

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Bend | Baker City California

Oakland | Sacramento | Irvine

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT

HOT WATER FLUSHING REMEDIATION SKYKOMISH SCHOOL BNSF FORMER MAINTENANCE AND FUELING FACILITY SKYKOMISH, WASHINGTON CONSENT DECREE NO. 07-2-33672-9 SEA

> Prepared by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027 and Trihydro Corporation 1252 Commerce Drive Laramie, Wyoming 82070

> > Farallon PN: 683-057

RAILWAY 605 Puyallup Avenue Tacoma, Washington

August 25, 2017

Prepared by:

Andrew Ving

Andrew Vining, P.E. Project Engineer

Amy Essig Desai Principal Scientist

Reviewed by:

John Pietz, P.E. Senior Engineer

Wilson Clayton, Ph.D., P.E. Principal Engineer

P:\683 BNSF\683057 Skykomish School HWF Construction\Reports\2016 HWF Annual Report\683-057 2016 HWF Remed Perf Rpt.docx

Quality Service for Environmental Solutions | farallonconsulting.com

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	vii
1.0	INT	RODUCTION	1-1
	1.1	HOT WATER FLUSHING REMEDIATION GOALS	1-2
	1.2	DESIGN QUALITY OBJECTIVES	1-2
2.0	TRE	ATMENT SYSTEM OPERATIONS OVERVIEW	2-1
	2.1	FLUSHING SYSTEM OPERATIONAL MODES	
	2.2	2016 HOT WATER FLUSHING OPERATION	2-2
		2.2.1 Start-Up and Intermittent Operations with Ambient	
		Water Flushing	2-2
		2.2.2 Hot Water Flushing Operational Period	
		2.2.3 Fall Cool-Down	2-2
3.0	CON	APLIANCE MONITORING RESULTS	3-1
	3.1	SCHOOL BUILDING TEMPERATURES	
		3.1.1 Basement Floor Temperature	3-1
		3.1.2 Basement Room Temperatures	
	3.2	INDOOR AIR QUALITY	3-2
	3.3	NOISE	3-2
	3.4	ODOR	
	3.5	SVE SYSTEM COMPLIANCE MONITORING	3-3
		3.5.1 Mass Removal by Soil Vapor Extraction	3-3
	3.6	TOTAL PETROLEUM HYDROCARBON CONCENTRATIONS	
		AT LIQUID-PHASE CARBON VESSELS	3-4
	3.7	NAPL RECOVERY MONITORING	
	3.8	GROUNDWATER ELEVATIONS AND TEMPERATURES	3-5
4.0	SOII	L VAPOR EXTRACTION SYSTEM PERFORMANCE	4-1
	4.1	SVE FLOW AND VACUUM PERFORMANCE	4-1
	4.2	SVE PETROLEUM REMOVAL AND TREATMENT	
	4.3	SVE THERMAL PERFORMANCE	4-2
5.0	GRC	OUNDWATER FLUSHING SYSTEM PERFORMANCE	5-1
	5.1	HYDRAULIC PERFORMANCE	
	5.2	GROUNDWATER HEATING PERFORMANCE	5-2
	5.3	SYSTEM GEOCHEMICAL AND BIOLOGICAL FOULING	5-3
	5.4	GROUNDWATER TREATMENT	5-4
	5.5	NAPL RECOVERY	5-5

i

6.0	НОТ	WATER FLUSHING PERFORMANCE METRICS	6-1
	6.1	EVALUATION OF COMPLETION OF NAPL RECOVERY	6-1
		6.1.1 NAPL Recovery Rate Decline Curve Analysis	6-1
		6.1.2 Subsurface Pore Volume Exchanges	
		6.1.3 Groundwater Gradient and Temperature	6-2
7.0	CON	ICLUSIONS AND RECOMMENDATIONS	7-1
	7.1	RECOMMENDATIONS TO OPTIMIZE NAPL REMOVAL	7-1
	7.2	RECOMMENDED 2017 OPERATING SCHEDULE	
8.0	REF	ERENCES	

FIGURES

- Figure 1 Site Layout
- Figure 2 Hot Water Flushing System Layout
- Figure 3 Groundwater Flushing System Process Flow Schematic
- Figure 4 System Injection Temperatures
- Figure 5 Site Temperatures
- Figure 6 Recovery Trench Profile
- Figure 7 System Flows, Pore Volumes, and Groundwater Temperatures
- Figure 8 June 15, 2016 Groundwater Elevations
- Figure 9 July 15, 2016 Groundwater Elevations
- Figure 10 August 9, 2016 Groundwater Elevations
- Figure 11 June 15, 2016 Groundwater Temperatures
- Figure 12 July 15, 2016 Groundwater Temperatures
- Figure 13 August 9, 2016 Groundwater Temperatures
- Figure 14 NAPL Viscosity vs. Temperature
- Figure 15 Comparison of Modeled and Actual 2016 Groundwater Temperatures
- Figure 16 NAPL Recovery and Groundwater Temperatures
- Figure 17 Actual 2016 and Predicted 2017 Groundwater Temperatures and Viscosities

TABLES

- Table 1Design Quality Objectives from 2011 Design Report
- Table 22016 Operational Milestones
- Table 3Compliance Monitoring Matrix
- Table 4Basement Floor Temperatures
- Table 5Basement Room Temperatures
- Table 6Air-Phase Petroleum Hydrocarbons

- Table 7Photoionization Detector Summary Data
- Table 8
 Soil Vapor Extraction Operational Data
- Table 9
 System Influent Vapor-Phase Hydrocarbon Concentrations
- Table 10
 Total Petroleum Hydrocarbon Concentrations in Process Water
- Table 11Weekly NAPL Recovery
- Table 12
 Summary Groundwater Elevations
- Table 13
 Summary Groundwater Temperatures
- Table 14Hot Water Flushing System Flow Data
- Table 15
 Groundwater Analytical Results for Phosphorus

APPENDICES

- Appendix A Response to Comments
- Appendix B Temperature Monitoring Locations
- Appendix C Site Noise Maps
- Appendix D Soil Vapor Extraction Memo
- Appendix E Soil Vapor Laboratory Analytical Reports
- Appendix F Process Water Laboratory Analytical Reports
- Appendix G Data Validation Report

ACRONYMS AND ABBREVIATIONS

°F	degrees Fahrenheit
2011 Design Report	Hot Water Flushing Design Report, Skykomish School, 105 6 th Street, Skykomish, Washington dated June 6, 2011, prepared by Farallon Consulting, L.L.C., and Aquifer Solutions, Inc.
2015 CMP	Addendum #3 to 2010 Compliance Monitoring Plan Update, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington dated February 17, 2015, prepared by Farallon Consulting, L.L.C.
APH	air-phase petroleum hydrocarbons
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
AWF	ambient water flushing
BNSF	BNSF Railway Company
САР	<i>Cleanup Action Plan for BNSF Former Maintenance and Fueling Facility,</i> <i>Skykomish, Washington</i> dated October 18, 2007, prepared by the Washington State Department of Ecology
CWF	cold water flushing
dP	differential pressure
DRO	total petroleum hydrocarbons as diesel-range organics
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
Farallon	Farallon Consulting, L.L.C.
GAC	granular activated carbon
gpm	gallons per minute
HWF	hot water flushing
HWF O&M Plan	Operation and Maintenance Plan, Hot Water Flushing System, Skykomish School, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington dated November 10, 2016, prepared by Farallon Consulting, L.L.C.
ITRC	Interstate Technology Regulatory Council
IWC	inches water column
LNAPL	light nonaqueous-phase liquid
NAPL	nonaqueous-phase liquid
OWS	oil-water separator

P:\683 BNSF\683057 Skykomish School HWF Construction\Reports\2016 HWF Annual Report\683-057 2016 HWF Remed Perf Rpt.docx

PID	photoionization detector
PLC	programmable logic controller
ppm	parts per million
PSCAA	Puget Sound Clean Air Agency
School Site	the area beneath and adjacent to all sides of the Skykomish School building within the sheet pile barrier wall, as shown on Figure 1
Site	BNSF Former Maintenance and Fueling Facility in Skykomish, Washington
SSD	subslab depressurization
SVE	soil vapor extraction
TPH	total petroleum hydrocarbons
Trihydro	Trihydro Corporation
VOCs	volatile organic compounds

EXECUTIVE SUMMARY

This 2016 Hot Water Flushing Remediation Performance Report presents the remediation activities, major accomplishments, and lessons learned during 2016 hot water flushing (HWF) operations conducted at the Skykomish School Site in Skykomish, Washington to evaluate the effectiveness of the HWF system in meeting design goals and compliance monitoring requirements. During summer HWF operations, overall system performance is monitored by the measurement of NAPL recovery. NAPL recovery will be used to measure compliance with Cleanup Action Plan (CAP) treatment requirements. Specifically, the objective of treatment is to reduce the amount of petroleum beneath the School to the extent technically possible. The School Site is defined as the area beneath and adjacent to all sides of the School building within the sheet pile barrier wall.

During 2016, HWF performance data were collected for School building temperatures, indoor air quality, noise, odor, heat removal by soil vapor extraction, mass removal by liquid-phase carbon treatment, NAPL recovery, groundwater elevations and temperatures, system flow rates, and operation and maintenance daily narrative logs. Capacities for HWF system performance that were identified in the 2011 Design Report as design quality objectives for equipment design were verified during HWF system startup, including the ability of the system to attain heated groundwater injection temperatures of 160 degrees Farrenheit (°F) at a groundwater flow rate of 50 gallons per minute. A measured approach was taken to groundwater heating during the 2016 HWF operations, to gradually assess operating optimization and secondary factors such as the effects on the temperature of the school floor. School floor temperatures were within expected ranges, and the observed increase in average groundwater temperature in the treatment zone was consistent with design expectations for the heat input applied, with an average temperature in the mid-120s °F after 63 days of heating. Based on the operational data obtained in 2016, higher flow rates and a greater level of heating will be applied during 2017 in order to attain the maximum NAPL recovery possible. Additionally, an early-start HWF schedule is proposed, consisting of weekends-only injection of heated groundwater during May 2017. The early-start schedule would ultimately result in an extended duration of HWF treatment, and potentially further NAPL recovery, although it was not approved by the Skykomish School Board.

The 2016 NAPL recovery trends demonstrated a strong correlation that enhanced recoverability of NAPL is achieved through groundwater heating. Multiple lines of evidence are recommended as performance metrics to evaluate future progress toward meeting the primary treatment objective. Potential performance metrics include pore volumes analysis, and a recovery and/or decline curve analysis of NAPL recovery volume. These analyses account for groundwater temperature and groundwater gradient effects on maximum NAPL recovery. The decline curve analysis will involve analysis of future NAPL recovery rates that are expected to occur sometime during sustained maximum groundwater temperatures. Evaluation of asymptotically declining NAPL recovery rates, in the future, can be done by extrapolating then-current data into the future to assess if NAPL recovery trends indicate that additional NAPL recovery would be significant. Determining when the cleanup objective has been achieved will be determined in conjunction with the Washington Department of Ecology, and will depend on the analysis of multiple lines of evidence from the data obtained from future HWF system operations.

1.0 INTRODUCTION

This 2016 Hot Water Flushing Remediation Performance Report has been prepared on behalf of BNSF Railway Company (BNSF) for the hot water flushing (HWF) remediation system at the Skykomish School Site in Skykomish, Washington (School Site). The School Site is defined as the area beneath and adjacent to all sides of the School building within the sheet pile barrier wall, as shown on Figure 1. The remediation system is part of the remedial action underway at the BNSF Former Maintenance and Fueling Facility (herein referred to as the Site). The primary objective of the HWF system is to reduce the amount of petroleum nonaqueous-phase liquid (NAPL) from the subsurface beneath the School Site to the extent technically possible, with the treatment goal of removing separate-phase mobile or volatile liquid petroleum components or NAPL.

The purpose of this 2016 Hot Water Flushing Remediation Performance Report is to summarize remediation activities, major accomplishments achieved, and lessons learned at the School Site during HWF operations from May through October 2016. This report also identifies opportunities to optimize system performance in 2017, and presents metrics for assessing future progress with respect to the primary treatment objective. The Draft 2016 Hot Water Flushing Remediation Report submitted to Ecology on February 23, 2017 has been revised to reflect the April, 21, 2017 comments provided by Ecology and the meeting between Ecology, BNSF, and Farallon at Farallon's office on May 8, 2017. The comments received and the responses to the comments are presented in Appendix A, Response to Comments.

The work is being conducted in accordance with the *Cleanup Action Plan for BNSF Former Maintenance and Fueling Facility, Skykomish, Washington* dated October 18, 2007, prepared by the Washington State Department of Ecology (Ecology) (2007) (CAP). The remediation activities were approved by Ecology and undertaken by BNSF pursuant to Consent Decree No. 07-2-33672-9 SEA between BNSF and Ecology, and are part of an integrated and comprehensive remedial action for the Site. The HWF system was designed by Farallon Consulting, L.L.C. (Farallon) and Trihydro Corporation (Trihydro) and is described in the Hot Water Flushing Design Report dated June 6, 2011 prepared by Farallon and Aquifer Solutions Inc. (2011) (2011 Design Report).

Operations and monitoring were performed in accordance with Addendum #3 to 2010 Compliance Monitoring Plan Update, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington dated February 17, 2015 prepared by Farallon (2015b) (2015 CMP) and the Operation and Maintenance Plan, Hot Water Flushing System, Skykomish School, BNSF Former Maintenance and Fueling Facility, Skykomish, Washington dated November 10, 2016 prepared by Farallon (2016) (HWF O&M Plan). The system was operated by Glacier Environmental Services, Inc.; Farallon provided management and oversight; Trihydro provided system design and optimization.

The following firms provided BNSF with the services listed below in support of this project:

- Farallon: project management and engineering design of remediation construction plans and specifications, construction management, compliance monitoring in accordance with the 2015 CMP, and BNSF liaison activities with local stakeholders;
- Glacier Environmental Services, Inc.: contracting services described in the 2015 construction plans and specifications, including system construction, installation, start-up, operation, and maintenance; and
- Trihydro: HWF system design, and technical support during system start-up and operation.

1.1 HOT WATER FLUSHING REMEDIATION GOALS

The primary objective of HWF treatment as described in the CAP is "to reduce the amount of petroleum beneath the school to the extent technically possible, with the treatment goal of removing separate-phase mobile or volatile liquid petroleum components or NAPL." This objective is being accomplished by operating a closed-loop subsurface groundwater recirculation system, and heating groundwater to reduce NAPL viscosity, thereby mobilizing NAPL for recovery via a groundwater extraction system. The end point for system operation is the recovery of the maximum NAPL volume possible, which generally is interpreted to mean that a graph of cumulative volume of NAPL recovered over time attains an asymptotic level, beyond which significant further NAPL recovery is impractical (Interstate Technology & Regulatory Council [ITRC] 2009).

Additional objectives include controlling petroleum constituents mobilized or volatilized by the HWF system, which is accomplished using the soil vapor extraction (SVE) system installed beneath the slab of the School building. The SVE system depressurizes the subsurface beneath the School building during system operation, precluding vapor intrusion into the School building. A sheet pile barrier wall was installed to contain NAPL and enhance groundwater heating by limiting movement of heated water to outside the recirculation zone of the HWF treatment area (Figure 2).

The HWF treatment area consists of the School Site, which includes the School building footprint plus approximately 20 feet in all directions, extending to the sheet pile barrier wall, as shown on Figure 2. Areas outside the sheet pile barrier wall were previously excavated as part of the cleanup action along Sixth Street to the east, Railroad Avenue to the south, the Schoolyard to the west, and the Teacherage to the north.

1.2 DESIGN QUALITY OBJECTIVES

Design quality objectives (DQOs) developed to establish criteria for system and subsystem functionality, reliability, performance, safety/security, and operations monitoring were presented in the 2011 Design Report (Table 1). Design quality objectives presented in the 2011 Design Report do not represent specific field operational settings, but rather identify capabilities of the individual HWF subsystems to meet overall design objectives. The design quality objectives were established to ensure adequate design criteria and system capabilities to achieve overall treatment

1 - 2

goals, and to identify critical engineering and equipment specifications. DQOs were reviewed to provide a framework to assess the effectiveness of current operations, and were used to develop remediation metrics for the evaluation of system performance and progress toward treatment goals.

A HWF system equipment performance DQO was established in the 2011 Design Report for the <u>maximum</u> groundwater temperature that might be encountered, for the purpose of ensuring the compatibility and safety of groundwater pumps and other materials in contact with heated groundwater. The DQO established for the maximum groundwater temperature was 140 degrees Fahrenheit (°F), which operationally represents a maximum value that might be attained for a brief time during the period of maximum groundwater heating effects.

A measured approach was taken to groundwater heating during the 2016 HWF operations, to gradually assess operating optimization and secondary factors such as the effects on the temperature of the school floor. An average groundwater temperature in the treatment zone in the mid-120s °F was attained after 63 days of heating. Operations during 2017 will be conducted at maximum feasible groundwater injection rates and temperatures, which is anticipated to result in higher groundwater temperatures than in 2016.

Attainment of the equipment DQOs by the HWF system and related subsystems was verified through monitoring of various operational data, and comparing these data to the design requirements defined in Table 1. DQOs that represent key operational system capacities include the groundwater recirculation flow rate capacity (50 gpm maximum) and the groundwater injection temperature capacity (160°F maximum). These system capacities were verified during HWF system startup on June 16 and 17, 2016, including the measurement of system capacities as follows:

- June 16, 2016: 159°F injection temperature at a groundwater flow rate of 47 gpm, with boiler inlet temperature of 58°F (temperature rise of 101°F at 47 gpm)
- June 16, 2016: 150°F injection temperature at a groundwater flow rate of 60 gpm, with boiler inlet temperature of 58°F (temperature rise of 90°F at 60 gpm)
- June 17, 2016: boiler inlet temperatures of 66°F resulted in injection capability of 160°F at 60 gpm, exceeding DQO requirements for system capacity.

2.0 TREATMENT SYSTEM OPERATIONS OVERVIEW

As the 2016 operating season was the initial start-up period for the HWF remediation system, operations included equipment and operational troubleshooting, and a gradual ramp-up of operations over the first 3 weeks of the operating period. During the 2016 operational period, a range of operating conditions were undertaken that allowed evaluation of the system to meet various objectives and criteria. For example, the balance between groundwater heating and maintaining School building floor temperatures was evaluated over a range of conditions. Air quality and soil vapor conditions also were evaluated and compared to design criteria. The HWF system operational sequence over the 2016 operating season is described in the sections that follow.

2.1 FLUSHING SYSTEM OPERATIONAL MODES

The HWF system has the capability to operate in several modes: HWF, cold water flushing (CWF), and ambient water flushing (AWF). The primary differences between these modes is the temperature of the water, and the equipment used. Figure 3 provides a schematic of the groundwater treatment system and its major components.

In HWF mode, water is heated prior to injection to approximately 140 °F or higher using a dieselpowered boiler. The injected hot water transfers sufficient heat to groundwater and soil to increase the subsurface temperature and thereby reduce the viscosity of subsurface NAPL, allowing it to flow toward the groundwater recovery trench and the skimmers.

CWF may be used to accelerate cooling of subsurface temperatures at the School Site as needed to protect the School building and occupied spaces from high temperatures, or to otherwise reduce heat transfer to the School building prior to the start of the school year. In CWF mode, an electric-powered chiller cools the water prior to injection to a temperature of between 45 and 60°F. CWF operation was not needed and was not undertaken during 2016 because the School building basement slab and indoor temperatures were within American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standards. Basement temperatures are discussed in further detail in Section 3.1, School Building Temperatures.

AWF involves flushing without heating (boiler operation) or cooling (chiller operation). The AWF mode of operation is used prior to the start of HWF to establish hydraulic recirculation, and following HWF to retain heat while recovering residual NAPL mobilized during the preceding HWF operations.

Following the remediation system operational season, the entire system is shut down and winterized. The winter shut-down phase is necessary to protect treatment system components from high groundwater associated with local flooding events, and to protect against freeze damage during extended cold periods experienced in Skykomish over the winter months. The HWF O&M Plan established baseline expectations for the sequence and duration of operational phases associated with the different modes. Operational schedules implemented in 2016 are described below.

2.2 2016 HOT WATER FLUSHING OPERATION

This section describes the overall operational schedule that was implemented for HWF operations during 2016, including operating events, modes, and system milestones (Table 2).

2.2.1 Start-Up and Intermittent Operations with Ambient Water Flushing

During initial start-up and commissioning activities conducted from June 6 through June 15, 2016, the groundwater treatment system was operated intermittently under ambient temperature conditions during daytime periods while the system was attended. Commissioning activities included flow balancing, calibration of system controls, and performance testing on system components.

2.2.2 Hot Water Flushing Operational Period

Initiation and calibration of the HWF boiler system began on June 16, 2016 following the last day of the school year, when students were no longer present at the School Site. HWF operations initially were conducted only during operator-attended daytime periods, until all system controls and safety interlocks were confirmed to be fully operational. As described in Section 1.2, HWF system capacities were verified during the initial three days of operation. During the 63 day long HWF period groundwater was injected at between 140°F and 160°F for 38 days. During these 38 days the average injection temperatures was 144°F. Weekly average injection temperatures are shown in Figure 4. The weekly average injection temperatures dropped to below 140°F in late July and August due to frequent boiler shutdowns. These frequent shutdowns were due to a combination of low system flowrates and higher groundwater extraction temperatures, which caused the boiler to operate at the low end of its turndown capacity.

Overnight continuous HWF system operations started on June 23, 2016. The HWF system subsequently was shut down from June 25 through July 10, 2016 due to biological fouling of the granular activated carbon (GAC) filters. Modifications to the system were made, and disinfection pretreatment measures were applied, which successfully limited biofouling over the remainder of the operating period. Further discussion of the biofouling shutdown is provided in Section 6.3, System Geochemical and Biological Fouling. Operation of the boiler and HWF was discontinued for the season on August 17, 2016, commensurate with the start of the school year.

2.2.3 Fall Cool-Down

The original design of the HWF system anticipated that School building floor slab temperatures may be elevated above the ASHRAE Standard of 84°F, and included CWF capabilities to reduce temperatures to an acceptable level prior to the start of the school year, if needed. During 2016 operations, the SVE system proved very effective in removing heat from beneath the School building floor slab, and prevented average basement floor temperatures from reaching 84°F. CWF was not needed because average floor temperatures remained below action limits. On August 17, 2016, the boiler was removed, and the HWF system transitioned to AWF, which allowed groundwater temperatures to decline gradually as enhanced NAPL recovery continued while the elevated subsurface temperatures established during HWF were sustained.

3.0 COMPLIANCE MONITORING RESULTS

The 2015 CMP outlined criteria specific to HWF when the School building is unoccupied in the summer, and during the 10-week transitional period following HWF when the School building is occupied. The 2015 CMP specified more-protective action limits and monitoring activities to be met prior to occupancy of the School building for the academic school year (school occupancy criteria), and recognized that certain criteria (e.g., floor slab temperatures) may be exceeded in unoccupied rooms during HWF. During the 2016 operation period, the school occupancy criteria were met with very limited exceptions, not only at the end of the summer, but throughout the period of active heating, as described in the sections below. A summary of compliance monitoring data collected during HWF operations, and associated action levels is provided in the Compliance Monitoring Matrix presented as Table 3.

3.1 SCHOOL BUILDING TEMPERATURES

In accordance with the 2015 CMP, basement room and floor temperatures in the School building were monitored during flushing activities. Monitoring results are summarized below.

3.1.1 Basement Floor Temperature

During HWF operations, the basement floor temperature was measured daily using a General IRT-206 Infrared Thermometer. Floor temperature readings were collected in six locations directly above the HWF system pipe corridor as shown on Appendix B Figure 1. Floor temperature readings were collected above the pipe corridor to represent localized worst-case conditions.

ASHRAE standards described in the 2015 CMP require that floor temperatures in occupied spaces not exceed 84°F. The maximum average floor temperature in the School building on any single date was 83.5°F, measured on August 2, 2016. The maximum floor temperature at any individual location in the School building was 88.1°F on August 12, 2016. When elevated temperatures occurred, they were mitigated by opening doors and windows to provide passive ventilation. The maximum floor temperature at any individual measurement location after teachers returned to the School building on August 24, 2016 was 80.6°F on August 26 and 29, 2016. Floor temperature measurements are summarized in Table 4.

3.1.2 Basement Room Temperatures

During HWF operations, basement room temperatures in the cafeteria and the southwest hallway were automatically data-logged every 30 minutes at the monitoring locations shown on Appendix B Figure 1.

ASHRAE standards require that room temperatures in occupied spaces not exceed 80°F or be more than 10°F higher than the outdoor ambient temperature. HWF operations were conducted in the summer months while the basement was unoccupied. The average basement room temperature during HWF operations was 72.4°F. The maximum room temperature was 84.5°F, recorded in the cafeteria on August 19, 2016. Doors and windows to the cafeteria were opened to allow cooling ventilation. Room temperatures are summarized in Table 5. Measurements that exceeded 80°F in

occupied spaces are shown in bold. Basement floor and room temperatures over time are presented on Figure 5.

3.2 INDOOR AIR QUALITY

Indoor air quality monitoring was conducted in accordance with the 2015 CMP, which included monitoring with a photoionization detector (PID), and indoor air sampling of volatile organic compounds (VOCs) in the School building. The objective of the PID monitoring is to provide for notification of potential intrusion of volatile petroleum constituents from beneath the School building for the project duration. VOC monitoring was accomplished using continuously monitored RaeGuard 2 PID instruments with 10.6 eV lamps in three locations. RaeGuard 2 PIDs are installed in the School building in the following locations:

- Cafeteria (basement floor);
- Kindergarten (basement floor); and
- Main office (2nd floor).

VOC levels were continuously recorded by the programmable logic controller (PLC) remote monitoring system. The system's human-machine interface enabled VOC levels to be monitored remotely by School personnel and Ecology staff. None of the notification levels described in the 2015 CMP were triggered as a result of HWF activities.

Indoor air quality project action limits were exceeded in three instances. All three exceedances were determined to be the result of School maintenance activities, and are presented below by date:

- August 5, 2016: PID 1, located in the School building office, sustained readings of more than 5 parts per million (ppm) from 12:45 p.m. to 12:49 p.m. during office carpet cleaning.
- August 19, 2016: PID 3, located in the kindergarten area, sustained readings of more than 5 ppm from 10:25 a.m. to 10:34 a.m. during polishing of the School building gym floor.
- August 19, 2016: PID 1, located in the School building office, sustained readings of more than 5 ppm from 10:39 a.m. to 2:07 p.m. during polishing of the School building gym floor.

School personnel were notified at each exceedance, and windows were opened to ventilate rooms. Subsequent PID readings were within compliance limits. Summaries of air-phase petroleum hydrocarbon (APH) and PID data are provided in Tables 6 and 7, respectively.

3.3 NOISE

In accordance with the 2015 CMP, noise monitoring was conducted throughout the Skykomish School property on June 15, 2016 to create an updated noise map. Noise monitoring also was conducted continuously for 1 week following HWF system start-up.

Results from the noise monitoring are presented on Appendix C Figures 1 through 4. Noise data were collected throughout the Skykomish School property using a Quest Model 2200 sound level

meter on June 16, 2016 while the SVE and HWF systems were in operation. Project action limits were not exceeded.

Continuous noise monitoring was conducted at the equipment compound from June 15 through June 22, 2016. Noise data were provided to Ecology and School personnel in the Week 2 Air, Odor, and Noise Monitoring Report. Noise mitigation measures were not required for treatment operations at the School Site because project action limits were not exceeded.

3.4 ODOR

Odor monitoring was performed continuously during periods when operating personnel were present on the Site. Level 1 odors as defined in the Hot Water Flushing Air, Noise, and Odor Monitoring Plan prepared by EMB Consulting (2015) (i.e., odors barely detected) were encountered during initial start-up and balancing of the boiler equipment on June 16, 2016. These odors were investigated by the boiler operator, who notified the team that the odors were a temporary condition during initial boiler start-up and balancing. Because this was only a temporary occurrence, odor mitigation was not required.

3.5 SVE SYSTEM COMPLIANCE MONITORING

Protection of indoor spaces from potential vapor intrusion of volatile substances related to HWF operations was accomplished by the SVE system, which ran continuously during 2016 HWF and AWF operations. SVE system compliance monitoring results are presented below. SVE system engineering performance is summarized in Section 4, Soil Vapor Extraction System Performance. SVE operational data for the complete 2016 HWF operational period are provided in Table 8.

SVE system data were evaluated early in the 2016 operational period and were reported in the memo regarding Soil Vapor Extraction System Performance and Optimization, Skykomish School Hot Water Flush System Project, Skykomish, Washington from John Pietz and Wilson Clayton of Trihydro (2016) to Jeff Hamlin and Andrew Vining of Farallon, provided in Appendix D.

Soil vapor samples were collected from SVE system influent on June 28, August 17, and September 23, 2016 prior to carbon treatment, and were analyzed for VOCs by Method TO-15. These samples were collected to document compliance with Puget Sound Clean Air Agency (PSCAA) requirements, and to characterize soil vapors beneath the School building. APH was detected at concentrations less than the Washington State Model Toxics Control Act Cleanup Regulation Method B Subslab Soil Base Screen Level. Soil vapor sample laboratory reports are provided in Appendix E. Table 9 provides a summary of SVE system influent sample results.

3.5.1 Mass Removal by Soil Vapor Extraction

Results from SVE system influent samples and SVE system flow rates were used to calculate pounds of APH and benzene extracted by the SVE system during 2016 system operation. The mass removal by SVE is shown in Table 8. A total of 6.6 pounds of APH and 0.003 pound of benzene were removed from the subsurface during 2016 system operation. These data show that the SVE system is not exceeding PSCAA Regulation I, 6.03(c)(94) annual discharge limitations

3-3

of more than 15 pounds per year of benzene, or more than 1,000 pounds per year of toxic air contaminants. Further discussion of PSCAA compliance is provided in Section 4.2, SVE Petroleum Removal and Treatment.

3.6 TOTAL PETROLEUM HYDROCARBON CONCENTRATIONS AT LIQUID-PHASE CARBON VESSELS

Process water samples were collected weekly during flushing operations from June 15 through October 30, 2016 to determine the condition of the GAC. Compliance monitoring samples were collected from the lead carbon influent, lag carbon influent, and the lag carbon effluent of the HWF system, and were analyzed for total petroleum hydrocarbons (TPH) as diesel-range organics (DRO) by Northwest Method NWTPH-Dx at TestAmerica Laboratories of Tacoma, Washington.

The lag-vessel carbon effluent samples collected on June 16 and August 24, 2016 exceeded the Site Remediation Level for Groundwater of 477 micrograms per liter NWTPH-Dx. The results for these effluent samples were higher than those for upstream influent samples and subsequent effluent samples. It was determined that an error in labeling of sample containers occurred in the field, and therefore these samples were rejected. Additional labeling of carbon vessels and connection hoses was provided to clarify treatment system configuration.

Results from all other lag carbon effluent samples were less than the Site Remediation Level for Groundwater referenced in the 2015 CMP. Process water sample results are summarized in Table 10; laboratory analytical reports and the data validation report are provided in Appendices E and F, respectively.

On August 19, 2016, a third (spare) GAC vessel was implemented to provide for reduced system shutdown time needed for carbon changeout. Carbon changeout events were determined based on lag carbon effluent samples and biofouling conditions observed, and were scheduled on July 21, August 19, and September 26, 2016 as shown in Table 2.

Approximately 5,453,000 gallons of extracted groundwater were treated during 2016 operations, from which approximately 93 pounds of dissolved-phase DRO were removed by carbon treatment (approximately 13 gallons of NAPL, assuming 7.2 pounds per gallon of NAPL). Weekly dissolved-phase DRO recovery is shown in Table 11.

3.7 NAPL RECOVERY MONITORING

NAPL thickness in each of the 10 recovery wells was measured weekly during HWF operations. A profile of the 10 recovery wells located in the recovery trench is provided on Figure 6. Prior to measurement, NAPL was removed from the oil storage tank associated with each oil skimmer. Oil skimmer belts collect a volume of water along with oil during operation. Water present in the oil storage tank was removed and passed through the HWF treatment system, and is not included in the weekly NAPL recovery measurements recorded in Table 11. Measurable NAPL recovered during HWF operations in 2016 was collected from recovery well RW-9 (Figure 2), which is consistent with the prior understanding of NAPL distribution beneath the School building.

Previous explorations at the Site indicated that NAPL distribution was evident primarily at the northeastern corner of the School building, as described in the 2011 Design Report. A total of 40.2 gallons of NAPL was recovered from recovery well RW-9 during 2016 HWF operations. As of October 31, 2016 (the date of seasonal shutdown), the NAPL recovery rate had diminished to zero gallons per week. Further discussion of NAPL recovery activities and results is provided in Section 5.5, NAPL Recovery.

3.8 GROUNDWATER ELEVATIONS AND TEMPERATURES

Instrumentation for measuring groundwater elevations and temperatures is installed in 21 groundwater monitoring wells at the School, shown on Figure 2. The monitoring instruments for monitoring wells GWM-1 through GWM-7 are connected to the system's PLC. The remaining monitoring wells were outfitted with standalone Levelogger Junior Edge Model 3001 dataloggers. Following installation, the instruments were calibrated and field-verified using manual water-level gauges. The seven monitoring wells that connect to the PLC continuously record groundwater level and temperature readings, which are displayed in real time via the PLC, and are logged every 30 and 60 minutes, respectively.

The groundwater elevation and temperature monitoring elements are used beneath the School, along the hydraulic containment wall, and inside the recovery trench during HWF system operation to help balance and maintain operational efficiency. Data from the dataloggers and the PLC were uploaded every 2 weeks during HWF.

The typical ambient groundwater temperature within the containment area around the School site is approximately 55°F. HWF operations increased average groundwater temperatures in the treatment area (monitoring wells GWM-6 through GWM-8) to above 120°F. A summary of daily groundwater elevations and temperatures is provided in Tables 12 and 13, respectively.

During 2016 HWF operations average groundwater temperature in the treatment zone were

sustained above 100°F for 35 days and above 120 °F for 9 days. The treatment zone average

groundwater temperatures, durations, and pore volumes treated during each period are

summarized in the table below:

Summary of 2016 Operational Milestones

Treatment ZoneAverageTemperature (°F)1	Reduction in Viscosity (Percent)	Duration (Days)	Pore Volumes Treated ² (-)
100+	90	35	7.4
110+	94	20	4.5
120+	96	9	2.1

¹Average groundwater temperature in treatment zone is based on a daily average of data from submerged wells located inside targeted treatment zone, GWM 6, 7, and 8.

 2 A pore volume has been defined as the volume of water in the saturated portion of the aquifer. At the School Site a pore volume consists of the footprint of the School building and approximately 20 feet adjacent to all sides of the building, with an average thickness spanning 5.5 feet from 917 ft msl (average groundwater elevation) to 911.5 ft msl (elevation of deepest contamination). See calculation below.

30,000 ft^2 * (917 ft msl - 911.5 ft msl) * .25 porosity * 7.48 gallons/ ft^3 = 310,000 gallons

4.0 SOIL VAPOR EXTRACTION SYSTEM PERFORMANCE

SVE system performance relative to design objectives and operational expectations is presented in this section. The SVE system started operation on June 15, 2016, and was tested prior to start-up of the HWF system. SVE compliance monitoring results are presented in Section 3.5, SVE System Compliance Monitoring.

4.1 SVE FLOW AND VACUUM PERFORMANCE

According to the U.S. Environmental Protection Agency (EPA) (2008, 2015) guidance, subslab depressurization (SSD) systems for control of vapor intrusion can reverse the potential for air flow through the slab (SSD systems) or dilute the concentrations of air (subslab ventilation systems). Based on these guidance documents, a target average differential pressure (dP) was established at approximately 4 to 10 pascal, or 0.016 to 0.040 inch water column (IWC).

Maintenance of at least 0.025 IWC in all soil gas probes was specified in 2015 CMP as an operating goal. The dP data presented in the Appendix D memo indicate only partial compliance with this goal, with the average dP ranging from 0.0 to 0.04 IWC. However, according to EPA (2008, 2015) guidance, dP is only one metric used to gauge the effectiveness of vapor intrusion mitigation, and other factors such as air flow rate and soil vapor concentrations should be considered. Taken together, the dP data, air flow rates of 500 to 600 standard cubic feet per minute within the subsurface beneath the School building floor (Table 8), room air analytical results (Table 6), SVE airflow concentrations below risk standards (Table 9), and room air PID results (Table 7) strongly support the conclusion that the SVE system is an effective vapor intrusion mitigation system.

A likely explanation for the lower-than-anticipated vacuum readings is the presence of a void space of 1 to 5 inches between the School building floor slab and underlying soil, which was discovered during system construction. This gap allows transmission of large amounts of air flow without development of the anticipated magnitude of SVE vacuum pressure beneath the slab. The increase in SVE air flow also enhances SVE performance in removing subslab heat. A detailed discussion of SVE performance is provided in the Appendix D memo.

4.2 SVE PETROLEUM REMOVAL AND TREATMENT

As shown in Table 8, the SVE system removed approximately 6.6 pounds of total APH during the 2016 operational period. PSCAA Regulation I, 6.03(c)(94) requires that gas- or odor-control measures be installed for any soil or groundwater remediation project that emits more than 15 pounds of benzene per year, or more than 1,000 pounds of toxic air contaminants per year. The SVE system at the School building emitted only 6.6 pounds of APH, which is a total summation of applicable toxic air contaminants defined by PSCAA, and includes benzene. The 2016 SVE operation clearly met the PSCAA criteria prior to any carbon treatment. Monthly monitoring of SVE emissions will continue during 2017 system operation.

4.3 SVE THERMAL PERFORMANCE

An important function of the SVE system is removal of excess heat associated with HWF operations from beneath the floor slab, and prevention of School building floors from reaching temperatures over 84°F. As shown on Figure 5, average floor temperatures were maintained below the 84°F threshold. The temperature of the soil vapor removed from the SVE system was consistently above 80°F, indicating that the system removed a significant amount of heat from beneath the School building.

5.0 GROUNDWATER FLUSHING SYSTEM PERFORMANCE

Groundwater flushing system performance, including hydraulic and groundwater heating performance, is presented in this section. Also discussed are system geochemical and biological fouling, and groundwater treatment. NAPL recovery by the HWF system is described, and NAPL recovery rates are provided. NAPL mobility and recovery in the subsurface is a complicated process involving factors such as the hydraulic gradient, soil permeability, and NAPL characteristics (ITRC 2009). Section 7, Conclusions and Recommendations, discusses the progress toward attaining the Site objective of NAPL recovery to the extent practical with respect to these factors and others using available system performance data.

5.1 HYDRAULIC PERFORMANCE

The HWF system generally was operated at flow rates of 13 to 60 gallons per minute (gpm). During HWF activities the system operated at an average flow rate of 36 gpm (10 week duration), which is generally consistent with the expected design range of 30 to 50 gpm (Farallon 2011). During CWF activities, coincident with lower groundwater the system operated at an average flow rate of 23 gpm (10 week duration). A summary of average daily flow rates is provided in Table 14, and shown on Figure 7. Flow rate values provided are weekly averages and at times actual flowrates may been slightly higher or lower than values shown.

Hydraulic gradients and flow directions are provided as contour plots representing the beginning, middle, and end of the HWF operating period. These plots are presented as Figures 8, 9, and 10 for June, July, and August 2016, respectively. Contour plots developed using Surfer Version 8.04 were produced using groundwater levels at 12 monitoring well locations within the sheet pile barrier wall. These contour plots indicate strong hydraulic control over the treatment area, with flow gradients consistently toward the recovery trench. System balancing via adjustment of flows to the injection wells was performed throughout the operating period to optimize hydraulic control. The 2011 Design Report indicated that expected groundwater mounding likely would be less than 2 feet, and drawdown would be less than 1 foot, which is consistent provides the driving force for NAPL migration, and is maintained between the recovery trench and the subsurface injection points by depressing the water level in the recovery trench. During 2016 HWF, the hydraulic gradient developed across the northeastern corner of the School site, where NAPL recovery is greatest, eventually reaching a maximum of approximately 0.025 during mid-summer (Figures 8 through 10).

The maximum operational groundwater elevation recorded in monitoring wells across the Site during HWF in 2016 was 918.2 feet above mean sea level, recorded at monitoring well GWM-7 on July 13, 2016, which is 7.3 feet below the School building slab floor elevation. The minimum operational groundwater elevation during HWF was 914.6 feet above mean sea level, 10.9 feet below the School building slab floor level, recorded at monitoring well GWM-17 on August 17, 2016.

During the latter portion of the summer dry season, decreasing water levels made it difficult to operate several recovery wells at the design flow rate. During the week of September 21, 2016, coincident with the low groundwater elevation period, the flow rate was reduced to 13 gpm, and was shifted primarily to wells in the area of the recovery trench where most of the NAPL was present. This action reduced the risk of damaging the pumps or shutting down the system when pumps would run dry.

The effectiveness of the sheet pile barrier wall in minimizing groundwater movement into or out of the treatment zone was evident in the difference of temperatures and groundwater levels at paired monitoring well locations (one well inside, and one well outside the sheet pile barrier wall). At the paired location at the southeastern corner of the Site (monitoring wells GWM16 and GWM17), groundwater temperatures were consistently 20 to 30° higher, and groundwater levels were consistently 2 feet lower inside the containment area during HWF between July 10 and August 17, 2016.

Flow balancing among the different injection wells was optimized weekly based on groundwater monitoring well levels and temperatures. Initially, hot water injection was preferentially directed into the injection wells along the eastern side of the School building to establish elevated groundwater temperatures, which facilitated initial NAPL flow near and within the recovery trench. As treatment progressed throughout the 2016 HWF operating period, flow rates to the injection wells were adjusted and gradually directed into wells located farther north and west, to increase the temperature over the entire treatment zone.

5.2 GROUNDWATER HEATING PERFORMANCE

Figures 11, 12, and 13 depict groundwater heating performance as color contour maps representing early, middle, and late HWF periods, respectively.

Groundwater temperatures measured prior to HWF system start-up typically were below 55°F (Figure 11). Intermittent heating of groundwater was initiated on June 16, 2016; continuous heating was started on July 10, 2016. Groundwater temperatures beneath the School building eventually reached temperatures ranging from 90 to 125°F from July 15, 2016 through discontinuation of heating on August 17, 2016, representing an approximately 50 to 75° increase over ambient conditions. Groundwater temperatures declined gradually after heating was discontinued, and groundwater temperatures in the general range of 80 to 90°F were maintained throughout September 2016, representing an approximately 30 to 40° increase over initial conditions.

Figure 14 shows the laboratory-measured relationship between temperature and viscosity using a NAPL sample collected from the Site (2011 Design Report). This curve shows that an approximately 10- to 100-fold reduction in viscosity was attained by the HWF system in the 90 to 125°F operational range of groundwater temperatures that were attained during active heating in 2016. At a temperature of 100°F, NAPL viscosity is reduced by approximately 90 percent compared to starting conditions. At 120°F, a viscosity reduction of 96 percent is achieved. A further reduction from 96 to 98 percent would be achieved at 135°F, which was not attained during

5-2

the 2016 operating season. It is unlikely that an additional 2 percent viscosity reduction would yield significant results in NAPL recovery. The NAPL viscosity reduction achieved translated into a proportional increase in subsurface NAPL flow rates and recovery that was observed during the operational period, as described in Section 5.5, NAPL Recovery.

Figure 15 shows the average groundwater temperatures in the treatment zone, and results from a numerical model simulation of the HWF groundwater heating process during the 2016 operating season. The numerical model is a proprietary model that simulates heat inputs and outputs and associated changes in average temperature over time within a specific volume. Heating inputs used in the model consisted of actual daily groundwater injection temperature data at the observed average groundwater recirculation flow rate over the period. Heating outputs included SVE soil gas mass/temperature removal, leakage of heated groundwater to the outside of the sheet pile area, and thermal conduction outward into the surrounding groundwater region. The numerical model results provide a reasonable approximation of the actual measured average groundwater temperatures during the 2016 operating season. The discontinuous heating and conservative injection water heat management that occurred during 2016 HWF operations limited maximum groundwater temperatures attained. Application of the model to predict potential average groundwater temperatures over the recommended 2017 HWF season, inclusive of recommended earlier start, continuous operations, maximized groundwater injection rates, and increased injection water temperatures, indicates higher average groundwater temperatures will be attained in 2017. This is further discussed in Section 5.5, NAPL Recovery.

5.3 SYSTEM GEOCHEMICAL AND BIOLOGICAL FOULING

Geochemical and biological fouling was observed in the recovery wells and the groundwater treatment system. The degree of system performance impact due to geochemical and biofouling was not anticipated, and the system was shut down between June 25 and July 10, 2016 for application of countermeasures.

With approval from Ecology, a chlorine shock treatment was administered on July 10 to address biofouling. The dosing regimen involved placement of trichloroisocyanuric acid tablets in the recovery wells. Residual chlorine concentrations were maintained through the treatment system at 2 to 5 ppm free chlorine. Free chlorine was measured at the GAC vessel effluent, and was consistently 0.1 ppm or less prior to heating and re-injection, well below the Washington State drinking water standard of 4.0 ppm free chlorine.

System operation improved following the chlorine treatments, which were continued throughout the remaining 2016 operating period. There is some caution about continued use of chlorine, as it can cause corrosion of metals, which was evident in the oil-water separator (OWS), where concentrated chlorine caused pitting of the OWS floor, which required repair. Dosing methods for the OWS subsequently were adjusted to protect against localized high-chlorine concentrations and associated metal corrosion.

Geochemical fouling experienced in the treatment system was primarily due to iron and manganese precipitation, which was mitigated by application of a sequestrant solution (CARUSQUEST 101)

that was implemented on August 11, 2016. The sequestrant is a phosphate-based compound with a design dosage concentration of 5.5 ppm After sequestrant dosing began, total phosphorus analysis was performed on extracted groundwater to monitor for accumulation of phosphorus in groundwater. Phosphorus was not detected at a concentration exceeding the laboratory detection limit of 0.25 milligrams per liter in any of the groundwater samples collected. Analytical results for total phosphorus are presented in Table 15.

A down-hole camera was deployed to assess the condition of the recovery wells. This assessment indicated that the metal drop pipe and foot valves in the recovery wells were not overly corroded or otherwise affected by the chlorine. The video footage, photographs, and localized drawdown behavior suggest that a combination of geochemical and biological fouling is present within the well screeens and in the soil surrounding the recovery wells. The combination of low groundwater levels, biofouling, and geochemical fouling resulted in difficulty balancing the recovery well pumping rates.

During the week of April 3, 2017 coincident with School spring break and prior to resuming HWF system operations in 2017 Farallon performed well cleaning using a combination of physical and chemical methods. The purpose of cleaning the recovery wells was to reduce or eliminate the risk of system shut-downs due to clogged well screen and to maximize well recharge rates.

The recovery well cleaning included shock dosing wells using a solid phase granular acid and in accordance with the Nu-Well 110 Granular Acid and Nu-Well 310 Bioacid Dispersant Application guides. Immediately following the chemical dosing the acid was agitated in the well using a rigid well brush. The well was scrubbed using the well brush and surged using a well surge block. Following 24 hours of contact time the wells were purged of the acid using a vacuum truck.

The HWF injection wells were able to accept flow totals in excess of 50 gpm for the School Site. It is unlikely that the injection wells will need any redevelopment or treatment. Flowmeters at each injection zone header were reliable for use in balancing system flows and controlling groundwater gradients.

5.4 GROUNDWATER TREATMENT

The groundwater treatment system employs several components to progressively remove NAPL (Figure 3). Primary treatment consists of NAPL recovery components, including recovery well belt skimmers and an OWS to remove NAPL. NAPL recovery performance is discussed in Section 5.5, NAPL Recovery. Following liquid-phase NAPL recovery, some dissolved-phase TPH and mineral and organic constituents remain in the water, which require progressive treatment measures to remove.

The bag filter system provides filtration of the groundwater stream to remove mineral precipitates and organic particulates. The primary function of the bag filter system is to protect and preserve the carbon in the GAC vessels, which provide polishing treatment for removal of dissolved TPH. As part of the system adjustments implemented to manage biofouling, bag filter sizing was reduced from 20 to 5 microns to provide enhanced filtration, and to prolong the life of the GAC. During 2016 HWF operations and prior to sequestrant implementation, bag filters were replaced daily.

⁵⁻⁴

Application of the sequestrant solution reduced mineral precipitation and the need to replace bag filters from daily to once or twice weekly.

5.5 NAPL RECOVERY

During 2016 operation, 40.2 gallons of NAPL was recovered by the HWF system, all from recovery well RW-9. Trace NAPL was observed in recovery well RW-7 and in the OWS, but did not accumulate to a volume recoverable by skimmer belts or the weir drain on the OWS. Additional discussion of NAPL recovery measurements is provided in Section 3.7, NAPL Recovery Monitoring.

Following chlorine dosing of recovery wells during July 2016, several skimmer belts showed signs of decay of the surface coating, likely due to a combination of the higher temperatures and residual chlorine inside the well casing. Spare skimmer belts were available on the site to allow for replacement as needed.

During August 2016 operations, the OWS coalescing media showed signs of clogging, which resulted in higher concentrations of dissolved-phase TPH passing through the OWS to the bag filters and the GAC vessels. The system was shut down and the OWS media pack was removed for thorough cleaning. Cleaning reduced the concentrations of dissolved-phase TPH passing through the OWS to acceptable levels. To limit system shut-down events associated with OWS maintenance, the coalescing media will be replaced for subsequent HWF seasons with new UNIPACK media less prone to clogging.

The NAPL recovery rate observed over the 2016 HWF operational period, measured in gallons per week, is shown on Figure 16. The NAPL recovery rate increased and decreased roughly parallel to increasing and decreasing groundwater temperatures (Figures 16). The maximum observed NAPL recovery rate was 7.1 gallons, which occurred during the week prior to August 31, 2016. Maximum removal rates were observed approximately 1 month following the maximum groundwater temperatures and corresponding minimum NAPL viscosity values. Heating was discontinued on August 17, 2016; maximum NAPL recovery rates of more than 7 gallons per week were observed the week of August 26 through 31, 2016. The time lag between peak ground temperature and maximum recovery rate is attributed primarily to initial establishment of NAPL coating and flow within the gravel trench backfill. NAPL recovery rates diminished gradually after August 31, 2016 as groundwater temperatures slowly decreased and corresponding NAPL viscosity increased throughout September and October 2016.

The lag between minimum viscosity values and maximum NAPL removal rates is a function of the time required for NAPL movement into the recovery trench system, and to the dynamics of NAPL movement in a porous media (i.e., pore pressure, gradient, residual saturation, etc.). Maximum removal rates will be achieved by maintaining minimum NAPL viscosity for as long as possible. It is inconclusive whether the maximum achievable NAPL recovery rate was reached in 2016 because the maximum recovery rate occurred during the last week of August after heating had been discontinued. Following HWF, NAPL viscosity increased as groundwater temperatures decreased.

The HWF thermal numerical model described in Section 5.2, Groundwater Heating Performance, was used to predict the approximate groundwater temperatures expected to be accomplished during 2017 with an optimized HWF operational plan. Because the model was calibrated to actual 2016 results, the predicted temperature trends for 2017 determined from the model are expected to be a reasonably accurate approximation. Two operational scenarios for 2017 are presented (Figure 17), (a) the recommended scenario for an early start to HWF operations where groundwater heating would be applied for approximately 36 hours each weekend from May 7 to June 14, 2017, and (b) the Skykomish School Board approved scenario without an early start to groundwater heating. In each scenario, 2 weeks over the summer period were simulated without heat addition, to account for operational maintenance and/or possible downtime. The 2017 model predictions are also based on maintaining groundwater injection temperatures between 155°F and the design maximum of 160°F, which is greater than the injection temperatures applied during 2016 operations that were in the range of 145°F for much of the summer, while effects on school floor temperatures were evaluated. The numerical simulation results presented on Figure 17 show the benefit of starting weekend-only hot water injection during May. By raising groundwater temperatures earlier in the operating season, the effective period of HWF operations will be significantly extended. The recommended 2017 operating plan would essentially triple the 2016 operation period during which temperatures increase to above 100°F from approximately 1 month to approximately 3 months. The 100°F criteria is a reasonable metric to assess the overall duration of HWF enhancement of NAPL recovery, as this is the temperature at which a 90 percent reduction in NAPL viscosity is achieved. However, 100°F is not a performance metric for HWF system performance, and heating will be continued to attain the maximum average groundwater temperatures that are possible during HWF operations. The modeling of 2017 groundwater heating represents a tapering of heat addition to keep average groundwater temperatures below 135°F, so that the maximum design rating of 140°F is not exceeded at any particular location.

