

1001 SW Klickitat Way, Suite 200B, Seattle, Washington 98134 Telephone (206) 731-7550

## **TECHNICAL MEMORANDUM**

| TO:      | Scott Hooton – Port of Tacoma                                                                     |
|----------|---------------------------------------------------------------------------------------------------|
| FROM:    | David Cooper                                                                                      |
| DATE:    | March 16, 2018                                                                                    |
| SUBJECT: | 2017 Annual Monitoring Summary Report<br>Former Arkema 3009 Taylor Way site<br>Tacoma, Washington |
| REF. NO: | POT-002                                                                                           |
| CC: Paul | Fuglevand - DOF                                                                                   |

This data report presents the results of the first year (2017) post-remedial action groundwater monitoring program being conducted at the Former Arkema 3009 Taylor Way site (aka Former Dunlap Mound) in Tacoma, Washington (Figure 1). The performance monitoring is being conducted to fulfill the requirements of Agreed Order No. DE 13124 between the Washington State Department of Ecology (Ecology) and the Port of Tacoma (Port), and the Draft Cleanup Action Plan (DCAP, DOF 2015b).

The purpose of the monitoring is to assess the performance of source control interim actions completed at the former Arkema Mound site and to confirm that groundwater cleanup levels (CULs) have been achieved for dissolved arsenic, copper and zinc in groundwater that ultimately discharges to the Hylebos Waterway. A supplemental interim action (SIA) was completed between August 2013 and February 2015. The primary goals of the SIA was to meet the industrial soil contact CUL (88 mg/kg) for arsenic and to prevent the erosion and migration of soil containing arsenic above the Commencement Bay Sediment Quality Objective (57 mg/kg) into the Hylebos Waterway. Approximately 24,560 tons of arsenic containing soil were removed from three areas of the Site and disposed in the LRI landfill. The SIA included the construction of an engineered cover, stabilization of the Hylebos shoreline, and the installation of certain utilities.

Performance/confirmation groundwater monitoring is being conducted in general accordance with the Ecology approved Performance / Confirmation Groundwater Monitoring Plan (DOF 2015c). The primary objective of the monitoring is to assess whether Upper Aquifer dissolved arsenic concentrations are below CULs at the point



Former Arkema 3009 Taylor Way - 2017 Monitoring Report Page 2 March 16, 2018

where groundwater discharges to surface water (points of compliance) within two general areas of the site including:

- Along the Hylebos shoreline within the Northeast Area, and
- Along the western/southern site boundary at the head of the Kaiser Ditch.

## MONITORING WELL INSTALLATION

New monitoring wells were installed at three locations as described below and shown on Figure 2:

- Northeast Area One monitoring well installed in the Upper Aquifer at the approximate former location of well MW-H. This well is designated "MW-H(R)".
- Southwestern Site Boundary (downgradient of areas P10 and SB7 near head of Kaiser Ditch) Two monitoring wells located along the site boundary in the vicinity of former wells MW-1 and MW-E. These wells were designated "MW-1(R)" and "MW-E(R)".

The monitoring wells were installed using a direct-push probe rig in November 2016. The work was documented by David Cooper, a licensed geologist/hydrogeologist with DOF. New well installations were completed by Holt Drilling, a licensed Washington State drilling contractor, consistent with the requirements of Chapter 173-160 WAC (Minimum Standards for Construction and Maintenance of Wells).

- Well depths ranged from 10 to 13 feet below ground surface.
- During drilling, soil samples were collected continuously to determine stratigraphy using a dual-tube or macro sampler. Soils were described using ASTM-D2488 as a general guide.
- Once the drilling depth was determined to reach the top of the Upper Aquitard, a 2-inch diameter pre-packaged screen/sand pack PVC screen (5-feet long) and riser pipe were installed through the casing center.
- The wells were completed with a surface seal and flush-to-ground monuments within a concrete pad and identified by a single pipe bollard.
- The wells were subsequently developed by pumping until the pumped water visually cleared using a battery powered submersible pump.
- Well construction as-built details are included on the geologic and well construction logs presented in Attachment A.



Former Arkema 3009 Taylor Way - 2017 Monitoring Report Page 3 March 16, 2018

After the wells were installed and developed, the wells were surveyed to determine the horizontal coordinates using a differential GPS (NAD83 State Plane System). Top of casing elevations were determined by differential levelling techniques to an accuracy 0.01 feet, using Arkema Manufacturing Site monitoring well # 8F2-2(R) top of casing as a datum (MLLW).

## SAMPLING PROCEDURES, HANDLING

Groundwater samples were collected with a peristaltic pump and dedicated downhole polyethylene tubing. Low flow sampling procedures were used to minimize particulates being entrained in the samples submitted to the laboratory. Sampling was conducted at lower tidal levels when groundwater flow was towards surface water. The depth to water was initially measured using an electric well probe. Purging was completed at a flow rate of less than 0.5 liters/minute. During purging, field parameters were monitored for pH, temperature, dissolved oxygen, conductivity, Eh, ferrous iron and turbidity. Parameters recorded are included in Table 1.

Samples were pumped directly into containers provided by the receiving laboratory, Analytical Resources Inc. (ARI), Tukwila, WA. Samples for dissolved metals analysis were field filtered using an in-line 0.45 micron filter. Once the containers were filled, they were placed in chilled coolers that were delivered to the laboratory within 24 hours of collection. Sample handling was documented using standard chain-of-custody (COC) procedures.

# GROUNDWATER CONCENTRATIONS AND COMPARISON TO CLEANUP LEVELS

Laboratory analyses were conducted for the following dissolved and total metals:

- Arsenic All wells
- Copper Northeast Area well MW-H(R)
- Zinc Northeast Area well MW-H(R)

The Monitoring Plan stipulated that at the end of the initial two quarters of monitoring, if dissolved copper and zinc are below the CULs in well MW-H(R), these constituents would be eliminated from the monitoring program.

