem hydrocarbons U - Compound was analyzed for but not detected above the reporting limit shown.

UJ - Compound was analyzed for but not detected above the reporting limit shown. The reporting limit is an estimated value.

VOCs - Volatile organic compounds

TTEC - Total Toxicity Equivalent Soil Concentration

^a The soil cleanup level is 100 mg/kg if benzene is not present and the total of ethylbenzene, toluene, and xylenes is less than 1% of the gasoline mixture. The cleanup level for all other gasoline mixtures is 30 mg/kg.

^b These compounds are considered carcinogenic PAHs (c-PAHs) and are subject to WAC-173-340 Toxicity Equivalent Soil Concentration calculations.

Cotal PAHs are the sum of PAHs detailed by the WAC 173-303-040 (Accnaphthene, accnaphthylene, fluorene, and tracene, fluoranthene, benzo(a), anthracene, benzo(b)fluoranthene, penzo(b)fluoranthene, penzo(a), and (a, 1)] pyrene, and dibenzo(a, j) acridine are not included as these compounds were not analyzed for and are not typically included in the PAH analyte list. The waste characterization is determined based on an exceedance of a 1% total PAHs as decribed in WAC 173-303-100.

^d WAC 173-303-090 - Dangerous Waste Criteria, dated July 31, 2009.

Table 1

Summary of Soil Analytical Results - Hollow Stem Auger Borings Phillips 66 Facility No. 255353 (AOC 1396) 600 Westlake Avenue North Seattle, Washington

		Sample					V	'OCs² (μg/kg)				
Boring ID	Sample ID	Depth (feet)	Sample Date	TPH-G ¹ (mg/kg)	Benzene	1,2- Dibromoethane (EDB)	1,2- Dichloroethane (EDC)	Toluene	Ethylbenzene	Methyl-tert- butyl ether	Total Xylenes	Lead ³ (mg/Kg)
	B-212-5'	5.0	09/30/14	<5.6	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<10.6	38.3
	B-212-10'	10.0	09/30/14	<5.5	6.7	<5.1 / <0.91	<5.1	7.3	5.6	<5.1	19.1	18.1
B-212	B-212-15'	15.0	09/30/14	<9.7	<5.1	<5.1 / <0.91	<5.1	<5.1	<5.1	<5.1	<15.3	15.3
	B-212-20'	20.0	09/30/14	<6.1	<11.4	<11.4 / <2.0	<11.4	<11.4	<11.4	<11.4	<34.1	1.6
	B-212-25'	25.0	09/30/14	<8.7	<6.5	<6.5 / <1.2	<6.5	<6.5	<6.5	<6.5	<19.6	12.2
	B-213-6.5'	6.5	10/01/14	<6.0	<3.3	<3.3	<3.3	<3.3	<3.3	<3.3	<10	7.1
	B-213-10'	10.0	10/01/14	130	<54.7 / <10.9	<54.7 / <6.7	<54.7	<54.7	<54.7	<54.7	<164	35.9
B-213	B-213-15'	15.0	10/01/14	7.3	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<11.1	44.0
	B-213-20'	20.0	10/01/14	<7.8	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<14.7	215
	B-214-6.5'	6.5	10/01/14	<6.1	8.7	<3.7	<3.7	<3.7	<3.7	<3.7	<11.1	6.5
B-214	B-214-10'	10.0	10/01/14	<6.3	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<10.7	5.3
	B-214-15'	15.0	10/01/14	<6.3	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<9.5	3.7
	B-215-6'	6.0	10/01/14	<6.2	15.1	<3.3	<3.3	<3.3	<3.3	<3.3	<10.0	6.9
B-215	B-215-10'	10.0	10/01/14	<9.3	274	<96.3 / <11.9	<96.3	<96.3	<96.3	<96.3	<289	6.9
	B-215-15'	15.0	10/01/14	<9.6	<7.8	<7.8 / <1.4	<7.8	<7.8	<7.8	<7.8	<23.4	10.7
	I	0.0	10100111				I					
	B-216-6'	6.0 10.0	10/02/14 10/02/14	<5.7 12.5	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<12.2	2.7 47.9
B-216	B-216-10'	15.0	10/02/14	<32.4	5.1	<3.6	<3.6	<3.6	<3.6	<3.6	<79.6	
D-210	B-216-15' B-216-25'	25.0	10/02/14	<7.0	<26.5 <5.1	<26.5 / <4.7 <5.1 / <0.91	<26.5 <5.1	35.6 <5.1	<26.5 <5.1	<26.5 <5.1	<79.6 <15.3	4.5 10.2
	B-216-25	6.0	10/02/14	<5.7	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<12.2	2.7
		0.0				~4.1	1				\12.2	
	B-217-5'	5.0	10/03/14	<6.2	<5.8	<5.8 / <1.0	<5.8	<5.8	<5.8	<5.8	<17.5	9.2
	B-217-10'	10.0	10/03/14	<6.0	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<13.4	12.1
B-217	B-217-15'	15.0	10/03/14	25.1	19	<7.7 / <1.4	<7.7	<7.7	<7.7	<7.7	23.2	15.1
	B-217-20'	20.0	10/03/14	<7.2	<5.5	<5.5 / <0.98	<5.5	<5.5	<5.5	<5.5	<16.4	2.2
-	B-217-25'	25.0	10/03/14	<6.8	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<12.9	11.2
	B-218-10'	10.0	10/03/14	635	<57.8 / <11.6	<57.8 / <7.1	<57.8	<57.8	<57.8	<57.8	<173	11.2
B-218	B-218-15'	15.0	10/03/14	55.5	9.2	<4.8	<4.8	9.3	<4.8	<4.8	<14.5	54.2
52.13	B-218-20'	20.0	10/03/14	272.0	12.9	<6.4 / <1.1	<6.4	41.8	<6.4	67.2	973	74
	B-218-25'	25.0	10/03/14	<5.8	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<12.5	2.6
B-219	B-219-10'	10.0	10/03/14	18.6	<9.9	<9.9 / <1.8	<9.9	<9.9	10.6	<9.9	48	26
MTCA Metho	od A Cleanup	Level		100 ⁴ /30 ⁵	30	5	NE	7,000	6,000	100	9,000	250

Notes:

- 1. Total Petroleum Hydrocarbons as gasoline range hydrocarbons (TPH-G) by NWTPH-Gx/8021.
- 2. Volatile Organic Compounds (VOCs) by EPA Method 8260, prepared by EPA Method 5035/5030B.
- 3. Total lead analyzed by EPA Method 6010, prepared by EPA Method 3050.
- 4. MTCA Method A Cleanup Level for gasoline mixtures without benzene and the total of ethylbenzene, toluene and xylene are less than 1% of the gasoline mixture.
- 5. MTCA Method A Cleanup Level for all other mixtures of gasoline.

Gasoline-range hydrocarbon and total lead results reported in milligrams per kilogram (mg/kg). VOCs reported in micrograms per kilogram (µg/kg).

< = less than stated laboratory method reporting limit (MRL) or method detection limit (MDL). Where two values are presented, the first value is the MRL, the second value is the MDL.

NE = Not established.

Bold values indicate the reported concentration exceeds the corresponding MTCA Method A Cleanup Level.

APPENDIX E

DRAFT February 16, 2018

FIGURE 1 LOCATION OF MONITORING WELLS

FIGURE 1

FIGURE 2 WESTLAKE SITE PLAN MAP

FIGURE 3 LOCATION OF MONITORING WELLS AND BOREHOLE INSTALLED DURING THIS INVESTIGATION

FIGURE 5 GROUNDWATER CONTOUR MAP

FIGURE 1 LOCATION OF MONITORING WELLS

EXPLANATION:

UST UNDERGROUND STORAGE TANK

MERCER STREET

Geo Engineers

SERVICE STATION FACILITIES 1980

FIGURE 3

REFERENCE: DRAWING ENTITLED GENERAL ARRANGEMENT, SERVICE STATION 5353, WESTLAKE AVE. & MERCER ST., SEATTLE, WASHINGTON, BY UNION OIL COMPANY OF CALIFORNIA, DATED

03/05/65.

EXPLANATION:

UST. ' UNDERGROUND STORAGE TANK

MERCER STREET

REFERENCE: DRAWINGS ENTITLED 'GENERAL ARRANGEMENT, SERVICE STATION 5353, WESTLAKE AVE. &
MERCER ST., SEATTLE WASHINGTON, DATED 03/05/65, AND 'TANK & PIPELINE
REPLACEMENT PROJECT, SERVICE STATION 5353, WESTLAKE AVE. & MERCER ST., SEATTLE,
WASHINGTON, DATED 06/18/80, BOTH BY UNION OIL COMPANY OF CALIFORNIA.

SERVICE STATION FACILITIES 1981 TO PRESENT

EXPLANATION:

UST UNDERGROUND STORAGE TANK

REFERENCE: DRAWING ENTITLED "GENERAL ARRANGEMENT, SERVICE STATION 5353, WESTLAKE AVE. & MERCER ST., SEATTLE, WASHINGTON," BY UNION OIL COMPANY OF CALIFORNIA, DATED 03/05/65.

MERCER STREET

EXPLANATION:

Note: Product recovery piping is not shown.

REFERENCE: DRAWINGS ENTITLED GÉNERAL ARRANGEMENT, SERVICE STATION 5353, WESTLAKE AVE. &
MERCER ST., SEATTLE WASHINGTON, DATED 03/05/65; AND TANK & PIPELINE
REPLACEMENT PROJECT, SERVICE STATION 5353, WESTLAKE AVE. & MERCER ST., SEATTLE,
WASHINGTON, DATED 06/18/80, BOTH BY UNION OIL COMPANY OF CALIFORNIA.

1980 FREE PRODUCT RECOVERY SYSTEM CONFIGURATION

FIGURE 7

.

Geo

EXCAVATION LIMITS AND SOIL SAMPLE LOCATION ROSEN SITE

FIGURE 2

NLP:ANG:KKT

013B001.DWG

0161013R69:02

APPENDIX F

DRAFT February 16, 2018

6347 Seaview Avenue Northwest Seattle, WA 98107 Telephone 206-781-1449 Fax 206-781-1543 www.atcgroupservices.com

REMEDIATION SYSTEM RESTART REPORT

Third and Fourth Quarter 2016 August 2016 through December 2016

Phillips 66 Facility No. 255353 (AOC 1396)
600 Westlake Avenue North
Seattle, Washington 98107
Washington State Department of Ecology Facility ID: 46445373
Washington State Department of Ecology Voluntary Cleanup Program No. NW1714
ATC PROJECT NO. Z076000073

Submitted to:
Mr. Roger Nye
Washington State Department of Ecology
3190 160th Avenue Southeast
Bellevue, Washington 98008-5452

Submitted on behalf of:
Mr. Ed Ralston
Phillips 66 Company
Remediation Management
76 Broadway
Sacramento, California 95818

Prepared by: ATC Group Services, LLC 6347 Seaview Avenue NW Seattle, Washington 98107 (206) 781-1449

May 3, 2017

ATC Group Services LLC

Prepared by:

Kyle Sattler

Senior Project Manager

Kyle.Sattler@atcassoicates.com

Washing of Washing of

KYLE RAYMOND SATTLER

ATC Group Services LLC

Reviewed by:

Dawn E. Bockoras

Director, Engineering & Remedial

Operations

Dawn.Bockoras@atcassociates.com

6347 Seaview Avenue Northwest Seattle, WA 98107 Telephone 206-781-1449 Fax 206-781-1543 www.atcgroupservices.com

REMEDIATION SYSTEM RESTART REPORT

Third and Fourth Quarter 2016 August 2016 through December 2016

Phillips 66 Facility No. 255353 (AOC 1396)
600 Westlake Avenue North
Seattle, Washington 98107
Washington State Department of Ecology Facility ID: 46445373
Washington State Department of Ecology Voluntary Cleanup Program No. NW1714
ATC PROJECT NO. Z076000073

1.0 INTRODUCTION AND REMEDIATION HISTORY

ATC Group Services LLC (ATC) has prepared this report on behalf of Phillips 66 Company (P66) to document the results of the soil vapor extraction (SVE) and air-sparge (AS) remediation system re-start activities, pulse operation (including operation and maintenance [O&M] activities), and winterization activities that occurred at former Phillips 66 Facility No. 255353 (AOC 1396) in the third and fourth quarters of 2016. The former facility address is 600 Westlake Avenue North, Seattle, Washington. P66 is conducting investigation, cleanup, and monitoring of the former P66 facility (located on the south half of City Block 37) and those properties on or around Block #37 bounded by Westlake Avenue North, Valley Street, Terry Avenue North, and Mercer Street (herein referenced as the Site). P66 is conducting the investigation, cleanup, and monitoring pursuant to a Settlement and Remedial Action Agreement (Settlement Agreement) among ConocoPhillips (now P66), Union Oil Company of California, City Investors XI, LLC (City Investors), and the City of Seattle (City) that was executed in April 2007.

The SVE system consists of two blowers that are capable of extracting soil vapors from a total of 36 vertical wells (19 in Mercer Street, 17 in Terry Avenue) and 16 horizontal wells (7 in Valley Street, 9 in Westlake Avenue). The AS system is capable of supplying compressed air to a total of 62 air sparge wells (27 in Mercer Street, 14 in Valley Street, 21 in Westlake Avenue). The SVE blowers discharge vapors to an offgas treatment system that uses granular activated carbon (GAC) to reduce air emissions to permitted levels (under Puget Sound Clean Air Agency [PSSCA] permit Registration No. 29548). Recovered water from the SVE moisture separators is also treated with GAC before discharging to the King County sewer system (under Discharge Authorization No. 4262-01, expiration: 6/30/2018). The SVE/AS system equipment summary and SVE/AS well identification are presented in **Table 1**.

The Site is shown relative to surrounding physical features in **Figure 1**. The current layout of the Site and locations of the SVE and AS wells are shown on **Figure 2**. The current layout of the SVE/AS system is shown on **Figure 3**.

2.0 SYSTEM RE-START AND SITE VISIT SUMMARY

Several site visits were conducted that included preparing the system for re-start, monitoring and optimizing its performance, and preparing it for shut-down and winterization. A summary of the site visits conducted between August 3, 2016 and December 30, 2016, is presented below:

System Repairs, A&OI Corrections and Re-Start Activities (August 3, 2016 through August 17, 2016)

Multiple visits were made to the site in order to perform the necessary repairs and maintenance to the SVE/AS system in preparation for system re-start and to ensure compliance with Phillips 66's internal asset and operating integrity program (A&OI). The following visits and tasks were completed during the period from August 3, 2016 through August 17, 2016.

August 3, 2016 – ATC performed initial maintenance and un-mothballing of the SVE/AS system including:

- Un-seized both SVE blowers by hand
- Performed oil changes and lubrication on both SVE blowers
- Attempted to un-seize the AS compressor unsuccessful
- Uncoupled AS compressor motor and removed compressor
- Pre-start system electrical connections/voltages were checked
- Valve positions on all equipment checked
- Trouble-shoot startup controls with manufacturer (Newterra), discovered blown fuses

The SVE blowers were successfully started in manual mode on August 3, 2016. However, the system could not be started in auto-mode, due to blown electrical fuses. The AS compressor was also seized, and could not be un-seized during the site visit. The AS compressor was uncoupled from the motor for off-site repair. The SVE/AS system was left off upon departure pending repair of the AS compressor and A&OI corrections.

<u>August 4, 2016</u> – ATC completed additional Phillips 66 A&OI corrections and repairs on the SVE/AS system including the following activities:

- Installed lockable ball valve to isolate residual energy (compressed air pressure) in the sparge manifold and wells from the compressor.
- Labeled all monitoring points, cleaned up and cleared compound of weeds.
- Continued trouble-shooting auto-mode startup controls with manufacturer.

The SVE/AS was left off upon departure pending repair of the AS compressor.

<u>August 5, 2016</u> – ATC delivered the AS compressor to Beckwith & Kuffel, in Seattle, Washington, for repairs. The SVE/AS remained off pending repair of the AS compressor and additional A&OI corrections.

<u>August 15, 2016</u> – ATC picked up the repaired AS compressor from Beckwith & Kuffel and re-coupled the compressor to the motor. ATC successfully re-started the AS compressor in manual-mode. The SVE/AS was left off upon departure pending additional A&OI corrections.

<u>August 16, 2016</u> – ATC completed the following A&OI corrections:

- Installed bleed valve on sparge manifold to release residual energy in the sparge manifold and wells.
- Installed additional signage, including "Authorized Personnel Only and Low Overhead."

• Installed additional caution reflective tape where necessary.

The SVE/AS was re-started and operated for approximately 8 hours in the auto-mode. The SVE/AS system was turned off upon departure pending additional A&OI corrections and permanent re-start.

<u>August 17, 2016</u> – ATC re-started the SVE/AS system in auto-mode and completed the following A&OI corrections:

- Removed dried residuals in settling tank
- Installed double block valves on vapor-phase carbon influent, intermediate and effluent sampling ports.

O&M:

A partial O&M event was conducted during the August 17, 2016 site visit. The following activities were conducted during the initial partial O&M event: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); and collected temperature and pressure data from the AS system. The SVE/AS system remained operating upon departure.

Routine O&M, Continued A&OI Corrections and Repairs (August 17, 2016 through November 22, 2016)

<u>August 18, 2016</u> – Upon arrival, the system was operating. ATC completed the following A&OI corrections:

- Installed brass piping tees on inlet of liquid-phase carbon vessels for pressure gauges
- Closed drain valves and filled liquid-phase carbon vessels with potable water
- Installed double block valves on liquid sampling ports
- Checked operation of sump pump
- Post-start plumbing and piping connections were checked for leaks.
- The system's emergency stop safety shutdown relays were tested.

O&M:

An O&M event was also conducted during the August 18 site visit. The following activities were conducted during the O&M event: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a photo-ionization detector (PID); Collected baseline PID readings from all SVE wells; Collected air flow measurements from select AS wells; Collected PSSCA compliance vapor samples from the influent, intermediate, and effluent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. The SVE/AS system remained operating upon departure.

August 22, 2016 - Upon arrival, the system was operating.

O&M:

During the August 22, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor

data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells; Collected air flow measurements from select AS wells; Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. The SVE/AS system remained operating upon departure.

<u>August 23, 2016</u> – Upon arrival, the system was operating. However, the air compressor motor for the air sparge system sounded louder than it did during the visit on August 22, and the relief valve was operating intermittently. The air sparge system was shut down during diagnosis. It was determined during the site visit that the AS system was operating correctly, however, the AS system was inadvertently left off upon departure.

August 29, 2016 - Upon arrival, the VE system was operating. The AS system was re-started.

0&M:

During the August 29, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801); collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells; Collected air flow measurements from select AS wells; Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. The SVE/AS system remained operating upon departure.

<u>September 19, 2016</u> – The SVE/AS system was not operating upon arrival. No notification was given by the system's remote Sensaphone® unit. The remote Sensaphone® unit was evaluated on-site and numerous attempts were made to re-start the system in auto-mode, but were unsuccessful. The system could only be re-started in manual mode. The system was not allowed to operate in manual-mode (as system fail safes and shutdowns would not function, potentially damaging system components) and the SVE/AS system remained off upon departure.

<u>September 26, 2016</u> – ATC reactivated the Sensaphone® telemetry unit service (by powering down and re-energizing the control panel). However, after reactivating the service, phone connection to the unit was still unavailable. ATC contacted Sensaphone® and determined that an upgrade from the existing Cell682 unit to a 3G cell modem was necessary. ATC ordered the upgrade unit for installation at a later date and left the SVE/AS system off upon departure.

October 5, 2016 - ATC completed the following repairs on the SVE/AS system:

- Energized control panel and trouble-shooted system re-start in auto-mode. ATC checked the solenoid fuses and breakers. It was determined sequence of pumps was not in automatic mode preventing the System to operate in auto mode.
- Replaced rotometer internals at the air sparge manifold for air sparge well AS-17 (W-17 located in Westlake Avenue) and installed a new rotometer for air sparge well V-2 (located in Valley Street).

During the October 5, 2016 site visit, it was determined that only the AS system would not continuously operate in auto-mode. Therefore, only the SVE system was re-started in auto-mode, and was operating upon departure. The AS system remained off upon departure for further repairs.

October 6, 2016 - Upon arrival, the SVE system was operating. ATC completed the following repairs on the AS system:

- Re-connected wires to solenoids for repaired rotameters and installed additional hose clamps to rotameter connections.
- Observed insufficient flow from settling tank to liquid-phase carbon units. Checked particle filters, verified filters in operable condition. Checked transfer pump determined transfer pump not operating per specification.
- Disconnected and removed transfer pump for off-site repair.

O&M:

An O&M event was also conducted during the October 6 site visit. The following activities were conducted during the O&M event: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801). Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a photo-ionization detector (PID); Collected PID readings from select SVE wells; Collected PSSCA compliance vapor samples from the influent, intermediate, and effluent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. Based on the post-August 17 O&M data, only the SVE system remained operating upon departure. The AS system remained off to evaluate influence on vapor extraction (if any) via the SVE system.

October 7, 2016 - Upon arrival, the SVE system was operating.

O&M:

During the October 7, 2016 site visit, the vacuum for blower B-801 was increased as vacuum gauge reading was zero (0). However, after increasing the vacuum, water was observed in the sight glass of several SVE wells. Therefore, the vacuum was reduced until water was no longer observed in the sight glass of the SVE wells. The AS system remained off upon departure to evaluate influence to hydrocarbon removal during the next O&M event.

October 12, 2016 - Upon arrival, the SVE system was operating. During the October 12, 2016 site visit, ATC re-installed the repaired transfer pump and tested the system. Also, ATC replaced the existing 682CELL modem with the upgrade unit (3G modem), re-started the system, and tested all components. The SVE system remained operating upon departure. The AS system remained off upon departure to evaluate influence to hydrocarbon removal during the next O&M event.

October 21, 2016 - Upon arrival, the SVE system was operating.

O&M:

During the October 21, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from both SVE systems (B-701 and B-801). Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells (adjusted valves to

45 degrees open); Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. The SVE blower B-801 was shut down upon departure. The SVE blower B-701 remained operating upon departure. The AS system (only the AS wells on Mercer Street) was re-started and remained operating upon departure to concentrate efforts to promote vapor extraction in that region.

<u>November 2, 2016</u> - Upon arrival, the SVE blower B-701 and the AS system for AS wells on Mercer Street were operating.

0&M:

During the November 2, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from SVE system B-701; collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells; Collected air flow measurements from select AS wells; Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. SVE system B-701 remained operating upon departure. The AS system for the AS wells on Mercer Street remained operating upon departure.

November 16, 2016 - Upon arrival, the SVE blower B-701 and the AS system for AS wells on Mercer Street were operating.

O&M:

During the November 16, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from SVE system B-701; collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a PID; Collected PID readings from select SVE wells; Collected air flow measurements from select AS wells; Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Insufficient groundwater was recovered during this O&M visit to collect compliance influent and effluent groundwater samples per DA-4262-01. SVE system B-701 remained operating upon departure. The AS system for the AS wells on Mercer Street remained operating upon departure.

<u>November 22, 2016</u> - Upon arrival, the SVE blower B-701 and the AS system for AS wells on Mercer Street were operating.

O&M:

During the November 22, 2016 site visit, the following O&M activities were conducted: recorded the totalizer reading and SVE/AS system hour meter readings; collected stack temperature, velocity and flowrate vapor data from the SVE system; collected vacuum, temperature and pressure data from SVE system B-701; collected temperature and pressure data from the AS system. Collected influent, intermediate and effluent petroleum vapor readings from the vapor sampling ports SVE system using a

PID; Collected PID readings from select SVE wells; Collected air flow measurements from select AS wells; Collected vapor samples from the influent vapor sampling ports utilizing Tedlar bags and submitted them to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method TO-15; Collected DA 4262-01 compliance groundwater samples from the influent and effluent water sampling ports and submitted them to PACE Analytical of Minneapolis, MN for analysis of gasoline-range hydrocarbons by Northwest Method MWTPH-Gx, BTEX by EPA Method 8260B, and Oil & Grease by EPA Method 1664.

Based on a pending required electrical power outage on Block 37, scheduled for December 10, 2016, and the near asymptotic conditions of the system, ATC shut the system down on November 22, 2016. The SVE/AS system was locked and tagged out of service.

3.0 DATA SUMMARY AND EVALUATION

Historical system performance data collected prior to the August 2016 system re-start activities is summarized in the following reports:

- Cardno, Remediation Progress Report, First Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, July 2, 2014.
- Cardno, Remediation Progress Report, Second Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, August 22, 2014.
- Cardno, Remediation Progress Report, Third Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, January 21, 2015.
- Cardno, Remediation Progress Report, Fourth Quarter 2014, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, February 19, 2015.
- Cardno, Remediation Progress Report, First Quarter 2015, Phillips 66 Facility 255353, 600 Westlake Avenue North, Seattle, Washington 98107, May 22, 2015.

Cumulative historical system operational and performance data collected prior to the August 2016 SVE/AS system re-start activities is provided in **Tables 1** through **5** of **Appendix A**.

RUNTIME EVALUATION: The cumulative runtimes for the AS and VE systems were 89% and 95%, respectively, during this period. System runtime summaries for the AS and the SVE system are provided in **Tables 2** and **3**, respectively. System downtime during this reporting period was attributed to PLC issues which prevented the AS system from running in "Auto" mode. The AS system was also turned off on August 23 to diagnose loud operation (and inadvertently not restarted) and in September to monitor the effectiveness of the VE system.

GROUNDWATER DEPTH TO WATER AND FLOW DIRECTION EVALUATION: Depths to groundwater measured on December 13, 14 and 16, 2016 (approximately 3 weeks after the system was shut down) ranged from 8.40 below ground surface (bgs) in monitor well MWR-5 to 15.25 feet bgs in monitor well MW-41. The inferred shallow groundwater flow direction is generally towards the north-northeast, at an average gradient of approximately 0.005 foot/foot. Historical groundwater data indicates that the predominant groundwater flow direction is toward the north-northeast (toward South Lake Union located approximately 500 feet north of the Site). The depths to water and groundwater flow direction are likely influenced by the presence of native soil and fill materials on and off-site and the presence of subsurface hydrogeologic barriers installed during the remedial excavation activities completed in 2008. The elevation of the water surface in south Lake Union may also influence the direction of the groundwater flow beneath the site. A summary of the groundwater conditions measured on December 13, 14 and 16, 2016 are summarized in ATC's *Groundwater Monitoring Report (Fourth Quarter 2016)*, dated February 23, 2017.

GROUNDWATER DISSOLVED CONCENTRATION EVALUATION: Laboratory analytical results for groundwater samples collected on December 13, 14 and 15, 2016 indicate that gasoline-range hydrocarbons, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) were either not detected or were detected at concentrations less than the MTCA Method A cleanup levels in all of the samples submitted for analysis, with the exception of gasoline-range hydrocarbons detected in the sample collected from MWR-5, benzene detected in the samples collected from MWR-13 and MWR-5, and ethylbenzene and total xylenes detected in the sample collected from MWR-5. These analytical results are generally similar to historical analytical results. Monitor well MW-45 could not be located during the December sampling event, and well MW-54 was inaccessible due to sludge encountered within the wells casing. A summary of the groundwater analytical results collected from the wells on December 13, 14 and 16, 2016 are summarized in ATC's *Groundwater Monitoring Report (Fourth Quarter 2016)*, dated February 23, 2017.

INCIDENTAL GROUNDWATER RECOVERY: The SVE/AS system recovered approximately 329 gallons of water during operation between August 17 and November 22, 2016. Influent and effluent compliance samples per King County DA 4262-01 were collected on November 16, 2016. Sample port locations are shown on **Figure 3**. The samples were submitted to PACE Analytical of Minneapolis, MN for analysis of total petroleum hydrocarbons as gasoline by Northwest Method MWTPH-Gx, BTEX by EPA Method 8260B, and Oil & Grease by EPA Method 1664. Total petroleum hydrocarbons as gasoline, BTEX and oil & grease were not detected above the laboratory's method reporting limits in any of the samples submitted for analysis, and all samples demonstrated compliance with DA 4261-01 limits. The analytical results and established discharge limits per DA 4262-01 are presented in **Table 4**. A copy of the analytical report is presented in **Appendix B**.

VAPOR AND OFFGAS ANALYTICAL AND TREATMENT EVALUATION: PSSCA compliance vapor samples were collected from the influent, intermediate, and effluent vapor sampling ports utilizing Tedlar bags on August 18 and October 6, 2016. Vapor sample port locations are shown on **Figure 3**. The samples were submitted to PACE Analytical of Minneapolis, MN for analysis of gasoline-range hydrocarbons and BTEX by EPA Method TO-15. Copies of the laboratory analytical reports of the vapor samples are provided in **Appendix B**. (Note: The PSCAA permit specifies vapor concentrations as TPH, while the analytical laboratory reports Method TO-15 results as Total Hydrocarbon Concentration as gasoline [THCg]. For reporting purposes, TPH and THCg are assumed to be equivalent).

The vapor analytical results, the PID screening results, and the corresponding mass recovery and emissions rates for each of the three vapor trains are summarized in **Tables 5**, **6** and **7**, respectively. The PSCAA permit specifies that a control efficiency of 97% must be demonstrated when total petroleum hydrocarbon (TPH) concentrations at the inlets to the granular activated carbon vessels are 200 ppmv or greater. As shown on **Tables 5**, **6** and **7**, TPH concentrations have never exceeded this threshold; therefore control efficiency is not reported.

As presented in **Tables 5**, **6**, and **7**, the average mass recovery rate for Trains 1, 2, and 3 during this period was 0.20 pound (lb)/day, 0.15 lb/day, and 0.11 lb/day, respectively. The total mass of hydrocarbons recovered in the vapor phase during this period at Trains 1, 2, and 3 were 23.35 lb, 15.61 and 12.9 lbs, respectively. The total mass of hydrocarbons recovered by the VE system was 51.86 lbs for this reporting period. The total cumulative mass of hydrocarbons recovered by the SVE system to date is 3,091 lbs.

SVE PID AND AS FLOW RATE DATA: SVE PID measurements and AS flow rate data for this reporting period are provided in **Tables 8** and **9**, respectively.

4.0 WINTERIZATION ACTIVITIES

On December 16, 2016, ATC visited the site to conduct winterization activities on the SVE/AS system. Upon arrival, the system remained off, and LO/TO was confirmed. During the visit, each SVE manifold valve was opened and the water from above the valve was allowed to drain back to the well and/or underground piping. All water conveyance piping and hoses were detached at the cam lock fittings. A portable leaf blower was used to blow any remaining water from each line. The three water transfer pumps were drained by removing the plug on both the top of the pump head and the bottom. The plugs were stored in the onsite construction box. The AS compressor was filled with vegetable oil to minimize moisture inside the compressor, thereby reducing the potential for the compressor lobes to rust and for the compressor and seize. The two liquid-phase carbon vessels were drained using the valve located on the bottom of each vessel. The sump pump was removed and transported back to the Seattle office for storage. On December 30, 2016, the two cartridge filter housings were removed with the aid of a strap wrench, and the filters were removed. The filters and housings were also stored in the onsite construction box. The remediation compound gate was secured and locked upon departure.

5.0 RECOMMENDATIONS

Groundwater analytical results do not indicate significant "improvement" during the 2016 pulse operation. However, the pulse event did appear to be semi-effective in recovering volatilized hydrocarbons from the subsurface, as evidenced by the TPH mass recovered by the VE system during this reporting period. The total TPH mass recovered during this reporting period (51.85 lbs) was over twice the total TPH mass recovered by the VE system during the previous operating period (21 lbs between January 1 through March 31, 2015). ATC recommends re-starting the SVE/AS system in the late second or early third quarter of 2017, with continued adjustments and balancing, in an effort to mitigate potential rebounding vapor concentrations. The SVE/AS system should be turned off at least one week prior to the following groundwater sampling event to allow groundwater to reach static conditions.

