

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

'00 OCT -3 A0 144

SHAN STERDNA: KEFHE

October 2, 2000

Beth Sheldrake
Deputy Project Officer
Environmental Protection Agency
1200 Sixth Avenue, M/S ECL-116
Seattle, WA 98101

Re:

CleanCare Facility, Subsurface Soil Data Contract 68-W6-0008, TDD: 00-01-0008

Dear Ms. Sheldrake:

As requested by On-Scene Coordinator Michael Szerlog, enclosed please find the following documents:

- 1) Three figures showing sample locations;
- 2) Table 1: Analytical Results Summary Table;
- 3) Table 2: Soil Screening Data for Total Petroleum Hydrocarbons (TPH);
- 4) Table 3: Comparison of Laboratory TPH Data and Soil Screening Data for TPH;
- 5) Memo describing correlation between field screening and laboratory confirmation for TPH data; and
- 6) Data Validation Memoranda.

If you have any questions or comments, please contact me at (206) 624-9537.

Sincerely,

Jeff Fowlow

START Project Leader

Enclosure

cc: Michael Szerlog, EPA, On-Scene Coordinator, Seattle, WA
Charlie Gregory, E&E, START, Seattle, WA
Kerry Graber, Washington State Department of Ecology
Kia Peterson, Washington State Department of Ecology
Bradley Martin, Martin & Brown, Seattle, WA

Note: This page is intentionally left blank.

TABLE 1

ANALYTICAL RESULTS SUMMARY SOIL SAMPLES CLEANCARE SITE TACOMA WASHINGTON

<u> </u>							
EPA Sample Number	0020223	0020224	0020225	0020226	0020227	MTCA	PRG
Sample Location Number	SC0117 2'-4'	SC0111 2'-4'	SC0126 2'-4'	SC0310 3'-5'	SC0205 2'-4'		
Metals (mg/kg)		74					* * * * * * * * * * * * * * * * * * *
Aluminum	9,400	5,300	5,900	11,000	13,000		100,000
Antimony	23	14	46	10 U	14 U	`-	820
Arsenic	69 J	75 J	160 J	10 UJ	19 UJ	200	440, 2.7 (1)
Barium	270 J	150 J	210 J	500 J	370 J		100,000
Beryllium	0.18 J	0.4 U	0.39 U	0.41 U	0.56 U	-	2,200
Cadmium	<u>16 J</u>	7.9 J	<u>32 J</u>	<u>16 J</u>	5.4 J	10	810
Calcium	26,000	13,000	43,000	27,000	57,000		-
Chromium	92	43	140	53	62	500	450
Cobalt	12	8.2	12	22	12	1	100,000
Copper	200 J	190 Ј	780 J	150 J	99 J	-	76,000
Iron	74,000	42,000	140,000	26,000	22,000	-	100,000
Lead	500 J	300 J	720 J	860 J	760 J	1,000	1,000
Magnesium	12,000 J	5,200 J	6,100 J	15,000 J	9,400 J	-	_
Manganese	590 J	270 J	890 J	360 J	360 J		32,000
Mercury	<u>1.4</u>	0.37	<u>12</u>	0.35	<u>1.5</u>	1	610
Nickel	67	50	110	57	60	1	41,000
Potassium	1,100 J	570 J	640 J	930 J	820 J	-	-
Selenium	11 J	13 J	9 J	10 UJ	14 UJ		10,000
Sodium	820	790	1,500	1,200	300 J	-	-
Vanadium	250	140	680	39	71	4	14,000
Zinc	1,500 J	860 J	1,700 J	1,100 J	1,500 J	-	100,000
Pest/ PCBs (mg/kg)							100
4,4'-DDD	0.11	0.093	0.048 J	0.0023 ป	0.15 U		17
4,4'-DDE	0.0023 U	0.042	0.019 J	0.11	0.05 U		12
4,4'-DDT	0.032 J	0.031	0.0023 U	0.086 J	0.6 U	5	12
Aroclor 1254	0.43	0.3	0.42 J	<u>5.8</u>	0.015 U		1
Aroclor 1260	0.19	0.14	0.21 J	<u>1.5</u>	0.015 U		1
SVOCs (mg/kg)		. (saas ee	100				
1,2,4-Trichlorobenzene	R	R	0.098 U	0.047 J	0.5		3,000
1,2-Dichlorobenzene	R	R	0.098 U	0.15	0.13 U		370
1,4-Dichlorobenzene	R	R	0.098 U	0.12	0.13 U		8.1
2,4-Dimethylphenol	1	R	0.098 U	0.094 U	0.13 UJ		18,000
2-Methylnaphthalene	29	58	4.2	0.29	0.61		-
2-Nitrophenol	0.096 U	R	0.098 U	0.094 U	1 J		
3- & 4-Methylphenol	0.096 U	R	0.11	0.094 U	48		4,400 (2)
Acenaphthene	1.5 J	1.7	4.9	0.051	0.41		38,000
Acenaphthylene	R	R	0.28	0.019 U	0.069		-
Anthracene	0.83 J	0.72 J	4.5	0.066	0.56 J		390,000
Benzo(a)anthracene	0.7 J	0.75 J	3.5	0.11 J	0.38 J	20	2.9
Benzo(a)pyrene	0.43 J	0.58 J	1.8 J	0.21 J	0.26 J	20	0.29
Benzo(b)fluoranthene	0.38 J	0.63 J	1.2 J	0.019 U	0.21 J	20	2.9
Benzo(g,h,i)perylene	0.24 J	0.27 J	0.94 J	0.019 U	0.026 U		
Benzo(k)fluoranthene	R	0.19 J	0.78 J	0.019 U	0.069 J	20	29

TABLE 1 (CONTINUED)

ANALYTICAL RESULTS SUMMARY SOIL SAMPLES CLEANCARE SITE TACOMA WASHINGTON

							
EPA Sample Number	0020223	0020224	0020225	0020226	0020227	MTCA	PRG
Sample Location Number	SC0117 2'-4'	SC0111 2'-4'	SC0126 2'-4'	SC0310 3'-5'	SC0205 2'-4'	<u> </u>	
SVOCs continued (mg/kg)					3.00	3 (5.9)	100000000000000000000000000000000000000
bis(2-Ethylhexyl)phthalate	3.2 J	0.97 J	0.28 U	7.5 J	0.15 U	44	180
Butylbenzylphthalate	R	R	0.098 U	8.3 J	0.13 U	 	100,000
Chrysene	0.86 J	1.1 J	3	0.21 J	0.36 J	20	290
Di-n-butylphthalate	R	R	0.2 U	0.58	0.26 U		
Di-n-octylphthalate	R	R	0.098 U	1.1 J	0.13 U		10,000
Dibenzofuran	0.68 J	0.63	3.7	0.094 U	0.23		5,100
Fluoranthene	3.6 J	3.1 J	13	0.2	1.6 J		30,000
Fluorene	1.7 J	1.6	4.8	0.071	0.51		33,000
Hexachlorobenzene	. R	R	0.098 U	0.094 U	1.1 J		1.5
Hexachlorobutadiene	R	R	0.098 U	0.13	250		32
Hexachloroethane	R	R	0.098 U	0.094 U	450		180
Indeno(1,2,3-cd)pyrene	0.18 J	0.27 J	0.71 J	0.019 U	0.026 U	20	2.9
Naphthalene	15	33	11	0.09	0.47		190
Phenanthrene	4.7 J	2.6 J	17 J	0.28 J	2.3 J		-
Pyrene	2.6 J	2 Ј	8.8	0.51	1.3 J		54,000
VOCs (mg/kg)		1					
1,2,4-Trichlorobenzene	0.44 U	0.41 U	0.47 U	0.45 U	12		3,000
1,2,4-Trimethylbenzene	44	43	0.35 J	1.2	3		5.7
1,2-Dichlorobenzene	0.44 U	0.41 U	0.47 U	0.39 Ј	0.6 U		370
1,3,5-Trimethylbenzene	16	15	0.47 U	0.46	0.9		70
1,4-Dichlorobenzene	0.44 U	0.41 U	0.47 U	0.24 J	0.6 U		8.1
4-Isopropyltoluene	3	3.1	0.44 J	0.45 U	0.6 U	_	-
Benzene	0.53	0.41 U	0.47 U	0.45 U	0.6 U	0.5	1.5
cis-1,2-Dichloroethene	0.44 U	0.41 U	0.47 U	0.45 U	15		150
Ethylbenzene	3.5	0.7	0.47 U	0.45 U	0.5 J	20	230
Hexachlorobutadiene	0.44 U	0.41 U	0.47 U	0.75	580		32
Isopropylbenzene	1.2	0.61	0.47 U	0.45 U	0.6 U		520
m,p-Xylene	18	2.6	0.95 U	0.89 U	2.1	20 (3)	210 (3)
Methylene chloride	0.44 U	0.41 U	0.47 U	0.45 U	0.6 U	0.5	21
n-Propylbenzene	2.9	1.2	0.47 U	0.45 U	0,3 J		240
Naphthalene	26	29	26	0.45 U	15		190
o-Xylene	7.9	1.9	0.47 U	0.45 U	0.93	20 (3)	210 (3)
sec-Butylbenzene	4.8	4.3	0.47 U	0.45 U	0.6 U		220
Tetrachloroethene	0.44 U	0.41 U	0.47 U	0.45 U	4,900	0.5	19
Toluene	5.7	0.36 J	0.47 U	0.45 U	5.9	40	520
trans-1,2-Dichloroethene	0.44 U	0.41 U	0.47 U	0.45 U	0.320 J		210
Trichloroethene	0.44 U	0.41 U	0.47 U	0.45 U	370	0.5	6.1
Diesel Range (mg/kg)							
#2 Diesel	4,000	7,700	2,000	2,100	11,000	200	
Motor Oil	2,600	1,900	3,200	7,200	2,600		-

Note: Bold type indicates concentrations above sample quantitation limits or detection limits Underlined type indicates result is elevated above Region 9 PRGs and/or MTCA Method A Cleanup Levels for Industrial Soil. Key: = Detected below the Contract Required Detection limit but equal to or greater than the instrument detection limit. В DRO = Diesel Range Organics. = Environmental Protection Agency. **EPA** GRO = Gasoline Range Organics. Н = High bias. J = Estimated concentration. K = Unknown bias. = Low bias. L = Milligrams per kilogram. mg/kg MTCA = Washington State Model Toxics Control Act. PRG = EPA Region 9 Preliminary Remedial Goals for idustrial soil, as updated November 9, 1999. R = The sample results are rejected (analyte may or may not be present) due to gross deficiencies in quality control criteria. Any reported value is unusable. Resampling and/or reanalysis is necessary for verification. RRO = Residual Range Organics. = Semi Volatile Organic Compounds. SVOC U = The analyte was analyzed for, but was not detected at the reported sample quantitation limit.

VOC = Volatile Organic Compounds.

(1) (2) = PRG values for arsenic as non-cancer end point (440 mg/kg) and cancer end point (2.7 mg/kg).

= PRG reported is for 4-methylphenol. The PRG for 3-methylphenol is 44,000 mg/kg. The more conservative PRG has been used.

(3) = The MTCA and PRG values for xylene are for total xylene. The data is reported as m, p-xylene and o-xylene. Note: This page is intentionally left blank.

TABLE 2

SOIL SCREENING DATA FOR TOTAL PETROLEUM HYDROCARBON (TPH) CLEANCARE REMOVAL SITE

JULY, 2000

TACOMA WASHINGTON

<u></u>	,			170	JUIN IV	OTHITATOR	,			
Sample	Depth	TPH Screening		Sample	Depth	TPH Screening		Sample	Depth	TPH Screening
Location	Range	Concentration		Location	Range	Concentration		Location	Range	Concentration
							1			
SC0101	0' to 2'	300 J		SC0117	2' to 4'	over range	1	SC0206	0' to 2'	1,420
SC0101	2' to 4'	7,700	1	SC0118	0' to 2'	6,500]	SC0206	2' to 4'	11,140
SC0102	0' to 2'	1,150		SC0118	2' to 4'	16,990]	SC0301	1' to 3'	2,610
SC0102	2' to 4'	2,710		SC0119	0' to 2'	2,650	1	SC0301	3' to 5'	2,780
SC0103	0' to 2'	500 J		SC0119	2' to 4'	3,480]	SC0302	0' to 2'	5,350
SC0103	2' to 4'	6,530		SC0120	0' to 2'	400 J	1	SC0302	2' to 4'	380 J
SC0104	0' to 2'	3,020		SC0120	2' to 4'	1,690		SC0303	1' to 3'	700 J
SC0104	2' to 4'	2,490		SC0121	0' to 2'	7,210		SC0303	3' to 5'	1,970
SC0105	0' to 2'	3,320		SC0121	2' to 4'	13,590		SC0304	0' to 2'	600 J
SC0105	2' to 4'	10,190		SC0122	0' to 2'	600 J		SC0304	2' to 4'	14,200
SC0106	0' to 2'	3,440		SC0122	2' to 4'	1,303		SC0305	1' to 3'	750 J
SC0106	2' to 4'	21,040 J		SC0123	0' to 2'	5,080	1	SC0305	3' to 5'	17,830
SC0107	0' to 2'	10,580		SC0123	2' to 4'	690 J	1	SC0306	0' to 2'	5,960
SC0107	2' to 4'	14,180		SC0124	0' to 2'	2,420	1	SC0306	2' to 4'	12,000
SC0108	0' to 2'	14,730		SC0124	2' to 4'	1,910	1	SC0307	0' to 2'	2,370
SC0108	2' to 4'	15,980		SC0125	0' to 2'	2,170	1	SC0307	2' to 4'	3,920
SC0109	0' to 2'	2,800		SC0125	2' to 4'	23,880 J		SC0308	1' to 3'	250 J
SC0109	2' to 4'	3,800		SC0126	0' to 2'	over range	1	SC0308	3' to 5'	3,840
SC0110	0' to 2'	1,820	-	SC0126	2' to 4'	over range	1	SC0309	1' to 3'	2,150
SC0110	2' to 4'	12,310		SC0127	0' to 2'	13,990	1	SC0309	3' to 5'	no result
SC0111	0' to 2'	>14,000		SC0127	2' to 4'	16,590		SC0310	1' to 3'	zero J
SC0111	2' to 4'	>14,000		SC0128	0' to 2'	1,850		SC0310	3' to 5'	20,100 J
SC0112	0' to 2'	17,090		SC0128	2' to 4'	over range		SC0311	1' to 3'	2,960
SC0112	2' to 4'	10,640		SC0201	0' to 2'	2,840		SC0311	3' to 5'	2,830
SC0113	0' to 2'	16,720		SC0201	2' to 4'	6,250		SC0312	1' to 3'	3,650
SC0113	2' to 4'	4,810		SC0202	0' to 2'	290 J		SC0312	3' to 5'	6,000
SC0114	0' to 2'	over range		SC0202	2' to 4'	160 J		SC0313	1' to 3'	21,240 J
SC0114	2' to 4'	5,600		SC0203	0' to 2'	under range]	SC0313	3' to 5'	no result
SC0115	0' to 2'	2,660		SC0203	2' to 4'	under range		SC0314	1' to 3'	2,390
SC0115	2' to 4'	2,580		SC0204	0' to 2'	460 J		SC0314	3' to 5'	15,690
SC0116	0' to 2'	20,640 J		SC0204	2' to 4'	1,000 J		SC0315	1' to 3'	210 J
SC0116	2' to 4'	not collected		SC0205	0' to 2'	4,290]	SC0315	3' to 5'	13,230
SC0117	0' to 2'	5,970		SC0205	2' to 4'	over range]	SC0316	1' to 3'	1,760
							-	SC0316	3' to 5'	2,760

All samples were screened for TPH using the PetroFLAG Hydrocarbon Analyzer manufactured by Drexil Corporation

TPH

= Total Petroleum Hydrocarbons

J

= Sample data less than 1,000 ppm or greater than 20,000 is considered unreliable by the manufacturer

over range

= field screening method did not provide a numerical value but did indicate that the concentration was higher than 20,000 mg/kg

under range

= the data was below the reliable concentration range for the instrument

Note: This page is intentionally left blank.

TABLE 3 COMPARISON OF LABORATORY TPH DATA AND SOIL SECREENING DATA FOR TPH CLEANCARE REMOVAL SITE TACOMA, WASHINGTON

	Colle	ection	Sample Location	Labor	ng/kg)	Screening	
Sample #	Date	[.] Time	Number And Depth	#2 Diesel	Motor Oil	Total	data (mg/kg)
00000010	00/07/40	4445	000440.0.0	7.10	000	070	0.050
00020213	00/07/19	1115	SC0119 0-2	740	230	970	2,650
00020214	00/07/18	1227	SC0104 2-4	2,300	5,000	7,300	2,490
00020215	00/07/18	1210	SC0105 2-4	45,000	6,300	51,300	10,190
00020216	00/07/20	1302	SC0205 2-4	310	880	1,190	over range
00020217	00/07/19	800	SC0123 2-4	1,300	750	2,050	690 J
00020218	00/07/19	1430	SC0303 3-5	310	610	920	1,970
00020219	00/07/18	1040	SC0108 0-2	8,400	1,900	10,300	14,730
00020220	00/07/19	1527	SC0313 1-3	4,300	10,000	14,300	21,240 J
00020221	00/07/19	1449	SC0305 3-5	2,400	7,800	10,200	17,830
00020222	00/07/18	1005	SC0102 0-2	120	110	230	1,150

J = Sample data less than 1,000 ppm or greater than 20,000 is considered unreliable by the manufacturer

Note: This page is intentionally left blank.

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

MEMORANDUM

DATE:

September 29, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START Chemist, E & E, Seattle, WA

SUBJ:

TDD: 00-01-0008

Attached is a correlation between commercial laboratory and field screening data (listed below) for Total petroleum Hydrocarbons for the Clean Care Removal site located in Tacoma, Washington. The commercial laboratory data diesel and motor oil ranges were summed to allow comparison to the field screening method. The samples included in this correlation were those that were typically within the calibration ranges for both methods.

Sample #	Labora	Screening data (mg/kg)		
	#2 Diesel	Motor Oil	Total	
00020213	740	230	970	2,650
00020214	2,300	5,000	7,300	2,490
00020217	1,300	750	2,050	690
00020219	8,400	1,900	10,300	14,730
00020220	4,300	10,000	14,300	21,240
00020221	2,400	7,800	10,200	17,830
00020222	120	110	230	1,150

The correlation coefficient (r²) for the seven pairs of results is 0.834. A correlation of 0.700 or greater is required for field screening results when compared to commercial laboratory confirmation. The results for the Clean Care site listed above exceed the 0.700 limit.

Note: This page is intentionally left blank.

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832 **MEMORANDUM**

100 OCT -3

("," *(" =)

DATE:

August 28, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-Chemist, E & E, Seattle, WA

THRU:

Leatta Dahlhoff, START-Chemist, E & E, Seattle, WA

SUBJ:

Data Quality Assurance Review, Cleancare Corporation Site, Tacoma, Washington

REF:

TDD: 00-08-0001

PAN: EA-08-01-RA-DM

The data quality assurance review of 15 solid samples collected from the Cleancare Corporation site located in Tacoma, Washington, has been completed. Diesel range total petroleum hydrocarbon analysis (WDOE Method NWTPH-Dx) was performed by Sound Analytical Services, Inc., Tacoma, Washington.

The samples were numbered:

00020213	00020214	00020215	00020216	00020217
00020218	00020219	00020220	00020221	00020222
00020223	00020224	00020225	00020226	00020227

Data Qualifications:

The samples were maintained at 4°C (± 2°C). The samples were collected between July 18 and 25, 2000, were extracted on July 26, 2000, and were analyzed by July 30, 2000. All extractions and analyses were performed within QC holding time limits.

The initial and continuing calibration results were within QC limits. All surrogate recoveries were within QC limits except when diluted out due to high sample results. There were no detections in the method blank. The matrix spike, blank spike, and duplicate sample results were within QC limits.

In the reviewers' professional judgment, all sample results were acceptable except as noted.

The overall usefulness of the data is based on the criteria outlined in the OSWER Directive "Quality Assurance/Quality Control Guidance for Removal Activities, Data Validation Procedures" (EPA/540/G-90/004) and the analytical method. Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

J - The associated numerical value is an estimated quantity because the reported concentrations were less than the contract required detection limits/sample quantitation limits or because quality control criteria limits were not met.

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:

Client Name
Environmental Quality Management, Inc.
00020213
91315-01
7/25/00
7/25/00
7/26/00
7/29/00
92.23

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits
Surrogate 42 Supplies of Supplies of Surrogate 142 Supplies of Sup	% Recovery 82.6	Flags	Low High

Sample results are on a dry weight basis.

% Solids
Dilution Factor

A 1 i 1	Result (mg/kg)		PQL	MDL	Flags
Analyte #2 Diesel	(g g,	740	21	10	XTph
Motor Oil		230	42	21	

Client Name		Environmental Quality Managemen	t, Inc.
Client ID:		00020214	
Lab ID:	o Silvania Silvania	91315-02	
Date Received:		7/25/00	
Date Prepared:	* * * * * * * * * * * * * * * * * * *	7/26/00	
Date Analyzed:	The second secon	7/29/00	
% Solids		29.67	37.46
Dilution Factor		4	
Dilution i dotor	÷.		

Diesel and Motor Oil by NWTPH-Dx Modified

ar e nad yne enna	1			Recov	ery Limits	
Surrogate o-terphenyl). j	% Recovery 75.9	Flags	Low 50	High 150 Geogra	
•						

Sample results are on a dry weight basis.

