

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

May 28, 2014

Blake Perkins Perkins Northwest Leasing & Financing LLC 2616 NE 112th Avenue Vancouver, WA 98684

RE: Site Hazard Assessment Completion

Ecology Facility Site ID: 10775

Dear Mr. Blake Perkins:

Clark County Public Health (CCPH) has completed the Site Hazard Assessment (SHA) of the Today's Family Dentistry site at 2616 NE 112th Avenue, Vancouver, WA. The action by CCPH was under the authority of the Washington State Department of Ecology (Ecology) as required by the Model Toxics Control Act (Chapter 70.1 05D RCW).

Based on this work, a hazard ranking of 2 has been assigned to this site. The hazard ranking is an estimation of the potential threat to human health and/or the environment, relative to all other Washington State sites assessed at this time. The ranking scale is 1 to 5, with 1 representing the highest relative risk and 5 the lowest relative risk. The site will be placed on Ecology's Hazardous Sites List, a compilation of these rankings updated twice a year.

Ecology will publish the ranking of this and other recently assessed sites in the August 2014 Site Register Special Issue (Hazardous Sites List). The site hazard ranking will be used in addition to other site-specific considerations in determining Ecology's priority for future actions. Please contact Bryan DeDoncker with CCPH at (360) 397-8153 if you have any questions regarding the SHA of this site. If you have questions about the ranking process, or further activities at the site related to this listing, please call me at (360) 407-6388.

Sincerely,

Cris Matthews

Toxics Cleanup Program

Washington State Department of Ecology

Maus

CM/ksc: SHA Result notice for FS 10775

By certified mail: (7012 2210 0002 6581 2007)

cc: Bryan DeDoncker, Clark County Public Health

T,

SITE HAZARD ASSESSMENT

WORKSHEET 1 Summary Score Sheet

SITE INFORMATION:

Today's Family Dentistry 2616 NE 112th Ave.

Vancouver, Clark County, WA 98684

Section/Township/Range: Sec. 21/T2N/R2E

Latitude: 45.64175 Longitude: -122.55852

Ecology Facility Site ID No.: 10775

Site scored/ranked for the August 2014 update

SITE DESCRIPTION (management areas, substances of concern, and quantities):

The Today's Family Dentistry site was placed on the Washington State Department of Ecology's (Ecology) database of Confirmed and Suspected Contaminated Sites on January 6th, 2011 as a result of a confirmed presence of high concentrations of mercury (Hg) & silver (Cr) in the onsite septic system (OSS). Sludge material in the OSS tank was designated as dangerous waste per WAC 173-303-070.

On February 18th, 2010, Clark County Public Health (CCPH) and Ecology conducted a site investigation to evaluate the OSS waste at the property owner's permission. The tank was evaluated due to concerns that hazardous materials may have been released to the OSS. The investigation confirmed, through direct observation and analytical results, that industrial waste was discharged into the OSS. One sample was collected from the septic tank sludge and analyzed for priority pollutant heavy metals. Test results of the septic tank sludge revealed high levels of mercury, silver, copper, and zinc causing the waste to designate as dangerous waste. See TABLE 1.

TABLE 1: Septic Tank Sludge Sampling Results (Metals)

THE IT SEP	111DEE 1. Septie Tuin Studge Sumpling Results (Metals)				
Sample Name	Analyte	Analytical Result			
	Arsenic	5.38 mg/kg			
	Barium	372 mg/kg			
	Cadmium	ND			
	Chromium	28.1 mg/kg			
	Copper	3,210 mg/kg			
001	Lead	107 mg/kg			
	Mercury	4,410 mg/kg			
	Nickel	35.4 mg/kg			
	Selenium	ND			
	Silver	6,940 mg/kg			
	Zinc	2,330 mg/kg			

Historical records show that the current dental office building was established in the 1983. However, Clark County records show that a pre-existing house on the property was used as a dental office in 1982. The same OSS has been used for the site's wastewater treatment since at least 1982.

The Today's Family Dentistry site is situated immediately outside the 10 year zone of contribution for a major municipal water source serving the City of Vancouver (Water Station 7). Therefore, any potential impact to the groundwater aquifer is a concern for the City of Vancouver and its residents. Due to the potential for groundwater impacts to affect the public's health, subsurface investigation was deemed a necessary component of this SHA.

On December 10, 2012, Ecology sent the property owners a letter notifying them that CCPH will be conducting a Site Hazard Assessment (SHA), on behalf of Ecology, in the near future. On January 30, 2013, CCPH and the property owners scheduled the site visits necessary for conducting the SHA.

On January 31, 2013, Clark County Public Health contracted GPR Data, Inc. to locate septic system components and their depth via ground penetrating radar technology. Ground penetrating radar was a necessary part of the SHA site work for determining ground boring and subsurface sample collection locations. The septic locating ground markings show the location of the 2,000 gallon (approx.) septic tank and three 61ft long (approx.) drainfield laterals that head towards the southern direction. See FIGURE 3.

On February 14, 2013, subsurface soil and groundwater sampling was conducted at the site. Cascade Drilling, L.P., was contracted by CCPH to install four borings, via direct-push boring, for subsurface sample collection near septic system components. The location of the ground borings were determined after considering guidance listed in the U.S. Environmental Protection Agency (EPA) "1992 Guidelines for Closure of Shallow Disposal Wells". See FIGURES 1 & 2.

FIGURE 1: EPA Guidance for OSS Soil Sample Locations (Plan View)

Case A: Soil Sample Locations for a Septic System Receiving Both Industrial and Sanitary Wastes

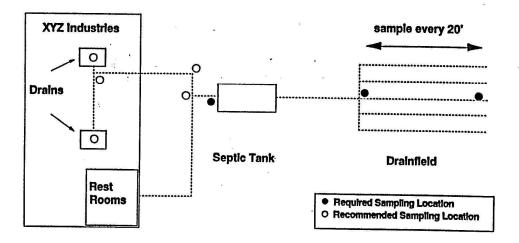


FIGURE 2: EPA Guidance for OSS Soil Sample Locations (Side View)

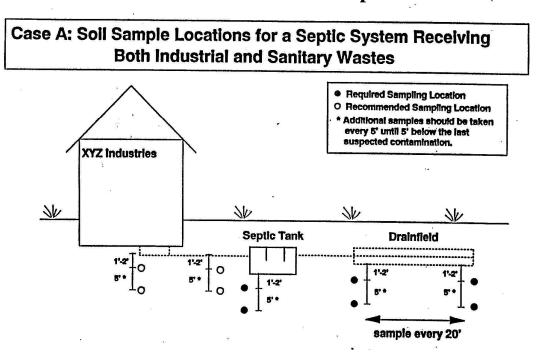


FIGURE 3 displays the approximate location of the septic tank and drainfield laterals (illustrated in red), and approximate location of ground borings B1-B4 (illustrated in green). See FIGURE 3 & TABLE 2 for ground boring location details.

FIGURE 3: OSS Layout & Boring Locations

TABLE 2: Ground Boring Log

Trible 2. Ground Doring Log					
	Boring Description	Total Depth (bgs)*	Soil Sample Name & Depth (bgs)*	Depth to Groundwater (bgs)*	
B1	Located immediately outside the previous septic tank area, near the transport line.	15'	B1-SS1 = 9.5' B1-SS2 = 13.0'	B1-GWS1 = 8.5'	
B2	Located approximately 4' from the septic tank area, between the drainfield laterals.	15'	B2-SS1 = 4.5' B2-SS2 = 8.0' B2-SS3 = 13.0'	B2-GWS1 = 9.0'	
В3	Located approximately 27' from the septic tank area, between the drainfield laterals.	20'	B3-SS1 = 7.0' B3-SS2 = 10.5' B3-SS3 = 15.5'	B3-GWS1 = 10.0'	
B4	Located approximately 50' from the septic tank area, between the drainfield laterals.	20'	B4-SS1 = 7.0' B4-SS2 = 10.5' B4-SS3 = 15.5'	B4-GWS1 = 10.0'	

<u>Note</u>: One 10' screen was installed at the bottom of each ground boring. Due to groundwater intrusion, it was determined that ground borings B1-B4 only required a 15-20' bgs installation to adequately collect subsurface soil and groundwater samples.

All subsurface soil and groundwater samples were collected and analyzed for Priority Pollutant Metals in accordance with appropriate EPA Methods. Soil cores were not favorable for sample collection and analysis, consisting entirely of loose gravels and sands. Despite unfavorable soil characteristics and a

^{*} The abbreviation (bgs) refers to "below ground surface".

shallow vadose zone, soil samples were collected at approximate interval depths of 18", 5', & 10' below the bottom of the existing septic tank and/or drainfield lateral (totaling 2-3 soil samples per boring) at each ground boring location. Only 2-3 soil samples were collected instead of 4 due to the shallow depth to groundwater. Only 2 soil samples were collected from boring B1 due to depth of the septic tank in relation to groundwater depth.

Arsenic (As), total chromium (Cr), and lead (Pb) were the metals consistently detected in subsurface soils. Other metals were found at low concentrations (such as mercury & nickel), however As, Cr, and Pb were consistently detected in all soil samples. Chromium (total) was the only contaminant detected in subsurface soil samples exceeding its respective MTCA Method A Cleanup Level of 19 mg/kg. Samples B1-SS1, B1-SS3, B2-SS1, B2-SS2, B2-SS3, B3-SS3, B4-SS2, & B4-SS3 had a chromium (total) exceedance. See TABLE 3 for soil sample results.

TABLE 3: Soil Sample Results

	Soil Sample Name & Depth (bgs)	Soil Description*	Analytical Results (mg/kg)	MTCA Method A Cleanup Level (mg/kg)
			Arsenic $= 5.9$	Arsenic = 20
B1	B1-SS1 @ 9.5'	loose sand & gravel	Chromium = 18	Chromium VI = 19
			Lead = 5.2	Lead = 250
Di			Arsenic $= 2.9$	Arsenic = 20
	B1-SS2 @ 13.0'	loose sand & gravel	Chromium = 17	Chromium VI = 19
			Lead = 4.7	Lead = 250
			Arsenic = 3.5	Arsenic = 20
	B2-SS1 @ 4.5'	loose sand & gravel	Chromium = 28	Chromium VI = 19
			Lead = 8.5	Lead = 250
			Arsenic $= 2.6$	Arsenic = 20
	B2-SS2 @ 8.0'	loose send & amovel	Chromium = 17	Chromium VI = 19
B2		loose sand & gravel	Lead = 5.3	Lead = 250
			Mercury = 0.47	Mercury = 2.0
		loose and to movel	Arsenic $= 2.8$	Arsenic = 20
	B2-SS3 @ 13.0'		Chromium = 16	Chromium VI = 19
		loose sand & gravel	Lead $= 4.1$	Lead = 250
			Mercury $= 0.13$	Mercury = 2.0
			Arsenic $= 2.8$	Arsenic $= 20$
	B3-SS1 @ 7.0'	loose sand & gravel	Chromium = 24	Chromium VI = 19
			Lead = 5.5	Lead = 250
			Arsenic $= 4.1$	Arsenic = 20
В3	B3-SS2 @ 10.5'	loose sand & gravel	Chromium = 31	Chromium VI = 19
			Lead = 6.2	Lead = 250
			Arsenic $= 5.0$	Arsenic = 20
	B3-SS3 @ 15.5'	loose sand & gravel	Chromium = 23	Chromium VI = 19
		5	Lead = 5.3	Lead = 250

B4	B4-SS1 @ 7.0' loose sand		Arsenic $= 1.9$	Arsenic = 20
		loose sand & gravel	loose sand & gravel Chromium = 18	
			Lead $= 4.1$	Lead = 250
	B4-SS2 @ 10.5' B4-SS3 @ 15.5'		Arsenic $= 2.2$	Arsenic = 20
		loose sand & gravel	Chromium = 14	Chromium VI = 19
			Lead = 5.0	Lead = 250
			Arsenic $= 3.6$	Arsenic = 20
		loose sand & gravel	Chromium = 20	Chromium VI = 19
			Lead = 5.2	Lead = 250

Note: Since total chromium was analyzed without speciation, the more conservative Chromium VI cleanup level will be used.

Groundwater samples were collected from each ground boring location in accordance with EPA sampling methods. One 10' screen was set at the bottom of each ground boring. Groundwater samples were then collected, using a peristaltic pump, at approximately 18" above the bottom of each boring and analyzed for priority pollutant heavy metals.