TABLES

TABLE 1 SVE/AS REMEDIATION SYSTEM SUMMARY

Startup Date: 8/17/2016 **Permits** Discharge of treated groundwater to King County sewer system under King County (e.g. NPDES, consumptive use) Disharge Authorization No. 4262-01, expires 6/30/2018. Discharge treated vapors to atmoshere under PSCCA permit Registration No. 29548. Soil Vapor Extraction 19 1-inch diameter vertical SVE wells to approximately 8 feet bgs, designated Mercer Street SVF Well ID's: MSVE-1 through MSVE-19 8 1-inch diameter horizontal SVE wells to approximately 8 feet bgs, designated Valley Street SVE Well ID's: VSVE-1 through VSVE-7, and VSVE-9 15 1-inch diameter vertical SVE wells (depths unknown), designated WA-1 through Terry Avenue North SVE Well ID's: WC-3, V-1 through V-9, TSVE-1 through TSVE-8, TSVE-10 through TSVE-12, TEFR-1 Air, TEFR-2 Air, TMW-48 Air, and TMW-65 Air 9 1-inch diameter horizontal SVE wells (depths unknown), designated Westlake Avenue North SVE Well ID's: WC1 through WC3, WB1 through WB3, and WA1 through WA3 Screen Interval Not specified Design Flow Rate Total =~ 200 CFM @ 22" Hg; Legs = 30 CFM @ 12" Hg Off Gas Treatment Vapor-Phase Granular Activated Carbon Other Water from SVE moisture separators treated with Liquid Phase Granular Activated Carbon. Air Sparging Mercer Street AS Well ID's: 27 1-inch diameter AS wells to approximately 21 feet bgs, designated MAS-1 through MAS-19 Valley Street AS Well ID's: 14 1-inch diameter AS wells to approximately 18 feet bgs, designated VAS-1 through VAS-14 Terry Avenue North AS Well ID's: No AS wells in Terry Avenue North Westlake Avenue North AS Well ID's: 21 1-inch diameter AS wells to approximately 25 feet bgs, designated AS-1 through AS-21 Not specified Screen Interval Design Flow Rate Not specified **Equipment & Specifications** (2) 10HP Sutorbuilt 5L-RHC Blower, Newterra Vapor Liquid Separator - VLW Series (i.e. tower, blower, flowmeter, With Goulds Transfer Pump pumps) Specify usage, type, mfg, (6) (2 in-Series) (3 Trains in Parallel)- 1000 lbs Siemens Vent-Scrub- Vaor Phase Adsorbers and design specifications. 220 Gallon Cylindrical Poly Tank with 1.5 HP Gould Transfer Pump (2) 1000 lbs. Siemens Aqua Scrub Liquid Phase Adsorbers (in Series) (1) Rietchle Rotary Claw Compressor 10 HP with American Industrial Heat Exchanger Custom - Newterra Control Panel Control panel Nema 4, 480 VAC, 3 phase 4 W, 100 amp service (Brand & List components) Surge Protection (MFG & Type) 600V Lightning Arrestor Square D 60"x 60"x 12" Double Door Encl with 3-Point Latch Telemetry (Mfg) Sensaphone Cell 682 Autodialer SYSTEM REPAIR HISTORY 8/3/2016 Restart of system, change oil and grease Blowers (B-701 & B-801), Sparge compressor shaft froze, remove for repair, blower operate in Manual Mode Install isolation valve from compressor to sparge manifold, troubleshoot startup issues 8/4/2016 8/15/2016 Install repaired sparge compressor (C-2201) startup ok. 10/6/2016 Remove Transfer pump (P-5501) for repair Install Transfer pump (P-5501) from repair. Pump startup ok. 10/12/2016 12/16/2016 Winterize pumps, blowers, compressor, carbon vessels, and associated piping.

TABLE 2: AIR SPARGING PERFORMANCE SUMMARY

Startup Date:

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)

Ecology Facility ID: 46445373

Ecology VCP No: NW1714

Process Status		
Code	Arrive	Depart
1	on	on
2	off	on
3	off	off
4	on	off

8/17/2016

			AS Con	npressor						
Site	Days	Days	Hour	Daily	Hours of	Total Hours	Approved	Percent	Percent	Process
Visit	Between	Since	Meter	Designed Run	Operation	of Operation	Down Time	Run Time	Run Time	Status
Date	Site Visits	Startup	Reading	Time (hours)	Period	Cumulative	(hours) ¹	(period)	(cumulative)	Status
08/17/16	0	0	10,372	24	0.0	0	Start Up	Start Up	Start Up	2
08/18/16	1	1	10,393	24	21.0	21.0	0	88%	88%	1
08/22/16	4	5	10,489	24	96.0	117.0	0	100%	98%	1
08/23/16	1	6	10,514	24	25.0	142.0	0	104%	99%	4
08/29/16	6	12	10,514	24	25.0	142.0	0	17%	49%	2
09/19/16	21	33	10,919	24	405.0	547.0	0	80%	69%	3
09/26/16	7	40	10,919	24	0.0	547.0	168	100%	74%	3
10/05/16	9	49	10,919	24	0.0	547.0	216	100%	79%	3
10/06/16	1	50	10,919	24	0.0	547.0	24	100%	80%	3
10/07/16	1	51	NM	24			24			3
10/12/16	5	56	NM	24			120			3
10/21/16	9	65	10,919	24	0.0	547.0	216	100%	84%	2
11/02/16	12	77	11,204	24	285.0	832.0	0	99%	87%	1
11/16/16	14	91	11,544	24	340.0	1172.0	0	100%	89%	1
11/22/16	6	97	11,684	24	140.0	1312.0	0	97%	89%	4
·										1

Notes:

^{1.} AS system was turned off on August 23 due to noisy compressor and relief valve and in September to evaluate the influence of the SVE system.

TABLE 3: SOIL VAPOR EXTRACTION PERFORMANCE SUMMARY

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)

Startup Date: 8/17/2016

 Status Code
 Arrive
 Depart

 1
 on
 on

 2
 off
 on

 3
 off
 off

on

off

Process

4

Ecology Facility ID#: 46445373
Ecology VCP No: NW1714

Standard Temp = 80 °F Standard Pressure = 14.7

				System	System	System	Corrected			SV	E Blower B-7	01					S	VE Blower B-	301		
Site	Days	Days		Vacuum	Velocity	Flow Rate	System	Hour	Hours of	Total Hrs	Approved	Percent	Percent	_	Hour	Hours of	Total Hrs	Approved	Percent	Percent	
Visit	Between	Since	Totalizer	(manifold)			Flow Rate	Meter	Operation	Operation	Down Time	Run Time	Run Time	Process	Meter	Operation	Operation	Down Time	Run Time	Run Time	Process
Date	Site Visits	Startup	(gallons)	"wc	(ft/min)	acfm	scfm	Reading	Period	Cumulative	(hours)	(period)	(cumulative)	Status	Reading	Period	Cumulative	(hours)	(period)	(cumulative)	Status
08/17/16	0	0	82,300	5	1,829	90	76	10,238	0	0		0%	0%	2	9380		0		0%	0%	3
08/18/16	1	1	82,300	5	3,708	182	153	10,258	20.0	20.0		83%	100%	1	9401	21.0	21.0		88%	100%	2
08/22/16	4	5	82,300	5	4,048	199	167	10,354	96.0	116.0		100%	97%	1	9497	96.0	117.0		100%	98%	1
08/29/16	7	12	82,300	5	4,056	199	167	10,522	168.0	284.0		100%	99%	1	9664	167.0	284.0		99%	99%	2
09/19/16	21	33	82,300	NM	NM	NM	NM	10,929	407.0	691.0		81%	87%	3	10071	407.0	691.0		81%	87%	2
09/26/16	7	40	82,300	NM	NM	NM	NM	10,929	0.0	691.0	168	100%	89%	3	10071	0.0	691.0	168	100%	89%	1
10/05/16	9	49	82,300	NM	NM	NM	NM	10,929	0.0	691.0	216	100%	91%	2	10071	0.0	691.0	216	100%	91%	1
10/06/16	1	50	82,300	18	4,501	221	180	10,949	20.0	711.0		83%	91%	1	10092	21.0	712.0		88%	91%	1
10/07/16	1	51	82,300	NM	NM	NM	NM	NM						1	NM						1
10/12/16	5	56	82,300	NM	NM	NM	NM	NM						1	NM						1
10/21/16	9	65	82,372	34	3,359	165	129	11,310	361.0	1,072.0		100%	93%	1	10453	361.0	1,073.0		100%	93%	4
11/02/16	12	77	82,422	20	2,045	100	81	11,597	287.0	1,359.0		100%	94%	1	10454	1.0	1,074.0	288	100%	94%	3
11/16/16	14	91	82,629	20	2,561	126	102	11,936	339.0	1,698.0		100%	95%	1	10454	0.0	1,074.0	336	100%	95%	3
11/22/16	6	97	82,629	22	NM	NM	NM	12,076	140.0	1,838.0		97%	95%	4	10454	0.0	1,074.0	144	100%	96%	3

NM = Not Measured

cfm = ft^3/min = velocity [ft/min] x pipe area $[\pi r^2]$; pipe size = 3 inch diameter scfm = acfm X ((Pst-P^g)/Pst)x(Tst/(Tst+T^{act})

TABLE 4: LIQUID PHASE ANALYTICAL SUMMARY

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)

Facility Address: 600 Westlake Avenue North, Seattle, WA

Ecology Facility ID#: 46445373
Ecology VCP No: NW1714

Sample Location	Sample ID	Date	Benzene	Toluene	Ethyl benzene	Total Xylenes	ТРН	Oil & Grease
W-INF-WS1	W-INF-WS1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	NS
W-OUT-WC1	W-OUT-WS1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	NS
W-DSCHG	W-DSCHG-1	11/16/16	< 1.0	< 1.0	< 1.0	< 3.0	< 100	< 5,100
W-DSCHG	W-DSCHG-2	11/16/16	NS	NS	NS	NS	NS	< 5,100
W-DSCHG	W-DSCHG-3	11/16/16	NS	NS	NS	NS	NS	< 5,100
KCIW Permit Limits			70	1,400	1,700	2,200	NE	100,000

Notes:

All results reported in micrograms per liter (µg/L).

There are a total of two liquid phase carbon units plumbed in series to treat water. Sample W-INF-WS1 was collected from a sample port located prior to the first liquid phase carbon unit. Sample W-OUT-WC1 was collected from a sample port located between the first and second liquid phase carbon units. Samples W-DSCHG-1, W-DSCHG-2 and W-DSCHG-3 were collected in succession 5 minutes apart from the sample port located after the second (and final) liquid phase carbon unit. The sample port locations are shown on Figure 3.

Permit Limits Established in King County Industrial Waste (KCIW) Discharge Authorization No. 4262-01 (expires 6/30/2018).

NS=Not Sampled

NE=Not Established

TABLE 5: SVE ANALYTICAL SUMMARY Vapor Train No. 1

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)
Facility Address: 600 Westlake Avenue North, Seattle, WA

Ecology Facility ID#: 46445373
Ecology VCP No: NW1714

If Non-Detect Use MDL "U" Not Sampled = NS Analytical Results = μg/m³

												THCg1	Recovery Rate (Influent)/ Emission Rate (Effluent) ²	Cumulative Mass Recovered /
Sample Location	Sample ID	Date	Hour Meter	Flow Rate (scfm)	PID (ppm)	Benzene	Toluene	Ethyl benzene	Total Xylenes	Total VOCs	THCg (ug/m³)	(ppmv)	(Effluent) Rate (lb/day)	Discharged ³ (lbs)
	Inf-1	08/17/16	10,238	75.5	NM					Not Sampled				
	Inf-1	08/18/16	10,258	153.1	14.2	13.1 U	31.1 U	35.6 U	J 107.0 U	186.8	8,070	1.91	0.11	0.09
	Inf-1	08/22/16	10,354	167.1	NM	1.4 U	6.7	1.8 U	9.3	19.2	3,750	0.89	0.06	0.32
	Inf-1	08/29/16	10,522	167.4	NM	26.20 U	57.8	35.6 U	107.0 U	226.6	15,100	3.58	0.23	1.91
	Not Sampled	09/19/16	NM	NM	NM					Not Sampled				
	Not Sampled	09/26/16	NM	NM	NM					Not Sampled				
V-INF-1	Not Sampled	10/05/16	NM	NM	NM					Not Sampled				
	Inf-1	10/06/16	10,949	179.8	NM	51.90	130.00	34.1 U	220.00	436.0	68,600	16.24	1.11	21.63
	Not Sampled	10/07/16	NM	NM	NM					Not Sampled				
	Not Sampled	10/12/16	NM	NM	NM					Not Sampled				
	Inf-1	10/21/16	11,310	128.7	NM	1.4	55.0	1.8 U	J 5.4 U	63.6	5,550	1.31	0.06	22.59
	Inf-1	11/02/16	11,597	81.3	NM	14.9 U	35.3 U	40.3 U	121.0 U	211.5	5,120	1.21	0.04	23.04
	Inf-1	11/16/16	11,936	101.8	NM	0.82 U	8.7	2.2 U	8.7	20.4	1,740	0.41	0.02	23.26
	Inf-1	11/22/16	12,076	NM	NM	3.4 U	16.7	9.2 U	31.3	60.6	1,670	0.40	0.02	23.35
	Not Sampled	08/17/16	10,238	75.5	NM					Not Sampled				
	Int -1	08/18/16	10,258	153.1	14.2	18.2 U	153.0	49.3 U	148.0 U	368.5	3,990 U	0.94	0.05	NA
	Not Sampled	08/22/16	10,354	167.1	NM					Not Sampled				
	Not Sampled	08/29/16	10,522	167.4	NM					Not Sampled				
	Not Sampled	09/19/16	NM	NM	NM					Not Sampled				
	Not Sampled	09/26/16	NM	NM	NM					Not Sampled				
V-INT-1	Not Sampled	10/05/16	NM	NM	NM					Not Sampled				
	Int -1	10/06/16	10,949	179.8	NM	19.9	192.0	34.1 U	103.0 U	349.0	35,400	8.38	0.57	NA
	Not Sampled	10/07/16	NM	NM	NM					Not Sampled				
	Not Sampled	10/12/16	NM	NM	NM					Not Sampled				
	Not Sampled	10/21/16	11,310	128.7	NM					Not Sampled				
	Not Sampled	11/02/16	11597	81.3 101.8	NM NM					Not Sampled				
	Not Sampled	11/16/16	11,936							Not Sampled				
	Not Sampled	11/22/16	12,076	NM	NM					Not Sampled				
	Not Sampled	08/17/16	10,238	75.5	NM					Not Sampled			1	
	Eff-1	08/18/16	10,258	153.1	14.2	12.6 U	29.9	34.1 U	103.0 U	179.6	2,760 U	0.65	0.04	0.03
	Not Sampled	08/22/16	10,354	167.1	NM					Not Sampled				
	Not Sampled	08/29/16 09/19/16	10,522 NM	167.4 NM	NM NM					Not Sampled Not Sampled				
	Not Sampled	09/19/16	NM NM	NM	NM									
	Not Sampled Not Sampled	10/05/16	NM NM	NM NM	NM NM	-				Not Sampled Not Sampled				
V-DSCHG-1	Eff-1	10/05/16	10,949	179.8	NM	16.2	133.0	35.6 U	J 107.0 U	291.8	17,700	4.19	0.29	8.26
	Not Sampled	10/00/16	NM	NM	NM	10.2	133.0	33.0	107.0	Not Sampled	17,700	7.13	0.23	0.20
	Not Sampled	10/07/10	NM	NM	NM	1				Not Sampled				
	Not Sampled	10/12/16	11,310	128.7	NM	1				Not Sampled				
	Not Sampled	11/02/16	11597	81.3	NM	İ				Not Sampled				
	Not Sampled	11/16/16	11,936	101.8	NM					Not Sampled				
	Not Sampled	11/22/16	12,076	NM	NM					Not Sampled				
PSCAA Threshold Concentra					•							200		
Notes:														

Notes:

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-1, Int-1 and Eff-1 were collected from sample ports associated with the first train of vapor phase carbon units. The influent sample ports of reach train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes)

U = Analyte not detected above the referenced laboratory method reporting limit.

1. THCg ppmv = THC (ug/m³)/42.23 (conversion factor for molar volume @ STP)/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when

the TPH (THC) influent concentration is greater than or equal to 200 ppmv. None of the THCg concentrations exceed 200 ppmv.

- 3. Cumulative Mass Recovered/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, lbs. per day) x Flow Rate [sft^3/min] previous Flow Rate [sft^3/min] ÷ 24 hours + previous calculated Cumulative Mass

Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the

text of the report also includes the total mass of hydrocarbons recovered from Trains 2 and 3.

TABLE 6: SVE ANALYTICAL SUMMARY Vapor Train No. 2

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396) **Facility Address:** 600 Westlake Avenue North, Seattle, WA

Ecology Facility ID#: 46445373 If Non-Detect Use MDL "U" Not Sampled = NS Analytical Results = µg/m3

Ecology VCP No: NW1714

Sample Location	Sample ID	Date	Hour Meter	Flow Rate (scfm)	PID (ppm)	Benzene	Toluene	Ethyl benze	ene	Total Xylenes	Total VOCs	THCg (ug/m³)	THCg ¹ (ppmv)	Recovery Rate (Influent)/ Emission Rate (Effluent) ² Rate (Ib/day)	Cumulative Mass Recovered / Discharged ³ (lbs)		
	Inf-2	08/17/16	10.238	75.5	NM			1-1			Not Sampled		, 41	, , , , , , , , , , , , , , , , , , , ,	, ,		
	Inf-2	08/18/16	10,258	153.1	14.2	11.7 U	27.7 L	31.7	U	95.4	U 166.5	3,900	0.92	0.05	0.04		
	Inf-2	08/22/16	10,354	167.1	NM	1.3	5.6	1.5	U	7.3	15.7	3,420	0.81	0.05	0.25		
	Inf-2	08/29/16	10,522	167.4	NM	26.20 U	60.4	35.6	U	107.0	U 229.2	19,700	4.66	0.30	2.32		
	Not Sampled	09/19/16	NM	NM	NM						Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM						Not Sampled						
V-INF-2	Not Sampled	10/05/16	NM	NM	NM						Not Sampled						
V IIVI 2	Inf-2	10/06/16	10,949	179.8	NM	48.70	185.00	32.9	U	181.00	447.6	42,100	9.97	0.68	14.43		
	Not Sampled	10/07/16	NM	NM	NM	A 48.70 185.00 32.9 U 181.00 447.6 42,100 9.97 0.68 A Not Sampled A Not Sampled A 1.3 146.0 7.2 34.6 189.1 2,510 0.59 0.03 A 14.9 U 35.3 U 40.3 U 121.0 U 211.5 4,750 U 1.12 0.03											
	Not Sampled	10/12/16	NM	NM	NM						Not Sampled						
	Inf-2	10/21/16	11,310	128.7	NM	1.3	146.0	7.2		34.6	189.1	2,510	0.59	0.03	14.86		
	Inf-2	11/02/16	11,597	81.3	NM				U						15.28		
	Inf-2	11/16/16	11,936	101.8	NM				U						15.53		
	Inf-2	11/22/16	12,076	NM	NM	1.5	16.9	3.6	Ш	24.4	46.4	1,520	0.36	0.01	15.61		
	Not Sampled	08/17/16	10,238	75.5	NM						Not Sampled		,				
	Int -2	08/18/16	10,258	153.1	14.2	13.6 U	32.3	37.0	U	111.0	U 193.9	2,990	0.71	0.04	NA		
	Not Sampled	08/22/16	10,354	167.1	NM						Not Sampled						
	Not Sampled	08/29/16	10,522	167.4	NM						Not Sampled						
	Not Sampled	09/19/16	NM	NM	NM						Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM						Not Sampled						
V-INT-2	Not Sampled	10/05/16	NM	NM	NM						Not Sampled						
V-11V1 - Z	Int -2	10/06/16	10,949	179.8	NM	20.7	145.0	35.6	U	107.0	U 308.3	24,500	5.80	0.40	NA		
	Not Sampled	10/07/16	NM	NM	NM						Not Sampled						
	Not Sampled	10/12/16	NM	NM	NM						Not Sampled						
	Not Sampled	10/21/16	11,310	128.7	NM						Not Sampled						
	Not Sampled	11/02/16	11597	81.3	NM						Not Sampled						
	Not Sampled	11/16/16	11,936	101.8	NM						Not Sampled						
	Not Sampled	11/22/16	12,076	NM	NM						Not Sampled						
	Not Sampled	08/17/16	10,238	75.5	NM						Not Sampled						
	Eff-2	08/18/16	10,258	153.1	14.2	12.2 U	28.8	32.9	U	99.1	U 173.0		0.63	0.04	0.03		
	Not Sampled	08/22/16	10,354	167.1	NM			•			Not Sampled			•	•		
	Not Sampled	08/29/16	10,522	167.4	NM						Not Sampled						
	Not Sampled	09/19/16	NM	NM	NM						Not Sampled						
	Not Sampled	09/26/16	NM	NM	NM						Not Sampled						
	Not Sampled	10/05/16	NM	NM	NM						Not Sampled						
V-DSCHG-2	Eff-2	10/06/16	10,949	179.8	NM	21.6	155.0	38.5	U	116.0	U 331.1	20,900	4.95	0.34	9.75		
	Not Sampled	10/07/16	NM	NM	NM	<u>'</u>		•			Not Sampled			•	•		
	Not Sampled	10/12/16	NM	NM	NM						Not Sampled						
	Not Sampled	10/21/16	11,310	128.7	NM						Not Sampled						
	Not Sampled	11/02/16	11,310	81.3	NM						Not Sampled						
	Not Sampled		11.936	101.8													
	Not Sampled	11/16/16 11/22/16	12,076	101.8 NM	NM NM						Not Sampled Not Sampled						
PSCAA Threshold Concentrat	<u> </u>	11/22/10	12,076	IVIVI	IVIVI	L					ivot sampled		200				
Notes:	uon												200				

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-2, Int-2 and Eff-2 were collected from sample ports associated with the second train of vapor phase carbon units. The influent sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes)

- U = Analyte not detected above the referenced laboratory method reporting limit.
- 1. THCg ppmv = THC (ug/m³)/42.23 (conversion factor for molar volume @ STP)/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when

the TPH (THC) influent concentration is greater than or equal to 200 ppmv. None of the THCg concentrations exceed 200 ppmv

- $2. \ Recovery/Emission \ Rate \ [lb/day] = Conc \ [ug/m^3] \ x \ Flow \ Rate \ [sft^3/min] \ x \ (1m^3/35.3ft^3) \ x \ (1g/1,000000 \ ug) \ x \ (1b/454 \ g) \ x \ (1440 \ min/day) \ x \ (1m^3/35.3ft^3) \ x \ (1m^3/35.3$
- 3. Cumulative Mass Recovered/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, lbs. per day) x Flow Rate [sft^3/min] previous Flow Rate [sft^3/min] ÷ 24 hours + previous calculated Cumulative Mass

Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the text of the report also includes the total mass of hydrocarbons recovered from Trains 1 and 3.

TABLE 7: SVE ANALYTICAL SUMMARY Vapor Train No. 3

Facility Name: Former Phillips 66 Facility No. 255353 (AOC 1396)
Facility Address: 600 Westlake Avenue North, Seattle, WA
Ecology Facility ID#: 46445373

If Non-Detect Use MDL "U" Not Sampled = NS Analytical Results = µg/m³

Ecology VCP No: NW1714

														Recovery Rate (Influent)/ Emission Rate	Cumulative Mass Recovered /
Sample Location	Sample ID	Date	Hour Meter	Flow Rate (scfm)	PID (ppm)	Benzene	Toluene	Ethyl henzene	Total Xylenes	Total VOCs	THCg (ug/i	m³)	THCg ¹ (ppmv)	(Effluent) ² Rate (lb/day)	Discharged ³ (lbs)
Location	Inf-3	08/17/16	10,238	75.5	NM	Denzene	Totache	Ediyi Benzene	Total Aylenes	Not Sampled	THE (US)	,	(PP)	nate (ib) auy)	(183)
	Inf-3	08/18/16	10,258	153.1	14.2	14.2 U	33.7 U	38.5 L	116.0	U 202.4	3,120		0.74	0.04	0.04
	Inf-3	08/22/16	10,354	167.1	NM	1.1 U	5.2	1.5 U	7.0	14.8	3,170		0.75	0.05	0.23
	Inf-3	08/29/16	10,522	167.4	NM	26.20 U	80.6	35.6 L	148.0	290.4	2,880	U	0.68	0.04	0.53
	Not Sampled	09/19/16	NM	NM	NM					Not Sampled					
	Not Sampled	09/26/16	NM	NM	NM					Not Sampled					
V-INF-3	Not Sampled	10/05/16	NM	NM	NM					Not Sampled					
	Inf-3	10/06/16	10,949	179.8	NM	51.00	154.00	35.6 L	176.00	416.6	39,600		9.38	0.64	11.91
	Not Sampled	10/07/16	NM	NM	NM					Not Sampled					
	Not Sampled	10/12/16	NM	NM	NM					Not Sampled					
	Inf-3	10/21/16	11,310	128.7	NM	1.9	7.7	3.0	18.3	30.9	1,500	Ш	0.36	0.02	12.17
	Inf-3	11/02/16	11,597	81.3	NM	16.4 U	38.8 U	44.4 L	134.0	U 233.6	5,230	U	1.24	0.04	12.63
	Inf-3	11/16/16	11,936	101.8	NM	0.78 U	6.7	2.1 U	10.8	20.4	1,680	+	0.40	0.02	12.85
	Inf-3	11/22/16	12,076	NM	NM	1.4	11.1	3.1	20.7	36.3	943		0.22	0.01	12.90
	Not Sampled	08/17/16	10,238	75.5	NM	40.5				Not Sampled	0.750		0.05		
	Int -3	08/18/16	10,258	153.1	14.2	12.6 U	29.9	34.1 L	103.0	U 179.6	2,760	U	0.65	0.04	NA
	Not Sampled	08/22/16	10,354	167.1	NM					Not Sampled					
	Not Sampled	08/29/16	10,522	167.4	NM					Not Sampled					
	Not Sampled	09/19/16	NM	NM	NM					Not Sampled					
	Not Sampled	09/26/16	NM	NM	NM					Not Sampled					
V-INT-3	Not Sampled	10/05/16	NM	NM	NM	1				Not Sampled				1	1
	Int -3	10/06/16	10,949	179.8	NM	68.8	304.0	44.2	215.0	632.0	33,400		7.91	0.54	NA
	Not Sampled	10/07/16	NM	NM	NM					Not Sampled					
	Not Sampled	10/12/16	NM	NM	NM					Not Sampled					
	Not Sampled	10/21/16	11,310	128.7	NM					Not Sampled					
	Not Sampled	11/02/16	11597	81.3	NM					Not Sampled					
	Not Sampled	11/16/16	11,936	101.8	NM					Not Sampled					
	Not Sampled	11/22/16	12,076	NM	NM					Not Sampled					
	Not Sampled	08/17/16	10,238	75.5	NM					Not Sampled					
	Eff-3	08/18/16	10,258	153.1	14.2	13.1 U	31.1	35.6 L	107.0	U 186.8	2,880	U	0.68	0.04	0.03
	Not Sampled	08/22/16	10,354	167.1	NM					Not Sampled					
	Not Sampled	08/29/16	10,522	167.4	NM					Not Sampled					
	Not Sampled	09/19/16	NM	NM	NM					Not Sampled	-				
	Not Sampled	09/26/16	NM	NM	NM					Not Sampled					
V DCC::2 2	Not Sampled	10/05/16	NM	NM	NM					Not Sampled					
V-DSCHG-3	Eff-3	10/06/16	10,949	179.8	NM			Not Analyzed	Due to Insuffice	nt Sample Volur	me Upon Rece	eipt at	t Laboratory		
	Not Sampled	10/07/16	NM	NM	NM		<u> </u>			Not Sampled					
	Not Sampled	10/12/16	NM	NM	NM					Not Sampled					
	Not Sampled	10/21/16	11,310	128.7	NM					Not Sampled					
	Not Sampled	11/02/16	11597	81.3	NM					Not Sampled					
	Not Sampled	11/16/16	11,936	101.8	NM					Not Sampled					
	Not Sampled	11/22/16	12,076	NM	NM					Not Sampled					
SCAA Threshold Concentra		11,22,10	12,0.0			·				st sampled			200		
lotes:	2												200		

Note

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples Inf-3, Int-3 and Eff-3 were collected from sample ports associated with the third train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 3.

VOCs = Volatile Organic Compounds (Benzene, Toluene, Ethylbenzene and Total Xylenes)

U = Analyte not detected above the referenced laboratory method reporting limit.

- 1. THCg ppmv = THCg (ug/m³)/42.23 (conversion factor for molar volume @ STP)/M (molucular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when the TPH (THC) influent concentration is greater than or equal to 200 ppmv. None of the THCg concentrations exceed 200 ppmv.
- 2. Recovery/Emission Rate [lb/day] = Conc [ug/m^3] x Flow Rate [sft^3/min] x (1m^3/35.3ft^3) x (1g/1,000000 ug) x (1lb/454 g) x (1440 min/day)
- 3. Cumulative Mass Recovered/Discharged [lb/day] = Recovery/Discharge Rate (Influent or Effluent, lbs. per day) x Flow Rate [sft^3/min] previous Flow Rate [sft^3/min] ÷ 24 hours + previous calculated Cumulative Mass Recovered/Discharged. Influent measurements were used to determine the total mass of hydrocarbons recovered in the vapor phase from Train 1. Total Mass of hydrocarbons recovered by the System as reported in the text of the report also includes the total mass of hydrocarbons recovered from Trains 1 and 2.

