

MEMORANDUM

То:	Andrew Smith, P.E., LHG Department of Ecology	
From:	Ian Maguire	
	Amanda Spencer	
	Christopher Breemer, LG	1
Cc:	Renee Robinson, NuStar Energy, L.P.	
	Stephanie Bosze Salisbury, Apex Companies, LLC.	Г
Date:	March 13, 2018	L
Subject:	NuStar Annex Terminal – Pilot Study Implementation	0

This Pilot Study Implementation Memorandum summarizes the field activities and observations made during implementation of the pilot study of injecting oxygen releasing compound and chemical oxidants to treat residual petroleum hydrocarbons at the NuStar Terminals Operations Partnership, L.P. (NuStar) Annex Terminal located at 5420 NW Fruit Valley Road, Vancouver, Washington (the Facility). The pilot study was completed in accordance with the Additional Investigation Summary Report and Pilot Study Work Plan (Apex, 2017; [Work Plan]), approved by Ecology on August 24, 2017, to assist in preparation of a Feasibility Study of remedial technologies for the Facility.

In a September 2016 meeting, Ecology stated that the Feasibility Study would need to evaluate active remediation to address petroleum hydrocarbons in groundwater near wells MW-5 and MW-6 based on the results from the additional groundwater investigations conducted from 2014 to 2016. As such, NuStar completed a preliminary review of possible remedial technologies and identified injection of oxygen releasing compound and/or *in-situ* chemical oxidation (ISCO) as possible alternatives. However, due to the presence of heavier hydrocarbons in the saturated soil and shallow groundwater, it was determined that a pilot test would be prudent to better evaluate the viability of this option prior to completing the Feasibility Study. In the Work Plan, NuStar proposed the use of RegenOx® (a proprietary ISCO substrate manufactured by Regenesis) and ORCAdvanced (an oxygen releasing formulation also manufactured by Regenesis) for the pilot study.

This memorandum documents the implementation of the Work Plan and presents the results of groundwater monitoring conducted directly before and one month following completion of the RegenOx® and ORCAdvanced injections. The groundwater monitoring event conducted prior to the injections is referred to as the baseline groundwater monitoring event herein; the groundwater monitoring event conducted one month following the injections was the first of four quarters of performance groundwater monitoring proposed in the approved Work Plan to assess the effectiveness of the injection of the RegenOx® and ORCAdvanced mixture.

The methods and procedures used for the pilot study are detailed below. A location map for the Facility is provided on Figure 1; a site plan is provided on Figure 2. A description of the site history and previous investigations is presented in the Additional Investigation Summary Report and Pilot Study Work Plan (Apex, 2017).

METHODS AND PROCEDURES FOR PILOT STUDY

The pilot study was implemented during October and November 2017 and included:

- Preparatory activities;
- Installation of monitoring well MW-5D;
- Conducting a baseline groundwater monitoring event;
- Completion of subsurface injections at 24 locations;
- Conducting the first of four quarterly post-injection performance groundwater monitoring events; and
- Surveying top-of-casing elevation of site monitoring wells.

A photograph log of the field activities is contained in Attachment A. The location of the pilot study area is shown on Figure 3 and the locations of the injection borings within the pilot study area are shown on Figure 4.

PREPATORY ACTIVITIES

Prior to pilot study field activities, the following tasks were completed:

- A site-specific health and safety plan was prepared.
- Obtained an Underground Injection Control (UIC) authorization from Ecology's Water Quality Department.
- The Washington Utility Notification Center was notified of the proposed work.
- The locations of monitoring well MW-5D and the 24 injection borings were identified and marked.
- The locations of subsurface utilities near the proposed borings were marked by a private utility locating contractor, Locates Down Under of Oregon City, Oregon. Because the pilot study area was located within a tank farm, a combination of electromagnetic and ground penetrating radar techniques were used to clear the pilot study area.
- Boring locations were physically cleared to a depth of 8 feet below the ground surface (bgs) using a hand-auger prior to advancing the borings to final depths via drilling equipment.

Monitoring Well Installation

Deeper well MW-5D was installed adjacent to shallow well MW-5 to assess the possible effect the injections have on deeper groundwater. Installation of monitoring well MW-5D was completed on October 20, 2017, using direct-push drilling equipment. The location of monitoring well MW-5D is shown on Figure 2.

Drilling Procedures

The boring was completed using Geoprobe 7720DT direct-push drilling equipment, owned and operated by Cascade Drilling of Clackamas, Oregon. Drilling equipment encountering soil and/or groundwater was decontaminated prior to use and after completion of the boring. The boring was advanced to a depth of 45 feet bgs. The lithology encountered is predominantly silt with some fine sand to a depth of about 22 feet bgs. Below approximately 22 feet bgs, the lithology transitioned to a fine to medium grained sand with varying amounts of silt. Groundwater was encountered at approximately 17.3 feet bgs in the boring.

The well was constructed in accordance with Washington Well Construction and Licensing System (WCLS) regulations and procedures and was installed under the oversight of a Washington Licensed Geologist.

A Cascadia field representative was present to observe and document drilling and sample collection procedures, perform field screening activities, and prepare a lithologic log for monitoring well MW-5D. The lithologic log, including field screening results, is included in Attachment B.

The well was constructed of 2-inch diameter schedule-40 PVC casing, with a screened interval of 0.01-inch slotted pre-packed PVC extending from 35 to 45 feet bgs. A 5-foot bentonite sleeve seal containing granular bentonite pre-packed around a section PVC well casing contained within a paper sleeve was used to create a seal above the pre-packed sand-pack. The bentonite sleeve seal was used due to the limited space between the well casing and the borehole; the paper sleeve ensured that the granular bentonite was correctly placed above the pre-packed sand-sand pack. When the sleeve seal is lowered below the water surface, the bentonite hydrates and expands, breaking away the paper sleeve and creating a seal around the well casing. Following installation and hydration of the bentonite sleeve seal, quarter-inch coated bentonite pellets were used to seal the remainder of the annular space, to within 2 feet of the ground surface. The monitoring well was completed with a flush-mount well monument set in a concrete pad.

Monitoring well MW-5D was developed on October 23, 2017, using a combination of surging and overpumping to remove approximately five casing volumes and entrained sediment.

Field Screening Results

As shown on the boring log for monitoring well MW-5D contained in Attachment B, PID measurements on soil were below 5 parts per million (ppm) on unsaturated soil above the historical water table. Significant readings (e.g., greater than 100 ppm) were first encountered at a depth of 14 feet bgs and extended to a depth of approximately 20 feet bgs, corresponding to the shallow groundwater table, which was encountered at a depth of about 17 feet bgs. These results are consistent with field observations made in December 2014 during the construction of shallow monitoring well MW-5. Well MW-5D is located adjacent to well MW-5.

REGENOX/ORC-ADVANCED INJECTIONS

The pilot study field activities were performed from October 18 to November 1, 2017.

The Pilot Study Work Plan proposed using a mixture of RegenOx[®] and ORCAdvanced to remediate residual hydrocarbons in soil and groundwater below the water table at the Facility. RegenOx[®] is an injectable, two-

part ISCO reagent that combines a solid sodium percarbonate based alkaline oxidant (Part A), with a liquid solution of sodium silicates, silica gel, and ferrous sulfate (Part B). RegenOx[®] produces minimal heat and pressure and is noncorrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping communication lines, etc. In addition to chemical destruction, RegenOx[®] produces a significant short-term oxygen footprint that is optimal for establishing aerobic conditions capable of supporting follow-on, aerobic biodegradation of petroleum hydrocarbons. The ORCAdvanced then continues to release oxygen to the groundwater over a period of up to 12 months to support long-term aerobic biodegradation. ORCAdvanced is a calcium oxy-hydroxide based material that becomes hydrated upon contact with the groundwater, producing a controlled-release of molecular oxygen (17% by weight).

The RegenOx/ORCAdvanced mixture was injected into 24 borings located within the pilot study area, as shown on Figure 4. The borings were located on an approximate off-set gridded pattern on 15-foot spacing.

Boring Advancement

The borings were installed using direct push equipment (Geoprobe 7720DT) in accordance with the standard operating procedures (SOPs) in the approved Work Plan, contained in Attachment C. Each boring was manually cleared of subsurface infrastructure by hand-augering to a depth of 8 feet bgs. Following hand clearance, an injection probe was advanced to a depth of 25 feet bgs using the Geoprobe rig. Because several wells have been installed within or near the pilot study area and lithologic logs of these wells have been prepared, lithologic logs were not prepared for the subsurface injection locations.

Injection Equipment and Procedures

RegenOx[®] and ORCAdvanced were mixed in large totes and injected through the drill stem via air diaphragm pumps situated on the injection rig. Photographs of the mixing process are contained in Attachment A. The injection rig is specially designed to complete subsurface injections and is equipped with a pair of 150-gallon poly mixing tanks with built in mixers. Each mixing tank was equipped with an independent diaphragm pump connected to a pumping manifold capable of pumping the solution to up to six injection probes at a time; although only two injection probes were operated at a time during this Pilot Study to ensure adequate control over the injection rate. Each process train was equipped with its own digital flowmeter to measure the flowrate and total volume injected.

The RegenOx and ORCAdvanced mix was injected from the bottom depth of the boring up to 15 feet bgs (the approximate depth to groundwater) utilizing one of two types of injection probe tips:

- A pressure activated probe tip, designed to deliver the injection solution along a localized depth interval (approximately 1 foot); the high pressure required to activate the jet is designed to move the solution out from the injection point into the subsurface as the probe tip is withdrawn in 1-foot intervals.
- A slotted screen injection probe, designed to deliver the injection solution over a 5-foot screened interval. The injection screen consisted of a 5-foot steel rod with rows of injection ports around the circumference of the rod and spaced approximately 3 inches along the length of the screen. The injection screen was withdrawn in 5-foot intervals.

Initially, injections were attempted using the pressure activated probe tip because the design provided greater control over the delivery of the oxidant solution. However, field personnel were unable to prevent short-circuiting of injection fluids along the outside of the drilling rods to the surface. Therefore, Cascade primarily utilized the 5-foot injection rod designed to deliver the oxidant solution radially along the 5-foot interval. Approximately 300 gallons of the RegenOx/ORCAdvanced mixture were injected at each boring location.

Issues Encountered

Daylighting and slow injection rates. Even with changing the injection probe to the 5-foot injection screen and injecting the RegenOx®/ORCAdvanced solution at lower pressures, the oxidant solution was still observed at a number of locations in the form of either free-flowing liquid or foaming at the surface. Possible factors contributing to the observed daylighting include: the injection pressure (discussed below), tightness of drill stem connections, and the lithology at the injection boring location. The lithology in the pilot study area is predominantly silt with some fine sand to depths of about 22 feet bgs and the lower permeability of this soil type may have caused the mixture to follow preferential pathways such as along the drill stem casing at times. Additionally, the mixture pumping rate needed to be lowered to accommodate the fluid injections into the lower permeability of the soils.

<u>Injection pressures</u>. The initial injection locations utilized the pressure activated probe tip to introduce the RegenOX/ORCAdvanced solution into the subsurface. However, the higher pressures needed to depress the internal spring mechanism in the probe tip resulted in an injection flowrate greater than the subsurface conditions would accept; this resulted in a buildup of pressure and daylighting of the injection material either along the outside of the drill stem or through nearby soil to the surface.

<u>Clogging</u>. The in-line flowmeters used to measure injection flowrate and the total volume pumped at each location had a tendency to clog frequently. ORCAdvanced did not completely dissolve when mixed with water and RegenOx[®], resulting in a solution with particles present that would build-up and clog the flowmeters. When this occurred, injection volumes were estimated from the volume of the mixing tanks. To the extent possible the clogging was mitigated by removing and cleaning the flowmeters after each injection was complete.

While the injection program was successfully completed, the above issues caused delays in completing the program and will need to be considered when evaluating the viability and cost of this remedial technology in the Feasibility Study.

Restoration

After the target volume was injected at each boring location (or the injection was halted due to surfacing), the drill stem was removed and decontaminated, and the boring was abandoned with bentonite. The injection borings were abandoned in accordance with WCLS regulations and procedures.

GROUNDWATER MONITORING

Prior to conducting the RegenOx[®]/ORCAdvanced injections, a groundwater monitoring event was conducted to assess the baseline constituent concentrations. Groundwater samples were collected from monitoring well MW-5 on October 23, 2017, and wells MW-6 and MW-5D on October 24, 2017.

The first of four rounds of quarterly post-injection performance groundwater monitoring was completed on November 30, 2017; approximately one month after completion of the pilot study injections. Groundwater samples were collected from monitoring wells MW-5, MW-5D, and MW-6.

During both monitoring events, depth to groundwater measurements were collected from site wells prior to initiating groundwater sampling. In the baseline event, depth to groundwater was collected at wells MW-5, MW-5D, and MW-6; during the first post-injection quarterly event, depth to groundwater measurements were collected from the 12 site monitoring wells. Following the measurement of the depth to groundwater, measurements of dissolved oxygen (DO) and oxidation-reduction potential (ORP) were collected at each well. The wells were then purged and sampled using low-flow techniques. Field parameters including DO and ORP measurements were collected during the purging process to assist in evaluating the pilot study results. Sampling methods and protocols used are described in Attachment C. Groundwater samples collected during the performance monitoring were submitted to ESC Lab Sciences, a Washington State-certified laboratory for gasoline-range total petroleum hydrocarbons (TPHg) using Pacific Northwest Method NW-TPH-Gx, diesel-range total petroleum hydrocarbons (TPHd) and oil-range total petroleum hydrocarbons (TPHo) using Pacific Northwest Method NW-TPH-Dx (with silica gel cleanup), and BTEX using EPA Method 8260B.

Laboratory data reports and monitoring field sheets are presented in Attachments D and E, respectively.

MONITORING WELL ELEVATION SURVEY

On November 30 and December 1, 2017, a licensed land surveyor and crew with Bluedot Group, out of Portland, Oregon, completed survey of the 12 monitoring wells, MW1 through MW10, MW-5D and MW-9D, at the Facility. For each of the 12 site monitoring wells the northing and easting coordinates were established (or confirmed) and the monument rim and well PVC top-of-casing elevations were measured to within +/- 0.01 foot, relative to the North American Vertical Datum of 1988 (NAVD88). A site plan containing the survey information is presented in Attachment F.

INVESTIGATION-DERIVED WASTE

Investigation-derived waste (IDW), consisting of soil cuttings, purged groundwater, and decontamination water, was placed 55-gallon steel drums. At the end of the pilot study field activities, the drums were moved to the waste storage area at the Terminal pending the results of analytical data to complete the waste profile and arrange disposal. Four drums of soil cuttings were transported off-site for disposal at the Waste Management Subtitle D landfill in Hillsboro, Oregon. Two drums of purged groundwater and decontamination water were transported off-site and recycled at the Oil Re-Refining Company (ORRCO) in Portland, Oregon.

RESULTS AND DISCUSSION

DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATIONS

Table 1 summarizes the depth to groundwater and groundwater elevation data from the two monitoring events. Depth to groundwater ranged from 17.50 to 18.12 feet in wells MW-5, MW-5D, and MW-6 during the baseline groundwater monitoring event. Depth to groundwater in the 12 site monitoring wells ranged from 11.12 to 29.59 feet during the first post-injection groundwater monitoring event.

Figure 5 shows the groundwater elevations from the first post-injection event calculated using the new monitoring well survey and the depth to groundwater measurements. As can be seen from the figure, the groundwater elevations are similar across the Facility and not easily contoured, indicating a flat groundwater gradient.

ANALYTICAL RESULTS

Analytical results for the baseline and first post-injection groundwater events are summarized on Table 2; results from the prior groundwater monitoring events conducted at these wells from 2014 to 2016 are also included on Table 2 for reference. Additionally, the baseline and first post-injection groundwater results for TPH and BTEX are shown on Figures 4 and 5, respectively.

Well MW-5 Results. Comparison of the baseline and first post quarterly sampling event results for well MW-5, the shallow monitoring well located within the pilot study area, indicate similar pre- and post-injection concentrations, and may indicate that the ISCO did not have a significant effect on reducing petroleum hydrocarbon concentrations because chemical oxidants are typically fast acting in the breakdown of hydrocarbons. However, the mixture of RegenOx and ORCAdvanced can act to desorb hydrocarbons adhered to soil particles, causing a short-term increase in hydrocarbon concentrations in groundwater. The slower acting oxygen-releasing agent then enhances natural biodegradation of the "liberated" hydrocarbons. Therefore, it will be important to continue to monitor the groundwater in the remaining three quarterly events to assess whether there is a statistically significant decreasing trend in the hydrocarbon concentrations which can be linked to the addition of the injectants from the pilot study.

Well MW-5D Results. TPHg, TPHd, TPHo, and BTEX concentrations in the newly installed deeper well located in the pilot study area were low to non-detect both before and after the pilot study injections.

Well MW-6 Results. Well MW-6 is located in a separate area containing residual petroleum hydrocarbons and associated constituents in groundwater at concentrations above MTCA Level A concentrations and is being sampled during the pilot study to provide reference for the pilot study results because it is not located sufficiently close to the pilot study area to be affected by the injections. BTEX concentrations were comparable between the baseline and post-injection groundwater monitoring event, and generally stable or decreasing from previous monitoring events. The TPH results were also comparable between the baseline and post-injections are comparable to the historical results from this well, although the distribution between the carbon ranges differed during the recent sampling in comparison to the historical results. During the baseline groundwater monitoring event, a duplicate groundwater

sample was collected from well MW-6. Analysis of TPHd and TPHo was performed outside of the hold time for Method NW-TPH-Dx, which is 14 days when the pH is less than two, and hold time is 7 days when the pH is greater than two. As part of the procedure for preparing to perform TPHd and TPHo analysis the pH of the duplicate sample was measured. The pH of the duplicate sample was greater than two when measured 13 days after collection, as such the analytical results for TPHd and TPHo from the duplicate sample were flagged as being out-of-hold.

CONCLUSIONS

Evaluation of the pilot study activities and the baseline and first post-injections groundwater monitoring results indicate the following:

- RegenOx and ORCAdvanced can be successfully injected into the subsurface; however, due to the silty lithology in the upper 25 feet in the pilot study area and the mechanics of the injection equipment, the injection rate must be slower than typical to prevent short-circuiting, increasing the time and cost of this type of remedial technology.
- Comparison of the results from the baseline and the first post-injection groundwater monitoring events did not indicate a significant decrease in hydrocarbon concentrations in the pilot study area. However, this is a common occurrence directly following the injection of large volumes of a RegenOx/ORCAdvanced mixture due to desorption of hydrocarbons adhered to saturated soil. Therefore, it is too early to determine the effectiveness of the RegenOx® and ORCAdvanced injection technology and completion of the remaining three groundwater monitoring events will be important to assessing whether the technology is viable for a full scale remedial approach.

Tables

- 1 Depth to Groundwater and Groundwater Elevation Data
- 2 Groundwater Analytical Data

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Pilot Study Area
- 4 Pilot Study Injection Layout
- 5 Groundwater Elevations November 2017
- 6 TPH Concentrations in Groundwater
- 7 BTEX Concentrations in Groundwater

Attachments

- A Photograph Log
- B Lithologic Log and Construction Details for well MW-5D
- C Standard Operating Procedure (SOP)s for Boring Advancement and Groundwater Sampling
- D Laboratory Data with Data Quality Review
- E Groundwater Monitoring Field Notes
- F Monitoring Well Survey Plan

References

Apex Companies, LLC, 2017. Additional Investigation Summary Report and Pilot Study Work Plan, NuStar Vancouver Annex Terminal, August 2, 2017.

TABLES

Table 1 Groundwater Elevations NuStar Terminals Operations Partnership, L.P. - Vancouver Annex Terminal Vancouver, Washington

Well ID	Date	Reference Elevation (feet) ¹	Depth To SPH (feet)	Depth To Groundwater (feet)	SPH Thickness (feet)	Groundwater Elevation (feet)	Notes
MW 1	11/30/2017	26.72		16.16		10.56	
MW 2	11/30/2017	38.27		27.66		10.61	
MW 3	11/30/2017	39.17		28.61		10.56	
MW 4	11/30/2017	40.23		29.59		10.64	
MW 5	10/23/2017 11/30/2017	27.03 27.03		17.82 16.39		9.21 10.64	
MW 5D	10/24/2017 11/30/2017	26.71 26.71		17.50 16.21		9.21 10.50	
MW 6	10/24/2017 11/30/2017	27.33 27.33		18.12 16.71		9.21 10.62	
MW 7	11/30/2017	21.67		11.12		10.55	
MW 8	11/30/2017	27.68		16.91		10.77	
MW 8D	11/30/2017	27.87		17.36		10.51	
MW 9	11/30/2017	29.39		18.78		10.61	
MW 10	11/30/2017	28.71		18.16		10.55	

Notes:

1. Survey elevations determined by Bluedot Group surveying, November 2017.

2. Reference elevation (i.e., top of casing) relative to NAVD 88, feet above mean sea level.

Table 2 Groundwater Analytical Data NuStar Terminals Operations Partnership, L.P. - Vancouver Annex Terminal Vancouver, Washington

Well ID	Sample Date	TPHg Gasoline (mg/L)	TPHd Diesel (mg/L)	TPHo Heavy Oil (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethyl- Benzene (mg/L)	Xylenes (mg/L)
	-							
	12/16/2014	15.0	0.35	<0.500	0.0007	0.00066	0.12	1.2
	12/16/2014 DUP	15.0	<0.25	<0.500	0.00088	0.00081	0.18	1.3
	3/25/2015	18.1	<0.045	<0.091	<0.00050	0.00061	0.218	1.45
	3/25/2015 DUP	17.2	<0.046	<0.092	0.0005	0.00065	0.236	1.22
	6/24/2015	15.0	0.33 D (see note)	<0.250	<0.0012	<0.0012	0.228	1.51
MW-5	6/24/2015 DUP	16.8	0.56 D (see note)	<0.250	< 0.0012	<0.0012	0.232	1.49
	9/15/2015	17.3	0.82 D (see note)	<0.34	< 0.00050	0.0006	0.289	1.92
	7/11/2016	19.4	0.31	<0.29	< 0.00084	0.001	0.215	1.17
	10/23/2017	7.93 J-	1.26	<0.25	<0.0010	0.00117	0.174	0.99
	11/30/2017	11.3	1.63	<0.25	<0.0250	<0.0250	0.187	1.21
	11/30/2017 DUP	10.9	1.75	<0.25	<0.0010	0.00112	0.187	1.48
MW-5D	10/24/2017	0.42	0.147 J	<0.25	<0.0010	<0.0010	0.00138	0.00296 J
10100-50	11/30/2017	0.41	0.49	<0.25	<0.0010	<0.0010	<0.0010	<0.0030
	12/16/2014	15	<0.250	<0.500	0.47	0.065	1.3	2.6
	3/25/2015	13.7	0.047	< 0.092	0.516	0.0756	1.4	2.26
	6/24/2015	17.7	1.2 D (see note)	<0.250	0.423	0.0582	1.58	1.92
	9/15/2015	15.1	0.54 D (see note)	< 0.34	0.306	0.0672	1.23	1.92
MW-6	9/15/2015 DUP	14	0.44 D (see note)	<0.35	0.328	0.0684	1.32	2.07
	7/11/2016	15.5	0.23	<0.28	0.358	0.0616	1.63	1.82
	10/24/2017	7.73	5.07	0.111 J	0.194	0.0512	1.51	1.29
	10/24/2017 DUP	4.19 J	8.96 Q, J	1.19 QJ	0.153	0.0462	1.18	1.04
	11/30/2017	9.42	7.44	0.69	0.223	0.0531	1.71	1.12
Washington DOE I Cleanup Level	MTCA Method A	0.8	0.5	0.5	0.005	1	0.7	1

Notes:

1. TPH = Total petroleum hydrocarbons by northwest methods, with samples for diesel- and motor-oil-range analyses prepared by silica gel cleanup.