Arsenic and Chromium (total) were found to exceed their respective MTCA Method A Cleanup Levels in Groundwater samples B1-GWS1, B2-GWS1, B3-GWS1, and B4-GWS1. Lead was found to exceed its respective MTCA Method A Cleanup Levels in groundwater samples B1-GWS1, B2-GWS1, and B4-GWS1. Other heavy metals were detected in groundwater (i.e. cadmium, selenium, nickel, mercury, etc...) but concentrations did not exceed their respective MTCA standards. See TABLE 4.

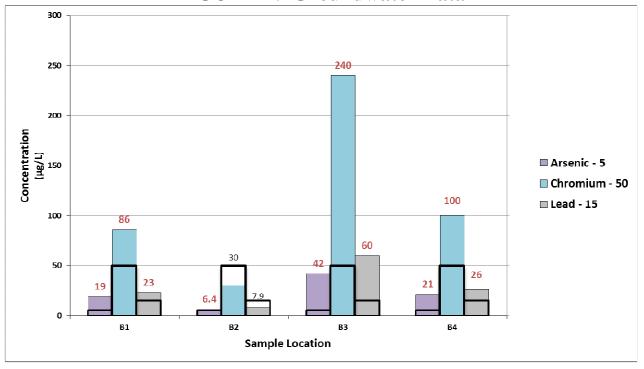

^{*}Soil Description – subsurface soils were very poor for the collection and analysis of chemical contaminants. Soil cores & samples consisted solely of loose gravels and sands.

TABLE 4: Groundwater Sample Results

	Groundwater Sample Name & Depth (bgs)	Analytical Results (µg/l)	MTCA Method A Cleanup Level (μg/l)
		Arsenic = 19	Arsenic = 5
B1	B1-GWS1 @ 13.5' (approx.)	Chromium = 86	Chromium (total) = 50
DI	B1-GWS1 @ 13.3 (approx.)	Lead = 23	Lead = 15
		Mercury = 0.98	Mercury = 2.0
		Arsenic = 6.4	Arsenic = 5
B2	B2-GWS1 @ 13.5' (approx.)	Chromium = 30	Chromium (total) = 50
D2		Lead = 7.9	Lead = 15
		Mercury = 0.21	Mercury = 2.0
		Arsenic = 42	Arsenic = 5
В3	B3-GWS1 @ 18.5' (approx.)	Chromium = 240	Chromium (total) = 50
ВЗ		Lead = 60	Lead = 15
		Mercury = 1.3	Mercury = 2.0
		Arsenic = 21	Arsenic = 5
B4	D4 CWC1 @ 19 5' (approx.)	Chromium = 100	Chromium (total) = 50
В4	B4-GWS1 @ 18.5' (approx.)	Lead = 26	Lead = 15
		Mercury = 0.23	Mercury = 2.0

FIGURE 4 displays the As, Cr, & Pb concentrations in groundwater in reference to the ground boring locations and the relative distance of each from the septic tank.

FIGURE 4: Groundwater Data

As a result of this SHA, this site is scored and ranked due to the documented presence of arsenic, chromium, and lead in on-site groundwater exceeding their respective MTCA Method A cleanup levels. The extent of contamination was not determined as part of this SHA. However, further site characterization may be necessary.

SPECIAL CONSIDERATIONS (include limitations in site file data or data which cannot be accommodated in the model, but which are important in evaluating the risk associated with the site, or any other factor(s) over-riding a decision of no further action for the site):

Due to the contamination documented on-site being primarily subsurface, the surface water and air routes are not applicable for WARM scoring for this site. Thus, only the groundwater route will be scored.

ROUTE SCORES:

Surface Water/Human Health: NS Surface Water/Environmental.: NS Air/Human Health: NS Air/Environmental: NS NS Oroundwater/Human Health: 74.8

OVERALL RANK: 2

WORKSHEET 2 Route Documentation

1.	Su	RFACE WATER ROUTE - Not Scored	
	a.	List those substances to be <u>considered</u> for scoring:	Source:
	b.	Explain basis for choice of substance(s) to be <u>used</u> in scoring.	
	c.	List those management units to be <u>considered</u> for scoring:	Source:
	d.	Explain basis for choice of unit to be <u>used</u> in scoring:	
2.	AI	R ROUTE – Not Scored	
	a.	List those substances to be <u>considered</u> for scoring:	
	b.	Explain basis for choice of substance(s) to be <u>used</u> in scoring:	Source:
	c.	List those management units to be <u>considered</u> for scoring:	Source:
	d.	Explain basis for choice of unit to be <u>used</u> in scoring:	-
3.	GF	ROUNDWATER ROUTE	
	a.	List those substances to be <u>considered</u> for scoring:	Source: <u>1, 2, 8</u>
		Lead, chromium (total), and arsenic.	
	b.	Explain basis for choice of substance(s) to be <u>used</u> in scoring:	
		These substances were detected in subsurface soil and groundwater sat exceeding their respective MTCA Method cleanup levels.	mples at concentrations
	c.	List those management units to be <u>considered</u> for scoring:	Source: <u>1, 2, 8</u>
		Subsurface soil and groundwater.	
	d.	Explain basis for choice of unit to be <u>used</u> in scoring:	
		The contaminating substances were detected in subsurface soil and groconcentrations exceeding their respective MTCA Method A cleanup learning to the content of the content	

WORKSHEET 6 Groundwater Route

1.0 SUBSTANCE CHARACTERISTICS

	1.1	Human Toxicity									
		Drinking		Acute		Chronic		Carcinogenicity			
	Substance		Water Standard (µg/L)	Value	Toxicity Value Toxicity		· · · · · · · · · · · · · · · · · · ·	Value	WOE	PF*	Value
-	1	Lead	5	8	-	ND	-	ND	B2	-	ND
2	2	Chromium	100	6	-	ND	-	3	A	-	ND
	3	Arsenic	50	6	763 (rat)	5	0.001	5	A	1.75	7

^{*} Potency Factor

Source: <u>1, 2, 4, 8</u>

Highest Value: $8 \atop (Max = 10)$

Plus 2 Bonus Points? 2 Final Toxicity Value: $\underline{10}$ (Max = 12)

1.2 Mobility (use numbers to refer to above l	sted substances)	
Cations/Anions	OR	Solubility (mg/L)
1=2+1 (metals present in solution) = 3	1=	
2=1+1 (metals present in solution) = 2	2=	
3=3+1 (metals present in solution) = 4	3=	

Source: <u>1, 2, 4, 8</u> **Value: 3**(Max = 3)

1.3 Substance Quantity:	
Explain basis: Quantity is calculated based on the once filled volume of the septic tank @ 501 1,000 gallons.	Source: 1, 2, 4 Value: 3 (Max=10)

2.0 MIGRATION POTENTIAL

		Source	Value
2.1	Containment (explain basis): Spill, discharge, and contaminated soil (i.e., drain field) = 10	1, 2, 5	
2.2	Net precipitation: 28.14" – 5.7" = 22.44"	5	$\frac{3}{(\text{Max} = 5)}$
2.3	Subsurface hydraulic conductivity: sandy clayey loam	2, 4	$\frac{4}{(\text{Max} = 4)}$
2.4	Vertical depth to groundwater: confirmed release to groundwater	1, 4, 8	$\frac{8}{(\text{Max} = 8)}$

3.0 TARGETS

		Source	Value
3.1	Groundwater usage: public supply, but alternate sources available with minimum hookup requirements	4, 6	$\frac{4}{\text{(Max = 10)}}$
3.2	Distance to nearest drinking water well: >600 – 1,300	4, 6	$\frac{4}{(\text{Max} = 5)}$
3.3	Population served within 2 miles: $\sqrt{\text{pop.}} = >10,000$	4, 6	
3.4	Area irrigated by (groundwater) wells within 2 miles: 1,544 $(0.75)*\sqrt{\# acres} = 29.5$	7	$\frac{30}{\text{(Max} = 50)}$

4.0 RELEASE

	Source	Value
Explain basis for scoring a release to groundwater: Confirmed groundwater contamination by laboratory analysis, only.	1, 8	$\frac{5}{(\text{Max} = 5)}$

SOURCES USED IN SCORING

- 1. Initial Investigation by Clark County Public Health, May 14, 2010.
- 2. Soil Survey of Clark County, Washington, November 1972.
- 3. Washington State Department of Ecology, Toxicology Database for Use in Washington Ranking Method Scoring, January 1992.
- 4. Washington State Department of Ecology, WARM Scoring Manual, April 1992.
- 5. Washington Climate Net Rainfall Table.
- 6. Arial Photo, GIS Clark County MapsOnline.
- 7. Washington State Department of Ecology, Water Rights Application System (WRATS) printout for two-mile radius of site.
- 8. Analytical Report, by TestAmerica Laboratories, Inc., February 2013.
- 9. Clean-Out and Remediation Required for a septic tank at 2616 NE 112th Avenue, Vancouver, WA 98684, by Department of Ecology, March 26, 2010.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503)906-9200

TestAmerica Job ID: 250-10041-1

Client Project/Site: Today's Family Dentistry

Revision: 1

For:

Clark County Environmental Health PO BOX 9825 Vancouver, Washington 98666

Attn: Bryan DeDoncker

Evica Fot

Authorized for release by: 2/22/2013 3:38:58 PM

Erica Fot

Project Mgmt. Assistant erica.fot@testamericainc.com

Designee for

Vanessa Frahs Project Manager I

vanessa.frahs@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	17
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	27

3

4

7

10

10

Sample Summary

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
250-10041-1	B1-SS1	Solid	02/14/13 08:45	02/15/13 10:56
250-10041-2	B1-SS2	Solid	02/14/13 08:55	02/15/13 10:56
250-10041-3	B2-SS1	Solid	02/14/13 09:30	02/15/13 10:56
250-10041-4	B2-SS2	Solid	02/14/13 09:35	02/15/13 10:56
250-10041-5	B2-SS3	Solid	02/14/13 09:40	02/15/13 10:56
250-10041-6	B3-SS1	Solid	02/14/13 10:00	02/15/13 10:56
250-10041-7	B3-SS2	Solid	02/14/13 10:05	02/15/13 10:56
250-10041-8	B3-SS3	Solid	02/14/13 10:10	02/15/13 10:56
250-10041-9	B4-SS1	Solid	02/14/13 10:50	02/15/13 10:56
250-10041-10	B4-SS2	Solid	02/14/13 11:00	02/15/13 10:56
250-10041-11	B4-SS3	Solid	02/14/13 11:05	02/15/13 10:56
250-10041-12	B1-GWSI	Water	02/14/13 09:15	02/15/13 10:56
250-10041-13	B2-GWSI	Water	02/14/13 09:50	02/15/13 10:56
250-10041-14	B3-GWSI	Water	02/14/13 10:25	02/15/13 10:56
250-10041-15	B4-GWSI	Water	02/14/13 11:15	02/15/13 10:56

4

6

7

8

9

10

ΙU

Case Narrative

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Job ID: 250-10041-1

Laboratory: TestAmerica Portland

Narrative

Job Narrative 250-10041-1

Comments

No additional comments.

Receipt

The samples were received on 2/15/2013 10:56 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 10.7° C, 11.3° C and 11.8° C.

Except:

The following sample(s) was received at the laboratory outside the required temperature criteria: B1-GWSI (250-10041-12), B1-SS1 (250-10041-1), B1-SS2 (250-10041-2), B2-GWSI (250-10041-13), B2-SS1 (250-10041-3), B2-SS2 (250-10041-4), B2-SS3 (250-10041-5), B3-GWSI (250-10041-14), B3-SS1 (250-10041-6), B3-SS2 (250-10041-7), B3-SS3 (250-10041-8), B4-GWSI (250-10041-15), B4-SS1 (250-10041-9), B4-SS2 (250-10041-10), B4-SS3 (250-10041-11). The client was contacted regarding this issue, and the laboratory was instructed to proceed with analysis.

Metals

Method(s) 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 14289 were outside control limits with respect to Sb. The associated laboratory control sample (LCS) recovery met acceptance criteria. (250-10040-1 MS)

Method(s) 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 14290 were outside control limits with respect to Sb. The associated laboratory control sample (LCS) recovery met acceptance criteria. (250-10041-6 MS), (250-10041-6 MSD)

No other analytical or quality issues were noted.