ARI, a Washington State Certified Laboratory, completed the analyses using Ecology approved methods by Inductively Coupled Plasma Triple Quadrupole Mass Spectrometry (ICP-QQQ-MS).

Groundwater analytical data are summarized in attached Table 1. Laboratory data reprots are included as Attachment B. CULs are presented and discussed in the DCAP and are summarized in Table 2 below.



Former Arkema 3009 Taylor Way - 2017 Monitoring Report Page 4 March 16, 2018

### Table 2. Groundwater CULs

| Constituent       | Cleanup Level (ug/l) |
|-------------------|----------------------|
| Dissolved Arsenic | 5                    |
| Dissolved Copper  | 3.1                  |
| Dissolved Zinc    | 81                   |

The following observations are noted based on review of the 2017 analytical data;

- Well MW-1(R) Dissolved arsenic concentrations ranged from 0.35 to 4.0 ug/l, below the CUL
- MW-E(R) Dissolved arsenic concentrations ranged from 8.0 to 30.3 ug/l, above the CUL
- Well MW-H(R)
  - Total and dissolved zinc and copper concentrations were below method detection limits in samples collected during the first two quarters. These concentrations were below the CULs and therefore dropped from the monitoring program.
  - Dissolved arsenic concentrations ranged from 47 to 90 ug/l, above the CUL.

### **MONITORING SCHEDULE FOR 2018**

The performance monitoring plan stipulated that monitoring would be required for two years after the interim action and that modifications to the future monitoring program (locations, frequency etc.), would be proposed should additional monitoring be required. Monitoring will be conducted in 2018 as follows:

Monitoring Program: As summarized in Table 3.

| Table 3 – 2018 Monitoring Schedule     |
|----------------------------------------|
| Period                                 |
| January 2018 (included in this report) |
| April 2018                             |
| July 2018                              |
| October 2018                           |

**Reporting:** Submit 2018 annual report to Ecology during the first quarter of 2019.



Former Arkema 3009 Taylor Way - 2017 Monitoring Report Page 5 March 16, 2018

## REFERENCES

DOF. 2015a. Remedial Investigation, Former Arkema Mound Site, 3009 Taylor Way, Prepared for the Port of Tacoma. September 2015.

DOF. 2015b, Draft Cleanup Action Plan, 3009 Taylor Way Site, Tacoma, Washington. Prepared for the Port of Tacoma, November 20, 2015.

DOF. 2015c, Performance Confirmation Monitoring Plan, 3009 Taylor Way Site, Tacoma, Washington. Prepared for the Port of Tacoma, November 20, 2015.