2. TPHg = Total petroleum hydrocarbons measured in the gasoline range

3. TPHd = Total petroleum hydrocarbons measured in the diesel range

4. TPHo = Total petroleum hydrocarbons measured in the heavy oil range

5. TPHg by Method NWTPH-Gx; TPHd and TPHo by NWTPH-Dx; benzene, toluene, ethylbenzene, xylenes, MTBE analyzed by EPA Method 8260 B.

6. Boldface values represent concentration that exceeds MTCA Method A cleanup level.

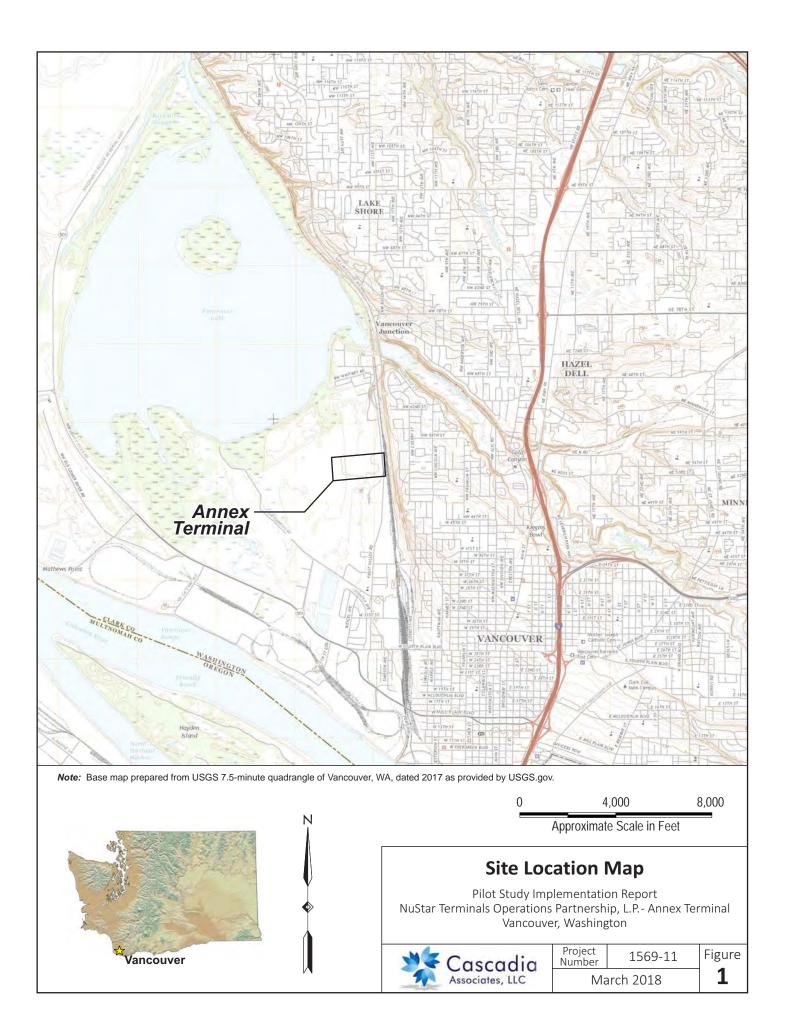
7. Yellow highlight indicates the baseline groundwater monitoring event.

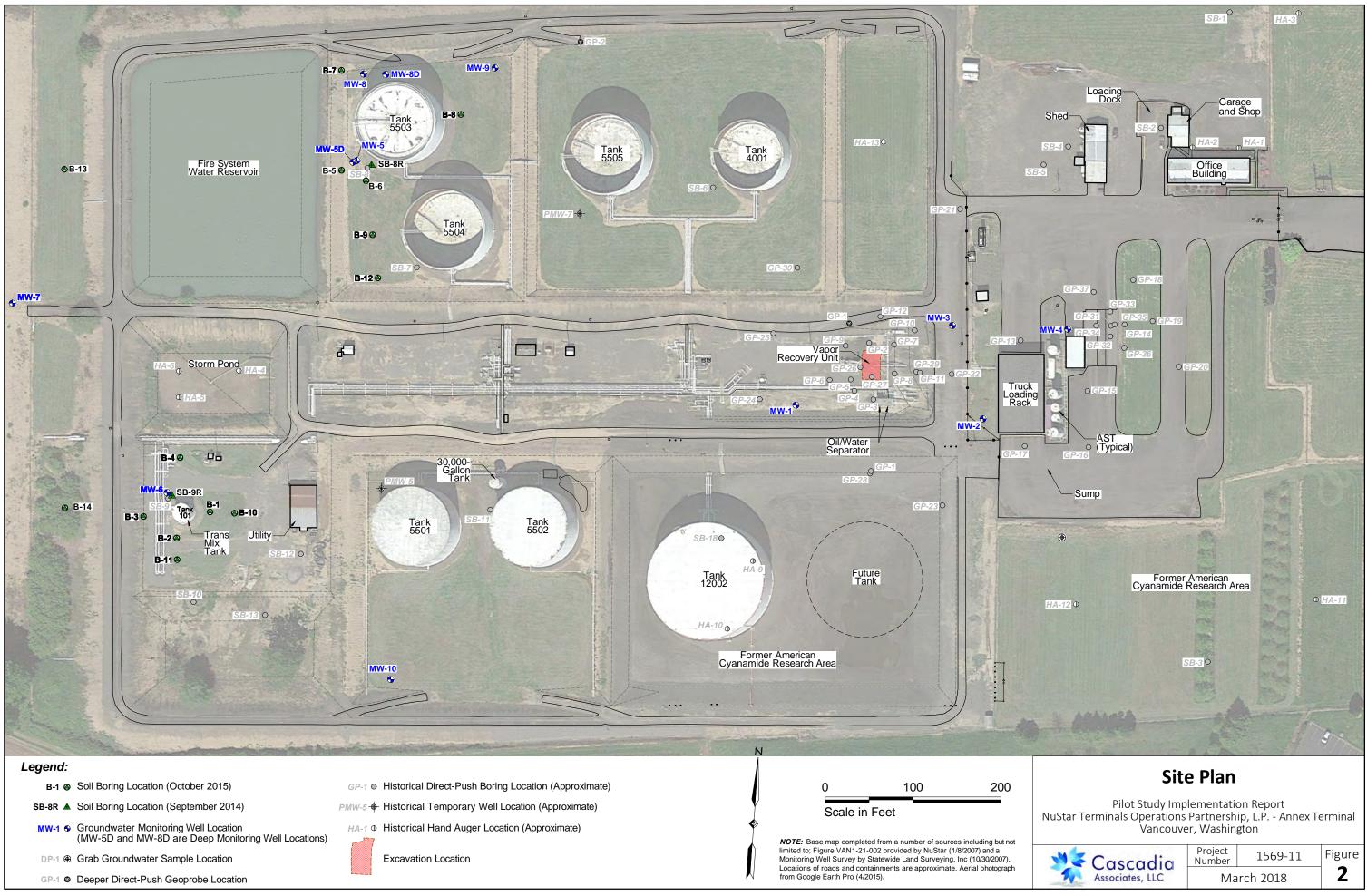
8. < = less than the method detection limit.

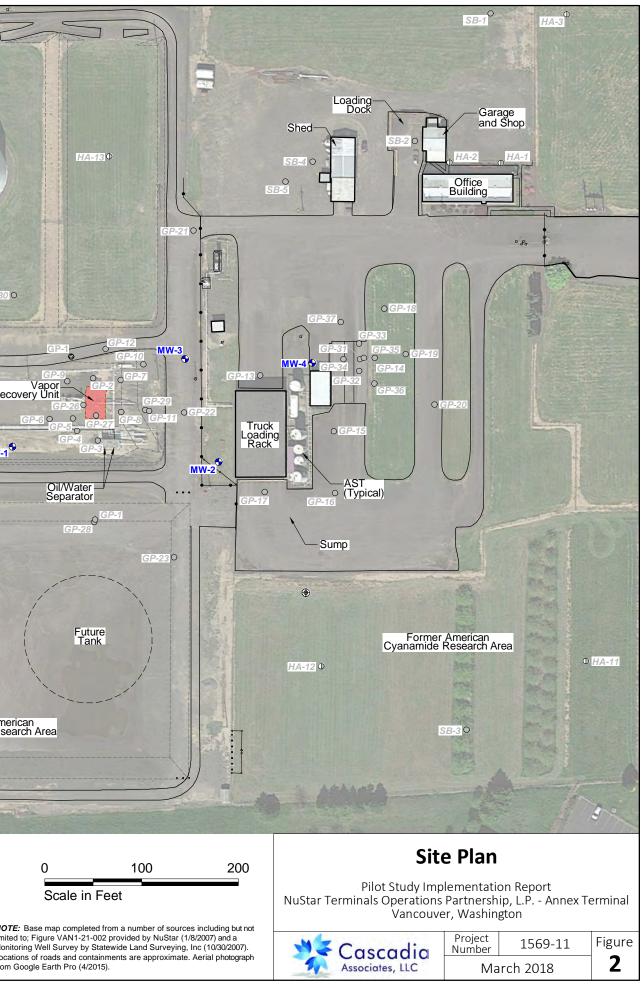
9. mg/L = milligrams(s) per liter.

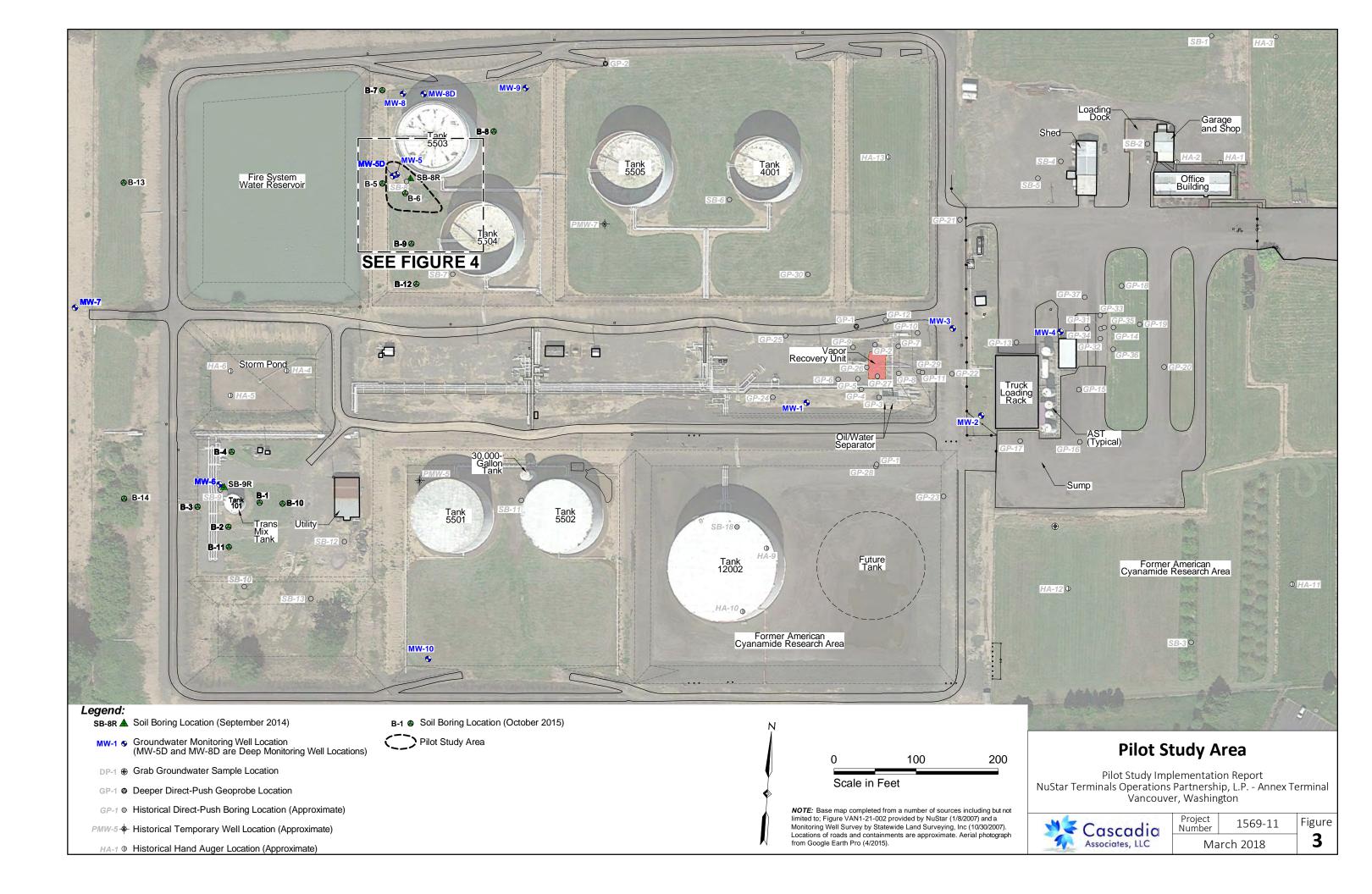
10. DUP = Field Duplicate.

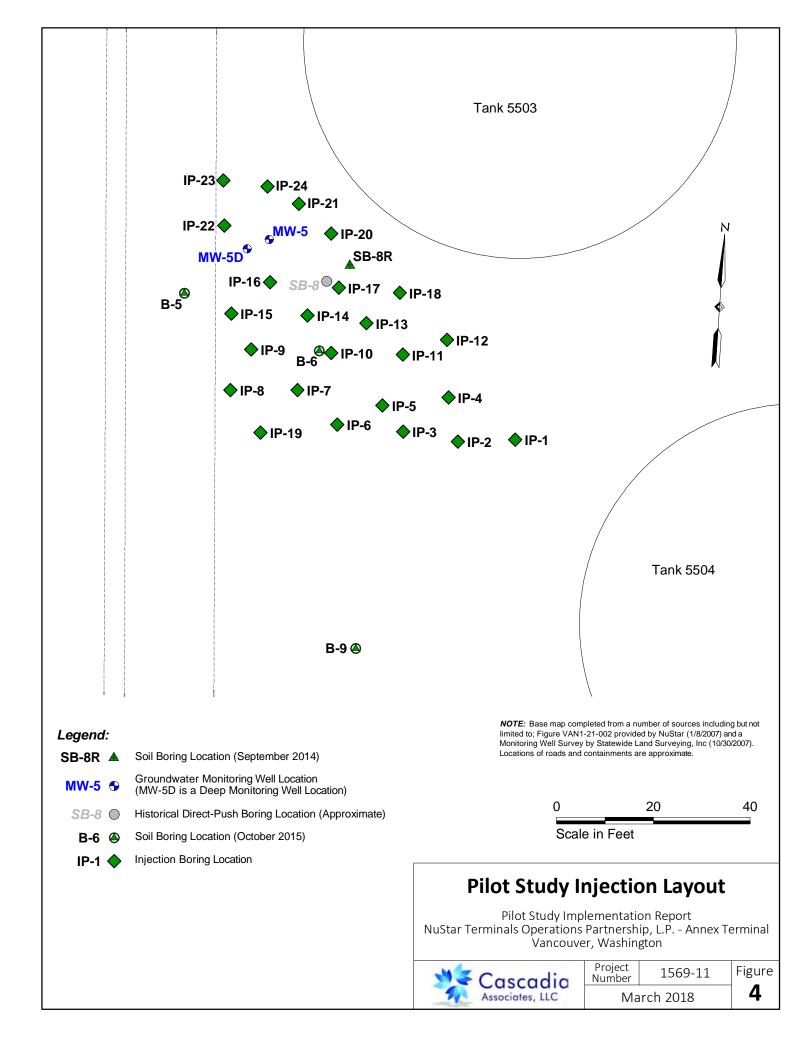
11. D = Laboratory report noted discreet peaks that are not indicative of diesel. The laboratory chemist confirmed the peaks were from non-petroleum organic material.

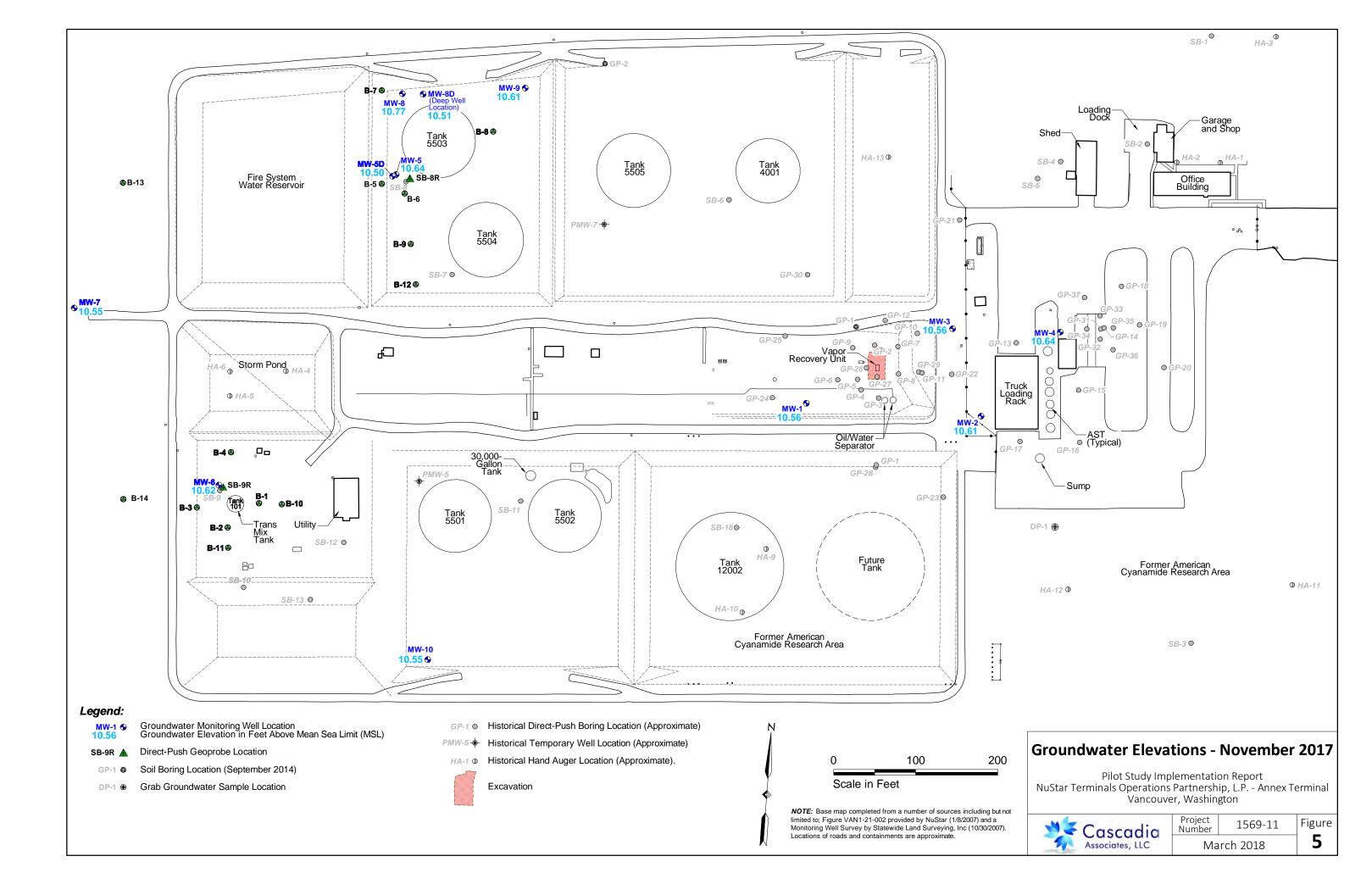

Quality Assurance/Quality Control Data Qualifiers

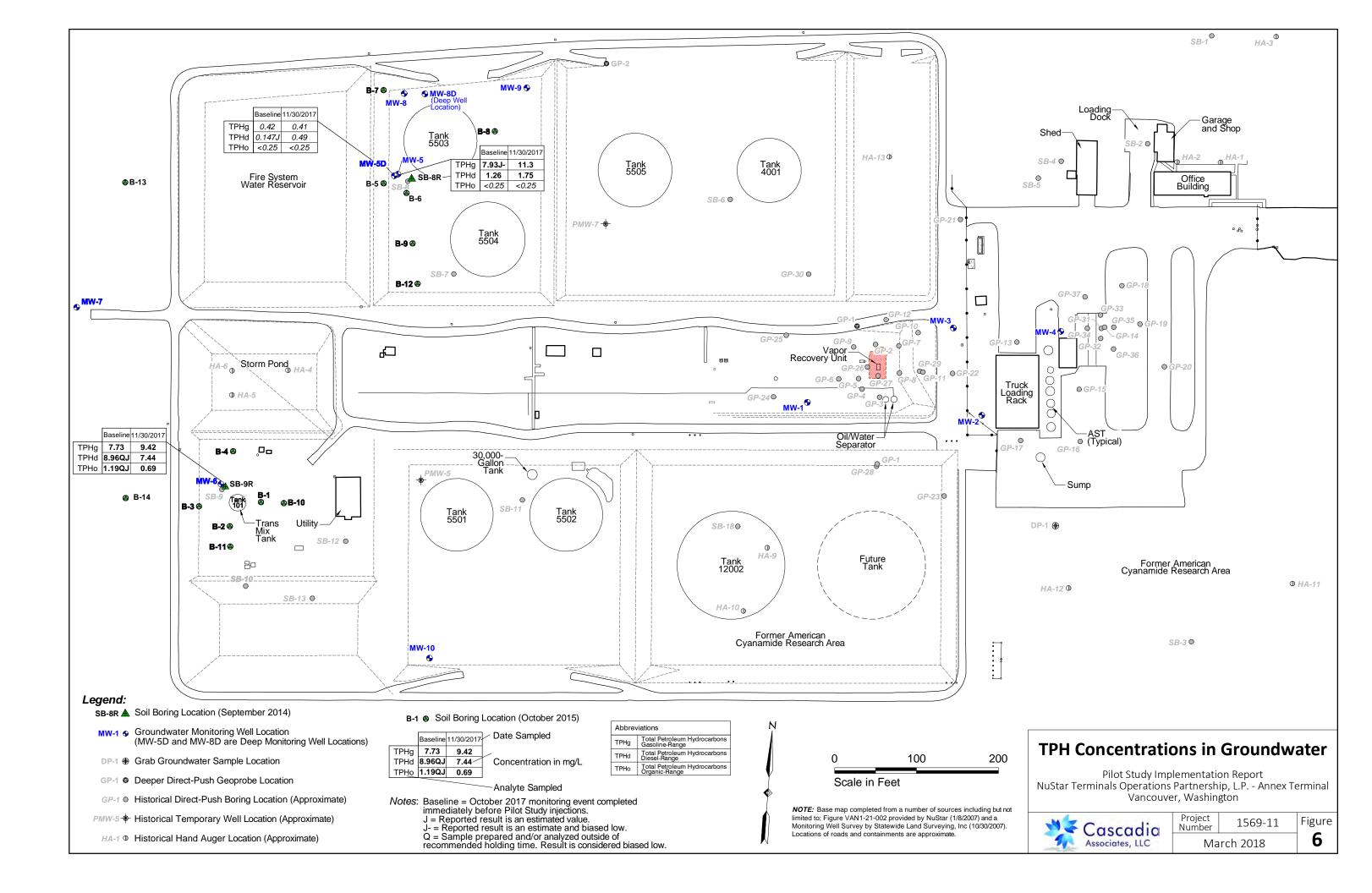

J = Reported result is an estimated value.