Weekend-only heating operations in May 2017 would provide a carefully measured application of heat and a running start to warming the ground formation without impacting School activities. Higher groundwater temperatures than those realized during 2016 operations may be obtained by extending the HWF season. The longer operating duration at elevated temperatures is expected to increase NAPL removal and recovery, and provide a better basis for evaluating system performance and determining when cleanup objectives are met. While the 2017 scenario without an early start (Figure 17) has a smaller duration of elevated temperatures, it will still result in greater average groundwater temperatures than in 2016, since greater injection temperature will be applied in June 2017, at the inception of HWF, than were applied in June 2016.

6.0 HOT WATER FLUSHING PERFORMANCE METRICS

This section outlines the goals and metrics that will be used to evaluate progress toward completion of HWF based on the goal of removal of NAPL to "the extent technically possible". During summer HWF operations, overall system performance will be monitored by the measurement of NAPL recovery which will be evaluated to determine compliance with the primary cleanup objective. *As stated in the O&M Plan:*

"The primary cleanup objective associated with the design of the HWF treatment system is to reduce the amount of petroleum beneath the School to the extent technically possible, with the goal of removing separate-phase mobile or volatile petroleum constituents or NAPL. Operation of the treatment system will be complete based on coordination with Ecology."

Inherent in the evaluation of progress toward completion of NAPL recovery is the recognition that all NAPL recovery technologies exhibit a nonlinear declining trend in NAPL recovery, and that the NAPL cumulative recovery volume curve as a function of time eventually flattens toward an asymptotic level, beyond which further recovery is not practical (ITRC 2009). The Site-specific declining NAPL recovery rates will be evaluated consistent with ITRC (2009) guidance, along with evaluation of the following multiple lines of evidence to determine that cleanup objectives have been met:

- Graphs of NAPL cumulative recovery volume with respect to time and groundwater temperature in the treatment zone, to assess progress toward asymptotic NAPL recovery rates, which are an indicator of technical impracticability of further NAPL recovery (ITRC 2009).
- The number of pore volume exchanges of groundwater during hot water flushing with respect to time and groundwater temperature in the treatment zone, may be a relevant alternative metric for plotting and evaluating declining NAPL recovery rates (Davis 1995; O'Carroll and Sleep 2007).
- NAPL recovery rates as a function of groundwater hydraulic gradient and groundwater temperature, as additional metrics of the completeness of NAPL recovery attained.

6.1 EVALUATION OF COMPLETION OF NAPL RECOVERY

6.1.1 NAPL Recovery Rate Decline Curve Analysis

The ITRC (2009) technical/regulatory guidance for NAPL recovery goals states that decline curve analysis is an appropriate performance metric for evaluating the performance of NAPL removal. The ITRC guidance elaborates, "decline curve analysis indicates that based on LNAPL [light nonaqueous-phase liquid] recovered, the remaining LNAPL is either small or the time to recover relative to the remaining volume may be impractical." Because ITRC guidance does not include specific details for evaluating a thermal system that cycles on and off, the decline curve analysis will be evaluated in context of groundwater temperatures in the treatment zone. Decline curve analysis, along with other lines of evidence, is an appropriate basis for evaluating completion

objectives for the Skykomish School project based on technical considerations reflected in the ITRC technical/regulatory guidance, and given the goal of community stakeholders to complete the remediation within a reasonable time frame.

This metric will be assessed by plotting weekly NAPL recovery rates versus time and cumulative NAPL volume, and cumulative volume versus elapsed time. Attainment of asymptotic recovery rates or extrapolation of these plots to a recovery rate that indicates the attainment of a reasonable maximum recoverable volume and associated time for recovery are both appropriate endpoints.

6.1.2 Subsurface Pore Volume Exchanges

The number of pore volumes of groundwater that are flushed through a target treatment zone is also a useful metric in assessing the progress of NAPL recovery. A review of the remediation literature identified several HWF remediation bench studies or site remediation case histories that used this metric (Davis 1995; O'Carroll and Sleep 2007; Leuschner et al. 1997). An HWF site remediation project involving No. 6 oil in Colorado also was identified (Clayton 2009). In these reports, the number of pore volume exchanges required for NAPL recovery and project closure ranged from 10 to 55, dependent on factors such as NAPL characteristics, hydraulic conductivity, and hydraulic gradient. As shown on Figure 7, approximately 18 pore volume exchanges were achieved during 2016. Operational data for 2017 will be evaluated to assess whether NAPL recovery rates as a function of pore volume exchanges are representative of decline trends, either in addition to or in place of duration-based trends.

6.1.3 Groundwater Gradient and Temperature

Groundwater gradient and temperature are significant variables influencing NAPL migration. Hot water injection serves to reduce the viscosity of NAPL, as shown on Figure 15. Average treatment zone temperatures reached over 120°F. As shown on Figure 14, an approximately 10- to 100-fold reduction in viscosity was attained by the HWF system in the 90 to 125°F operational range of groundwater temperatures attained during active heating in 2016, as discussed in Section 5.2, Groundwater Heating Performance. To ensure the compatibility and safety of groundwater pumps and other materials in contact with groundwater, the DQO established in the 2011 Design Report that the maximum groundwater temperature that might be attained was 140°F. Since a measured approach was taken to groundwater heating during the 2016 HWF operations to gradually assess operating optimization and secondary factors such as the effects on the temperature of the school floor, the highest average groundwater temperature attained in the treatment zone was approximately 125°F. The recommended earlier start and maximized groundwater injection rates and temperatures during hot water flushing in 2017 will result in a longer period of elevated groundwater temperatures than were attained in 2016, as discussed in Section 5.5, NAPL Recovery. The NAPL recovery data obtained over this extended 2017 operational period will be evaluated as a function of groundwater temperature and hydraulic gradient to assess whether declining NAPL recovery trends result from changes in operational variables, or progresses toward the maximum extent of NAPL recovery possible.

NAPL residual saturation represents the threshold fraction of NAPL-filled pore space below which NAPL becomes discontinuous and immobile. As described in the 2011 Design Report, NAPL

6-2

residual saturation is reduced at elevated temperatures and roughly proportional to lower NAPL viscosities observed at elevated temperatures. NAPL that otherwise would be immobile and unrecoverable becomes mobile and recoverable at elevated temperatures. After heating is discontinued and temperatures decrease, residual saturation shifts, NAPL viscosity increases, and remaining oil may become immobilized. It is anticipated that remaining NAPL will be essentially immobile following discontinuation of HWF operations, and diminishing returns have been reached under active heating conditions. This outcome ultimately will be reflected empirically by an absence of NAPL recovery under groundwater recirculation at ambient temperatures.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The HWF system is an effective means of NAPL recovery from the School Site. Although injection of hot water and corresponding elevated ground temperatures produced a correlated, measurable response in NAPL recovery during the 2016 operating season, operating data from a single season are insufficient to estimate the total quantity of NAPL that ultimately may be removed.

HWF system operations during 2016 met equipment design goals and compliance monitoring requirements. A total of 40.2 gallons of NAPL was recovered as a result of HWF. The 2016 operational period represented the initial operating season, in which meeting critical operating criteria and objectives was confirmed. HWF groundwater temperature increases during 2016 were consistent with design expectations for the heat input applied. A measured approach was taken to groundwater heating during the 2016 HWF operations to gradually assess operating optimization and secondary factors such as the effects on the temperature of the school floor. The 2016 NAPL recovery trends demonstrate that enhanced recovery of NAPL is achieved through groundwater heating.

The SVE system is an effective means of vapor-phase petroleum recovery, and of reducing heat transfer to the School building. Results from indoor air and temperature monitoring demonstrated that the system was operating in compliance with prescribed operating objectives. The SVE system successfully removed soil vapors and heat to control School building floor slab temperatures. Operational adjustments and activities recommended for HWF system optimization in 2017 are presented in the following sections. Operation of the treatment system will be complete based on coordination with Ecology.

7.1 RECOMMENDATIONS TO OPTIMIZE NAPL REMOVAL

A longer operational season and maximized groundwater injection rates and temperatures are recommended to facilitate maximum NAPL removal rates for as long as possible in the upcoming 2017 operating season.

An earlier start to the treatment season would allow for controlled pre-heating and setup of hydraulic configurations. Initial start-up of HWF operations would be gradual, with HWF occurring only on weekends, when school is not in session. A May 1, 2017 start-up (4 to 6 weeks earlier than the 2016 start-up) will increase groundwater temperatures sooner. An earlier start is expected to produce the maximum groundwater temperature of greater than 130°F by mid-July 2017, and to extend it to the end of the HWF season in mid-August 2017 (Figure 17). Once the groundwater temperature so that the maximum design rating of 140°F is not exceeded at any particular location. The 2017 maximum NAPL recovery rate is anticipated to occur sometime during the maximum groundwater temperature period of mid-July to mid-August.

Recovery well cleaning is recommended to reduce or eliminate the risk of system shut-downs due to clogged well screen. Limiting the number of shutdowns will result in a longer heating duration and higher temperatures which will increase potential for NAPL recovery.

Maximized groundwater injection rates and temperatures during hot water flushing in 2017 are recommended to achieve higher average groundwater temperatures for a longer duration than were achieved in 2016. Specifically, the HWF system equipment will be operated at the upper range of the equipment performance DQOs to achieve maximum feasible injection rates and temperatures.

Most significantly, the recommended 2017 operating schedule would essentially triple the period over which temperatures are elevated above 100°F in comparison to the 2016 operating season, from approximately 1 month to approximately 3 months. The additional operating duration at elevated temperatures is anticipated to maximize potential for NAPL removal and recovery, and provide a better basis for evaluation of system performance.

If the treatment season is extended, it is recommended that mechanical cooling capabilities be retained for at least 1 additional year (2017 operating season) to address the potential for higher floor slab temperatures related to a longer heating duration. Ventilation equipment also will be available for use in the School building as needed to address the potential for elevated room and floor temperatures. Following the HWF heating cycle, the treatment system will be operated under ambient conditions to slowly bring temperatures down and maintain enhanced NAPL recovery. If NAPL recovery rates approach zero during 2017 ambient flushing conditions, the treatment system will be shut down.

7.2 RECOMMENDED 2017 OPERATING SCHEDULE

The recommended operating schedule for 2017 includes an earlier start that will not interfere with school operation, with SVE and groundwater re-circulation beginning on a 24/7 basis on May 1, 2017, and hot water injection beginning on a weekend-only basis on May 6, 2017. The proposed 2017 HWF schedule is summarized in the following table.

Date	Proposed 2017 Milestone	Notes
April 1	Recovery Well Cleaning	Scheduled Coincident with School Spring Break. Recovery Wells were physically and chemically cleaned as described in Section 5.3
May 1	Start SVE and AWF operations	Starting up the system will not require as much operator time in the School building because the system was commissioned in 2016, and most activities can be performed on weekends or after school hours.
May 6	Start weekend-only HWF operations	This schedule provides 5 weeks of gradual ramp-up of groundwater temperatures without affecting school activities or negatively affecting indoor temperatures
June 14	Last day of school year	
June 15	Start full-time HWF operations	
August 15	End HWF operations, start AWF operations (remove boiler, activate chiller as needed)	Same as 2016, when transition from HWF mode was made 2 weeks before start of school year. Mobilize chiller as needed.
August 31	First day of school	
October 31	System shut-down for winterization	Exact date to be determined by weather conditions or absence of NAPL recovery.

Proposed 2017 Hot Water Flushing Schedule

Notes:

AWF = ambient water flushing HWF = hot water flushing SVE = soil vapor extraction

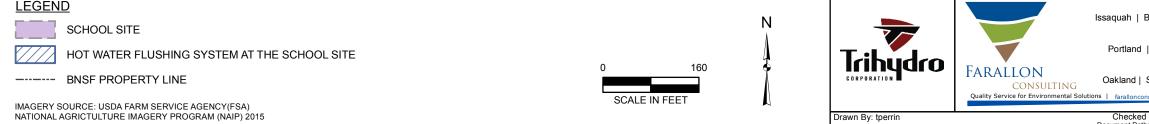
8.0 REFERENCES

- Clayton, W.S. 2009. "Thermal Hot Water Flood Remediation and Closure of Free Product Viscous #6 Oil at a U.S. Site." CleanUp 09 Conference, Adelaide, Australia. September 27-30.
- Davis, Eva L. 1995. "Hot Water Enhanced Remediation of Hydrocarbon Spills." Emerging Technologies in Hazardous Waste Management V. November 9: 237-250.
- EMB Consulting. 2015. *Hot Water Flushing Air, Noise, and Odor Monitoring Plan, 2015 to 2019, Skykomish School, 105 6th Street, Skykomish, Washington.* Prepared for BNSF Railway Company and Farallon Consulting, L.L.C. February 10.

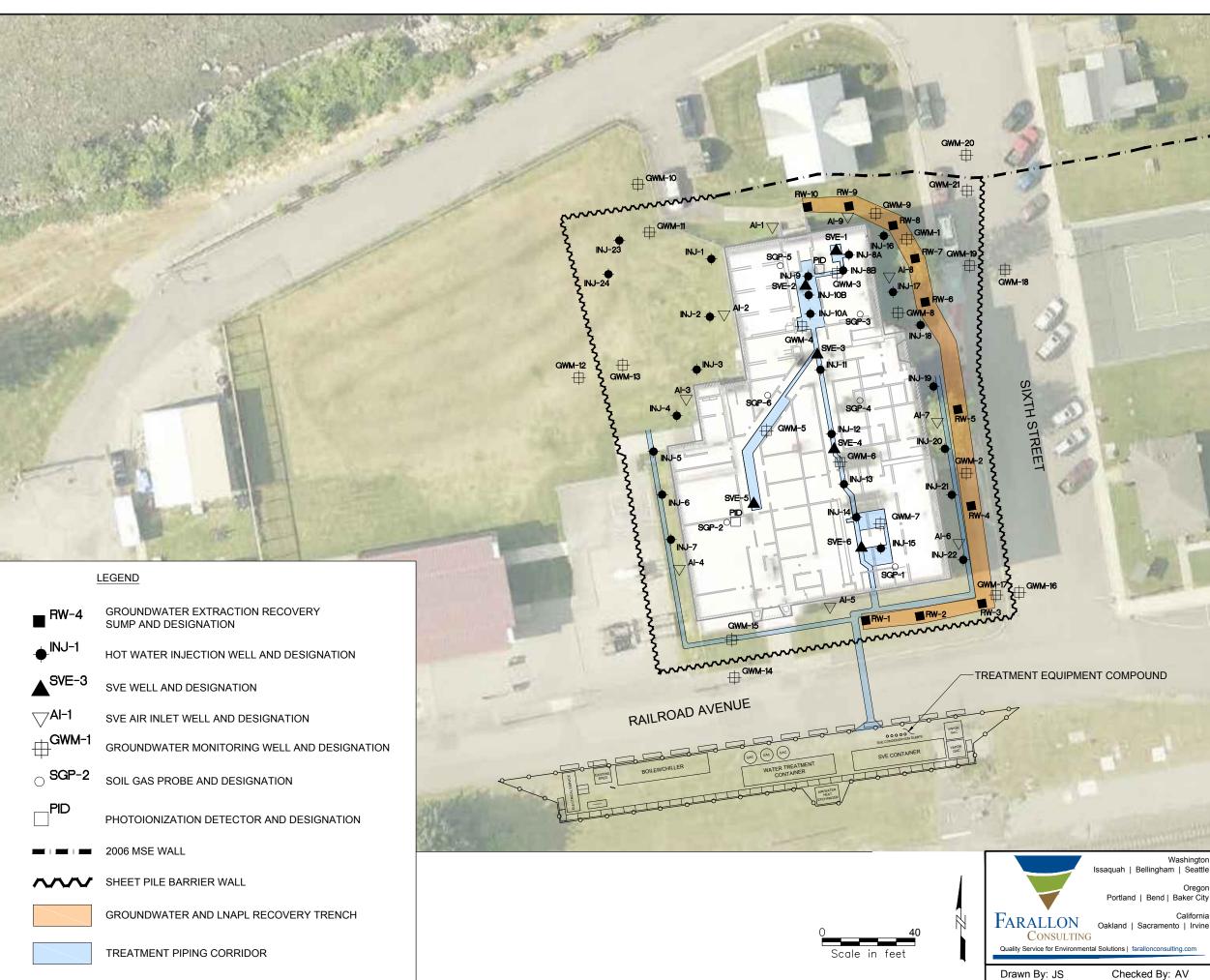
- Farallon Consulting, L.L.C., and Aquifer Solutions, Inc. 2011. Hot Water Flushing Design Report, Skykomish School, 105 6th Street, Skykomish, Washington. Prepared for BNSF Railway Company, Seattle, Washington. June 6.
- Interstate Technology & Regulatory Council (ITRC). 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. Washington, D.C. December 2009.
- Leuschner A.P., M.W. Moeller, J.A. Gerrishe, and L.A. Johnson 1997. "Case Study: MGP Site Remediation Using Enhanced DNAPL Recovery." *Contaminated Soils*. 607-620.
- O'Carroll, Denis M. and Brent. E. Sleep. 2007. "Hot water flushing for immiscible displacement of a viscous NAPL." *Journal of Contaminant Hydrology*. 91: 247-266.
- Trihydro Corporation (Trihydro). 2016. Memo Regarding Soil Vapor Extraction System Performance and Optimization, Skykomish School Hot Water Flush System Project, Skykomish, Washington. From John Pietz, P.E., and Wilson Clayton, PhI [sic]. To Jeff Hamlin, P.E., and Andrew Vining, P.E., Farallon Consulting, L.L.C. August 19.
- U.S. Environmental Protection Agency (EPA). 2008. Engineering Issue: Indoor Air Vapor Intrusion Mitigation Approaches. Office of Research and Development. EPA/600/R-08-115. October.
 - ——. 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. Office of Solid Waste and Emergency Response. OSWER Publication 9200.2-154. June.

⁸⁻¹

P:\683 BNSF\683057 Skykomish School HWF Construction\Reports\2016 HWF Annual Report\683-057 2016 HWF Remed Perf Rpt.docx


Washington State Department of Ecology. 2007. Cleanup Action Plan for BNSF Former Maintenance and Fueling Facility, Skykomish, Washington. Exhibit B of Consent Decree No. 07-2-33672-9 SEA between the Washington State Department of Ecology and BNSF. October 18.

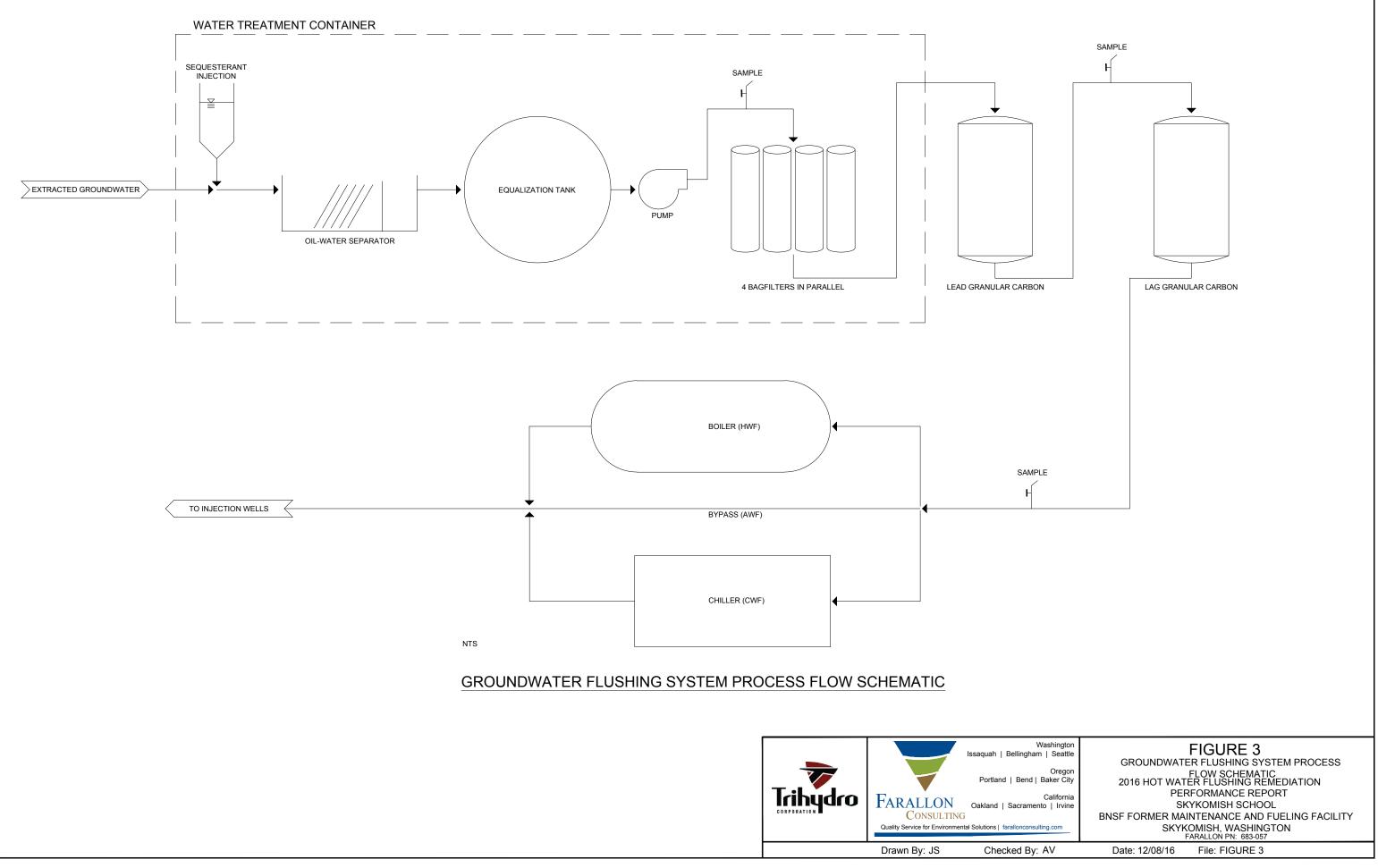
FIGURES

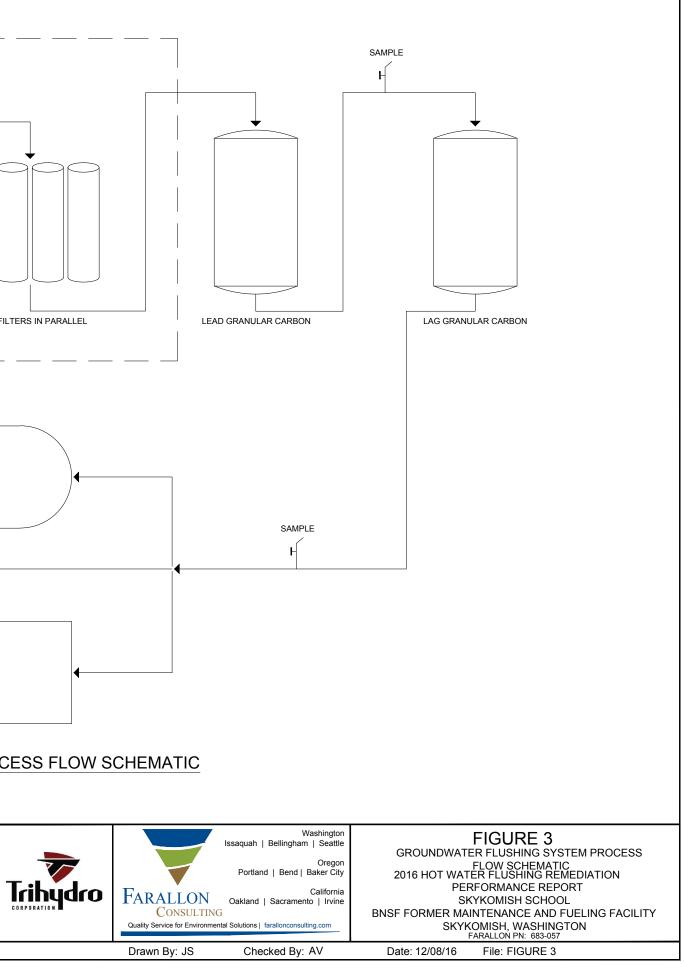

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Farallon PN: 683-057

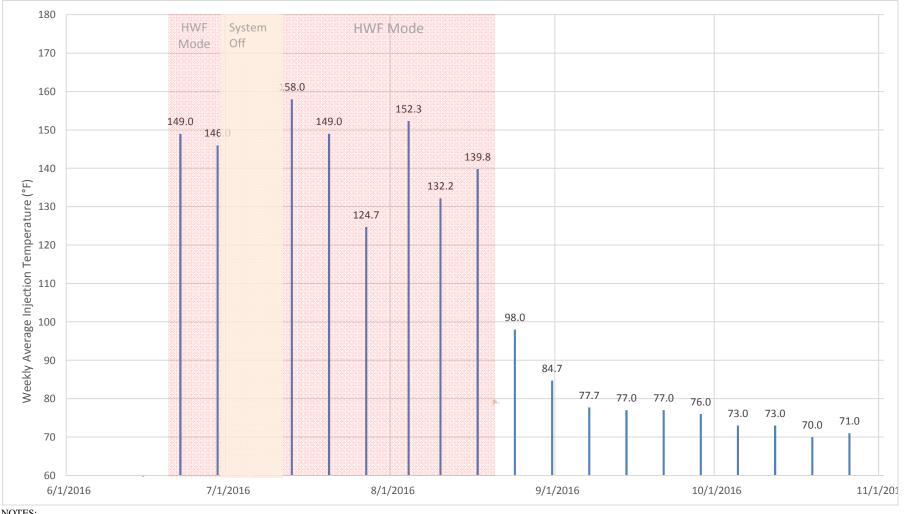
Checked By: AW Date: 12/29/2016 Disc Reference: Document Path: G:\Projects\683 BNSF\683043 Skykomish Ongoing Cleanup Activities\GIS\HWF Construct\FIGURE1_683057_site.mxd

OUND	
Washington Bellingham I Seattle	FIGURE 2


HOT WATER FLUSHING SYSTEM LAYOUT 2016 AS-BUILT COMPLETION REPORT **BNSF FORMER MAINTENANCE** AND FUELING FACILITY SKYKOMISH, WASHINGTON

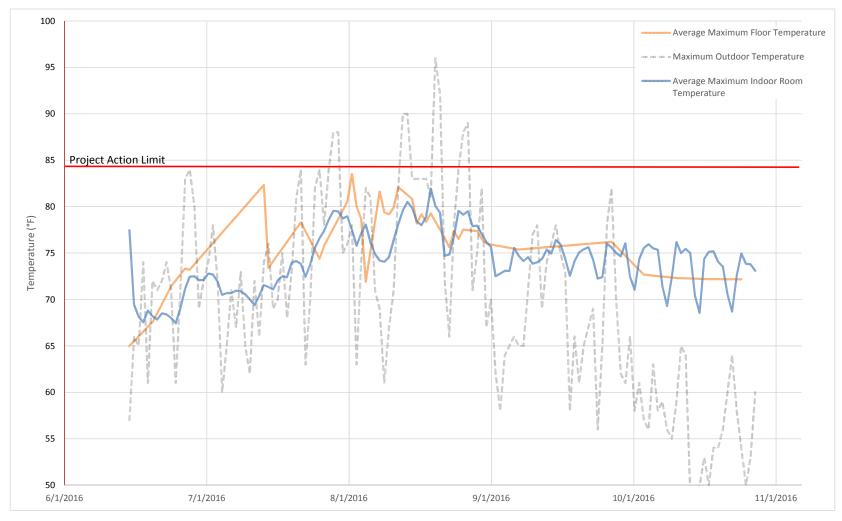

Oregor

Californi

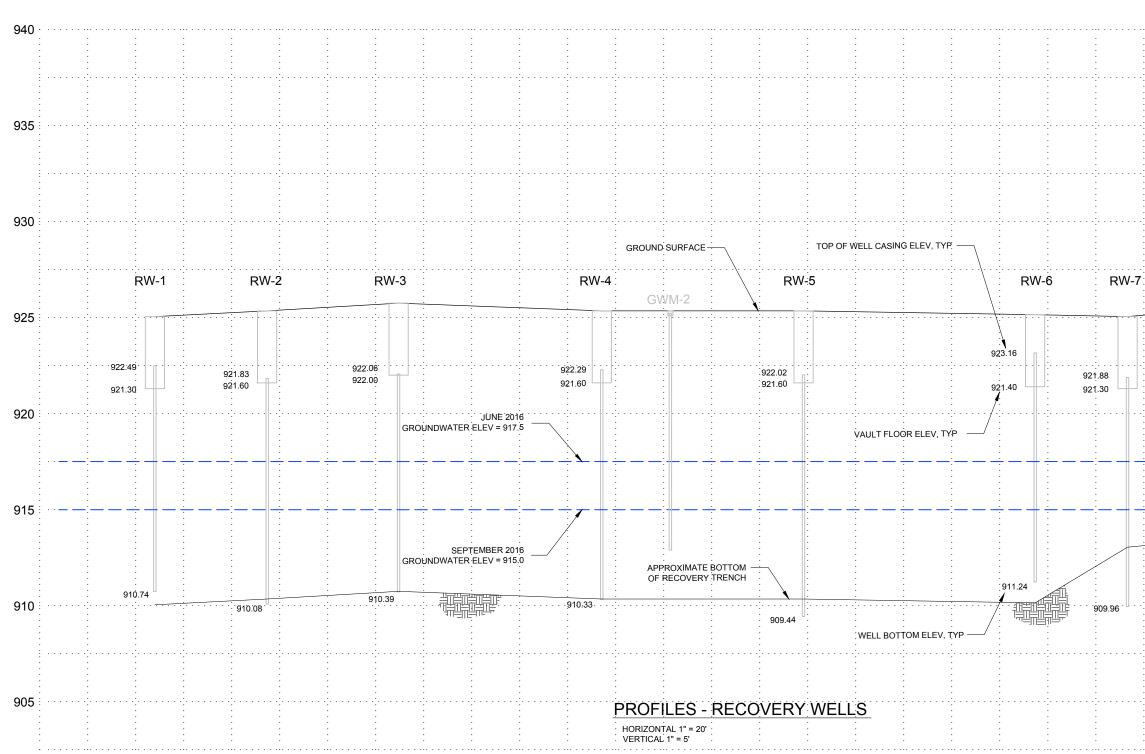

FARALLON PN: 683-057

Date: 2/13/2017 File: FIGURE 2

Figure 4 Weekly Average Injection Temperatures **Skykomish School Hot Water Flushing Remediation** Skykomish, Washington Farallon PN: 683-057



NOTES:


The hot water flushing system was not in operation from June 25 through July 10, 2016, due to biofouling of the granular activated carbon filters.

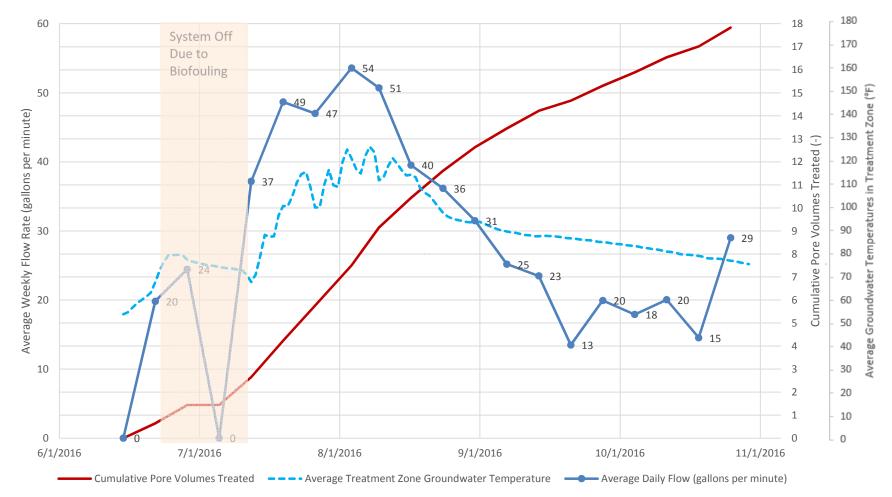
F = Fahrenheit

Figure 5 Site Temperatures 2016 Hot Water Flushing Remediation Performance Report Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington Farallon PN: 683-057

Temperatures were collected using Log Tag HAXO-8 Humidity and Temperature Recorder thermometers. Outdoor temperatures were measured at National Oceanic and Atmospheric Administration weather station Baring, WA US GHCND:USC00450456. Project limits are defined in Addendum No. 3 to 2010 Compliance Monitoring Plan Update dated February 17, 2015, prepared by Farallon Consulting, L.L.C. The basement was generally unoccupied prior to August 24, 2016. Project limits apply only to occupied rooms.

· · · · · · · · · · · · · · · · · · ·		• • • • • • • •			
:					
		: :			
	· · ·	•		•	
		•			
•••••		••••••			
:	· · ·	-			
:					
:	· · ·	-			
:		-		•	
•••••	·				
	· · ·			•	
				•	
RW-8	: R'	W-9	 	RW-10	
GWM-1		•			
· · · · · · · · · · · · · · · · · · ·					
	· · ·				
:	· · ·	· · · · · · · · · · · · · · · · · · ·		•	
922.20	921.80		· · 922:11 · · 921.90		
921.70 <u>:</u>	921.75	T :	921.90		
	· · · · · · · · · · · · · · · · · · ·				
	· · ·				
	· · ·				
	_; ÷				
÷					- - -
	: :				
				:	
:	· · ·	· ·			
U	· · ·				
:	· · ·				
:	· · ·				
. 910 28	· · · · · · · · 910.2	22 · · · · · · · · · · · · · · · · · ·	· · · · · ·910.1	9. ⁻	
•	· · ·	•			
	: : 				
-	· · ·			- - -	-
	· · ·	-		- - -	
-		-		- -	- - -
:	: :	-			:
Washington ham Seattle			FIGL	JRE 6	
Oregon	R	ECOVE	RY TREN	CH CROS	S SECTIO
id Baker Čity		HOT WA	TER FLU	SHING RE	EMEDIAT
California mento Irvine				ANCE REF SH SCHO	
	BNSF FOF				

 BNSF FORMER MAINTENANCE AND FUELING FACILITY

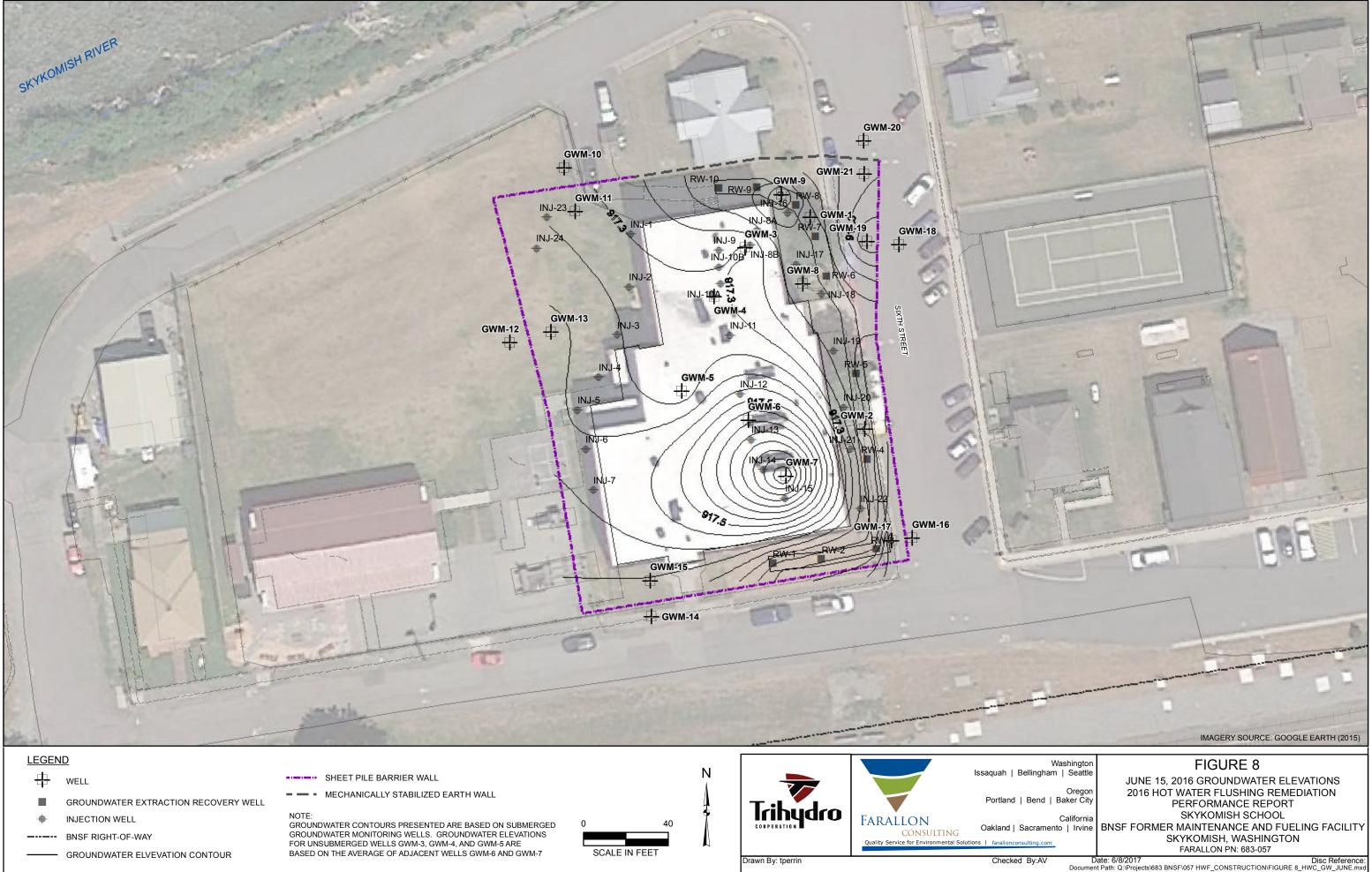

 SKYKOMISH, WASHINGTON

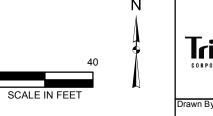
 FARALLON PN: 683-057

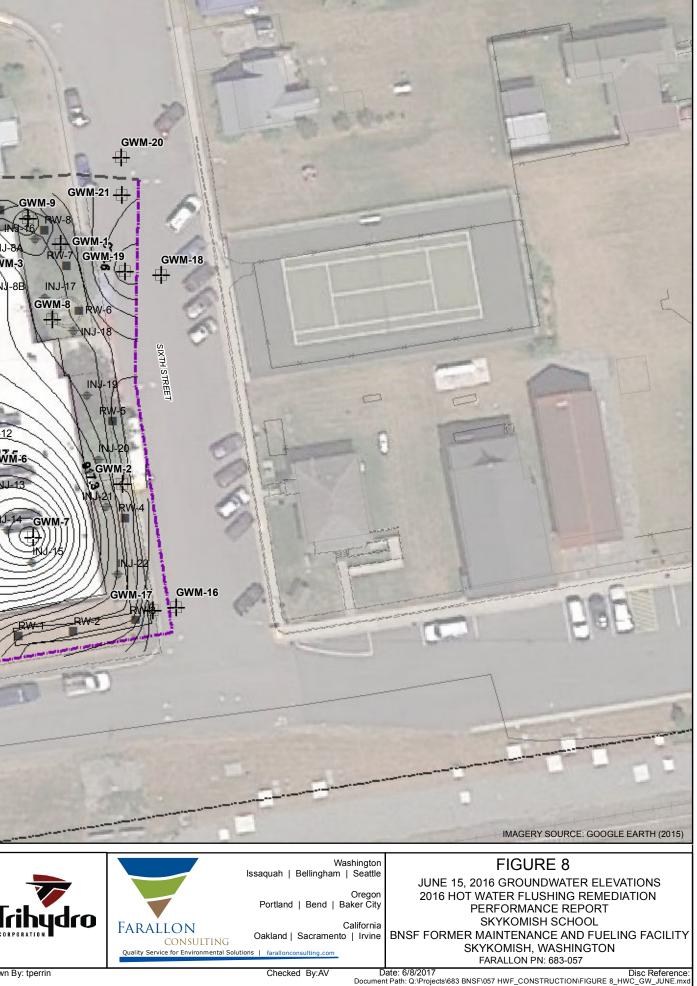
 Date: 7/31/17

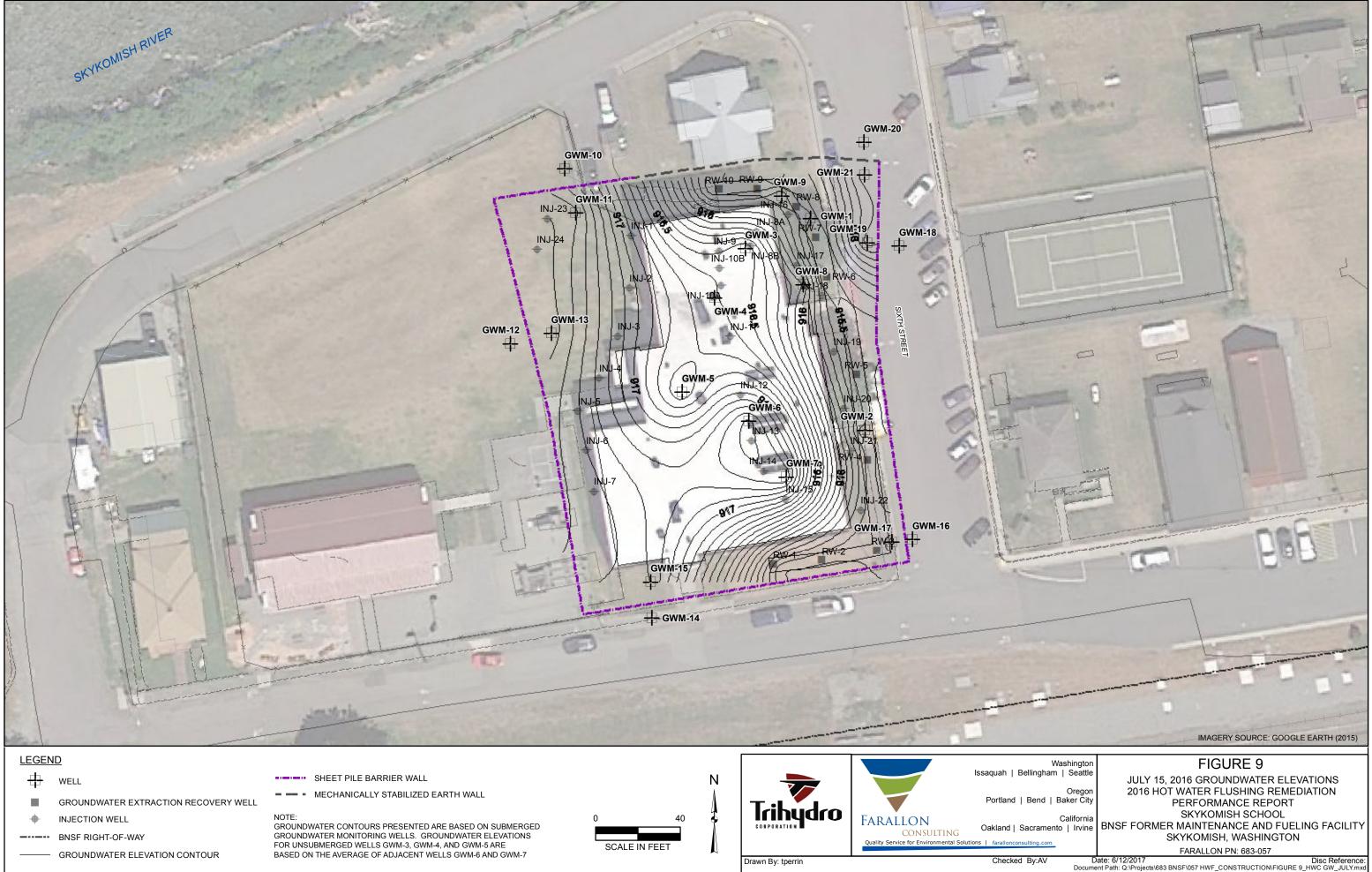
 File: RECOVERY WELL PROFILES

Figure 7 System Flows, Pore Volumes, and Groundwater Temperatures 2016 Annual Hot Water Flushing System Operations Report Skykomish School Hot Water Flushing Remediation Skykomish, Washington Farallon PN: 683-057

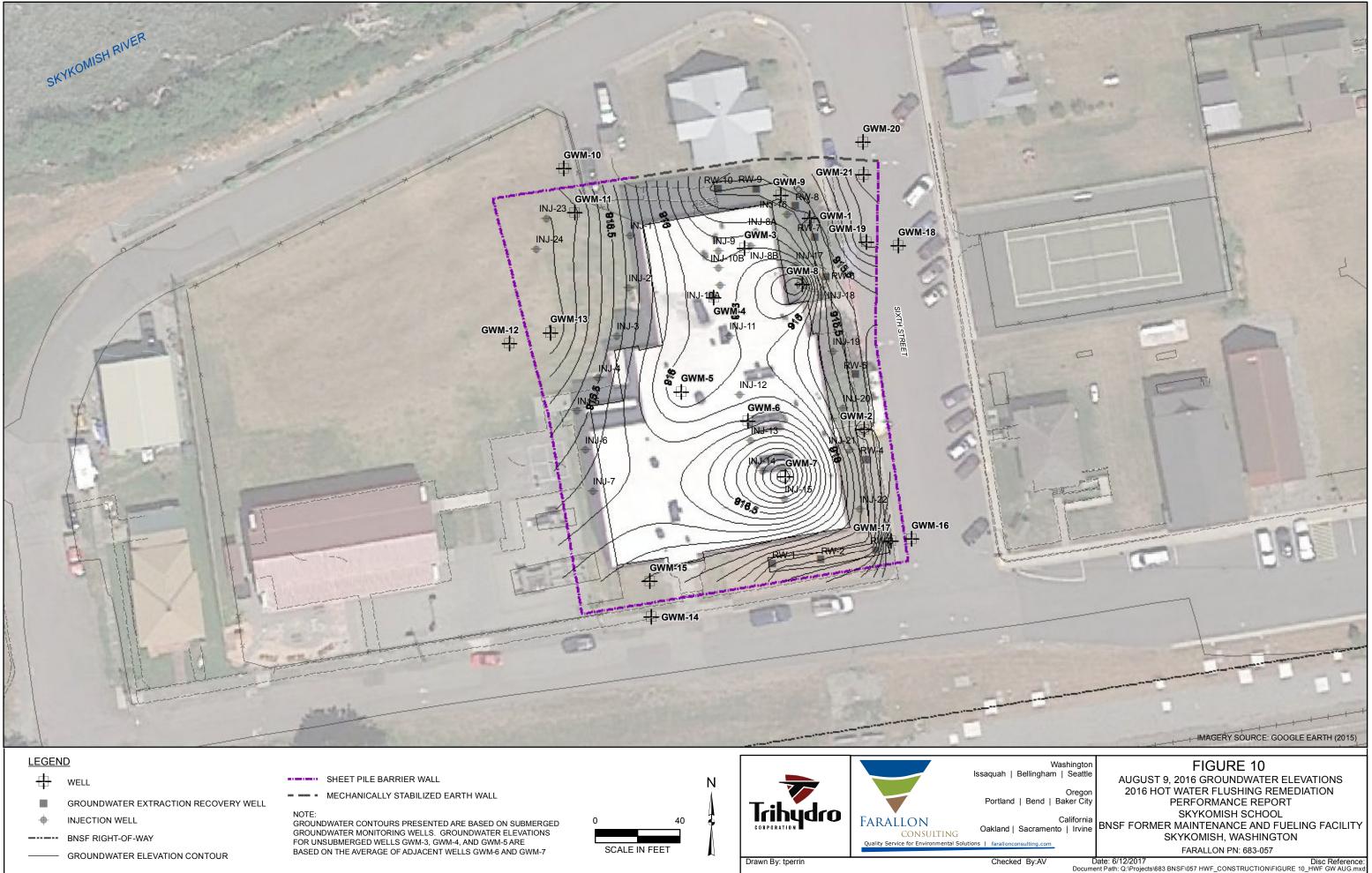


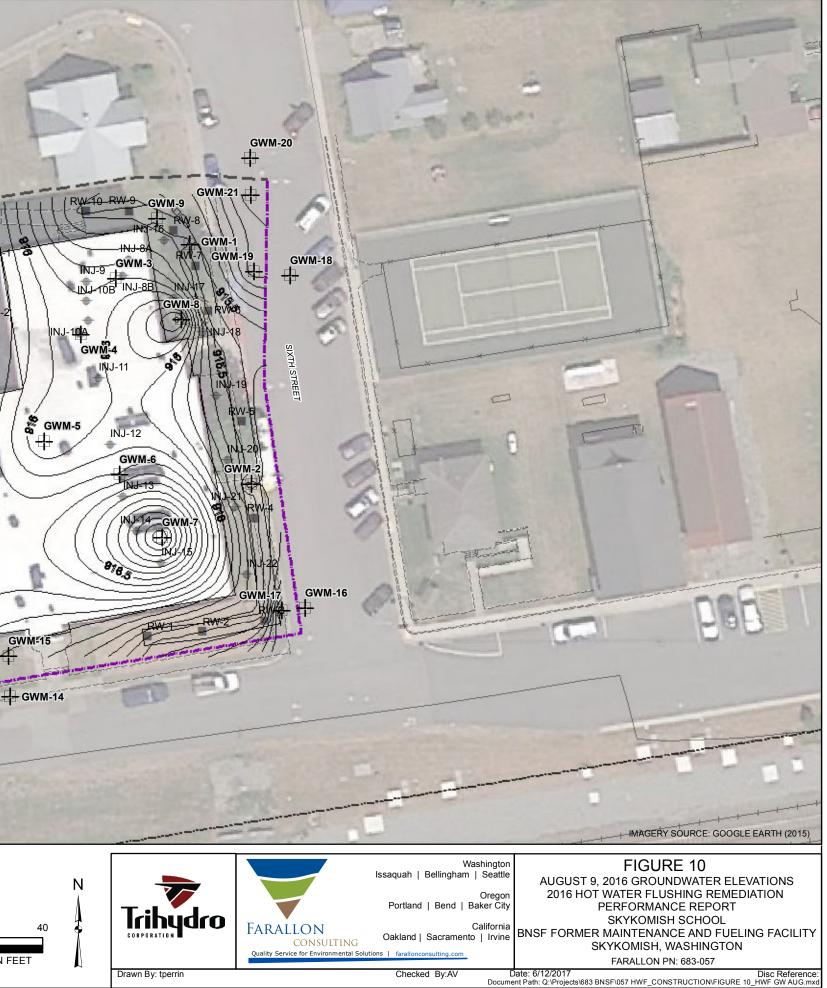

The hot water flushing system was not in operation from June 25 through July 10, 2016, due to biofouling of the granular activated carbon filters.