3

1

6

_

0

9

10

Definitions/Glossary

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 250-10041-1

Qualifiers

Metals

Qualifier	Qualifier Description
F	MS or MSD exceeds the control limits

Glossary

QC

RER

RL RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Portland

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 200.8 - Metals (ICP/MS)

Client Sample ID: B1-GWSI

Date Collected: 02/14/13 09:15

Date Received: 02/15/13 10:56

Lab Sample ID: 250-10041-12

Matrix: Water

Date Received: 02/15/13	10:56								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Arsenic	19		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Beryllium	2.2		2.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Cadmium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Chromium	86		2.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Copper	120		2.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Lead	23		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Nickel	52		2.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Selenium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Silver	5.5		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Thallium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 17:28	1
Zinc	190		10		ug/L		02/18/13 08:27	02/18/13 17:28	1

Client Sample ID: B2-GWSI

Date Collected: 02/14/13 09:50

Lab Sample ID: 250-10041-13

Matrix: Water

Date Received: 02/15/13 10:56								
Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Arsenic	6.4	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Beryllium	ND	2.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Cadmium	ND	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Chromium	30	2.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Copper	48	2.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Lead	7.9	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Nickel	25	2.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Selenium	ND	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Silver	1.8	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Thallium	ND	1.0		ug/L		02/18/13 08:27	02/18/13 17:31	1
Zinc	83	10		ug/L		02/18/13 08:27	02/18/13 17:31	1

Client Sample ID: B3-GWSI

Date Collected: 02/14/13 10:25

Lab Sample ID: 250-10041-14

Matrix: Water

Result (Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.0	ug/L	_	02/18/13 08:27	02/18/13 17:34	1
42	•	1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
ND		10	ug/L		02/18/13 08:27	02/18/13 20:05	5
1.0	,	1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
240	2	2.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
330	2	2.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
60		1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
180	2	2.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
2.2	•	1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
1.8		1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
1.4	•	1.0	ug/L		02/18/13 08:27	02/18/13 17:34	1
530		10	ug/L		02/18/13 08:27	02/18/13 17:34	1
	ND 42 ND 1.0 240 330 60 180 2.2 1.8 1.4	ND 42 ND 1.0 240 330 60 180 2.2 1.8 1.4	ND 1.0 42 1.0 ND 10 1.0 240 2.0 330 2.0 60 1.0 180 2.0 2.2 1.0 1.8 1.0 1.4 1.0	ND 1.0 ug/L 42 1.0 ug/L ND 10 ug/L 1.0 1.0 ug/L 240 2.0 ug/L 330 2.0 ug/L 60 1.0 ug/L 180 2.0 ug/L 2.2 1.0 ug/L 1.8 1.0 ug/L 1.4 1.0 ug/L	ND 1.0 ug/L 42 1.0 ug/L ND 10 ug/L 1.0 1.0 ug/L 240 2.0 ug/L 330 2.0 ug/L 60 1.0 ug/L 180 2.0 ug/L 2.2 1.0 ug/L 1.8 1.0 ug/L 1.4 1.0 ug/L	ND 1.0 ug/L 02/18/13 08:27 42 1.0 ug/L 02/18/13 08:27 ND 10 ug/L 02/18/13 08:27 1.0 1.0 ug/L 02/18/13 08:27 240 2.0 ug/L 02/18/13 08:27 330 2.0 ug/L 02/18/13 08:27 60 1.0 ug/L 02/18/13 08:27 180 2.0 ug/L 02/18/13 08:27 2.2 1.0 ug/L 02/18/13 08:27 1.8 1.0 ug/L 02/18/13 08:27 1.4 1.0 ug/L 02/18/13 08:27	ND 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 42 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 ND 10 ug/L 02/18/13 08:27 02/18/13 20:05 1.0 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 240 2.0 ug/L 02/18/13 08:27 02/18/13 17:34 330 2.0 ug/L 02/18/13 08:27 02/18/13 17:34 60 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 180 2.0 ug/L 02/18/13 08:27 02/18/13 17:34 2.2 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 1.8 1.0 ug/L 02/18/13 08:27 02/18/13 17:34 1.4 1.0 ug/L 02/18/13 08:27 02/18/13 17:34

TestAmerica Portland

Page 6 of 27

3

5

7

0

10

·

2/22/2013

Client Sample Results

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Method: 200.8 - Metals (ICP/MS)

Client Sample ID: B4-GWSI

Date Collected: 02(44/3, 14:15)

Matrix: Water

Date Collected: 02/14/13 11:15 Matrix: Water
Date Received: 02/15/13 10:56

Date Received. 02/15/15	10.56							
Analyte	Result	Qualifier RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Arsenic	21	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Beryllium	2.7	2.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Cadmium	ND	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Chromium	100	2.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Copper	160	2.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Lead	26	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Nickel	80	2.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Selenium	ND	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Silver	ND	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Thallium	ND	1.0	uç	g/L		02/18/13 08:27	02/18/13 17:37	1
Zinc	240	10	110	α/I		02/18/13 08:27	02/18/13 17:37	1

4

6

R

9

10

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 6020 - Metals (ICP/MS)

Client Sample ID: B1-SS1 Lab Sample ID: 250-10041-1 Date Collected: 02/14/13 08:45 **Matrix: Solid** Date Received: 02/15/13 10:56 Percent Solids: 85.5

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Antimony	ND	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Beryllium	ND	2.3	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Thallium	ND	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Nickel	18	2.3	mg/Kg	☼	02/16/13 14:17	02/17/13 16:10	20
Silver	2.1	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Arsenic	5.9	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Copper	37	2.3	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Lead	5.2	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Zinc	74	11	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Selenium	ND	1.1	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20
Chromium	18	2.3	mg/Kg	₽	02/16/13 14:17	02/17/13 16:10	20

Client Sample ID: B1-SS2 Lab Sample ID: 250-10041-2 Date Collected: 02/14/13 08:55 **Matrix: Solid**

Date Received: 02/15/13 10:56								Percent Soli	ds: 84.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.1		mg/Kg	<u> </u>	02/16/13 14:17	02/17/13 16:13	20
Antimony	ND		1.1		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Beryllium	ND		2.3		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Thallium	ND		1.1		mg/Kg	₽	02/16/13 14:17	02/17/13 16:13	20
Nickel	15		2.3		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Silver	ND		1.1		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Arsenic	2.9		1.1		mg/Kg	₽	02/16/13 14:17	02/17/13 16:13	20
Copper	35		2.3		mg/Kg	₽	02/16/13 14:17	02/17/13 16:13	20
Lead	4.7		1.1		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Zinc	73		11		mg/Kg	₽	02/16/13 14:17	02/17/13 16:13	20
Selenium	ND		1.1		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20
Chromium	17		2.3		mg/Kg	₩	02/16/13 14:17	02/17/13 16:13	20

Client Sample ID: B2-SS1 Lab Sample ID: 250-10041-3

Date Collected: 02/14/13 09:30 **Matrix: Solid**

Date Received: 02/15/13 10:56							Percent Soli	ds: 82.0
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND	1.2		mg/Kg	*	02/16/13 14:17	02/17/13 16:24	20
Antimony	ND	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Beryllium	ND	2.4		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Thallium	ND	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Nickel	27	2.4		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Silver	12	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Arsenic	3.5	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Copper	65	2.4		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Lead	8.5	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Zinc	110	12		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Selenium	ND	1.2		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20
Chromium	28	2.4		mg/Kg	₽	02/16/13 14:17	02/17/13 16:24	20

TestAmerica Portland

Page 8 of 27

02/17/13 16:27

02/17/13 16:27

02/17/13 16:27

02/17/13 16:27

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 6020 - Metals (ICP/MS)

Lead

Zinc

Selenium

Chromium

Client Sample ID: B2-SS2	Lab Sample ID: 250-10041-4
Data Callanta di 00/44/40 00:05	Machine Callel

Date Collected: 02/14/13 09:35 **Matrix: Solid** Date Received: 02/15/13 10:56 Percent Solids: 81.6 Result Qualifier RL MDL Unit D Prepared Analyzed Analyte Dil Fac ₩ Cadmium ND 1.2 02/16/13 14:17 02/17/13 16:27 mg/Kg 20 02/16/13 14:17 02/17/13 16:27 20 Antimony ND 12 mg/Kg ä Beryllium ND 2.4 mg/Kg 02/16/13 14:17 02/17/13 16:27 20 ₽ Thallium ND 1.2 mg/Kg 02/16/13 14:17 02/17/13 16:27 20 **Nickel** 2.4 mg/Kg 02/16/13 14:17 02/17/13 16:27 20 17 02/16/13 14:17 02/17/13 16:27 20 Silver 12 mg/Kg 2.2 ₽ Arsenic 2.6 1.2 mg/Kg 02/16/13 14:17 02/17/13 16:27 20 31 2.4 02/16/13 14:17 02/17/13 16:27 20 Copper mg/Kg

Client Sample ID: B2-SS3 Lab Sample ID: 250-10041-5 Date Collected: 02/14/13 09:40 **Matrix: Solid**

1.2

12

1.2

2.4

mg/Kg

mg/Kg

mg/Kg

mg/Kg

02/16/13 14:17

02/16/13 14:17

02/16/13 14:17

02/16/13 14:17

5.3

88

ND

17

Date Received: 02/15/13 10:56 Percent Solids: 84.1 Result Qualifier MDL Unit D Analyte RLPrepared Analyzed Dil Fac ND ₩ 02/16/13 14:17 Cadmium 1.1 mg/Kg 02/17/13 16:31 20 ND 02/16/13 14:17 20 Antimony 1.1 mg/Kg 02/17/13 16:31 ND Beryllium 2.3 02/16/13 14:17 02/17/13 16:31 20 mg/Kg Thallium ND ₽ 02/16/13 14:17 02/17/13 16:31 1.1 mg/Kg 20 ₩ 02/16/13 14:17 02/17/13 16:31 20 **Nickel** 17 2.3 mg/Kg Silver ND 1.1 mg/Kg 02/16/13 14:17 02/17/13 16:31 20 1.1 02/16/13 14:17 02/17/13 16:31 20 **Arsenic** 2.8 mg/Kg 02/16/13 14:17 02/17/13 16:31 20 Copper 27 2.3 mg/Kg 20 02/16/13 14:17 02/17/13 16:31 1 1 mg/Kg Lead 4.1 ä Zinc 67 11 mg/Kg 02/16/13 14:17 02/17/13 16:31 20 Selenium ND 02/16/13 14:17 02/17/13 16:31 20 1.1 mg/Kg 02/17/13 16:31 Chromium 16 2.3 mg/Kg 02/16/13 14:17 20

Client Sample ID: B3-SS1 Lab Sample ID: 250-10041-6 Date Collected: 02/14/13 10:00 **Matrix: Solid** Data Pacaiyad: 02/15/13 10:56 Percent Solide: 84 3

							Percent Soil	as: 84.3
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.2		mg/Kg	*	02/16/13 14:21	02/17/13 16:51	20
ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
ND		2.4		mg/Kg	₽	02/16/13 14:21	02/17/13 16:51	20
ND		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 16:51	20
25		2.4		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
2.8		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 16:51	20
37		2.4		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
5.5		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
84		12		mg/Kg	₽	02/16/13 14:21	02/17/13 16:51	20
ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
24		2.4		mg/Kg	₩	02/16/13 14:21	02/17/13 16:51	20
	ND ND ND 25 ND 2.8 37 5.5	ND ND ND 25 ND 2.8 37 5.5	ND 1.2 ND 1.2 ND 2.4 ND 1.2 25 2.4 ND 1.2 25 2.4 SD 1.2 2.8 1.2 37 2.4 5.5 1.2 84 12 ND 1.2	ND 1.2 ND 1.2 ND 2.4 ND 1.2 25 2.4 ND 1.2 2.8 1.2 37 2.4 5.5 1.2 84 12 ND 1.2	ND 1.2 mg/Kg ND 1.2 mg/Kg ND 2.4 mg/Kg ND 1.2 mg/Kg ND 1.2 mg/Kg ND 1.2 mg/Kg 2.8 1.2 mg/Kg 37 2.4 mg/Kg 5.5 1.2 mg/Kg 84 12 mg/Kg ND 1.2 mg/Kg	ND 1.2 mg/Kg ND 1.2 mg/Kg ND 2.4 mg/Kg ND 1.2 mg/Kg 25 2.4 mg/Kg ND 1.2 mg/Kg 2.8 1.2 mg/Kg 37 2.4 mg/Kg 5.5 1.2 mg/Kg 84 12 mg/Kg ND 1.2 mg/Kg	ND 1.2 mg/Kg © 02/16/13 14:21 ND 1.2 mg/Kg © 02/16/13 14:21 ND 2.4 mg/Kg © 02/16/13 14:21 ND 1.2 mg/Kg © 02/16/13 14:21 25 2.4 mg/Kg © 02/16/13 14:21 ND 1.2 mg/Kg © 02/16/13 14:21 2.8 1.2 mg/Kg © 02/16/13 14:21 37 2.4 mg/Kg © 02/16/13 14:21 5.5 1.2 mg/Kg © 02/16/13 14:21 84 12 mg/Kg © 02/16/13 14:21 ND 1.2 mg/Kg © 02/16/13 14:21 ND 1.2 mg/Kg © 02/16/13 14:21	Result ND Qualifier RL MDL Unit D Prepared Analyzed ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 2.4 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 2.8 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 37 2.4 mg/Kg © 02/16/13 14:21 02/17/13 16:51 5.5 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51 84 12 mg/Kg © 02/16/13 14:21 02/17/13 16:51 ND 1.2 mg/Kg © 02/16/13 14:21 02/17/13 16:51