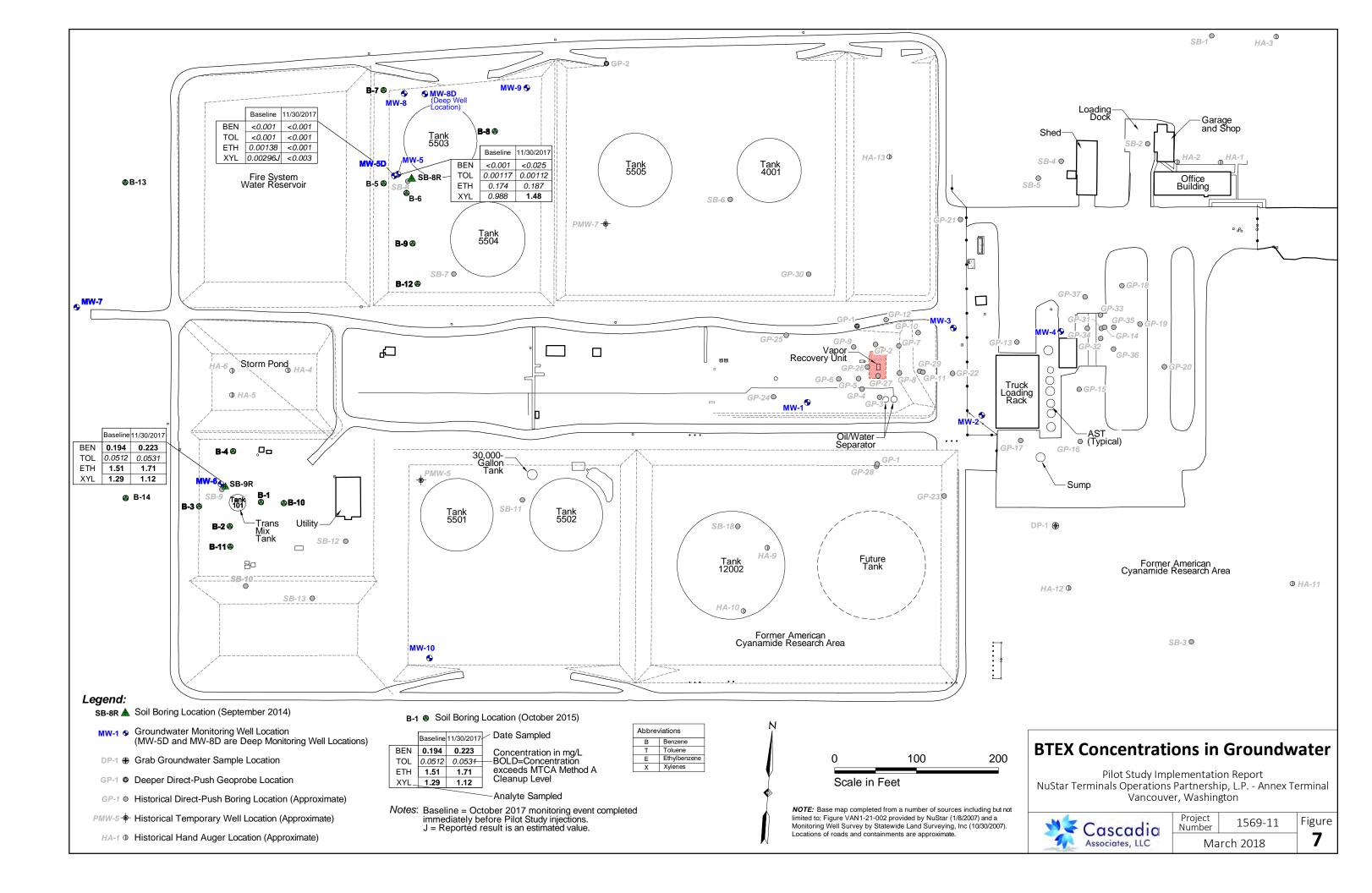

J- = Reported result is estimated and biased low.

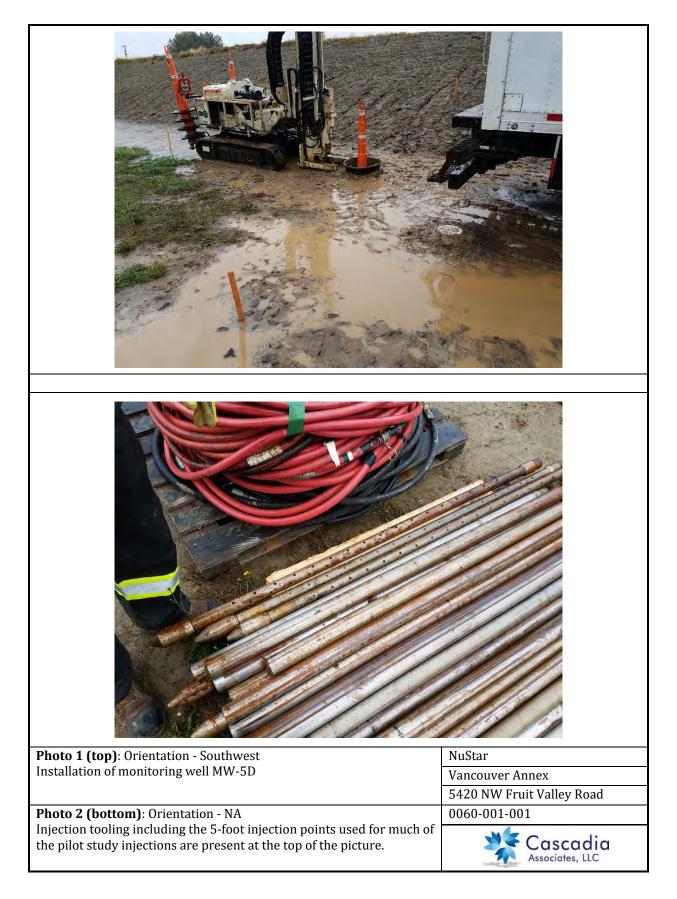

Q = Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.

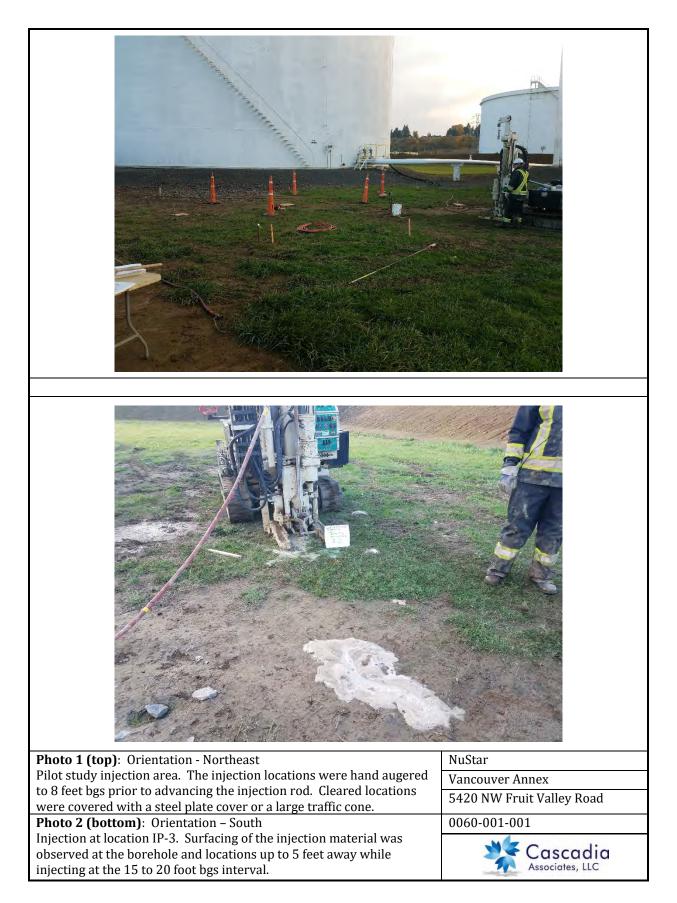

FIGURES

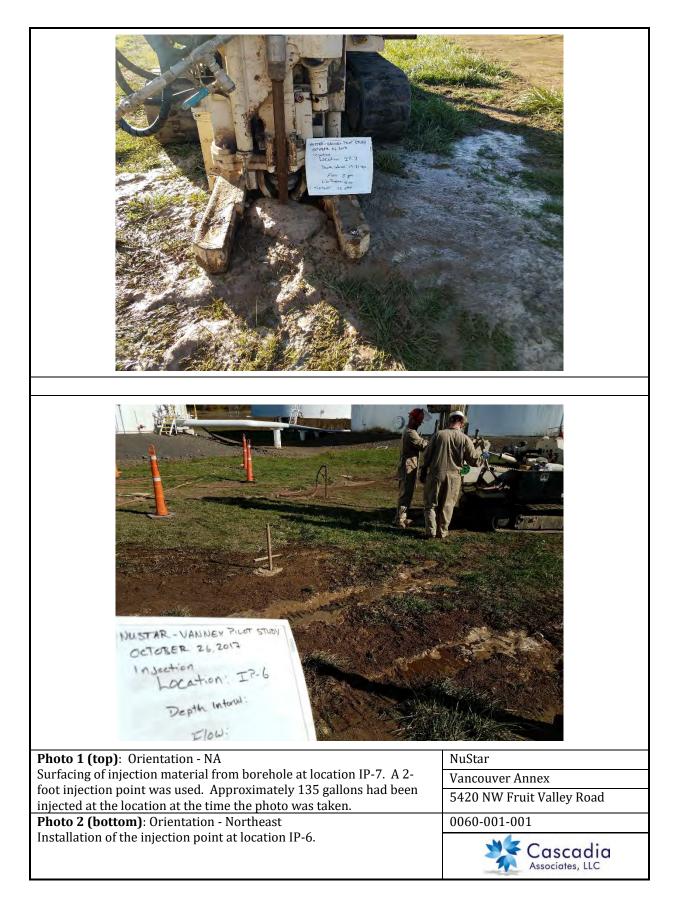


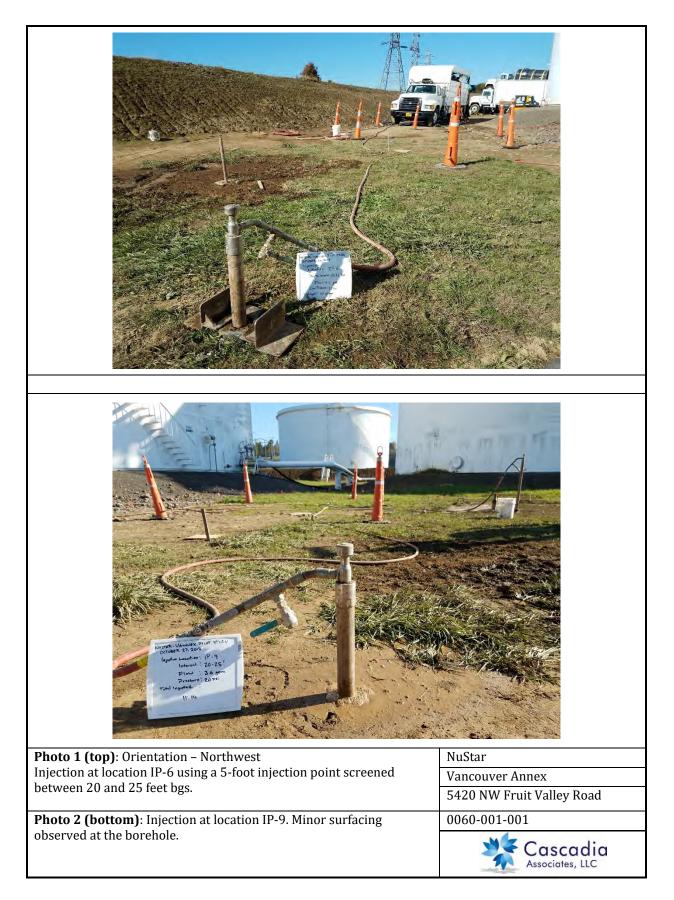


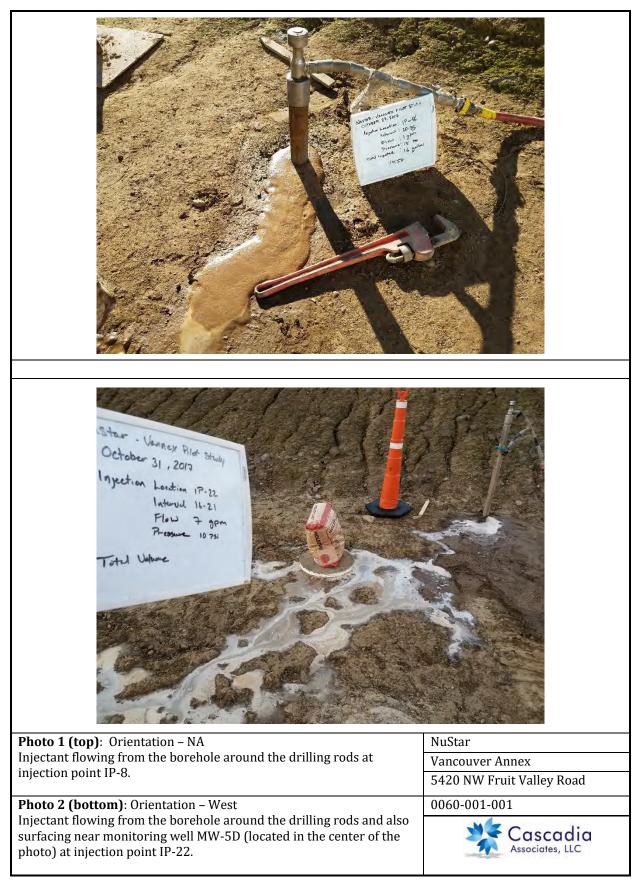





ATTACHMENT A PHOTOGRAPH LOG







Unster - Vannex Pilot Study October 31, 2017 Injection Location 1P-23 Interval 20-25 1040 Photo 1 (top): Orientation – NA NuStar Injectant surfacing approximately 3 to 5 feet from injection point. Vancouver Annex 5420 NW Fruit Valley Road 0060-001-001 Photo 2 (bottom): Orientation – West Injectant surfacing at injection point IP-23 from the borehole and Cascadia approximately 3 to 5 feet from injection point. Associates, LLC

ATTACHMENT B

LITHOLOGIC LOG AND CONSTRUCTION DETAILS FOR WELL MW-5D

				PROJECT: NuStar Vancouver Annex Terminal Pilot Study	BORIN	-5D						
				LOCATION: 5420 NW Fruit Valley Road, Vancouver, WA	WELL ID: MW-5D							
ME	C		11	DRILLING CONTRACTOR:				EASTING:				
1	Assor	SCC iates,	idia	Cascade Drilling	LASTING.							
			000	DRILLING EQUIPMENT:	SUREA		V. (NAVD88):	TOC ELEVATION:				
				Geoprobe 7822DT	Not	measu	red	NA				
				DRILLING METHOD:	TOTAL	TAL DEPTH: DEPTH TO WATER:						
				Direct-push	45			17.3				
OGGE				SAMPLING METHOD:		STARTE		DATE COMPLETED:				
lan M	laguir	e		4-Inch Dual Tube Sampler		9/2017		10/20/2017				
Elev. (feet)	NSCS		Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Depth	Well Construction	Water Level			
0				Physical Clearance - Not logged.		-	0					
2				No recovery.	NA		4 4 					
10 -	ML			SILT with fine sand; light brown with dark brownish red mottling; slightly moist, medium stiff.		<5						
12 -					5.0/5.0	<5	12 					
	ML			Becomes gray SILT; moist; medium stiff; odor observed.								
14 -		HH	++++	Becomes wet.	-	110						
	ML											
-				SILT with fine sand; gray; wet; medium stiff.								
16 -							16					
10						63						
-									$\overline{}$			
					5.0/5.0				\bigtriangledown			
18 -												
	ML											
						340						
20			1111		1		20					

			PROJECT: NuStar Vancouver Annex Terminal Pilot Study	BORIN							
			LOCATION:	WELL ID:							
			5420 NW Fruit Valley Road, Vancouver, WA	MW-	-5D						
35	Ca	scadia	DRILLING CONTRACTOR	NORTH				EASTING:			
1	Asso	ciates, LLC	Cascade Drilling								
			DRILLING EQUIPMENT:	SURFA	CE ELE		(D88).	TOC ELEVATION:			
			Geoprobe 7822DT		measu		200).	NA			
			DRILLING METHOD:	TOTAL	DEPTH	:		DEPTH TO WATER:			
			Direct-push	45				17.3			
OGGEI			SAMPLING METHOD:		STARTE			DATE COMPLETED:			
lan M	aguir	e	4-Inch Dual Tube Sampler		9/2017			10/20/2017			
Elev. (feet)	S	.e _		Driven/Rec. (ft.)	Headspace Vapor (ppm)	Ē			e		
ev. (f	nscs	Graphic Log	Description	/en/ (ft.	ads oor (Depth		Well Construction	Water		
_		0		Driv	Ag He						
20							20				
-					605						
					625						
22 -											
			Fine grained SAND; gray; wet; loose; slight odor	2.5/5.0							
1											
24 -							24				
	SP				10		27				
_											
26 -											
			Sand becomes well graded medium to coarse	-	10						
-	SP		grained; dark gray to black; medium dense; moist								
28 -			No recovery.	2.5/5.0			28				
20					33		20				
_											
30 -											
-											
32 -							32				
52				1.8/5.0			52				
_			CAND, grow water madium danses well graded								
			SAND; gray; wet; medium dense; well graded fine to medium; mica present; 10-15% fines.		<5						
34 -	SP										
					<5						
-			SAND; brown; moist to wet; medium dense;		<5						
36 -			poorly graded fine sand with 10% silt.				36				
	SP										
_											
				5.0/5.0	<5						
38 -	SP		Becomes wet.								
			SAND; dark gray, wet, medium dense; well								
-			graded fine to medium sand with little to no fines.		<5						
				1	· ``)	1 1	40				

			PROJECT:	BORIN	G ID:						
			NuStar Vancouver Annex Terminal Pilot Study	MW	-5D						
			LOCATION:	WELL ID: MW-5D							
			5420 NW Fruit Valley Road, Vancouver, WA								
19 4	Ca	scadia	DRILLING CONTRACTOR:	NORTH	HING:			EASTING:			
1	Assoc	ciates, LLC	Cascade Drilling								
			DRILLING EQUIPMENT:	SURFACE ELEV. (NAVD88):				TOC ELEVATION:			
			Geoprobe 7822DT		measu		200).	NA DEPTH TO WATER:			
			DRILLING METHOD:	TOTAL	DEPTH	:					
			Direct-push	45				17.3			
LOGGE	D BY:		SAMPLING METHOD:	DATE STARTED:				DATE COMPLETED:			
lan N	<i>l</i> laguir	e	4-Inch Dual Tube Sampler	10/19/2017				10/20/2017			
Elev. (feet)	nscs	Graphic Log	Description	Driven/Rec. (ft.)	Headspace Vapor (ppm)	Depth		Well Construction	Water Level		
40 - 42 - -	SP			5.0/5.0			40				
44 -					<5 <5		44				

ATTACHMENT C

STANDARD OPERATING PROCEDURES (SOPs) FOR BORING ADVANCEMENT AND GROUNDWATER SAMPLING

PUSH-PROBE EXPLORATION PROCEDURES

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for observing and sampling from push-probes (i.e., GeoProbe[™]). Subsurface soil cores may be obtained using this system for purposes of determining subsurface soil conditions and for obtaining soil samples for physical and/or chemical evaluation. Grab groundwater samples may be collected using temporary well screens. Soil vapor samples may be obtained using temporary well points. Shallow (less than 50 feet), small-diameter (2-inch max) pre-packed wells may also be installed using push-probe equipment. This procedure is applicable during all Apex Companies, LLC (Apex) push-probe activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, measuring tape, spatula, and buckets/drums
- · Sampling equipment (water level probe, pumps, tubing) and laboratory-supplied sample containers
- Field documentation materials
- Decontamination materials
- · Personal protective equipment (as required by project Health and Safety Plan)

3. METHODOLOGY

Coring Procedure (Conducted by Drilling Subcontractor):

The sampling procedure includes driving a 2-inch outside-diameter, 5-foot-long, push-probe soil sampler to the desired depth using a combination of hydraulic pressure and mechanical hammer blows. When the sampling depth is reached, the pin attaching the sampler's tip is released (if a tip is used), which allows the tip to slide inside the sampler (Macro-Core Sampler with removable plastic liner). The sampler is driven the length of the sampler to collect a soil core, which is then withdrawn from the exploration. When the sampler is retrieved from the borehole the drive head/cutting shoe is detached and the liner is removed. Soil cores are collected continuously to the full depth of the exploration unless otherwise specified in a project-specific sampling and analysis plan (SAP). Verify that the subcontractor decontaminates the sampling device (per SOP 1.2) prior to its initial use and following collection of each soil sample.

Logging and Soil Sample Collection:

Remove the soil core from the sampler for field screening, description, and placement into sample jars. Soil samples will be collected for field screening and possible chemical analysis on two foot intervals unless otherwise specified in a project-specific SAP. The sampling interval will be determined in the field based on recovery, soil variability, and evidence of contamination. Complete field screening as specified in SOP-2.1. Soil samples should be collected using different procedures for volatile on non-volatile analyses, as follows.