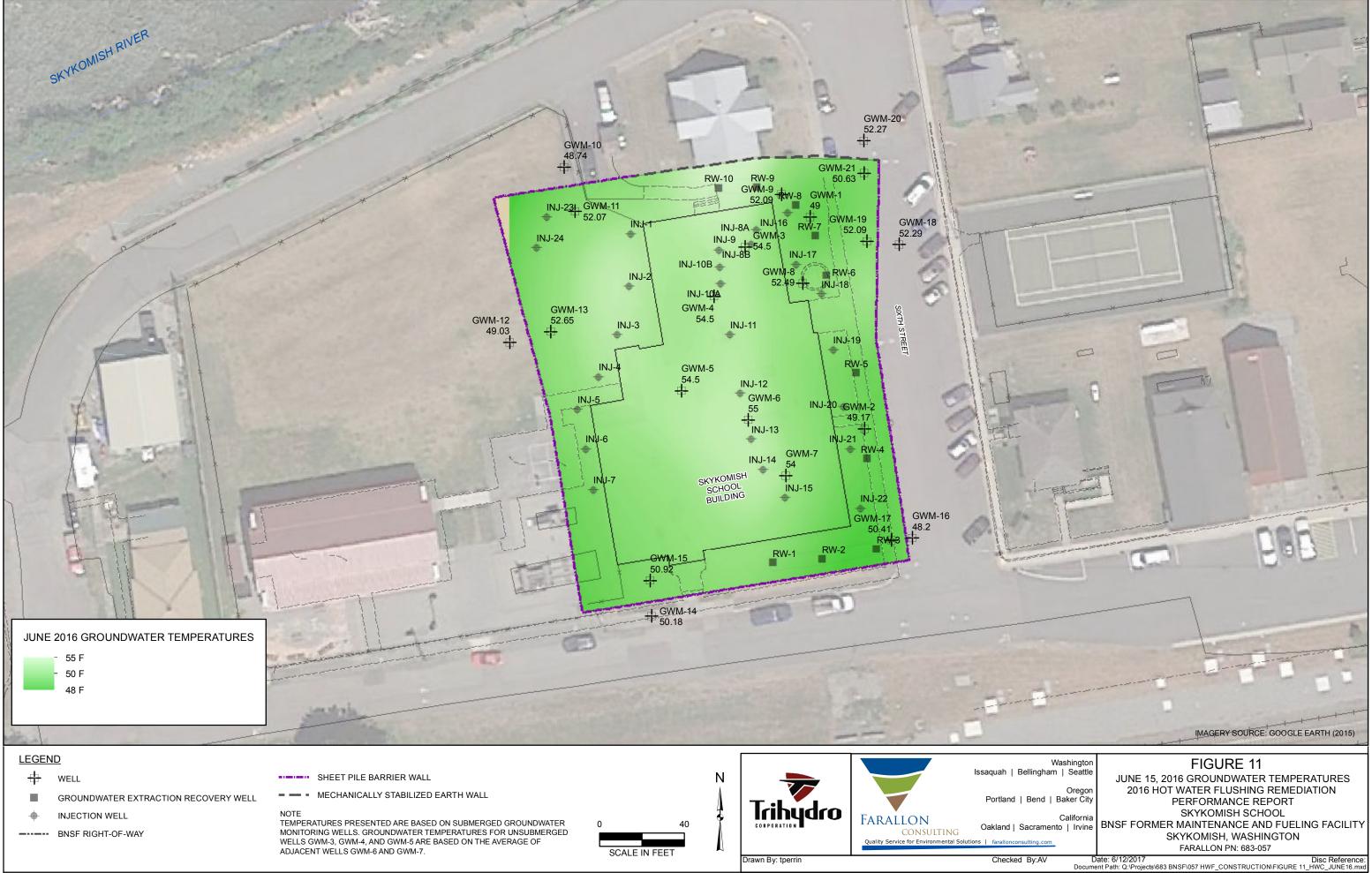

Average groundawter temperature in treatment zone is based on daily average of data from submerged wells located inside targeted treatment zone, GWM 6, 7, and 8.

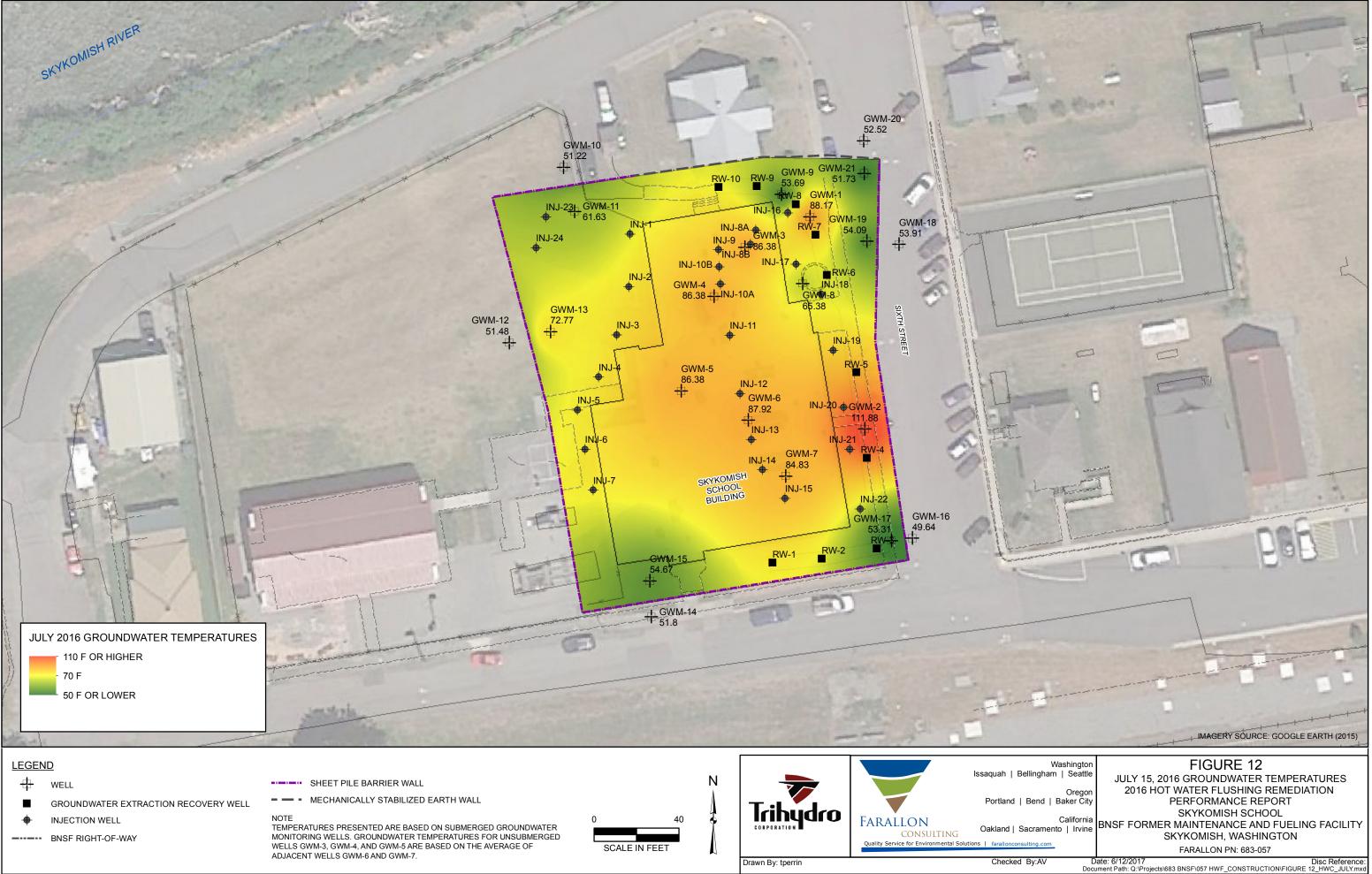

² A pore volume has been defined as the volume of water in the saturated portion of the aquifer. At the School Site a pore volume consists of the footprint of the School building and approximately 20 feet adjacent to all sides of the building, with an average thickness spanning 5.5 feet from 917 ft msl (average groundwater elevation) to 911.5 ft msl (elevation of deepest contamination). See calculation below.

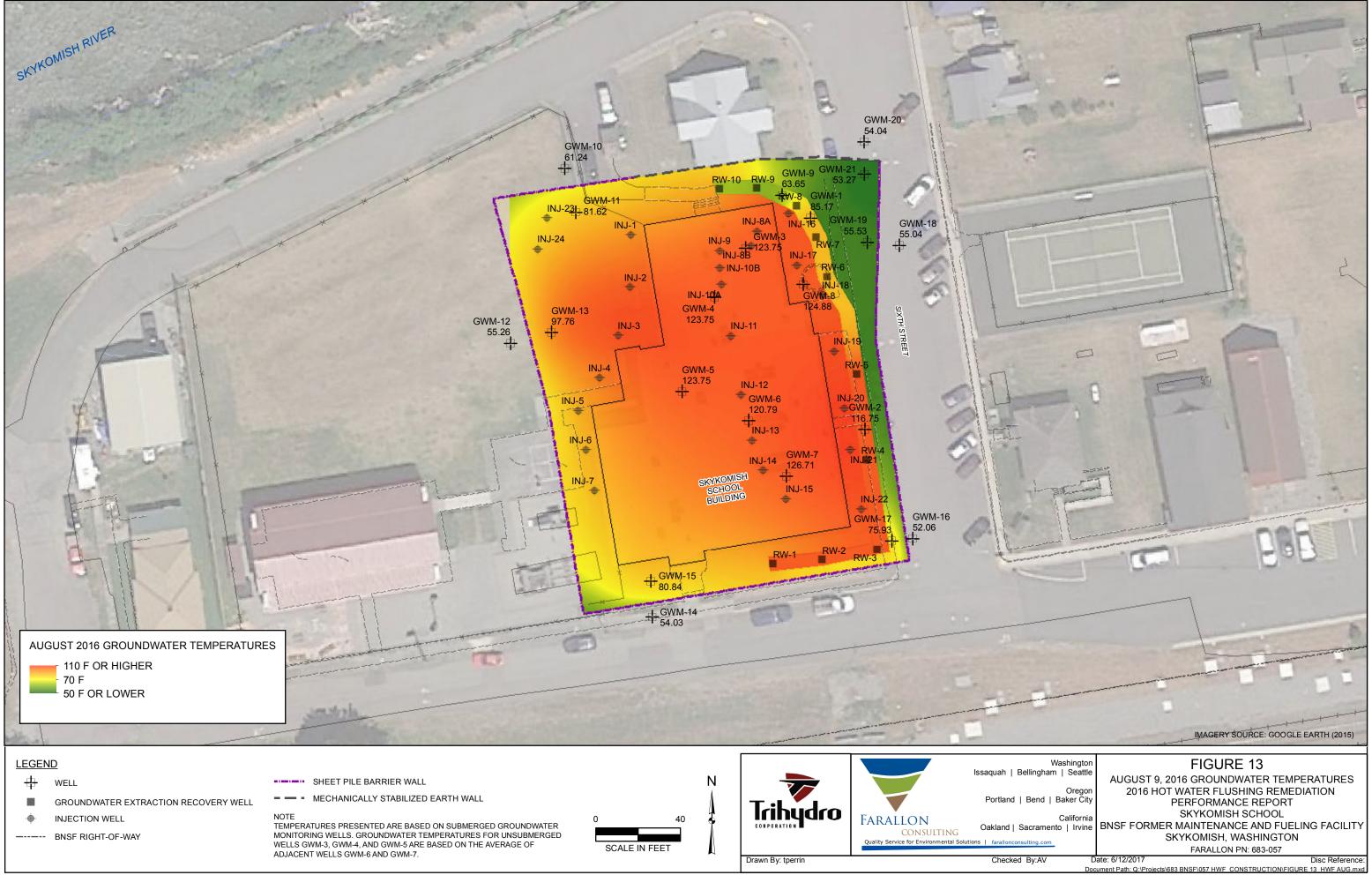
30,000 ft^2 * (917 ft msl - 911.5 ft msl) * .25 porosity * 7.48 gallons/ ft^3 = 310,000 gallons











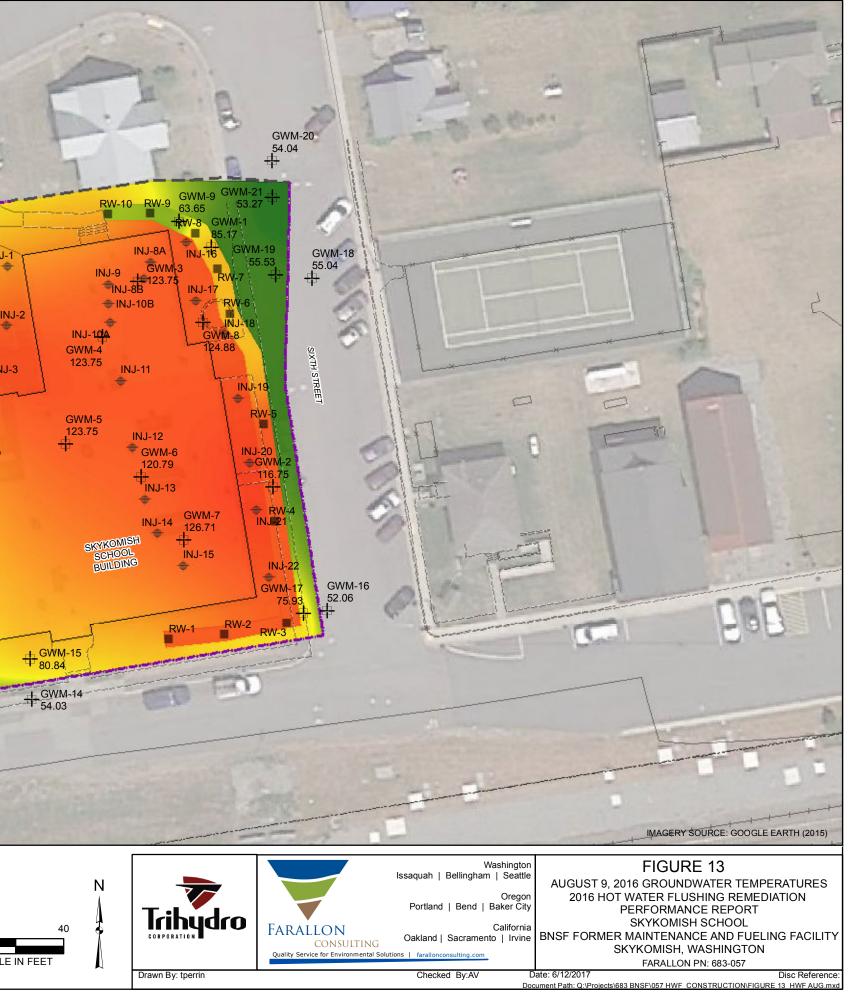
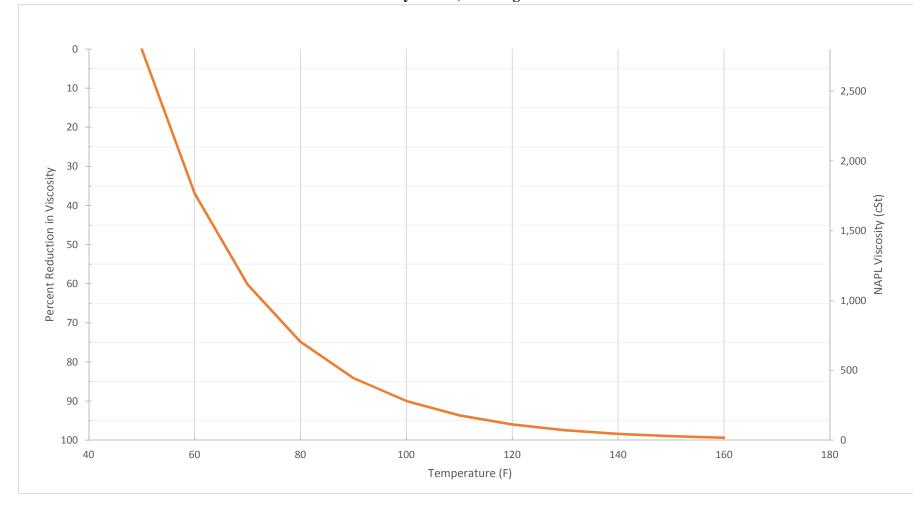
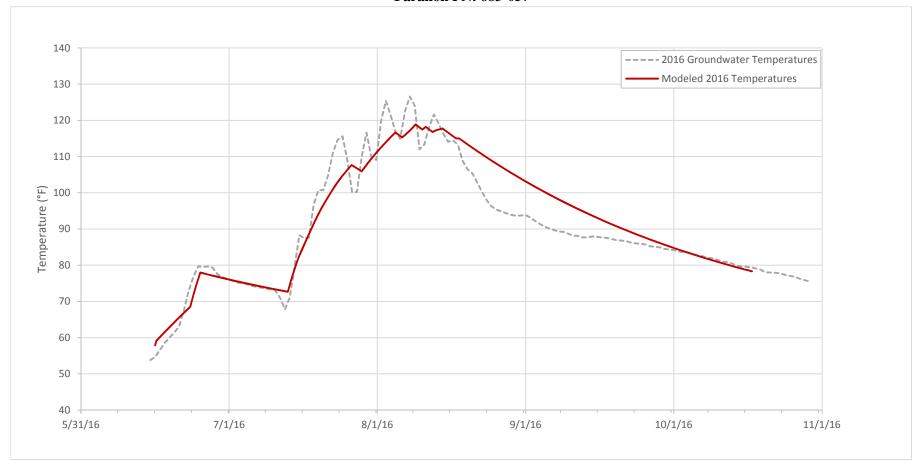
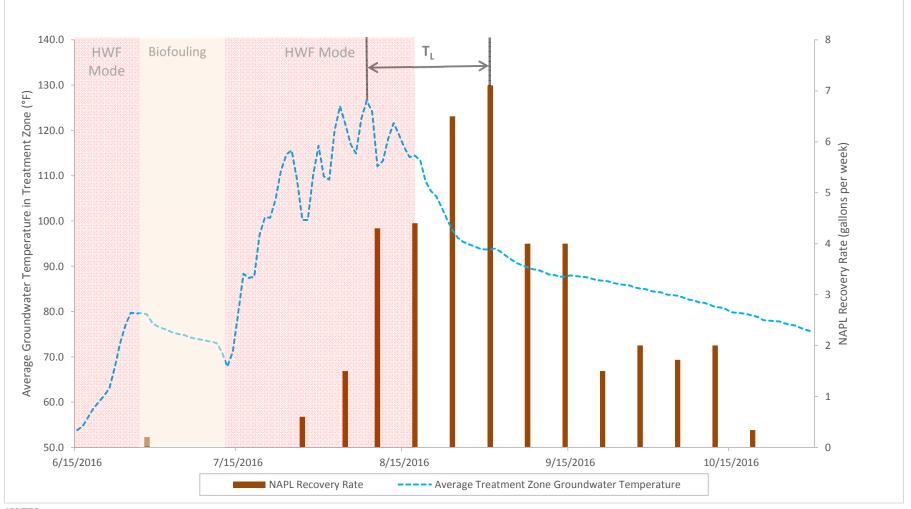


Figure 14 NAPL Viscosity vs. Temperature 2016 Hot Water Flushing Remediation Performance Report Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

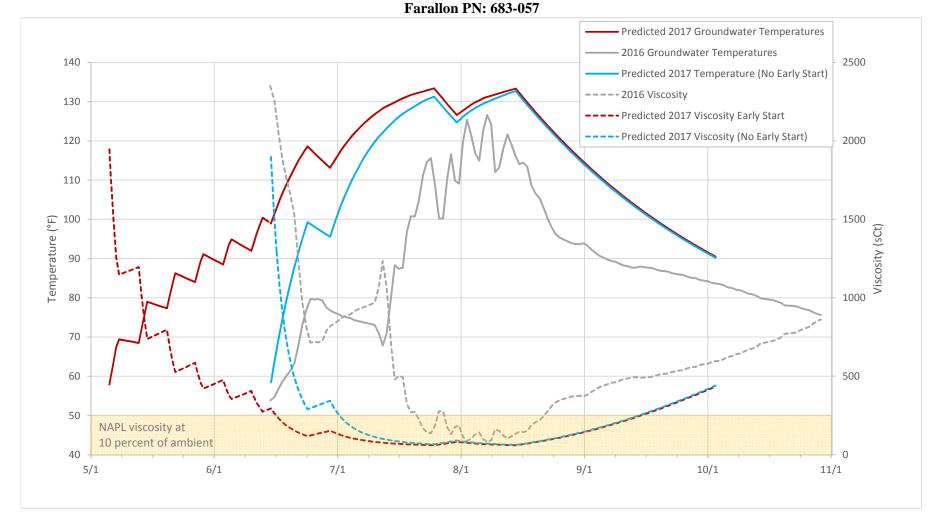




Figure 15 Comparison of Modeled and Actual 2016 Groundwater Temperatures 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

2016 temperature data are based on a daily average of data from wells in the treatment area beneath the School (wells GWM-6, GWM-7, and GWM-8).

F = Fahrenheit GWM = groundwater monitoring well

Figure 16 NAPL Recovery and Groundwater Temperatures 2016 Hot Water Flushing Performance Report Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington Farallon PN: 683-057



Average groundwater temperature in treatment zone is based on a daily average of data from submerged wells located inside targeted treatment zone, GWM 6, 7, and 8.

 T_L = Time Lag; Approximate 24 day time lag between maximum groundwater temperature and maximum NAPL recovery.

F = Fahrenheit GWM = groundwater monitoring well

Figure 17 Actual 2016 and Predicted 2017 Groundwater Temperatures and Viscosities 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington

F = Fahrenheit

sCt = centistokes

2016 temperature data is based on a daily average of data from wells in the treatment area beneath the school (GWMs 6,7,8).

Predicteded 2017 temperatures are based on thermal numerical modeling.

Viscosities based on the properties of a sample collected from the site in 2009.

TABLES

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Farallon PN: 683-057

Table 1Design Quality Objectives from 2011 Design Report2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

Requi	rements	Overall Remedy	Major Subsystems							
Design Requirements	Definition	Overall Subsurface Treatment	GW Recirculation and NAPL Recovery	Subsurface Heating	SVE/Subslab Depressurization	Subsurface Sheet Pile Barrier				
Functional		Reduce the amount of petroleum beneath the school to the extent technically possible, with the goal of removing separate phase mobile or volatile liquid petroleum components or NAPL.	Provide gradient toward the eastern side of the school for NAPL recovery along Sixth Street and at southeastern and northeastern corners of school building.	•	Remove volatile petroleum constituents and prevent vapor intrusion into occupied space or outdoors by maintaining a negative soil gas pressure in the subsurface and using vapor barriers as required. Provide mechanism for removal of heat from directly beneath building slab.	Provide hydraulic control and prevent migration of contaminated groundwater or NAPL.				
Reliability	The ability of a system or component to perform its required functions under stated conditions for a specified period of time.	Reliability provided by aggressive technology approach (hot water) to achieve functional requirements within project time frames. Consideration of system components will include an expected operational duration of 3 to 5 years.	Conservative design to achieve a high level of reliability.	Conservative design to achieve a high level of reliability.	Conservative design to achieve a high level of reliability. Backup power required.	Conservative design to achieve a high level of reliability by sealing sheet pile joints and keying into low permeable material at the toe of the sheet piles.				
Performance	Stated operational goals.	Treatment area footprint consists of school building plus 20 feet. Vertical interval of treatment is focused on impacted NAPL and smear zones. Achieve heating goals within summer- only operational approach.	50 GPM flow throughput capability includes factor of safety on flow rates to account for subsurface variability. Leak testing with zero-tolerance for leaks. Separate groundwater and NAPL recovery to increase NAPL removal efficiency and minimize groundwater treatment requirements.	- F F F	SVE system sized to 500 SCFM, including factor of safety. Must handle extraction of potential soil gases. Provide measurable soil vacuum beneath slab floor to achieve a negative pressure below the floor slab.	Toe of barrier will be keyed into the low permeable silt layer and the joints of the sheet pile will be sealed to prevent leakage.				
Safety/Security	Safety considerations for authorized workers and general public.	Limit system component access to authorized personnel and ensure training and protective measures are in place.	Specified for system components.	Specified for system components.	Specified for system components.	Safety/security buffer zone will be required during installation and removal of sheet pile.				
Environmental	1	sound impacts on school and	Prevent groundwater mounding to level of school slab or ground surface.	Exterior surface of system components exposed to non-project personnel limited to 100°F.	Meet vapor discharge requirements of 1,346 ug/m ³ APH at perimeter of equipment compound. Provide acceptable sound levels. Cap unpaved (grassy) areas outside school within containment. Cap crawl space areas within building exposed to soil.	Barrier to allow for utility crossing.				
Operations Monitoring Needs	Identifies measurements needed to verify performance with respect to design.	Measure NAPL and vapor recovery.	Measure water levels, drawdown and mounding, and NAPL recovery.	Measure subsurface temperatures.	Soil vacuum monitoring, SVE off-gas monitoring.	Piezometers to be installed for monitoring of water levels on either side of the barrier to evaluate water balance and flow hydraulics.				

NOTES:

APH = air phase petroleum hydrocarbons

GPM = gallons per minute

 $ug/m^3 = micrograms$ per cubic meter

NAPL = nonaqueous-phase liquid

SCFM = standard cubic feet per minute SVE = soil vapor extraction

Table 22016 Operational Milestones2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

Date	Project Milestone	Description
4/1/2016	Primary Equipment Inspection	Design team meet at Contractor's facility to inspect equipment prior to delivery and installation.
5/15/2016	Equipment Delivery	Treatment system equipment delivered on the site; begin installation.
6/1/2016	Begin Commissioning	Treatment system installation complete; begin commissioning, performance testing, and flow balancing with cold water injection.
6/15/2016	System Startup	Begin HWF and SVE treatment.
6/25/2016	System Shutdown	HWF system shut down due to biofouling; implement system cleanout and disinfection protocols; SVE system continues to function through shutdown.
7/10/2016	Fouling Mitigation	Shock-dose recovery wells using chlorine. Begin continuous recovery well disinfection using chlorine.
7/11/2016	System Restart	HWF system restarted.
7/11/2016	SVE System Optimization	SVE system adjustment; removed well caps to better capture air flow from subslab void space and improve pressure differentials at soil gas probes.
7/13/2016	Equipment Modification	Retrofit boiler with pressure relief valve to reduce risks associated with steam buildup during shutdowns.
7/18/2016	Temporary Shutdown	High system pressure; temporarily shutdown to scrape carbon bed.
7/21/2016	Carbon Changeout	Temporary system shutdown to replace carbon in GAC canisters.
7/28/2016	Temporary Shutdown	Temporary system shutdown due to electrical controls malfunction; implement repairs to system controls; SVE system continuous operation.
7/31/2016	Equipment Modification	Adjust system alarm shutdown pressure to 35 psi.
8/1/2016	Equipment Delivery	Electric chiller delivered on the site and tested.
8/9/2016	Temporary Shutdown	Temporary HWF system shutdown for maintenance.
8/11/2016	Geochemical Fouling Mitigation	Install sequesterant dose pump and chemical storage. Begin continuous sequesterant dosing to mitigate mineral fouling of the treatment media.
8/17/2016	Transition to Ambient Water Flushing	Boiler removed; continue flushing with ambient water; cool slowly with SVE system and natural attenuation.
8/19/2016	Carbon Changeout	Temporary system shutdown to replace carbon in GAC canisters.
8/20/2016	Temporary Shutdown	System shutdown (24 hours) to repair pump control malfunction.
8/31/2016	Temporary Shutdown	System shutdown (48 hours) for repairs to oil-water separator.
9/19/2016	Temporary Shutdown	System shutdown (48 hours) for repairs to pump drive components.
9/26/2016	Carbon Changeout	Temporary system shutdown to replace carbon in GAC canisters.
10/9/2016	Temporary Shutdown	System shutdown (48 hours); control fault; flooded injection well in school yard due to intense rainfall event.
10/13/2016	Temporary Shutdown	System shutdown (96 hours); intentional shutdown to avoid damage from seasonal storm flood event.
10/31/2016	Begin Seasonal Shutdown	Shut down and winterize treatment system; cleanup and secure site.

NOTES:

GAC = granular activated carbon

HWF = hot water flushing

psi = pounds per square inch

SVE = soil vapor extraction

Table 3Compliance Monitoring Matrix2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

		HWF		Transition		CWF		Winter Shutdown	
	Events	Action Levels	Events	Action Levels	Events	Action Levels	Events	Action Levels	
АРН									
Inside First Floor (Basement)	8 hour weekly (1 location)	Ref Section 3.2 ANO Plan	8 hour weekly (3 locations)	Ref Section 3.2 ANO Plan	8 hour monthly (3 locations)	Ref Section 3.2 ANO Plan	8 hour monthly (3 locations)	Ref Section 3.2 ANO Plan	
Inside Second Floor	8 hour weekly (1 location)	Ref Section 3.2 ANO Plan	8 hour weekly (2 locations)	Ref Section 3.2 ANO Plan	8 hour monthly (2 locations)	Ref Section 3.2 ANO Plan	8 hour monthly (2 locations)	Ref Section 3.2 ANO Plan	
Inside Third Floor	8 hour weekly (1 location)	Ref Section 3.2 ANO Plan	8 hour weekly (1 location)	Ref Section 3.2 ANO Plan	8 hour monthly (1 location)	Ref Section 3.2 ANO Plan	8 hour monthly (1 location)	Ref Section 3.2 ANO Plan	
VOC									
Inside First Floor and Second Floor	Continuously, Upload Weekly	>5ppm for 5 min =R,I(4)	Continuously, Upload Weekly	>5ppm for 5 min =R,I(4)	Continuously, Upload Weekly	>5ppm for 5 min =R,I(4)	Continuously, Upload	>5 ppm for 5 min =R,I(4)	
	(3 locations)	>10ppm for 5 min at 2 locations =R,E,I(4)	(3 locations)	>10 ppm for 5 min at 2 locations =R,E,I(4)	(3 locations)	>10 ppm for 5 min at 2 locations =R,E,I(4)	Weekly (3 locations)	>10ppm for 5 min at 2 =R,E,I(4)	
ROOM TEMPERATURE									
Inside First Floor (Basement)	Daily Occupied Rooms (Upload Weekly)	>/= 10 degrees F above ambient =A, M	Daily Occupied Rooms (Upload Weekly)	>/= 10 degrees F above ambient =A, M	Daily Occupied Rooms (Upload Weekly)	> 78.5 F @ 60% RH > 80.0 F @ 30 % RH	None proposed	None proposed NA	
NOISE									
Outside- At Introduced Equipment	Continuous first week of operation	>65 dB(A) @ nrearest occ. =M property	First week of operation	>65 dB(A) @ nearest occ. =M property	First week of operation	>65 dB(A) @ nearest occ. =M property	None proposed	None proposed NA	
Inside - Noise Map	Initial Survey	>40dB(A) or 70 dB windows closed. >45 dB(A) or 70 =M dB windows open. If school occupied	Initial Survey ANO Plan Section 2.3.2	>40dB(A) or 70 dB windows closed. >45 dB(A) or 70 dB windows open. If school occupied	Initial Survey ANO Plan Section 2.3.2	>40dB(A) or 70 dB windows	None proposed	None proposed NA	
WATER TREATMENT									
After Primary GAC	Weekly	Any Detection TPH =C	Weekly	Any Detection TPH =C	Weekly	Any Detection TPH =C	None proposed	None proposed NA	
System Effluent	Weekly	>= 477 µg/l TPH =SD, C	Weekly	$>= 477 \ \mu g/l \ TPH = SD, C$	Weekly	>/= 477 µg/l TPH =SD, C	None proposed	None proposed NA	

Table 3Compliance Monitoring Matrix2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

		HWF		Transition		CWF		Winter Shutdown	
	Events	Action Levels	Events	Action Levels	Events	Action Levels	Events	Action Leve	els
FLOOR TEMPERATURE									
First Floor (Basement) Temperature	Weekly Occupied Areas	>/= 80 F =A, M	Weekly Occupied Areas	>/= 80 F =A, M	Weekly Occupied Areas	>/= 80 F =A, M	Weekly Occupied	>/= 80 F =	=A, M
VE OPERATION									
Sub-Slab Pressure Differential	Continuously (Upload Weekly)	> 0.025 IWC vacuum =A, M	Continuously (Upload	> 0.025 IWC vacuum =A, M	Continuously (Upload	> 0.025 IWC vacuum =A, M	None proposed	None proposed	NA
DOR									
		Level 1 (barely detectable) =R,I(24)		Level 1 (barely detectable) =R,I(24)		Level 1 (barely detectable) =R,I(24)	Continuous monitoring by all occupants	Level 1 (barely detectable) =R,I((24)
	Continuous monitoring by all occupants	Level 2 (distinct and definite) =R,I	Continuous	Level 2 (distinct and definite) =R,I	Continuous monitoring by all occupants	Level 2 (distinct and definite) =R,I		Level 2 (distinct and =R,I definite)	
Inside School		Level 3 (strong, avoided areas) =R,E,I	monitoring by all occupants	Level 3 (strong, avoided areas) =R,E,I		Level 3 (strong, avoided areas) =R,E,I		Level 3 (strong, =R,E avoided areas)	E,I
		Level 4 (very strong, areas =R,E,I avoided)		Level 4 (very strong, areas =R,E,I avoided)		Level 4 (very strong, areas =R,E,I avoided)		Level 4 (very strong, areas =R,E avoided)	E,I

NOTES:

 $\overline{A} = HWF/SVE$ system adjustment

ANO Plan: Hot Water Flushing Air, Noise, and Odor Monitoring Plan, 2015 to 2019 dated February 10, 2015, prepared by EMB Consulting.

C = schedule carbon changeout

CWF = cold and ambient water flushing period

dB = decibels

dB(A) = decibels A

E = evacuate school

F = degrees Fahrenheit HWF = hot water flushing

I(4) = investigate source (within X hours of alarm)

IWC = inches water column

 $\mu g/l = micrograms per liter$

M = HWF and/or school modification

ppm = parts per million

R = report to Ecology and/or Skykomish School District

RH = relative humidity SD = system shut down

SD = system shut down

SVE = soil vapor extraction TPH = total petroleum hydrocarbons

Transition = 8 weeks following last day of HWF period

		FLOOR	TEMPERATURE (DAILY)	
	Cafeteria Central	Basement Hallway North	South	West	Wood Shop
Date	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)
6/15/2016	65.6	64.7	64.7	64.7	65.3
6/20/2016	68.9	67.4	68.3	64.1	69.3
6/24/2016	69.2	70.1	74.9	69.2	73.7
6/27/2016	73.4	74.6	77.9	64.4	76.4
6/28/2016	73.7	71.9	71.3	73.7	75.5
7/14/2016	83	80.9	82.1	81.8	83.9
7/15/2016	79.1	71.3	72.5	70.4	73.7
7/22/2016	82.4	77.3	79.7	74.3	77.9
7/26/2016	77.5	75.7	74.9	69.5	74.3
7/27/2016	80	77	74.6	71.9	75.5
8/1/2016	86	81.5	79.1	78.2	77.9
8/2/2016 ¹	86.9	85.1	84.8	78.8	82.1
8/3/2016	77.8^{2}	82.4	81.5	77.3	78.8
8/4/2016	84.2	80	77.3	75.8	76.1
8/5/2016	73.2	74.3	70.4	69.2	72.5
8/8/2016	84.2	83.3	80.9	77.3	82.4
8/9/2016	77.4^{2}	83.3	79.1	75.5	79.7
8/10/2016	82.1	81.5	78.2	75.2	78.9
8/11/2016	84.5	79.7	80	76.4	78.8
8/12/2016 1	88.1	82.1	82.7	76.4	81.2
8/15/2016	80.6	81.8	81.5	77.9	82.4
8/16/2016	79.7	79.1	78.2	75.2	78.8
8/17/2016	85.1	78.2	77.2	75.8	79.7
8/18/2016	79	77.3	80	76.4	79.1
8/19/2016	81.2	78.2	80	77.3	79.7
8/22/2016	77.9	76.4	77.3	73.4	78.2
8/23/2016	77.9	76.4	75.8	73.7	74.3
8/24/2016	80.6	77.9	77	75.8	75.5
8/25/2016	80	76.1	76.4	74.6	75.5
8/26/2016	79.1	77.3	77.9	77	76.4
8/29/2016	80.6	77.3	77	75.5	76.4
8/30/2016	76.4	77.9	77	75.8	75.5
8/31/2016	76.4	76.1	77.9	74.3	75.5
9/1/2016	76.4	77.3	77	73.4	75.5
9/7/2016	74.3	75.8	77.3	75.2	74.3
9/27/2016	73.4	78.8	75.8	76.1	77
10/4/2016	71	69.2	74.6	73.7	74.9
10/11/2016	71.6	70.1	72.5	73.7	73.7
10/18/2016	70.7	71.6	72.5	73.4	72.8
10/25/2016	73	70.2	72.5	73.5	71.7
Project Action Limits	84.0	84.0	84.0	84.0	84.0

NOTES:

Project Limits are based on American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) Standard 55-2004, Thermal Environmental Conditions for Human Occupancy.

Data were collected manually using a General IRT-206 Infrared Thermometer. Floor temperatures were measured at locations directly above the system piping trench to represent warmest conditions unless otherwise noted.

¹ Conditions were mitigated by opening doors and windows to provide passive ventilation.

 2 Room floor temperatures were collected manually every 100 square feet. The value presented represents the average of room floor temperatures collected.

³ Project action limits are defined in Addendum No. 3 to 2010 Compliance Monitoring Plan Update dated February 17, 2015, prepared by Farallon Consulting, L.L.C.

°F = degrees Fahrenheit

	Location										
	Cafeter	ia (B10) ¹	Southwest	t Hallway ¹	Outside ²						
	Average	Maximum	Average	Maximum	Maximum						
Date	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)						
6/15/2016	70.1	73.3	68.4	81.6	57						
6/16/2016	66.7	71.2	67.3	67.7	66						
6/17/2016	67.8	69	66.9	67.3	65						
6/18/2016	67.1	68	66.5	67.1	74						
6/19/2016	67.1	68.9	65.6	68.7	61						
6/20/2016	68.7	70.2	62.8	66.2	72						
6/21/2016	67.8	68.4	66.7	67.3	71						
6/22/2016	68.1	69.1	67.3	67.9	72						
6/23/2016	67.5	68.8	67.7	68	74						
6/24/2016	68.0	68.4	66.9	67.6	71						
6/25/2016	67.8	68.3	66.3	66.6	61						
6/26/2016	69.3	70.2	66.8	67.9	71						
6/27/2016	71.5	72.5	68.7	69.8	83						
6/28/2016	73.2	74	70.1	70.9	84						
6/29/2016	73.1	73.5	70.9	71.5	80						
6/30/2016	72.6	73	70.9	71.2	69						
7/1/2016	72.5	73	70.9	71.2	72						
7/2/2016	73.3	73.9	71.1	71.7	74						
7/3/2016	73.2	73.8	71.2	71.6	78						
7/4/2016	71.9	72.8	70.4	71.1	72						
7/5/2016	70.5	71.2	69.2	69.8	60						
7/6/2016	71.4	72.2	68.7	69.2	65						
7/7/2016	71.4	72	69.2	69.4	71						
7/8/2016	71.9	72.5	69.0	69.4	67						
7/9/2016	72.2	72.5	69.0	69.3	73						
7/10/2016	71.7	72.1	68.6	69	65						
7/11/2016	69.9	71.5	68.3	68.5	62						
7/12/2016	69.1	70.3	67.3	68.5	72						
7/13/2016	70.4	71.4	68.3	69.4	66						
7/14/2016	72.5	73.2	69.2	69.9	74						
7/15/2016	71.9	72.9	69.7	69.8	76						
7/16/2016	72.2	72.5	69.6	69.7	69						
7/17/2016	73.2	73.9	69.7	70.2	70						
7/18/2016	73.8	74.8	70.0	70.2	75						
7/19/2016	73.7	74.3	70.0	70.5	68						
7/20/2016	74.9	76.2	70.7	71.7	73						
7/21/2016	75.8	76.5	71.5	71.8	81						
7/22/2016	75.8	75.9	71.4	71.8	84						
7/23/2016	73.5	73.9	70.7	71.8	63						
7/24/2016	73.3	75.7	71.0	71.9	70						
7/25/2016	76.8	77.7	72.4	73.4	82						
Project Limits ³	80	80	80	80	02						

	Location										
	Cafeter	ia (B10) ¹	Southwest	t Hallway ¹	Outside ²						
	Average	Maximum	Average	Maximum	Maximum						
Date	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)						
7/26/2016	78.0	78.7	73.7	74.5	84						
7/27/2016	78.9	79.7	74.5	75.1	78						
7/28/2016	80.3	81	75.3	76.2	84						
7/29/2016	81.4	82.1	76.0	77	88						
7/30/2016	81.3	81.9	76.8	77.1	88						
7/31/2016	80.0	80.6	76.3	76.9	75						
8/1/2016	79.5	81.1	76.2	76.8	76						
8/2/2016	77.7	78.5	75.6	76.5	78						
8/3/2016	76.4	76.8	74.0	74.8	63						
8/4/2016	77.4	78.8	74.6	75.4	74						
8/5/2016	78.2	79.4	75.4	76.7	82						
8/6/2016	77.0	77.8	73.1	74.6	81						
8/7/2016	76.0	76.5	72.5	73.3	71						
8/8/2016	75.3	75.6	72.3	72.8	69						
8/9/2016	75.0	75.5	72.2	72.6	61						
8/10/2016	75.4	75.9	72.6	73.2	67						
8/11/2016	77.1	78.1	73.3	74.7	71						
8/12/2016	78.7	79.6	75.1	76.7	82						
8/13/2016	80.3	81.1	77.2	78.1	90						
8/14/2016	81.3	82.3	78.0	78.7	90						
8/15/2016	78.0	81.2	76.1	78.5	83						
8/16/2016	76.9	79.5	74.9	77.3	83						
8/17/2016	77.2	79.2	74.5	76.8	83						
8/18/2016	77.0	79.4	75.7	78.4	83						
8/19/2016	80.1	84.5	77.2	79.4	81						
8/20/2016	80.6	81.2	77.3	78.9	96						
8/21/2016	78.7	80.5	75.2	78.2	92						
8/22/2016	73.7	76.8	69.4	72.6	72						
8/23/2016	74.4	75.8	72.2	73.9	66						
8/24/2016	76.6	77.6	73.9	76	78						
8/25/2016	78.2	79.2	75.9	79.9	84						
8/26/2016	78.8	81.2	75.9	77.1	88						
8/27/2016	81.2	82	75.7	77	89						
8/28/2016	79.8	80.6	74.5	75.2	71						
8/29/2016	78.7	79.9	73.9	76	75						
8/30/2016	76.4	78.9	74.3	75.2	82						
8/31/2016	77.3	78.3	73.3	74.1	67						
9/1/2016	77.3	77.7	72.5	73.7	70						
9/2/2016	72.3	73.6	70.3	71.4	62						
9/3/2016	72.3	73.5	71.5	72.1	58						
9/4/2016	73.3	73.8	72.0	72.4	64						
Project Limits ³	80	80	80	80							

	Location											
	Cafeter	ia (B10) ¹	Southwes	t Hallway ¹	Outside ²							
	Average	Maximum	Average	Maximum	Maximum							
Date	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)							
9/5/2016	73.2	73.8	72.1	72.4	65							
9/6/2016	74.6	77.7	72.6	73.4	66							
9/7/2016	73.6	75.2	73.1	74.2	65							
9/8/2016	74.0	74.8	73.0	73.5	65							
9/9/2016	74.1	75.9	72.6	73.2	71							
9/10/2016	73.8	74.4	72.5	73.3	77							
9/11/2016	73.9	74.3	72.9	73.7	78							
9/12/2016	73.5	74.9	72.9	73.8	69							
9/13/2016	74.2	76.5	73.0	74.2	74							
9/14/2016	74.2	75.6	73.1	74.3	76							
9/15/2016	74.7	77.4	73.3	75.4	78							
9/16/2016	75.4	77.2	73.6	74.7	75							
9/17/2016	73.8	75.2	72.9	73.6	73							
9/18/2016	72.1	72.6	72.0	72.5	58							
9/19/2016	72.7	75.3	72.0	72.9	66							
9/20/2016	73.2	75.7	72.7	74.4	61							
9/21/2016	73.1	76.2	73.1	74.6	65							
9/22/2016	73.6	76.6	73.4	74.7	67							
9/23/2016	72.6	74.2	73.1	74.4	69							
9/24/2016	71.0	72.1	72.0	72.4	56							
9/25/2016	71.1	72	72.1	72.8	65							
9/26/2016	74.2	77.1	73.5	74.9	78							
9/27/2016	74.3	76.4	73.7	74.8	82							
9/28/2016	72.4	76.1	72.9	73.9	70							
9/29/2016	72.6	76	72.6	73.3	62							
9/30/2016	74.0	78.8	72.5	73.3	61							
10/1/2016	70.2	73.1	71.1	71.8	66							
10/2/2016	68.5	71.4	69.9	70.7	58							
10/3/2016	72.1	77.2	70.3	71.5	61							
10/4/2016	73.1	77.5	71.5	73.6	57							
10/5/2016	73.9	77.3	71.9	74.6	56							
10/6/2016	74.1	77.3	72.1	73.7	63							
10/7/2016	73.6	77.4	71.9	73.3	58							
10/8/2016	69.8	71.9	69.6	70.9	59							
10/9/2016	68.3	70	68.3	68.6	56							
10/10/2016	71.1	75.5	68.4	69.3	55							
10/11/2016	73.5	80.2	69.8	72.2	59							
10/12/2016	72.7	78.1	69.6	71.9	65							
10/13/2016	72.7	78.2	70.4	72.7	64							
10/14/2016	73.0	77.7	70.5	72.3	49							
10/15/2016	68.3	71.6	68.3	69.2	49							
Project Limits ³	80	80	80	80								

	Location										
	Cafeteri	ia (B10) ¹	Southwest	Southwest Hallway ¹							
	Average	Maximum	Average	Maximum	Maximum						
Date	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)	Temperature (°F)						
10/16/2016	66.6	69.6	67.0	67.5	50						
10/17/2016	72.1	78.2	68.4	70.6	53						
10/18/2016	73.4	78.6	69.1	71.7	50						
10/19/2016	73.2	78.2	69.8	72.2	54						
10/20/2016	72.4	76.1	69.8	72	54						
10/21/2016	72.5	76.2	69.5	70.9	56						
10/22/2016	69.4	72.4	68.1	68.8	60						
10/23/2016	66.7	69.5	67.0	67.9	64						
10/24/2016	70.5	74.4	68.6	70.7	58						
10/25/2016	71.5	77.7	70.0	72.2	54						
10/26/2016	71.7	75.3	70.0	72.4	50						
10/27/2016	72.4	75.8	69.7	71.8	53						
10/28/2016	71.2	74.3	69.5	71.9	60						
Project Limits ³	80	80	80	80							

NOTES:

¹ Temperatures were collected using Log Tag HAXO-8 Humidity and Temperature Recorder thermometers.

°F = degrees Fahrenheit

² Temperatures were measured at National Oceanic and Atmospheric Administration weather station

Baring, WA US GHCND:USC00450456.

³ Project limits are defined in Addendum No. 3 to 2010 Compliance Monitoring Plan Update dated February 17, 2016,

prepared by Farallon Consulting, L.L.C. The basement was generally unoccupied prior to August 24, 2016. Project limits apply only to occupied rooms.