Amalida	(P)		Result (mg/kg)	PQL	MDL	Flags
Analyte #2 Diesel	5	(A)	2300	67 ⁻	33 67	Virginia A
Motor Oil			5000	130	07	

MN 82800

Client Name		Environmental Quality Manag	ement, Inc. : 🔻 🚉 🐩
Client ID:		00020215	1)
Lab ID:		91315-03	\$ 1
Date Received:		7/25/00	of the state of
Date Prepared:	2 1 35 T	7/26/00	9 14 + 417 - 1
Date Analyzed:	neter and the second	7/29/00	100 1000 500
% Solids		56.28	The second secon
Dilution Factor		400	official control

Diesel and Motor Oil by NWTPH-Dx Modified

				Recov	ery Limits
Surrogate o-terphenyl	A.	**************************************	% Recovery Flags - X8	Low 50	High 150 300

Sample results are on a dry weight basis.

845 3 300		Result		
Analyte	*	(mg/kg)	PQL	MDL Flags
#2 Diesel		45000	3400	1700 X1 W
Motor Oil	•	6300	6700	3400 Jan~

MW

Client Name		Environmental Quality Management, Inc.		
Client ID:		00020216		
Lab ID:		91315-04		
Date Received:	•,	7/25/00		
Date Prepared:		7/26/00	1 14	
Date Analyzed:	2.	7/29/00	17	
% Solids		88.63	5-10-10	
Dilution Factor		4		

Diesel and Motor Oil by NWTPH-Dx Modified

		•	Recov	ery Limits
Surrogate o-terphenyl	% Recovery 84.8	Flags	Low 50	High 150 Septembrit
	-			स्थितकः ्रा स्ट

Sample results are on a dry weight basis.

Analyte	,	(mg/kg)	PQL	MDL Flags
#2 Diesel	in the second	310	21	10 Xtján
Motor Oil	· 44	880	41	21

Client Name		Environmental Quality Manag	ement, inc.
Client ID:		00020217	
Lab ID:		91315-05	
Date Received:		7/25/00	en e
Date Prepared:		7/26/00	
Date Analyzed:		7/29/00	
% Solids	•	90.75	
Dilution Factor	•	. 4	Tr. Company

Diesel and Motor Oil by NWTPH-Dx Modified

1.0	\$ 161 No. 166 (K)	Recovery Limits
Surrogate	% Recovery Flags	Low High
o-terphenyl	119	50 150

Sample results are on a dry weight basis.

(\$84.5) (#) (#)		Result			
Analyte	2 .	(mg/kg)	PQL	MDL	Flags
#2 Diesel	1 %	1300	21	10	
Motor Oil		750	41	21	· ·

MW J2600

Client Name **Environmental Quality Management, Inc.** Client ID: 00020218 Lab ID: 91315-06 7/25/00 Date Received: 7/26/00 Date Prepared: 7/29/00 Date Analyzed: 92.12 % Solids **Dilution Factor**

Diesel and Motor Oil by NWTPH-Dx Modified

The state of the s			Recov	ery Limits
Surrogate	ペート Recovery 78.1	Flags	Low 50	High 150 St Venters
o-terphenyl	70.1	•	30	ेश स्वाहरू विकास

Sample results are on a dry weight basis.

Analyte				(mg/kg)	A PALLY	PQL		MDL	Flags
#2 Diesel	\$ F		in the second		310	:	20	 9.9	Xtjer
Motor Oil	٠,	•	e Carlo		610	•	40	20	an a sh

13.

Client Name		Environmental Quality Manage	ement, Inc.
Client ID: Lab ID:		00020219 91315-07	
Date Received:	Maritana Anglanda	7/25/00 .	* **
Date Prepared:		7/26/00	
Date Analyzed:		7/26/00	And the state of
% Solids		92.75	- 1
Dilution Factor		20	Šie:

Diesel and Motor Oil by NWTPH-Dx Modified

	460.074			. 6	Recov	ery Limits
Surrogate	1901 1901	 •	% Recovery	Flags	Low	High
o-terphenyl	•		128		50	150

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	· PQL	MDL Flags
#2 Diesel	8400	100	52 XIm
Motor Oil	1900	. 210	100

Client Name	3	Environmental Quality Manag	ement, Inc.
Client ID:		00020220	
Lab ID:	f v	91315-08	
Date Received:	*	7/25/00	
Date Prepared:		7/26/00	
Date Analyzed:		7/30/00	ាំ សាច្រុះជ
% Solids	10 x \$4 + 2 x - 2	92.55	11 BA 15
Dilution Factor		100	10 miles

Diesel and Motor Oil by NWTPH-Dx Modified

en e				Recov	ery Limits	
Surrogate		% Recovery	Flags	Low	High	
o-terphenyl	•		X8	50	150	Projektorija. Projektorija

Sample results are on a dry weight basis.

		Result			<u> </u>
Analyte	Ž	(mg/kg)	PQL	MDL	Flags
#2 Diesel		4300	540	270	STEL
Motor Oil		10000	1100	540	XIA

MN (2500

Client Name	erenta e en Transport († 1865). Deservation	Environmental Quality Management,	Inc.
Client ID:	4	00020221	
Lab ID:	en e	91315-09	
Date Received:		7/25/00	÷ .
Date Prepared:	** **	7/26/00	í
Date Analyzed:	~ / ·	7/27/00	1.0
% Solids	s#ka. j ye	85.13	
Dilution Factor		20	

Diesel and Motor Oil by NWTPH-Dx Modified

	gen.			Recov	ery Limits
Surrogate	V ≥	% Recovery	Flags	Low	High
o-terphenyl	•	112		50	150

Sample results are on a dry weight basis.

and with the second		Result			
Analyte	5AC	(mg/kg)	PQL	MDL	Flags
#2 Diesel	27.38%± 2.13%±	2400	110	54	XIML
Motor Oil	•	7800	210	110	

Client Name		Environmental Quality Manage	ement, Inc.
Client ID:		00020222	* .
Lab ID:	F .	91315-10	
Date Received:	the state of the s	7/25/00	
Date Prepared:	ONE.	7/26/00	10.25160
Date Analyzed:		7/27/00	- 1.03€
% Solids	45	91.76	.3% (1)
Dilution Factor		4	ខភិ 👑

Diesel and Motor Oil by NWTPH-Dx Modified

	P 54 1 2 2 1		Recov	ery Limits
Surrogate 💛 🗎	Server,	Recovery Flags	Low	High
o-terphenyl	<u> </u>	100	50	150
				extension (Fig. 2)

Sample results are on a dry weight basis.

Analyte	1, 1, 1, 2, 4, 4		(mg/kg)	en e	PQL	MDL	Flags
#2 Diesel				120	20	· 1	0 Atm
Motor Oil				110	41	. 2	0

Client Name		nvironmental Quality Managem	ent, Inc.
Client ID:	i naw.	00020223	•
Lab ID:	\$ \$₹₩	91315-11	•
Date Received:		7/25/00	7.73
Date Prepared:		7/26/00	
Date Analyzed:	· All Marine	7/27/00	55 F
% Solids	₩ \$ 1, \$ 1,	84.54	
Dilution Factor	î.	20	- Table

Diesel and Motor Oil by NWTPH-Dx Modified

	9.8	왕 (1) (1 · 왕)		Recov	ery Limits
Surrogate o-terphenyl	ig.a .3s	: ' YO .'	% Recovery Flags	Low 50	High 150

Sample results are on a dry weight basis.

。 Analyte		Result (mg/kg)	PQL	MDL Flags
#2 Diesel		4000	110	55 -X7gic
Motor Oil	•	2600	220	110

MW9,2800

Client Name		Environmental Quality Management, Inc.		
Client ID:		00020224		
Lab ID:	*)	91315-12		
Date Received:		7/25/00		
Date Prepared:	#1	7/26/00		
Date Analyzed:		7/27/00	, , ,	
% Solids	e projection of the contraction	* 85.93	,	
Dilution Factor	1.15 2.16	20		

Diesel and Motor Oil by NWTPH-Dx Modified

Texture in the state of the sta			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	103	₩Ġ	50	150

Sample results are on a dry weight basis.

. •		Result கூரி		`.
Analyte	San Comment	(mg/kg)	PQL	MDL Flags
#2 Diesel		7700	110	56 Xthu
Motor Oil	v	1900	220	110

MW HHOO

Client Name		Environmental Quality Management, Inc.		
Client ID: Lab ID:	2 00 000 15000 - 15000	00020225 91315-13		
Date Received:	1000	7/25/00	they and of	
Date Prepared:		7/26/00	.homecarity	
Date Analyzed:		7/27/00	derivate services	
% Solids		81.45	20 W 1 3	
Dilution Factor)))) 	20	Mark Agily M	

Diesel and Motor Oil by NWTPH-Dx Modified

1	# # # # # # # # # # # # # # # # # # #			Reco	overy Limits
Surrogate		% Recovery	Flags -	Low	High parties from
o-terphenyl		84	\$ 10	50	150 ivn

Sample results are on a dry weight basis.

-5. T. T.	- S. 114	Veznir		
Analyte		(mg/kg)	PQL	MDL Flags:
#2 Diesel	\$.	2000	110	57 XTUY
Motor Oil	#ħ	3200	230	110

MW J-25-00

Client Name	and the second second	Environmental Quality Management,
Client ID:	\$ 1 × 9 ×	00020226
Lab ID:	r	91315-14
Date Received:		7/25/00
Date Prepared:		7/26/00
Date Analyzed:		7/30/00
% Solids		85.66
Dilution Factor		20

Diesel and Motor Oil by NWTPH-Dx Modified

5 To all Years (5.5)		Recov	ery Limits
Surrogate http://www.sep.j	% Recovery	Low	High
o-terphenyl (%)	67.1	50	150

Sample results are on a dry weight basis.

			Kesuit		
Analyte	7.5		(mg/kg)	PQL	MDL Flags
#2 Diesel			2100	120	58 X14~
Motor Oil		1 St.	7200	230	120

MW 20260

Client Name		gement, Inc. 😘 🧎	
Client ID: Lab ID:		00020227 91315-15	2.0
Date Received:		7/25/00	y and the Mari
Date Prepared:	A Sys	7/26/00	og åckgar stol
Date Analyzed:	e free distriction	7/30/00	dony was
% Solids		63.01	. 2047. K
Dilution Factor		20	10 /05.

Diesel and Motor Oil by NWTPH-Dx Modified

	•		Kecov	ery Limits
Surrogate		% Recovery Flags	Low	High 🤧 🕏 🖰
o-terphenyl		95	50	150

Sample results are on a dry weight basis.

Analyte	(mg/kg)	PQL	MDL Flags	
#2 Diesel	11000	150	75 XIV	
Motor Oil	2600	300	150	

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

on NCT -3

MEMORANDUM

DATE:

August 28, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-Chemist, E & E, Seattle, WA

THRU:

Leatta Dahlhoff, START-Chemist, E & E, Seattle, WA

SUBJ:

Organic Data Quality Assurance Review, Cleancare Corporation Site,

Tacoma, Washington

REF:

TDD: 00-01-0008

PAN: EA-08-01-RA-DM

The data quality assurance review of five solid samples collected from the Cleancare Corporation site located in Tacoma, Washington, has been completed. Analysis for Volatile Organic Compounds (VOCs - EPA Method 8260) was performed by Sound Analytical Services, Inc., Tacoma, WA.

The samples were numbered:

00020223

00020224

00020225

00020226

00020227

Data Qualifications:

1. Sample Holding Times: Acceptable.

The samples were collected on July 25, 2000, and were analyzed by July 31, 2000, therefore meeting QC holding time criteria of less than 14 days between collection and analysis.

2. GC/MS Tuning Criteria: Acceptable.

Bromofluorobenzene (BFB) tuning of the mass spectrometer was conducted at the beginning of the 12-hour analytical sequence. All calculations were verified as correct, all results were normalized to m/z 95 and were within the required criteria.

3. Initial Calibration: Satisfactory.

Calculations were verified as correct for at least one analyte per internal standard. All applicable individual relative response factors (RRFs) and average RRFs for the initial calibration were greater than the 0.050 control limit. All applicable relative percent differences (RPDs) were \leq the control limit of 30.0% except bromomethane; no action was taken as this analyte was not detected.

4. Continuing Calibration: Satisfactory.

Calculations were verified as correct for at least one analyte per internal standard. All individual RRFs for the continuing calibrations were greater than the 0.050 control limit. All applicable percent differences (% Ds) were \leq the control limits of 25.0% except bromomethane (increasing response factor) in both calibrations; no action was taken as this analyte was not detected.

5. Internal Standards: Acceptable.

Areas of the internal standards were within the control limits of 50 % to 200 % of the associated 12-hour calibration standard. Retention times were within 30 seconds of the 12-hour standard retention times.

6. Error Determination: Not Performed.

Samples necessary for bias and precision determination were not provided to the laboratory. All samples were flagged RND (Recovery Not Determined) and PND (Precision Not Determined), although the flags are not found on the Form I's.

7. Blanks: Acceptable.

A method blank was analyzed at the required frequency of every 12 hours beginning with the BFB injection for each matrix, preparation technique, and analysis system. No target analytes were detected in the associated blank.

8. System Monitoring Compounds (SMC): Acceptable.

Recoveries of the system monitoring compounds (surrogates) were greater than 10% and all recoveries were within QC limits.

9. Performance Evaluation Samples: Not Provided.

Performance evaluation samples were not provided to the laboratory.

10. Matrix and Blank Spikes: Acceptable.

All matrix and blank spike results were within laboratory QC limits.

11. Target Compound Identification: Acceptable.

All spiked target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard. All ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within \pm 20 % between the standard and sample spectrum. All ions present at greater than 10 % in the sample mass spectrum but not in the standard mass spectrum were accounted for.

12. Tentatively Identified Compounds: Not Requested.

Tentatively Identified Compounds were not requested.

13. Target Compound Quantitation and Quantitation Limits: Acceptable.

Concentrations of all reported analytes and quantitation limits were correctly calculated.

14. Laboratory Contact: Not Required.

No laboratory contact was required.

15. Overall Assessment of Data for Use

The overall usefulness of the data is based on the criteria outlined in the OSWER Directive "Quality Assurance/Quality Control Guidance for Removal Activities, Data Validation Procedures" (EPA/540/G-90/004), the analytical method, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (EPA 540/R-94/012). Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- J The associated numerical value is an estimated quantity because the reported concentrations were less than the practical quantitation limits or because quality control criteria limits were not met.
- U The material was analyzed for but was not detected. The associated numerical value is the estimated sample quantitation limit.

Client Name		Environi	mental	Quality Mar	agemen	it, Inc.
Client ID:				00020223		
Lab ID:	•			91315-11		
Date Received:			2.	7/25/00		
Date Prepared:			,	7/28/00		$\gamma_1 \in \lambda_1$
Date Analyzed:				7/28/00	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
% Solids				84.54		
Dilution Factor		•		25		3 T

Volatile Organics by USEPA Method 5030/8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	102 - 11 day	100 100 100	82	113
Fluorobenzene	98.5_	See fee	75	112
Toluene-D8	111	•	81	125
Ethylbenzene-d10	100	•	86	121
Bromofluorobenzene	95.6		80	113

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	PQL ()	MDL Flags
Dichlorodifluoromethane	ND	440 🕖 ~	220
Chloromethane	ND	440	220
Vinyl chloride	ND	440	220
Bromomethane	ND	440	220
Chloroethane	ND	440	220
Trichlorofluoromethane	ND	440	220
1,1-Dichloroethene	ND	440	220
Methylene chloride	ND	440	220
trans-1,2-Dichloroethene	ND	440	220
1,1-Dichloroethane	ND	440	220
2,2-Dichloropropane	ND.	440	220
cis-1,2-Dichloroethene	ND	440	220
Bromochloromethane	ND	440	220
Chloroform	ND	440	220
1,1,1-Trichloroethane	ND .	440	220
Carbon Tetrachloride	ND	440	220
1,1-Dichloropropene	ND	440 V	220
Benzene	530	440	220
1,2-Dichloroethane	ND	440 <i>()</i>	220
Trichloroethene	ND	440 \	220
1,2-Dichloropropane	ND	440	220
Dibromomethane	ND	440	220
Bromodichloromethane	ND	440	220
cis-1,3-Dichloropropene	ND	440 V	220
Toluene	5700	440	220
trans-1,3-Dichloropropene	ND	440 🗸	220

MW Geloo

6

Volatile Organics by USEPA Method 5030/8260B Modified data for 91315-11 continued...

	Result			
Analyte	(ug/kg)	PQL _{i 2}	MDL	
1,1,2-Trichloroethane	ND	440 V	220	
Tetrachloroethene	ND	440	220	
1,3-Dichloropropane	² ND	440	220	
Dibromochloromethane	ND	440	220	
1,2-Dibromoethane	ND 4.56 2.4 41/41 4	440 /	220	
Chlorobenzene	ND	440 V	220	
Ethylbenzene	3500	440,	220	
1,1,1,2-Tetrachloroethane	♠ ND ♠ Log ♠ Log	440 V	220	oran orang
m,p-Xylene	18000	890	440	
o-Xylene	7900	440	220	* 7, * .
Styrene	ND	440V	220	
Bromoform	ND	440 🗸	220	
Isopropylbenzene	1200	440,	220	1
Bromobenzene	ND	440V	220	
n-Propylbenzene	2900	440,,	220	
1,1,2,2-Tetrachloroethane	ND	440 Ú	220	
1,2,3-Trichloropropane	ND	440	220	. '
2-Chlorotoluene	ND	440 ∜	220	
1,3,5-Trimethylbenzene	16000	440	220	•
4-Chlorotoluene	ND	440 U	220	n inga
t-Butylbenzene	ND	440 ()	220	
1,2,4-Trimethylbenzene	44000	440	220	_D10 WW
sec-Butylbenzene	4800	440	220	
1,3-Dichlorobenzene	ND	440V	220	
4-Isopropyltoluene	3000	440	220	
1,4-Dichlorobenzene	ND	440 <i>Ų</i>	220	
n-Butylbenzene	ND	440	220	
1,2-Dichlorobenzene	ND	440	220	
1,2-Dibromo-3-chloropropane	ND	440	220	
1,2,4-Trichlorobenzene	ND	440	220	
Hexachlorobutadiene	¹ ND	440∜	220	
Naphthalene	26000	440	220	-D10 hu
1,2,3-Trichlorobenzene	ND	440 ()	220	

MW 22000

Client Name Environmental Quality Management, Inc. Client ID: 00020224 Lab ID: 91315-12 Date Received: 7/25/00 Date Prepared: 7/28/00 Date Analyzed: 7/28/00 % Solids 85.93 **Dilution Factor** 25

Volatile Organics by USEPA Method 5030/8260B Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	100		82	113
Fluorobenzene	93.8		75	112
Toluene-D8	106		81	125
Ethylbenzene-d10	98.4		. 86	121
Bromofluorobenzene	95.8	* *	80	113

Sample results are on a dry weight basis.

	Result			
Analyte	(ug/kg)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	410 V	210	
Chloromethane	ND	410	210	
Vinyl chloride	ND	410	210	
Bromomethane	ND	410	210	٠.
Chloroethane	ND	410	210	
Trichlorofluoromethane	ND	410	210	ight \$
1,1-Dichloroethene	ND	410	210	
Methylene chloride	ND	410	210	
trans-1,2-Dichloroethene	, ND	410	210	
1,1-Dichloroethane	,ND	410	210	
2,2-Dichloropropane	ND ND	410	210	u=
cis-1,2-Dichloroethene	ND	410	210	
Bromochloromethane	ND	410	210	
Chloroform	ND	410	210	
1,1,1-Trichloroethane	ND	410	210	
Carbon Tetrachloride	ND	410	210	
1,1-Dichloropropene	ND	410	210	
Benzene	ND	410	210	
1,2-Dichloroethane	ND	410	210	
Trichloroethene	ND	410	210	
1,2-Dichloropropane	ND	410	210	
Dibromomethane	ND	410	210	
Bromodichloromethane	ND	410 🔓	210	
cis-1,3-Dichloropropene	ND	410 🗸	210	
Toluene	360 🧻	410	210	1 N4
trans-1,3-Dichloropropene	ND	410 ∪	210	

MW & 2800

Volatile Organics by USEPA Method 5030/8260B Modified data for 91315-12 continued...

	•		
	Result		,
Analyte	(ug/kg)	PQL	MDL
1,1,2-Trichloroethane	ND	410	210
Tetrachloroethene	ND	410	210
1,3-Dichloropropane	ND	410	210
Dibromochloromethane	ND	410	210
1,2-Dibromoethane	ND	410	210
Chlorobenzene	ND ND	410 V	210
Ethylbenzene	700	410 1	210
1,1,1,2-Tetrachloroethane	ND Section	410()	210
m,p-Xylene	2600	830	410
o-Xylene	1900	410	210
Styrene	ND	410V	210
Bromoform	ND STATE OF THE ST	410	210
Isopropylbenzene	610	410	210
Bromobenzene	ND	410()	210
n-Propylbenzene	1200	410	210
1,1,2,2-Tetrachloroethane	ND .	410U	210
1,2,3-Trichloropropane	ND	410 \	210
2-Chlorotoluene	ND [.]	410 V	210
1,3,5-Trimethylbenzene	15000	410	210
4-Chlorotoluene	ND	410 <i>U</i>	210
t-Butylbenzene	ND	410 ₹	210
1,2,4-Trimethylbenzene	43000	410	210 DIQn-
sec-Butylbenzene	4300	410	210
1,3-Dichlorobenzene	ND	410()	210
4-Isopropyltoluene	3100	410	210
1,4-Dichlorobenzene	ND	410 Ú	210
n-Butylbenzene	ND	410	210
1,2-Dichlorobenzene	ND	410	210
1,2-Dibromo-3-chloropropane	ND	410	210
1,2,4-Trichlorobenzene	ND	410	210
Hexachlorobutadiene	ND	410 😾	210
Naphthalene	29000	410	210 D10 gui
1,2,3-Trichlorobenzene	ND	410 ()	210

MW 925-00

Environmental Quality Management, Inc. Client Name 00020225 Client ID: 91315-13 Lab ID: 7/25/00 Date Received: 7/28/00 Date Prepared: Date Analyzed: 7/28/00 81.45 % Solids 25 **Dilution Factor**

Volatile Organics by USEPA Method 5030/8260B Modified

•			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	100		82	113	
Fluorobenzene	95.4		75	112	
Toluene-D8	99.1		81	125	
Ethylbenzene-d10	95.9		86	121	
Bromofluorobenzene	96.4		80	113	

Sample results are on a dry weight basis.