- Volatile Analyses. Sampling for volatile organics analysis (VOA) is different than other routine
 physical or chemical testing because of the potential loss of volatiles during sampling. To limit volatile
 loss, the soil sample must be obtained as quickly and as directly as possible. If a VOA sample is to
 collected as part of a multiple analyte sample, the VOA sample portion will be obtained first. The VOA
 sample should be obtained from a discrete portion of the entire collected sample and should not be
 composited or homogenized. Sample bottles should be filled to capacity, with no headspace. Specific
 procedures for collecting VOA samples using the EPA Method 5035 are discussed in SOP 2.7.
- Other Analyses. Soil samples for non-volatile analyses will be thoroughly homogenized in a stainless steel bowl prior to bottling. Sample homogenizing is accomplished by manually mixing the entire soil

PUSH-PROBE EXPLORATION PROCEDURES

sample in the stainless steel bowl with a clean sampling tool until a uniform mixture is achieved. The sample jar should be filled completely.

Any extra soil generated during probing activities will be placed in Department of Transportation (DOT) approved drums.

Grab Groundwater Sample Collection:

Collect grab groundwater samples using a sampling attachment with a 4 to 5-foot-long temporary screen (specify to drillers whether to use decontaminated stainless steel or disposable PVC. Also, specify whether a filter pack is necessary based on field observations). Obtain samples using a peristaltic pump unless otherwise specified in the SAP with new tubing for each boring. Record field parameters (e.g., temperature, conductivity, and pH) prior to sampling.

Backfilling the Excavation (Conducted by Drilling Subcontractor):

After sampling activities are completed, abandon each exploration in accordance with Oregon Water Resources Department (OWRD) regulations and procedures. The abandonment procedure typically consists of filling the exploration with granular bentonite and hydrating the bentonite with water. Match the surface completion to the surrounding materials.

MONITORING WELL INSTALLATION PROCEDURES

1. PURPOSE AND SCOPE

This Standard Operating Procedure (SOP) describes the methods for installing monitoring wells (using conventional PVC or pre-packed well screens). A pre-packed well screen generally consists of 5-foot sections of an inner PVC well screen and an outer stainless steel wire mesh. The sand filter pack is housed between the inner screen and outer wire mesh. Well installations are typically completed using push probe drilling to save time and cost but may include many other techniques for drilling a borehole to install the well. This procedure is applicable during all Ash Creek Associates (ACA) drilling activities for installation of monitoring wells.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- · Field documentation materials
- · Personal protective equipment (as required by project Health and Safety Plan)

3. METHODOLOGY

The soil boring for the monitoring well will be completed in accordance with SOP-2.4.

Installation/Construction of Monitoring Well:

Filter Pack. Wells will be constructed of flush-threaded Schedule 40 PVC casing connected to a conventional PVC well screen or pre-packed well screen, placed at the bottom of the boring. A clean silica sand pack will be placed between the boring wall and the PVC screen/riser (i.e., the annulus) from the bottom of the well to approximately one to two feet above the screened interval. Prior to installation of the seal, the well will be surged using a surge block or similar technique. The depth to sand will be measured prior to setting the bentonite seal.

Seal. A bentonite seal, 1 to 2 feet thick, will be placed above the sand. The bentonite will be hydrated and allowed to sit for a minimum of 30 minutes for proper hydration and sealing. The depth to the top of the seal will be measured prior to placing grout. In Washington State and some California counties, the bentonite seal may be placed to within 1 foot of the ground surface in place of grout (per local/state regulations).

Grout. A cement-bentonite slurry will be placed above the bentonite seal following proper hydration. The cement-bentonite slurry will be placed to within 1 foot of the ground surface.

Surface Seal. A concrete surface seal will secure a flush-mounted, traffic-rated monument, or a bollard protected stove-pipe stickup. A locking cap and lock will secure the wellhead, and tamper-resistant bolts (either pentagonal or Allen wrench) will secure a monument cover if a flush-mounted monument is used for surface completion. Flush-mounted surface completions will be completed slightly above grade to prevent the ponding of water in, and around, the monument. All monuments will be permanently marked with well identification numbers. The identification number should be marked on the well (e.g., punched into monument ring, written on the well casing and/or cap with permanent marker, etc.). A survey point should also be added to the well casing (e.g., v-notch cut in PVC).

Documentation:

The field geologist will document the well construction activities. Details to be noted include the following:

- Length of well components;
- · Measurements of bentonite, sand, and concrete depths;
- · Types, brands, and amounts of materials used;
- Documentation of decontamination; and

Any deviation from standard procedures or problems during the installation activities.
 The drilling contractor will be responsible for conforming to all applicable regulations pertaining to well construction.

CASCADIA ASSOCIATES STANDARD OPERATING PROCEDURE Low Flow Groundwater Sampling

1. PURPOSE AND SCOPE

The objective of this standard operating procedure (SOP) is to define the methods and requirements for collection of groundwater samples from monitoring wells applying low flow protocols. Low flow sampling is a technique for collecting samples that does not require the removal of large volumes of water and therefore does not overly agitate the water, suspend particles, or potentially aspirate VOCs. Typical flow rates for low flow sampling should range from 0.1 L/min to 0.5 L/min depending on site characteristics. The groundwater monitoring activities will consist of measuring water levels, purging and sampling groundwater, and measuring groundwater field parameters. This procedure is applicable during all Cascadia Associates, LLC low flow groundwater sampling activities.

2. EQUIPMENT AND MATERIALS

The following materials are necessary for this procedure:

- Traffic cones, tools, keys, and buckets/drums;
- Water quality meter with calibration solutions (record daily calibration/calibration check in field notes);
- Sampling equipment (water level indicator, pump, tubing);
- Laboratory-supplied sample containers (Consult the project-specific sampling and analysis plan (SAP) for sampling requirements);
- Field documentation materials;
- Decontamination materials; and
- Personal protective equipment (consult the site-specific Health and Safety Plan).

3. METHODOLOGY

Water Levels:

Water levels in the wells will be measured and recorded for the purpose of determining groundwater elevations and gradient. The wells will be opened and the water level allowed to equilibrate before the measurements are taken. Measurements of the depth to water will be made to the nearest 0.01 foot using an electronic water level indicator.

Purging:

Purge using low-flow sampling equipment (e.g., peristaltic or bladder pump) at a rate no greater than the recharge rate of the groundwater to prevent water table drawdown. Unless specified otherwise in the project-specific SAP the sample tubing/pump will be lowered to the middle of the screened interval. Groundwater field parameters (pH, electrical conductivity, and temperature) will be measured using a water quality meter and flow cell connected to the discharge tubing of the sample pump to assess the effectiveness of purging. Purging will be considered complete when the water quality parameters (i.e., pH, temperature, and specific conductance) stabilize within 10 percent for three consecutive 3-minute intervals. Consult the

project-specific SAP for additional parameters and stabilization criteria. Purge water will be placed in Department of Transportation (DOT) approved drums.

Sample Collection:

After the purging of each well is complete, collect groundwater samples for chemical analyses using the same pump used for the well purging.

Low Yield Sampling Procedure:

If a well pumps dry during purging discontinue measurement of water quality parameters. Collect groundwater samples once the water level recovers to 90 percent of the pre-purge water column. Contact project manager in the event of slow recharge conditions. Always collect samples for VOC analysis as soon after recharge as possible.

ATTACHMENT D

LABORATORY DATA WITH DATA QUALITY REVIEW

1.0 INTRODUCTION

This attachment documents the results of a quality assurance/quality control (QA/QC) review of the analytical data for the groundwater samples collected as part of the pilot study implementation at the NuStar Terminals Operations Partnership (NuStar) Annex Terminal in Vancouver, Washington (the Facility). Baseline groundwater sampling was completed between October 23 and 24, 2017. The initial performance sampling following completion of the pilot study injections was completed on November 30, 2017. Groundwater sample analyses were performed by an accredited environmental laboratory, Environmental Science Corporation of Mt. Juliet, Tennessee. Copies of the laboratory reports are included in this attachment.

Report	Report Date	Sampling Event
L946549	October 26, 2017	Groundwater Monitoring
L948749	October 28, 2017	Groundwater Monitoring
L954460	December 1, 2017	Groundwater Monitoring

2.0 DATA VALIDATION

The QA review included examination and validation of the laboratory data packages for the following:

- Analytical preparation and quantitation methods
- Analytical method holding times
- Sample handling
- Chain of custody handling
- Detection and reporting limits
- Method blank detections
- Laboratory control samples, matrix spikes and surrogates to assess laboratory accuracy
- Laboratory control sample duplicates and matrix spike duplicates to assess laboratory precision
- Field duplicates to assess sampling and laboratory precision

The QA/QC review did not include a review of raw data.

2.1 DATA QUALIFIERS

Any data that is found to have possible bias or error was qualified and flagged. The flags used in the data table are below.

В	Analyte is found in the associated method blank.
J	Result is an estimated value.
J+	Result is estimated and biased high.
J-	Result is estimated and biased low.
Q	Sample prepared and/or analyzed outside of recommended holding time. Result is considered biased low.

3.0 ANALYTICAL METHODS

Groundwater sample analyses included the following.

- Gasoline-range petroleum hydrocarbons (TPHg) by Method NWTPH-Gx;
- Diesel-range petroleum hydrocarbons (TPHd) and oil-range petroleum hydrocarbons (TPHo) by Method NWTPH-Dx with silica gel cleanup; and
- Benzene, toluene, ethylbenzene, and xylenes (collectively BTEX), methyl tert-butyl ether (MTBE) and ethanol by U.S. Environmental Protection Agency (EPA) Method 8260B.

4.0 QUALITY ASSURANCE OBJECTIONS AND REVIEW

The general QA objectives for this project were to develop and implement procedures for obtaining, evaluating, and confirming the usability of data of a specified quality for monitoring groundwater quality trends at the Facility. To collect such information, analytical data must have an appropriate degree of accuracy and reproducibility, samples collected must be representative of actual field conditions, and samples must be collected and analyzed using unbroken COC procedures.

Reporting limits and analytical results for the samples were compared to Washington Department of Ecology MTCA Method A Cleanup Levels for each parameter. Precision, accuracy, representativeness, completeness, and comparability parameters used to indicate data quality are defined below.

4.1 HOLDING TIMES AND SAMPLE RECEIPT

The holding time is the minimum amount of time the sample can be stored before analytes start to degrade and are not representative of initial sampling concentrations. Holding times are defined by analytical methods. The groundwater samples included in this QA/QC review were analyzed within the method recommended holding time, except for analysis of diesel range hydrocarbons in the duplicate sample collected from well MW-6 during the baseline sampling event. When the lab began sample preparation, a test of pH showed that the MW-6 DUP sample pH was greater than two. While the sample was prepared and analyzed within standard 14-day hold time, the hold time for the NWTPH-Dx analysis with a pH greater than two is seven days. The diesel- and residual-

range results were subsequently flagged as out-of-hold. Below is a table outlining sample holding times based on sampling preservation and matrix.

Method	Matrix	Analyte	Preservative	Hold Time	
EPA 8260B	Water	Volatile Organic	Hydrochloric Acid (HCl) to	14 days	
LINGLOOD	Water	Compounds	pH<2; No headspace; Glass	11 duy5	
NWTPH-Gx	Water	Gasoline Range	Hydrochloric Acid (HCl) to	14 days	
NWIFN-GX	water	Organics	pH<2; No headspace; Glass	14 days	
NWTPH-Dx	Water	Diesel Range Organics	Hydrochloric Acid (HCl) to	14 days	
	water	Dieser Kange Organics	pH<2; Amber glass container	14 days	

Samples were received on ice below 4^oC by the analytical laboratory. Sampling containers arrived intact and unbroken to the laboratories. Groundwater samples to be analyzed for VOCs were received without headspace in VOA sampling containers. All chain-of-custodies were appropriately relinquished by the Cascadia Associates sampler and received by the intentional environmental laboratory. They were filled out with the correct sample ID, sampling date, sampling time and analyses requested. There were no discrepancies found between the bottles and the chain of custodies received

4.2 REPORTING LIMITS

Reporting limits are the lowest concentration an instrument is capable of accurately detecting an analyte. They are determined by the laboratory and are based on instrumentation capabilities, the matrix of field samples, sample preparation procedures and suggested reporting limits by the EPA or the Oregon Department of Environmental Quality (DEQ). In some cases, the reporting limits may be raised due to high concentrations of analytes or matrix interferences. Detection limits were generally consistent with industry standards and regulatory standards. Reporting limits for individual samples varied based on the magnitude of the chemical impact.

4.3 METHOD BLANKS

A method - or laboratory - blank is a quality control sample prepared by the laboratory from an analyte-free matrix and analyzed in an analytical batch along with environmental and other QC samples. It is used to assess laboratory contamination or background interferences. Some analytes were detected in the laboratory method blanks for the groundwater analyses, as follows.

• For gasoline range organics in batch WG1049399, report L954460, TPH-g was detected in the method blank between the method detection limit (MDL) and the reported detection limit (RDL) but the concentration was less than one half the reporting limit. Sample data were accepted and not flagged.

4.4 ACCURACY

Accuracy compares the accepted reference concentration of an analyte to the concentration determined analytically. Accuracy is measured as a percent recovery. This recovery must be within

a certain range - or control limit - for the data in an analytical batch to be considered acceptable. The analytical laboratory provides quality control samples and surrogates to help determine the accuracy and acceptability of the data reported. These quality control samples and surrogates are discussed below.

4.4.1 Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control duplicate samples (LCSD) were analyzed by the laboratory to assess the accuracy of the analytical methods. One set of LCS and LCSD was analyzed per analytical batch. The LCS and LCSD are prepared from an analyte-free matrix that is spiked with known levels of compounds of concern. The concentrations are measured and compared to the known spiked levels. This comparison is expressed as percent recovery. The percent recoveries for LCS and LCSD quality control samples were within method control limits.

4.4.2 Matrix Spikes

A matrix spike QC sample is used to assess the performance of the analytical method by determining potential matrix interferences. Matrix spike (MS) and matrix spike duplicate (MSD) analyses are performed on one environmental sample per analytical batch. A matrix spike sample uses an environmental sample that is spiked with known concentrations of analytes of interest. The matrix spike is then prepared and analyzed with the same analytical procedures as environmental samples in the analytical batch. The resulting concentration of the matrix spike is then compared to the known - or true - values plus the non-spiked environmental sample concentration. This comparison is expressed as a percent recovery. The percent recoveries for MS and MSD quality control samples were within method control limits.

4.4.3 Surrogates

Surrogates are organic compounds that are similar in chemical composition to the analytes of interest but are not likely to be found in the environment. They are spiked at a known concentration into environmental and batch QC samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference, sample preparation efficiency and analysis performance on a sample-specific basis. Surrogate recoveries were within control limits with the following exceptions.

• Groundwater sample MW-5, report L946519 had a surrogate recovery for the gasoline range organics analysis that was below the method control limit. The gasoline range organics results for this sample are flagged with a J- in the data table as an estimated result that is biased low.

4.5 PRECISION

Precision is measured by how close values of duplicate analyses are to each other. These duplicate analyses are prepared from separate aliquots of the same sample and are analyzed at the same (or similar) time. Precision in the field ensures that samples taken are representative of field concentrations; this is demonstrated by field duplicates. Analytical precision is the ability of the

laboratory to reproduce results that are similar to each other; this is measured through duplicate analysis of environmental and batch QC samples. Precision is estimated by the relative percent difference (RPD) between the original analysis and the duplicate analysis.

4.5.1 Laboratory Control Sample Duplicates

The analytical batch LCS concentration of an analyte is compared to the LCSD concentration of the same analyte. The RPD is calculated from these two concentrations; which must be below a certain percentage to be considered acceptable. The RPD values for the laboratory control samples of the same batch were within the method control limits.

4.5.2 Matrix Spikes

Like the LCS/LCSD, the MS/MSD analyte concentrations are also compared to each other and expressed as a RPD. The RPD values for analytical batch MS/MSD were within the control limit.

4.5.3 Field Duplicate

A field duplicate is a second field sample collected from a selected sample location. Field duplicate samples serve as a check on laboratory precision, sampling quality, as well as potential variability of the sample matrix. The field duplicate is analyzed and compared to the original sample to assess precision. This comparison can be expressed by the RPD between the original and duplicate samples. Application of RPD values is appropriate when the analyte result is five times greater than the reporting limit. Laboratory precision decreases as the analytical result approaches the reporting limit. Some results did exceed the 30 percent control limit but were less than 5 times the reporting limit. Data was accepted and not flagged in the data table, except for the following.

• For sample MW-6 from the baseline sampling event (reports L946549 and L948749), the RPD for TPH-g, TPH-d, and TPH-o between the primary and duplicate sample collected from exceeded the 30 percent control limit. The detected concentrations were more than 5 times the reporting limit. The reported concentrations for TPH-g, TPH-d, and TPH-o in the sample from well MW-6 were J flagged as estimated values.

5.0 CONCLUSION

The overall QA objectives have been met and the data are of adequate quality for use in this project.

Table D-1

Summary of Field Duplicate Data for Analysis of Groundwater Samples NuStar Terminals Operations Partnership, L.P. - Vancouver Annex Terminal Vancouver, Washington

Sample Location	Collection Date	Compound	Units	Primary Reporting Limit	Duplicate Reporting Limit	Primary Sample	Duplicate Sample	RPD
MW-6	10/24/2017	TPHg Gasoline	mg/L	0.10	0.10	7.73	4.19	59
		TPHd Diesel	mg/L	1.0	1.0	5.07	8.96	55
		TPHo Motor Oil	mg/L	0.25	0.25	0.11	1.19	166
		Benzene	mg/L	0.05	0.05	0.194	0.153	24
		Toluene	mg/L	0.001	0.001	0.051	0.046	10
		Ethyl-Benzene	mg/L	0.05	0.05	1.51	1.18	25
		Xylenes	mg/L	0.15	0.02	1.29	1.04	21
MW-5	11/30/2017	TPHg Gasoline	mg/L	1.0	0.10	11.3	10.9	4
		TPHd Diesel	mg/L	0.20	0.20	1.63	1.75	7
		TPHo Motor Oil	mg/L	0.25	0.25	<0.25	<0.25	NA
		Benzene	mg/L	0.025	0.001	< 0.0250	< 0.0010	NA
		Toluene	mg/L	0.025	0.001	<0.0250	0.00112	NA
		Ethyl-Benzene	mg/L	0.025	0.001	0.187	0.187	0
		Xylenes	mg/L	0.075	0.075	1.21	1.48	20

Please see notes at end of table.

Only compounds detected in both primary and duplicate samples are shown.
 Relative Percent Difference (RPD) is calculated as:

where:

 S_1 = primary sample concentration; and S_2 = duplicate sample concentration.

$$\text{RPD}\% = \frac{2(S_1 - S_2)}{S_1 + S_2} \times 100$$

3. NA= Not applicable. RPD could not be calculated as one or more concentration value was below reporting limits.

ANALYTICAL REPORT

January 29, 2018

Cascadia Associates- Portland, OR

Sample Delivery Group: L946549 Samples Received: 10/26/2017 Project Number: 0060-001-001 Description: Nustar - Vannex Pilot Study Site: VANCOUVER, WA Report To: lan Maguire 6915 SW Macadam Ave Ste. 250 Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Mount Juliet, TN 37122 12065 Lebanon Rd 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

Cp: Cover Page	1	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative	4	
Sr: Sample Results	5	
MW-5 L946549-01	5	
MW-5D L946549-02	6	
MW-6 L946549-03	7	
HA-1 L946549-04	8	
HA-1 L946549-05	9	
Qc: Quality Control Summary	10	
Total Solids by Method 2540 G-2011	10	
Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX	11	
Volatile Organic Compounds (GC) by Method NWTPHGX	13	
Volatile Organic Compounds (GC/MS) by Method 8260C	15	
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	17	
GI: Glossary of Terms	20	
Al: Accreditations & Locations	21	
Sc: Sample Chain of Custody	22	

SDG: L946549

C

*

SAMPLE SUMMARY

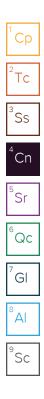
ONE LAB. NATIONWIDE.

*

			Collected by	Collected date/time	Received date/time
MW-5 L946549-01 GW			lan Maguire	10/23/17 13:00	10/26/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 10:29	10/27/17 10:29	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 16:20	10/27/17 16:20	BMB
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	25	11/02/17 02:51	11/02/17 02:51	ACG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:01	LM
			Collected by	Collected date/time	Received date/time
MW-5D L946549-02 GW			lan Maguire	10/24/17 09:45	10/26/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 10:51	10/27/17 10:51	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 16:41	10/27/17 16:41	BMB
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	11/02/17 03:11	11/02/17 03:11	ACG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:18	LM
			Collected by	Collected date/time	Received date/time
			lan Maguire	10/24/17 11:35	10/26/17 08:45
MW-6 L946549-03 GW			ian magane	10/2 1/17 11:00	10/20/17 00:10
N ethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
olatile Organic Compounds (GC) by Method NWTPHGX	WG1036093	1	10/27/17 11:13	10/27/17 11:13	LRL
olatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	1	10/27/17 17:01	10/27/17 17:01	BMB
olatile Organic Compounds (GC/MS) by Method 8260C	WG1036371	50	11/02/17 03:31	11/02/17 03:31	ACG
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	1	10/30/17 05:29	10/30/17 15:36	LM
emi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1036830	5	10/30/17 05:29	10/31/17 19:22	LM
			Collected by	Collected date/time	Received date/time
HA-1 L946549-04 Solid			lan Maguire	10/24/17 15:30	10/26/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1037601	1	11/01/17 11:06	11/01/17 11:19	KDW
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1036385	500	10/24/17 15:30	10/27/17 15:57	LRL
/olatile Organic Compounds (GC/MS) by Method 8260C	WG1036716	1	10/24/17 15:30	11/02/17 11:38	ACG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1037950	1	11/02/17 07:36	11/03/17 21:12	DMG
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1037950	5	11/02/17 07:36	11/03/17 22:03	DMG
			Collected by	Collected date/time	Received date/time
HA-1 L946549-05 GW			lan Maguire	10/24/17 15:30	10/26/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Preparation by Method 1312	WG1037226	1	10/31/17 08:01	10/31/17 08:01	TM
Preparation by Method 1312	WG1037796	1	11/01/17 11:45	11/01/17 11:45	KK
	WG1038336	1	11/02/17 14:40	11/02/17 14:40	JHH
Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX	VV U U				

PROJECT: 0060-001-001

SDG: L946549


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L946549

SAMPLE RESULTS - 01

Cn

*Q*c

Gl

Â

Sc

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

		())						 1'C
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	7930		31.6	100	1	10/27/2017 10:29	WG1036093	² T(
(S) a,a,a-Trifluorotoluene(FID)	67.5	<u>J2</u>		77.0-122		10/27/2017 10:29	WG1036093	³ S

Sample Narrative:

L946549-01 WG1036093: Surrogate failure due to sample matrix.

