Soil and Groundwater Quality
Testing Results
Puyallup River Side Channel and
Tacoma Metals Site
Tacoma, Washington

Soil and Groundwater Quality
Testing Results
Puyallup River Side Channel and
Tacoma Metals Site
Tacoma, Washington

Prepared for City of Tacoma

August 7, 2003 7853

CO	NTENTS	<u>Page</u>
1.0	INTRODUCTION AND BACKGROUND	1
	Site Background Geologic and Hydrogeologic Conditions	1 2
2.0	PREVIOUS INVESTIGATIONS	3
2.2	Habitat Mitigation Area Tacoma Metals Site Conclusions Based on Previous Investigations	3 4 6
3.0	SCOPE OF FIELD INVESTIGATION	7
	Soil Quality Investigation Groundwater Quality Investigation	7 8
4.0	SOIL AND GROUNDWATER QUALITY TESTING RESULTS	8
	Soil Quality Results Groundwater Quality Results	9 10
5.0	COMPARISON TO SCREENING LEVELS	11
	Soil Quality Groundwater Quality	. 11 11
6.0	CONCLUSIONS	12
7.0	REFERENCES	13
TA	BLES	
1 2 3 4 5	Groundwater Elevation Measurements Analytical Results for Soil Samples - TPH Analytical Results for Soil Samples - Metals Analytical Results for Soil Samples - HPAHs Analytical Results for Soil Samples - LPAHs Analytical Results for Soil Samples - Phenols	
7	Analytical Results for Soil Samples - Phthalates	

CONT	ΓENTS (Continued)		<u>Page</u>
TABL	ES (Continued)		
8 9 10 11 12 13 14	Analytical Results for Soil Samples - S Analytical Results for Groundwater S	Pesticides/PCBs Samples - TPH/BTEX Samples - Metals Samples - HPAHs Samples - LPAHs	
FIGU	RES		
1 2	Vicinity Map Site and Exploration Plan - Puyallup	River Side Channel	
	ENDIX A D INVESTIGATION METHODS		A-1
A.2 U A.3 S A.4 M A.5 M A.6 C A.7 E	ntroduction Itility Clearance Soil Sampling Monitoring Well Installation Monitoring Well Development Groundwater Sampling Equipment Decontamination Previous Explorations		A-1 A-1 A-2 A-3 A-3 A-4 A-4
FIGU	IRES		
A-1 A-2 A-3 A-4 A-5 A-6	Key to Exploration Logs Monitoring Well Log HC-MW-1 Monitoring Well Log HC-MW-2 Monitoring Well Log HC-MW-3D Monitoring Well Log HC-MW-3S Monitoring Well Log HC-MW-4		

CONTENTS (Continued)

ATTACHMENT A-1
PREVIOUS GEOTECHNICAL EXPLORATIONS
FROM APPENDIX A OF THE DESIGN ANALYSIS REPORT
DATED NOVEMBER 1, 2002

APPENDIX B
DATA VALIDATION AND LABORATORY
CERTIFICATES OF ANALYSIS

SOIL AND GROUNDWATER QUALITY TESTING RESULTS PUYALLUP RIVER SIDE CHANNEL AND TACOMA METALS SITES TACOMA, WASHINGTON

1.0 INTRODUCTION AND BACKGROUND

This report presents the soil and groundwater quality testing results for sampling performed at the proposed Puyallup River Side Channel (PRSC) habitat mitigation site in Tacoma, Washington (Figure 1). This testing program was performed in general accordance with the Soil and Groundwater Quality Testing Work Plan (Hart Crowser 2003a) and Response to EPA Comments (Hart Crowser 2003b).

The objectives of this investigation were to acquire data to evaluate the potential for contaminant migration from the adjacent Tacoma Metals site to the PRSC habitat mitigation site; to support design of any necessary remedial actions; and to characterize soils to be excavated from the mitigation site for disposal or possible reuse. The following sections are included in this report:

- 1.0 INTRODUCTION AND BACKGROUND;
- 2.0 PREVIOUS INVESTIGATIONS;
- 3.0 SCOPE OF FIELD INVESTIGATION;
- 4.0 SOIL AND GROUNDWATER QUALITY TESTING RESULTS;
- 5.0 COMPARISON TO SCREENING LEVELS;
- 6.0 CONCLUSIONS; and
- 7.0 REFERENCES.

This text is supplemented by these appendices:

- Appendix A Field Investigation Methods; and
- Appendix B Data Validation and Laboratory Certificates of Analysis.

1.1 Site Background

The PRSC site will be constructed as part of the Thea Foss and Wheeler-Osgood Waterways Remediation Project, to provide habitat mitigation for the project. The design for this habitat mitigation property, owned by the Simpson Tacoma Land Company, involves establishing a brackish marsh area by breaching the existing levee running along the Puyallup River. The design also includes grading the site to elevations as low as -2 feet mean lower-low water (MLLW), and constructing an approximately 1,700-foot-long levee to maintain protection

against flooding on the Puyallup River. The new levee will be constructed adjacent to the Tacoma Metals property boundary, as shown on Figure 2.

The Tacoma Metals site is a former scrap metal yard occupied by General Metals from the 1950s until 1982, and Tacoma Metals from 1983 to 1998. A creosote plant was also located on the west end of the site in the early 1900s. General Metals and Tacoma Metals conducted recycling of materials including processing of motor vehicles, transformers, and batteries. The north side of the property (adjacent to the proposed mitigation area) has remained unpaved (City of Tacoma 2003).

1.2 Geologic and Hydrogeologic Conditions

This description of geologic and hydrogeologic conditions is based on the current and previous investigations at the PRSC and Tacoma Metals sites (Kennedy Jenks 2001; City of Tacoma 2003).

1.3.1 Geologic Conditions

Soil types encountered on the PRSC and Tacoma Metals sites, from the ground surface downward, are as follows:

- Fill. About 5 to 15 feet of wood chips (intact and decayed) were encountered in the southern half of the PRSC site. Approximately 3 to 8 feet of sand and gravel fill were encountered on the Tacoma Metals site.
- Sand and Silt. About 5 to 15 feet of very loose to loose Sand with various amounts of silt and gravel or medium stiff to stiff clayey or sandy Silt were encountered underlying the wood chip and sand and gravel fill.
- **Dense to Very Dense Sand.** Dense to very dense Sand with various amounts of silt and gravel was encountered below elevations of approximately -5 to -15 feet MLLW.

In addition to the soil units described above, variable brick fill, plastic battery casing material, glass, and metal fragments were observed in some explorations. These materials were generally in explorations located along the Tacoma Metals property line or on the Tacoma Metals site.

1.3.2 Groundwater Occurrence and Flow

Groundwater levels at the PRSC site were measured at low and high tide on June 30 and July 9, 2003, respectively, as presented in Table 1. Groundwater

elevations ranged from approximately 7.1 to 9.7 feet MLLW depending on location and tide stage. Overall flow appears to be toward the river. Water levels measured at HC-MW-2 appear anomalously high, and may indicate the presence of a localized perched layer within the silt and wood waste. Comparison of measured water levels in the deep and shallow well pair HC-MW-3D and HC-MW-3S indicates an upward component of flow at the site.

Groundwater flow directions at the Tacoma Metals site have been measured as flowing south during high tides and to the east during low tides (Kennedy Jenks 2001); however, these "snapshots" do not account for the complexities involved in determining net groundwater flow rates and directions in tidally influenced systems. No comprehensive tidal monitoring study has been performed at the site to determine average, long-term groundwater flow directions.

Based on experience at similar sites, net groundwater flow at the Tacoma Metals and PRSC sites is expected to be toward the river, with some downstream component of flow. At this site, that would indicate net flow to the northeast, or from the Tacoma Metals site to the southern half of the PRSC site.

2.0 PREVIOUS INVESTIGATIONS

Previous investigations and remedial actions performed at the Tacoma Metals and PRSC sites are summarized below. These include work performed by Hart Crowser, Ecology and Environment, Pacific Groundwater Group, and Kennedy Jenks.

2.1 Habitat Mitigation Area

As part of the Final Design Analysis Report (DAR) for the PRSC site, Hart Crowser conducted field explorations and engineering analyses for design of the habitat mitigation area (City of Tacoma 2003). Six test pits and two borings were completed at the site to characterize subsurface conditions. Six of these explorations were completed in the southern portion of the site, near the Tacoma Metals site (Figure 2). Five to 15 feet of intact and decayed wood chips were encountered overlying sand. Variable brick and plastic battery casing material were observed in some of the test pits, generally in locations along the Tacoma Metals property line. No soil or groundwater quality testing data were collected as part of the City's investigation.

2.2 Tacoma Metals Site

EPA Site Assessment, Ecology and Environment, 1988. An EPA Site Assessment conducted by Ecology & Environment in 1988 indicated the site soils contain concentrations of lead, cadmium, chromium, mercury, nickel, zinc, and polychlorinated biphenyls (PCBs) above cleanup criteria in effect at that time. Elevated PCBs were identified along the unpaved north fence line adjacent to the PRSC habitat mitigation site.

Limited Phase II Environmental Assessment, Hart Crowser, 1990. A Phase II Assessment conducted by Hart Crowser in 1990 also identified elevated metals and PCBs as well as carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and total petroleum hydrocarbons (TPH) above proposed soil cleanup criteria in effect at that time. Groundwater sampled from well points located on the northern unpaved area contained elevated concentrations of metals, PCBs, cPAHs, and TPH.

Groundwater Evaluation, Pacific Groundwater Group (PGG), 1992. A groundwater assessment conducted at the property by PGG identified concentrations of gasoline-range TPH ranging from 4,500 to 18,000 ug/L in two wells (MW-4 and MW-5 on Figure 2) located on the eastern property line. Elevated concentrations of PAHs were identified in well MW-8 located approximately 180 feet east of the former creosote plant, and approximately 25 feet west of the property line common to the PRSC site.

Remedial Investigation/ Feasibility Study (RI/FS), Kennedy Jenks Consultants, 2000-2001. In 1999, Ecology issued an Agreed Order for an RI/FS to be conducted for the property. As part of the RI/FS, groundwater monitoring conducted by Kennedy Jenks Consultants in 2000 and 2001 indicated that conditions were similar to those identified by PGG in 1992. A draft RI/FS report dated July 2001 identified elevated concentrations of PAHs and gasoline-range TPH in groundwater. Naphthalene concentrations ranging from 5,600 to 8,500 ug/L were detected in well MW-8 during four monitoring events in 2000 and 2001. Well MW-8 also contained concentrations of gasoline-range TPH ranging from 29,000 to 39,000 ug/L.

The RI/FS report also mentioned that a removal of contaminated soil was conducted at some point during the mid-1990s. However, no reports detailing specifics of the soil removal were available at Ecology.

Subsequent to the RI/FS, nine additional monitoring wells (MW-13 through MW-21) were installed at the site. Two wells (MW-13 and MW-20) are located between well MW-8 and the property boundary. These wells were sampled and

analyzed for gasoline-, diesel-, and oil-range TPH, VOCs, and SVOCs. Concentrations of detected constituents were significantly lower than concentrations detected in well MW-8.

Draft Cleanup Action Plan, 2002. A Draft Cleanup Action Plan (CAP) was issued in April 2002. The CAP calls for implementation of the following actions:

- Excavation of Petroleum–Impacted Soils and Free Product. The CAP proposes removing soil down to groundwater elevation at which point the free product would be removed from the excavations. This would be done in two areas: the area of the former creosote plant, and west of the former brick building. The estimated volume to be removed is approximately 7,800 cubic yards. While the lateral extent of the excavations would be determined at the time of the excavation, the CAP shows that the northern edge of the second area is located approximately 40 feet south of the northern property boundary.
- Excavation of Lead-Acid Battery Casings and Associated Soils. This area is located approximately 120 feet from the northeast property boundary. The excavation is estimated to be 10 cubic yards.
- Excavation of Metals-Impacted Soils at Property Boundary. The CAP includes removal of impacted soil within an approximate 5-foot buffer along selected portions of the property boundary. The boundary to be excavated includes portions adjacent to the mitigation area. Excavation would continue laterally toward adjacent properties and vertically until cleanup levels are met.
- Enhancement of Biodegradation of Impacted Groundwater. Initially an oxygen-releasing compound (ORC) would be used in the area of MW-8 and the former creosote plant excavation. If warranted, ORC would be introduced in the area of the former red brick building excavation and other areas.
- Install Low Permeability Cap. A low permeability asphalt cap with a stormwater collection system would be placed over the entire site, except the existing storage building. The stormwater system would be designed to treat runoff to meet surface water cleanup levels.
- Groundwater and Surface Water Monitoring. Confirmation monitoring of groundwater and surface water would be conducted to show cleanup levels have been attained.

DNAPL Investigation, Kennedy Jenks Consultants, Ongoing. To assess the potential presence of dense non-aqueous phase liquid (DNAPL), eight deep borings were drilled on the western portion of the site around the former creosote plant. Borings were to be drilled to the top of the first confining silt/clay layer (approximately 26 to 33 feet below ground surface) and completed as groundwater monitoring wells. According to the work plan, monitoring wells were to be installed with a 6-inch-long blank PVC sump at the base for collection of DNAPL. Although no formal report on the DNAPL investigation has been submitted to Ecology, the Ecology Project Manager indicated that no DNAPL had been measured to date (P. Balaraju 2003).

2.3 Conclusions Based on Previous Investigations

Several concerns were identified based on previous investigations, including:

- The potential for surface water quality exceedances in the PRSC habitat mitigation area. Elevated PAH concentrations were detected in well MW-8 on the Tacoma Metals site adjacent to the PRSC habitat mitigation area. Following construction of the mitigation area, potential groundwater flow paths from the area around MW-8 to surface water receptors will be reduced from on the order of hundreds of feet to on the order of tens of feet, potentially resulting in surface water exceedances at the point of groundwater discharge to surface water in the habitat mitigation area.
- It was not conclusively known whether free phase product exists at the Tacoma Metals site boundary that could result in the formation of sheen or product seeps during or after construction f the PRSC habitat mitigation area.
- Continued migration of PAHs from the Tacoma Metals site may potentially result in the contamination of clean fill materials placed in the PRSC habitat mitigation area to concentrations above sediment quality standards through partitioning of contaminants onto the fill soils.

Existing soil quality within the PRSC habitat mitigation area is not currently known; the potential for reuse or disposal will be evaluated by the City of Tacoma and its contractor, Manson Construction Company, in August 2003.

3.0 SCOPE OF FIELD INVESTIGATION

The overall objective of this investigation is to provide additional data for use in ensuring the adequacy of the design and excavation of the PRSC habitat mitigation site. Specific objectives include:

- Collect and analyze soil and groundwater quality samples representative of the expected conditions to be encountered during soil excavation within the study area;
- Collect and analyze soil quality samples to support reuse or disposal evaluation of soils to be excavated from the site;
- Determine current migration of contaminants from the Tacoma Metals site to the PRSC habitat mitigation site and evaluate the potential for future migration following habitat mitigation activities; and
- Provide data to support remedial redesign of the habitat area, if necessary.

The soil quality and groundwater quality investigations described in the following sections were designed to provide the data necessary to meet these objectives. Procedures used for soil and groundwater sampling and sample handling are presented in Appendix A.

Sampling locations included soil borings/groundwater monitoring wells as shown on Figures 2.

3.1 Soil Quality Investigation

Five borings (HC-MW-1, HC-MW-2, HC-MW-3D, HC-MW-3S, and HC-MW-4) were drilled and completed as monitoring wells at the locations shown on Figure 2. Soil descriptions and other relevant details are presented on boring logs located in Appendix A. Slight to moderate product-like odors were noted at or near the water table in borings HC-MW2, HC-MW-3D, and HC-MW-4. Sheen was not observed on any soil samples.

Within the proposed excavation area, soil samples were collected at 2.5-foot-depth intervals to the total depth of the excavation. Below the proposed excavation depth and in boring HC-MW-4 (located outside the excavation area) soil samples were collected at 5-foot-depth intervals. Twenty-one soil samples were collected from four of the borings (HC-MW-1, HC-MW-2, HC-MW-3D, and HC-MW-4) and submitted for chemical analysis of diesel- and oil-range TPH, metals, semivolatile organic compounds (SVOCs), and pesticides and

polychlorinated biphenyls (PCBs). Soil samples were not collected from shallow boring HC-MW-3S, drilled adjacent to deep boring HC-MW-3D.

3.2 Groundwater Quality Investigation

3.2.1 PRSC Site Monitoring Wells

Five new monitoring wells were installed at the PRSC habitat mitigation site. Monitoring well installation, development, and sampling procedures are described in Appendix A. Groundwater samples were collected from the new wells on June 30, 2003 and analyzed for gasoline-range TPH, benzene, toluene, ethylbenzene, and xylenes (BTEX), metals, PAHs, and total suspended solids (TSS). The water quality parameters of pH, temperature, specific conductivity, and turbidity were measured in the field. Sheen and NAPL were not observed in any of the wells.

Samples collected for metals were not initially indicated on the chain of custody form due to an oversight by the on-site field representative. Collected samples were not filtered or preserved prior to delivery to the laboratory. Upon consultation with the laboratory, it was decided to analyze a portion of the TSS sample volume for total metals rather than dissolved metals, as the delay between sample collection and filtration may have resulted in unreliable dissolved metals results.

3.2.2 Tacoma Metals Site Wells

Groundwater samples were collected from five monitoring wells (MW-4, MW-8, MW-11, MW-13, and MW-18) on the Tacoma Metals site on July 9, 2003. A blind duplicate sample (MW-D) was also collected from well MW-8. Samples were submitted for analysis of gasoline-range TPH, dissolved metals, PAHs, and TSS. The water quality parameters of pH, temperature, specific conductivity, and turbidity were measured in the field. Samples collected for dissolved metals analyses were filtered and preserved immediately after delivery by the laboratory, located directly across Lincoln Avenue from the PRSC site. Sheen and NAPL were not observed in any of the wells.

4.0 SOIL AND GROUNDWATER QUALITY TESTING RESULTS

Results of the soil and groundwater testing program are summarized below by matrix.

4.1 Soil Quality Results

Soil sample analytical results, with sample depths and elevations, are presented in Tables 2 through 9. Soil quality results were segregated based on whether they fall within the excavation area or will remain in-place following construction.

4.1.1 Samples Collected within the Excavation Area

Soil quality data for samples collected within the excavation area are included for completeness. These soils will be excavated and disposed of or reused offsite. The potential for reuse or disposal will be evaluated by the City of Tacoma and Manson as part of the PRSC habitat construction. The remainder of this section only addresses soil samples collected outside the excavation area.

4.1.2 Samples Collected outside the Excavation Area

Data for soil samples collected outside the excavation area are indicative of the quality of soils that will remain in-place following construction. Diesel- and oil-range TPH were detected in two and five samples, respectively (Table 2). The maximum concentrations (81 mg/kg diesel and 2,200 mg/kg oil) occurred at a depth of 8.5 to 10 feet at HC-MW-4, located approximately 50 feet west of the PRSC habitat mitigation site. Maximum concentrations of diesel- and oil-range TPH within the habitat footprint were 27 and 120 mg/kg, respectively.

Uniformly low concentrations of arsenic (5.3 mg/kg maximum), cadmium (0.2 mg/kg maximum), chromium (25.7 mg/kg maximum), copper (81.1 mg/kg maximum), lead (30.7 mg/kg maximum), mercury (0.123 mg/kg maximum), nickel (31.1 mg/kg maximum), and zinc (53.2 mg/kg maximum) were detected in one or more soil samples (Table 3). Silver was not detected in any soil sample.

Generally low concentrations of PAHs were detected in one or more soil samples (Tables 4 and 5). The most wide-spread detected PAHs were phenanthrene (detected in seven samples with a maximum concentration of 830 ug/kg), acenaphthene (detected in six samples with a maximum concentration of 640 ug/kg), naphthalene (detected in five samples with a maximum concentration of 300 ug/kg), fluorene (detected in four samples with a maximum concentration of 470 ug/kg), and pyrene (detected in four samples with a maximum concentration of 1,100 ug/kg).

Very low concentrations of three phenol compounds were detected in soil collected at a depth of 15 to 16.5 feet from HC-MW-3D (Table 6). These

detections appear to be associated with overlying materials, as evidenced by similar concentrations detected in shallow soils collected from this boring.

Five phthalates, including butylbenzyl phthalate (1,200 ug/kg) and bis(2-ethylhexyl) phthalate (BEP; 3,000 ug/kg) were detected in soil collected at a depth of 8.5 to 10 feet from HC-MW-4 (Table 7). This boring is located outside the habitat mitigation area footprint. BEP was the only phthalate detected in soil samples collected within the mitigation area, with a maximum concentration of 330 ug/kg at a depth of 15 to 16.5 feet at HC-MW-3D.

Other detected SVOCs (Table 8) included benzyl alcohol (maximum concentration of 33 ug/kg), carbozole (maximum concentration of 150 ug/kg), dibenzofuran (maximum concentration of 120 ug/kg), and N-nitrosodiphenylamine (maximum concentration of 13 ug/kg).

Pesticides and PCBs were non-detect the soil samples analyzed (Table 9).

4.2 Groundwater Quality Results

Groundwater quality results are presented in Tables 10 through 14. Field parameter measurements collected during sampling are presented in Appendix A.

Detected concentrations of gasoline-range TPH and BTEX compounds (Table 10) in samples collected from wells on the Tacoma Metals site were consistent with previous rounds of sampling. Maximum detected gasoline concentrations (12,000 ug/L) were in samples from wells MW-8 and MW-18. Maximum detected BTEX concentrations also occurred in samples from these wells. Gasoline and BTEX concentrations are approximately an order of magnitude lower at well MW-13, locate between MW-8 and the PRSC site. Significantly lower concentrations of gasoline-range TPH (maximum of 59 ug/L) were detected in three of five wells on the PRSC habitat mitigation site. BTEX compounds were not detected in any well on the PRSC habitat mitigation site.

Low concentrations of total or dissolved arsenic and copper and total lead were detected in one or more groundwater samples (Table 11). Dissolved lead was not detected in the samples collected from the Tacoma Metals site.

Low concentrations of HPAHs (primarily fluoranthene and pyrene) were detected in wells MW-8, MW-11, and MW-18 on the Tacoma Metals site (Table 12). HPAHs were not detected in any groundwater samples collected from the PRSC habitat mitigation site.

The LPAHs 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene were detected in wells MW-8, MW-11, and MW-18 on the Tacoma Metals site (Table 13). Acenaphthene, fluorene, naphthalene were also detected in well MW-13. Acenaphthene was the only LPAH detected in groundwater samples from the PRSC habitat mitigation site, with detections in wells HC-MW-3D, HC-MW-3S, and HC-MW-4. The maximum detected concentration was in the deep well (58 ug/L) with significantly lower concentrations in the shallow wells (2.8 to 3.4 ug/L).

5.0 COMPARISON TO SCREENING LEVELS

Screening levels for soil are the sediment quality objectives (SQOs). Screening levels for groundwater are based on surface water quality criteria, and are taken as the lower of the Washington State Freshwater Chronic Criteria presented in Chapter 173-201A WAC and the Human Health Consumption of Organisms Criteria in the National Recommended Water Quality Criteria (EPA 2002). Screening criteria are presented in Tables 2 through 13.

5.1 Soil Quality

With the exception of two sample locations, detected constituent concentrations in soil samples are below the SQOs. The sample collected from a depth of 8.5 to 10 feet at HC-MW-4 (located approximately 50 feet west of the PRSC habitat area footprint) exceeds the SQO for butylbenzyl phthalate of 900 ug/kg with a concentration of 1,200 ug/kg and the SQO for BEP of 1,300 ug/kg with a concentration of 3,000 ug/kg. Butylbenzyl phthalate was not detected in any other samples representing soil to remain in-place following construction. Detected concentrations of BEP in these soils were well below the SQO.

The sample collected from a depth of 30 to 31.5 feet at HC-MW-3D slightly exceeds the SQO for acenaphthene of 500 ug/kg with a concentration of 640 ug/kg. This sample was collected at an elevation of –11.6 to –13.1 feet MLLW, approximately 15 feet below the bottom of the proposed excavation depth at this location.

5.2 Groundwater Quality

With the exception of several HPAHs at one well, detected constituent concentrations in groundwater samples were below surface water quality screening criteria. Concentrations of benzo(a)anthracene (2.5 ug/L), benzo(a)pyrene (1.2 ug/L), benzo(b,k)fluoranthenes (1.9 ug/L), and chrysene (1.7 ug/L) in well MW-11 exceed the human health consumption of organisms

criteria for these constituents of 0.018 ug/L. This well is located approximately 140 west of the PRSC habitat mitigation site. These constituents were not detected in any other groundwater sample, including samples collected from wells MW-8, MW-13, MW-18, and HC-MW-4, located between MW-11 and the PRSC habitat mitigation site boundary.

6.0 CONCLUSIONS

Current soil quality at the proposed final excavation elevation of the PRSC habitat mitigation site is protective of the environment. Only one sediment quality exceedance (acenaphthene at a depth of 30 to 31.5 feet in HC-MW-3D) was observed in soils underlying the PRSC habitat mitigation site. This exceedance was relatively low (detected concentration of 640 ug/kg compared to the SQO of 500 ug/kg) and occurred approximately 15 feet below the bottom of the proposed excavation.

Acenaphthene was also detected in groundwater at well pair HC-MW-3D and HC-MW-3S. Although there is an upward vertical gradient at this location, concentrations in the shallow well screened near the surface of the proposed mitigation area (2.9 ug/L) are significantly lower than those in the deep well (58 ug/L). This indicates either a sinking plume (in spite of upward groundwater flow) or that significant attenuation of acenaphthene is occurring over the approximately 20 feet separating the shallow well screen from the deep well screen. In either case, the shallow groundwater quality near the proposed PRSC habitat mitigation area surface has not resulted in soil concentrations that exceed the SQO, and is unlikely to result in future contamination of the soils to concentrations above the SQO.

The only other detected sediment quality exceedances occurred outside the PRSC habitat mitigation area (butylbenzyl phthalate and BEP at HC-MW-4) and do not appear to represent soil quality within the mitigation area.

Groundwater quality exiting the Tacoma Metals site and entering the PRSC habitat mitigation site is protective of surface water quality. HPAHs at one location (MW-11) exceed the surface water quality screening criteria. This location is in the interior of the Tacoma Metals site, and the HPAHs detected at this location were not detected in wells along the Tacoma Metals property boundary or in wells on the PRSC habitat mitigation site.

Based on these findings, it is very unlikely that historical contamination associated with the Tacoma Metals site will result in sediment quality or surface

water quality exceedances at the PRSC habitat mitigation site. Therefore, no modifications to the current habitat area design are required.

7.0 REFERENCES

Balaraju, Panjini 2003. Department of Ecology Site Manager for the Tacoma Metals Site. Personal communication with Ian Wingard of Floyd Snider McCarthy, Inc. on June 5, 2003.

City of Tacoma 2003. Thea Foss and Wheeler-Osgood Waterways Remediation Project, Final Design Analysis Report, Tacoma, Washington. Prepared by Hart Crowser, Inc., November 1, 2002. Revised January 31, 2003.

Ecology and Environment 1988. Technical Assist Team. Site Assessment Final Report for: Tacoma Metals, Inc., Tacoma, Washington. TDD T10-8711-014.

Hart Crowser 1990. Limited Phase II Environmental Assessment - Tacoma Metals, Inc., Tacoma, Washington.

Hart Crowser 2003a. Soil and Groundwater Quality Testing Work Plan, Puyallup River Side Channel and Tacoma Metals Site, Tacoma, Washington, Prepared for City of Tacoma, June 16, 2003.

Hart Crowser 2003b. Response to EPA Comments on the Soil and Groundwater Quality Testing Work Plan, Puyallup River Side Channel and Tacoma Metals Site, Tacoma, Washington dated June 16, 2003.

Kennedy Jenks 2001. Remedial Investigation/Feasibility Study Report, Former Tacoma Metals Facility, Prepared for Portland Avenue Associates, LLC, June 19, 2001.

Pacific Groundwater Group 1992. Tacoma Metals, Inc. Groundwater Evaluation.