	Result	t	
Analyte	(ug/kg) PQL []	MDL Flags
Dichlorodifluoromethane	ND	470 🗸	240
Chloromethane	ND	470 \	240
Vinyl chloride	ND	470	240
Bromomethane	ND	470	240
Chloroethane	ND	470	240
Trichlorofluoromethane	ND	470	240
1,1-Dichloroethene	ND	470	240
Methylene chloride	ND	470	240
trans-1,2-Dichloroethene	ND	470	240
1,1-Dichloroethane	, ND	470	240
2,2-Dichloropropane	ND	470	240
cis-1,2-Dichloroethene	ND	470	240
Bromochloromethane	ND	470	240
Chloroform	ND	470	240
1,1,1-Trichloroethane	ND	470	240
Carbon Tetrachloride	ND	470	240
1,1-Dichloropropene	ND	470	240
Benzene	ND	470	240
1,2-Dichloroethane	ND	470	240
Trichloroethene	ND a s	470	240
1,2-Dichloropropane	ND	470	240
Dibromomethane	ND	470	240
Bromodichloromethane	ND	470 /	240
cis-1,3-Dichloropropene	ND	470	240
Toluene	ND	470	240
trans-1,3-Dichloropropene	ND	470 V	240

MW 27 JOO

Volatile Organics by USEPA Method 5030/8260B Modified data for 91315-13 continued...

		Result				
Analyte	*	(ug/kg)	$PQL_{i,j}$		MDL	
1,1,2-Trichloroethane	ND		470 🗸		240	
Tetrachloroethene	ND		470		240	
1,3-Dichloropropane	ND		470		240	
Dibromochloromethane	ND		470		240	
1,2-Dibromoethane	ND		470		240	
Chlorobenzene	ND		470		240	
Ethylbenzene	ND		470		240	
1,1,1,2-Tetrachloroethane	ag ND	V*1	470		240	4-
m,p-Xylene	ND		950		470	tile i salah sa
o-Xylene	ND	•	470		240	
Styrene	ND	•	470		240	,
Bromoform	ND	•	470		240	,
Isopropylbenzene	ND		470		240	
Bromobenzene	ND	: .	470		240	
n-Propylbenzene	ND	•	470		240	
1,1,2,2-Tetrachloroethane	ND		470		240	
1,2,3-Trichloropropane	ND		470		240	•
2-Chiorotoluene	ND		470		240	
1,3,5-Trimethylbenzene	ND		470		240	
4-Chlorotoluene	ND	<i>i</i> :	470		240	**
t-Butylbenzene	ND		470\/		240	
1,2,4-Trimethylbenzene	350	\mathcal{J}	470		240	JW
sec-Butylbenzene	ND		470U		240	
1,3-Dichlorobenzene	ND		470 ()		240	
4-Isopropyltoluene	440 🤇	2	470		240	Nu
1,4-Dichlorobenzene	ND		470 <i>V</i>		240	
n-Butylbenzene	ND		470		240	
1,2-Dichlorobenzene	ND		470		240	
1,2-Dibromo-3-chloropropane	ND		470	•	240	
1,2,4-Trichlorobenzene	ND		470		240	
Hexachlorobutadiene	' ND		470 ₩		240	
Naphthalene	26000	o .	470		240	-D49riv
1,2,3-Trichlorobenzene	ND		470 ()		240	

MN

Environmental Quality Management, Inc. Client Name 00020226 Client ID: Lab ID: 91315-14 7/25/00 Date Received: 7/28/00 Date Prepared: 7/31/00 Date Analyzed: 85.66 % Solids 25 **Dilution Factor**

Volatile Organics by USEPA Method 5030/8260B Modified

		#4 	Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High 5 S
Dibromofluoromethane	100		82	113 a style (
Fluorobenzene	96.7		75	112 WWW.Y
Toluene-D8	98.7		81	125
Ethylbenzene-d10	99.2		86	121
Bromofluorobenzene	103	•	80	2. 113 g = 22.4 a2

Sample results are on a dry weight basis.

	Re	esult		
Analyte	(u	g/kg) PQL;	MDL.	Flags
Dichlorodifluoromethane	ND	450	220	
Chloromethane	ND	450	220	1 3 AV
Vinyl chloride	ND	450 \	220	4.
Bromomethane	ND	450	220	
Chloroethane	ND	450	220	1
Trichlorofluoromethane	ND	450	220	2 . 5
1,1-Dichloroethene	ND	450	220	(a, b, b)
Methylene chloride	ND	450	220	
trans-1,2-Dichloroethene	ND	450	220	
1,1-Dichloroethane	ND	450	220	
2,2-Dichloropropane	¹ ND	450	220	
cis-1,2-Dichloroethene	ND	450 /	. 220	
Bromochloromethane	ND	450	220	
Chloroform	ND	450	220	
1,1,1-Trichloroethane	ND	450	220	
Carbon Tetrachloride	ND.	450	220	
1,1-Dichloropropene	ND	450	220	
Benzene	ND	450	220	
1,2-Dichloroethane	ND	450	220	
Trichloroethene	ND	450	220	
1,2-Dichloropropane	ND	450	220	
Dibromomethane	ND .	450	220	
Bromodichloromethane	ND	450	220	
cis-1,3-Dichloropropene	ND	450	220	
Toluene	ND	450	220	
trans-1,3-Dichloropropene	ND	450	220	

- BARBOA

Volatile Organics by USEPA Method 5030/8260B Modified data for 91315-14 continued...

	-	Result		
Analyte		(ug/kg)	PQL,	MDL.
1,1,2-Trichloroethane	ND		450	220
Tetrachloroethene	ND	*	450	220
1,3-Dichloropropane	ND		450	220
Dibromochloromethane	ND		450	220
1,2-Dibromoethane	ND		450	220
Chlorobenzene	ND		450	220
Ethylbenzene	ND		450	220
1,1,1,2-Tetrachloroethane	ND		450	220
m,p-Xylene	ND		890	450
o-Xylene	ND		450	220
Styrene	ND		450	220
Bromoform	ND		450	220
isopropylbenzene	ND	•	450	220
Bromobenzene	ND		450	220
n-Propylbenzene	ND ·		450	220
1,1,2,2-Tetrachloroethane	ND		450	220
1,2,3-Trichloropropane	ND		450	220
2-Chlorotoluene	ND		450	220
1,3,5-Trimethylbenzene	460		450	220
4-Chlorotoluene	ND	•.	450 ()	220
t-Butylbenzene	ND	* 4	450 U	220
1,2,4-Trimethylbenzene	1200		450	220
sec-Butylbenzene	ND		450 U	220
1,3-Dichlorobenzene	ND		450	220
4-Isopropyltoluene	ND	· · · · ·	450 V	220
1,4-Dichlorobenzene	240 📉		450	220 Smu
n-Butylbenzene	ND 🔾	-	450 U	220
1,2-Dichlorobenzene	390.		450	220 J.M.
1,2-Dibromo-3-chloropropane	ND		450 V	220
1,2,4-Trichlorobenzene	: ND	_	450 U	220
Hexachlorobutadiene	750	-	450	220
Naphthalene	ND		450 U	220
1,2,3-Trichlorobenzene	ND		450 V	220

MW G2fa

Client Name Environmental Quality Management, Inc. Client ID: 00020227 Lab ID: 91315-15 Date Received: 7/25/00 Date Prepared: 7/28/00 Date Analyzed: 7/29/00 % Solids 63.01 **Dilution Factor** 25

Volatile Organics by USEPA Method 5030/8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	100		82	113
Fluorobenzene	95.9		· 75	112
Toluene-D8	104	•	81	125
Ethylbenzene-d10	96.9		. 86	121
Bromofluorobenzene	107		80	113

Sample results are on a dry weight basis.

	Result				
Analyte	(ug/kg)	PQL	MDL	Flags	
Dichlorodifluoromethane	ND	600 ✓	300	· ; · . · . · . · .	
Chloromethane	ND	600	300		
Vinyl chloride	ND	600	300		
Bromomethane	ND	600	300	Andrews (1997)	
Chloroethane	ND	600	300		
Trichlorofluoromethane	ND	600	300		
1,1-Dichloroethene	ND	600	300		
Methylene chloride	ND	600 🗸	300	•	
trans-1,2-Dichloroethene	320 🍏	600	300	JWa	
1,1-Dichloroethane	ND	600 (/	300		
2,2-Dichloropropane	ND	600 🎶	300		
cis-1,2-Dichloroethene	15000	600	300		
Bromochloromethane	ND	600(/	300		
Chloroform	ND	600 Ĭ	300		
1,1,1-Trichloroethane	ND	600	300		
Carbon Tetrachloride	ND	600	300		
1,1-Dichloropropene	ND	600	300		
Benzene	ND	600	300		
1,2-Dichloroethane	ND	600√	300		
Trichloroethene	370000	600	300	D20 M.	
1,2-Dichloropropane	ND	600 <i>()</i>	300		
Dibromomethane	ND	600	300		
Bromodichloromethane	ND	600	300		
cis-1,3-Dichloropropene	ND	600 ∜	300		
Toluene	5900	600	300		
trans-1,3-Dichloropropene	ND ND	600 Ú	300		

MNISABOD

Volatile Organics by USEPA Method 5030/8260B Modified data for 91315-15 continued...

Analyte (ug/kg) PQL MDL 1,1,2-Trichloroethane ND 600 0 300	1 0 - 1 44
1,1,2-Trichloroethane ND 600 U 300	0-1
	0
Tetrachloroethene 4900000 600 300 D20	P V
1,3-Dichloropropane ND 600U 300	• • • •
Dibromochloromethane ND 600 300	
1,2-Dibromoethane ND 600 300	
Chlorobenzene ND	
الم 300 Ethylbenzene 500 (a 300 کلے	nn
1,1,2-Tetrachloroethane ND 600 U 300	
m,p-Xylene 2100 1200 600	•
o-Xylene 930 600, 300	
Styrene ND 600U 300	
Bromoform ND 600 300	
Isopropylbenzene ND 600 300	
Bromobenzene ND 600♥ 300	
n-Propylbenzene 300 5 600 300 A	·
1,1,2,2-Tetrachloroethane ND 6000 300	
1,2,3-Trichloropropane ND 600 300	
2-Chlorotoluene ND 600 300	
1,3,5-Trimethylbenzene 900 600 300	
4-Chlorotoluene ND 600 U 300	
t-Butylbenzene ND 600 () 300	
1,2,4-Trimethylbenzene 3000 600, 300	
sec-Butylbenzene ND 600 V 300	
1,3-Dichlorobenzene ND 600 300	
4-Isopropyltoluene ND 600 300	
1,4-Dichlorobenzene ND 600 300	٠
n-Butylbenzene ND 600 300	
1,2-Dichlorobenzene ND 600 300	
1,2-Dibromo-3-chloropropane ND 600√ 300	
1,2,4-Trichlorobenzene 12000 600 300 720	
Hexachlorobutadiene 580000 600 300 D20	
1 topi ili ioi erie	Mrs
1,2,3-Trichlorobenzene ND 600() 300	

Note: This page is intentionally left blank.

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

'CO OCT -3 ACTS

MEMORANDUM

DATE:

August 28, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-Chemist, E & E, Seattle, WA

THRU:

Leatta Dahlhoff, START-Chemist, E & E, Seattle, WA

SUBJ:

Organic Data Quality Assurance Review, Cleancare Corporation Site,

Tacoma, Washington

REF:

TDD: 00-01-0008

PAN: EA-08-01-RA-DM

The data quality assurance review of five solid samples collected from the Cleancare Corporation site located in Tacoma, Washington, has been completed. Analysis for Semivolatile Organic Compounds (EPA Method 8270) was performed by Sound Analytical Services, Inc., Tacoma, Washington.

The samples were numbered: 00020223 00020224 00020225 00020226 00020227

Data Qualifications:

1. Sample Holding Times: Acceptable.

The samples were maintained at 4° C ($\pm 2^{\circ}$ C). The samples were collected on July 25, 2000, were extracted on July 26, 2000, and were analyzed on July 27, 2000, therefore meeting QC criteria of less than 14 days between collection and sample extraction and less than 40 days between extraction and semivolatile analysis.

2. GC/MS Tuning Criteria: Acceptable.

Decafluorotriphenylphosphine (DFTPP) tuning of the mass spectrometer was conducted at the beginning of every 12-hour analytical sequence. All calculations were verified as correct, all results were normalized to m/z 198 and were within the required criteria.

3. Initial Calibration: Satisfactory.

Calculations were verified as correct for at least one analyte per internal standard. All individual relative response factors (RRFs) and average RRFs were greater than the 0.050 control limit. All percent relative standard deviations (%RSDs) were \leq the control limit of 30.0 % except 3,3'-dichlorobenzidine; no action was taken as this analyte was not detected in any sample.

4. Continuing Calibration: Satisfactory.

Calculations were verified as correct for at least one analyte per internal standard. All applicable individual RRFs were greater than the 0.050 control limit. All applicable percent differences (% Ds) were \leq the control limit of 25.0 % except benzoic acid (increasing response factor - no action was taken as it was not detected in any sample) and phenanthrene (increasing response factor - positive results were qualified as estimated quantities [J]).

5. Internal Standards: Satisfactory.

Areas of the internal standards were within the control limits of 50% to 200% and the retention times were within 30 seconds of the associated 12-hour calibration standard except the following results which were greater than the QC limits: perylene in samples 00020223, 00020225, 00020226 (undiluted and 10* dilution), and 00020227 (undiluted and 10* dilution), chrysene in samples 00020226 (undiluted and 10* dilution) and 00020227, and phenanthrene in sample 00020227. Associated positive results were qualified as estimated quantities (J).

6. Error Determination: Not Performed.

Samples necessary for bias and precision determination were not provided to the laboratory. All samples were flagged RND (Recovery Not Determined) and PND (Precision Not Determined), although the flags are not found on the Form I's.

7. Blanks: Satisfactory.

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and concentration or every 20 samples (whichever is greater). No analytes were detected in any blank except bis(2-ethylhexyl)phthalate (28 ug/kg); sample results less than 10 times the blank result were qualified as not detected (U).

8. System Monitoring Compounds (SMC): Satisfactory.

All results were greater than 10% and were within QC limits except nitrobenzene (0%) and phenol (34%) in sample 00020223, nitrobenzene (0%), 2-fluorobiphenyl (0%), phenol (10%), and 2,4,-tribromophenol (0%) in sample 00020224, and phenol (42%), 2-fluorophenol (11%), and 2,4,6-tribromophenol (13%) in sample 00020227. Results associated with surrogate fractions (base/neutral or acid) that had less than 10% recovery were rejected (R) for quantitation limits or estimated (J) for positive results. For the other outliers, positive results and sample quantitation limits were qualified as estimated quantities (J or UJ) for fractions with two or more outliers.

9. Performance Evaluation Samples: Not Provided.

Performance evaluation samples were not provided to the laboratory.

10. Matrix and Blank Spikes: Satisfactory.

All matrix and blank spike results were within laboratory QC limits except n-nitroso-di-n-propylamine (201% and 207% recoveries), 1,2,4-trichlorobenzene (104% and 121% recoveries), and pyrene (212% and 162%). No action was taken based on spike outliers alone.

11. Duplicates: Satisfactory.

The Relative Percent Differences (RPDs) of all spiked analytes were acceptable except 1,4-dichlorobenzene (41% RPD). No action was taken based on the duplicate outlier alone.

12. Target Compound Identification: Acceptable.

All target compounds reported by the laboratory met identification criteria of relative retention times (RRT) within 0.06 RRT units of the 12 hour standard. All ions present in the standard mass spectrum were present in the sample mass spectrum and the abundance of these ions agreed within \pm 20 % between the standard and sample spectrum. All ions present at greater than 10 % in the sample mass spectrum but not in the standard mass spectrum were accounted for.

13. Tentatively Identified Compounds (TICs): Not Requested.

TICs were not requested.

14. Target Compound Quantitation and Quantitation Limits: Acceptable.

Concentrations of all reported analytes and quantitation limits were correctly calculated.

15. Laboratory Contact: Not Required.

No laboratory contact was required.

16. Overall Assessment

The overall usefulness of the data is based on the criteria outlined in the OSWER Directive "Quality Assurance/Quality Control Guidance for Removal Activities, Data Validation Procedures" (EPA/540/G-90/004), the analytical method, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (EPA 540/R-94/012). Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- U The material was analyzed for but was not detected. The associated numerical value is the estimated sample quantitation limit.
- J The associated numerical value is an estimated quantity because the reported concentrations were less than the sample quantitation limits or because quality control criteria limits were not met.
- UJ The material was analyzed for, but not detected. The reported detection limit is estimated because Quality Control criteria were not met.
- R The sample results are rejected (analyte may or may not be present) due to gross deficiencies in quality control criteria. Any reported value is unusable. Resampling and/or reanalysis is necessary for verification.

Client Name	Environmental Quality Management, Inc.
Client ID:	00020223
Lab ID:	91315-11
Date Received:	7/25/00
Date Prepared:	7/26/00
Date Analyzed:	7/27/00
% Solids	84.54
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

		*	Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	· •	X9	49	151
2 - Fluorobiphenyl	99.4	•	54	131
p - Terphenyl - d14	92.2	•	45	134
Phenol - d5	33.8	X9	53	131
2 - Fluorophenol	101		54	139
2,4,6 - Tribromophenol	56.4	•	52	137

Sample results are on a dry weight basis.

Semivolatile Organics by USEPA Method 8270 data for 91315-11 continued...

		Result			
Analyte	(1	ıg/kg)	PQL	MDL	
2,4,6-Trichlorophénol	ND	•	960 —	13	
2,4,5-Trichlorophenol	ND .		96	13 0	
2-Chloronaphthalene	ND		19	- 8 KMU	
2-Nitroaniline	_ND		96	31	
Dimethylphthalate	ND		96	30	
Acenaphthylene	ND ~		19	7.8	
2.6-Dinitrotoluene	ND		96, //		
3-Nitroaniline	ND		96V	11-	
Acenaphthene	4.5	1500 J	19,	6.8	e, a
2,4-Dinitrophenol	ND		96	23	187
4-Nitrophenol	ND		96\ <i>j</i>	24	•
Dibenzofuran		680 J	96 ັ	19,00	
2,4-Dinitrotoluene	-ND		96(/	17/1/	
Diethylphthalate	-ND		96	20	
4-Chlorophenylphenylether	-ND		96V	16 V V	. ,
Fluorene	- '	1700 5	19	7.8	
4-Nitroaniline	_ND		96V	9ALK	•
4,6-Dinitro-2-methylphenol	ND		96 \	13	
N-Nitrosodiphenylamine	VAD-		96	7.1 MV Rn	
4-Bromophenylphenylether	ND.		96	14 J.K	
Hexachlorobenzene	ND		96/	24MR	
Pentachlorophenol	ND	_	96	13	
Phenanthrene		4700 J	19	6.3	
Anthracene		830 5	19	9.3	
Di-n-butylphthalate	ND-		190()	1207 L	
Fluoranthene		3600 5	19	6.1	
Pyrene		2600 5	19	5.5	
Butylbenzylphthalate	ND-		96 V	14 M/S	
3,3'-Dichlorobenzidine	ND		96 ()	10 My	F 1
Benzo(a)anthracene		700 J	19	6.1	
Chrysene		860	19	8	· ·
bis(2-Ethylhexyl)phthalate		3200 V	96	n ;	B2 yh=0
Di-n-octylphthalate	_ND		96()	23 Knu	•
Benzo(b)fluoranthene		380 5	19	5.5 Y)	
Benzo(k)fluoranthene	-ND		19V	6.4 km	
Benzo(a)pyrene	,	430 J	19	8	
Indeno(1,2,3-cd)pyrene		180 5	19	7.2	
Dibenz(a,h)anthracene	ND.		191)	45 Km	
Benzo(g,h,i)perylene		240 \	19 ັ	2.9	
Delizo(g,ii,i)pei yielle)			

Client Name	Environmental Quality Management, Inc.
Client ID:	00020224
Lab ID:	91315-12
Date Received:	7/25/00
Date Prepared:	7/26/00
Date Analyzed:	7/27/00
% Solids	85.93
Dilution Factor	<u>, 2</u> 0

Semivolatile Organics by USEPA Method 8270

		Recovery Limits		
% Recovery	Flags	Low	High	
e de la companya de l	X9	49	151	
-	X9	54	131	
95.6		45	134	
10.4	X9	53	131	
102		54	139	
. •	X9	52	137	
	95.6 10.4 102	- X9 - X9 95.6 10.4 X9 102	% Recovery Flags Low - X9 49 - X9 54 95.6 45 10.4 X9 53 102 54	

Sample results are on a dry weight basis.