Table 8 SVE PID Data Summary Phillips 66 Facility #255353 (AOC 1396)

Date			Westla	ke Avenue S	SVE Wells - F	PID Readings	s (ppm)		
Date	WC1	WC2	WC3	WB3	WB2	WB1	WA3	WA2	WA1
08/18/16	6.4	0.0	0.1	0.0	10.6	0.0	0.3	0.0	0.0
08/22/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
08/29/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
10/06/16	Closed	Closed	Closed	Closed	1.3	Closed	Closed	Closed	Closed
10/21/2016 ¹	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/22/2016 ²	0	0	0	0.4	0	0.1	0.1	0	0

Doto			Valley Stre	et SVE Well	s - PID Read	lings (ppm)		
Date	V1	V2	V3	V4	V5	V6	V7	V9
08/18/16	0.6	0.2	1.7	0.2	1.3	0.5	0.4	0.9
08/22/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
08/29/16	Closed	Closed	Closed	Closed	0.5	Closed	Closed	0.7
10/06/16	1.1	0.1	0.1	0.1	0.1	1.4	0	0.5
10/21/2016 ¹	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/22/2016 ²	0	0	0.1	0.2	0	0	0	0.1

Date								Merc	er Street SV	E Wells - PI	Readings ((ppm)							
Date	M1	M2	М3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19
08/18/16	44.6	45.3	10.3	1.4	21	29.2	7.3	8.7	32.9	42.6	29.2	67.9	4.3	3.5	6.8	8.4	22.1	57.2	6.1
08/22/16	0.1	3.1	3.1	Closed	0	15.4	Closed	Closed	0.6	0.2	2.1	7.3	Closed	Closed	Closed	Closed	0.6	0.6	Closed
08/29/16	Closed	Closed	Closed	Closed	Closed	3.3	Closed	0.8	Closed	Closed	0.5	5.5	Closed	Closed	Closed	Closed	0.1	0.1	Closed
10/06/16	0.7	1.7	0.5	3	0.2	0.5	1	0.5	0.9	0	1.7	2.8	1.6	0.6	0.8	0.1	0.2	0.4	0.1
10/21/2016 ¹	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.1	Closed	Closed	Closed	0.1	Closed	Closed
11/02/16	0	0	0	0	0	0.1	0.1	0	0.2	0.1	0	0	0	Closed	Closed	Closed	0	Closed	Closed
11/16/16	0	0	0	0	0	0.1	0	0	0	0.1	0	0	0	Closed	Closed	Closed	0	Closed	Closed
11/22/2016 ²	0	0	0	0	0.1	0	0	1.4	1.9	0	0	0	0	0	0.2	0.1	0	0.1	0

Date						Terry	Avenue SV	E Wells - PI) Readings (ppm)					
Date	TSVE1	TSVE2	TSVE3	TSVE4	TSVE5	TSVE6	TSVE7	TSVE8	MW-65	MW-66	MW-67	MW-68	TEFR1-Air	TEFR2-Air	TMW48-Air
08/18/16	0.3	1.2	3.8	0.7	0.2	0.6	0.3	0.2	0.2	1.7	0.4	0.3	0.0	0.2	0.1
08/22/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0	Closed	Closed	Closed	Closed	Closed
08/29/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	0	Closed	Closed	Closed	Closed	Closed
10/06/16	0.1	0	0	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0	0.1	0	0.1	0.1
10/21/2016 ¹	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.1	0.1	0.1
11/02/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/16/16	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
11/22/2016 ²	0.1	0.1	0	0	0.1	0	0	0.2	0.1	0	0	0	0	0.3	0.1

Notes

1. All SVE wells were adjusted to 45 degrees open

2. All SVE wells were re-opened 100 percent

SVE = Soil Vapor Extraction

PID = Photo Ionization Detector

ppm = parts per million

Table 9 AS Flow Data Summary Phillips 66 Facility #255353 (AOC 1396)

Date									Westlake	Avenue AS	Wells - Flow	Rate Readir	ngs (scfm)								
Date	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	W-11	W-12	W-13	W-14	W-15	W-16	W-17	W-18	W-19	W-20	W-21
08/18/16	+25 ¹	4	4	1	2	5	4	5	5	3	2	4	2	4	3	4	Damaged ²	4	4	6	6
08/22/16	+25 ¹	2	2	1	2	+25 ¹	3	3	3	2	1	2	NM	2	1	2	Damaged ²	2	2	2	3
08/29/16	+25 ¹	2	2	1	1	+25 ¹	4	2	1	1	2	2	NM	2	1	2	Damaged ²	3	2	2	2
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
10/21/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/02/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/16/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/22/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

Date		Valley Street AS Wells - Flow Rate Readings (scfm)													
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	
08/18/16	2	Damaged ²	6	12	5	3	8	5	4	2	8	2	6	6	
08/22/16	2	Damaged ²	5	8	4	2	4	3	2	2	6	4	6	4	
08/29/16	2	Damaged ²	3	+25 ¹	2	1	2	2	2	2	6	2	8	4	
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	
10/21/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	
11/02/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	
11/16/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	
11/22/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	

Date		Mercer Street AS Wells - Flow Rate Readings (scfm)																									
Date	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27
08/18/16	16	+25 ¹	6	10	8	10	8	10	+25 ¹	8	6	8	6	9	6	6	18	8	6	13	3	10	4	8	15	+25	4
08/22/16	14	+25 ¹	8	8	8	12	8	8	+25 ¹	6	4	11	6	8	8	4	18	6	8	+25 ¹	2	8	2	6	16	+25 ¹	2
08/29/16	12	+25 ¹	8	10	10	12	6	10	+25 ¹	6	4	10	8	8	6	4	16	6	6	+25 ¹	2	8	2	6	15	+25 ¹	2
10/06/16	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
10/21/16	14	+25 ¹	10	+25	10	15	7	15	+25 ¹	12	10	10	8	8	8	6	18	8	6	+25 ¹	4	10	2	8	15	+25 ¹	4
11/02/16	12	+25 ¹	12	10	12	14	12	12	+25 ¹	10	+25 ¹	8	8	10	6	6	12	4	4	+25 ¹	3	8	4	6	12	+25 ¹	2
11/16/16	14	+25 ¹	8	12	12	14	10	12	+25 ¹	8	6	6	6	8	6	4	16	6	4	+25 ¹	2	6	4	4	12	+25 ¹	4
11/22/16	12	+251	8	10	+25 ¹	12	15	11	+25 ¹	8	4	8	6	10	6	6	12	4	4	+25 ¹	2	8	2	4	12	+25 ¹	2

Notes:

AS = Air Sparge

SCFM = Standard Cubic Feet per Minute

NM - Not Measured

OL = Off Line

1. Rotometer pegged at 25 scfm (not accurate reading - rotometer likely "stuck").

2. Rotometers were repaired/replaced on October 5, 2016.

FIGURES

SITE VICINITY MAP

PHILLIPS 66 FACILITY NO. 255353 (AOC 1396) 600 WESTLAKE AVENUE N SEATTLE, WA

PROJECT NUMBER:	Z076000073	DATE: 5/3/17	FIGURE
APPROVED BY:	KS	DRAWN BY: BK	1

6347 Seaview Avenue NW Seattle, Washington 98107 Ph: (206) 781-1449 Fax: (206) 781-1543

NOTES

LOCATIONS OF SITE FEATURES CONSTRUCTED FOR THE P-66
REMEDIATION SYSTEM (REMEDIATION COMPOUND, ON-SITE TRENCHES,
TERRY AVE. TRENCH EXTENSION) HAVE NOT BEEN SURVEYED AND ARE
APPROXIMATE.

2. LOCATIONS OF ALL OTHER SITE AND AREA FEATURES ARE BASED ON PLANS SUPPLIED BY SDOT, AND HAVE NOT BEEN VERIFIED BY THE PROJECT FINGINFER

SITE LAYOUT DIAGRAM

PHILLIPS 66 FACILITY NO. 255353 600 WESTLAKE AVENUE NORTH SEATTLE, WA PROJECT NUMBER: Z076000073

APPROVED BY: KS

DRAWN BY: BK

2

6347 Seaview Avenue NW

Seattle, Washington 98107

Ph: (206) 781-1449

*** Fax: (206) 781-1543

2. LOCATIONS OF ALL OTHER SITE AND AREA FEATURES ARE **BASED ON PLANS** SUPPLIED BY SDOT, AND HAVE NOT BEEN VERIFIED BY THE PROJECT ENGINEER.

LEGEND

SVE TRENCHING SANITARY/ STORM SEWER LOCATION AIR SPARGE REMEDIATION PIPING COMPOUND FENCE LOCATION

SAMPLE POINT

BOLLARD LOCATION

PHILLIPS 66 FACILITY NO. 255353 600 WESTLAKE AVENUE NORTH SEATTLE, WA

6347 Seaview Avenue NW Seattle, Washington 98107 Ph: (206) 781-1449 *** Fax: (206) 781-1543

APPENDIX A

Cumulative historical system operational and performance data

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample	Sample		*THCg (ppmv)									
Location	Date	THCg	Benzene	Toluene	Ethylbenzene	m&p Xylenes	o- Xylenes					
V1 Influent		77,100	ND<12.6	121	86	411	81.8	18.3				
V1 Intermediate	01/27/14	54,100	ND<21.9	128	ND<59.3	ND<119	ND<59.3	12.8				
V1 Effluent		30,500	ND<12.2	ND<12.3	ND<12.4	ND<12.5	ND<12.6	7.2				
V1 Influent		158,000	84	598	1,370	9,450	2,150.0	37.4				
V1 Intermediate	02/19/14	ND<2040	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	NC				
V1 Effluent		7,800	ND<10.9	38	ND<29.6	ND<59.1	ND<29.6	1.8				
V1 Influent		181,000	227	2,380	3,110	21,000	9,420.0	42.9				
V1 Intermediate	03/10/14	4,560	ND<11.3	27.6	ND<30.6	ND<61.2	ND<30.6	1.1				
V1 Effluent		8,660	ND<13.6	40	ND<37.0	ND<73.9	ND<37.0	2.1				
V1 Influent		156,000	119	2,050	1,430	9,170	3,630.0	36.9				
V1 Intermediate	04/16/14	ND<1220	ND<6.5	32	ND<17.6	ND<35.2	ND<17.6	NC				
V1 Effluent		ND<1220	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	NC				
V1 Influent		107,000	28	483	745	7,240	2,720.0	25.3				
V1 Intermediate	05/08/14	4,120	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.0				
V1 Effluent		5,110	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.2				
V1 Influent		55,200	ND<76	309	277	5,840	2,280	13.1				
V1 Intermediate	06/25/14	9,600	19.3	231	148	773	38	2.3				
V1 Effluent		ND<2040	20.6	36.5	ND<29.6	ND<59.1	ND<29.6	NC				
V1 Influent		131,000	ND<58.4	235.0	253	5,360	2,460	31.0				
V1 Intermediate	07/09/14	ND<3520	ND<37.6	ND<44.6	ND<51.0	ND<102	ND<51.0	NC				
V1 Effluent		9,860	17	29.7	ND<22.3	ND<44.5	ND<22.3	2.3				
V1 Influent	08/05/14	33,900	ND<37.6	127	ND<102	1,560	701	8.0				
V1 Intermediate		2,630	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<79.5	0.6				
V1 Effluent		ND<2190	ND<11.7	28.6	ND<31.7	ND<63.4	ND<79.5	NC				
V1 Influent		20,500	ND<10.9	51.5	ND<78.6	3,730	1,720	4.9				
V1 Intermediate	09/04/14	ND<2040	ND<10.9	88.1	ND<78.6	ND<59.1	ND<29.6	NC				
V1 Effluent		ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC				
V1 Influent		16,500	ND<13.1	ND<31.1	ND<35.6	372	246	3.9				
V1 Intermediate	10/16/14	ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC				
V1 Effluent	1	16,800	64.0	84.5	ND<25.5	ND<51.0	ND<25.5	4.0				
V1 Influent		ND<1640	ND<8.7	ND<48.3	ND<55.6	ND<119	63.1	NC				
V1 Intermediate	11/11/14	ND<1760	ND<9.4	ND<55.4	ND<63.9	ND<128	ND<63.9	NC				
V1 Effluent	1	ND<1760	10.2	ND<55.4	ND<63.9	ND<128	ND<63.9	NC				
V1 Influent		6,930	ND<6.0	14.8	ND<16.1	ND<32.3	ND<16.1	1.6				
V1 Intermediate	12/10/14	7,240	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	1.7				
V1 Effluent		10,700	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	2.5				
V1 Influent		ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC				
V1 Intermediate	01/20/15	2,100	ND<10.9	ND<129	ND<29.6	ND<59.1	ND<29.6	0.5				
V1 Effluent	1	2,660	ND<12.6	ND<149	ND<34.2	ND<68.5	ND<34.2	0.6				
V1 Influent		ND<1750	ND<9.4	ND<22.2	ND<25.3	ND<50.7	ND<25.3	NC				
V1 Intermediate	02/25/15	ND<2060	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC				
V1 Effluent	1	ND<2060	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC				
V1 Influent		1,970	ND<6.1	23.1	ND<82.5	44.4	ND<82.5	0.5				
V1 Intermediate	03/18/15	3,310	19.4	342	ND<74.2	ND<29.6	ND<74.2	0.8				
V1 Effluent	1	2,720	ND<3.3	10.2	ND<44.7	ND<17.8	ND<44.7	0.6				
	•		A Threshold Con					200				

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample	Sample		*THCg (ppmv)					
Location	Date	(μg/m3) THCg Benzene Toluene Ethylbenzene M&p o- Xylenes Xylenes						
V2 Influent		179,000	ND<13.1	750	1,110	5,390	1,530	42.4
V2 Intermediate	01/27/14	62,300	ND<11.3	34.5	ND<30.6	ND<61.2	ND<30.6	14.8
V2 Effluent		32,500	ND<12.6	39.5	ND<34.1	ND<68.3	ND<34.1	7.7
V2 Influent		153,000	88	432	1,030	4,540	1,600	36.2
V2 Intermediate	02/19/14	5,700	ND<10.9	30.7	ND<29.6	ND<59.1	ND<29.6	1.3
V2 Effluent		7,750	ND<10.9	31.4	ND<29.6	ND<59.1	ND<29.6	1.8
V2 Influent		219,000	214	2,230	2,910	19,000	5,800	51.9
V2 Intermediate	03/10/14	9,140	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	2.2
V2 Effluent		6,320	ND<12.2	ND<28.8	ND<32.9	ND<65.8	ND<32.9	1.5
V2 Influent		162,000	85	1,420	988	5,510	2,530	38.4
V2 Intermediate	04/16/14	ND<1220	ND<6.5	22.9	ND<17.6	ND<35.2	ND<17.6	NC
V2 Effluent		ND<1220	ND<6.5	30.3	ND<17.6	ND<35.2	ND<17.6	NC
V2 Influent		103,000	ND<16.2	435	711	8,340	2,660.0	24.4
V2 Intermediate	05/08/14	3,310	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	0.8
V2 Effluent		5,620	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	1.3
V2 Influent		23,200	ND<73.4	ND<174	ND<199	2,820	1,070	5.5
V2 Intermediate	06/25/14	12,900	19.4	143	34	ND<61.2	ND<30.6	3.1
V2 Effluent		ND<2040	12	ND<25.9	ND<29.6	ND<59.1	ND<29.6	NC
V2 Influent		46,000	ND<56.5	154	146	3,040	1,290	10.9
V2 Intermediate	07/09/14	ND<3520	ND<37.6	ND<44.6	ND<51.0	ND<102	ND<51.0	NC
V2 Effluent		6,900	ND<18.8	28.0	ND<25.5	ND<51.0	ND<25.5	1.6
V2 Influent	08/05/14	39,300	ND<22.0	83.7	ND<59.5	1,230	571	9.3
V2 Intermediate		ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<76.8	NC
V2 Effluent		10,600	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<79.5	2.5
V2 Influent		19,500	ND<10.9	39.3	ND<78.6	1,780	910	4.6
V2 Intermediate	09/04/14	ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V2 Effluent		ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V2 Influent		67,800	ND<13.1	ND<31.1	ND<35.6	238	171	16.1
V2 Intermediate	10/16/14	ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V2 Effluent		7,860	ND<9.4	ND<22.3	ND<25.5	ND<51.0	ND<25.5	1.9
V2 Influent		ND<1640	8.2	ND<48.3	ND<55.6	ND<111	58.0	NC
V2 Intermediate	11/11/14	ND<2060	ND<11.0	ND<64.7	ND<74.6	ND<149	ND<74.6	NC
V2 Effluent	1	ND<2060	ND<11.0	ND<64.7	ND<74.6	ND<149	ND<74.6	NC
V2 Influent		6,210	ND<7.3	ND<17.3	ND<19.8	ND<39.5	ND<19.8	1.5
V2 Intermediate	12/10/14	5,950	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	1.4
V2 Effluent		3,140	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	0.7
V2 Influent		ND<2190	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<31.7	NC
V2 Intermediate	01/20/15	ND<1760	ND<9.4	37.4	ND<63.9	ND<51.0	ND<25.5	NC
V2 Effluent	1	2,360	ND<12.2	ND<143	ND<32.9	ND<65.8	ND<32.9	0.6
V2 Influent		2,940	ND<7.4	ND<17.6	ND<20.2	ND<40.3	32.3	0.7
V2 Intermediate	02/25/15	ND<1980	ND<10.6	ND<25.1	ND<28.7	115	46.7	NC
V2 Effluent		2,530	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	0.6
V2 Influent		2,300	ND<5.8	ND<13.9	ND<79.5	39.7	ND<79.5	0.5
V2 Intermediate	03/18/15	1,500	ND<5.5	15.0	ND<74.2	ND<29.6	ND<74.2	0.4
V2 Effluent	1	3,470	ND<8.6	29.5	ND<117	ND<46.8	ND<117	0.8
	1		A Threshold Co					200

Table 1. Vapor Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample	Sample		Ana	(EPA Method	esults, Vapor Train (FO-15 for VOCs) g/m3)	3		*THCg (ppmv)
Location	Date	THCg	Benzene	Toluene	Ethylbenzene	m&p Xylenes	o- Xylenes	
V3 Influent		261,000	184	1,680	2,440	9,530	3,590	61.8
V3 Intermediate	01/27/14	108,000	ND<13.6	39.5	ND<37.0	ND<73.9	ND<37.0	25.6
V3 Effluent		31,800	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	7.5
V3 Influent		165,000	85	456	1,070	4,550	1,650	39.1
V3 Intermediate	02/19/14	2,640	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	0.6
V3 Effluent		3,220	ND<10.9	34.1	ND<29.6	ND<59.1	ND<29.6	0.8
V3 Influent		209,000	204	2,110	2,830	18,400	5,550	49.5
V3 Intermediate	03/10/14	8,010	ND<10.8	27.3	ND<29.5	ND<59.0	ND<29.5	1.9
V3 Effluent		4,980	ND<10.9	ND<25.9	ND<29.6	ND<59.1	ND<29.6	1.2
V3 Influent		167,000	78	1,320	882	6,860	2,290	39.5
V3 Intermediate	04/16/14	ND<1220	ND<6.5	18	ND<17.6	ND<35.2	ND<17.6	NC
V3 Effluent		ND<1220	ND<6.5	30.8	ND<17.6	ND<35.2	ND<17.6	NC
V3 Influent		134,000	33	641	1,060	11,600	3,690.0	31.7
V3 Intermediate	05/08/14	9,300	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	2.2
V3 Effluent		3,970	ND<6.5	ND<15.4	ND<17.6	ND<35.2	ND<17.6	0.9
V3 Influent		ND<28400	ND<152	ND<360	ND<412	3,140	1,130	NC
V3 Intermediate	06/25/14	19,100	24.5	188	130	944	207	4.5
V3 Effluent		ND<2120	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<30.6	NC
V3 Influent		83,400	ND<56.5	172	180	3,440	1,540	19.7
V3 Intermediate	07/09/14	ND<2120	ND<22.6	27.9	ND<30.6	ND<61.2	ND<30.6	NC
V3 Effluent	07/05/11	3,540	ND<18.8	22.7	ND<25.5	ND<51.0	ND<25.5	0.8
V3 Influent		35,700	ND<22.0	85.3	ND<59.5	1,140	519	8.5
V3 Intermediate	08/05/14	ND<2460	ND<13.1	ND<31.1	ND<35.6	ND<71.1	ND<89.2	NC
V3 Effluent	00/05/11	5,840	ND<11.3	ND<26.8	ND<30.6	ND<61.2	ND<76.8	1.4
V3 Influent		4,850	ND<10.9	ND<25.9	ND<78.6	1,460	640	1.1
V3 Intermediate	09/04/14	ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V3 Effluent	02/04/14	ND<2040	ND<10.9	ND<25.9	ND<78.6	ND<59.1	ND<29.6	NC
V3 Influent		15,200	ND<10.9	ND<31.1	ND<78.0 ND<35.6	241	170	3.7
V3 Intermediate	10/16/14	ND<2550	ND<13.1 ND<13.6	ND<31.1	ND<37.0	ND<73.9	ND<37.0	NC
V3 Effluent	10/10/14		ND<13.0 ND<9.4					
		ND<1760 ND<1750	ND<9.4 ND<9.4	ND<22.3 ND<55.2	ND<25.5 ND<63.6	ND<51.0 ND<127	ND<25.5 65.6	NC NC
V3 Influent V3 Intermediate	11/11/14	ND<1750 ND<1760	ND<9.4 ND<9.4	ND<55.4	ND<63.9	ND<127 ND<128	ND<63.9	NC NC
	11/11/14	ND<1760 ND<1540						NC NC
V3 Effluent V3 Influent			ND<8.2 ND<9.4	ND<48.4 ND<22.3	ND<55.8 ND<25.5	ND<112 ND<51.0	ND<55.8 ND<25.5	
	12/10/14	6,140 ND <2060						1.5
V3 Intermediate	12/10/14	ND<2060 7,100	ND<11.0	ND<26.0	ND<29.7	ND<59.5	ND<29.7	NC
V3 Effluent		12,100	ND<11.0	ND<26.0	ND<29.7 ND<31.7	ND<59.5	ND<29.7 ND<31.7	2.9
V3 Influent	01/20/15		ND<11.7	ND<27.7		ND<63.4		
V3 Intermediate	01/20/13	ND<2270	ND<12.2	ND<28.8	ND<32.9	ND<65.8	ND<32.9	NC NC
V3 Effluent		ND<2550	ND<13.6	ND<161	ND<37.0	ND<73.9	ND<37.0	NC 0.8
V3 Influent	02/25/15	3,340	ND<11.7	ND<27.7	ND<31.7	ND<63.4	ND<31.7	0.8
V3 Intermediate	02/25/15	ND<1980	ND<10.6	ND<25.1	ND<28.7	ND<57.3	ND<28.7	NC NC
V3 Effluent		ND<1980	ND<10.6	ND<25.1	ND<28.7	ND<57.3	ND<28.7	NC 0.5
V3 Influent	02/10/15	2,290	ND<5.7	14.8	ND<76.8	38.3	ND<76.8	0.5
V3 Intermediate	03/18/15	ND<1280	ND<6.8	28.4	ND<92.7	ND<37.0	ND<92.7	NC
V3 Effluent		2,240	ND<5.5	ND<12.9	ND<74.2	ND<29.6	ND<74.2	0.5

Notes:

There are three sets (or trains) of two vapor phase carbon units (for a total of six) used to treat extracted vapors. The two carbon units associated with each train are plumbed in series. Samples V1 Influent, V1 Intermediate, and V1 Effluent were collected from sample ports associated with the first train of vapor phase carbon units. Samples V2 Influent, V2 Intermediate, and V2 Effluent were collected from sample ports associated with the second train of vapor phase carbon units. Samples V3 Influent, V3 Intermediate, and V3 Effluent were collected from sample ports associated with the third train of vapor phase carbon units. The influent sample ports for each train are located prior to the first carbon units. The intermediate sample ports for each train are located between the first and second carbon units. The effluent sample ports for each train are located after the second (and last) carbon units. The sample port locations are shown on Figure 2.

NC = Not Calculated due to concentration below laboratory MDL.

^{*} THCg ppm = THCg (µg/m³) /42.23 (conversion factor for molar volume @ STP)/M (molecular weight of THC [100]). PSCAA Permit (Registration #29548) requires a minimum control efficiency of 97% when the TPH (THC) influent concentration is greater than or equal to 200 ppmv.

Table 2. Liquid Phase Analytical Results Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Sample Location	Sample Date	Analytica		sults (NWTI Method 8260 (µg/L)	*	THCg and
		THCg	Benzene	Toluene	Ethylbenzene	Total Xylenes
W-DSCHG		2,250	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INT	01/27/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF		ND (<100)	ND (<1.0)	1.5	ND (<1.0)	8.6
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	02/20/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	1.3	11.4
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	03/10/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	04/16/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	5.5
W-DSCG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	05/08/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	06/25/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	07/09/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	08/13/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	09/04/14	*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		*	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	10/16/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	11/11/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	12/10/14	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	01/21/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		827	10.2	82.1	11.4	86.2
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	02/25/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-DSCHG		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-OUT-WC1	03/18/15	ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
W-INF-WS1		ND (<100)	ND (<1.0)	ND (<1.0)	ND (<1.0)	ND (<3.0)
Notes:	ermit Limi	ts	70	1,400	1,700	2,200

Notes

There are a total of two liquid phase carbon units plumbed in series to treat water. Samples W-INF or W-INF-WS1 were collected from a sample port located prior to the first liquid phase carbon unit. Samples W-INT or W-OUT-WC1 were collected from a sample port located between the first and second liquid phase carbon units. Samples W-DSCHG or W-DSCG were collected from the sample port located after the second (and final) liquid phase carbon unit. The sample port locations are shown on Figure 2.

KCIW Permit Maximum Allowable Concentrations:

Benzene – 0.07 mg/L); Ethylbenzene – 1.7 mg/L (1,700 μg/L); Toluene – 1.4 mg/L (1,400 μg/L); Total Xylenes – 2.2 mg/L (2,200 μg/L).

^{*} THCg analysis was requested, but the laboratory inadvertently neglected to complete the THCg analysis.

Table 3. Remediation System Operational Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

			SVE S	ystem								Off-gas	Treatment	System						
	Merc	er-Westlake	Wells	Va	lley-Terry We	ells	AS Sys	stem		VPC-1			VPC-2			VPC-3	}	5	System Total	als
							•												Estimated	ı T
											Estimated			Estimated			Estimated	Estimated	TPHg	Cumulative
	Period	Wells On-	Applied	Period	Wells On-	Applied	Period	Applied		Influent	TPHg	Flow	Influent	TPHg	Flow	Influent	TPHg	TPHg	Removal	TPHg
	Operating	line	Vaccum	Operating	line	Vaccum	Operating	Pressure	Flow Rate	Conc.	Removed	Rate	Conc.	Removed	Rate	Conc.	Removed	Removed	Rate	Removed
Date	Hours	(count)	(in. H ₂ O)	Hours	(count)	(in. H ₂ O)	Hours	(psi)	(scfm)	$(\mu g/m^3)$	(lbs.)	(scfm)	$(\mu g/m^3)$	(lbs.)	(scfm)	$(\mu g/m^3)$	(lbs.)	(lbs.)	(lbs./hr)	(lbs.)
						· 2 /														
1/3/14	114	28	26	114	23	26	114	6.5	NM	95000	20.41	NM	74950	15.53	NM	54900	10.89	46.84	0.41	154.94
1/6/14	3	28	28	3	23	26	3	6	NM	95000	0.54	NM	74950	0.41	NM	54900	0.29	1.23	0.41	156.17
1/7/14	19	28	18	19	23	25	19	6	503.07	95000	3.40	485.37	74950	2.59	464.73	54900	1.82	7.81	0.41	163.98
1/8/14	28	28	18	28	23	26	28	5	NM	95000	0.00	NM	74950	0.00	NM	54900	0.00	0.00	0.00	163.98
1/9/14	24	28	22	24	23	26	24	8	515.92	95000	9.55	496.37	74950	7.25	496.38	54900	2.45	19.24	0.43	183.22
1/10/14	17	28	22	18	23	27	17	7.5	517.42	95000	3.13	502.21	74950	2.54	528.50	54900	1.96	7.62	0.43	190.84
1/13/14	79	28	22	79	23	26	80	6.5	508.97	95000	14.31	532.16	74950	11.80	548.73	54900	8.91	35.02	0.44	225.87
1/14/14	19	28	22	18	23	27	18	6.5	497.43	95000	3.36	523.97	74950	2.65	553.03	54900	2.05	8.06	0.44	233.92
1/15/14	28	28 28	23 24	28 19	23	27 28	26 19		512.50	95000	5.11	513.61	74950	4.04	537.68	54900 54900	3.10	12.24	0.44 0.45	246.16
1/16/14 1/17/14	19	28	34	26	23	28 44	25	6	538.21 441.06	95000 95000	3.64	533.57	74950 74950	2.85 3.07	538.31 464.49	54900	2.10 2.48	8.59 9.48	0.45	254.75 264.23
1/17/14	25 69	28	33	69	23 23	44	69	6.5	441.06 456.66	95000	3.92 11.21	420.97 452.21	74950	8.76	455.74	54900	6.47	9.48 26.44	0.37	290.67
1/20/14	29	28	<u>33</u> 46	29	23	53	29	5.5	429.86	95000	4.44	460.09	74950	3.75	455.74	54900	2.78	10.96	0.38	301.63
1/21/14	20	28	42	19	23	33	20	6.5	451.76	95000	3.22	462.40	74950	2.47	500.94	54900	1.96	7.64	0.39	309.27
1/23/14	30	28	40	30	23	32	30	8.5	418.24	95000	4.46	438.07	74950	3.69	471.91	54900	2.91	11.07	0.37	320.34
1/23/14	25	28	41	25	23	32	25	7	432.19	95000	3.84	439.34	74950	3.08	479.91	54900	2.47	9.40	0.38	329.73
1/27/14	66	28	41	66	23	31	66	6.5	431.90	77100	8.23	431.15	179000	19.08	475.41	261000	30.68	57.99	0.88	387.72
1/28/14	25	28	40	25	23	31	25	8	439.45	77100	3.17	441.02	179000	7.39	475.41	261000	11.62	22.18	0.89	409.91
1/29/14	23	28	44	23	23	59	23	8.5	450.89	77100	2.99	406.78	179000	6.27	454.55	261000	10.22	19.49	0.85	429.39
1/30/14	17	28	44	17	23	56	17	7	452.30	77100	2.22	433.34	179000	4.94	444.43	261000	7.39	14.55	0.86	443.94
1/31/14	3	28	46	3	23	47	3	8.5	429.59	77100	0.37	413.24	179000	0.83	414.10	261000	1.21	2.42	0.81	446.36
2/3/14	69	28	40	69	23	46	69	8.7	464.08	77100	9.25	430.25	179000	19.90	463.12	261000	31.24	60.39	0.88	506.75
2/4/14	28	28	46	28	23	48	28	8	399.93	77100	3.23	421.40	179000	7.91	448.73	261000	12.28	23.43	0.84	530.18
2/7/14	69	28	48	69	23	47	69	8	409.47	77100	8.16	424.23	179000	19.63	456.33	261000	30.78	58.57	0.85	588.75
2/11/14	97	28	50	97	23	51	98	6	449.75	77100	12.60	444.32	179000	28.90	451.16	261000	42.78	84.28	0.87	673.02
2/12/14	26	28	47	26	23	51	25	6	438.41	77100	3.29	482.88	179000	8.42	483.94	261000	12.30	24.01	0.92	697.03
2/13/14	19	28	48	19	23	51	20	6	422.95	77100	2.32	412.96	179000	5.26	458.18	261000	8.51	16.09	0.85	713.13
2/17/14	67	28	51	67	23	52	66	7	415.17	77100	8.03	427.60	179000	19.21	449.94	261000	29.47	56.71	0.85	769.84
2/19/14	25	28	49	25	23	49	26	7	432.53	158000	6.40	468.57	153000	6.71	487.13	165000	7.53	20.64	0.83	790.48
2/20/14	22	28	50	22	23	49	21	9	433.97	158000	5.65	458.83	153000	5.78	497.26	165000	6.76	18.20	0.83	808.68
2/25/14	122	28	48	122	23	46	122	10	438.82	158000	31.68	499.65	153000	34.93	493.41	165000	37.20	103.82	0.85	912.50
2/26/14	26	28	49	26	23	53	26	8.5	365.19	158000	5.62	395.49	153000	5.89	411.09	165000	6.61	18.12	0.70	930.62
2/27/14	23	28	50	23	23	63	23	9	359.08	158000	4.89	390.85	153000	5.15	419.23	165000	5.96	16.00	0.70	946.61
3/3/14	97	28	50	97	23	62	97	8	343.96	158000	19.75	381.85	153000	21.23	388.82	165000	23.31	64.28	0.66	1010.90
3/5/14	38	28	50	38	23	67	38	12.2	339.24	158000	7.63	370.37	153000	8.07	374.87	165000	8.80	24.50	0.64	1035.39
3/7/14	48	28	52	48	23	67	48	11.9	417.00	158000	11.85	473.58	153000	13.03	493.58	165000	14.64	39.52	0.82	1074.91
3/10/14	74	28	65	74	23	71	74	11.8	376.48	181000	18.89	415.20	219000	25.20	430.89	209000	24.96	69.05	0.93	1143.96
3/14/14	91	28	70	90	23	73	91	13.4	400.74	181000	24.72	428.35	219000	31.62	463.82	209000	32.68	89.03	0.99	1232.99
3/18/14 3/20/14	99 45	28 28	74 71	100 44	23 23	75 74	99 45	12.6	410.20	181000	27.53	442.68 438.17	219000	36.31	462.90 468.67	209000	36.24	100.08	1.00	1333.07
3/20/14	95	28	71 75	96	23	74	45 95	12.3 13.4	416.64 423.51	181000 181000	12.71 27.28	438.17	219000	15.81 37.31		209000 209000	16.14 37.24	44.67 101.83	1.01 1.06	1377.74 1479.58
3/24/14 4/1/14	194	28	75	194	23	74	95 194		399.25	181000	52.51	428.93	219000 219000	68.26	495.55 468.17	209000	71.10	191.87	0.99	1671.45
4/1/14	71	28	73 71	70	23	73	71	15.1 15.4	434.40	181000	20.91	428.93	219000	27.46	503.76	209000	27.61	75.97	1.08	1747.42
4/11/14	118	27	71	119	23	74	118	12.5	406.84	156000	28.05	496.74	162000	35.87	503.76	167000	37.34	101.27	0.85	1848.69
4/16/14	168	27	62	168	21	74	168	12.5	406.84	156000	39.88	464.92	162000	47.39	482.21	167000	50.67	137.95	0.85	1986.63
4/30/14	146	27	73	169	21	73	170	12.6	336.33	107000	45.29	351.75	103000	48.72	363.86	134000	65.56	159.58	0.62	2146.21
5/8/14	190	27	73	190	21	75 75	190	13	319.88	107000	13.08	334.30	103000	13.16	345.68	134000	17.70	43.93	0.43	2190.14
5/12/14	102	27	73	102	21	74	102	13.4	318.18	107000	29.97	333.56	103000	30.11	343.06	134000	40.29	100.37	0.43	2290.51
5/22/14	235	27	74	234	21	74	234	12.5	325.05	107000	13.03	336.54	103000	13.11	358.27	134000	18.16	44.30	0.43	2334.81
JIZZI 14	200			204		. ¬	207		020.00	107000	10.00	000.04	100000	10.11	555.21	10 1000	13.10	1 7.00	0.77	2007.01