Air-Phase Petroleum Hydrocarbons 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

				Methyl tert							Aliphotics C5	Aliphatics, C9	Aromatics,	
			1,3-Butadiene ¹	butyl ether	Benzene ¹	Toluene	Ethylbenzene	Xylene, p,m	Xylene, o	Naphthalene ¹	to C8	to C12	C9 to C10	Total APH ⁴
Sample Date	Sample No.	Sample Location	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$
					Occupi		line Monitoring	Data						
5/28/2015	052815-BNE	Basement - Northeast	< 0.044	<2.0	1.33	17	<2.0	6.1	<2.0	0.551	320	420	<10	773.0
5/28/2015	052815-BSW	Basement - Southwest	< 0.044	<2.0	.447	150	<2.0	<4.0	<2.0	0.267	150	92	<10	402.7
5/28/2015	052815-BC	Basement - Central	<0.044	<2.0	1.04	230	2.2	6.7	2.4	0.54	250	340	<10	838.9
5/28/2015 5/28/2015	052816-1NE 052815-1SW	First Floor - Northeast First Floor - Southwest	<0.044 <0.044	<2.0 <2.0	0.492	12 12	<2.0 <2.0	5.2 4.7	2 <2.0	0.461 0.094	120 170	280 250	<10 <10	427.2 445.3
5/28/2015	052815-1C	First Floor- Central	<0.044	<2.0	0.321	9	<2.0	<4.0	<2.0	0.461	1/0	150	<10	270.2
5/28/2015	052815-2NE	Second Floor - Northeast	<0.044	<2.0	1.63	12	<2.0	6.2	2	0.456	170	270	<10	469.3
5/28/2015	052815-2SW	Second Floor - Southwest	< 0.044	<2.0	0.470	4.7	<2.0	<4.0	<2.0	0.467	83	100	<10	198.6
	Project Action Lim	its ($\mu g/m^3$)	0.083 ²	9.6 ²	0.32^{2}	2,290 ²	460 ²	46 ²	46²	1.4 ²	No CL	ARC criteria av	ailable	1,346 ³
						Weekly Mon								_,,_
6/15/2016	BASE_061516	Room B10	< 0.044	< 0.70	0.572 ⁵	4.7	< 0.90	1.8	< 0.90	< 0.262	110	300	< 10	423.5
6/15/2016	FIRST 061516	Room 170	< 0.044	< 0.70	0.895 ⁵	8.1	< 0.90	3.5	1.0	< 0.262	110	220	< 10	349.4
6/15/2016	SECOND_061516	Outside Room 210	< 0.044	< 0.70	1.36 ⁵	13	1.4	5.9	1.7	< 0.262	160	320	<10	508.8
6/22/2016	BASE_062216	Room B10	< 0.044	< 0.70	3.14 ⁵	36	3.9	16	4.8	0.477	310	180	16	570.7
6/22/2016		Room 170	< 0.044	< 0.70	2.12 ⁵	28	2.9	12	3.6	0.456	220	190	13	472.4
6/22/2016	SECOND_062216	Outside Room 210	< 0.044	< 0.70	1.66 ⁵	22	2.2	9	2.8	0.425	180	180	10	408.4
6/28/2016	BASE_062816	Room B10	< 0.044	< 0.70	0.907 ⁵	11	2	8.1	2.7	0.76	170	220	< 10	420.8
6/28/2016	FIRST_062816	Room 170	< 0.044	< 0.70	0.518 ⁵	5.1	< 0.90	2.8	0.94	0.32	46	100	< 10	161.5
6/28/2016	SECOND_062816	Outside Room 210	< 0.044	< 0.70	0.457 ⁵	3.7	< 0.90	2.3	<0.90	< 0.262	37	73	<10	122.8
7/6/2016	BASE_070616	Room B10	< 0.044	< 0.70	0.748 ⁵	7	1.1	4.2	1.8	0.514	58	39	< 10	117.7
7/6/2016	FIRST_070616	Room 170	< 0.044	< 0.70	1.22 ⁵	13	1.9	7.3	2.70	0.446	94	24	< 10	149.9
7/6/2016	SECOND_070616		< 0.044	< 0.70	1.22 1.23 ⁵	13	1.7	6.9	2.70	0.404	76	24	<10	128.4
7/13/2016	BASE_071316	Room B10	< 0.044	< 0.70	0.885 ⁵	9.7	1.1	4.3	1.3	0.398	55	150	<10	228.0
7/13/2016	FIRST_071316	Room 170	< 0.044	< 0.70	0.703 ⁵	7.8	< 0.90	3.1	0.91	0.309	34	68	< 10	120.6
7/13/2016	SECOND_071316	Outside Room 210	< 0.044	< 0.70	1.44 ⁵	14	1.7		2.1	0.309	79	120	<10	231.0
7/20/2016	BASE_072016	Room B10	< 0.044	< 0.70	0.623 ⁵	6.9	1.1	3.7	1.12	0.409	34	<10	< 10	58.2
7/20/2016	FIRST_072016	Room 170	< 0.044	< 0.70	0.556 ⁵	6.4	1.1	4.3	1.12	0.409	22	<10	< 10	46.5
7/20/2016	SECOND_072016	Outside Room 210	< 0.044	< 0.70	0.530	22	1.5	5.3	1.24	0.320	59	<10 80	<10	176.1
7/27/2016	BASE_072716	Room B10	< 0.044	< 0.70	< 0.319	2.1	< 0.90	< 0.90	< 0.90	<0.262	<10	< 10	<10	170.1
	FIRST_072716	Room 170		< 0.70	< 0.319				< 0.90		< 10			
7/27/2016	Î		< 0.044	< 0.70	< 0.319	1.4	< 0.90	1.1	< 0.90	<0.262		< 10	< 10	19.0
7/27/2016	SECOND_072716		< 0.044		< 0.319 0.454 ⁵	1.6	< 0.90	1.4		<0.262	13	< 10	< 10	27.5
8/4/2016	BASE_080416	Room B10	< 0.044	< 0.70		5.1	< 0.90	3.0	0.92	< 0.262	25	80	< 10	120.4
8/4/2016	FIRST_080416	Room 170	< 0.044	< 0.70	0.3295	2.8	< 0.90	1.6	< 0.90	< 0.262	16	23	< 10	50.1
8/4/2016	SECOND_080416	Outside Room 210	< 0.044	< 0.70	0.428 ⁵	5.5	< 0.90	3.1	1.0	< 0.262	27	38	<10	81.0
8/10/2016	BASE_081016	Room B10	< 0.044	< 0.70	0.949 ⁵	13	1.7	7.3	2.3	0.283	65	62	< 10	157.9
8/10/2016	FIRST_081016	Room 170	< 0.044	< 0.70	0.974 ⁵	15	2	8.1	2.50	0.372	78	130	< 10	242.3
8/16/2016	BASE_081616	Room B10	< 0.044	< 0.70	< 0.319	< 0.90	< 0.90	< 0.90	< 0.90	< 0.262	< 10	< 10	< 10	17.4
8/16/2016	FIRST_081616	Room 170	< 0.044	< 0.70	< 0.319	1.8	< 0.90	< 0.90	< 0.90	< 0.262	13	14	< 10	36.2
8/16/2016	SECOND_081616	Outside Room 210	< 0.044	< 0.70	< 0.319	< 0.90	< 0.90	< 0.90	< 0.90	< 0.262	< 10	11	< 10	23.4
	Project Action Lim	its ($\mu g/m^3$)	0.083 ²	9.6 ²	0.32^{2}	2,290 ²	460²	46²	46 ²	1.4 ²	No CL	ARC criteria av	ailable	1,346³

Air-Phase Petroleum Hydrocarbons 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Sample Date	Sample No.	Sample Location	1,3-Butadiene ¹ (µg/m ³)	Methyl tert butyl ether (µg/m ³)	Benzene ¹ (µg/m ³)	Toluene (µg/m ³)	Ethylbenzene (µg/m ³)	Xylene, p,m (µg/m ³)	Xylene, o (µg/m ³)	Naphthalene ¹ (µg/m ³)	Aliphatics, C5 to C8 (µg/m ³)	Aliphatics, C9 to C12 (µg/m ³)	Aromatics, C9 to C10 (μg/m ³)	Total APH ⁴ (µg/m ³)
8/24/2016	082416-BNE	Basement - Northeast	< 0.044	< 0.70	0.377 ⁵	2.5	< 0.90	1.4	< 0.90	< 0.262	23	130	< 10	163.7
8/24/2016	082416-BSW	Basement - Southwest	< 0.044	< 0.70	< 0.319	1.4	< 0.90	< 0.90	< 0.90	< 0.262	16	45	< 10	69.4
8/24/2016	082416-BC	Basement - Central	< 0.044	< 0.70	< 0.319	1.4	< 0.90	< 0.90	< 0.90	< 0.262	12	300	< 10	320.4
8/24/2016	082416-1SE	First Floor - Southeast	< 0.044	< 0.70	< 0.319	1.2	< 0.90	0.92	< 0.90	< 0.262	23	110	< 10	141.7
8/24/2016	082416-1C	First Floor - Central	< 0.044	< 0.70	< 0.319	1.8	< 0.90	2	< 0.90	0.482	28	160	< 10	198.7
8/24/2016	082416-2SE	Second Floor - Southeast	< 0.044	< 0.70	0.393 ⁵	6.8	0.9	3.7	2.3	3.44	62	240	11	330.9
9/1/2016	090116-BNE	Basement - Northeast	< 0.044	< 0.70	< 0.319	< 0.90	< 0.90	< 0.90	< 0.90	0.288	28	120	< 10	155.6
9/1/2016	090116-BSW	Basement - Southwest	< 0.044	< 0.70	< 0.319	2.3	< 0.90	< 0.90	< 0.90	< 0.262	20	14	< 10	43.3
9/1/2016	090116-BC	Basement - Central	< 0.044	< 0.70	< 0.319	1.6	< 0.90	< 0.90	< 0.90	< 0.262	21	< 10	< 10	34.6
9/1/2016	090116-1SE	First Floor - Southeast	< 0.044	< 0.70	< 0.319	1.8	< 0.90	0.92	< 0.90	< 0.262	37	36	< 10	82.3
9/1/2016	090116-1C	First Floor - Central	< 0.044	< 0.70	0.371 ⁵	3.2	< 0.90	1.5	< 0.90	< 0.262	38	< 10	< 10	54.5
9/1/2016	090116-2SE	Second Floor - Southeast	< 0.044	< 0.70	0.783 ⁵	10	1.0	4.2	1.2	< 0.262	85	49	< 10	156.7
9/8/2016	090816-BNE	Basement - Northeast	0.051	< 0.70	< 0.319	1.9	< 0.90	< 0.90	< 0.90	< 0.262	46	< 10	< 10	59.9
9/8/2016	090816-BSW	Basement - Southwest	< 0.044	< 0.70	< 0.319	1.9	< 0.90	1.0	< 0.90	< 0.262	< 10	< 10	< 10	19.4
9/8/2016	090816-BC	Basement - Central	< 0.044	< 0.70	0.355 ⁵	4.3	< 0.90	2.6	0.91	0.467	36	10	< 10	60.4
9/8/2016	090816-1SE	First Floor - Southeast	< 0.044	< 0.70	0.498 ⁵	6.3	0.97	3.7	1.2	0.425	45	54	< 10	117.4
9/8/2016	090816-1C	First Floor - Central	< 0.044	< 0.70	0.591 ⁵	7.3	1.0	4.4	1.4	0.367	41	19	< 10	80.4
9/8/2016	090816-2SE	Second Floor - Southeast	< 0.044	< 0.70	0.901 ⁵	12	1.7	7.3	2.3	0.451	56	22	< 10	108.0
9/15/2016	091516-BNE	Basement - Northeast	0.044	< 0.70	0.450 ⁵	1.3	< 0.90	< 0.90	< 0.90	< 0.262	12	30	< 10	50.6
9/15/2016	091516-BSW	Basement - Southwest	< 0.044	< 0.70	0.454 ⁵	3.4	< 0.90	1.7	< 0.90	< 0.262	13	31	< 10	55.9
9/15/2016	091516-BC	Basement - Central	< 0.044	< 0.70	0.530 ⁵	5.9	< 0.90	2.7	1	0.451	26	210	< 10	252.4
9/15/2016	091516-1SE	First Floor - Southeast	< 0.044	< 0.70	0.716 ⁵	7.7	0.98	3.7	1.2	0.378	29	170	< 10	219.0
9/15/2016	091516-1C	First Floor - Central	< 0.044	< 0.70	0.815 ⁵	7.6	0.96	3.8	1.2	0.362	34	36	< 10	90.1
9/15/2016	091516-2SE	Second Floor - Southeast	< 0.044	< 0.70	0.824 ⁵	8.4	1.1	4.5	1.3	0.378	34	44	< 10	99.9
9/22/2016	092216-BNE	Basement - Northeast	< 0.044	< 0.70	0.348 ⁵	2.4	< 0.90	1.5	< 0.90	< 0.262	29	< 10	< 10	44.6
9/22/2016	092216-BSW	Basement - Southwest	< 0.044	< 0.70	0.693 ⁵	6.3	< 0.90	3.4	1.0	< 0.262	46	13	< 10	76.3
9/22/2016	09216-BC	Basement - Central	< 0.044	< 0.70	0.866 ⁵	8.2	1.1	4.3	1.4	0.278	64	13	< 10	98.5
9/22/2016	092216-1SE	First Floor - Southeast	< 0.044	< 0.70	0.719 ⁵	6.3	0.91	3.4	1.0	0.299	51	27	< 10	96.0
9/22/2016	092216-1C	First Floor - Central	< 0.044	< 0.70	0.764 ⁵	9.5	1.1	4.1	1.5	0.278	62	30	< 10	114.6
9/22/2016	092216-2SE	Second Floor - Southeast	< 0.044	< 0.70	1.21 ⁵	13	1.6	6.7	2.0	0.309	87	17	< 10	134.2
9/28/2016	092816-BNE	Basement - Northeast	< 0.044	< 0.70	< 0.319	5.8	< 0.90	0.99	< 0.90	< 0.262	11	34	< 10	58.3
9/28/2016	092816-BSW	Basement - Southwest	< 0.044	< 0.70	0.390 ⁵	7.1	< 0.90	1.7	< 0.90	< 0.262	13	17	< 10	45.6
9/28/2016	092816-BC	Basement - Central	< 0.044	< 0.70	0.591 ⁵	14	< 0.90	3.0	1.0	0.320	32	24	< 10	80.7
9/28/2016	092816-1SE	First Floor - Southeast	< 0.044	< 0.70	0.569 ⁵	12	< 0.90	2.9	0.94	0.288	33	38	< 10	93.5
9/28/2016	092816-1C	First Floor - Central	< 0.044	< 0.70	0.572 ⁵	14	< 0.90	2.8	0.94	0.294	55	25	< 10	104.4
9/28/2016	092816-2SE	Second Floor - Southeast	< 0.044	< 0.70	0.773 ⁵	22	0.95	3.7	1.2	< 0.262	50	18	< 10	102.1
10/5/2016	100516_BNE	Basement - Northeast	0.044	< 0.70	0.562 ⁵	4.4	< 0.90	2.6	< 0.90	< 0.262	38	16	< 10	67.9
10/5/2016	100516_BSW	Basement - Southwest	< 0.044	< 0.70	0.652 ⁵	6.0	1.1	4.2	1.3	0.273	32	16	< 10	66.9
10/5/2016	100516_BC	Basement - Central	< 0.044	< 0.70	0.895 ⁵	8.5	1.5	6.2	2.0	0.388	50	21	< 10	95.8
10/5/2016		First Floor - Southeast	< 0.044	< 0.70	0.671 ⁵	5.6	1.2	4.7	1.4	0.262	49	16	< 10	84.2
10/5/2016	100516_1C	First Floor - Central	< 0.044	< 0.70	0.987 ⁵	10	2.0	8.5	2.5	< 0.262	88	11	< 10	128.5
10/5/2016	100516_2SE	Second Floor - Southeast	< 0.044	< 0.70	1.25 ⁵	14	2.6	11	3.3	0.357	96	17	< 10	150.9
	Project Action Lim		0.083 ²	9.6 ²	0.32^{2}	$2,290^2$	460 ²	46 ²	46 ²	1.4 ²		ARC criteria av		1,346 ³

Air-Phase Petroleum Hydrocarbons 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Sample Date	Sample No.	Sample Location	1,3-Butadiene ¹ (µg/m ³)	Methyl tert butyl ether (µg/m ³)	Benzene ¹ (µg/m ³)	Toluene (µg/m ³)	Ethylbenzene (µg/m ³)	Xylene, p,m (µg/m ³)	Xylene, o (µg/m ³)	Naphthalene ¹ (µg/m ³)	Aliphatics, C5 to C8 (µg/m ³)	Aliphatics, C9 to C12 (µg/m ³)	Aromatics, C9 to C10 (µg/m ³)	Total APH ⁴ (µg/m ³)
10/12/2016	101216_BNE	Basement - Northeast	0.10	< 0.70	0.834 ⁵	3.5	< 0.90	1.7	< 0.90	< 0.262	28	18	< 10	58.4
10/12/2016	101216_BSW	Basement - Southwest	0.077	< 0.70	0.799 ⁵	6.2	< 0.90	2.2	< 0.90	< 0.262	25	18	< 10	58.6
10/12/2016	101216_BC	Basement - Central	0.10	< 0.70	0.910⁵	5.4	< 0.90	2.7	0.91	0.262	28	25	< 10	69.0
10/12/2016	101216_1SE	First Floor - Southeast	0.047	< 0.70	0.559 ⁵	3.3	< 0.90	1.7	< 0.90	< 0.262	< 10	15	< 10	31.9
10/12/2016	101216_1C	First Floor - Central	< 0.044	< 0.70	0.821 ⁵	6.8	< 0.90	3.6	1.1	< 0.262	34	19	< 10	71.3
10/12/2016	101216_2SE	Second Floor - Southeast	0.075	< 0.70	1.05 ⁵	7.9	1.0	4.1	1.3	< 0.262	35	21	< 10	76.8
11/10/2016	111016_BNE	Basement - Northeast	< 0.044	< 0.70	1.26 ⁵	7.4	0.90	3.7	1.2	< 0.262	59	15	< 10	93.9
11/10/2016	111016_BSW	Basement - Southwest	< 0.044	< 0.70	1.23 ⁵	7.3	< 0.90	3.2	1.1	0.330	92	110	< 10	221.0
11/10/2016	111016_BC	Basement - Central	< 0.044	< 0.70	1.37 ⁵	7.5	1.0	4.1	1.3	0.294	62	13	< 10	95.9
11/10/2016	111016_1SE	First Floor - Southeast	< 0.044	< 0.70	1.50 ⁵	8.1	1.1	4.3	1.4	< 0.262	73	13	< 10	107.9
11/10/2016	111016_1C	First Floor - Central	< 0.044	< 0.70	1.55 ⁵	9.0	1.2	4.8	1.5	0.288	77	12	< 10	112.7
11/10/2016	111016_2SE	Second Floor - Southeast	< 0.044	< 0.70	1.62 ⁵	9.4	1.2	5.2	1.6	0.325	75	11	< 10	110.7
12/15/2016	121516_BNE	Basement - Northeast	0.060	< 0.70	0.604 ⁵	2.8	< 0.90	1.6	< 0.90	< 0.262	< 10	< 10	< 10	21.8
12/15/2016	121516_BSW	Basement - Southwest	< 0.044	< 0.70	0.543 ⁵	2.0	< 0.90	1.4	< 0.90	< 0.262	< 10	12	< 10	27.3
12/15/2016	121516_BC	Basement - Central	0.051	< 0.70	0.617⁵	2.7	< 0.90	1.4	< 0.90	< 0.262	10	< 10	< 10	26.1
12/15/2016	121516_1SE	First Floor - Southeast	0.044	< 0.70	0.607 ⁵	3.0	< 0.90	1.5	< 0.90	< 0.262	12	< 10	< 10	28.5
12/15/2016	121516_1C	First Floor - Central	0.053	< 0.70	0.696 ⁵	4.3	< 0.90	2.2	< 0.90	0.273	14	< 10	< 10	32.7
12/15/2016	121516_2SE	Second Floor - Southeast	0.053	< 0.70	0.802 ⁵	5.3	< 0.90	2.8	0.96	< 0.262	37	< 10	< 10	57.8
NOTES	Project Action Lim	tits ($\mu g/m^3$)	0.083 ²	9.6 ²	0.32^{2}	2,290 ²	460 ²	46 ²	46 ²	1.4 ²	No CL	ARC criteria av	ailable	1,346 ³

NOTES:

< denotes compounds not detected at concentrations exceeding laboratory reported detection limits (RDLs).

¹ Laboratory RDLs for these compounds were attained using TO-15 SIM analysis to lower the detection limits below CLARC criteria.

² CLARC Method B values for protection of all populations.

³ Risk-based cleanup level established for Town of Skykomish and private property during this project by the Washington State Department of Ecology. Project

limits are defined in Addendum No. 3 to 2010 Compliance Monitoring Plan Updated dated February 17, 2015, prepared by Farallon Consulting, L.L.C.

⁴ Total APH is derived by summing all individual compounds and ranges, excluding 1,3-butadiene. Compounds not detected at concentrations exceeding the laboratory RDL are added at half of the RDL.

⁵ Benzene is included as part of the analysis for total APH, although benzene is not expected as a constituent of concern.

APH = air-phase petroleum hydrocarbons CLARC = Washington State Department of Ecology Cleanup Levels and Risk Calculations $\mu g/m^3 =$ micrograms per cubic meter SIM = Selective Ion Monitoring

Table 7Photoionization Detector Summary Data2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

			Average	Peak
Location	Week No.	Date	Data Value (ppm)	Data Value (ppm)
	1	6/15/2016	1	3
	2	6/22/2016	1	1
	3	6/29/2016	2	2
	4	7/6/2016	1	2
	5	7/13/2016	1	1
	6 7	7/20/2016	2	2 2
Room B10	8	7/27/2016	0	
(Cafeteria)	<u> </u>	8/3/2016 8/10/2016	0	0
(Caleteria)	10	8/10/2016	0	1
	10	8/24/2016	0	2
	11	8/31/2016	1	2
	12	9/7/2016	1	2
	13	9/14/2016	1	2
	15	9/21/2016	1	2
	16	9/28/2016	1	2
	1	6/15/2016	1	2
	2	6/22/2016	2	2
	3	6/29/2016	2	2
	4	7/6/2016	2	2
	5	7/13/2016	2	2
	6	7/20/2016	2	2
	7	7/27/2016	2	2
Room B70	8	8/3/2016	2	2
(Kindergarten)	9	8/10/2016	2	2
	10	8/17/2016	2	8 ²
	11	8/24/2016	2	2
	12	8/31/2016	2	2
	13	9/7/2016	2	2
	14	9/14/2016	2	2
	15	9/21/2016	2	2
	16	9/28/2016	2	2
Project Action Limits	3		5	5

Table 7Photoionization Detector Summary Data2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

			Average	Peak
Location	Week No.	Date	Data Value (ppm)	Data Value (ppm)
	1	6/15/2016	0	1
	2	6/22/2016	1	1
	3	6/29/2016	1	1
	4	7/6/2016	1	1
	5	7/13/2016	1	1
	6	7/20/2016	1	1
	7	7/27/2016	0	1
Room 170	8	8/3/2016	0	6.3 ¹
(Office)	9	8/10/2016	0	1
	10	8/17/2016	0	8 ²
	11	8/24/2016	0	2
	12	8/31/2016	1	2
	13	9/7/2016	1	1
	14	9/14/2016	1	2
	15	9/21/2016	1	1
	16	9/28/2016	1	1
Project Action Limits	3		5	5

NOTES:

Measurements were obtained using a RAEGuard 2 Fixed photoionization detector, except in Rooms 170 and B10 from August 1 through 26, 2016 when a MiniRae 3000 was used as a temporary replacement.

ppm = parts per million

¹ Local exceedance due to carpet cleaning scheduled by Skykomish School.

² Local exceedance due to gym floor polishing scheduled by Skykomish School.

³ Project action limits are based on a 5-minute consecutive reading at or exceeding the action limit. Project limits are defined in Addendum No. 3 to 2010 Compliance

Monitoring Plan Updated dated February 15, 2015, prepared by Farallon Consulting, L.L.C.

Table 8Soil Vapor Extraction Operational Data2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

			So	il Vapor Extractio	on Flow Data			1
Date	SVE-1,2 FLOW / FE301 (scfm)	SVE-3 FLOW / FE302 (scfm)	SVE-4 FLOW / FE303 (scfm)	SVE-5 FLOW / FE304 (scfm)	SVE-6 HORZ FLOW / FE305 (scfm)	System Flow (scfm)	System Vacuum (IWC)	Total APH Removal (lbs)
6/15/2016	87.15	REPLACE	14.82	70.03	68.04	240.041	42	(105)
6/20/2016	>95	49	0	>95	>95	>3341	60	1
6/24/2016	92.58	>99	0	>99	>99	>3891	59	0.33
6/27/2016	92.9	>99	65.5	>99	>99	>4551	49	
6/28/2016	92.8	>99	31	>99	>99	>4201	49	
7/6/2016	40.5	93.3	>99	>99	>99	>4301	40	
7/11/2016	70.2	-0.007	>99	>99	>99	>3671	32	
7/12/2016	>99	-0.008	>99	>99	80.4	>3771	31	
7/13/2016	83.6	>99	>99	>99	>99	>4791	32	
7/14/2016	85.5	>99	>99	>99	>99	>4811	32	1
7/15/2016	81.4	>99	>99	>99	>99	>4771	32	
7/20/2016	37.05 ²	115.18 ²	148.19 ²	128.33 ²	137.29 ²	566.04 ²	NM	
7/22/2016	19.79 ²	116.77 ²	153.24 ²	131.92 ²	136.91 ²	558.63 ²	33.6	
7/26/2016	10	>99	>99	>99	>99	>4061	32	
7/27/2016	15.7	>99	>99	>99	>99	>4111	34	
8/1/2016	20	>99	>99	>99	>99	>4161	34	
8/2/2016	16.5	>99	>99	>99	>99	>4121	34	2.16
8/3/2016	15	>99	>99	>99	>99	>4111	34	
8/4/2016	94.3	>99	>99	>99	>99	>4901	33	
8/5/2016	20.56	>99	>99	>99	>99	>4161	34	
8/8/2016	92.98	>99	>99	>99	>99	>4881	38	
8/9/2016	92.9	>99	>99	>99	>99	>4881	30	
8/10/2016	151.24 ²	122.5 ²	157.75 ²	133.92 ²	143.8 ²	709.21 ²	30	
8/11/2016	93.1	>99	>99	>99	>99	>4891	29]
8/12/2016	93.2	>99	>99	>99	>99	>4891	29	
8/15/2016	93.1	>99	>99	>99	>99	>4891	29	
8/16/2016	93.2	>99	>99	>99	>99	>4891	29	
8/17/2016	93.2	>99	>99	>99	>99	>4891	26	
8/18/2016	93.3	>99	>99	>99	>99	>4891	26	
8/19/2016	93	>99	>99	>99	>99	>4891	28	
8/22/2016	93.1	>99	>99	>99	>99	>4891	30	
8/23/2016	93.2	>99	>99	>99	>99	>4891	30	
8/24/2016	93.2	>99	>99	>99	>99	>4891	30	
8/25/2016	93.3	>99	>99	>99	>99	>4891	30	
8/26/2016	93.5	>99	>99	>99	>99	>4891	30	2.12
8/29/2016	>99	>99	>99	>99	>99	>4951	31	
8/30/2016	>99	>99	>99	>99	>99	>4951	30	
8/31/2016	93.2	>99	>99	>99	>99	>4891	26	
9/1/2016	151.09 ²	106.23 ²	96.57 ²	115.08 ²	130.42 ²	599.39 ²	23	
9/6/2016	93.3	>99	70.4	>99	>99	>4601	26	4
9/7/2016	93.2	>99	79.5	>99	>99	>4691	26	
9/27/2016	93	>99	>99	>99	>99	>4891	27	4
10/4/2016	92.9	>99	>99	>99	92.8	>4821	27	4
10/5/2016	179.46 ²	113.99 ²	148.19 ²	120.99 ²	91.75 ²	654.38 ²	NM	4
0/11/2016	92.9	>99	>99	>99	>99	>4881	29	4
0/12/2016	145.7 ²	108.22 ²	139.28 ²	114.79 ²	129.75 ²	637.74 ²	NM	1.98
0/18/2016	93.4	>99	>99	>99	>99	>4891	26	4
0/21/2016	173.772	108.22 ²	141.88 ²	113.182	128.33 ²	665.38 ²	NM	4
Date	93.3	>99	>99	>99	>99	>4891	26	4
0/28/2016	111.55 ²	136.62 ²	69.64 ²	117.15 ²	122.87 ²	557.83 ²	NM	
Total	NA	NA	NA	NA	NA	NA	NA	6.6

I Utal	1 11 1	1111	1111	1111	1111	1111	1111	0.0	
PSCAA ⁴								1,000	
									-

NOTES:

 1 Flow measurements collected using Dwyer MS2 Magnesense II Differential Pressure Transmitter. 2 Denotes low measurements collected manually using Dwyer 477AV Handheld Digital Manometer. 3 Total APH Removal = $\frac{Avg \ Concentration * Avg \ System \ Flow * 1440 \frac{min}{day} * Days}{45360000 \frac{ug}{lb} * 35.31 \frac{ft^3}{m^3}}$ 4 PSCAA Regulation I. 6.03 (c) (94) requires that gas or odor control be installed for any soil and groundwater remediation projects which emit >15 pounds per year of benzene or > 1,000 pound per year of toxic air contaminants. Total APH calculated as a summation of applicable TACs, which include benzene. APH = air-phase petroleum hydrocarbons IWC = inches of water column lbs = pounds NA = not applicable NM = not measured PSCAA = Puget Sound Clean Air Agency scfm = standard cubic feet per minute SVE = soil vapor extraction TACs = total aromatic compounds

1 of 1

G:\Projects\683 BNSF\683057 Skykomish School HWF Construction\Reports\2016 HWF Annual Report\Tables\Table 8- Soil Vapor Extraction Operational Data

System Influent Vapor-Phase Petroleum Hydrocarbon Concentrations 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Sample No.	Sample Date	1,3-Butadiene ¹ (µg/m ³)	Methyl tert butyl ether (µg/m ³)	Benzene ¹ (µg/m ³)	Toluene (µg/m ³)	Ethylbenzene (µg/m ³)	Xylene, p,m (µg/m ³)	Xylene, o (µg/m ³)	Naphthalene ¹ (µg/m ³)	Aliphatics, C5 to C8 (µg/m ³)	Aliphatics, C9 to C12 (µg/m ³)	Aromatics, C9 to C10 (μg/m ³)	Total APH ⁴ (µg/m ³)
SYSTEM_INF_062816	6/28/2016	< 0.044	< 0.7	< 0.319	2.3	< 0.9	(µg/m)	< 0.9	0.802	(µg / m) 120	(µg / II) 330	(µg / II) <10	461.2
SYSTEM_INF_081716			< 0.45	< 0.128	< 0.74	< 0.69	3.29	< 1.15	< 1.57	622	504	< 4.54	1,134
SYSTEM_INF_092316	9/23/2016	< 0.044	< 0.7	.537	4.3	< 0.90	3.1	1.1	1.50	200	770	< 10	986
MTCA Method B Subslab Soil	Gas Screening Level (µg/m ³) ⁵	2.78	321	10.7	76,200	15,200	1,520	1,520	2.45	90,000	4,700	6,000	NE

NOTES:

< denotes compounds not detected at concentrations exceeding laboratory reported detection limits (RDLs).

¹ Laboratory RDLs for these compounds were attained using TO-15 SIM analysis to lower the detection limits below CLARC criteria.

² CLARC Method B values for protection of all populations.

³ Risk-based cleanup level established for Town of Skykomish and private property during this project by the Washington State Department of Ecology.

⁴ Total APH is derived by summing all individual compounds and ranges, excluding 1,3-butadiene. Compounds not detected at concentrations exceeding the laboratory RDL are added at half of the RDL.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method B Cleanup and Screening Levels, Table B-1 of Appendix B of the Guidance for

Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action revised February 2016.

 $\label{eq:APH} \begin{array}{l} APH = air-phase petroleum hydrocarbons\\ CLARC = Washington State Department of Ecology Cleanup Levels and Risk Calculations\\ \mu g/m^3 = micrograms per cubic meter\\ NE = not established\\ SIM = Selective Ion Monitoring \end{array}$

Table 10 **Total Petroleum Hydrocarbon Concentrations in Process Water** 2016 Hot Water Flushing Remediation Performance Report **Skykomish School** Skykomish, Washington Farallon PN: 683-057

	DRO (mi	crograms p	er liter) ¹	ORO (m	icrograms j	per liter) ¹	Calculated	DRO (mi	icrograms j	ber liter) ¹	ORO (micrograms per liter) ¹			Calculated	DRO (micrograms per liter) ¹			ORO (micrograms per liter) ¹			Calculated
	Result	MDL	MRL	Result	MDL	MRL	NWTPH-Dx ² (µg/l)	Result	MDL	MRL	Result	MDL	MRL	NWTPH-Dx ² (µg/l)	Result	MDL	MRL	Result	MDL	MRL	NWTPH-Dx ² (µg/l)
Sample Date			LI	EAD INFLU	JENT					L	AG INFLU	ENT					L	AG EFFLU	IENT		
6/16/2016	2,100	14	100	1,100	9.3	240	3,200	150 R	14	100	< 240 R	9.3	240	R^3	140 R	14	100	1,800 R	9.3	240	R ³
6/22/2016	1,300	14	100	430	9.3	240	1,730	< 100	14	100	< 240	9.3	240	< 11.65	100	14	100	< 240	9.3	240	104.65
6/28/2016	1,400	15	110	710	9.8	250	2,110	< 110	14	110	< 240	9.4	240	< 11.7	< 110	14	110	< 240	9.4	240	< 11.7
7/13/2016	910	14	24	470	9.6	49	1,380	410	14	24	180	9.4	48	590	73	14	24	51	9.4	48	124
7/20/2016	810	14	24	320	9.6	49	1,130	280	14	24	83	9.3	48	363	73	14	24	89	9.4	48	162
7/27/2016	980	14	100	< 240	9.3	240	985	140	14	110	< 240	9.5	240	144.75	< 110	14	110	< 240	9.4	240	< 11.7
8/4/2016	630	14	24	240	9.5	48	870	57	14	24	< 48	9.3	48	61.65	44	14	24	52	9.4	48	96
8/10/2016	4,600	14	24	4,800	9.6	49	9,400	550	14	24	520	9.4	48	1,070	240	14	24	210	9.3	48	450
8/17/2016	1,000	14	110	920	9.4	240	1,920	750	14	100	850	9.3	240	1,600	210	14	100	< 240	9.3	240	214.65
8/24/2016	1,900 J	14	110	1,900 J	9.4	240	3,800	200 R	14	100	250 R	9.3	240	R^3	810 R	14	100	840 R	9.3	240	R^3
9/1/2016	950	15	110	520	9.9	250	1,470	380	14	110	< 240	9.5	240	384.75	< 110	15	110	< 260	10	260	< 12.5
9/8/2016	470	14	100	280	9.3	240	750	200	14	100	< 240	9.3	240	204.65	< 100	14	100	< 240	9.3	240	< 11.65
9/15/2016	510	14	100	370 J	9.3	240	880	220	14	110	240 J	9.4	240	460	270	14	100	< 240	9.3	240	274.65
9/22/2016	1,600	14	110	630 J	9.4	240	2,230	640	14	110	310 J	9.4	240	950	110	14	100	< 240	9.3	240	114.65
9/28/2016	440	14	100	< 240	9.3	240	444.65	< 100	14	100	< 240	9.3	240	< 11.65	< 100	14	100	< 240	9.3	240	< 11.65
10/5/2016	390	14	100	< 240	9.3	240	394.65	< 100	14	100	< 240	9.3	240	< 11.65	< 100	14	100	< 240	9.3	240	< 11.65
10/12/2016	1,500	14	100	600	9.3	240	2,100	350	14	100	< 240	9.3	240	354.65	< 100	14	100	< 240	9.3	240	< 11.65
10/21/2016	1,100	14	100	890	9.3	240	1,990	660	14	100	530	9.3	240	1,190	100	14	100	< 240	9.3	240	104.65
10/28/2016	1,300 J	14	100	490 J	9.3	240	1,790	590 J	14	100	250 J	9.3	240	840	140 J	14	100	< 240 UJ	9.3	240	144.65
Remediation 1	Level for G	roundwate	•																		477

Results in **bold** denote concentrations exceeding the site-specific TPH remediation level of 477 μ g/l.

< denotes analyte not detected at or exceeding the laboratory method detection limit listed.

¹Analyzed by Northwest Method NWTPH-Dx.

²The total NWTPH-Dx calculation uses one-half the MDL for non-detectable concentrations to derive the sum of the DRO and ORO results obtained using Northwest Method NWTPH-Dx. If either DRO or ORO was reported as a detect, the calculated total NWTPH-Dx concentration is indicated as a detect. If both DRO and ORO were reported as non-detect, the calculated total NWTPH-Dx concentration is indicated as a non-detect. Note that in some instances, data validation resulted in additional data qualification and/or updates to laboratory data. If, for example, data validation caused an update to a non-detect result value because of laboratory blank contamination and the data validator concluded that the result should be non-detect instead of detect, the laboratory-given method detection limit and reporting limit were updated to match the validated non-detect result value.

³Effluent result is significantly higher than upstream influent result. Sample container labeling error suspected between the two samples. Sample results deemed unusable and rejected.

DRO = total petroleum hydrocarbons as diesel-range organics

J = The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.

MDL = laboratory-specified method detection limit

 $\mu g/l = micrograms per liter$

MRL = laboratory-specified method reporting limit

ORO = total petroleum hydrocarbons as oil-range organics

R = rejected result

TPH = total petroleum hydrocarbons

UJ = The analyte was not detected and the reporting limit is an estimate.

NOTES:

Table 11 Weekly NAPL Recovery 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Date ¹	Week No.	NAPL Recovery (gallons)	Total NAPL Recovery (gallons)	Dissolved-Phase DRO Removed Via GAC (lbs) ²	Total Dissolved-Phase DRO Removed Via GAC (lbs)
6/15/2016	0	0	0.0	0.0	0.0
6/20/2016	1	0	0.0	4.1	4.1
6/28/2016	2	0.2	0.2	3.9	8.0
7/5/2016	3	0	0.2	0.1	8.1
7/13/2016	4	0	0.2	5.1	13.2
7/20/2016	5	0	0.2	4.5	17.7
7/27/2016	6	0.6	0.8	3.5	21.3
8/4/2016	7	1.5	2.3	3.7	25.0
8/10/2016	8	4.3	6.6	21.5	46.5
8/17/2016	9	4.4	11.0	18.1	64.5
8/24/2016	10	6.5	17.5	7.7	72.2
8/31/2016	11	7.1	24.6	4.8	77.0
9/7/2016	12	4	28.6	2.3	79.3
9/14/2016	13	4	32.6	1.3	80.6
9/21/2016	14	1.5	34.1	1.5	82.2
9/28/2016	15	2	36.1	2.1	84.3
10/5/2016	16	1.7	37.8	0.6	84.9
10/12/2016	17	2	39.8	2.1	87.0
10/19/2016	18	0.3	40.2	2.4	89.4
10/26/2016	19	0.0	40.2	3.7	93.2

NOTES:

¹The hot water flushing system was not in operation from June 25 through July 10, 2016 due to biofouling of the GAC filters. ² Dissolved-Phase DRO removal via GAC is calculated using the following formula:

(Average Lead Influent Concentration- Average Lag Effluent Concentration)*(Total Weekly Flow) * 3.78 / 453,592,000 Where Lead Influent and Lag Effluent Concentrations are from Table 10 and Weekly Flow is from Table 14.

Below is an example from Week 5:

 $\{[(1,130+1,380)/2]-[(124+162)/2]\}$ µg/L *490,651 gallons* 3.78 / 453,598,000 = 4.5 lbs

DRO = total petroleum hydrocarbons as diesel-range organics GAC = granular activated carbon lbs = pounds NAPL = nonaqueous-phase liquid

Table 12Summary Groundwater Elevations2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

Date	GWM1	GWM2	GWM3	GWM4	GWM5	GWM6	GWM7	GWM8	GWM9	GWM10	GWM11	GWM12	GWM13	GWM14	GWM15	GWM16	GWM17	GWM18	GWM19	GWM20	GWM21	Average ¹
6/15/2016 6/16/2016	917.2 917.0	917.1 916.8	917.3 917.3	917.3 917.3	917.3 917.3	917.6 917.7	917.9 917.9	917.2 917.1	<u>917.0</u> 916.9	916.7 916.8	<u>917.3</u> 917.4	916.9 916.9	917.4 917.5	918.0 918.1	917.3 917.4	917.6 917.6	916.9 916.8	917.7 917.8	<u>917.4</u> 917.3	917.3 917.2	917.3 917.4	917.3 917.3
6/17/2016	916.8	916.8	917.3	917.3	917.3	917.7	917.8	917.1	916.9	916.7	917.3	916.9	917.5	918.1	917.4	917.6	916.8	917.8	917.3	917.2	917.3	917.3
6/18/2016 6/19/2016	917.4 917.6	917.2 917.5	917.3 917.5	917.3 917.5	917.3 917.5	917.3 917.2	917.3 917.5	917.3 917.7	<u>917.4</u> 917.8	916.9 917.3	<u>917.4</u> 917.7	<u>917.1</u> 917.5	917.4 917.7	<u>918.2</u> 918.5	917.4 917.8	<u>917.7</u> 918.1	<u>917.3</u> 917.7	917.9 918.3	917.7 918.1	917.6 918.0	917.5 917.9	917.3 917.6
6/20/2016	917.3	917.2	917.4	917.4	917.4	917.5	917.8	917.4	917.3	917.0	917.5	917.1	917.6	918.3	917.6	917.9	917.2	918.1	917.7	917.6	917.6	917.5
6/21/2016 6/22/2016	916.8 916.5	916.7 916.4	917.5 917.1	917.5 917.1	917.5 917.1	918.0 917.9	918.2 918.1	<u>917.2</u> 916.7	<u>917.0</u> 916.4	917.1 916.9	918.1 917.9	<u>917.3</u> 917.0	918.2 918.1	<u>918.4</u> 918.1	917.9 917.7	<u>917.9</u> 917.7	916.8 916.3	918.2 917.9	917.4 916.9	917.4 916.8	917.7 917.5	<u>917.7</u> 917.4
6/23/2016	916.3	916.3	917.0	917.0	917.0	917.8	918.0	916.8	916.1	916.8	918.1	916.9	918.2	918.1	917.7	917.6	916.2	917.9	916.7	916.6	917.4	917.4
6/24/2016 6/25/2016	916.6 917.2	916.6 917.1	917.3 917.4	917.3 917.4	917.3 917.4	917.9 917.6	918.2 917.8	<u>917.2</u> 917.4	<u>916.6</u> 917.2	917.1 917.2	918.3 917.9	<u>917.3</u> 917.3	918.5 918.0	<u>918.3</u> 918.4	918.2 917.9	<u>918.0</u> 918.1	<u>916.8</u> 917.2	918.1 918.2	917.1 917.6	917.0 917.5	<u>917.7</u> 917.8	917.7 917.6
6/26/2016	917.2	917.1	917.4	917.4	917.4	917.0	917.8	917.4	917.2	917.2	917.9	917.3	918.0	918.3	917.5	918.1	917.2	918.2	917.8	917.3	917.6	917.6
6/27/2016	917.1	917.0	917.3	917.3	917.3	917.6	917.8	917.3	917.0	916.9	917.4	917.1	917.5	918.2	917.5	917.8	917.0	918.0	917.5	917.4	917.5	917.4
6/28/2016 6/29/2016	<u>917.2</u> 917.4	917.0 917.3	917.3 917.3	917.3 917.3	917.3 917.3	917.5 917.2	917.6 917.3	<u>917.2</u> 917.3	<u>917.1</u> 917.4	917.0 916.9	<u>917.5</u> 917.3	<u>917.1</u> 917.1	917.5 917.3	<u>918.2</u> 918.2	917.5 917.4	<u>917.8</u> 917.8	<u>917.1</u> 917.3	918.0 918.0	<u>917.4</u> 917.7	917.3 917.6	917.6 917.6	<u>917.4</u> 917.3
6/30/2016	917.4	917.3	917.2	917.2	917.2	917.1	917.3	917.3	917.4	916.9	917.3	917.1	917.3	918.2	917.4	917.8	917.3	918.0	917.7	917.6	917.5	917.3
7/1/2016 7/2/2016	917.3 917.3	917.2 917.1	917.1 917.0	917.1 917.0	917.1 917.0	917.0 916.9	917.3 917.2	917.2 917.1	<u>917.3</u> 917.1	916.8 916.6	<u>917.1</u> 917.0	916.9 916.8	<u>917.2</u> 917.0	<u>918.1</u> 918.0	917.2 917.1	<u>917.7</u> 917.5	<u>917.1</u> 917.0	917.9 917.7	917.6 917.5	917.5 917.4	<u>917.4</u> 917.2	<u>917.2</u> 917.0
7/3/2016	917.3	917.1	917.0	917.0	917.0	916.8	917.2	917.1	917.2	916.7	917.0	916.8	917.1	918.1	917.1	917.6	917.1	917.8	917.5	917.4	917.3	917.1
7/4/2016 7/5/2016	917.2 917.1	917.1 917.0	917.0 916.9	917.0 916.9	917.0 916.9	916.7 916.7	917.1 917.1	917.1 917.0	<u>917.2</u> 917.1	916.7 916.6	<u>917.0</u> 917.0	916.8 916.7	917.1 917.0	918.1 918.1	917.1 917.1	917.6 917.5	<u>917.1</u> 917.0	917.8 917.7	<u>917.5</u> 917.4	<u>917.4</u> 917.3	917.3 917.2	917.1 917.0
7/6/2016	917.0	917.0	916.8	916.8	916.8	916.6	917.0	916.9	917.0	916.5	916.8	916.6	916.9	918.0	916.9	917.5	916.9	917.6	917.4	917.2	917.1	916.9
7/7/2016 7/8/2016	917.0 917.0	916.9 917.0	916.7 916.7	916.7 916.7	916.7 916.7	916.6 916.5	917.0 917.0	916.7 916.7	916.8 916.8	916.3 916.3	916.7 916.7	916.5 916.4	916.7 916.7	917.9 917.8	916.8 916.8	917.3 917.2	916.7 916.7	917.5 917.4	917.2 917.2	917.1 917.0	916.9 916.9	916.8 916.7
7/9/2016	917.0	917.0	916.7	916.7	916.7	916.5	917.0	916.7	916.8	916.5	916.7	916.4	916.7	917.8	916.8	917.2	916.7	917.4	917.2	917.0	910.9	916.7
7/10/2016	917.1	917.0	916.7	916.7	916.7	916.5	917.0	916.8	917.0	916.5	916.8	916.6	916.9	917.8	916.9	917.4	916.8	917.6	917.3	917.2	917.1	916.8
7/11/2016 7/12/2016	916.6 915.9	916.6 916.3	916.8 916.9	916.8 916.9	916.8 916.9	917.2 918.0	917.6 918.1	916.7 916.5	<u>916.5</u> 915.7	<u>916.5</u> 916.4	<u>917.0</u> 917.3	<u>916.6</u> 916.5	917.1 917.4	<u>917.8</u> 917.8	917.1 917.3	<u>917.4</u> 917.3	<u>916.5</u> 916.2	917.6 917.5	<u>917.0</u> 916.4	916.9 916.3	917.1 917.0	917.0 917.1
7/13/2016	915.7	916.2	916.9	916.9	916.9	918.0	918.2	916.6	915.8	916.6	917.7	916.7	917.8	917.9	917.5	917.5	916.4	917.7	916.4	916.4	917.2	917.3
7/14/2016 7/15/2016	915.6 915.7	916.0 915.3	916.7 916.6	916.7 916.6	916.7 916.6	917.7 917.4	918.0 917.4	916.2 916.1	<u>915.7</u> 915.8	<u>916.5</u> 916.4	<u>917.7</u> 917.5	<u>916.7</u> 916.6	<u>917.8</u> 917.7	<u>917.9</u> 917.8	917.5 917.3	<u>917.5</u> 917.4	916.1 915.7	917.7 917.6	<u>916.3</u> 916.3	916.3 916.3	917.1 917.0	<u>917.1</u> 916.9
7/16/2016	915.6	915.1	916.4	916.4	916.4	917.2	916.8	916.0	915.6	916.3	917.5	916.4	917.5	917.3	917.2	917.4	915.5	917.5	916.1	916.1	916.9	916.6
7/17/2016	915.6	915.1	916.2	916.2 916.4	916.2	916.9 916.7	916.8 917.0	915.7	<u>915.4</u> 916.1	916.2 916.3	917.3 917.0	916.3 916.4	917.4 917.0	917.6	917.0 916.8	917.2 917.2	915.4	917.3 917.4	915.9	916.0 916.5	916.8 916.9	916.5
7/18/2016 7/19/2016	916.3 915.7	916.1 915.3	916.4 916.3	916.3	916.4 916.3	916.7	917.0	916.2 ND	916.1	916.3	917.0	916.6	917.6	917.7 917.8	910.8	917.2	916.0 915.6	917.4	916.5 916.2	916.3	916.9	916.6 916.8
7/20/2016	915.8	915.4	916.2	916.2	916.2	916.7	916.8	ND	915.8	916.4	917.3	916.5	917.4	917.8	917.0	917.3	915.6	917.5	916.2	916.2	917.0	916.7
7/21/2016 7/22/2016	916.3 915.7	916.2 915.5	916.4 916.2	916.4 916.2	916.4 916.2	916.6 916.7	917.0 917.6	ND ND	<u>916.3</u> 915.7	916.3 916.5	<u>916.8</u> 917.5	<u>916.4</u> 916.6	916.9 917.5	<u>917.8</u> 918.0	916.7 917.1	<u>917.3</u> 917.4	<u>916.2</u> 915.5	917.5 917.6	916.7 916.3	916.6 916.4	916.9 917.1	916.6 916.8
7/23/2016	915.7	915.4	916.4	916.4	916.4	916.8	917.4	ND	915.9	916.5	917.4	916.6	917.5	918.0	916.8	917.5	915.0	917.6	916.3	916.4	917.1	916.7
7/24/2016 7/25/2016	915.7 915.9	915.4 915.7	916.3 916.3	916.3 916.3	916.3 916.3	916.8 916.8	<u>917.3</u> 917.0	ND ND	<u>915.7</u> 915.8	916.3 916.2	<u>917.2</u> 917.0	<u>916.4</u> 916.3	<u>917.2</u> 917.0	<u>917.8</u> 917.8	916.5 916.4	<u>917.3</u> 917.2	<u>914.8</u> 915.3	917.5 917.4	916.2 916.2	916.2 916.2	916.9 916.8	916.5 916.5
7/26/2016	916.3	916.2	916.4	916.4	916.4	916.6	917.0	ND	916.3	916.2	916.7	916.4	916.8	917.8	916.7	917.3	916.1	917.5	916.7	916.7	916.9	916.6
7/27/2016 7/28/2016	915.7 915.8	915.5 915.5	916.2 916.3	916.2 916.3	916.2 916.3	916.7 916.8	917.5 917.3	ND ND	<u>915.7</u> 915.7	916.2 916.2	917.1 917.0	<u>916.4</u> 916.3	<u>917.2</u> 917.1	<u>917.8</u> 917.8	916.6 916.5	<u>917.3</u> 917.2	<u>915.0</u> 915.1	917.4 917.4	916.2 916.3	916.2 916.2	916.9 916.8	916.6 916.5
7/29/2016	915.7	915.4	916.2	916.2	916.2	916.8	917.3	ND	915.5	916.0	916.9	916.2	917.0	917.6	916.3	917.1	914.7	917.3	916.1	916.0	916.7	916.4
7/30/2016 7/31/2016	915.8 915.6	915.5 915.3	916.1 916.1	916.1 916.1	916.1 916.1	916.7 916.7	917.1 917.4	ND ND	<u>915.5</u> 915.5	<u>915.9</u> 916.0	916.7 916.9	916.1 916.2	916.8 916.9	917.5 917.6	916.2 916.2	<u>917.0</u> 917.1	<u>915.0</u> 914.7	917.2 917.3	916.0 916.0	916.0 916.1	916.6 916.7	<u>916.3</u> 916.3
8/1/2016	915.6	915.2	916.1	916.1	916.1	916.7	917.4	ND	915.5	916.0	916.9	916.2	917.0	917.6	916.3	917.1	914.8	917.3	916.0	916.1	916.7	916.3
8/2/2016	915.6	915.2	916.1	916.1	916.1	916.6	917.2	ND	915.6	916.0	917.0	916.2	917.2	917.7	916.3	917.2	914.9	917.3	916.1	916.2	916.7	916.4
8/3/2016 8/4/2016	915.8 915.8	915.4 915.5	916.2 916.1	916.2 916.1	916.2 916.1	916.6 916.5	917.2 917.2	ND ND	<u>915.9</u> 915.7	916.2 915.9	917.1 916.8	916.4 916.1	917.3 917.0	917.8 917.6	916.4 916.1	<u>917.3</u> 917.1	<u>915.2</u> 914.8	917.5 917.2	916.3 916.2	916.3 916.2	916.8 916.6	<u>916.5</u> 916.3
8/5/2016	915.8	915.5	916.0	916.0	916.0	916.4	917.1	ND	915.6	915.7	916.6	915.9	916.8	917.4	915.8	917.0	914.7	917.0	916.0	916.0	916.4	916.1
8/6/2016 8/7/2016	915.7 915.7	915.5 915.5	915.9 915.9	915.9 915.9	915.9 915.9	916.4 916.3	917.1 917.0	ND ND	<u>915.5</u> 915.5	915.7 915.6	916.7 916.6	<u>915.9</u> 915.8	916.9 916.8	<u>917.4</u> 917.3	915.8 915.8	917.0 916.9	<u>914.7</u> 914.6	917.1 917.0	915.9 915.9	916.0 915.9	916.4 916.3	<u>916.1</u> 916.1
8/8/2016	915.8	915.3	915.9	915.9	915.9	916.2	917.0	ND	915.6	915.7	916.6	915.9	916.8	917.4	915.8	917.0	914.7	917.0	916.0	916.0	916.4	916.1
8/9/2016 8/10/2016	915.7 915.6	915.3 915.2	915.9 915.9	915.9 915.9	915.9 915.9	916.2 916.2	917.2 917.2	916.5 916.3	<u>915.6</u> 915.5	916.0 915.9	916.8 916.9	916.1 916.1	917.0 917.1	<u>917.4</u> 917.4	916.0 916.1	<u>917.1</u> 917.1	<u>914.7</u> 914.8	917.2 917.2	916.0 915.9	916.1 916.1	916.6 916.5	<u>916.3</u> 916.3
8/11/2016	915.6	915.3	915.8	915.8	915.8	916.1	916.9	916.2	915.6	915.9	916.8	916.0	917.0	917.4	916.2	917.1	914.9	917.2	915.9	916.1	916.5	916.2
8/12/2016 8/13/2016	915.5 915.7	915.1 915.1	915.8 915.8	915.8 915.8	915.8 915.8	916.1 916.0	917.0 916.6	916.0 916.1	915.4 915.6	915.8 915.7	916.8 916.7	916.0 915.9	917.0 916.9	917.4 917.3	916.2 916.0	917.0 916.9	914.8 914.7	917.1 917.1	915.8 915.8	916.0 916.0	916.4 916.4	916.2 916.1
8/13/2016	915.7	915.1	915.8	915.8	915.8	916.0 915.8	916.6 915.9	916.2	915.6	915.7 915.7	916.7 916.6	915.9	916.9	917.3	916.0	916.9	914.7	917.1 917.0	915.8	916.0	916.4	916.0
8/15/2016	915.6	915.1	915.6	915.6	915.6	915.7	916.0	916.1	915.6	915.7	916.6	915.9	916.9	917.3	916.0	917.0	914.8	917.1	915.9	916.0	916.4	916.0
8/16/2016 8/17/2016	915.5 915.4	915.1 915.1	915.5 915.5	915.5 915.5	915.5 915.5	915.6 915.6	916.2 916.8	916.0 915.8	<u>915.5</u> 915.3	915.7 915.6	916.6 916.5	915.8 915.8	916.9 916.8	917.2 917.2	915.9 916.0	916.9 916.9	<u>914.8</u> 914.8	917.1 917.0	915.8 915.6	916.0 915.9	916.3 916.3	<u>915.9</u> 916.0
8/18/2016	915.4	915.1	915.5	915.5	915.5	915.6	917.1	915.8	915.3	915.6	916.2	915.7	916.4	917.1	916.0	916.8	914.8	917.0	915.6	915.9	916.2	915.9
8/19/2016 8/20/2016	915.5 916.1	915.3 916.0	915.6 915.7	915.6 915.7	915.6 915.7	915.7 915.6	916.9 916.0	915.8 916.1	<u>915.4</u> 915.9	915.5 915.4	<u>916.2</u> 915.7	<u>915.7</u> 915.5	<u>916.4</u> 915.8	<u>917.0</u> 916.9	916.0 915.8	916.8 916.7	<u>915.1</u> 915.7	916.9 916.8	915.7 916.2	915.9 916.0	916.2 916.0	<u>915.9</u> 915.8
8/21/2016	915.7	915.5	915.5	915.5	915.5	915.5	916.6	915.9	915.6	915.3	915.8	915.5	915.9	916.8	915.9	916.6	915.2	916.7	915.9	915.9	916.0	915.8
<u>8/22/2016</u> 8/23/2016	915.4 915.4	915.1 915.1	915.5 915.5	915.5 915.5	915.5 915.5	915.6 915.7	917.1 917.2	915.8 915.8	<u>915.4</u> 915.4	<u>915.5</u> 915.6	916.1 916.2	<u>915.7</u> 915.7	<u>916.3</u> 916.4	<u>917.0</u> 917.0	916.0 916.1	<u>916.8</u> 916.9	<u>914.8</u> 914.9	916.9 917.0	<u>915.7</u> 915.7	915.9 915.9	916.1 916.2	915.9 916.0
8/23/2016	915.4	915.1	915.5	915.5	915.5	915.7	917.3	915.8	915.4	915.6	916.2	915.7	916.4	917.0	916.1 916.2	916.9	914.9	917.0	915.7	915.9	916.2	916.0
8/25/2016	915.4	915.1	915.5	915.5	915.5	915.8	917.2	915.7	915.3	915.4	916.1	915.6	916.3	916.9	915.9	916.7	914.8	916.9	915.6	915.8	916.1	915.9