Semivolatile Organics by USEPA Method 8270 data for 91315-12 continued...

Client Name	Environmental Quality Management, Inc.
Client ID:	00020225
Lab ID:	91315-13
Date Received:	7/25/00
Date Prepared:	7/26/00
Date Analyzed:	7/27/00
	81.45
୍ଖ Solids Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

•				Kecov	ery Lilling
Surrogate	, *	% Recovery 87.6	Flags	Low 49	High 151
Nitrobenzene - d5			San	54	131
2 - Fluorobiphenyl		96.4		45	134
p - Terphenyl - d14		90.4	* ***		131
Phenol - d5		94		53	
2 - Fluorophenol	•	106		54	139
2,4,6 - Tribromophenol	• • • •	77.4	to the transfer of the same	52	137

Sample results are on a dry weight basis.

$\label{eq:continuous} \mathcal{L} = \{ (1, 1), \dots, (N-1) \}$		Result	PQL ,	MDL	Flags
Analyte	ND.	(ug/kg)	98	36	
Phenol	ND		98	21	
bis(2-Chloroethyl)ether	ND		98	22	
2-Chlorophenol	ND		98	28	1 · 1
1,3-Dichlorobenzene	ND		98	23	^
1,4-Dichlorobenzene	ND			29 29	
Benzyl Alcohol	ND		98	. 20	
1,2-Dichlorobenzene	ND		98 V	15	iZ.
2-Methylphenol		60 🥥	98	27	- Mu
bis(2-Chloroisopropyl)ether	ND		98 V		
3- & 4-Methylphenol	1	110	98	26	
N-nitroso-di-n-propylamine	ND		980	24	
Hexachloroethane	ND		98 \	29	٠
Nitrobenzene	ND		98 \	16	
Isophorone	ND		98	26	
2-Nitrophenol	ND		98	17	
2,4-Dimethylphenol	ND	e e e e e e e e e e e e e e e e e e e	98	25	
Benzoic Acid	ND		98	11	
bis(2-Chloroethoxy)methane	ND		98	18	
2,4-Dichlorophenol	ND		98, / ^	7.1	
1,2,4-Trichlorobenzene	ND		98√	13	
Naphthalene		11000	20 .	19	DIOYNA
4-Chloroaniline	ND		98 (/	15	-
Hexachlorobutadiene	ND		98 (21	
	ND		98√	29	
4-Chloro-3-methylphenol	ND	4200	20	14	
2-Methylnaphthalene Hexachlorocyclopentadiene	ND	7200	98 √	15	

MW 2-25-00 ... 20

Semivolatile Organics by USEPA Method 8270 data for 91315-13 continued...

Analyte (ug/kg) PQL MDL 2.4.6-Trichlorophenol ND 98 13 2.4.5-Trichlorophenol ND 98 33 2Chloronaphthalene ND 98 32 2-Nitroaniline ND 98 31 Acenaphthylene 280 20 7.9 Acenaphthylene 280 20 7.9 Acenaphthene ND 98 11 Acenaphthene ND 98 12 2.4-Dinitroshenol ND 98 12 2.4-Dinitroshenol ND 98 17 Achirophenol ND 98 11 Achirophenol ND 98 11 Achirophenol ND 98 11 Achirophenol ND 98 14 Achirophenylphenylether ND 98 14 Achiro		Resul	•			•
Analyte (1979) 2,4,6-Trichlorophenol ND 98 13 2,4,5-Trichlorophenol ND 98 13 2,4,5-Trichlorophenol ND 98 32 2-Chioronaphthalene ND 98 32 2-Chioronaphthalene ND 98 32 2-Chioronaphthalate ND 98 31 3-Chiorophenol ND 98 31 3-Chiorophenol ND 98 32 3-Chior				L	MDL	
2.4,5-Trichlorophenol ND 20 8.2 2.4,5-Trichlorophenol ND 20 8.2 2-Chloronaphthalene ND 98 32 2-Nitroaniline ND 98 31 Dimethylphthalate ND 98 31 Dimethylphthalate ND 98 31 Dimethylphthalate ND 98 31 Acenaphthylene 280 20 7.9 Acenaphthylene 98 112 2.6-Dinitrotoluene ND 98 112 2.6-Dinitrotoluene ND 98 20 6.9 Acenaphthene ND 98 22 2.4-Dinitrophenol ND 98 22 2.4-Dinitrophenol ND 98 20 Dibenzofuran 3700 98 20 Dibenzofuran 98 177 Dibenzofuran 98 177 Dibenzofuran ND 98 21 Di-Dinitrotoluene ND 98 21 Di-Dinitrotoluene ND 98 16 4-Chlorophenylphenylether ND 98 16 4-Chlorophenylphenylether ND 98 14 4-Dinitro-2-methylphenol ND 98 14 4-Bromophenylphenylether ND 98 25 Pentachlorobenzene ND 98 25 Pentachlorobenzene ND 98 13 Pentachlorobenzene ND 98 13 Pentachlorobenzidine ND 20 6.4 Di-D-btylphthalate ND 20 6.2 Di-D-btylphthalate ND 98 11 3,3-Dichlorobenzidine ND 98 30 Benzo(a)anthracene ND 98 30 Benzo(a)anthracene ND 98 30 Benzo(b)fluoranthene 280 20 5.5 Benzo(a)pyrene 1800 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(b)fluoranthene 80 20 6.5 Benzo(a)pyrene 1800 20 6.5 Benzo(b)fluoranthene 80 20 6.5	Analyte		, -	- 98 <i>U</i>		
2.4.5-Trichlorophenol ND 20 8.2 2-Chloronaphthalene ND 98 32 2-Nitroaniline ND 98 31 Dimethylphthalate ND 98 31 Acenaphthylene 280 20 7,9 Acenaphthylene 1280 98 11 3-Nitroaniline ND 98 11 3-Nitroaniline ND 98 20 4-Nitroaniline ND 98 24 4-Nitrophenol ND 98 22 4-Nitrophenol ND 98 17 2,4-Dinitrotoluene ND 98 17 2,4-Dinitrotoluene ND 98 17 2,4-Dinitrotoluene ND 98 21 Dibenzofuran 3700 98 20 Dibenzofuran 98 17 2,4-Dinitrotoluene ND 98 17 2,4-Dinitrotoluene ND 98 17 4-Chlorophenylphenylether ND 98 17 Hororene 4800 20 7,9 Fluorene 4800 20 7,9 Fluorene 4ND 98 14 4-G-Dinitro-2-methylphenol ND 98 17 4-Bromophenylphenylether ND 98 14 4-Bromophenylphenylether ND 98 14 4-Bromophenylphenylether ND 98 14 4-Bromophenylphenylether ND 98 15 Hexachlorobenzene ND 98 25 Hexachlorophenol ND 98 13 Pentachlorophenol ND 98 13 Pentachlorophenol ND 98 13 Pentachlorophenol ND 98 13 Pentachlorophenol ND 98 14 Anthracene 1700 20 6.4 Privene 800 20 5.5 Pyrene 800 20 5.5 Pyrene 800 20 6.2 Pyrene 800	2,4,6-Trichlorophenol	•			13	
2-Chloronaphthalene 2-Nitroaniline ND	2,4,5-Trichlorophenol					
2-Nitroaniline ND 98		The second secon				
Dimethylphthalate			٠.	117		
Accaraphthylene	Dimethylphthalate	ND	000			
2,6-Dintrotoluene AND ANItronaliline ACenaphthene 2,4-Dinitrophenol ND ND 3700 98 20 24-Nitrophenol ND ND 3700 98 20 ND			280			
3-Nitroaniline	2,6-Dinitrotoluene		•			
Acenaphthene 2,4-Dinitrophenol ND 98		ND				
2,4-Dinitrophenol ND	Acenaphthene		4900	20 1		
A-Nitrophenol Dibenzofuran S700 98 20 20 20 20 20 20 20 2			÷.\$			
Dibenzofuran S700 S80 17 17 17 17 17 17 17 1		ND	<i>6</i> 5			
2,4-Dinitrotoluene			3700			*
Diethylphthalate	-		1.0	7		
4-Chlorophenylphenylether Fluorene 4-Nitroaniline 4-Nitroaniline 4-G-Dinitro-2-methylphenol ND N-Nitrosodiphenylamine ND Hexachlorobenzene Pentachlorophenol ND Phenanthrene Anthracene Di-n-butylphthalate Butylbenzylphthalate Butylbenzo(a)anthracene Chrysene Bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)aptyrene Butyloenzylprene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)aptyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)aptyrene Benzo(a)aptyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)aptyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND 14800 20 7.9 98/ 98/ 98/ 98/ 98/ 98/ 98/ 98/ 98/ 98		ND				
Fluorene		ND '		•		+ 4
4-Nitroaniline			4800			i i
4,6-Dinitro-2-methylphenol ND 98 7,3 N-Nitrosodiphenylamine ND 98 14 4-Bromophenylphenylether ND 98 14 Hexachlorobenzene ND 98 25 Pentachlorophenol ND 98 13 Pentachlorophenol ND 98 13 Phenanthrene 4500 20 6.4 P10 mW Anthracene 4500 20 9.5 Anthracene 13000 20 6.2 D16 mW Piluoranthene 13000 20 6.2 D16 mW Pyrene 8800 20 5.5 D20 mW Benzo(a)anthracene ND 98 V 11 Benzo(a)anthracene 3500 20 6.2 Chrysene 3000 20 8.2 bis(2-Ethylhexyl)phthalate 280 V 98 30 81 mW Benzo(b)fluoranthene 1200 J 20 6.5 Benzo(k)fluoranthene 780 V 20 6.5 Benzo(a)pyrene 1800 V 20 7	* · ·	ND		•		
N-Nitrosodiphenylamine 4-Bromophenylphenylether Hexachlorobenzene ND Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Pyrene Butylbenzylphthalate Benzo(a)anthracene Di-n-octylphthalate Di-n-octylphthalate Benzo(k)fluoranthene Benzo(a)pyrene Bibenzo(a)pyrene Biben	4.6-Dinitro-2-methylphenol	ND		l l		
4-Bromophenylphenylether Hexachlorobenzene ND Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Pyene Butylbenzylphthalate Benzo(a)anthracene Di-n-ctylphthalate Di-n-ctylphthalate Di-n-ctylphthalate Di-n-ctylphthalate Di-n-ctylphthalate Di-n-ctylphthalate Benzo(b)fluoranthene Benzo(a)pyrene B	N-Nitrosodiphenylamine	ND				
Hexachlorobenzene	4-Bromophenylphenylether	ND			•	•
Pentachlorophenol ND 36 V 15 Diministration Phenanthrene 4500 20 6.4 D10 ministration Anthracene 20 9.5 9.5 120 Di-n-butylphthalate ND 200 V 120 120 Fluoranthene 13000 20 6.2 D10 ministration 14	Hexachlorobenzene	ND		t .		The Art Art State
Phenanthrene		ND	سو	7		DAD WILL
Anthracene Di-n-butylphthalate Piuoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene Di-n-octylphthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)hanthracene Di-n-octylpyrene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND Anthracene Indeno(1,2,3-cd)pyrene Di-n-butylphthalate Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-c						יייוטוש
Di-n-butylphthalate			4500			All Mary Control of the Control
State		ND	ė.			DIRWALA
Pyrene						Didina
Butylbenzylphthalate ND 98 √ 11 3,3'-Dichlorobenzidine ND 98 √ 6.2 Benzo(a)anthracene 3500 20 6.2 Chrysene 3000 20 8.2 Discording bis (2-Ethylhexyl)phthalate 280 √ 98 30 Di-n-octylphthalate ND 98 √ 23 Benzo(b)fluoranthene 1200 √ 20 5.6 Benzo(k)fluoranthene 780 √ 20 6.5 Benzo(a)pyrene 1800 √ 20 8.1 Indeno(1,2,3-cd)pyrene 710 √ 20 7.3 Dibenz(a,h)anthracene ND 20 √ 4.5			8800	20		THO WA
3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND 3500 20 8.2 20 8.2 280 98 30 98 23 23 5.6 780 780 780 710 20 8.1 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7		ND	•			
Benzo(a)anthracene 3500 20 8.2		- ND				
Chrysene 3000 20 8.2 bis(2-Ethylhexyl)phthalate 98 30 81 km Di-n-octylphthalate ND 98 23 Benzo(b)fluoranthene 1200	•	,				,
bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene 280	• •	•				D/4i
Di-n-octylphthalate ND Benzo(b)fluoranthene 1200	bis(2-Ethylhexyl)phthalate		280 🗸			PIMUL
Benzo(b)fluoranthene 1200 3 20 6.5 Benzo(k)fluoranthene 780 1 20 8.1 Benzo(a)pyrene 1800 20 8.1 Indeno(1,2,3-cd)pyrene 710 20 7.3 Dibenz(a,h)anthracene ND 20 4.5	Di-n-octylphthalate	ND	~			٠
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene 780 1800 20 8.1 20 7.3 20 4.5						
Benzo(a)pyrene 1800 20 6.1 Indeno(1,2,3-cd)pyrene 710 20 7.3 Dibenz(a,h)anthracene ND 20 4.5						:
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene ND 710 V 20 7.3 4.5 20 U 4.5						
Dibenz(a,h)anthracene ND 20 7.3			710 V			*
		ND				
	Benzo(g,h,i)perylene		940′)	20	2.9	

MW'

Client Name	Environmental Quality Management, Inc.
Client ID:	00020226
Lab ID:	91315-14
Date Received:	7/25/00
Date Prepared:	7/26/00
	7/27/00
% Solids	85.66
Dilution Factor	20

Semivolatile Organics by USEPA Method 8270

			Recov	El y Lilling
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	98.8		49	151
2 - Fluorobiphenyl	95.2		54	131
	79.2		45	134
p - Terphenyl - d14	95.4		53	131
Phenol - d5	93		54	139
2 - Fluorophenol	90:8		52	137
2,4,6 - Tribromophenol	30.0			

Sample results are on a dry weight basis.

	•	Result	PQL	MDL	Flags
Analyte		(ug/kg)	940	34	9
Phenol	ND		94 (20	
bis(2-Chloroethyl)ether	ND		94	21	ာ အနှစ်သွောင်
2-Chlorophenol	ND		. 1 /	27	\$20 M
1,3-Dichlorobenzene	ND		94 🗸		**************************************
1,4-Dichlorobenzene		120	94 94 <i>U</i>	22 28	
Benzyl Alcohol	ND				
1,2-Dichlorobenzene		. 150	94	19	
2-Methylphenol	, ND		94 <i>U</i>	14	
bis(2-Chloroisopropyl)ether	ND		94	26	
3- & 4-Methylphenol	ND		94	25	•
N-nitroso-di-n-propylamine	ND		94	23	•
Hexachloroethane	ND		94	28	
Nitrobenzene	ND		94		
Isophorone	ND		94	25	
2-Nitrophenol	ND		94	17	
2,4-Dimethylphenol	ND		94	24	
Benzoic Acid	ND	•	94	10	
bis(2-Chloroethoxy)methane	ND	•	94	17	
2,4-Dichlorophenol	ND		94 🏏	6.9	/
1,2,4-Trichlorobenzene		47,5	94	12	Spec
Naphthalene		90 ~	19	19	
4-Chloroaniline	ND		94 ()	15	
Hexachlorobutadiene		130	94	20	
4-Chloro-3-methylphenol	ND		94()	28	
2-Methylnaphthalene		290	19	13	
Hexachlorocyclopentadiene	ND		94(/	15	

MW 9-28-60

Semivolatile Organics by USEPA Method 8270 data for 91315-14 continued...

	R	lesuit			
Analyte	(u	ıg/kg)	PQL 11	MDL	
2,4,6-Trichlorophenol	ND		94 4	12	٠
2,4,5-Trichlorophenol	ND -	•	94	13	
2-Chloronaphthalene	ND		19	7.8	
2-Nitroaniline	ND		94	31	
Dimethylphthalate	ND		94	30	
Acenaphthylene	ND		19	7.6	
2,6-Dinitrotoluene	ND		94 /	12	
3-Nitroaniline	ND		94 V	11 _	
Acenaphthene		51	19	6.6	
2,4-Dinitrophenol	ND	4.34	94 🗸	22	· •
4-Nitrophenol	ND		94 \	23	
Dibenzofuran	ND		94	19	in the second
2,4-Dinitrotoluene	ND		94	17	Section 1
Diethylphthalate	ND		94 \	20	هم "م
4-Chlorophenylphenylether	ND	•	94 🗸	15	
Fluorene	,,,,	71	19	7.6	
4-Nitroaniline	ND		94 ()	8.8	
4,6-Dinitro-2-methylphenol	ND	•	94 \	13	
N-Nitrosodiphenylamine	ND		94	7 .	
• •	ND	•	94	13	*
4-Bromophenylphenylether	ND	••	94	24	
Hexachlorobenzene	ND		94 🗸	13	
Pentachlorophenol Phenanthrene		280ゴ	19	6.2	
		66	19	9.1	٠.
Anthracene		580	190	120	
Di-n-butylphthalate		200	19	6	
Fluoranthene		510	19	5.3	
Pyrene Bytythermylphthelete		8300	94	14	D10 M2
Butylbenzylphthalate	ND		94(/	10	
3,3'-Dichlorobenzidine	ND	1105	19	6	
Benzo(a)anthracene	1	2105	19	7.8	
Chrysene		7500 5	94	28	B2Mn
bis(2-Ethylhexyl)phthalate	•	1100 5	94	22	
Di-n-octylphthalate	ND	1100	19(/	5.4	
Benzo(b)fluoranthene			19 (6.3	
Benzo(k)fluoranthene	ND ·	2105	19	7.8	
Benzo(a)pyrene	ND	2107	19	7.0	
Indeno(1,2,3-cd)pyrene	ND		19 }	4.4	
Dibenz(a,h)anthracene	ND		19	2.8	
Benzo(g,h,i)perylene	ND		19 4	2.0	

MW

Client Name Environmental Quality Management, Inc. Client ID: 00020227 Lab ID: 91315-15 Date Received: 7/25/00 Date Prepared: 7/26/00 Date Analyzed: 7/27/00 % Solids 63.01 **Dilution Factor** 20

Semivolatile Organics by USEPA Method 8270

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Nitrobenzene - d5	87.2	•	49	151	
2 - Fluorobiphenyl	92.6	•	54	131	
p - Terphenyl - d14	94	işt i	45	134	
Phenol - d5	41.6	X9	53	131	
2 - Fluorophenol	10.6	X9	54	139	
2,4,6 - Tribromophenol	13	X9	52 .	137	

Sample results are on a dry weight basis.

•				The property of the	3.1
		Result	•		
Analyte		(ug/kg)	PQL	MDL	Flags 🕞
Phenol	ND		1304J	47	
bis(2-Chloroethyl)ether	ND		130	27	
2-Chlorophenol	ND		130 5	29	•
1,3-Dichlorobenzene	ND		130	36	e Ar ja
1,4-Dichlorobenzene	ND		130	30	
Benzyl Alcohol	ND	•	130	39	
1,2-Dichlorobenzene	ND	***	130	26	
2-Methylphenol	ND	and the second second	130	19	
bis(2-Chloroisopropyl)ether	ND		130	36	
3- & 4-Methylphenol		48000	130	34	-D10 V4.
N-nitroso-di-n-propylamine	ND	*	130 (/	31	No
Hexachloroethane		450000	130	39	D100 M
Nitrobenzen e	ND		130 ⁽⁾	21	r w
Isophorone	ND		130 ()	34	
2-Nitrophenol		1000	130	23	
2,4-Dimethylphenol	ND		130 UJ	34	
Benzoic Acid	ND		130 \ 🕽	14	
bis(2-Chloroethoxy)methane	ND		130	24	
2,4-Dichlorophenol	ND		130 🗸 🎵	9.4	
1,2,4-Trichlorobenzene		500	130	17	
Naphthalene		470	26	25	
4-Chloroaniline	ND		130()	20	
Hexachlorobutadiene		250000	130	28	D100 NV
4-Chloro-3-methylphenol	ND		130()()	39	• •
2-Methylnaphthalene		610	26	18	
Hexachlorocyclopentadiene	ND		130 ()	20	

Semivolatile Organics by USEPA Method 8270 data for 91315-15 continued...

	e e e e e e e e e e e e e e e e e e e	Result			
Analyte		(ug/kg)	PQL	MDL	
2,4,6-Trichlorophenol	, ND		130	17	
2,4,5-Trichlorophenol	ND	,	130 5	17	
2-Chloronaphthalene	ND		26	11	
2-Nitroaniline	ND		130	42	•
Dimethylphthalate	ND		130 🎶	41	
Acenaphthylene		69	26	10	
2,6-Dinitrotoluene	· ND		130 🗸	16	
3-Nitroaniline	ND		130 ()	14	
Acenaphthene		410	26	9.1	
2,4-Dinitrophenol	ND	·.	1304 5	31	
4-Nitrophenol	ND		130	32	
Dibenzofuran	q.	230	130	26	
2,4-Dinitrotoluene	ND		130 📿	23	
Diethylphthalate	ND		130	27	
4-Chlorophenylphenylether	ND	•	130 🎶	21	
Fluorene		510	26	10	
4-Nitroaniline	ND	•	1300	12	
4,6-Dinitro-2-methylphenol	ND		· 130 \ J	18	
N-Nitrosodiphenylamine	ND		130	9.6	
4-Bromophenylphenylether			130 ₩	18	
Hexachlorobenzene		1100 丁	130 3	33	
Pentachlorophenol	ND		130UJ	17.	
Phenanthrene		2300 ゴ	26	8.5	
Anthracene		560ゴ	26 . ,	13	-
Di-n-butylphthalate	ND		260()	160	-
Fluoranthene		16005	26	8.2	
Pyrene		1300 J	26	7.3	
Butylbenzylphthalate	ND	•	130 U	19	
3,3'-Dichlorobenzidine	ND	•	130 U	14	
Benzo(a)anthracene	,	380 5	26	8.2	
Chrysene		360	26	11	
bis(2-Ethylhexyl)phthalate		150()	130	39	BINA
Di-n-octylphthalate	ND		130 U	31	
Benzo(b)fluoranthene	,,,_	210 J	26	7.3	
Benzo(k)fluoranthene		69 (26	8.6	
Benzo(a)pyrene		260 1	26	11	
Indeno(1,2,3-cd)pyrene	ND	200	26 <i>()</i>	9.7	
Dibenz(a,h)anthracene	ND ND		26 \	6	
	ND		26	3.9	
Benzo(g,h,i)perylene	שאו		20 1	0.0	

MW 225-60

Note: This page is intentionally left blank.