TestAmerica Portland

20

20

20

6

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 6020 - Metals (ICP/MS)

Client Sample ID: B3-SS2

Client Sample ID: B3-SS3

Date Collected: 02/14/13 10:10

Lab	Sample	: ID: 2	250-1	0041-7

Date Collected: 02/14/13 10:05								Matri	ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	ds: 70.5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.4		mg/Kg	\$	02/16/13 14:21	02/17/13 17:01	20
Antimony	ND		1.4		mg/Kg	₽	02/16/13 14:21	02/17/13 17:01	20
Beryllium	ND		2.8		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Thallium	ND		1.4		mg/Kg	₽	02/16/13 14:21	02/17/13 17:01	20
Nickel	27		2.8		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Silver	ND		1.4		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Arsenic	4.1		1.4		mg/Kg		02/16/13 14:21	02/17/13 17:01	20
Copper	45		2.8		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Lead	6.2		1.4		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Zinc	84		14		mg/Kg		02/16/13 14:21	02/17/13 17:01	20
Selenium	ND		1.4		mg/Kg	₩	02/16/13 14:21	02/17/13 17:01	20
Chromium	31		2.8		mg/Kg	₽	02/16/13 14:21	02/17/13 17:01	20

Lab Sample ID: 250-10041-8 **Matrix: Solid**

Date Received: 02/15/13 10:56 Percent Solids: 80.1 Analyzed Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac ₩ Cadmium ND 1.2 02/16/13 14:21 02/17/13 17:04 20 mg/Kg Antimony ND 1.2 02/16/13 14:21 02/17/13 17:04 20 mg/Kg ND Beryllium 2.4 02/16/13 14:21 02/17/13 17:04 20 mg/Kg Thallium ND 1.2 02/16/13 14:21 02/17/13 17:04 20 mg/Kg 02/17/13 17:04 02/16/13 14:21 20 **Nickel** 19 2.4 mg/Kg Silver ND 1.2 mg/Kg 02/16/13 14:21 02/17/13 17:04 20 1.2 02/16/13 14:21 02/17/13 17:04 20 **Arsenic** 5.0 mg/Kg 40 2.4 mg/Kg 02/16/13 14:21 02/17/13 17:04 20 Copper 02/16/13 14:21 20 12 mg/Kg 02/17/13 17:04 Lead 5.3 Zinc 78 12 mg/Kg 02/16/13 14:21 02/17/13 17:04 20 Selenium ND 1.2 02/16/13 14:21 02/17/13 17:04 20 mg/Kg 2.4 02/16/13 14:21 02/17/13 17:04 Chromium 23 mg/Kg 20

Client Sample ID: B4-SS1 Lab Sample ID: 250-10041-9 Date Collected: 02/14/13 10:50 **Matrix: Solid**

Date Received: 02/15/13 10:56								Percent Soli	ds: 84.5
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.1		mg/Kg	*	02/16/13 14:21	02/17/13 17:08	20
Antimony	ND		1.1		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Beryllium	ND		2.3		mg/Kg	₩	02/16/13 14:21	02/17/13 17:08	20
Thallium	ND		1.1		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Nickel	17		2.3		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Silver	ND		1.1		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Arsenic	1.9		1.1		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Copper	30		2.3		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Lead	4.1		1.1		mg/Kg	₩	02/16/13 14:21	02/17/13 17:08	20
Zinc	62		11		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Selenium	ND		1.1		mg/Kg	₽	02/16/13 14:21	02/17/13 17:08	20
Chromium	18		2.3		mg/Kg	₩	02/16/13 14:21	02/17/13 17:08	20

TestAmerica Portland

Client Sample Results

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

☼ 02/16/13 14:21 02/17/13 17:11

© 02/16/13 14:21 02/17/13 17:21

Method: 6020 - Metals (ICP/MS)

Chromium

Chromium

Client Sample ID: B4-SS2 Date Collected: 02/14/13 11:00							Lab Sa	ample ID: 250-1 Matri	0041-10 x: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.2		mg/Kg	\	02/16/13 14:21	02/17/13 17:11	20
Antimony	ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Beryllium	ND		2.5		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Thallium	ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Nickel	13		2.5		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Silver	ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Arsenic	2.2		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:11	20
Copper	28		2.5		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20
Lead	5.0		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:11	20
Zinc	86		12		mg/Kg	₽	02/16/13 14:21	02/17/13 17:11	20
Selenium	ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 17:11	20

2.5

mg/Kg

mg/Kg

14

Client Sample ID: B4-SS3							Lab S	ample ID: 250-1	0041-11
Date Collected: 02/14/13 11:05								Matri	x: Solid
Date Received: 02/15/13 10:56								Percent Soli	ds: 81.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.2		mg/Kg	*	02/16/13 14:21	02/17/13 17:21	20
Antimony	ND		1.2		mg/Kg	₩	02/16/13 14:21	02/17/13 17:21	20
Beryllium	ND		2.4		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Thallium	ND		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Nickel	20		2.4		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Silver	ND		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Arsenic	3.6		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Copper	34		2.4		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Lead	5.2		1.2		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Zinc	81		12		mg/Kg	₽	02/16/13 14:21	02/17/13 17:21	20
Selenium	ND		12		ma/Ka	₩	02/16/13 14:21	02/17/13 17:21	20

2.4

20

Client Sample Results

Result Qualifier

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 7470A - Mercury (CVAA)

Client Sample ID: B1-GWSI

Analyte

Date Collected: 02/14/13 09:15

Date Received: 02/15/13 10:56

TestAmerica Job ID: 250-10041-1

Lab Sample ID: 250-10041-12

Analyzed

Matrix: Water

Dil Fac

J
_

	0	

· ·							•	•	
Mercury	0.98		0.20		ug/L		02/17/13 16:30	02/18/13 17:25	1
Client Sample ID: B2-GWSI							Lab Sa	ample ID: 250-1	0041-13
Date Collected: 02/14/13 09:50								Matri	k: Water
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.21		0.20		ug/L		02/17/13 16:30	02/18/13 17:28	1
Client Sample ID: B3-GWSI							Lab Sa	ample ID: 250-1	0041-14
Date Collected: 02/14/13 10:25								Matri	k: Water
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.3		0.20		ug/L		02/17/13 16:30	02/18/13 17:30	1
Client Sample ID: B4-GWSI							Lab Sa	ample ID: 250-1	0041-15
Date Collected: 02/14/13 11:15								Matri	k: Water
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.23		0.20		ug/L		02/17/13 16:30	02/18/13 17:33	1

RL

MDL Unit

D

Prepared

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 7471A - Mercury (CVAA)

TestAmerica Job ID: 250-10041-1

Client Sample ID: B1-SS1							Lab S	Sample ID: 250	
Date Collected: 02/14/13 08:45									ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.11		mg/Kg		02/20/13 16:58	02/21/13 01:06	1
Client Sample ID: B1-SS2							Lab	Sample ID: 250	10041.2
Date Collected: 02/14/13 08:55							Lau		ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.096		mg/Kg	<u>~</u>	02/20/13 16:58	02/21/13 01:08	1
			0.000		99		02/20/10 10:00	02/2 !! ! 0 0 !! 00	•
Client Sample ID: B2-SS1							Lab S	Sample ID: 250	-10041-3
Date Collected: 02/14/13 09:30									ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	ds: 82.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.47		0.12		mg/Kg	\	02/20/13 16:58	02/21/13 01:16	1
Client Sample ID: B2-SS2							Lab S	Sample ID: 250-	-10041-4
Date Collected: 02/14/13 09:35								Matr	ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	0.13		0.10		mg/Kg	<u> </u>	02/20/13 16:58	02/21/13 01:19	1
Client Comple ID: DO CCC							l ab (40044.5
Client Sample ID: B2-SS3							Lab	Sample ID: 250	
Date Collected: 02/14/13 09:40									ix: Solid
Date Received: 02/15/13 10:56	Result	Qualifier	RL	MDL	Unit	D	Prepared	Percent Soli Analyzed	Dil Fac
Analyte Mercury	ND	Qualifier .	0.11	WIDL	mg/Kg	— ö	02/20/13 16:58	02/21/13 01:21	1
ivier cury	ND		0.11		mg/rkg		02/20/13 10:36	02/21/13 01.21	'
Client Sample ID: B3-SS1							Lab S	Sample ID: 250	-10041-6
Date Collected: 02/14/13 10:00								•	ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.11		mg/Kg	<u></u>	02/20/13 16:58	02/21/13 01:24	1
<u> </u>									
Client Sample ID: B3-SS2							Lab	Sample ID: 250-	-10041-7
Date Collected: 02/14/13 10:05								Matr	ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	ds: 70.5
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.14		mg/Kg	₽	02/20/13 16:58	02/21/13 01:26	1
College Occupied ID Do DO							1 -1- 4		40044.0
Client Sample ID: B3-SS3							Lab	Sample ID: 250	
Date Collected: 02/14/13 10:10									ix: Solid
Date Received: 02/15/13 10:56	Posult	Qualifier	RL	MDL	Unit	D	Droparod	Percent Soli	Dil Fac
Analyte	ND	Qualifier	0.10	WIDL		— ö	Prepared 02/20/13 16:58	Analyzed 02/21/13 01:29	1
Mercury	ND		0.10		mg/Kg	ar.	02/20/13 10:30	02121113 01.29	1
Client Sample ID: B4-SS1							Lah 9	Sample ID: 250	-10041-9
Date Collected: 02/14/13 10:50									ix: Solid
Date Received: 02/15/13 10:56								Percent Soli	
Date Neceiveu, vzi iai ia iu.an									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample Results

RL

RL

0.11

0.11

MDL Unit

MDL Unit

mg/Kg

mg/Kg

D

\

D

₩

Prepared

02/20/13 16:58

Prepared

02/20/13 16:58

Result Qualifier

Result Qualifier

ND

ND

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 7471A - Mercury (CVAA)