F:\Docs\JOBS\7853\Phase 8\Side Channel Report.doc

Table 1 - Groundwater Elevation Measurements

Depth to Water Groundwater Elevation	in Feet below TOC in Feet MLLW	12.45 7.51	10.27	13.74 8.44	13.64	14.26	13.56 7.92	13.89 7.13	13.66 7.36	13.11 8.85	12.03
Tide Dep	Stage in Fee		I		I		· I		T		
Date of	Measurement	6/30/2003	7/9/2003	6/30/2003	7/9/2003	6/30/2003	7/9/2003	6/30/2003	7/9/2003	6/30/2003	2000/0/2
Ground Surface	Elevation in Feet MLLW	17.9	<u>.</u>	19.4		184		180)	19.3	
Top of Casing	Flevation in Feet MLLW	10.06	06:60	22 18		21.48	0	24.02	30:13	21 96	2
llow		MW 4	1-MM-1	HC-MW-2	7-22-01-	OC WW 01		SC MAN OF	00-WW-00	HC.MW/4	

H - High Tide L - Low Tide MLLW - Mean Lower Low Water TOC - Top of Casing

Table 2 - Analytical Results for Soil Samples - TPH

Sample ID Sampling Date Date Sediment Quality Objective 6/24/03 HC-MW-1 (S3) 6/24/03 HC-MW-1 (S4) 6/24/03 HC-MW-2 (S5) 6/24/03 HC-MW-2 (S6) 6/24/03 HC-MW-3D (S6) 6/25/03 HC-MW-3D (S7) 6/25/03	Depth Interval in Feet 10 to 11.5 15 to 16.5 20 to 21.5 12.5 to 14	in Feet MLLW 7.2 to 5.7 2.2 to 0.7 -2.8 to -4.3	NWTPH-Diesel in mg/kg NA 20 U 20 U	NWTPH-Heavy Oil in mg/kg NA 40 U
Objective		7.2 to 5.7 2.2 to 0.7 -2.8 to -4.3	NA 20 U 20 U	NA 40 U
	10 to 11.5 15 to 16.5 20 to 21.5 12.5 to 14	7.2 to 5.7 2.2 to 0.7 -2.8 to -4.3	20 U 20 U 20 U	40 U
	15 to 16.5 20 to 21.5 12.5 to 14 17 5 to 19	2.2 to 0.7 -2.8 to -4.3	20 U 20 U	
	20 to 21.5 20 to 21.5 12.5 to 14 17 5 to 19	-2.8 to -4.3	20 N	47
	20 to 21.5 12.5 to 14 17 5 to 19	-2.0 10 -4.3		40.11
	12.5 to 14 17 5 to 19)
	17 5 to 19	6.9 to 5.4	27	. 6
	2.0.	1.9 to 0.4	19 U	39 0
	15 to 16.5	3.4 to 1.9	20 U	120
	505 to 50	16 40 21	20.11	40 U
	2.1.5 of US	1.6-010.1-) : 	9 5
	25 to 26.5	-6.6 to -8.1	20 O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	30 to 31.5	-11.6 to -13.1	20 U	39 U
	35 to 36.5	-16.6 to -18.1	19 U	39 U
	40 to 41.2	-21.6 to -22.8	20 U	39 U
	8.5 to 10	10.8 to 9.3	81	2,200 َ
	18.5 to 20	0.8 to -0.7	20 U	48

Sample ID Sampling	Sampling	Depth Interval	Elev. Interval	NWTPH-Diesel	NWTPH-Heavy Oil
	Date	in Feet	in Feet MLLW	in mg/kg	in mg/kg
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	45	1,600
(30 · 0) - MMI-OI +) :	1 1 1	0 07 17 07	22	640
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	çç) (i
HC-MW-2 (S3)	6/24/03	7,5 to 9	11.9 to 10.4	41	98
(00) 7-1111-011		1	0 4 40 0	36	120
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 10 7.9	200	
HC_MM/3D (84)	6/25/03	2.5 to 4	15.9 to 14.4	50 ∩	009
(10) 00-1111-011	0000	. (7007	30	190
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	707	
	6/25/03	10 to 11 5	8.4 to 6.9	25	160
(+0) Oc-MM-OL	00070			ć	100
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	57	001

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water NA - Not Available

Table 3 - Analytical Results for Soil Samples - Metals

Samples Outside the Proposed Excavation	oposed Excava	tion						
Sample ID	Sampling	Depth Interval	Elev. Interval	Arsenic	Cadminm	Chromium	Copper	Lead
	Date	in Feet	in Feet MLLW	in mg/kg	in mg/kg	in mg/kg	in mg/kg	in mg/kg
Sediment Quality Objective	1			ALS	5.1	NA	390~	450/45
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	2.1	0.05 U	12	11.4	5.48
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	5.3	0.05 U	12.1	17.9	3.5
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	1.5	0.05 U	12	11.8	1.83
HC-MW-1 (33)	6/24/03	12.5 to 14	6.9 to 5.4	4	0.25 U	25.7	30.2	30.7
(SS) Z-MM-Z (SS)	6/24/03	17.5 to 19	1.9 to 0.4	1.7	0.05 U	11.6	12.8	4.9
HC MW 3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	3.9	0.26 U	14.9	21.7	7.91
(55) CE-MM-OLI	6/25/03	20 to 21 5	-1 6 to -3 1	-	0.05 U	7.62	11.8	3.73
HC-IMW-3D (97)	6/25/03	25 to 26 5		. 90	0.04 U	10,3	11.2	1.99
HC-IVIW-3D (30)	6/22/03	20 to 31 5	-11 6 to -13 1	- -	0.23 U	13.7	13.1	2.14
HC-IMW-3D (59)	6/22/03	30 to 31.3	16.6 to -18.1	0	0.05	11.9	11.6	1.35
HC-MW-3D (S10)	0/27/0	55 10 50.5	-10.0 (0 -10.1	1 5	0.05	22.8	81.1	1.07
HC-MW-3D (S11)	6/25/03	40 to 41.2	9.77- 01 0.12-	4.0	0.00	0.07	- 6	76
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	5.1	0.2	19.6	6.07	0 0
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	2.3	0.24 U	13.3	17	4.29

Samples Within the Proposed Excavation	roposed Excavati	on						
Sample ID	Sampling	Depth Interval	Elev. Interval	Arsenic	Cadmium	Chromium	Copper	Lead
-	Date	in Feet	in Feet MLLW	in mg/kg				
HC MM/ 1 (81+82)	6/24/03	3 to 6.5	14.2 to 10.7	9	0.25	19.7	23.1	10.1
HO-MW-1 (51: 52)	6/24/03	2,000	16.4 to 12.9	. 60	0.00	10.1	16	4.68
HC-IMW-Z (31+3Z)	0/24/03	7 10.0	11 0 to 10 4	3.7	0.2511	21.3	25.5	33.1
HC-MW-2 (53)	6/24/03	8 OJ C. /	1.01 01 9.11	· ·	0,10		9 40	27.1
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	4.4	0.20	70.1	0.02	
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	2.8	0.45	8.07	14.9	14.2
(5) 05 000 011	6/25/03	7.5.10.9	10 9 to 9 4	4 4	0.14	19.8	24.3	8.71
TO-MW-3D (33)	6/25/03	10 to 11 to	84 to 69	ς. τ.	0.26 U	13.4	23.9	8.87
TC-IVIVV-5D (54)	50/52/0	0.10	2.0) u	0.43	10.6	19.6	6.45
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 10 4.4	6.2	0.10	2.0		

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water NA - Not Available

Table 3 - Analytical Results for Soil Samples - Metals

Samples Outside the Propose	roposed Excavation	ition					
Sample ID	Sampling	Depth Interval	Elev. Interval	Mercury	Nickel	Silver	Zinc
-	Date	in Feet	in Feet MLLW	in mg/kg	in mg/kg	in mg/kg	in mg/kg
Sediment Quality Objective	ive			0.59 🗸	140 🗸	6.1	410
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	0.0122 B	10.9	0.05 U	44.8
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	0.015 B	8.43	0.05 U	25.6
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	0.0096 U	7.64	0.05 U	20
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	0.0428 B	31.1	0.24 U	53.2
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	0.01 B	9.47	0.05 U	23.6
HC-MW-3D (S6)		15 to 16,5	3.4 to 1.9	0.0638 B	10	0.25 U	34.9
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	0.0114 B	6.81	0.05 U	26.3
HC-MW-3D (S8)		25 to 26.5	-6.6 to -8.1	0.0092 U	7.38	0.04 U	21.9
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	0.0081 U	11.3	0.22 U	25.4
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	0.0075 U	7.73	0.05 U	19.1
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	0.0101 U	6.48	0.05 U	20
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	0.123 B	7.98	0.05 U	41.1
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	0.0341 B	9.35	0.23 U	27.2

Calliples William the Flobosed	מיים שלים שלים						1
Sample ID	Sampling	Depth Interval	Elev. Interval	Mercury	Nickel	Silver	Zinc
	Date	in Feet	in Feet MLLW	in mg/kg	in mg/kg	in mg/kg	in mg/kg
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	0.233	13.5	0.05 U	36.9
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	0.0901 B	11.8	0.05 U	31.2
HC-WW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	0.034 B	25.2	0.24 U	45.6
HC-MW-2 (84)	6/24/03	10 to 11 5	9.4 to 7.9	0.0294 B	23.5	0.25 U	49.3
110-MW-2 (34)	6/25/03	25.50	15 9 to 14 4	0.103 B	5.28	0.05 U	6.69
(53) GC-WW-5H	6/25/03	7.5 to 0	10.9 to 9.4	0.0982 B	14	0.05 U	54.1
HC-MW-3D (53)	6/25/03	1.0 to 11 5	8.4 to 6.9	0.115 B	11.8	0.25 U	42.9
HC-WW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	0.275	8.27	0.05 U	34.6

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water NA - Not Available

Table 4 - Analytical Results for Soil Samples - HPAHs

Samples Outside the Proposed							
200000000000000000000000000000000000000				Benzo(a)		Benzo(b,k)	Benzo(g,h,i)
Sample ID	Sampling	Depth Interval	Elev. Interval	anthracene /in ud/kg	Benzo(a)pyrene in µq/kg	fluoranthenes in µg/kg	perylene in µg/kg
Sediment Oriality Objective	hiective			1.600/19-00)	Z,600 (18-40)	(On \$1) 009'S	C720
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 Ü	100 U
HC_MM_1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 N	100 U	100 U	100 U
HC_MM(-1 (S5)	6/24/03	20 to 21 5	-2.8 to -4.3	100 U	100 U	100 U	100 U
LC MW 2 (S5)	6/24/03	12 5 to 14	69 to 5.4	210	130	260	94 U
(SS) 7-MM-5U	6/24/03	17.5 to 19	19100	67 []	0 Z6	97 U	97 U
100 mm v-z (30)	00/4/00	10.00.11		1001	1001	100 U	100 U
HC-MW-3D (96)	6/22/03	15 (0.16.5)	0.4.0		0 0	1007	1001
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	100 U	100 0	0 001	2 2
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	O 66	O 66	O 66	O 66
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	O 86	08 O	∩ 86	08 O
HC MM 3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	97 U	U 76	97 U	97 U
HC-MM-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	O 86	08 U	O 86	O 86
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	230	210	480	120
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	N 66	O 66	O 66	n 66

				Benzo(a)		Benzo(b,k)	Benzo(g,h,i)
Sample ID	Sampling	Depth Interval	Elev. Interval	anthracene	Benzo(a)pyrene	fluoranthenes	perylene
	Date			in µg/kg	in µg/kg	in µg/kg	ın µg/kg
HC_MM_1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 U	100 U	100 U	100 U
(20:10)	8/24/03	2000	16.4 to 12.9	1 66	Λ 66	∩ 66	∩ 66
HC-WW-Z (31+3Z)	00/4/00	1 5 5	14.04.04.04.04.04.04.04.04.04.04.04.04.04	0.20	11 26	11 26	97 U
HC-MW-2 (S3)	6/24/03	8 OI C. /	1.9 (0.10.4	0 76	5)	- 007
HC.MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	220	180	300	0 001
10 mm 2 (04)	00/10/0	7 11 0	15 O to 14 A	1001	100 1	100 U	100 U
HC-MW-3D (VI)	CO/CZ/0	4.0 0.7	t:+ 0:0:0:	2	0 0	120	11 00
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	O 66	n 66	130	0 66
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	100 U	100 U	140	100 N
(+0) 00-MM-01-	00/04/0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 7 7 7	1007	1001	140	100 U
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 10 4.4	0 001	0 001	2	

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water HPAHs - High Molecular Weight Polycyclic Aromatic Hydrocarbons

Table 4 - Analytical Results for Soil Samples - HPAHs

Excavation	
Proposed	
Outside the	
Samples	

Saliples Outside tile ripposed Excavation	く こうりつつつ こしゅ	cavation						
					Dibenz(a,h)		Indeno(1,2,3-c,d)	
Sample ID	Sampling	Depth Interval	Elev. Interval	Chrysene	anthracene	Fluoranthene	pyrene	Pyrene
	Date		in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	in µg/kg
Sediment Quality Objective	ective			√2.800 (1), (ped)	~230 (1800g)	w∕2,500	069	- 43,300
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 Ū	100 U	. 100 U	100 U	100 U
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 U	100 U	100 N
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U	100 U	100 U
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	220	94 0	630	9 4 U	610
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	0 Z6	97 U	97 U	97 U	26
HC_MM/-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 U	100 U	200	100 U	230
LC MW 3D (82)	6/25/03	20 to 21 5	-16 to -3.1	100 11	100 U	100 U	100 U	100 U
(20) CE-MINI-OLI	6/25/03	25 to 28 E	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	1 66	5 66	N 66	∩ 66	O 66
HC-IVIW-3D (30)	0/23/03	20 to 20.0	14 6 to 10.1)) = 86 = 86	2 86	08 N	∩ 86
HC-MW-3D (SS)	50/57/0	30 10 31.3	1.010.13.1	0 :	201	04 - 0	11 20	11 26
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	97 U	0 /6	0 /6	0 78	5 6
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	∩ 86	O 86	086 0	∩ 86 6	286
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	270	140	570	130	1,100
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	O 66	99 U	O 66	0 66	0 66

Samples Within the Proposed Excavation

					Dibenz(a,h)		Indeno(1,2,3-c,d)	
Sample ID	Sampling	Depth Interval	Elev. Interval	Chrysene	anthracene	Fluoranthene	pyrene	Pyrene in ud/kg
	Date	in Feet	in Feet MLLW	ın µg/kg	ın µg/kg	іп ру/ку	Sw/Srl III	H FS VS
HC MM/ 4 (84+82)	6/24/03	3 to 6 5	14.2 to 10.7	100 U	100 U	100 U	100 U	100 U
(20.10)	000				- 00	- 60	11 00	- 06
[HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	0 66	0 88	0 66	0 :	0
HC_MM/2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	0 76	97 U	110	97 U	140
(CO) 7-MINI-OI I	00000	2		. (750	1.00	790
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	240	0 001	OC /	0 :	
(FO) OC WWW OT	6/25/03	2 F to 4	15 9 to 14 4	100 11	100 U	100 €	100 U	100 0
(10) CO-MIM-OLI	0,42,02	+ 2 6.3	1	2		000		780
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	O 66	O 66	200	0 88	001
(00) 00 1111 011		1 77	00 11 10	1007	11001	360	1001	650
HC-MW-3D (84)	6/25/03	10.10.11.5	6.4 10 0.9	2 3	0 00		0 :	0
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	100 U	100 U	340	100 U	280
(20) 20 111								

U - Not detected at detection limit indicated.
MLLW - Mean Lower Low Water
HPAHs - High Molecular Weight Polycyclic Aromatic Hydrocarbons

Table 5 - Analytical Results for Soil Samples - LPAHs

Samples Outside the Proposed Excavation	Proposed Ext	cavation			7		
Sample ID	Sampling	Depth Interval	Elev. Interval	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene
•	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg
Sediment Quality Objective	ective			× 029×	~500 (Between	71,300	096-7
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U	100 O
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 U	100 U
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U	100 U
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	94 U	120	94 U	180
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	97 U	97 U	97 U	97 U
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 U	100 U	100 U	100 U
HC-MW-3D (S2)	6/25/03	20 to 21.5	-1.6 to -3.1	100 U	280	100 U	100 U
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	O 66	140	O 66	∩ 66
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	440	640	08 U	08 O
10-MW-3D (03)	6/25/03	35 to 36 5	-16 6 to -18.1	170	450	97 U	97 U
HC-MW-3D (515)	6/25/03	40 to 41.2	-21 6 to -22 8	O 86	270	08 O	08 U
110-MW-20 (01)	6/24/03	8 5 to 10	10 8 to 9.3	100 11	100 U	100 U	200
HC-MW-4 (S2)	6/24/03	18.5 to 20	0.8 to -0.7	n 66	N 66	06 n	O 66
() () () ()							

Sampling Depth Interval Elev. Interval Date in Feet in Feet MLLN HC-MW-1 (S1+S2) 6/24/03 3 to 6.5 14.2 to 10.7 HC-MW-2 (S1+S2) 6/24/03 3 to 6.5 16.4 to 12.9	nterval	Flow Intomin	On all address of the land of the	A	Arenanhthylene	
S1+S2) S1+S2)	1	Elev. Illerval	Z-Metnyinaputnalene	Acenaputuene	Acerraphiniyiene	
 	in reet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	ın µg/кд
_	3 to 6.5	14.2 to 10.7	100 U	100 U	100 U	100 U
_	3 to 6.5	16.4 to 12.9	O 66	O 66	O 66	O 66
	7 7 6 0	11 9 to 10 4	11 26	97 U	97 U	97 U
	0.010.0	1.0.00.1	000	330	100 11	320
HC-MW-2 (S4) 6/24/03	10 to 11.5	9.4 to 7.9	0 00	000) : :	700
_	2.5 to 4	15.9 to 14.4	100 U	100 U	100 U	100 0
	7.510.9	10.9 to 9.4	N 66	N 66	N 66	180
	10 to 11 5	841069	100 U	100 U	100 U	100 U
	10 to 10	50 to 4.4	1001	100 U	100 U	100 U

U - Not detected at detection limit indicated.
MLLW - Mean Lower Low Water
LPAHs - Low Molecular Weight Polycyclic Aromatic Hydrocarbons

Table 5 - Analytical Results for Soil Samples - LPAHs

Sample ID	Sampling	Depth Interval	Elev. Interval	Fluorene	Naphthalene	Phenanthrene
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	jn µg/kg
Sediment Quality Objective	hiective			7-540	72,100	المراز 500
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U
4C-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 U
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	120	110	830
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	97 U	97 U	120
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 U	140	160
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	100 U	120	100 U
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	N 66	N 66	N 66
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	470	300	350
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	330	150	230
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	110	O 86	140
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	100 U	100 U	360
HC-MW-4 (S4)	6/24/03	18 5 to 20	0.8 to -0.7	O 66	∩ 66	n 66

Samples Within the Proposed Excavation	Proposed Exco	avation				
Sample ID	Sampling	Depth Interval	Elev. Interval	Fluorene	Naphthalene	Phenanthrene
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	In µg/kg
HC_MW_1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 U	100 U	100 U
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	O 66	0 66	O 66
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	97 U	26
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	270	100 U	1,700
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	100 U	100 U	100 U
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	O 66	220	240
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	100 U	350	290
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	100 U	320	300

U - Not detected at detection limit indicated.. MLLW - Mean Lower Low Water LPAHs - Low Molecular Weight Polycyclic Aromatic Hydrocarbons

Table 6 - Analytical Results for Soil Samples - Phenols

Excavation	
Proposed	
the the	
Outside 1	
Samples	

				2,4,5-Trichloro-	2,4,6-Trichloro- 2,4-Dichloro-	2,4-Dichloro-	'n	2,4-
Sample ID	Samulino	Denth Interval	Elev. Interval	phenol	phenol	phenol	phenol	Dinitrophenol
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	in µg/kg
Sediment Orglity Objective	**			AN	AN	ΑN	NA	NA
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U	100 U	200 N
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 U	100 U	200 N
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U	100 U	200 N
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	94 O	94 U	94 U	94 U	470 U
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	0 Z6	97 U	97 U	2 ∪	480 U
HC-MM-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 U	100 U	100 U	-	200 N
HC-MW-3D (55)	6/25/03	20 to 21.5	-16 to -3.1	100 U	100 U	100 U	5 U	200 N
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	Ω 66	N 66	N 66	2 N	200 N
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	N 86	N 86	∩ 86	5 U	490 U
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	97 U	97 U	97 U	5 U	490 U
HC-MM-3D (S11)	6/25/03	40 to 41 2	-21.6 to -22.8	U 86	08 U	08 U	2 N	490 N
HC-MW-30 (911)	6/24/03		10.8 to 9.3	100 U	100 U	100 U		200 N
HC-MW-4 (S2)	6/24/03	18.5 to 20	0.8 to -0.7	N 66	O 66	O 66	5 U	490 U
HC-IVIVV-4 (54)	0/44/03	10.3 10 20	0.0	0000				

Samples Within the Proposed Excavation

		-		2,4,5-Trichloro-	2,4,6-Trichloro-			-4,7
Sample ID	Sampling	Depth Interval	Elev. Interval	phenol	phenol	phenol	phenol	Dinitrophenol
	Date	in Feet		in µg/kg	in µg/kg			in µg/kg
HC-MW-1 (81+89)	6/24/03	34065	14.2 to 10.7	100 U	100 U			200 N
(20:10) (10:10) (10:10)	6/24/03	2 40 65	16.4 to 12.9	1 66	N 66			200 N
10 444 2 (21132)	00/4/00	2000	11 0 to 10 1	0 20	11 26			480 U
HC-IMM-Z (33)	0/24/03	8 C) C C	1.0101.0	5 5	2 6			500
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	0 001	0 001			2 2 2
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	100 U	100 U		2 N	n 000
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	O 66	N 66			200 N
HC-WW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	100 U	100 U		12	200 N
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	100 U	100 U		12	500 U
10-1444-01	0,50		20.00					

U - Not detected at detection limit indicated.
MLLW - Mean Lower Low Water
NA - Not Available

Table 6 - Analytical Results for Soil Samples - Phenols

Samples Outside the Proposed Excavation	e Proposed Exc	avation		2-	2-Methyl-4.6-	2-		4-Chloro-3-	-4
Sample ID	Sampling	Depth Interval	Elev. Interval	Chlorophenol	dinitrophenol	Methylphenol in ua/ka	2-Nitrophenol in ua/ka	methylphenol in µg/kg	Methylphenol in µg/kg
10 11	Date	III Leet	III LEEL MELY	gu/gd III	AN AN		NAN	NA VA	1,870
Sediment Quality Objective	ective	10 to 10 to	7 0 40 5 7	100	500 11	100 11	100 U	100 U	100 U
HC-MW-1 (S3)	6/24/03	0.11.01.01	7.5 (0 0.7)	2 5		200	1001	100 11	100 U
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	J 00L	0 000	2 :	9 9		1007
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 C	200 N	100 U	100 0	0 001	2 :
(CO)	6/24/03	12 5 to 14	6.9 to 5.4	94 U	470 U	94 U	94 U	94 U	94 0
(50) 2-1111-011	0.4700	7 6 6 7 7 7 7	4.0 40 4	07 11	480 11	20	97 U	97 U	97 U
HC-MW-Z (S6)	6/24/03	81 OJ C.71	1.0 00 0.1	5	200	,	1 00 7	1001	210
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 C	200	71.	200	0 :	200
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	100 U	200 N	2 ∩	100 O	100 U	0 001
	00/200	25 to 26 5	6 to 6	1 66	500 11	2 N	N 66	∩ 66	∩ 66
HC-IMIVV-3D (38)	50/57/0	50 10 20.0		8 8	1008	- -	- 86 - 86	N 86	∩ 86
(HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.010-13.1	0 0	0 0 0 0 0 0) :) i	1 0	1 20	07 11
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	97 U	490 N	<u>م</u>	0 /6))	5 6
(C)	6/25/03	40 to 41 2	-21 6 to -22 8	08 N	490 U	2 ∩	∩ 86	∩ 86	⊃ 88
(118) OS-MINI-OLI	00,000		20.040.04	1 001	11 002		1001	100 U	100 L
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.0 10 9.3	9	0 :	:	2 2		11 00
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	D 66	490 U	ر د	0 88	0 88	0 60

Samples Within the Proposed Excavation	roposed Excav	/ation		-					
				2-	2-Methyl-4,6-	5		4-Chloro-3-	.
Sample ID	Sampling	Depth Interval	Elev. Interval	Chlorophenol	dinitrophenol in ua/ka	Methylphenol in ua/ka	2-Nitrophenol in µg/kg	methylphenol in µg/kg	Methylphenol in µg/kg
	Dale	III I CC.		S. 64			11 004	1001	1001
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 O	0 000	0 23	0 00	2) (
(10 10) 100	6/04/03	3 +0 6 4	16 A to 12 9	= 66	500 U	N 66	∩ 66	O 66	O 66
HC-IVIW-Z (31+3Z)	0/24/03	5.00.0	0.31) ;			11 20	11 70	07 11
HC.MW.2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	480 U	D /8	0 /6	0 16	5
(CO) 7-MM-C	0000	10 7 7	0 4 1 1 0	1004	200	1001	1001	100 U	100 U
HC-MW-2 (S4)	6/24/03	10 to 11.5	8.7 01 4.8	200) :) :	1 000	1,001
HC_MM/30 (61)	6/25/03	2.5 to 4	15.9 to 14.4	100 U	200 C	2 0	100 C	2001	2
(10) 00-44141-011	00000	- (C 2	4004		11 003	ď	= 66 6	∩ 66	780
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	0 66	0 000	3			070
(NO) OF WW OL	6/25/03	10 to 11 5	841069	100 U	200 N	9	100 U	100 U	017
(+5) O5-MM-0L	0010310	2	2		- (•	1 007	1001	290
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	100 U	200 U	13	0 001	0 00	2024

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water NA - Not Available

Table 6 - Analytical Results for Soil Samples - Phenols

	I
⊆	l
2	1
쑱	ı
⋍	l
ú	١
ខ	i
வ	I
☴	I
ă	I
Θ	I
ŏ	ł
e Proposed Excavation	1
۲	Į
۵.	I
ø	-
£	
~	ĺ
Outside the	ı
·ž	
끝	ı
Ζ	1
·	i
Š	ı
Samples	ļ
2	
╘	
<u>.</u> g	
	11

-					-entachioro-	
Sample ID	Sampling	Depth Interval	Elev. Interval	4-Nitrophenol	phenol	Phenol
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg
Sediment Quality Obje	ective			AN	360	~420
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	200 U	200 U	100 U
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	200 U	500 U	100 U
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	200 U	200 U	100 U
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	470 U	470 U	94 U
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	480 U	98 U	97 U
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	200 U	100 U	100 U
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	200 U	97 U	100 U
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	500 U	n 66	N 66
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	490 U	100 U	08 U
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	490 U	O 86	97 U
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	490 U	95 U	98 U
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	200 N		100 U
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	490 U	O 66	06 n

Samples Within the Proposed Excavation

					rentacinolo-	
Sample ID	Sampling	Depth Interval	Elev. Interval	4-Nitrophenol	phenol	Phenol
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	500 U	200 U	100 U
(HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	200 U	200 U	N 66
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	480 U	480 U	97 U
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	500 U	200 U	100 U
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	200 U	N 66	100 U
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	200 N	08 U	∩ 66
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	200 U	O 86	100 U
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	200 U	N 66	100 U

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water NA - Not Available

Table 7 - Analytical Results for Soil Samples - Phthalates

Samples Outside the Proposed Excavation	Proposed Exc	avation							
				Butyl benzyl	Di-n-butyl	Di-n-octyl	Diethyl	Dimethy	Bis(z-Etnyinexyi)
Cample ID	Sampling	Denth Interval	Elev. Interval	phthalate	phthalate	phthalate	phthalate	phthalate	phthalate
Cample 15	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	in µg/kg 👈	/ in µg/kg
ovitooidO viiloi O toomika o				006,4	7.400	€6,200	-200	(200)-160	7 44:300
Sediment Quality Opy	SCHAE	404-445	704057	1001	100 11	100.11	100 U	中學	230
HC-MW-1 (S3)	6/24/03	10 to 11.5	1.2 10 3.1	o :	2 2 3	0 5	1 2 2 2	1001	100 11
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 0	200	0 :	2 2	0000
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U	100 U	100 0	77 0
(90) 0 70 0 1	6/1/03		80to 54	1 70	94 U	94 C	94 U	94 U	94
(ce) Z-MM-7H	0/24/03		1000	7 5	- 10	11 70	07 11	1) 26	140
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	O /6	0 3) i	5 6	5 6	330
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	100 U	100 C	100 C	100 C	0 001	000
(50) G0 MW-011	00/20/0		16 0 2 1	1001	100 11	100 U	100 U	100 1	150
HC-MW-3D (37)	00/07/0		2.5.5	2 2	0 0		1 00	11 00	210
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	O 66	O 86	O :	0 :	3 8	3 1
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	0 86 0	∩ 86	0 86	0 86 0 86	O :	0 :
10-MW-05 (00)	00/20/0	25 to 26 E	16 6 to -18 1	11 70	0 Z6	97 U	97 U	97 U	0 /6
(016) US-WW-2H	0/23/03	50.00	1000	5 6	- 00	11 80	- 80 -	∩ 86	170
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	O 88	0	0 00	9 6	1007	3 000
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3	1,200	290	380		o :	7,000
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	O 66	99 U	O 66	0 66	0 88	061
, , , , , , , , , , ,									

Samples Within the Proposed Excavation	oposed Excar	vation							: ::= 0; :=
				Butyl benzyl	Di-n-butyl	Di-n-octyl	Diethyl	Dimethyl	Bis(2-Ethylnexyl)
Sample ID	Sampling	Depth Interval	Elev. Interval	phthalate in ud/kg	phthalate in ug/kg	phthalate in pg/kg	phthalate in µg/kg	phthalate in µg/kg	pntnalate in µg/kg
	חשום	1111 001			-1 007	1004	1001	1001	560
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	270	0 33	3	2	2 6	1
(00.70)	00/10/0	3 +0 6 12	16.4 to 10.0	180	T 66	∩ 66	O 66	⊃ 66	00,
HC-IMM-Z (21+2Z)	0/47/0		0.4 10 12:3			- 10	11 20	11 70	45
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	0 /6	0 /8	0 /6	5	-
(OO) 7-MM-OI	0 0 0 0	t,	0.4 +5 7.0	1001	1001	1001	100 U	100 1	310
HC-MW-2 (S4)	6/24/03	0.11.0101	9.4 (0 7.9	0 20	2 :) :	1007	11.004	1.300
HC_MM-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	930	100 U	100 0	0 001	200	
(10) GS-MINI-OLI	00000		40.040.04	240	- 00	11 66	∩ 66	⊃ 66	230
HC-MW-3D (S3)	6/22/03	8 01 6.7	10.9 10 9.4	2.7	3) :	1 000	1004	200
(NO) OF WWW JH	6/25/03	10 to 11.5	8.4 to 6.9	160	100 C	100 U	0 001	2	200
	0000			000	- 001	1001	1001	100 C	180
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	730	0 8		2		