#### Attachments

Table 2 – Groundwater Analytical Data – January 2017 to January 2018

Figure 1 – Vicinity Map

Figure 2 – Interim Action Remedial Area and Monitoring Well Locations

Attachment A – Monitoring Well Logs

Attachment B – Laboratory Data Sheets

Attachment C – Sample Collection Forms

| Well Number - Aquifer   |              |         | MW-1(R)     |          |         | Old MW-1 |             |             | MW-E(R) |          |         | Old MW-E |         |           | MW-H (R)    |               |         | Old MW-H | CUL  |
|-------------------------|--------------|---------|-------------|----------|---------|----------|-------------|-------------|---------|----------|---------|----------|---------|-----------|-------------|---------------|---------|----------|------|
| Date Sampled            | 1/12/17      | 4/25/17 | 7/28/17     | 10/26/17 | 1/31/18 | 2/3/11   | 1/12/17     | 4/25/17     | 7/28/17 | 10/26/17 | 1/31/18 | 2/3/11   | 1/12/17 | 4/25/17   | 7/28/17     | 10/26/17      | 1/31/18 | 2/3/11   |      |
| Field Parameters        |              |         |             |          |         |          |             |             |         |          |         |          |         |           |             |               |         |          | 1    |
| pН                      | 6.7          | 6.7     | 6.4         | 6.7      | 6.7     | 6.6      | 6.4         | 6.7         | 6.2     | 6.4      | 6.4     | 6.0      | 6.4     | 6.5       | 6.1         | 6.0           | 6.4     | 6.5      | 1    |
| Conductivity (uS/cm)    | 828          | 853     | 1010        | 834      | 1176    | 203      | 1261        | 646         | 2216    | 1845     | 612     | 562      | 13538   | 9242      | 11311       | 23373         | 12883   | 1101     |      |
| Temperature (C)         | 10.6         | 11.7    | 17.2        | 15.0     | 9.3     | 9.6      | 12.5        | 10.3        | 17.8    | 16.3     | 10.0    | 9.4      | 11.5    | 11.5      | 18.6        | 16.1          | 10.1    | 11.3     |      |
| Turbidity (NTU)         | 73.1         | 51.2    | 4.0         | 5.6      | 43.5    | 5.2      | 60.5        | 45.6        | 2.6     | 6.2      | 4.8     | 3.2      | 12.1    | 14.6      | 4.3         | 21.8          | 4.6     | 22.5     |      |
| Dissolved oxygen (mg/l) | 0.3          | 0.1     | 0.9         | 0.7      | 0.4     |          | 0.4         | 0.3         | 1.0     | 0.4      | 0.3     |          | 0.5     | 0.6       | 1.4         | 0.4           | 2.1     |          |      |
| ORP (mv)                | -12.9        | -1.3    | -26.3       | -8.9     | -34.3   |          | -57.0       | 17.2        | -13.9   | -30.7    | -10.9   |          | 18.1    | -0.2      | -20.1       | 15.8          | -28.2   |          |      |
| Ferrous Iron (mg/l)     | 4.5          | 2.8     | 4.0         | 6.9      | 2.8     | 0.2      | 4.5         | 5.5         | 6.5     | 3.7      | 2.8     | 5.6      | 5.0     | 4.3       | 6.0         | 5.8           | 2.2     | 4.6      |      |
| Metals (Dissolved)      |              |         |             |          |         |          |             |             |         |          |         |          |         |           |             |               |         |          |      |
| Arsenic (ug/l)          | <b>0.956</b> | 0.399   | <b>4.03</b> | 0.825    | 0.349   | 43 E     | <b>15.7</b> | <b>7.96</b> | 30.3    | 25.1     | 5.36    | 23.4 D   | 67.5 D  | 46.7      | <b>90.2</b> | <b>50.5</b> D | 50.9 D  | 45.5 D   | 5    |
| Copper (ug/l)           |              |         |             |          |         | <0.50 L  | J           |             |         |          |         | <0.50 U  | <2.5 L  | <2.50 L   | J           |               |         | 0.8 D    | 3.1  |
| Zinc (ug/l)             |              |         |             |          |         | <4.00 L  | J           |             |         |          |         | <4.00 U  | <20.0 U | J <20.0 L | J           |               |         | <4.00 U  | 81.0 |
| Metals (Total)          |              |         |             |          |         |          |             |             |         |          |         |          |         |           |             |               |         |          |      |
| Arsenic (ug/l)          | 0.954        | 0.404   | 1.46        | 2.32     | 0.682   |          | 22.9        | 35.5        | 14.4    | 26.1     | 2.07    | 0.002 D  | 72.2    | 55.3      | 81.6        | 60.3 D        | 55.7 D  |          |      |
| Copper (ug/l)           |              |         |             |          |         |          |             |             |         |          |         | 39.1 D   | <2.50 U | J <2.50 L | J           |               |         |          |      |
| Zinc (ug/l)             |              |         |             |          |         |          |             |             |         |          |         | 32.7 D   | <20.0 L | J <20.0 L | J           |               |         |          |      |
| Water Table             |              |         |             |          |         |          |             |             |         |          |         |          |         |           |             |               |         |          |      |
| Date Measured           | 1/12/17      | 4/25/17 | 7/28/17     | 10/26/17 | 1/31/18 |          | 1/12/17     | 4/25/17     | 7/28/17 | 10/26/17 | 1/31/18 | 2/1/11   | 1/12/17 | 4/25/17   | 7/28/17     | 10/26/17      | 1/31/18 | 2/1/11   |      |
| Time                    | 1430         | 1136    | 1243        | 0934     | 1025    |          | 1330        | 1133        | 1246    | 0940     | 10:30   | 1556     | 1230    | 1131      | 1240        | 0930          | 10:35   | 1530     |      |
| Well depth              | 10.2         | 10.2    | 10.2        | 10.2     | 10.2    |          | 10.0        | 10.0        | 10.0    | 10.0     | 10.0    |          | 13.1    | 13.1      | 13.1        | 13.1          | 13.1    |          |      |
| Depth to water (ft.)    | 2.6          | 1.81    | 4.36        | 2.71     | 1.55    |          | 6.53        | 6.15        | 7.37    | 7        | 4.75    | 5.10     | 7.15    | 7.20      | 7.36        | 7.85          | 7.09    | 5.68     |      |
| Elevation (ft. MLLW)    | 13.35        | 14.14   | 11.59       | 13.24    | 14.40   |          | 10.00       | 10.38       | 9.16    | 9.53     | 11.78   | 10.89    | 11.81   | 11.76     | 11.60       | 11.11         | 11.87   | 11.18    |      |

TABLE 1 - Groundwater Quality Data, Former Arkema Mound Site, 3009 Taylor Way, Tacoma, WA

Shading of Metals Results by CUL

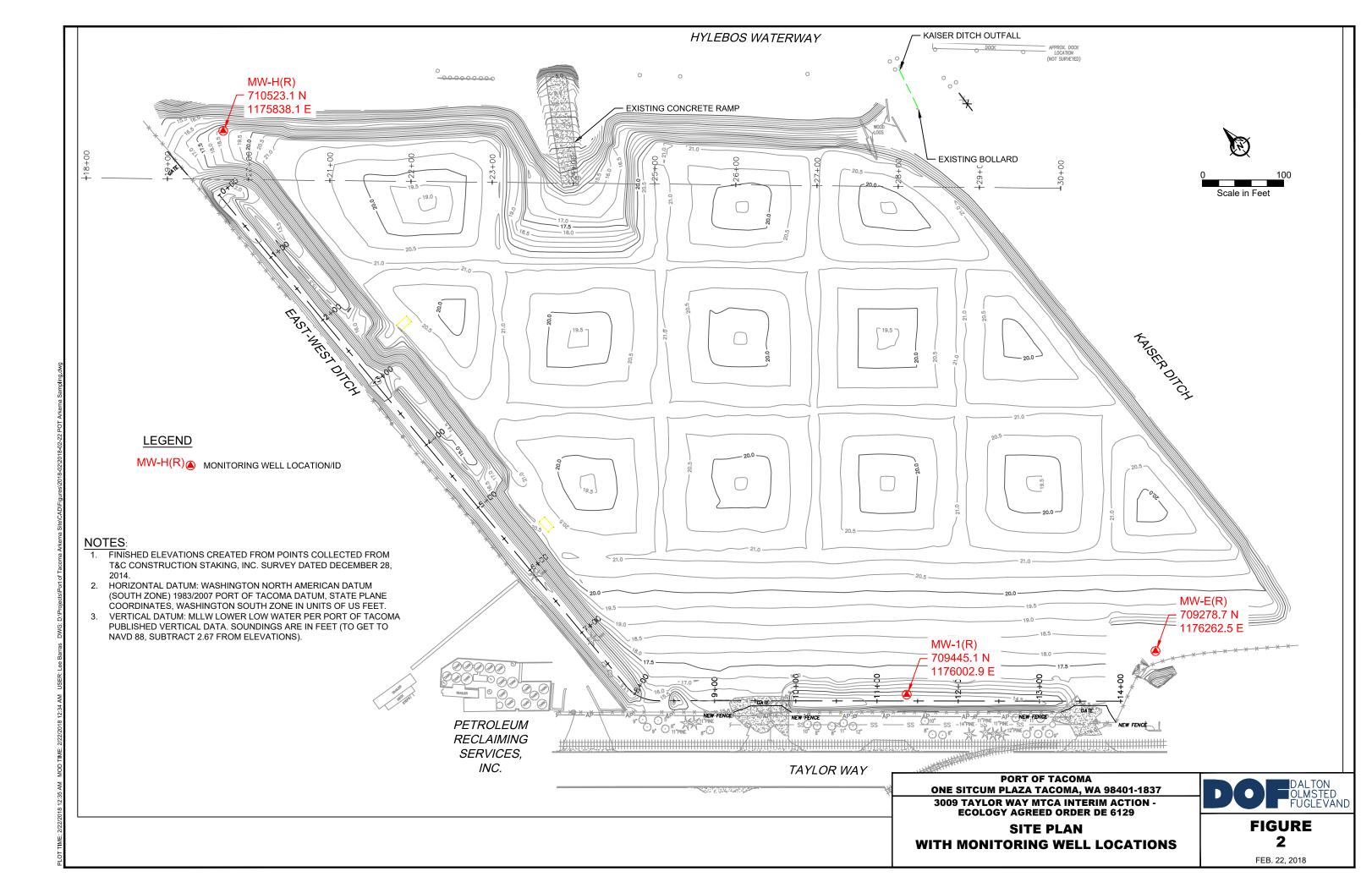
| <u></u> |       |
|---------|-------|
| Shade   |       |
|         | < CUL |
|         | > CUL |