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	10/27/2017 16:20	<u>WG1036371</u>
Toluene	1.17		0.412	1.00	1	10/27/2017 16:20	<u>WG1036371</u>
Ethylbenzene	174		9.60	25.0	25	11/02/2017 02:51	<u>WG1036371</u>
Total Xylenes	988		26.5	75.0	25	11/02/2017 02:51	WG1036371
(S) Toluene-d8	100			80.0-120		10/27/2017 16:20	WG1036371
(S) Toluene-d8	109			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) Dibromofluoromethane	92.2			76.0-123		10/27/2017 16:20	<u>WG1036371</u>
(S) Dibromofluoromethane	99.1			76.0-123		11/02/2017 02:51	<u>WG1036371</u>
(S) a,a,a-Trifluorotoluene	99.7			80.0-120		10/27/2017 16:20	<u>WG1036371</u>
(S) a,a,a-Trifluorotoluene	110			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) 4-Bromofluorobenzene	90.7			80.0-120		11/02/2017 02:51	<u>WG1036371</u>
(S) 4-Bromofluorobenzene	95.7			80.0-120		10/27/2017 16:20	<u>WG1036371</u>

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1260		66.0	200	1	10/30/2017 15:01	<u>WG1036830</u>
Residual Range Organics (RRO)	U		82.5	250	1	10/30/2017 15:01	<u>WG1036830</u>
(S) o-Terphenyl	85.7			52.0-156		10/30/2017 15:01	<u>WG1036830</u>

SDG: L946549

Collected date/time: 10/24/17 09:45

SAMPLE RESULTS - 02 L946549

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

9		())						 10
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	422		31.6	100	1	10/27/2017 10:51	<u>WG1036093</u>	
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-122		10/27/2017 10:51	WG1036093	3

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	10/27/2017 16:41	WG1036371	
Toluene	U		0.412	1.00	1	10/27/2017 16:41	WG1036371	r i i i i i i i i i i i i i i i i i i i
Ethylbenzene	1.38		0.384	1.00	1	11/02/2017 03:11	<u>WG1036371</u>	
Fotal Xylenes	2.96	J	1.06	3.00	1	11/02/2017 03:11	<u>WG1036371</u>	L
(S) Toluene-d8	108			80.0-120		11/02/2017 03:11	WG1036371	[
(S) Toluene-d8	106			80.0-120		10/27/2017 16:41	<u>WG1036371</u>	
(S) Dibromofluoromethane	93.3			76.0-123		10/27/2017 16:41	WG1036371	ſ
(S) Dibromofluoromethane	98.5			76.0-123		11/02/2017 03:11	<u>WG1036371</u>	
(S) a,a,a-Trifluorotoluene	104			80.0-120		10/27/2017 16:41	WG1036371	L
(S) a,a,a-Trifluorotoluene	110			80.0-120		11/02/2017 03:11	WG1036371	
(S) 4-Bromofluorobenzene	95.2			80.0-120		10/27/2017 16:41	WG1036371	
(S) 4-Bromofluorobenzene	90.3			80.0-120		11/02/2017 03:11	WG1036371	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	147	J	66.0	200	1	10/30/2017 15:18	WG1036830
Residual Range Organics (RRO)	U		82.5	250	1	10/30/2017 15:18	<u>WG1036830</u>
(S) o-Terphenyl	87.5			52.0-156		10/30/2017 15:18	WG1036830

SDG: L946549 Collected date/time: 10/24/17 11:35

SAMPLE RESULTS - 03 L946549

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

	Result		MDL	RDL	Dilution	Analysis	Datch	
Analyta		Qualifier			Dilution	date / time	Batch	
Analyte	ug/l		ug/l	ug/l		uate / time		
Gasoline Range Organics-NWTPH	7730		31.6	100	1	10/27/2017 11:13	WG1036093	
(S) a,a,a-Trifluorotoluene(FID)	82.2			77.0-122		10/27/2017 11:13	WG1036093	

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	194		16.6	50.0	50	11/02/2017 03:31	WG1036371	
Toluene	51.2		0.412	1.00	1	10/27/2017 17:01	<u>WG1036371</u>	
Ethylbenzene	1510		19.2	50.0	50	11/02/2017 03:31	WG1036371	
Total Xylenes	1290		53.0	150	50	11/02/2017 03:31	<u>WG1036371</u>	
(S) Toluene-d8	105			80.0-120		11/02/2017 03:31	WG1036371	
(S) Toluene-d8	102			80.0-120		10/27/2017 17:01	<u>WG1036371</u>	
(S) Dibromofluoromethane	101			76.0-123		11/02/2017 03:31	WG1036371	
(S) Dibromofluoromethane	90.2			76.0-123		10/27/2017 17:01	<u>WG1036371</u>	
(S) a,a,a-Trifluorotoluene	104			80.0-120		10/27/2017 17:01	WG1036371	
(S) a,a,a-Trifluorotoluene	115			80.0-120		11/02/2017 03:31	<u>WG1036371</u>	
(S) 4-Bromofluorobenzene	86.0			80.0-120		11/02/2017 03:31	<u>WG1036371</u>	
(S) 4-Bromofluorobenzene	97.5			80.0-120		10/27/2017 17:01	WG1036371	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	5070		330	1000	5	10/31/2017 19:22	WG1036830
Residual Range Organics (RRO)	111	J	82.5	250	1	10/30/2017 15:36	<u>WG1036830</u>
(S) o-Terphenyl	94.7			52.0-156		10/30/2017 15:36	<u>WG1036830</u>
(S) o-Terphenyl	95.5			52.0-156		10/31/2017 19:22	WG1036830

SAMPLE RESULTS - 04 L946549

Total Solids by Method 2540 G-2011

Collected date/time: 10/24/17 15:30

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	70.8		1	11/01/2017 11:19	WG1037601	T

Volatile Organic Compounds (GC) by Method NWTPHGX

		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte		mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Gasoline Range O	rganics-NWTPH	1890		24.0	70.6	500	10/27/2017 15:57	WG1036385	
(S) a,a,a-Trifluoi	rotoluene(FID)	93.6			77.0-120		10/27/2017 15:57	WG1036385	5

Volatile Organic Compounds (GC/MS) by Method 8260C

Analyte % date / time
Total Solids 70.8 1 11/01/2017 11:19 WG1037601
Volatile Organic Compounds (GC) by Method NWTPHGX
Result (dry) Qualifier MDL (dry) RDL (dry) Dilution Analysis Batch
Analyte mg/kg mg/kg mg/kg date / time
Gasoline Range Organics-NWTPH 1890 24.0 70.6 500 10/27/2017 15:57 WG1036385
(S) a, a, a-Trifluorotoluene(FID) 93.6 77.0-120 10/27/2017 15:57 WG1036385
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) Dilution Analysis <u>Batch</u>
Analyte mg/kg mg/kg date / time
Benzene U 0.00183 0.00353 1 11/02/2017 11:38 WG1036716
Toluene 0.0128 0.00374 0.00706 1 11/02/2017 11:38 WG1036716
Ethylbenzene 0.0105 0.00182 0.00353 1 11/02/2017 11:38 WG1036716
Ethylbenzene 0.0105 0.00182 0.00353 1 11/02/2017 11:38 WG1036716 Total Xylenes 0.0334 0.00176 0.0106 1 11/02/2017 11:38 WG1036716 (S) Toluene-d8 109 80.0-120 11/02/2017 11:38 WG1036716
Ethylbenzene 0.0105 0.00182 0.00353 1 11/02/2017 11:38 WG1036716 Total Xylenes 0.0334 0.00176 0.0106 1 11/02/2017 11:38 WG1036716 (S) Toluene-d8 109 80.0-120 11/02/2017 11:38 WG1036716 (S) Dibromofluoromethane 101 74.0-131 11/02/2017 11:38 WG1036716
Ethylbenzene 0.0105 0.00182 0.00353 1 11/02/2017 11:38 WG1036716 Total Xylenes 0.0334 0.00176 0.0106 1 11/02/2017 11:38 WG1036716 (S) Toluene-d8 109 80.0-120 11/02/2017 11:38 WG1036716

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	427		9.32	28.2	5	11/03/2017 22:03	<u>WG1037950</u>
Residual Range Organics (RRO)	U		4.66	14.1	1	11/03/2017 21:12	<u>WG1037950</u>
(S) o-Terphenyl	61.8			18.0-148		11/03/2017 21:12	<u>WG1037950</u>
(S) o-Terphenyl	72.0			18.0-148		11/03/2017 22:03	WG1037950

SAMPLE RESULTS - 05

Preparation by Method 1312

	-	 date / time		2
SPLP Extraction	-	40/04/0047 0 04 50 444		
		10/31/2017 8:01:58 AM	WG1037226	T
SPLP ZHE Extraction	-	11/1/2017 11:45:56 AM	WG1037796	
Fluid	2	10/31/2017 8:01:58 AM	WG1037226	³ S
Initial pH	4.81	10/31/2017 8:01:58 AM	WG1037226	
Final pH	4.74	10/31/2017 8:01:58 AM	WG1037226	4
				[°] C

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	562		31.6	100	1	11/02/2017 14:40	<u>WG1038336</u>	
Benzene	0.601	B	0.190	0.500	1	11/02/2017 14:40	WG1038336	
Toluene	1.86	B	0.412	1.00	1	11/02/2017 14:40	WG1038336	
Ethylbenzene	57.8		0.160	0.500	1	11/02/2017 14:40	WG1038336	
Total Xylene	10.4		0.510	1.50	1	11/02/2017 14:40	WG1038336	
(S) a,a,a-Trifluorotoluene(PID)	102			80.0-121		11/02/2017 14:40	WG1038336	
(S) a,a,a-Trifluorotoluene(FID)	94.7			77.0-122		11/02/2017 14:40	<u>WG1038336</u>	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1620		66.0	200	1	11/02/2017 20:49	WG1037937
Residual Range Organics (RRO)	152	J	82.5	250	1	11/02/2017 20:49	WG1037937
(S) o-Terphenyl	67.1			52.0-156		11/02/2017 20:49	WG1037937

SDG: L946549

WG1037601

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

	,			
(MB) R3262355-1 11/0	1/17 11:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.0007			

L946549-04 Original Sample (OS) • Duplicate (DUP)

(OS) L946549-04 11/01/1	7 11:19 • (DUP) R3	3262355-3 11,	/01/17 11:19			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	70.8	70.5	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3262355-2 11/	/01/17 11:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

DATE/TIME: 01/29/18 15:47 PAGE: 10 of 22

Volatile Organic Compounds (GC) by Method 8021B/NWTPHGX

QUALITY CONTROL SUMMARY

L946549-05

Тс

Ss

Cn

Sr

Qc

GI

Method Blank (MB)

(MB) R3262620-3 11/02	/17 14:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Gasoline Range Organics-NWTPH	U		31.6	100	
Benzene	0.313	J	0.190	0.500	
Toluene	0.461	J	0.412	1.00	
Ethylbenzene	U		0.160	0.500	
Total Xylene	U		0.510	1.50	
(S) a,a,a-Trifluorotoluene(PID)	103			80.0-121	
(S) a,a,a-Trifluorotoluene(FID)	93.8			77.0-122	

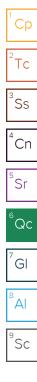
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262620-1 11/02/17 10:02 • (LCSD) R3262620-2 11/02/17 10:24												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		8
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		AI
Gasoline Range Organics-NWTPH	5500	4240	3960	77.0	72.0	72.0-134			6.80	20		⁹ Sc
(S) a,a,a-Trifluorotoluene(FID)				108	107	77.0-122						00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262620-6 11/03/17 03:52 • (LCSD) R3262620-7 11/03/17 04:51												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Benzene	50.0	48.6	47.4	97.3	94.9	71.0-121			2.48	20		
Toluene	50.0	53.0	51.2	106	102	72.0-120			3.30	20		
Ethylbenzene	50.0	53.4	51.9	107	104	75.0-122			2.74	20		
Total Xylene	150	154	147	103	98.0	74.0-124			4.78	20		
(S) a,a,a-Trifluorotoluene(PID)				102	101	80.0-121						
(S) a,a,a-Trifluorotoluene(FID)				94.8	93.8	77.0-122						

PROJECT: 0060-001-001


SDG: L946549

DATE/TIME: 01/29/18 15:47

PAGE: 11 of 22 QUALITY CONTROL SUMMARY

L946549-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-05 11/02/1	7 14:40 • (MS) R3	3262620-4 11/0)2/17 16:25 • (MSD) R326262	0-5 11/02/17 1	6:47						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	562	5410	5490	88.1	89.7	1	23.0-159			1.61	20
(S) a,a,a-Trifluorotoluene(FID)					107	107		77.0-122				

DATE/TIME: 01/29/18 15:47 PAGE: 12 of 22

WG1036093

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				1 Cn
(MB) R3261836-3 10/27/1	17 03:28				Ch
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	⁻Tc
Gasoline Range Organics-NWTPH	U		31.6	100	3
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-122	[°] Ss
					⁴ Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261836-1 10/27/17 02:21 • (LCSD) R3261836-2 10/27/17 02:43												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5500	5800	5820	105	106	72.0-134			0.310	20		
(S) a,a,a-Trifluorotoluene(FID)				102	102	77.0-122						

L946549-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-03 10/27/17 11:13 • (MS) R3261836-4 10/27/17 11:35 • (MSD) R3261836-5 10/27/17 11:57												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	7730	10900	11100	57.4	61.6	1	23.0-159		E	2.10	20
(S) a,a,a-Trifluorotoluene(FID)					97.6	96.6		77.0-122				

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 13 of 22

WG1036385

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3261308-3 10/27/	17 12:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Gasoline Range Organics-NWTPH	U		0.0339	0.100
(S) a,a,a-Trifluorotoluene(FID)	93.9			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261308-1 10/27/17 10:29 • (LCSD) R3261308-2 10/27/17 10:53												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5.50	6.47	6.35	118	115	70.0-133			1.81	20		
(S) a,a,a-Trifluorotoluene(FID)				100	101	77.0-120						

L946549-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946549-04 10/27/17 15:57 • (MS) R3261308-4 10/27/17 20:20 • (MSD) R3261308-5 10/27/17 20:44

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	7.76	1890	6260	5740	112	99.0	500	10.0-146			8.70	30
(S) a,a,a-Trifluorotoluene(FID)					97.9	98.0		77.0-120				

SDG: L946549 DATE/TIME: 01/29/18 15:47 Sc

Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

GI

A

°Sc

Method Blank (MB)

(MB) R3262256-2 10/27/1	7 15:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	ug/l		ug/l	ug/l	-
Benzene	U		0.331	1.00	
Ethylbenzene	U		0.384	1.00	3
Toluene	U		0.412	1.00	Ľ
Xylenes, Total	U		1.06	3.00	4
(S) Toluene-d8	111			80.0-120	
(S) Dibromofluoromethane	94.4			76.0-123	Ľ
(S) 4-Bromofluorobenzene	98.2			80.0-120	5
(S) a,a,a-Trifluorotoluene	106			80.0-120	L

Laboratory Control Sample (LCS)

Spike Amount LCS Result LCS Result LCS Qualifier Analyte ug/l ug/l % LCS Qualifier Benzene 25.0 21.5 86.1 69.0-123 Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120	(LCS) R3262256-1 10/	27/17 14:38				
Benzene 25.0 21.5 86.1 69.0-123 Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Ethylbenzene 25.0 24.9 99.6 77.0-120 Toluene 25.0 24.6 98.5 77.0-120	Analyte	ug/l	ug/l	%	%	
Toluene 25.0 24.6 98.5 77.0-120	Benzene	25.0	21.5	86.1	69.0-123	
	Ethylbenzene	25.0	24.9	99.6	77.0-120	
	Toluene	25.0	24.6	98.5	77.0-120	
Xyenes, rotal 75.0 74.3 99.1 77.0-120	Xylenes, Total	75.0	74.3	99.1	77.0-120	
(S) Toluene-d8 103 80.0-120	(S) Toluene-d8			103	80.0-120	
(S) Dibromofluoromethane 92.7 76.0-123	(S) Dibromofluorometha	ine		92.7	76.0-123	
(S) 4-Bromofluorobenzene 97.4 80.0-120	(S) 4-Bromofluorobenze	ne		97.4	80.0-120	
(S) a,a,a-Trifluorotoluene 104 80.0-120	(S) a,a,a-Trifluorotoluen	е		104	80.0-120	

SDG: L946549 DATE/TIME: 01/29/18 15:47 PAGE: 15 of 22 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Ср

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3262116-3 11/01/17 11	1:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.00130	0.00250
Ethylbenzene	U		0.00129	0.00250
Toluene	U		0.00265	0.00500
Xylenes, Total	U		0.00125	0.00750
(S) Toluene-d8	104			80.0-120
(S) Dibromofluoromethane	95.2			74.0-131
(S) a,a,a-Trifluorotoluene	100			80.0-120
(S) 4-Bromofluorobenzene	99.6			64.0-132

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262116-1 11/01/17 C	LCS) R3262116-1 11/01/17 09:52 • (LCSD) R3262116-2 11/01/17 10:11											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Benzene	0.625	0.613	0.587	98.1	93.9	72.6-120			4.39	20		
Ethylbenzene	0.625	0.596	0.614	95.3	98.2	78.6-124			3.05	20		
Toluene	0.625	0.586	0.608	93.8	97.3	76.7-116			3.62	20		
Xylenes, Total	1.88	1.83	1.88	97.5	100	78.1-123			2.86	20		
(S) Toluene-d8				102	106	80.0-120						
(S) Dibromofluoromethane				105	98.0	74.0-131						
(S) a,a,a-Trifluorotoluene				102	102	80.0-120						
(S) 4-Bromofluorobenzene				98.7	98.4	64.0-132						

L946651-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946651-04 11/01/17 15:45 • (MS) R3262116-4 11/01/17 18:52 • (MSD) R3262116-5 11/01/17 19:11

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.759	ND	0.397	0.544	52.3	71.6	1	47.8-131		<u>J3</u>	31.1	22.8
Ethylbenzene	0.759	ND	0.440	0.575	58.0	75.8	1	44.8-135			26.5	26.9
Toluene	0.759	ND	0.442	0.574	58.2	75.6	1	47.8-127		<u>J3</u>	26.0	24.3
Xylenes, Total	2.28	ND	1.37	1.74	59.9	76.3	1	42.7-135			24.0	26.6
(S) Toluene-d8					105	106		80.0-120				
(S) Dibromofluoromethane					92.1	92.6		74.0-131				
(S) a,a,a-Trifluorotoluene					104	103		80.0-120				
(S) 4-Bromofluorobenzene					101	101		64.0-132				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Cascadia Associates- Portland, OR	0060-001-001	L946549	01/29/18 15:47	16 of 22

QUALITY CONTROL SUMMARY L946549-01,02,03

Method Blank (MB)

(MB) R3261738-1 10/30/17	13:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	87.5			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3261738-2 10/30/17	(LCS) R3261738-2 10/30/17 13:51 • (LCSD) R3261738-3 10/30/17 14:08											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Diesel Range Organics (DRO)	750	775	849	103	113	50.0-150			9.10	20		
Residual Range Organics (RRO)	750	706	847	94.2	113	50.0-150			18.1	20		
(S) o-Terphenyl				84.9	90.7	52.0-156						

Тс Ss Cn Sr Qc GI Â Sc

SDG: L946549

DATE/TIME: 01/29/18 15:47 PAGE: 17 of 22

QUALITY CONTROL SUMMARY

L946549-05

Method Blank (MB)

(MB) R3263425-1 11/02/17	17:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO)	U		83.3	250
(S) o-Terphenyl	81.4			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263425-2 11/02/17	(LCS) R3263425-2 11/02/17 18:09 • (LCSD) R3263425-3 11/02/17 18:25											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Diesel Range Organics (DRO)	750	733	705	97.8	94.0	50.0-150			3.91	20		
Residual Range Organics (RRO)	750	785	777	105	104	50.0-150			1.03	20		
(S) o-Terphenyl				81.6	82.6	52.0-156						

QUALITY CONTROL SUMMARY

L946549-04

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3262687-1 11/02/17	17:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	51.6			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3262687-2 11/02/17	(LCS) R3262687-2 11/02/17 17:52 • (LCSD) R3262687-3 11/02/17 18:09											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Diesel Range Organics (DRO)	30.0	19.1	20.5	63.5	68.4	50.0-150			7.40	20		
Residual Range Organics (RRO)	30.0	17.3	17.8	57.7	59.2	50.0-150			2.61	20		
(S) o-Terphenyl				66.5	72.5	18.0-148						

L946611-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L946611-01 11/03/17 20	(OS) L946611-01 11/03/17 20:21 • (MS) R3262971-1 11/03/17 20:38 • (MSD) R3262971-2 11/03/17 20:55											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	38.0	3.93	18.5	26.3	38.4	58.7	1	50.0-150	<u>J6</u>	<u>J3</u>	34.5	20
Residual Range Organics (RRO)	38.0	51.2	60.1	79.5	23.5	74.3	1	50.0-150	<u>J6</u>	<u>13</u>	27.7	20
(S) o-Terphenyl					39.3	50.3		18.0-148				

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

PROJECT: 0060-001-001

SDG: L946549

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

	-	
Alabama	40660	
Alaska	UST-080	
Arizona	AZ0612	
Arkansas	88-0469	
California	01157CA	
Colorado	TN00003	
Connecticut	PH-0197	
Florida	E87487	
Georgia	NELAP	
Georgia ¹	923	
Idaho	TN00003	
Illinois	200008	
Indiana	C-TN-01	
lowa	364	
Kansas	E-10277	
Kentucky ¹	90010	
Kentucky ²	16	
Louisiana	Al30792	
Maine	TN0002	
Maryland	324	
Massachusetts	M-TN003	
Michigan	9958	
Minnesota	047-999-395	
Mississippi	TN00003	
Missouri	340	
Montana	CERT0086	
Nebraska	NE-OS-15-05	

levada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico	TN00003
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ²	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	221
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-07-TX
Texas ⁵	LAB0152
Utah	6157585858
Vermont	VT2006
Virginia	109
Washington	C1915
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold n/a Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