Client Sample ID: B4-SS2

Client Sample ID: B4-SS3

Date Collected: 02/14/13 11:05

Date Received: 02/15/13 10:56

Analyte

Mercury

Analyte

Mercury

Date Collected: 02/14/13 11:00

Date Received: 02/15/13 10:56

TestAmerica Job ID: 250-10041-1

Lab Sample ID: 250-10041-10

Analyzed

02/21/13 01:34

Lab Sample ID: 250-10041-11

Analyzed

02/21/13 01:36

Matrix: Solid

Matrix: Solid

Dil Fac

Dil Fac

Percent Solids: 77.1

Percent Solids: 81.1

TestAmerica Portland

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

General Chemistry

Date Received: 02/15/13 10:56

Analyte

Percent Moisture

Percent Solids

Client Sample ID: B1-SS1 Date Collected: 02/14/13 08:45								Sample ID: 250- Matri	x: Solic
Date Received: 02/15/13 10:56								Matri	x. Oone
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	14		0.010		%	— <u> </u>		02/16/13 14:26	
Percent Solids	86		0.010		%			02/16/13 14:26	
ercent donus	00		0.010		70			02/10/10 11:20	
Client Sample ID: B1-SS2							Lab	Sample ID: 250-	10041-
Date Collected: 02/14/13 08:55									x: Soli
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	16		0.010		%			02/16/13 14:26	
Percent Solids	84		0.010		%			02/16/13 14:26	
Client Sample ID: B2-SS1							Lab	Sample ID: 250-	10041-
Date Collected: 02/14/13 09:30								Matri	x: Soli
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil F
Percent Moisture	18		0.010		%			02/16/13 14:26	
Percent Solids	82		0.010		%			02/16/13 14:26	
Client Sample ID: B2-SS2							Lab	Sample ID: 250-	10041
Date Collected: 02/14/13 09:35								Matri	x: Sol
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	18		0.010		%			02/16/13 14:26	
Percent Solids	82		0.010		%			02/16/13 14:26	
Client Sample ID: B2-SS3							Lah	Sample ID: 250-	10041.
Date Collected: 02/14/13 09:40							Lab		x: Soli
Date Received: 02/15/13 10:56								Watr	X. J UII
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	16		0.010		%		Порагоа	02/16/13 14:26	
Percent Solids	84		0.010		%			02/16/13 14:26	
reicent Solius	04		0.010		70			02/10/13 14.20	
Client Sample ID: B3-SS1							Lab	Sample ID: 250-	10041-
Date Collected: 02/14/13 10:00									x: Soli
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	16		0.010		%		•	02/16/13 14:26	
Percent Solids	84		0.010		%			02/16/13 14:26	
Client Sample ID: B3-SS2							Lab	Sample ID: 250-	10041
Date Collected: 02/14/13 10:05									x: Soli
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Moisture	29		0.010		%			02/16/13 14:26	
Percent Solids	71		0.010		%			02/16/13 14:26	
Client Sample ID: B3-SS3							Lab	Sample ID: 250-	10041-
Date Collected: 02/14/13 10:10								Matri	x: Soli

TestAmerica Portland

Analyzed

02/16/13 14:31

02/16/13 14:31

Prepared

D

RL

0.010

0.010

RL Unit

%

%

Result Qualifier

20

80

Dil Fac

Client Sample Results

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

02/16/13 14:31

Lab Sample ID: 250-10041-11

General Chemistry

Percent Solids

Client Sample ID: B4-SS3

Client Sample ID: B4-SS1							Lab	Sample ID: 250-	10041-9
Date Collected: 02/14/13 10:50								Matri	x: Solid
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	16		0.010		%			02/16/13 14:31	1

0.010

84

%

Client Sample ID: B4-SS2 Date Collected: 02/14/13 11:00							Lab S	Sample ID: 250-1 Matri	0041-10 x: Solid
Date Received: 02/15/13 10:56 Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	23		0.010		%		<u> </u>	02/16/13 14:31	1
Percent Solids	77		0.010		%			02/16/13 14:31	1

Date Collected: 02/14/13 11:05								Matr	ix: Solid
Date Received: 02/15/13 10:56									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19		0.010		%			02/16/13 14:31	1
Percent Solids	81		0.010		%			02/16/13 14:31	1

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 250-14302/1-A

Lab Sample ID: LCS 250-14302/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 14334

Client Sample ID: Method Blank

Prep Batch: 14302

Prep Type: Total/NA

1	MD	MD						-	
Analyte			RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Arsenic	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Beryllium	ND		2.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Cadmium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Chromium	ND		2.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Copper	ND		2.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Lead	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	,
Nickel	ND		2.0		ug/L		02/18/13 08:27	02/18/13 16:43	•
Selenium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Silver	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Thallium	ND		1.0		ug/L		02/18/13 08:27	02/18/13 16:43	1
Zinc	ND		10		ug/L		02/18/13 08:27	02/18/13 16:43	1
	Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Selenium Silver Thallium	Analyte Result Antimony ND Arsenic ND Beryllium ND Cadmium ND Chromium ND Copper ND Lead ND Nickel ND Selenium ND Silver ND Thallium ND	Antimony ND Arsenic ND Beryllium ND Cadmium ND Chromium ND Copper ND Lead ND Nickel ND Selenium ND Silver ND Thallium ND	Analyte Result Antimony Qualifier RL Antimony ND 1.0 Arsenic ND 1.0 Beryllium ND 2.0 Cadmium ND 1.0 Chromium ND 2.0 Copper ND 1.0 Lead ND 1.0 Nickel ND 2.0 Selenium ND 1.0 Silver ND 1.0 Thallium ND 1.0	Analyte Result Qualifier RL MDL Antimony ND 1.0 Arsenic ND 1.0 Beryllium ND 2.0 Cadmium ND 1.0 Chromium ND 2.0 Copper ND 1.0 Lead ND 1.0 Nickel ND 2.0 Selenium ND 1.0 Silver ND 1.0 Thallium ND 1.0	Analyte Result Qualifier RL MDL Unit Antimony ND 1.0 ug/L Arsenic ND 1.0 ug/L Beryllium ND 2.0 ug/L Cadmium ND 1.0 ug/L Chromium ND 2.0 ug/L Copper ND 2.0 ug/L Lead ND 1.0 ug/L Nickel ND 2.0 ug/L Selenium ND 1.0 ug/L Silver ND 1.0 ug/L Thallium ND 1.0 ug/L	Analyte Result Qualifier RL MDL Unit D Antimony ND 1.0 ug/L Arsenic ND 1.0 ug/L Beryllium ND 2.0 ug/L Cadmium ND 1.0 ug/L Chromium ND 2.0 ug/L Copper ND 2.0 ug/L Lead ND 1.0 ug/L Nickel ND 2.0 ug/L Selenium ND 1.0 ug/L Silver ND 1.0 ug/L Thallium ND 1.0 ug/L	Analyte Result Qualifier RL MDL Unit D Prepared Antimony ND 1.0 ug/L 02/18/13 08:27 Arsenic ND 1.0 ug/L 02/18/13 08:27 Beryllium ND 2.0 ug/L 02/18/13 08:27 Cadmium ND 1.0 ug/L 02/18/13 08:27 Chromium ND 2.0 ug/L 02/18/13 08:27 Copper ND 1.0 ug/L 02/18/13 08:27 Lead ND 1.0 ug/L 02/18/13 08:27 Nickel ND 2.0 ug/L 02/18/13 08:27 Selenium ND 1.0 ug/L 02/18/13 08:27 Silver ND 1.0 ug/L 02/18/13 08:27 Thallium ND 1.0 ug/L 02/18/13 08:27	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Antimony ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Arsenic ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Beryllium ND 2.0 ug/L 02/18/13 08:27 02/18/13 16:43 Cadmium ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Chromium ND 2.0 ug/L 02/18/13 08:27 02/18/13 16:43 Copper ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Lead ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Nickel ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Selenium ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Silver ND 1.0 ug/L 02/18/13 08:27 02/18/13 16:43 Thallium ND 1.0 ug/L

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 14334							Prep Batch: 14	302
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	51.0		ug/L		102	85 - 115	
Arsenic	100	104		ug/L		104	85 ₋ 115	
Beryllium	50.0	50.1		ug/L		100	85 - 115	
Cadmium	100	103		ug/L		103	85 ₋ 115	
Chromium	100	107		ug/L		107	85 - 115	
Copper	100	105		ug/L		105	85 ₋ 115	
Lead	100	105		ug/L		105	85 _ 115	
Nickel	100	103		ug/L		103	85 ₋ 115	
Selenium	100	103		ug/L		103	85 ₋ 115	
Silver	50.0	52.5		ug/L		105	85 - 115	
Thallium	50.0	51.3		ug/L		103	85 _ 115	
Zinc	100	104		ug/L		104	85 ₋ 115	

Lab Sample ID: 250-10042-C-2-B MS

Matrix: Water

Analysis Batch: 14334

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 14302

_	Sample S	Sample	Spike	MS	MS				%Rec.	
Analyte	Result (Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	1.4		50.0	56.9		ug/L		111	70 - 130	
Arsenic	16		100	124		ug/L		107	70 - 130	
Beryllium	ND		50.0	46.4		ug/L		93	70 - 130	
Cadmium	ND		100	107		ug/L		107	70 - 130	
Chromium	5.5		100	111		ug/L		106	70 - 130	
Copper	17		100	116		ug/L		98	70 - 130	
Lead	ND		100	98.4		ug/L		98	70 - 130	
Nickel	3.2		100	99.6		ug/L		96	70 - 130	
Selenium	3.1		100	116		ug/L		113	70 - 130	
Silver	ND		50.0	51.0		ug/L		102	70 - 130	
Thallium	ND		50.0	47.4		ug/L		95	70 - 130	
Zinc	ND		100	104		ug/L		97	70 - 130	

TestAmerica Portland

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 250-10042-C-1-B DU Client Sample ID: Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 14334 Prep Batch: 14302

_	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	4.0		3.91		ug/L		1	20
Arsenic	13		12.9		ug/L		3	20
Beryllium	ND		ND		ug/L		NC	20
Cadmium	ND		ND		ug/L		NC	20
Chromium	ND		ND		ug/L		NC	20
Copper	5.0		5.10		ug/L		2	20
Lead	ND		ND		ug/L		NC	20
Nickel	ND		ND		ug/L		NC	20
Selenium	2.7		2.52		ug/L		8	20
Silver	ND		ND		ug/L		NC	20
Thallium	ND		ND		ug/L		NC	20
Zinc	ND		ND		ug/L		NC	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 250-14289/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 14322 Prep Batch: 14289

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND	 -	0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Antimony	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Beryllium	ND		0.99		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Thallium	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Nickel	ND		0.99		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Silver	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Arsenic	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Copper	ND		0.99		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Lead	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Zinc	ND		4.9		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Selenium	ND		0.49		mg/Kg		02/16/13 14:17	02/17/13 15:03	10
Chromium	ND		0.99		mg/Kg		02/16/13 14:17	02/17/13 15:03	10

Lab Sample ID: LCS 250-14289/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 14322 Prep Batch: 14289

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	49.9	53.6		mg/Kg		107	80 _ 120	
Antimony	25.0	26.8		mg/Kg		107	80 - 120	
Beryllium	25.0	25.9		mg/Kg		104	80 _ 120	
Thallium	25.0	26.5		mg/Kg		106	80 - 120	
Nickel	49.9	52.5		mg/Kg		105	80 _ 120	
Silver	25.0	27.2		mg/Kg		109	80 - 120	
Arsenic	49.9	52.4		mg/Kg		105	80 - 120	
Copper	49.9	53.1		mg/Kg		106	80 - 120	
Lead	49.9	54.3		mg/Kg		109	80 - 120	
Zinc	49.9	52.9		mg/Kg		106	80 _ 120	

TestAmerica Portland

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 250-14289/2-A

Matrix: Solid

Analysis Batch: 14322

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14289

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Selenium	49.9	52.3		mg/Kg		105	80 - 120	
Chromium	49.9	54.5		mg/Kg		109	80 - 120	

Lab Sample ID: 250-10040-A-1-B MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 14322

Prep Type: Total/NA

Prep Batch: 14289

Analysis Batom 14022									i iop Di	uton. 14200
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		56.9	55.2		mg/Kg	₽	97	75 - 125	
Antimony	ND		28.4	19.0	F	mg/Kg	₽	66	75 ₋ 125	
Beryllium	ND		28.4	25.8		mg/Kg	₽	89	75 _ 125	
Thallium	ND		28.4	26.8		mg/Kg	₽	94	75 - 125	
Nickel	18		56.9	66.5		mg/Kg	₽	85	75 _ 125	
Silver	ND		28.4	27.7		mg/Kg	₽	97	75 _ 125	
Arsenic	2.8		56.9	53.2		mg/Kg	₽	89	75 ₋ 125	
Copper	35		56.9	83.4		mg/Kg	₽	85	75 _ 125	
Lead	11		56.9	64.2		mg/Kg	₽	93	75 - 125	
Zinc	74		56.9	119		mg/Kg	₽	78	75 ₋ 125	
Selenium	ND		56.9	51.4		mg/Kg	₩	90	75 ₋ 125	
Chromium	21		56.9	69.1		mg/Kg	₽	84	75 ₋ 125	