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 . Tel: (206) 624-9537, Fax: (206) 621-9832

MEMORANDUM

DATE:

August 28, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-Chemist, E & E, Seattle, WA

THRU:

Leatta Dahlhoff, START-Chemist, E & E, Seattle, WA

SUBJ:

Organic Data Quality Assurance Review, Cleancare Corporation Site,

Tacoma, Washington

REF:

TDD: 00-01-0008

PAN: EA-08-01-RA-DM

The data quality assurance review of five solid samples collected from the Cleancare Corporation site located in Tacoma, Washington, has been completed. Analyses for Chlorinated Pesticides (EPA Method 8081) and/or Polychlorinated Biphenyls (EPA Method 8082) were performed by Sound Analytical Services, Inc., Tacoma, Washington.

The samples were numbered:

00020223 00020224

00020225

00020226 00020227

Data Qualifications:

Sample Holding Times: Acceptable. 1.

The samples were maintained at 4°C (± 2°C). The samples were collected on July 25, 2000, were extracted on July 27, 2000, and were analyzed on August 2, 2000, therefore meeting QC criteria of less than 14 days between collection and extraction and less than 40 days between extraction and analysis.

Instrument Performance: Acceptable. 2.

The surrogate retention time percent difference between the initial calibration standards and the remaining standards and samples was ≤ 0.3 % for capillary column analyses.

Initial and Continuing Calibration: Acceptable. 3.

All Relative Standard Deviations were less than 15% for the chlorinated pesticide initial calibration. All continuing calibration % differences (% D) were $\leq 15\%$ on the quantitation column and $\leq 20\%$ on the confirmation column.

4. Error Determination: Not Provided.

Samples necessary for bias and precision determination were not provided to the laboratory. All samples were flagged RND (Recovery Not Determined) and PND (Precision Not Determined), although the flags are not found on the Form I's.

5. Blanks: Acceptable.

A method blank was prepared at the required frequency of every time samples were extracted for each matrix and for each concentration level, or every 20 samples, whichever is greater, and for each analytical system. No target analytes were detected in any blanks.

6. Performance Evaluation Samples: Not Provided.

Performance evaluation samples were not provided to the laboratory.

7. System Monitoring Compounds (SMCs): Satisfactory.

All recoveries of the SMCs were within the control limits except in samples 00020225 (one high surrogate) and 00020227 (two high surrogates); associated positive results were qualified as estimated quantities (J).

8. Matrix and Blank Spikes: Acceptable.

Recoveries of all spiked analytes were within the appropriate control limits.

9. Duplicates: Satisfactory.

Relative Percent Differences (RPDs) of all blank spiked analytes were within the required control limits. All matrix spike duplicate results exceeded QC limits; no action was taken based on duplicate outliers alone.

10. Compound Identification: Acceptable.

All results were dual-column confirmed; positive results with differences between the columns greater than 25% were qualified as estimated quantities (J).

11. Target Compound Quantitation and Quantitation Limits: Acceptable.

Sample results and quantitation limits were correctly calculated. Sample 00020227 had elevated quantitation limits due to significant interfering peaks that could not be removed by sample clean-up techniques.

12. Laboratory Contact

No laboratory contact was required.

13. Overall Assessment

The overall usefulness of the data is based on the criteria outlined in the OSWER Guidance Document "Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan, and Data Validation Procedures" (EPA/540/G-90/004), the analytical methods, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review" (EPA 540/R-94/012). Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- U The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.
- J The associated numerical value is an estimated quantity because the reported concentrations were less than the sample quantitation limits or because quality control criteria limits were not met.

Environmental Quality Management, Inc. Client Name 00020223 Client ID: 91315-11 Lab ID: 7/25/00 Date Received: 7/27/00 Date Prepared: 8/2/00 Date Analyzed: 84.54 % Solids **Dilution Factor** 1

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	100		28	158
Decachlorobiphenyl	73.9		25	173

Sample results are on a dry weight basis.

•	,	Result	•	•	
Analyte		(ug/kg)	PQL	MDL	Flags
Aroclor 1016	ND		12	7.9	
Aroclor 1221	ND.		23	12	
Aroclor 1232	ND		. 12	7.7	
Aroclor 1242	ND		12	3.6	
Aroclor 1248	ND		12 V	2.8	
Aroclor 1254		430	12	3.8	CTIVIL
Aroclor 1260		190	12	3.9	.CHIW
Aldrin	ND	•	1.2	0.12	
alpha-BHC	· ND	•	1.2	0.16	
beta-BHC	ND		1.2	0.26	
delta-BHC	NĎ		1.2	0.15	
gamma-BHC (Lindane)	ND	•	1.2	0.22	
Chlordane (technical)	ND		12 V	8.1	21.
4,4'-DDD		110	2.3	0.14	etzen
4,4'-DDE	ND		2.3	0.16	_
4,4'-DDT		32 7	2.3	0.2 ⁻	æm/
Dieldrin	ND	•	2.3 🗸	0.28	
Endosulfan I	ND		1.2	0.17	
Endosulfan II	ND		2.3	0.34	
Endosulfan sulfate	ND		2.3	0.34	
Endrin	ND		2.3	0.36	
Endrin aldehyde	ND		2.3	0.43	
Heptachlor	ND		1.2	0.13	
Heptachlor epoxide	ND		1.2	0.21	•
Methoxychlor	ND		12	0.97	
Endrin ketone	ND		2.3	0.37	

Mw 9-28-00

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082 data for 91315-11 continued...

Result

Analyte (ug/kg) PQL MDL, Flags

Toxaphene ND 120 120

MW 22 00

Inc.

Client Name	Environmental Quality Management,
Client ID:	00020224
Lab ID:	91315-12
Date Received:	7/25/00
Date Prepared:	7/27/00
Date Analyzed:	8/2/00
% Solids	85.93
Dilution Factor	1

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082

•	•		Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	114		28	158
Decachlorobiphenyl	67.5		25	173

Sample results are on a dry weight basis.

		Result		•	
Analyte		(ug/kg)	PQL	MDL	Flags
Aroclor 1016	ND		11 V	7.7	,
Aroclor 1221	ND		23 \	11	•
Aroclor 1232	ND		11	7.5	
Aroclor 1242	ND		11	3.5	
Aroclor 1248	ND		11 V	2.8	
Aroclor 1254	•	300	. 11	3.7	et ank
Aroclor 1260		140	11,	3.8	Ctun
Aldrin	ND	•	1.10	0.11	
alpha-BHC	ND.		1.1	0.16	
beta-BHC	ND	•	1.1	0.26	
delta-BHC	ND		1.1	0.15	
gamma-BHC (Lindane)	ND		1.1	0.21	
Chlordane (technical)	ND		11	7.9	
4,4'-DDD		93	2.3	0.13	G1 M in
4,4'-DDE		42	2.3	0.16	-G1M4
4,4'-DDT		. 31	2.3	0.2	Ctun
Dieldrin	ND		2.3 🗸	0.28	
Endosulfan I	ND		1.1	0.17	• •
Endosulfan II	ND		2.3	0.34	
Endosulfan sulfate	ND		2.3	0.34	
Endrin	.ND		2.3	0.35	
Endrin aldehyde	ND		2.3	0.42	
Heptachlor	ND		1.1	0.13	•
Heptachlor epoxide	ND		1.1	0.2	
Methoxychlor	ND		11 (0.95	
Endrin ketone	ND.		2.3 1	0.37	

MW & 28-00

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082 data for 91315-12 continued...

Result
Analyte (ug/kg) PQL MDL Flags
Toxaphene ND 110 14

29

Client Name	Enviror	nmental Quality Managem	ent, Inc.
Client ID:		00020225	. •
Lab ID:		91315-13	
Date Received:		3/25/00	
Date Prepared:		::-7/27/00	•.
Date Analyzed:	<u> </u>	8/2/00	
% Solids		81.45	
Dilution Factor		· 1	

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Tetrachloro-m-xylene	175	X9	28 ⁻	158
Decachlorobiphenyl	69.8		25	173

Sample results are on a dry weight basis.

			Result		PQL .	MDL	Flags
Analyte			ug/kg)		120	7.9	riays
Aroclor 1016	in the second	ND					
Aroclor 1221	**	ND		•.	23]	12	
Aroclor 1232		ND			12	7.7	
Aroclor 1242		ND	٠		12	3.6	
Aroclor 1248	•	ND			12 V	2.9	
Aroclor 1254				420	12	3.8	eta-
Aroclor 1260				210 🕇	12,,	3.9	Stow
Aldrin	,	ND			1.20	0.12	•
alpha-BHC		ND			1.2	0.16	
beta-BHC		ND			1.2	0.26	
delta-BHC	4	ND			1.2	0.15	
gamma-BHC (Lindane)		ND -			1.2	0.22	
Chlordane (technical)		ND	•		12₩	8.1	·
4,4'-DDD				48 J	2.3	0.14	etion
4,4'-DDE				19 J	2.3	0.16	€1 _u
4,4'-DDT		ND			2.3 🗘	0.2	
Dieldrin		ND			2.3	0.28	
Endosulfan I		ND			1.2	0.17	
Endosulfan II	•	ND			2.3	0.34	
Endosulfan sulfate		ND		. •	2.3	0.34	
Endrin		ND			2.3	0.36	
Endrin aldehyde		ND			2.3	0.43	
Heptachlor		ND			1.2	0.13	
Heptachlor epoxide	1	ND	•		1.2	0.21	
Methoxychlor	i	ND			12	0.97	
Endrin ketone		ND			2.3 √	0.37	•

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082 data for 91315-13 continued...

Analyte Analyte (ug/kg) PQL MDL Flags
Toxaphene ND 120 14

MW 97860

ાત્રકારી ગુજીસ્ટ

Environmental Quality Management, Inc. Client Name Client ID: 00020226 Lab ID: 91315-14 Date Received: 7/25/00 Date Prepared: 7/27/00 Date Analyzed: 8/2/00 % Solids 85.66 **Dilution Factor** 1

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082

		•	Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Tetrachloro-m-xylene	78.2	J	28	158	
Decachlorobiphenyl	133		25	173	

Sample results are on a dry weight basis.

		Result			
Analyte		(ug/kg)	PQL 1.0	MDL	Flags
Aroclor 1016	ND		12/	7.9	
Aroclor 1221	ND	•	23	12	
Aroclor 1232	ND		12	7.7	•
Aroclor 1242	ND		12	3.6	
Aroclor 1248	ND		12 V	2.9	
Aroclor 1254		5800 ,	12	3.8	DC1 ₩√
Aroclor 1260		1500	12 ,	3.9	DC1 Tav
Aldrin	ND	•	1.2 V	0.12	
alpha-BHC	ND		1.2	0.16	
beta-BHC	ND	. •	1.2	0.26	
delta-BHC	ND		1.2	0.16	
gamma-BHC (Lindane)	ND	•	1.2	0.22	
Chlordane (technical)	ND	•	12	8.1	
4,4'-DDD	ND ND		2.3 √ ¹	0.14	
4,4'-DDE		110	2.3	0.16	CIME
4,4'-DDT		86 J	2.3	0.2	SZ Mu
Dieldrin	ND		2.3 🗸	0.28	
Endosulfan I	ND		1.2	0.17	
Endosulfan II	ND		2.3	0.34	
Endosulfan sulfate	ND		2.3	0.35	
Endrin	ND		2.3	0.36	
Endrin aldehyde	ND		2.3	0.43	
Heptachlor	ND		1.2	0.13	
Heptachlor epoxide	ND	•	1.2	0.21	
Methoxychlor	ND	•	12	0.97	
Endrin ketone	ND		2.3 √	0.38	

(MW J2500)

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082 data for 91315-14 continued...

Result

Analyte (ug/kg) PQL MDL Flags

Toxaphene ND 120 14

MW 1-26-00

Client Name	Environmental Quality Management, Inc.
Client ID:	00020227
Lab ID:	91315-15
Date Received:	7/25/00
Date Prepared:	7/27/00
Date Analyzed:	8/2/00
% Solids	63.01
Dilution Factor	1

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082

•	•		Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Tetrachloro-m-xylene	1850	X9	28	158	
Decachlorobiphenyl	4370	X9	25	173	

Sample results are on a dry weight basis.

		Result			
Analyte		(ug/kg)	PQL ()	MDL Flags	
Aroclor 1016	ND	(0 0,	15	11	
Aroclor 1221	ND		31	16	
Aroclor 1232	ND		15	10	
Aroclor 1242	ND		15 \	4.8	
Aroclor 1248	ND		15	3.8	
Aroclor 1254	ND	•	15	5	
Aroclor 1260	ND		15	5.2	
Aldrin	ND		400	0.16	
alpha-BHC	ND		60	0.22	
beta-BHC	ND		800	0.35	
delta-BHC	ND		700	0.21	
gamma-BHC (Lindane)	ND		525	0.29	
Chlordane (technical)	ND		525	11	
4,4'-DDD	ND		150	0.18	
4,4'-DDE	ND		50	0.22	
4,4'-DDT	ND		600	0.27	
Dieldrin	ND		50	0.38	
Endosulfan I	ND		100	0.23	
Endosulfan II	ND		100	0.46	
Endosulfan sulfate	ND		1500	0.46	
Endrin	ND		100	0.48	
Endrin aldehyde	ND		1000	0.57	
Heptachlor	ND		1000	0.17	
Heptachlor epoxide	ND		50	0.28	
Methoxychlor	ND		5000	1.3	
Endrin ketone	ND		1500	0.5	

MN 8-12-00

Organochlorine Pesticides and PCBs by USEPA Methods 8081A/8082 data for 91315-15 continued...

Analyte (ug/kg) PQL MDL Flags
Toxaphene ND 1500 19

Mw Jebo

ecology and environment, inc.

International Specialists in the Environment

1500 First Interstate Center, 999 Third Avenue Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832 MEMORANDUM

*nn nn:1 -3

DATE:

August 28, 2000

TO:

Charlie Gregory, Project Manager, E & E, Seattle, WA

FROM:

Mark Woodke, START-Chemist, E & E, Seattle, WA

THRU:

Leatta Dahlhoff, START-Chemist, E & E, Seattle, WA.

SUBJ:

Inorganic Data Quality Assurance Review, Cleancare Corporation Site,

Tacoma, Washington

REF:

TDD: 00-01-0008

PAN: EA-08-01-RA-DM

The data quality assurance review of five solid samples collected from the Cleancare Corporation site in Tacoma, Washington, has been completed. Target Analyte List (TAL) inorganic element analyses (EPA Methods 6010 and 7471) were performed by Sound Analytical Services, Inc., Tacoma, Washington.

The samples were numbered: 00020223 00020224 00020225 00020226 00020227

Data Qualifications:

1. Sample Holding Times: Acceptable.

The samples were maintained at $4^{\circ}C$ ($\pm 2^{\circ}C$). The samples were collected on July 25, 2000, and were analyzed by July 31, 2000, therefore meeting QC criteria of less than 6 months (28 days for mercury) between collection and analysis.

2. Initial and Continuing Calibration: Satisfactory.

A minimum of one calibration standard and a blank were analyzed at the beginning of the ICP analysis sequence and after every 10 samples. No sample results were greater than 110 % of the highest calibration standard. All ICP recoveries were within the QC limits of 90% to 110% except manganese (112.9%) in the initial calibration verification; associated positive results were qualified as estimated quantities (J). All AA recoveries were within the QC limits of 80% to 120%.

3. Blanks: Satisfactory.

A preparation blank was analyzed for each 20 samples or per matrix per concentration level. Blanks were analyzed after each Initial or Continuing Calibration Verification. The following elements were detected in calibration and/or preparation blanks:

Calibration	Element	Concentration (ug/L)
ICB	Aluminum	-20.3
	Cobalt	1.0
	Lead	4.7
	Nickel	1.8
·	Potassium	122.7
	Sodium	-145.8
	Thallium	33.8
CCB1	Arsenic	22.5
	Manganese	3.4
CCB2	Arsenic	-22.1
· · ·	Copper	-2.1
	Iron	-26.7
	Selenium	-33.8
	Thallium	-19.4
	Vanadium	-1.0
	Zinc	-14.5
CCB3	Antimony	4.6
	Cobalt	-1.4
D. Takid Cultural Principle	Nickel	-1.4

ICB - Initial Calibration Blank

CCB - Continuing Calibration Blank

Associated sample results were qualified as not detected (U) if the sample result was less than five times the blank concentration. Associated sample results were qualified as estimated quantities (J) if the sample result was less than five times the absolute value of the negative blank concentration.

4. ICP Interference Check Sample: Acceptable.

An Interference Check Sample (ICS) was analyzed at the beginning and end of each sequence or at least twice every 8 hours, whichever was more frequent. All ICS (solution AB) results were within QC limits of 80% - 120% recovery.

5. Precision and Bias Determination: Not Performed.

Samples necessary to determine precision and bias were not provided to the laboratory. All results were flagged "PND" (Precision Not Determined) and "RND" (Recovery Not Determined), although the flags do not appear on the data sheets.

6. Performance Evaluation Sample Analysis: Not Provided.

Performance evaluation samples were not provided to the laboratory.

Client Name	-	- 1	Environmental	Quality Mana	agement, Inc.
Client ID: Lab ID:			· ·	00020223 91315-11	
Date Received:				7/25/00	
Date Prepared:				7/28/00	Same of the same o
Date Analyzed:				7/31/00	
Dilution Factor	5 - 11	.5*		1	
% Solids	¥*	. • •	1.4000	84.54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

e and the second second second second second				
	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Arsenic	69 5	3.4	1.1	B2 The
Aluminum	9400	46	1.6	حمرا ا
Antimony	23	11	0.48	
Barium	270 I	1.1	0.16	_
Beryllium	0.18J	0.46	0.12	SMW
Cadmium	16 ブ	1.1	0.16	
Calcium	26000	110	15	
Chromium	92	2.3	0.36	•
Cobalt	12	1.1	0.15	
Copper	200 5	2.3	0.21	•
Iron Agent A	74000	23	0.99	
Lead	500	2.3	0.73	
Magnesium	12000	110	_. 11	
Manganese	590 J	1.1	0.15	
Nickel	67	9.1	0.17	
Potassium	1100 5	570	9.9	-
Selenium	11 5	11	1.5	MAN
Silver N		2.3	0.77	
Sodium	820	570	28	
Thallium NI		2.3//	1.6	
Vanadium	250	1.1	0.13	
Zinc	1500 3	2.3	0.1	

7. ICP Serial Dilution: Satisfactory.

A serial dilution analysis was performed per matrix per concentration or per sample delivery group, whichever was more frequent. All serial dilution results were within QC limits except for arsenic, cadmium, copper, and potassium. The results for these elements were qualified as estimated quantities (J or UJ).

7. Matrix Spike Analysis: Satisfactory.

A matrix spike analysis was performed per SDG or per matrix per concentration level, whichever was more frequent. Spike recoveries were within the QC limits of 75 % to 125 % except cadmium, copper, lead, magnesium, and manganese, each with a high recovery. Associated positive results were qualified as estimated quantities (J).

8. Duplicate Analysis: Satisfactory.

A duplicate analysis was performed per SDG or per matrix per concentration level, whichever was more frequent. All duplicate results were within QC limits, except arsenic, barium, lead, and zinc; associated sample results were qualified as estimated quantities (J or UJ).

9. Laboratory Control Sample Analysis: Acceptable.

A Laboratory Control Sample (LCS) was analyzed per SDG per matrix. All LCS results were within QC limits.

10. Overall Assessment of Data for Use

The overall usefulness of the data is based on the criteria outlined in the OSWER Guidance Document "Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan, and Data Validation Procedures" (EPA/540/G-90/004), the analytical methods, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" (EPA 540/R-94/013). Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- U The material was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.
- J The associated numerical value is an estimated quantity because the reported concentrations were less than the practical quantitation limits or because quality control criteria limits were not met.
- UJ The material was analyzed for, but not detected. The reported detection limit is estimated because Quality Control criteria were not met.