PAGE: 21 of 22

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

- 1 - 2	and the second		Billing Infor	mation:		TE	12		Ar	alysis / C	ontain	er / Pres	ervative		Chair	n of Custody	Pageof						
6915 SW Macadam Ave Ste. 250					Pres Chk										K F	SC							
Portland OR 97219 eport to:			Email To: imaguire@cascadiaassociates.com				CI-8T						a de la composición d		Mou	5 Lebanon Rri nt Juliet, TN 373							
an Maguire	51.44	01.		City/State											Phon	ie: 615-758-585 ie: 800-767-585 615-758-5859							
roject Nustar-Vann escription:	nex ricoi	STU	-4	City/State Collected:	couver,	WA-	-qm								1	and the second	1						
hone: 503-906-6577 ax:	Client Project #	lient Project # 0060 -001 -001 ite/Facility ID #		Lab Project #		Lab Project #				Lab Project #		VE	40mlAmb-H	G	-HCI			5			L# Tab	The second second second	<u>6549</u> 24
ollected by (print): Ian Maguire				Site/Facility ID # VANCOUVER, WA		P.O.#			/ SGT)	Amb H	40mlAmb-H	4	~	2602			1010000	tnum: CAS					
ollected by (signature):		ab MUST Be y Five		Quote #		A CHEST (/1 (w)	Oml	40m	CX	×q.	5	×		1.5.6	login: P62	- Alerta - Alerta - Alerta						
Next Day		5 Da 10 D	y (Rad Only) ay (Rad Only)	Date Resu	tesults Needed		NWTPHDXLVI	NWTPHGX 40mlAmb HCI	VWTPHGX 40 V8260BTEXC	HALMO	HETWO	EX (PLP		PB:	t: 110 - Brian	1 Ford						
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntr	TWI	TWI	1826	M	200	BTE	VÌ		SIN	Remarks	Sample # (lab only)						
MW-5	Gras	GW	NA	10/23/17	1300	8	10000	X	X								-91						
MW-5D	Grub	GW	NA	10/24/17	945	8		X	X		15-11					and the le	- 92						
mw-6	Grab	GW	NA	10/24/17	1135	8	X	X	X								-03						
MW-6 DUP	Grab	GW	NA	10/24/17	1135	8	Ĥ	H	H		1		Real of		8, 13	2							
		GW							-		_					Sec. Alth							
HA-1	Grab	Sail	6'	10/24/17	1530	8				×	\times	X	×				-04/.05						
						1																	
	11				1 2. 3	100			8 2														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: f Contact Ian for specific non					afal	4/s.				pH Temp Flow Other			Sample Receipt Checklist COC Seal Present/Intact: NP YY COC Signed/Accurate: YY Bottles arrive intact: YY Correct bottles used: YY									
DW - Drinking Water OT - Other	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	Samples returned via: UPSFedExCourier Tracking #7			71	430 1463 387				3				Sufficient volume sent:M If Applicable VOA Zero Headspace:M Preservation Correct/Checked:M									
Relinquiener (Sigerfure)	e	Date:	5/17	1205	N/-HI		Autorived by: (Signature)			ES	for	Trip Blank Received: Yes / No HCL / MeoH TBR											
Retinguished by: (Signature)	Schon	Date:	3/17	Time: #	éceived by: (Sig	(nature)	Temp: Soft Bottles Received:		If preservation required by LogIn: Date/Time														
Relinquished by : (Signature)		Date:		Time: R	ecowed for lab	by: (Sig	sture)	0		Date:	\$117	7	ne: 8:45	10	-145		NCF / OK						

ANALYTICAL REPORT

November 14, 2017

Cascadia Associates- Portland, OR

Sample Delivery Group: L948749 Samples Received: 10/28/2017 Project Number: 0060-001-001 Description: Nustar - Vannex Pilot Study Site: VANCOUVER, WA Report To: lan Maguire 6915 SW Macadam Ave Ste. 250 Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Mount Juliet, TN 37122 12065 Lebanon Rd 615-758-5858 800-767-5859 www.esclabsciences.com

TABLE OF CONTENTS

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6 DUP L948749-01	5
Qc: Quality Control Summary	6
Volatile Organic Compounds (GC) by Method NWTPHGX	6
Volatile Organic Compounds (GC/MS) by Method 8260C	7
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SDG: L948749 D 11 PAGE: 2 of 12

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

MW-6 DUP L948749-01 GW			Collected by Ian Maguire	Collected date/time 10/24/17 11:35	Received date/time 10/28/17 08:45	¹ Cp
Method	Batch	Dilution	Preparation	Analysis	Analyst	· ·
			date/time	date/time		^{2}Tc
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1040147	1	11/07/17 19:15	11/07/17 19:15	BMB	TC
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1039917	1	11/07/17 14:00	11/07/17 14:00	ACG	3
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1039917	50	11/07/17 15:19	11/07/17 15:19	ACG	ँSs
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1039652	1	11/07/17 17:09	11/08/17 14:39	LM	
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1039652	5	11/07/17 17:09	11/08/17 19:47	LM	⁴ Cn

<u>پو</u>

SDG: L948749 DATE/TIME: 11/14/17 13:42

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L948749 DATE/TIME: 11/14/17 13:42

SAMPLE RESULTS - 01 L948749

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Gasoline Range Organics-NWTPH	4190		31.6	100	1	11/07/2017 19:15	WG1040147	
(S) a,a,a-Trifluorotoluene(FID)	82.2			77.0-122		11/07/2017 19:15	WG1040147	
Volatile Organic C	$\$ ompound	$l \in (GC/MS)$	n_{1} n_{1}					

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	153		16.6	50.0	50	11/07/2017 15:19	WG1039917	
Toluene	46.2		0.412	1.00	1	11/07/2017 14:00	<u>WG1039917</u>	
Ethylbenzene	1180		19.2	50.0	50	11/07/2017 15:19	<u>WG1039917</u>	
Total Xylenes	1040		53.0	150	50	11/07/2017 15:19	<u>WG1039917</u>	
(S) Toluene-d8	102			80.0-120		11/07/2017 14:00	<u>WG1039917</u>	
(S) Toluene-d8	111			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) Dibromofluoromethane	103			76.0-123		11/07/2017 15:19	<u>WG1039917</u>	
(S) Dibromofluoromethane	105			76.0-123		11/07/2017 14:00	<u>WG1039917</u>	
(S) a,a,a-Trifluorotoluene	101			80.0-120		11/07/2017 14:00	<u>WG1039917</u>	
(S) a,a,a-Trifluorotoluene	107			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) 4-Bromofluorobenzene	96.3			80.0-120		11/07/2017 15:19	<u>WG1039917</u>	
(S) 4-Bromofluorobenzene	91.1			80.0-120		11/07/2017 14:00	WG1039917	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	8960	Q	330	1000	5	11/08/2017 19:47	WG1039652
Residual Range Organics (RRO)	1190	Q	82.5	250	1	11/08/2017 14:39	WG1039652
(S) o-Terphenyl	71.0			52.0-156		11/08/2017 19:47	WG1039652
(S) o-Terphenyl	112			52.0-156		11/08/2017 14:39	WG1039652

SDG: L948749 DATE/TIME: 11/14/17 13:42

WG1040147

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				1 Cn
(MB) R3263837-3 11/07/1	7 17:37				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Gasoline Range Organics-NWTPH	U		31.6	100	3
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-122	Ss
					⁴ Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263837-1 11/07/17	7 16:30 • (LCSD)	R3263837-2	11/07/17 16:52							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5500	4370	4300	79.5	78.2	72.0-134			1.61	20
(S) a,a,a-Trifluorotoluene(FID)				97.7	102	77.0-122				

L948847-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L948847-14 11/08/17	11:56 • (MS) R32	263837-4 11/08	8/17 12:18 • (MS	D) R3263837-	5 11/08/17 12:41	I							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	l
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	U	2090	2010	38.1	36.6	1	23.0-159			3.97	20	
(S) a,a,a-Trifluorotoluene(FID)					97.1	96.6		77.0-122					

DATE/TIME: 11/14/17 13:42 PAGE: 6 of 12 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3263749-3 11/07/17	10:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzene	U		0.331	1.00
Ethylbenzene	U		0.384	1.00
Toluene	U		0.412	1.00
Xylenes, Total	U		1.06	3.00
(S) Toluene-d8	108			80.0-120
(S) Dibromofluoromethane	100			76.0-123
(S) a,a,a-Trifluorotoluene	111			80.0-120
(S) 4-Bromofluorobenzene	99.7			80.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3263749-1 11/07/17	′ 09:30 • (LCSD) R3263749-2	11/07/17 09:49							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzene	25.0	23.9	24.4	95.4	97.5	69.0-123			2.16	20
Ethylbenzene	25.0	25.1	25.2	101	101	77.0-120			0.100	20
Toluene	25.0	23.1	23.4	92.4	93.6	77.0-120			1.20	20
Xylenes, Total	75.0	79.9	78.3	107	104	77.0-120			2.02	20
(S) Toluene-d8				104	104	80.0-120				
(S) Dibromofluoromethane				106	105	76.0-123				
(S) a,a,a-Trifluorotoluene				110	107	80.0-120				
(S) 4-Bromofluorobenzene				96.2	99.7	80.0-120				

DATE/TIME: 11/14/17 13:42 PAGE: 7 of 12

QUALITY CONTROL SUMMARY L948749-01

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3264068-1 11/08/17	11:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		66.7	200
Residual Range Organics (RRO) U		83.3	250
(S) o-Terphenyl	73.6			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3264068-2 11/08/17	7 11:24 • (LCSD)	R3264068-3	11/08/17 11:40							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	796	811	106	108	50.0-150			1.90	20
Residual Range Organics (RRO)	750	757	762	101	102	50.0-150			0.570	20
(S) o-Terphenyl				76.6	74.1	52.0-156				

DATE/TIME: 11/14/17 13:42

PAGE: 8 of 12

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Q	Sample was prepared and/or analyzed past recommended holding time. Concentrations should be considered minimum values.

SDG: L948749

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	
Cascadia Associates- Portland, OR	

PROJECT: 0060-001-001

SDG: L948749 DATE/TIME: 11/14/17 13:42

			Billing Inform	ution:	1	10	1		Ana	ysis / Co	ntainer	I Priester	Vativa	T		ten of Custody	CO	-
Cascadia Associates- Portland, OR Accounts 6915 SW		Accounts 6915 SW	Ints Payable- Chris Breemer SW Macadam Ave				7			Contraction of the second					*E	36		
915 SW Macadam Ave		1	Ste. 250 Portland,	OR 97219				19/1				24				Contraction in strain of the	man Chiam	
ortland OR 97219	1	_		uguire@cascadiaas	sociates.com	36	81									(2005 Laboran Rd Mount West, TN 3713 Rome, ALS-758 5858	製作	
port 10: n Maguire	14. A. A.		-	Long Strategy a	50%s an		HCI-	-					13			Musie #30 767 5858 Fax: 015-758-5859	自己编	
olect Nustar-Vann	ex Pilot	Stud	Y	City/State UAAC Collected:	eaver, u	J.A.	dm								100	La 194	549	
none: 503-906-6577	Maguire et Nustor - Vonnex Prlot Study cription: ne: 503-906-6577 Client Project # COGO-001-001			Lab Project # CASASCTOR-NUVANCOUVE			40miAmb	Ę	DH-0			(II)				Tab E1 Accthum: CAS/ Template: T128	24	11
as Sected by (printle ICAN Maguire	Site/Facility ID	0	Po.#		-001-		(w/ SGT)	Amb t	40mlAmb-HCI	×	×	\$7.603						
ollected by (signification)	Rush? (U			Quote #			VI (v	1000		9	P	3	×	- 1-		Prelogin: P622 TSR: 110 - Brian		
Jan Myuire	Same On Next Day Two Day Two Day	100	Day iy (Rad Only) tay (Rad Only)	Date Resol	ts Needed	No.	NWTPHDXLVI	NWTPHGX 40mlAmb HCI	V8260BTEXC	NUNTPH	HELMO	BTEX	PLP			PB: Shipped Via:		
sample 10	Comp/Grab	Matrix *	Depth	Date	Time	Entra	LMN	MM	and the second	NI	2	20	-VA			Barsarks	Sample & Del cell	1
	Gris	GW	NA	10/20/17	1300	8		X	×	1.2						1.1.1.2	- 97	
MW-5	Grab	GW	NA	10/24/17	945	18	X		X	-		-		1			23	3
MW-5D	Grab	GW	AIN.	10/24/17	1135	8	X	X	X	-	Rent I	1		1.7			-01	
MW-6 DUP	Grab	GW	NA	10 24/17	1135	8	Ĥ	11	H	-		-				- 48		
RIW COM		GW				-	1		1	×	×	X	×				-01/0	5
HA-1	Grob	Soil	6	10/24/17	1530	8		1		F	-	1	-					
	1000	-	-	-		1	-			1	1.5							
	-	1	5000		the first	H								2.		12		
	Trail 1	100	-		1 2 1		-	1	-	123						Alexand and	1	-
		1		1	825	- 12		14.1	5	18 1	1	1	1		CON SALT	Rise Necelst Researt/inta	Checklant Y	N
* Matrix: SS - Soll AIR - Air F - Filter GW - Groundwater B - Bicassay	Remarks	Conto	at Is	in for sp	ation a	antal	4.		3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	p)) Fio	w	-	np		COC Store	nd/Accurate arrive intact bottles used nt volume ses	in the second	111 111
WW - WasteWater DW - Drinking Water OT - Other	Samples ret	umed via: Fedtx	Courver		tracking # 7	+30	10	P63	387	3	ank Re-	ceived	Yes / fe	2	time with	if Arelin Headspaces tion Correct/	ana A	1
manager suffer Of	2	Date	tra	1205 K	Contraction Sector	1/2	5	E	clo	n nipo	HUN THE		HCL /	Mach		ition inquired by	Legin Date/Tin	ne:
ANSWORD		Dane:	20/17	Time	Received by: (5)	Frature	u]]			temp	P. 10	ile !	Matture Rac	1)	if preservi	thon induced by	C.P. C.P. C.P.	
entinguething by: (Cerospire)	ALDon	-101	25/17	1230	1.40.1		1	-		Un	90	50	Time:	0	10-1	45	Conditi	85
Relinquished by : (Signature)	aufuro	Dine:	-price	Time:	Recoved tor 14	a by: 151	Eutor	122		10	201	17	6	45			NC9 /	0

Andy Vann

From: Sent: To: Subject:

Brian Ford Monday, November 06, 2017 3:03 PM Login; Brian Ford L946549 *CASASCTOR* log off hold Please log MW-6 DUP off hold label 10-145 for NWTPHGX, V8260BTEXC, and NWTPHDXLVI. Log as R5 due 11/13.

Thanks,

Brian Ford

Technical Service Representative ESC Lab Sciences-a subsidiary of Pace Analytical

12065 Lebanon Road | Mt. Juliet, TN 37122 615.773.9772

bford@esclabsciences.com | www.esclabsciences.com

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

-

ANALYTICAL REPORT

December 12, 2017

Cascadia Associates- Portland, OR

Sample Delivery Group:	L954460
Samples Received:	12/01/2017
Project Number:	006-001-001
Description:	Vannex GWM
Site:	VANCOUVER, WA
Report To:	lan Maguire
	6915 SW Macadam Ave
	Ste. 250
	Portland, OR 97219

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Mount Juliet, TN 37122 800-767-5859 12065 Lebanon Rd 615-758-5858 www.esclabsciences.com

TABLE OF CONTENTS

1

E.	*
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-6 L954460-01	5
MW-5 L954460-02	6
MW-5D L954460-03	7
MW-5 DUP L954460-04	8
Qc: Quality Control Summary	9
Volatile Organic Compounds (GC) by Method NWTPHGX	9
Volatile Organic Compounds (GC/MS) by Method 8260C	10
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	11
GI: Glossary of Terms	12
Al: Accreditations & Locations	13
Sc: Sample Chain of Custody	14

SDG: L954460

PAGE: 2 of 14

SAMPLE SUMMARY

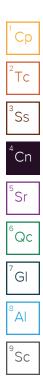
ONE LAB. NATIONWIDE.

褧

MW-6 L954460-01 GW			Collected by Joel Mattecheck	Collected date/time 11/30/17 11:45	Received date/time 12/01/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	10	12/06/17 12:22	12/06/17 12:22	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	50	12/03/17 02:12	12/03/17 02:12	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:02	LM
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	5	12/06/17 22:35	12/11/17 14:12	LM
			Collected by	Collected date/time	Received date/time
MW-5 L954460-02 GW			Joel Mattecheck	11/30/17 10:55	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	10	12/06/17 12:46	12/06/17 12:46	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	25	12/03/17 02:28	12/03/17 02:28	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:18	LM
			Collected by	Collected date/time	Received date/time
MW-5D L954460-03 GW			Joel Mattecheck	11/30/17 10:10	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	1	12/04/17 23:06	12/04/17 23:06	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	1	12/03/17 02:45	12/03/17 02:45	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG1049374	1	12/06/17 22:35	12/07/17 21:34	LM
			Collected by	Collected date/time	Received date/time
MW-5 DUP L954460-04 GW			Joel Mattecheck	11/30/17 10:55	12/01/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1049399	1	12/04/17 23:30	12/04/17 23:30	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	1	12/03/17 03:02	12/03/17 03:02	BMB
				10/05/17 00 11	1.51
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1048800	25	12/05/17 23:14	12/05/17 23:14	LRL

SDG: L954460

DATE/TIME: 12/12/17 09:41


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Technical Service Representative

SDG: L954460 DATE/TIME: 12/12/17 09:41 PAGE: 4 of 14 Collected date/time: 11/30/17 11:45

SAMPLE RESULTS - 01 L954460

°Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

Analyte ug/l ug/l ug/l date / time Gasoline Range Organics-NWTPH 9420 316 1000 10 12/06/2017 12:22 WG1049399		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Drganics-NWTPH 9420 516 1000 10 12/06/2017 12.22 WG1049599	Analyte	ug/l			ug/l		date / time		
(S) 05 C 77 0 122 12/0C/2017 12:22 W/CO 00200		9420		316	1000	10	12/06/2017 12:22	WG1049399	
a,a,a-Trifluorotoluene(FID) 95.6 77.0-122 12/06/2017 12.22 WG1049399	(S) a,a,a-Trifluorotoluene(FID)	95.6			77.0-122		12/06/2017 12:22	WG1049399	

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	223		16.6	50.0	50	12/03/2017 02:12	<u>WG1048800</u>	
Toluene	53.1		20.6	50.0	50	12/03/2017 02:12	<u>WG1048800</u>	
Ethylbenzene	1710		19.2	50.0	50	12/03/2017 02:12	WG1048800	
Total Xylenes	1120		53.0	150	50	12/03/2017 02:12	<u>WG1048800</u>	
(S) Toluene-d8	107			80.0-120		12/03/2017 02:12	WG1048800	
(S) Dibromofluoromethane	88.9			76.0-123		12/03/2017 02:12	<u>WG1048800</u>	
(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:12	WG1048800	
(S) 4-Bromofluorobenzene	97.3			80.0-120		12/03/2017 02:12	WG1048800	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	7440		330	1000	5	12/11/2017 14:12	WG1049374
Residual Range Organics (RRO)	686		82.5	250	1	12/07/2017 21:02	WG1049374
(S) o-Terphenyl	120			52.0-156		12/07/2017 21:02	WG1049374
(S) o-Terphenyl	103			52.0-156		12/11/2017 14:12	WG1049374

SDG: L954460 Collected date/time: 11/30/17 10:55

SAMPLE RESULTS - 02 L954460

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

0	1							1 Cm
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		 2
Gasoline Range Organics-NWTPH	11300		316	1000	10	12/06/2017 12:46	WG1049399	Tc
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-122		12/06/2017 12:46	WG1049399	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time		⁵ C.			
Benzene	U		8.28	25.0	25	12/03/2017 02:28	WG1048800	Šr			
Toluene	U		10.3	25.0	25	12/03/2017 02:28	WG1048800	C			
Ethylbenzene	187		9.60	25.0	25	12/03/2017 02:28	WG1048800	⁶ Qc			
Total Xylenes	1210		26.5	75.0	25	12/03/2017 02:28	WG1048800				
(S) Toluene-d8	106			80.0-120		12/03/2017 02:28	WG1048800	⁷ Gl			
(S) Dibromofluoromethane	87.9			76.0-123		12/03/2017 02:28	WG1048800	G			
(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:28	WG1048800				
(S) 4-Bromofluorobenzene	97.0			80.0-120		12/03/2017 02:28	WG1048800	IA [®]			

Sample Narrative:

L954460-02 WG1048800: Target and non-target analytes too high to re-analyze at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1630		66.0	200	1	12/07/2017 21:18	WG1049374
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:18	WG1049374
(S) o-Terphenyl	91.4			52.0-156		12/07/2017 21:18	WG1049374

SDG: L954460

DATE/TIME: 12/12/17 09:41 Collected date/time: 11/30/17 10:10

SAMPLE RESULTS - 03 L954460

Volatile Organic Compounds (GC) by Method NWTPHGX

0	1							1°Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	411		31.6	100	1	12/04/2017 23:06	WG1049399	Tc
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-122		12/04/2017 23:06	WG1049399	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	L		
Analyte	ug/l		ug/l	ug/l		date / time		5		
Benzene	U		0.331	1.00	1	12/03/2017 02:45	WG1048800			
Toluene	U		0.412	1.00	1	12/03/2017 02:45	WG1048800	6		
Ethylbenzene	U		0.384	1.00	1	12/03/2017 02:45	WG1048800	C		
Total Xylenes	U		1.06	3.00	1	12/03/2017 02:45	WG1048800	L		
(S) Toluene-d8	105			80.0-120		12/03/2017 02:45	WG1048800	7		
(S) Dibromofluoromethane	88.9			76.0-123		12/03/2017 02:45	WG1048800			
(S) a,a,a-Trifluorotoluene	105			80.0-120		12/03/2017 02:45	WG1048800			
(S) 4-Bromofluorobenzene	98.5			80.0-120		12/03/2017 02:45	WG1048800	C		

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT												
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l	ug/l		date / time						
Diesel Range Organics (DRO)	494		66.0	200	1	12/07/2017 21:34	WG1049374					
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:34	WG1049374					
(S) o-Terphenyl	84.9			52.0-156		12/07/2017 21:34	WG1049374					

SDG: L954460

DATE/TIME: 12/12/17 09:41

SAMPLE RESULTS - 04 L954460

Volatile Organic Compounds (GC) by Method NWTPHGX

9		())						 1°Cn
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	10900		31.6	100	1	12/04/2017 23:30	WG1049399	Tc
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-122		12/04/2017 23:30	WG1049399	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	12/03/2017 03:02	WG1048800	
Toluene	1.12		0.412	1.00	1	12/03/2017 03:02	<u>WG1048800</u>	
Ethylbenzene	187		0.384	1.00	1	12/03/2017 03:02	<u>WG1048800</u>	e
Fotal Xylenes	1480		26.5	75.0	25	12/05/2017 23:14	<u>WG1048800</u>	L
(S) Toluene-d8	100			80.0-120		12/05/2017 23:14	<u>WG1048800</u>	7
(S) Toluene-d8	99.2			80.0-120		12/03/2017 03:02	<u>WG1048800</u>	
(S) Dibromofluoromethane	87.7			76.0-123		12/03/2017 03:02	WG1048800	
(S) Dibromofluoromethane	96.1			76.0-123		12/05/2017 23:14	<u>WG1048800</u>	5
(S) a,a,a-Trifluorotoluene	103			80.0-120		12/05/2017 23:14	<u>WG1048800</u>	L
(S) a,a,a-Trifluorotoluene	109			80.0-120		12/03/2017 03:02	<u>WG1048800</u>	g
(S) 4-Bromofluorobenzene	93.9			80.0-120		12/03/2017 03:02	<u>WG1048800</u>	
(S) 4-Bromofluorobenzene	99.0			80.0-120		12/05/2017 23:14	WG1048800	L

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	1750		66.0	200	1	12/07/2017 21:50	WG1049374
Residual Range Organics (RRO)	U		82.5	250	1	12/07/2017 21:50	<u>WG1049374</u>
(S) o-Terphenyl	85.5			52.0-156		12/07/2017 21:50	WG1049374