Notes D = Dissolved concentration, field filtered 0.45um --- = Not measured-well and/or analyte not on monitoring schedule U = Not detected at indicated detection limit J = Estimated concentration N.R. = Not Reported



Not to Scale




Former Dunlap Mound 3009 Taylor Way, Tacoma WA

VICINITY MAP

FIGURE 1

Dalton, Olmsted & Fuglevand, Inc.

February 2018



## ATTACHMENT A

Monitoring Well Logs / As- Builts Former Arkema 3009 Taylor Way Site Tacoma, Washington



## LOG OF MW-H(R)

Sheet 1 of 1

|                 |            |                 |             |           |                                                 | T                                         |                       |         |         |                  | Sheet 1 of 1                 |
|-----------------|------------|-----------------|-------------|-----------|-------------------------------------------------|-------------------------------------------|-----------------------|---------|---------|------------------|------------------------------|
| PROJEC          |            |                 |             |           | lound                                           | COORDINATES: 710523.1N 1175838.0E (NAD83) |                       |         |         |                  | 83)                          |
| LOCATI          |            |                 |             |           |                                                 | SURFACE ELEVATION: 1                      | .9.2                  | (MLLV   | ∨)      |                  |                              |
| DRILLIN         |            |                 |             |           |                                                 | DATE: 11/10/16                            |                       |         |         |                  |                              |
|                 |            |                 |             |           | probe 7822DT                                    | TOTAL DEPTH OF BORIN                      |                       | 15.0'   | EC      | OLOG             | Y ID: BKY-352                |
| DRILLIN         |            |                 |             |           |                                                 | LOGGED BY: D. Cooper                      |                       |         |         |                  |                              |
|                 |            |                 |             |           | a. Macro w/acrylic liner                        | RESPONSIBLE PROF.: D.                     | Cooper REG. NO.: 1600 |         |         |                  |                              |
| NOTES:          | Well       | l box           | mark        | ked w     | ith single bollard painted yellow               |                                           |                       |         |         |                  |                              |
|                 |            | SAM             | PLES        |           | VISUAL SOIL DESCRIPTION                         | ON                                        |                       | WE      | ELL CON | ISTRU            | CTION DETAILS                |
|                 |            | Sample Recovery |             |           |                                                 |                                           |                       | AI      | ND/OR   | DRILL            | ING REMARKS                  |
| DEPTH<br>(feet) | b          | COV             | ts          |           | Soil Group Name (USCS): color, moisture, densit | y/consistency, grain size,                |                       |         |         |                  |                              |
| ЭЕРТН<br>(feet) | hplo       | Re              | unc         | (mo       | other discriptors                               |                                           |                       |         |         |                  |                              |
|                 | San        | ple             | v Ci        | dd)       |                                                 |                                           |                       |         |         |                  | 8" Morris Flush-             |
|                 | Lab Sample | am              | Blow Counts | PID (ppm) |                                                 |                                           |                       |         |         | /                | Mount Well Box               |
|                 |            | 0               | ш           | <u> </u>  | 3/4" - Minus Crushed Ro                         | ock                                       |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         | 、   Γ            | 2-inch Diameter              |
| 1               |            |                 |             |           |                                                 |                                           |                       |         |         | $\rightarrow$    | SCH 40 PVC Casing            |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  | TOC 19.22 (MLLW)             |
| 2 —             |            |                 |             |           |                                                 |                                           |                       |         |         | $\mathbf{x}^{-}$ |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         | $\geq$           | Concrete                     |
| 3               |            |                 |             |           |                                                 |                                           |                       |         |         | <u>"</u>         | concrete                     |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         | ž                |                              |
| 4 —             |            |                 |             |           |                                                 |                                           |                       |         |         | 🖉 г              |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         | × /              | Cetco Medium                 |
| 5 —             |            |                 |             |           | POORLY GRADED SAND WITH GI                      |                                           |                       |         |         | 🎘 L              | Bentonite Chip               |
| _               | N          |                 |             |           | brown (7.5YR-5/3), moist to wet, 20% grav       | el, 60% sand, 20% silt                    | _                     |         |         | ž                |                              |
| 6 —             |            | $\setminus$     |             |           |                                                 |                                           |                       |         |         | ž                |                              |
| -               |            |                 |             |           |                                                 |                                           | _                     |         |         | ×.               |                              |
| 7 —             |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| , –             |            |                 |             |           |                                                 |                                           | _                     |         |         | 🛞 Г              | #10-20 Colorado              |
| 8 —             |            |                 |             |           |                                                 |                                           |                       |         |         |                  | Silica Sand                  |
| 0 –             |            |                 |             |           |                                                 | $\Sigma$                                  | _                     |         |         | 88 -             |                              |
| 9 —             |            |                 |             |           |                                                 | -                                         |                       |         |         |                  |                              |
| 5 _             |            |                 |             |           |                                                 |                                           | _                     |         |         | <u> </u>         | 2-inch Diameter              |
| 10              |            | N               |             |           |                                                 |                                           |                       |         |         |                  | Pre-Pac Screen               |
| 10 _            | Γ          |                 |             |           |                                                 |                                           | _                     |         |         | 2621 L           | 0.010" slot<br>10/20 sandpac |
|                 |            | $\setminus$     |             |           | POORLY GRADED SAND (                            | SP):                                      |                       |         |         |                  | SS Mesh                      |
| 11              |            |                 |             |           | gray (7.5YR-5/1), saturated, 100                | % fine sand                               |                       |         |         | C2 C2 L          | 8.0-13.0'                    |
| 12              |            |                 |             |           | with silty interbeds                            |                                           |                       |         |         | 38 L             | 0.1' end cap                 |
| 12 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| 13 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| _               |            |                 |             |           | SILT (ML):                                      |                                           |                       |         |         |                  |                              |
| 14              |            |                 |             |           | gray (7.5YR-6/1), wet, 100% silt, with s        | cattered organics                         |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 | č                                         |                       |         |         |                  |                              |
| 15 —            | Ī          |                 |             |           | Bottom of Boring 15.0 feet                      |                                           |                       | 1010100 | <u></u> | 1051             |                              |
| _               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| 16 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
|                 |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| 17 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| 18 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| 19 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| 20 —            |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |
| -               |            |                 |             |           |                                                 |                                           | -                     |         |         |                  |                              |
| ļ               |            |                 |             |           |                                                 |                                           |                       |         |         |                  |                              |