Table 3. Remediation System Operational Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

			SVF S	System								Off-gas	Treatment	System				I		
	Mero	cer-Westlake			lley-Terry We	ells	AS Sys	stem		VPC-1		On gao	VPC-2	Cyclom		VPC-3		9	System Tota	als
				1	,	I		1						1					Estimated	
											Estimated			Estimated			Estimated	Estimated	TPHg	Cumulative
	Period	Wells On-	Applied	Period	Wells On-	Applied	Period	Applied		Influent	TPHa	Flow	Influent	TPHa	Flow	Influent	TPHa	TPHa	Removal	TPHa
	Operating	line	Vaccum	Operating	line	Vaccum	Operating		Flow Rate	Conc.	Removed	Rate	Conc.	Removed	Rate	Conc.	Removed	Removed	Rate	Removed
Doto	Hours	(count)	(in. H ₂ O)	Hours	(count)	(in. H ₂ O)	Hours	(psi)	(scfm)	(μg/m ³)	(lbs.)	(scfm)	(μg/m ³)	(lbs.)	(scfm)	$(\mu g/m^3)$	(lbs.)	(lbs.)	(lbs./hr)	(lbs.)
Date		(,	((,	(1.120)		(1 - 7	(/	11-3- /	(/	(/	(1-5-)	(/	(/	(1-5- /	(/	(/	(/	(/
5/27/14	100	27	76	101	21	75	100	12.7	333.45	107000	22.45	376.74	103000	24.42	376.67	134000	31.76	78.63	0.47	2413.44
6/3/14	168	16	77	168	22	68	169	13.3	321.35	107000	21.38	371.88	103000	23.82	371.30	134000	30.94	76.13	0.46	2489.58
6/10/14	166	16	79	166	22	82	165	13.8	323.85	107000	18.69	339.19	103000	18.71	350.53	134000	25.16	62.56	0.44	2552.14
6/16/14	144	16	80	143	22	85	144	12.7	316.85	55200	13.95	348.40	23200	6.48	357.32	28400	8.13	28.57	0.13	2580.71
6/25/14	213	16	78	214	22	85	214	10.7	320.62	55200	0.13	337.27	23200	0.06	354.99	28400	0.08	0.27	0.13	2580.97
7/1/14	2	16	75	2	22	78	2	15.2	315.28	131000	30.17	343.08	46000	11.53	352.97	83400	21.50	63.20	0.32	2644.17
7/9/14	195	16	78	195	22	79	195	10.1	323.83	131000	11.60	376.45	46000	8.95	375.90	83400	16.21	36.76	0.34	2680.93
7/15/14	73 147	16	71	138	22	75	137 147	13.2	308.90	131000	22.28	343.61	46000	8.64	357.62	83400	16.31	47.24	0.32	2728.16
7/21/14 7/30/14	85	16 16	73 71	146 85	22 22	76 70	85	12 12.2	306.32 314.00	131000 33900	12.78 5.50	343.95 338.85	46000 39300	5.04 6.88	350.79 352.17	83400 35700	9.31 6.50	27.13 18.88	0.32 0.14	2755.29 2774.17
8/5/14	138	18	73	138	22	70	138	11.8	312.81	33900	7.31	328.88	39300	8.91	349.19	35700	8.59	24.81	0.14	2774.17
8/13/14	184	18	73	184	22	64	184	12.3	327.24	33900	7.65	343.02	39300	9.29	362.57	35700	8.92	25.86	0.13	2824.84
8/21/14	184	18	73	184	22	64	184	12.3	311.21	33900	4.82	388.48	39300	6.98	381.94	35700	6.23	18.03	0.14	2842.87
8/26/14	122	18	71	122	22	62	122	14.9	339.72	20500	5.50	439.51	19500	6.77	408.65	4850	1.57	13.84	0.13	2856.71
9/4/14	211	18	82	211	22	73	211	13	338.28	20500	3.79	473.59	19500	5.05	436.07	4850	1.16	10.00	0.07	2866.71
9/10/14	146	18	82	146	22	74	146	12.2	334.25	20500	4.26	462.21	19500	5.60	419.59	4850	1.27	11.13	0.07	2877.84
9/17/14	166	18	81	166	22	77	166	12.9	341.08	20500	3.30	454.77	19500	4.19	413.23	4850	0.95	8.43	0.07	2886.27
9/22/14	126	18	80	126	22	76	126	11.5	328.56	20500	5.63	452.80	19500	7.38	424.43	4850	1.72	14.72	0.07	2900.99
10/3/14	223	18	80	223	22	77	223	14	323.83	16500	6.16	416.06	67800	32.54	395.12	15200	6.93	45.64	0.15	2946.63
10/16/14	308	18	81	308	22	82	308	11	333.97	16500	6.94	426.08	67800	36.36	413.66	15200	7.91	51.21	0.15	2997.84
10/30/14	336	18	79	336	22	83	336	12.4	319.37	820	0.18	371.05	820	0.21	365.29	875	0.22	0.60	0.00	2998.44
11/11/14	181	18	79	181	22	75	181	13.1	310.64	820	0.34	401.50	820	0.44	377.78	875	0.44	1.23	0.00	2999.66
11/26/14	358	15	79	358	19	74	358	9.1	285.03	6930	1.37	337.16	6210	1.45	333.38	6140	1.42	4.24	0.02	3003.90
12/10/14	185	15	90	185	19	80	185	9	286.29	6930	2.19	350.27	6210	2.41	344.49	6140	2.35	6.95	0.02	3010.85
12/23/14	295	15	91	296	19	80	295	12.9	315.04	6930	2.33	334.14	6210	2.60	352.16	6140	2.71	7.65	0.02	3018.50
1/6/15	285	13	90	335	19	76	336	13	331.40	1060	0.44	405.42	1095	0.56	399.64	12100	6.05	7.04	0.02	3025.54
1/20/15	334	13	71	334	19	70	333	12.7	353.11	1060	0.47	301.76	1095	0.41	360.20	12100	5.44	6.32	0.02	3031.86
2/3/15	333	11	76	333	28	68	334	11.5	309.19	1060	0.09	333.62	1095	0.10	357.34	12100	1.23	1.43	0.02	3033.29
2/6/15	76	11	82	76	14	73	75	11.7	320.72	1060	0.12	343.69	1095	0.13	356.96	12100	1.54	1.79	0.02	3035.08
2/10/15	95	15	84	95	14	74	96	14.2	341.44	1060	0.09	351.01	1095	0.10	363.64	12100	1.12	1.31	0.02	3036.39
2/13/15 2/16/15	68 20	18 22	75 84	68 20	13 11	78 87	68 20	11.9 12.1	332.46 331.29	1060 875	0.03 0.23	323.87 333.00	1095 2940	0.03 0.79	351.46 341.66	12100 3340	0.32 0.92	0.37	0.02 0.01	3036.76 3038.70
2/16/15	214	22	84 84	215	21	87 87	214	12.1	135.72	875 875	0.23	158.62	2940	0.79	168.13	3340	0.92	1.94 0.08	0.01	3038.70
3/4/15	169	8	84 83	0	0	NM	169	10	135.72	875 875	0.08	162.42	2940	0.00	168.13	3340	0.00	0.08	0.00	3038.77
3/12/15	196	19	85	0	0	NM	196	9.3	134.97	1970	0.09	167.89	2300	0.00	169.75	2290	0.00	0.09	0.00	3039.01
3/12/13	140	9	100	0	0	NM	139	16.6	148.80	1970	0.14	154.76	2300	0.00	159.31	2290	0.00	0.14	0.00	3039.01
3/24/15	116	9	99	0	0	NM	117	8.5	142.43	1970	0.13	154.76	2300	0.00	159.26	2290	0.00	0.13	0.00	3039.13
3/24/13	110	J	22	1 0	U	INIVI	117	0.5	142.43	1910	0.23	134.00	2300	0.00	103.20	2230	0.00	0.23	0.00	3033.30

Notes:

SVE = Soil Vapor Extraction AS = Air Sparge VPC = Vapor Phase Carbon in. H_2O = inches of water psi = pounds per square inch scfm = standard cubic feet per minute

ppm = parts per million $(\mu g/m^3)$ = micrograms per cubic mer TPHg = Total Petroleum Hydrocarbons (Gasoline)

Table 4. SVE PID Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Date			We	stlake SVE	Wells - PID	Readings (p	pm)		
	WC1	WC2	WC3	WB3	WB2	WB1	WA3	WA2	WA1
1/17/2014	6	8.6	3.4	5	10.9	3	0.2	1.2	0.5
1/20/2014	5.4	9	7.1	5.3	4.5	3.7	3.4	5.4	5.1
1/21/2014	1.8	1.7	2.7	2.2	1.6	1.3	1.3	2.3	2
1/27/2014	1	1.2	1.9	1.5	1.4	1.3	1.9	2.7	2.7
1/29/2014	1.5	1.6	2	3.2	1.9	3.2	2.3	5.8	3.3
2/3/2014	1.5	1.6	2	3.2	1.9	3.2	2.3	5.8	3.3
2/12/2014	0.2	0.1	1.7	0.8	0.1	0.1	0	0.1	0
2/19/2014	0.7	0.6	0.7	0.6	0.4	0.4	0.3	0.3	0.4
2/27/2014	0.9	1.2	1.2	1.3	1.3	1.4	1.6	1.8	1.9
3/7/2014	0.6	0.3	0.5	0.4	0.3	0.2	0.3	0.2	0.1
3/20/2014	0.7	0.6	0.5	0.4	0.4	0.4	0.3	0.2	0.3
4/16/2014	69	225	210	135	32	225	64	210	115
6/3/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
8/5/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/26/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL
1/6/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
1/28/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/3/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/6/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/10/2015	OL	OL	OL	OL	OL	0	4	0.3	0.1
2/13/2015	0	0.1	6.2	0	4	0	0	0	0
2/16/2015	0	0	0	0	0	OL	OL	OL	OL
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/12/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/18/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL

		Valley S	SVE Wells -	PID Readin	gs (ppm)		
V9	V7	V1	V6	V2	V5	V3	V4
7.8	3.3	2.4	4.3	15.1	38.8	3.3	69.4
4	1.8	2.3	1.6	2.3	35.8	3	2.8
5.3	1.4	2.6	2.3	9	32	2.3	2.9
4.6	1	1.1	0.8	3	42.5	2.4	5.3
3.2	1.2	1.4	2	4.8	35.2	1.4	2.1
1.4	1.2	1.7	1.4	3.3	26.9	1	1.1
0.9	0.8	1.2	1.2	2.2	27.5	1.1	2
0.8	1	0.9	1	1.5	17.3	1.3	1.1
0.7	0.6	0.7	1	1.8	31.3	0.6	0.8
0.7	0.6	0.6	0.9	1.9	31	0.4	0.8
0.6	0.7	0.4	1.5	1.5	51.1	0.5	0.3
0.1	0.1	0.1	0.1	W	81.1	W	0.1
0	0	0.1	0	0	22.8	W	0.1
					22	W	
	0	W		W	0.1	0.3	0.7
0.2	0.4	OL	0.2	OL	0.2	OL	0.6
0.5	0.6	1	0.2	0.6	0.5	0.6	0.6
0.3	0.2	0.6	OL	0.1	0.2	OL	0.4
0	0	0.4	OL	0	0.2	OL	0.1
OL	0.1	0	OL	0.1	0	OL	0
OL	0.1	OL	OL	0	0	OL	0.1
OL	0	0.2	0	0.1	0	0	0
OL	OL	OL	OL	OL	OL	OL	OL
OL	OL	OL	OL	OL	OL	OL	OL
OL	OL	OL	OL	OL	OL	OL	OL

Date								Me	ercer SVE V	Vells - PID F	Readings (pr	om)							
	M6	M7	M10	M9	M8	M1	M2	M3	M4	M5	M14	M13	M15	M12	M11	M16	M17	M18	M19
1/17/2014	0.1	0.4	0.3	1.2	184	3.5	22.3	0	9.9	10.5	13	13.5	13.7	430	260	31	107	220	200
1/20/2014	5.6	7.2	10.1	16.8	171	2.2	3.5	3.7	1.1	1.2	3.2	3.3	4.3	281	235	29.7	150	184	222
1/21/2014	3.2	3	2.2	1.7	145	6.5	4.1	3.4	2.4	2	2.6	3.1	4.6	184	267	46.2	153	161	226
1/27/2014	3.5	4.8	7.5	16	236	0.9	1.2	1.1	0.7	0.5	1.5	0.6	2.9	100	355	33.8	216	183	240
1/29/2014	2.8	3.7	7.6	13.9	191	0.6	0.9	1.1	0.7	0.7	1.9	0.7	4	40	302	23	193	156	160
2/3/2014	2.8	3.7	7.6	13.9	191	0.6	0.9	1.1	0.7	0.7	1.9	0.7	4	40	302	23	193	156	160
2/12/2014	0	0.1	0	0	98.9	2	2.3	2.5	2.6	3.1	6.1	4.3	8.9	15.5	237	16.9	159	97.5	36.1
2/19/2014	0.4	0.7	0.3	0.3	78.1	1.9	2.1	2.4	2.2	2.6	4	4	7.8	18.1	192	13.5	121	65	25.9
2/27/2014	2.3	2.7	3.8	6	63.9	0.5	0.4	0.3	0.1	0.2	1.6	0.4	1.6	0.2	179	8	139	70	21.5
3/7/2014	0.1	0.3	0.1	0.1	60.5	1.8	1.4	1.1	0.8	0.8	2	0.7	1.4	0.6	178	9.5	134	71.2	21.5
3/20/2014	0.3	0.7	0.2	0.2	58	3.1	1.8	1.4	0.8	0.8	1.6	0.7	1.3	0.6	156	16.1	146	101	14.2
4/16/2014	W	0.4	0.1	2.6	49.3	1.6	0.3	0.2	0.1	0.1	1.1	0.1	0.1	0.1	183	8.3	154	118	8.5
6/3/2014	0.1	0	0.2	0.8	8	0	OL	0.1	0.1	W	1.1	0	OL	0.1	124	12.5	74.5	31	0.8
8/5/2014	-		-	-	7.3		-			W					74.1	5.1	63.7	13.1	
11/26/2014		-	0.4	0.3	10.4	-	W			W	-		-	W					W
1/6/2015	1.9	1	OL	0.7	9	0.8	OL	0.7	1	OL	11	W	0.6	OL	7.4	4.6	9.6	4.5	OL
1/28/2015	2.9	1.4	1.5	2.5	8.9	2.5	0.1	1.3	0.2	0.2	0.4	0.8	0.2	20.5	9.5	2.6	12	3	0.8
2/3/2015	2.5	OL	8.0	2.1	9.3	2.3	OL	OL	OL	OL	OL	1.2	OL	14.9	11.5	4.8	10.7	3.8	OL
2/6/2015	1.9	OL	2.5	2.7	4.8	3	OL	OL	OL	OL	OL	4.5	OL	19.3	3.5	2.3	5.2	2	OL
2/10/2015	2	OL	0.1	0.1	2.1	0	OL	OL	OL	OL	OL	0.1	OL	11.1	4.6	0.1	6.8	0.1	OL
2/13/2015	0.1	OL	0.1	0.1	1	OL	OL	OL	OL	OL	OL	0	OL	10.6	3.8	OL	4	0	OL
2/16/2015	OL	OL	0.1	0	0.1	0	0	0	1	0	0	0	0	7.5	0.1	0	0.1	0	13.2
3/4/2015	OL	OL	0.3	0.2	1.8	OL	OL	OL	0	OL	OL	OL	OL	8.4	3.3	OL	2.1	OL	3.7
3/12/2015	0	0.3	0	0.1	1.6	10.1	0	0	0	0	0	0	0.1	8.2	1.8	1.2	1.1	1	2.4
3/18/2015	OL	OL	OL	0	0.3	0.1	OL	OL	0.5	OL	OL	OL	OL	4.9	0.9	0.1	0	OL	0.8

Date						Te	erry SVE W	ells - PID R	eadings (pp	m)					
		TEFR1	TMW65		TSVE11-	TSVE10 -				TSVE12-			TEFR2		TMW48
	TSVE3	AIR	AIR	TSVE4	MW67	MW66	TSVE2	TSVE1	TSVE7	MW68	TSVE5	TSVE6	AIR	TSVE8	AIR
1/17/2014	19.2	9.5	11.8	2.6	4.6	107	4.1	1.7	1.5	1.3	20.1	6.4	0.4	0.3	131
1/20/2014	26.6	10.3	8.5	8.4	11.1	125	10	5.5	3.5	4.7	6.3	5.4	4.5	2	115
1/21/2014	17.1	3.1	4.1	3.4	5.8	115	1.7	1	1.2	1.4	6.5	4.9	3.8	4.5	100
1/27/2014	15.5	5.1	3.1	1.9	3.5	116	4.2	2.2	1.1	1.2	4.7	3.7	1.3	1	113
1/29/2014	14.3	1.1	1.7	2.3	7.2	138	0.5	0.5	0.6	0.7	7.3	3.6	2.9	5.7	97.1
2/3/2014	14.3	1.1	1.7	2.3	7.2	138	0.5	0.5	0.6	0.7	2.4	2.9	2.9	6.2	69.7
2/12/2014	3.6	1	1.1	1.9	7.2	120	0.4	0.5	0.6	0.4	3.4	3.2	2.5	6.2	77.3
2/19/2014	5.6	1	1.2	1.6	3.5	71.3	0.6	0.6	0.6	0.6	2.9	2.2	2.1	2.4	47
2/27/2014	3.4	1	0.9	1.2	4.1	58.7	0.3	0.3	0.3	0.4	0.7	1.2	0.9	1.6	29.8
3/7/2014	3.5	0.9	1	1	4	52.7	0.1	0.1	0.1	0.3	0.6	1.1	0.9	1.7	26.3
3/20/2014	2.8	2.2	1.5	0.9	2.6	44.9	0.9	4.4	0.7	0.7	0.3	0.4	0.2	0.5	18.4
4/16/2014	3.2	1.5	0.8	0.2	2.5	45	1.8	1	0.2	0.3	0.2	0.1	0	0.1	16.1
6/3/2014	0.8	0.5	0.3	0.2	0.6	30.7	1.3	0.4	0.1	0.1	0	0	0.1	0	0.3
8/5/2014						16.3							-		
11/26/2014			OL	1		-	-			-	1		OL		
1/6/2015	1.9	1.4	1.9	0.3	1	0.5	0	0.5	0.4	1.4	0.3	0.4	OL	0.1	0.1
1/28/2015	1	0.9	1.9	1.8	0.6	0.6	0.7	0.7	0.7	1	0.5	0.8	0.7	0.7	0.3
2/3/2015	OL	0.1	OL	0.2	OL	OL	0.3	0.5	0.3	OL	0.2	0.4	OL	0.7	OL
2/6/2015	OL	0.4	OL	0.3	OL	OL	0.2	0.3	0.4	OL	0	0.1	OL	0.1	OL
2/10/2015	OL	0	OL	0.1	OL	OL	0.1	0	0.1	OL	0.1	0.1	OL	0.1	OL
2/13/2015	OL	OL	OL	0	OL	OL	0	0	0.1	OL	0	0.1	OL	0	OL
2/16/2015	0	0	0	0	0	0	0	0	0.1	OL	0.1	0	0	0	0
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/12/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/18/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

Soil Vapor Extraction Photo Ionization Detector parts per million Not Measured Offline Water in Well SVE PID ppm

OL W

Table 5. AS Flow Data Summary PHILLIPS 66 FACILITY #255353 (AOC 1396)

Date									Westla	ke AS Well:	s - Flow Rat	te Readings	s (scfm)								
	W-1	W-2	W-3	W-4	W-5	W-6	W-7	W-8	W-9	W-10	W-11	W-12	W-13	W-14	W-15	W-16	W-17	W-21	W-20	W-19	W-18
1/23/2014	0	3	0	0	3	0	0	0	0	0	0	0	0	5	0	0	0	0	0	3	0
1/31/2014	2	4	>25	2	3.5	5	<2	<2	4.5	<2	<2	3.5	14.5	6	4	3	7	7.5	7	3	8.5
2/4/2014	2	3	>25	3	3	7	<2	5	4	2	<2	4	11	7	3	3	7	7	7	4	8.5
2/12/2014	<2	5	>25	4	<2	11	6	9	7	<2	2	6	12	7	8	4	7.5	7	8	4	9
2/17/2014	2	6	9	3	2	9	4	8	5	3	3	6	16	8	6	4	8	10	13	4	10
2/26/2014	2	10	9	6	<2	12	7	9.5	9	3	3	6	13	9	6	3	11	14	7.5	4	11
3/3/2014	2	10	10	5	3	12	8	9	4	5	4	7	13.5	10	6	6	10	8	9.5	5	11
3/18/2014	2	11	<2	6	2	16	11	14	9	4	4	<2	15	11	17	8	9	15	10	5	11
5/27/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
7/9/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
11/26/2014	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
2/13/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

Date												Merce	r AS Wells	- Flow Rate	Readings	(scfm)											
	M-8	M-20	M-26	M-2	M-27	M-16	M-3	M-9	M-17	M-5	M-19	M-15	M-7	M-10	M-14	M-18	M-6	M-13	M-4	M-22	M-12	M-1	M-23	M-11	M-25	M-24	M-21
1/23/2014	9	0	0	0	0	0	0	0	7.5	0	0	0	6	0	0	1	0	0	5	0	0	0	0	0	0	0	0
1/31/2014	9	3.5	<2	<2	<2	4.5	3	5	7.5	7.5	3.5	6	5	6	>25	<2	<2	<2	5.5	5	<2	11.5	<2	<2	7.5	4	<2
2/4/2014	10	<2	<2	<2	<2	3.5	4	5	7.5	7	3	6	6	7	>25	2	<2	<2	6.5	5	<2	11.5	<2	<2	5.5	>25	7
2/12/2014	10	6	3	<2	<2	4	3.5	5	7	9	4	5.5	7	8	>25	3	<2	<2	8	6	<2	13	<2	<2	8.5	>25	7
2/17/2014	11	12	2	<2	<2	6	3.5	6	8	10	5	7	5	9	8	<2	<2	2	7	8	<2	14	2	<2	5.5	4	<2
2/26/2014	12	12	<2	<2	<2	5	4	8	8.5	11	6	6.5	6	10	9	3	2	3	8	9	3	12	2	<2	9	4	<2
3/3/2014	13	10	<2	<2	<2	5	4.5	7	9	12	5	6.5	7	11	10	4	2	3	11	9	3	13	<2	<2	8	4	2
3/18/2014	13	11	<2	<2	<2	7	5	9	10	13	8	9	8	11	11	7	<2	8	10	12	4	16	3	<2	11	6	8
5/27/2014	14	25	0	0	0	6.5	7	7	10	15	6.5	8	7	25	25	0	16	5	11	11.5	6	16	1	1	25	9	0
7/9/2014	12	25	0	0	0	5	6	7	9	12	7	6	7	20	25	0	13	5	12	10	4	16	1	1	25	7	0
11/26/2014		20			0			-	-		7				-	1	14						0				1
2/13/2015	11	20	0	10	OL	0	4	11	15	3	OL	6	7	0	8	OL	14	6	11	0	3	11	0	1	25	7	0
3/4/2015				10	OL	0		10	18	3	OL			1	9	OL				0		12		0			

Date						Valley AS \	Vells - Flow	Rate Read	dings (scfm))				
	V-6	V-7	V-8	V-9	V-10	V-5	V-11	V-4	V-12	V-3	V-13	V-2	V-14	V-1
1/23/2014	0	6	0	0	0	0	0	0	0	0	6	0	0	0
1/31/2014	4	8	6	<2	3	5	7.5	3	4	3.5	7.5	10	8.5	2
2/4/2014	3.5	8	5	<2	4	4	7.5	4	4	4	7	9.5	5	5
2/12/2014	4	8	8	<2	5	6	11	4	5	6	8	10	7	7
2/17/2014	4	6	7	2	6	5	9	5	5	6	8	12	2	4
2/26/2014	8	9	7	3	8	8	13.5	3.5	4	6	9	11	8	10
3/3/2014	10	10	8	2	10	<2	16.5	5	5	9	8	12	9	9
3/18/2014	4	12	7	4	7	<2	21	4	4	12	14	13	<2	7
5/27/2014	1	18	5	3	8	0	17	2	3	8	8	12	0	6
7/9/2014	1	13	4	5	6	0	16	2	2	2	6	12	0	5
11/26/2014	3	7	6	0	5	1		3		8	4	4	3	-
2/13/2015	3	7	5	0	4	1	0	2	0	7	5	4	5	0
3/4/2015	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL	OL

Notes: AS

Air SpargeStandard Cubic Feet per MinuteNot Measured SCFM

OL Offline

APPENDIX BLaboratory Analytical Reports

(612)607-1700

August 31, 2016

Kyle Sattler ATC Group Services LLC 7070 SW Fir Loop Suite 100 Portland, OR 97223

RE: Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on August 19, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

JENNI GROSS

Project Manager

Enclosures

cc: Cody Bishop, ATC Group Services LLC

CERTIFICATIONS

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L

Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10359624001	Inf-1	Air	08/18/16 12:35	08/19/16 09:30
10359624002	Int-1	Air	08/18/16 12:40	08/19/16 09:30
10359624003	Eff-1	Air	08/18/16 12:45	08/19/16 09:30
10359624004	Inf-2	Air	08/18/16 12:55	08/19/16 09:30
10359624005	Int-2	Air	08/18/16 12:50	08/19/16 09:30
10359624006	Eff-2	Air	08/18/16 12:55	08/19/16 09:30
10359624007	Inf-3	Air	08/18/16 13:15	08/19/16 09:30
10359624008	Int-3	Air	08/18/16 13:10	08/19/16 09:30
10359624009	Eff-3	Air	08/18/16 13:00	08/19/16 09:30
10359624010	B701-Inf	Air	08/18/16 14:20	08/19/16 09:30
10359624011	B801-Inf	Air	08/18/16 14:30	08/19/16 09:30

SAMPLE ANALYTE COUNT

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10359624001	Inf-1	TO-15	NCK	7	PASI-M
10359624002	Int-1	TO-15	NCK	7	PASI-M
10359624003	Eff-1	TO-15	NCK	7	PASI-M
10359624004	Inf-2	TO-15	NCK	7	PASI-M
10359624005	Int-2	TO-15	NCK	7	PASI-M
10359624006	Eff-2	TO-15	NCK	7	PASI-M
10359624007	Inf-3	TO-15	NCK	7	PASI-M
10359624008	Int-3	TO-15	NCK	7	PASI-M
10359624009	Eff-3	TO-15	NCK	7	PASI-M

ANALYTICAL RESULTS

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Date: 08/31/2016 12:04 PM

Pace Project No.: 10359624			0 "					
Sample: Inf-1	Lab ID: 103	59624001	Collected: 08/18/1	16 12:35	Received: (08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	ND	ug/m3	13.1	40.4		08/23/16 19:25	71-43-2	A4
Ethylbenzene	ND	ug/m3	35.6	40.4		08/23/16 19:25	100-41-4	
THC as Gas	8070	ug/m3	2880	40.4		08/23/16 19:25		
Toluene	ND	ug/m3	31.1	40.4		08/23/16 19:25	108-88-3	
Xylene (Total)	ND	ug/m3	107	40.4		08/23/16 19:25	1330-20-7	
m&p-Xylene	ND	ug/m3	71.5	40.4		08/23/16 19:25	179601-23-1	
o-Xylene	ND	ug/m3	35.6	40.4		08/23/16 19:25	95-47-6	
Sample: Int-1	Lab ID: 103	59624002	Collected: 08/18/1	16 12:40	Received: (08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	ND	ug/m3	18.2	56		08/23/16 19:53	71-43-2	A4
Ethylbenzene	ND	ug/m3	49.3	56		08/23/16 19:53	-	
THC as Gas	ND	ug/m3	3990	56		08/23/16 19:53		
Toluene	153	ug/m3	43.1	56		08/23/16 19:53	108-88-3	
Xylene (Total)	ND	ug/m3	148	56		08/23/16 19:53	1330-20-7	
m&p-Xylene	ND	ug/m3	99.1	56		08/23/16 19:53	179601-23-1	
o-Xylene	ND	ug/m3	49.3	56		08/23/16 19:53	95-47-6	
Sample: Eff-1	Lab ID: 103	59624003	Collected: 08/18/1	16 12:45	Received: (08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	hod: TO-15					_	
Benzene	ND	ug/m3	12.6	38.8		08/23/16 20:21	71-43-2	A4
Ethylbenzene	ND	ug/m3	34.1	38.8		08/23/16 20:21		
THC as Gas	ND	ug/m3	2760	38.8		08/23/16 20:21		
Toluene	ND	ug/m3	29.9	38.8		08/23/16 20:21	108-88-3	
Xylene (Total)	ND	ug/m3	103	38.8		08/23/16 20:21		
m&p-Xylene	ND	ug/m3	68.7	38.8		08/23/16 20:21	179601-23-1	
o-Xylene	ND	ug/m3	34.1	38.8		08/23/16 20:21	95-47-6	
Sample: Inf-2	Lab ID: 103	59624004	Collected: 08/18/1	16 12:55	Received: (08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	ND	ug/m3	11.7	36		08/23/16 20:48	71-43-2	A4
Ethylbenzene	ND ND	ug/m3	31.7	36		08/23/16 20:48	-	/ \ ¬
,	140	~g/1110	01.7			JU, 20, 10 20.70	100 11 7	
THC as Gas	3900	ug/m3	2560	36		08/23/16 20:48		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