Table 12Summary Groundwater Elevations2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

Number Openal Openal<																							
Norm Norm <th< th=""><th></th><th></th><th>GWM2</th><th>GWM3</th><th></th><th>GWM5</th><th>GWM6</th><th>GWM7</th><th>GWM8</th><th></th><th></th><th>GWM11</th><th>GWM12</th><th>GWM13</th><th>GWM14</th><th></th><th>GWM16</th><th>GWM17</th><th>GWM18</th><th>GWM19</th><th>GWM20</th><th>GWM21</th><th>9</th></th<>			GWM2	GWM3		GWM5	GWM6	GWM7	GWM8			GWM11	GWM12	GWM13	GWM14		GWM16	GWM17	GWM18	GWM19	GWM20	GWM21	9
Norm Norm <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
Norm Norm <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
Physe Physe <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>915.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>915.9</td><td></td></th<>										915.0												915.9	
Partial Olis Partial Olis Partial Olis Partial Partia Partia Partia <td></td>																							
No. No. <td></td>																							
-c-ber 954 954 954 954 954 954 954 954 955<																							
Space Space <th< td=""><td></td><td></td><td>915.5</td><td></td><td></td><td></td><td></td><td>917.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>916.8</td><td></td><td></td><td></td><td>916.9</td><td>915.8</td><td>915.9</td><td>916.3</td><td></td></th<>			915.5					917.0							916.8				916.9	915.8	915.9	916.3	
Deck 11.1 PSC 040.4 <td></td>																							
PERCE 0.5. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
bit																							
bc/bch acc BC2 BC3 BC3 BC3 BC4 BC4<																							
bit																							
Nick Nick <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
Photom 9152 9152 9152 9152 9152 9153 9153 9154 9155 9145 9145 9145 9145 9155 9145 9155 9145 9155 <												916.0		916.1	916.8			914.9				916.0	
Picture 612 612 612 612 612 612 612 612 612 614 612 612 612 614 614 612																							
Ph12a 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 915.4 915.2 <th< td=""><td>******</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	******																						
PhTCP UFA UFA <thufa< th=""> <thufa< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thufa<></thufa<>																							
Ph2026 9164 9163 9164 9164 9164 9164 9164 9165 9173 9163 9163 9164 9173 9163 9163 9164 9173 9163 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9163 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9183 9183 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9183 9173 9173 9184 <	9/17/2016				915.2		915.0	915.5	915.8	915.4			915.6	916.2		915.7				915.7	915.7		
Space 98.5 98.6 98.6 98.6 97.7 98.8 97.7 98.8 97.7 98.8 97.7 97.8 97.2 97.6 97.6 97.7 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.7 97.6 97.7 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
Ph22016 94.66 94.62 94.62 94.62 94.63 94.63 94.64 94.63 94.73 94.73 94.75 94.75 94.75 94.75 94.65 94.64 94.62 94.64 94.75 94.63 94.75 94.63 94.75 94.63 94.75 94.63 94.75 94.64 94.75 94.64 94.75 94.64 94.75 94.64 94.75 94.64 94.75 94.64 94.75 94.64 <																							
b2x2bit b15																							
b b 0157 0153 0153 0154 0154 0154 0154 0154 0154 0155 0154 0154 0155 0154 0154 0155 0154 0154 0154 0154 0155 0155 0154 0154 0155 0154 0154 0154 0154 0155 0154 0154 0154 0155 0154 0155 0154 0154 0155 0154 0154 0155 0154 0154 0154<		916.0	915.9	915.9			915.9	916.3	916.4	915.9	915.9	916.7		916.8	917.5	916.7		915.8		916.3	916.2	916.5	916.3
925016 9157 9154 9158 9157 9154 9164 9164 9167 9164 9164 9163 9174 9157 9154 9164 9164 9163 9157 925016 9153 9154 9154 9154 9153 9153 9153 9154 9151 9153																							
92/2016 9154 9154 9156 9156 9153 9154 9154 9153 9153 9154 9154 9164 9153 9155 9153 9154 9155 9155 9155 <																							
9 10 9																							
99/2016 915.5 915.4 915.4 915.4 915.5 915.5 915.5 915.4 915.4 915.4 915.5 915.5 915.4 915.4 915.4 915.5 915.4 915.4 915.5 915.4 915.5 915.4 915.4 915.4 915.5 915.4 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.4 915.6 915.4 915.7 915.7 915.7 915.4 915.7 915.7 915.7 915.7 915.8 916.6 916.7 915.7 <																							
992010 915.3 915.3 915.3 915.3 915.4 915.4 916.1 917.1 915.8 916.8 916.9 915.8 915.8 915.6 915.5 1017.0116 915.4 915.2 915.2 915.2 915.5 915.4 915.4 915.1 915.1 915.4 915.4 915.4 915.4 915.1 915.4 915.4 915.4 915.4 915.1 915.4 915.5 915.7 915.4 915.7 915.4 915.5 915.7 915.4 915.5 915.4 915.5 915.5 915.4 915.5 915.5 915.4 915.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
101/2016 915.4 915.2 915.2 915.2 915.3 915.3 915.5 916.0 917.1 915.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.8 916.7 916.4 916.8 915.7 916.4 916.7 916.4 916.8 915.7 916.6 916.7 916.6 916.7 916.6 916.7 916.7 916.6 916.7 916.6 916.7 916.6 916.7 916.7 916.6 916.7																							
1002/016 915.4 915.3 915.1 915.2 915.2 915.2 915.2 915.2 915.3 915.4 915.3 915.4 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3 916.3	******																						
104/2016 915.4 915.1 915.1 915.1 915.2 915.2 915.2 915.4 915.4 915.4 915.4 915.4 915.4 915.4 915.4 915.4 915.5 915.4 915.5 915.4 915.5 915.4 915.5 915.4 915.5 915.4 915.5 915.7 915.4 915.5 915.7 915.4 915.5 915.7 915.4 915.5 915.7 915.5 915.7 915.4 915.5 915.7 915.4 915.5 915.7 915.4 915.5 915.7 915.4 915.5 915.7 916.4 916.3 917.7 917.4 917.5 917.5 917.5 917.5 917.5 917.5 917.7 917.4																							
1052016 9153 9153 9151 9154 9154 9153 9153 9153 9154 9153 9154 9153 9154 9153 9154 9153 9154 9153 9154 9153 9154 9154 9154 9154 9154 9154 9154 9153 9153 9153 9154 9157 9175 <																							
107.2016 915.4 915.3 915.1 915.8 916.5 915.7 916.3 915.9 916.3 916.7 916.3 916.3 916.7 915.7 916.3 916.3 916.7 916.3 916.7 916.3 916.7 915.7 915.7 916.4 916.3 917.3 917.7 917.4 916.6 916.6 916.7 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.6 917.7 917.8 918.1 917.7 918.1 917.7 918.1 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 918.1 918.1 918.1 918.7 917.4 917.6 918.4 917.7 918.1 918.7 917.4 917.8 918.4 917.7 917.4 917.8 918.3 917.7 918.3																							
Ibb/2016 916.3 916.4 916.4 916.0 916.2 917.3 917.3 917.0 917.0 917.4 917.5 916.3 916.2 917.4 917.3 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 917.5 916.5 916.5 916.5 916.5 916.5 916.5 916.5 916.5 916.5 916.5 916.5 917.5 917.5 916.6 917.7 917.8 917.5 917.5 916.5 917.7 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8 917.8																							
109/2016 917.8 917.6 916.8 916.8 916.9 916.9 916.9 916.9 917.5 917.5 917.1 917.2 917.4 918.2 918.4 917.9 918.4 917.4 918.4 917.5 917.4 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.5 917.5 917.5 917.5 917.6 918.4 917.7 917.5 917.4 917.5 917.5 917.6 918.4 917.7 917.5 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 916.8 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.6 918.4 917.7 917.8 917.6 918.4 917.7 917.8 917.8 917.8																							
10102016 917.3 917.1 916.8 916.8 916.8 916.8 916.7 917.3 917.3 917.4 917.3 917.4 917.5 917.4 917.5 917.4 917.4 917.4 917.5 917.4 917.6 917.4 917.5 917.4 917.6 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 917.4 917.5 918.4																							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																							
1015/2016 918.9 918.2 918.1 918.2 918.2 917.6 918.0 917.7 918.0 918.4 918.3 918.5 918.4 918.3 918.3 918.3 918.3 918.4 918.1 918.1 918.1 918.1 918.4 918.1 918.4 917.5 918.4 918.0 918.3 918.7 918.4 918.3 918.7 918.4 918.1 917.5 917.8 918.2 918.3 918.7 918.4 918.1 917.5 918.1 918.2 918.3 918.7 918.3 918.7 918.7 918.4 918.3 917.7 918.4 918.7 918.7 918.4 918.0 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.3 917.8 917.8 917.8 917.8 917.8 917.8 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4 918.4																							
10/17/2016918.6918.0918.0917.9918.5918.4917.5918.1917.6918.2918.2918.3917.9918.7918.3918.3918.3918.3918.1918.210/18/2016917.8917.7917.8917.8917.6918.0918.4917.9917.9918.7918.4918.0918.4918.0918.4918.0918.1918.0918.4918.0918.4918.0918.4918.0918.1918.0918.4918.0918.1918.0918.4918.0918.1918.0918.4918.0918.1918.0918.4918.0918.1918.0918.1918.0918.4918.0918.1918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0918.0 <td>10/15/2016</td> <td>919.0</td> <td></td> <td></td> <td>918.2</td> <td></td> <td></td> <td></td> <td>918.5</td> <td></td> <td>917.6</td> <td>918.0</td> <td>917.7</td> <td></td> <td></td> <td></td> <td>918.5</td> <td></td> <td>918.9</td> <td></td> <td></td> <td></td> <td></td>	10/15/2016	919.0			918.2				918.5		917.6	918.0	917.7				918.5		918.9				
101/8/2016918.0917.9917.8917.8917.7918.2918.4917.9917.9918.7918.0918.8919.0918.4918.8917.8917.8917.8918.3918.2918.3918.2918.3919.0918.3919.0918.4918.8917.8 <td>*******</td> <td></td>	*******																						
10/19/2016917.8917.8917.8917.8917.8917.8917.8917.8917.8917.8917.8917.8917.8918.3919.3918.3918.3918.3919.3918.3918.3918.3919.3918.3919.3918.3918.3918.3919.3918.3 <td></td>																							
102/2016920.3920.2919.9919.9919.9919.9919.7920.3920.4920.2919.2920.2920.4920.2920.7919.9921.2920.5920.4920.0920.110/2/2016919.0918.7918.7918.7918.7918.7918.7918.7918.7918.7918.7918.7918.7918.7919.0917.0917.0917.0917.0917.0917.0918.1918.0918.1918.0918.1918.0917.0917.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																							
10/22/2016919.0918.7918.7918.7918.7918.6919.1919.2918.8919.2918.3919.2919.3919.1919.4919.4918.6919.9919.1919.0919.0919.0919.010/23/2016918.1918.0917.8917.8917.8917.8917.8918.3917.9917.7918.6917.8918.3918.3918.7917.6919.1919.1918.2918.1918.2918.1918.210/24/2016917.6917.4917.3917.3917.4917.8917.5917.1917.2918.1917.3918.2918.3918.3918.3918.3918.3918.3917.6918.1916.9918.5917.4917.3917.6917.610/24/2016917.3917.1917.2917.4917.5917.6917.1917.3918.3918.3918.3918.3918.3918.3917.6918.1916.9918.5917.4917.3917.6917.610/25/2016917.3917.1917.1917.4917.4917.4917.4917.3918.3918.3918.3918.3918.3918.3917.6918.5918.5918.5918.5917.6918.5917.6918.5918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6918.6 <td>10/20/2016</td> <td>919.6</td> <td>919.4</td> <td>919.1</td> <td>919.1</td> <td>919.1</td> <td>918.8</td> <td>919.3</td> <td>919.6</td> <td>919.3</td> <td>919.6</td> <td>920.0</td> <td>919.7</td> <td>920.0</td> <td>920.2</td> <td>919.6</td> <td>920.5</td> <td>919.3</td> <td>920.7</td> <td>919.6</td> <td>919.5</td> <td>920.3</td> <td>919.5</td>	10/20/2016	919.6	919.4	919.1	919.1	919.1	918.8	919.3	919.6	919.3	919.6	920.0	919.7	920.0	920.2	919.6	920.5	919.3	920.7	919.6	919.5	920.3	919.5
10/23/2016918.1918.0917.8917.8917.8917.8917.8917.7918.6917.8918.6918.8918.3918.7917.6919.1918.2918.1918.4918.210/24/2016917.6917.4917.3917.3917.3917.3917.3917.3917.3917.3917.3917.3917.3917.3917.3917.3917.4917.3917.1917.2918.1918.3918.3918.4918.3918.4918.3918.4918.3918.5917.4918.3917.6918.1918.5917.4917.3917.4917.6917.4917.3917.4917.3917.4917.3917.4917.3917.4917.3917.4917.3917.4917.3917.4918.3918.4917.6918.3917.6918.3917.6918.3917.6918.3917.4918.3917.4918.3917.6918.3917.6918.3917.6918.3917.4918.3917.6918.3917.6918.3917.6918.3917.6918.3917.4918.3917.4918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3917.6918.3 <td></td>																							
10/24/2016917.6917.4917.3917.3917.3917.4917.8917.5917.1917.2918.1917.6918.1916.9918.5917.4917.3917.8917.610/25/2016917.3917.1917.2917.2917.2917.3917.5917.6917.1917.3918.3918.4916.6918.1916.9918.5917.4917.3917.8917.610/25/2016917.3917.1 <td></td>																							
10/25/2016917.3917.1917.2917.2917.2917.3917.5917.6917.1917.3917.3917.4918.3917.4918.3918.4917.6918.3917.6918.5917.5917.4918.0917.610/26/2016917.3917.1917.1917.1917.1917.1917.2917.4917.4917.0917.3918.4917.5918.3918.3917.6918.3917.6918.3917.6918.4917.3917.2918.0917.510/27/2016917.9917.5917.5917.5917.5917.5917.5917.5917.5917.5917.5918.0918.7918.1918.0918.1918.0917.4918.0917.510/27/2016917.6917.5917.5917.5917.5917.5917.5917.5917.5917.5917.5918.0918.7918.1918.0918.1918.0917.5918.0917.510/28/2016917.6917.5917.5917.5917.5917.5917.6917.5918.5918.6917.9918.5917.3918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.5918.0917.6918.0917.6918.0917.6918.0917.5 <td></td>																							
10/27/2016 917.9 917.7 917.5 917.5 917.5 917.5 917.5 918.0 917.6 918.7 918.1 918.6 917.4 919.0 917.8 917.8 918.5 918.0 10/28/2016 917.6 917.5 917.5 917.5 917.4 917.8 917.5 917.5 917.4 917.8 917.5	10/25/2016									917.1	917.3												
10/28/2016 917.5 917.5 917.5 917.5 917.4 917.8 917.5 917.6 918.5 917.7 918.5 917.8 917.3 918.2 917.3 10/29/2016 917.3 917.2 917.2 917.2 917.2 917.3 917.5 917.4 917.5 917.4 918.5 917.4 918.5 917.4 918.5 917.4 918.5 917.4 918.5 917.4 918.5 917.4 918.5 917.4 918.5 917.5 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.5 917.4 918.5 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 918.4 917.6 917.6 917.6																							
10/29/2016 917.3 917.2 917.2 917.2 917.3 917.5 917.6 917.4 918.3 917.5 918.4 917.6 918.2 917.5 918.5 917.4 918.0 917.6 10/30/2016 917.4 917.2 917.1 917.3 917.4 918.3 917.5 918.4 917.6 918.2 917.0 918.5 917.4 918.0 917.6 10/30/2016 917.4 917.2 917.4 917.3 916.9 917.7 917.1 917.2 917.9 918.4 917.6 918.2 917.5 917.4 918.0 917.6 10/30/2016 917.4 917.1 917.3 916.9 917.7 917.1 917.7 918.0 917.2 917.1 917.6 917.3																							
						-																	
		917.4	917.2	917.1	917.1	917.1	917.2	917.4	917.3	916.9	916.9	917.7	917.1	917.7	918.0	917.2	917.9	916.8	918.1	917.2	917.1	917.6	917.3

<u>NOTES</u>: Values provided as daily average at each GWM.

Elevation is given in feet above mean sea level.

¹Average based only on GWMs 6 ,7, 8, 9, 11, 13, 15, and 17.

GWM = groundwater monitoring well

Table 13Summary Groundwater Temperatures2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

																							Treatment
Date	GWM1	GWM2	GWM3	GWM4	GWM5	GWM6	GWM7	GWM8	GWM9	GWM10	GWM11	GWM12	GWM13	GWM14	GWM15	GWM16	GWM17	GWM18	GWM19	GWM20	GWM21	Average ¹	Zone Average ²
6/15/2016	49.0	49.2	53.7	53.7	53.7	55.0	54.0	52.5	52.1	48.7	52.1	49.0	52.7	50.2	50.9	48.2	50.4	52.3	52.1	52.3	50.6	51.8	53.8
6/16/2016	50.2	50.0	55.0	55.0	55.0	55.3	54.0	54.7	51.8	48.9	52.2	49.1	52.8	50.4	50.9	48.2	50.7	52.4	52.2	52.1	50.6	52.3	54.7
6/17/2016	56.2	53.7	57.8	57.8	57.8	57.2	54.3	58.4	51.3	48.9	52.3	49.3	53.8	50.4	50.9	48.0	51.1	52.5	52.2	52.0	50.6	53.9	56.7
6/18/2016 6/19/2016	58.8 58.3	57.0 58.0	59.8 61.1	59.8 61.1	59.8 61.1	61.8 63.8	56.2 57.9	57.8 58.5	52.9 54.7	48.9 48.9	52.8 52.7	49.3 49.3	56.5 57.0	50.5 50.5	51.0 51.3	48.2 48.4	50.4 50.5	52.6 52.3	52.3 52.4	52.0 52.3	50.7 50.7	55.5 56.3	58.6 60.0
6/20/2016	57.8	57.8	62.4	62.4	62.4	64.8	59.3	60.1	56.1	48.9	52.7	49.3	56.3	50.6	51.2	48.6	50.5	52.5	52.4	52.6	50.7	56.7	61.4
6/21/2016	58.7	62.0	64.0	64.0	64.0	67.8	61.5	60.1	53.3	49.1	53.6	49.5	57.6	50.7	51.2	48.4	55.6	52.5	52.6	52.4	50.6	58.1	63.1
6/22/2016	60.2	69.9	66.9	66.9	66.9	74.5	69.3	59.3	50.7	49.4	54.0	49.5	69.8	50.7	51.4	48.6	64.3	52.5	52.5	51.7	50.5	62.3	67.7
6/23/2016	65.0	63.3	69.5	69.5	69.5	81.0	80.0	58.0	52.8	49.5	54.7	49.7	74.0	50.7	51.2	48.6	64.9	52.7	52.5	51.5	50.5	64.5	73.0
6/24/2016	69.5	53.4	71.6	71.6	71.6	85.4	87.7	57.8	66.4	49.5	55.1	50.0	78.4	50.7	51.6	48.7	54.5	52.7	52.5	51.4	50.5	66.0	77.0
6/25/2016 6/26/2016	67.4 66.0	55.5 60.4	73.0 72.7	73.0 72.7	73.0 72.7	88.0 87.1	93.2 93.3	58.0 58.3	61.1 60.1	49.5 49.4	55.6 56.5	50.9 51.8	79.4 75.8	50.7 50.7	52.1 52.2	48.9 48.9	52.8 53.0	52.7 52.7	52.5 52.5	51.5 52.1	50.6 50.9	66.3 66.3	79.7 79.6
6/27/2016	66.4	57.8	73.0	73.0	73.0	86.3	93.0	59.7	63.7	49.5	57.2	51.7	72.3	50.7	52.2	48.9	53.0	52.7	52.7	52.6	50.9	66.2	79.0
6/28/2016	64.0	56.3	72.6	72.6	72.6	84.8	92.9	60.4	57.0	49.7	57.8	51.3	70.8	50.8	52.3	48.9	52.2	52.9	52.7	52.1	50.8	64.8	79.4
6/29/2016	62.3	60.0	70.9	70.9	70.9	81.4	90.8	60.4	57.6	49.5	58.5	51.1	70.3	50.9	52.6	48.9	52.5	52.9	52.8	52.4	51.1	64.6	77.5
6/30/2016	62.0	60.9	70.6	70.6	70.6	80.3	89.0	60.8	59.9	49.6	59.1	51.1	69.2	50.9	52.7	48.9	52.7	52.9	52.9	52.8	51.2	64.7	76.7
7/1/2016	61.0	61.0	70.6	70.6	70.6	80.0	87.6	61.2	61.3	49.6	59.5	51.0	68.4	50.9	52.9	48.9	52.8	52.9	53.0	53.0	51.3	64.6	76.3
7/2/2016	61.0	60.7 60.0	70.6	70.6 70.3	70.6	79.7 79.0	86.3	61.4 61.7	62.2	49.6 49.6	59.8	50.9 50.9	67.7 67.2	51.0 51.1	53.0 53.1	48.9 48.9	52.9 52.9	53.0 53.1	53.1 53.1	53.2 53.3	51.3 51.4	64.5 64.2	75.8 75.3
7/3/2016 7/4/2016	60.1 60.0	60.0	70.3 70.4	70.3	70.3	79.0	85.2 84.3	61.7	62.6 62.8	49.6	60.0 60.1	50.9	66.7	51.1	53.2	48.9	52.9	53.1	53.2	53.4	51.4	64.2	75.0
7/5/2016	60.0	60.0	70.4	70.4	70.4	79.0	83.4	62.0	63.0	49.7	60.2	50.7	66.4	51.2	53.3	48.9	52.9	53.2	53.2	53.5	51.4	64.0	74.8
7/6/2016	59.9	60.0	70.1	70.1	70.1	78.1	82.6	62.2	63.0	49.8	60.3	50.7	66.1	51.3	53.4	49.0	52.9	53.2	53.3	53.6	51.6	63.8	74.3
7/7/2016	59.2	60.0	70.1	70.1	70.1	78.0	81.8	62.3	63.0	49.8	60.3	50.7	65.8	51.3	53.6	49.1	52.9	53.3	53.4	53.8	51.6	63.7	74.0
7/8/2016	59.0	60.0	70.2	70.2	70.2	78.0	81.0	62.4	63.0	49.8	60.2	50.7	65.6	51.4	53.7	49.1	52.9	53.4	53.4	53.9	51.7	63.6	73.8
7/9/2016	59.0	60.0	70.2	70.2	70.2	78.0	80.3	62.4	59.6	49.8	60.2	50.7	65.7	51.5	53.8	49.2	53.0	53.4	53.6	54.0	51.8	63.2	73.6
7/10/2016 7/11/2016	59.0 60.6	60.0 55.6	70.0 70.0	70.0 70.0	70.0 70.0	77.4 77.0	80.0 79.1	62.6 63.1	60.9 63.2	49.8 49.9	<u>60.1</u> 60.1	50.6 50.7	65.4 64.8	51.6 51.7	53.9 53.8	49.3 49.4	53.1 52.8	53.5 53.6	53.7 53.8	54.1 54.2	51.8 51.7	63.2 63.0	73.3 73.1
7/12/2016	60.6	51.5	68.6	68.6	68.6	73.7	75.8	63.5	63.8	50.2	60.6	50.7	65.1	51.7	53.6	49.5	52.0	53.7	53.8	53.1	51.7	62.0	71.0
7/13/2016	69.0	52.6	66.1	66.1	66.1	67.7	71.4	64.4	57.4	50.5	60.8	50.8	66.6	51.8	53.8	49.5	52.2	53.8	53.9	52.7	51.6	61.6	67.8
7/14/2016	88.7	63.2	68.8	68.8	68.8	73.6	75.8	63.9	55.5	50.8	61.2	51.1	69.6	51.8	54.2	49.5	52.6	53.8	54.0	52.5	51.6	65.8	71.1
7/15/2016	88.2	111.9	76.6	76.6	76.6	87.9	84.8	65.4	53.7	51.2	61.6	51.5	72.8	51.8	54.7	49.6	53.3	53.9	54.1	52.5	51.7	73.4	79.4
7/16/2016	98.5	131.0	85.7	85.7	85.7	90.0	93.6	81.4	53.7	51.8	61.6	51.8	76.2	52.0	55.4	49.6	54.3	54.0	54.1	52.5	51.8	79.6	88.3
7/17/2016	102.1	130.6	81.1	81.1 79.9	81.1	84.7	100.0	77.5 77.5	53.8	52.6	61.6	52.2	79.7	52.0	56.4	49.6	55.3	54.0	54.1	52.5	51.8	80.2	87.4 87.7
7/18/2016 7/19/2016	67.1 86.7	98.4 123.2	79.9 88.0	88.0	79.9 88.0	82.3 88.0	103.2 105.6	ND	54.1 53.9	52.5 53.8	62.1 62.4	52.5 52.7	82.2 81.5	52.0 52.0	57.8 58.2	49.7 49.8	55.9 57.1	54.0 54.0	54.1 54.1	52.7 52.7	51.9 51.8	74.1 79.6	96.8
7/20/2016	95.4	123.2	93.4	93.4	93.4	93.4	103.0	ND	54.9	54.8	63.3	52.9	87.2	52.0	59.3	49.8	59.3	54.0	54.1	52.7	51.8	82.5	100.8
7/21/2016	78.5	95.8	93.4	93.4	93.4	93.4	108.1	ND	61.6	54.1	64.6	53.3	90.0	52.0	60.7	49.8	61.6	54.1	54.3	53.1	52.0	79.4	100.7
7/22/2016	97.4	108.8	98.5	98.5	98.5	98.5	111.2	ND	72.7	55.6	65.5	53.4	88.4	52.0	61.4	50.0	68.7	54.1	54.3	53.1	52.0	85.8	104.9
7/23/2016	95.5	121.0	105.7	105.7	105.7	105.7	116.5	ND	56.6	56.1	66.7	53.6	93.1	52.2	63.0	50.0	65.8	54.1	54.3	52.9	52.0	87.1	111.1
7/24/2016	97.5	120.3	109.6	109.6	109.6	109.6	119.7	ND	57.4	56.6	67.9	53.9	96.7	52.2	64.8	50.0	62.0	54.1	54.4	52.9	52.1	88.5	114.7
7/25/2016 7/26/2016	79.3 72.0	105.8 99.5	110.2 102.0	110.2 102.0	110.2 102.0	110.2 102.0	121.0 116.0	ND ND	57.6 60.5	56.8 55.7	69.3 70.6	54.2 54.3	100.1 99.8	52.2 52.3	66.7 68.3	50.2 50.2	64.8 76.2	54.2 54.3	54.5 54.5	53.0 53.4	52.2 52.3	86.1 85.0	115.6 109.0
7/27/2016	80.9	97.3	94.4	94.4	94.4	94.4	106.0	ND	57.2	56.6	70.9	54.2	99.2	52.3	69.4	50.2	76.8	54.3	54.5	53.2	52.3	83.6	100.2
7/28/2016	93.4	116.3	96.4	96.4	96.4	96.4	104.0	ND	59.9	57.2	71.6	54.2	101.9	52.5	70.5	50.4	78.7	54.3	54.6	53.1	52.3	88.1	100.2
7/29/2016	107.2	120.9	110.7	110.7	110.7	110.7	109.3	ND	60.9	58.2	72.1	54.4	103.1	52.5	71.9	50.5	74.4	54.3	54.7	53.3	52.3	92.3	110.0
7/30/2016	94.6	115.4	117.3	117.3	117.3	117.3	116.0	ND	61.9	58.8	72.9	54.6	103.9	52.7	73.5	50.7	77.2	54.4	54.7	53.4	52.3	92.5	116.6
7/31/2016	90.0	104.7	106.4	106.4	106.4	106.4	113.3	ND	59.5	59.3	73.6	54.7	103.8	52.7	75.0	50.8	75.6	54.5	54.7	53.6	52.5	89.1	109.9
8/1/2016 8/2/2016	110.6 111.8	124.3 127.8	107.3 122.0	107.3 122.0	107.3 122.0	107.3 122.0	110.9 117.8	ND ND	62.5 62.5	60.0 61.1	74.3 74.9	54.9 55.0	104.9 104.7	52.9 53.0	76.3 77.5	50.9 51.1	70.2 69.8	54.5 54.6	54.9 54.9	53.7 53.8	52.5 52.7	93.5 96.5	109.1 119.9
8/2/2016	98.5	127.8	122.0	122.0	122.0	122.0	117.8	ND ND	62.5	62.0	74.9	55.0	104.7	53.0	77.5	51.1	77.4	54.0	54.9	53.8	52.7	96.5 95.7	119.9
8/4/2016	97.5	109.8	118.9	118.9	118.9	118.9	123.0	ND	62.7	61.8	77.3	55.3	98.0	53.3	79.4	51.2	80.4	54.7	55.0	53.5	52.9	94.2	123.4
8/5/2016	91.8	110.0	113.7	113.7	113.7	113.7	120.1	ND	66.0	61.7	78.5	55.4	96.6	53.4	79.9	51.4	77.8	54.8	55.1	53.7	53.0	92.7	116.9
8/6/2016	105.1	115.6	113.0	113.0	113.0	113.0	116.8	ND	67.9	61.8	79.4	55.5	95.8	53.6	80.2	51.6	74.6	54.9	55.2	54.1	53.1	94.3	114.9
8/7/2016	103.1	127.3	123.8	123.8	123.8	123.8	121.5	ND	69.7	62.1	80.3	55.6	95.8	53.8	80.5	51.7	73.1	54.9	55.3	54.2	53.3	97.2	122.6
8/8/2016	92.3	129.4	126.5	126.5	126.5	126.5	126.7	ND	68.0	62.3	81.1	55.6	97.0	53.9	80.7	51.8	74.4	55.0	55.4	53.9	53.5	97.3	126.6
8/9/2016	85.2	116.8	122.8	122.8	122.8	120.8	126.7	124.9	63.6	61.2	81.6	55.3	97.8	54.0	80.8	52.1	75.9	55.0	55.5	54.0	53.3	97.4	124.1

Table 13Summary Groundwater Temperatures2016 Hot Water Flushing Remediation Performance ReportSkykomish SchoolSkykomish, WashingtonFarallon PN: 683-057

																							Treatment Zone
Date	GWM1	GWM2	GWM3	GWM4	GWM5	GWM6	GWM7	GWM8	GWM9	GWM10	GWM11	GWM12	GWM13	GWM14	GWM15	GWM16	GWM17	GWM18	GWM19	GWM20	GWM21	Average ¹	Average ²
8/10/2016	92.5	108.7	110.9	110.9	110.9	107.5	114.3	114.4	61.8	62.7	82.5	55.6	97.2	54.2	81.1	52.3	77.1	55.1	55.6	54.8	53.4	93.7	112.0
8/11/2016	82.6	117.3	113.4	113.4	113.4	110.6	113.0	116.2	66.5	63.4	83.4	55.6	96.2	54.3	81.4	52.4	83.2	55.2	55.6	54.8	53.4	95.0	113.3
8/12/2016	80.9	118.9	119.0	119.0	119.0	115.4	116.3	122.7	77.1	64.2	83.8	55.6	95.4	54.5	81.9	52.5	82.0	55.2	55.6	55.6	53.5	97.5	118.1
8/13/2016	77.4	118.7	123.3	123.3	123.3	120.3	118.3	126.3	68.3	64.3	84.6	55.7	95.1	54.6	82.7	52.7	81.1	55.3	55.6	55.0	53.6	97.3	121.6
8/14/2016	76.2	114.0	119.1	119.1	119.1	117.1	119.0	121.2	70.7	64.7	85.3	55.7	94.9	54.7	83.7	52.8	80.8	55.4	55.7	54.7	53.8	96.3	119.1
8/15/2016 8/16/2016	75.3 72.5	111.3 109.3	115.5 113.1	115.5 113.1	115.5 113.1	112.9 110.7	<u>117.8</u> 116.0	118.0 115.6	71.9 73.2	65.2 65.8	85.7 86.1	55.8 55.8	94.4 93.8	54.8 54.9	84.7 85.7	52.9 53.1	80.5 80.2	55.4 55.4	55.8 55.9	55.1 55.6	53.9 54.0	95.2 94.3	116.2 114.1
8/17/2016	68.6	110.1	113.1	113.1	113.1	111.0	114.6	117.7	75.4	66.3	86.5	55.9	93.3	55.0	86.6	53.2	79.9	55.4	55.8	55.8	54.1	94.4	114.4
8/18/2016	66.2	106.3	113.9	113.9	113.9	112.1	112.4	115.6	76.6	66.0	86.9	55.9	92.8	55.0	87.4	53.3	80.0	55.4	55.8	55.9	54.2	93.6	113.4
8/19/2016	67.3	99.1	110.1	110.1	110.1	108.7	106.1	111.5	73.5	65.9	87.1	55.8	95.2	55.0	88.2	53.5	82.9	55.4	55.8	55.8	54.3	91.9	108.8
8/20/2016	75.7	97.8	107.8	107.8	107.8	106.4	104.2	109.2	68.5	65.0	87.4	55.8	97.2	55.2	88.7	53.7	85.1	55.4	55.9	55.0	54.4	92.0	106.6
8/21/2016	75.1	94.9	106.4	106.4	106.4	105.0	103.4	107.9	72.1	64.1	87.6	55.7	95.6	55.2	89.0	53.8	84.3	55.4	56.0	55.8	54.7	91.5	105.4
8/22/2016 8/23/2016	68.3 70.5	91.6 90.2	104.8 103.0	104.8 103.0	104.8 103.0	102.8 100.5	99.4 94.9	106.8 105.5	74.9 70.8	63.3 62.7	87.4 87.3	55.6 55.6	<u>99.5</u> 101.4	55.4 55.4	88.8 88.6	54.0 54.2	82.7 80.6	55.6 55.6	56.1 56.1	55.8 55.4	54.7 54.8	90.2 89.0	103.0 100.3
8/24/2016	77.0	89.3	103.0	103.0	103.0	97.8	91.5	103.5	68.2	63.1	87.2	55.5	101.4	55.5	88.9	54.4	79.5	55.6	56.1	55.2	54.9	88.5	98.0
8/25/2016	79.9	89.4	99.6	99.6	99.6	95.4	89.7	103.8	71.6	64.1	87.0	55.4	98.8	55.6	89.2	54.6	78.5	55.6	56.1	55.2	55.0	88.3	96.3
8/26/2016	79.5	91.3	98.7	98.7	98.7	94.0	88.9	103.3	79.0	65.2	86.7	55.4	95.4	55.7	89.6	54.8	77.7	55.6	56.1	55.4	55.0	88.5	95.4
8/27/2016	78.0	92.2	98.4	98.4	98.4	94.0	87.9	102.8	79.9	66.0	86.6	55.4	92.5	55.8	89.8	55.0	77.4	55.7	56.2	55.4	55.0	88.1	94.9
8/28/2016	78.4	91.7	98.1	98.1	98.1	94.0	87.0	102.3	77.8	66.9	86.5	55.4	90.5	55.9	89.7	55.1	77.1	55.8	56.3	55.4	55.1	87.5	94.4
8/29/2016 8/30/2016	78.0 78.0	90.6 90.0	97.9 97.6	97.9 97.6	97.9 97.6	94.0 94.0	86.1 86.0	101.7 101.1	76.6 73.8	67.3 67.4	86.4 86.2	55.5 55.6	89.0 87.8	55.9 56.1	89.5 89.1	55.3 55.4	76.8 76.5	55.8 55.8	56.3 56.3	55.4 55.4	55.2 55.3	86.9 86.3	93.9 93.7
8/31/2016	78.0	89.3	97.5	97.5	97.5	94.5	86.0	101.1	69.1	68.0	85.9	55.6	87.5	56.1	88.8	55.6	77.1	55.8	56.3	55.4	55.4	85.3	93.7
9/1/2016	74.4	88.1	97.5	97.5	97.5	95.0	86.8	100.0	69.3	67.5	85.6	55.5	86.6	56.2	88.6	55.7	78.0	55.9	56.5	55.8	55.4	85.2	93.9
9/2/2016	73.0	88.2	96.7	96.7	96.7	94.0	86.1	99.5	66.2	65.2	84.9	55.2	87.2	56.3	88.1	55.9	77.4	55.9	56.5	55.8	55.0	84.5	93.2
9/3/2016	64.0	85.6	96.2	96.2	96.2	93.5	84.5	98.9	58.3	60.3	84.3	54.7	88.0	56.4	87.6	56.0	79.4	55.9	56.5	55.6	54.2	82.4	92.3
9/4/2016	68.1	84.1	95.5	95.5	95.5	92.9	83.3	98.2	61.3	59.6	84.0	55.3	88.2	56.6	87.2	56.2	80.8	55.9	56.7	55.8	54.1	82.8	91.5
9/5/2016	71.0 72.0	83.5 83.0	94.8 94.3	94.8 94.3	94.8 94.3	92.0 91.7	82.5	97.5 97.0	67.4 63.8	63.3 65.5	83.8 83.7	55.4 55.2	88.3	56.7 56.7	87.0 86.7	56.3	79.2 77.5	56.0	56.7	55.7	54.3	83.2 82.6	90.7 90.2
9/6/2016 9/7/2016	72.0	83.0	94.5	94.5	94.5	91.7	82.0 81.8	97.0	61.9	66.2	83.4	55.2	88.3 88.2	56.8	86.4	56.3 56.3	76.4	<u>56.1</u> 56.1	56.7 56.7	55.6 55.6	54.7 54.9	82.0	<u>90.2</u> 89.7
9/8/2016	72.0	82.9	93.5	93.5	93.5	91.0	81.0	96.0	63.7	66.5	83.2	55.0	87.9	56.8	86.1	56.3	75.7	56.1	56.7	55.6	54.9	81.9	89.3
9/9/2016	72.0	82.0	93.3	93.3	93.3	91.0	81.0	95.5	61.8	66.9	83.0	55.0	87.5	56.8	85.7	56.5	75.0	56.1	56.7	55.6	54.9	81.5	89.2
9/10/2016	72.9	81.1	92.6	92.6	92.6	90.2	80.8	95.1	62.1	67.0	82.7	55.2	87.1	56.8	85.3	56.5	74.3	56.1	56.7	55.8	55.2	81.2	88.7
9/11/2016	73.0	81.0	92.3	92.3	92.3	90.0	80.0	94.6	65.7	67.1	82.5	55.2	86.7	56.8	84.9	56.5	73.7	56.1	56.7	55.8	55.2	81.2	88.2
9/12/2016	73.0 73.0	80.5 79.9	92.1 91.6	92.1 91.6	92.1 91.6	90.0 89.3	80.0 80.0	94.2 93.8	67.7 68.4	67.3 67.1	82.3 82.0	55.2 55.2	86.4 86.0	56.8 56.8	84.5 84.0	56.5 56.5	73.1 72.5	56.1 56.1	56.7 56.7	55.8 55.8	55.3 55.4	81.2 80.9	88.1 87.7
9/13/2016 9/14/2016	73.5	81.1	91.6	91.0	91.0	89.5	80.0	93.8	67.9	67.1	82.0	55.2	85.8	56.8	83.6	56.5	72.0	55.9	56.7	55.8	55.4	80.9	87.7
9/15/2016	73.0	81.1	91.5	91.5	91.5	90.0	81.0	93.0	66.9	67.1	81.4	55.2	85.6	56.8	83.1	56.5	71.5	55.9	56.7	55.8	55.2	80.7	88.0
9/16/2016	73.3	81.0	91.0	91.0	91.0	89.5	81.4	92.5	68.2	67.0	81.1	55.2	85.0	56.8	82.7	56.5	71.0	55.9	56.7	55.8	55.2	80.6	87.8
9/17/2016	65.5	80.0	90.6	90.6	90.6	89.0	82.0	92.1	64.8	64.8	80.6	54.9	84.0	56.9	82.6	56.7	71.5	55.9	56.7	55.6	55.0	79.2	87.7
9/18/2016	64.1	78.5	90.4	90.4	90.4	89.0	82.0	91.7	62.6	57.9	79.6	54.0	81.3	57.3	81.9	56.8	76.3	55.5	56.6	54.9	53.5	78.7	87.6
9/19/2016 9/20/2016	65.0	79.1 79.4	89.9 89.4	89.9 89.4	89.9 89.4	88.5 88.0	82.0 82.0	91.3 90.8	61.4 61.8	57.4 54.9	78.8 78.6	55.5 55.6	80.1 79.6	57.6 57.6	81.4 81.2	56.8 56.5	77.1 75.0	55.7 55.7	56.5 56.5	55.0 55.5	53.1 53.1	78.5 78.3	87.3 86.9
9/21/2016	66.6 68.6	79.4	89.4	89.4	89.4	88.0	82.0	90.8	63.7	54.9	78.3	55.8	79.0	57.7	81.0	56.2	73.7	55.8	56.6	56.0	53.1	78.3	86.8
9/22/2016	62.2	78.3	89.0	89.0	89.0	88.0	82.0	90.1	62.0	55.5	77.5	55.7	79.9	57.7	80.6	55.9	74.8	55.9	56.5	55.6	53.1	77.5	86.7
9/23/2016	58.9	79.0	88.4	88.4	88.4	87.2	82.0	89.7	62.2	55.1	77.2	55.7	80.1	57.7	80.3	55.6	75.5	56.0	56.3	55.1	53.5	77.2	86.3
9/24/2016	57.0	79.0	88.1	88.1	88.1	87.0	82.0	89.2	61.9	55.3	76.9	55.4	79.9	57.7	80.0	55.4	75.9	55.9	56.3	54.9	53.8	76.9	86.1
9/25/2016	58.4	79.5	87.9	87.9	87.9	87.0	82.0	88.8	61.2	56.9	76.6	55.2	79.6	57.7	79.7	55.2	75.7	55.9	56.3	54.9	54.1	76.8	85.9
9/26/2016	61.8	79.8	87.6	87.6	87.6	87.0	82.0	88.3	61.5	58.9	76.4	55.2	79.2	57.7	79.4	55.1	74.9	55.9	56.3	55.2	54.1	77.0	85.8
9/27/2016 9/28/2016	62.1 63.8	79.8 79.4	86.9 86.7	86.9 86.7	86.9 86.7	86.1 86.0	82.0 82.0	87.8 87.3	62.4 63.2	60.3 61.2	76.1 75.8	55.2 55.2	78.9 78.5	57.7 57.6	79.0 78.6	55.0 54.9	74.0 72.9	55.9 55.8	56.3 56.3	55.5 55.5	54.1 54.2	76.8 76.8	85.3 85.1
9/29/2016	68.5	79.4	86.4	86.4	86.4	86.0	82.0	86.9	64.4	62.0	75.5	55.0	78.2	57.5	78.2	54.8	72.9	55.8	56.3	55.4	54.3	70.8	85.0
9/30/2016	71.3	79.0	85.8	85.8	85.8	85.2	82.0	86.4	65.5	62.7	75.3	55.0	77.9	57.4	77.8	54.7	71.2	55.7	56.1	55.2	54.3	77.2	84.5
10/1/2016	70.0	78.9	85.5	85.5	85.5	85.0	82.0	86.0	66.2	63.1	75.0	55.0	77.6	57.2	77.4	54.7	70.7	55.6	56.1	55.2	54.3	76.9	84.3
10/2/2016	70.7	78.0	85.3	85.3	85.3	85.0	82.0	85.6	67.4	63.3	74.8	54.9	77.4	57.2	77.0	54.7	70.2	55.6	56.1	55.0	54.3	76.8	84.2
10/3/2016	70.5	78.0	84.6	84.6	84.6	84.0	82.0	85.3	68.5	63.3	74.6	54.9	77.0	57.0	76.7	54.7	70.0	55.6	56.1	55.0	54.4	76.7	83.8
10/4/2016	71.9	78.0	84.4	84.4	84.4	84.0	82.0	84.9 84.5	68.1 68.2	63.3	74.4	54.8	76.7 76.2	57.0	76.4	54.7	69.8 69.5	55.6	56.1	55.0	54.5	76.6	83.6 83.5
10/5/2016	76.4	77.9	84.3	84.3	84.3	84.0	82.0	84.5	68.2	63.3	74.2	54.7	/0.2	56.8	76.1	54.7	09.5	55.4	56.1	55.0	54.4	76.9	83.5

Table 13 **Summary Groundwater Temperatures 2016 Hot Water Flushing Remediation Performance Report Skykomish School** Skykomish, Washington Farallon PN: 683-057

																							Treatment Zone
Date	GWM1	GWM2	GWM3	GWM4	GWM5	GWM6	GWM7	GWM8	GWM9	GWM10	GWM11	GWM12	GWM13	GWM14	GWM15	GWM16	GWM17	GWM18	GWM19	GWM20	GWM21	Average ¹	Average ²
10/6/2016	77.1	77.4	83.7	83.7	83.7	83.2	81.9	84.2	66.9	63.2	74.0	54.5	75.8	56.8	75.8	54.7	69.3	55.4	56.1	55.0	54.3	76.6	83.1
10/7/2016	69.2	76.3	83.4	83.4	83.4	83.0	81.0	83.9	61.9	61.1	73.8	54.0	75.2	56.7	75.6	54.7	69.2	55.3	56.1	54.8	53.8	74.9	82.6
10/8/2016	54.0	72.8	83.2	83.2	83.2	82.9	81.0	83.5	59.8	57.4	71.4	53.9	73.9	56.9	75.4	54.9	69.9	55.2	55.9	54.3	53.0	72.5	82.5
10/9/2016	57.6	71.8	82.6	82.6	82.6	82.0	81.0	83.1	59.9	54.9	67.5	55.0	71.6	57.3	75.2	54.7	68.2	54.6	56.1	54.3	52.8	71.8	82.0
10/10/2016	59.5	72.9	82.4	82.4	82.4	82.0	81.0	82.8	58.9	54.8	69.4	55.8	71.8	57.2	75.3	53.4	68.6	54.6	55.9	54.4	52.6	72.2	81.9
10/11/2016	58.8	73.7	82.2	82.2	82.2	82.0	80.1	82.4	60.0	55.0	69.8	55.9	72.3	57.2	74.8	53.5	69.2	54.9	55.6	54.3	52.6	72.3	81.5
10/12/2016	58.0	74.0	81.6	81.6	81.6	81.0	80.0	82.1	60.8	55.5	69.5	55.8	72.6	57.2	74.1	53.5	69.8	55.1	55.3	54.2	52.9	72.2	81.0
10/13/2016	54.5	72.7	81.4	81.4	81.4	81.0	80.0	81.7	59.4	55.6	68.5	55.6	72.2	57.2	73.6	53.3	70.0	55.4	55.2	54.0	52.9	71.4	80.9
10/14/2016	53.8	70.4	81.0	81.0	81.0	80.8	79.6	81.3	56.1	53.4	64.7	55.5	69.3	57.2	72.7	52.8	68.1	55.0	55.3	54.1	52.8	69.7	80.5
10/15/2016	54.5	69.7	80.3	80.3	80.3	80.0	79.0	80.6	55.1	52.0	64.2	55.9	69.4	56.9	71.9	52.9	66.9	54.4	55.4	54.5	53.0	69.1	79.9
10/16/2016	57.6	69.3	80.1	80.1	80.1	80.0	79.0	80.2	54.6	51.2	64.8	55.5	69.0	56.7	71.3	53.1	66.4	54.1	55.4	55.0	53.1	69.2	79.7
10/17/2016	58.3	69.0	79.9	79.9	79.9	80.0	79.0	79.8	54.1	51.5	62.9	54.9	68.3	56.6	70.9	53.1	66.1	54.3	55.4	55.3	53.1	68.8	79.6
10/18/2016	55.6	70.3	79.6	79.6	79.6	79.7	79.0	79.6	56.3	52.0	61.5	55.3	67.2	56.4	71.4	53.1	66.9	54.5	55.3	54.6	52.9	68.7	79.4
10/19/2016	56.0	71.0	79.2	79.2	79.2	79.1	79.0	79.3	59.8	51.8	61.4	55.4	67.2	56.3	71.4	53.0	68.4	54.5	55.1	54.1	52.7	69.3	79.1
10/20/2016	52.0	67.3	79.0	79.0	79.0	79.0	78.4	78.9	58.7	51.3	57.8	54.8	65.1	56.3	70.2	52.5	68.5	54.1	54.9	53.8	52.5	67.6	78.8
10/21/2016	53.0	67.3	78.1	78.1	78.1	78.2	78.0	78.0	57.9	51.1	57.3	54.8	66.1	56.1	68.4	53.3	65.3	53.5	54.7	53.8	52.8	67.0	78.1
10/22/2016	53.8	68.5	78.0	78.0	78.0	78.0	78.0	78.0	56.7	51.5	59.8	55.5	65.9	55.9	68.6	53.7	65.2	53.5	54.4	53.8	52.9	67.3	78.0
10/23/2016	54.0	69.5 70.2	77.9	77.9	77.9	78.0	78.0	77.8	58.6	51.6	61.1	55.6	65.6	55.8	69.2	53.8	66.0	54.1	54.2	53.5	52.8	67.8	77.9 77.8
10/24/2016 10/25/2016	55.0 55.3	70.3 71.0	77.8 77.6	77.8 77.6	77.8 77.6	78.0 77.8	77.8 77.0	77.6	60.2 60.9	51.9 52.2	62.3 63.1	55.1 54.7	65.5 65.3	55.6 55.4	69.3 69.2	53.4 53.0	67.7 69.4	54.3 54.0	54.0 53.9	53.1 52.9	52.6 52.5	68.4 68.6	77.4
10/25/2016	53.7	70.4	77.0	77.0	77.0	77.0	77.0	77.2	60.3	52.6	62.1	54.7	64.8	55.2	68.8	52.9	70.5	53.9	53.8	52.9	52.3	68.2	77.1
10/20/2016	54.1	69.6	76.8	76.8	76.8	77.0	77.0	76.7	59.4	52.0	61.0	55.3	64.3	55.0	68.4	53.0	70.3	53.6	53.6	52.8	52.5	67.8	76.9
10/28/2016	54.2	70.1	76.1	76.1	76.1	76.1	76.8	76.1	59.4	51.8	61.5	55.4	65.0	54.7	68.0	53.0	70.7	53.5	53.6	52.7	52.2	67.7	76.4
10/29/2016	54.5	70.1	75.9	75.9	75.9	76.0	76.0	75.8	57.5	52.1	62.6	54.8	65.1	54.5	67.8	52.8	70.7	53.4	53.4	52.6	52.2	67.7	75.9
10/30/2016	54.7	71.0	75.4	75.4	75.4	75.4	76.0	75.4	57.0	52.2	63.6	54.5	65.0	54.3	67.5	52.8	70.9	53.4	53.3	52.5	52.2	67.7	75.6
NOTES:	54.7	/1.0	75.4	75.4	13.4	75.4	70.0	13.4	57.0	52.2	05.0	54.5	05.0	54.5	07.5	52.7	10.2		55.5	52.5	52.2	07.7	13.0

NOTES:

Values provided as daily average at each GWM.