Note: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated.



## LOG OF MW-1(R)

Sheet 1 of 1

|                    |            |                   |                 |        |                                                                                                 |                                                  | Sheet 1 of 1                                                           |  |  |  |
|--------------------|------------|-------------------|-----------------|--------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| PROJEC             | T: Fc      | ormer             | Dun             | lap N  | lound                                                                                           | COORDINATES: 709445.                             | 5.1 <b>N</b> 1176002.9 <b>E</b> (NAD83)                                |  |  |  |
| LOCATI             | ON:        | Tacor             | na, W           | ΙA     |                                                                                                 | SURFACE ELEVATION: 16.2 (MLLW)                   |                                                                        |  |  |  |
| DRILLIN            | IG CC      | NTRA              | СТО             | R: Ho  | olt                                                                                             | DATE: 11/10/16                                   |                                                                        |  |  |  |
| DRILLIN            | IG EO      | UIPN              | IENT:           | Geo    | probe 7822DT                                                                                    | TOTAL DEPTH OF BORING: 10.0' ECOLOGY ID: BKY-351 |                                                                        |  |  |  |
| DRILLIN            | IG MI      | тно               | D: Di           | irect- | Push                                                                                            | LOGGED BY: D. Cooper                             |                                                                        |  |  |  |
| SAMPL              | ING N      | 1ETH              | DD: 2           | 2" dia | a. Macro w/acrylic liner                                                                        | RESPONSIBLE PROF.: D.                            | Cooper REG. NO.: 1600                                                  |  |  |  |
| NOTES:             | Wel        | l box             | mark            | ed w   | ith single bollard painted yellow                                                               |                                                  |                                                                        |  |  |  |
| DEPTH<br>(feet)    | imple      | Sample Recovery S | Blow Counts 313 | (mdd)  | VISUAL SOIL DESCRIPTIC<br>Soil Group Name (USCS): color, moisture, density<br>other discriptors |                                                  | WELL CONSTRUCTION DETAILS<br>AND/OR DRILLING REMARKS                   |  |  |  |
|                    | Lab Sample | Sampl             | Blow (          | pid (p |                                                                                                 |                                                  | 8" Morris Flush-<br>Mount Well Box                                     |  |  |  |
| 1 —<br>2 —         |            |                   |                 |        | POORLY GRADED SAND WITH GR<br>brown (7.5YR-5/3), moist to wet, 20% grave                        |                                                  | - 2-inch Diameter<br>SCH 40 PVC Casing<br>TOC 15.95 (MLLW)<br>Concrete |  |  |  |
| 3 —<br>4 —<br>5 —  |            |                   |                 |        | POORLY GRADED SAND (S                                                                           |                                                  | Cetco Medium<br>Bentonite Chip                                         |  |  |  |
| 5 —<br>6 —<br>7 —  |            |                   |                 |        | gray (7.5YR-5/1), saturated, 1009<br>with silt clasts                                           | % fine sand $\sum$                               | - #10-20 Colorado<br>Silica Sand<br>2-inch Diameter<br>Pre-Pac Screen  |  |  |  |
| 8 —<br>9 —<br>10 — |            |                   |                 |        | SILT (ML):<br>gray (7.5YR-6/1), wet, 1009                                                       | % silt                                           |                                                                        |  |  |  |
| -                  |            |                   |                 |        | Bottom of Boring 10.0 feet                                                                      |                                                  | _                                                                      |  |  |  |
| 11                 |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| 12 —               |            |                   |                 |        |                                                                                                 |                                                  | —                                                                      |  |  |  |
| <br>13 —           |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| 15 _               |            |                   |                 |        |                                                                                                 |                                                  | _                                                                      |  |  |  |
| 14                 |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| <u> </u>           |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| 15                 |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
|                    |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| 16                 |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| 16 —               |            |                   |                 |        |                                                                                                 |                                                  | _                                                                      |  |  |  |
| 17 —               |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| <br>18 —           |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| -                  |            |                   |                 |        |                                                                                                 |                                                  | -                                                                      |  |  |  |
| 19 —               |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| -                  |            |                   |                 |        |                                                                                                 |                                                  | -                                                                      |  |  |  |
| 20 —               |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |
| -                  |            |                   |                 |        |                                                                                                 |                                                  | -                                                                      |  |  |  |
|                    |            |                   |                 |        |                                                                                                 |                                                  |                                                                        |  |  |  |