WG1049399

Volatile Organic Compounds (GC) by Method NWTPHGX

QUALITY CONTROL SUMMARY

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	<i>)</i>				1 Cp
(MB) R3270407-3 12/04/	17 11:11				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Gasoline Range Organics-NWTPH	33.1	ī	31.6	100	3
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-122	ŠS
					⁴ Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3270407-1 12/04/17 09:59 • (LCSD) R3270407-2 12/04/17 10:23											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5500	5720	5870	104	107	72.0-134			2.58	20	
(S) a,a,a-Trifluorotoluene(FID)				108	108	77.0-122					

L954576-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L954576-05 12/05/	(OS) L954576-05 12/05/17 03:02 • (MS) R3270407-4 12/05/17 03:26 • (MSD) R3270407-5 12/05/17 03:50												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	l
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	ND	2590	2670	46.3	47.9	1	23.0-159			3.15	20	
(S) a,a,a-Trifluorotoluene(FID)					101	101		77.0-122					

SDG: L954460 DATE/TIME: 12/12/17 09:41

PAGE: 9 of 14 Volatile Organic Compounds (GC/MS) by Method 8260C

QUALITY CONTROL SUMMARY L954460-01,02,03,04

¹Cp

⁶Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3270555-2 12/03/1	7 01:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.331	1.00	
Ethylbenzene	U		0.384	1.00	
Toluene	U		0.412	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	106			80.0-120	
(S) Dibromofluoromethane	89.7			76.0-123	
(S) a,a,a-Trifluorotoluene	105			80.0-120	
(S) 4-Bromofluorobenzene	98.2			80.0-120	

Laboratory Control Sample (LCS)

(LCS) R3270555-1 12/03/	17 01:05				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	25.0	23.4	93.5	69.0-123	
Ethylbenzene	25.0	25.8	103	77.0-120	
Toluene	25.0	25.1	100	77.0-120	
Xylenes, Total	75.0	77.0	103	77.0-120	
(S) Toluene-d8			105	80.0-120	
(S) Dibromofluoromethane			88.4	76.0-123	
(S) a,a,a-Trifluorotoluene			105	80.0-120	
(S) 4-Bromofluorobenzene			99.7	80.0-120	

SDG: L954460

DATE/TIME: 12/12/17 09:41

PAGE: 10 of 14

QUALITY CONTROL SUMMARY L954460-01,02,03,04

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3271729-1 12/07/17 1	18:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Diesel Range Organics (DRO)	U		66.7	200	
Residual Range Organics (RRO)	U		83.3	250	
(S) o-Terphenyl	77.2			52.0-156	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3271729-2 12/07/17	18:36 • (LCSD)) R3271729-3	12/07/17 18:52							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	719	697	95.9	93.0	50.0-150			3.05	20
Residual Range Organics (RRO)	750	633	614	84.4	81.9	50.0-150			3.00	20
(S) o-Terphenyl				73.4	72.2	52.0-156				

L954618-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L954618-01 12/07/17 2	22:06 • (MS) R3	3271729-4 12/0)7/17 22:22 • (ľ	MSD) R3271729	-5 12/07/17 22	:38							Γ
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	L
Diesel Range Organics (DRO)	750	ND	619	622	74.2	74.5	1	50.0-150			0.418	20	
Residual Range Organics (RRO)	750	ND	526	536	63.5	64.8	1	50.0-150			1.94	20	
(S) o-Terphenyl					63.3	61.8		52.0-156					

DATE/TIME: 12/12/17 09:41

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L954460

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	
Cascadia Associates- Portland, OR	

PROJECT: 006-001-001

SDG: L954460 DATE/TIME: 12/12/17 09:41

		5.71	Billing Inform	nation:	di.				1	Anal	ysis / Contair	ner / Pi	reservative		24	-	of Custody	Page_of_
ascadia Associates- P 15 SW Macadam Ave e. 250	ortland, (6915 SW Ste. 250	Payable- C Macadam OR 97219		Differing	178-5	101 VX		82603)		-			111	V 5	RE S Lebaron Rd	SC.
Intland OR 97219			Email To: Im	aguire@casc	adiaas	sociates.com	1E	-		0			1853	1		Mour	5 Lebanon na nt Juliet, TN 3712 w. 615-758-5856	
port to: n Maguire			Cell		-		-	19		EX	12		1255	1		Phon	615-758-5859	高級
oject escription: VANNEX GW	щ		5.43	City/State V Collected:	12/		1	nh-Hc		Bte						L#		54460
CARD IN THE SHORE HER MANY AND A SHORE AND	Client Project #	01-00	01	Lab Project #	r DR-N	UVANCOUVE		40mlAmb-HCI-BT	G	HCI						T	B08	195
Sel Mattecheck	Site/Facility ID	11		P.O.#	00	1-001		/ SGT 4	NWTPHGX 40mlAmb HCI	A						Ter	cthum: CAS/ mplate:T130)154
oilected by (signature):		b MUST Be		Quote #			3	LVI W,	40ml	A				-			elogin: P627 R: 110 - Brian	
	Next Day Two Day Three Da	10 Da	(Rad Only) ay (Rad Only)	(Resul	ts Needed	Nc. of	NWTPHDXLVI	PHGX					-		PB	ipped Via:	
Sample ID	Comp/Grab	Matrix *	Depth	Date		Time	Cour	LMI	LMI				158				Remarks	Sample # (lab only)
Sample to	1		-	11151		1110-	3	×	×	×			No.			and the		- 0
MW-G	Grab	GW	-	1(30)	1-1	(145	1.00	and the second		100000000000000000000000000000000000000			120				marca	- 02
MW-5	Grab_	GW	-	111301		forma 1055	· · · · · · · · · · · · · · · · · · ·	About 1	X						17.			- 03
MW-50	Gras	GW	-	11/30		and the second sec	notro	and the second of		1011101101			-	1			de la	- 04
MW-5 DUP	Grab	GW	-	11/30/	17	1055	0	×	+	~					and the second			
	1200	GW		1200		1.1	1		1					100				
	-	1	23			1.12								1		-	- 10	
		14.4			2.00	100	1							132			der s	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							1							1			e Redeipt	Charletter
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	F-Filter B-Bioassay BMail results to		is to	Ian W	145	-inc					pH Flow	-	Temp Other	np COO Bott		eal Fre igned/A es arri ct bott	e Receipt ment/Intac weurate: we intact: les uped: volume seut	
WW - WasteWater DW - Drinking Water DT - Other	Samples retu	edExC	ourier			racking#	74		466	425	1 Trip Blank I	lecolu	ed RLN	0	1000 2	aro lies	<u>It Applic</u> adspace: n Correct/	able /y_
Relinquisingd by : (Signature)	/	Date:	30/17	Time: 1530		leceived by: (Sign		1752					ACE/ TBR	MeoH	liforet	servation	required by	Login: Date/Time
Relinquishert by : (Signature)	A. Same	Date:		Time:	-	Received by: (Sign	atur				Q.3	v "C	32		In pres			
Relinguished by : (Signature)		Date:	10	Time:	1	Received for lab t	y: (Si	gnature)	13	5	Date: 12/01	12	Time:	r	Hold			Condition

TANK I

ATTACHMENT E

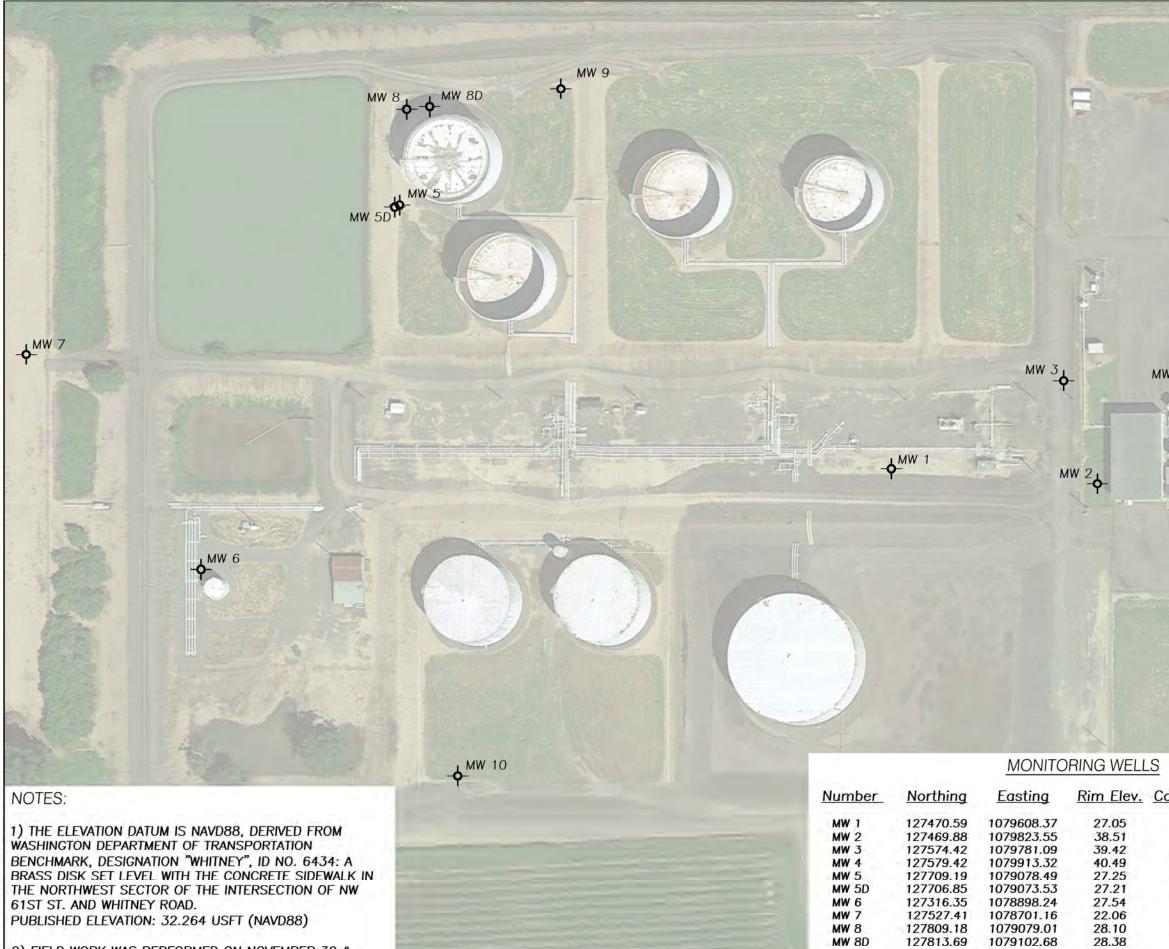
GROUNDWATER MONITORING FIELD NOTES

				Well ID:	MW-5			Job Number:	0060-0	100-1001
ME	Car	cadia		Client:	Nusta	N -		Date:	10/23	17
		caala ates, LLC		Project:	Vyme	e Pres	t Study	Sampler:	in	
	ASSOCIO	ics, LLC	_	Weather:	mostly	Survey	(50')/	Time In/Out:	1200	
					WELL I	DATA	Re			
Monument Ty		Flush-mount/	Stick-up		Well Diamete	r:	2	Depth to Free	Product:	
wonument ry	pe.	Other:			Well Depth:		24.96	Free Product	Thickness:	
Monument Co	ndition:	600C		-	Depth to Wat	er:	17.82	Water Column	n Length:	
Well Cap Lock	Present:	Yes) No			Screened Inte	rval:		Purge Volume	:	
Comments:		~								
Purge Volume	= (Water He	eight) X (Multip	lier) X (# Casir	ng Volumes)						
Water height i	multipliers (gal):	1-inch well =	0.041	2-inch = 0.162		4-inch = 0.65	3	1 gal = 3.785 lit	ters
		-			PURGIN		510	1		
Purge Method		Peri	FLOW		Pump Intake		5.0	sove b	NEW	/ DEDICATED
Sampling Met	nod:	Cumulative	FLOW	-	Tubing Mater	iai & Type:			INEVV	7 DEDICATED
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remar
		1			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1231			18.20					100		
			1	20:35	6 117	14.2	488.7	0.36	-34.7	1
1234	-		18.48		6.42			a second second		6
1237	-		18.70	0.2	6.53	14:3	489	0.31.12		C
1240			18.80		658	14.6	441	0.03	-32.7	C
1245			1901		6.59	14.3	485	0.24	-36,1	(
1249			19.40		6.59	14.4	484	0.33	-37.3	(
1252			19.56		6.60	14.5	480	0.21	-37.3	C
inc	-			5	6		-au			-
		-		Pump	soft					
- All	-									
			1						-	
	1	1	1.5	-						
					PLIRGIN	IG DATA				
Sample ID:		mis -	5	Sampling Flo		0.2	Imin	Analytical La	boratory:	ESC
Sample TD.		1300		Final Depth		19.05		Did Well Dev		
No. of Contai			ervative	Analysis/Me		Field Filtered	Filter Size	MS/MSD	Duplicate ID	
HUSTP	HCX	H			PH - 6x	N	1	1	1	
	Ar	1	- ,		PH-Dx					
n Da-	Y	-	-	and the second second	/				t	11
1 BTE	*		-	BTE	=×				T	
	1									
						-				-
						NAL COMMEN				
Water	toin	L did	mad Q	1 State	Lize Da	ma Vou	aine as	(100 m	5 0035.52	e uto
	+ verse	Walted a	al.	N	in the particular	· Val		Areas	S possible	
A March 1	E in A	Etc Black A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· MIL PI	10 A HAV	E INCOLA LA	THE ME	SEMM C	ALVE AVA	

				Well ID:	MW	-50		Job Number:	0060-0	1-001
1	Cas	cadio		Client:	NUST			Date:	10/24	
1		tes, LLC		Project:	Vorr	lex Pilo	it Study	Sampler:	IM	
				Weather:	chew	- (4035)	/	Time In/Out:	200 831	01
					WELL	DATA				
Monument T	ype:	Flush-mount,	/Stick-up		Well Diamet		2-10	Depth to Free	Product:	-
		Other:			Well Depth:	bic	44.69	Free Product	Thickness:	-
Monument C	ondition:	Good			Depth to Wa	iter:	17.50	Water Column	Length:	
Well Cap Loc	k Present:	Tes No	Yes		Screened Int	erval:		Purge Volume	:	1
Comments:							1. 100 T 1			
Purge Volum	e = (Water He	ight) X (Multip	lier) X (# Casin	ng Volumes)						
Water height	multipliers (g	al):	1-inch well =	0.041	2-inch = 0.16		4-inch = 0.65	53	1 gal = 3.785	iters
Numer Manul	1	-				IG DATA				
ourge Metho Sampling Me	10		Punp		Pump Intake			screen	-	
amping we		Cumulative	Flow		Tubing Mate	rial & Type:	LOPE	-	NEW	/ DEDICATED
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
			HOPEN,		+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
915			17.48	0.16	6.08	12.8	269	1.28	-439	C
918										
921		-	17.48		6.39	12.9	260	1-1		1
							-	0.5	-459	C
924	-		17.48		6.42	13.0	260	0.38	-455	C
927			17.47		6.45	12.9	258	0.37	-416	e
930			17.48		6.47	12.9	256	0.46	-407	C
933			17.48	0.16	6.49	12.9	257	0.19	-394	C
936	1 E		17.48		6.50	12.9	254	0.45	- 388	C.
939	-		17.48		6.55	12.9	253	0.40	-373	C
-										
									-	
		-								
					DUDCIN	IG DATA				
ample ID:		Mus-5	0	Sampling Flor		0.16		Analytical Labo	aratony	ESC
ample Time:		945	y	Final Depth to		17.49	6	Did Well Dewa		NO
lo. of Contain			vative	Analysis/Met		Field Filtered		MS/MSD	Duplicate ID	
						N	N	N	N	
						~			N	
										-
			-							
				1						
				NO	TES/ADDITIO	NAL COMMENT	rs			
Da	1	1 1	0.1					,		
00	croppe	CO	ene o	2 Jungo	Nori	she r	even	4p.		
								-		
								194		197

				Well ID:	mw.	-6		Job Number:	0060 . 0	301 -001
ME	Car	cadia		Client:	NUST			Date:	10/24	
	Associa	tes, LLC		Project:	Vann		of Studi	Sampler:	IM	
	Associu	103, 110		Weather:	Clem	(50'5)		Time In/Out:	1045	
					WELL	DATA				
Monument Ty		Flush-mount/	tick-up		Well Diamet	er:	2-11	Depth to Free	Product:	N
wonument Ty	/pe:	Other:			Well Depth:	DAC	26.79	Free Product	Thickness:	-
Monument Co	ondition:	Good			Depth to Wa		18.12	Water Colum	h Length:	
Well Cap Lock	Present:	Yes No	VEn on	Stick-up	Screened Int	erval	19.16	Purge Volume		
Comments:	·	100 110	yen		bereened int	Ci vuii		I uige volume		
and the second second second	e = (Water He	eight) X (Multip	lier) X (# Casir	g Volumes)						
Water height			1-inch well =		2-inch = 0.16	52	4-inch = 0.65	3	1 gal = 3.785 li	iters
					PURGIN	IG DATA			1-0	
Purge Method	d:	Peri			Pump Intake	Depth:	ph 5'	abore	botter	
Sampling Met	hod:	how	Flow		Tubing Mate	rial & Type:			NEW	/ DEDICATED
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1100			18:57	0.16	6.21	13.7	811	0.51	-54.4	C
1104			19.12		6.24	13.7	810	0.39	-50.1	ĕ
107			19.41		6.27	13.8	81Z	0.31	-51.6	C
1110			19.73		6.28	13.7	811	0.29	-64.5	Ċ
1113			19.94		6.29	13.8	811	0.30	-58.9	C
1116			20.11		6.30	13.8	811	0.29	-60.5	C
		2					911	0.61	60.5	
		Pun								
1135			18.41							
			-							
						-				
-						-		-	1	
	-						-			
						122				
					PURGI	NG DATA				
Sample ID:		Mw.	-6	Sampling Flo		0.16		Analytical Lab		ESC
Sample Time:		1134		Final Depth t			23	Did Well Dew		
No. of Contai	ners/Type	Prese	rvative	Analysis/Me	thod	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
									MW-6D	P
-										-
			-				1.2		1	
			-			-				
					_			-		
	-									
				N	DTES/ADDITIC	DNAL COMMEN	NTS			
Shaint	shee.	n blote	hy abse	wed a	and gum	for of	Simo	VOAS.	effer	escent
0.		.,	1					/		

				10			1			2	10	10						-					
			4	and a								e.											
				and the second				-															
1			1	*	4				*	-	5	1											
-		2								5		10											
							2		4														
X	*	5		-	1	1000	r. 1	18		-	1 h												
	1	Re					-	in the	••	Set.		100											-
		-						-		1	4												
		-									1.												
1				-							-					-						+	
			_	_	_										-	_	-			-		-	
			-	6.4					_					-		_	-						
									_				-										-
			14	1					_														
			-																				
		4		-	-					_	_			-			-	_	_			_	-
	-											4	-	-	-	-			1	1	1		
															the second se								
1				-																			
				1-2																			
				1-011																			
				1-orw																			
				1-and			-																
PH.				1-an							*												
depth				1-out							+S*												
depth		~						69			45,												
	h. leto	1:59				2/	. 16	set	36	容	1	39											
trom dept.	27.66	29.59		The second se			LX.16	100 to 100	17.36	10.41	1	16.39											
the Mu	1.00	29.59	20.61	16.16	14.71		1. 68.16	St 81 4	D 17.36	9-12、金	1	5 16.39											
ine Barthe	1.00		20.61	16.16	14.11 4	-	14 - 68.16	St 81 61	17.36	[章: 1] CC ·	1	25 16.39											
ine Barthe	5-12		20.61	A.14 11.16	14.11 4.5	-	9.14 - 68.16	87 81 81 8	9.21 17.36	Q: 20 10. Q	1	9:25 16.39											
ine Barthe	5-12		9:01 20.61	A.14 116.16	14.11 4.5		-10 9.14 - 68.16	St . 8 18. 78	409.20 17.36	12 11 CC 10 P	1	5. 9:25 16.39											
ine Barthe	5-12		9:01 20.61	A.14 116.16	14.11 4.5		11-10 9.14 - 68.16	9 9:19 18. 78	17.36 A. 19.4	10. 11 CC . D	1	W-5- 9:25 16:39		*									
ine Barthe	1.00	£:50	20.61	A.14 116.16	14.11 4.6		MI-10 9.14 - 68.16	St 81 9:19 6.14	MN-4D 9.2 17.36	10. 11 CC . 10 P. mw	1	MW-5- 9:25 16:39											
the Mu	5-12		9:01 20.61	A.14 116.16	14.11 4.6		MI-10 9.14 - 68.16	M. 9 9:19 18 78	MV-4D 9.21 17.36	(学·10 0·20 10·20	1	MW-5- 9:25 16.39		-									
ine Barthe	5-12		9:01 20.61	A.14 116.16	14.11 4.6		Mu-10 9.14 - 68.16	M 9 4:19 18, 78	Mi1-209.9.20 17.36	10. 11 CC . D Y. TW	1	MW-5- 9:25 16.39											