Temperature provided in Fahrenheit.

¹Average based only on GWMs 1,2,6,7,8,9,11,13,15, and 17.

 2 Average treatment zone temperature based on submerged wells located inside targeted treatment zone, GWM 6,7, and 8.

GWM = groundwater monitoring well

ND = no data

Table 14 Hot Water Flushing System Flow Data 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Date ¹	Week No.	Total Weekly Flow (gallons)	Average Daily Flow (gallons per minute)	Pore Volumes Treated ²	Cumulative Pore Volumes Treated
6/15/2016	0	0	0	0	0
6/22/2016	1	199,738	20	0.6	0.6
6/29/2016	2	246,408	24	0.8	1.4
7/6/2016	3	437	0	0.0	1.4
7/13/2016	4	374,858	37	1.2	2.6
7/20/2016	5	490,651	49	1.6	4.2
7/27/2016	6	473,287	47	1.5	5.8
8/4/2016	7	540,135	54	1.7	7.5
8/10/2016	8	511,242	51	1.6	9.2
8/17/2016	9	398,312	40	1.3	10.4
8/24/2016	10	364,554	36	1.2	11.6
8/31/2016	11	317,409	31	1.0	12.6
9/7/2016	12	253,906	25	0.8	13.5
9/14/2016	13	236,736	23	0.8	14.2
9/21/2016	14	135,999	13	0.4	14.7
9/28/2016	15	200,924	20	0.6	15.3
10/5/2016	16	180,522	18	0.6	15.9
10/12/2016	17	201,968	20	0.7	16.5
10/19/2016	18	146,518	15	0.5	17.0
10/26/2016	19	254,095	29	0.8	17.8

NOTES:

¹The hot water flushing system was not in operation from June 25 through July 10, 2016 due to biofouling of the granular activated carbon filters.

 2 A pore volume has been defined as the volume of water in the saturated portion of the aquifer that contains contamination above allowable levels. At the School Site a pore volume consists of the footprint of the School building and approximately 20 feet adjacent to all sides of the building, with an average thickness spanning 5.5 feet from 917 ft msl (average groundwater elevation) to 911.5 ft msl (elevation of deepest contamination). See calculation below.

30,000 ft^2 * (917 ft msl - 911.5 ft msl) * .025 porosity * 7.48 gallons/ ft^3 = 310,000 gallons

Table 15 Groundwater Analytical Results for Phosphorus 2016 Hot Water Flushing Remediation Performance Report Skykomish School Skykomish, Washington Farallon PN: 683-057

Sample Location	Sample Date	Sample Identification	Analytical Results (milligrams per liter) ¹ Phosphorus
RW-1	9/15/2016	RW-1_091516	< 0.25
RW-4	10/12/2016	RW4-101216	< 0.25

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 365.1.

APPENDIX A RESPONSE TO COMMENTS

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Draft- Issued for Ecology Review dated February 23, 2017 Table of Contents, page iii	Add final version of Response to Comments matrix as an appendix to the final report and revise Table of Content accordingly.	Added Appendix A, Response to Comments. Table of Contents revis Section 1.0, second paragraph, has been revised as follows: The Draft 2016 Hot Water Flushing Remediation Performance Re has been revised to reflect the April 21, 2017 comments provided by 1 and Farallon at Farallon's office on May 8, 2017. The comments presented in Appendix A, Response to Comments.
	Revise to address the following: Make clear the 2011 Design Report contains Design Quality Objectives (DQO) that serve to identify the specific design objectives in terms of performance_requirements. DQOs are used to guide the design process by identifying the relevant_system_requirements to ensure that all elements of the design are addressed (see 2011 Design Report Section 3.2 and Table 1). Identify the two Performance Design Requirements that were not achieved in 2016. Specifically, Groundwater Recirculation and NAPL Recover did not maintain 50 GPM flow throughput during the low groundwater period of late summer; and Subsurface Heating did not achieve target maximum 140° F average temperature in target treatment zone. It is technically possible to achieve both of these Performance Design Requirements. For example, one could; 1) Optimize the boiler to achieve 140°F at the target treatment zone, increase the duration of hot water injection, and maintain the treatment zone temperature at 140°F. 2) Redevelop the recovery wells to remove the geochemical and biological fouling known to be	Executive Summary paragraph two has been revised as follows: During 2016, HWF performance data were collected for School buil heat removal by soil vapor extraction, mass removal by liquid-phas elevations and temperatures, system flow rates, and operation and HWF system performance that were identified in the Hot Water F Design Report) as design quality objectives for equipment design we the ability of the system to attain heated groundwater injection tem 50 gallons per minute. A measured approach was taken to groundw order to gradually assess operating optimization and secondary fac school floor. School floor temperatures were within expected groundwater temperature in the treatment zone was consistent wit with an average temperature in the mid-120's degrees Fahrenheit a data obtained in 2016, higher flow rates and a greater level of heat the maximum NAPL recovery possible. Additionally, an early-st weekends-only injection of heated groundwater during May 2017. T an extended duration of HWF treatment, and potentially further N approved by the Skykomish School Board. The 2016 NAPL recovery trends demonstrated a strong correlation through groundwater heating. Operational and monitoring data collu- extraction system is effective at reducing heat transfer to the School

se

vised.

Report submitted to Ecology on February 23, 2017 y Ecology and the meeting between Ecology, BNSF, its received and the responses to the comments are

uilding temperatures, indoor air quality, noise, odor, ase carbon treatment, NAPL recovery, groundwater of maintenance daily narrative logs. Capacities for Flushing Design Report dated June 6, 2011 (2011 were verified during HWF system startup, including emperatures of 160°F at a groundwater flow rate of dwater heating during the 2016 HWF operations, in actors such as the effects on the temperature of the of ranges, and the observed increase in average with design expectations for the heat input applied, t after 63 days of heating. Based on the operational eating will be applied during 2017 in order to attain start HWF schedule was proposed, consisting of MAPL recovery. The proposed early start was not

on that enhanced recoverability of NAPL is achieved ollected during 2016 demonstrated that the soil vapor ool building, and recovery vapor phase petroleum.

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
This report also presents key performance metrics established to evaluate progress toward the primary treatment objective, defined as reducing the amount of petroleum nonaqueous-phase liquid (NAPL) from the subsurface at the School Site to the extent technically possible.	meeting these Performance Design Requirements	Executive Summary paragraph one has been revised as follows: This report also presents key performance metrics established to a objective, defined as reducing the amount of petroleum nonaquea the School Site to the extent technically possible. During summer has be monitored by the measurement of NAPL recovery. NAPL recovery. NAPL recovery. Cleanup Action Plan (CAP) treatment requirements. Specifically, to of petroleum beneath the School to the extent technically possible, we mobile or volatile liquid petroleum components or NAPL.
	During summer HWF operations, overall system performance will be monitored by measurement of NAPL recovery (see Section 4.2.1 Scope of Work).	
The decline curve analysis relies on data extrapolation using NAPL recovery rates that are expected to occur sometime during sustained maximum groundwater temperatures.		Executive Summary paragraph three has been revised as follows: Multiple lines of evidence are recommended as performance metric primary treatment objective. Potential performance metrics include po- curve analysis of NAPL recovery volume. These analyses accoun gradient effects on maximum NAPL recovery. The decline curve analy- extrapolation using NAPL recovery rates that are expected to occur temperatures. Evaluation of asymptotically declining NAPL recovery
Determining when the cleanup objective has been achieved will depend on the analysis of at least one of the lines of evidence from the data obtained from future HWF system operations	Revise italicized text to use existing data (no extrapolation) to evaluate decline curve analysis. The timeframe to achieve asymptotic removal cannot be accurately predicted.	then-current data into the future to assess if NAPL recovery trends significant. An early start up schedule is recommended for 2017 reaching higher maximum groundwater temperatures sooner, and by Determining when the cleanup objective has been achieved will be dete Department of Ecology, and will depend on the analysis of at least on from future HWF system operations.

se

o evaluate progress toward the primary treatment recous-phase liquid (NAPL) from the subsurface at er HWF operations, overall system performance will recovery will be used to measure compliance with o, the objective of treatment is to reduce the amount with the treatment goal of removing separate-phase

rics to evaluate **future** progress toward meeting the pore volumes analysis, and a recovery and/or decline unt for groundwater temperature and groundwater nalysis **will involve analysis of future** relies on data ur sometime during sustained maximum groundwater **rery rates, in the future, can be done by extrapolating** ds indicate that additional NAPL recovery would be 7 to achieve the maximum NAPL recovery rate by I by increasing the duration of groundwater heating.

etermined in conjunction with the Washington State one multiple lines of evidence from the data obtained

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
	Determining when the HWF system can be shut down will require an observational approach and evaluation of existing data.	
	Replace italicized text with: Determining when the cleanup objective has been achieved will be based on coordination with the Department of Ecology (Ecology) and will depend on the analysis of all lines of evidence from data obtained after the HWF system has been optimized and satisfies the DQO requirements. Note: The system must first be optimized and shown to be operating as designed before it can be evaluated for final shut-down.	
	evaluated for final shut-down.	

Section 1.2, Design Quality Objectives, page 1-3

ise

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 1.2 Design Quality Objectives, page 1-3 Attainment of the design quality objectives by the HWF system and related subsystems was verified through monitoring of various operational data, and comparing these data to the design requirements defined in Table 1.	Delete italicized text. Monitoring data verified DQO Performance Design Requirements were not achieved for Groundwater Recirculation and Subsurface Heating. Revise section to make clear DQOs serve to identify the specific design objectives in terms of performance requirements and are used to guide the design process by identifying the relevant system requirements to ensure that all elements of the design are addressed (see 2011 HWF Design Report, Section 3.2 and Table 1). Revise section to identify the two Performance Design Requirements that were not achieved in 2016. Specifically, Groundwater Recirculation and NAPL Recover did not maintain 50 GPM flow throughput during the low groundwater period of late summer; and Subsurface Heating did not achieve target maximum 140° F average temperature in target treatment zone. Revise appropriate sections in this report to make recommendations for achieving these Performance Design Requirements in 2017. The 2011 Design does not have DQOs for treatment time/duration for the target maximum 140°F average temperature in target treatment zone. Please revise test with proposed treatment time/duration and supporting rational/data. These revisions do not adequately address Ecology's comments. Specifically, the DQO/Performance Design Requirement for Subsurface Heating must be called out, identified as a key performance requirement, and made clear that the target maximum 140°F average temperature in the target maximum 140°F average temperature in the target maxim	 6/16/2016: 150°F injection temperature at a groundwater f 58°F (temperature rise of 90°F at 60 gpm) 6/17/2016: boiler inlet temperatures of 66°F resulted in inje requirements for system capacity.

se

s from June 27, 2017:

and subsystem functionality, reliability, performance, 1 Design Report (Table 1). **Design quality objectives operational settings, but rather identify capabilities of** the design quality objectives were established to ensure eatment goals, and to identify critical engineering and ewed to provide a framework to assess the effectiveness for the evaluation of system performance and progress

e 2011 Design Report for the <u>maximum</u> groundwater he compatibility and safety of groundwater pumps and ished for the maximum groundwater temperature was um value that might be attained for a brief time during

016 HWF operations, to assess operating optimization School floor. An average groundwater temperature in heating. Operations during 2017 will be conducted at which is anticipated to result in higher groundwater

ubsystems was verified through monitoring of various nents defined in Table 1. DQOs that represent key on flow rate capacity (50 gpm maximum) and the se system capacities were verified during HWF system om capacities as follows:

r flow rate of 47 gpm, with boiler inlet temperature of

r flow rate of 60 gpm, with boiler inlet temperature of

ijection capability of 160°F at 60 gpm, exceeding DQO

ot represent specific specific field operations settings, weet overall design objectives. Attainment of the design ified through monitoring of various operational data,

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 2.1 Flushing System Operational Modes, page 2-1		
In HWF mode, water is heated prior to injection to approximately 140 degrees Fahrenheit (°F) or higher using a diesel-powered boiler.	2011 Design is based on injecting water at 160°F and achieving a groundwater temperature of 140°F (see Sections 5.2 & 5.3). Section 5.5 NAPL Recovery – of this document uses 160°F for modeling/predicting results for 2017 and states 160°F is consistent with 2016 operations. Revise text accordingly.	No revisions made to this section of text. Revisions made to Section The following text has been added to Section 2.2.2:
	Expand section to provide details on 2016 boiler performance. Include how many days the system delivered injection water at 160°F. Add new figure (graph) to show injection temperature vs. time.	As described in Section 1.2, HWF system capacities were verified a the 63 day long HWF period groundwater was injected at between 14 the average injection temperatures was 144°F. Weekly average inj weekly average injection temperatures dropped to below 140°F shutdowns. These frequent shutdowns were due to a combination extraction temperatures, which caused the boiler to operate at the lo

se

on 1.2 regarding attainment of DQO's.

d during the initial three days of operation. During 140°F and 160°F for 38 days. During these 38 days injection temperatures are shown in Figure 4. The F in late July and August due to frequent boiler on of low system flowrates and higher groundwater e low end of its turndown capacity.

Draft 2016 HWF Remediation Performance Report	Ecology Comment			BNSF Re	sponse
Section 3.8 Groundwater Elevations and Temperatures, page 3-7	Revise section to explain the HWF system maintained treatment zone average groundwater temperatures at 120°F or above for about 7 days.	-	erations average grou 120 °F for 9 days. Th g each period are sum	undwater temper he treatment zone	rature in the treatment zone were su e average groundwater temperatures, able below:
		Treatment Zone Average Temperature (°F) ¹	Reduction in Viscosity (Percent)	Duration (Days)	Pore Volumes Treated ² (-)
		100+	90	35	7.4
		110+	94	20	4.5
		120+	96	9	2.1
		treatment zone, GWM 6, 7, and ² A pore volume has been define the footprint of the School build	8. d as the volume of water in the s ing and approximately 20 feet ad water elevation) to 911.5 ft msl (aturated portion of the aq ljacent to all sides of the b (elevation of deepest cont	rom submerged wells located inside targeted uifer. At the School Site a pore volume consists of puilding, with an average thickness spanning 5.5 feet tamination). See calculation below.

sustained above 100°F es, durations, and pore

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 5.1 Hydraulic Performance, page 5-1 & 5-2 HWF system generally was operated at flow rates of 20 to 60 gallons per minute (gpm), which is generally consistent with the expected design range of 30 to 50 gpm (Farallon 2011). A summary of average daily flow rates is provided in Table 14, and shown on Figure 6.	Replace 20 to 60 gallons with 13 to 54 gallons. Revise italicized text to explain the HWF system operated below 30 gpm for more than half the time (12 out of 20 weeks) in 2016 with a 28 gpm average.	Section 5.1 paragraph 1, revised as follows: The HWF system generally was operated at flow rates of 13 20 to 60 the system operated at an average flow rate of 36 gpm (10 week d expected design range of 30 to 50 gpm (Farallon 2011). During A elevations the system operated at an average flow rate of 23 gpm (10 rates is provided in Table 14 and shown on Figure 6. Flow rate value flowrates may have been slightly higher or lower than values shown.
During the latter portion of the summer dry season, decreasing water levels made it difficult to operate several recovery wells at the design flow rate. During the lowest groundwater elevation periods, the flow rate was reduced to 20 gpm, and was shifted primarily to wells in the area of the recovery trench where most of the NAPL was present. This action reduced the risk of damaging the pumps or shutting down the system when pumps would run dry.	Replace 20 gpm with 13 gpm. The highlighted revision has not been made. Revise italicized text to explain the HWF system did not meet the Performance Design Requirement for Groundwater Recirculation and NAPL Recovery of 50 gpm flow throughput. Revise appropriate section(s) of this report with recommendations to achieve DQO Performance Design Requirement of 50 gpm.	Section 5.1 paragraph 4, revised as follows to address Ecology highli During the week of September 21, 2016, coincident with the low grou to 2013 gpm, and was shifted primarily to wells in the area of the reco No revisions made to this section of text. Revisions made to Section

se

60 gallons per minute (gpm). During HWF activities a duration), which is generally considered within the g AWF activities, coincident with lower groundwater 10 week duration). A summary of average daily flow lues provided are weekly averages and at times actual m.

hlighted June 27, 2017 revision:

oundwater elevation period, the flow rate was reduced ecovery trench where most of the NAPL was present.

on 1.2 regarding attainment of DQO's.

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section5.2GroundwaterHeatingPerformance, page 5-3Groundwater temperatures beneath the School building eventually reached temperatures ranging from 90 to 125°F from July 15, 2016 through discontinuation of heating on August 17, 	HWF system maintained treatment zone average groundwater temperatures above 120°F for about 7 days and did not meet the Performance Design Requirement of 140°F target maximum average temperature in the target treatment zone.	No revisions made to this section of text. Revisions made to section 1 The following revisions were made to Section 5.2, paragraph four, in <i>The numerical model results provide a reasonable approximation</i> <i>temperatures during the 2016 operating season.</i> The discontinuous management that occurred during 2016 HWF operations limited Application of the model to predict potential average groundwater season, operational schedule is inclusive of recommended earlier star injection rates, and increased injection water temperatures, indicate be attained in 2017. This is further discussed in Section 5.5. NAPL, B

se

n 1.2 regarding attainment of DQO's.

in response to Ecology's June 27, 2017 comments:

ion of the actual measured average groundwater ous heating and conservative injection water heat ted maximum groundwater temperatures attained. er temperatures over the recommended 2017 HWF tart, continuous operations, maximized groundwater ates higher average groundwater temperatures will L Recovery.

9

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 5.3 Geochemical and Biological Fouling, page 5-5 The video footage, photographs, and localized drawdown behavior suggest that a combination of geochemical and biological fouling is present within the well screens and in the soil surrounding the recovery wells. The combination of low groundwater levels, biofouling, and geochemical fouling resulted in difficulty balancing the recovery well pumping rates.	geochemical and biological fouling is already present (since last year) and justifies the need to redevelop the extraction wells.	Text added to Section 5.3 paragraph five as follows to include Ecolog During the week of April 3, 20176 coincident with School spring brea 2017 Farallon performed well cleaning using a combination of physic the recovery wells was to reduce or eliminate the risk of system shut- well recharge rates. The recovery well cleaning included shock dos accordance with the Nu-Well 110 Granular Acid and Nu-Well 310 B following the chemical dosing the acid was agitated in the well and the well was surged using a well surge block. Following 24 hours of convacuum truck. The following row has been added to table in Section 7.2: April 1, 2017; Recovery Well Cleaning; Scheduled Coincident w physically and chemically cleaned as described in Section 5.3.

se

logy's June 27, 2017 comments:

reak and prior to resuming HWF system operations in sical and chemical methods. The purpose of cleaning at-downs due to clogged well screens and to maximize dosing wells using a solid phase granular acid and in Bioacid Dispersant Application guides. Immediately d the well was scrubbed using a rigid well brush. The contact time the wells were purged of the acid using a

with School Spring Break. Recovery wells were

5.5 NAPL Recovery, page 5-7 & 5-8	Delete "(approximately 250 centistokes or less, or temperatures of greater than approximately 100°	The following text has been deleted from paragraph five, Section 5.5:
	Fahrenheit)".	Maximum removal rates will be achieved by maintaining minimum less, or temperatures of greater than approximately 100° Fahrenheit
	Not necessary to place limits on removal rates.	
It is inconclusive whether the maximum achievable NAPL recovery rate was reached in 2016 because the maximum recovery rate	Delete "(approximately 250 centistokes or less, or temperatures of greater than approximately 100° Fahrenheit)".	The following text has been added to paragraph six, Section 5.5: The 100°F criteria is a reasonable metric to assess the overall durate this is the temperature at which a 90 percent reduction in NAPL
occurred during the last week of August after heating had been discontinued.	Revise italicized text to explain that the maximum achievable NAPL recovery rate will be evaluated after the system has been optimized and satisfies the DQO requirements.	performance metric for HWF system performance, and heating w groundwater temperatures that are possible during HWF operatio represents a tapering of heat addition to keep average groundwater design rating of 140°F is not exceeded at any particular location.
	Note: The groundwater temperature and duration in the treatment zone, along with the extraction flow rates need to be increased and will influence the maximum achievable NAPL recovery rate. Evaluating whether or not cleanup objectives have been met cannot occur until the system is operating as designed.	No revisions made to this section of text regarding DQOs. Revisions not text and a table summarizing groundwater temperatures in the treatment 3.8.
The 2017 model prediction is based on a maximum groundwater injection temperature of 160°F, consistent with 2016 operations and within the design limitations of the system.	How many days of heating at 160°F does the 2017 model use?	The following revisions have been made to paragraph six, Section 5.5
The recommended 2017 operating plan would essentially triple the 2016 operation period during which temperatures increase to above 100°F from approximately 1 month to approximately 3 months.	Revise italicized text to present number of days during which temperatures increase to above 120°F (not 100°F).	The HWF thermal numerical model described in Section 5.2, Groundwapproximate groundwater temperatures expected to be accomplished plan. Because the model was calibrated to actual 2016 results, the pfrom the model are expected to be a reasonably accurate approximing presented (Figure 16), (a) the recommended scenario for an early stat would be applied for approximately 36 hours each weekend from School Board approved scenario without an early start to groundwate over the summer period were simulated without heat addition, to accurate approximation. The 2017 model predictions are also-is also injection temperatures between 155°F and the design maximum temperatures applied during 2016 operations that were in the range on school floor temperatures were evaluated. and within the design assumes that groundwater heating would be applied for approximately applied for approximated.

m NAPL viscosity (approximately 250 centistokes or ceit) for as long as possible.

ration of HWF enhancement of NAPL recovery, as PL viscosity is achieved. However, 100°F is not a will be continued to attain the maximum average tions. The modeling of 2017 groundwater heating for temperatures below 135°F, so that the maximum

s made to Section 1.2 regarding attainment of DQO's.

tment zone and durations have been added to Section

.5:

dwater Heating Performance, was used to predict the ed during 2017 with an optimized HWF operational e predicted temperature trends for 2017 determined ximation. Two operational scenarios for 2017 are start to HWF operations where groundwater heating m May 7 to June 14, 2017, and (b) the Skykomish water heating. In each scenario, In addition 2 weeks account for operational maintenance and/or possible gure 16). Because the model was calibrated to actual ed from the model are expected to be a reasonably also based on a maximum maintaining groundwater m of 160°F, which is greater than the injection nge of 145°F for much of the summer, while effects ign limitations of the system equipment. The model tely 36 hours each weekend from May 7 to June 14,

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Higher groundwater temperatures than those realized during 2016 operations may be obtained by extending the HWF season, although the additional reduction in viscosity at temperatures higher than approximately 120°F are negligible. The longer operating duration at elevated temperatures is expected to maximize NAPL removal and recovery, and provide a better basis for evaluating system performance and determining whether cleanup objectives have been met.	Delete text: "although the additional reduction in viscosity at temperatures higher than approximately 120°F are negligible". This contradicts DQO Performance Design Requirement of 140°F. Section 5.1 of 2011 Design Report states "A 100-fold reduction in NAPL viscosity is attained at a temperature of approximately 140°F. Diminishing gains are attained at temperatures above 140°F." Replace "maximize" with "increase". Replace "whether" with "when". Replace "have been" with "are".	 2017. In addition, 2 weeks over the summer period were simulated maintenance and/ or possible downtime. The following revisions were made to paragraph seven, Section 5.5: Weekend-only heating operations in May 2017 would will provide a castart to warming the ground formation without impacting School activ realized during 2016 operations may be obtained by extending the <i>viscosity at temperatures higher than approximately 120°F are negl temperatures is expected to maximize increase NAPL removal and r system performance and determining when whether cleanup objecti without an early start (Figure 16) has a smaller duration of elevated groundwater temperatures than in 2016, since greater injection to inception of HWF, than were applied in June 2016.</i>

se

ed without heat addition, to account for operational

carefully measured application of heat and a running ivities. Higher groundwater temperatures than those e HWF season. although the additional reduction in gligible. The longer operating duration at elevated l recovery, and provide a better basis for evaluating ctives have been are met. While the 2017 scenario ed temperatures, it will still result in greater average temperature will be applied in June 2017, at the

Section 6.0 Hot Water Flushing Performance		The following revisions were made to Section 6.0, paragraph one:
Metrics, page 6-1	Delete italicized text. This comes from the O&M	As stated in the CAP:
As stated in the CAP:	Plan, Section 7.2 Completion of Operations and Closure.	"Operation of the treatment system will be completed based on coord
"Operation of the treatment system will be completed based on coordination with Ecology"	Insert the entire text: The primary cleanup objective associated with the design of the HWF treatment system is to reduce the amount of petroleum beneath the School to the extent technically possible, with the goal of removing separate-phase mobile or volatile petroleum constituents or NAPL. Operation of the treatment system will be complete based on coordination with Ecology.	As stated in the O&M Plan: "The primary cleanup objective associated with the design of the E petroleum beneath the School to the extent technically possible, wi volatile petroleum constituents or NAPL. Operation of the treatme with Ecology."
This section outlines the goals and metrics that will be used to evaluate progress toward completion of HWF based on the goal of removal of NAPL to "the extent technically possible".	Revise italicized text to include the following text from 2015 CMP Addendum No. 3: <u>Section 4.2.1 Scope of Work</u> During summer HWF operations, overall system performance will be monitored by measurement of NAPL recovery.	The following text has been added to Section 6.0, paragraph two: This section outlines the goals and metrics that will be used to evalu the goal of removal of NAPL to "the extent technically possible". performance will be monitored by measurement of NAPL recovery with the primary cleanup objective.
The Site-specific declining NAPL recovery rates will be evaluated consistent with ITRC (2009) guidance, along with the lines of evidence, any one of which can be used to determine that cleanup objectives have been met.	 <u>Section 4.2.3 Data Evaluation and Response</u> NAPL recovery will be used to measure compliance with CAP treatment requirements. Specifically, the objective of treatment is to reduce the amount of petroleum beneath the School to the extent technically possible, with the treatment goal of removing separate-phase mobile or volatile liquid petroleum components or NAPL. The highlighted revision has not been made. Replace "any one" with "all". Replace "can" with "will". Delete "average" ITRC guidance (Evaluating LNAPL Remedial Technologies for Achieving Project Goals, Dec. 2009) does not include specific details for evaluating a thermal (HWF) system that cycles on and off. Recovery volume curves need to be 	

ordination with Ecology".

e HWF treatment system is to reduce the amount of with the goal of removing separate-phase mobile or ment system will be complete based on coordination

aluate progress toward completion of HWF based on . During summer HWF operations, overall system ry which will be evaluated to determine compliance

three in response to Ecology's suggested revisions

l consistent with ITRC (2009) guidance, along with hat cleanup objectives have been met:.

to include Ecology's June 27, 2017 comments:

luating a thermal (HWF) system that cycles on and induster temperatures in the treatment zone.

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
	evaluated as a function of temperature (max. average temp. in treatment zone) and time. Please revise text accordingly.	See revisions were made to Section 6.0, paragraph one above.
	Also revise text to make clear BNSF will continue to operate HWF System and terminating operations will be based on coordination with Ecology.	Revisions made to Section 1.2 regarding attainment of DQO's.
	Add or revise bullets to make clear: Graphs of NAPL cumulative recovery volume needs to be evaluated with respect to time when the HWE system is operating at the target	
The lines of evidence include:	the HWF system is operating at the target maximum 140°F average temperature in target treatment zone.	The following revisions were made to Section 6.0 bullet points, in res
	Revise bullet to make clear the graphs of NAPL cumulative recovery volumes will be evaluated with respect to time and groundwater temperature in the treatment zone.	• Graphs of NAPL cumulative recovery volume with respect treatment zone to assess progress toward asymptotic NAPL impracticability of further NAPL recovery (ITRC 2009).
	The number of pore volume exchanges of groundwater during hot water flushing needs to track pore volumes when the system is operating at the target maximum 140°F average temperature in the target treatment zone.	• The number of pore volume exchanges of groundwater during
	Revise bullet to make clear the number of pore volume exchanges need to be evaluated with respect to time and groundwater temperature in the treatment zone.	
	Revise Section 6.2 as necessary	

se

tment zone and durations have been added to Section

esponse to Ecology's June 27, 2017 comments:

ect to time **and groundwater temperature in the** L recovery rates, which are an indicator of technical

ing HWF with **respect to** which along with duration e may be a relevant alternative metric for plotting and Carroll and Sleep 2007).

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 6.1 Regulatory and Stakeholder Goals, page 6-1 & 6-2	Revise section to explain the CAP objectives of the treatment are to reduce the amount of petroleum beneath the school to the extent technically possible, with the goal of removing separate phase mobile or volatile liquid petroleum components or nonaqueous phase liquid (NAPL). Delete bullets – those are compliance monitoring requirements.	extent technically possible, the CAP outlines treatment goals assoc provided in the CAP include the following monitoring for closure met

se

has been updated accordingly.

ount of petroleum beneath the School building to the sociated with exposure pathways. Regulatory goals netrics:

quality, comparing the results against the Site's air neter. Vapor monitoring performed prior to HWF t the School building basement meets Site air cleanup

ence of NAPL to monitor NAPL migration following the action to remove it, and to stop NAPL migration te would be monitored to ensure that the NWTPH Dx ent of absence of sheen or free product are met at and

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 6.2.1 NAPL Recovery Rate Decline Curve Analysis, page 6-2	document does not contain specific details for evaluating a thermal (HWF) system that cycles on and off or the site specific criteria of removing petroleum beneath the school to the extent technically possible.	
	Revise section to use existing data (no extrapolation) for decline curve analysis. Timeframe to achieve asymptotic removal cannot be accurately predicted.	
	Number of hot water pore flushes needed to reach asymptote response for NAPL removal cannot be accurately predicted.	
	Determining when the HWF system will be shut down will require an observational approach and evaluation of existing data (not extrapolated).	
	Revise section to include evaluation of recovery volume curves as a function of temperature (max. average temp. in treatment zone) and time.	Text and a table summarizing groundwater temperatures in the treatm 3.8.

se

aph one.

atment zone and durations have been added to Section

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 6.2.2 Subsurface Pore Volume Exchanges, page 6-3	Revise section to acknowledge number of pore flushes needed to reach asymptote response for NAPL cannot be accurately predicted and "pore volumes" are based on hot water flushing (at target maximum average temperature in treatment zone).	15.
As shown on Figure 6, approximately 18 pore volume exchanges were achieved during 2016.	Revise italicized text to explain 18 pore volumes represents total duration of operations and majority of this time was not at treatment zone maximum temperatures achieved in 2016. Also provide number of pore volumes exchanged when system was at or above 120 °F for comparison (about 3 pore volumes?) Also revise Figure 6 to show pore volumes removed when treatment zone temperature was at 120 °F or above.	

se

f groundwater temperature and duration at elevated ter temperature are shown together vs. time on Figure

tment zone and durations have been added to Section

groundwater temperature in treatment zone, and flow temperatures in the treatment zone and durations have

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 6.2.3 Groundwater Gradient : Temperature, page 6-3 & 6-4	 Revise section to explain average treatment zone temperatures reached 120°F or higher for about 7 days in 2016 compared to performance design requirement 140°F and 90-days used in design modeling. Revise text to make clear that the DQO/Performance Design Requirement for Subsurface Heating is a target maximum 140°F average temperature in the target treatment zone, that this was not achieved in 2016, and that the system will be optimized in 2017. 	The following revisions were made to Section 6.1.3, Groundwater Grato Ecology's June 27, 2017 comments: As shown on Figure 14, an approximately 10- to 100-fold reduction in 90 to 125°F operational range of groundwater temperatures attained Section 5.2, Groundwater Heating Performance. The DQO establist

se

Gradient and Temperature, paragraph one in response

n in viscosity was attained by the HWF system in the ined during active heating in 2016, as discussed in lished in the 2011 Design Report for the maximum pose of ensuring the compatibility and safety of water was 140°F. Since a measured approach was ns to gradually assess operating optimization and he School floor, the highest average groundwater 5°F. The recommended earlier start and maximized er flushing in 2017 will result in a longer period of mperatures being maintained at the upper end of this pery.

tment zone and durations have been added to Section

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
Section 7.0 Conclusions and Recommendations, page 7-1 HWF system operations during 2016 met design goals and compliance monitoring requirements	Replace italicized text to explain the HWF system did not meet the DQO Performance Design Requirements for Groundwater Recirculation and NAPL Recovery (50 gpm) and Subsurface Heating (140°F). Revise text to make clear the DQO/Performance Design Requirement for Subsurface Heating was not achieved in 2016 (conclusion). Add text to make clear the HWF system will continue to operate and flush hot water beneath the school during summers and terminating operations will be based on coordination with Ecology.	Revisions made to Section 1.2 regarding attainment of DQO's. The following text is added to Section 7.0 in response to Ecology's Ju HWF system operations during 2016 met equipment design goals an 40.2 gallons of NAPL was recovered as a result of HWF. The 2016 of season in which meeting critical operating criteria and objectives increases during 2016 were consistent with design expectations for the to groundwater heating during the 2016 HWF operations to gradually ass as the effects on the temperature of the School floor. The following text has been added to Section 7.0, paragraph three: Operation of the treatment system will be complete based on coordin

se

June 27, 2017 comments:

and compliance monitoring requirements. A total of 6 operational period represented the initial operating es was confirmed. HWF groundwater temperature the heat input applied. A measured approach was taken ussess operating optimization and secondary factors such

dination with Ecology.

I	Section 7.1 Recommendations to Optimize NAPL Removal, page 7-1		The following text was added to Section 7.1 in response to Ecology'
	An earlier start is expected to produce the		A longer operational season and maximized groundwater inject facilitate maximum NAPL removal rates for as long as possible in th
	maximum groundwater temperature of approximately 120°F by mid-July 2017, and extend to the end of the HWF season in mid- August 2017 (Figure 16).		Maximized groundwater injection rates and temperatures during achieve higher average groundwater temperatures for a longer dur HWF system equipment will be operated at the upper range of the ex feasible injection rates and temperatures.
	Once the groundwater temperature reaches 120°F, heating will be tapered to level out groundwater temperature at a constant of approximately 120°F.	Revise section to explain what recommendations are made to optimize NAPL removal in 2017 to meet the DQO requirements.	Revisions made to Section 1.2 regarding attainment of DQO's.
		Modeling work described in Section 5.5 and Fig. 16 of this document shows max. temp. of 135°F is	The following revisions have been made to Section 7.1, paragraph of
		reached in late July. Replace "120°F" with "135°F".	An earlier start is expected to produce the maximum groundwater to 2017, and to extend it to the end of the HWF season in mid-August 20
	Most significantly, the recommended 2017 operating schedule would essentially triple the period over which temperatures are elevated above 100°F in comparison to the 2016 operating season, from approximately 1 month to approximately 3 months. The additional operating duration at elevated temperatures is anticipated to maximize potential for NAPL removal and recovery, and provide a better basis for evaluation of system performance.	Delete italicized text. The Performance Design Requirement for Subsurface Heating is 140°F. Turning down the heat to maintain 120°F in the treatment zone is not acceptable. Replace with text that explains the system will be adjusted to maintain maximum groundwater temperature in the treatment zone (140°F). Revise italicized text with an evaluation of how long the system would operate at 140°F (not	reaches 120 above 130°F, heating will be tapered to level out groun 120°F so that the maximum design rating of 140°F is not exceeded
		100°F) in comparison to the 7 days at or above 120°F in 2016.	The following revisions have been made to Section 7.1, paragraph two:
ca ye po re	If the treatment season is extended, it is recommended that mechanical cooling capabilities be retained for at least 1 additional year (2017 operating season) to address the potential for higher floor slab temperatures related to a longer heating duration and higher	Replace "maximize" with "increase".	The additional operating duration at elevated temperatures is antic recovery, and provide a better basis for evaluation of system perform
			The following revisions have been made to Section 7.1, paragraph three:
	temperatures. Although the chiller equipment likely will be unnecessary to maintain acceptable temperatures	Insert "and higher temperatures"	If the treatment season is extended, it is recommended that mechan additional year (2017 operating season) to address the potential for heating duration and higher temperatures .
1		1	1

's June 27, 2017 comments:

tion rates and temperatures are recommended to the upcoming 2017 operating season.

g hot water flushing in 2017 are recommended to ration than were achieved in 2016. Specifically, the equipment performance DQOs to achieve maximum

one:

temperature of greater than 120 130°F by mid-July 017 (Figure 16). Once the groundwater temperature indwater temperature at a constant of approximately d at any particular location.

cipated to **increase** potential for NAPL removal and mance.

nnical cooling capabilities be retained for at least 1 or higher floor slab temperatures related to a longer

Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
in the School building, it will be available for use if needed.	Delete italicized text. Need for chiller equipment is not known for optimized HWF system.	The following text has been deleted from Section 7.1,: <u>Although the chiller equipment likely will be unnecessary to maintain</u> <u>will be available for use if needed.</u>
	Add text to explain redeveloping recovery wells will help optimize NAPL removal.	The following text has been added to Section 7.1, paragraph: Recovery well cleaning is recommended to reduce or eliminate the ris Limiting the number of shutdowns will result in a longer heating dury potential for NAPL recovery.
Section 7.2 Recommended 2017 Operating Schedule, page 7-3	Revise table to include well redevelopment	The following text has been added to table, Proposed 2017 in Section April 1, 2017; Recovery Well Cleaning; Scheduled Coincident wit physically and chemically cleaned as described in Section 5.3.

se

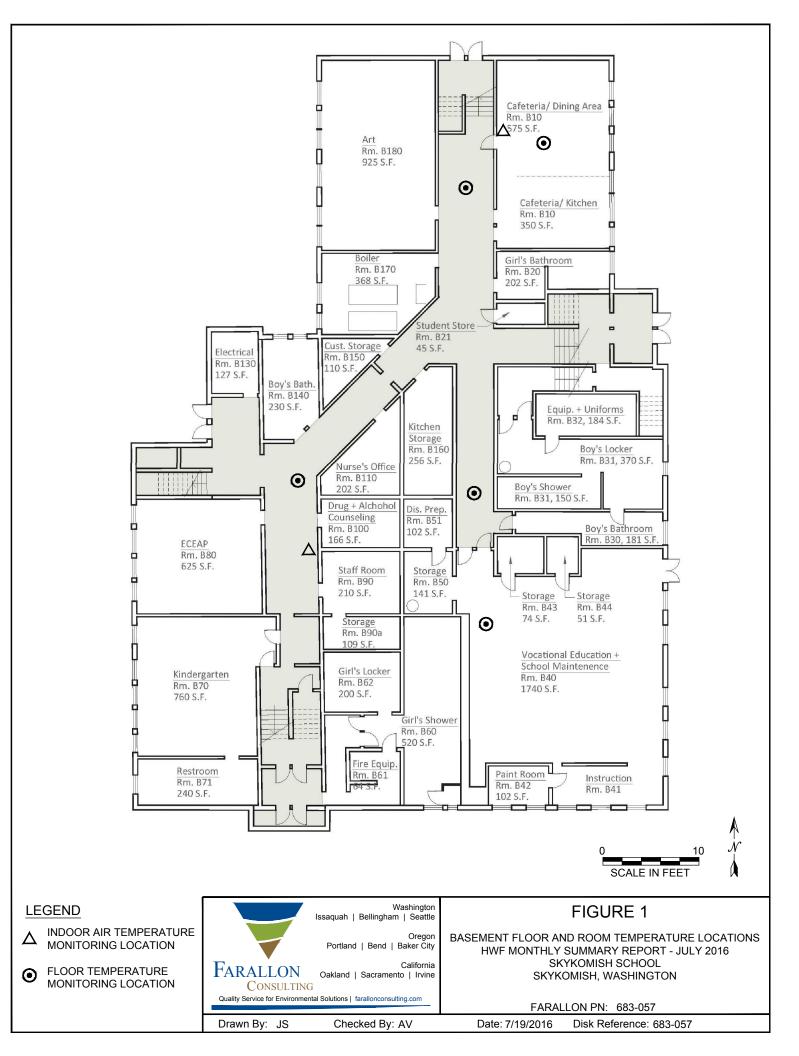
uin acceptable temperatures in the School building, it

risk of system shut-downs due to clogged well screen. luration and higher temperatures which will increase

on 7.2:

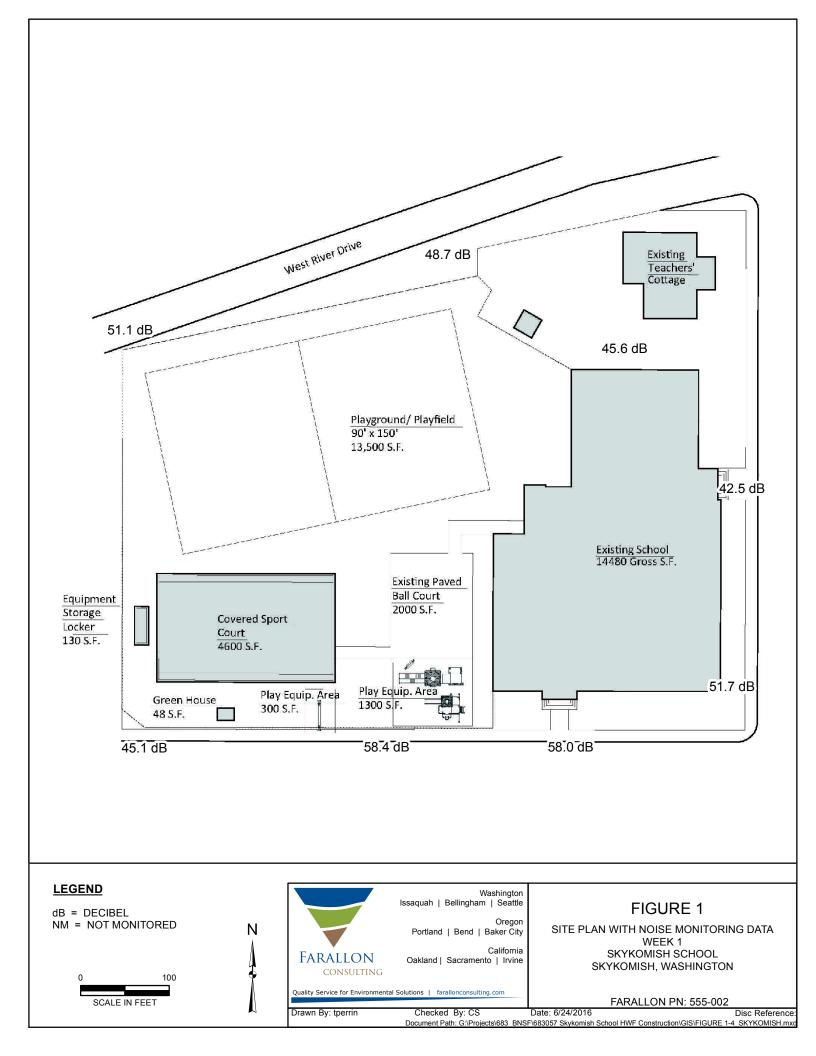
with School Spring Break. Recovery wells will be

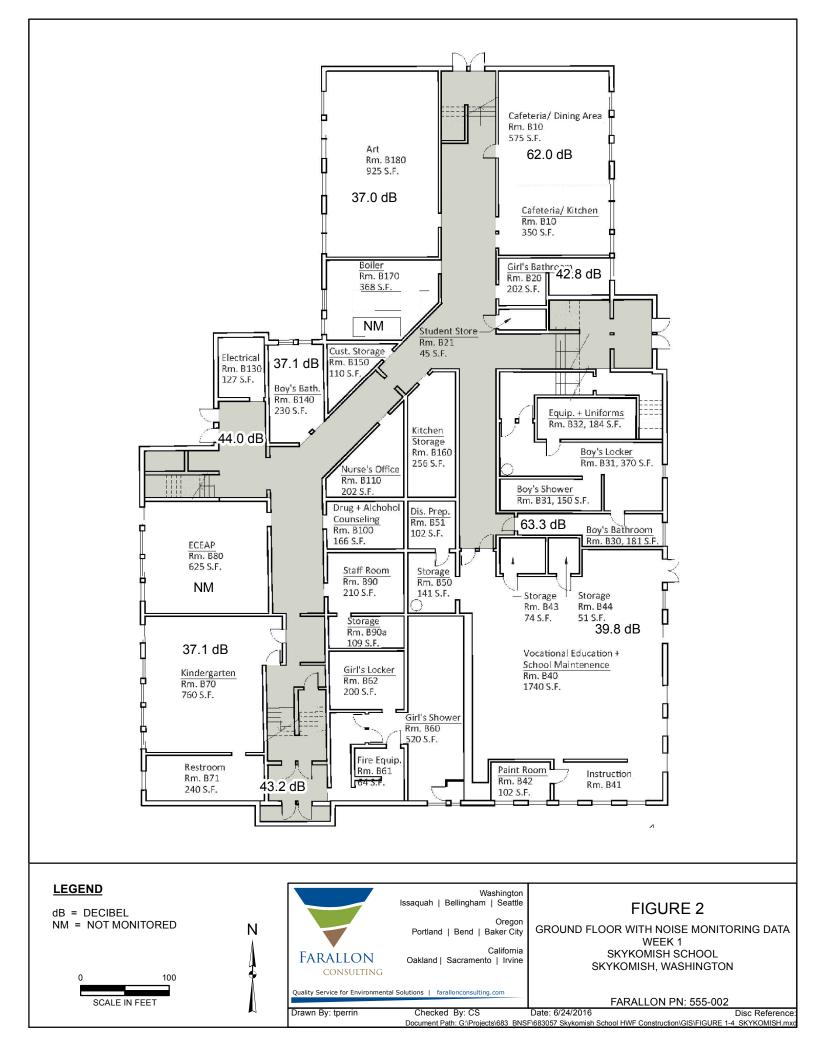
Draft 2016 HWF Remediation Performance Report	Ecology Comment	BNSF Response
	Create new figure (graph) to show injection temperature vs. time.	Figure 4 showing weekly average injection temperatures has been add
Figure 6 System Flows and Pore Volumes	Revise figure to show average treatment zone groundwater temperatures (superimpose from Fig. 15) and how many pore volumes were treated while the system was at temperatures of 120°F or above (3 pore volumes?)	rates on a single graph. Text and a table summarizing groundwater ter been added to Section 3.8.

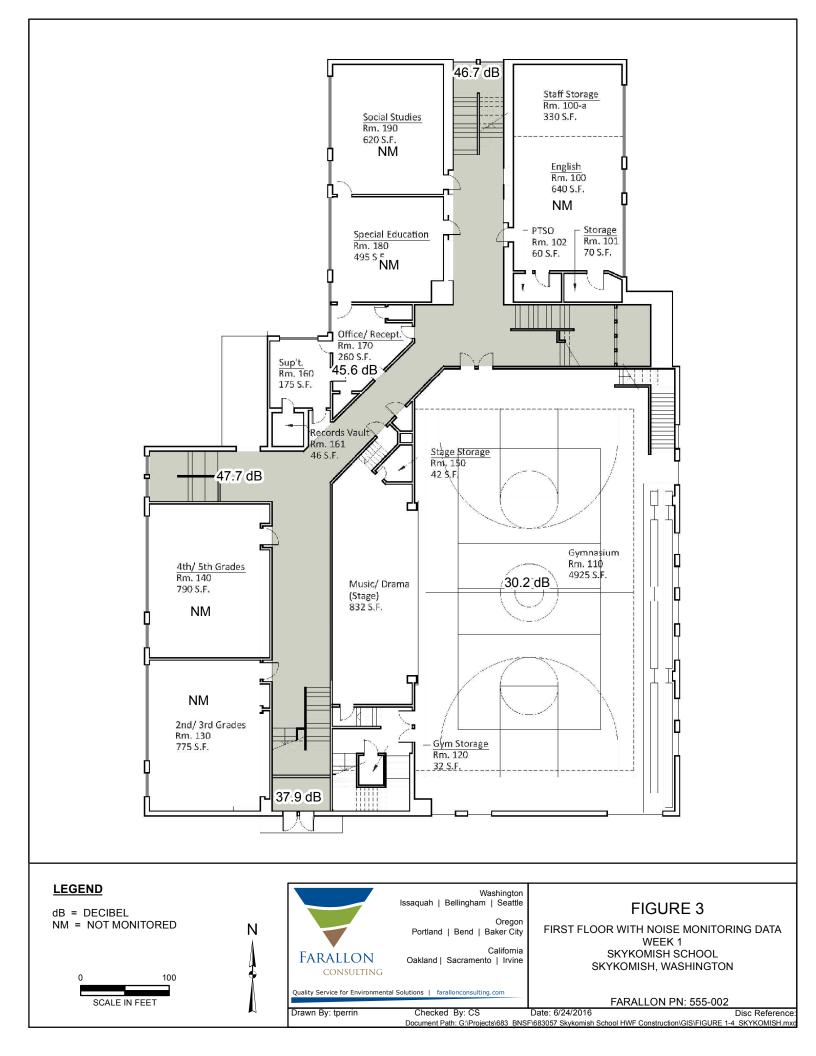

se

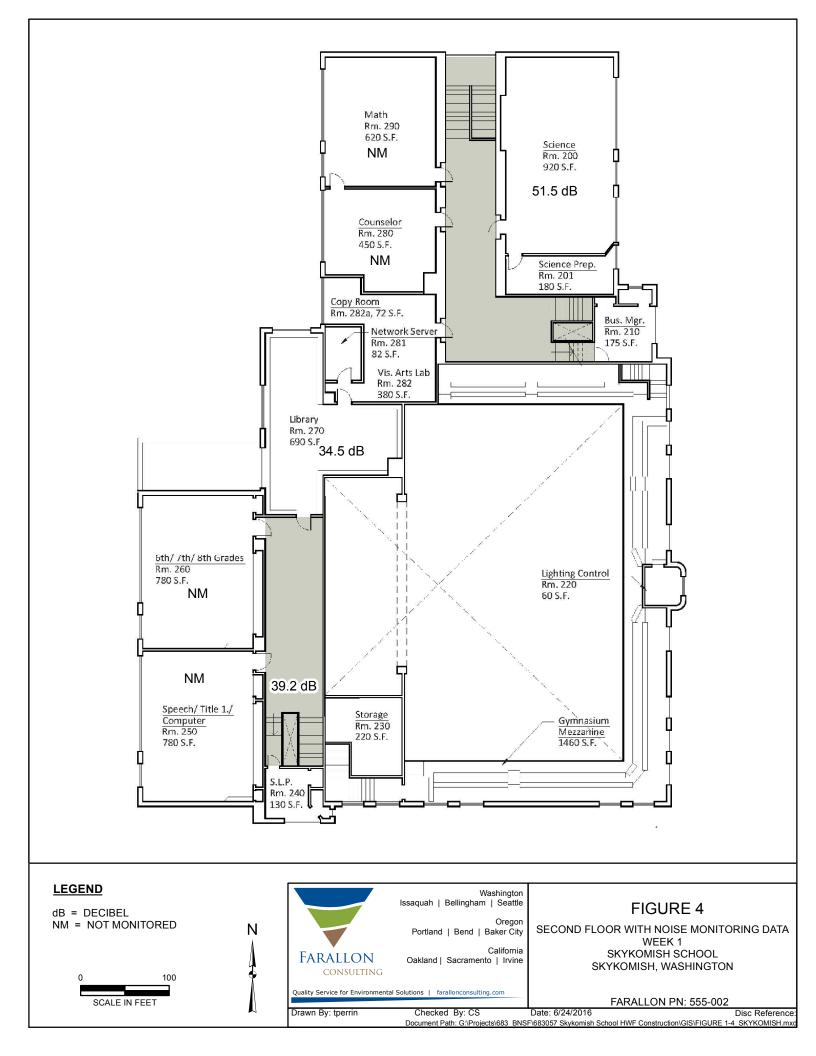
added the report.

groundwater temperature in treatment zone, and flow temperatures in the treatment zone and durations have


APPENDIX B TEMPERATURE MONITORING LOCATIONS


2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington




APPENDIX C SITE NOISE MAPS

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

APPENDIX D SOIL VAPOR EXTRACTION MEMO

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

August 19, 2016

Mr. Jeff Hamlin P.E. and Mr. Andrew Vining P.E. Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, WA 98027

RE: Soil Vapor Extraction System Performance and Optimization, Skykomish School Hot Water Flush System Project, Skykomish, Washington

Dear Mr. Hamlin and Mr. Vining:

As requested, Trihydro has prepared this memo regarding the performance and optimization of the soil vapor extraction (SVE) system at the Skykomish School. The memo reviews system performance attained to date and identifies possible system optimization steps that may enhance system performance. The SVE system started operation on June 15, 2016. For reference, Figure 1 presents an as-built map of the Skykomish School with the layout of the SVE system and soil gas probe (SGP) differential pressure (dP) monitoring points.