U - Not detected at detection limit indicated. MLLW - Mean Lower Low Water

Table 8 - Analytical Results for Soil Samples - SVOCs

1,2,4-Trichlorg	Table 8 - Analytical Results for Soil Samples - SVOCs	Results for Soil	Samples - SVOCs			Tark C	Defeation Unite and	0.00	ς.	
Sampling Depth Interval in Feet Interval in	Samples Outside the	e Proposed Exc	avation			M C			7.7	9.9' cwibie/4.
Sampling Date In Feet in Feet in Feet MLLW Integrity objective In pg/kg In pg/kg <th></th> <th></th> <th>-</th> <th></th> <th>1,2,4-Trichlore</th> <th>1,2-Dichloro</th> <th>1,2-Diphenyl</th> <th>1,4.</th> <th>.. 4.</th> <th>2,2 "UAJUIS(I"</th>			-		1,2,4-Trichlore	1,2-Dichloro	1,2-Diphenyl	1,4 .	. . 4.	2,2 "UAJUIS(I"
724/03 10 to 11.5 7.2 to 5.7 100 to 100	Sample ID	Sampling	Depth Interval	Elev. Interval	benzene in ua/ka	benzene in ua/ke	hydrazine in µg/kg	Dichlorobenzene in µg/kg	Dichlorobenzene in µg/kg	Chloropropane) in µg/kg
724/03 10 to 11.5 7.2 to 5.7 100 to 100		Date			12000 T		AN	(00) (多		NA
6/24/03 10 to 11.5 7.2 to 5.7 100 B 100 U	Sediment Quality Op.	eclive					11 007	755	++60+	100 U
6/24/03 15 to 16.5 2.2 to 0.7 100 U	HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	2 SE /	D DOL	0 001	0 0 0 0	0 20 7	1001
6/24/03 20 to 21.5 -2.8 to -4.3 100 U 100	HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 C	100 N	100 O	0 001	0 :	2 2 2
6/24/03 12.5 to 14 6.9 to 5.4 94 U 94 U 94 U 94 U 94 U 94 U 95 U 95	HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	_ 100 U /	100 U	100 U	100 U	100 U	0 20
6/24/03 17.5 to 19 1.9 to 0.4 5 U 97 U 6/25/03 15 to 16.5 3.4 to 1.9 5 U 100 U 6/25/03 20 to 21.5 -1.6 to -3.1 5 U 100 U 6/25/03 20 to 21.5 -6.6 to -8.1 5 U 99 U 98 U 96/25/03 30 to 31.5 -11.6 to -13.1 5 U 98 U 97 U 97 U 97 U 97 U 97 U 98 U 98	(HC-MW/-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	7 48	94 U	94 U	94 ∪	94 U	94 0
6/25/03 15 to 16.5 3.4 to 1.9 5 U 100, U 6/25/03 20 to 21.5 -1.6 to -3.1 5 U 99 U 6/25/03 25 to 26.5 -6.6 to -8.1 5 U 99 U 99 U 6/25/03 30 to 31.5 -11.6 to -13.1 5 U 98 U 97 U 97 U 97 U 97 U 98 U 97 U 97	(S) 2 (WV) H	6/24/03	17.5 to 19	1.9 to 0.4) <u>D</u> S	97 U			97 U	
6/25/03 20 to 21.5 -1.6 to -3.1 5 U 100 U 6/25/03 20 to 21.5 -1.6 to -8.1 5 U 99 U	UC WW(3D (SB)	6/25/03	15 to 16.5	3.4 to 1.9	5 0	100 U			100 U	
6/25/03 25 to 26.5 - 6.6 to -8.1 5 U 99 U 99 U 6/25/03 25 to 26.5 to -13.1 5 U 98 U 98 U 97 U 97 U 97 U 97 U 97 U 97	(S) GS (W) OI	6/25/03	20 to 21 5	-1 6 to -3 1	25	100 U			100 U	
6/25/03 30 to 31.5 -11.6 to -13.1 5 U 98 U 6/25/03 35 to 36.5 -16.6 to -18.1 5 U 97 U 6/25/03 40 to 41.2 -21.6 to -22.8 5 U 6/24/03 8.5 to 10 108 to 9.3 100 U 6/24/03 18.5 to 20 0.8 to -7 5 U 99 U	(S) CE:WW-2D	6/25/03	25 to 26 5	-6 fto -8.1	2.0	N 66			N 66	
6/25/03 35 to 36.5 -16.6 to -18.1 5 U 97 U 6/25/03 40 to 41.2 -21.6 to -22.8 5 U 98 U 6/24/03 8.5 to 10 108 to 9.3 100 U	(05) GE-WW-011	6/25/03	30 to 31.5	-116 to -13.1	2 N	O 86			0 86 ∩	
6/25/03 40 to 41.2 -21.6 to -22.8 5 U 98 U 6/25/03 45 to 10 10.8 to 93.3 100 U 6/24/03 8.5 to 20 0.8 to -7 5 U 99 U	(36) CC (36)	00/2/0	36 to 36 5	-16 6 to -18 1	=	N 26			97 U	
11) 6/25/03 40 to 41.2 -21.6 to -22.8 5.0 98.0 6/24/03 8.5 to 10 10.8 to 9.3 10.0 U 5/24/03 18.5 to 20 0.8 to -0.7 5.0 99.0	HC-MW-3D (510)	0/07/0	33 10 36.3	10.01-0.01-) :) !	5 6			11 86	
6/24/03 8.5 to 10 10.8 to 9.3 (5.0 \ 6/24/03 18.5 to 20 0 8.to -0.7 (5.0 \ 99.0	HC-MW-3D (S11)	6/25/03	40 to 41.2		⊃ ເ	O :			1000	
6/34/03 18 5 to 20 0 8 to -0.7 (-5.U) 99 U	HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3		100 U			0 5	
0,24/03	HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	√2 n ≤	O 66			0 88	

Samples Within the Proposed Excavation	'roposed Excav	ation							17 - 17 - 10 - 0
				1,2,4-Trichloro	1,2-Dichloro	1,2-Diphenyl	£, .	- , -4.	2,2'-oxybis(1-
Sample ID	Sampling	Depth Interval	Elev. Interval	benzene in ua/ka	benzene in ua/ka	hydrazine in µg/kg	Dichlorobenzene in µg/kg	Dichlorobenzene in µg/kg	Cnioropropane) in µg/kg
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	/100 U	100 U	100 U	100 U	100 U	100 U
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	n 66	N 66	∩ 66	O 66	33 C	0.60
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	/ n /6	97 U	97 U	97 U	O /6	0 767
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	7 99 7	100 U	100 U	100 U	0 2 5	0
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	2 N	100 U			2 2	
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	2 ∩	O 66				
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	5 U	100 U			0 2 5	
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	5 U	100 U			0 001	

Table 8 - Analytical Results for Soil Samples - SVOCs

Interval Elev. Interval In Feet MLLW In Feet In Feet MLLW In 11.5 7.2 to 5.7 to 16.5 2.2 to 0.7 to 16.5 2.2 to 0.4 1.9 to 16.5 3.4 to 1.9 to 26.5 6.6 to -8.1 to 26.5 6.6 to -8.1 to 36.5 -16.6 to -18.1 to 41.2 -21.6 to -22.8	Samples Outside the Proposed Excavation	Proposed Exca	avation							
Sampling Depth Interval Date In Feet In Feet MLLW Quality Objective in Feet in Feet MLLW (S3) 6/24/03 10 to 11.5 7.2 to 5.7 (S4) 6/24/03 15 to 16.5 2.2 to 0.7 (S5) 6/24/03 12.5 to 14 6.9 to 4.3 (S5) 6/24/03 17.5 to 19 1.9 to 0.4 (S6) 6/25/03 15 to 16.5 3.4 to 1.9 (S7) 6/25/03 15 to 16.5 -1.6 to -3.1 (S7) 6/25/03 20 to 21.5 -6.6 to -8.1 (S8) 6/25/03 20 to 21.5 -1.6 to -13.1 (S9) 6/25/03 30 to 31.5 -11.6 to -13.1 (S9) 6/25/03 35 to 36.5 -16.6 to -18.1 (S10) 6/25/03 36 to 36.5 -16.6 to -18.1 (S11) 6/25/03 40 to 41.2 -17.6 to -28.8	200000000000000000000000000000000000000				2,4-	2,6-	2-Chloro-			
Date In Feet In Feet //24/03 10 to 11.5 7.2 to 5.7 //24/03 15 to 16.5 2.2 to 0.7 //24/03 15 to 16.5 2.2 to 0.7 //24/03 12.5 to 14 6.9 to 5.4 //24/03 17.5 to 19 1.9 to 0.4 //25/03 15 to 16.5 3.4 to 1.9 //25/03 20 to 21.5 -1.6 to -3.1 //25/03 25 to 26.5 -6.6 to -8.1 //25/03 30 to 31.5 -11.6 to -13.1 //25/03 35 to 36.5 -16.6 to -18.1 //25/03 35 to 36.5 -16.6 to -18.1 //25/03 36 to 31.5 -16.6 to -18.1 //25/03 36 to 41.2 -21.6 to -22.8 //25/03 -6.6 to -8.1 -16.6 to -18.1 //25/03 36 to 41.2 -21.6 to -22.8 //25/03 -6.4 to 41.2 -21.6 to -22.8	mple ID	Sampling	Depth Interval	Elev. Interval	Dinitrotoluene	Dinitrotoluene	naphthalene in ua/ko	2-Nitroaniline in ug/kg	Dichlorobenzidine in µg/kg	3-Nitroaniline in µg/kg
7/24/03 10 to 11.5			In reet	IU Leet MELW	Suifir III	6 VV	NA	NAN	NA	NA
6/24/03 10 to 11.5 6/24/03 15 to 16.5 6/24/03 20 to 21.5 6/24/03 12.5 to 14 6/24/03 17.5 to 19 6) 6/25/03 15 to 16.5 7) 6/25/03 20 to 21.5 8) 6/25/03 25 to 26.5 9) 6/25/03 30 to 31.5 10) 6/25/03 30 to 31.5 11) 6/25/03 40 to 41.2	diment Quality Object	tive			¥.	<u> </u>	11 33	11007	11 003	1001
6/24/03 15 to 16.5 6/24/03 20 to 21.5 6/24/03 12.5 to 14 6/24/03 17.5 to 19 6) 6/25/03 15 to 16.5 7) 6/25/03 20 to 21.5 8) 6/25/03 25 to 26.5 9) 6/25/03 30 to 31.5 10) 6/25/03 40 to 41.2 11) 6/25/03 9.5 to 10.3	-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 i	0 0 0		2 2 2
6/24/03 20 to 21.5 6/24/03 12.5 to 14 6/24/03 17.5 to 19 6) 6/25/03 15 to 16.5 7) 6/25/03 20 to 21.5 8) 6/25/03 25 to 26.5 9) 6/25/03 35 to 31.5 10) 6/25/03 35 to 36.5 11) 6/25/03 9 to 31.5 11)	-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 O	J001	0 000	0 0
6/24/03 12.5 to 14 6/24/03 17.5 to 19 6/25/03 15 to 16.5 6/25/03 20 to 21.5 6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 35 to 36.5 6/25/03 95 to 36.5	MM(4 (CE)	6/24/03	20 to 21 5	-2.8 to -4.3	100 U	100 U	100 U	100 N	0 009	000
6/24/03 17.5 to 19 6/24/03 17.5 to 19 6/25/03 20 to 21.5 6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 35 to 36.5 6/25/03 9.5 to 10.5 6/25/03 9.5 to 10.5	-MM-1 (55)	6/24/03	12 5 to 14	6.9 to 5.4	94 U	94 U	94 U	94 ∪	470 U	94 0
6/24/03 17.5 to 19 6/25/03 15 to 16.5 6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 40 to 41.2	(cc) Z-MM-	00770	1.00.11	40.00	,					
6/25/03 15 to 16.5 6/25/03 20 to 21.5 6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 35 to 36.5 6/25/03 40 to 41.2	:-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4						
6/25/03 20 to 21.5 6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 35 to 36.5 6/25/03 40 to 41.2	:-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9						
6/25/03 25 to 26.5 6/25/03 30 to 31.5 6/25/03 35 to 36.5 6/25/03 40 to 41.2	:-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1						
6/25/03 30 to 31.5 6/25/03 40 to 41.2	:-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1						
6/25/03 35 to 36.5 6/25/03 40 to 41.2	:-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1						
6/25/03 40 to 41.2	:-MW-3D (S10)	6/25/03	35 to 36.5	· -16.6 to -18.1						
01000	:-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8						
0/54/00 0.010.10	HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3						
HC-MW-4 (S4) 6/24/03 18.5 to 20 0.8 to -0.7	C-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7						

Samples Within the Proposed Excavation	Proposed Exca	vation						100	
				2,4-		2-Chloro-	:	- 5,5	
Sample ID	Sampling	Depth Interval	Elev. Interval	Dinitrotoluene	Dinitrotoluene	naphthalene in un/kg	2-Nitroaniline in uα/kα	Dichlorobenzidine in ua/kg	3-Nitroaniine in µg/kg
	Date	In Feet	IN FEET INLLW	III µg/ng	Bu/Brl III	. La.	2 007	11 003	1
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 U	100 U	100 U	0 :	000	
HC-MW-2 (81+82)	6/24/03	3 to 6.5	16.4 to 12.9	∩ 66	∩ 66	∩ 66	O 66	0 000	
110-1010-2 (OI 02)	001.00		440404	07 11	97 11	D 26	97 U	480 U	
[HC-MW-2 (S3)	6/24/03	8 01 6.7	11.9 (0 10.4	5			1.001	11 005	
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	100 U	100 U	0 001	2		
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4						
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4						
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9						
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4						

Table 8 - Analytical Results for Soil Samples - SVOCs

Samples Outside the Proposed Excavation	ייים הספספוריי	avacion		-		Who have been			
!				4-Bromophenyl		4-Cillorophieriyi			Later of County of
Sample ID	Sampling	Depth Interval	Elev. Interval	phenyl ether	4-Chloroaniline	phenyl ether	4-Nitroaniline	Anilline in lig/kg	benzoic acid in ira/ka
	Date	in Feet	in Feet MLLW	in µg/kg	ın µg/кg	in µg/kg	Ru/Srl III	Swift in	- Feb
Sediment Onality Objective	orfive			AA	NA	NA	NA	AA	8
HC-MAN-1 (93)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U	100 U	100 O	200
(50) 1-444-01	20,700	10 40 40 10	20400	1001	1001	100 U	100 U	100 U	200 N
HC-MW-1 (84)	0/24/03	15 (0.16.3	2.2 10 0.1	200	0 0 0	1.007	1001	1001	200 N
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	0.001	0 00	2	200	2 2	11 027
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	94 ∪	94 0	94 C	94 O	¥ 0	2 2 3
(S) Z (WW) D	6/24/03	17.5 to 19	1.9 to 0.4						480 U
(00) Z-AAIAI-OLJ	0017310	0 1	0 7 7						200
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9						500 11
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1						900
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1						000
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(5:0) (6:0)	6/25/03	An to 412	.21 6 to .22 8						490 0
HC-IVIVI-0H	000000	7:1+ 01 0+	000000000000000000000000000000000000000						200 N
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3						11 007
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7						0 000

Camples Within the Proposed Excavation	roposed Excav	ration							
Campies Within the	מספס שפיים			4-Bromophenyl		4-Chlorophenyl		;	
Sample ID	Sampling	Det	Elev. Interval	phenyl ether in ua/ka	4-Chloroaniline in uq/kg	phenyl ether in µg/kg	4-Nitroaniline in µg/kg	Aniline in µg/kg	Benzoic acid in µg/kg
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 U	100 U	100 U	100 U	100 U	500 U
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	∩ 66	∩ : 66	O :	0 5 6	33.0	0.000
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	97 U	0 /6	0 /6	9 6	2 2 2
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	100 U	100 N	100 U	0 001	2	000
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4						2000
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4						0000
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9						200
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4						0 000

Table 8 - Analytical Results for Soil Samples - SVOCs

Samples Outside the Proposed Excavation	Proposed Exc.	avation							11	Ciclatore II
				Benzyl				ᅙ	Hexacnioro-	nexaction of
Sample ID	Sampling	Depth Interval	Elev. Interval	Alcohol	Biphenyl	Carbazole in un/kg	Dibenzofuran in ua/ka	hene in ua/ka	benzene in µg/kg	butadiene in µg/kg
	Date	in Feet	IN Feet MLLW	In µg/kg	Bu/hh	R S S S S S S S S S S S S S S S S S S S	- AEAO	NA	NA	7
Sediment Quality Objective	cfive			2	NA	Ϋ́	240		1.00	11 00 7
HO MM 4 (69)	8/24/03	10 to 11 5	72 to 5.7	100 U	100 U	100 U	100 C	100 C	100	0 :
(SS) 1-MM-7L	20170	2 .	00000		100	1001	100 U	100 C	100 C	100 0
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	2 :	200	2 2	1 2 2	1001	1001	100 U
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	J 001	0 001	0 :	2 2	2 2	1 70
HC-MM/-2 (SE)	6/24/03	12.5 to 14	6.9 to 5.4	94	94 U	150	94 0	94 O		5 5
(SS) Z-MINI-7L	00,700	11000	10000	40 P			97 U		2 0	20
HC-MW-2 (S6)	6/24/03	81 OJ C: /L	1.9 10 0.4	a 2 ;			1001			2 ∩
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9	33			2 2 2		 - u	
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	92			0 001) <u> </u>	ט ע
UC-WW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	6 B			O 66		o :	י כ י
(OC) CO-MMI-OLI	00000	201010100	146 40 424				120		2 €	200
HC-MW-3D (S9)	6/22/03	30.10.31.3	-1.0 0.1-13.	וכ			11 70		5 U	2 ℃
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1	n ~			5 6		- <u>-</u>	<u></u>
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	7) S6 (0)
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3				000		<u>=</u>	т П
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	24			0 88			

Samples Within the Proposed Excavation	roposed Excav	ration						- 5		o de la constitución
Campico anami				Benzyl				ŏ	Hexachioro-	Hexachioro-
Sample ID	Sampling	Depth Interval	Elev. Interval	Alcohol	Biphenyl	Carbazole	Dibenzofuran	hene	benzene	butaglene in
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	in µg/kg	ın µg/kg	Bu/Bri III
110 MW 4 (04 100)	6/04/03	2 to 6 5	14.2 to 10.7	100 U	100 U	100 U	100 U	100 C	100 U	0 00 0
(20116) I-MM-0L	00/47/0	2			2	- 60	- 00	66	O 66	0 66
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	O 86) S) ()	2 0 0	2 20	07 11	07
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	97.0	97 U	0 /6	2 6	2 2	100
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	100 U	100 U	009	0 001	071	2 2	
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	23			0 001		о и С) LC
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	44			0 56) =) () =) \(\(\)
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	42			0.00) <u>-</u>) T
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	46			J00 D		0	

Table 8 - Analytical Results for Soil Samples - SVOCs

Samples Outside the Proposed Excavation	Proposed Exca	avation							7
				Hexachloro-	Hexachloro-		N-Nitroso-di-n-	N-Nitroso	N-Nitroso
Sample ID	Sampling	Depth Interval	Elev. Interval	cyclopentadiene	ethane in ind/kg	Isophorone in ua/ka	propylamine in ug/kg	dimethylamine in µg/kg	aipnenyiamine in µg/kg
-	Date	In reet	IN FEET WILLY	Sugar III	Supplement of the supplement o	0 0	S NA	AN	89
Sediment Quality Objective	ective e			NA	¥	4	11 007	11 007	1001
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U	000	0 001	200
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 U	100 :	0 001	2 6
HC-MW-1 (85)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U	100 U	0 00L	2 2
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	94 U	94 U	94 U	94 U	94 0	94 4 O 44
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4						2 £
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9						_ u
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1) =
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1) L
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1) r
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1) = 0 u
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8)
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3						<u>-</u>
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7						

Samples Within the Proposed Excavation	roposed Excav	vation							1
				Hexachloro-	Hexachloro-		N-Nitroso-di-n-	N-Nitroso	N-Nitroso
Sample ID	Sampling	Dep	Elev. Interval	cyclopentadiene	ethane in ng/kg	Isophorone in ua/ka	propylamine in µg/kg	dimethylamine in µg/kg	diphenylamine in µg/kg
	Date	III reet	III LEGI MELT	8 1 Kg 1 11	2 2 2		11 007	11001	1001
HC-MW-1 (S1+S2)	6/24/03	3 to 6.5	14.2 to 10.7	100 U	100 O	100 C	0 001	2 2	2 2
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	O 66	O 66	∩ : 66	O : 66	2 68	0.66
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	0 Z6	97 U	97 U	0 /6	o :	2 6
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	100 U	100 U	100 U	0 001	0 00	2 =
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4						יי כ
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4) a
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9						- C
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4						

Table 8 - Analytical Results for Soil Samples - SVOCs

Samples Outside the Proposed Excavation	Pronosed Exc.	avation				
					Bis(2-Chloroethoxy)	Bis(2-Chloroeth)
Sample ID	Sampling	Depth Interval	Elev. Interval	Nitrobenzene	methane	ether
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg
Sediment Quality Objective	ective			AN	NA	NA
HC-MW-1 (S3)	6/24/03	10 to 11.5	7.2 to 5.7	100 U	100 U	100 U
HC-MW-1 (S4)	6/24/03	15 to 16.5	2.2 to 0.7	100 U	100 U	100 L
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	100 U	100 U	100 U
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	94 U	94 U	94 U
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4			
HC-MW-3D (S6)	6/25/03	15 to 16.5	3.4 to 1.9			
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1			
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1			
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1			
HC-MW-3D (S10)	6/25/03	35 to 36.5	-16.6 to -18.1			
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8			
HC-MW-4 (S2)	6/24/03	8.5 to 10	10.8 to 9.3			
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7			

					Bis(2-Chloroethoxy)	Bis(2-Chloroethyl)
Sample ID	Sampling	Depth Interval	Elev. Interval in Feet MLLW	Nitrobenzene in ua/ka	methane in µg/kg	ether in µg/kg
LIC MANA 4 (CALED)	8/24/03	3 to 6 5	14.2 to 10.7	100 U	100 U	100 U
(20+10) 1-AAIAI-OL	20/1-7/0	2			- 50	- 00
HC-MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	O 88	0 88	0 70
HC-MW-2 (S3)	6/24/03	7.5 to 9	11.9 to 10.4	97 U	0 7e	0 /6
HC-MW-2 (S4)	6/24/03	10 to 11.5	9.4 to 7.9	100 U	100 U	100 U
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4			
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4			
HC-MW-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9			
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4			

Table 9 - Analytical Results for Soil Samples - Pesticides/PCBs

Samples Outside the Proposed Excavation	posed Excavati	ion						A004
Sample ID	Sampling	Depth Interval	Elev. Interval	4,4-DDD	4,4-DDE	4,4-DDT	Aroclor-1016	Arocior-1221
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	In µg/kg
Sediment Ouality Objective	σ			76	ક્ર	~34	300	(800)
HO MAN 4 (C2)	6/24/03	10 to 11 5	7.2 to 5.7	2.4 U	2.4 U	2.4 U	T15 U	_231 U
C-ivivv-1 (33)	0,74,0	4 to 4 a.s.	2 2 to 0 7	2611	2.6 U	2.6 U	135 U	271 U
HC-MW-1 (S4)	6/24/03	15 10 10.3	2.2 10 0.1	0 0) = 0 c	0.3.11	119 []	239 U
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	2.3 0	7.3 0	S : 0	7	200
HC-MW-2 (S5)	6/24/03	12.5 to 14	6.9 to 5.4	2.3 U	2.3 U	2.3 U	U /LL	0 1 1
(SO) = MW 3D (SE)	6/25/03	15 to 16 5	3.4 to 1.9	2.9 U	2.9 U	2.9 U	143 U	287 U
(06) GC-MM-OL	000000	1000	40.40	11 6 6	1186	23 11	117 U	234 U
HC-MW-3D (S7)	6/25/03	20 to 21.5	1.5-010-1-	۲.۵ ر	5.5			11 080
HC-MW-3D (S8)	6/25/03	25 to 26.5	-6.6 to -8.1	2.6 U	2.6 U	7.6 U	124 O	243 0
(00) 00 (00)	6/25/03	30 to 31 5	-116 to -131	2.2 U	2.2 U	2.2 U	113 0	7.72 O
HC-IVIVI-3D (38)	0/23/03	5.000	1000	1 7	0.411	2411	116 U	231 U
(HC-MW-3D (S10)	6/25/03	35 to 36.5	- 10.0 10 - 10.1	7.4 O) ; c	i	- 70	11 070
HC-MW-3D (S11)	6/25/03	40 to 41.2	-21.6 to -22.8	2.4 ∪	2.4 ∪	2.4 0	0 171	0 747
(1.0) 20 (0.1)	6/24/03	17 5 to 19	1.9 to 0.4	2.2 U	2.2 U	2.2 U	120 U	240 O
UC-IVIVV-Z (30)	20/44/0	00000	. 10		1100	1106	135 13	270 U
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	7.9 0	2.3 0	0.3		

Samples Within the Proposed Excavation	oposed Excavatic	uc						
Sample ID	Sampling	Depth Interval	Elev. Interval	4,4-DDD	4,4-DDE	4,4-DDT	Aroclor-1016	Arocior-1221
	Date	in Feet	in Feet MLLW	in µg/kg	in µg/kg	in µg/kg	in µg/kg	in µg/kg
100 100 1 100 1	604409	2 10 6 5	14.2 to 10.7	9	0 9	N 9	291 U	582 U
HC-IMIW-1 (51+52)	0/24/03	5.00.5	1.5. 0. 2.7.) :			11 866	455 11
HC.MW-2 (S1+S2)	6/24/03	3 to 6.5	16.4 to 12.9	4.8 U	4.8 U	φ.4	0 022) :
(-0.10)	00.700	0 0 1	440 to 10 4	2511	2511	2.5 U	123 U	246 U
HC-MW-2 (53)	6/24/03	8 OI C: /	+:01 01 6:11	0.3) : i)	11 007	11 330
HC_MM/_2 (SA)	6/24/03	10 to 11.5	9.4 to 7.9	2.7 U	2.7 U	7.7 O	0.881	0 507
(+C) 7-MIM-CI	001-710			- 7			213 []	427 U
HC-MW-3D (S1)	6/25/03	2.5 to 4	15.9 to 14.4	4.4 O 4.4	4. 4.) : †	0 :	
(63) (6 /////)	6/25/03	75400	10 9 to 9 4	4.3 🗆	4.3 U	4.3 U	0 czz	448 C
(co) Gc-MM-0H	0/23/03	30.) ;		- 1	107	300 11
HC-MM-3D (S4)	6/25/03	10 to 11.5	8.4 to 6.9	3.1 ∪	3.1 0	3.1.0	0 [0]	022
(10) (0-1)	0000			- 1	11 11 0	25.	169 1	339 U
HC-MW-3D (S5)	6/25/03	12.5 to 14	5.9 to 4.4	3.5 U	0.5 O	0.00	2	

U - Not detected at detection limit indicated.
MLLW - Mean Lower Low Water
Note - The sediment quality objective for the Aroclors is for total Aroclors.
PCBs - Polychlorinated Biphenyls

Table 9 - Analytical Results for Soil Samples - Pesticides/PCBs

Samples Outside the Proposed Excavation	さんちゃく こうりつこう					4		
Sample ID	Sampling	Depth Interval	Elev. Interval	Aroclor-1232 in 119/kg	Aroclor-1242 in ua/ka	Aroclor-1248 in ug/kg	Arocior-1254 in µg/kg	Arocior-1260 in µg/kg
evitocido vilor O tromitos				300	300	300	300	300
Sediment Quality Object	11VE 610A103	10 to 11 5	7.2 to 5.7	115 U	115 U	115 U	115 U	115 U
HC-IMW-1 (33)	0/24/03	10 to	2 2 45 0 7	135	135 11	135 U	135 U	135 U
HC-MW-1 (S4)	0/24/03	13 (0.16.3	2.2 10 0.1	2 2	20.4	140 -	119 []	119 11
HC-MW-1 (S5)	6/24/03	20 to 21.5	-2.8 to -4.3	119 U	0 8 -	0	o :	1 0 7
HC-MW-2 (SS)	6/24/03	12.5 to 14	6.9 to 5.4	117 U	117 U	117 U	117 U	11/ U
(CO) 7-MM-OI	6/36/9	15 to 16 5	3 4 to 1 9	143 []	143 U	143 U	143 U	143 U
HC-IVIW-5D (30)	0/23/03	5.0.0	2) :	- 1	- 177	117 11	117
HC-MW-3D (S7)	6/25/03	20 to 21.5	-1.6 to -3.1	117 U	77.7	0 2 -) =	
	6/12/10	25 to 26 E	6 6 to -8 1	124 []	124 U	124 U	124 ∪	124 U
HC-IMW-3D (38)	60/52/0	23 (0 20.3) : (11011	113	113 []
HC-MW-3D (S9)	6/25/03	30 to 31.5	-11.6 to -13.1	113 U	113.0	2 :		2 2 4
(C)	6/25/03	35 to 36 5	-16.6 to -18.1	116 U	116 U	116 U	116 U	0 91.1
	00000	40 to 44 0	24640 228	124	121 []	121 U	121 U	121 U
[HC-MW-3D (S11)	6/25/03	40 0 41.2	0.22-010.12-	0 7	0	0 - 7	1.00	120 15
HC-MW-2 (S6)	6/24/03	17.5 to 19	1.9 to 0.4	120 U	120 0	0 021	0 0 2 0	0 1 7
HC-MW-4 (S4)	6/24/03	18.5 to 20	0.8 to -0.7	135 U	135 U	135 U	135 U	U CS.I

Calliples Within the Loposed Executation								
Sample ID	Sampling	Dep	Elev. Interval	Aroclor-1232	Aroclor-1242 in ua/ka	Aroclor-1248 in ua/kg	Arocior-1234 in µg/kg	in µg/kg
	Date	ווו נבבו	III LEGI MERAA	Su/Sd III	FSS			- 100
TIO AMA 4 (CALCO)	6/24/03	3 to 6 5	14.2 to 10.7	291 U	291 U	291 U	291 U	0 187
HC-IVIVV-1 (01102)	0/44/02	5.50				- 000	11 000	11 800
UC MM/ 2 (01+02)	6/24/03	3 to 6.5	16.4 to 12.9	228 U	228 U	728 U	750 O	220 0
(30 - 10) Z-AAIAI-OI I	0000				007	007	103 11	123
HC_MM/_2 (83)	6/24/03	7.5 to 9	11.9 to 10.4	123 U	123 U	0 621	0 671	0 0 7
(00) 7-14141-011	000	9			- 007	11001	122 11	133
HC_MM_2 (SA)	6/24/03	10 to 11.5	9.4 to 7.9	133 U	133 0	0 00	0 55	2
(to) 1-111-01-1	200	2			- 0.70	1 070	212	213
HC-MW-3D (S1)	6/25/03	2.5 to 4	15,9 to 14.4	213 0	Z13 U	213 0	2 2 2) ;
				100	11 200	11 300	225 11	225 ()
HC-MW-3D (S3)	6/25/03	7.5 to 9	10.9 to 9.4	O 622	0 622	0 622	0 677	
(20) 20 1111 011			0 0 11 10 0	164 []	161	161	161 U	161 U
HC-MW-3D (S4)	6/25/03	10 10 11.5	8.4 10 0.9	2	5	-		11 001
(30) 00 // 00	6/25/03	12 5 to 14	5 9 to 4 4	169 U	169 U	169 U	169 U	O 691

U - Not detected at detection limit indicated.
MLLW - Mean Lower Low Water
Note - The sediment quality objective for the Aroclors is for total Aroclors.
PCBs - Polychlorinated Biphenyls

Table 10 - Analytical Results for Groundwater Samples - TPH/BTEX

Sample ID	Sampling Date	Benzene	Ethylbenzene	Toluene	Xylenes (Total)
•	•	in µg/L	in µg/L	in µg/L	in µg/L
Screening Level	ivel	51 (43)	29,000/6, 910)	200,000 (17,8%)	NA
HC-MW-1	6/30/03	5 U	2 U	5 U	5 U
HC-MW-2	6/30/03	10	1 O	1 U	10
HC-MW-3D	6/30/03	1 U	10	1 U	1 C
HC-MW-3S	6/30/03	1 U	1 O	1 1	1 0
HC-MW-4	6/30/03	1 U	1 U	1 U	10
MW-4	7/9/03	10	10	1 U	10
MW-8	7/9/03	29	190	41	830
MW-D	7/9/03	24	160	40	260
MW-11	7/9/03	2.4	4.5	1 U	5.9
MW-13	2/9/03	2 ∩	2 0	10	2 ∩
MW-18	7/9/03	43	180	13	330

Sample ID	Sampling Date	NWTPH-Gasoline
•		in µg/L
Screening Level	vel	NA
HC-MW-1	6/30/03	120 U
HC-MW-2	6/30/03	25 U
HC-MW-3D	6/30/03	49
HC-MW-3S	6/30/03	29
HC-MW-4	6/30/03	26
MW-4	2/6/2	25 U
MW-8	2/6/03	12,000
MW-D	2/6/2	10,000
MW-11	2/6/2	009
MW-13	2/6/2	280
MW-18	2/6/2	12,000

U - Not detected at detection limit indicated.