Cascadia Associates, LLC Client: NUSTER Date: II30-2014 Project: VANNEX Sampler: A. Spenner / Jee Weather: Sampler: A. Spenner / Jee Weather: Monument Type: Flush-maint/Stick-up Well Diameter: 2." Depth to Free Product: / Monument Condition: Other: Well Depth: L4-5 Free Product Thickness: / Monument Condition: Depth to Water: I/6-21 Water Column Length: V 2.0 Well Cap Lock Present: Yes No Screened Interval 35-4/5 Purge Volume: Comments: Purge Volume = (Water Height) X (Multiplier) X (# Casing Volumes) Iso Screened Interval 35-4/5 Purge Volume: Water height multipliers (gal): 1-inch well = 0.041 2-inch = 0.162 4-inch = 0.653 1 gal = 3.785 liters Purge Method: Iso Screened Tubing Material & Type: LDP E NEW / DEDICATER Sampling Method: Iso Screened Tubing Material & Type: LDP E NEW / DEDICATER Time Volume Druw Intege Rate (liters) DTW Purge Rate (L/min) PH Temp ("C) Cond (µS/cm) DO </th <th></th> <th></th> <th></th> <th></th> <th>Well ID:</th> <th>MW-</th> <th>57</th> <th></th> <th>Job Number:</th> <th>006-</th> <th>001-001</th>					Well ID:	MW-	57		Job Number:	006-	001-001
Associates, LLC Prest: Variable Prest: (LQV) Prest: (LQV) Prest: (LQV) Strate (LQV) Strate(331	Case	adia		Client:	NUST	RR	1. C. I.	Date:	11-30	- 2017
IPrestricts The DULUS \uparrow Acts γ / Acts γ		JUSC			Project:	the state of the s	and the second se		Sampler:	A. Spen	er / Soel 1
Well Dark Well Dameter: 2 , $''$ Depth to Free Product: Other. Well Dameter: 2 , $''$ Depth to Free Product: 2 , $''$ Monument Condition: Depth to Water: $1/2$, $2/2$ Water Column Length: $2/2$, $2/2$ Maximum Lock Present: (reg.) No Screened Interval $35 - 4/2$ Purge Volume: Commonsti: Purge Volume - (Mater Height) X [Multiplier] X (# Casing Volume:) Inch well = 0.041 $24 \ln ch = 0.653$ I gal = 3.785 liters Purge Nethod: [26/: 3 + 2 + 1/2 + 2 Purge Intake Depth: $700'$, $d = -500'$ NEW / DEDICATE Simpling Method: [26/: 3 + 2 + 1/2 + 2 Purge Intake Depth: $700'$, $d = -500'$ NEW / DEDICATE Time Volume [Volume DTW Purge Rate [V/min] PH Temp Cond DO ORP Clarity/C 07::52 1/6, 2, 2, 0, -3 6, 4/4 12, 1, 2 5/2, 2 4, 9/2, 1 Clarity/C 07::53 1/6, 2, 2/4 6, 5/6 11, -7/2 5/2, 2 1, 0/2 Questa 07: 57 1/2, 1/2 5/			es, LLC			(LOUN)	Y. RAN	ING	Time In/Out:	9:40	1
Worlument Lype: Other: Well Depth: L45 Free Product Thickness: ////////////////////////////////////			~								
Odmument Type: Other: Well Depth: L45 Free Product Thickness: ////////////////////////////////////		G	Flush-mount/	Stick-up		Well Diamete	r:	2"	Depth to Free	Product:	/
Warenet Candition: Depth to Water: $ \frac{1}{2}, 2 $ Water Column Length: $\sqrt{2}, 2 $ Well Capitok Present: (eg.) No Screened Interval. $35, -45$ Purge Volume: Durge Volume: No Condition: DO ORP DURGENCE Volume: NEW / DEDICATE Simpling Method: Ipurged (btc) (Umin) Purge Rate Volume: DV Purge Rate Volume: DO ORP Clarity/C Other Ren Volume Volume DV Volume: DV Purge Rate Volume: If $(J, 2, 2)$ NEW / DEDICATE Time Volume DV Purge Rate Volume: DV DO ORP $(D, 2)/2$ $(J, 2)/2$ $(J, 2)/2$ $(J, 2)/2$ NEW / DEDICATE </td <td>Nonument Type:</td> <td></td> <td>Other:</td> <td></td> <td></td> <td>Well Depth:</td> <td></td> <td></td> <td>Free Product</td> <td>Thickness:</td> <td>/</td>	Nonument Type:		Other:			Well Depth:			Free Product	Thickness:	/
Well Cap Lock Present: Yes No Screened Interval 25 - 1/5 Purge Volume: Durge Volume = (Water Height) X (Multipler) X (# Casing Volumes) 2 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1	Annument Cond		L				ar.	-	Water Colum	length.	2/201
Comments Purge Volume = (Water Height) X (Multiplier) X (# Casing Volumes) Purge Volume = 0.041 Purge Number = 0.053 1 gal = 3.785 liters Water height multiplierig (gal): Linch well = 0.011 24nch = 0.152 PURGINGS DATA PURGINGS DATA Purge Method: I purge 1 purge I purge 1 purge Purge Method: I purge I purge I purge Time Volume (ters) I purge 1 purge Purge gate pH Temp (tc) I purge NeW / DEDICATE Time Volume (ters) I (bc) Purge gate pH Temp (tc) DO ORP (tr) Other Ren (iters) I (bc) 2.4/1 -/455 I (c) <						-					0 20
Purge Volume = {Water Height) X (Multiplier) X (# Casing Volumes) Image And the content of the cont		sent; (]	Tes NO		-	Screened inte	1 Agi -	25-47	Pulge volume		
Water height multipliers (gal): 1-inch well = 0.041 2-inch = 0.623 4-inch = 0.653 1 gal = 3.785 liters Purge Method: 1,000 0,000		Matata - Mala	Lat with substal	ing M (# Casin	a Malumaa l	-					_
Purge Method: Der N = 5 + 0 + 4 + c Purge Intrake Depth Provid - 5 c r < 2 + 0 Sampling Method: 1 / 2 + 0 + 1 (p - 2) Tubing Material & Type: L D P E NEW / DEDCATE Time Volume (liters) Comulative (liters) DTW (liters) Purge Rate (liters) pH Temp (C) Cond (lp/m) DO (mV) ORP (Dairky/C) Clarky/C Other Ren (liters) 29, 555 1 / 6 , 2 + 1 6 , 1 / 5 / 1 / 2 , 6 + 5 / 2 , 1 / 2 , 5 / 2 , 4 , 4 / 1 / 2 , 7 / 2 , 2 / 2 / 2 , 4 / 3 / 2 , 1 / 2 , 7 / 2 , 3 / 4 , 7 / 1 / 2 , 4 / 4 , 1 / 2 , 7 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 , 2 / 2 /						2-inch = 0.16	1	4 - inch = 0.65	3	1 gal = 3 785 li	ters
Purge Method: 12-X, 3 + 2-14 c. Pump Intake Depth: PV/V C - 5C + C + C + N Sampling Method: 12-W +	vater neight mu	icipaters (Ba	<i>q.</i> 1	T-BICH WEI	0.041			4-IIICII - 0.0.		11 Bai - 3.703 II	(ers
Sampling Method: i ω L (ω ··· Tubing Material & Type: LD P E NEW / DEDICATE Time Volume Purged (itters) DTW (btc) Purge Rate (U/min) pH Temp (°C) Cond (µS/cm) DD (ppm) ORP (mv) Clarity/C Other Ren (Inters) DQ : 55 I /6, 2,2 0 · 3 6 · 4/6 1 · 4/05 °C +/3% +/40 spon +/20mV DQ : 55 I /6, 2,2 0 · 3 6 · 4/6 I /2.0 / 4 5 / 2.0 / 3 -/40 97.2 I //6.0 02 : 55 I /6 · 7.4 6 · 7.5 I /2.0 / 4 5 / 2.0 / 7.2 4 / 9.0 97.2 I //6.0 03 : 57 I /6 · 7.4 6 · 5.6 I · 5.7 I · 7.0 5 / 3.2 I · 0.0 7 / 7.0 I/0 · 10 I /6 · 7.4 6 · 5.7 I · 1.7 5 / 3.2 I · 0.0 7 / 7.0 I/0 · 10 I /6 · 7.4 6 · 5.7 I · 1.7 5 / 3.2 I · 0.0 7 / 7.0 I/0 · 10 I /6 · 7.4 6 · 5.7 I · 1.7 5 / 3.2 I · 0.0 I · 0.0 I · 0.0	Purge Method:	1	Derigt	altic.		-		mid	-Serce	2N	
Time Comolative Volume (iters) DTW Volume (btc) DTW (btc) Purge Rate (U/min) pH Temp (°C) Cond (us/cm) DO (ppm) ORP (mV) Clarity/C Other Ren (mV) DQ: 55 I I/6,22 0:3 6.4/6 12.12 5/2 4.4 109.2 Clarative Other Ren (mV) DQ: 55 I/6,22 I/6,22 6.5/4 12.04 5/4 3.1/9 97.1 57:57 I/6,24 6.5/4 11.74 5.32 I.90 97.4 09: 57 I/6,24 6.5/4 11.74 5.32 I.90 97.4 00: 62 I/6,24 6.5/4 11.74 5.32 I.90 97.4 I/0: 62 I/6,24 6.5/4 11.74 5.32 I.90 77.8 I/0: 70 I/6,24 6.57 12.06 5.34 0.190 77.8 I/0: 70 I/6,24 1 5.2 1.2 6.2 1.2 I/0: 70 I/6,24 1 1.2 1.2 1.2 1.2	the second s	1:								I	/ DEDICATED
201 1/0.1 1/0.5°C 1/5% 1/0.5 ppm 1/20 mV 291 1/0,27,0.3 0.1% 1/2.12 5/2 1/4.4 1/2.7 2 2 291 1/0,27,0.3 0.1% 1/2.04 5/1/2 1/4.4 1/2.04 5/1/2 1/4.4 1/2.04 5/1/2 1/4.4 1/2.04 5/1/2 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 7/2.4 1/2.04 <	Time	/olume Purged	Cumulative Volume Purged	DTW			Temp				Clarity/Color Other Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STATES IN	100	(mers)			+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
09:53 16.24 6.51 12.04 516 3.40 97.1 61:57 16.24 6.55 12.19 534 1.94 97.1 61:57 16.24 6.55 11.70 532 1.00 77.0 10:02 16.24 6.54 11.70 532 1.00 77.0 10:02 16.24 6.52 12.06 534 0.90 77.8 10:02 16.24 6.52 12.06 534 0.90 77.8 10:02 16.24 6.52 12.06 534 0.90 77.8 10:10 16.24 6.52 12.06 534 0.90 77.8 10:10 16.24 6.52 12.06 534 0.90 77.8 10:10 16.94 6.52 12.06 534 0.90 77.8 10:10 16.94 10.52 12.06 534 0.90 10.16 10:10 16.94 10.94 10.90 10.90 10.90 10.90 10.90 Sample Fiber Max-190 5 5<	arra			16.22	0.3	T 20 100 - 20					Clear
67:52 16:24 6:55 12,19 534 1.94 94.8 19:59 16:24 6:56 11,70 532 1.00 77.0 10:02 16:24 6:56 11,70 534 0.90 77.8 10:02 16:24 6:56 11,70 534 0.90 77.8 10:02 16:24 6:52 12.06 534 0.90 77.8 10:02 16:24 6:52 12.06 534 0.90 77.8 10:10 16:24 6:52 12.06 534 0.90 77.8 10:10 16:24 1 1 1 1 1 10:10 16:24 1 1 1 1 1 10:10 16:24 1 1 1 1 1 10:10 10:10 10:10 10:10 10:10 1 1 1 1 10:10 10:10 10:10 10:10 10:10 10:10 1 1 1 1 Sample file 10:10 <					0.2			-		1 1	C
1/9:59 1/6.24 6.54 11.70 532 1,00 79.0 10:02 16.29 6.52 12.06 534 0.190 73.8 10:01 1/6.24 6.52 12.06 534 0.190 73.8 10:02 1/6.24 6.52 12.06 534 0.190 73.8 10:10 1/6.24 6.52 12.06 534 0.190 73.8 10:10 1/6.24 6.52 12.06 534 0.190 73.8 10:10 1/6.24 6.52 6.52 6.53 6.53 6.53 6.53 10:10 1.62 1.62 1.62 1.62 1.62 1.62 1.62 10:10 1.62	and the second second			-	-				and the second s		
10:02 16.04 6.52 12.06 534 0.180 73.8 10:0 14.04 1 1 1 1 1 10:0 14.04 1 1 1 1 1 10:0 14.04 1 1 1 1 1 1 10:0 14.04 1		-		-			12.19			1	
10:02 10:02 10:02 10:00	19:59			16.24		6.56	11,70		1.00	49,0	
10・10 1/4, 24 1 <	10:02			11 1		6.52	12,06	534	0,80	77. R	
μ μ			-	16,24	1						1.000
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/m Analytical Laboratory: FES C Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample	10 10	-	-				-		-		
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<	-				-			-	-		
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<						1					
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<											
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<											1
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<	1		-			+				1	
Sample ID: MW-5D Sampling Flow Rate: Or 3 L/mm Analytical Laboratory: FESC Sample Time: 10:10 Final Depth to Water: 1/6.24 Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Size of the size Image: Size of the size Image: Size of the s	-	-	-	-	-	-	-	-		-	
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<	1.2.2.1	-									
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<											
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/mm Analytical Laboratory: FESC Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: NO Image: Sample Time:<		5 3						1		1	
Sample ID: M W - 5D Sampling Flow Rate: O I 3 L/m Analytical Laboratory: FES C Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: / 0 - 2 U Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample Time: Image: Sample Time: Image: Sample Time: NO Image: Sample Time: Image: Sample						PURGIN	IG DATA		1	1	
Sample Time: /0:24 Did Well Dewater: NO No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID Image: Size VDAs Image: Size MS/MSD Duplicate ID Image: Size MS/MSD Image: Size Ima	Sample ID: M	W-5D			Sampling Flo		-	3 L/m	Analytical La	boratory:	ESC
No. of Containers/Type Preservative Analysis/Method Field Filtered Filter Size MS/MSD Duplicate ID							110	24			
\$ VOAs HCL			Prese	rvative		and the second se	Field Filtered	Filter Size	MS/MSD	Duplicate ID	
			-+-	CL							
NOTES/ADDITIONAL COMMENTS	V , 07	-	-		-					-	
NOTES/ADDITIONAL COMMENTS	-	-	-		-			-			
NOTES/ADDITIONAL COMMENTS		-		_			-		-		
NOTES/ADDITIONAL COMMENTS								1			
NOTES/ADDITIONAL COMMENTS	1.1	-						-			-
NOTES/ADDITIONAL COMMENTS							-				
NOTES/ADDITIONAL COMMENTS					-	OTTO		1	1	1	
			-		N	IULES/ADDITIC	INAL COMMEN	15			
			-								

						DATA SHEET	_		43-34	0.001				
M.	1.2			Well ID:	MW			Job Number:	11-30-2017					
234	Cas	cadia		Client:	NUST			Date:	11-30	- 2017				
22	Associa	tes, LLC		Project:	VAN			Sampler:	Spence	v IMattelche				
- Caller				Weather:	WELL			Time In/Out:	10:2:	r				
-		K A	Calul			1	211	Depth to Free	Broduct:					
lonument Typ	pe:	Flush-mount/	элск-ир		Well Diamete		2"		2.0					
		Other:			Well Depth:	(?)	25'	Free Product 1						
lonument Co	ndition:	6-00	d		Depth to Wat		13,14	Water Column	h Length:					
/ell Cap Lock	Present:	Tes No		X 5	Screened Inte	erval:		Purge Volume	1 (L					
omments:									6)					
		ight) X (Multip			-				1					
/ater height r	multipliers (g	al):	1-inch well =	0.041	2-inch = 0.16		4-inch = 0.65	53	1 gal = 3.785 lit	ers				
		T		_	PURGIN			_						
urge Method					Pump Intake Tubing Mater				NEW	/ DEDICATED				
ampling Meth		Cumulative			l ubing iviatei	nal & Type:		1	INCAN	7 DEDICATED				
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks				
				A State of the	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV					
10.27			17114	0.2	9.8	12.40	393	7.3	36,1	Clause				
10:24			1117	0.2	8.8		382		30,4	1 Danmark				
10:30					-	12,39			1 1					
10:35			12-181	1001001	10.7	12.50	384	7.7	Z8.8	2				
10:38		120	A.85		8.7	12,38	395	7.4	24.6					
11:42	184 340		17.91		6.5	12.16	396	7,1	2415					
10:45					10.6	12.10	403	7.1	23.2					
10:47			179B		10.0	12,10	10 -	4.1	aD: C					
			10 - T				8							
		1000		1.1.1										
_		-												
						<u> </u>								
					10									
	-			-				-						
	1 10	1.44		la 14		NG DATA		Analytical La	haratesu	ESC				
ample ID:		MW-	2	Sampling Fl		0.2	0	Did Well Dev		No				
Sample Time:		10:5		Final Depth Analysis/M		Field Filtered	and the second se	MS/MSD	Duplicate ID	100				
No. of Contain			ervative	TAUGIA212/16	Ediod	Triend Fillered	Tince size	UCIAL (CIAL	In the second se					
10	2	H1							-					
0-														
93-	Dup													
									-					
							_							

N.A-				Well ID:	MW-6			Job Number:		01-001
34	Case	cadia tes, LLC		Client:	NUS4			Date:	11/30/	17
TA	Associa	tes, LLC		Project:	VANN	EX		Sampler:	SPERK	ER/MaHele
diamagn - Advanta				Weather:	RAIN			Time In/Out:	11:15	
					WELL		- 4			
Monument Type	2	Flush-mount/S	tick-up		Well Diamete	r:	2	Depth to Free	Product:	1,-
wonument type		Other:	/		Well Depth:		25	Free Product	Thickness:	
Monument Cond	lition:	-6000	p	_ 22	Depth to Wat	er:		Water Colum	n Length:	
Well Cap Lock Pr	esent.	Res No			Screened Inte	erval:	15-25	Purge Volume	:	
Comments:	esene,	<u>e</u>								
Purge Volume =	(Water He	ight) X (Multinli	er) X (# Casin	ø Volumes)	1					
Water height mu			L-inch well = (2-inch = 0.16	2	4-inch = 0.65	53	1 gal = 3.785 li	ters
Hater Height Hit	sitipliers (B	any.				G DATA				
Purge Method:				_	Pump Intake	Depth:				
Sampling Metho	d:				Tubing Mate				NEW	/ DEDICATED
	Volume Purged (liters)	Cumulative Volume Purged	DTW (btc)	Purge Rate (L/min)	Not DHY KIT	Temp (°C)	Cond (µS/cm)	DO (ppm)	ORP (mV)	Clarity/Color Other Remarks
-	turningt	(liters)		Contradictor to conductor			. 1 = 61		1/20-11	COLUMN TRANSFORME
				4 -	+/-0.1	+/-0.5 °C	+/-5%	+/-0.5 ppm	+/-20 mV	
1120			17:70	0.2	Ø	12.38	741	0.98	40.3	Clear
11:23			18.00	0.2	1	12.30	755	0.84	23.0	
11:26			18.40			12.63	755	0.48	20.2	
11:29			18.74			12.74	768	0.44	36.0	
11:33			18.01			12.69	766	0.50	41.2	
	R									
					-		-	-		
1.000							1.16			
			- F - P							
	5		1.1 m T							
					DURCH	NG DATA				
Sample ID: A	NW-6	1		Sampling F		(1 - 2		Analytical La	aboratory:	ESC
Sample Time:	11:45			Final Depth		1-0-2		Did Well De		
No. of Containe		Prese	rvative	Analysis/M		Field Filtered	Filter Size	MS/MSD	Duplicate ID	
			<u>()</u>							
B		1-	h							-
							- se -			
								10		
			_				0			
						-				
					-					
						_				
					NOTES/ADDITI	ONAL COMME	NTS			
	-							23	111	100
	-		19	200 - L						

	Relinquished by (Signature)	Relinquished by : (Signature)	Relinquished by (Signature)	OT - Other	* Matrix: SS-Soil AIR-Air F-Filter GW-Groundwater B-Bioassay WW-WasteWater						MW-5 DUP	MW-50	MW-S	MW-C	Sample ID		Immediately	6	Collected by (signature):	Collected by (print):	Fax:	Phone: 503-906-6577	Project Description: VAMEX GW M	lan Maguire	Report to:	6915 SW Macadam Ave Ste. 250	Cascadia Associates- Portland, OR	
				_ UPS FedEx	email R						Grab	6165	orals	Grab	Comp/Grab	Three Day	Next Day Two Day	Same Day Five Day		Site/Facility ID # VANCOUVER, WA	100-001-	Client Project #	M				ortland,	
	Date:	Date:	Date: 11/30		results					GW	GW	GW	GW	GW	Matrix *	X		Five Day		#, WA	C	-					OR	
			117	Courier	5						1	1	1	1	Depth	Hand	5 Day (Rad Only) 10 Day (Rad Only)	рай рай				-			Email To: i	Ste. 250 Portland	Account 6915 SM	Billing Information:
	Time: P	Time:	1530 P		Ian Mage						11/36/17	11/2/17	11130/17	1(130/17	Date	R	Date Res	-	Diinte #	P.O. #		Lab Project #	Collected:		Email To: imaguire@cascadiaassociates.com	Ste. 250 Portland, OR 97219	Accounts Payable- Chris Breemer 6915 SW Macadam Ave	rmation:
	Received for tab by (Signature)	Received by (Signature	Received by: (Signature)	Tracking #	2						1055	lolo	inter lines	145	Time		Date Results Needed			2		Lab Project #	mit and	L.	aassociates.com		is Breemer 'e	
	(Signat	ture)	ture)					-	1	2	05	10	21	0.	Lutrs	of i	No.	24									Pres Chk	
	ure)					-					K	X	X	X	NŴ	трн	DXL	VI v	1/ 5	SGT	40m	iAm	b-HC	I-8T		1		
	1									0	X	X	K	X	NW	трн	GX 4	40m	IA	mb H	ICI							
			-			á	12	R			X	X	X	X	V82	608;	CEX,	540	m	ia mi	, H C	i P	TE	x (8.	260	B)	Ar
	Date:	Temp:	Trip Bla		pH Flow																							halysis/
		D	Trip Blank Received:																		1		22	19	i.	F.		Contair
		0	ived:		- Temp Other																							her / Pre
	Time:	Bottles Received	Yes / No HCL / MeoH TBR						1							114		-			1	1	n- 1	ing .	5		1	Analysis / Container / Preservative
		ived:	AeoH																									ñ
Ī	Hold:	If pres	Plese	VOA 2	COC S Bottl Bottl				R																	10.10	12	
		If preservation required by Login: Date/Time	LIGRELARTION COTTECT/ CHECKEN	VOA Zero Headspace:	COC Seal Present/Intact:NP COC Signed/Accurate: Bottles arrive intact: Correct bottles used: sufficient volume sent:										Remarks	PB: Shinned Via:	TSR: 110 - Brian Ford	Prelogin: P627256	Template:T130154	Acctnum: CASASCTOR	Table #	F.#	Fair 615-758-5859	Mount Juliet, TN 37122 Phone: 615-758-5858	12065 Lebanon Rd	5.5	AR.	Chain of Custody
		by Login	L) Caeco	icable	ract: ct: d:	tion (a market	2						_	R.	Brian Fo	96272	T1301	CASAS		1	5859	TN 37122 58-5858	5 Pd	6.5.1		
	Condition: NCF / OK	Date/Time							1111			ALC: UNK		いいな数	Sample # (!ab only)		hd	56	54	CTOR		and a second				1.1.2	3	Pageof

ATTACHMENT F MONITORING WELL SURVEY PLAN

127841.73

127120.18

1079237.69

1079179.80

MW 9

MW 10

29.77

29.16

2) FIELD WORK WAS PERFORMED ON NOVEMBER 30 & DECEMBER 1, 2017.

SCALE: 1" = 100'	bluedot group land surveying & mapping 11700 sw 67th ave portland, or 97223 v. 503.624.0108 f. 503.624.9058
	NUSTAR ANNEX MONITORING WELL SURVEY 5420 NW FRUIT VALLEY RD., VANCOUVER, WA, 98660 SURVEYED FOR: 5915 SW MACADAM AVE, STE 250 PORTLAND, OR, 97219
10 N 127383.412 E 1080070.211 ELEV 39.02 SET MAGNETIC SPIKE IN A/C.	REGISTERED PROFESSIONAL LAND SURVEYOR Robot Chemod
Casing Elev.Ground Elev.26.7226.738.2738.439.1739.440.2340.427.0327.026.7127.127.3325.221.6721.927.6828.027.8728.229.3929.628.7129.0	OREGON JULY 14, 1998 ROBERT C. LENNOX 2886 RENEWAL: 12-31-18 DATE DEC. 6, 2017 JOB NO. 2017034