(612)607-1700

ANALYTICAL RESULTS

Project: P66 Westlake/ Mercer

Date: 08/31/2016 12:04 PM

Pace Project No.: 10359624								
Sample: Inf-2	Lab ID: 103	59624004	Collected: 08/18/1	16 12:55	Received: 0	08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15						
Xylene (Total)	ND	ug/m3	95.4	36		08/23/16 20:48	1330-20-7	
m&p-Xylene	ND	ug/m3	63.7	36		08/23/16 20:48	179601-23-1	
o-Xylene	ND	ug/m3	31.7	36		08/23/16 20:48	95-47-6	
Sample: Int-2	Lab ID: 103	59624005	Collected: 08/18/1	16 12:50	Received: 0	08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15						
Benzene	ND	ug/m3	13.6	42		08/23/16 21:16	71-43-2	A4
Ethylbenzene	ND	ug/m3	37.0	42		08/23/16 21:16	100-41-4	
THC as Gas	ND	ug/m3	2990	42		08/23/16 21:16		
Toluene	ND	ug/m3	32.3	42		08/23/16 21:16	108-88-3	
Xylene (Total)	ND	ug/m3	111	42		08/23/16 21:16		
m&p-Xylene	ND	ug/m3	74.3	42		08/23/16 21:16		
o-Xylene	ND	ug/m3	37.0	42		08/23/16 21:16		
Sample: Eff-2	Lab ID: 103	59624006	Collected: 08/18/1	16 12:55	Received: 0	08/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15					_	
Benzene	ND	ug/m3	12.2	37.4		08/23/16 21:43	71-43-2	A4
Ethylbenzene	ND	ug/m3	32.9	37.4		08/23/16 21:43	-	/\ -
THC as Gas	ND ND	ug/m3	2660	37.4		08/23/16 21:43	100-41-4	
Toluene	ND ND	ug/m3	28.8	37.4		08/23/16 21:43	108-88-3	
Xylene (Total)	ND ND	ug/m3	99.1	37.4		08/23/16 21:43		
m&p-Xylene	ND	ug/m3	66.2	37.4		08/23/16 21:43		
o-Xylene	ND	ug/m3	32.9	37.4		08/23/16 21:43		
Sample: Inf-3	Lab ID: 103	E0624007	Collected: 08/18/1	16 13:15	Received: 0	08/19/16 09·30 N	Matrix: Air	
Campion in C		230/4UU/						
D t								0
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Parameters TO15 MSV AIR		Units				Analyzed	CAS No.	Qual
	Results Analytical Met	Units	Report Limit	DF 43.8			CAS No.	Qual
TO15 MSV AIR Benzene	Results Analytical Met	Units hod: TO-15	Report Limit	DF		Analyzed	CAS No.	
TO15 MSV AIR Benzene Ethylbenzene	Results Analytical Met	Units hod: TO-15 ug/m3	Report Limit	DF 43.8		Analyzed 08/23/16 22:11	CAS No.	
TO15 MSV AIR Benzene Ethylbenzene THC as Gas	Results Analytical Met ND ND	Units hod: TO-15 ug/m3 ug/m3	Report Limit 14.2 38.5	DF 43.8 43.8		Analyzed 08/23/16 22:11 08/23/16 22:11	CAS No. 71-43-2 100-41-4	
TO15 MSV AIR Benzene Ethylbenzene THC as Gas Toluene	Results Analytical Met ND ND ND ND	Units hod: TO-15 ug/m3 ug/m3 ug/m3	14.2 38.5 3120	DF 43.8 43.8 43.8		Analyzed 08/23/16 22:11 08/23/16 22:11 08/23/16 22:11	CAS No. 71-43-2 100-41-4 108-88-3	
TO15 MSV AIR	Results Analytical Met ND ND ND ND ND ND ND	Units hod: TO-15 ug/m3 ug/m3 ug/m3 ug/m3	14.2 38.5 3120 33.7	DF 43.8 43.8 43.8 43.8		Analyzed 08/23/16 22:11 08/23/16 22:11 08/23/16 22:11 08/23/16 22:11	CAS No. 71-43-2 100-41-4 108-88-3 1330-20-7	

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

ANALYTICAL RESULTS

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Date: 08/31/2016 12:04 PM

Sample: Int-3	Lab ID: 103	59624008	Collected: 08/18/	16 13:10	Received: 0	8/19/16 09:30 N	/latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15						
Benzene	ND	ug/m3	12.6	38.8		08/23/16 22:39	71-43-2	A4
Ethylbenzene	ND	ug/m3	34.1	38.8		08/23/16 22:39	100-41-4	
THC as Gas	ND	ug/m3	2760	38.8		08/23/16 22:39		
Toluene	ND	ug/m3	29.9	38.8		08/23/16 22:39	108-88-3	
Xylene (Total)	ND	ug/m3	103	38.8		08/23/16 22:39	1330-20-7	
m&p-Xylene	ND	ug/m3	68.7	38.8		08/23/16 22:39	179601-23-1	
o-Xylene	ND	ug/m3	34.1	38.8		08/23/16 22:39	95-47-6	
Sample: Eff-3	Lab ID: 103	59624009	Collected: 08/18/	16 13:00	Received: 0	8/19/16 09:30 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15						
Benzene	ND	ug/m3	13.1	40.4		08/23/16 23:06	71-43-2	A4
	ND	ug/m3	35.6	40.4		08/23/16 23:06	100-41-4	
Ethylbenzene	ND	ug/IIIS						
•	ND ND	ug/m3	2880	40.4		08/23/16 23:06		
•		_	2880 31.1	40.4 40.4		08/23/16 23:06 08/23/16 23:06		
THC as Gas Toluene	ND	ug/m3		-			108-88-3	
THC as Gas	ND ND	ug/m3 ug/m3	31.1	40.4		08/23/16 23:06	108-88-3 1330-20-7	

QUALITY CONTROL DATA

Project: P66 Westlake/ Mercer

LABORATORY CONTROL CAMPLE.

Date: 08/31/2016 12:04 PM

Pace Project No.: 10359624

QC Batch: 432066 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10359624001, 10359624002, 10359624003, 10359624004, 10359624005, 10359624006, 10359624007,

10359624008, 10359624009

METHOD BLANK: 2349810 Matrix: Air

Associated Lab Samples: 10359624001, 10359624002, 10359624003, 10359624004, 10359624005, 10359624006, 10359624007,

10359624008, 10359624009

2240044

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	08/23/16 11:20	
Ethylbenzene	ug/m3	ND	0.88	08/23/16 11:20	
m&p-Xylene	ug/m3	ND	1.8	08/23/16 11:20	
o-Xylene	ug/m3	ND	0.88	08/23/16 11:20	
THC as Gas	ug/m3	ND	71.2	08/23/16 11:20	
Toluene	ug/m3	ND	0.77	08/23/16 11:20	
Xylene (Total)	ug/m3	ND	2.6	08/23/16 11:20	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	34.3	106	62-141	
Ethylbenzene	ug/m3	44.2	48.9	111	59-149	
m&p-Xylene	ug/m3	88.3	96.9	110	59-146	
o-Xylene	ug/m3	44.2	45.4	103	54-149	
THC as Gas	ug/m3	5130	6200	121	68-145	
Toluene	ug/m3	38.3	40.3	105	61-138	
Xylene (Total)	ug/m3	132	142	107	66-146	

		10359847002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	4.0	4.0	0	25	
Ethylbenzene	ug/m3	6.5	6.5	0	25	
m&p-Xylene	ug/m3	23.9	23.9	0	25	
o-Xylene	ug/m3	8.8	8.8	0	25	
THC as Gas	ug/m3	2810	3020	7	25	
Toluene	ug/m3	23.5	23.5	0	25	
Xylene (Total)	ug/m3	32.7	32.7	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 08/31/2016 12:04 PM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66 Westlake/ Mercer

Pace Project No.: 10359624

Date: 08/31/2016 12:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10359624001	 Inf-1	TO-15	432066		
10359624002	Int-1	TO-15	432066		
10359624003	Eff-1	TO-15	432066		
10359624004	Inf-2	TO-15	432066		
10359624005	Int-2	TO-15	432066		
10359624006	Eff-2	TO-15	432066		
10359624007	Inf-3	TO-15	432066		
10359624008	Int-3	TO-15	432066		
10359624009	Eff-3	TO-15	432066		

10359634

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A		Section B					Section C	S C																
Require	Client Information:	림	formation:				io Livo	9 <u>1</u>	Invoice Information:	اٰۃ		١	١	١	١	Г			_	Page:		4	₽	
Company:	P66 ATC Associates		saffler@s	kyle.saffler@afcassocia	ates.com		Attention:	Jon:		Phillips 66	9					_								
Address.	6347 Seaview Avenue Nw	Copy 10: COQY	Didousia	cody.bisnob(@aicassociates.com	lates.cor			N ALIA	Company Marrie: Prillips 66		8									Control Services	of the Park of the	SAMON STATE	Sec. Contraction	1000
	Seattle WA, 98107						Address:	SS:				1				á			A CHILD	egulato	Regulatory Agency	The second second		10 m
Email To:	kyle.sattler@atcassociates.com	Purchase Order No.	TBD	TBD by Kyle			Pace	Ornote	Pace Quote Reference:	.; :		ŀ				_		ŀ		I				
Phone:	0525 Fax	Client Project ID: P66 AOC 1396 We	66 AOC	1396 We	estlake/Mercer	ercer	Pace	Project	뷻	er:	Jen	Jenni Gross	SS							State /	State / Location		- E	Contract of the
Request	Requested Due Date/TAT: 10 Day (Standard)	Container Order Number.	per.				Pace	Pace Profile #:	1	33332 / 2 (Pace Mnpls)	12(ace	Sidul	San, v. Hill	i yaya edilik		0.154P(90.464990)			/ West	WA / Westlake, Mercer	cer	501	22 And Distriction of the
						ŀ	ļ					1			Sedues	ed Ana	Requested Analysis Fiftered (Y/N)	Itered	Į.	-				
				COLLE	ECTED				Pres	Preservatives	ives		N/A											
														91-C										
		CODE	ò	START	END									OY TC										
	One Character per box. (A-Z, 0-9 f) Sample Ids must be unique soutsoid on the control of th	는 No Till Color Selection (if the lot seboo bilev ees)	(G=GRAB C=COMP)			NOIZOZ (NOZ ZV C	PT COLLECTION						i i i i i i i i i i i i i i i i i i i	d THC as Gas I						·	(И\Y) өпһс			
#M3TI		MATRIX CODE	24MPLE TYPE 	TIME	DATE	TIME	# OF CONTAIN	HS2O4	EONH	N ⁸ OH	Na2S2O3	Methanol	əeylsnA 🖟	BTEX an			·				Residual Chlo			
1	1-00		18112	-				┝				┞		7						\vdash		90		
2	14+			1243										7								OCX		
3	1			1245									_	7								508	80	
4	Into			1255										\forall			_		_			004	<i>*</i>	
. 5	Tn+-3			1950								-	,/	7					_		<u> </u>	500	۱.۸	
_ 6 _	l t			125				-		_							_		4			900	w.	
. 7	TMF 3	-		138								-		7			1			_	_	600	تار	
8	Ĥ		_	13m						\dashv		-		7			+			_	_	8	Ų,	
6	100-5 100-5			1300					\Rightarrow			_		7			_		7	+		200		4
10	B701-		-	8				+	\downarrow	+		+		+			+	1	-	+		foro		2 ,
7	13861 - Inc	:	-	7.138			-	+	1	+-		+		+	\pm		+		1	+	<u> </u>	3		ă
7	Appriloval comments	I I I	SHED BY	I "AFFILIAT	NOI	DATE	, p. P. N. D.	TIME				-12		ACCEPTED BY AFFILIATION	- NC		DATE	ig-18p	TIME	0.00	d's	WPLECC	SAMPLE CONDITIONS	
		1		١		Willia!		ار ا			THE PERSON				12	Ê	B	k S	メイ		700	k	/	5
					-1-	3/10/11		2	1	3	Ŋ.			k	#	5	*	7		Л	5	<u></u>		_
		Mach	7			9/8/1/2		18.08		Ma	\not	#7	7	Ž	ري		2-19-1	9	4:50		Pr.6	2	~	>
Pa									<u> </u>								-			\vdash				
ge 11 (SAMPLE	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: /	ND SIGNA I SAMPLE		-		2 / Land	7									数值	ე u	eal no be	Sealed (V/V)	s Intact
of 13				SIG	SIGNATURE of SAMPLER:	SAMPLE	18	1] [2			ă	E Sign	# 90	DATE Signed: 8 / 18	13		1	TEMP !	(Y/N)	Cooter (Sample (V/V)
									1	brace			1	l	l	3	š			1	1		١	

1	7	J ace A	inaly	ticai [*]
/ ·		4007	u wy	ri (riu)

Document Name: Cooler Transfer Check List

Revised Date: 23Apr2013 Page 1 of 1

Document Number: F-MN-C-120-rev.01 Issuing Authority: Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	P66-A	TC As	sociate	ŝ	
Project Manager:	Ten	ni Gu	055		
Profile/Line #:	337	32/	2		
Received with Custody	Seal:	Yes	No		
Custody Seal Intact:	Yes	No	ÑA		
Temperature C: IR Gun # IR1 IR2 Samples on ice	Temp Read	- -	cted Temp 29,9 egun	Correction Factor	
Rush/Short Hold:	<u> </u>	10			
Containers Intact:	Ves	No			
Re-packed and Re-Ice	d:				
Temp Blank Included:	Ŷes	No			
Shipped By/Date:		M	9/19/	[6]	
Notes					

Pace Analytical*

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.11 Document Revised: 26APR2016 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

F-MN-A-106-rev.11 Pace Minnesota Quality Office MO#:10359624 Air Sample Condition Client Name: Project #: **Upon Receipt** Courier: Fed Ex UPS Speedee Client Pace Other: Commercial 7021 Tracking Number: Proj. Due Date: Yes No Seals Intact? Packing Material: Bubble Wrap Bubble Bags Foam None Tin Can Other: Temp Blank rec: Yes No ___888A912167504 151401163 Temp. (TO17 and TO13 samples only) (°C): Corrected Temp (°C): Thermom. Used: B88A0143310098 Date & Initials of Person Examining Contents: Temp should be above freezing to 6°C Correction Factor: Type of ice Received Blue Wet Mone Comments: Yes Chain of Custody Present? ∏No □N/A Yes No □N/A Chain of Custody Filled Out? 2. Yes No □N/A Chain of Custody Relinquished? Yes Sampler Name and/or Signature on COC? No □N/A **☑**Yes □No N/A Samples Arrived within Hold Time? T-3A6 Yes □No □N/A Short Hold Time Analysis (<72 hr)? **Rush Turn Around Time Requested?** Yes No □N/A 8. Sample 11 "BBD/-Inf" closs it have enough sample No □N/A Sufficient Volume? Yes **⊒**Yes □N/A □No Correct Containers Used? Yes □N/A -Pace Containers Used? No Yes □No □N/A 10. Containers Intact? Media: Air Can Filter TDT Passive 11. Yes No □N/A 12. Sample Labels Match COC? Samples Received: Canisters Canisters Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Field Data Required? Yes XNo CLIENT NOTIFICATION/RESOLUTION Date/Time: 08/19/16 13:00 Person Contacted: Kyle Sattler Comments/Resolution: Notified Kyle, the two samples listed to be kept on hold (B701 and B801) were received with insufficient volume to analyze. B701 was received flat.

Project Manager Review: Date: 08/19/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

(612)607-1700

August 29, 2016

Kyle Sattler ATC Group Services LLC 7070 SW Fir Loop Suite 100 Portland, OR 97223

RE: Project: P66 AOC 1396

Pace Project No.: 10359949

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on August 23, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

JENNI GROSS

Project Manager

Enclosures

cc: Cody Bishop, ATC Group Services LLC

CERTIFICATIONS

Project: P66 AOC 1396 Pace Project No.: 10359949

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

Project: P66 AOC 1396 Pace Project No.: 10359949

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
10359949001	Inf-1	Air	08/22/16 12:00	08/23/16 10:15	
10359949002	Inf-2	Air	08/22/16 12:00	08/23/16 10:15	
10359949003	Inf-3	Air	08/22/16 12:00	08/23/16 10:15	

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE ANALYTE COUNT

Project: P66 AOC 1396 Pace Project No.: 10359949

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10359949001	Inf-1	TO-15	DR1	7	PASI-M
10359949002	Inf-2	TO-15	DR1	7	PASI-M
10359949003	Inf-3	TO-15	DR1	7	PASI-M

ANALYTICAL RESULTS

Project: P66 AOC 1396
Pace Project No.: 10359949

Date: 08/29/2016 12:52 PM

Sample: Inf-1	Lab ID: 103	59949001	Collected:	08/22/1	16 12:00	Received: 0	8/23/16 10:15 N	/latrix: Air	·
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15							
Benzene	ND	ug/m3		1.4	2.1		08/25/16 19:18	71-43-2	
Ethylbenzene	ND	ug/m3		1.8	2.1		08/25/16 19:18	100-41-4	
THC as Gas	3750	ug/m3		150	2.1		08/25/16 19:18		A4
Toluene	6.7	ug/m3		1.6	2.1		08/25/16 19:18	108-88-3	
Xylene (Total)	9.3	ug/m3		5.6	2.1		08/25/16 19:18	1330-20-7	
m&p-Xylene	ND	ug/m3		9.3	2.1		08/25/16 19:18	179601-23-1	
o-Xylene	2.3	ug/m3		1.8	2.1		08/25/16 19:18		
Sample: Inf-2	Lab ID: 103	59949002	Collected:	08/22/1	16 12:00	Received: 0	08/23/16 10:15 N	Matrix: Air	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15							
Benzene	1.3	ug/m3		1.1	1.74		08/25/16 19:50	71-43-2	
Ethylbenzene	ND	ug/m3		1.5	1.74		08/25/16 19:50	100-41-4	
THC as Gas	3420	ug/m3		124	1.74		08/25/16 19:50		A4
Toluene	5.6	ug/m3		1.3	1.74		08/25/16 19:50	108-88-3	
Xylene (Total)	7.3	ug/m3		4.6	1.74		08/25/16 19:50	1330-20-7	
m&p-Xylene	ND	ug/m3		7.7	1.74		08/25/16 19:50	179601-23-1	
o-Xylene	1.7	ug/m3		1.5	1.74		08/25/16 19:50	95-47-6	
Sample: Inf-3	Lab ID: 103	59949003	Collected:	08/22/1	16 12:00	Received: 0	08/23/16 10:15 M	Matrix: Air	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15							
Benzene	ND	ug/m3		1.1	1.68		08/25/16 20:34	71-43-2	
Ethylbenzene	ND	ug/m3		1.5	1.68		08/25/16 20:34	100-41-4	
THC as Gas	3170	ug/m3		120	1.68		08/25/16 20:34		A4
Toluene	5.2	ug/m3		1.3	1.68		08/25/16 20:34	108-88-3	
Xylene (Total)	7.0	ug/m3		4.5	1.68		08/25/16 20:34	1330-20-7	
m&p-Xylene	ND	ug/m3		7.4	1.68		08/25/16 20:34	179601-23-1	
o-Xylene	1.6	ug/m3		1.5	1.68		08/25/16 20:34	05-47-6	

Date: 08/29/2016 12:52 PM

QUALITY CONTROL DATA

Project: P66 AOC 1396 Pace Project No.: 10359949

QC Batch: 432557 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10359949001, 10359949002, 10359949003

METHOD BLANK: 2352113 Matrix: Air

Associated Lab Samples: 10359949001, 10359949002, 10359949003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.65	08/25/16 09:59	
Ethylbenzene	ug/m3	ND	0.88	08/25/16 09:59	
m&p-Xylene	ug/m3	ND	4.4	08/25/16 09:59	
o-Xylene	ug/m3	ND	0.88	08/25/16 09:59	
THC as Gas	ug/m3	ND	71.2	08/25/16 09:59	
Toluene	ug/m3	ND	0.77	08/25/16 09:59	
Xylene (Total)	ug/m3	ND	2.6	08/25/16 09:59	

LABORATORY CONTROL SAMPLE	E: 2352114					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
- alameter				70 INEC		Qualifiers
Benzene	ug/m3	32.5	38.1	117	62-141	
Ethylbenzene	ug/m3	44.2	52.2	118	59-149	
m&p-Xylene	ug/m3	88.3	98.9	112	59-146	
o-Xylene	ug/m3	44.2	53.8	122	54-149	
THC as Gas	ug/m3	5130	6540	127	68-145	
Toluene	ug/m3	38.3	45.9	120	61-138	
Xylene (Total)	ug/m3	132	153	115	66-146	

SAMPLE DUPLICATE: 2352784		10359990001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	2.4	2.5	5	25	
Ethylbenzene	ug/m3	ND	1.3J		25	
m&p-Xylene	ug/m3	ND	5.9J		25	
o-Xylene	ug/m3	1.8	1.8	1	25	
THC as Gas	ug/m3	960	1690	55	25	R1
Toluene	ug/m3	5.1	5.1	1	25	
Xylene (Total)	ug/m3	7.6	7.6	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: P66 AOC 1396 Pace Project No.: 10359949

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 08/29/2016 12:52 PM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66 AOC 1396 Pace Project No.: 10359949

Date: 08/29/2016 12:52 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10359949001	Inf-1	TO-15	432557		
10359949002	Inf-2	TO-15	432557		
10359949003	Inf-3	TO-15	432557		

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

(A/N) Sambles Intact Custody Sealed Coolet (Y/N) ŏ 2 \$ no beviece? (V/Y) ec ์ก G C Z 2 AmB Residual Chlorine (Y/N) 3 LEMP in C 05:51 oilpa/8 120 18231h DATE Signed: Analyses liest N/A 12005/ 9350 Other Disyap Methanol Preservatives EOSSSBN НОвИ Pace Quote Reference: Pace Project Manager: Pace Profile #: нсі invoice Information: Attention: Phillips Company Name: **EONH** (00g H2804 15 15 15:55 Section C Address; Nupreserved SAMPLER NAME AND SIGNATURE # OF CONTAINERS M63/8 8/22/16 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME DATE COLLECTED NO HAT TIME 82222016 17 OC Purchase Order No.
Client Project ID: P66 AOC 1396
Container Order Number: START Required Project Information: Report To: Kyle Sattler
Copy To: Cody Bishop (G=GRAB C=COMP) BAKT BIRMAS MATRIX CODE (see valid codes to left) Section B CODE DW WY WP OIL TS MATRIX
Dirtuking Water
Water
Water
Water
Product
Soul/Solid
OII
Wipe
Ah
Ah
Tissue Requested Due Date/TAT: 10 Day (Standard) ABDITTONAL COMMENTS One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique ATC Group Services 6347 Seaview Ave NW SAMPLE ID Required Client Information Seaffle, WA 98107 Inf-2 Inf - 3 파-1 3 5. 7. Ŋ & j6 + 9 72 ITEM#

Page 9 of 11

Pace Mapis

Pace Analytical	Document Name: Cooler Transfer Check List	Revised Date: 23Apr2013 Page 1 of 1
Pace Allalytical	Document Number: F-MN-C-120-rev.01	Issuing Authority: Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	P66-	ATC		
Project Manager:	Jenn	6vo	22	
Profile/Line #:	3333	a/a		
Received with Custod	y Seal:	Yes	No	
Custody Seal Intact:	Yes	No	NA	
	Temp Read	Corre	cted Temp	Correction Factor
Temperature C: IR Gun # IR1 IR2 Samples on ice	AmB a, cooling production	cess has b	Amß egun	
Rush Short Hold:	72 1	tours	· —	
Containers Intact:	Yes	No		
Re-packed and Re-lo	8 22 1.0 €d :			
Temp Blank Included:	Yes	No		
Shipped By/Date:	<u> </u>	8/22/16		

Notes: Client to email Chain of Constady.

Pace Analytical

hold, incorrect preservative, out of temp, incorrect containers)

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-105-rev.11 Document Revised: 26APR2016 Page 1 of 1

Issuing Authority:
Pace Minnesota Quality Office

ir Sample Condition Clier Upon Receipt	ot Name: ATC ~ W		Project #:	田の井	: 103599	49
Courier: Fed	Ex UPS	Speedee C				
Tracking Number: 75	21 4575 025	74	V.S			
Custody Seal on Cooler/Box	Present? XYes	□No Seals Int	act? y⊴ y∕es	□No	Optional: Proj. Due Date:	Proj. Name:
acking Material: Bubb	e Wrap 🔲 Bubble	Bags Foam N	one 🔲 Tin Ca	n 🔲 Other	: Temp	Blank rec: Yes No
Temp. (TO17 and TO13 samples	only) (°C):	Corrected Temp (°C):	<u>├</u> Therm	nom. Used:	□B88A912167504 □B88A0143310098	☐151401163 ☐151401164
Temp should be above freezing	to 6°C Correction Fa	ctor:	Date 8	& Initials of Pe	rson Examining Contents:	7.8231
ype of ice Received 🔲 Blue	□Wet ► None	·				
					Comments:	
Chain of Custody Present?		∑ Yes □No	N/A 1.			
Chain of Custody Filled Out?		Yes No	□N/A 2.			
Chain of Custody Relinquish	ed?	∑ Yes □ No	N/A 3.			
Sampler Name and/or Signa	ture on COC?	Yes No	□N/A 4.	•		
Samples Arrived within Hold	Time?	Yes No	□N/A 5.			
Short Hold Time Analysis (<	72 hr)?	Yes No	N/A 6. •	73PG		
Rush Turn Around Time Rec	uested?	Yes No	N/A 7.			
Sufficient Volume?	<u></u>	Yes No	N/A 8.			
Correct Containers Used?		∑Yes	□N/A 9.			
-Pace Containers Used?		Yes No	□N/A			
Containers Intact?			N/A 10.			
Media: Air Can A	irbag Filter	TDT Passive	11.			
Sample Labels Match COC?		∑Yes □No	□N/A 12.			
Samples Received:			.			
Samples neceived.	Canisters	····		·	Canisters	···········
Sample Number	Can ID	Flow Controller ID	Sample	Number	Can ID	Flow Controller ID
Sample (Verifical	005					
	:					
	-					

· · · · · · · · · · · · · · · · · · ·		, I	<u> </u>			
CLIENT NOTIFICATION/RESC					Field-Data-Required?	
Comments/Resoluti	on:					
Project Manager Review: _ ote: Whenever there is a discre						

September 07, 2016

Kyle Sattler ATC Group Services LLC 7070 SW Fir Loop Suite 100 Portland, OR 97223

RE: Project: AOC 1396

Pace Project No.: 10360829

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on August 30, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

JENNI GROSS

Project Manager

Enclosures

cc: Cody Bishop, ATC Group Services LLC

CERTIFICATIONS

Project: AOC 1396
Pace Project No.: 10360829

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: AOC 1396
Pace Project No.: 10360829

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10360829001	inf-1	Air	08/29/16 13:00	08/30/16 10:00
10360829002	inf-2	Air	08/29/16 13:05	08/30/16 10:00
10360829003	inf-3	Air	08/29/16 13:10	08/30/16 10:00

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE ANALYTE COUNT

Project: AOC 1396
Pace Project No.: 10360829

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10360829001	inf-1	TO-15	NCK	7	PASI-M
10360829002	inf-2	TO-15	NCK	7	PASI-M
10360829003	inf-3	TO-15	NCK	7	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: AOC 1396
Pace Project No.: 10360829

Date: 09/07/2016 12:48 PM

Sample: inf-1	Lab ID: 103	60829001	Collected: 08/29/	16 13:00	Received: 0	08/30/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	ND	ug/m3	26.2	40.4		09/06/16 23:26	71-43-2	
Ethylbenzene	ND	ug/m3	35.6	40.4		09/06/16 23:26	100-41-4	
THC as Gas	15100	ug/m3	2880	40.4		09/06/16 23:26		CH,L1
Toluene	57.8	ug/m3	31.1	40.4		09/06/16 23:26	108-88-3	
Xylene (Total)	ND	ug/m3	107	40.4		09/06/16 23:26	1330-20-7	
m&p-Xylene	ND	ug/m3	178	40.4		09/06/16 23:26	179601-23-1	
o-Xylene	ND	ug/m3	35.6	40.4		09/06/16 23:26	95-47-6	
Sample: inf-2	Lab ID: 103	60829002	Collected: 08/29/	16 13:05	Received: 0	08/30/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15						
Benzene	ND	ug/m3	26.2	40.4		09/06/16 23:54	71-43-2	
Ethylbenzene	ND	ug/m3	35.6	40.4		09/06/16 23:54	100-41-4	
THC as Gas	19700	ug/m3	2880	40.4		09/06/16 23:54		CH,L1
Toluene	60.4	ug/m3	31.1	40.4		09/06/16 23:54	108-88-3	
Xylene (Total)	ND	ug/m3	107	40.4		09/06/16 23:54	1330-20-7	
m&p-Xylene	ND	ug/m3	178	40.4		09/06/16 23:54	179601-23-1	
o-Xylene	ND	ug/m3	35.6	40.4		09/06/16 23:54	95-47-6	
Sample: inf-3	Lab ID: 103	60829003	Collected: 08/29/	16 13:10	Received: 0	08/30/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	ND	ug/m3	26.2	40.4		09/07/16 00:22	71-43-2	
Ethylbenzene	ND	ug/m3	35.6	40.4		09/07/16 00:22	100-41-4	
THC as Gas	ND	ug/m3	2880	40.4		09/07/16 00:22		
Toluene	80.6	ug/m3	31.1	40.4		09/07/16 00:22	108-88-3	
Xylene (Total)	148	ug/m3	107	40.4		09/07/16 00:22	1330-20-7	
m&p-Xylene	ND	ug/m3	178	40.4		09/07/16 00:22	179601-23-1	
o-Xylene	36.3	ug/m3	35.6	40.4		09/07/16 00:22		

(612)607-1700

QUALITY CONTROL DATA

Project: AOC 1396
Pace Project No.: 10360829

Date: 09/07/2016 12:48 PM

QC Batch: 434202 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10360829001, 10360829002, 10360829003

METHOD BLANK: 2361005 Matrix: Air

Associated Lab Samples: 10360829001, 10360829002, 10360829003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	 ug/m3	ND	0.65	09/06/16 12:10	
Ethylbenzene	ug/m3	ND	0.88	09/06/16 12:10	
m&p-Xylene	ug/m3	ND	4.4	09/06/16 12:10	
o-Xylene	ug/m3	ND	0.88	09/06/16 12:10	
THC as Gas	ug/m3	ND	71.2	09/06/16 12:10	
Toluene	ug/m3	ND	0.77	09/06/16 12:10	
Xylene (Total)	ug/m3	ND	2.6	09/06/16 12:10	

ABORATORY CONTROL SAMP	LE: 2361006	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
enzene	ug/m3	32.5	39.4	121	62-141	
thylbenzene	ug/m3	44.2	54.7	124	59-149	
&p-Xylene	ug/m3	88.3	104	118	59-146	
Xylene	ug/m3	44.2	51.5	117	54-149	
HC as Gas	ug/m3	5130	7720	151	68-145	CH,L1
oluene	ug/m3	38.3	43.4	113	61-138	
ylene (Total)	ug/m3	132	156	118	66-146	

		10360771002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	5.2	5.0	3	25	
Ethylbenzene	ug/m3	16.5	16.9	2	25	
m&p-Xylene	ug/m3	59.6	60.1	1	25	
o-Xylene	ug/m3	24.0	24.4	2	25	
THC as Gas	ug/m3	27300	25800	6	25	CH,L1
Toluene	ug/m3	41.2	42.2	2	25	
Xylene (Total)	ug/m3	83.6	84.6	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AOC 1396
Pace Project No.: 10360829

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 09/07/2016 12:48 PM

CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AOC 1396
Pace Project No.: 10360829

Date: 09/07/2016 12:48 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10360829001	inf-1	TO-15	434202		
10360829002	inf-2	TO-15	434202		
10360829003	inf-3	TO-15	434202		

CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical"

www.pacelats.com

Section A Required Client Information:

Company: Address:

DRINKING WATER 10360829 1720886 OTHER GROUND WATER FT Site Location Wertlake/Merca REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) STATE: NPDES The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. TSU T Zesis Invoice Information: Company Name: Section C Address: Pace Quote Attention: Bishy 7-14-05 1396 Section B Required Project Information: Cody Report To: (Cy/urchase Order No.: Project Number: Project Name: Copy To:

1 N

Email To: Kylz, Scytter Byte associate

Requested Due Date/TAT:

	Section D Required Client Information	Matrix Codes MATRIX / CODE				O	COLLECTED	D			Pre	Preservatives	tives		1 N /X											
		_	WW Y S	-GRAB C=CC		COMPOSITE	Ω	COMPOSITE END/GRAB	COLLECTION	S				•	•	5128 54						(N/A) t				
# M∃TI	Sample IDs MUST BE UNIQUE	Wilpe W Wilpe W A Air Tissue T Other O			<u> </u>	DATE T	HMF TAG	E E	SAMPLE TEMP AT	Nubreserved	PNO ³ PSO ⁵	N ₂ OH HCI	Na ₂ S ₂ O ₃ Methanol	Other	Analysis Test וest ו	HT, KETTE						Residual Chlorine		Pace Project No./ Lab.LD.	to Verification	· d
<u> </u>	1. Lul		\vdash	-	2/11/2	1 -	╁	╄	L	<u> </u>					-	Ė					-			100		
~	7 7				_		305			_					<u>-</u>			<u> </u>					(-)	200		
n	1106-					טוגר!	م ا			,	<u> </u>				_								•	500		
4	• .						_			,			_													
2	-																									
9	-																									
^	-			_																-		<u> </u>				
00						_																				
en .											H				لب											
10	٥ ا																									
1		:																								
12	5														:											
	ADDITIONAL COMMENTS	STA	RE	LINOL	UISHED	RELINQUISHED BY / AFFILIATION	LIATION	DATE	ш	TIME			ACCE	PTED	BY / AI	ACCEPTED BY / AFFILIATION	NO		DATE	F	TIME		SA	SAMPLE CONDITIONS	SITIONS	
L Ľ	٥١٤		0	\	/	NO	7	8/50	13/167	151	18	M	BEN				1MC	18/1	1×5Us	18	[5]	ነትと	1	N =	クし	
		~	<u>U</u>	7	(\ \ \	1/880	Pare	152/8	3	50:91	1.0	F	我	Zoa	376	رم		8	<u>નાષ્ટ્ર</u> 8	്രവ	20	Surviv	7	ۍ	Ŋ	
)		7		,		•																	,	
aye	ane					SAN	SAMPLER NAME AND		SIGNATURE													၁.		oger.		
	90	ORIGINAL	NAL				PRINT	PRINT Name of SAMPLER:	PLER:	Och;	1		Bosh	Ů.								uị du	bevie MY) e	boteu ed Co (N/Y)	(selo	(N/A)
	f 11						SIGN	SIGNATURE of SAMPLER:	PLER:	\	,	1	7		,	DATE Signed	gned YY):	3	21/21/15	~		п э Т		Seal		<u> </u>
			!]				1					1						1	L	000	ָ ֖֖֭֭֭֭֭֭֭֭֭֭֭֓֞֞֝֞֝֞֞֡֡֡֓֓	1	

F-ALL-Q-020rev.07, 15-May-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

/ Pace Analytica	a/"

Document Name: Air Sample Condition Upon Receipt

Document Revised: 26APR2016

Page 1 of 1 Issuing Authority: Pace Minnesota Quality Office Document No.: F-MN-A-106-rev.11

Courier: ☑Fed	ATC				1036082	· •
Con	nmercial Pace	Speedee Other:		10360829		
Tracking Number: 4	121 4575	0482				
Custody Seal on Cooler/Box	Present?	□No Seals	s Intact?	⊅ es	Optional: Proj. Due Date:	Proj. Name:
acking Material: Dubbl	le Wrap Bubble B	agsFoam [None [Tin CanOthe	r: Tem	p Blank rec: Yes
Temp. (T017 and T013 samples Temp should be above freezing ype of ice Received Blue	to 6°C Correction Fact	, , , , , , , , , , , , , , , , , , ,	: <u>k</u> 2	Thermom, Used: Date & Initials of F	B88A912167504 B88A0143310098 Person Examining Contents:	151401163 151401164 15830(
					Comments:	
Chain of Custody Present?				1.		
Chain of Custody Filled Out?			No N/A			
Chain of Custody Relinquishe			No □N/A		<u> </u>	
Sampler Name and/or Signate Samples Arrived within Hold			<u>No</u>			
Short Hold Time Analysis (<)		Yes \square			A-C	
Rush Turn Around Time Reg		Yes ∠		7.	T G	
Sufficient Volume?	uesteu.					
Correct Containers Used?		D/es D		* 1	·	
-Pace Containers Used?		Ø/es □				
Containers Intact?			No □N/A			
Media: Air Can	irbag Filter	TDT Pass		11.		
Sample Labels Match COC?		⊈ ⊁es □	No □N/A	12.		
Samples Received:						
Jampies received.	Canisters				Canisters	
Sample Number	Can ID	Flow Controller	- ID	Sample Number	Can ID	Flow Controller ID
·	551115	Tion controller		sample (varioe)	Ganta	Thew controller is
		· · · · · · · · · · · · · · · · · · ·				
			1			
		•				
CLIENT NOTIFICATION/RESO Person Contact	DLUTION ed:			Date/Time:	Field Data Required?	
	on:					

Project Manager Review: Date: 08/30/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of Project Manager Review: hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical	Document Name: Cooler Transfer Check List	Revised Date: 23Apr2013 Page 1 of 1
/ Paue Analytical	Document Number: F-MN-C-120-rev.01	issuing Authority: Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	Plele-F	572		
Project Manager:	Jenni 1	505	<u></u>	
Profile/Line #:	3333	32/3	2	•
Received with Custody	/ Seal:	Yes	No	
Custody Seal Intact:	Yes	No	NA	
	Temp Read	Corre	ected Temp	Correction Factor
Temperature C: IR Gun # IR1 IR2 Q2	24.0 281) - cooling proce	- ess has t	24.1 Degun Ar	nB AIR
Rush Short Hold:	72 H	our	HULD	
Containers Intact:	Yes	No	·	
Re-packed and Re-lee	6 8 129 110 10.		<u>/</u>	•
Temp Blank Included:	Yes	No		
Shipped By/Date:		8 <u>29</u> [1	<u> </u>	
Notes:				

October 18, 2016

Kyle Sattler ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: AOC 1396

Pace Project No.: 10365243

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

ENNI (TROSS

Project Manager

Enclosures

CERTIFICATIONS

Project: AOC 1396
Pace Project No.: 10365243

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA

Colorado Certification #Pace
Connecticut Certification #: PH-0256
EPA Region 8 Certification #: 8TMS-L

Florida/NELAP Certification #: E87605 Guam Certification #:14-008r

Guam Certification #:14-008
Georgia Certification #: 959
Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: AOC 1396
Pace Project No.: 10365243

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10365243001	Inf-1	Air	10/06/16 10:25	10/07/16 10:00
10365243002	Int-1	Air	10/06/16 10:26	10/07/16 10:00
10365243003	Eff-1	Air	10/06/16 10:28	10/07/16 10:00
10365243004	Inf-2	Air	10/06/16 10:30	10/07/16 10:00
10365243005	Int-2	Air	10/06/16 10:32	10/07/16 10:00
10365243006	Eff-2	Air	10/06/16 10:34	10/07/16 10:00
10365243007	Inf-3	Air	10/06/16 10:36	10/07/16 10:00
10365243008	Int-3	Air	10/06/16 10:38	10/07/16 10:00
10365243009	Eff-3	Air	10/06/16 10:40	10/07/16 10:00

SAMPLE ANALYTE COUNT

Project: AOC 1396
Pace Project No.: 10365243

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10365243001	Inf-1	TO-15	MJL	7	PASI-M
10365243002	Int-1	TO-15	MJL	7	PASI-M
10365243003	Eff-1	TO-15	MJL	7	PASI-M
10365243004	Inf-2	TO-15	MJL	7	PASI-M
10365243005	Int-2	TO-15	MJL	7	PASI-M
10365243006	Eff-2	TO-15	MJL	7	PASI-M
10365243007	Inf-3	TO-15	MJL	7	PASI-M
10365243008	Int-3	TO-15	MJL	7	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: AOC 1396
Pace Project No.: 10365243

Date: 10/18/2016 02:38 PM

Sample: Inf-1	Lab ID: 103	65243001	Collected: 10/06/	16 10:25	Received:	10/07/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	51.9	ug/m3	12.6	38.8		10/15/16 16:28	71-43-2	A4
Ethylbenzene	ND	ug/m3	34.1	38.8		10/15/16 16:28	100-41-4	
THC as Gas	68600	ug/m3	4030	38.8		10/15/16 16:28	}	
Toluene	130	ug/m3	29.9	38.8		10/15/16 16:28	108-88-3	
Xylene (Total)	220	ug/m3	103	38.8		10/15/16 16:28	1330-20-7	
m&p-Xylene	142	ug/m3	68.7	38.8		10/15/16 16:28	179601-23-1	
o-Xylene	77.5	ug/m3	34.1	38.8		10/15/16 16:28	95-47-6	
Sample: Int-1	Lab ID: 103	65243002	Collected: 10/06/	16 10:26	Received:	10/07/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	19.9	ug/m3	12.6	38.8		10/15/16 16:56	71-43-2	A4
Ethylbenzene	ND	ug/m3	34.1	38.8		10/15/16 16:56		
ΓHC as Gas	35400	ug/m3	4030	38.8		10/15/16 16:56		
Toluene	192	ug/m3	29.9	38.8		10/15/16 16:56		
Xylene (Total)	ND	ug/m3	103	38.8		10/15/16 16:56		
m&p-Xylene	ND	ug/m3	68.7	38.8		10/15/16 16:56		
o-Xylene	ND	ug/m3	34.1	38.8		10/15/16 16:56		
- 7.y.ss		ug/o	5	00.0		10, 10, 10 10.00		
Sample: Eff-1	Lab ID: 103	65243003	Collected: 10/06/	16 10:28	Received:	10/07/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	16.2	ug/m3	13.1	40.4		10/15/16 17:23	71-43-2	A4
Ethylbenzene	ND	ug/m3	35.6	40.4		10/15/16 17:23	100-41-4	
THC as Gas	17700	ug/m3	4190	40.4		10/15/16 17:23	1	
Toluene	133	ug/m3	31.1	40.4		10/15/16 17:23	108-88-3	
Xylene (Total)	ND	ug/m3	107	40.4		10/15/16 17:23	1330-20-7	
m&p-Xylene	ND	ug/m3	71.5	40.4		10/15/16 17:23	179601-23-1	
o-Xylene	ND	ug/m3	35.6	40.4		10/15/16 17:23	95-47-6	
Sample: Inf-2	Lab ID: 103	65243004	Collected: 10/06/	16 10:30	Received:	10/07/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	48.7	ug/m3	12.2	37.4		10/15/16 17:51	71-43-2	A4
Ethylbenzene	ND	ug/m3	32.9	37.4		10/15/16 17:51	-	
•	42100	ug/m3	3880	37.4		10/15/16 17:51		
THC as Gas								

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(612)607-1700

ANALYTICAL RESULTS

Project: AOC 1396
Pace Project No.: 10365243

Date: 10/18/2016 02:38 PM

Sample: Inf-2	Lab ID: 103	65243004	Collected: 10/06/	16 10:30	Received:	10/07/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Xylene (Total)	181	ug/m3	99.1	37.4		10/15/16 17:51	1330-20-7	
m&p-Xylene	119	ug/m3	66.2	37.4		10/15/16 17:51	179601-23-1	
o-Xylene	62.9	ug/m3	32.9	37.4		10/15/16 17:51	95-47-6	
Sample: Int-2	Lab ID: 103	65243005	Collected: 10/06/	16 10:32	Received:	10/07/16 10:00 I	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15	<u> </u>				_	
Benzene	20.7	ug/m3	13.1	40.4		10/15/16 18:19	71-43-9	A4
Ethylbenzene	20.7 ND	ug/m3	35.6	40.4		10/15/16 18:19		△ +
THC as Gas	24500	ug/m3	4190	40.4		10/15/16 18:19		
Toluene	145	ug/m3	31.1	40.4		10/15/16 18:19		
Kylene (Total)	ND	ug/m3	107	40.4		10/15/16 18:19		
n&p-Xylene	ND	ug/m3	71.5	40.4		10/15/16 18:19		
o-Xylene	ND	ug/m3	35.6	40.4		10/15/16 18:19		
Sample: Eff-2	Lab ID: 103	65243006	Collected: 10/06/	16 10:34	Received:	10/07/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15					_	
Benzene	21.6	ug/m3	14.2	43.8		10/15/16 18:46	71-43-2	A4
Ethylbenzene	ND	ug/m3	38.5	43.8		10/15/16 18:46	100-41-4	
THC as Gas	20900	ug/m3	4540	43.8		10/15/16 18:46		
Toluene	155	ug/m3	33.7	43.8		10/15/16 18:46		
(ylene (Total)	ND	ug/m3	116	43.8		10/15/16 18:46		
n&p-Xylene	ND	ug/m3	77.5	43.8		10/15/16 18:46		
p-Xylene	ND	ug/m3	38.5	43.8		10/15/16 18:46	95-47-6	
Sample: Inf-3	Lab ID: 103	65243007	Collected: 10/06/	16 10:36	Received:	10/07/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	51.0	ug/m3	13.1	40.4		10/15/16 19:19	71-43-2	
Ethylbenzene	ND	ug/m3	35.6	40.4		10/15/16 19:19	100-41-4	
THC as Gas	39600	ug/m3	4190	40.4		10/15/16 19:19		
Toluene	154	ug/m3	31.1	40.4		10/15/16 19:19		
(Ylene (Total)	176	ug/m3	107	40.4		10/15/16 19:19		
m&p-Xylene	115	ug/m3	71.5	40.4		10/15/16 19:19		

ANALYTICAL RESULTS

Project: AOC 1396
Pace Project No.: 10365243

Date: 10/18/2016 02:38 PM

Sample: Int-3	Lab ID: 103	65243008	Collected: 10/06/	16 10:38	Received: 10	0/07/16 10:00 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15						
Benzene	68.8	ug/m3	13.1	40.4		10/15/16 20:23	71-43-2	A4
Ethylbenzene	44.2	ug/m3	35.6	40.4		10/15/16 20:23	100-41-4	
THC as Gas	33400	ug/m3	4190	40.4		10/15/16 20:23		
Toluene	304	ug/m3	31.1	40.4		10/15/16 20:23	108-88-3	
Xylene (Total)	215	ug/m3	107	40.4		10/15/16 20:23	1330-20-7	
m&p-Xylene	159	ug/m3	71.5	40.4		10/15/16 20:23	179601-23-1	
o-Xylene	55.9	ug/m3	35.6	40.4		10/15/16 20:23	95-47-6	

QUALITY CONTROL DATA

Project: AOC 1396
Pace Project No.: 10365243

Date: 10/18/2016 02:38 PM

QC Batch: 441266 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10365243001, 10365243002, 10365243003, 10365243004, 10365243005, 10365243006, 10365243007,

10365243008

METHOD BLANK: 2401944 Matrix: Air

Associated Lab Samples: 10365243001, 10365243002, 10365243003, 10365243004, 10365243005, 10365243006, 10365243007,

10365243008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	10/15/16 09:51	
Ethylbenzene	ug/m3	ND	0.88	10/15/16 09:51	
m&p-Xylene	ug/m3	ND	1.8	10/15/16 09:51	
o-Xylene	ug/m3	ND	0.88	10/15/16 09:51	
THC as Gas	ug/m3	ND	104	10/15/16 09:51	
Toluene	ug/m3	ND	0.77	10/15/16 09:51	
Xylene (Total)	ug/m3	ND	2.6	10/15/16 09:51	

LABORATORY CONTROL SAMPLE:	2401945					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	35.7	110	62-141	
Ethylbenzene	ug/m3	44.2	46.2	105	59-149	
m&p-Xylene	ug/m3	88.3	92.7	105	59-146	
o-Xylene	ug/m3	44.2	46.0	104	54-149	
THC as Gas	ug/m3	5130	5370	105	68-145	
Toluene	ug/m3	38.3	38.7	101	61-138	
Xylene (Total)	ug/m3	132	139	105	66-146	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: AOC 1396
Pace Project No.: 10365243

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 10/18/2016 02:38 PM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AOC 1396
Pace Project No.: 10365243

Date: 10/18/2016 02:38 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10365243001	Inf-1	TO-15	441266		
10365243002	Int-1	TO-15	441266		
10365243003	Eff-1	TO-15	441266		
10365243004	Inf-2	TO-15	441266		
10365243005	Int-2	TO-15	441266		
10365243006	Eff-2	TO-15	441266		
10365243007	Inf-3	TO-15	441266		
10365243008	Int-3	TO-15	441266		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Project No./ Lab 1.D. (N/A) **DRINKING WATER** Samples Intact SAMPLE CONDITIONS F-ALL-Q-020rev.07, 15-May-2007 1750870 OTHER (N/A) Sealed Cooler Custody (N/Y) eol Received on GROUND WATER **₹** Ş Residual Chlorine (Y/N) O° ni qm9T Page: 4 REGULATORY AGENCY RCRA 200 Requested Analysis Filtered (Y/N) TIME STATE Site Location 00K DATE NPDES aria. UST DATE Signed "(MM/DD/YY): ACCEPTED BY / AFFILIATION LOT Luttallixd BTEX BX Ø. t Analysis Test †n/λ Q (Circles) Other 3.5hg Methanol Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Preservatives EOSSSN NaOH なれな HCI Invoice Information: €ОИН Company Name: 3 OS2H Pace Project Manager: Section C 600 10/6/16/16:15 TIME Unpreserved ace Quote Attention: Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 3//1/21 DATE Ţ COMPOSITE END/GRAB DATE COLLECTED , P. 100 396 RELINQUISHED BY / AFFILIATION EIME. COMPOSITE START 11/2/ DATE Section B Required Project Information: くの/ぐ urchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE Project Number: (see valid codes to left) MATRIX CODE roject Name: ORIGINAL Report To: Copy To: Matrix Codes Drinking Water Water Waste Water Email To: UV Salther Cafe Social Product Soil/Solid Oil Wipe Air Tissue Other ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Section D Required Client Information Section A Required Client Information: Requested Due Date/TAT: 174-17 100-14 で-3月 Inf. 3 TA1-7 3 Company: Page 11 of 13 Ф # WHIL

Pace Analytical	Document Name: Cooler Transfer Check List	Revised Date: 23Apr2013 Page 1 of 1
Pace Analytical	Document Number: F-MN-C-120-rev.01	Issuing Authority: Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	Plele-	ATZ		
Project Manager:	Jenni	Gus	<u>ع</u>	
Profile/Line #:	3333	2/2		
Received with Custody	/ Seal:	Yes	No	
Custody Seal Intact:	Yes	No	NA	
	Temp Read	Corre	cted Temp	Correction Factor
Temperature C: IR Gun # IR1 IR2 Samples on ice	AMB, cooling proc	ess has be	egun AVR	
Rush/Short Hold:	72 H	tour		
Containers Intact:	Yes	No	/	
Re-packed and Re-loc	id: volulie	<u> </u>		
Temp Blank Included:	Yes	No	· •	
Shipped By/Date:		o lolu	0/16	
Notes:				

Pace Analytical

Document Name: Air Sample Condition Upon Receipt

Document No.:

Document Revised: 26APR2016 Page 1 of 1

Issuing Authority:

A door may nour	F-MN-A-106-rd	ev.11	Pace Minnesota Quality	Office
Air Sample Condition Upon Receipt AT A T T T T T T T T T T T	Pace-WA	oject #: WO#	103652	43
Courier:		t 10365243		
Tracking Number: 7021 4575 8	1246			
Custody Seal on Cooler/Box Present?	No Seals Intact?	Yes No	Optional: Proj. Due Date:	Proj. Name:
Packing Material: Bubble Wrap Bubbl	e Bags	☐Tin Can ☐Other:	Tem	p Blank rec: Yes No
Temp. (TO17 and TO13 samples only) (°C):	Corrected Temp (°C):	Thermom, Used:	B88A912167504	<u></u> 151401163
Temp should be above freezing to 6°C			B88A0143310098 rson Examining Contents:	10.7.16 MZ
Type of ice Received Blue Wet None				
			Comments:	
Chain of Custody Present?	☐Yes ☐No ☐]N/A 1.		
Chain of Custody Filled Out?		_N/A 2.		
Chain of Custody Relinquished?		N/A 3.		
Sampler Name and/or Signature on COC?		N/A 4.		
Samples Arrived within Hold Time?]N/A 5.		
Short Hold Time Analysis (<72 hr)?		$\exists N/A \mid 6. \mathcal{T} - \mathcal{B} A \mathcal{C}$	25	
Rush Turn Around Time Requested?		N/A 7.	01 ()	1 1-1-1/1
Sufficient Volume?	/		will not be con	Que to insufficio
Correct Containers Used?		□N/A 9.		V S
-Pace Containers Used?		□N/A		
Containers Intact?		N/A 10.	· · · - · · · · · · · · · · · · · · · ·	
Media: Air Can (Airbag) Filter	TDT Passive	11.	Ja 10 00	0.00
Sample Labels Match COC?	☐Yes ☑No []N/A 12. No CO	ection time an	COL
Samples Received:				
Canisters			Canisters	
Sample Number Can ID	Flow Controller ID	Sample Number	Can ID	Flow Controller ID
				
		· · · · · · · · · · · · · · · · · · ·		
				-
				-
			<u> </u>	<u> </u>
CLIENT NOTIFICATION/RESOLUTION			Field Data Required:	Yes XNo
Person Contacted: Kyle Sattler		Date/Time:10/0		
Comments/Resolution: Notified Kyle	e, there is insufficient volun	ne to analyze for samp	ole Eff-3	

Project Manager Review: Date: 10/07/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

November 02, 2016

Kyle Sattler ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on October 22, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross jennifer.gross@pacelabs.com

ENNI (TROSS

Project Manager

Enclosures

CERTIFICATIONS

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
10367246001	Inf-1	Air	10/21/16 14:15	10/22/16 08:55	
10367246002	Inf-2	Air	10/21/16 14:15	10/22/16 08:55	
10367246003	Inf-3	Air	10/21/16 14:15	10/22/16 08:55	

SAMPLE ANALYTE COUNT

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10367246001	Inf-1	TO-15	NCK	7	PASI-M
10367246002	Inf-2	TO-15	NCK	7	PASI-M
10367246003	Inf-3	TO-15	NCK	7	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Date: 11/02/2016 02:51 PM

Sample: Inf-1	Lab ID: 103	67246001	Collected: 10/21/	16 14:15	Received: '	10/22/16 08:55 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	1.4	ug/m3	0.66	2.02		10/27/16 18:59	71-43-2	A4
Ethylbenzene	ND	ug/m3	1.8	2.02		10/27/16 18:59	100-41-4	
THC as Gas	5550	ug/m3	210	2.02		10/27/16 18:59		
Toluene	55.0	ug/m3	52.3	67.87		10/28/16 12:48	108-88-3	
Xylene (Total)	ND	ug/m3	5.4	2.02		10/27/16 18:59	1330-20-7	
m&p-Xylene	ND	ug/m3	3.6	2.02		10/27/16 18:59	179601-23-1	
o-Xylene	ND	ug/m3	1.8	2.02		10/27/16 18:59	95-47-6	
Sample: Inf-2	Lab ID: 103	67246002	Collected: 10/21/	16 14:15	Received:	10/22/16 08:55 M	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	1.3	ug/m3	0.63	1.94		10/27/16 19:26	71-43-2	A4
Ethylbenzene	7.2	ug/m3	1.7	1.94		10/27/16 19:26	100-41-4	
THC as Gas	2510	ug/m3	201	1.94		10/27/16 19:26		
Toluene	146	ug/m3	1.5	1.94		10/27/16 19:26	108-88-3	
Xylene (Total)	34.6	ug/m3	5.1	1.94		10/27/16 19:26	1330-20-7	
m&p-Xylene	25.7	ug/m3	3.4	1.94		10/27/16 19:26	179601-23-1	
o-Xylene	8.9	ug/m3	1.7	1.94		10/27/16 19:26	95-47-6	
Sample: Inf-3	Lab ID: 103	67246003	Collected: 10/21/	16 14:15	Received:	10/22/16 08:55 M	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	1.9	ug/m3	0.63	1.94		10/27/16 19:54	71-43-2	A4
Ethylbenzene	3.0	ug/m3	1.7	1.94		10/27/16 19:54	100-41-4	
THC as Gas	1500	ug/m3	201	1.94		10/27/16 19:54		
Toluene	7.7	ug/m3	1.5	1.94		10/27/16 19:54	108-88-3	
Xylene (Total)	18.3	ug/m3	5.1	1.94		10/27/16 19:54	1330-20-7	
m&p-Xylene	14.1	ug/m3	3.4	1.94		10/27/16 19:54	179601-23-1	
o-Xylene	4.2	ug/m3	1.7	1.94		10/27/16 19:54		

QUALITY CONTROL DATA

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Date: 11/02/2016 02:51 PM

QC Batch: 443699 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10367246001, 10367246002, 10367246003

METHOD BLANK: 2418912 Matrix: Air

Associated Lab Samples: 10367246001, 10367246002, 10367246003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND ND	0.32	10/27/16 10:21	
Ethylbenzene	ug/m3	ND	0.88	10/27/16 10:21	
m&p-Xylene	ug/m3	ND	1.8	10/27/16 10:21	
o-Xylene	ug/m3	ND	0.88	10/27/16 10:21	
THC as Gas	ug/m3	ND	104	10/27/16 10:21	
Toluene	ug/m3	ND	0.77	10/27/16 10:21	
Xylene (Total)	ug/m3	ND	2.6	10/27/16 10:21	

LABORATORY CONTROL SAMPLE:	2418913					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	33.1	102	62-141	
thylbenzene	ug/m3	44.2	47.0	106	59-149	
&p-Xylene	ug/m3	88.3	93.4	106	59-146	
Xylene	ug/m3	44.2	45.3	103	54-149	
IC as Gas	ug/m3	5130	5670	111	68-145	
oluene	ug/m3	38.3	40.6	106	61-138	
rlene (Total)	ug/m3	132	139	105	66-146	

SAMPLE DUPLICATE: 2420193						
		60230663001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	9.7	9.9	2	25	
Ethylbenzene	ug/m3	6.5	6.8	5	25	
m&p-Xylene	ug/m3	26.5	27.9	5	25	
o-Xylene	ug/m3	9.9	10.1	2	25	
THC as Gas	ug/m3	908	861	5	25	
Toluene	ug/m3	31.3	32.5	4	25	
Xylene (Total)	ug/m3	36.4	38.0	4		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 11/02/2016 02:51 PM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66 Westlake/ Mercer

Pace Project No.: 10367246

Date: 11/02/2016 02:51 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10367246001	Inf-1	TO-15	443699		
10367246002	Inf-2	TO-15	443699		
10367246003	Inf-3	TO-15	443699		

CHAIN-OF-CUSTODY / Analytical Request Document

Face Analytical www.pacelabs.com

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

9426950)

Pace Project No./ Lab I.D. (N/A) DRINKING WATER Samples Intact SAMPLE CONDITIONS 1720607 OTHER (N/A) Sealed Cooler 000 õ Custody ટ Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) AND S O° ni qmeT Page: 3 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME Site Location STATE NPDES DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION <u> 510[79</u> /BLEN CX U AND SALE SSerie ↓ jeeT sievlenA↓ **†**N// 15/25/20 15/25/20 10/21/20 10/20 10/20 10/20 10/20 10/20 10/20 10/ Other Methanol Preservatives Na₂S₂O₃ err, NaOH HCI Invoice Information: 744 е ОИН Company Name: 1420 [†]OS[₹]H Pace Project Manager: (Pace Profile #: 00:51 91/12/01 Section C Unpreserved TIME ace Quote vttention: 4ddress: # OF CONTAINERS SAMPLER NAME AND SIGNATURE 12011 PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB DATE COLLECTED Race くれます RELINQUISHED BY / AFFILIATION TIME 5141 A)rgo COMPOSITE START DATE Section B Required Project Information: スグク S SAMPLE TYPE (G=GRAB C=COMP) Purchase Order No.: Project Number. MATRIX CODE roject Name: ORIGINAL Report To: Copy To: Matrix Codes Drinking Water Waste Waste Waste Product Product Soli/Solid Oil Wipe Air Air Air Oil Tissue Other Other £ Westake/mercer るとれる S. zovícu ADDITIONAL COMMENTS 5+0 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Section A Required Client Information: Required Client Information Requested Due Date/TAT: 72/2 エルチェ 6347 Section D Company: Address: 10 # MƏLI 'n ဖ œ 6

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

SIGNATURE of SAMPLER:

F-ALL-Q-020rev.07, 15-May-2007

2

Pace MN - Sat delivery/PO

Page Analytical	Document Name: Cooler Transfer Check List	Revised Date: 23Apr2013 Page 1 of 1
Pace Analytical*	Document Number: F-MN-C-120-rev.01	Issuing Authority: Pace Minnesota Quality Office

Cooler Transfer Check List

Client: <u>A</u>	TC-P	wle			•
Project Manager: <u> </u>	Jenni	Gras	2		
Profile/Line #:	3333	2/2	•	e e	
Received with Custody S	Seal:	Yes	No		
Custody Seal Intact:	Yes	No	NA		
70	emp Read	Corre	cted Temp	Correction F	actor
Temperature C: IR Gun # IR1 IR2 Am ☐ Samples on ice, c	BIENT BOOK	A(R ess has be	egun		
Rush/Short Hold:	72 H	surs			
Containers Intact:	Yes	No			
Re-packed and Re-iced	: :116	~			
Temp Blank Included:	Yes	No	·)		
Shipped By/Date: _	10/21/	16 OZ	<u>e</u>		
Notes: Transfer	or an	ulyze	with	in 72-1	tours.