Client Name	Environmental Quality Management, Inc.		
Client ID:	00020224		
Lab ID:	91315-12		
Date Received:	7/25/00		
Date Prepared: (1992)	7/28/00		
Date Analyzed:	7/31/00		
Dilution Factor	1 3.5		
% Solids	85.93		

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

	Res	sult		•	•
Analyte	(mg	/kg)	PQL	MDL	Flags
Arsenic		75 J	3	0.97	BZAV
Aluminum		5300	40	1.4	
Antimony	•	14	10	0.42	
Barium		150 👉	1	0.14	
Beryllium	ND		0.4()	0.1	
Cadmium		7.9	1	0.14	
Calcium		13000	100	13	
Chromium		43	2	0.32	
Cobalt		8.2	1	0.13	
Copper		190 ゴ	2	0.18	
Iron		42000	20	0.87	•
Lead		300	2	0.64	
Magnesium		5200 J	100	9.4	
Manganese		270 J	1	0.13	
Nickel		50	8	0.15	
Potassium		570 5	500	8.7	
Selenium		13 J	10	1.3	
	ND		2 (0.67	
Sodium		790	500	24	
	ND		2UT	1.4	
Vanadium		140	1	0.11	
Zinc		860 ()	2	0.09	

Client Name **Environmental Quality Management, Inc.** Client ID: 00020223 Lab ID: 91315-11 **Date Received:** 7/25/00 Date Prepared: 7/28/00 Date Analyzed: 7/28/00 **Dilution Factor** 1 % Solids 84.54

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

Result
Analyte (mg/kg) PQL MDL Flags
Mercury 1.4 0.042 0.028

MW 87800

Client Name	Environmental Quality Management, Inc.
Client ID:	00020224
Lab ID:	91315-12
Date Received:	7/25/00
Date Prepared:	7/28/00
Date Analyzed:	7/28/00
Dilution Factor	The second of th
% Solids	85.93

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

		Result galactic			
Analyte 1773	* ** ** ** ** ** ** ** ** ** ** ** ** *	(mg/kg)	PQL	MDL	Flags
Mercury		0.37	0.044	0.029	

MV 82800

Client Name		Environmental Quality Management, Inc	C.
Client ID:	•	00020225	
Lab ID:	sat.	91315-13	
Date Received:		7/25/00	
Date Prepared:		7/28/00 to the second	
Date Analyzed:	:	7/31/00 (Additional Dept.)	
Dilution Factor		1 10000	•
% Solids	• •	81.45	

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

	3113 t		Result 16.299			
Analyte	And the state of t		(mg/kg)	PQL	MDL	Flags
Arsenic	•		± 160 J	2.9	0.94	B2 Au
Aluminum	•		5900	39	1.4	
Antimony			46	9.7	0.41	
Barium		•	210	0.97	0.14	
Beryllium		ND		0.39(_)	0.099	
Cadmium		•	32 丁	0.97	0.14	
Calcium			43000	97	13	
Chromium			140	1.9	0.31	
Cobalt			12	0.97	0.13	
Copper			780 丁	1.9	0.18	
Iron			140000	19	0.85	
Lead	•		720	1.9	0.62	
Magnesium			6100 J	97	9.1	
Manganese			890 J	0.97	0.13	
Nickel			110	7.8	0.14	
Potassium			640 3	480	8.4	_
Selenium			9 🖰	9.7	1.3	MAIS
Silver		ND		1.9 ∪	0.65	
Sodium			1500	480	24	
Thallium		ND		1.9	1.4	
Vanadium			680	0.97	0.11	
Zinc			1700 5	1.9	0.087	

Client Name **Environmental Quality Management, Inc.** 00020225 Client ID: Lab ID: 91315-13 Date Received: 7/25/00 Date Prepared: 7/28/00 Date Analyzed: 7/28/00 **Dilution Factor** 20 81.45 % Solids

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

		Result 1998		
Analyte	- 19 - 19	(mg/kg) 💯 💮	PQL	MDL Flags
Mercury		12	0.87	0.57

MW DE Coo

Client Name	Environmental Quality Management, Inc
Client ID:	00020226
Lab ID:	91315-14
Date Received:	7/25/00
Date Prepared:	7/28/00
Date Analyzed:	7/31/00
Dilution Factor	1 3
% Solids	85.66

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

			Result			
Analyte			(mg/kg)	PQL	MDL	Flags
Arsenic	. A.	9.08	10(1)	3	0.98	Blow
Aluminum			11000	41,	1.4	
Antimony		ND		10♥	0.43	
Barium			5005	1,	0.14	
Beryllium		ND		0.41 🗸	0.1	*
Cadmium			16 J	1	0.14	
Calcium			27000	100	13	
Chromium		•	53	2	0.32	
Cobalt	`		22	1	0.13	
Copper			150 丁	2	0.19	
iron			26000	20	0.88	
Lead		•	860 5	2	0.65	
Magnesium			15000 J	100	9.5	
Manganese			360 J	1	0.13	
Nickel			57	8.1	0.15	
Potassium		,	930 T	510,	8.8	
Selenium		ND		10 <i>U</i>)	1.3	
Silver		ND		2()	0.68	
Sodium		4	1200	510	25	
Thallium		ND		2(/)	1.4	
Vanadium			39	1	0.12	
Zinc			1100 丁	2	0.091	

Client Name Client ID:

Lab ID:

Date Received:
Date Prepared:
Date Analyzed:

Dilution Factor % Solids

Environmental Quality Management, Inc.

00020226

91315-14 7/25/00

7/28/00 7/28/00

0.0541 ...

1 85.66

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

Mercury

Result Analyte (mg/kg)

- 0

mg/kg) PQL MDL Flags 0.35 0.037 0.024

> MV Z-28-00

Client Name	Environmental Quality Management, Inc.
Client ID:	00020227
Lab ID:	91315-15
Date Received:	7/25/00
Date Prepared:	7/28/00
Date Analyzed:	7/31/00
Dilution Factor	
% Solids	63.01

Metals by ICP - USEPA Method 6010

Sample results are on a dry weight basis.

Quality (1985)			Result			
Analyte	en e		(mg/kg)	PQL	MDL	Flags
Arsenic			1905	4.2	1.4	-B1 Mu
Aluminum			13000	56	2	
Antimony		ND		14 ()	0.59	
Barium			370 丁	1.4	0.19	
Beryllium		ND		0.56 🗸	0.14	
Cadmium			5.4 ブ	1.4	0.2	
Calcium	. •		57000	140	18	
Chromium			62	2.8	0.44	
Cobalt			12	1.4	0.18	
Copper	-	•	99 J	2.8	0.25	
Iron			22000	28	1.2	
Lead			760 📐	2.8	0.89	
Magnesium		. •	9400 🗍	140	13	
Manganese			360 🕽	1.4	0.18	
Nickel			60	11	0.2	
Potassium			820 J	690	. 12	•
Selenium		ND	•	14 UJ	1.8	
Silver		ND		2.8 U	0.93	,
Sodium	.		300	690	34	ÁM
Thallium		ND		2.8UT	2	• •
Vanadium			71	1.4	0.16	
Zinc			1500 🗇	2.8	0.12	

Environmental Quality Management, Inc. Client Name 00020227 Client ID: 91315-15 Lab ID: 7/25/00 Date Received: 7/28/00 Date Prepared: Date Analyzed: 7/28/00 **Dilution Factor** 1 63.01 % Solids

Mercury by CVAA - USEPA Method 7471

Sample results are on a dry weight basis.

Result

Analyte (mg/kg) PQL MDL Flags

Mercury 1.5 0.061 0.04

949

Note: This page is intentionally left blank.

STARTCARD NO:	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A . Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: OUL HALL GEOLOGIST: BLIFA WITTCHURCH Ryan @
GPS NORTH: SAMPLE1 ID: SCO101-02-04 09:45 SAMPLE2 ID: SCO101-02-04 09:45	GPS EAST:

			Γ	
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIME	SAMPLE
(1.505)		OF LID	0945	
6-1	SP	SIN		
		T-10 (MM) III/ MIGHTIN		
	150	F-IN SAND WI ANGULAR		
0-2	1	F-IN SAND W/ ANGULAR MEMUNITOGRAPHEL; BLOWN	,5	
0		1108 SHAMO)	\bot	
	SPIRT	99-FW & PARK BROWN; PEATTY 5 PID SAND; LARGE FRAG OR MATTER INCL. WOOD CHIPS		-
10 36		E PUD SAMO: LAPGE FRAG PR	CARNIC	
12-33	FILL	MATTER LIVEL LUTTER CHIPS		
		AUTO FLUFF	1 1	
·	SPIN	LIME WASTE (LIME SOLVENT		
13/4		SLUDGE); SOFI SILTY TO GCLA	19	
1/2	3000 B	CONSISTENCY;	V	

Ecology & Environment, Inc. 2000

BGS = below ground surface
USCS = Unified Soil Classification System
Sample 1 and 2 to be field screened using TPH Test Kits

J = estimated value (value falls
below grantitation limit of
1000 ppm for test kit).

		NA 111			
BORING ID	NO.: <u>الله</u>	DRILL METHOD: Geo	probe		
STARTCAF	RD NO:	R 049151 DRILL FIRM: Ecology &		ent, Inc.	
GROUND ELEV: DRILLER: M. JENSEN					
INSTALLE		CONSULTING FIRM: E	cology & E	nvironment, Inc.	
GROUTED	: BENTO	NITE SAND PROF. ENGINEER:			
WATER EN	NCOUNTER	RED? Yes 6 GEOLOGIST: B. U.	HITCHU	ECH	
		R.O	•		
GPS NORT	ГН:	GPS EAST:	· · · · · · · · · · · · · · · · · · ·		
SAMPLE1	id: <u>500/</u>	102-00-02 1005 SAMPLE1 RESULT:	1150	ppM	
SAMPLE2	ID: <u>SCO/</u>	102-02-04 1010 SAMPLE2 RESULT: _	2710	ppm	
				y c	
	SOIL				
DEPTH	CLASS	SOIL DESCRIPTION	TIME	SAMPLE	
(FT BGS)	(USCS)			0/ uvii 2.2	
10 A	>r	GRANDLY SAND (DREDGE FILL); BEN;	10.00	300102-00-02	
		1 TINE TO MEDIUM SAND WI MED TO	(
		FINE TO MEDIUM SAND W/ MED TO COARSE LOOSE DRY GRAVEZ		1	
			 		
1-2-P		FID=9; PID= H			
	15P				
			*		
			<u> </u>		
2 2		DREDGE FILL; DRK BEN; SILLY 510	MOBI	500102-02-04	
2-3	Sr	CAMPALLY CANTO, WALET, MED DAVE	1 1	,	
		GRAMALY SAND; MOIST; MED. DENS	7 (
		FATALONIA MALADIANAPAR PIECES	\		
<u> </u>	 	0.64	+ / -		
3-4	SP	Ple	(
	1/1				
		(50% RECOVERY -2-4')			
L	F		1		
Ecology &	FUAILOUMS	nt, Inc. 2000			

BORING ID NO.: SCO103 STARTCARD NO: R 049151 GROUND ELEV: NSTALLED: GROUTED: SHOUTH SHOW WATER ENCOUNTERED? Yes 19	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HMCK/S GEOLOGIST: R. Whitehach
SAMPLE ID: 500/03-00-02 SAMPLE ID: 500/03-8404 -24	GPS EAST:

•					
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION		ME	SAMPLE
	100007	DEEDLEFILL. BRW. F-M SAND. 10050	10	18	SC0103-00-02
0-/	SP CON	DREDGEFILL; BRW; F-M SAND; LOUSE, DRY; W/F-M GRAVEL; SOME ROOTS			·
1-2		[FID=4, PID=1]			
-	CP	2 2 2 1 / Aug OF CORRSE GRANTON		,,	
2-3	SL VDGE	2-2.25 - LAYER OF CORRESE GLAVEL; 2:25 -3.5 - LIME WASTE; SILTY SA, CONSISTENCY; GEN-GRAY TO PINK; SO	20		
		CONSTITUTE GEN-GIVEN TO PINC; >C	me	-	
3-4	SCUD6	[FID = 420; PID = 36] MUTUFLUFF 3.5-4: WOOD WASTE; FLOE PLODUC (OIL) PLESENT; WOOD MIXED W/ SAMD			
	FILL	(OIL) PLESENT; WOOD MIXED W/ SAND	1	<u> </u>	

Ecology & Environment, Inc. 2000 CONS ISTENCY, DLK.BLN - BUK) BGS = below ground surface

HIGHEST HIGHEST WA / ODE USCS = Unified Soil Classification System

Sample 1 and 2 to be field screened using TPH Test Kits

Jzestimated value

BORING ID NO.: 300104	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151	DRILL FIRM: Ecology & Environment, Inc.
GROUND ELEV:	DRILLER: A. Jensen
INSTALLED:	CONSULTING FIRM: Ecology & Environment, Inc.
GROUTED: BENTON ITS SAMP	PROF. ENGINEER: C. IMPERIS
WATER ENCOUNTERED? Yes	GEOLOGIST: R. Whitchurch
GPS NORTH:	CDC EACT
	GPS EAST:
SAMPLE1 ID: <u>SCOID4</u> -02 /225	SAMPLE1 RESULT: 2710 ppm
SAMPLE2 ID: <u>SCO104 - 24</u> 1227	SAMPLE2 RESULT: 3020

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TI	ME	SAMPLE
0-1	(8/ 0	1-1.5- GRAVELY SAND	12:	20	
	,				
1-2	58/68	1.5-3 - WOOD WASTER DEBRIS			
				Ž	
2-3		F10=29 P10=12]			
	FILL	c SA			
3-4	SLVDGE	HEADLE SOLVENT ODOL (NO FID/PID)			
		1.100 militar			

Ecology & Environment, Inc. 2000

BORING ID	NO.: 5(010\$5	DRILL METHOD: Geopr	robe		
STARTCARD NO: R 049151 DRILL FIRM: Ecology & Environment, Inc.						
	GROUND ELEV: DRILLER: A. Jensen					
			CONSULTING FIRM: EO	ology &	Env	ironment, Inc.
GROUTED:	MBS:	BENTANTE POWDER	PROF. ENGINEER:	C. HA	CU.	<u> </u>
WATER EN	COUNTER	ED? Yes no	GEOLOGIST: R.Wh	itchur	<u>h</u>	
·						
		17	GPS EAST:			
GPS NORT	H: SCO	105-02 12 105-24 12	GPS EAST:	23	7.0	
SAMPLE1	D: V500	105-24	GPS EAST:	$\frac{3}{100}$	91	op Ni
SAMPLE2	D: <u>v</u>		SAMPLE2 RESULT:	101	,,,	Plain
UNDER	10-IN	CONC SLAB				
	SOIL					
DEPTH (FT BGS)	CLASS (USCS)	SOIL DESCRIPTION		TIME		SAMPLE
0-1	1555	0-2: FID+ PID > 500		1200)	
<i>U</i> 1		5	A Charles on a market	1		
	SM	SILTY SIND; GEN O	GLAY TO ORANGE BRN,	· \		
		DEFINITE ODOR; 2	"FREE PRODUCT; MILE			
		FINE GRAVEL	,			
1-2	۸۸					
	5 m		•		2	
		2-3 FIDE PID > 500]				
2-3	.776	Lame lament Domi				
	SLUTG	LIMB MASIC I KOPE	uct; BEN GRAY; DRY		1	
	ļ			++		
3-4	INA	NO RECOVERY (EUT	USAL)			
				V		

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOIDG STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BONTONITE SAND WATER ENCOUNTERED? (Pes) no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. Malls GEOLOGIST: R. Whitchmall
GPS NORTH: SAMPLE1 ID: SC0106 "02 1140 SAMPLE2 ID: SC0106 - 24 1143	SAMPLE2 RESULT: 21040 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION FID > 500, PID = 39/ 0-21.5-GLAVELY SAND 1.5-2.0-LARGE GRAVEL (VERY CONCSE)	1	ME 31	SAMPLE
1-2	59/69 GP			75	
2-3	SLUDGE				
3-4	SUITE	3.0 - PRODUCT ON SHOWH			

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO/O7 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BONTONING SAND WATER ENCOUNTERED? Yes no	A A LOUIS TIME FIRM FOR FOUR COMMENT INC
GPS NORTH: SAMPLE1 ID: 500107 - 02 SAMPLE2 ID: 500107 - 24	GPS EAST:

				$\neg \tau$	
DEPTH (ET BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	E	SAMPLE
(FT BGS)	(0000)	(1/2' OVERBULDEN; 9 IN (ONC SLAB)	1110	9	
61 0-1	5M	BELOW SLAB: SILTY SAND; GRN-GRAY. F-M SAND W/ 20% -30% SILT; MORST; SOME PREFEREDUCT VISIBLE; ODOR; SIME			
		FID+PID>500 GRAVEL			•
1-2	sm			<i>(</i> 2)	
2-3	FILL	2-31/2 VARIOUS PUBBLE + LNOOD BEBRK; RUBBLE APPEARS TO BE BRICK			
3-4	FILL				
	Diedse FILL	31/2:4 = SAND + SHOW FILL, BLACK STAIN/NG; POSSIBLE PRODUCY		1	

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOLO STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: BONDONIC SAND WATER ENCOUNTERED? Yes OD	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. ITMONIS GEOLOGIST: R. Whitzhurch
GPS NORTH: SAMPLE1 ID: <u>SCOIO8 - 02</u> SAMPLE2 ID: <u>SCOIO8 - 24</u>	1042 GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM		SAMPLE
0-1	sp.	DRESGE FILL, GRAVELLY SAINE; BRN; LOOSE; 5 6-2	104	-2	·
0-2		F10=13; P10=13]		.3	
2-3		2-3,5' GRAVELY SAND, GREEN-GRAY: F-111 SAND W/ FINE-COARSE GLAVEL; MEDIUM DENSE			
3-4	59/6W	FID > 500 P > 500] -3,5-4: WOOD WASTE, BEN TO BLACK; DILY REPORT PRODUCT; MINED WOOD W/ SAND			

Ecology & Environment, Inc. 2000

STARTCARD NO:	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C MORUS GEOLOGIST: R Whitelevel
GPS NORTH: SAMPLE1 ID: SCO109-02 [417] SAMPLE2 ID: SCO109-24 [419]	SAMPLE2 RESULT: PHT 2800 ppm SAMPLE2 RESULT: PTTT 3800 ppm

					
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION		ME	SAMPLE
0-i	SP	FID: 392 PID: 7500	A	25	
	SL UDGE	0-0,5 GRANZEN SAND			
1-2	15	0,5-3.9 6-1,ME ASH; SILT CLAY SIZE			
		THENCUS RANGE; WOOD FRAGING	V/3	,22	
2-3		F10:52 P10:56			
		3.9-4.0 - STAINED; ROOTS; FREE PRO	DUCT		
3-4		SAMO			
				1	
	FILL				

Ecology & Environment, Inc. 2000

DRILL METHOD: Geoprobe
DRILL FIRM: Ecology & Environment, Inc.
DRILLER:
CONSULTING FIRM: <u>Ecology & Environment, Inc.</u> PROF. ENGINEER: C. HARRIS,
GEOLOGIST: R. Whitehurch
GPS EAST:
SAMPLE1 RESULT: 1870 ppm
SAMPLE2 RESULT: 1820ppm SAMPLE2 RESULT: 12310ppm

DEPTH	SOIL		-		
(FT BGS)	(USCS)	SOIL DESCRIPTION	TIME		SAMPLE
0-1		FID: 3/ PID: 20	12	38	
	5/68	0-3 GRAVELLY SAND; ORANGE BROED	v;		
1-2				<i>2</i> 3	
	58/				
2-3	0	FID + PID > 500]			
	58/68				
3.4	SUDBE	3-3.75 -LIME WASTE LAYER			
	8	3.75-4.0 - WOOD DEBLUS MIXED U/ SAM	0		
	FILL	STATATED BLACK; MUST; PROS PRODUCT	V		

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOIL STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: GROUTED: YES GO WATER ENCOUNTERED? Yes (no)	DRILL METHOD: _Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER:
GPS NORTH: SAMPLE1 ID: SCO/// - 02 435 SAMPLE2 ID: SCO/// - 24 1430	GPS EAST:

DEPTH	SOIL	SOIL DESCRIPTION	TIME	SAMPLE
(FT BGS)	(USCS)	F10.75071D.7 500	1427	
0-1	58/68	710.12		
	/ 5	and and	1 1	
		Vr. 5 GIRMIELLY SHIVE		
	FTLL	U.S. GRANELLY SAND 0.5-1.0 WORD DEBLIS		
	 	1-2 LIME WASTE SILV SIZE OFF		
1-2		The wine wine		
	SUUDG	of the state of th		,5
		10 200		
2.3		F1D: 7500 P1D: 7500		
2.3		1 '		
	SM	2-4 BLACK SILTY SAWD SIZE		·
		WI WATER CHIPS - SMALL		
		BRICK PARTICLES, MEST SUL	And	
3-4		OKICK PARTICLES, MASSISSION SOLT	77	
	SM	I want of the Sull VIIIA		
	120			
1		2000		

Ecology & Environment, Inc. 2000

BORING ID NO.: <u>\$60/12</u>	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151	DRILL FIRM: Ecology & Environment, Inc.
GROUND ELEV:	DRILLER:
INSTALLED:	CONSULTING FIRM: Ecology & Environment, Inc.
GROUTED: <u>BENTONITE SPINO</u>	PROF. ENGINEER: <u>C. HAPPICIS</u>
WATER ENCOUNTERED? Yes 100	GEOLOGIST: R. Whitchurch
	ana 5.05
GPS NORTH:	GPS EAST:
SAMPLE1 ID: 5001/2-02 1495	SAMPLE1 RESULT: 1090 ppm
SAMPLE2 ID: 50/12 - 24 1959	SAMPLE2 RESULT: 17090 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIME	SAMPLE
0+1		FID > \$107 500	145	·
	3P	Med		
		0-2 MBD GRN SAND: MOUST: GRN		
1-2		O-Z MED GRN SANT): MOUST: GRN GRAY; FREE PRODUCT; STAINED		
	58			*
2-3	SLUDGE	F10+P10 7500	سيسر	
		2-7.5: SANG SICT STEED LIME WAS		
	5m/Fill	2.5-4 BLACK SILTY SAND W/ INTERBER	WED	
3-4		PLANT MATTER; SLIGHTLY WOIST; STANN, STRONG ODOR	NG;	
	SM/	STRONG ODDR		
	17,66		1	