SVE System Performance Objectives

The performance objectives of the SVE system were established during the design basis and include:

- Maintain a subsurface air flow rate of approximately 500 cubic feet per minute (cfm), especially during the cool down phase of the heating-cooling cycle to remove heat prior to the start of school.
- Operate the SVE system so that adequate sub-slab dP is maintained beneath the School to prevent vapor intrusion (VI).

SVE System Air Flow Rate

As shown in Table 1, the SVE system has achieved >400 standard cubic feet per minute (SCFM) flow rate from the six SVE wells and one horizontal SVE trench. The flow rate in several SVE legs exceeds the range of the flow meter (100 cfm).

Sub-Slab Differential Pressure

Table 2 shows dP data from the six SGPs installed in the school floor (see Figure 1), and includes averages from automated data logging and a hand-held digital manometer accurate to 0.001 inches water column (IWC). As shown, the digital manometer readings generally agree with the logged data.

Messrs. Hamlin and Vining August 19, 2016 Page 2

The predicted SGP dPs calculated during the design phase of 1 to 5 IWC have not been realized. A likely explanation for the lower than anticipated vacuum readings is the presence of a void space in between the soil and the school floor slab, which transmits large amounts of air flow without development of the anticipated magnitude of SVE vacuum below the slab. Evidence to support this includes:

- Observation of a 1 to 5 inch void space in several areas beneath the slab during interior trench installation.
- Removal of the SVE well caps within the SVE well vault resulted in an increase in sub-slab dP to presently observed values, most likely because air flow was directed into the sub-slab void space through the floor of the vault.
- Measurable vacuum ranging from 0.01 to 0.06 IWC in air inlet (AI) wells screened 4 to 6 ft below grade and located on the perimeter of the school building when the horizontal SVE trench is closed and all SVE well caps are in place. This suggests an SVE radius of influence within the design predictions for the subsurface, although not reflected in the SGP dP data.
- From approximately July 11 to the present, the SVE system has been operated with the SVE well
 caps off, to direct air flow into the sub-slab void space. As a result, floor temperatures have not
 increased significantly above 80 °F, suggesting adequate ventilation and cooling beneath the sub-slab
 caused by >400 SCFM sub-slab air flow.

Vapor Intrusion Assessment and Findings

The Washington State Department of Ecology (Ecology) and U.S. Environmental Protection Agency (EPA) vapor intrusion guidance (EPA 2008 and EPA 2015) were reviewed regarding monitoring of the effectiveness of VI mitigation systems. These citations and corresponding SVE system performance data should be considered in assessing the potential for VI at the School, as follows:

- SVE influent concentration analytical (TO-15) data from a sample collected June 28, 2016 and summarized in Table 3 show constituent concentrations below the Ecology VI action levels (Ecology 2016).
- According to EPA guidance, sub-slab depressurization systems for control of VI can reverse the
 potential for air flow through the slab (sub-slab depressurization system or SDS) or dilute the
 concentrations of air (sub-slab ventilation system or SVS). Based on dP and air flow rate data, as
 well as the above SVE influent concentration data, the SVE system at the Skykomish School is
 effective in both regards.
- For an SDS, average depressurization is approximately 4 to 10 pascal (EPA 2008) or 0.016 to 0.040 IWC. Maintenance of at least 0.025 IWC in all SGPs was specified as an operating goal in an addendum to the Compliance Monitoring Plan (Farallon 2015). The dP data shown in Table 1 indicates only partial compliance with this goal; however, according to the above EPA guidance, dP is only one metric used to gage the effectiveness of VI mitigation, and other factors, such as air flow rate and soil vapor concentrations, should be considered. Taken together, the dP data in conjunction

Messrs. Hamlin and Vining August 19, 2016 Page 3

> with air flow rate and SVE concentration data strongly support our conclusion that the SVE system is an effective VI mitigation system.

Proposed Path Forward for SVE System Operation

- 1. Increase SVE influent analytical testing (TO-15) to one sampling event monthly during system operating periods.
- 2. Continue to operate the system with the SVE well caps off to maximize air flow from the sub-slab void space.
- 3. Inspect the school basement for unsealed penetrations (such as crawl spaces) and seal these penetrations.
- 4. Replace existing flow meters with units rated for a higher range (~200 SCFM), or drill and tap ¹/₄-inch monitoring ports for use with a sensitive handheld flow meter that will accurately measure flows through a broad range of operating conditions.
- 5. Seal the SVE well vaults using weather stripping and/or silicone caulk.
- 6. If additional increases in dPs at the SGPs are necessary, assess whether the activated carbon system can be removed from the system (direct discharge) to increase subsurface airflow from the current SVE blower, or alternately upsize the blower. If the blower is upsized, a unit with a different vacuum-flow performance curve can be selected to accommodate the low vacuum/high flow system characteristics.

References

Farallon Consulting (Farallon) 2015. Compliance Monitoring Plan, Addendum 3, Skykomish School Remediation Project, February 17, 2015

US Environmental Protection Agency (EPA) 2015. OSWER Technical Guide for Assessing and mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air., OSWER Publication 9200.2-154

US Environmental Protection Agency (EPA) 2008. Engineering Issue Indoor Air Vapor Intrusion Mitigation Approaches

Washington State Department of Ecology (Ecology) 2016. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action

Messrs. Hamlin and Vining August 19, 2016 Page 4

If there are any outstanding questions or concerns, please feel free to contact me via email (jpietz@trihydro.com), or by office phone at (307) 399-0977.

Sincerely, Trihydro Corporation

John Pietz, PE Project Manager

18D-003-004

Attachments

W.S. Clayton, Ltd.

L

Wilson Clayton, PhI Senior Consultant

TABLES

	SVE System Leg Flowrate, SCFM						
Date	SVE-1,2	SVE-3	SVE-4	SVE-5	SVE-6/Horizontal well	Total, SCFM	
6/15/2016	87.15	NM	14.82	70.03	68.04	240.04	
6/20/2016	>95	49	0	>99	>99	>346	
6/24/2016	92.58	>99	0	>99	>99	>390	
6/27/2016	92.9	>99	-65.5	>99	>99	>455	
6/28/2016	92.8	>99	31	>99	>99	>421	
7/6/2016	40.5	93.3	>99	>99	>99	>431	
7/11/2016	70.2	NM	>99	>99	>99	>367	
7/12/2016	>99	NM	>99	>99	80.4	>297	
7/13/2016	83.6	>99	>99	>99	>99	>480	
7/14/2016	85.5	>99	>99	>99	>99	>482	
7/15/2016	81.4	>99	>99	>99	>99	>477	
7/16/2016	NM	NM	NM	NM	NM	NM	
7/17/2016	NM	NM	NM	NM	NM	NM	
7/18/2016	NM	NM	NM	NM	NM	NM	
7/19/2016	NM	NM	NM	NM	NM	NM	
7/22/2016	19.79	116.77	153.24	131.92	136.91	558.63	
7/26/2016	10	>99	>99	>99	>99	>406	
7/27/2016	15.7	>99	>99	>99	>99	>412	
7/28/2016	NM	NM	NM	NM	NM	>396	
8/1/2016	20	>99	>99	>99	>99	>416	
8/2/2016	16.5	>99	>99	>99	>99	>413	
8/3/2016	15	>99	>99	>99	>99	>411	

Notes:

NM - not measured

SCFM - standard cubic feet per minute

TABLE 2. SKYKOMISH SCHOOL SUB-SLAB DIFFERENTIAL PRESSURE DATA

Week or Day	Sub-slab Differential Pressure, Inches Water Column							
week of Day	SGP-1	SGP-2	SGP-3	SGP-4	SGP-5	SGP-6		
7/30/16-8/6/16	-0.02	-0.01	-0.01	-0.02	0	-0.02		
7/24/16-7/30/16	-0.02	-0.01	-0.01	-0.03	0	-0.02		
7/17/16-7/24/16	-0.02	-0.01	-0.02	-0.02	0	-0.02		
Average	-0.02	-0.01	-0.01	-0.02	0	-0.02		
8/5/2016 (13:00 - 14:00)	-0.02/-0.01 ^a	-0.02 ^a	-0.02/-0.01 ^a	-0.03/-0.02 ^a	-0.01 ^a	-0.02 ^a		
8/5/2016 (13:00 - 14:00)	-0.026 ^b	-0.032 ^b	-0.013 ^b	-0.030 ^b	-0.013 ^b	-0.016 ^b		

Notes:

SGP - soil gas probe

^a - Range of flow meter readings over approximate 8 sec period of digital manometer time average.

^b - Data collected using digital manometer with 8 sec time average, accurate to 0.001 inches water column.

Data are from SGP data logging over the indicated time period, unless otherwise noted.

Negative reading indicates sub-slab air space is negative with respect to the room above.

TABLE 3. SVE SYSTEM INFLUENT VAPOR PHASE PETROLEUM HYDROCARBONS

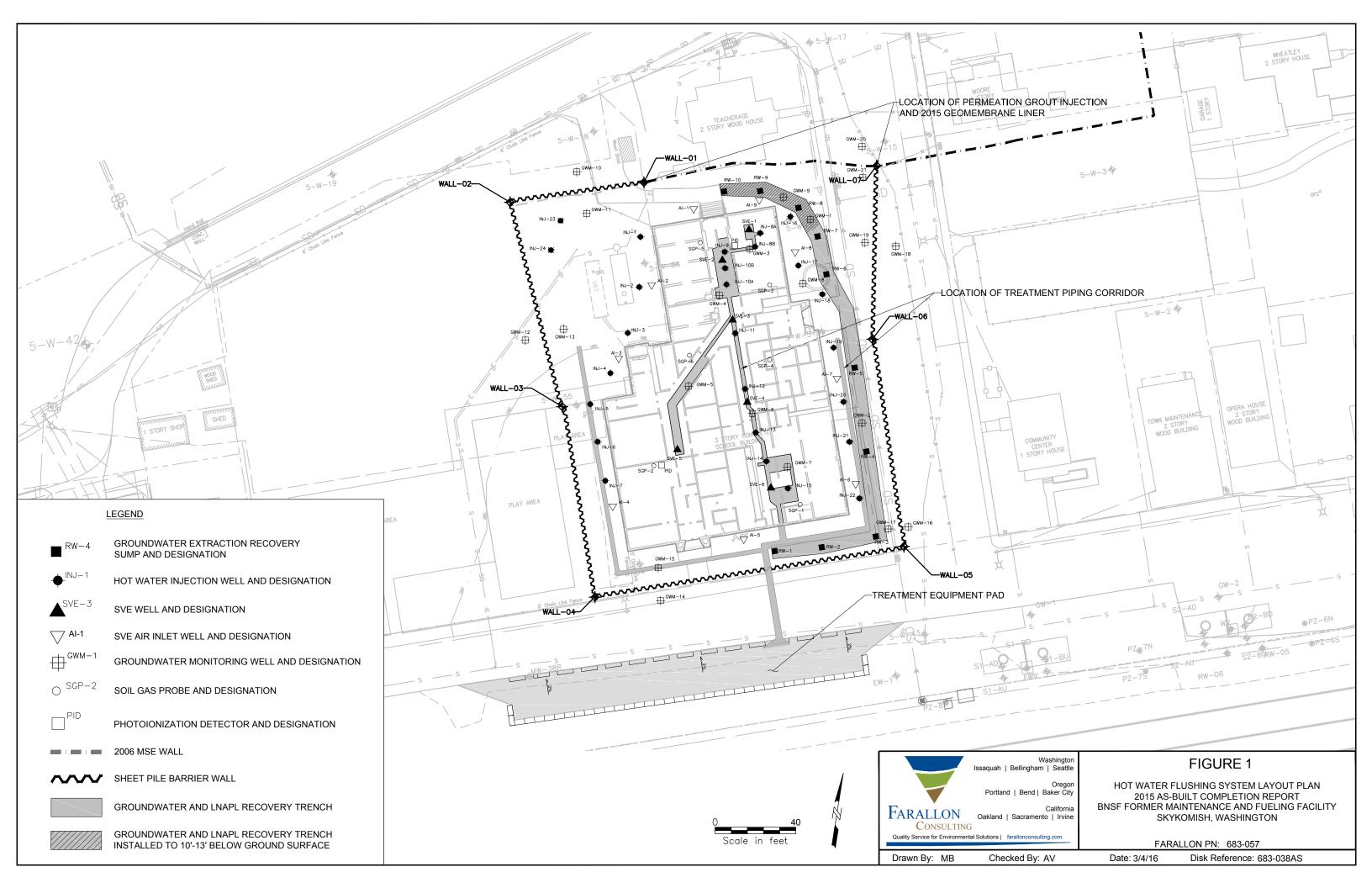
Sample No.	Sample Date	1,3-Butadiene ¹ (μg/m ³)	Methyl tert butyl ether (µg/m³)	Benzene ¹ (µg/m³)	Toluene (µg/m³)	Ethylbenzene (µg/m³)	Xylene, p,m (µg/m³)	Xylene, o (µg/m³)	Naphthalene ¹ (µg/m ³)	Aliphatics, C5 to C8 (μg/m³)	Aliphatics, C9 to C12 (µg/m ³)	Aromatics, C9 to C10 (μg/m³)	Total APH ⁴ (µg/m ³)
SYSTEM_INF_062816	6/28/2016	< 0.044	< 0.7	< 0.319	2.3	< 0.9	1.7	< 0.9	0.802	120	330	< 10	461.2
Project Action Limits (µg/m ³)		0.083 ²	9.6 ²	0.32 ²	2,290 ²	460 ²	46 ²	46 ²	1.4 ²	No CL	ARC criteria av	ailable	1,346 ³
MTCA Method B Sub-Slab Soil Gas Sc	reening Level (µg/m ³)	2.78	321	10.7	76,200	15,200	1,520	1,520	2.45	90,000	4,700	6,000	NE

Notes:

¹ Laboratory RDLs for these compounds were attained using TO-15 SIM analysis to lower the detection limits below CLARC criteria.

² CLARC Method B values for protection of all populations.

³ Risk-based cleanup level established for Town of Skykomish and private property during this project by the Washington State Department of Ecology.


⁴ Total APH is derived by summing all individual compounds and ranges, excluding 1,3-butadiene. Compounds not detected at concentrations exceeding the

laboratory RDL are added at half of the RDL.

⁵Washington State Model Toxics Control Act Cleanup Regulation Method B Cleanup and Screening Levels, Table B-1 of Appendix B of the Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action. Revised February 2016. $\label{eq:APH} \begin{array}{l} \mathsf{APH} = \operatorname{air-phase} \mathsf{petroleum} \ \mathsf{hydrocarbons} \\ \mathsf{CLARC} = \mathsf{Cleanup} \ \mathsf{Levels} \ \mathsf{and} \ \mathsf{Risk} \ \mathsf{Calculations} \\ \mathsf{\mu g/m^3} = \mathsf{micrograms} \ \mathsf{per cubic} \ \mathsf{meter} \\ \mathsf{SIM} = \mathsf{Selective} \ \mathsf{Ion} \ \mathsf{Monitoring} \\ \mathsf{NE} = \mathsf{not} \ \mathsf{established} \end{array}$

< indicates compounds not detected at concentrations exceeding laboratory reported detection limits (RDLs).

FIGURE

APPENDIX E SOIL VAPOR LABORATORY ANALYTICAL REPORTS

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Farallon PN: 683-057

ANALYTICAL REPORT

Lab Number:	L1620464
Client:	Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, WA 98027
ATTN:	Russell Luiten
Phone:	(425) 394-4147
Project Name:	BNSF SKYKOMISH
Project Number:	683-057
Report Date:	07/11/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:07111613:31

Project Name:BNSF SKYKOMISHProject Number:683-057

 Lab Number:
 L1620464

 Report Date:
 07/11/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1620464-01	SYSTEM_INF_062816	SOIL_VAPOR	SKYKOMISH, WA	06/28/16 10:52	07/01/16
L1620464-02	BASE_062816	AIR	SKYKOMISH, WA	06/28/16 12:51	07/01/16
L1620464-03	FIRST_062816	AIR	SKYKOMISH, WA	06/28/16 15:32	07/01/16
L1620464-04	SECOND_062816	AIR	SKYKOMISH, WA	06/28/16 15:30	07/01/16

Project Name: BNSF SKYKOMISH Project Number: 683-057
 Lab Number:
 L1620464

 Report Date:
 07/11/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BNSF SKYKOMISH Project Number: 683-057

 Lab Number:
 L1620464

 Report Date:
 07/11/16

Case Narrative (continued)

Volatile Organics in Air and Petroleum Hydrocarbons in Air

Canisters were released from the laboratory on June 20 and 27, 2016. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 07/11/16

AIR

L1620464

07/11/16

Lab Number:

Report Date:

Project Name:	BNSF SKYKOMISH
Project Number:	683-057

Lab ID:	L1620464-01	Date Collected:	06/28/16 10:52
Client ID:	SYSTEM_INF_062816	Date Received:	07/01/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/08/16 09:58		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
1,3-Butadiene	ND	0.020		ND	0.044			1
Benzene	ND	0.100		ND	0.319			1
Naphthalene	0.153	0.050		0.802	0.262			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	78		60-140

Project Name:	BNSF SKYKOMISH	L	Lab Nun
Project Number:	683-057	F	Report [

mber: L1620464

 Date: 07/11/16

Lab ID:	L1620464-02	Date Collected:	06/28/16 12:51
Client ID:	BASE_062816	Date Received:	07/01/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/08/16 01:37		
Analyst:	RY		

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
1,3-Butadiene	ND	0.020		ND	0.044			1
Benzene	0.284	0.100		0.907	0.319			1
Naphthalene	0.145	0.050		0.760	0.262			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	89		60-140

Project Name:	BNSF SKYKOMISH	L
Project Number:	683-057	F

 Lab Number:
 L1620464

 Report Date:
 07/11/16

Lab ID:	L1620464-03	Date Collected:	06/28/16 15:32
Client ID:	FIRST_062816	Date Received:	07/01/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	07/08/16 02:46		
Analyst:	RY		

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by	SIM - Mansfield Lab							
1,3-Butadiene	ND	0.020		ND	0.044			1
Benzene	0.162	0.100		0.518	0.319			1
Naphthalene	0.061	0.050		0.320	0.262			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	80		60-140

Project Name:	BNSF SKYKOMISH
Project Number:	683-057

Lab Number: L1620464 Report Date: 07/11/16

Lab ID: Client ID: Sample Location: Matrix: Anaytical Method: Analytical Date:	L1620464-04 SECOND_062816 SKYKOMISH, WA Air 48,TO-15-SIM 07/08/16 03:20	Date Collected: Date Received: Field Prep:	06/28/16 15:30 07/01/16 Not Specified
Analytical Date: Analyst:	07/08/16 03:20 RY		

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
1,3-Butadiene	ND	0.020		ND	0.044			1
Benzene	0.143	0.100		0.457	0.319			1
Naphthalene	ND	0.050		ND	0.262			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	78		60-140

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/07/16 15:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	e(s): 01-04	Batch: W	/G911224	-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/07/16 15:25

		ррЬV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab for	or sample	(s): 01-04	Batch: W	G911224	-4		
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/07/16 15:25

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab fo	or sample	(s): 01-04	Batch: V	VG911224	-4		
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Batch Quality Control

Project Number: 683-057

Lab Number: L1620464 Report Date: 07/11/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-04 Batch: WG911224-3 Propylene 91 70-130 25 --Dichlorodifluoromethane 107 70-130 25 --Chloromethane 113 70-130 25 --Q 25 1,2-Dichloro-1,1,2,2-tetrafluoroethane 70-130 134 --Vinyl chloride 124 70-130 25 --1.3-Butadiene 70-130 25 129 --Q 25 Bromomethane 132 70-130 --Chloroethane 124 70-130 25 --Ethyl Alcohol 70-130 25 117 _ -Vinyl bromide Q 70-130 25 138 --129 70-130 25 Acetone --Q Trichlorofluoromethane 140 70-130 25 -iso-Propyl Alcohol 122 70-130 25 --117 70-130 25 Acrylonitrile --1,1-Dichloroethene 70-130 25 97 --Methylene chloride 100 70-130 25 --3-Chloropropene 87 70-130 25 --Carbon disulfide 25 92 70-130 --1,1,2-Trichloro-1,2,2-Trifluoroethane 70-130 25 105 --Halothane 104 70-130 25 -trans-1.2-Dichloroethene 86 70-130 25 --

Batch Quality Control

Project Number: 683-057

Lab Number: L1620464 Report Date: 07/11/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-04 Batch: WG911224-3 1,1-Dichloroethane 97 70-130 25 --Methyl tert butyl ether 91 70-130 25 --Vinyl acetate 100 70-130 25 --25 70-130 2-Butanone 92 -cis-1.2-Dichloroethene 102 70-130 25 --Ethyl Acetate 70-130 25 94 --25 Chloroform 102 70-130 --Tetrahydrofuran 87 70-130 25 --1.2-Dichloroethane 70-130 25 96 _ -70-130 25 n-Hexane 88 --1,1,1-Trichloroethane 70-130 25 95 --Benzene 89 70-130 25 --Carbon tetrachloride 98 70-130 25 --Cyclohexane 70-130 25 86 --1,2-Dichloropropane 70-130 25 95 --Bromodichloromethane 70-130 25 98 --1,4-Dioxane 95 70-130 25 --70-130 25 Trichloroethene 99 --2,2,4-Trimethylpentane 70-130 25 94 -cis-1,3-Dichloropropene 70-130 25 98 --4-Methyl-2-pentanone 99 70-130 25 --

Batch Quality Control

Project Number: 683-057

Lab Number: L1620464 Report Date: 07/11/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-04 Batch: WG911224-3 trans-1,3-Dichloropropene 84 70-130 25 --1,1,2-Trichloroethane 102 70-130 25 --Toluene 70-130 25 98 --25 70-130 2-Hexanone 98 --Dibromochloromethane 106 70-130 25 --1,2-Dibromoethane 70-130 25 106 --25 Tetrachloroethene 103 70-130 --1,1,1,2-Tetrachloroethane 100 70-130 25 --Chlorobenzene 70-130 25 105 _ -Ethylbenzene 70-130 25 98 -p/m-Xylene 101 70-130 25 --Bromoform 106 70-130 25 --Styrene 101 70-130 25 --1.1.2.2-Tetrachloroethane 70-130 25 111 -o-Xylene 103 70-130 25 --Isopropylbenzene 101 70-130 25 --4-Ethyltoluene 106 70-130 25 --1,3,5-Trimethylbenzene 70-130 25 97 --1,2,4-Trimethylbenzene 70-130 25 112 --Benzyl chloride 70-130 25 96 --1.3-Dichlorobenzene 122 70-130 25 --

Batch Quality Control

Project Number: 683-057

 Lab Number:
 L1620464

 Report Date:
 07/11/16

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-04 Batch: WG911224-3 70-130 1,4-Dichlorobenzene 111 25 --70-130 25 sec-Butylbenzene 105 -p-Isopropyltoluene 97 70-130 25 --1,2-Dichlorobenzene 70-130 25 114 -n-Butylbenzene 112 70-130 25 --1,2,4-Trichlorobenzene 121 70-130 25 --70-130 25 Naphthalene 114 --1,2,3-Trichlorobenzene 111 70-130 25 --Hexachlorobutadiene 104 70-130 25 _ -

Project Name: Project Number:	BNSF SKYKOMISH 683-057	Lab Duplicate Analysis Batch Quality Control				Lab Number: Report Date:		L1620464 07/11/16
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Volatile Organics in Air b BASE_062816	y SIM - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG91	1224-5 QC \$	Sample: L16	20464-02	Client ID:	
1,3-Butadiene		ND	ND	ppbV	NC		25	
Benzene		0.284	0.285	ppbV	0		25	
Naphthalene		0.145	0.143	ppbV	1		25	

Project Name:BNSF SKYKOMISHProject Number:683-057

SAMPLE RESULTS

Lab ID:	L1620464-01	Date Collected:	06/28/16 10:52
Client ID:	SYSTEM_INF_062816	Date Received:	07/01/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Analytical Method:	96,APH		
Analytical Date:	07/08/16 09:58		
Analyst:	RY		

Quality Control Information

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND	ug/m3	0.50		1			
Methyl tert butyl ether	ND	ug/m3	0.70		1			
Benzene	ND	ug/m3	0.60		1			
C5-C8 Aliphatics, Adjusted	120	ug/m3	10		1			
Toluene	2.3	ug/m3	0.90		1			
Ethylbenzene	ND	ug/m3	0.90		1			
p/m-Xylene	1.7	ug/m3	0.90		1			
o-Xylene	ND	ug/m3	0.90		1			
Naphthalene	ND	ug/m3	1.1		1			
C9-C12 Aliphatics, Adjusted	330	ug/m3	10		1			
C9-C10 Aromatics Total	ND	ug/m3	10		1			

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		50-200
Bromochloromethane	90		50-200
Chlorobenzene-d5	78		50-200

Report Date:

07/11/16

L C S Ν ŀ A

Date Collected: Date Received: Field Prep:

06/28/16 12:51 07/01/16 Not Specified

Quality Control Information

SAMPLE RESULTS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Petroleum Hydrocarbons in Air - Mansfield Lab							
1,3-Butadiene	ND	ι	ug/m3	0.50		1	
Methyl tert butyl ether	ND	ι	ug/m3	0.70		1	
Benzene	1.0	ι	ug/m3	0.60		1	
C5-C8 Aliphatics, Adjusted	170	ι	ug/m3	10		1	
Toluene	11	ι	ug/m3	0.90		1	
Ethylbenzene	2.0	ι	ug/m3	0.90		1	
p/m-Xylene	8.1	ι	ug/m3	0.90		1	
o-Xylene	2.7	ι	ug/m3	0.90		1	
Naphthalene	ND	ι	ug/m3	1.1		1	
C9-C12 Aliphatics, Adjusted	220	l	ug/m3	10		1	
C9-C10 Aromatics Total	ND	ι	ug/m3	10		1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		50-200
Bromochloromethane	89		50-200
Chlorobenzene-d5	87		50-200

Project Name: BNSF SKYKOMISH

Project Number: 683-057

Lab ID:	L1620464-02
Client ID:	BASE_062816
Sample Location:	SKYKOMISH, WA
Matrix:	Air
Analytical Method:	96,APH
Analytical Date:	07/08/16 01:37
Analyst:	RY

Report Date:

Date Collected:

Date Received:

Field Prep:

07/11/16

06/28/16 15:32

Not Specified

07/01/16

Lab ID:L1620464-03Client ID:FIRST_062816Sample Location:SKYKOMISH, WAMatrix:AirAnalytical Method:96,APHAnalytical Date:07/08/16 02:46Analyst:RY

BNSF SKYKOMISH

683-057

Project Name:

Project Number:

SAMPLE RESULTS

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND		ug/m3	0.50		1		
Methyl tert butyl ether	ND		ug/m3	0.70		1		
Benzene	0.61		ug/m3	0.60		1		
C5-C8 Aliphatics, Adjusted	46		ug/m3	10		1		
Toluene	5.1		ug/m3	0.90		1		
Ethylbenzene	ND		ug/m3	0.90		1		
p/m-Xylene	2.8		ug/m3	0.90		1		
o-Xylene	0.94		ug/m3	0.90		1		
Naphthalene	ND		ug/m3	1.1		1		
C9-C12 Aliphatics, Adjusted	100		ug/m3	10		1		
C9-C10 Aromatics Total	ND		ug/m3	10		1		

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		50-200
Bromochloromethane	85		50-200
Chlorobenzene-d5	80		50-200

Serial_No:07111613:31 Lab Number: L1620464

Report Date:

Project Name:BNSF SKYKOMISHProject Number:683-057

SAMPLE RESULTS

Lab ID:	L1620464-04
Client ID:	SECOND_062816
Sample Location:	SKYKOMISH, WA
Matrix:	Air
Analytical Method:	96,APH
Analytical Date:	07/08/16 03:20
Analyst:	RY

Date Collected: Date Received: Field Prep: 06/28/16 15:30 07/01/16 Not Specified

07/11/16

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND		ug/m3	0.50		1		
Methyl tert butyl ether	ND		ug/m3	0.70		1		
Benzene	ND		ug/m3	0.60		1		
C5-C8 Aliphatics, Adjusted	37		ug/m3	10		1		
Toluene	3.7		ug/m3	0.90		1		
Ethylbenzene	ND		ug/m3	0.90		1		
p/m-Xylene	2.3		ug/m3	0.90		1		
o-Xylene	ND		ug/m3	0.90		1		
Naphthalene	ND		ug/m3	1.1		1		
C9-C12 Aliphatics, Adjusted	73		ug/m3	10		1		
C9-C10 Aromatics Total	ND		ug/m3	10		1		

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	81		50-200
Bromochloromethane	83		50-200
Chlorobenzene-d5	78		50-200

 Project Name:
 BNSF SKYKOMISH
 Lab Number:
 L1620464

 Project Number:
 683-057
 Report Date:
 07/11/16

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:07/07/16 15:25Analyst:RY

Result	Qualifier Units	RL	MDL
ansfield Lab fo	or sample(s): 01-04	Batch:	WG911227-4
ND	ug/m3	0.50	
ND	ug/m3	0.70	
ND	ug/m3	0.60	
ND	ug/m3	10	
ND	ug/m3	0.90	
ND	ug/m3	1.1	
ND	ug/m3	10	
ND	ug/m3	10	
	ansfield Lab fo ND ND ND ND ND ND ND ND ND ND ND ND ND	NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3NDug/m3	ND ug/m3 0.50 ND ug/m3 0.70 ND ug/m3 0.70 ND ug/m3 0.60 ND ug/m3 0.60 ND ug/m3 0.60 ND ug/m3 0.90 ND ug/m3 1.1 ND ug/m3 1.1 ND ug/m3 10

Batch Quality Control

Project Number: 683-057

 Lab Number:
 L1620464

 Report Date:
 07/11/16

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Limits RPD Qual Limits Qual Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG911227-3 1,3-Butadiene 123 70-130 --Methyl tert butyl ether 70-130 96 --Benzene 98 70-130 --C5-C8 Aliphatics, Adjusted 98 70-130 --Toluene 94 70-130 --Ethylbenzene 96 70-130 --70-130 p/m-Xylene 97 -o-Xylene 102 70-130 --Naphthalene 114 50-150 _ -C9-C12 Aliphatics, Adjusted 100 70-130 --C9-C10 Aromatics Total 90 70-130 --

Lab Duplicate Analysis Batch Quality Control

Project Name:BNSF SKYKOMISHProject Number:683-057

Lab Number: Report Date:

r: L1620464 :: 07/11/16

rameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
troleum Hydrocarbons in Air - Mansfield Lal Imple	o Associated sample(s): 01-04	QC Batch ID: WG9	11227-5 QC S	Sample: L16	20498-02 Client ID: DUP
1,3-Butadiene	ND	ND	ug/m3	NC	30
Methyl tert butyl ether	ND	ND	ug/m3	NC	30
Benzene	ND	ND	ug/m3	NC	30
C5-C8 Aliphatics, Adjusted	24	31	ug/m3	25	30
Toluene	2.3	2.3	ug/m3	0	30
Ethylbenzene	ND	ND	ug/m3	NC	30
p/m-Xylene	ND	ND	ug/m3	NC	30
o-Xylene	ND	ND	ug/m3	NC	30
Naphthalene	ND	ND	ug/m3	NC	30
C9-C12 Aliphatics, Adjusted	ND	ND	ug/m3	NC	30
C9-C10 Aromatics Total	ND	ND	ug/m3	NC	30

Project Name: BNSF SKYKOMISH

Project Number: 683-057

Serial_No:07111613:31 Lab Number: L1620464

Report Date: 07/11/16

Canister and Flow Controller Information

	Media ID	Media Type	Date	Bottle			Initial	Pressure	Flow			
OVOTEM INE 000040			Prepared	Order	Cleaning Batch ID	Can Lea Check	k Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
SYSTEM_INF_062816	532	2.7L Can	06/20/16	224120	L1618074-01	Pass	-29.7	-15.6	-	-	-	-
BASE_062816	0388	#16 AMB	06/20/16	224120		-	-	-	Pass	4.2	3.3	24
BASE_062816	236	2.7L Can	06/20/16	224120	L1618074-01	Pass	-29.6	-1.7	-	-	-	-
FIRST_062816	0117	#16 AMB	06/27/16	223830		-	-	-	Pass	4.5	4.5	0
FIRST_062816	322	2.7L Can	06/27/16	223830	L1614964-01	Pass	-29.8	-7.1	-	-	-	-
SECOND_062816	0286	#16 AMB	06/20/16	224120		-	-	-	Pass	4.5	4.4	2
SECOND_062816	2031	2.7L Can	06/20/16	224120	L1618074-01	Pass	-29.7	-7.7	-	-	-	-
	BASE_062816 FIRST_062816 FIRST_062816 SECOND_062816	BASE_062816 236 FIRST_062816 0117 FIRST_062816 322 SECOND_062816 0286	BASE_062816 236 2.7L Can FIRST_062816 0117 #16 AMB FIRST_062816 322 2.7L Can SECOND_062816 0286 #16 AMB	BASE_062816 236 2.7L Can 06/20/16 FIRST_062816 0117 #16 AMB 06/27/16 FIRST_062816 322 2.7L Can 06/27/16 SECOND_062816 0286 #16 AMB 06/20/16	BASE_062816 236 2.7L Can 06/20/16 224120 FIRST_062816 0117 #16 AMB 06/27/16 223830 FIRST_062816 322 2.7L Can 06/27/16 223830 SECOND_062816 0286 #16 AMB 06/20/16 224120	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 FIRST_062816 0117 #16 AMB 06/27/16 223830 L1614964-01 FIRST_062816 322 2.7L Can 06/20/16 223830 L1614964-01 SECOND_062816 0286 #16 AMB 06/20/16 224120 L1614964-01	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass FIRST_062816 0117 #16 AMB 06/27/16 223830 - - FIRST_062816 322 2.7L Can 06/27/16 223830 L1614964-01 Pass SECOND_062816 0286 #16 AMB 06/20/16 224120 - -	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass -29.6 FIRST_062816 0117 #16 AMB 06/27/16 223830 - - - FIRST_062816 322 2.7L Can 06/27/16 223830 L1614964-01 Pass -29.8 SECOND_062816 0286 #16 AMB 06/20/16 224120 - - -	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass -29.6 -1.7 FIRST_062816 0117 #16 AMB 06/27/16 223830 - - - - FIRST_062816 322 2.7L Can 06/27/16 223830 L1614964-01 Pass -29.8 -7.1 SECOND_062816 0286 #16 AMB 06/20/16 224120 - - -	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass -29.6 -1.7 - FIRST_062816 0117 #16 AMB 06/27/16 223830 - - - Pass FIRST_062816 322 2.7L Can 06/27/16 223830 L1614964-01 Pass -29.8 -7.1 - SECOND_062816 0286 #16 AMB 06/20/16 224120 - - - Pass	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass -29.6 -1.7 - - FIRST_062816 0117 #16 AMB 06/27/16 223830 - - - - Pass - - FIRST_062816 0117 #16 AMB 06/27/16 223830 L1614964-01 Pass -29.8 -7.1 - - SECOND_062816 0286 #16 AMB 06/20/16 224120 - - - - - SECOND_062816 0286 #16 AMB 06/20/16 224120 - - - - -	BASE_062816 236 2.7L Can 06/20/16 224120 L1618074-01 Pass -29.6 -1.7 - - - FIRST_062816 0117 #16 AMB 06/27/16 223830 L1614964-01 - <td< td=""></td<>

		Serial_No:07	7111613:31
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1614964
Project Number:	CANISTER QC BAT	Report Date:	07/11/16
	Air Canister Certification Results		
	1 161 4064 01	Data Collected:	05/17/16 1

Lab ID:	L1614964-01	Date Collected:	05/17/16 16:00
Client ID:	CAN 322 SHELF 2	Date Received:	05/18/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	05/18/16 17:38		
Analyst:	RY		

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Serial_No:07111613:31

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1614964 Report Date: 07/11/16

Parameter Volatile Organics in Air Methylene chloride 3-Chloropropene Carbon disulfide Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloroethane 1,2-Dichloroethane	r - Mansfield Lab	Results ND ND ND ND ND ND	ppbV RL 0.500 0.200 0.200 0.200	MDL 	Results	ug/m3 RL 1.74	MDL	Qualifier	Dilution Factor
Methylene chloride 3-Chloropropene Carbon disulfide Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane	r - Mansfield Lab	ND ND ND ND	0.200 0.200			1.74			
3-Chloropropene Carbon disulfide Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND ND ND	0.200 0.200			1.74			
Carbon disulfide Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND ND	0.200						1
Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND			ND	0.626			1
trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane			0.200		ND	0.623			1
1,1-DichloroethaneMethyl tert butyl etherVinyl acetate2-Butanonecis-1,2-DichloroetheneEthyl AcetateChloroformTetrahydrofuran2,2-Dichloroethane1,2-Dichloroethanen-Hexane		ND			ND	1.53			1
Methyl tert butyl ether Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane			0.200		ND	0.793			1
Vinyl acetate 2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.200		ND	0.809			1
2-Butanone cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.200		ND	0.721			1
cis-1,2-Dichloroethene Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	1.00		ND	3.52			1
Ethyl Acetate Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.500		ND	1.47			1
Chloroform Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.200		ND	0.793			1
Tetrahydrofuran 2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.500		ND	1.80			1
2,2-Dichloropropane 1,2-Dichloroethane n-Hexane		ND	0.200		ND	0.977			1
1,2-Dichloroethane n-Hexane		ND	0.500		ND	1.47			1
n-Hexane		ND	0.200		ND	0.924			1
		ND	0.200		ND	0.809			1
		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Serial_No:07111613:31

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1614964 Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1614964-01 CAN 322 SHEL	.F 2	ppbV				Collecte Receive Prep:		05/17/16 16:0 05/18/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F 4
Volatile Organics in A	ir - Mansfield Lab								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1614964 Report Date: 07/11/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1614964-01 CAN 322 SHEL	_F 2					Collecte Receive Prep:		05/17/16 16:00 05/18/16 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab	I							
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			ppbV			ug/m3			Dilution
Sample Location:						Field	Prep:		Not Specified
Client ID:	CAN 322 SHEL	F 2				Date	Receive	ed:	05/18/16
Lab ID:	L1614964-01					Date	Collecte	ed:	05/17/16 16:00
		Air Can	ister Ce	rtificatio	on Results				
Project Number:	CANISTER QC E	BAT				R	eport D	ate: ()7/11/16
Project Name:	BATCH CANISTI	ER CERT	IFICATION	1		La	ab Num	ber: լ	_1614964
							Serial	_No:071	11613:31

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	87		60-140

Air Canister Certification Results

Lab ID:	L1614964-01	Date Collected:	05/17/16 16:00
Client ID:	CAN 322 SHELF 2	Date Received:	05/18/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	05/18/16 17:38		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1

L1614964

07/11/16

Serial_No:07111613:31

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Lab Number: L1614964 Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1614964-01 CAN 322 SHEL	F 2	ppbV				Collecte Receive Prep:		05/17/16 16:0 05/18/16 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	ir by SIM - Mansfi	eld Lab							
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	е	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.100		ND	0.461			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
n-Butylbenzene		ND	0.200		ND	1.10			1

Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1614964-01 CAN 322 SHEL	F 2					Collecte Receive Prep:		05/17/16 16:00 05/18/16 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL MDL	Qualifier	Factor	
Volatile Organics in A	ir by SIM - Mansfi	eld Lab							
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	90		60-140

		Serial_No:07	7111613:31	
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1618074	
Project Number:	CANISTER QC BAT	Report Date:	07/11/16	
	Air Canister Certification Results			
	4040074.04	Data Callastad	00/40/40 40	

Lab ID:	L1618074-01	Date Collected:	06/13/16 16:00
Client ID:	CAN 326 SHELF 2	Date Received:	06/14/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	06/14/16 16:02		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1618074-01 CAN 326 SHEI	LF 2	ppbV				Collecte Receive Prep:		06/13/16 16:00 06/14/16 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	Air - Mansfield Lab)							
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	9	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1618074-01 CAN 326 SHEL	_F 2	ppbV				Collecte Receive Prep:		06/13/16 16:00 06/14/16 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Dilution Factor
Volatile Organics in A	ir - Mansfield Lab								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Methyl Methacrylate		ND	0.500		ND	2.05			1
Heptane		ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.754			1
1,3-Dichloropropane		ND	0.200		ND	0.924			1
2-Hexanone		ND	0.200		ND	0.820			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.38			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.921			1
Ethylbenzene		ND	0.200		ND	0.869			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.07			1
Styrene		ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	9	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.869			1
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.983			1
Bromobenzene		ND	0.200		ND	0.793			1

Report Date: 07/11/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1618074-01 CAN 326 SHEL	_F 2					Collecte Receive Prep:		06/13/16 16:00 06/14/16 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in <i>I</i>	Air - Mansfield Lab								
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

			ppbV			ug/m3	g/m3		Dilution
Sample Location:						Field F	Prep:		Not Specified
Client ID:	CAN 326 SHEL	F 2				Date F	Receive	ed:	06/14/16
Lab ID:	L1618074-01					Date C	Collecte	ed:	06/13/16 16:00
		Air Car	nister Ce	rtificatio	on Results				
Project Number:	CANISTER QC E	C BAT					eport D	ate: ()7/11/16
Project Name:	BATCH CANIST	ER CERT	IFICATION	١		La	b Num	ber: լ	1618074
							Serial_	_No:071	11613:31

Internal Standard% RecoveryQualifierAcceptance
Criteria1,4-Difluorobenzene9260-140Bromochloromethane9260-140

90

60-140

Volatile Organics in Air - Mansfield Lab

chlorobenzene-d5

Serial_No:07	7111613:31
b Number:	L1618074

07/11/16

Lab ID:	L1618074-01	Date Collected:	06/13/16 16:00
Client ID:	CAN 326 SHELF 2	Date Received:	06/14/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	06/14/16 16:02		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Report Date: 07/11/16

Lab ID: Client ID: Sample Location:	L1618074-01 CAN 326 SHEI	_F 2	ppbV				Collecte Receive Prep:		06/13/16 16:00 06/14/16 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	F 4	
Volatile Organics in A	ir by SIM - Mansf	ield Lab								
Bromodichloromethane		ND	0.020		ND	0.134			1	
1,4-Dioxane		ND	0.100		ND	0.360			1	
Trichloroethene		ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1	
Toluene		ND	0.050		ND	0.188			1	
Dibromochloromethane		ND	0.020		ND	0.170			1	
1,2-Dibromoethane		ND	0.020		ND	0.154			1	
Tetrachloroethene		ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1	
Chlorobenzene		ND	0.100		ND	0.461			1	
Ethylbenzene		ND	0.020		ND	0.087			1	
p/m-Xylene		ND	0.040		ND	0.174			1	
Bromoform		ND	0.020		ND	0.207			1	
Styrene		ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1	
o-Xylene		ND	0.020		ND	0.087			1	
Isopropylbenzene		ND	0.200		ND	0.983			1	
4-Ethyltoluene		ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1	
sec-Butylbenzene		ND	0.200		ND	1.10			1	
p-Isopropyltoluene		ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1	

Report Date: 07/11/16

Lab ID:L1618074-01Client ID:CAN 326 SHELF 2Sample Location:			ppbV				Collecte Receive Prep:		06/13/16 16:00 06/14/16 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air by SIM - Mansf	ield Lab							
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	89		60-140

AIR Petro Can Certification

		Serial_No:07	7111613:31
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1614964
Project Number:	CANISTER QC BAT	Report Date:	07/11/16
	AIR CAN CERTIFICATION RESULTS	5	
Lab ID:	L1614964-01	Date Collected:	05/17/16 16:00
Client ID:	CAN 322 SHELF 2	Date Received:	05/18/16
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date:	05/18/16 17:38		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air						
1,3-Butadiene	ND		ug/m3	0.50		1
Methyl tert butyl ether	ND		ug/m3	0.70		1
Benzene	ND		ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	10		1
Toluene	ND		ug/m3	0.90		1
Ethylbenzene	ND		ug/m3	0.90		1
p/m-Xylene	ND		ug/m3	0.90		1
o-Xylene	ND		ug/m3	0.90		1
Naphthalene	ND		ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	10		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Analyst:

RY

		Serial_No:0	7111613:31
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1618074
Project Number:	CANISTER QC BAT	Report Date:	07/11/16
	AIR CAN CERTIFICATION RESULTS	5	
Lab ID:	L1618074-01	Date Collected:	06/13/16 16:00
Client ID:	CAN 326 SHELF 2	Date Received:	06/14/16
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date:	06/15/16 17:42		

ND	ug/	m3 0.50		1
ND	ug/	m3 0.70		1
ND	ug/	m3 0.60		1
ND	ug/	m3 10		1
ND	ug/	m3 0.90		1
ND	ug/	m3 0.90		1
ND	ug/	m3 0.90		1
ND	ug/	m3 0.90		1
ND	ug/	m3 1.1		1
ND	ug/	m3 10		1
ND	ug/	m3 10		1
	ND ND ND ND ND ND ND ND ND ND	ND ug/r ND ug/r	ND ug/m3 0.70 ND ug/m3 0.60 ND ug/m3 10 ND ug/m3 0.90 ND ug/m3 1.1 ND ug/m3 10	ND ug/m3 0.70 ND ug/m3 0.60 ND ug/m3 0.60 ND ug/m3 10 ND ug/m3 0.90 ND ug/m3 1.1 ND ug/m3 1.0

Analyst:

RY

Project Name: BNSF SKYKOMISH Project Number: 683-057 Serial_No:07111613:31

Lab Number: L1620464 Report Date: 07/11/16

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

Cooler Information Custody Seal

Cooler

N/A

		Temp			
Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
N/A	N/A	N/A	Y	Absent	APH-10(30)
N/A	N/A	N/A	Y	Absent	APH-10(30),TO15-SIM(30)
N/A	N/A	N/A	Y	Absent	APH-10(30),TO15-SIM(30)
N/A	N/A	N/A	Y	Absent	APH-10(30),TO15-SIM(30)
	N/A N/A N/A	N/A N/A N/A N/A N/A N/A	CoolerpHdeg CN/AN/AN/AN/AN/AN/AN/AN/AN/A	CoolerpHdeg CPresN/AN/AN/AYN/AN/AN/AYN/AN/AN/AY	CoolerpHdeg CPresSealN/AN/AN/AYAbsentN/AN/AN/AYAbsentN/AN/AN/AYAbsent

Project Name: BNSF SKYKOMISH

Project Number: 683-057

GLOSSARY

Acronvms

Lab Number: L1620464

Report Date: 07/11/16

- EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME). EPA - Environmental Protection Agency. LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. LCSD - Laboratory Control Sample Duplicate: Refer to LCS. - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of LFB analytes or a material containing known and verified amounts of analytes. MDL. - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. MSD - Matrix Spike Sample Duplicate: Refer to MS. NA - Not Applicable. NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit. NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine. NI - Not Ignitable. NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil. RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable. RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples. STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315. TIC
- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:07111613:31

Project Name: BNSF SKYKOMISH

Project Number: 683-057

Lab Number: L1620464

Report Date: 07/11/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: BNSF SKYKOMISH Project Number: 683-057
 Lab Number:
 L1620464

 Report Date:
 07/11/16

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

		Serial_No:07111613:31
ate Rec'd in Lab:	7/1/16	ALPHA Job #: 6 1620464

			IALY	SIS	PA	GE	OF	Date R	ec'd in Lal	- b:	7/1	/16		AI	_PHA	Jobł	#: L\$62	ONGU
	CHAIN OF CU	STODY	Project	Informati	on			Repor	rt Informa	ation -	Data D	Delivera	bles	В	illing l	nform	nation	
320 Forbes Blvd, Ma TEL: 508-822-9300	FAX: 508-822-3288		Project Na	ame:BNSF	SKYKO	vist		□ FAX					□ Same as Client info PO #:					
Client Informatio	n		Project Lo	ocation: 5k	Ykuno H, u	NA		ADEx Criteria Checker:										·····
Client: FARALLO			Project #: 683-057- (Default based on Regulatory Criteria II						eria Indicate	d)		·						
Address: 975 5	T NR NO		Project Ma	anager: 2.	LNIM	J		Other Formats:						Regulatory Requirements/Report Limit			s/Report Limits	
135AquAH	wA 9807	17	ALPHA Quote #:					Add	litional Del	iverable	s:			Sta	ate/Fed		Program	Res / Comm
Phone: (425)			Turn-A	round Tim	ne			Report	to: (if different	t than Project	Manager)							
Fax: (425)	295 0856																	
Email: RLunger	& FALMLancense	um-cay	🗅 Standar	ra u	RUSH (only co	onfirmed if pre-ap	proved!)			<u> </u>					AN	NALY:	SIS	
These samples have	ve been previously analyz	ed by Alpha	Date Due): 	•	Time:										ין אי	22	
-	pecific Requireme										1910				leum H _C	2/2	1	
Project-Specific	Target Compour	id List: 🗅	70-13	Sim	for	1,3-B	UTADLWR	BEN	that i	0 19 11	100				lon-petro	aptans		
		AI	l Col	umn	s Bel	ow N	Лust	Be f	Filled		ut			Mis	Sases	s & Mercaptans by To.15		
ALPHA Lab ID (Lab Use Only)	Sample II)		COL	LECTION	N Initial	Final	-	Sampler's	1	ID	I D - Flow	015	2 m	Fixed Gases	Sepilia		omments (i.e. PID)
						Vacuum 720,0		Matrix* S√	Initials 12L	Size 2.7		Controller	/~/~	· r	<u>, </u>	+	/Sample Co	
	SYSTEM_INF_UG		f	1052					•				($\left \frac{\Gamma}{\Gamma} \right $				
	BHSE_062	94 0		0756	12-51	(1,1)	1.14	AQ		1		1						
	FIRST- 062		Grak	077	1532	- 21. 4	-6.60	/TA										
-04	Skan D-06	2616	6/28/10	0755	1530	-29.X	· · · 97	AA	122	2.7	2031	286	V	5				
×	<u> </u>																	
			·			· · · · · · · · · · · · · · · · · · ·												
*SAMPLI	E MATRIX CODE	s sv	/ = Soil Vap	t Air (Indoor or/Landfill C					С	ontainer	Туре						Please print c	learly, legibly and
		Otl	her = Please			Det	o/Tim-		<u> </u>			<u> </u>		<u> </u>			logged in and	amples can not be turnaround time start until any ambi-
				shed By:		1	e/Time 16 1630		Recei	ved By:			L	Date/1	inte:		guities are res	solved. All samples subject to Alpha's
		· · · · · · · · · · · · · · · · · · ·	UPE	2				BJ	i je	Ba	_		71	16	D.	51	Terms and Co See reverse s	onditions.
Rage: 50 of r50 (25	-Sep-15)									-	-							1

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Farallon Consulting

Andrew Vining 975 5th Ave NW Issaquah, WA 98027

RE: SKY HWF SYSTEM Lab ID: 1608161

August 25, 2016

Attention Andrew Vining:

Fremont Analytical, Inc. received 1 sample(s) on 8/18/2016 for the analyses presented in the following report.