Pace Analytical*

Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.11 Document Revised: 26APR2016 Page 1 of 1

Issuing Authority:
Pace Minnesota Quality Office

Courier George Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page Comments Page P	Air Sample Condition Cli Upon Receipt	ient Name:	_	roject #: WO:	‡:10367 <i>2</i>	246
Tracking Number: 30.2.1				11011		
Tracking Number: 302 4 3 7 2 93 4					#	
Custody Seal on Cooler/Box Present? Cyes No Seals Intact? Custody Seal on Cooler/Box Present? Cyes Seals Intact? Corrected Temp (**C) Thermon. Used: Issaed:126:704 Issaed:	Tracking Number:					
Tempshould be above freezing to 6°C Corrected Temp (°C) Corr	Custody Seal on Cooler/Bo	ox Present? 🔎 es	□No Seals Intact	i? ≱es □No	Optional: Proj. Due Date:	Proj. Name:
Tempshould be above freezing to SC Correction Factor: ype of ice Received Bilue West None Chain of Custody Present? Yes No N/A 1. Chain of Custody Relinquished? Yes No N/A 2. Chain of Custody Relinquished? Yes No N/A 3. Sampler Name and/or Signature on COC? Yes No N/A 4. Sampler Name and/or Signature on COC? Yes No N/A 5. Short Hold Time Analysis (<72 hr)? Yes No N/A 8. Sufficient Volume? Yes No N/A 9. Pace Containers Used? Yes No N/A 10. Media: Air Can Airbay Filter TDT Passive 11. Sampler Received: Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Person Contacted: Date/Time: CutterN NOTIFICATION/RESOLUTION Person Contacted: Date/Time: Person Contacted: Date/Time: Time Tell Date Required? Yes No Date/Time: Tell Date/Ti	Packing Material: But	oble Wrap Bubble B	ags	eTin CanOthe	r: Tem	p Blank rec: 🔲 Yes 🕬
Chain of Custooy Present?	Temp should be above freezi	ng to 6°C Correction Fact				
Chain of Custody Relinquished?	ype of ice receivedpart				Comments:	
Chain of Custody Relinquished?	Chain of Custody Present?		Yes No	□N/A 1.		
Sample Name and/or Signature on COC?	Chain of Custody Filled Ou	t?	∑Yes	□N/A 2.		<u> </u>
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID	Chain of Custody Relinquis	shed?	Yes □No	□N/A 3.		
Short Hold Time Analysis (<72 hr)?	Sampler Name and/or Sign	nature on COC?	*	□N/A 4.		
Number Canisters Caniste	Samples Arrived within Ho	old Time?	Yes No		0 0	
Sufficient Volume?	Short Hold Time Analysis	(<72 hr)?		Ďn/A 6. 1	75 PG	
Correct Containers Used?	Rush Turn Around Time R	equested?	Yes No	□N/A 7.		
- Pace Containers Used?	Sufficient Volume?		Yes No	N/A 8.		
Contains Intact? Nes No N/A 10. Media: Air bag Filter TDT Passive 11. Sample labels Match CO2 Dres No N/A 12. Sample Number Can ibers Canisters Canisters Canisters Can ib	Correct Containers Used?		∑Yes	□n/a 9.		
Media: Air Can Air bag Filter TDT Passive 11. Sample Labels Match COC?	-Pace Containers Used?		Yes No	□n/a		
Sample Labels Match COC? Sample Received:	Containers Intact?		Yes No	□N/A 10.		
Samples Received: Canisters Canisters Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Can ID Flow Controller ID Flow Controller ID Can ID Flow Controller ID Flow Con ID Flo	Media: Air Can	Airbag Filter	TDT Passive	11.		
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID F	Sample Labels Match COC	?	√OYes □No	□N/A 12.		
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Date/Time:	Samples Received:					
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution: Date/Time:		Canisters			Canisters	
Person Contacted: Date/Time: Comments/Resolution:	Sample Number	Can ID	Flow Controller ID	Sample Number	Can ID	Flow Controller ID
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:				-		
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Person Contacted: Date/Time: Comments/Resolution:						
Comments/Resolution:	CLIENT NOTIFICATION/RE	SOLUTION			Field Data Required?	☐Yes ☐No
Comments/Resolution:	Person Conta	cted:		Date/Time:		

Project Manager Review: Date: 10/24/16

Note: Whenever there is a discrepancy anecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc. 17 00 Elm Street - Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Phillips66_ATC Group Services LLC WA Lab Project Number: 10367246

Phone: (503)684-0525 Project Name: P66 Westlake/ Mercer

Lab Sample No: 10367246001 ProjSampleNum: 10367246001 Date Collected: 10/21/16 14:15

Client Sample ID: Inf-1 Matrix: Air Date Received: 10/22/16 8:55

Parameters	Results	Units	Report Limit	MDL	Analyzed	CAS No.	Ftnote
Air							
TO-15							
Benzene	0.00043	ppmv	0.0002	0.000077	10/27/16 18:59 NCK	71-43-2	A4
Ethylbenzene	ND	ppmv	0.00041	0.00019	10/27/16 18:59 NCK	100-41-4	
m&p-Xylene	ND	ppmv	0.00082	0.00036	10/27/16 18:59 NCK	179601-23-	
o-Xylene	ND	ppmv	0.00041	0.00016	10/27/16 18:59 NCK	95-47-6	
THC as Gas	1.3	ppmv	0.048	0.017	10/27/16 18:59 NCK		
Toluene	0.014	ppmv	0.014	0.0027	10/28/16 12:48 NCK	108-88-3	
Xylene (Total)	ND	ppmv	0.0012	0.00052	10/27/16 18:59 NCK	1330-20-7	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Units Conversion Request

Date: 11/2/2016

Xylene (Total)

Pace Analytical Services, Inc. 17 00 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Phillips66_ATC Group Services LLC WA Lab Project Number: 10367246

ppmv

0.0078

Phone: (503)684-0525 Project Name: P66 Westlake/ Mercer

 Lab Sample No:
 10367246002
 ProjSampleNum:
 10367246002
 Date Collected:
 10/21/16 14:15

 Client Sample ID:
 Inf-2
 Matrix:
 Air
 Date Received:
 10/22/16 8:55

Parameters MDL Results Units Report Limit Analyzed CAS No. Ftnote Air TO-15 0.0004 0.00019 0.000074 10/27/16 19:26 NCK 71-43-2 Benzene Α4 ppmv Ethylbenzene 0.0016 ppmv 0.00039 0.00019 10/27/16 19:26 NCK 100-41-4 m&p-Xylene 0.0058 0.00077 0.00034 10/27/16 19:26 NCK 179601-23ppmv o-Xylene 0.002 ppmv 0.00039 0.00015 10/27/16 19:26 NCK 95-47-6 THC as Gas 0.58 0.046 0.016 10/27/16 19:26 NCK ppmv Toluene 0.038 0.00039 0.000078 10/27/16 19:26 NCK 108-88-3 ppmv

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

0.0012

0.0005

10/27/16 19:26 NCK 1330-20-7

Units Conversion Request

Xylene (Total)

Pace Analytical Services, Inc. 17 00 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Phillips66_ATC Group Services LLC WA Lab Project Number: 10367246

ppmv

0.0041

Phone: (503)684-0525 Project Name: P66 Westlake/ Mercer

 Lab Sample No:
 10367246003
 ProjSampleNum:
 10367246003
 Date Collected:
 10/21/16 14:15

 Client Sample ID:
 Inf-3
 Matrix:
 Air
 Date Received:
 10/22/16 8:55

Parameters MDL Results Units Report Limit Analyzed CAS No. Ftnote Air TO-15 0.00059 0.00019 0.000074 10/27/16 19:54 NCK 71-43-2 Benzene Α4 ppmv Ethylbenzene 0.00068 ppmv 0.00039 0.00019 10/27/16 19:54 NCK 100-41-4 m&p-Xylene 0.0032 0.00077 0.00034 10/27/16 19:54 NCK 179601-23ppmv o-Xylene 0.00095 ppmv 0.00039 0.00015 10/27/16 19:54 NCK 95-47-6 THC as Gas 0.35 0.046 0.016 10/27/16 19:54 NCK ppmv Toluene 0.002 0.00039 0.000078 10/27/16 19:54 NCK 108-88-3 ppmv

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

0.0012

0.0005

10/27/16 19:54 NCK 1330-20-7

Units Conversion Request

Date: 11/2/2016

Pace Analytical Services, Inc. 1700 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: Phillips66_ATC Group Services LLC WA Lab Project Number: 10367246

Phone: (503)684-0525 Project Name: P66 Westlake/ Mercer

PARAMETER FOOTNOTES

ND Not detected at or above adjusted reporting limit

NC Not Calculable

- ${\tt J}$ Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- [A4] Sample was transferred from a sampling bag into a Summa Canister within 48 hours of

Units Conversion Request

November 07, 2016

Kyle Sattler ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: AOC 1396

Pace Project No.: 10368526

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on November 03, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

ENNI (TROSS

Project Manager

Enclosures

CERTIFICATIONS

Project: AOC 1396
Pace Project No.: 10368526

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA

Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C
Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: AOC 1396
Pace Project No.: 10368526

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
10368526001	INF-1	Air	11/02/16 13:15	11/03/16 09:45	
10368526002	INF-2	Air	11/02/16 13:16	11/03/16 09:45	
10368526003	INF-3	Air	11/02/16 13:17	11/03/16 09:45	

SAMPLE ANALYTE COUNT

Project: AOC 1396
Pace Project No.: 10368526

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10368526001	INF-1	TO-15	MJL	7	PASI-M
10368526002	INF-2	TO-15	MJL	7	PASI-M
10368526003	INF-3	TO-15	MJL	7	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: AOC 1396
Pace Project No.: 10368526

Date: 11/07/2016 01:35 PM

Sample: INF-1	Lab ID: 103	68526001	Collected: 11/02/1	6 13:15	Received: 1	1/03/16 09:45 N	Лatrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	nod: TO-15						
Benzene	ND	ug/m3	14.9	45.8		11/04/16 16:12	71-43-2	A4
Ethylbenzene	ND	ug/m3	40.3	45.8		11/04/16 16:12	100-41-4	
THC as Gas	5120	ug/m3	4750	45.8		11/04/16 16:12		
Toluene	ND	ug/m3	35.3	45.8		11/04/16 16:12	108-88-3	
Xylene (Total)	ND	ug/m3	121	45.8		11/04/16 16:12	1330-20-7	
m&p-Xylene	ND	ug/m3	81.1	45.8		11/04/16 16:12	179601-23-1	
o-Xylene	ND	ug/m3	40.3	45.8		11/04/16 16:12	95-47-6	
Sample: INF-2	Lab ID: 103	68526002	Collected: 11/02/1	6 13:16	Received: 1	1/03/16 09:45 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Metl	nod: TO-15						
Benzene	ND	ug/m3	14.9	45.8		11/04/16 16:39	71-43-2	A4
Ethylbenzene	ND	ug/m3	40.3	45.8		11/04/16 16:39	100-41-4	
THC as Gas	ND	ug/m3	4750	45.8		11/04/16 16:39		
Toluene	ND	ug/m3	35.3	45.8		11/04/16 16:39	108-88-3	
Xylene (Total)	ND	ug/m3	121	45.8		11/04/16 16:39	1330-20-7	
m&p-Xylene	ND	ug/m3	81.1	45.8		11/04/16 16:39	179601-23-1	
o-Xylene	ND	ug/m3	40.3	45.8		11/04/16 16:39	95-47-6	
Sample: INF-3	Lab ID: 103	68526003	Collected: 11/02/1	16 13:17	Received: 1	1/03/16 09:45 N	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Met	hod: TO-15						
Benzene	ND	ug/m3	16.4	50.4		11/04/16 17:07	71-43-2	A4
Ethylbenzene	ND	ug/m3	44.4	50.4		11/04/16 17:07	100-41-4	
THC as Gas	ND	ug/m3	5230	50.4		11/04/16 17:07		
Toluene	ND	ug/m3	38.8	50.4		11/04/16 17:07	108-88-3	
Xylene (Total)	ND	ug/m3	134	50.4		11/04/16 17:07	1330-20-7	
m&p-Xylene	ND	ug/m3	89.2	50.4		11/04/16 17:07		
o-Xylene	ND	ug/m3	44.4	50.4		11/04/16 17:07	95-47-6	

Project: AOC 1396
Pace Project No.: 10368526

Date: 11/07/2016 01:35 PM

QC Batch: 445252 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10368526001, 10368526002, 10368526003

METHOD BLANK: 2431698 Matrix: Air

Associated Lab Samples: 10368526001, 10368526002, 10368526003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	11/04/16 14:40	
Ethylbenzene	ug/m3	ND	0.88	11/04/16 14:40	
m&p-Xylene	ug/m3	ND	1.8	11/04/16 14:40	
o-Xylene	ug/m3	ND	0.88	11/04/16 14:40	
THC as Gas	ug/m3	ND	104	11/04/16 14:40	
Toluene	ug/m3	ND	0.77	11/04/16 14:40	
Xylene (Total)	ug/m3	ND	2.6	11/04/16 14:40	

LABORATORY CONTROL SAMPLE:	2431699					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	34.4	32.9	96	62-141	
Ethylbenzene	ug/m3	47.2	46.6	99	59-149	
m&p-Xylene	ug/m3	47.7	48.7	102	59-146	
-Xylene	ug/m3	46.8	45.5	97	54-149	
HC as Gas	ug/m3	3940	4860	123	68-145	
Toluene	ug/m3	41	38.9	95	61-138	
(ylene (Total)	ug/m3	94.5	94.2	100	66-146	

SAMPLE DUPLICATE: 2433681						
_		10368360002	Dup		Max	0 ""
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	ND	ND		25	
Ethylbenzene	ug/m3	ND	14.1J		25	
m&p-Xylene	ug/m3	ND	48.7J		25	
o-Xylene	ug/m3	ND	19.1J		25	
THC as Gas	ug/m3	ND	1830J		25	
Toluene	ug/m3	99.2	97.7	2	25	
Xylene (Total)	ug/m3	ND	ND			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: AOC 1396
Pace Project No.: 10368526

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 11/07/2016 01:35 PM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AOC 1396
Pace Project No.: 10368526

Date: 11/07/2016 01:35 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10368526001	INF-1	TO-15	445252		
10368526002	INF-2	TO-15	445252		
10368526003	INF-3	TO-15	445252		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

9258 9501

Pace Project No./ Lab I.D. Samples Intact (Y/N) DRINKING WATER 7 F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 1720608 (N/A) OTHER Custody Sealed Cooler (AAA) 3 000 Ice (YM) GROUND WATER Received on 1 Residual Chlorine (Y/N) O° ni qmeT Page: 3 25150 REGULATORY AGENCY RCRA JME Requested Analysis Filtered (Y/N) STATE 3/5 Site Location DATE NPDES UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION XJT8 KX 939 Joseph J. Y Analysis Test ¶N/A Other ng Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days. Methanol Preservatives Na₂S₂O₃ PARITY HOBN HCI EONH myoice Information: Company Name: ⁷OS[₹]H 15:32 Section C Pace Quote
Reference:
Pace Project
Manager:
Pace Profile #: THME Unpreserved Address: ttention: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE OF SAMPLER: 11(2)16 SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB DATE COLLECTED Gross/Pare RELINGUISHED BY / AFFILIATION 1316 1317 TIME 1396 512/19/1411 COMPOSITE START DATE Section B Required Project Information: A07 Report To: 1/4/4 Ø 34YT 3J9MA8 (G=GRAB C=COMP) Jurchase Order No.: TY W 4 Project Number: MATRIX CODE Project Name: (6)Matrix Codes
MATRIX / CODE Drinking Water
Water
Waste Water
Product
Soil/Solid
Oil
Wipe
Air
Air
Citssue Important Note: By signing this form you are acc ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Pace Analytical www.pacelabs.com SAMPLE ID **Fax**; Required Client Information 1NF-2 Section A Required Client Information: Requested Due Date/TAT TUF Company: ATC Section D Email To: Phone: 12 2 11 6 Page 9 of 15 9 ᅇ #W311 ď

Pace Analy	tical*

	5	*** ******
/	F-MN-A-106-rev.11	Pace Minnesota Quality Office
/ Pace Analytical*	Document No.:	Issuing Authority:
9	Air Sample Condition Upon Receipt	Page 1 of 1
1	Document Name.	pocament nevisca. 25% n2516

Courier: Fed Ex	Air Sample Condition Clie Upon Receipt	ent Name: ATC		Pr	oject #:	MO	#:103	3685	26
Custody Seal on Cooler/Rox Present?	c _o	d Ex UPS	Other:			10368	526		:
See Corrected See	Custody Seal on Cooler/Bo	x Present? 🔀 Yes 🛭	No Sea	ls Intact	? <u>F</u>	es No	Optional:	Proj. Due Date:	Proj. Name:
See Corrected See	Packing Material: Bubl	ble Wrap Bubble Ba	gs Foam	None	: 🗀т	in Can 🔲 Oth	ner:	Temp	Blank rec: Yes XX
Chain of Custody Present?	Temp. (TO17 and TO13 sample Temp should be above freezin	es only) (°C): Correction Factor	Corrected Temp (°C	:):	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		B88A0143 Person Examini .	.67504 3310098 ng Contents: _	☐ 151401163 ☐ 151401164 ,
Chain of Custody Relinquished?	Chain of Custody Present?		Ves -]No [-1 _{N/A}	1		Comments:	
Chain of Custody Relinquished?		?							
Sample Name and/or Signature on COC?									
Sample Arrived within Hold Time? Yes No No No S									
Short Hold Time Analysis (<72 hr)? Yes						5.			
No						6. T-P	A(2		<u> </u>
Sufficient Volume?				<u> </u>		7.	/ - • • • • • • • • • 		
Correct Containers Used?	Sufficient Volume?			-]N/A	8.			
- Pace Containers Used?	Correct Containers Used?					9.			
Media: Air Can Airbag Filter TDT Passive 11. Sample Labels Match COC? No No N/A 12. Sample Received: Sample Number Can ib Flow Controller iD Sample Number Can iD Flow Controller iD Sample Number Can iD Flow Controller iD F	-Pace Containers Used?		•						
Sample Labels Match COC? Sample Received: Sample Number Canisters Canisters Canisters Canisters Canisters Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Can ID Flow Controller ID Can ID	Containers Intact?		Yes	No [□N/A	10.			
Samples Received: Canisters Canisters Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID	Media: Air Can	Airbag Filter	TDT Pas	sive		11.			
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow	Sample Labels Match COC?			No [□N/A	12.			
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow Controller ID	Samples Received:		-						
Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow Controller ID Sample Number Can ID Flow Controller ID Flow	Samples Received.	Canisters					Car	nisters	
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Date/Time:	Sample Number		Flow Controlle	er ID	Sar	nple Number			Flow Controller ID
Person Contacted: Date/Time:									
Person Contacted: Date/Time:									
	-								
Comments/Resolution:						ate/Time:			,
	Comments/Resolut	tion:							
						· ·			

Project Manager Review: Date: 11/03/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical	•
-----------------	---

Ship to:

Pace MN

Pace Davis

Document Name: Cooler Transfer Check List	
Document Number:	

Revised Date: 23Apr2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	AR Gr	sup-Plelo		
Project Manager:	<u>Jenni</u>	Grass		
Profile/Line #:	3333	a/a		
Received with Custoo	iy Seai:	Yes No		
Custody Seal Intact:	Yes	No NA		
•	Temp Read	Corrected Temp	Correction Factor	
11 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A MB IR2 - 122065284 e, cooling proce			-
Rush/Short Hold:	72 H	our Had_		
Containers Intact:	Yes LI+/Z/ILe	No		
Re-packed and Re-lo				
Temp Blank Included	; Yes	No		
Shipped By/Date:	<u> </u>	11/2/16		
Notes:				

Pace Analytical Services, Inc. 17 00 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: ATC Group Services LLC WA_Phillips66 Lab Project Number: 10368526

Phone: (503)684-0525 Project Name: AOC 1396

 Lab Sample No:
 10368526001
 ProjSampleNum:
 10368526001
 Date Collected:
 11/02/16 13:15

 Client Sample ID:
 INF-1
 Matrix:
 Air
 Date Received:
 11/03/16 9:45

Parameters	Results	Units	Report Limit	MDL	Analyzed	CAS No.	Ftnote
Air							
TO-15							
Benzene	ND	ppmv	0.0046	0.0017	11/04/16 16:12 MJL	71-43-2	A4
Ethylbenzene	ND	ppmv	0.0091	0.0044	11/04/16 16:12 MJL	100-41-4	
m&p-Xylene	ND	ppmv	0.018	0.0082	11/04/16 16:12 MJL	179601-23-	
o-Xylene	ND	ppmv	0.0091	0.0036	11/04/16 16:12 MJL	95-47-6	
THC as Gas	1.2	ppmv	1.1	0.38	11/04/16 16:12 MJL		
Toluene	ND	ppmv	0.0092	0.0019	11/04/16 16:12 MJL	108-88-3	
Xylene (Total)	ND	ppmv	0.027	0.012	11/04/16 16:12 MJL	1330-20-7	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Pace Analytical Services, Inc. 17 00 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: ATC Group Services LLC WA_Phillips66 Lab Project Number: 10368526

Phone: (503)684-0525 Project Name: AOC 1396

 Lab Sample No:
 10368526002
 ProjSampleNum:
 10368526002
 Date Collected:
 11/02/16 13:16

 Client Sample ID:
 INF-2
 Matrix:
 Air
 Date Received:
 11/03/16 9:45

Parameters	Results	Units	Report Limit	MDL	Analyzed	CAS No.	Ftnote
Air							
TO-15							
Benzene	ND	ppmv	0.0046	0.0017	11/04/16 16:39 MJL	71-43-2	A4
Ethylbenzene	ND	ppmv	0.0091	0.0044	11/04/16 16:39 MJL	100-41-4	
m&p-Xylene	ND	ppmv	0.018	0.0082	11/04/16 16:39 MJL	179601-23-	
o-Xylene	ND	ppmv	0.0091	0.0036	11/04/16 16:39 MJL	95-47-6	
THC as Gas	ND	ppmv	1.1	0.38	11/04/16 16:39 MJL		
Toluene	ND	ppmv	0.0092	0.0019	11/04/16 16:39 MJL	108-88-3	
Xylene (Total)	ND	ppmv	0.027	0.012	11/04/16 16:39 MJL	1330-20-7	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Pace Analytical Services, Inc. 17 00 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: ATC Group Services LLC WA_Phillips66 Lab Project Number: 10368526

Phone: (503)684-0525 Project Name: AOC 1396

 Lab Sample No:
 10368526003
 ProjSampleNum:
 10368526003
 Date Collected:
 11/02/16 13:17

 Client Sample ID:
 INF-3
 Matrix:
 Air
 Date Received:
 11/03/16 9:45

Parameters	Results	Units	Report Limit	MDL	Analyzed	CAS No.	Ftnote
Air							
TO-15							
Benzene	ND	ppmv	0.0051	0.0019	11/04/16 17:07 MJL	71-43-2	A4
Ethylbenzene	ND	ppmv	0.01	0.0048	11/04/16 17:07 MJL	100-41-4	
m&p-Xylene	ND	ppmv	0.02	0.009	11/04/16 17:07 MJL	179601-23-	
o-Xylene	ND	ppmv	0.01	0.004	11/04/16 17:07 MJL	95-47-6	
THC as Gas	ND	ppmv	1.2	0.41	11/04/16 17:07 MJL		
Toluene	ND	ppmv	0.01	0.002	11/04/16 17:07 MJL	108-88-3	
Xylene (Total)	ND	ppmv	0.03	0.013	11/04/16 17:07 MJL	1330-20-7	

DISCLAIMER: These results have been converted to the units shown from the original units of measurement assuming 20 degrees Celsius and 1 atmosphere pressure. Values were not rounded according to EPA rounding rules. THC is quantitated based on the average response factors of several compounds; the nominal molecular weight of THC used for units conversion is the average of the molecular weights of the compounds used for quantitation.

Pace Analytical Services, Inc. 1700 Elm Street – Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

ANALYTICAL RESULTS

Client: ATC Group Services LLC WA_Phillips66 Lab Project Number: 10368526 Phone: (503)684-0525 Project Name: AOC 1396

PARAMETER FOOTNOTES

ND Not detected at or above adjusted reporting limit

NC Not Calculable

- ${\tt J}$ Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- [A4] Sample was transferred from a sampling bag into a Summa Canister within 48 hours of

December 01, 2016

Kyle Sattler ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on November 17, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

ENNI (TROSS

Project Manager

Enclosures

CERTIFICATIONS

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680
California Certification #: 01155CA

California Certification #: 01155CA
Colorado Certification #Pace
Connecticut Certification #: PH-0256

EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

North Carolina Certification #: 530

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382
West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10370295001	Inf-1	Air	11/16/16 12:15	11/17/16 09:30
10370295002	Inf-2	Air	11/16/16 12:15	11/17/16 09:30
10370295003	Inf-3	Air	11/16/16 12:15	11/17/16 09:30
10370295004	W-INF-WS1	Water	11/16/16 11:00	11/17/16 09:30
10370295005	W-OUT-WS1	Water	11/16/16 11:05	11/17/16 09:30
10370295006	W-DSCHG-1	Water	11/16/16 12:00	11/17/16 09:30
10370295007	W-DSCHG-2	Water	11/16/16 12:05	11/17/16 09:30
10370295008	W-DSCHG-3	Water	11/16/16 12:10	11/17/16 09:30

Minneapolis, MN 55414 (612)607-1700

SAMPLE ANALYTE COUNT

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10370295001	Inf-1	TO-15	 DR1	7	PASI-M
10370295002	Inf-2	TO-15	DR1	7	PASI-M
10370295003	Inf-3	TO-15	DR1	7	PASI-M
10370295004	W-INF-WS1	NWTPH-Gx	KMZ	2	PASI-M
		EPA 8260B	EMC	7	PASI-M
10370295005	W-OUT-WS1	NWTPH-Gx	KMZ	2	PASI-M
		EPA 8260B	EMC	7	PASI-M
10370295006	W-DSCHG-1	NWTPH-Gx	KMZ	2	PASI-M
		EPA 8260B	EMC	7	PASI-M
		EPA 1664A OG	CJM	1	PASI-M
10370295007	W-DSCHG-2	EPA 1664A OG	CJM	1	PASI-M
10370295008	W-DSCHG-3	EPA 1664A OG	CJM	1	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

Sample: Inf-1	Lab ID: 103	70295001	Collected: 11/16/1	6 12:15	Received: 1	11/17/16 09:30	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	hod: TO-15						
Benzene	ND	ug/m3	0.82	2.52		11/17/16 23:09	9 71-43-2	
Ethylbenzene	ND	ug/m3	2.2	2.52		11/17/16 23:09	9 100-41-4	
THC as Gas	1740	ug/m3	261	2.52		11/17/16 23:09	9	
Toluene	8.7	ug/m3	1.9	2.52		11/17/16 23:09	9 108-88-3	
Xylene (Total)	8.7	ug/m3	6.7	2.52		11/17/16 23:09	9 1330-20-7	
m&p-Xylene	6.4	ug/m3	4.5	2.52		11/17/16 23:09		
o-Xylene	2.3	ug/m3	2.2	2.52		11/17/16 23:09	9 95-47-6	
Sample: Inf-2	Lab ID: 103	70295002	Collected: 11/16/1	6 12:15	Received: 1	11/17/16 09:30	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	0.89	ug/m3	0.82	2.52		11/17/16 23:37	7 71-43-2	
Ethylbenzene	ND	ug/m3	2.2	2.52		11/17/16 23:37		
THC as Gas	1930	ug/m3	261	2.52		11/17/16 23:37		
Toluene	10.2	ug/m3	1.9	2.52		11/17/16 23:37		
Xylene (Total)	12.1	ug/m3	6.7	2.52		11/17/16 23:37		
m&p-Xylene	8.9	ug/m3	4.5	2.52			7 179601-23-1	
o-Xylene	3.2	ug/m3	2.2	2.52		11/17/16 23:37		
- · , · · · ·		-g						
Sample: Inf-3	Lab ID: 103	70295003	Collected: 11/16/16 12:15		Received: 11/17/16 09:30 Matrix: Air			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	ND	ug/m3	0.78	2.4		11/18/16 00:03	3 71-43-2	
Ethylbenzene	ND	ug/m3	2.1	2.4		11/18/16 00:03	3 100-41-4	
THC as Gas	1680	ug/m3	249	2.4		11/18/16 00:03	3	
Toluene	6.7	ug/m3	1.8	2.4		11/18/16 00:03	3 108-88-3	
Xylene (Total)	10.8	ug/m3	6.4	2.4		11/18/16 00:03	3 1330-20-7	
m&p-Xylene	7.7	ug/m3	4.2	2.4		11/18/16 00:03	3 179601-23-1	
o-Xylene	3.1	ug/m3	2.1	2.4		11/18/16 00:03	3 95-47-6	
Sample: W-INF-WS1	Lab ID: 103	70295004	Collected: 11/16/1	6 11:00	Received: 1	11/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Meth	nod: NWTPI	H-Gx					
TPH as Gas	ND	ug/L	100	1		11/24/16 00:33	3	
Surrogates a,a,a-Trifluorotoluene (S)	90	%.	50-150	1		11/24/16 00:33	00.00.0	

ANALYTICAL RESULTS

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

Sample: W-INF-WS1	Lab ID: 103	70295004	Collected: 11/16/1	6 11:00	Received:	11/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2260B MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		11/30/16 15:24	4 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		11/30/16 15:24	1 100-41-4	
Toluene	ND	ug/L	1.0	1		11/30/16 15:24	4 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		11/30/16 15:24		
Surrogates	115	ug/ =	0.0	•		11/00/10 10:2	. 1000 20 7	
1,2-Dichloroethane-d4 (S)	96	%.	75-125	1		11/30/16 15:24	4 17060-07-0	
Toluene-d8 (S)	104	%.	75-125	1		11/30/16 15:24		
4-Bromofluorobenzene (S)	102	%.	75-125	1		11/30/16 15:24		
Sample: W-OUT-WS1	Lab ID: 103	70295005	Collected: 11/16/1	6 11:05	Received:	11/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Meth	nod: NWTP			· · ·			
TPH as Gas	ND	ug/L	100	1		11/24/16 03:5	2	
Surrogates	ND	ug/L	100	'		11/24/10 03.3	,	
a,a,a-Trifluorotoluene (S)	90	%.	50-150	1		11/24/16 03:5	3 98-08-8	
3260B MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		11/30/16 15:40	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		11/30/16 15:40	0 100-41-4	
Toluene	ND	ug/L	1.0	1		11/30/16 15:40	0 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		11/30/16 15:40	1330-20-7	
Surrogates		•						
1,2-Dichloroethane-d4 (S)	95	%.	75-125	1		11/30/16 15:40	17060-07-0	
Toluene-d8 (S)	107	%.	75-125	1		11/30/16 15:40	2037-26-5	
4-Bromofluorobenzene (S)	106	%.	75-125	1		11/30/16 15:40	0 460-00-4	
Sample: W-DSCHG-1	Lab ID: 103	70205006	Collected: 11/16/1	6 12:00	Pagaiyad:	11/17/16 09:30	Matrix: Water	
								0
Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Meth	nod: NWTP	H-Gx					
ГРН as Gas Surrogates	ND	ug/L	100	1		11/28/16 16:49	9	
a,a,a-Trifluorotoluene (S)	90	%.	50-150	1		11/28/16 16:49	9 98-08-8	
3260B MSV UST	Analytical Meth	nod: EPA 82	260B					
Benzene	ND	ug/L	1.0	1		11/30/16 15:5	5 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		11/30/16 15:5	5 100-41-4	
Toluene	ND	ug/L	1.0	1		11/30/16 15:5	5 108-88-3	
(Ylene (Total)	ND	ug/L	3.0	1		11/30/16 15:5	5 1330-20-7	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	98	%.	75-125	1		11/30/16 15:5	5 17060-07-0	
		%.						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

Sample: W-DSCHG-1	Lab ID: 103	70295006	Collected: 11/16/1	6 12:00	Received: 1	1/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260B MSV UST	Analytical Metl	nod: EPA 82	260B					
Surrogates 4-Bromofluorobenzene (S)	98	%.	75-125	1		11/30/16 15:5	55 460-00-4	
1664 HEM, Oil and Grease	Analytical Meth	nod: EPA 16	664A OG					
Oil and Grease	ND	mg/L	5.1	1		11/23/16 10:0	00	
Sample: W-DSCHG-2	Lab ID: 103	Lab ID: 10370295007 Collected: 11/16/16 12:05			Received: 1	1/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1664 HEM, Oil and Grease	Analytical Meth	nod: EPA 16	664A OG					
Oil and Grease	ND	mg/L	5.1	1		11/23/16 10:0	00	
Sample: W-DSCHG-3	Lab ID: 103	70295008	Collected: 11/16/1	16 12:10	Received: 1	1/17/16 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
1664 HEM, Oil and Grease	Analytical Met	nod: EPA 16	664A OG					
Oil and Grease	ND	mg/L	5.1	1		11/23/16 10:0	00	

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

QC Batch: 447819 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10370295001, 10370295002, 10370295003

METHOD BLANK: 2451119 Matrix: Air

Associated Lab Samples: 10370295001, 10370295002, 10370295003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	11/17/16 11:47	
Ethylbenzene	ug/m3	ND	0.88	11/17/16 11:47	
m&p-Xylene	ug/m3	ND	1.8	11/17/16 11:47	
o-Xylene	ug/m3	ND	0.88	11/17/16 11:47	
THC as Gas	ug/m3	ND	104	11/17/16 11:47	
Toluene	ug/m3	ND	0.77	11/17/16 11:47	
Xylene (Total)	ug/m3	ND	2.6	11/17/16 11:47	

LABORATORY CONTROL SAMPLE:	2451120					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	32.5	35.2	108	62-141	
thylbenzene	ug/m3	44.1	54.6	124	59-149	
&p-Xylene	ug/m3	88.3	109	123	59-146	
Kylene	ug/m3	44.1	52.9	120	54-149	
C as Gas	ug/m3	5170	5160	100	68-145	
luene	ug/m3	38.3	41.8	109	61-138	
rlene (Total)	ug/m3	132	161	122	66-146	

SAMPLE DUPLICATE: 2451313						
Parameter	Units	10370157005 Result	Dup Result	RPD	Max RPD	Qualifiers
	UTILS	Kesuit	Kesuit	KFD	KFD	Qualifiers
Benzene	ug/m3	0.95	0.93	3	25	
Ethylbenzene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	ND	1.9J		25	
o-Xylene	ug/m3	ND	ND		25	
THC as Gas	ug/m3	909	ND		25	
Toluene	ug/m3	2.9	2.8	3	25	
Xylene (Total)	ug/m3	ND	ND			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALITY CONTROL DATA

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

QC Batch: 448722 Analysis Method: NWTPH-Gx
QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Water

Associated Lab Samples: 10370295004, 10370295005

METHOD BLANK: 2456522 Matrix: Water

Associated Lab Samples: 10370295004, 10370295005

Blank Reporting Parameter Result Limit Qualifiers Units Analyzed TPH as Gas ND 100 11/23/16 21:53 ug/L 50-150 a,a,a-Trifluorotoluene (S) %. 88 11/23/16 21:53

METHOD BLANK: 2456523 Matrix: Water

Associated Lab Samples: 10370295004, 10370295005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed TPH as Gas ND 100 11/23/16 22:13 ug/L a,a,a-Trifluorotoluene (S) 87 50-150 11/23/16 22:13 %.