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO1/3. STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: GLANUAR BONTONIE SAND WATER ENCOUNTERED? Yes no	DRILL METHOD: _Geoprobe DRILL FIRM: _Ecology & Environment, Inc. DRILLER: CONSULTING FIRM: _Ecology & Environment, Inc. PROF. ENGINEER:
GPS NORTH:	SAMPLE2 RESULT: 16720 ppm SAMPLE2 RESULT: 4810 ppm

				T	
DEPTH	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIME		SAMPLE
(FT BGS)		FID:>500 P1D:7500	150	4	
0-/	اک	I MA CROWN I MA CROWN'S MAKET	1		
		0-0.9 5 BROWN SAINS, FRE GRAIN MOIST	 		
	SP	0-0.5 - BREWN SHOW, FIM GRAIN, MOTSI			
1-2	Gul	1.0-1.5 WOOD DEELLS, PAR PRODUCT			
	///			*	
		SIDITED PID YEAR	 	1	
2-3		FID: 7500 PID: 7500			
	SLUDG	2.0-3.5 LIME WASTE; HEAVY FREE PROT	PUCT		
		7.0 3 .0			
	·	CHAIR STAND IN LANDON DEEL	2/5	1	
34	52 UDG	E 3.5-4.0 SILMY SAND WI WOOD DEBL MOIST; ODOREUS; STANDO			
	5M/FILL	T			
			'	V	
1		0000			

Ecology & Environment, Inc. 2000

BORING ID NO.:	DRILL METHOD: _Geoprobe
STARTCARD NO:	DRILL FIRM: Ecology & Environment, Inc. DRILLER:
GPS NORTH: SAMPLE1 ID: SCO114-02 16:26 SAMPLE2 ID: SCO114-D4 16:29	GPS EAST:SAMPLE1 RESULT:OVEY {anse}

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIN		SAMPLE
0-1		J. 2.0 GRAVELY SAND, F-M SANDWY F-M GLAVEL, BLOWN, DRY	16:	1	
1-2	59/69				
2-3	SLUDGE	FID: 370 PID: 214] 2.0-4.0 LIME WASTE LAYER! SILTY TO FINE SAND CONSISTENCY			
3-4	SUDGE			1	

Ecology & Environment, Inc. 2000

BORING ID NO.:	DRILL METHOD: Geoprobe
STARTCARD NO:R 049151 GROUND ELEV: INSTALLED:	DRILL FIRM: <u>Ecology & Environment, Inc.</u> DRILLER: CONSULTING FIRM: <u>Ecology & Environment, Inc.</u>
GROUTED: SENTOVITE SAND WATER ENCOUNTERED? (es) no	GEOLOGIST: C. Whitchwall
GPS NORTH: SAMPLE1 ID: SCO115-02 1657 SAMPLE2 ID: 5001/5-24 1701	SAMPLE2 RESULT: 2660 pm SAMPLE2 RESULT: 2580 pm

DEPTH	SOIL CLASS		*15.4		CANADIE
(FT BGS)	(USCS)	SOIL DESCRIPTION	TIM		SAMPLE
6-1	,	F10:386 P10:125	169	18	
	SM/GP	FID:386 PID:125 O-2 SILTY F-C SAND W/ SILTY TO		·	·
		TOPPLSE PEBBLES: STAINING			·
1-2					
	5m/sp			<i>2</i> 2	
2-3	LUDGE	FID= PID: > 500			
		2.2.5 LIME WASKE; PRODUCT			
	FILL		<u> </u>		
3-4		2.5-4.0 (C25, WOOD WASTE) SILTY SAMO; F. M; FREE PROPURS SOME B PEBBLES.			
	FILL	SILM SAMO; F-M; FREE 1800UG	5		
		Some & PEBBLES.		A _	<u> </u>

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO//G STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: YES; BENTONIE SAND	DRILL METHOD: _Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: GEOLOGIST: R. Wh.; + church
GPS NORTH: SAMPLE1 ID: SCOILS OF NOT COLLECT	GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TI	IME	SAMPLE
0-1	sm/sp	F10: 7500 P11): 7500 0-1.5 GRAVELY SILLY SANO;	M	707	
			:		
1-2	5m/68 5wall	1.5-2.0 21ME WASTE LAYER SILTY-FINE SAND CONSISTENCY. (BRICK FREDGMONB @ 2.0)			
2-3		RETUSAL 2-4 SUSPECTED CONC @ 2.0			
3.4	NK		A		

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO117 STARTCARD NO: R 049151 GROUND ELEV: T 18 00 GROUTED: STAND 7 15 00 WATER ENCOUNTERED? Yes	DRILL METHOD: _Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER:
GPS NORTH:	GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM		SAMPLE
0-1	58/68	FID=214 PID=37 U-2 GOBBLY +SAND; GRAY; OLY;			
1-2	8/60			*	
2-3	SLUPGE	F107500; P107500 2-3 LIME ASH LANGE			
3-4	FILL	3-4 COBBLY SILTY SAND W/ INDUSTRIAL + WOOD DEBILS; HATOFLUFF; BLACE SLIGHTLY MOIST.	K		

Ecology & Environment, Inc. 2000

BORING ID	NO.: <u>SC</u>	10110		DRILL METHO	DD: <u>Geop</u>	robe	nyday nyda danja manada i ny	•	
		R 049151	· .	DRILL FIRM:	Ecology'&	Enviror	<u>ment, i</u>	nc.	
GROUND E				DRILLER:					- ′
INSTALLED	: 8001	19		CONSULTING					
GROUTED:	SUM	BENITH!	TE SAMO	PROF. ENGI	NEER:		MIS	·	•
		RED? YES n	0	GEOLOGIST	:	Wh	tch	rch_	-
GPS NORT	TH:	·,	· · · · · · · · · · · · · · · · · · ·	GPS EAST:					_
SAMPLE1	ID: SC	0118-02	1530	SAMPLE1 RE	ESULT: _6	500	ppn	·	
SAMPLE2	ID: 500	118 -24	1534	SAMPLE2 RI	ESULT:	1699	Oppor	<u>~</u>	
DEPTH	SOIL CLASS								
(FT BGS)	(USCS)	SOIL DESCRI	PTION		· · · · · · · · · · · · · · · · · · ·	TIM		SAMPLE	{
0-1		FID 2500	PID: 7500			152	0		
,	1	DEGINEN	SIETY SI	AND; DACK	GRANI	[
0-1.5	mas	51.16HTLU	MOST: ODO	e; steanger	MANT				
	S. 10.	other PA	us of sm	AND; NACH E: STRONGER	<u>. </u>	1			
1-2	-1/28	1.5-3.0	F-M SA	W, GREEN	ISH GPA	1			
	37.10	-	SIME WOS	DO MAT'L O	MINE	3.0			
	ا م			MOTST; ST			,#P		
	SP		1191BLE]			
2-3		FID:>500 P	10: 2900						
	1,0								
	51								
				O (U/SAND 7) SANULA PE ABOVE)		1-1	-		
7 1		F-M BL	ACK SAMTI) (u/SAN)	O SIZE				
12-4		BPICK) F	PAGMINIZ	7 SATURA	MED			·	
	158	Pumili	IN IMIE	DE MANEY	i = 🗲	1 1			
		TEODU OF	IN my CI	ן שישטיו -		14			

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOLIG STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: S GROUTED: FONTOWINE SAND WATER ENCOUNTERED? (199) no	DRILL METHOD: _Geoprobe DRILL FIRM: _Ecology & Environment, Inc. DRILLER:			
GPS NORTH: SAMPLE1 ID: SCOIB-02 115 SAMPLE2 ID: SCOIB-24 1135	GPS EAST:			

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIME	SAMPLE
0-1		FID 23 PID 36	1106	
	51/60	GRAVALY SAND; DRY BEOUN		
1-2			Y	
	SP / BP	V		
2-3	SLUBGE	PID > 500 FID > 500 2-4.0 LIME WASK INTOL MIXED W/ AUTO	1132	•
3-4	SUNGE	FULFF, WOSD FRAGMENTS, DEBUS		
4-05.	5 FILL	C 5,5 - WOOD WHERE IN SAMO W/	1	

Ecology & Environment, Inc. 2000 Red PROUIT

BORING ID NO.: <u>SCOIZ</u>	DRILL METHOD: Geoprobe				
STARTCARD NO: R 049151	DRILL FIRM: Ecology & Environment, Inc.				
GROUND ELEV:	DRILLER:				
INSTALLED: GROUTED: BENTONITE SAND (BOTH WATER ENCOUNTERED? Yes 6 HOLES.)	CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: UHICHULCH GEOLOGIST: L WHITCHULCH				
	GPS EAST:				
GPS NORTH:	SAMPLET RESULT: 400 par J				
SAMPLE2 ID: \$20/20 -24 017	SAMPLE2 RESULT: 400 ppm J SAMPLE2 RESULT: 1690 ppm				

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	1E	SAMPLE
0-1	·	FID: >500 P10:>500	101	0	
	sf	0-2 F-M SAND; DEV: W/PCBBLES;			
1-2					
	SP	•		į	•
2-3		F10:78 P10. 788 92 64			
	FILL	2-4; SONE SILT; SAM); AUTOFEUFF, EUBBLE			
3-4					
	FILL				

Ecology & Environment, Inc. 2000

BORING ID NO.:	DRILL METHOD: Geoprobe
STARTCARD NO:	DRILL FIRM: Ecology & Environment, Inc. DRILLER: CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HIRCHS GEOLOGIST: R. WHITCHURCH
GPS NORTH: SAMPLE1 ID: 500/2/-02 09/2 SAMPLE2 ID: 500/2/-24 09/6	GPS EAST:

DEPTH	SOIL	SOIL DESCRIPTION	TI	ME	SAMPLE
(FT BGS)	(USCS)	FID+ 170 7500	09	04	
	sm/68	0-2 GRATTUY SILTY SAND: MOIST; NOTICEABLE ODER, NO STAININ	Ýģ		
1-2	5m/68			,5	
2-3	FILL	FID+PID>500 2-4: VARIOUS INVERS OF AUTOFLUTT, WOUDD, BLICK, FIRE BLICK, SILLYNY MOIST			
3-4	Fill			V	

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO122 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: ROMAN CENTRAL	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HARRIS
GROUTED: BENTONIE SAND WATER ENCOUNTERED? Yes 66	GPS EAST:
SAMPLE2 ID: SCO122-02 0853 SAMPLE2 ID: SCO122-74 0857	SAMPLE1 RESULT: 600 ppm J SAMPLE2 RESULT: 130 3 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIP	ΛE	SAMPLE
0-1		FID. 4900 PIDS 7 500	08	19	
1-2	3 60	0-2 GENERLY SILTY SAND GEN TO BESTUN; SOME COBBLES,			
	KM/ KP			,32	
2-3	SLUDGE	FID: 1500 PID: 7500 2-25: LIME WASTE LAYER 2.5-4: VACIOUS SILTY SAND BASED			
3-4	File	FILL; BRICK; WIRL; WOOD DEBRIS			
			<u>'</u>	<u> </u>	

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J=estimate value

BORING ID NO.: SCO123 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BENTON ITE SAND WATER ENCOUNTERED? Yes 160	CONSULTING FIRM: Ecology & Environment, Inc.
GPS NORTH:	GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIN		SAMPLE
0-1	5M	PID: 7500 PID: 7500 D- 1.5 - F-M SILTY SAND; MOIST; W/ SOME PEBBLES;	1		
1-2	5M	1.5 - Z VERN SILM SAND W/ ORG. MATTER (IE WOOD FRAGNIENTS)		*	,
2-3	SLUDGE	FID: 1500 PID: 7500 2-3 LIME WASTE LAYOR, SILI TO VF SAND CONSISTENCY			
3.4	NK	(NO Recovery)			

Ecology & Environment, Inc. 2000

BGS = below ground surface
USCS = Unified Soil Classification System
Sample 1 and 2 to be field screened using TPH Test Kits

J=estimated value

DRILL METHOD: Geoprobe
DRILL FIRM: Ecology & Environment, Inc.
DRILLER: A. Jensen
CONSULTING FIRM: <u>Ecology & Environment, Inc.</u>
PROF. ENGINEER: <u>C. HRCRUS</u>
GEOLOGIST: <u>K. WHITHURCH</u>
GPS EAST:
SAMPLE1 RESULT: 2420 ppm
SAMPLE2 RESULT: 1910ppm

DEPTH	SOIL CLASS				
(FT BGS)	(USCS)	SOIL DESCRIPTION	TIN	ΛE	SAMPLE
	. 0	FID: 74 PID: 6 OBBLY SA FINE MED TO COBBLY SA FINE MED TO COBBLY SA	104	18	
	51/GP	0-1- GLAVELLY SAND TO COBBLY SA FINE TO MED SAND; SOME AUTOFLUFF; SOME WOOD DEBLIS 1.0-1.25 GLAVEZ			
1-2	68/68	-1.25-2.0 WOOD WASTE; MOISTE;			·
	FILL			,5	
2-3		F10:7500 P10:7500			
	FILL				
3-4					
	FILL	C 4.0 WIND WASTE W/ FREE PRODUCT	1	7	

Ecology & Environment, Inc. 2000

BORING ID NO.: <u>\$CO/25</u>	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BENTON ITE SAND 1033 WATER ENCOUNTERED? Yes Ro	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HARRIS GEOLOGIST: R. WHICHOLCH
GPS NORTH: SAMPLE1 ID: 500/25-02 1035 SAMPLE2 ID: 500/25-24 1039	GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	+	IME .	SAMPLE
a l		FID: 3500 PID: 81	/	031	
		0-1.5: GLAVELY SAND; FAT SAND SOME LAKGE PEBBLES			
l .	5P/6P	15-40 WASTE DEBLIS- STAINED,			
	FILL				
2-3		F10: >500 P10: >500			
	FILL				
3-4	Fai				
			\	/	

Ecology & Environment, Inc. 2000

BORING ID NO.: <u>SCO /26</u>	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BOTONITE SAND WATER ENCOUNTERED? Yes 16	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HARRIS GEOLOGIST: R. WHITCHURUH
GPS NORTH: SAMPLE1 ID: 5C0/26 - 02 0936 SAMPLE2 ID: 5C0/26 - 24 0934	SAMPLE2 RESULT: UVEN range

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIME	SAMPLE	
0-1		FID: 170 PID: 59	0930	9	
		FIO: 170 PID: 59 0-1: OPOCRIS; CLANCY SITY GARRIED SYMD: VIRY SCIGHTLY MOSST BLN + GERY			
1-2	6°/5m	1-4 SICY SAND TO GRAVER, ANTOFILIFF, PUBBLE, BLANT DEBLK, POSSIBLE FLEE PRODUCT IN FORM OF HEAVICHAIN/ HIDLOUTH, FID: 7500 PID: 7500	BAS		
2-3	GP/sm	FID: 7500 PID: 7508			
3-4	sp/sm				

Ecology & Environment, Inc. 2000

	CLEAN CAILL GO			
STARTCARD NO: GROUND ELEV: INSTALLED: GROUTED:	CO/27 R 049151 JITE SAND ED? Yes (10)	DRILL METHOD: _Geo DRILL FIRM: Ecology & DRILLER:A CONSULTING FIRM: E PROF. ENGINEER: B GEOLOGIST: B	& Environment, Serser Ecology & Envi C HMRRIS	ronment, Inc.
5/	0/27-02 0835	GPS EAST:SAMPLE1 RESULT: _ SAMPLE2 RESULT: _	16 590 p	20) 13990 om
DEPTH CLASS (USCS)	SOIL DESCRIPTION FID: 1500 PID: 7500 6-2 F-m SAND: GA		71ME 0831	SAMPLE

	0011				
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TH		SAMPLE
Ø-1	100001	FID: 7500 PID: 7500	083	37	
	50	0-2 F-M SAND; GLEBN TO GRAY; GOOR NO FREE PRODUCT; MUST		-	
1-2					
	5P			*	
2-3		FID: 7500 PID: 7500			
	FILL	2-4: VARIOSIS FILLS; WOOD LHIPS; LIME LAYER; HAPPAIREM SHEELHASH; FIRE BRIC	.4		
3-4					,
	FILL				
	1				1

Ecology & Environment, Inc. 2000

BORING ID NO.: 500/28	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151	DRILL FIRM: Ecology & Environment, Inc.
GROUND ELEV:	DRILLER: 4. Jensen
INSTALLED:	CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HMRAS GEOLOGIST: 13. UHITCHURCH
GPS NORTH: SAMPLE1 ID: \$\frac{5C0/28-02}{8C0/28-02.24} \frac{0822}{0822}\$	GPS EAST: SAMPLE1 RESULT: 1850ppm SAMPLE2 RESULT: over range

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TII	ME	SAMPLE
0-1		AD: 208 PID: 120	08	08	
	SP	0-2: DRETGEFILL MATERIAL; ORY; BEN; F-A SAND W/ GRAVEL	-		
1-2					
	SP			ē	
2-3		FID: 7500PID: 7500			
	Fiu	2-4: SILTY SAMP W/ AUTOFULFF; SONIE WOOD + BUCK DEBLIS ; BLACK			
3-4	Fic				

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOZOI STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: FORMULE SAND 1350 WATER ENCOUNTERED? Yes 165	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A . Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: J. MALLIS GEOLOGIST: WHITCHURCH
GPS NORTH: SAMPLE1 ID: SCOZO1 - 02 - 1350 SAMPLE2 ID: SCOZO1 - 24 - 1350	SAMPLE1 RESULT: 1420 ppm SAMPLE2 RESULT: 6250 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIN		SAMPLE
1		SOIL DESCRIPTION FID. 7 PID: 20 SAME GRAVELY SAND			,
2.5-35 3,75-4.0	FILL	SILTY SAND W/ WOOD WASTE SUSPECTED FIRE BRICK (PINK) (3.75) WOOD WASTE;		,	
		F10:142 P10: 135			

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO202 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: PENTONIE (415 - 1359) WATER ENCOUNTERED? Yes no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C HAPPY GEOLOGIST: R - WHIT CHURCH
GPS NORTH: SAMPLE1 ID: SCO267 -02 1407 SAMPLE2 ID: SCO267 -24 1407	GPS EAST: SAMPLE1 RESULT: 290 ppm J SAMPLE2 RESULT: 160 ppm J

			1			
	DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	1E	SAMPLE
	6-2	58/5RP	FIDA 49 PID: 44 GLANDLY SAMO;	140	80	
,	2-3		GRAVELY SANDY SILT; MOISTE	Regulte		ñ
*	3-4	FILL	FO: 64 PIO: 12] WOOD WASTE; AUTOFUFF; UST & 3.75			
	(igns (*	V	The said

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO263 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BANTONITE SAND WATER ENCOUNTERED? AGO TO THE SAND	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A , Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C- (HAZRIS GEOLOGIST: R WHITCHURCH
GPS NORTH: SAMPLE1 ID: SC0203-02 1423 SAMPLE2 ID: SC0203-24 1423	SAMPLE2 RESULT: 480ppm J SAMPLE2 RESULT: 480ppm J

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	
0-2	SP/GP	FID: Z PIP: 4 GLANEUY SAND	141	0
2- 3.75	SM/GP	CLANELLY. SILTY, SAND		
		FID: 7500PID. 7586		
	FILL			
3.75	4.0	- CREOSOTE IN WOOD MAT @ 3.7.	54)	

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J= estimated valve

BORING ID NO.: SCOZOL	DRILL METHOD: Geoprobe
STARTCARD NO:	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A . Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: HARRIS GEOLOGIST: L WATTCHULLET
GPS NORTH: SAMPLE1 ID: 500204 - 07 1241 SAMPLE2 ID: 500204 - 24 1241	SAMPLE1 RESULT: 460 ppm J SAMPLE2 RESULT: 1000 ppm J

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	ΛE	SAMPLE
0-2	58/64	FID: 6 PID: 17 GLAN ERLY SAMD; DRY: BRAN TO GRAY	12	32	
	GP	GRAVE LATER W/ SOME SAND;			
275-325		FID: 230 PID: 85 SELTI GLAVELY STAND; GRNISH-BEN; MOIST			'
3.25 - 3.7	SHO	CLAYEY SILT:			
3.75-40	5M/6P	SILTY GENNELY SAND	V		

Ecology & Environment, Inc. 2000

STARTCARD NO:	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HAPPLS GEOLOGIST: L. WHITCHUKH
GPS NORTH:	GPS EAST:

DEPTH	SOIL CLASS	- CU DECODIRTION	TI	ME	SAMPLE
(FT BGS)	(USCS)	SOIL DESCRIPTION	12	52	· '
0-2	sm/GP	GRAVERY SILTY SAND; DRY BEN 50 GRAY; OPY			
2-35	5M/6P	DRK BAN TO BLK; GRAVELY SLTY SANDI DONSE WOOD WAGE + OTHOSE WOOD WASTED		<i>\$</i>	
		PLUDUCT STAINING 3.25-3,5;	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\		
3.5-4.	D VDG	MOIST; TAN LIME WASTE		-	