Lab Sample ID: 250-10040-A-1-C MSD

Matrix: Solid

Analysis Batch: 14322

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 14289 Spike MSD MSD %Rec. Sample Sample **RPD** Limit Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ₩ Cadmium ND 58.4 63.5 108 75 - 125 14 40 mg/Kg Antimony ND 29.2 23.2 mg/Kg ₩ 79 75 - 125 20 40 ₩ Beryllium ND 29.2 29.6 mg/Kg 99 75 - 125 40 14 Thallium ₩ ND 29.2 30.8 mg/Kg 105 75 - 125 40 Nickel 58.4 73.4 95 75 - 125 18 mg/Kg 10 40 ₩ Silver ND 29.2 32.0 mg/Kg 109 75 - 125 14 40 ₩ Arsenic 2.8 58.4 60.2 98 75 - 125 40 mg/Kg 12 ₽ 100 Copper 35 58.4 93.5 mg/Kg 75 - 125 11 40 58.4 73.2 ₩ 106 Lead 11 mg/Kg 75 - 125 13 40 ₩ Zinc 74 58.4 129 93 75 - 125 mg/Kg 8 40 Selenium ND 58.4 58.9 mg/Kg ₽ 101 75 - 125 13 40 Chromium 76.0 ₽ 21 58 4 mg/Kg 75 - 125 40 10

Lab Sample ID: MB 250-14290/1-A

Matrix: Solid

Analysis Batch: 14322

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 14290

	MB	МВ					
Analyte	Result	Qualifier RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Cadmium	ND	0.49		mg/Kg	02/16/13 14:21	02/17/13 16:41	10
Antimony	ND	0.49		mg/Kg	02/16/13 14:21	02/17/13 16:41	10
Beryllium	ND	0.99		mg/Kg	02/16/13 14:21	02/17/13 16:41	10
Thallium	ND	0.49		mg/Kg	02/16/13 14:21	02/17/13 16:41	10
Nickel	ND	0.99		mg/Kg	02/16/13 14:21	02/17/13 16:41	10

TestAmerica Portland

Page 19 of 27

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

2

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 250-14290/1-A

Matrix: Solid

Analysis Batch: 14322

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 14290

MB MB							
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	0.49		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	0.49		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	0.99		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	0.49		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	4.9		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	0.49		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
ND	0.99		mg/Kg		02/16/13 14:21	02/17/13 16:41	10
	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.49 ND 0.99 ND 0.49 ND 4.9 ND 0.49	Result Qualifier RL MDL ND 0.49 ND 0.99 ND 0.49 ND 4.9 ND 0.49	Result Qualifier RL MDL Unit ND 0.49 mg/Kg ND 0.99 mg/Kg ND 0.49 mg/Kg ND 4.9 mg/Kg ND 0.49 mg/Kg ND 0.49 mg/Kg	Result Qualifier RL MDL Unit D ND 0.49 mg/Kg mg/Kg ND 0.99 mg/Kg ND 0.49 mg/Kg ND 4.9 mg/Kg ND 0.49 mg/Kg ND 0.49 mg/Kg	Result Qualifier RL MDL Unit D Prepared ND 0.49 mg/Kg 02/16/13 14:21 ND 0.99 mg/Kg 02/16/13 14:21 ND 0.49 mg/Kg 02/16/13 14:21 ND 4.9 mg/Kg 02/16/13 14:21 ND 0.49 mg/Kg 02/16/13 14:21 ND 0.49 mg/Kg 02/16/13 14:21	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.49 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 0.99 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 0.49 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 4.9 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 0.49 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 0.49 mg/Kg 02/16/13 14:21 02/17/13 16:41 ND 0.49 mg/Kg 02/16/13 14:21 02/17/13 16:41

Client Sample ID: Lab Control Sample

Matrix: Solid

Lab Sample ID: LCS 250-14290/2-A

Analysis Batch: 14322

Prep Type: Total/NA

Prep Batch: 14290

Analysis Daton. 14022							i icp D	uton. 14230
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	49.8	51.4		mg/Kg		103	80 - 120	
Antimony	24.9	25.7		mg/Kg		103	80 _ 120	
Beryllium	24.9	24.5		mg/Kg		98	80 - 120	
Thallium	24.9	25.2		mg/Kg		101	80 - 120	
Nickel	49.8	50.3		mg/Kg		101	80 - 120	
Silver	24.9	26.0		mg/Kg		104	80 - 120	
Arsenic	49.8	50.5		mg/Kg		101	80 - 120	
Copper	49.8	51.3		mg/Kg		103	80 - 120	
Lead	49.8	52.4		mg/Kg		105	80 - 120	
Zinc	49.8	51.5		mg/Kg		103	80 - 120	
Selenium	49.8	50.3		mg/Kg		101	80 - 120	
Chromium	49.8	52.7		mg/Kg		106	80 _ 120	

Lab Sample ID: 250-10041-6 MS

Matrix: Solid

Chromium

Analysis Batch: 14322

Client Sample ID: B3-SS1
Prep Type: Total/NA

Prep Batch: 14290

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Ö Cadmium 58.6 ND 65.4 mg/Kg 111 75 - 125 ₩ Antimony ND 29.3 18.5 F mg/Kg 63 75 - 125 ₽ Beryllium ND 29.3 29.9 mg/Kg 100 75 - 125 ND ₩ 107 Thallium 29.3 31.4 mg/Kg 75 - 125 ₩ Nickel 25 83.7 101 75 - 125 58.6 mg/Kg Silver ND 29.3 32.4 mg/Kg ₽ 110 75 - 125 2.8 ₩ 104 Arsenic 58.6 63.8 75 - 125 mg/Kg Ċ. Copper 37 58.6 99.6 mg/Kg 106 75 - 125 5.5 58.6 68.4 107 75 - 125 Lead mg/Kg Ö Zinc 84 58.6 140 mg/Kg 97 75 - 125 Selenium ND 58.6 61.5 mg/Kg 105 75 - 125

86.5

mg/Kg

₩

106

75 - 125

58.6

24

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 250-10041-6 MSD Client Sample ID: B3-SS1 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 14322 Prep Batch: 14290

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		58.0	66.4		mg/Kg	<u> </u>	114	75 - 125	1	40
Antimony	ND		29.0	19.9	F	mg/Kg	₽	68	75 - 125	8	40
Beryllium	ND		29.0	30.0		mg/Kg	₽	101	75 - 125	0	40
Thallium	ND		29.0	31.9		mg/Kg	\$	109	75 - 125	2	40
Nickel	25		58.0	83.9		mg/Kg	₽	102	75 - 125	0	40
Silver	ND		29.0	33.0		mg/Kg	₽	113	75 - 125	2	40
Arsenic	2.8		58.0	65.2		mg/Kg	₽	108	75 - 125	2	40
Copper	37		58.0	100		mg/Kg	₽	108	75 - 125	1	40
Lead	5.5		58.0	69.0		mg/Kg	₩	109	75 - 125	1	40
Zinc	84		58.0	149		mg/Kg	₽	113	75 - 125	6	40
Selenium	ND		58.0	62.4		mg/Kg	₽	107	75 - 125	1	40
Chromium	24		58.0	89.0		mg/Kg	₽	111	75 - 125	3	40

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 250-14301/1-A Client Sample ID: Method Blank **Matrix: Water**

Prep Type: Total/NA Analysis Batch: 14333 Prep Batch: 14301 мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.20 02/17/13 16:30 02/18/13 16:56 Mercury ug/L

Lab Sample ID: LCS 250-14301/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water Analysis Batch: 14333

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits

Analyte 5.00 5.00 100 85 - 115 Mercury ug/L

Lab Sample ID: 250-10040-D-13-B MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 14333 Prep Batch: 14301 Sample Sample Spike MS MS

Result Qualifier Added Qualifier Analyte Result Unit %Rec Limits 5.00 92 75 - 125 Mercury 1.2 5.78 ug/L

Lab Sample ID: 250-10040-D-13-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 14333 Prep Batch: 14301 Sample Sample Spike MSD MSD %Rec. RPD

Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec 5.00 5.75 91 75 - 125 20 Mercury 1.2 ug/L 0

Prep Batch: 14301

Spike Added

0.584

Spike

Added

0.703

Spike

Added

0.670

Sample Sample

Sample Sample

Sample Sample

16

84

Result Qualifier

ND

Result Qualifier

Qualifier

Result

ND

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 250-14408/1-A

Matrix: Solid

Analysis Batch: 14415

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 14408

мв мв Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.095 ND

Lab Sample ID: LCS 250-14408/2-A

Matrix: Solid

Analyte

Mercury

Analysis Batch: 14415

Analyte

Mercury Lab Sample ID: 250-10040-A-4-D MS

Matrix: Solid

Analysis Batch: 14415

Analyte

Mercury

Lab Sample ID: 250-10040-A-4-E MSD

Matrix: Solid

Analysis Batch: 14415

Analyte

Method: D2216-80 - Percent Dry Weight (Solids) per ASTM D2216-80

Lab Sample ID: 250-10040-A-1 DU **Matrix: Solid**

Mercury

Analysis Batch: 14292

Analyte

Percent Moisture Percent Solids

Analyte

Percent Moisture

Percent Solids

Matrix: Solid

Analysis Batch: 14293

Lab Sample ID: 250-10041-8 DU

Sample Sample Result Qualifier 20

Result 80

mg/Kg

LCS LCS

MS MS

MSD MSD

DU DU

DU DU

21

79

Qualifier

15

85

Result Qualifier

Result Qualifier

Qualifier

0.629

Result

0.774

0.745

Result Qualifier

Unit

Unit

Unit

Unit

%

%

Unit

%

%

mg/Kg

mg/Kg

mg/Kg

D

02/20/13 16:58

%Rec

108

%Rec

107

02/21/13 00:27

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14408

Limits

Client Sample ID: Matrix Spike

80 - 120

Prep Type: Total/NA

Prep Batch: 14408

%Rec. %Rec Limits 106 75 _ 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 14408

%Rec. RPD Limits Limit 75 - 125 40

Client Sample ID: Duplicate

Prep Type: Total/NA

RPD RPD D Limit 20

Client Sample ID: B3-SS3

Prep Type: Total/NA

RPD RPD Limit 4 20 20

TestAmerica Portland

Certification Summary

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Laboratory: TestAmerica Portland

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	OR00040	06-30-13
Alaska (UST)	State Program	10	UST-012	12-26-13
California	State Program	9	2597	09-30-13
Oregon	NELAP	10	OR100021	01-09-14
USDA	Federal		P330-11-00092	02-17-14
Washington	State Program	10	C586	06-23-13

4

0

0

10

Method Summary

Client: Clark County Environmental Health Project/Site: Today's Family Dentistry

TestAmerica Job ID: 250-10041-1

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	TAL PRT
6020	Metals (ICP/MS)	SW846	TAL PRT
7470A	Mercury (CVAA)	SW846	TAL PRT
7471A	Mercury (CVAA)	SW846	TAL PRT
D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80	ASTM	TAL PRT

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PRT = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL (503)906-9200

3

4

5

6

6

9

40

THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

TestAmerica Laboratories, Inc. COCs Sample Specific Notes: COC No: Job No. Site Contact: Evan Whicks Date: 2/14/12 Lab Contact: Millered Sample Matrix Cont Project Manager: Frian Denekar Analysis Turnaround Time 1 week
2 days CAUM Calendar (C) or Work Days (W) Sample Type TAT if different from Below 2/14/13 8:45m 50: 2 weeks 1 day Sample Time Sister San 10:50 10:05 10:10 35 00:00 3 9:35 2 33 Sample Date Tel/Fax: Phone 3, 0 39 7 K/63 FAX 200 759 10859 Client Name Jark Count Public Health Address Po Box 4825 Project Name: Today's tawily, Jentistry City/State/Zip Vancover, WA 98666 Site-Tolay's Telmin Deathston Sample Identification o. 2005 SW Nimbus Ave 503-906-9200 Fax 503-906-9210 882-551 882-551 84-88-84-88-82-553 **B3-553** 83-552 B3-551 B1-552 155-18 # O d

Form No. CA-C-WI-002, Rev. 3.1, dated 07/12/2012 30 0K Date/Time

Company:

élinquished by:

Company

10/2/11/28/11/2/01

12/2/2

Months

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Heturn To Client () Disposal By Lab Archive For Month

Unknown

Poison B

V.111.05

Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other

Special Instructions/QC Requirements & Comments:

Possible Hazard Identification

15.V

Date/Time:

Company:

Received by:

Date/Time:

Company:

Relinquished by:

TAL-1002 0912

Date/Time:

Date/Time:

Company:

Relinquished by:

Relinquished by:

Company:

10 11

TestAmerica Laboratories, Inc. COCs Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Achive For Month Sample Specific Notes: COC No: SDG No. Site Contact: Brown Delinks Date: 2/14/13 Carrier: Lab Contact: SHOW d oldines bosonia # of Matrix Cont. Project Manager: Brun Why So Analysis Turnaround Time Calendar (C) or Work Days (W) Sample Type 2/14/18 9:15 GHzo **Unknown** 2 days TAT if different from Below 2 weeks 1 week 1 day Sample Time 10:25 Si 20 <u>~</u> Poison B Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Date Tel/Fax: Phone 300 397 8153 FAX 3/20 759 6859 Skin Irritant 81-GWS1 82-GWS1 Dertisty Client Name Clark Canaly Public Helth Address Po Box 9825 B3-GWS (BY-GWSI City/State/Zip/ancover, WA 98/066 Site: Todoy's tamily Bentishy Special Instructions/QC Requirements & Comments: Sample Identification Project Name. Today's family Client Contact 503-906-9200 Fax 503-906-9210 Possible Hazard Identification Non-Hazard

Page 26 of 27

TestAmerica

Chain of Custody Record

Beaverton, OR 97008-7145

9405 SW Nimbus Ave

Login Sample Receipt Checklist

Client: Clark County Environmental Health

Job Number: 250-10041-1

Login Number: 10041 List Source: TestAmerica Portland

List Number: 1

Creator: Krause, Thomas

Ciedloi. Kiduse, Tilolilas		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

4

Q

9

10

11

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

March 04, 2010

Dee Williams
Washington Dept. of Ecology-Olympia
300 Desmond Drive
Lacey, WA 98503

RE: Perkins Dental

Enclosed are the results of analyses for samples received by the laboratory on 02/18/10 15:25. The following list is a summary of the Work Orders contained in this report, generated on 03/04/10 15:59.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>
PTB0541	Perkins Dental	[none]

TestAmerica Portland

bull W. Anil

Darrell Auvil, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

300 Desmond Drive Lacey, WA 98503

Project Name:

Perkins Dental

Project Number: Project Manager: [none]

Dee Williams

Report Created:

03/04/10 15:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
001	PTB0541-01	Other dry	02/18/10 11:50	02/18/10 15:25

TestAmerica Portland

el W. Am

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

300 Desmond Drive

Project Number:

[none]

Report Created:

Lacey, WA 98503

Project Manager:

Dee Williams

03/04/10 15:59

Total Metals per EPA 6000/7000 Series Methods

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTB0541-01 (001)			Otl	ier dry		Sam	pled: 02/18/	10 11:50		
Arsenic	EPA 6020	5.38		4.76	mg/kg dry	1x	10B0603	02/19/10 15:13	02/22/10 16:27	-
Barium		372		4.76	ч	•		1)	n	•
Cadmium	*	ND		4.76	U	•	в	n	11	
Chromium	41	28.1		9.52	π	4	*	*	9	
Copper	u	3210		9.52	•	"	*	•	n	
Lead	U	107		4.76	*	•	ır	स	II.	
Nickel	"	35,4		9.52	*	•	•	v	н	
Selenium	"	ND		4.76	4	*	U	u	R	
Zinc	π	2330		47.6	n	*	e	ч	11	
PTB0541-01RE2 (001)			Oth	er dry		Sam	pled: 02/18/	10 11:50		
Silver	EPA 6020	6940		159	mg∕kg dry	1x	10B0796	02/26/10 16:13	02/27/10 16:12	

TestAmerica Portland

and w. sil

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 905.9200 fax: (503) 905.9210

Washington Dept. of Ecology-Olympia

300 Desmond Drive Lacey, WA 98503 Project Name:

Perkins Dental

Project Number: Project Manager: [none]

Dee Williams

Report Created:

03/04/10 15:59

Total Mercury per EPA Method 7471A

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTB0541-01 (001)			Otl	her dry		Sam	pled: 02/18/	10 11:50		
Mercury	EPA 7471A	4410		4260	mg/kg dry	5000x	10B0753	02/25/10 13:12	02/26/10 12:58	Bi

TestAmerica Portland

bull W. Amil

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

300 Desmond Drive

Lacey, WA 98503

Project Name:

Perkins Dental

Project Number: Project Manager: [none]

Dee Williams

Report Created:

03/04/10 15:59

Percent Dry Weight (Solids) per ASTM D2216-80

TestAmerica Portland

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTB0541-01 (001)			Ot	her dry		Sam	pled: 02/18/	/10 11:50		
% Solids	NCA SOP	10.5		0,0100	% by Weight	1x	10B0607	02/20/10 08:08	02/20/10 08:08	

TestAmerica Portland

hull W. Anil

Darrell Auvil, Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

300 Desmond Drive Lacey, WA 98503

Project Number: Project Manager:

[none] Dee Williams Report Created:

03/04/10 15:59

	Total Metals	i per EPA 6t			ethods - I ca Portland	Labora	atory Qu	анту С	ontro	i result	s 			
QC Batch: 10B0603	Soil Pre	paration Met	hod: EPA	3050										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (10B0603-BLK1)								Exte	acted:	02/19/10 15	:13			
Arsenic	EPA 6020	ND	•••	0.476	mg∕kg wet	1x		••			••	+	02/22/10 15:32	
Barium	9	ND	•••	0,476	•	n		••			••		*	
Cadmium	π	ND		0.476	*	n			••			**	e	
Chromium	π	ND		0.952	*								п	
Copper	ĸ	ND	•••	0.952	•	v		••		'			a	
Lead	H	ND	•••	0,476	*	u		••				:	n	
Nickel	rt	ND		0.952	•	a a			••	-		••	U	
Selenium	U	ND		0.476	•		••						u	
line	u	ND	•••	4.76	•	π		**						
LCS (10B0603-BS1)					٠			Ext	racted:	02/19/10 15	5:13			
Arsenic	EPA 6020	46.7		0.481	mg∕kg wet	1x		48.1	97.2%	(80-120)			02/22/10 15:40	
Barium	· u	44.6		0.481	* .	u		D	92.8%	18		••	Ħ	
Cadmium	u	46.7	***	0.481	w			U	97.1%	a			ĸ	
Chromium	н	46.3	•••	0.962	•	U		*	96.3%	11			D	
Copper	п	46.9		0.962	*	u		a	97.6%	×		••	U	
Lead	78	47.3		0.481	*	a		4	98.4%	4		••	U ·	
Nickel		47.5	***	0.962		10		11	98.8%				a	
Selenium		46.2	***	0,481		ır		u	96.2%				a	
Zinc	*	45.4		4.81	9	н		N	94.3%	0			v	
Matrix Spike (10B0603-MS1)				QC Soure	e: PTB0416-0	9		Ext	racted:	02/19/10 15	5:13			
Arsenic	EPA 6020	119		1.32	mg∕kg dry	lx	1.31	132	89.4%	(75-125)			02/22/10 16:12	
Barium .	п	287	*	1.32	*	v	163	u	94.0%	u			b	
Cadmium	er e	127		1,32	*	u	0.0531	a	96.8%	*	••		n	
Chromium	н .	154		2,63	*	u	27.9	đ	95.9%	4		••	U	
Copper	т ж	166		2,63	Ħ	u	41.4	*	95.0%			••	U	
.ead	n:	142	***	1.32	w	ħ	13.1	*	97.9%	u			а	
Nickel .	n-	157	•••	2.63	•	*	32.1		94.8%	a .			*	
Selenium		116		1.32	•	ĸ	0.199	D	87.7%	10		**	*	

TestAmerica Portland

Zinc

The results in this report apply to the somples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

300 Desmond Drive Lacey, WA 98503 Project Number: Project Manager: [none] Dee Williams Report Created: 03/04/10 15:59

Total Metals per EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 10B0603	Soil Pre	paration Met	hod: EPA	3050										
Analyte	Method	Result	MDL*	MRL	Units	Dii	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Matrix Spike Dup (10B0603	-MSD1)			QC Source	e: PTB0416-0	9		Extr	acted:	02/19/10 15	:13			
Arsenic	EPA 6020	120		1.35	mg/kg dry	ix	1.31	135	87.8%	(75-125)	1.073%	(40)	02/22/10 16:19	
Barium	ır	271		1.35			163	•	79.8%	u	5.63%	4	D	
Cadmium	u	128		1.35	7	u	0.0531	U	94.5%	π	0.473%	ır .	*	
Chromium	u	152	***	2.71	*	u	27.9	u	91.5%	o	1.46%	ч .	•	
Соррег	11	165		2.71	*	n	41.4	n	91.1%	a	0.970%	, 4		•
.ead	Ü	139		1.35	u	n	13.1	*	93,1%	a	1.94%	а		
lickel .	u	157	*	2.71	ŧı		32.1	н	92.2%	U	0.09139	6 "	*	
elenium		120	•••	1.35	ч	π	0.199	π	88.5%	u	3.85%	u	1	
Zine	¥	171		13.5	4	Ħ	49.7	*	89.3%	n	1.22%	n	•	

QC Batch: 10B0796	Other d	ry Preparatio	n Method:	EPA 3	050								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (10B0796-BLK1)								Extracted:	02/26/10 10	5:13			
Silver	EPA 6020	ND	***	0.500	mg/kg wet	lx	••		**	•-	1	02/27/10 15:57	
LCS (10B0796-BS1)				-			٠	Extracted:	02/26/10 10	5:13			
Silver	EPA 6020	23.9		0.500	mg/kg wet	1x		25,0 95,4%	(80-120)			02/27/10 16:05	
Matrix Spike (10B0796-MSI)				QC Source	: PTB0599-0	1RE1		Extracted:	02/26/10 10	5:13			
Silver	EPA 6020	23.2	***	0.495	mg/kg wet	1x	0.00980	24.8 93.7%	(75-125)	**	++ I	02/27/10 16:36	
Matrix Spike Dup (10B0796-MS	D1)			QC Source	: PTB0599-(IRE1		Extracted:	02/26/10 10	5;13			
Silver	EPA 6020	22.9		0.481	mg/kg wet	1x	0.00980	24.0 95.4%	(75-125)	1.15%	(40)	02/27/10 16:44	

TestAmerica Portland

Only W. A.il

Extracted: 02/25/10 13:12

Extracted: 02/25/10 13:12

0.610 -10100 (75-125)

0.639 -3990% (75-125)

9405 S.W. HIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

Source

Result

42.8

119

119

300 Desmond Drive Lacey, WA 98503

OC Batch: 10B0753

Blank (10B0753-BLK1)

LCS Dup (10B0753-BSD1)

Duplicate (10B0753-DUP1)

Matrix Spike (10B0753-MS1)

Matrix Spike Dup (10B0753-MSD1)

LCS (10B0753-BS1)

Analyte

Mercury

Mercury

Mercury

Mercury

Project Number: Project Manager:

TestAmerica Portland EPA 7471A

Units

mg/kg wet

mg/kg wet

mg/kg wet

QC Source: PTB0602-04

10.1 mg/kg wet

QC Source: PTB0602-03

9.76 mg/kg wet

QC Source: PTB0602-03

mg/kg wet

10,2

MRL

0.0985

0.0988

[none] Dee Williams

Dil

100x

100x

100x

Report Created: 03/04/10 15:59

Total Mercury per EPA Method 7471A - Laboratory Quality Control Results

MDL*

Other dry Preparation Method:

Result

0.180

0.636

56.9

57.2

93.6

Method

EPA 7471A

EPA 7471A

EPA 7471A

EPA 7471A

EPA 7471A

EPA 7471A

				<u></u>		
Spike	%	(Limits)	% DBS	(Limi	ts) Analyzed	Notes
	1120	02/25/10 13		-	<u> </u>	
	**	**	***		02/26/10 10:45	В
Extr	acted:	02/25/10 13	:12			
0.617	103%	(80-120)	_:		02/26/10 10:48	
Extr	acted:	02/25/10 13	:12			
0.617	101%	(80-120)	1.70%	(20)	02/26/10 10:51	
		02/25/10 13:	:12			
Extr	acted:	OMESTIO 13.				