LABORATORY CONTROL SAMPLE &	LCSD: 2456524		24	156525						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
TPH as Gas	ug/L	1000	927	934	93	93	70-125	1	20	
a,a,a-Trifluorotoluene (S)	%.				95	101	50-150			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

QC Batch: 449006 Analysis Method: NWTPH-Gx
QC Batch Method: NWTPH-Gx Analysis Description: NWTPH-Gx Water

Associated Lab Samples: 10370295006

METHOD BLANK: 2458571 Matrix: Water

Associated Lab Samples: 10370295006

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed TPH as Gas ND 11/28/16 15:08 ug/L 100 a,a,a-Trifluorotoluene (S) 92 50-150 11/28/16 15:08 %.

METHOD BLANK: 2458572 Matrix: Water

Associated Lab Samples: 10370295006

Date: 12/01/2016 12:00 PM

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers TPH as Gas ND 100 11/28/16 16:29 ug/L a,a,a-Trifluorotoluene (S) 90 50-150 11/28/16 16:29 %.

LABORATORY CONTROL SAMPLE & LCSD: 2458573 2458574 LCS Spike LCSD LCS LCSD % Rec Max RPD RPD Parameter Units Conc. Result Result % Rec % Rec Limits Qualifiers TPH as Gas 1000 97 ug/L 1130 969 113 70-125 15 20 a,a,a-Trifluorotoluene (S) 101 102 50-150 %.

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2458580 2458581 MS MSD 10370950004 MS MSD MS MSD Spike Spike % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual TPH as Gas ug/L 30300 50000 100000 82700 84100 105 54 46-149 30 a,a,a-Trifluorotoluene (S) 104 107 50-150 %.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

QC Batch: 449416 Analysis Method: EPA 8260B

QC Batch Method: EPA 8260B Analysis Description: 8260B MSV UST-WATER

Associated Lab Samples: 10370295004, 10370295005, 10370295006

METHOD BLANK: 2461446 Matrix: Water

Associated Lab Samples: 10370295004, 10370295005, 10370295006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	11/30/16 14:23	
Ethylbenzene	ug/L	ND	1.0	11/30/16 14:23	
Toluene	ug/L	ND	1.0	11/30/16 14:23	
Xylene (Total)	ug/L	ND	3.0	11/30/16 14:23	
1,2-Dichloroethane-d4 (S)	%.	92	75-125	11/30/16 14:23	
4-Bromofluorobenzene (S)	%.	90	75-125	11/30/16 14:23	
Toluene-d8 (S)	%.	107	75-125	11/30/16 14:23	

LABORATORY CONTROL SAMPLE: 2461447							
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Benzene	ug/L		18.0	90	75-125		
Ethylbenzene	ug/L	20	19.9	99	75-125		
Toluene	ug/L	20	19.5	97	75-125		
Xylene (Total)	ug/L	60	60.9	102	75-125		
1,2-Dichloroethane-d4 (S)	%.			94	75-125		
4-Bromofluorobenzene (S)	%.			104	75-125		
Toluene-d8 (S)	%.			108	75-125		

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 24617	65		2461766							
			MS	MSD								
	10	0370455004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	16.1	17.0	81	85	52-147	5	30	
Ethylbenzene	ug/L	ND	20	20	17.9	17.3	90	86	67-149	4	30	
Toluene	ug/L	ND	20	20	17.1	17.1	86	85	69-139	0	30	
Xylene (Total)	ug/L	ND	60	60	54.0	52.2	90	87	70-147	3	30	
1,2-Dichloroethane-d4 (S)	%.						99	96	75-125			
4-Bromofluorobenzene (S)	%.						99	99	75-125			
Toluene-d8 (S)	%.						107	107	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

QC Batch: 448021 Analysis Method: EPA 1664A OG

QC Batch Method: EPA 1664A OG Analysis Description: 1664 HEM, Oil and Grease

Associated Lab Samples: 10370295006, 10370295007, 10370295008

METHOD BLANK: 2452267 Matrix: Water

Associated Lab Samples: 10370295006, 10370295007, 10370295008

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Oil and Grease mg/L ND 5.0 11/23/16 10:00

LABORATORY CONTROL SAMPLE: 2452268

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Oil and Grease mg/L 40 35.1 88 78-114

MATRIX SPIKE SAMPLE: 2452310

10370295006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Oil and Grease 40.6 37.0 89 78-114 mg/L

SAMPLE DUPLICATE: 2452311

Date: 12/01/2016 12:00 PM

Parameter Units Result Result RPD Max Result RPD Qualifiers

Oil and Grease mg/L ND ND 18

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: 448021

Date: 12/01/2016 12:00 PM

[BE] Batch extracted by solid phase extraction (SPE).

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66 AOC 1396 Westlake/Mercer

Pace Project No.: 10370295

Date: 12/01/2016 12:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10370295001	Inf-1	TO-15	447819		,
10370295002	Inf-2	TO-15	447819		
10370295003	Inf-3	TO-15	447819		
10370295004	W-INF-WS1	NWTPH-Gx	448722		
10370295005	W-OUT-WS1	NWTPH-Gx	448722		
10370295006	W-DSCHG-1	NWTPH-Gx	449006		
10370295004	W-INF-WS1	EPA 8260B	449416		
10370295005	W-OUT-WS1	EPA 8260B	449416		
10370295006	W-DSCHG-1	EPA 8260B	449416		
10370295006	W-DSCHG-1	EPA 1664A OG	448021		
10370295007	W-DSCHG-2	EPA 1664A OG	448021		
10370295008	W-DSCHG-3	EPA 1664A OG	448021		

Face Analytical

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

[of Tolds

(N/A sambles intact Cooler (Y/V) ŏ Custody Sealed つ い つ ٢ ار اد S (X/M) Received on Ice WA / Westlake, Morce Residual Chlorine (Y/N) LEMP in C Page: 7 DATE Signed: 11/16/16 2175 7991 C/2 3203412+110 09*Z8* XJL8/XD THC as Gas by TO-15 guq **X**∃T8 Pace Profile #: 33332 P. (Pace Mnpls) Ani. 国のも 100 Jenni Gross тальО Nethanol Company Name: Phillips 66 SOSSZ6N **Preservatives** Attention: Phillips 66 HÖSN Invoice Information: Pace Quote Reference HCI Pace Project Manager A TO EONH HS2O4 1/2 1/2 TSOC Section C nubleselved Q # OF CONTAINERS PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION SAMPHER NAME AND SIGNAL Client Project ID: P66 AOC 1396 Westlake/Mercer TIME cody.bishop@atcassociates.com 잂 Report To: kyle.sattler@atcassociates.com DATE COLLECTED 8 185 35 25 23 ž 272 Purchase Order No. TBD by Kyle Sing を START **≜41**1 DATE Required Project Information: Container Order Number: 9 BAYT BJAMAS (GEGRAB C=COMP) 달 (Hel of seboo bilgy ees) MATRIX CODE Section B Copy To: CODE DW WT **- 3 9 ¥ 8 t 5** MATRIX
Drinking Water
Weths
Water
Product
Soil/Soild
Oil
Wipe
Air kyle sattler@atcassociates.com 503-684-0525 Fax Requested Due Date/TAT: 10 Day (Standard) P66_ATC Associates 6347 Seaview Avenue NW (A-Z, 0-97, -) Sample Ids must be unique - PSCH G-2 One Character per box. W-001-WC1 W-DSC46-2 SAMPLE ID ۴ W-INF-WS4 Seattle WA, 98107 アースなもっ nf-2Required Client Information アナノス 7 Email To: Phone: #M31I 15 of 19

Pace Analytical*

Document Name:
Air Sample Condition Upon Receipt
Document No.:

Document Revised: 26APR2016
Page 1 of 1
Issuing Authority:

F-MN-A-106-rev.11 Pace Minnesota Quality Office Air Sample Condition Client Name: Project #: P66-ATCWA MO#:10370295 **Upon Receipt** UPS Speedee Client Commercial Pace Other:__ 7021 2575 4102 Tracking Number: Optional: Proj. Due Date: □No Seals Intact? 🚉 📆 es TNo Packing Material: Bubble Wrap Bubble Bags Foam None Tin Can Other:_____ Temp Blank rec: ☐Yes 🗓No B88A912167504 **151401163** Temp. (TO17 and TO13 samples only) (°C): Corrected Temp (°C): _____ Thermom. Used: ☐B88A0143310098 **151401164** Date & Initials of Person Examining Contents: Type of ice Received Blue Wet None Comments: Chain of Custody Present? □No □N/A Chain of Custody Filled Out? □No □N/A 2. Chain of Custody Relinquished? □No □N/A Yes □No Sampler Name and/or Signature on COC? □N/A Yes □No Samples Arrived within Hold Time? □N/A **□**Kio Short Hold Time Analysis (<72 hr)? Yes □N/A 6. No Rush Turn Around Time Requested? Yes □N/A Yes □No Sufficient Volume? □N/A 8. Yes No □N/A Correct Containers Used? -Pace Containers Used? □No □N/A □No □N/A Containers Intact? 10. Airbag Media: Air Can Filter TDT Passive 11. r es Sample Labels Match COC? No □N/A 12. Samples Received: Canisters Canisters Sample Number Flow Controller ID Sample Number Can ID Flow Controller ID Can ID Field Data Required? Yes No CLIENT NOTIFICATION/RESOLUTION Person Contacted: Date/Time: Comments/Resolution:

Project Manager Review: Date: 11/17/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

(N/A) SAMPLE CONDITIONS Samples Intact ö (N/Y) relood 3 Š L 500 Sustody Sealer <u>ा</u> इ 7 S 3 3 WA / Westlake, Mercer (N/A 3ecelved on tce State / Location Residual Chlorine (Y/N) LEMP in C The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. DATE Signed: 11//6/10 CHAIN-OF-CUSTODY / Analytical Request Document Requested Analysis Filter DATE G₂ La 35031B+110 CCEPTED BY / AFFILIATION X3L8/XD λq THC as Gas by TO-15 guq BTEX 33332 🜈 (Pace Mnpls) N/X Analyses Test Jenni Gross Methanol Company Name: Phillips 66 Preservatives EOSS26N Phillips 66 HOBN Pace Quote Reference: Pace Project Manager: НСІ Invoice Information: # 12 m EQNH Pace Profile #: Attention: H2SO4 Section C 7505 Address: nubleserved SAMPLER NAME AND SIGNATURE # OF CONTAINERS a 2 ത SAMPLE TEMP AT COLLECTION PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Client Project ID: P66 AOC 1396 Westlake/Mercer TIME cody.bishop@atcassociates.com S DATE COLLECTED RELINGUISHED BY FAFFILIATION TIME 757 100 100 Purchase Order No. TBD by Kyle 3 282 **本の野** 1.1.7~ なる 22 START DATE Required Project Information: Container Order Number: ð SAMPLE TYPE (G=GRAB C=COMP) MATRIX CODE (see valid codes to left) 덪 Report To: Copy To: Section B CODE DW WT WW SI. OL OL WP AR AR MATRIX
Drinking Water
Waste Water
Product
Soi/Soild
Wipe
Air
Other kyle.sattler@atcassociates.com 10 Day (Standard) P66_ATC Associates 6347 Seaview Avenue NW ADDITIONAL COMMENTS One Character per box. (A-Z, 0-91, -)
Sample Ids must be unique 1N - PSCH 9-2 W-021-WC4 ξě SAMPLE ID W-DSU+6-2 W-INF-WS4 Seattle WA, 98107 アミなって 503-684-0525 Required Client Information: 1 Requested Due Date/TAT: Pace Analytical <u>ح</u> 7 Email To: Phone: 9 **&** 6 R T 10 #M3TI Page 17 of 19

Pace Analytical*

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name:		Project	# WO#:10370295
	sociati		
Courrier: Fed Ex UPS Commercial Pace SpeeDee	USPS Other:	☐Client	
Tracking Number: 707 4575 40	otner:		10370295
Custody Seal on Cooler/Box Present? Yes No	Se:	als intact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags		_ ′	
Thermometer 151401163	□None	Other:	Temp Blank? Yes No
Used: ☐ 151401164 ☐ B88A01433100	IVDEO	f Ice: Ve	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 1.0 Cooler Temp Co			Biological Tissue Frozen? ☐Yes ☐No ☐N/A
Temp should be above freezing to 6°C Correction Fact USDA Regulated Soil (N/A, water sample)	ior: <u>—O</u>	Dat	te and Initials of Person Examining Contents: $8c_{11}-17-1b$
Did samples originate in a quarantine zone within the United MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		∐Yes	No including Hawaii and Puerto Rico)? ☐Yes ☐No
if Yes to either question, fill out a Reg	ulated Soil Cl	necklist (F-MN-	-Q-338) and include with SCUR/COC paperwork.
Chain of Custody Present?			COMMENTS:
Chain of Custody Flesent: Chain of Custody Filled Out?		_NoN/A_	1.
Chain of Custody Pilica Odt! Chain of Custody Relinquished?		No □N/A	2.
Sampler Name and/or Signature on COC?		No □N/A	3.
Samples Arrived within Hold Time?		No □N/A	4.
Short Hold Time Analysis (<72 hr)?			5.
Rush Turn Around Time Requested?			6.
Sufficient Volume?		No □N/A	7.
Correct Containers Used?		No □N/A	8.
-Pace Containers Used?	/_/	□No □N/A	9.
Containers Intact?		No □N/A	
Filtered Volume Received for Dissolved Tests?		No □N/A	10.
		No N/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	Yes]No □N/A	12.
-Includes Date/Time/ID/Analysis Matrix: VU All containers needing acid/base preservation have been			
_checked?	——⊟Yes——	∃No Z N/A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
All containers needing preservation are found to be in compliance with EPA recommendation?			Sample #
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	☐Yes ☐]No Z N/A	•
Exceptions: VOA, Coliform, TOC, Oil and Grease		·	Initial when Lot # of added
DRO/8015 (water) DOC		No □N/A	completed: preservative:
Headspace in VOA Vials (>6mm)? Trip Blank Present?		No □N/A	14.
Trip Blank Custody Seals Present?		No DN/A	15.
Pace Trip Blank Lot # (if purchased):	☐Yes ☐]No ∠ N/A	
CLIENT NOTIFICATION/RESOLUTION			Field Data Dequired 2
			Field Data Required? Yes No Date/Time:
Person Contacted: Comments/Resolution:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Datey time.
		<u> </u>	
1			
Project Manager Review:	Z8022		Date: 11/17/16
	npliance samp	oles, a copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

Pace Analytical	Occument Name: Cooler Transfer Check List	Revised Date: 23Apr2013 Page 1 of 1				
Pacerilalytical	Document Number: F-MN-C-120-rev.01	issuing Authority: Pace Minnesota Quality Office				

Cooler Transfer Check List

Client:	P66-ATC	^		
Project Manager:	Jen	n' C	1099	
Profile/Line #:	3333	2/	1	
Received with Custody	Seal:	Yes	Mo	
Custody Seal Intact:	Yes	No	NA	
Temperature C: IR Gun # (184- Q281 IF	_		S. &	Correction Factor
Rush/Short Hold:	10	<u> </u>		
Containers Intact:	Pes	No		
Re-packed and Re-los	ed: _	<u>.</u>		
Temp Blank Included:	Yes	No		
Shipped By/Date:	<u>NO</u>	<u>l</u>	1/18/16	þ
Notes:				
Ship to: Pace MN Pa	ce Davis			

December 05, 2016

Kyle Sattler ATC Group Services LLC 6347 Seaview Ave NW Seattle, WA 98107

RE: Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Dear Kyle Sattler:

Enclosed are the analytical results for sample(s) received by the laboratory on November 23, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com

ENNI (TROSS

Project Manager

Enclosures

CERTIFICATIONS

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

Alaska Certification UST-107
525 N 8th Street, Salina, KS 67401
A2LA Certification #: 2926.01
Alaska Certification #: UST-078
Alaska Certification #MN00064
Alabama Certification #40770
Arizona Certification #: AZ-0014
Arkansas Certification #: 88-0680

California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909
Minnesota Certification #: 027-053-137
Mississippi Certification #: Pace
Montana Certification #: MT0092
Nevada Certification #: MN_00064
Nebraska Certification #: Pace
New Jersey Certification #: MN-002
New York Certification #: 11647
North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150

Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification
Saipan (CNMI) #:MP0003
South Carolina #:74003001
Texas Certification #: T104704192
Tennessee Certification #: 02818
Utah Certification #: MN000642013-4
Virginia DGS Certification #: 251
Virginia/VELAP Certification #: Pace
Washington Certification #: C486
West Virginia Certification #: 382

Wisconsin Certification #: 999407970

West Virginia DHHR #:9952C

SAMPLE SUMMARY

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10371089001	INF-1	Air	11/22/16 08:30	11/23/16 10:00
10371089002	INF-2	Air	11/22/16 08:30	11/23/16 10:00
10371089003	INF-3	Air	11/22/16 08:30	11/23/16 10:00

SAMPLE ANALYTE COUNT

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10371089001	INF-1	TO-15	MJL	7	PASI-M
10371089002	INF-2	TO-15	MJL	7	PASI-M
10371089003	INF-3	TO-15	MJL	7	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Date: 12/05/2016 09:29 AM

Sample: INF-1	Lab ID: 103	71089001	Collected: 11/22/1	16 08:30	Received:	11/23/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	ND	ug/m3	3.4	10.5		12/02/16 21:22	2 71-43-2	A4
Ethylbenzene	ND	ug/m3	9.2	10.5		12/02/16 21:22	2 100-41-4	
THC as Gas	1670	ug/m3	1090	10.5		12/02/16 21:22	2	
Toluene	16.7	ug/m3	8.1	10.5		12/02/16 21:22	2 108-88-3	
Xylene (Total)	31.3	ug/m3	27.8	10.5		12/02/16 21:22	2 1330-20-7	
m&p-Xylene	20.9	ug/m3	18.6	10.5			2 179601-23-1	
o-Xylene	10.4	ug/m3	9.2	10.5		12/02/16 21:22		
Sample: INF-2	Lab ID: 103	71089002	Collected: 11/22/1	16 08:30	Received:	11/23/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15				•	•	
Benzene	1.5	ug/m3	0.68	2.1		12/02/16 20:54	1 71-43-2	A4
Ethylbenzene	3.6	ug/m3	1.8	2.1		12/02/16 20:54	1 100-41-4	
THC as Gas	1520	ug/m3	218	2.1		12/02/16 20:54	1	
Toluene	16.9	ug/m3	1.6	2.1		12/02/16 20:54	1 108-88-3	
Xylene (Total)	24.4	ug/m3	5.6	2.1		12/02/16 20:54	1330-20-7	
m&p-Xylene	16.7	ug/m3	3.7	2.1		12/02/16 20:54	179601-23-1	
o-Xylene	7.7	ug/m3	1.8	2.1		12/02/16 20:54		
Sample: INF-3	Lab ID: 103	71089003	Collected: 11/22/1	16 08:30	Received:	11/23/16 10:00	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Benzene	1.4	ug/m3	0.66	2.02		12/02/16 20:23	3 71-43-2	A4
Ethylbenzene	3.1	ug/m3	1.8	2.02		12/02/16 20:23	3 100-41-4	
THC as Gas	943	ug/m3	210	2.02		12/02/16 20:23	3	
Toluene	11.1	ug/m3	1.6	2.02		12/02/16 20:23	3 108-88-3	
Xylene (Total)	20.7	ug/m3	5.4	2.02		12/02/16 20:23	3 1330-20-7	
m&p-Xylene	14.3	ug/m3	3.6	2.02		12/02/16 20:23	3 179601-23-1	
o-Xylene	6.4	ug/m3	1.8	2.02		12/02/16 20:23	05 47 0	

QUALITY CONTROL DATA

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Date: 12/05/2016 09:29 AM

QC Batch: 449996 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10371089001, 10371089002, 10371089003

METHOD BLANK: 2464341 Matrix: Air

Associated Lab Samples: 10371089001, 10371089002, 10371089003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	12/02/16 14:28	
Ethylbenzene	ug/m3	ND	0.88	12/02/16 14:28	
m&p-Xylene	ug/m3	ND	1.8	12/02/16 14:28	
o-Xylene	ug/m3	ND	0.88	12/02/16 14:28	
THC as Gas	ug/m3	ND	104	12/02/16 14:28	
Toluene	ug/m3	ND	0.77	12/02/16 14:28	
Xylene (Total)	ug/m3	ND	2.6	12/02/16 14:28	

LABORATORY CONTROL SAMPLE:	2464342					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/m3	34.7	35.6	102	62-141	
thylbenzene	ug/m3	47.7	46.4	97	59-149	
&p-Xylene	ug/m3	47.7	50.8	107	59-146	
Kylene	ug/m3	47.2	46.3	98	54-149	
C as Gas	ug/m3	3740	4140	111	68-145	
luene	ug/m3	41.4	41.4	100	61-138	
lene (Total)	ug/m3	94.9	97.1	102	66-146	

SAMPLE DUPLICATE: 2464897						
		10371299001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/m3	0.36	0.34	4	25	
Ethylbenzene	ug/m3	1.7	1.8	1	25	
m&p-Xylene	ug/m3	ND	ND		25	
o-Xylene	ug/m3	ND	ND		25	
THC as Gas	ug/m3	309	251	21	25	
Toluene	ug/m3	0.43J	.43J		25	
Xylene (Total)	ug/m3	ND	ND			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

Date: 12/05/2016 09:29 AM

A4 Sample was transferred from a sampling bag into a Summa Canister within 48 hours of collection.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: P66 Westlake/ Mercer

Pace Project No.: 10371089

Date: 12/05/2016 09:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10371089001	INF-1	TO-15	449996		
10371089002	INF-2	TO-15	449996		
10371089003	INF-3	TO-15	449996		

Pace Analytical"

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10371089

Pace Project No./ Lab I.D. **DRINKING WATER** (N/A) F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 175087 OTHER (N/A) کر د Custody Sealed Cooler ે ઉ ğ Ġ \supset Ice (Y/V) 2 Received on GROUND WATER Residual Chlorine (Y/N) S. S. O° ni qmaT Page: 43 REGULATORY AGENCY RCRA 1330 Requested Analysis Filtered (Y/N) TIME 0001/4/67/1 STATE Site Location NPDES DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 5101 kg 5191 kg RTEX Sar ∱n/λ t Analysis Test Other Methanol Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not peal within 30 days 33332 **Preservatives** Na₂S₂O₃ 7 NaOH HCI Invoice Information: [€]ONH company Name: (1/19KW/122/16 1330 ace Profile #: ⁷OS²H 2 22 12 14.40 Pace Quote Reference: Pace Project Manager: Section C Unpreserved TIME Address: Attention: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION ufzzliu 0830 14/24/16 0850 0580 31/27/14 IME Tour COMPOSITE START Spart, DATE Section B Required Project Information: (G=GRAB C=COMP) SAMPLE TYPE urchase Order No.: Project Number: (see valid codes to left) MATRIX CODE roject Name: Report To: ORIGINAL # 6347-SEAVIEWARINGODYTO Matrix Codes Drinking Water Water Waste Water Product Soil/Soild Oil Wipe Air Tissue Other SE SE ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Fax: SAMPLE ID NF-3 Section D Required Client Information Required Client Information: Requested Due Date/TAT: Section A Email To: Phone: Page 9 of 11 'n œ 2 Ξ # MƏTI 9 6

•			
	Pace	Analv	tical °
/ ~			

Occument Name:
Coder Transfer Check List
Document Number:

Revised Date: 23Apr2013
Page 1 of 1
Issuing Authority:

Document Number: Issuing Authority: F-MN-C-120-rev.01 Pace Minnesota Quality Office

Cooler Transfer Check List

Client:	ATC			
Project Manager:	<u>Jenu</u>	1. (JV	055	
Profile/Line #:	3333	32/	2	
Received with Custody	/ Seal:	Yes	No	
Custody Seal Intact:	Yes	No	MA	
	Temp Read	Corre	ted Temp	Correction Factor
Temperature C: IR Gun # IR1 - Q281 IF Samples on ice	R2 - 12206528 , cooling proc		agun .	
Rush/Short Hold:	h	0		
Containers Intact:	Yes	No	,	
Re-packed and Re-Ice	ed:	 		
Temp Blank Included:	Yes	MO	`	
Shipped By/Date:	<u></u>)	11-22-1	1
Notes:				
Ship to: Pace MN Pa	ace Davis			

Project Manager Review:

Document Name:

Document Revised: 26APR2016 Page 1 of 1

Air Sample Condition Upon Receipt Document No.: Issuing Authority: F-MN-A-106-rev.11 Pace Minnesota Quality Office Air Sample Condition Client Name: Project #: MO#:10371089 **Upon Receipt** ATC. WA UPS Speedee Client ☐Commercial ☐Pace Other: Tracking Number: 7021 4575 Optional: Proj. Due Date: Proj. Name: __No □No Custody Seal on Cooler/Box Present? Packing Material: Bubble Wrap Bubble Bags Foam None Tin Can Other:_ Temp Blank rec: Yes No B88A912167504 151401163 Temp. (TO17 and TO13 samples only) (°C): Corrected Temp (°C): Thermom. Used: B88A0143310098 Temp should be above freezing to 6°C Correction Factor: Date & Initials of Person Examining Contents: Type of ice Received ☐Blue ☐Wet ☐None Comments: Chain of Custody Present? Yes □No □N/A 1. Chain of Custody Filled Out? Yes □No □N/A 2. Chain of Custody Relinquished? □No □N/A 3. Yes Sampler Name and/or Signature on COC? No □N/A 4. Yes Samples Arrived within Hold Time? Yes □No □N/A 5. Short Hold Time Analysis (<72 hr)? Yes □No □N/A Rush Turn Around Time Requested? Yes 100 □N/A 7. Sufficient Volume? **Y**es □ No ∭N/A 8. Yes □No Correct Containers Used? □N/A 9. -Pace Containers Used? Yes □No □N/A No □N/A Containers Intact? Yes 10. Media: Air Can 🤻 Filter TDT Passive 11. Sample Labels Match COC? <u>∵</u>ZYes ′ □No □N/A 12. Samples Received: Canisters Canisters Sample Number Can ID Flow Controller ID Can ID Sample Number Flow Controller ID

Field Data Required? Yes No CLIENT NOTIFICATION/RESOLUTION Date/Time: Person Contacted: Comments/Resolution: Date: 11/23/16

-ROSS Note: Whenever there is a discrepancy affecting worth Caroline compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

APPENDIX G

DRAFT February 16, 2018

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE				
Please identify below the hazardous waste site for which you are documenting an evaluation.				
Facility/Site Name: Wesfake Si	ite			
Facility/Site Address: 600 WesHake	Ave N, Seatle			
Facility/Site No: 46445373	VCP Project No.: NW1714			

Step 2: IDENTIFY EVALUATOR					
Please identify below the person who conducted the evaluation and their contact information.					
Name: Elisabeth Silver Title: Seniur Project Manager					
Organization: ATC Group Services					
Mailing address: 6347 Seaview Ave NW					
City: Seattle State: WA Zip code: 98107					
Phone: 206-781-1449 Fax: 206-781-1543 E-mail: elisabeth. Silver@ ate associates.					

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? If you answered "YES," then answer Question 2. ☐ Yes X No or If you answered "NO" or "UKNOWN," then skip to Step 3B of this form. Únknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.

В.	Simplified	evaluation.
1.	Does the S	Site qualify for a simplified evaluation?
	□Y	es If you answered "YES," then answer Question 2 below.
	☐ N Unkn	o or own If you answered "NO" or "UNKNOWN," then skip to Step 3C of this form.
2.	Did you co	onduct a simplified evaluation?
	□ Y	es If you answered "YES," then answer Question 3 below.
	\square N	o If you answered "NO," then skip to Step 3C of this form.
3.	Was furthe	er evaluation necessary?
	□Y	es If you answered "YES," then answer Question 4 below.
	⋈	o If you answered "NO," then answer Question 5 below.
4.	If further e	valuation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	If no furthe	er evaluation was necessary, what was the reason? Check all that apply. Then skip
		Analysis: WAC 173-340-7492(2)(a)
		Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway A	nalysis: WAC 173-340-7492(2)(b)
	×	No potential exposure pathways from soil contamination to ecological receptors.
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.

C.	the problem	Fic evaluation. A site-specific evaluation process consists of two parts: (1) formulating in, and (2) selecting the methods for addressing the identified problem. Both steps sultation with and approval by Ecology. See WAC 173-340-7493(1)(c).				
1.	Was there	a problem? See WAC 173-340-7493(2).				
	☐ Ye	es If you answered "YES," then answer Question 2 below.				
	□ No	If you answered "NO," then identify the reason here and then skip to Question 5 below:				
		☐ No issues were identified during the problem formulation step.				
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.				
2.	What did y	ou do to resolve the problem? See WAC 173-340-7493(3).				
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.				
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>				
3.		ucted further site-specific evaluations, what methods did you use? at apply. See WAC 173-340-7493(3).				
		Literature surveys.				
		Soil bioassays.				
		Wildlife exposure model.				
		Biomarkers.				
		Site-specific field studies.				
		Weight of evidence.				
		Other methods approved by Ecology. If so, please specify:				
4.	What was t	he result of those evaluations?				
		Confirmed there was no problem.				
		Confirmed there was a problem and established site-specific cleanup levels.				
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?					
	☐ Ye	es If so, please identify the Ecology staff who approved those steps:				
	□ No					

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160 th Ave. SE Bellevue, WA 98008-5452	Central Region: Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009
Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775	Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295