Ecology & Environment, Inc. 2000

BORING ID NO.: SCOZOG STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BENTONITE SAND 1322 WATER ENCOUNTERED? Yes no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: L. HARRES GEOLOGIST: L. WHITCHURCH
GPS NORTH: SCOZOG - 02 1327 SAMPLE 1 ID: SCOZOG - 24 1327	SAMPLE1 RESULT: 1420ppm SAMPLE2 RESULT: 11140ppm

DEPTH (SOIL CLASS	SOIL DESCRIPTION	TIN		SAMPLE
0-2.5	e/6P	GRAVERY SAND: SOME COBBLES MOSTRY DRY: SOME	13	20	
25- 4:00	3/FILL	MOSTY, SAND, SOME GRAVET, WOUND FRAGMENTS; SOME RUBBLE WOOD FRAG SOAKED WIFERE PRODUCT		,2	
	, ,	F10: 120 P1D: 40			
	· .	,		- 	
			•		
				y	

Ecology & Environment, Inc. 2000

BORING ID NO.:	DRILL METHOD: Geoprobe
STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: DENOVITE SAND 1349	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A Jeaser CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: CHIRCLES GEOLOGIST: KWHITCHIRCLES
CAO CAPILLARLY	ZONE- BRW)
GPS NORTH: 13 SAMPLE1 ID: 510301-46-0300 1402	GPS EAST: 26/000
SAMPLE2 ID: 500701-34-35 [+0%	SAMPLE2 RESULT: 2780 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TII	ME	SAMPLE
12-1		F10:4 P10: 230	134	8	
	2/68	0-1- GRAVERLY SAMD FILL			
1-2	59/60	i-3.5: HOLY GLAVELY (30%) SAND, DRY		*	
2-3	SP/ 16P	FID: 109 PID: 51 3.5-45GRADNISH GRANAUY SILTY SAND;			
3-4	58/68				
	SM				

Ecology & Environment, Inc. 2000

4.5-8

BGS = below ground surface
USCS = Unified Soil Classification System
Sample 1 and 2 to be field screened using TPH Test Kits
SAMMATO; SAMM; BLACK SLIGHT SHEEN

STARTCARI GROUND E	D NO: :S BENT	CO302 R 049151 BNITU SAND 1540 ED? Yes no	DRILL METHOD: Geopie DRILL FIRM: Ecology & DRILLER: A CONSULTING FIRM: Ecology & DRILLER: PROF. ENGINEER: GEOLOGIST: Reserved.	enviro - 5 ology	ensi & Em	vironment, Inc.
GPS NORT SAMPLE1 I SAMPLE2 I	TH: D: <u>SC03</u> D: <u>SC03</u>	807 -02 1944 802 -24 1942 BUN MALLULAR	GPS EAST:SAMPLE1 RESULT:SAMPLE2 RESULT:SAMPLE3 RESULT:	35 380	OPM	. J
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION		TIN 15	IE .	SAMPLE
2-2	5m/6P	FID:32 PID: 6 0-1.9. SILTY GRAVE	CLY SAND			
2-3	SM/GP SM/GP	1.5-2.5 GRAVA GRN/GR	UY GILTY SAND; PAY		,\$*	
3-4	5M/BP	FID: PID: 2.5 4-4 - FINE / UF				
APDI	FILL					

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J=estimated value

STARTCARD NO: SCO3O3 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BENTONTE CHIPS WATER ENCOUNTERED? Yes no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A.Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: CHAPLS GEOLOGIST: B WHITCHILLIH
GPS NORTH: SAMPLE1 ID: \$\frac{50303 - \cdot 3}{50303 - 35} \text{1426}{1430} \$\frac{1430}{350303 - 35} \text{1430}	GPS EAST:

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION (NO SAMPLE)	TIME	SAMPLE
	58/68	FID: 1; PID. 80 (MAY BE FROM OFFSITE)		
1-3	59/68	GRANALY SANO (30% GRANER), DRY	,\$	
3-5	sm/cp	GREENISH GAMELY SKRY STAND, BRY		

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits $\mathcal{I} = e$ stimeted value

BORING ID NO.: SCO364 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: BENTONITE SAND 1559 WATER ENCOUNTERED? Yes no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HMMLS GEOLOGIST: R. WHIT HURCH
GPS NORTH: SAMPLE1 ID: SC0304-02 1604 SAMPLE2 ID: 500304-24 1607	GPS EAST:

	SOIL			
DEPTH (ET PGS)	CLASS (USCS)	SOIL DESCRIPTION	TIME	SAMPLE
(FT BGS)	100007	FID: 5 PID: 2	1557	
0-1	69			
		0-0.5 i GRAVEZ		
		LANG EANS		
	SM	0.5 -2.0; SILTY SAND W/ SOME FANE	<u> </u>	
		TO COMPSE SPANIE	1 1	
11-2		10 (1)		
1. 0	SM			A
			1 1 .	
			 	
1 0		FID: 120 PID: \$ 5001		
2-3		the state of the s		
	5M/6W	2.0-3.0 SILTY SAND W/ HIGH?	0	
ľ	/ /	FIRE TO COARSE GRAVER; SOME	-	
		PINE 10 COMES GRIDGE, TONE	(112)	
24		AUTO FLUFF + WOOD WASTE: SLI	PHILL	
3-4	FILL	MOUST		
	17/11	wp1 × t		
			1	

Ecology & Environment, Inc. 2000

BORING ID	NO.:	0305	DRILL METHOD: Geop	robe	·	
		R 049151	DRILL FIRM: Ecology &			, Inc.
			DRILLER: A.J			
INSTALLED) -		CONSULTING FIRM: EC	11/1/	1 AN 41	ironment, Inc.
GROUTED:	BENTO	WIE SEND	PROF. ENGINEER:	(<u>) He</u> l	KK	
		ED? Yes no	GEOLOGIST:	- WH	1161	TURCI
	•					
		÷	GPS EAST:			
GPS NORT	H:	205-13 1447	CAMBIEL PESILIT	750	aam	<u></u>
SAMPLE1	D: <u>500</u>	305-13 1447 305-35 1449	SAMPLET RESULT:	178	30	
SAMPLE2	D: <u>310</u>					"
	00"	(0-1' NOT CULLE	CEV)			
DEPTH	SOIL CLASS			TIM		SAMPLE
(FT BGS)	(USCS)	SOIL DESCRIPTION FID: 3 PID: 40	<u></u>	1 1141	1/	O/IVI LL
				149	7	
i 7	. ,	GLANELY SAND; F.	m GLANTA W/ STATE			
1-3	5P/6P	DONER GLAND SON	NE SILT; DRY; NO OVA	† 1		
		<u> </u>		-		
2		AUTOFLUFF; 510 GRAVEZ; WOOD DES	ITY SHAM, SOME			*.
35	T	COMOZ. WOOD DIS	BL15			
	TILL	GENTIE, WILLIAM	, .		*	
				-	\vdash	
		FID = PID > 500				
		•				
				1		
				1-1		
				1 1		
						·

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits $\mathcal{T} = estimated$ value

BORING ID NO.: SCO3O6 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: BENTONIE SAND 16:16 WATER ENCOUNTERED? Yes no	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: (/ HARK/5" GEOLOGIST: R- WHITCHURCH/
GPS NORTH: SAMPLE1 ID: SC0306-02 6 9 SAMPLE2 ID: SC0306-24 1623	GPS EAST: 5960ppm SAMPLE2 RESULT: 12000ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM		SAMPLE
0-1		FID: 16 PID: 2.8	161	13	
	5M/GP	0-2: GEAVELLY SAND W/ SILT;			
1-2	5m/6P	2.0-2.5: HAME SHOWS GROWISH SERY; D.	cy		
2-3	58/61	F10:>500 P10:6-0			
	FILL	2,5-4 AMPFLUFF; WOOD DEBLIS; GRAMALY SAND; STAINED!		+	
3-4	FILL				
	file			1	

Ecology & Environment, Inc. 2000

BORING ID NO.: SCO307 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: BRITTONTE SAND 6909 WATER ENCOUNTERED? Res no BOTH LOCATION	DRILL METHOD: _Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A
GPS NORTH: SAMPLE1 ID: SE0307 - 02 0914 SAMPLE2 ID: 500307 - 24 0914	SAMPLE2 RESULT: 3920 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	T	IME	SAMPLE
134	100007	F10: 30 P10 - NR	09	707	
1 ,	<0/	GRAVELLY SAND; BRN, F-C GRAVEL; F-M SAND; GRAPUS SUB ANGULAR; MOST			
1.75-25		VERY GRANZLY SICOY SAND; GRNISH CORDE			
2255	SP/GP FILL	AUTOFLUFF		,\$3	
3.8,-35	\ SP	FID: 102 PID-NR GRN FINE SAND, SCIGHRY MOIST			
3.5-3.75	FILL	MUTO FLUFF; MOIST	-		
3.75 - 4.	SS SS	BLACK SAND; MOTST			

Ecology & Environment, Inc. 2000

DRILL METHOD: Geoprobe

BORING ID NO.: 500308

STARTCARI	D NO:	R 049151	DRILL FIRM: Ecology		Inc.
			DRILLER: A.Je	mser_	
DIOTALLED:	•		CONSULTING FIRM:	Ecology & Envir	onment, Inc.
ODOLITED:	Zin m	ON THE SAND URE!	PROF. ENGINEER:	C. HAKU	5
GROUTED.	OUNTED	5D2 Van 60	GEOLOGIST:	e. WHITCH	HULCH
WATER EN	COUNTER	ED? Yes 60			
GPS NORT	H:	308-13 0857 308-35 0857	GPS EAST:		
SAMPLE1	D: 500	308-13 <i>0857</i>	SAMPLE1 RESULT:	250ppm	
SAMPLE?	D. SCO.	308-35 0857	SAMPLE2 RESULT:	3840pp1	<u> </u>
SAMIT LLZ I	D	0-1 NOT G	CUETED	···	
	SOIL				
DEPTH (FT BGS)	CLASS (USCS)	SOIL DESCRIPTION		TIME	SAMPLE
(FI BGS)	100007	FID: 13 PID =	NR	0949	
	_	110.77	•		
1-1.5	<p <="" td=""><td>GRAVEL + SAND FILE</td><td>Li DRY</td><td></td><td></td></p>	GRAVEL + SAND FILE	Li DRY		
ł	1 /	1			
		GRANELLY SAND; GE			
1.5-3.5		GRAVERLY SAND; GE	ggr, must		
	58/			25	
	168			4	
		FID: 120 PID: -	- NR		
25-71	AFU.	AUTO FLUEF, DEELLS	s; BLHCK		
2.54	91 /60	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
45-5		SAND; FC; BLACK			
40 3	1	The last the second	-		
	15W				
				Vi	
Foology	& Environm	nent, Inc. 2000		DCC	below ground surface
Ecology (Co	·-· •		- 65a	DEIDA AIDRIA SOLIAN

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J= estimated value

BORING ID NO.: SCO309 STARTCARD NO: R 049151 GROUND ELEV: INSTALLED: GROUTED: PENTONIE CHIPS 1502, WATER ENCOUNTERED? Yes 160	DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A - Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: WHICHURY GEOLOGIST: L WHICHURY
GPS NORTH: SAMPLE1 ID: SC0309 - 13	SAMPLE1 RESULT: 2150ppm SAMPLE2 RESULT: 10 (esult)

		0-1 101 (40040)			
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIN		SAMPLE
1-2		FD:32 PID: 20	150	10	
	59/6W	1-3 VOLY GRAVELY COEBLY SAND MED GLAVEL TO MED COEBLES BLN; DLY; NO GOOPS			
2-3	SP/GW			≱	
7-4		FID: 45 PID: 7			
	1	FID: 45 PID: 7 3-4 SILTY SAND, BLACK; STAINED W PRODUCT; C-4,0			
4-5	SLUBGE	4-5 LIME WASTE LAYER			
				<u> </u>	

Ecology & Environment, Inc. 2000

DRILL METHOD: _Geoprobe

	- NO:	D 040151	DRILL FIRM: Ecology & E	Environ	ment,	Inc.
		R 049151	DRILLER: A. Jen			
ROUND E			CONSULTING FIRM: Ecology & Environment, Inc.			
NSTALLED	7 Km	21775 CHIDE 1657	PROF. ENGINEER:	(1)	ARK	215
SROUTED:	PENIO	NITE CHIPS 1657	GEOLOGIST: L. L	VHITT	HIL	06/1
WATER EN	COUNTER	ED? (res) no	GEOLOGIST		107	
			GPS EAST:			
GPS NORT	H:	211 13 1456	SAMPLE1 RESULT:	10 (اريع	+ @ Open J
SAMPLE1	D: <u>SLOS</u>	3/0 - 13 1656 3/0 - 35 1700	CAMPLET REGULT:	2010	00 00	n
SAMPLE2 I	D: <u>3/2/</u>	110- 55 1100	22)			
•		O-1'NOT SAMPLE		·	-,	
	SOIL CLASS					
DEPTH (FT BGS)	(USCS)	SOIL DESCRIPTION		TIM		SAMPLE
1-2	-01	PID: 9 FID!	NO HZ	165	3	
1-2	5P/6P	1-1.5 GRAVELY	I HEABRILI SAM	١		
		1				
	5P/6P	•				
	 	1.5-3: GRAVEL	I SAMO. DER BAN	V.		
1 .	58/0	1.7-3. 9KNVC	y repoor the per	7		
2-3	160	·			27	
_						
			Il real PIDI		十十	
		1710:5 (1VU	To roe 110)			
3-4		PID: 5 (NO 3.0-4.5: AUT	DEMPER. MODE			
	FILL	13.00 415. UM				
		DEBRIS			1	
			•			
	FILL		•		1	
14-5					(
	NR			'	V	
Factori	2. Environm	ent, Inc. 2000				halow around surface
Ecology	G FILAHOUND			t	565 =	below ground surface

BGS = below ground surface
USCS = Unified Soil Classification System
Sample 1 and 2 to be field screened using TPH Test Kits

J=estimated value

BORING ID	NO.: 5	C0311	DRILL METHOD: Georg	огоре			
STARTCARD NO: R 049151			DRILL FIRM: Ecology & Environment, Inc.				
GROUND ELEV:			DRILLER: A. Jensen				
INISTALLED	٠.		CONSULTING FIRM: E				
GROUTED:	BANYO	MITE SAND 0953	PROF. ENGINEER:	CHARM	5 11 11 11 11 11 11 11 11 11 11 11 11 11		
WATER EN	COUNTER	RED? (Fig. 76)	GEOLOGIST:	R. MOH.	TTCHUKUH _		
GPS NORT	H:	211 10 000	GPS EAST:	2010			
SAMPLE1	D: <u>SCO.</u>	311 - 13 0958 511 - 35 0958	SAMPLE1 RESULT:	2960 pp) <i>/</i> /~		
SAMPLE2	ID: <u>5005</u>	0970	SAMPLE2 RESULT: _2	& 20 bby	<u> </u>		
		VO SAMPLE 0-1'					
DEPTH	SOIL CLASS	SOIL DESCRIPTION		TIME	SAMPLE		
(FT BGS)	(USCS)	FID: 36 PID 4	4 0	0951			
0-1.5	SP/GW	GPAVELY SANTO; A					
15-3.0	sp	GREEN SAMO, SON	IE GRANEL;	*			
	_	F10: 7500 P10:					
3.6-40	FILL	AUTO FUHE + EM	SAND; WET		:		
4-5	st	BLACK SAND; F.M.	" WAT				
1			•	V			

Ecology & Environment, Inc. 2000

C10211	DRILL METHOD: Geoprobe	
BORING ID NO.: <u>SCO3/2</u>	DRILL FIRM: Ecology & Environment, Inc.	
STARTCARD NO: R 049151	DRILLER: A. Jensen	
GROUND ELEV:	CONSULTING FIRM: Ecology & Environment, Inc.	
INSTALLED:	PROF FUCINEER ('HALLY	
GROUTED: BENTONITE SAND (1939)	GEOLOGIST: R. WHITCHURCH	
WATER ENCOUNTERED? Yes no	GEOLOGIST	
	GPS EAST:	
GPS NORTH:	CAMPLET RESULT: 36 50 pom	
SAMPLE1 ID: 503/2 - 13 0/40	SAMPLET RESULT: 6000 ppm	
SAMPLE2 ID: 503/2 -29 0776	SAMPLE1 RESULT: 36 50pm SAMPLE2 RESULT: 6000 ppm	
O-1' NOT	Shirit (Ca)	7
SOIL	TIME SAMPLE	
DEPTH CLASS (ISCS) SOIL DESCRIPTION	TIME SAMPLE	٦
FID=65 -3	(3)	
1 1		
		\dashv
GRAVERLY SAND		
2-3 SP/GP GRAVERLY SAND		
168		
	24.00	
3-4.5 GREEN GRANNYS	ATO	
1 4 SP/		
168		
		
4.5.5 FILL AUTOFUFE		•
FILL		
	N I	
Feelogy & Environment, Inc. 2000	BGS = below ground sur	face

BGS = below ground surface
USCS = Unified Soil Classification System
Sample 1 and 2 to be field screened using TPH Test Kit Ecology & Environment, Inc. 2000

BORING ID NO.: <u>SCO313</u>	DRILL METHOD: Geoprobe
STARTCARD NO:R 049151 GROUND ELEV: INSTALLED: GROUTED:BINN DIVIES SAND 152 WATER ENCOUNTERED? Yes	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A. Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C. HARRIS GEOLOGIST: L. WHITCHURCH
GPS NORTH: SAMPLE1 ID: SCO303 - 13 1527 SAMPLE2 ID: SCO303 - 35 1529 SCO303 0-1 NOT	GPS EAST:
SOIL	

					
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	Т	IME	SAMPLE
1-2	,	FID: 84 PID: 14	15	19	
	SPOW	1-15-GRAVERLY SAND; F-C GRAVELL		İ	
		1.5-2.5 GRANTALY SILTY SAWN; GRAY			
2-3	sP/sm	SCIGHTLY MOISTE			
	3./2/				
	SIVXE		<u> </u>		
3-4		F19 7500; PID: 8			
	SLUDGE	2.5- 4.75: LIME WASK W/			
		UK FIBERS	-		
4.5	SUDGE				
	E	4.75-5.0 -> SATURATED W/ WATER & SOME PLOE PRODUCT (NOT INCH.	100		
	1 / ()	SOUR FEB IKUUUI . INVI IINU	RUD		

Ecology & Environment, Inc. 2000 /N SAMPLE)

BORING ID NO.: <u>503/4</u>	DRILL METHOD: Geoprobe
STARTCARD NO:R 049151 GROUND ELEV: INSTALLED: GROUTED: FENTON TE SAND 0603 WATER ENCOUNTERED? YES NO	DRILL FIRM: Ecology & Environment, Inc. DRILLER: A . Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C . HACRIS GEOLOGIST: R . WHITCHUCCIT
GPS NORTH:	SAMPLE2 RESULT: 2390 ppm SAMPLE2 RESULT: 15690 ppm

DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION	TIM	IE	SAMPLE
0-1	58/6W	SOIL DESCRIPTION FID: 52 PID: - U-Z SAND + GRANEL; F-C GRANEL ORY	075	4	
	5P/&W	·		泰	
2-3	FILL	FID: 84 PID: - 2-3.5: MUTO FELLET MIXED W/ SOUR SHAMD; MOIST			
3-4	FILL	SAMD; MOST 3.5-4.0: SAND; BLACK; WET			
	se		1	<i>Y</i>	

Ecology & Environment, Inc. 2000

BGS = below ground surface NOTE: PID LEMPINGS NOT 1900/; MARCH USCS = Unified Soil Classification System

NOT RESCOVERY TO SAMPLER'S

GRECONTIONS; WILL LET UNIT

WARM UP + RESUME PID

REPORTS ON NEXT PROJE

STARTCARD NO:			DRILL METHOD: Geoprobe DRILL FIRM: Ecology & Environment, Inc. DRILLER: A . Jensen CONSULTING FIRM: Ecology & Environment, Inc. PROF. ENGINEER: C HAPPUS GEOLOGIST: R. WHITCHURCH GPS EAST: SAMPLE1 RESULT: 210 ppm J SAMPLE2 RESULT: 13230ppm SAMPLED			
DEPTH (FT BGS)	SOIL CLASS (USCS)	SOIL DESCRIPTION FID 6 PID 2		TIME	SAMPLE	
		F10.>500 P10: 350				

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J= est/mated value

STARTCA GROUND INSTALLE GROUTEI	ELEV: D: D: _ <i></i>	103/6 R 049151 DUIT SAND/0/Z ED? Yes 10	DRILL METHOD: _G DRILL FIRM: _Ecolog DRILLER:A CONSULTING FIRM: PROF. ENGINEER: GEOLOGIST:	y & Environment Jensen Ecology & En C. JARA	ovironment, Inc.
GPS NOR SAMPLE1 SAMPLE2	TH:	316-13 1018 316-35 1018 0-1 NOT SAM	GPS EAST: SAMPLE1 RESULT: SAMPLE2 RESULT:	1760p 2760p	pm pm
DEPTH (FT BGS	SOIL CLASS (USCS)	SOIL DESCRIPTION		TIME	SAMPLE
1-3.5	58/68	FID: 12 PID: 46 GRAVELLY SAND			
3.5 -4	58/69	GRN GRNL SAWD,			
4.0-4.	FIL	GRN GRNL SAWD; WOOD OFFLIS, SILTY MOIST	SAND, SUGHAN		*
		F10:12 PID: H			

Ecology & Environment, Inc. 2000

BGS = below ground surface USCS = Unified Soil Classification System Sample 1 and 2 to be field screened using TPH Test Kits

J= estimated value