02/26/10 11:04

02/26/10 11:07

48.2% (40)

MHA

MHA

TestAmerica Portland

el W. Anil

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 905.9200 fax: (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

300 Desmond Drive

Project Number: Project Manager:

[none] Dee Williams Report Created:

Lacey, WA 98503

03/04/10 15:59

Percent Dry Weight (Solids) per ASTM D2216-80 - Laboratory Quality Control Results

TestAmerica Portland

QC Batch: 10B0607

Soil Preparation Method: Dry Weight

Analyte

% Solids

Method Result MDL*

MRL Units

Source Dii Result

Spike % Amt REC

(Limits) · % RPD

Extracted: 02/20/10 08:08

(Limits) Analyzed

Notes

Duplicate (10B0607-DUP1)

NCA SOP

QC Source: PTB0557-01 0.0100 % by Weight

95.8

TestAmerica Portland

Darrell Auvil, Project Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph; (503) 906.9200 fax; (503) 906.9210

Washington Dept. of Ecology-Olympia

Project Name:

Perkins Dental

300 Desmond Drive Lacey, WA 98503

Project Number: Project Manager:

[none] Dee Williams Report Created:

03/04/10 15:59

Notes and Definitions

Report Specific Notes:

MHA

wet

В Analyte was detected in the associated Method Blank.

В1 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found

in the method blank.

Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See Blank Spike (LCS).

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

el W. Am

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full. without the written approval of the laboratory

Darrell Auvil, Project Manager

FestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11922 E. First Ave, Spokene, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

425-420-9200 FAX 420-9210 509-924 9200 FAX 924-9290 503-906-9200 FAX 965-9210 907-563-9200 FAX 563-9210

TAL-1000(0408) ₩ob B Turnaround Requests less than standard may incur Rush Charges Date | 18/16 ĭ [T ンドライン TURNAROUND REQUEST Work Order #: 170054 TIME 7 5 4 3 2 Feroleum Hydrocarbon Analyses らが下って えるか LOCATION/ COMMENTS DATE: Organic & Inorganic Analyses in Business Days * 3 2 OTHER Specify: 5 4 #OF CONT MATRUX (W. S. O) FIRM WARTHAN LOCATE WA, DET OF ECONOCION WA DEPT OF ECONOCY CHAIN OF CUSTODY REPORT RECEIVED BY: RECEIVED BY: PRINT NAME: / PRINT NAME: Peron REQUESTED ANALYSES PRESERVATIVE 9-81-2 3.85 10-K20 P.O. NUMBER: DATE TIME ij ADDRESS: 70 BOX 7775, OLYMPIA UM-90504-Total Motals 20248+ longer, Nicke, Zinc ひろののよ 2-18-10/11:50 SAMPLING DATE/TIME PROJECT NAME: PORT-IN-VOID TAIL SAMPLED BY: DEPUM I IT ANUS PHONE: 360 407634 CAX. RE WILLIAMS CLIENT SAMPLE DENTIFICATION PROJECT NUMBER: ADDITIONAL REMARKS: 001 REPORT TO: KELEASED BY: RECEASED BY: PRINT NAME PRINT NAME: CLIENT

TestAmerica Portland Sample Receiving Checklist

	Work Order #: 17BOS41 Date/Time Received: 21810 1525 Client Name and Project: WA. Dept of Ecology Perhins Devital
	Time Zone: BDT/EST CDT/CST MDT/MST PDT/PST AK OTHER
	Unpacking Checks: Cooler #(s): Temperature out of Range: Not enough or No Ice Ice Melted Digi #1 Digi #2 IR Gun W/in 4 Hrs of collection Other: W/D W/
	N/A Yes No Initials: M
•	☐ 1. If ESI client, were temp blanks received? If no, document on NOD.
	2. Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.
	3. Chain of Custody present? If no, document on NOD,
	4. Bottles received intact? If no, document on NOD.
*	5. Sample is not multiphasic? If no, document on NOD.
	6. Proper Container and preservatives used? If no, document on NOD.
,	7. pH of all samples checked and meet requirements? If no, document on NOD.
	8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.
· · · · · · · · · · · · · · · · · · ·	9. HF Dilution-required?
	10. Sufficient volume provided for all analysis? If no, document on NOD and consult PM before proceeding,
	11. Did chain of custody agree with samples received? If no, document on NOD.
-	12. Is the "Sampled by" section of the COC completed?
	☐ ☐ 13. Were VOA/Oil Syringe samples without headspace?
•	☐ ☐ 14. Were VOA vials preserved? ☐HCl ☐Sodium Thiosulfate ☐Ascorbic Acid
	15. Did samples require preservation with sodium thiosulfate?
	☐ 16. If yes to #14, was the residual chlorine test negative? If no, document on NOD.
	☐ ☐ 17. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.
-	18. Is sufficient volume provided for client requested MS/MSD or matrix duplicates? If no, document on NOD and contact PM before proceeding.
	19. Are analyses with short holding times received in hold?
	20. Was Standard Turn Around (TAT) requested?
•	21. Receipt date(s) < 48 hours past the collection date(s)? If no, notify PM.

TestAmerica Portland Sample Receiving Checklist

Work Order #: <u>1730541</u>

	Logi	n Ch	ecks: Initials:
	N/A	Yes	No
		Ø	22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
	Ø		23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
	,		no, document on NOD and contact PM,
		\square	24. Did the chain of custody include "received by" and "relinquished by" signatures,
			dates and times?
	\square		25. Were special log in instructions read and followed?
		\Box	26. Were tests logged checked against the COC?
	Ź		27. Were rush notices printed and delivered?
-			28. Were short hold notices printed and delivered?
			29. Were subcontract COCs printed?
	Ź		30. Was HF dilution logged?
	,		•
	Lab	eling	and Storage Checks: Initials:
	N/A	Yes	No
	7		31. Were the subcontracted samples/containers put in Sx fridge?
	\square		32. Were sample bottles and COC double checked for dissolved/filtered metals?
		7	33. Did the sample ID, Date, and Time from label match what was logged?
	Z		34. Were Foreign sample stickers affixed to each container and containers stored in
	1		foreign fridge?
•	\Box		35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
•	Ź		36. Was an NOD for created for noted discrepancies and placed in folder?
•		ment a (NOD)	ny problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy).
			·

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

9405 SW Nimbus Ave, Beaverton, OR 97008-7145 11922 E. First Ave. Spokane, WA 99206-5302

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

Work Order #:

509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 425-420-9200 FAX 420-9210

CHAIN OF CUSTODY REPORT

CHEST STATE TAL-1000(0408) TA WO ID * Turnaround Requests less than standard may incur Rush Charges. 1 \$ 4 3 2 1 <1 TURNAROUND REQUEST STD: Petroleum Hydrocarbon Analyses ができ DATE: なると TIME: LOCATION/ COMMENTS Organic & Inorganic Analyses in Business Days * TEMP: OTHER | Specify: #OF CONT. MATRIX (W. S. O) POUL STOLLES MINOIGE TO, DOTT OF ELLOLOSY RECEIVED BY: , RECEIVED BY: PRINT NAME: とからが REQUESTED ANALYSES PRESERVATIVE ロテンド いめい 13/50/20 P.O. NUMBER: TIME DATE REPORTTO. DES WINDSWO DEWING BOOK DA GOV.

ADDRESS: POBOY TITO, OLYNOIA DE GOSOA-TITO 12 12 12 ログニングの下の一つ FIRM: SAMPLING DATE/TIME PROJECT NAME: POSTA IN TOWNER 62 SAMPLED BY: DOG WILL ANG と な な が デ 249 WHE 24WO PHONE 300407634 BAX: 対対になるが いたのことのなら CLIENT SAMPLE IDENTIFICATION PROJECT NUMBER: ADDITIONAL REMARKS: ر چ RELEASED BY: RELEASED BY: PRINT NAME: PRINT NAME;

	t	į.		•
		:		
			·	

Perkins Dental Metals	All Entries i	All Entries in ppm, mg/kg or mg/L only (do not mix units)	kg or mg/L 🗴	ouly (do not	: mix units)			
Chemical	CAS Nr:	×	А	В	ပ	٥	not dw	Data Source:
Arsenic	7440-38-2				5.38			ECOTOX: Fathead Minnow LC50 = 9.9 mg/L
Barium (Barium chloride)	10361-37-2				372.00			RTECS: Oral Rat LD50 = 118 mg/kg
Cadmium	7440-43-9	00.00						ECOTOX: Rainbow Trout LC50 0.0021 mg/L
Chromium	7440-47-3					28.10		ECOTOX: Rainbow Trout LC50 = 100 mg/L
Copper	7440-50-8		3,210.00					ECOTOX LC50 = 0.052 mg/L Rainbow trout
Lead	7439-92-1			107.00				ECOTOX: Rainbow Trout LC50 = 0.2 mg/L
Mercury	7439-97-6	4,410.00						ECOTOX: Rainbow Trout LC50 = 0.005 mg/L
Nickel	7440-02-0		35.40					ECOTOX LC50 =.050 mg/L Rainbow trout
Selenium	7782-49-2				0.00			ECOTOX: Rainbow Trout LC50 = 5.0 mg/L
Silver	7440-22-4	6,940.00						ECOTOX: Rainbow Trout LC50 = 0.0062 mg/L
Zinc	7440-66-6			2,330.00				ECOTOX: Rainbow Trout LC50 = 0.24 mg/L
tal (ppm, mg/kg or mg/L)		11,350.00	3,245.40	245.40 2,437.00	377.38	28.10	0.00	
								TO THE PARTY OF TH
I (%) per Toxic Category		1.13500	0.32454	0.24370	0.03774	0.00281	0.00000	
quivalent Concentration		1.13500	0.03245	0.00244	0.00004	0.00000		
Total EC		1.1699						
	•							

Waste	Code	none	WT02	WT01
		not DW	ΔV	ET
Designation	Equivalent Conc. Range	Total EC < 0.001 =	otal EC < 1.0 & > 0.001 =	Total EC > 1.0 =

alent concentration	11	$\Sigma X\% + \Sigma A\% + \Sigma B\% + \Sigma C\% + \Sigma D\% $
		1000 1,000 1000

Dermal	Rabbit	LD50	(mg/kg)
Inhalation	Rat	LC50	(mg/L)
	Oral Rat	LD50	(mg/kg)
	Fish*	LC50	(mg/L)
		Toxic	Category

101ton floor				
		20-<200		
			200-<2,000	,000-20,00
100	5.4			5.7
20805	-	1/		100
TOTAL STATE	220,000		10 Tel 10	A
100	2005-1-10		200	Sec. 17.75
5 5	72		100 A (200	Sec. 20. 30.00
Comments.		CVI.	MARCH MAR	
20.50				3 VX 23
100	132 ** 23			2011 1/16
die de			2-<20	20-200
WW. 201	2000	1.3	TOTAL CONTRACTOR	CN . 15
1000		1 2 2 -	Transfer !	and the state of
THE APPROXICE !		1 1	Acres (Acres)	-
The second	reformance and		47-	
I described to	256-57-50-5	1	H-by-martilly	<u> </u>
Manual Company	white the same		bunker, my	7 - FI
200	m.70.00			3.2
Strongarous.	A 100 A		2.	
*******			100	Sec. 25.
A CAPOTELLA	300,000	_		200
13. 1		~		S
2.7	6036, 743,775			don with
	77.00		2.00	120 No. 1177
		-5	7	E 100
1 400	700	1/	40.00	CS 4 .43
3	1000	•	200 5 123	200 A 100
4 8 M	10.0		8. w . > m	200
	2-7,			100
ALCOHOLD	TOTAL 2 2			Same Si
				200
100000X	Section 1	5-<50	5	(w)
(2000) 1000)	denny	75.	S	
		75	50-<500	8
		75:	S	500-5,000
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
The second second	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
07.	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
40,407,111111111111	A DAMES	11.1	*******	+0.00
40 k0 k1	A DAMES	11.1	*******	+0.00
30102	A DAMES	11.1	*******	+0.00
50.00	A DAMES	11.1	*******	+0.00
10707	A DAMES	11.1	*******	+0.00
20101	A DAMES	11.1	*******	+0.00
(50.05	A DAMES	11.1	1-<10	+0.00
20101	A DAMES	11.1	*******	+0.00
10.05	A DAMES	11.1	*******	+0.00
30,03	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
30707	A DAMES	11.1	*******	+0.00
	A DAMES	11.1	*******	+0.00
2010	A DAMES	11.1	*******	+0.00
30,03	A DAMES	11.1	*******	+0.00
2010	A DAMES	0.1-4	1-<10	10-100
30,05	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	A DAMES	0.1-<1	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100
	0.01-<0.1	0.1-4	1-<10	10-100

·