NA - Not Available

MW-D is a duplicate of MW-8

the Human Health Consumption of Organisms Criteria in National Recommended Water Quality Criteria (EPA 2002). TPH/BTEX - Total Petroleum Hydrocarbon/Benzene, Toluene, Ethylbenzene, and Xylenes The screening level is based on the lower of the Freshwater Chronic Criteria in Chapter 173-201A WAC and

Table 11 - Analytical Results for Groundwater Samples - Metals

Sample ID	Sampling Date	Arsenic	Copper	Lead
•		in µg/L	in µg/L	in µg/L
Screening Level	yvel	190	11.4 (5~64)	2.5
HC-MW-1	6/30/03	4.4	1.9	1.99
HC-MW-2	6/30/03	2 U	2.8	1.78
HC-MW-3D	6/30/03	2 U	5.5	1.53
HC-MW-3S	6/30/03	2 U	1.4 U	1.35
HC-MW-4	6/30/03	2.5	1.4 U	1.48

Sample ID	Sampling Date		Arsenic, Dissolved Copper, Dissolved Lead, Dissolved	Lead, Dissolved
•			in µg/L	in µg/L
Screening Level	evel	190	11.4	2.5
MW-4		2.1 U	2.3	1.3 U
MW-8	2/9/03	2.1 U	2.1 U	1.3 U
MW-D	2/9/03	2.1 U	2.1 U	1.3 U
MW-11	2/9/03	3.8	2.8	1.3 ∪
MW-13	7/9/03	2.1 U	3.2	1.3 U
MW-18	2/6/2	2.1 U	2.4	1.3 U

The screening level is based on the Freshwater Chronic Criteria in Chapter 173-201A WAC. U - Not detected at detection limit indicated. MW-D is a duplicate of MW-8

7 - 41 DIGB -		7790 %	C0.044	Crast	CPTS	Chitm
Sample ID	Sampling Date	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b,k) fluoranthenes	Benzo(g,h,i) perylene	Chrysene in ua/L
Screening	VA	111 µg/L	0.018	0.018	NA (NA	0.018
HC-MW-1	6/30/03	(C) *	1 m	M.L.	(1 U)	1 UJ.
HC-MW-2	6/30/03	/ 1 n	10/	10))	
HC-MW-3D	6/30/03	10	10	n r)))
HC-MW-3S	6/30/03) T	1	ם ר	7	- · - ·
HC-MW-4	6/30/03		J C	D)
MW-4	2/6/03	٠ -	-))	10) -
MW-8	7/9/03)	J 0) U .
MW-D	2/6/2		10	1 C	1 U) 1 U
MW-11	2/6/2	2.5	1.2	1.9	0 -	1.7
MW-13	2/6/03) -	1	J.	\ n))
MW-18	2/6/2		10	1 0	10/	10

Sample ID	Sampling Date	Dibenz(a.h) anthracene	Fluoranthene	Indeno(1,2,3-c,d) pyrene	Pyrene
		in µg/L	in µg/L	in µg/L	in µg/L
Screening Level	evel	0.018	140 (80.2)	0.018	(4,000-4259c)
HC-MW-1	6/30/03	1 UJ	1 UJ	1 UJ	
HC-MW-2		- T	10	- T	1 O
HC-MW-3D	•	1 U	10	1 U	- 1 C
HC-MW-3S	Ū	1 C	1 U	1 U	- n
HC-MW-4		1 U	10	ر 1 ت	1 O
MW-4		4 U	1 U	1 U	- 1 C
MW-8		1 U	2.1		1.2
MW-D	7/9/03	1 U	1.8	1 U	1.1
MW-11	2/6/03	1 U	55	1 C	19
MW-13	2/6/03	1 U	10	1 U	10
MW-18	2/6/03	1 U	5.1	1 U	3.6

U - Not detected at detection limit indicated. J - Estimated Value NA - Not Available

MW-D is a duplicate of MW-8

The screening level is based on the Human Health Consumption of Organisms Criteria in National Recommended Water Quality Criteria (EPA 2002).
HPAHs - High Molecular Weight Polycyclic Aromatic Hydrocarbons

Table 13 - Analytical Results for Groundwater Samples - LPAHs

Sample ID	Sampling Date	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene
		in µg/L	in µg/L	in µg/L	in µg/L
Screening Level	ivel	NA	830 (6 43)	NA	40,000 (25,900
HC-MW-1	1	1 UJ	, m	1 U	1 U
HC-MW-2	6/30/03	10	1 U	1 U	— ⊃ :
HC-MW-3D	6/30/03	10	28	1 0))
HC-MW-3S	6/30/03	1 U	2.9	1 U)
HC-MW-4	6/30/03	1 U	3.4	1 O	10
MW-4	7/9/03	10	O L	10	10
MW-8	2/9/03	520	180	3.1	3.7
MW-D	2/6/03	460	160	2.9	2.9
MW-11	2/6/03	1.2	130	1.1	18
MW-13	7/9/03	1 U	5.1	10	,)
MW-18	2/6/03	740	310	3.1	8.2

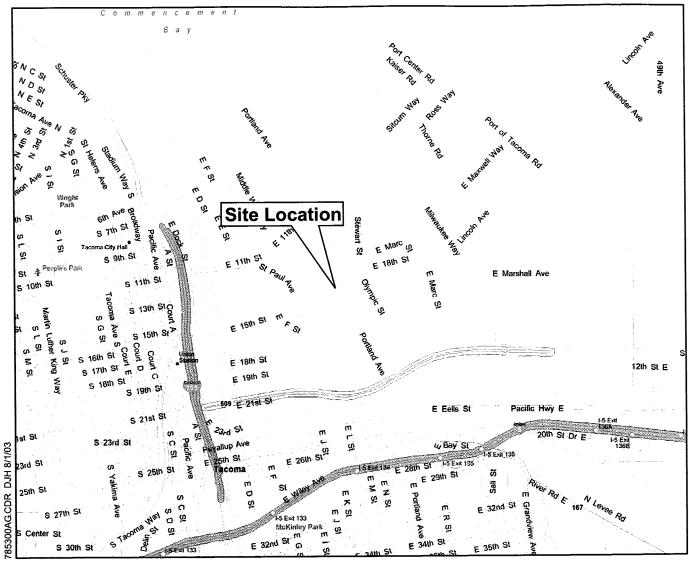
Sample ID	Sampling Date	Fluorene	Naphthalene	Phenanthrene
)		in µg/L	In µg/L	in µg/L
Screening Level	ivel	5,300 (3,460)	NA (2.1300)	NA
HC-MW-1	6/30/03	1 03	1 UJ	1 UJ
HC-MW-2	6/30/03	10	1 O	10
HC-MW-3D	6/30/03	1 U	- O T	10
HC-MW-3S	6/30/03	10	10	10
HC-MW-4	6/30/03	1.2	1 U	_
MW-4	2/6/03	1 C	Company of the second second	- -
MW-8	2/6/03	69	3,400	34
MW-D	7/9/03	63	3,100	31
MW-11	2/6/2	93	29	110
MW-13	2/6/03	1.9	3.6	10
MW-18	7/9/03	150	(8,800)	100

U - Not detected at detection limit indicated.
NA - Not Available
MW-D is a duplicate of MW-8

The screening level is based on the Human Health Consumption of Organisms Criteria in National Recommended Water Quality Criteria (EPA 2002). LPAHs - Low Molecular Weight Polycyclic Aromatic Hydrocarbons

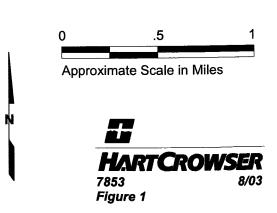
Table 14 - Analytical Results for Groundwater Samples - TSS

Sample ID Sampling Date		TSS in mg/L
Screening Lev	el	NA
HC-MW-1	6/30/03	1.4
HC-MW-2	6/30/03	14.4
HC-MW-3D	6/30/03	10.5
HC-MW-3S	6/30/03	1.8
HC-MW-4	6/30/03	2.2
MW-4	7/9/03	5.3
MW-8	7/9/03	32.9
MW-D	7/9/03	7.4
MW-11	7/9/03	9.9
MW-13	7/9/03	1.3 U
MW-18	7/9/03	26.8


U - Not detected at detection limit indicated.

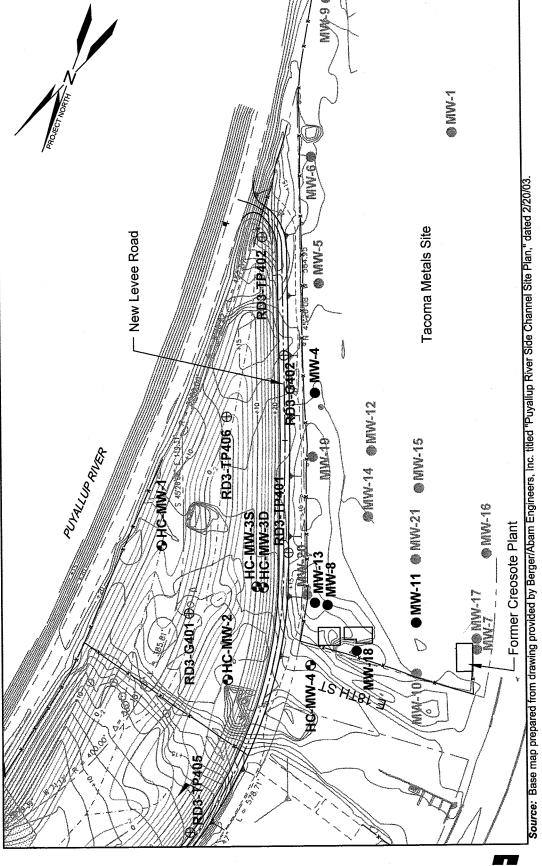
MW-D is a duplicate of MW-8

NA - Not Available


TSS - Total Suspended Solids

Vicinity Map

Note: Base map prepared from Microsoft Streets and Trips 2002.


240

120 Scale in Feet Monitoring Well Location and Number by Kennedy/Jenks Monitoring Well Location and Number by Hart Crowser

Previous Geotechnical Exploration Location and Number

RD3-G401 ⊕

(Bold Indicates Wells Sampled by Hart Crowser)

Site and Exploration Plan Puyallup River Side Channel

HARTCROWSER 7853

HC-MW-1 ூ

MW-120

8/03

Figure 2

APPENDIX A FIELD INVESTIGATION METHODS

APPENDIX A FIELD INVESTIGATION METHODS

A.1 Introduction

This appendix presents sampling and analysis procedures followed during fieldwork at the Puyallup River Side Channel (PRSC) and Tacoma Metals sites. The exploration program included hollow-stem auger drilling and split-spoon soil sampling, monitoring well installation and development, and groundwater sampling. The methods and procedures described here are in accordance with previously EPA-approved procedures from earlier work on this project.

A.2 Utility Clearance

Prior to conducting field explorations on the site, a utility check (water, sewer, electric, telephone, gas, etc.) was performed to ensure that no accidental rupture occurred. Appropriate authorities for utilities were notified and sent site exploration maps. All utilities in the area of the explorations were clearly marked.

A.3 Soil Sampling

A.3.1 Split-Spoon Sampling

Soil samples were collected in general accordance with the Standard Penetration Test (SPT) procedure described in ASTM D 1586. Sampling proceeded as follows:

- A 8-inch-diameter auger was used for drilling.
- During drilling, a clean 2-inch-diameter split-spoon sampler was driven into the soil for 18 inches by a 140-pound hammer dropping 30 inches onto the end of the drilling rods. The number of blows required to drive the sampler the <u>final 12 inches only</u> is the Standard Penetration Resistance. This resistance, or blow count, provides a relative measure of the density of granular soils and the consistency of finer-grained cohesive soils.

Soil samples obtained from the split-spoon sampler during the SPT drive were split open and logged by a Hart Crowser geologist in accordance with Figure A-1. SPT blow counts and samples were collected at either 2.5- or 5-foot-depth intervals. Soil samples were homogenized and placed in the appropriate jar for chemical analysis. Soil samples were submitted to the City of Tacoma Public Works Utility Services Laboratory for chemical analysis.

A.3.2 Field Screening

A portion of the soil from the split-spoon sampler (or cuttings) were transferred into a clean 8-ounce jar for field screening of organic vapors using a portable photoionization detector (PID). The PID is capable of providing qualitative estimates of total organic vapor concentrations in the sample jar headspace. The soil sample jars headspace were covered with aluminum foil, capped, and allowed to equilibrate for a minimum of 10 minutes. PID measurements were made by removing the cap and penetrating the aluminum foil with the tip of the PID, taking care not to allow contact between the tip of the PID and soil particles. The maximum organic vapor reading observed during the first 10 seconds was recorded on the field boring log.

A.3.3 Soil Classification

The on-site field representative visually classified the soil samples recovered from the borings in general accordance with ASTM Method D 2488 (Figure A-1), prepared a log of soils encountered in the exploration, and recorded pertinent observations regarding drilling conditions, types of soils encountered, and the depth to water during drilling. Soil descriptions include the following properties: density of sands and gravels/consistency of silts and clays (as determined from the penetration resistance or qualitatively estimated from drill action), moisture, color, minor constituents, and major constituents. The presence of non-soil substances (e.g., debris or carbon), staining, and/or odors were noted.

A.4 Monitoring Well Installation

Four shallow wells (HC-MW-1, HC-MW-2, HC-MW-3S, and HC-MW-4) were screened across the water table, each with an approximate total depth of 20 feet. A fifth deeper well (HC-MW-3D) with a depth of 45 feet was installed adjacent to shallow well HC-MW-3S. Final well depths and screen placements were based on conditions encountered at the time of drilling. Well completion diagrams are presented on Figures A-2 through A-6, and well construction details are summarized in Table A-1.

Wells were constructed using 5- or 10-foot-long, 2-inch-diameter Schedule 40 PVC well screens with 0.020-inch machine-cut slots and 2-inch-diameter Schedule 40 blank PVC riser pipe. Wells were completed by lowering the well screen and riser down through the hollow-stem auger. As the auger was withdrawn, No. 10/20 silica sand was poured in the annular space from the base of the boring to approximately 3 feet above the top of the screened interval.

Well seals were constructed by placing bentonite chips in the annular space on top of the filter sand to within 3 feet of the ground surface. The remaining annular space was backfilled with concrete to complete the surface seal. Monitoring wells were completed with locking stick-up steel monuments set in concrete.

Well locations and top of casing elevations were surveyed by the City of Tacoma following installation as presented in Table A-1 and on the boring logs.

A.5 Monitoring Well Development

Monitoring wells were developed using a pre-cleaned Whale submersible pump. A minimum of ten casing volumes was removed during development, in addition to the volume of water added during drilling, if any. Well development proceeded until turbidity decreased and the measured groundwater parameters of temperature, electrical conductivity and pH stabilized (within ± 10 percent of the previous readings).

A.6 Groundwater Sampling

Groundwater samples were collected from wells HC-1, HC-2, HC-3S, HC-3D, and HC-4 during low tide using low-flow sampling techniques. Groundwater samples were submitted to the City of Tacoma Public Works Utility Services Laboratory for the chemical analysis.

A.6.1 Sampling Equipment

The equipment used for collection of groundwater samples included:

- Temperature, pH, and electrical conductivity meters;
- Peristaltic pump with poly tubing;
- Laboratory-supplied pre-cleaned containers with appropriate preservatives added, if any;
- Coolers with blue ice; and
- Hart Crowser Groundwater Sampling Data and Sample Custody Record forms.

A.6.2 Groundwater Sampling Procedures

Upon arrival at the site, field personnel recorded site conditions, depth to water in the wells, and other requested information on the Groundwater Sampling Data forms. Groundwater samples were collected using low-flow sampling techniques to minimize suspended solids in the samples. The wells were purged and sampled with a peristaltic pump. Clean tubing was used for each well and disposed of after use. Purge water was collected in 55-gallon drums.

The field parameters of temperature, pH, and electrical conductivity were measured and recorded periodically during purging of the well. The sample was collected when parameters have stabilized (within ± 10 percent of the previous readings). Final, stabilized field parameter measurements are presented in Table A-2.

A.7 Equipment Decontamination

General decontamination procedures are outlined below. All decontamination, water was placed in labeled drums and stored on site. A composite water sample was prepared and submitted to the City of Tacoma analytical laboratory to determine appropriate disposal.

A.7.1 Large Equipment

All drill tools, steel casing, auger, and drill rod were steam cleaned prior to initiating drilling and between borings. The steam clean unit was provided by the drillers. All steam cleaning was conducted in a designated on-site area.

A.7.2 Soil Sampling Equipment

All equipment used to sample subsurface soils, or miscellaneous tools, which come in contact with the soil samples, were decontaminated before collection of each sample. The decontamination sequence consisted of a scrub with a phosphate detergent (Alconox) solution, followed by potable/tap water rinse, and finished by thoroughly spraying with deionized distilled.

A.8 Previous Explorations

Logs of previous explorations by the City on the PRSC site are presented in Attachment A-1.

F:\Docs\JOBS\7853\Phase 8\Side Channel Report.doc

Key to Exploration Logs

Sample Description

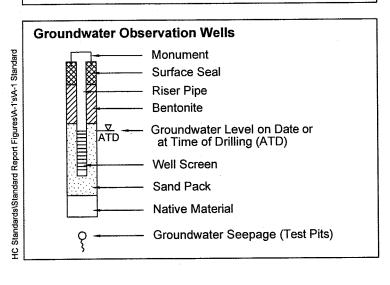
Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

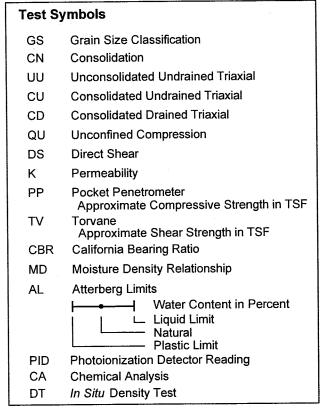
Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

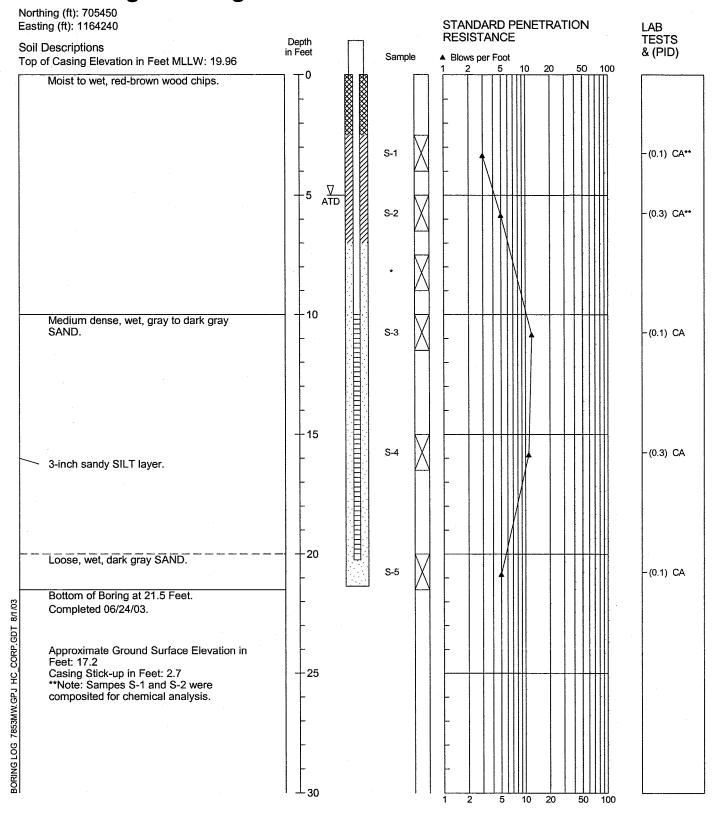
Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.


SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance(N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 - 4	Very soft	0 - 2	<0.125
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0
Very dense	>50	Very stiff	15 - 30	1.0 - 2.0
		Hard	>30	>2.0


Moisture Dry Little perceptible moisture Damp Some perceptible moisture, probably below optimum Moist Probably near optimum moisture content Wet Much perceptible moisture, probably above optimum

Minor Constituents	Estimated Percentage
Not identified in description	0 - 5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

Legends

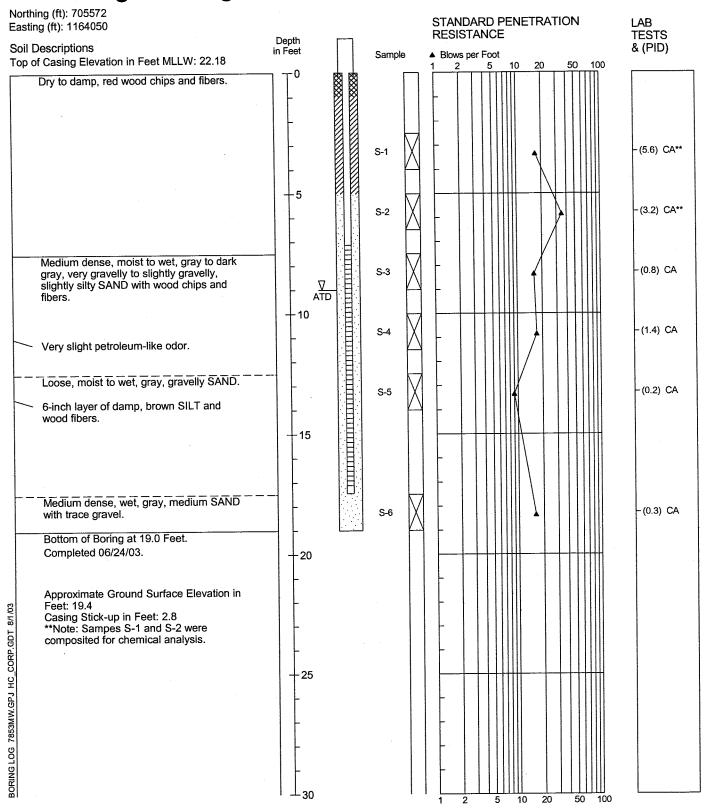

Sampling Test Symbols							
Boring	g Samples	Test F	rit Samples				
\boxtimes	Split Spoon	\boxtimes	Grab (Jar)				
	Shelby Tube		Bag				
	Cuttings		Shelby Tube				
	Core Run						
*	No Sample Recovery						
Р	Tube Pushed, Not Driven						

Monitoring Well Log HC-MW-1

HARTCROWSER

7853

06/03

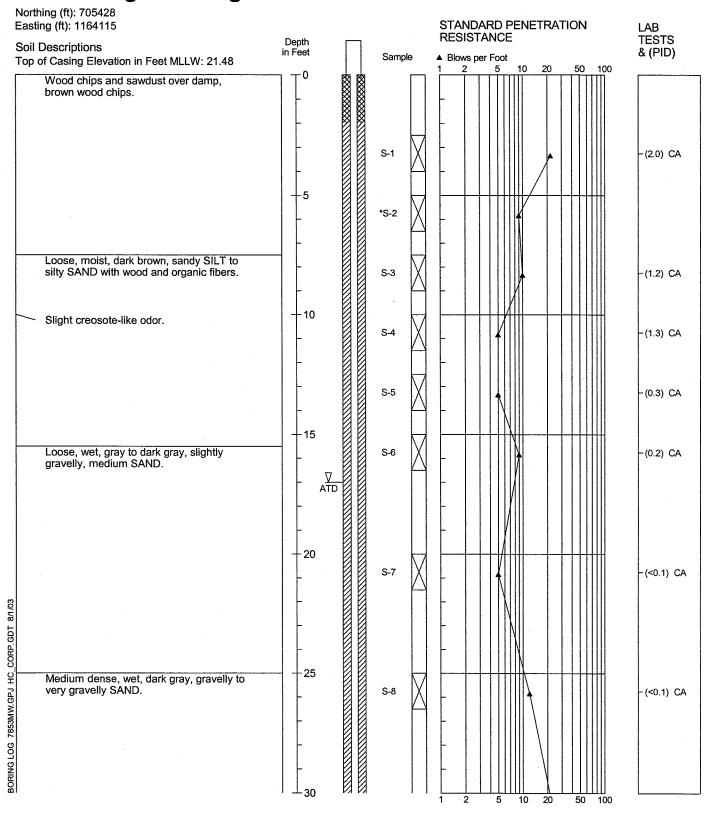

Figure A-2

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Monitoring Well Log HC-MW-2


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

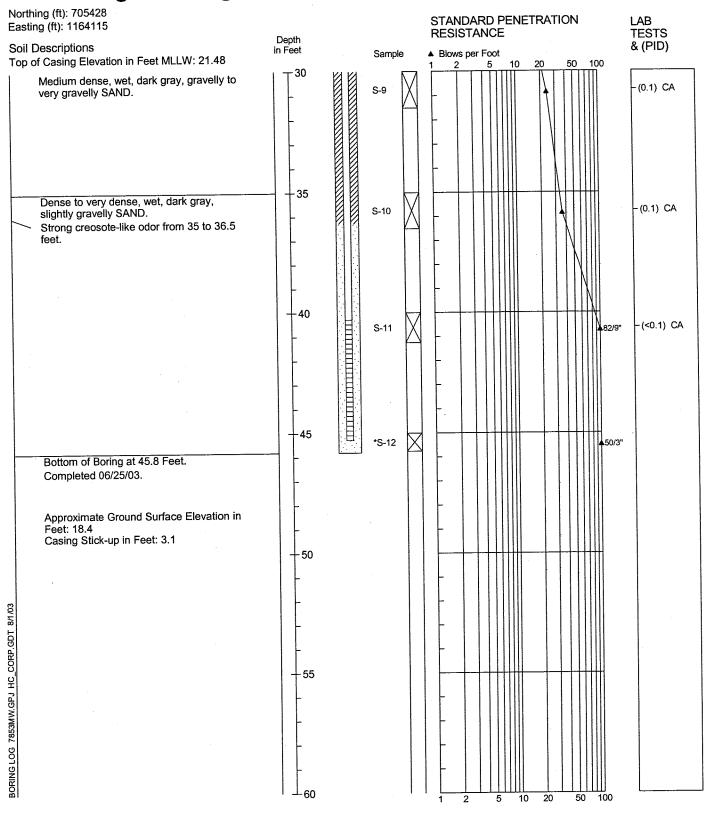
Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time. 7853

06/03

Figure A-3

Monitoring Well Log HC-MW-3D

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes


Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time. 7853

06/03

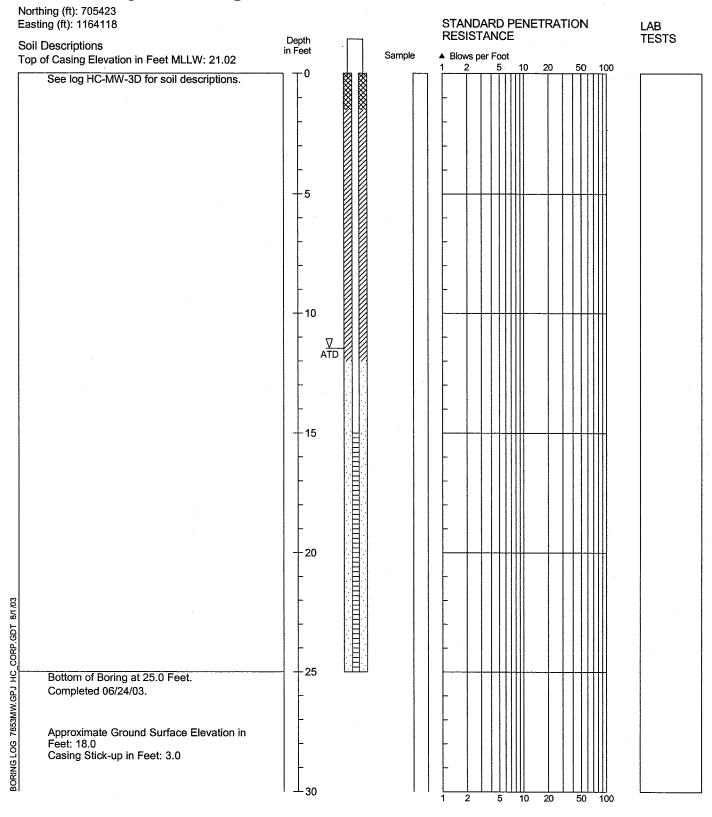
Figure A-4

1/2

Monitoring Well Log HC-MW-3D

HARTCROWSER

 Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.


Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time. 7853

06/03

Figure A-4

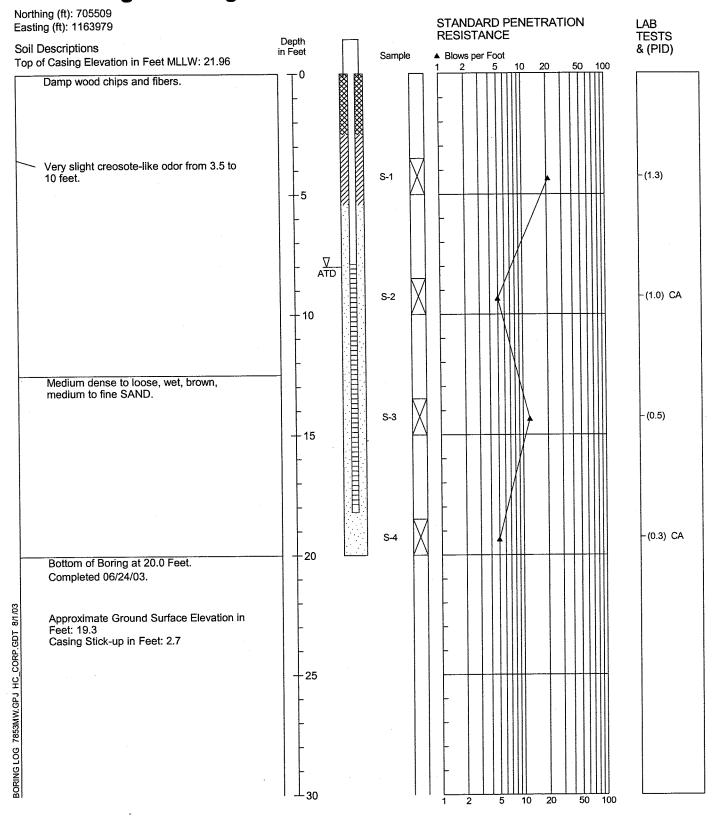
2/2

Monitoring Well Log HC-MW-3S

1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.



7853

06/03

Figure A-5

Monitoring Well Log HC-MW-4

 Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

7853 06/03 Figure A-6 ATTACHMENT A-1
PREVIOUS GEOTECHNICAL EXPLORATIONS
FROM APPENDIX A OF THE DESIGN ANALYSIS REPORT
DATED NOVEMBER 1, 2002

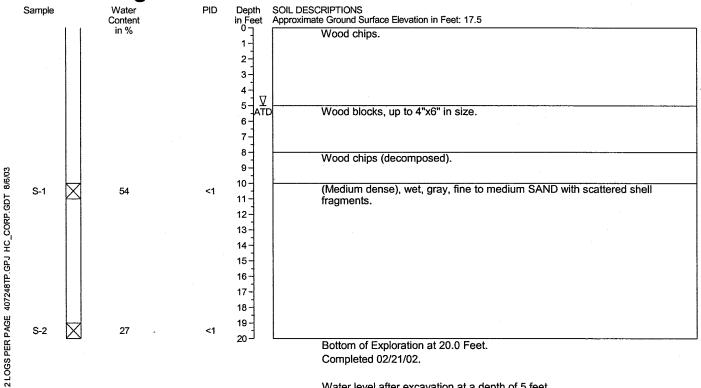
Test Pit Log RD3-TP401

Sample	Water Content	PID	Depth in Feet	SOIL DESCRIPTIONS Approximate Ground Surface Elevation in Feet: 13.8
S-1	√ in₅%	<1	F.0	(Loose), moist, dark brown, silty SAND with organic material. (TOPSOIL)
S-2 2	≥ 25	2	1 - 2 - 3 - 4 - 5 - 5 - 5 - 5 - 5	(Loose to medium dense), moist to wet, light brown, slightly silty, slightly gravelly SAND.
			9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20	Bottom of Exploration at 8.5 Feet. Completed 02/21/02. Water level after excavation at a depth of 6 feet. Bricks noted at bottom of pit.

Test Pit Log RD3-TP402

Sample	Water Content	Lab Tests	PID	Depth in Feet	SOIL DESCRIPTIONS Approximate Ground Surface Elevation in Feet: 11.5
S-1	i <u>2</u> 0%		<1		(Loose), moist, dark brown, silty SAND with organic material. (TOPSOIL)
S-2 🔀	67		<1	2-ATI	(Soft), wet, light brown, sandy SILT with organic material. Plastic battery casings in a silty SAND matrix.
				3-	riadilo battery dadingo in a ditty of the matific
				4 - 5 -	
S-3	27	GS	<1	6- 6-	(Medium dense), wet, gray, fine to medium SAND with scattered shell fragments.
				7-	
				8-	
				9- 10-	
				11 -	
S-4	35		<1·	12-	Bottom of Exploration at 12.0 Feet.
				13-	Completed 02/21/02.
				14 - 15 -	Water level after excavation at a depth of 1 foot.
				16	Water level after excavation at a deput of 1 look.
				17-	
				18-	
				19- 20-	

HARTCROWSER


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.

4072-48 Figure A-2 02/02

Test Pit Log RD3-TP405

Sample	Water Content	PID	Depth in_Feet	SOIL DESCRIPTIONS Approximate Ground Surface Elevation in Feet: 12.5
S-1	∏ in₁%	<1	07	(Loose), moist, brown, silty SAND with organic material. (TOPSOIL)
			1-	(Loose), moist, brown, silty SAND.
			2-	
			3-	Sawdust.
			47	Sulfide-like odor.
S-2	41	<1	5-18	(Medium stiff to stiff), wet, gray, sandy, clayey SILT.
			6-1	
			8-	
			9-	
			10-	·
			11 -	
			12-	(Medium dense), wet, gray, fine to medium SAND with scattered shell
S-3	33	<1	13-	fragments.
			14-	Bottom of Exploration at 13.0 Feet.
			15-	Completed 02/21/02.
			16-	Madarata acanaga natad at a danth of 5 fact
			17-	Moderate seepage noted at a depth of 5 feet.
			18	
			19-	
			20]	
			20 -	•

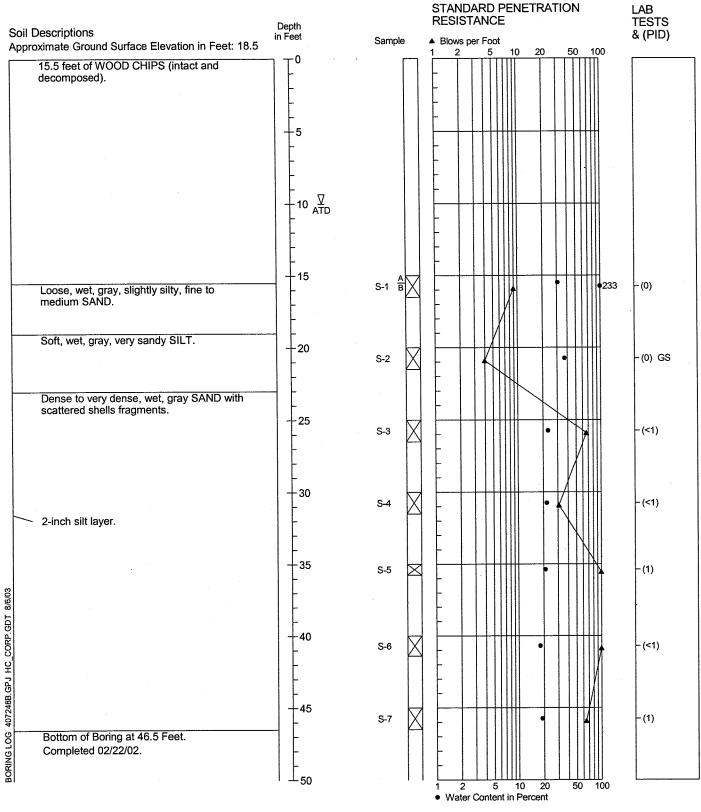
Test Pit Log RD3-TP406

Water level after excavation at a depth of 5 feet.

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. Groundwater conditions, if indicated, are at time of excavation. Conditions may vary with time.



4072-48

02/02

Figure A-4

Boring Log RD3-G401

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes

and the state of the process of the proces

02/02 4072-48 Figure A-5

APPENDIX B
DATA VALIDATION AND LABORATORY
CERTIFICATES OF ANALYSIS

City of Tacoma **Environmental Services** Science and Engineering Division

Memorandum

To:

John O'Loughlin, P.E., Foss Construction Management

FROM:

Christopher L. Getchell, Source Control Supervisor

SUBJECT: Foss Waterway Construction WO# DC2001

DATE:

July 23, 2003

Attached are the sample analysis results for the water samples collected from the Puyallup River Side Channel on June 30 and July 9, 2003. These samples were analyzed for NWTPH-G, Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), TSS, Polynuclear Aromatic Hydrocarbons (PAH), and Total or Dissolved Metals.

The Science and Engineering Division analyzed the samples. The samples collected on June 30 did not originally have Total Metals requested. The Total Metals were requested July 8. A portion of the remaining TSS aliquots were divided and preserved at that time.

A Quality Control Data Review was prepared concerning these samples and is attached with the data reports.

If you have any questions concerning this data, call me at (253) 502-2130.

Christopher L. Getchell.

Source Control Supervisor.

Quality Control Data Review

TO:

Christopher L. Getchell, Source Control Supervisor

FROM:

Lori A. Zboralski, Senior Laboratory Analyst

DATE:

July 23, 2003

SAMPLES

This report concerns the following samples associated with Foss Waterway Construction WO# DC2001:

Sample Description	Lab ID#	Date Sampled
HC-MW-1	20030701001	06/30/2003
HC-MW-2	20030701002	06/30/2003
HC-MW-3D	20030701003	06/30/2003
HC-MW-3S	20030701004	06/30/2003
HC-MW-4	20030701005	06/30/2003
Trip Blank	20030701006	06/30/2003
MW-D	20030710062	07/09/2003
MW-4	20030710063	07/09/2003
MW-11	20030710064	07/09/2003
MW-13	20030710065	07/09/2003
MW-8	20030710066	07/09/2003
MW-18	20030710067	07/09/2003
Trip Blank	20030710068	07/09/2003

HOLDING TIMES

The samples were extracted within the 7-day sample collection-to-extraction holding time for Semi-Volatile Organics and analyzed within 7 days for TSS, 14 days for NWTPH-G and BTEX, 40 days after the extraction for Semi-Volatile Organics, and 180 days for Total or Dissolved Metals.

Total Metals was not originally listed on the Chain of Custody for the samples collected June 30, 2003. A portion of the TSS aliquot was divided and preserved for Total Metals analysis on July 8, 2003.

CHAIN OF CUSTODY

Total Metals was not originally listed on the Chain of Custody for the samples collected June 30, 2003. A portion of the TSS aliquot was divided and preserved for Total Metals analysis on July 8, 2003.

METHODS

These samples were analyzed according to the methods outlined in the "Soil and Groundwater Quality Testing Work Plan", June 16, 2003.

Page 1 of 4

Two samples had to be analyzed diluted for NWTPH-G and Volatile Organics due to sample foaming. The dilutions are as follows: HC-MW-1 at 1:5 and MW-13 at 1:5.

Four samples had to be diluted to bring the analyte concentrations within the calibration ranges. Sample MW-D was diluted 1:5 for BTEX and 1:40 for NWTPH-G; MW-11 was diluted 1:5 for NWTPH-G; MW-8 was diluted 1:20 for BTEX and NWTPH-G; and MW-18 was diluted 1:10 for BTEX and 1:50 for NWTPH-G.

DAILY INSTRUMENT PERFORMANCE STANDARDS

The Mass Spectrometer used for the Semi-Volatile Organics, BTEX, and NWTPH-G analyses were tuned according to the recommendations of methods 8260 and 8270. All mass abundances and ratios were within the criteria of the methods.

CALIBRATION AND VERIFICATION

The Initial Calibrations for Semi-Volatile Organics and BTEX had relative standard deviations of less than 15% for all reported compounds. The Continuing Calibrations had percent differences of less than 20% for all reported compounds.

The NWTPH-G initial calibrations met method requirements for linearity with correlation coefficients of greater than 0.990. The continuing calibrations associated with these samples had percent differences of less than 20%.

ICP calibrations met Method 6010B recommendations for linearity and accuracy. Sensitivity was monitored by analysis of standards at approximately two times the method detection limits. The recoveries of these standards ranged from 89 to 115%. The recoveries were within the laboratory limits of 50 to 200%.

The ICP calibration stabilities were monitored throughout the course of the analytical runs by analysis of standards in the middle of the linear range for the elements analyzed. The recoveries of these standards are to have recoveries of 90 to 110%. The recoveries of these standards ranged from 96 to 104%.

INTERELEMENT CORRECTION CHECK

Standards are analyzed to monitor the inter-element correction factors for ICP. These standards contain the interfering elements and the analytes of concern for this project. Recoveries of these standards are to be with 80 to 120%. The recoveries ranged from 91 to 106%.

METHOD AND CALIBRATION BLANKS

Method and calibration blanks were analyzed at the required frequencies for the methods. Method Blanks were analyzed for every digestion or extraction batch. Calibration blanks for ICP were analyzed every 10 samples. The concentrations of these blanks were less than the detection limits or less than 1/5th the concentration in the samples at all times.

FIELD BLANKS

Trip Blanks for BTEX and NWTPH-G were collected each day. There were no analytes detected in these blanks.

SURROGATES

Surrogate compounds were added to each sample prior to extraction for Semi-Volatile Organics and prior to injection for Volatile Organics. The recoveries of these compounds are tracked with control charts for BTEX and Semi-Volatile Organics. The recoveries associated with NWTPH-G are to be within 50 to 150%. All surrogate recoveries were within the required limits, except the recoveries of 2-Fluorobiphenyl and Terphenyl-d14 in sample HC-MW-1. The recoveries in this sample were 33 and 23%, respectively. The lower limit for 2-Fluorobiphenyl is 38.5 and for Terphenyl-d14 is 28%. The Semi-Volatile Organic compound values for sample HC-MW-1 are qualified as estimated based on low surrogate recoveries. The surrogate Dibromofluoromethane had high recoveries in HC-MW-1 and HC-MW-4, at 131 and 132%, respectively. The upper limit for Dibromofluoromethane is 125%. The samples had no Volatile Organic compounds detected so no data is qualified.

LABORATORY CONTROL SAMPLES

Laboratory Control Samples were analyzed at the required frequency for the methods. Recoveries for metals are to be within 80 to 120%. Recoveries ranged from 95 to 103%. Control samples for BETX and method 8270 are evaluated against control chart limits based on the 95% confidence intervals. The control samples associated with these samples all had recoveries within the laboratory's control chart limits. The recovery of the control sample for NWTPH-G is to have a recovery between 50 and 150%. The recovery for the NWTPH-G control sample was 102%.

DUPLICATE SAMPLE ANALYSIS

Samples in this batch were analyzed in duplicate for Total Metals, Dissolved Metals, and TSS. The relative percent differences are to be less than 20% for analytes with concentrations greater than 5 times the reporting limit. The relative percent differences ranged from 0 to 5%.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The following samples were analyzed with matrix spikes: HC-MW-3D for Total Metals and MW-D for Dissolved Metals. The recoveries ranged from 94 to 119% and all were within the recommended recoveries of 75 to 125%.

Sample HC-MW-3D was analyzed with Matrix Spike and Matrix Spike duplicate for BTEX and Semi-Volatile Organics. Sample MW-4 was analyzed with Matrix Spike and Matrix Spike Duplicate for NWTPH-G. The recoveries for BTEX and Semi-Volatile Organics were all within the laboratory control limits for these compounds. The NWTPH-G recoveries were within the method limits of 50 to 150% at 84 and 112%.

ICP SERIAL DILUTIONS

Sample HC-MW-3D for Total Metals and MW-D for Dissolved Metals were analyzed at 1:5 dilutions. The percent differences for the diluted samples compared to the undiluted samples were less than 10% for analyte concentrations greater than 50 times the reporting limits.

INTERNAL STANDARDS

Internal Standards were used in the determinations of the Semi-Volatile Organic and BTEX compounds. According to the methods, the internal standard areas in the samples are to be within 50 to 200% the standards measured in the continuing calibrations. The recoveries of the internal standards for these analyses ranged from

DATA AVAILABILITY

All data associated with the samples contained in this report are archived at the Science and Engineering Division and are available upon request.

DATA ASSESSMENT

Discuss any dilutions that were necessary and why, interferences, any reporting limits that may have been exceeded, or any other circumstances that help explain the results.

The qualifiers assigned to these samples including:

- U indicates the parameter was not detected above the Detection Limit.
- UJ indicates the parameter was not detected above the Detection Limit and the value is considered estimated.

All data including qualified values are acceptable for use.

City of Tacoma

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701001

Sample ID:

HC-MW-1

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

GC/MS-BNA	g/L
GC/MS-BNA	g/L
GC/MS-BNA	
	~ /ī
2-Methylnaphulaiene	g/L -
Acenaphinene	g/L
Acenaphthylene 1.0 U J u	g/L
Anthracene 1.0 U J u	g/L
	g/L
Benzo(a)pyrene 1.0 U J u	ıg/L
Benzo(b,k)fluoranthenes 1.0 U J	ıg/L
Benzo(g,h,i)perylene 1.0 U J	ıg/L
Chrysene 1.0 U J	ıg/L
Dibenz(a,h)anthracene 1.0 U J	ıg/L
Fluoranthene 1.0 U J	ıg/L
	ıg/L
Indeno(1,2,3-c,d)pyrene 1.0 U J	ıg/L
Naphthalene 1.0 U J	ıg/L
Phenanthrene 1.0 U J	1g/L
	ig/L

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

The value is less than the reporting limit but greater than detection limit

Lab#:

20030701001

Sample ID:

HC-MW-1

Sample Type:

Sample Date:

Groundwater 6/30/2003

Puyallup River Side Channel

GC/MS-VOA
GC/MS-VOA

ICP

lest	200000	
Benzene	5.0 U	ug/L
Ethylbenzene	5.0 U	ug/L
NWTPH-Gasoline	120 U	ug/L
Toluene	5.0 U	ug/L
Xylenes (Total)	5.0 U	ug/L
Arsenic	4.4	ug/L
Copper	1.9	ug/L
Lead	1.99	ug/L

Result

NWTPH-G Surrogate Recoveries

Compound	True	Found	<u>%Recovery</u> 116	<u>Limits</u> 50-150
Bromofluorobenzene	20	23.19		50-150
Toluene-d8	20	21.08	105	30-100

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

The value is less than the reporting limit but greater than detection limit

Units

City of Tacoma

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701002

Sample ID:

HC-MW-2

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units	
CONVENTIONAL				
	TSS	14.4	mg/L	
GC/MS-BNA				
	2-Methylnaphthalene	1.0 U	ug/L	
	Acenaphthene	1.0 U	ug/L	
	Acenaphthylene	1.0 U	ug/L	
	Anthracene	1.0 U	ug/L	
	Benzo(a)anthracene	1.0 U	ug/L	
	Benzo(a)pyrene	1.0 U	ug/L	
	Benzo(b,k)fluoranthenes	1.0 U	ug/L	
	Benzo(g,h,i)perylene	1.0 U	ug/L	
	Chrysene	1.0 U	ug/L	
	Dibenz(a,h)anthracene	1.0 U	ug/L	
	Fluoranthene	1.0 U	ug/L	
	Fluorene	1.0 U	ug/L	
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L	
	Naphthalene	1.0 U	ug/L	
	Phenanthrene	1.0 U	ug/L	
	Pyrene	1.0 U	ug/L	

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

The value is less than the reporting limit but greater than detection limit

Lab#:

20030701002

Sample ID:

HC-MW-2

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	25 U	ug/L
•	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L
ICP			_
	Arsenic	2.0 U	ug/L
	Copper	2.8	ug/L
	Lead	1.78	ug/L

Reviewed By:

Date

23, 2003

Date

NWTPH-G Surrogate Recoveries

Compound	True	<u>Found</u>	<u>%Recovery</u>	50-150
Bromofluorobenzene	20	22.18	111	50-150
Toluene-d8	20	21.93	110	50-150

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

B: The value is less than the reporting limit but greater than detection limit

City of Tacoma

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701003

Sample ID:

HC-MW-3D

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units
CONVENTIONAL			
	TSS	10.5	mg/L
GC/MS-BNA			
	2-Methylnaphthalene	1.0 U	ug/L
	Acenaphthene	58	ug/L
	Acenaphthylene	1.0 U	ug/L
	Anthracene	1.0 U	ug/L
	Benzo(a)anthracene	1.0 U	ug/L
	Benzo(a)pyrene	1.0 U	ug/L
	Benzo(b,k)fluoranthenes	1.0 U	ug/L
	Benzo(g,h,i)perylene	1.0 U	ug/L
	Chrysene	1.0 U	ug/L
	Dibenz(a,h)anthracene	1.0 U	ug/L
	Fluoranthene	1.0 U	ug/L
	Fluorene	1.0 U	ug/L
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
	Naphthalene	1.0 U	ug/L
	Phenanthrene	1.0 U	ug/L
	Pyrene	1.0 U	ug/L

Flags:

- The value is less than detection limit
- UI: The value is less than detection limit and considered estimated
- The value is considered estimated J:
- The value is less than the reporting limit but greater than detection limit B:

20030701003

Sample ID:

HC-MW-3D

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	49	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L
ICP			
	Arsenic	2.0 U	ug/L
	Copper	5.5	ug/L
	Lead	1.53	ug/L

Loria Zboralski July 23,

NWTPH-G Surrogate Recoveries

Compound	True	<u>Found</u>	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	22.20	111	50-150
Toluene-d8	20	22.05	110	50-150

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701004

Sample ID:

HC-MW-3S

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

Test	Result	Units
CONVENTIONAL		
TSS	1.8	mg/L
GC/MS-BNA		
2-Methylnaphthalene	1.0 U	ug/L
Acenaphthene	2.9	ug/L
Acenaphthylene	1.0 U	ug/L
Anthracene	1.0 U	ug/L
Benzo(a)anthracene	1.0 U	ug/L
Benzo(a)pyrene	1.0 U	ug/L
Benzo(b,k)fluoranthenes	1.0 U	ug/L
Benzo(g,h,i)perylene	1.0 U	ug/L
Chrysene	1.0 U	ug/L
Dibenz(a,h)anthracene	1.0 U	ug/L
Fluoranthene	1.0 U	ug/L
Fluorene	1.0 U	ug/L
Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
Naphthalene	1.0 U	ug/L
Phenanthrene	1.0 U	ug/L
Pyrene	1.0 U	ug/L

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030701004

Sample ID:

HC-MW-3S

Sample Type: Sample Date:

Groundwater 6/30/2003

Puyallup River Side Channel

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	59	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L
ICP			
	Arsenic	2.0 U	ug/L
	Copper	1.4 U	ug/L
	Lead	1.35	ug/L

NWTPH-G Surrogate Recoveries

Compound Bromofluorobenzene Toluene-d8	<u>True</u> 20 20	<u>Found</u> 20.54 21.93	<u>%Recovery</u> 103 110	50-150 50-150
i olnei ie-ao	20			

Flags:

The value is less than detection limit U:

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701005

Sample ID:

HC-MW-4

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

Test	Result	Units
CONVENTIONAL		
TSS	2.2	mg/L
GC/MS-BNA		
2-Methylnaphthalene	1.0 U	ug/L
Acenaphthene	3.4	ug/L
Acenaphthylene	1.0 U	ug/L
Anthracene	1.0 U	ug/L
Benzo(a)anthracene	1.0 U	ug/L
Benzo(a)pyrene	. 1.0 U	ug/L
Benzo(b,k)fluoranthenes	1.0 U	ug/L
Benzo(g,h,i)perylene	1.0 U	ug/L
Chrysene	1.0 U	ug/L
Dibenz(a,h)anthracene	1.0 U	ug/L
Fluoranthene	1.0 U	ug/L
Fluorene	1.2	ug/L
Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
Naphthalene	1.0 U	ug/L
Phenanthrene	1.0 U	ug/L
Pyrene	1.0 U	ug/L

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030701005

Sample ID:

HC-MW-4

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	56	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L
ICP			_
	Arsenic	2.5	ug/L
	Copper	1.4 U	ug/L
	Lead	1.48	ug/L

Reviewed By:

Date

Date

NWTPH-G Surrogate Recoveries

Compound	<u>True</u>	Found	%Recovery	<u>Limits</u> 50-150
Bromofluorobenzene	20	23.93	120	50-150
Toluene-d8	20	21.50	108	50-150

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030701006

Sample ID:

Trip Blank

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

6/30/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	25 U	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L

Reviewed By:

1

NWTPH-G Surrogate Recoveries

Compound	<u>True</u>	Found	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	22.61	113	50-150
Toluene-d8	20	21.54	108	50-150

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710062

Sample ID:

MW-D

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
CONVENTION	NAL		
	TSS	7.4	mg/L
GC/MS-BNA			/Т
	2-Methylnaphthalene	460	ug/L
	Acenaphthene	160	ug/L
	Acenaphthylene	2.9	ug/L
	Anthracene	2.9	ug/L
	Benzo(a)anthracene	1.0 U	ug/L
	Benzo(a)pyrene	1.0 U	ug/L
	• • • •	1.0 U	ug/L
	Benzo(b,k)fluoranthenes	1.0 U	ug/L
	Benzo(g,h,i)perylene	1.0 U	ug/L
	Chrysene	1.0 U	ug/L
	Dibenz(a,h)anthracene		-
	Fluoranthene	1.8	ug/L
	Fluorene	63	ug/L
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
	Naphthalene	3100	ug/L
	Phenanthrene	31	ug/L
		1.1	ug/L
	Pyrene		

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030710062

Sample ID:

MW-D

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
GC/MS-VOA			
•	Benzene	24	ug/L
	Ethylbenzene	160	ug/L
	NWTPH-Gasoline	10000	ug/L
	Toluene	40	ug/L
	Xylenes (Total)	760	ug/L
ICP-DISS			
	Arsenic, Dissolved	2.1 U	ug/L
	Copper, Dissolved	2.1 U	ug/L
	Lead, Dissolved	1.3 U	ug/L

Reviewed By:

Quel 23 2003

Date

NWTPH-G Surrogate Recoveries

Compound	True	<u>Found</u>	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	19.67	98	50-150
Toluene-d8	20	19.68	98	50-150

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710063

Sample ID:

MW-4

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
CONVENT	TSS	5.3	mg/L
GC/MS-BN		1.0 U	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	Phenanthrene Pyrene	1.0 U	ug/L

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

20030710063

Sample ID:

MW-4

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	25 U	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L
ICP-DISS			
	Arsenic, Dissolved	2.1 U	ug/L
	Copper, Dissolved	2.3	ug/L
	Lead, Dissolved	1.3 U	ug/L

Lori a. Zboralski guly 23, 2003
Reviewed By:

Date

NWTPH-G Surrogate Recoveries

Compound Bromofluorobenzene Toluene-d8	<u>True</u>	<u>Found</u>	<u>%Recovery</u>	<u>Limits</u>
	20	20.98	105	50-150
	20	21.93	110	50-150
i oluene-do	20	21.00		

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710064

Sample ID:

MW-11

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
CONVENTION	NAL		
	TSS	9.9	mg/L
GC/MS-BNA			, re
	2-Methylnaphthalene	1.2	ug/L
	Acenaphthene	130	ug/L
	Acenaphthylene	1.1	ug/L
	Anthracene	18	ug/L
	Benzo(a)anthracene	2.5	ug/L
	Benzo(a)pyrene	1.2	ug/L
	Benzo(b,k)fluoranthenes	1.9	ug/L
	Benzo(g,h,i)perylene	1.0 U	ug/L
	Chrysene	1.7	ug/L
	Dibenz(a,h)anthracene	1.0 U	ug/L
	Fluoranthene	22	ug/L
	Fluorene	93	ug/L
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
	Naphthalene	67	ug/L
	Phenanthrene	110	ug/L
		19	ug/L
	Pyrene	•	

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030710064

Sample ID:

MW-11

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	2.4	ug/L
	Ethylbenzene	4.5	ug/L
	NWTPH-Gasoline	600	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	5.9	ug/L
ICP-DISS			
	Arsenic, Dissolved	3.8	ug/L
	Copper, Dissolved	2.8	ug/L
	Lead, Dissolved	1.3 U	ug/L

Levi a- Zboralski guly 23, 2003

Reviewed By:

Date

NWTPH-G Surrogate Recoveries

Compound	True	<u>Found</u>	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	22.28	111	50-15 0
Toluene-d8	20	21.90	110	50-15 0

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710065

Sample ID:

MW-13

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
CONVENTIO	ONAL		_
	TSS	1.3 U	mg/L
GC/MS-BNA	· · · · · · · · · · · · · · · · · · ·		_
	2-Methylnaphthalene	1.0 U	ug/L
	Acenaphthene	5.1	ug/L
	Acenaphthylene	1.0 U	ug/L
	Anthracene	1.0 U	ug/L
	Benzo(a)anthracene	1.0 U	ug/L
	Benzo(a)pyrene	1.0 U	ug/L
	Benzo(b,k)fluoranthenes	1.0 U	ug/L
	Benzo(g,h,i)perylene	1.0 U	ug/L
	Chrysene	1.0 U	ug/L
	Dibenz(a,h)anthracene	1.0 U	ug/L
	Fluoranthene	1.0 U	ug/L
	Fluorene	1.9	ug/L
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
		3.6	ug/L
	Naphthalene Phenanthrene	1.0 U	ug/L
		1.0 U	ug/L
	Pyrene		_

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030710065

Sample ID:

MW-13

Sample Type: Sample Date:

Groundwater 7/9/2003

Puyallup River Side Channel

GC/MS-VOA

ICP-DISS

Test	Result	Units
Benzene	5.0 U	ug/L
Ethylbenzene	5.0 U	ug/L
NWTPH-Gasoline	280	ug/L
Toluene	10.0	ug/L
Xylenes (Total)	5.0 U	ug/L
Arsenic, Dissolved	2.1 U	ug/L
Copper, Dissolved	3.2	ug/L
Lead, Dissolved	1.3 U	ug/L

Zboralski July 23, 2003

NWTPH-G Surrogate Recoveries

Compound	<u>True</u>	<u>Found</u>	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	20.50	103	50-150
Toluene-d8	20	21.77	109	50-150

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710066

Sample ID:

MW-8

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
CONVENTIO	NAL		7
	TSS	32.9	mg/L
GC/MS-BNA			·/r
	2-Methylnaphthalene	520	ug/L
	Acenaphthene	180	ug/L
	Acenaphthylene	3.1	ug/L
	Anthracene	3.7	ug/L
	Benzo(a)anthracene	1.0 U	ug/L
	Benzo(a)pyrene	1.0 U	ug/L
	Benzo(b,k)fluoranthenes	1.0 U	ug/L
	Benzo(g,h,i)perylene	1.0 U	ug/L
	Chrysene	1.0 U	ug/L
	Dibenz(a,h)anthracene	1.0 U	ug/L
	Fluoranthene	2.1	ug/L
	Fluorene	69	ug/L
	Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
	•	3400	ug/L
	Naphthalene	34	ug:/L
	Phenanthrene	1.2	ug/L
	Pyrene	1.4	-5-

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030710066

Sample ID:

MW-8

Groundwater

Sample Type: Sample Date:

7/9/2003

Puyallup River Side Channel

GC/MS-VOA

ICP-DISS

Test	Result	Units
	20	
Benzene	29	ug/L
Ethylbenzene	190	ug/L
NWTPH-Gasoline	12000	ug/L
Toluene	41	ug/L
Xylenes (Total)	830	ug/L
Arsenic, Dissolved	2.1 U	ug/L
Copper, Dissolved	2.1 U	ug/L
Lead, Dissolved	1.3 U	ug/L

Zbres alski July 23, 2003 Date

NWTPH-G Surrogate Recoveries

<u>Compound</u>	<u>True</u>	<u>Found</u>	%Recovery	<u>Limits</u>
Bromofluorobenzene	20	21.53	108	50-150
Toluene-d8	20	21.55	108	50-150

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710067

Sample ID:

MW-18

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

Test	Result	Units
CONVENTIONAL		_
TSS	26.8	mg/L
GC/MS-BNA		
2-Methylnaphthalene	740	ug/L
Acenaphthene	310	ug/L
Acenaphthylene	3.1	ug/L
Anthracene	8.2	ug/L
Benzo(a)anthracene	1.0 U	ug/L
Benzo(a)pyrene	1.0 U	ug/L
Benzo(b,k)fluoranthenes	1.0 U	ug/L
Benzo(g,h,i)perylene	1.0 U	ug/L
Chrysene	1.0 U	ug/L
Dibenz(a,h)anthracene	1.0 U	ug/L
Fluoranthene	5.1	ug/L
Fluorene	150	ug/L
Indeno(1,2,3-c,d)pyrene	1.0 U	ug/L
Naphthalene	8800	ug/L
Phenanthrene	100	ug/L
Pyrene	3.6	ug/L
· ·		

Flags:

- The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- The value is considered estimated J:
- The value is less than the reporting limit but greater than detection limit

20030710067

Sample ID:

MW-18

Test

Groundwater

Sample Type: Sample Date:

7/9/2003

Puyallup River Side Channel

GC/MS	VOA
LTC/IVIO	- V OA

ICP-DISS

Benzene	43	ug/L
Ethylbenzene	180	ug/L
NWTPH-Gasoline	12000	ug/L
Toluene	13	ug/L
Xylenes (Total)	330	ug/L
Arsenic, Dissolved	2.1 U	ug/L
Copper, Dissolved	2.4	ug/L
Lead, Dissolved	1.3 U	ug/L

Result

NWTPH-G Surrogate Recoveries

Compound	True	<u>Found</u>	%Recovery	<u>Limits</u> 50-150
Bromofluorobenzene	20	19.92	100	
Toluene-d8	20	22.02	110	50-150

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

The value is less than the reporting limit but greater than detection limit B:

Units

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

July 23, 2003

Lab#:

20030710068

Sample ID:

Trip Blank

Sample Type:

Groundwater

Puyallup River Side Channel

Sample Date:

7/9/2003

	Test	Result	Units
GC/MS-VOA			
	Benzene	1.0 U	ug/L
	Ethylbenzene	1.0 U	ug/L
	NWTPH-Gasoline	25 U	ug/L
	Toluene	1.0 U	ug/L
	Xylenes (Total)	1.0 U	ug/L

Reviewed By:

Ďate

NWTPH-G Surrogate Recoveries

 Compound
 True
 Found
 %Recovery
 Limits

 Bromofluorobenzene
 20
 16.81
 84
 50-150

 Toluene-d8
 20
 20.76
 104
 50-150

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Sample Custody Record

Samples Shipped to:

HARTO

HARTCROWSER

Hart Crowser, Inc. 1910 Fairview Avenue East

Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

3 TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS **OBSERVATIONS/COMMENTS/** P10255240 DISS. Mizraes 4 SHIPMENT METHOD: CHAND
COURIER ☐ STANDARD □ 1 WEEK SAMPLE RECEIPT INFORWATION OTHER アニュアクラン TURNAROUND TIME: CUSTODY SEALS:

OYES
GOOD CONDITION TEMPERATURE トクス □ 24 HOURS ☐ 72 HOURS ☐ 48 HOURS * 3 NO. OF CONTAINERS C 9 V STORAGE LOCATION: REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR for Other Contract Requirements STORAGE REQUIREMENTS: See Lab Work Order No. COOLER NO .: SHILL 120 MATRIX DATE DATE IME TIME hite (5 155 1305 14CB RE 030 300 Marcon V10000 27 TIME b to R WHEE Y Sign PRINT NAME 7/19/4 Acres Con RECEIVED BY RECEIVED BY DATE PRINT NAME SIGNATURE COMPANY COMPANY ıger LAB NUMBER R. MW-D MUSHUZING SUE DESCRIPTION Proje 183 DATE DATE TIME 1IME 717 PROJECT NAME Pora way HART CROWSER CONTACT M2-13 の一多と コーゴム SAMPLE ID 1-MW ナーズと 10000 7853 RELINQUISHED BY RELINQUISHED BY opies . SAMPLED BY: PRINT NAME SIGNATURE LAB NO. COMPANY and Y JOB

Sample Custody Record

Samples Shipped to:

HARTCROWSER

Ha. ... 0W5.., 115.

1910 Fairview Avenue East
Seattle, Washington 98102-3699
Phone: 206-324-9530 FAX: 206-328-5581

May 18/1 TOTAL NUMBER OF CONTAINERS (MSW) 519 COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ □OVERNIGHT STANDARD □ 1 WEEK SAMPLE RECEIPT INFORMATION SHIPMENT METHOD: THAND OTHER アンナのみ TURNAROUND TIME: 000 GOOD CONDITION CUSTODY SEALS: TEMPERATURE_ ☐ 24 HOURS ☐ 48 HOURS ☐ 72 HOURS S 5 ٥ 6 (1) NO. OF CONTAINERS STORAGE LOCATION: 13/03 REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR for Other Contract Requirements Gold to Sample Custodian STORAGE REQUIREMENTS: See Lab Work Order No. COOLER NO .: Lab to Return White Copy to Hart Crowser 011 ò JENNAY! MATRIX Ç, DATE TIME 1IME DATE 1455 735 027 630 1115 TIME PRINT NAME COMPANY F LE 1100001C SIGNATURE 6 30/13 RECEIVED BY RECEIVED BY DATE PRINT NAME WILL DAMEN SIGNATURE COMPANY Pink to Project Manager LAB NUMBER ري خ DESCRIPTION 6 3463 HART CROWSER CONTACT DATE DATE TIME PROJECT NAME PORT LLOW 10 B. ADIC 4-5-W-3D HC-MW-2 H- FUS- 35 ナーコマ・エ HC. MM-1 SAMPLE ID White and Yellow Copies to Lab SECONDAY でいる十 RELINQUISHED BY RELINQUISHED BY SAMPLED BY: PRINT NAME PRINT NAME SIGNATURE COMPANY IGNATURE COMPANY LAB NO. . 80

To:

John O'Loughlin, P.E., Foss Construction Management

FROM:

Christopher L. Getchell, Source Control Supervisor

SUBJECT: Foss Waterway Construction WO# DC2001

DATE:

August 6, 2003

Attached are the sample analysis results for the sediment samples collected from the Puyallup River Side Channel on June 24 and 25, 2003. These samples were analyzed for NWTPH-Dx, Chlorinated Pesticides DDT, DDE, and DDD, PCBs and Aroclors, Semi-Volatile Organics, Mercury, and Total Metals.

The Science and Engineering Division analyzed the samples for all analytes except Chlorinated Pesticides and PCBs. Severn Trent Laboratories performed the Pesticide and PCB analyses.

The Science and Engineering Division LIMS system uses a value for MDL that prints non-detect values. The Severn Trent Laboratories PQL values for PCBs were entered for MDL instead of the correct values of MRL. The MRL values are ½ the PQL values.

A Quality Control Data Review was prepared concerning these samples and is attached with the data reports.

If you have any questions concerning this data, call me at (253) 502-2130.

Christopher L. Getchell,

Source Control Supervisor.

Quality Control Data Review

TO:

Christopher L. Getchell, Source Control Supervisor

FROM:

Lori A. Zboralski, Senior Laboratory Analyst

DATE:

August 6, 2003

SAMPLES

This report concerns the following samples associated with Foss Waterway Construction WO# DC2001:

Sample Description	Lab ID#	Date Sampled
HC-MW-1 (S1 + S2)	20030624098	06/24/2003
HC-MW-1 (S3)	20030624100	06/24/2003
HC-MW-1 (S4)	20030624101	06/24/2003
HC-MW-1 (S5)	20030624102	06/24/2003
HC-MW-2 (S1 + S2)	20030624103	06/24/2003
HC-MW-2 (S3)	20030624105	06/24/2003
HC-MW-2 (S4)	20030624106	06/24/2003
HC-MW-2 (S5)	20030624107	06/24/2003
HC-MW-2 (S6)	20030624108	06/24/2003
HC-MW-4 (S2)	20030624109	06/24/2003
HC-MW-4 (S4)	20030624110	06/24/2003
HC-MW-3D (S1)	20030625112	06/25/2003
HC-MW-3D (S3)	20030625113	06/25/2003
HC-MW-3D (S4)	20030625114	06/25/2003
HC-MW-3D (S5)	20030625115	06/25/2003
HC-MW-3D (S6)	20030625116	06/25/2003
HC-MW-3D (S7)	20030625117	06/25/2003
HC-MW-3D (S8)	20030625118	06/25/2003
HC-MW-3D (S9)	20030625119	06/25/2003
HC-MW-3D (S10)	20030625120	06/25/2003
HC-MW-3D (S11)	20030625121	06/25/2003

HOLDING TIMES

The samples were extracted within the 14-day sample collection-to-extraction holding time for Chlorinated Pesticides, PCBs as Aroclors, and Semi-Volatile Organics and analyzed within 7 days for Total Solids, 28 days for Total Mercury and NWTPH-Dx, 40 days after the extraction for Chlorinated Pesticides, PCBs as Aroclors, and Semi-Volatile Organics, and 180 days for Total Metals.

CHAIN OF CUSTODY

The Chain of Custody records were filled out according to procedures.

Page 1 of 7

METHODS

These samples were analyzed according to the methods outlined in the "Soil and Groundwater Quality Testing Work Plan", June 16, 2003.

DAILY INSTRUMENT PERFORMANCE STANDARDS

The Mass Spectrometers used for the Semi-Volatile Organics and NWTPH-Dx analyses were tuned according to the recommendations of methods 8270. All mass abundances and ratios were within the criteria of the methods.

CALIBRATION AND VERIFICATION

The Initial Calibrations for Semi-Volatile Organics had relative standard deviations of less than 15% for all reported compounds, except for the following

Compound	%RSD
Pentachlorophenol (SIM)	39.35
Hexachlorocyclopentadiene (SCAN)	18.50
2,4-Dinitrophenol (SIM)	25.22

Method 8270 allows for individual compounds to have %RSD outside of the limits if the average of all of the compounds' RSD values is less than 15%. The average for the SIM calibration was 9.70 and the average for SCAN was 8.67. No data is qualified because of Initial Calibration.

The Continuing Calibrations for Semi-Volatile Organics had percent differences of less than 20% for all reported compounds, except for the following

Date	Compound	 <u>%D</u>
7/8/2003	Pyrene (SCAN)	25.4

The Pyrene values for samples with concentrations above the detection limit, HC-MW-2 (S6), HC-MW-4 (S2), HC-MW-3D (S3), HC-MW-3D (S4), and HC-MW-3D (S5) are qualified as estimated based on high continuing calibration %D values.

The Initial Calibrations for Chlorinated Pesticides and PCBs as Aroclors had relative standard deviations of less than 20% for all reported compounds.

The Continuing Calibrations for Chlorinated Pesticides and PCBs as Aroclors had percent differences of less than 20% for all reported compounds, except for the following

Date	File Name	Cólumn #	Compound	<u>%D</u>
7/15/2003	pest1477.d	1	DDT	26
7/15/2003	pest1477.d	2	DDE	39
7/15/2003	pest1494.d	2	DDE	23

There were no concentrations of these Chlorinated Pesticides found in any of the samples. No data was qualified.

The NWTPH-Dx initial calibrations met method requirements for linearity with correlation coefficients of greater than 0.990. The continuing calibrations associated with these samples had percent differences of less than 15%.

ICP calibrations met Method 6010B recommendations for linearity and accuracy. Mercury calibrations met Method 7470 recommendations for linearity and accuracy. Sensitivity was monitored by analysis of standards at or near the method detection limits. The recoveries of these standards ranged from 87 to 124%. The recoveries were within the laboratory limits of 50 to 200%.

The ICP calibration stabilities were monitored throughout the course of the analytical runs by analysis of standards in the middle of the linear range for the elements analyzed. The recoveries of these standards are to have recoveries of 90 to 110%. The recoveries of these standards ranged from 84 to 104%.

INTERELEMENT CORRECTION CHECK

Standards are analyzed to monitor the inter-element correction factors for ICP. These standards contain the interfering elements and the analytes of concern for this project. Recoveries of these standards are to be with 80 to 120%. The recoveries ranged from 91 to 106%.

METHOD AND CALIBRATION BLANKS

Method and calibration blanks were analyzed at the required frequencies for the methods. Method Blanks were analyzed for every digestion or extraction batch. Calibration blanks for ICP were analyzed every 10 samples. The concentrations of these blanks were less than the detection limits or less than 1/5th the concentration in the samples at all times.

SURROGATES

Surrogate compounds were added to each sample prior to extraction for Chlorinated Pesticides, PCBs as Aroclors, and Semi-Volatile Organics. The recoveries of these compounds are tracked with control charts for Chlorinated Pesticides, PCBs as Aroclors, and Semi-Volatile Organics. All surrogate recoveries were within the required limits, **except the following**

<u>Analysis</u>	Sample	Compound	% Recovery	Limits
Pesticides	HC-MW-1 (S1+S2)	TCMX	72	76-123
		DCB	21	56-141
Tag 1	HC-MW-1 (S3)	DCB	14	56-114
	HC-MW-1-(S4)	TCMX	70	76-123
		DCB	7	56-114
	HC-MW-1 (S5)	TCMX	71	76-123
		DCB	11	56-114
	HC-MW-2 (S1+S2)	TCMX	72	76-123
		DCB	13	56-1 1 4
	HC-MW-2 (S3)	TCMX	63	76-123
		DCB	13	56-1 1 4
	HC-MW-2 (S4)	DCB	38	56-1 1 4

Page 3 of 7

Analysis	Sample	Compound	% Recovery	Limits
Anaryolo	HC-MW-2 (S5)	TCMX	72	76-123
*	110 11111 = (00)	DCB	0	56-141
	HC-MW-2 (S6)	TCMX	75	76-123
	110-11111 2 (00)	DCB	13	56-141
	HC-MW-4 (S4)	TCMX	74	76-123
	110 10111 4 (0-1)	DCB	11	56-141
	HC-MW-3D (S3)	DCB	20	56-114
	HC-MW-3D (S5)	DCB	31	56-114
	HC-MW-3D (S6)	TCMX	71	76-123
	110-11111-05 (00)	DCB	17	56-114

The Pesticide results for the samples associated with these low surrogate recoveries are qualified as estimated.

Analysis	Sample	Compound	% Recovery	Limits
PCBs	HC-MW-1 (S1+S2)	TCMX	163	72-114
1 003	110 mm : (01 - 02)	DCB	164	55-133
	HC-MW-2 (S1+S2)	TCMX	147	72-114
	110 1111 2 (01 02)	DCB	142	55-133
	HC-MW-3D (S1)	TCMX	140	72-114
	HC-MW-3D (S3)	TCMX	129	72-114
	HC-MW-3D (S4)	TCMX	120	72-114
	HC-MW-3D (S5)	TCMX	124	72-114

Sample HC-MW-1 (S1+S2) had Aroclor-1260 detected at 210 ug/Kg. The Aroclor-1260 value for sample HC-MW-1 (S1+S2) is qualified as estimated based on the high surrogate recoveries. The other samples had no PCBs as Aroclors detected. The data is not qualified.

Analysis	Sample	Compound	% Recovery	<u>Limits</u>
Semi-VOA (SCAN)	HC-MW-4 (S2)	Pyrene-d10	132	58-110
001111 1071 (007111)	HC-MW-3D (S1)	Pyrene-d10	128	58-110
	HC-MW-3D (S3)	Pyrene-d10	143	58-110
	110 1111 02 (00)	Terphenyl-d14	145	31-143
	HC-MW-3D (S4)	2,4,6-Tribromophe	enol 100	31-98
	1,0 1111 02 (01)	Pyrene-d10	131	58-110
	HC-MW-3D (S5)	Pyrene-d10	118	58-110
	HC-MW-3D (S6)	2,4,6-Tribromophe	enol 118	31-98
	HC-MW-3D (S8)	2.4.6-Tribromoph		31-98
	HC-MW-3D (S9)	2,4,6-Tribromoph		31-98
	HC-MW-3D (\$10)	2,4,6-Tribromoph		31-98

Samples with two or more recoveries outside the limits for acid surrogates or base/neutral surrogates are qualified as estimated. Only sample HC-MW-3D (S3) had two base/neutral surrogate recoveries outside the limits. The base/neutral compounds analyzed by SCAN are qualified as estimated for sample HC-MW-3D (S3).

<u>Analysis</u>	Sample	Compound	% Recovery	Limits
Semi-VOA (SIM)	HC-MW-3D (S9)	2-Fluorobiphenyl	24	30-115
		2-Fluorophenol	14	25-121
		Phenol-d5	20	24-113

The SIM compounds Benzyl Alcohol, 2-Methylphenol, 1,2,4-Trichlorobenzene, N-Nitrosodiphenylamine, Pentachlorophenol, 2,4-Dimethylphenol, Hexachlorobenzene, and Hexachlorobutadiene in sample HC-MW-3D (S9) are qualified as estimated based on the low surrogate recoveries.

<u>Analysis</u>	Sample	Compound	% Recovery	Limits
NWTPH-Dx	HC-MW-1 (S5)	2-Fluorobiphenyl	49	50-150
	HC-MW-3D (S3)	2-Fluorobiphenyl	45	50-150

The NWTPH-Dx Diesel and Heavy Oil values for HC-MW-1 (S5) and HC-MW-3D (S3) are qualified as estimated based on the low surrogate recoveries.

LABORATORY CONTROL SAMPLES

Laboratory Control Samples were analyzed at the required frequency for the methods. Recoveries for metals are to be within 80 to 120%. Recoveries for all other analytes are to be within the laboratories' control chart limits. Recoveries for all analytes were within the required limits, except for the recovery of 2,4-Dimethylphenol in CONTROL1006 for SIM. The recovery was 13%. The limits are 32 to 119%. The 2,4-Dimethylphenol values for samples HC-MW-1 (S1 + S2), HC-MW-1 (S3), HC-MW-1 (S4), HC-MW-1 (S5), HC-MW-2 (S1 + S2), HC-MW-2 (S3), HC-MW-2 (S4), and HC-MW-2 (S5) are qualified as estimated based on the low Control recovery.

DUPLICATE SAMPLE ANALYSIS

Samples in this batch were analyzed in duplicate for Total Metals, Mercury, and Total Solids. The relative percent differences are to be less than 35% for analytes with concentrations greater than 5 times the reporting limit. The relative percent differences ranged from 0 to 79%. The Lead RPD for sample HC-MW-1 (S3) was 79%. The lead value for the sample is qualified as estimated. The Chromium RPD for sample HC-MW-3D (S11) was 61%. The chromium value for the sample is qualified as estimated.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The following samples were analyzed with matrix spikes: HC-MW-1 (S3) and HC-MW-3D (S11) for Total Metals and Mercury. Recoveries for Metals and Mercury are recommended to be between 75 and 125%. The recoveries ranged from 47 to 92%. The recovery of Chromium in sample HC-MW-3D (S11) was 47%. The chromium value for HC-MW-3D (S11) is qualified as estimated based on the low recovery.

Sample HC-MW-3D (S10) was analyzed with a matrix spike and matrix spike duplicate for Chlorinated Pesticides. The MS recovery of DDT was 31% and the MSD recovery was 48%. The control limits are 67 to 122%. The DDT value for HC-MW-3D (S10) is qualified as estimated.

Samples HC-MW-1 (S3) and HC-MW-3D (S11) were analyzed with Matrix Spike and Matrix Spike duplicate for Semi-Volatile Organics. Samples HC-MW-2 (S6) and HC-MW-3D (S11) were analyzed with Matrix Spike and Matrix Spike Duplicate for NWTPH-Dx. The recoveries for Semi-Volatile Organics were all within the laboratory control limits for these compounds, except for those listed in the following table:

Analysis	Sample	Compound	% Recovery	<u>Limits</u>
Semi-VOA (MSD)	HC-MW-3D (S11)	2,4-Dimethylphenol	8	32-119
Seith-VOA (MOD)	110 1111 02 (011)	2-Methylphenol	39	50-150
		Benzo(g,h,i)perylene	45	60-105
		Dibenz(a,h)anthracene	52	56-109
	,	Di-n-octyl phthalate	125	53-116
,		Indeno(1,2,3-c,d)pyrene	52	61-106
Semi-VOA (MS)	HC-MW-3D (S11)	Benzo(g,h,i)perylene	40	60-105
Semi-VOA (IVIS)	[10-18184-3D (011)	Dibenz(a,h)anthracene	46	56-109
		Indeno(1,2,3-c,d)pyrene	45	61-106

The compounds Benzo(g,h,i)perylene, Dibenz(a,h)perylene, and Indeno(1,2,3-c,d)pyrene all had low recoveries in the MS and the MSD. These three compounds are qualified as estimated for HC-MW-3D (S11).

The NWTPH-Dx recoveries are to be within the method limits of 50 to 150%. The recoveries of Diesel ranged from 22 to 66 in samples HC-MW-2 (S6) and HC-MW-3D (S11) with the MSD for HC-MW-3D (S11) having the recovery of 22%. The MS for Diesel for the sample was 66%. No data is qualified. The Heavy Oil recoveries in the same samples ranged from 59 to 132% and all were within the method limits.

ICP SERIAL DILUTIONS

Samples HC-MW-1 (S3) and HC-MW-3D (S11) were analyzed at 1:5 dilutions for Total Metals. The percent differences for the diluted samples compared to the undiluted samples were less than 10% for analyte concentrations greater than 50 times the reporting limits.

INTERNAL STANDARDS

Internal Standards were used in the determinations of the Semi-Volatile Organic compounds. According to the methods, the internal standard areas in the samples are to be within 50 to 200% the standards measured in the continuing calibrations. The recoveries of the internal standards for these analyses ranged from

DATA AVAILABILITY

All data associated with the samples contained in this report are archived at the Science and Engineering Division and are available upon request.

DATA ASSESSMENT

The qualifiers assigned to these samples including:

- U indicates the parameter was not detected above the Detection Limit.
- UJ indicates the parameter was not detected above the Detection Limit and the value is considered estimated.
- J indicates the value is considered estimated.

All data including qualified values are acceptable for use.

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624098

Sample ID:

HC-MW-1 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENT	ΓΙΟΝΑL		
	Solids	29.0	per cent
CV			
	Mercury	0.233	mg/Kg
GC/ECD-P	PCB		
	Aroclor-1016	140 U	ug/Kg
	Aroclor-1221	290 U	ug/Kg
	Aroclor-1232	140 U	ug/Kg
	Aroclor-1242	140 U	ug/Kg
	Aroclor-1248	140 U	ug/Kg
	Aroclor-1254	140 U	ug/Kg
	Aroclor-1260	210 J	ug/Kg
GC/ECD-F	PEST		
	4,4-DDD	6.0 U J	ug/Kg
	4,4-DDE	6.0 U J	ug/Kg
	4,4-DDT	6.0 U J	ug/Kg
GC/MS-B	NA		
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,3-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624098

Sample ID:

HC-MW-1 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	100 U	ug/Kg
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	560	ug/Kg
Butyl benzyl phthalate	270	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/ K g
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/ K g
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	100 U	ug/Kg
Fluorene	100 U	ug/ K g

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624098

Sample ID:

HC-MW-1 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg
	Naphthalene	100 U	ug/Kg
	Phenanthrene	100 U	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	100 U	ug/Kg
GC/MS-SM-BN	TA .		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
•	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	22	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	450	mg/Kg
	NWTPH-Heavy Oil	1600	mg/Kg
ICP			•
	Arsenic	6.0	mg/Kg
	Cadmium	0.250	mg/Kg
	Chromium	19.7	mg/K.g
	Copper	23.1	mg/Kg
	Lead	10.1	mg/Kg
· · · · · · · · · · · · · · · · · · ·	Nickel	13.5	mg/Kg
	Silver	0.053 U	mg/Kg
	Zinc	36.9	mg/Kg

Reviewed By:

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624100

Sample ID:

HC-MW-1 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTI	ONAL		
	Solids	82.0	per cent
CV			
	Mercury	0.0122 B	mg/Kg
GC/ECD-PC	B		
	Aroclor-1016	58 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	58 U	ug/Kg
	Aroclor-1242	58 U	ug/Kg
•	Aroclor-1248	58 U	ug/Kg
	Aroclor-1254	58 U	ug/Kg
	Aroclor-1260	58 U	ug/Kg
GC/ECD-PE	ST		
	4,4-DDD	2.4 U J	ug/Kg
	4,4-DDE	2.4 U J	ug/Kg
4	4,4-DDT	2.4 U J	ug/Kg
GC/MS-BNA	A		
	1,2-Dichlorobenzene	100 . U	ug/Kg
	1,3-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030624100

Sample ID:

HC-MW-1 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	100 U	ug/Kg
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	230	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	· 100 U	ug/Kg
Fluoranthene	100 U	ug/Kg
Fluorene	100 U	ug/Kg
•		

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624100

Sample ID:

HC-MW-1 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg
	Naphthalene	100 U	ug/Kg
	Phenanthrene	100 U	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	100 U	ug/Kg
GC/MS-SM-BN	JA		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U, J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	5 U	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
•	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	98 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	40 U	mg/Kg
ICP			
	Arsenic	2.1	mg/Kg
	Cadmium	0.050 U	mg/Kg
*** ***	Chromium	12.0	mg/Kg
as a	Copper	11.4	mg/Kg
	Lead	5.48 J	mg/Kg
	Nickel	10.9	mg/Kg
	Silver	0.048 U	mg/Kg
	Zinc	44.8	mg/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624101

Sample ID:

HC-MW-1 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENT	TIONAL		
	Solids	74.3	per cent
CV			
•	Mercury	0.0150 B	mg/Kg
GC/ECD-P	CB		
	Aroclor-1016	68 U	ug/Kg
	Aroclor-1221	140 U	ug/Kg
	Aroclor-1232	68 U	ug/Kg
	Aroclor-1242	68 U	ug/Kg
	Aroclor-1248	68 U	ug/Kg
	Aroclor-1254	68 U	ug/Kg
	Aroclor-1260	68 U	ug/Kg
GC/ECD-I	PEST		
	4,4-DDD	2.6 U J	ug/Kg
	4,4-DDE	2.6 U J	ug/Kg
	4,4-DDT	2.6 U J	ug/Kg
GC/MS-B	NA		
. *	1,2-Dichlorobenzene	100 U	ug/Kg
	1,3-Dichlorobenzene	100 U	ug/ K g
	1,4-Dichlorobenzene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624101

Sample ID:

HC-MW-1 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	100 U	ug/Kg
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	100 U	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	100 U	ug/Kg
Fluorene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624101

Sample ID:

HC-MW-1 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg
	Naphthalene	100 U	ug/Kg
	Phenanthrene	100 U	ug/Kg
	Phenol	100 U	ug/Kg
·	Pyrene	100 U	ug/Kg
GC/MS-SM-E	BNA		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	9 B	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
*	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	47	mg/Kg
ICP			
	Arsenic	5.3	mg/Kg
	Cadmium	0.052 U	mg/Kg
	Chromium	12.1	mg/Kg
	Copper	17.9	mg/Kg
	Lead	3.50	mg/Kg
	Nickel	8.43	mg/Kg
	Silver	0.050 U	mg/Kg
	Zinc	25.6	mg/Kg

Reviewed By:

Date

Flags:

J: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624102

Sample ID:

HC-MW-1 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTIO	NAL		
	Solids	80.3	per cent
CV			
	Mercury	0.0096 U	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	60 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	60 U	ug/Kg
	Aroclor-1242	60 U	ug/Kg
	Aroclor-1248	60 U	ug/Kg
	Aroclor-1254	60 U	ug/Kg
	Aroclor-1260	60 U	ug/Kg
GC/ECD-PEST			
•	4,4-DDD	2.3 U J	ug/Kg
	4,4-DDE	2.3 U J	ug/Kg
	4,4-DDT	2.3 U J	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,3-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624102

Sample ID:

HC-MW-1 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	100 U	ug/Kg
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	220	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	100 U	ug/Kg
Fluorene	100 U	ug/Kg

Flags:

The value is less than detection limit U:

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

20030624102

Sample ID:

HC-MW-1 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

÷	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg
	Naphthalene	100 U	ug/Kg
•	Phenanthrene	100 U	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	100 U	ug/Kg
GC/MS-SM-B1	NA		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	8 B	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U J	mg/Kg
	NWTPH-Heavy Oil	40 U J	mg/K.g
ICP			
	Arsenic	1.5	mg/Kg
	Cadmium	0.052 U	mg/Kg
	Chromium	12.0	mg/Kg
	Copper	11.8	mg/Kg
•	Lead	1.83	mg/Kg
	Nickel	7.64	mg/Kg
	Silver	0.050 U	mg/Kg
	Zinc	20.0	mg/Kg

Loria. Zboralski august 6, 2003
Reviewed By:

Date Reviewed By:

Flags: U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624103

Sample ID:

HC-MW-2 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTIO	NAL		
	Solids	36.9	per cent
CV			
	Mercury	0.0901 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	110 U	ug/Kg
	Aroclor-1221	230 U	ug/Kg
	Aroclor-1232	110 U	ug/Kg
	Aroclor-1242	110 U	ug/Kg
	Aroclor-1248	110 U	ug/Kg
	Aroclor-1254	110 U	ug/Kg
•	Aroclor-1260	110 U	ug/Kg
GC/ECD-PES	${f T}$		
• •	4,4-DDD	4.8 U J	ug/Kg
	4,4-DDE	4.8 U J	ug/Kg
	4,4-DDT	4.8 U J	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	99 U	ug/Kg
	1,3-Dichlorobenzene	99 U	ug/Kg
	1,4-Dichlorobenzene	99 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624103

Sample ID:

HC-MW-2 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test		Result	Units
2,4,5-Trichlorophenol		99 U	ug/Kg
2,4,6-Trichlorophenol		99 U	ug/Kg
2,4-Dichlorophenol		99 U	ug/Kg
2,4-Dinitrophenol	•	500 U	ug/Kg
2-Chlorophenol		99 U	ug/Kg
2-Methyl-4,6-dinitrophenol		500 U	ug/Kg
2-Methylnaphthalene		99 U	ug/Kg
2-Nitrophenol		99 U	ug/Kg
4-Chloro-3-methylphenol		99 U	ug/Kg
4-Methylphenol		99 U	ug/Kg
4-Nitrophenol		500 U	ug/Kg
Acenaphthene		99 U	ug/Kg
Acenaphthylene	•	99 U	ug/Kg
Anthracene		99 U	ug/Kg
Benzo(a)anthracene		99 U	ug/Kg
Benzo(a)pyrene		99 U	ug/Kg
Benzo(b,k)fluoranthenes		99 U	ug/Kg
Benzo(g,h,i)perylene		99 U	ug/Kg
Benzoic acid		500 U	ug/Kg
bis(2-Ethylhexyl)phthalate		780	ug/Kg
Butyl benzyl phthalate		180	ug/Kg
Chrysene		99 U	ug/Kg
Dibenz(a,h)anthracene		99 U	ug/Kg
Dibenzofuran		99 U	ug/Kg
Diethyl phthalate		99 U	ug/Kg
Dimethyl phthalate		99 U	ug/Kg
Di-n-butyl phthalate		99 U	ug/Kg
Di-n-octyl phthalate	,	99 U	ug/Kg
Fluoranthene		99 U	ug/Kg
Fluorene		99 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624103

Sample ID:

HC-MW-2 (S1+S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	99 U	ug/Kg
	Naphthalene	99 U	ug/Kg
	Phenanthrene	99 U	ug/Kg
	Phenol	99 U	ug/Kg
	Pyrene	99 U	ug/Kg
GC/MS-SM-B	NA		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	19	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	170	mg/Kg
	NWTPH-Heavy Oil	640	mg/Kg
ICP			
	Arsenic	3.3	mg/Kg
	Cadmium	0.089	mg/Kg
	Chromium	10.1	mg/Kg
	Copper	16.0	mg/Kg
	Lead	4.68	mg/Kg
	Nickel	11.8	mg/Kg
	Silver	0.049 U	mg/Kg
	Zinc	31.2	mg/Kg

Lori a. Zboralski August 6, 2003

Reviewed By: Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624105

Sample ID:

HC-MW-2 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTION	JAL		
	Solids	87.1	per cent
CV		• . •	
	Mercury	0.0340 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	62 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	62 U	ug/Kg
	Aroclor-1242	62 U	ug/Kg
	Aroclor-1248	62 U	ug/Kg
	Aroclor-1254	62 U	ug/Kg
	Aroclor-1260	62 U	ug/Kg
GC/ECD-PEST			
	4,4-DDD	2.5 U J	ug/Kg
	4,4-DDE	2.5 U J	ug/Kg
	4,4-DDT	2.5 U J	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	97 U	ug/Kg
	1,3-Dichlorobenzene	97 U	ug/Kg
	1,4-Dichlorobenzene	97 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624105

Sample ID:

HC-MW-2 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	97 U	ug/Kg
2,4,6-Trichlorophenol	97 U	ug/Kg
2,4-Dichlorophenol	97 U	ug/Kg
2,4-Dinitrophenol	480 U	ug/Kg
2-Chlorophenol	97 U	ug/Kg
2-Methyl-4,6-dinitrophenol	480 U	ug/Kg
2-Methylnaphthalene	97 U	ug/Kg
2-Nitrophenol	97 U	ug/Kg
4-Chloro-3-methylphenol	97 U	ug/Kg
4-Methylphenol	97 U	ug/Kg
4-Nitrophenol	480 U	ug/Kg
Acenaphthene	97 U	ug/Kg
Acenaphthylene	97 U	ug/Kg
Anthracene	97 U	ug/Kg
Benzo(a)anthracene	97 U	ug/Kg
Benzo(a)pyrene	97 U	ug/Kg
Benzo(b,k)fluoranthenes	97 U	ug/Kg
Benzo(g,h,i)perylene	97 U	ug/Kg
Benzoic acid	480 U	ug/Kg
bis(2-Ethylhexyl)phthalate	97 B	ug/Kg
Butyl benzyl phthalate	97 U	ug/Kg
Chrysene	97 U	ug/Kg
Dibenz(a,h)anthracene	97 U	ug/Kg
Dibenzofuran	97 U	ug/Kg
Diethyl phthalate	97 U	ug/Kg
Dimethyl phthalate	97 U	ug/Kg
Di-n-butyl phthalate	97 U	ug/Kg
Di-n-octyl phthalate	97 U	ug/Kg
Fluoranthene	110	ug/Kg
Fluorene	97 U	ug/ K g

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624105

Sample ID:

HC-MW-2 (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	97 U	ug/Kg
	Naphthalene	97 U	ug/Kg
	Phenanthrene	97 B	ug/Kg
	Phenol	97 U	ug/Kg
	Pyrene	140	ug/Kg
GC/MS-SM-BN	JA ·		
·	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
•	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	8 B	ug/Kg
	Hexachlorobenzene	. 5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	51	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH	i i		
	NWTPH-Diesel	41	mg/Kg
	NWTPH-Heavy Oil	86	mg/Kg
ICP ·			
	Arsenic	3.7	mg/Kg
	Cadmium	0.25 U	mg/Kg
	Chromium	21.3	mg/Kg
•	Copper	25.5	mg/Kg
	Lead	33.1	mg/Kg
	Nickel	25.2	mg/Kg
	Silver	0.24 U	mg/Kg
	Zinc	45.6	mg/Kg

Loria. Zboralski Reviewed By:

Date

Flags:

J: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624106

Sample ID:

HC-MW-2 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTION	NAL		
	Solids	67.2	per cent
CV			
	Mercury	0.0294 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	66 U	ug/Kg
,	Aroclor-1221	130 U	ug/Kg
	Aroclor-1232	66 U	ug/Kg
	Aroclor-1242	66 U	ug/Kg
	Aroclor-1248	66 U	ug/Kg
	Aroclor-1254	66 U	ug/Kg
	Aroclor-1260	66 U	ug/Kg
GC/ECD-PES	Γ		
	4,4-DDD	2.7 U J	ug/Kg
	4,4-DDE	2.7 U J	ug/Kg
	4,4-DDT	2.7 U J	ug/Kg
GC/MS-BNA			,
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,3-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624106

Sample ID:

HC-MW-2 (S4)

Sediment

Sample Type:

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	100 U	ug/Kg
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	330	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	320	ug/Kg
Benzo(a)anthracene	220	ug/Kg
Benzo(a)pyrene	180	ug/Kg
Benzo(b,k)fluoranthenes	300	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	310	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	240	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	750	ug/Kg
Fluorene	270	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624106

Sample ID:

HC-MW-2 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg
	Naphthalene	100 U	ug/Kg
	Phenanthrene	1700	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	790	ug/Kg
GC/MS-SN	<i>I</i> -BNA		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	11	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	43	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TI	PH		
	NWTPH-Diesel	36	mg/Kg
	NWTPH-Heavy Oil	120	mg/Kg
ICP			
	Arsenic	4.4	mg/Kg
	Cadmium	0.26 U	mg/Kg
	Chromium	20.1	mg/Kg
	Copper	25.6	mg/Kg
	Lead	27.1	mg/Kg
	Nickel	23.5	mg/Kg
	Silver	0.25 U	mg/Kg
	Zinc	49.3	mg/Kg

Lori a. Zboralski Reviewed By:

nague o

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624107

Sample ID:

HC-MW-2 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	. , τ	J nits
CONVENTION	JAL			
	Solids	73.2	r	er cent
CV				· · · · · · · · · · · · · · · · · · ·
	Mercury	0:0428	В	mg/Kg
GC/ECD-PCB				
	Aroclor-1016	59	U .	ug/Kg
	Aroclor-1221	120	U	ug/Kg
	Aroclor-1232	59	\mathbf{U}^{-}	ug/Kg
	Aroclor-1242	59	U	ug/Kg
	Aroclor-1248	59	U	ug/Kg
	Aroclor-1254	59	U	ug/Kg
	Aroclor-1260	59	U	ug/Kg
GC/ECD-PEST				
	4,4-DDD	2.3	U J	ug/Kg
	4,4-DDE	2.3	U J	ug/Kg
	4,4-DDT	2.3	U J	ug/Kg
GC/MS-BNA				
	1,2-Dichlorobenzene	94	U	ug/Kg
	1,3-Dichlorobenzene	94	U .	ug/Kg
	1,4-Dichlorobenzene	. 94	U	ug/ K g

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624107

Sample ID:

HC-MW-2 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,5-Trichlorophenol	94 U	ug/Kg
2,4,6-Trichlorophenol	94 U	ug/Kg
2,4-Dichlorophenol	94 U	ug/Kg
2,4-Dinitrophenol	470 U	ug/Kg
2-Chlorophenol	94 U	ug/Kg
2-Methyl-4,6-dinitrophenol	470 U	ug/Kg
2-Methylnaphthalene	94 U	ug/Kg
2-Nitrophenol	94 U	ug/Kg
4-Chloro-3-methylphenol	94 U	ug/Kg
4-Methylphenol	94 U	ug/Kg
4-Nitrophenol	470 U	ug/Kg
Acenaphthene	120	ug/Kg
Acenaphthylene	94 U	ug/Kg
Anthracene	180	ug/Kg
Benzo(a)anthracene	210	ug/Kg
Benzo(a)pyrene	130	ug/Kg
Benzo(b,k)fluoranthenes	260	ug/Kg
Benzo(g,h,i)perylene	94 U	ug/Kg
Benzoic acid	470 U	ug/Kg
bis(2-Ethylhexyl)phthalate	94 B	ug/Kg
Butyl benzyl phthalate	94 U	ug/Kg
Chrysene	220	ug/Kg
Dibenz(a,h)anthracene	94 U	ug/Kg
Dibenzofuran	94 U	ug/Kg
Diethyl phthalate	94 U	ug/Kg
Dimethyl phthalate	94 U	ug/Kg
Di-n-butyl phthalate	94 U	ug/Kg
Di-n-octyl phthalate	94 U	ug/Kg
Fluoranthene	630	ug/Kg
Fluorene	120	ug/Kg

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030624107

Sample ID:

HC-MW-2 (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test		Result	Units
Indeno(1,2,3-c,d)pyren	ne	94 U	ug/Kg
Naphthalene	•	110	ug/Kg
Phenanthrene		830	ug/Kg
Phenol		94 U	ug/Kg
Ругепе		610	ug/Kg
GC/MS-SM-BNA			
1,2,4-Trichlorobenzen	ne .	5 U	ug/Kg
2,4-Dimethylphenol		5 U J	ug/Kg
2-Methylphenol		5 U	ug/Kg
Benzyl Alcohol		10	ug/Kg
Hexachlorobenzene		5 U	ug/Kg
Hexachlorobutadiene		5 U	ug/Kg
N-Nitrosodiphenylami	ine	9 B	ug/Kg
Pentachlorophenol		92 U	ug/Kg
GC/MS-TPH			
NWTPH-Diesel		27	mg/Kg
NWTPH-Heavy Oil		91	mg/Kg
ICP			
Arsenic		4.0	mg/Kg
Cadmium		0.25 U	mg/Kg
Chromium		25.7	mg/Kg
Copper		30.2	mg/Kg
Lead		30.7	mg/Kg
Nickel		31.1	mg/Kg
Silver		0.24 U	mg/Kg
Zinc		53.2	mg/Kg

Reviewed By:

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624108

Sample ID:

HC-MW-2 (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTION	AL		
	Solids	84.1	per cent
CV			٠.
	Mercury	0.0100 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	60 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	60 U	ug/Kg
	Aroclor-1242	60 U	ug/Kg
	Aroclor-1248	60 U	ug/Kg
2000 - 12	Aroclor-1254	60 U	ug/Kg
	Aroclor-1260	60 U	ug/Kg
GC/ECD-PEST	•		
	4,4-DDD	2.2 U J	ug/Kg
. •	4,4-DDE	2.2 U J	ug/Kg
	4,4-DDT	2.2 U J	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	97 U	ug/Kg
•	1,4-Dichlorobenzene	97 U	ug/Kg
	2,4,5-Trichlorophenol	97 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624108

Sample ID:

HC-MW-2 (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
2,4,6-Trichlorophenol	97	U ug/Kg
2,4-Dichlorophenol	97	U ug/Kg
2,4-Dinitrophenol	480	U ug/Kg
2-Chlorophenol	97	U ug/Kg
2-Methyl-4,6-dinitrophenol	480	U ug/Kg
2-Methylnaphthalene	97	U ug/Kg
2-Nitrophenol	97	U ug/Kg
4-Chloro-3-methylphenol	97	U ug/Kg
4-Methylphenol	97	U ug/Kg
4-Nitrophenol	480	U ug/Kg
Acenaphthene	97	U ug/Kg
Acenaphthylene	97	U ug/Kg
Anthracene	97	U ug/Kg
Benzo(a)anthracene	97	U ug/Kg
Benzo(a)pyrene	97	U ug/Kg
Benzo(b,k)fluoranthenes	97	U ug/Kg
Benzo(g,h,i)perylene	. 97	U ug/Kg
Benzoic acid	480	U ug/Kg
bis(2-Ethylhexyl)phthalate	140	ug/Kg
Butyl benzyl phthalate	97	U ug/Kg
Chrysene	97	U ug/Kg
Dibenz(a,h)anthracene	97	U ug/Kg
Dibenzofuran	97	U ug/Kg
Diethyl phthalate	97	U ug/Kg
Dimethyl phthalate	97	U ug/Kg
Di-n-butyl phthalate	97	U ug/Kg
Di-n-octyl phthalate	97	U ug/Kg
Fluoranthene	97	U ug/Kg
Fluorene	97	U ug/Kg
Indeno(1,2,3-c,d)pyrene	97	U ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624108

Sample ID:

HC-MW-2 (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
Naphthalene	97 U	ug/Kg
Phenanthrene	120	ug/Kg
Phenol	97 U	ug/Kg
Pyrene	97 B J	ug/Kg
GC/MS-SM-BNA		
1,2,4-Trichlorobenzene	5 U	ug/Kg
2,4-Dimethylphenol	5 U J	ug/Kg
2-Methylphenol	5 U	ug/Kg
Benzyl Alcohol	10 B	ug/Kg
Hexachlorobenzene	5. U	ug/Kg
Hexachlorobutadiene	5 U	ug/Kg
N-Nitrosodiphenylamine	13	ug/Kg
Pentachlorophenol	98 U	ug/Kg
GC/MS-TPH		
NWTPH-Diesel	19 U	mg/Kg
NWTPH-Heavy Oil	39 U	mg/Kg
ICP		
Arsenic	1.7	mg/Kg
Cadmium	0.052 U	mg/Kg
Chromium	11.6	mg/Kg
Copper	12.8	mg/Kg
Lead	4.90	mg/Kg
Nickel	9.47	mg/Kg
Silver	0.050 U	mg/Kg
Zinc	23.6	mg/Kg

Lori a Zooralski
Reviewed Rv.

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624109

Sample ID:

HC-MW-4 (S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTION	IÁL		
	Solids	37.1	per cent
CV			
	Mercury	0.123 B	mg/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	100 U	ug/Kg
•	1,4-Dichlorobenzene	100 U	ug/Kg
	2,4,5-Trichlorophenol	100 U	ug/Kg
	2,4,6-Trichlorophenol	100 U	ug/Kg
	2,4-Dichlorophenol	100 U	ug/Kg
	2,4-Dinitrophenol	500 U	ug/Kg
	2-Chlorophenol	100 U	ug/Kg
	2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
	2-Methylnaphthalene	100 U	ug/Kg
	2-Nitrophenol	100 U	ug/Kg
	4-Chloro-3-methylphenol	100 U	ug/Kg
* ************************************	4-Methylphenol	100 U	ug/Kg
	4-Nitrophenol	500 U	ug/Kg
	Acenaphthene	100 U	ug/Kg
	Acenaphthylene	100 U	ug/Kg

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030624109

Sample ID:

HC-MW-4 (S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Anthracene	200	ug/Kg
	Benzo(a)anthracene	230	ug/Kg
	Benzo(a)pyrene	210	ug/Kg
	Benzo(b,k)fluoranthenes	480	ug/Kg
	Benzo(g,h,i)perylene	120	ug/Kg
	Benzoic acid	500 U	ug/Kg
	bis(2-Ethylhexyl)phthalate	3000	ug/Kg
	Butyl benzyl phthalate	1200	ug/Kg
	Chrysene	270	ug/Kg
	Dibenz(a,h)anthracene	140	ug/Kg
•	Dibenzofuran	100 U	ug/Kg
	Diethyl phthalate	130	ug/Kg
	Dimethyl phthalate	100 U	ug/Kg
	Di-n-butyl phthalate	290	ug/Kg
	Di-n-octyl phthalate	380	ug/Kg
	Fluoranthene	570	ug/Kg
	Fluorene	100 U	ug/Kg
	Indeno(1,2,3-c,d)pyrene	130	ug/Kg
	Naphthalene	100 U	ug/Kg
	Phenanthrene	360	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	1100 J	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	81	mg/Kg
•	NWTPH-Heavy Oil	2200	mg/Kg
ICP			•
	Arsenic	5.1	mg/Kg
	Cadmium	0.200	mg/Kg
A	Chromium	19.6	mg/Kg
	Copper	26.9	mg/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624109

Sample ID:

HC-MW-4 (S2)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

Test	Result	Units
Lead	16.0	mg/Kg
Nickel	7.98	mg/Kg
Silver	0.052 U	mg/Kg
Zinc	41.1	mg/Kg

Lori a. Zboralski August 6, 2003
Reviewed By:

Date

Flags: U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030624110

Sample ID:

HC-MW-4 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
CONVENTIO	NAL		
	Solids	68.8	per cent
CV			
	Mercury	0.0341 B	mg/Kg
GC/ECD-PCB			*
	Aroclor-1016	67 U	ug/Kg
	Aroclor-1221	140 U	ug/K.g
	Aroclor-1232	67 U	ug/Kg
	Aroclor-1242	67 U	ug/Kg
	Aroclor-1248	67 U	ug/Kg
	Aroclor-1254	67 U	ug/Kg
	Aroclor-1260	67 U	ug/Kg
GC/ECD-PES	T		
	4,4-DDD	2.9 U J	ug/Kg
-	4,4-DDE	2.9 U J	ug/Kg
•	4,4-DDT	2.9 U J	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	99 U	ug/Kg
:	1,4-Dichlorobenzene	99 U	ug/Kg
	2,4,5-Trichlorophenol	. 99 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624110

Sample ID:

HC-MW-4 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

		•
Test	Result	Units
2,4,6-Trichlorophenol	99	U ug/Kg
2,4-Dichlorophenol	99	U ug/Kg
2,4-Dinitrophenol	490	U ug/Kg
2-Chlorophenol	99	U ug/Kg
2-Methyl-4,6-dinitrophenol	490	U ug/Kg
2-Methylnaphthalene	99	U ug/Kg
2-Nitrophenol	99	U ug/Kg
4-Chloro-3-methylphenol	99	U ug/Kg
4-Methylphenol	99	U ug/Kg
4-Nitrophenol	490	U ug/Kg
Acenaphthene	99	U ug/Kg
Acenaphthylene	99	U ug/Kg
Anthracene	99	U ug/Kg
Benzo(a)anthracene	99	U ug/Kg
Benzo(a)pyrene	99	U ug/Kg
Benzo(b,k)fluoranthenes	99	U ug/Kg
Benzo(g,h,i)perylene	99	U ug/Kg
Benzoic acid	490	U ug/Kg
bis(2-Ethylhexyl)phthalate	130	ug/Kg
Butyl benzyl phthalate	99	U ug/Kg
Chrysene	99	U ug/Kg
Dibenz(a,h)anthracene	99	U ug/Kg
Dibenzofuran	99	U ug/Kg
Diethyl phthalate	99	U ug/Kg
Dimethyl phthalate	99	U ug/Kg
Di-n-butyl phthalate	99	U ug/Kg
Di-n-octyl phthalate	99	U ug/Kg
Fluoranthene	99	U ug/Kg
Fluorene	99	U ug/Kg
Indeno(1,2,3-c,d)pyrene	99	U ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030624110

Sample ID:

HC-MW-4 (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/24/2003

	Test	Result	Units
	Naphthalene	99 U	ug/Kg
	Phenanthrene	99 U	ug/Kg
	Phenol	99 U	ug/Kg
	Pyrene	99 U	ug/Kg
GC/MS-SM-B	NA		
•	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	24	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	99 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	48	mg/Kg
ICP			
	Arsenic	2.3	mg/Kg
	Cadmium	0.24 U	mg/Kg
	Chromium	13.3	mg/Kg
	Copper	17.0	mg/Kg
	Lead	4.29	mg/Kg
	Nickel	9.35	mg/Kg
	Silver	0.23 U	mg/Kg
	Zinc	27.2	mg/Kg

Zboralski

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625112

Sample ID:

HC-MW-3D (S1)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENTION	AL		
	Solids	43.9	per cent
CV			
	Mercury	0.103 B	mg/Kg
GC/ECD-PCB			
•	Aroclor-1016	110 U	ug/Kg
	Aroclor-1221	210 U	ug/Kg
	Aroclor-1232	110 U	ug/Kg
	Aroclor-1242	110 U	ug/Kg
	Aroclor-1248	110 U	ug/Kg
	Aroclor-1254	110 U	ug/Kg
	Aroclor-1260	110 U	ug/Kg
GC/ECD-PEST			
	4,4-DDD	4.4 U	ug/Kg
i	4,4-DDE	4.4 U	ug/Kg
	4,4-DDT	4.4 U	ug/Kg
GC/MS-BNA	•		
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg
	2,4,5-Trichlorophenol	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625112

Sample ID:

HC-MW-3D (S1)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test		Result	Units
2,4,6-Trichlor	ophenol	100 U	ug/Kg
2,4-Dichlorop	nenol	100 U	ug/Kg
2,4-Dinitrophe	nol	500 U	ug/Kg
2-Chlorophene	ol	100 U	ug/Kg
2-Methyl-4,6-		500 U	ug/Kg
2-Methylnaph	thalene	100 U	ug/Kg
2-Nitrophenol		100 U	ug/Kg
4-Chloro-3-m		100 U	ug/Kg
4-Methylphen		100 U	ug/Kg
4-Nitrophenol		500 U	ug/Kg
Acenaphthene		100 U	ug/Kg
Acenaphthyle		100 U	ug/Kg
Anthracene		100 U	ug/Kg
Benzo(a)anth	racene	100 U	ug/Kg
Benzo(a)pyre		100 U	ug/Kg
Benzo(b,k)flu		100 U	ug/Kg
Benzo(g,h,i)p		100 U	ug/Kg
Benzoic acid	•	500 U	ug/Kg
bis(2-Ethylhe	xyl)phthalate	1400	ug/Kg
Butyl benzyl		630	ug/Kg
Chrysene	•	100 U	ug/Kg
Dibenz(a,h)a	nthracene	100 U	ug/Kg
Dibenzofura		100 U	ug/Kg
Diethyl phtha	ılate	100 U	ug/Kg
Dimethyl ph		100 U	ug/Kg
Di-n-butyl pl		100 U	ug/Kg
Di-n-octyl pl		100 U	ug/Kg
Fluoranthene		100 U	ug/Kg
Fluorene	·	100 U	ug/Kg
Indeno(1,2,3	-c,d)pyrene	100 U	ug/Kg
• •			

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625112

Sample ID:

HC-MW-3D (S1)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	100	U ug/Kg
	Phenanthrene	100	U ug/Kg
	Phenol	100	U ug/Kg
	Pyrene	100	U ug/Kg
GC/MS-SM-BN	NA .	•	
	1,2,4-Trichlorobenzene	5	U ug/Kg
	2,4-Dimethylphenol	5	U J ug/Kg
	2-Methylphenol	5	U ug/Kg
	Benzyl Alcohol	23	ug/Kg
	Hexachlorobenzene	5	U ug/Kg
	Hexachlorobutadiene	5	U ug/Kg
	N-Nitrosodiphenylamine	5	U ug/Kg
	Pentachlorophenol	99	U ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20	U mg/Kg
	NWTPH-Heavy Oil	600	mg/Kg
ICP			
	Arsenic	2.8	mg/Kg
	Cadmium	0.446	mg/Kg
	Chromium	8.07	mg/Kg
	Copper	14.9	mg/Kg
	Lead	14.2	mg/Kg
-	Nickel	5.28	mg/Kg
	Silver	0.051	U mg/Kg
	Zinc	69.9	mg/Kg

Lori a Zboralski Reviewed By:

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625113

Sample ID:

HC-MW-3D (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENT	TIONAL		
	Solids	55.8	per cent
CV			
*	Mercury	0.0982 B	mg/Kg
GC/ECD-P	PCB		
	Aroclor-1016	110 U	ug/Kg
	Aroclor-1221	220 U	ug/Kg
	Aroclor-1232	110 U	ug/Kg
,	Aroclor-1242	110 U	ug/Kg
	Aroclor-1248	110 U	ug/Kg
	Aroclor-1254	110 U	ug/Kg
	Aroclor-1260	110 U	ug/Kg
GC/ECD-P	PEST		
	4,4-DDD	4.3 U J	ug/Kg
	4,4-DDE	4.3 U J	ug/Kg
	4,4-DDT	4.3 U J	ug/Kg
GC/MS-B1	NA		
·	1,2-Dichlorobenzene	99 U J	ug/Kg
	1,4-Dichlorobenzene	99 U J	ug/Kg
	2,4,5-Trichlorophenol	99 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625113

Sample ID:

HC-MW-3D (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	99 U	ug/Kg
2,4-Dichlorophenol	99 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	99 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	99 U J	ug/Kg
2-Nitrophenol	99 U	ug/Kg
4-Chloro-3-methylphenol	99 U	ug/Kg
4-Methylphenol	280	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	99 U J	ug/Kg
Acenaphthylene	99 U J	ug/Kg
Anthracene	180 J	ug/Kg
Benzo(a)anthracene	99 U J	ug/Kg
Benzo(a)pyrene	99 U J	ug/Kg
Benzo(b,k)fluoranthenes	130 J	ug/Kg
Benzo(g,h,i)perylene	99 U J	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	230 J	ug/Kg
Butyl benzyl phthalate	210 J	ug/Kg
Chrysene	99 U J	ug/Kg
Dibenz(a,h)anthracene	99 U J	ug/Kg
Dibenzofuran	99 U	ug/Kg
Diethyl phthalate	99 U J	ug/Kg
Dimethyl phthalate	99 U J	ug/Kg
Di-n-butyl phthalate	99 U J	ug/Kg
Di-n-octyl phthalate	99 U J	ug/Kg
Fluoranthene	200 J	ug/Kg
Fluorene	99 U J	ug/Kg
Indeno(1,2,3-c,d)pyrene	99 U J	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated

20030625113

Sample ID:

HC-MW-3D (S3)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	220	ug/Kg
	Phenanthrene	240 J	ug/Kg
	Phenol	99 U	ug/Kg
	Pyrene	480 3	ug/Kg
GC/MS-SM-BN	NA .		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	6 B 3	J ug/Kg
	2-Methylphenol	6 B	ug/Kg
	Benzyl Alcohol	44	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	. 5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	98 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	26	J mg/Kg
	NWTPH-Heavy Oil	190	J mg/Kg
ICP			
	Arsenic	4.4	mg/Kg
	Cadmium	0.139	mg/Kg
	Chromium	19.8	mg/Kg
	Copper	24.3	mg/Kg
	Lead	8.71	mg/Kg
	Nickel	14.0	mg/Kg
	Silver	0.049 U	mg/Kg
	Zinc	54.1	mg/Kg

Loria Zboralski

August 6, 2003 Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625114

Sample ID:

HC-MW-3D (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENTION	AL		
- ,	Solids	59.9	per cent
CV			
	Mercury	0.115 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	81 U	ug/Kg
	Aroclor-1221	160 U	ug/Kg
. *	Aroclor-1232	81 U	ug/Kg
	Aroclor-1242	81 U	ug/Kg
	Aroclor-1248	81 U	ug/Kg
	Aroclor-1254	81 U	ug/Kg
	Aroclor-1260	81 U	ug/Kg
GC/ECD-PEST			
	4,4-DDD	3.1 U	ug/Kg
	4,4-DDE	3.1 U	ug/Kg
•	4,4-DDT	3.1 U	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg
	2,4,5-Trichlorophenol	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625114

Sample ID:

HC-MW-3D (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	210	ug/Kg
4-Nitrophenol	500 Ü	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	140	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	590	ug/Kg
Butyl benzyl phthalate	160	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	360	ug/Kg
Fluorene	100 U	ug/Kg
Indeno(1,2,3-c,d)pyrene	100 · U	ug/Kg

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030625114

Sample ID:

HC-MW-3D (S4)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	350	ug/Kg
-	Phenanthrene	290	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	650 J	ug/Kg
GC/MS-SM-BN	\mathbf{A}		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	12 J	ug/Kg
	2-Methylphenol	10	ug/Kg
	Benzyl Alcohol	42	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	8 B	ug/Kg
	Pentachlorophenol	98 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	25	mg/Kg
	NWTPH-Heavy Oil	160	mg/Kg
ICP			
•	Arsenic	3.5	mg/Kg
	Cadmium	0.26 U	mg/Kg
	Chromium	13.4	mg/Kg
	Copper	23.9	mg/Kg
	Lead	8.87	mg/Kg
_	Nickel	11.8	mg/Kg
	Silver	0.25 U	mg/Kg
**************************************	Zinc	42.9	mg/Kg

Lori a zboralski august 6, 2003
Reviewed By:

Date

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625115

Sample ID:

HC-MW-3D (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test		Result	Units
CONVENTIO	NAL	•		
	Solids		58.4	per cent
CV			· · · · · · · · · · · · · · · · · · ·	
	Mercury		0.275	mg/Kg
GC/ECD-PCB				
	Aroclor-1016		85 U	ug/Kg
	Aroclor-1221		170 U	ug/Kg
	Aroclor-1232		85 U	ug/Kg
	Aroclor-1242		85 U	ug/Kg
	Aroclor-1248		85 U	ug/Kg
	Aroclor-1254		85 U	ug/Kg
	Aroclor-1260		85 U	ug/Kg
GC/ECD-PES	T			
	4,4-DDD		3.5 U J	ug/Kg
	4,4-DDE		3.5 U J	ug/Kg
	4,4-DDT		3.5 U J	ug/Kg
GC/MS-BNA				
	1,2-Dichlorobenzene		100 U	ug/Kg
	1,4-Dichlorobenzene		100 U	ug/Kg
•	2,4,5-Trichlorophenol		100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625115

Sample ID:

HC-MW-3D (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	290	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100· U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	140	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	180	ug/Kg
Butyl benzyl phthalate	230	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	340	ug/Kg
Fluorene	100 U	ug/Kg
Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625115

Sample ID:

HC-MW-3D (S5)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
Naphthalene	320	ug/Kg
Phenanthrene	300	ug/Kg
Phenol	100 U	ug/Kg
Pyrene	580 J	ug/Kg
GC/MS-SM-BNA		
1,2,4-Trichlorobenzene	5 U	ug/Kg
2,4-Dimethylphenol	12 J	ug/Kg
2-Methylphenol	13	ug/Kg
Benzyl Alcohol	46	ug/Kg
Hexachlorobenzene	5 U	ug/Kg
Hexachlorobutadiene	5 U	ug/Kg
N-Nitrosodiphenylamine	7 B	ug/Kg
Pentachlorophenol	99 U	ug/Kg
GC/MS-TPH		
NWTPH-Diesel	23	mg/Kg
NWTPH-Heavy Oil	180.	mg/Kg
ICP		
Arsenic	2.5	mg/Kg
Cadmium	0.133	mg/Kg
Chromium	10.6	mg/Kg
Copper	19.6	mg/Kg
Lead	6.45	mg/Kg
Nickel	8.27	mg/Kg
Silver	0.047 U	mg/Kg
Zinc	34.6	mg/Kg

Lori a Zboralski Reviewed By:

august 6, 2003

Flags:

J: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625116

Sample ID:

HC-MW-3D (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

·	Test		Result	Units	
CONVENTIO	NAL	••			
	Solids		59.2	per cent	
CV					
	Mercury		0.0638 B	mg/Kg	
GC/ECD-PCB			**		
	Aroclor-1016		72 U	ug/Kg	
	Aroclor-1221		140 U	ug/Kg	
	Aroclor-1232		72 U	ug/Kg	
	Aroclor-1242		72 U	ug/Kg	
	Aroclor-1248		72 U	ug/Kg	
	Aroclor-1254		72 U	ug/Kg	
	Aroclor-1260		72 U	ug/Kg	
GC/ECD-PES	Γ .			•	
•	4,4-DDD		2.9 U J	ug/Kg	
	4,4-DDE		2.9 U J	ug/Kg	
	4,4-DDT		2.9 U J	ug/Kg	
GC/MS-BNA					
*	1,2-Dichlorobenzene		100 U	ug/Kg	
	1,4-Dichlorobenzene		100 U	ug/Kg	
	2,4,5-Trichlorophenol		100 U	ug/Kg	

Flags:

- U: The value is less than detection limit
- UJ: The value is less than detection limit and considered estimated
- J: The value is considered estimated
- B: The value is less than the reporting limit but greater than detection limit

20030625116

Sample ID:

HC-MW-3D (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	210	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	100 U	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	330	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	200	ug/Kg
Fluorene	100 U	ug/Kg
Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625116

Sample ID:

HC-MW-3D (S6)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	140	ug/Kg
	Phenanthrene	160	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	230	ug/Kg
GC/MS-SM-BN	•		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	11 J	ug/Kg
	2-Methylphenol	12	ug/Kg
	Benzyl Alcohol	33	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	11	ug/Kg
	Pentachlorophenol	100 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	120	mg/Kg
ICP			
	Arsenic	3.9	mg/Kg
	Cadmium	0.26 U	mg/Kg
	Chromium	14.9	mg/Kg
	Copper	21.7	mg/Kg
	Lead	7.91	mg/Kg
	Nickel	10.00	mg/Kg
	Silver	0.25 U	mg/Kg
	Zinc	34.9	mg/Kg

Lori a. Zboralski

august 6, 2003

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625117

Sample ID:

HC-MW-3D (S7)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENTIO	NAL		
	Solids	79.4	per cent
CV			
	Mercury	0.0114 B	mg/Kg
GC/ECD-PCB			
	Aroclor-1016	58 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	58 U	ug/Kg
	Aroclor-1242	58 U	ug/Kg
•	Aroclor-1248	58 U	ug/Kg
	Aroclor-1254	58 U	ug/Kg
	Aroclor-1260	58 U	ug/Kg
GC/ECD-PES	Γ		
e de la companya de l	4,4-DDD	2.3 U	ug/Kg
en e	4,4-DDE	2.3 U	ug/Kg
	4,4-DDT	2.3 U	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	100 U	ug/Kg
	1,4-Dichlorobenzene	100 U	ug/Kg
	2,4,5-Trichlorophenol	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625117

Sample ID:

HC-MW-3D (S7)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	100 U	ug/Kg
2,4-Dichlorophenol	100 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	100 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	100 U	ug/Kg
2-Nitrophenol	100 U	ug/Kg
4-Chloro-3-methylphenol	100 U	ug/Kg
4-Methylphenol	100 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	280	ug/Kg
Acenaphthylene	100 U	ug/Kg
Anthracene	100 U	ug/Kg
Benzo(a)anthracene	100 U	ug/Kg
Benzo(a)pyrene	100 U	ug/Kg
Benzo(b,k)fluoranthenes	100 U	ug/Kg
Benzo(g,h,i)perylene	100 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	150	ug/Kg
Butyl benzyl phthalate	100 U	ug/Kg
Chrysene	100 U	ug/Kg
Dibenz(a,h)anthracene	100 U	ug/Kg
Dibenzofuran	100 U	ug/Kg
Diethyl phthalate	100 U	ug/Kg
Dimethyl phthalate	100 U	ug/Kg
Di-n-butyl phthalate	100 U	ug/Kg
Di-n-octyl phthalate	100 U	ug/Kg
Fluoranthene	100 U	ug/Kg
Fluorene	100 U	ug/Kg
Indeno(1,2,3-c,d)pyrene	100 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625117

Sample ID:

HC-MW-3D (S7)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	120	ug/Kg
	Phenanthrene	100 U	ug/Kg
	Phenol	100 U	ug/Kg
	Pyrene	100 U	ug/Kg
GC/MS-SM-BN	A		
	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
•	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	18	ug/Kg
*	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	97 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	40 U	mg/Kg
ICP			
	Arsenic	1.0	mg/Kg
	Cadmium	0.052 U	mg/Kg
	Chromium	7.62	mg/Kg
	Copper	11.8	mg/Kg
	Lead	3.73	mg/Kg
	Nickel	6.81	mg/Kg
	Silver	0.050 U	mg/Kg
•	Zinc	26.3	mg/Kg

Reviewed By:

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625118

Sample ID:

HC-MW-3D (S8)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

4.	Test	Result	Units
CONVENTION	AL		
	Solids	77.3	per cent
CV			
	Mercury	0.0092 U	mg/Kg
GC/ECD-PCB			
*	Aroclor-1016	62 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	62 U	ug/Kg
	Aroclor-1242	62 U	ug/Kg
	Aroclor-1248	62 U	ug/Kg
	Aroclor-1254	62 U	ug/Kg
	Aroclor-1260	62 U	ug/Kg
GC/ECD-PEST			
	4,4-DDD	2.6 U	ug/Kg
	4,4-DDE	2.6 U	ug/Kg
-	4,4-DDT	2.6 U	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	99 U	ug/Kg
	1,4-Dichlorobenzene	99 U	ug/Kg
	2,4,5-Trichlorophenol	99 U	ug/Kg

Flags: U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625118

Sample ID:

HC-MW-3D (S8)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	99 U	ug/Kg
2,4-Dichlorophenol	99 U	ug/Kg
2,4-Dinitrophenol	500 U	ug/Kg
2-Chlorophenol	99 U	ug/Kg
2-Methyl-4,6-dinitrophenol	500 U	ug/Kg
2-Methylnaphthalene	99 U	ug/Kg
2-Nitrophenol	99 U	ug/Kg
4-Chloro-3-methylphenol	99 U	ug/Kg
4-Methylphenol	99 U	ug/Kg
4-Nitrophenol	500 U	ug/Kg
Acenaphthene	140	ug/Kg
Acenaphthylene	99 U	ug/Kg
Anthracene	99 U	ug/Kg
Benzo(a)anthracene	99 U	ug/Kg
Benzo(a)pyrene	99 U	ug/Kg
Benzo(b,k)fluoranthenes	99 U	ug/Kg
Benzo(g,h,i)perylene	99 U	ug/Kg
Benzoic acid	500 U	ug/Kg
bis(2-Ethylhexyl)phthalate	210	ug/Kg
Butyl benzyl phthalate	99 U	ug/Kg
Chrysene	99 U	ug/Kg
Dibenz(a,h)anthracene	99 U	ug/Kg
Dibenzofuran	99 U	ug/Kg
Diethyl phthalate	99 U	ug/Kg
Dimethyl phthalate	99 U	ug/Kg
Di-n-butyl phthalate	99 U	ug/Kg
Di-n-octyl phthalate	99 U	ug/Kg
Fluoranthene	99 U	ug/Kg
Fluorene	99 U	ug/Kg
Indeno(1,2,3-c,d)pyrene	99 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625118

Sample ID:

HC-MW-3D (S8)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	99 U	ug/Kg
*	Phenanthrene	99 U	ug/Kg
	Phenol	99 U	ug/Kg
	Pyrene	99 U	ug/Kg
GC/MS-SM-BN	Ī A		
	1,2,4-Trichlorobenzene	. 5 U	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	6 B	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	99 U	ug/Kg
GC/MS-TPH			
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	40 U	mg/Kg
ICP	•		
	Arsenic	2.6	mg/Kg
	Cadmium	0.045 U	mg/Kg
	Chromium	10.3	mg/Kg
	Copper	11.2	mg/Kg
	Lead	1.99	mg/Kg
	Nickel	7.38	mg/Kg
	Silver	0.043 U	mg/Kg
	Zinc	21.9	mg/Kg

Lori a. Zboralski August 6, 2003
Reviewed By:

Date

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625119

Sample ID:

HC-MW-3D (S9)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENTION	AL		
	Solids	81.9	per cent
CV			
	Mercury	0.0081 U	mg/Kg
GC/ECD-PCB	. •		
	Aroclor-1016	56 U	ug/Kg
	Aroclor-1221	110 U	ug/Kg
	Aroclor-1232	56 U	ug/Kg
	Aroclor-1242	56 U	ug/Kg
•	Aroclor-1248	56 U	ug/Kg
	Aroclor-1254	56 U	ug/Kg
	Aroclor-1260	56 U	ug/Kg
GC/ECD-PEST		•	
-	4,4-DDD	2.2 U	ug/Kg
	4,4-DDE	2.2 U	ug/Kg
	4,4-DDT	· 2.2 U	ug/Kg
GC/MS-BNA			
	1,2-Dichlorobenzene	98 U	ug/Kg
4	1,4-Dichlorobenzene	98 U	ug/Kg
	2,4,5-Trichlorophenol	98 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

I: The value is considered estimated

20030625119

Sample ID:

HC-MW-3D (S9)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result		Units
2,4,6-Trichlorophenol	98	U	ug/Kg
2,4-Dichlorophenol	98	U	ug/Kg
2,4-Dinitrophenol	490	U	ug/Kg
2-Chlorophenol	98	U	ug/Kg
2-Methyl-4,6-dinitrophenol	490	U	ug/Kg
2-Methylnaphthalene	440		ug/Kg
2-Nitrophenol	98	U	ug/Kg
4-Chloro-3-methylphenol	98	U	ug/Kg
4-Methylphenol	98	U	ug/Kg
4-Nitrophenol	490	·U	ug/Kg
Acenaphthene	640		ug/Kg
Acenaphthylene	98	U	ug/Kg
Anthracene	98	U	ug/Kg
Benzo(a)anthracene	98	U	ug/Kg
Benzo(a)pyrene	98	U	ug/Kg
Benzo(b,k)fluoranthenes	98	U	ug/Kg
Benzo(g,h,i)perylene	98	U	ug/Kg
Benzoic acid	490	U	ug/Kg
bis(2-Ethylhexyl)phthalate	98	U	ug/Kg
Butyl benzyl phthalate	98	U	ug/Kg
Chrysene	98	U	ug/Kg
Dibenz(a,h)anthracene	98	U	ug/Kg
Dibenzofuran	120		ug/Kg
Diethyl phthalate	98	U	ug/Kg
Dimethyl phthalate	98	U	ug/Kg
Di-n-butyl phthalate	98	U	ug/Kg
Di-n-octyl phthalate	98	U	ug/Kg
Fluoranthene	98	U	ug/Kg
Fluorene	470		ug/Kg
Indeno(1,2,3-c,d)pyrene	98	U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625119

Sample ID:

HC-MW-3D (S9)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	300	ug/Kg
	Phenanthrene	350	ug/Kg
	Phenol	98 U	ug/Kg
	Pyrene	98 U	ug/Kg
GC/MS-SM-	-BNA		
	1,2,4-Trichlorobenzene	5 U J	ug/Kg
	2,4-Dimethylphenol	5 U J	ug/Kg
	2-Methylphenol	5 U J	ug/Kg
	Benzyl Alcohol	5 U J	ug/Kg
	Hexachlorobenzene	5 U J	ug/Kg
	Hexachlorobutadiene	5 U J	ug/Kg
	N-Nitrosodiphenylamine	5 U J	ug/Kg
	Pentachlorophenol	100 U J	ug/Kg
GC/MS-TP	H		• ,
	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	39 U	mg/Kg
ICP			*
	Arsenic	1.3	mg/Kg
	Cadmium	0.23 U	mg/Kg
	Chromium	13.7	mg/Kg
	Copper	13.1	mg/Kg
	Lead	2.14	mg/Kg
	Nickel	11.3	mg/Kg
	Silver	0.22 U	mg/Kg
	Zinc	25.4	mg/Kg

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625120

Sample ID:

HC-MW-3D (S10)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
CONVENT	TIONAL		· '
	Solids	83.4	per cent
CV			
	Mercury	0.0075 U	mg/Kg
GC/ECD-F	PCB		
	Aroclor-1016	58 U	ug/Kg
	Aroclor-1221	120 U	ug/Kg
	Aroclor-1232	58 U	ug/Kg
	Aroclor-1242	58 U	ug/Kg
	Aroclor-1248	58 U	ug/Kg
	Aroclor-1254	58 U	ug/Kg
	Aroclor-1260	58 U	ug/Kg
GC/ECD-I	PEST		
·.	4,4-DDD	2.4 U	ug/Kg
	4,4-DDE	2.4 U	ug/Kg
	4,4-DDT	2.4 U J	ug/Kg
GC/MS-B	NA		
	1,2-Dichlorobenzene	97 ['] U	ug/Kg
	1,4-Dichlorobenzene	97 U	ug/Kg
	2,4,5-Trichlorophenol	97 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625120

Sample ID:

HC-MW-3D (S10)

Sample Type:

Sediment

ıt ·

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	97 U	ug/Kg
2,4-Dichlorophenol	97 U	ug/Kg
2,4-Dinitrophenol	490 U	ug/Kg
2-Chlorophenol	97 U	ug/Kg
2-Methyl-4,6-dinitrophenol	490 U	ug/Kg
2-Methylnaphthalene	170	ug/Kg
2-Nitrophenol	97 U	ug/Kg
4-Chloro-3-methylphenol	97 U	ug/Kg
4-Methylphenol	97 U	ug/Kg
4-Nitrophenol	490 U	ug/Kg
Acenaphthene	450	ug/Kg
Acenaphthylene	97 U	ug/Kg
Anthracene	97 U	ug/Kg
Benzo(a)anthracene	97 U	ug/Kg
Benzo(a)pyrene	97 U	ug/Kg
Benzo(b,k)fluoranthenes	97 U	ug/Kg
Benzo(g,h,i)perylene	97 U	ug/Kg
Benzoic acid	490 U	ug/Kg
bis(2-Ethylhexyl)phthalate	97 U	ug/Kg
Butyl benzyl phthalate	97 U	ug/Kg
Chrysene	97 U	ug/Kg
Dibenz(a,h)anthracene	97 U	ug/Kg
Dibenzofuran	97 U	ug/Kg
Diethyl phthalate	97 U	ug/Kg
Dimethyl phthalate	97 U	ug/Kg
Di-n-butyl phthalate	97 U	ug/Kg
Di-n-octyl phthalate	97 U	ug/Kg
Fluoranthene	97 U	ug/Kg
Fluorene	330	ug/Kg
Indeno(1,2,3-c,d)pyrene	97 U	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625120

Sample ID:

HC-MW-3D (S10)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test		Result	Units
	Naphthalene		150	ug/Kg
	Phenanthrene		230	ug/Kg
	Phenol		97 U	ug/Kg
	Pyrene		97 U	ug/Kg
GC/MS-SM-BN	IA			
	1,2,4-Trichlorobenzene		5 U	ug/Kg
	2,4-Dimethylphenol	·	5 U J	ug/Kg
- 1	2-Methylphenol		5 U	ug/Kg
	Benzyl Alcohol		7 B	ug/Kg
	Hexachlorobenzene		5 U	ug/Kg
¥	Hexachlorobutadiene		5 U	ug/Kg
	N-Nitrosodiphenylamine		5 U	ug/Kg
	Pentachlorophenol		98 U	ug/Kg
GC/MS-TPH	•			
	NWTPH-Diesel		19 U	mg/Kg
	NWTPH-Heavy Oil	,	39 U	mg/Kg
ICP				
	Arsenic		2.0	mg/Kg
	Cadmium		0.053	mg/Kg
	Chromium		11.9	mg/Kg
	Copper		11.6	mg/Kg
	Lead		1.35	mg/Kg
	Nickel		7.73	mg/Kg
	Silver		0.045 U	mg/Kg
	Zinc		19.1	mg/Kg

Lori A. Zboralski August 6, 2003
Reviewed By: Date

Flags:

The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

The value is considered estimated J:

Science and Engineering Division

2201 Portland Avenue Tacoma WA 98421 Phone: 253.591.5588 Fax: 253.502.2170

Project:

Foss

DC2001CLA

Date

August 06, 2003

Lab#:

20030625121

Sample ID:

HC-MW-3D (S11)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units	
CONVENTI	ONAL			
	Solids	79.5	per cent	
CV				
	Mercury	0.010 U	mg/Kg	
GC/ECD-PC	CB			
	Aroclor-1016	61 U	ug/Kg	
	Aroclor-1221	120 U	ug/Kg	
	Aroclor-1232	61 U	ug/Kg	
	Aroclor-1242	61 U	ug/Kg	
	Aroclor-1248	61 U	ug/Kg	
	Aroclor-1254	61 U	ug/Kg	
	Aroclor-1260	61 U	ug/Kg	
GC/ECD-PI	EST			
ž į	4,4-DDD	2.4 U	ug/Kg	
	4,4-DDE	2.4 U	ug/Kg	*
•	4,4-DDT	2.4 U	ug/Kg	
* GC/MS-BN	JA .			
	1,2-Dichlorobenzene	98 U	ug/Kg	
	1,4-Dichlorobenzene	98 U	ug/Kg	
	2,4,5-Trichlorophenol	98 U	ug/Kg	

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625121

Sample ID:

HC-MW-3D (S11)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

Test	Result	Units
2,4,6-Trichlorophenol	98 U	ug/Kg
2,4-Dichlorophenol	98 U	ug/Kg
2,4-Dinitrophenol	490 U	ug/Kg
2-Chlorophenol	98 U	ug/Kg
2-Methyl-4,6-dinitrophenol	490 U	ug/Kg
2-Methylnaphthalene	98 U	ug/Kg
2-Nitrophenol	98 U	ug/Kg
4-Chloro-3-methylphenol	98 U	ug/Kg
4-Methylphenol	98 U	ug/Kg
4-Nitrophenol	490 U	ug/Kg
Acenaphthene	270	ug/Kg
Acenaphthylene	98 U	ug/Kg
Anthracene	98 U	ug/Kg
Benzo(a)anthracene	98 U	ug/Kg
Benzo(a)pyrene	98 U	ug/Kg
Benzo(b,k)fluoranthenes	98 U	ug/Kg
Benzo(g,h,i)perylene	98 U J	ug/Kg
Benzoic acid	490 U	ug/Kg
bis(2-Ethylhexyl)phthalate	170	ug/Kg
Butyl benzyl phthalate	98 U	ug/Kg
Chrysene	98 U	ug/Kg
Dibenz(a,h)anthracene	98 U J	ug/Kg
Dibenzofuran	98 U	ug/Kg
Diethyl phthalate	98 U	ug/Kg
Dimethyl phthalate	98 U	ug/Kg
Di-n-butyl phthalate	98 U	ug/Kg
Di-n-octyl phthalate	98 U	ug/Kg
Fluoranthene	98 U	ug/Kg
Fluorene	110	ug/Kg
Indeno(1,2,3-c,d)pyrene	98 U J	ug/Kg

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

20030625121

Sample ID:

HC-MW-3D (S11)

Sample Type:

Sediment

Puyallup River Side Channel

Sample Date:

6/25/2003

	Test	Result	Units
	Naphthalene	98 U	ug/Kg
	Phenanthrene	140	ug/Kg
	Phenol	98 U	ug/Kg
	Pyrene	98 U	ug/Kg
GC/MS-SM			
00,1,20	1,2,4-Trichlorobenzene	5 U	ug/Kg
	2,4-Dimethylphenol	5 U	ug/Kg
	2-Methylphenol	5 U	ug/Kg
	Benzyl Alcohol	11	ug/Kg
	Hexachlorobenzene	5 U	ug/Kg
	Hexachlorobutadiene	5 U	ug/Kg
	N-Nitrosodiphenylamine	5 U	ug/Kg
	Pentachlorophenol	95 U	ug/Kg
GC/MS-TP	H		
7.7	NWTPH-Diesel	20 U	mg/Kg
	NWTPH-Heavy Oil	39 U	mg/Kg
ICP			
	Arsenic	0.4	mg/Kg
	Cadmium	0.050 U	mg/Kg
	Chromium	23.8 J	mg/Kg
	Copper	81.1	mg/Kg
•	Lead	1.07	mg/Kg
	Nickel	6.48	mg/Kg
	Silver	0.048 U	mg/Kg
	Zinc	50.0	mg/Kg

Lori a. Zboralski August 6, 2003

Reviewed By:

Date

Flags:

U: The value is less than detection limit

UJ: The value is less than detection limit and considered estimated

J: The value is considered estimated

Sample Custody Record

DATE 6/24/43 PAGE

P.

HARTCROWSER

1910 Fairview Avenue East Seattle, Washington 98102-3699

Hart Crowser, Inc.

PCE XO: 80-52-0 COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ .Not enough sometime METHOD OF SHIPMENT am Oned 3. LABORATORY TO FILL IN SAMPLE NUMBER AND SIGN FOR RECEIPT - ordered in 6 v 8 子をひり 2:00 4. LABORATORY TO RETURN WHITE COPY TO HART CROWSER 1. PROVIDE WHITE AND YELLOW COPIES TO LABORATORY NO. OF CONTAINERS 2. RETURN PINK COPY TO PROJECT MANAGER SPECIAL SHIPMENT/HANDLING OR STORAGE REQUIREMENTS **FESTING** OF CONTAINERS TOTAL NUMBER DISTRIBUTION: 15:30 2002 67.79 TIME DATE TIME 5003 3000 50000 LAB NUMBER DC 2001 CLA 7105 一十ちたいに nos MATRIX 9003 () CO(3) 100000 RECEIVED BY RECEIVED BY N Ser 3144417 18145 PRINTED NAME SIGNATURE COMPANY PROJECT MANAGER JOH MONGELLIE の大品を Chulo. TIME DATE DATE TIME 0440 2445 0455 0410 120 5150 1310 1205 300 1200 1215 PROJECT NAME PUT ALLUS JOB NUMBER 7953 COMPANY COMPANY Hc-MW-2 18-2 HK-MW-2/5-3 1-5/2-00-1-14 1K-MM-36-5 H-Most-16-2 H-51,000-11 Herman K.S RELINQUISHED, BY RELINQUISHED BY 75)2-MM-7H 12-514-315-R HCMW-16-HC-MM-2/ SAMPLE 一下とという SAMPLED BY: PRINTED NAME LAB NO. SIGNATURE COMPANY

Sample Custody Record

Samples Shipped to:

HARTCROWSER

1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

TOTAL NUMBER OF CONTAINERS COMPOSITING INSTRUCTIONS OBSERVATIONS/COMMENTS/ □N/A SAMPLE RECEIPT INFORMATION SHIPMENT METHOD; CHAND ON GOOD CONDITION CUSTODY SEALS: TEMPERATURE NO. OF CONTAINERS REQUESTED ANALYSIS SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS: SIMIAM 11.53 AP 18/03 **9003** MATRIX April DATE LAB NUMBER 0000 0820 57,50 0410 0440 0955 0000 0430 TIME 9 570 SIGNATURE 194 802. GLASS 6/25/43 MORANCE RECEIVED BY N Š DATE COMPANY PROJECT NAME PONAMES PROJECT DESCRIPTION (4) 5119 HART CROWSER CONTACT DATE Hc. Mut. 30 5-10 HC-MW-3D HK-MM-30 4-5 HIG-211 8.5 Mc. Mwt-3D 95-MW-34 は、 ない こう 11-11-10 B H. - M. - 30 HC-MM-30 SAMPLE ID ---4953 de S M COMPANY CONTRACTOR RELINQUISHED BY SAMPLED BY: PRINT NAME LAB NO.

□ OVERNIGHT

COURIER

TURNAROUND TIME:

STORAGE LOCATION:

COOLER NO .:

DATE

RECEIVED BY

DATE

RELINQUISHED BY

□ 24 HOURS ☐ 48 HOURS □ 72 HOURS

STANDARD □ 1 WEEK

OTHER

for Other Contract Requirements

See Lab Work Order No.

TIME

PRINT NAME SIGNATURE

TIME

PRINT NAME SIGNATURE

COMPANY

COMPANY

Pink to Project Manager

White and Yellow Copies to Lab

Gold to Sample Custodian

Lab to Return White Copy to Hart Crowser