Note: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated.



## LOG OF MW-E(R)

Sheet 1 of 1

|                                                                                                               |                                                                                                 |                                                  | Sheet 1 of 1                                                                                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| PROJECT: Former Dunlap                                                                                        | Mound                                                                                           | COORDINATES: 709278.7N 1176                      |                                                                                                     |  |  |  |  |
| LOCATION: Tacoma, WA                                                                                          |                                                                                                 | SURFACE ELEVATION: 16.9 (MLLV                    | V)                                                                                                  |  |  |  |  |
| DRILLING CONTRACTOR: H                                                                                        | Holt                                                                                            | DATE: 11/10/16                                   |                                                                                                     |  |  |  |  |
| DRILLING EQUIPMENT: Ge                                                                                        | eoprobe 7822DT                                                                                  | TOTAL DEPTH OF BORING: 10.0' ECOLOGY ID: BKY-350 |                                                                                                     |  |  |  |  |
| DRILLING METHOD: Direct                                                                                       | t-Push                                                                                          | LOGGED BY: D. Cooper                             |                                                                                                     |  |  |  |  |
| SAMPLING METHOD: 2" d                                                                                         | lia. Macro w/acrylic liner                                                                      | RESPONSIBLE PROF.: D. Cooper REG. NO.: 1600      |                                                                                                     |  |  |  |  |
| NOTES: Well box marked                                                                                        | with single bollard painted yellow                                                              |                                                  |                                                                                                     |  |  |  |  |
| DEPTH<br>(feet)<br>Lab Sample<br>Sample Recovery<br>Blow Counts<br>Sand                                       | VISUAL SOIL DESCRIPTIOn<br>Soil Group Name (USCS): color, moisture, densit<br>other discriptors | A                                                | ELL CONSTRUCTION DETAILS<br>ND/OR DRILLING REMARKS<br>8" Morris Flush-<br>Mount Well Box            |  |  |  |  |
|                                                                                                               | POORLY GRADED SAND WITH G<br>brown (7.5YR-5/3), moist to wet, 20% grav                          |                                                  | 2-inch Diameter<br>SCH 40 PVC Casing<br>TOC 16.53 (MLLW)<br>Concrete                                |  |  |  |  |
|                                                                                                               | POORLY GRADED SAND (<br>gray (7.5YR-5/1), saturated, 100                                        |                                                  | #10-20 Colorado<br>Silica Sand<br>2-inch Diameter<br>Pre-Pac Screen<br>0.010" slot<br>10/20 sandpac |  |  |  |  |
| $ \begin{array}{c} - \\ 9 \\ - \\ 10 \\ - \\ 11 \\ - \\ 12 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | SILT (ML):<br>gray (7.5YR-6/1), wet, 100% silt, v<br>Bottom of Boring 10.0 feet                 | vith organics                                    | SS Mesh<br>5.0-10.0'<br>0.1' end cap                                                                |  |  |  |  |
|                                                                                                               |                                                                                                 |                                                  |                                                                                                     |  |  |  |  |
| 15 —<br>-<br>16 —<br>-                                                                                        |                                                                                                 | -<br><br>-                                       |                                                                                                     |  |  |  |  |
| 17 —<br>18 —<br>18 —                                                                                          |                                                                                                 |                                                  |                                                                                                     |  |  |  |  |
| 19 —<br>_<br>20 —                                                                                             |                                                                                                 |                                                  |                                                                                                     |  |  |  |  |
|                                                                                                               |                                                                                                 |                                                  |                                                                                                     |  |  |  |  |

Note: The summary log is an interpretation based on samples, drill action, and interpolation. Variations between what is shown and actual conditions should be anticipated.

## ATTACHMENT B

Laboratory Data Sheets Post-Interim Action Groundwater Sample Analyses January 2017 to January 2018 Former Arkema 3009 Taylor Way Site Tacoma, Washington

## Sample Dates

- January 12, 2017
- April 25, 2017
- July 28, 2017
- October 26, 2017
- January 31, 2017



26 January 2017

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400

RE: POT-Former Dunlap Mound

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17A0121

Associated SDG ID(s) N/A

-----

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Amanda Volgardsen, Project Management Assistant