Petroleum Fractionation by EPA Method TO-15 Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

And c. Rady

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Project: Lab Order:	Farallon Consulting SKY HWF SYSTEM 1608161	Work Order Sample Summary
Lab Sample ID 1608161-001	Client Sample ID SYSTEM_INF_081716	Date/Time Collected Date/Time Received 08/17/2016 12:00 PM 08/18/2016 11:34 AM

Case Narrative

WO#: **1608161** Date: **8/25/2016**

CLIENT:Farallon ConsultingProject:SKY HWF SYSTEM

WorkOrder Narrative: I. SAMPLE RECEIPT: Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS: Air samples are reported in ppbv and/or ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1608161** Date Reported: **8/25/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL - Reporting Limit RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

WorkOrder: 1	Farallon Consulti 1608161 SKY HWF SYSTE	-							
Client Sample I	D: SYSTEM_II	NF_081716				Date Sa	ampled: 8/17	/2016	
Lab ID:	1608161-00	01A				Date Re	eceived: 8/18	/2016	
Sample Type:	Summa Ca	nister							
Analyte		Concer	itration	Reportii	ng Limit	Qual	Method	Date/Analys	st
Volatile Organi	c Compounds-EPA	Method TO-1	<u>5 (SIM)</u>						
		(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,3-Butadiene		<0.500	<1.11	0.500	1.11		EPA-TO-15SIN	1 08/23/2016	BC

1,3-Butadiene	<0.500	<1.11	0.500	1.11	EPA-TO-15SIM 08/23/2016	BC
Benzene	<0.0400	<0.128	0.0400	0.128	EPA-TO-15SIM 08/23/2016	BC
Naphthalene	<0.300	<1.57	0.300	1.57	EPA-TO-15SIM 08/23/2016	BC
Surr: 4-Bromofluorobenzene	112 %Rec		70-130		EPA-TO-15SIM 08/23/2016	BC

Analytical Report

WO#: **1608161** Date Reported: **8/25/2016**

Client: Farallon Consulting Project: SKY HWF SYSTEM				Collection	n Date: 8	8/17/2016 12:00:00 PM
Lab ID: 1608161-001				Matrix: A	ir	
Client Sample ID: SYSTEM INF (04746					
• – –			. .			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Petroleum Fractionation by EPA	Method TO-15			Batc	h ID: R3	1368 Analyst: BC
1,2,3-Trimethylbenzene	ND	1.41		µg/m³	1	8/24/2016 11:56:00 AM
1,3,5-Trimethylbenzene	ND	1.27		µg/m³	1	8/24/2016 11:56:00 AM
1-methyl-3-ethylbenzene	ND	1.29		µg/m³	1	8/24/2016 11:56:00 AM
2,3-Dimethylheptane	ND	1.04		µg/m³	1	8/24/2016 11:56:00 AM
2,3-Dimethylpentane	ND	0.970		µg/m³	1	8/24/2016 11:56:00 AM
Aliphatic Hydrocarbon (EC5-8)	622	147		µg/m³	1	8/24/2016 11:56:00 AM
Aliphatic Hydrocarbon (EC9-12)	504	94.2		µg/m³	1	8/24/2016 11:56:00 AM
Aromatic Hydrocarbon (EC9-10)	ND	4.54		µg/m³	1	8/24/2016 11:56:00 AM
Butylcyclohexane	ND	2.21		µg/m³	1	8/24/2016 11:56:00 AM
Cyclohexane	ND	1.18		µg/m³	1	8/24/2016 11:56:00 AM
Decane	ND	1.26		µg/m³	1	8/24/2016 11:56:00 AM
Dodecane	ND	8.35		µg/m³	1	8/24/2016 11:56:00 AM
Ethylbenzene	ND	0.690		µg/m³	1	8/24/2016 11:56:00 AM
Heptane	ND	0.650		µg/m³	1	8/24/2016 11:56:00 AM
Hexane	ND	0.630		µg/m³	1	8/24/2016 11:56:00 AM
Isopentane	38.6	1.02	*	µg/m³	1	8/24/2016 11:56:00 AM
Isopropylbenzene	ND	0.850		µg/m³	1	8/24/2016 11:56:00 AM
m,p-Xylene	3.29	0.730		µg/m³	1	8/24/2016 11:56:00 AM
Methyl tert-butyl ether (MTBE)	ND	0.450		µg/m³	1	8/24/2016 11:56:00 AM
Nonane	ND	1.24		µg/m³	1	8/24/2016 11:56:00 AM
Octane	ND	1.13		µg/m³	1	8/24/2016 11:56:00 AM
o-Xylene	ND	1.15		µg/m³	1	8/24/2016 11:56:00 AM
p-isopropyltoluene	ND	1.83		µg/m³	1	8/24/2016 11:56:00 AM
Toluene	ND	0.740		µg/m³	1	8/24/2016 11:56:00 AM
Undecane	ND	2.69		µg/m³	1	8/24/2016 11:56:00 AM
Surr: 4-Bromofluorobenzene	128	70-130		%Rec	1	8/24/2016 11:56:00 AM
NOTES						

NOTES:

* - Flagged value is not within established control limits.

Work Order: 1608161

Project:

CLIENT: Farallon Consulting

SKY HWF SYSTEM

QC SUMMARY REPORT

Petroleum Fractionation by EPA Method TO-15

Sample ID LCS-R31368	SampType: LCS			Units: µg/m³		Prep Date	e: 8/24/20)16	RunNo: 313	368	
Client ID: LCSW	Batch ID: R31368					Analysis Date	e: 8/24/20	016	SeqNo: 591	636	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trimethylbenzene	23.4	1.41	24.58	0	95.0	70	130				
1,3,5-Trimethylbenzene	22.8	1.27	24.58	0	92.6	70	130				
1-methyl-3-ethylbenzene	24.9	1.29	24.58	0	101	70	130				
2,3-Dimethylheptane	30.8	1.04	26.23	0	118	70	130				
2,3-Dimethylpentane	26.3	0.970	20.49	0	128	70	130				
Aliphatic Hydrocarbon (EC5-8)	110	147	113.9	0	96.9	70	130				
Aliphatic Hydrocarbon (EC9-12)	178	94.2	177.0	0	101	70	130				
Aromatic Hydrocarbon (EC9-10)	117	4.54	125.8	0	93.0	70	130				
Butylcyclohexane	31.1	2.21	28.69	0	108	70	130				
Cyclohexane	27.1	1.18	17.21	0	157	70	130				S
Decane	35.5	1.26	29.10	0	122	70	130				
Dodecane	43.0	8.35	34.83	0	124	70	130				
Ethylbenzene	22.4	0.690	21.71	0	103	70	130				
Heptane	28.4	0.650	20.49	0	139	70	130				S
Hexane	25.7	0.630	17.62	0	146	70	130				S
Isopentane	22.5	1.02	14.75	0	152	70	130				S
Isopropylbenzene	25.3	0.850	24.58	0	103	70	130				
m,p-Xylene	45.5	0.730	43.42	0	105	70	130				
Methyl tert-butyl ether (MTBE)	20.8	0.450	18.03	0	115	70	130				
Nonane	35.8	1.24	26.23	0	136	70	130				S
Octane	30.6	1.13	23.36	0	131	70	130				S
o-Xylene	20.8	1.15	21.71	0	95.7	70	130				
p-isopropyltoluene	28.8	1.83	27.45	0	105	70	130				
Toluene	19.7	0.740	18.84	0	104	70	130				
Undecane	38.5	2.69	31.97	0	120	70	130				
Surr: 4-Bromofluorobenzene	10.3		10.00		103	70	130				

NOTES:

S - Outlying spike recovery observed (high bias). Detections will be qualified with a *.

Work Order:	1608161
CLIENT:	Farallon Consulting
Project:	SKY HWF SYSTEM

QC SUMMARY REPORT

Petroleum Fractionation by EPA Method TO-15

Sample ID MB-R31368	SampType: MBLK			Units: µg/m³		Prep Da	nte: 8/24/2	016	RunNo: 313	368	
Client ID: MBLKW	Batch ID: R31368					Analysis Da	ate: 8/24/2	016	SeqNo: 591	1637	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trimethylbenzene	ND	1.41									
1,3,5-Trimethylbenzene	ND	1.27									
1-methyl-3-ethylbenzene	ND	1.29									
2,3-Dimethylheptane	ND	1.04									
2,3-Dimethylpentane	ND	0.970									
Aliphatic Hydrocarbon (EC5-8)	ND	147									
Aliphatic Hydrocarbon (EC9-12)	ND	94.2									
Aromatic Hydrocarbon (EC9-10)	ND	4.54									
Butylcyclohexane	ND	2.21									
Cyclohexane	ND	1.18									
Decane	ND	1.26									
Dodecane	ND	8.35									
Ethylbenzene	ND	0.690									
Heptane	ND	0.650									
Hexane	ND	0.630									
Isopentane	ND	1.02									
Isopropylbenzene	ND	0.850									
m,p-Xylene	ND	0.730									
Methyl tert-butyl ether (MTBE)	ND	0.450									
Nonane	ND	1.24									
Octane	ND	1.13									
o-Xylene	ND	1.15									
p-isopropyltoluene	ND	1.83									
Toluene	ND	0.740									
Undecane	ND	2.69									
Surr: 4-Bromofluorobenzene	10.2		10.00		102	70	130				

Work Order: 1608161

Project:

CLIENT: Farallon Consulting

SKY HWF SYSTEM

QC SUMMARY REPORT

Petroleum Fractionation by EPA Method TO-15

Sample ID 1608190-001AREP	SampType: REP			Units: µg/m³		Prep Da	te: 8/24/2	016	RunNo: 313	368	
Client ID: BATCH	Batch ID: R31368					Analysis Da	te: 8/24/2	016	SeqNo: 591	634	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trimethylbenzene	ND	1.41						0		30	
1,3,5-Trimethylbenzene	ND	1.27						0		30	
1-methyl-3-ethylbenzene	ND	1.29						0		30	
2,3-Dimethylheptane	ND	1.04						0		30	
2,3-Dimethylpentane	ND	0.970						0		30	
Aliphatic Hydrocarbon (EC5-8)	157	147						150.2	4.16	30	
Aliphatic Hydrocarbon (EC9-12)	ND	94.2						254.4	107	30	R
Aromatic Hydrocarbon (EC9-10)	ND	4.54						0		30	
Butylcyclohexane	ND	2.21						0		30	
Cyclohexane	ND	1.18						0		30	
Decane	ND	1.26						0		30	
Dodecane	ND	8.35						0		30	
Ethylbenzene	ND	0.690						0		30	
Heptane	ND	0.650						0		30	
Hexane	ND	0.630						0		30	
Isopentane	25.7	1.02						25.68	0	30	*
Isopropylbenzene	ND	0.850						0		30	
m,p-Xylene	ND	0.730						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.450						0		30	
Nonane	ND	1.24						0		30	
Octane	ND	1.13						0		30	
o-Xylene	ND	1.15						0		30	
p-isopropyltoluene	ND	1.83						0		30	
Toluene	ND	0.740						0		30	
Undecane	ND	2.69						0		30	
Surr: 4-Bromofluorobenzene	10.6		10.00		106	70	130		0		

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

* - Flagged value is not within established control limits.

Work Order:1608161CLIENT:Farallon CorProject:SKY HWF S	•				Ve	olatile Org		SUMMARY REPORT s-EPA Method TO-15 (SIM)
Sample ID LCS-R31353	SampType: LCS			Units: ppbv		Prep Date	e: 8/23/2016	RunNo: 31353
Client ID: LCSW	Batch ID: R31353					Analysis Date	e: 8/23/2016	SeqNo: 591342
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,3-Butadiene	2.21	0.500	2.500	0	88.4	70	130	
Benzene	2.25	0.0400	2.500	0	90.0	70	130	
Naphthalene	2.20	0.300	2.500	0	88.0	70	130	
Surr: 4-Bromofluorobenzene	9.92		10.00		99.2	70	130	
Sample ID MB-R31353	SampType: MBLK			Units: ppbv		Prep Date	e: 8/23/2016	RunNo: 31353
Client ID: MBLKW	Batch ID: R31353					Analysis Date	e: 8/23/2016	SeqNo: 591343
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,3-Butadiene	ND	0.500						
Benzene	ND	0.0400						
Naphthalene	ND	0.300						
Surr: 4-Bromofluorobenzene	9.57		10.00		95.7	70	130	
Sample ID 1608161-001AREP	SampType: REP			Units: ppbv		Prep Date	e: 8/23/2016	RunNo: 31353
Client ID: SYSTEM_INF_081716	Batch ID: R31353					Analysis Date	e: 8/23/2016	SeqNo: 591341
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,3-Butadiene	ND	0.500					0	30
Benzene	ND	0.0400					0	30
Naphthalene	ND	0.300					0	30
Surr: 4-Bromofluorobenzene	11.8		10.00		118	70	130	0

Sample Log-In Check List

С	lient Name:	FARA	Work Order Numb	oer: 1608161		
Lo	ogged by:	Erica Silva	Date Received:	8/18/2016	6 11:34:00 AM	
<u>Cha</u>	ain of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present	
2.	How was the	sample delivered?	Courier			
Log	ı In					
-	Coolers are p	present?	Yes	No 🔽		
0.			Air sample			
4.	Shipping con	tainer/cooler in good condition?	Yes 🔽	No 🗌		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹	
7.	Were all item	is received at a temperature of >0°C to 10.0°C*	Yes	No 🗌	NA 🔽	
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No 🗌		
10.	Are samples	properly preserved?	Yes 🗹	No 🗌		
11.	Was preserva	ative added to bottles?	Yes	No 🗹	NA 🗌	
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
		at analyses were requested?	Yes 🖌	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🖌	No 🗌		
Spe	cial Handl	ing (if applicable)				
-		ptified of all discrepancies with this order?	Yes	No 🗌	NA 🔽	
	Person	Notified: Date		Y		
	By Who		eMail Phe	one 🗌 Fax [In Person	
	Regardi	ng:				
	Client Ir	nstructions:				

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

×	Relinquished Date/Time	Client's agreement to	Condition:	FIO		5		A Fib		4		4 NA Flow Rec	SYSTEM JAF_0817/6 17242	Canister / Flov Sample Name Serial #	** Container Codes: 6L = Six Liter Canister (Summa) T	I = Indoor SS = Subslab L = L	Telephone: 425-765-450	City, State, Zip: TSSAQUAH,	Address: 975 STV	client: Farallo		3600 Fremont Ave N. Seattle, WA 98103 Fax: 206-352-7178	Analytical
	5-16	e terms on the front and	Seals Intact: Y N	w Reg Time	anister Date	w Reg. Time	anister Date	w Reg. Time	Date	Bayi M	anister Date	12:06 Time	2 8-17-16 anister 12:00Date 56	v Reg Sample Date & Time	TB = Tedlar Bag BV = 1 Liter Bottle	Idfill SG = Soil Gas M = Plume Mapping	Fax:	MA 98027	AG. NW	Farallon Consulting		1-3790 1-7178	
×	x 2	Itn Fremont Analytica	N/A										Grab 6L	Gas Matrix Anticipated Sample Cor Code* Fill Time Volume Ty	BV = 1 Liter Bottle Vac MC = 1 Liter MiniCan HP = High Pressure Cylinder HJ = Glass Headspace Jar	Mapping Q = Fuel Gas Quality	425-295-0850						
	Dat	ement.	Tum-around times for sam following business day.	Date Da	Pressure	Date Da	Pressure F	Date Da	Pressure		Pressure	(D	Summa	Evacuation Press Container Pressure Time Type ** (mtorr) up	HP = High Pressure Cylinder HJ	Q = Fuel Gas Quality L = LEED (Consult Client Services)			Location:	Proje	Proje		
	Bate/Time	ent named above, tha	Turn-around times for samples received after 4:00pm will begin on the following business day.	ate/Time Regulator	Pressure Container Pres	ate/Time Regulator	³ ressure Container Pres	ate/Time Regulator	³ ressure Container Preu	ater time ineguiator	Pressure Container Pre	Date/Time Regulator	Pressure Container Pres	Pressure at Equipment Sample Time of Pick- Certificaton Pressure up ("Hg) Code ("Hg)	HJ = Glass Headspace Jar	rvices)	Email (PM): QV So	Reports To (PM): ANNC GN		Project No: 683-057	Project Name: SUY		
TAT>	ST.	'e, that I have	will begin on the Special Remarks:	Time	ssure Pressure	Time Time	ssure Pressure	Time Time	ssure Pressure	Time	ssure Pressure	:59° 11:000110	Pressure	nitial Field Final ple Sample sure Pressure (g) ("Hg)		0	D bev	Law Vinino	m his method hy		HWF SYS	Date: 8-17.1	Laboratory Project No (Internal):
STD Rush (specify)			marks:										APH Fractionation & TO-15 SIM - 1,3-Butadiene, Benzene,	Analysis Requested			Ra callerian Sulting	0	'A	Collected by: A VINING	stan	16 Page: 1 of:	nternal):
													t- 313	Final Receipt Pressure Date ("Hg)	Internal		cam					* _	

ANALYTICAL REPORT

Lab Number:	L1630490
Client:	Farallon Consulting, L.L.C.
	975 5th Avenue Northwest
	Issaquah, WA 98027
ATTN:	Andrew Vining
Phone:	(425) 295-0800
Project Name:	SKYKOMISH HWF
Project Number:	683-057
Report Date:	10/04/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: NY (11627), CT (PH-0141), NH (2206), NJ NELAP (MA015), RI (LAO00299), ME (MA00030), PA (68-02089), VA (460194), LA NELAP (03090), FL (E87814), TX (T104704419), WA (C954), USFWS (Permit #LE2069641), USDA (Permit #P330-11-00109), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:10041614:44

Project Name:SKYKOMISH HWFProject Number:683-057

 Lab Number:
 L1630490

 Report Date:
 10/04/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1630490-01	SYSTEM_INF_092316	AIR	SKYKOMISH, WA	09/23/16 09:36	09/27/16

Project Name: SKYKOMISH HWF Project Number: 683-057
 Lab Number:
 L1630490

 Report Date:
 10/04/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: SKYKOMISH HWF Project Number: 683-057

 Lab Number:
 L1630490

 Report Date:
 10/04/16

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on September 19, 2016. The canister certification results are provided as an addendum.

Petroleum Hydrocarbons in Air

Sample L1630490-01: Isopropyl Alcohol, Trichloromethane, and multiple siloxanes are present in the C5-C8 Aliphatic Hydrocarbon range. The response for these analytes was not included in the calculation of the C5-C8 range result since they are not petroleum hydrocarbons.

Sample L1630490-01: Multiple siloxanes are present in the C9-C12 Aliphatic Hydrocarbon range. The response for these analytes was not included in the calculation of the C9-C12 range result since they are not petroleum hydrocarbons.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Chungh

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 10/04/16

AIR

Project Name: SKYKOMISH HWF Project Number: 683-057
 Lab Number:
 L1630490

 Report Date:
 10/04/16

SAMPLE RESULTS

Lab ID: Client ID:	L1630490-01 SYSTEM INF 092316	Date Collected: Date Received:	09/23/16 09:36 09/27/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix: Anaytical Method: Analytical Date:	Air 48,TO-15-SIM 09/30/16 22:16		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
1,3-Butadiene	ND	0.020		ND	0.044			1
Benzene	0.168	0.100		0.537	0.319			1
Naphthalene	0.287	0.050		1.50	0.262			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	78		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	84		60-140

		ppbV					Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab	for sample	(s): 01	Batch: WG93	37665-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1

		ppbV					Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab f	or sample	(s): 01	Batch: WG93	37665-4			
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1

		ppbV					Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab for	or sample	(s): 01	Batch: WG9	37665-4			
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Man	sfield Lab fo	or sample	(s): 01	Batch: WG93	7665-4			
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis Batch Quality Control

Project Number: 683-057

Lab Number: L1630490 Report Date: 10/04/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s): 01	Batch: WG93	7665-3				
Propylene	118		-		70-130	-		25
Dichlorodifluoromethane	103		-		70-130	-		25
Chloromethane	112		-		70-130	-		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	110		-		70-130	-		25
Vinyl chloride	106		-		70-130	-		25
1,3-Butadiene	114		-		70-130	-		25
Bromomethane	105		-		70-130	-		25
Chloroethane	97		-		70-130	-		25
Ethyl Alcohol	102		-		70-130	-		25
Vinyl bromide	103		-		70-130	-		25
Acetone	99		-		70-130	-		25
Trichlorofluoromethane	116		-		70-130	-		25
iso-Propyl Alcohol	99		-		70-130	-		25
Acrylonitrile	100		-		70-130	-		25
1,1-Dichloroethene	110		-		70-130	-		25
tert-Butyl Alcohol ¹	87		-		70-130	-		25
Methylene chloride	104		-		70-130	-		25
3-Chloropropene	118		-		70-130	-		25
Carbon disulfide	94		-		70-130	-		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	107		-		70-130	-		25
Halothane	94		-		70-130	-		25

Lab Control Sample Analysis

Batch Quality Control

Project Number: 683-057

Lab Number: L1630490 Report Date: 10/04/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG937665-3 trans-1,2-Dichloroethene 105 70-130 25 --1,1-Dichloroethane 109 70-130 25 --Methyl tert butyl ether 106 70-130 25 --25 70-130 Vinyl acetate 130 --2-Butanone 108 70-130 25 -cis-1.2-Dichloroethene 70-130 25 118 --25 Ethyl Acetate 101 70-130 --Chloroform 111 70-130 25 --Tetrahydrofuran 70-130 25 103 --1,2-Dichloroethane 70-130 25 113 --114 70-130 25 n-Hexane --1,1,1-Trichloroethane 127 70-130 25 --Benzene 108 70-130 25 --Carbon tetrachloride 130 70-130 25 --70-130 25 Cyclohexane 113 --Dibromomethane¹ 112 70-130 25 --1,2-Dichloropropane 116 70-130 25 --25 Bromodichloromethane 126 70-130 --1,4-Dioxane 70-130 25 109 --Trichloroethene 70-130 25 114 --2,2,4-Trimethylpentane 126 70-130 25 --

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1630490 Report Date: 10/04/16

Project Number: 683-057

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	ab Associated s	ample(s): 01	Batch: WG93	7665-3					
cis-1,3-Dichloropropene	123		-		70-130	-		25	
4-Methyl-2-pentanone	132	Q	-		70-130	-		25	
trans-1,3-Dichloropropene	111		-		70-130	-		25	
1,1,2-Trichloroethane	122		-		70-130	-		25	
Toluene	96		-		70-130	-		25	
2-Hexanone	113		-		70-130	-		25	
Dibromochloromethane	109		-		70-130	-		25	
1,2-Dibromoethane	106		-		70-130	-		25	
Tetrachloroethene	101		-		70-130	-		25	
1,1,1,2-Tetrachloroethane	98		-		70-130	-		25	
Chlorobenzene	102		-		70-130	-		25	
Ethylbenzene	104		-		70-130	-		25	
p/m-Xylene	104		-		70-130	-		25	
Bromoform	108		-		70-130	-		25	
Styrene	102		-		70-130	-		25	
1,1,2,2-Tetrachloroethane	109		-		70-130	-		25	
o-Xylene	105		-		70-130	-		25	
1,2,3-Trichloropropane ¹	101		-		70-130	-		25	
Isopropylbenzene	98		-		70-130	-		25	
Bromobenzene ¹	98		-		70-130	-		25	
4-Ethyltoluene	100		-		70-130	-		25	

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1630490

 Report Date:
 10/04/16

LCSD LCS %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01 Batch: WG937665-3 1,3,5-Trimethylbenzene 105 70-130 25 --25 1,2,4-Trimethylbenzene 103 70-130 --Benzyl chloride 101 70-130 25 --25 1,3-Dichlorobenzene 106 70-130 --1,4-Dichlorobenzene 104 70-130 25 -sec-Butylbenzene 70-130 25 99 --70-130 25 p-Isopropyltoluene 91 --1,2-Dichlorobenzene 107 70-130 25 -n-Butylbenzene 107 70-130 25 _ -1,2,4-Trichlorobenzene 109 70-130 25 --Naphthalene 105 70-130 25 --70-130 25 1,2,3-Trichlorobenzene 109 --Hexachlorobutadiene 111 70-130 25 --

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	111				70-130	
Toluene-d8	86				70-130	
Bromofluorobenzene	87				70-130	

Project Name: Project Number:	SKYKOMISH HWF 683-057	Lab Duplicate Analysis Batch Quality Control Lab Number Report Date						L1630490 10/04/16
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Volatile Organics in Air b SYSTEM_INF_092316	y SIM - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG937665	-5 QC Sam	ple: L1630	490-01 Clier	nt ID:	
1,3-Butadiene		ND	ND	ppbV	NC		25	

Benzene	0.168	0.161	ppbV	4	25
Naphthalene	0.287	0.285	ppbV	1	25

Project Name: SKYKOMISH HWF

Project Number: 683-057

SAMPLE RESULTS

Lab ID:	L1630490-01	Date Collected:	09/23/16 09:36
Client ID:	SYSTEM_INF_092316	Date Received:	09/27/16
Sample Location:	SKYKOMISH, WA	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date: 0	09/30/16 22:16		
Analyst:	RY		

Quality Control Information

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab				
1,3-Butadiene	ND	ug/m3	0.50		1
Methyl tert butyl ether	ND	ug/m3	0.70		1
Benzene	ND	ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	200	ug/m3	10		1
Toluene	4.3	ug/m3	0.90		1
Ethylbenzene	ND	ug/m3	0.90		1
p/m-Xylene	3.1	ug/m3	0.90		1
o-Xylene	1.1	ug/m3	0.90		1
Naphthalene	1.8	ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	770	ug/m3	10		1
C9-C10 Aromatics Total	ND	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	78		50-200
Bromochloromethane	91		50-200
Chlorobenzene-d5	81		50-200

 Project Name:
 SKYKOMISH HWF
 Lab Number:
 L1630490

 Project Number:
 683-057
 Report Date:
 10/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:09/30/16 15:29Analyst:RY

arameter	Result	Qualifier Un	its	RL	MDL	
etroleum Hydrocarbons in Air - M	ansfield Lab	for sample(s):	01	Batch:	WG937664-4	
1,3-Butadiene	ND	ug	/m3	0.50		
Methyl tert butyl ether	ND	ug	/m3	0.70		
Benzene	ND	ug	/m3	0.60		
C5-C8 Aliphatics, Adjusted	ND	ug	/m3	10		
Toluene	ND	ug	/m3	0.90		
Ethylbenzene	ND	ug	/m3	0.90		
p/m-Xylene	ND	ug	/m3	0.90		
o-Xylene	ND	ug	/m3	0.90		
Naphthalene	ND	ug	/m3	1.1		
C9-C12 Aliphatics, Adjusted	ND	ug	/m3	10		
C9-C10 Aromatics Total	ND	ug	/m3	10		

Lab Control Sample Analysis Batch Quality Control

Project Number: 683-057

Lab Number: L1630490 Report Date: 10/04/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Petroleum Hydrocarbons in Air - Mansfield La	b Associated s	ample(s): 01	Batch: WG93	7664-3				
1,3-Butadiene	120		-		70-130	-		
Methyl tert butyl ether	106		-		70-130	-		
Benzene	112		-		70-130	-		
C5-C8 Aliphatics, Adjusted	113		-		70-130	-		
Toluene	97		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	99		-		70-130	-		
o-Xylene	100		-		70-130	-		
Naphthalene	109		-		50-150	-		
C9-C12 Aliphatics, Adjusted	104		-		70-130	-		
C9-C10 Aromatics Total	85		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: SKYKOMISH HWF Project Number: 683-057

Lab Number: L1630490 Report Date:

10/04/16

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
etroleum Hydrocarbons in Air - Mansfield Lab YSTEM_INF_092316	Associated sample(s): 01	QC Batch ID: WG937664	1-5 QC Sam	ple: L16304	90-01 Clien	t ID:
1,3-Butadiene	ND	ND	ug/m3	NC		30
Methyl tert butyl ether	ND	ND	ug/m3	NC		30
Benzene	ND	ND	ug/m3	NC		30
C5-C8 Aliphatics, Adjusted	200	200	ug/m3	0		30
Toluene	4.3	4.2	ug/m3	2		30
Ethylbenzene	ND	ND	ug/m3	NC		30
p/m-Xylene	3.1	3.0	ug/m3	3		30
o-Xylene	1.1	1.1	ug/m3	0		30
Naphthalene	1.8	1.7	ug/m3	6		30
C9-C12 Aliphatics, Adjusted	770	740	ug/m3	4		30
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30

Project Name: SKYKOMISH HWF

Project Number: 683-057

Serial_No:10041614:44
Lab Number: L1630490

Report Date: 10/04/16

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1630490-01	SYSTEM_INF_092316	448	2.7L Can	09/19/16	227361	L1629036-01	Pass	-29.8	-8.1	-	-	-	-

Lab ID:	L1629036-01	Date Collected:	09/14/16 16:00
Client ID:	CAN 551 SHELF 1	Date Received:	09/15/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	09/15/16 10:02		
Analyst:	MB		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Report Date: 10/04/16

Lab ID: Client ID: Sample Location:	L1629036-01 CAN 551 SHE	LF 1 ppbV				Date Collecte Date Receive Field Prep: ug/m3			09/14/16 16:00 09/15/16 Not Specified Dilution ar Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E t
Volatile Organics in A	Air - Mansfield Lat)							
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene)	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Diisopropyl ether		ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.836			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.836			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.721			1

Report Date: 10/04/16

Lab ID: Client ID: Sample Location:	Client ID: CAN 551 SHE			_F 1 ррьV			Date Collected: Date Received: Field Prep: ug/m3		09/14/16 16:0 09/15/16 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	— .	
Volatile Organics in <i>i</i>	Air - Mansfield Lat)								
Trichloroethene		ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1	
Methyl Methacrylate		ND	0.500		ND	2.05			1	
Heptane		ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene		ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1	
trans-1,3-Dichloroproper	ne	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1	
Toluene		ND	0.200		ND	0.754			1	
1,3-Dichloropropane		ND	0.200		ND	0.924			1	
2-Hexanone		ND	0.200		ND	0.820			1	
Dibromochloromethane		ND	0.200		ND	1.70			1	
1,2-Dibromoethane		ND	0.200		ND	1.54			1	
Butyl acetate		ND	0.500		ND	2.38			1	
Octane		ND	0.200		ND	0.934			1	
Tetrachloroethene		ND	0.200		ND	1.36			1	
1,1,1,2-Tetrachloroethar	ie	ND	0.200		ND	1.37			1	
Chlorobenzene		ND	0.200		ND	0.921			1	
Ethylbenzene		ND	0.200		ND	0.869			1	
p/m-Xylene		ND	0.400		ND	1.74			1	
Bromoform		ND	0.200		ND	2.07			1	
Styrene		ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethar	ne	ND	0.200		ND	1.37			1	
o-Xylene		ND	0.200		ND	0.869			1	
1,2,3-Trichloropropane		ND	0.200		ND	1.21			1	
Nonane		ND	0.200		ND	1.05			1	
Isopropylbenzene		ND	0.200		ND	0.983			1	
Bromobenzene		ND	0.200		ND	0.793			1	

Report Date: 10/04/16

Air Canister Certification Results

Lab ID: Client ID: Sample Location:	L1629036-01 CAN 551 SHEL	LF 1				Date Collecto Date Receivo Field Prep:			09/14/16 16:00 09/15/16 Not Specified
_			ppbV			ug/m3		o	Dilution Factor
Parameter	A '	Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in A	Air - Manstield Lab								
2-Chlorotoluene		ND	0.200		ND	1.04			1
n-Propylbenzene		ND	0.200		ND	0.983			1
4-Chlorotoluene		ND	0.200		ND	1.04			1
4-Ethyltoluene		ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene		ND	0.200		ND	0.983			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.983			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.04			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropro	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			ppbV			ug/m3			Dilution
Sample Location:						Field	Prep:		Not Specified
Client ID:	CAN 551 SHEL	F 1				Date	Receive	ed:	09/15/16
Lab ID:	L1629036-01					Date	Collecte	ed:	09/14/16 16:00
		Air Can	nister Ce	rtificatio	on Results				
Project Number:	CANISTER QC E	BAT				R	eport D	ate:	10/04/16
Project Name:	BATCH CANIST	ER CERT	IFICATION	1		La	ab Num	ber: լ	_1629036
							Serial	_No:100	41614:44

% Recovery

97

100

Qualifier

Acceptance Criteria

60-140

60-140

60-140

Volatile Organics in Air - Mansfield Lab

Internal Standard

1,4-Difluorobenzene

Bromochloromethane

chlorobenzene-d5

Lab ID:	L1629036-01	Date Collected:	09/14/16 16:00
Client ID:	CAN 551 SHELF 1	Date Received:	09/15/16
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	09/15/16 10:02		
Analyst:	MB		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Report Date: 10/04/16

Lab ID:L1629036-0Client ID:CAN 551 SSample Location:CAN 551 S		ELF 1 ppbV				Date Collecte Date Receive Field Prep: ug/m3			09/14/16 16:0 09/15/16 Not Specified Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	E
Volatile Organics in A	ir by SIM - Mansf	ield Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
1,4-Dioxane		ND	0.100		ND	0.360			1
Trichloroethene		ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.050		ND	0.188			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.100		ND	0.461			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.207			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.200		ND	0.983			1
4-Ethyltoluene		ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1

Report Date: 10/04/16

Lab ID:L1629036-01Client ID:CAN 551 SHSample Location:		LF 1 ppbV			Date Collected: Date Received: Field Prep: ug/m3					
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Faster	
Volatile Organics in A	Air by SIM - Mansf	eld Lab								
n-Butylbenzene		ND	0.200		ND	1.10			1	
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1	
Naphthalene		ND	0.050		ND	0.262			1	
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1	
Hexachlorobutadiene		ND	0.050		ND	0.533			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	102		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	105		60-140

AIR Petro Can Certification

		Serial_No:	10041614:44
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1629036
Project Number:	CANISTER QC BAT	Report Date:	10/04/16
	AIR CAN CERTIFICATION RESULTS	S	
Lab ID:	L1629036-01	Date Collected:	09/14/16 16:00
Client ID:	CAN 551 SHELF 1	Date Received:	09/15/16
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date:	09/15/16 10:02		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air					
1,3-Butadiene	ND	ug/m3	0.50		1
Methyl tert butyl ether	ND	ug/m3	0.70		1
Benzene	ND	ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	ND	ug/m3	10		1
Toluene	ND	ug/m3	0.90		1
Ethylbenzene	ND	ug/m3	0.90		1
p/m-Xylene	ND	ug/m3	0.90		1
o-Xylene	ND	ug/m3	0.90		1
Naphthalene	ND	ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	ND	ug/m3	10		1
C9-C10 Aromatics Total	ND	ug/m3	10		1

Analyst:

MB

 Project Name:
 SKYKOMISH HWF

 Project Number:
 683-057

 Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information Custody Seal

Cooler

N/A Present/Intact

Container Information							
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1630490-01A	Canister - 2.7 Liter	N/A	N/A	N/A	Y	Absent	APH-10(30),TO15-SIM(30)

L1630490

10/04/16

Lab Number:

Report Date:

Project Name: SKYKOMISH HWF

Project Number: 683-057

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

- S associated field samples.
- STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Serial_No:10041614:44

Project Name: SKYKOMISH HWF

Project Number: 683-057

Lab Number: L1630490

Report Date: 10/04/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: SKYKOMISH HWF Project Number: 683-057
 Lab Number:
 L1630490

 Report Date:
 10/04/16

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10041614:44

1	\backslash		AIR A		YSIS)				PAGE	OF	Dat	e Rec'	d in La	_{ab:} (7/10	1	ALF	РНА Ј	ob #:	63	0490
		CHAIN	OF CUS	ΤΟDΥ	Pro	oject In	formati	on		ł		Po	oort/D	ata D							nformati		11-
A	LYTIGAL				Proje	ect Name	: Skykomi	ish HWF							enver		MAIL	mau			as Client in		PO #:
	Blvd, Mansfield, MA				Proje	ect Locat	ion: Skyko	mish, Wash	nington			- _ /	ADEx				dd'l De	liverabl	es				l
TEL: 508-822	2-9300 FAX: 508-8 formation	22-3288			Proje	ect #: 683	3-057					Red	gulato	orv Re	auire	ment	s/Rer	oort L	imits		ر د د د د		
	llon Consulting						ger: Andre	, W Vining						e/Fed			Progr			F	Residential	/Comr	nercial
	5 5th Avenue Northv	vest				HA Quot		vining				1											
Issaquah, W	ashington 98027						und-Tim	ie				s											
Phone: 425-	-295-0800					Standard		Rush (only	confirm	ned if pre-	-approved)]											
Fax: 425-29	5-0850									-		An	alysi	IS									
Email: avinir	ng@farallonconsulti	ng.com			Date	Due:		Time:															
These s	amples have been F	reviously ar	nalyzed by	Alpha											<u> </u>		-	<u> </u>					
	ect Specific Requ			:			· · ·					1											
	-Specific Target C IE, NAPTHALENE, 1,3		List											НСs									
	,,.,.,.,.,.,.,,.,,													eum		T0-15							
*														petro		by TO							
														Subtract non-petroleum HCs									
			<u> </u>											tract		Mercaptans							
		All	Column	s Belov	v Must	Be Fill	ed Out						5	Sub	GASES	త							
Alpha			0	Collection			Comolo	Complex	Can		ID	15	TO-15 SIM	-	D G	Sulfides			s	ample	e Specifi	c Coi	nments
Lab Use Onlv	Sample ID	End Date	Start Time	End Time	Initial Vac	Final Vac	Sample Matrix*	Sampler Initials	Size	ID Can	Flow Controller	T0-15	þ	APH	FIXED	Sulf					(i.e. P	ID)	
304900)	SYSTEM_INF_072	9/23/16 316	9:36	9:36	28.0	4.0	AA	av	2.7	448	NA												
*SAMPLE N	ATRIX CODES:				_					Con	itainer Type	-	-	-	-	-	-	-					ease print clearly & gibly and completely.
AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE		Date/T	ïme			Rec	eived E	By:			Date/Time	Sa	amples cannot be gged in and tum										
Other = Please Specify			1			R	se	8					no	ound time clock will ot start until any									
Form 101-02 (I) Rev:	25-Sept-15						F	ed e>	5					B	L	-F	5	لمد	9[210	10:00h	re	nbiguities are solved. All samples ibmitted are subject
101-02 (I) Nev.											811						-		¥			to	Alpha's Payment

APPENDIX F PROCESS WATER LABORATORY ANALYTICAL REPORTS

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Farallon PN: 683-057

Provided as a separate file.

APPENDIX G DATA VALIDATION REPORT

2016 HOT WATER FLUSHING REMEDIATION PERFORMANCE REPORT Skykomish School BNSF Former Maintenance and Fueling Facility Skykomish, Washington

Farallon PN: 683-057

cari.say@saylerdata.com

DATA VALIDATION REPORT

Skykomish Hot Water Flushing June through October 2016 Data

Prepared for: Farallon Consulting, LLC 975 5th Avenue NW Issaquah, Washington 98027

December 30, 2016

1.0 Introduction

Data Validation was performed on the following water samples:

Sample ID	Sample Date/Time	Lab ID	Analyses
LAG_EFFLUENT_061616	06/16/2016 14:35	580-60413-1	TPHD
LAG_INFLUENT_061616	06/16/2016 14:40	580-60413-2	TPHD
LEAD_INFLUENT_061616	06/16/2016 14:45	580-60413-3	TPHD
LAG_EFF_062216	06/22/2016 09:20	580-60590-1	TPHD
LAG_INF_062216	06/22/2016 09:15	580-60590-2	TPHD
LEAD_INF_062216	06/22/2016 09:10	580-60590-3	TPHD
LAG-EFF_062816	06/28/2016 12:00	580-60688-1	TPHD
LAG-INF_062816	06/28/2016 12:05	580-60688-2	TPHD
LEAD-INF_062816	06/28/2016 12:10	580-60688-3	TPHD
LAG_EFF_071316	07/13/2016 15:05	580-61042-1	TPHD
LAG_INF_071316	07/13/2016 15:00	580-61042-2	TPHD
LEAD_INF_071316	07/13/2016 14:55	580-61042-3	TPHD
LEAD_INF_072016	07/20/2016 13:25	580-61211-1	TPHD
LAG_INF_072016	07/20/2016 13:30	580-61211-2	TPHD
LAG_EFF_072016	07/20/2016 13:35	580-61211-3	TPHD
LAG_EFF_072716	07/27/2016 14:20	580-61354-1	TPHD
LAG_INF_072716	07/27/2016 14:15	580-61354-2	TPHD
LEAD_INF_072716	07/27/2016 14:10	580-61354-3	TPHD
LAG_EFF_080416	08/04/2016 13:30	580-61585-1	TPHD
LAG_INF_080416	08/04/2016 13:35	580-61585-2	TPHD
LEAD_INF_080416	08/04/2016 13:40	580-61585-3	TPHD
LAG_EFF_081016	08/10/2016 10:20	580-61682-1	TPHD
LAG_INF_081016	08/10/2016 10:15	580-61682-2	TPHD
LEAD_INF_081016	08/10/2016 10:10	580-61682-3	TPHD
LAG_EFF_081716	08/17/2016 11:10	580-61915-1	TPHD
LAG_INF_081716	08/17/2016 11:15	580-61915-2	TPHD
LEAD_INF_081716	08/17/2016 11:20	580-61915-3	TPHD
LAG_EFF_082416	08/24/2016 15:20	580-62048-1	TPHD
LAG_INF_082416	08/24/2016 15:25	580-62048-2	TPHD
LEAD_INF_082416	08/24/2016 15:30	580-62048-3	TPHD
LAG_EFF_090116	09/01/2016 15:35	580-62193-1	TPHD
 LAG_INF_090116	09/01/2016 15:40	580-62193-2	TPHD
LEAD_INF_090116	09/01/2016 15:45	580-62193-3	TPHD
LAG_EFF_090816	09/08/2016 08:40	580-62422-1	TPHD

C:\SDS\Projects\Far\Sky\HWF201612\Far-SkyHWF.2016.05-11.DVRpt.2016.1230.docx 12/30/16 2:25 PM

Sample ID	Sample Date/Time	Lab ID	Analyses
LAG_INF_090816	09/08/2016 08:35	580-62422-2	TPHD
LEAD_INF_090816	09/08/2016 08:30	580-62422-3	TPHD
LAG_EFF_091516	09/15/2016 14:55	580-62540-1	TPHD
LAG_INF_091516	09/15/2016 15:00	580-62540-2	TPHD
LEAD_INF_091516	09/15/2016 15:05	580-62540-3	TPHD
LAG_EFF_092216	09/22/2016 13:30	580-62718-1	TPHD
LAG_INF_092216	09/22/2016 13:35	580-62718-2	TPHD
LEAD_INF_092216	09/22/2016 13:40	580-62718-3	TPHD
LAG_EFF_092816	09/28/2016 10:30	580-62908-1	TPHD
LAG_INF_092816	09/28/2016 10:35	580-62908-2	TPHD
LEAD_INF_092816	09/28/2016 10:40	580-62908-3	TPHD
LAG_EFF_100516	10/05/2016 10:35	580-63074-1	TPHD
LAG_INF_100516	10/05/2016 10:40	580-63074-2	TPHD
LEAD_INF_100516	10/05/2016 10:45	580-63074-3	TPHD
LAG_EFF_101216	10/12/2016 11:00	580-63293-1	TPHD
LAG_INF_101216	10/12/2016 11:05	580-63293-2	TPHD
LEAD_INF_101216	10/12/2016 11:10	580-63293-3	TPHD
LAG_EFF_102116	10/21/2016 10:20	580-63549-1	TPHD
LAG_INF_102116	10/21/2016 10:25	580-63549-2	TPHD
LEAD_INF_102116	10/21/2016 10:30	580-63549-3	TPHD
LAG_EFF_102816	10/28/2016 11:25	580-63751-1	TPHD
LAG_INF_102816	10/28/2016 11:30	580-63751-2	TPHD
LEAD_INF_102816	10/28/2016 11:35	580-63751-3	TPHD

The sample IDs in the laboratory report matched the chain of custody with the following exceptions:

- The samples from 8/4/2016 did not include the date suffix on the chain of custody or in the laboratory report. The date suffix of 080416 has been included in the sampleID throughout this report.
- 2) The sampleIDs used in the laboratory report for the 8/17/2016 samples were not listed in all uppercase as was shown on the chain of custody. The correct IDs have been used throughout this report.
- 3) The chain of custody was not present in the laboratory report for the 8/24/2016 samples, and these sample IDs could not be verified.
- 4) The samples from 9/8/2016 did not include the date suffix on the chain of custody. The sampleID used in the laboratory report appropriately included the 090816 suffix.
- 5) Sample LEAD_INF_092216 was listed in the laboratory report as LEAD_IN_-092216. The correct ID has been used throughout this report.
- 6) Sample IDs for the 10/28/2016 samples contained a dash instead of an underscore. The correct IDs are used in this report.

<u>Analyses:</u> Analysis was performed by TestAmerica Laboratories Inc, in Tacoma, Washington. The following methods were utilized:

Analysis	Analysis method	Preparation method
Diesel Range Petroleum Hydrocarbons (TPHD)	NWTPH-Dx	SW3510C

Please note: TPHD analysis was performed without silica gel cleanup meeting consent decree requirements.

Validation: A stage 2A summary validation was performed on the electronic data deliverable and the hardcopy (portable document format) analytical results, earning EPA OSWER validation label code S2AVEM. Validation was performed by Cari Sayler.

Data qualifiers are assigned based only on the criteria reviewed and do not include calibration or instrument performance issues unless noted in the laboratory narrative. Validation qualifiers are summarized in section 3.0.

2.0 Diesel Range Petroleum Hydrocarbon Analysis

<u>Quality control analysis frequencies:</u> The method specifies that a method blank must be analyzed one per analytical batch or one per twenty samples, whichever is more frequent and a laboratory duplicate must be analyzed one per ten samples. In addition, surrogate compounds must be measured in each field and quality control sample.

Each batch included a method blank, LCS, and LCSD, as well as appropriate surrogates. No qualifiers are assigned based on the absence of a matrix duplicate.

<u>Holding times:</u> Water samples must be extracted within 7 days of collection if unpreserved and within 14 days of collection if preserved. Extracts must be analyzed within 40 days of extraction. All samples were preserved. Analyses were extracted and analyzed within holding time with the following exceptions:

Sample ID	Days, Sample to Extraction	Days, Extraction to Analysis	Days, Sample to Analysis
LEAD_INF_082416	16	0	16
LAG_INF_082416	16	0	16
LAG_EFF_082416	16	0	16

Results in these samples are qualified as estimated.

Cooler temperatures upon receipt at the laboratory exceeded the acceptable range as follows:

Sample ID	Cooler receipt temperature, °C	Acceptable Temperature Range, °C
LAG_EFF_102816	6.6	0-6
LAG_INF_102816	6.6	0-6
LEAD_INF_102816	6.6	0-6

Results in these samples are qualified as estimated.

<u>Laboratory blank results:</u> Criteria for blanks are that analyte concentrations must be below the PQL, or below 5% of the lowest associated sample concentration. No target analytes were detected in the method blanks.

<u>Surrogate recoveries:</u> Laboratory control limits were 50-150%. Surrogate recoveries were within limits.

<u>LCS recoveries</u>: Laboratory control limits ranged from 53-129 to 59-120%. LCS recoveries were within limits.

<u>LCS/LCSD RPDs:</u> The laboratory control limits for RPDs were 19 and 27%. RPDs were within limits with the following exceptions:

QC ID	Analyte	RPD	Lab Control Limit
LCSD 580-227808/3-A	Motor Oil (>C24-C36)	31	19
LCSD 580-228960/3-A	Motor Oil (>C24-C36)	24	19

Detected results for motor oil in the associated samples are qualified as estimated.

<u>Reporting limits:</u> The reporting limit goals are 0.1 mg/L for both diesel range hydrocarbons and oil range hydrocarbons. Target reporting limits were exceeded as follows:

Analyte	Highest RL (mg/L)	Target RL (mg/L)	Remediation Level (mg/L)
#2 Diesel (C10-C24)	0.11	0.1	0.477
Motor Oil (>C24-C36)	0.26	0.1	0.477

The remediation level was met for each sample and data are considered unaffected.

<u>Laboratory narrative and flags</u>: No other qualifiers were assigned based on a review of the laboratory narrative or data flags.

Diesel range petroleum hydrocarbon data are acceptable for use as qualified.

3.0 Qualifier Summary Table

Client ID	Analyte(s)	Qualifier	Reason
LAG_EFF_082416	#2 Diesel (C10-C24), Motor Oil (>C24-C36)	J	Extraction hold time exceeded
LAG_EFF_102816	#2 Diesel (C10-C24)	J	High cooler receipt temperature
LAG_EFF_102816	Motor Oil (>C24-C36)	UJ	High cooler receipt temperature
LAG_INF_082416	#2 Diesel (C10-C24), Motor Oil (>C24-C36)	J	Extraction hold time exceeded
LAG_INF_091516	Motor Oil (>C24-C36)	J	High LCS/LCSD RPD
LAG_INF_092216	Motor Oil (>C24-C36)	J	High LCS/LCSD RPD
LAG_INF_102816	#2 Diesel (C10-C24), Motor Oil (>C24-C36)	J	High cooler receipt temperature
LEAD_INF_082416	#2 Diesel (C10-C24), Motor Oil (>C24-C36)	J	Extraction hold time exceeded
LEAD_INF_091516	Motor Oil (>C24-C36)	J	High LCS/LCSD RPD
LEAD_INF_092216	Motor Oil (>C24-C36)	J	High LCS/LCSD RPD
LEAD_INF_102816	#2 Diesel (C10-C24), Motor Oil (>C24-C36)	J	High cooler receipt temperature

4.0 Abbreviations and Definitions

DV Qualifier	Definition
U	The material was analyzed for, but was not detected above the level of the associated value.
J	The analyte was positively identified. The associated numerical value is the approximate concentration of the analyte in the sample.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
UJ	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The sample result is rejected. The presence or absence of the analyte cannot be verified and data are not usable.
R1	This sample result has been rejected in favor of a more accurate, precise or conservative result. The other result should be used.
R2	This sample result has been rejected in favor of a more accurate, precise or conservative result from another analytical method. The other result should be used.

Abbreviation	Definition
DV	Data validation
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RL	Reporting limit
RPD	Relative percent difference
RSD	Relative standard deviations
SDG	Sample Delivery Group
SRM	Standard reference material

5.0 References

- USEPA Contract Laboratory Program National Functional Guidelines For Superfund Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, June 2008, USEPA-540-R-008-01.
- USEPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, January 2009, EPA 540-R-08-005.