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

| ARI Client Company: かん<br>Client Contact: ひかりら どののの                                            |           |                | .0000              |                         | +0               |                               |               |                                                                                           |
|------------------------------------------------------------------------------------------------|-----------|----------------|--------------------|-------------------------|------------------|-------------------------------|---------------|-------------------------------------------------------------------------------------------|
| ARI Client Company: Conference Phone: Client Contact: Contact: Conference Client Protect Name: | MAN NONTH |                | rage.              |                         | 5                |                               | Analyt        | Analytical Chemists and Consultants                                                       |
| Client Contact: DmUN LOOPCA                                                                    | 3         | 7466           | Date:              | 13/17                   | Ice<br>Present?  |                               | Tukwil        | 4611 South 134th Flace, Suite 100<br>Tukwila, WA 98168<br>206-695-6200-206-695-6201 (fav) |
| Client Project Name:                                                                           |           |                | No. of<br>Coolers: |                         | Cooler<br>Temps: |                               | 2.WWW         | www.arilabs.com                                                                           |
| N COL V COLV                                                                                   | . 10      |                |                    |                         | Ana              | Analysis Requested            |               | Notes/Comments                                                                            |
| Client Project #: Samplers: 20                                                                 | Orino     |                | JHU                | N                       |                  | F                             |               |                                                                                           |
| M. DI-002 Manual Ma                                                                            | No Loophy |                |                    |                         |                  | 2                             |               |                                                                                           |
| Sample ID Date Time                                                                            | ne Matrix | No. Containers | SY<br>West         | 14021<br>841<br>14122 W | 2' m<br>2' m     | 2. 2. 17                      |               |                                                                                           |
| 111-1/2) 143                                                                                   | 1430 WMFN | 2              | ×                  | ×                       |                  |                               |               | mu minnu st                                                                               |
| MW-E(A) 1330                                                                                   | 30        |                | ×                  | X                       |                  |                               |               | 100-000-ms                                                                                |
| MW-H (N)   123                                                                                 | 1230      |                | ×                  | X                       | ×                |                               |               | -                                                                                         |
| QUI-1-14                                                                                       | 1435. 4   | >              | ×                  | ×                       |                  |                               |               | A                                                                                         |
|                                                                                                |           |                | 4                  |                         |                  |                               |               |                                                                                           |
|                                                                                                |           |                |                    |                         |                  |                               |               |                                                                                           |
|                                                                                                |           |                |                    |                         |                  |                               |               |                                                                                           |
|                                                                                                |           | -              |                    |                         | -                |                               |               |                                                                                           |
| ecial                                                                                          |           | Received by    | Ni A               | 19.1.                   | Relir            | Relinquished by:              | Received by   | :/c                                                                                       |
| * BIUNSCHUZY THEITLAN Printed Name:                                                            | X         | Printed Name:  |                    | Neve/                   | Print            | (orgunature)<br>Printed Name: | Printed Name: | me:                                                                                       |
| Company:                                                                                       |           |                | 4                  | <br>)                   | Com              | Company:                      | Company:      |                                                                                           |
| Date & Time:                                                                                   | THT (     | Date & Time:   | 0 1                | 745                     | Date             | Date & Time:                  | Date & Time   | le:                                                                                       |

statistics of Laboration an equession services in accordance with appropriate internocorcy removing or to characteristic or the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

| Analytical Resources, Incorpor<br>Analytical Chemists and Consu | ated<br>Itants                         | Cooler Red                                  | ceipt F       | orm          |             |
|-----------------------------------------------------------------|----------------------------------------|---------------------------------------------|---------------|--------------|-------------|
| CoE                                                             |                                        |                                             |               | om           |             |
| ARI Client:                                                     |                                        | Project Name: POT Former                    | Dunlar 1      | Moond        |             |
| COC No(s):                                                      | NA                                     | Delivered by: Fed-Ex UPS Co                 |               |              |             |
| Assigned ARI Job No: 17A012                                     |                                        | Tracking No:                                |               |              | -           |
| Preliminary Examination Phase:                                  | 1                                      |                                             |               |              | NA          |
| Were intact, properly signed and dated custody se               | eals attached to                       | the outside of to coolor?                   |               | VEO          |             |
| Were custody papers included with the cooler?                   |                                        |                                             |               | YES          | NO          |
| Were custody papers properly filled out (ink, signe             |                                        |                                             | $\langle$     | YES          | NO          |
| Temperature of Cooler(s) (°C) (recommended 2.0-<br>Time:        | -6.0 °C for cher                       | nistry) 0.7                                 | C             | YES          | NO          |
| If cooler temperature is out of compliance fill out fo          | om 00070F                              | <u> </u>                                    | Temp Gun I    | D#: DOC      | 52-1        |
| ooler Accepted by: JM                                           |                                        | Date: 1/13/17 Tim                           | ne: 074       |              | 10          |
|                                                                 |                                        | and attach all shipping documents           |               | 12           |             |
| og-In Phase:                                                    | letery forms t                         | and attach an shipping documents            | ,             |              |             |
|                                                                 |                                        |                                             |               |              |             |
| Was a temperature blank included in the cooler?                 |                                        | $\sim$                                      |               | YES          | NO          |
| What kind of packing material was used?                         | Bubble Wrap                            | Wet Ice) Gel Packs Baggies Foar             | n Block Paper | Other:       | 125         |
| Nas sufficient ice used (if appropriate)?                       |                                        | •••••••                                     | NA            | YES          | NO          |
| Nere all bottles sealed in individual plastic bags? .           | ·····                                  |                                             |               | YES          | NO          |
| Did all bottles arrive in good condition (unbroken)?            | ·                                      |                                             |               | (ES)         | NO          |
| Vere all bottle labels complete and legible?                    |                                        |                                             |               | YES          | NO          |
| Did the number of containers listed on COC match                | with the numb                          | er of containers received?                  |               | YES          | NO          |
| Did all bottle labels and tags agree with custody pa            | apers?                                 |                                             |               | TES          | NO          |
| Vere all bottles used correct for the requested ana             | alyses?                                |                                             |               | TES          |             |
| Do any of the analyses (bottles) require preservation           | on? (attach pre                        | servation sheet, evoluting VOCs)            | NIA           |              | NO          |
| Vere all VOC vials free of air bubbles?                         | (unaon pro                             | eervation aneer, excluding voos)            | -             | (ES)         | NO          |
| Vas sufficient amount of sample sent in each bottl              |                                        |                                             | NA            | YES          | NO          |
| Date VOC Trip Blank was made at ARI                             | or                                     |                                             | -             | (YES)        | NO          |
|                                                                 | •••••••••••••••••••••••••••••••••••••• |                                             | MAD           |              |             |
| Vas Sample Split by ARI : 🛛 🔞 YES Da                            | ate/ I me:                             | Equipment:                                  |               | Split by:    |             |
| amples Logged by:                                               | Date:                                  | _1/13/17 Time:                              | 8:0:          | 2            |             |
| ** Notify Pr                                                    |                                        | of discrepancies or concerns **             | 0.0           | <u> </u>     |             |
|                                                                 | -,ger                                  | en discrepancies of concerns                |               |              |             |
| Sample ID on Bottle Sample ID                                   | lon COC                                | CompletD D-III                              |               |              | <del></del> |
|                                                                 | 7011000                                | Sample ID on Bottle                         | Sam           | ple ID on CC | С           |
|                                                                 |                                        |                                             |               |              |             |
|                                                                 |                                        |                                             |               |              |             |
|                                                                 | -                                      |                                             |               |              |             |
| Additional Notes, Discrepancies, & Resolutions                  |                                        |                                             |               |              |             |
|                                                                 |                                        |                                             |               |              |             |
|                                                                 |                                        |                                             | ×             |              |             |
|                                                                 |                                        |                                             |               | ·            | -1-2        |
| By: Date:                                                       |                                        |                                             |               |              |             |
| Pro-Il Air Buibbles                                             | T                                      | Small A firm? (                             |               |              |             |
|                                                                 | Ar Butties                             | Small → "sm" (<2 mm)                        |               |              |             |
| • • • • • • •                                                   | 3 03 -                                 | Peabubbles $\rightarrow$ "pb" (2 to < 4 mm) |               |              |             |
| 0 0 0 0                                                         |                                        | Large → "lg" (4 to < 6 mm)                  |               |              |             |
|                                                                 |                                        | Headspace → "hs" (>6 mm)                    |               |              |             |

Analytical Resources, Incorporated Analytical Chemists and Consultants

|                                                                             | u Consultants   | WOR             | K ORDER           |                                              |
|-----------------------------------------------------------------------------|-----------------|-----------------|-------------------|----------------------------------------------|
|                                                                             |                 | 17              | 7A0121            |                                              |
| Client: Dalton, Olmsted & Fugle<br>Project: POT-Former Dunlap Me            |                 |                 |                   | Amanda Volgardsen<br>POT-Former Dunlap Mound |
| Analysis                                                                    | Due             | TAT             | Expires           | Comments                                     |
|                                                                             |                 |                 |                   |                                              |
| 17A0121-07 MW-H (R) [Water<br>Pacific Time (US &                            | Sampled 12-Jan- | 2017 13:        |                   |                                              |
| 17A0121-07 MW-H (R) [Water<br>Pacific Time (US &<br>Met Diss 200.8 - Zn UCT | Sampled 12-Jan- | 2017 13::<br>10 | 11-Jul-2017 13:30 |                                              |
| Pacific Time (US &                                                          |                 |                 |                   |                                              |

## **Preservation Confirmation**

| Container Type                 | рН                                                                                                                                                                                                                     |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDPE NM, 500 mL, 1:1 HNO3      | L2 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3      | 22 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3      | L2 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3      | L2 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3 (FF) | 22 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3 (FF) | 62 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3 (FF) | <2 pass                                                                                                                                                                                                                |
| HDPE NM, 500 mL, 1:1 HNO3 (FF) | 22 pass                                                                                                                                                                                                                |
|                                | HDPE NM, 500 mL, 1:1 HNO3<br>HDPE NM, 500 mL, 1:1 HNO3 (FF)<br>HDPE NM, 500 mL, 1:1 HNO3 (FF)<br>HDPE NM, 500 mL, 1:1 HNO3 (FF) |

B.H Preservation Confirmed By

<u>|/13/17</u> Date

B.H

1/13/17 Date

Page 2 of 2

Reviewed By

Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

### ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|-----------|---------------|--------|-------------------|-------------------|
| MW-1 (R)  | 17A0121-01    | Water  | 12-Jan-2017 14:30 | 13-Jan-2017 07:45 |
| MW-E (R)  | 17A0121-02    | Water  | 12-Jan-2017 13:30 | 13-Jan-2017 07:45 |
| MW-H (R)  | 17A0121-03    | Water  | 12-Jan-2017 12:30 | 13-Jan-2017 07:45 |
| DUPL-1    | 17A0121-04    | Water  | 12-Jan-2017 14:35 | 13-Jan-2017 07:45 |
| MW-1 (R)  | 17A0121-05    | Water  | 12-Jan-2017 14:30 | 13-Jan-2017 07:45 |
| MW-E (R)  | 17A0121-06    | Water  | 12-Jan-2017 13:30 | 13-Jan-2017 07:45 |
| MW-H (R)  | 17A0121-07    | Water  | 12-Jan-2017 12:30 | 13-Jan-2017 07:45 |
| DUPL-1    | 17A0121-08    | Water  | 12-Jan-2017 14:35 | 13-Jan-2017 07:45 |
|           |               |        |                   |                   |



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### **Case Narrative**

#### Sample receipt

Four samples were received January 13, 2017 under ARI workorder 17A0121. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Total and Dissolved Metals - EPA Method 200.8

There were no analytical complications noted.

## **Analytical Report**



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### MW-1 (R) 17A0121-01 (Water)

#### Metals and Metallic Compounds

| Method: EPA 200.8 UCT<br>Instrument: ICPMS2 | -KED                                                                                           |                                                                |          |                    |        |       | 12/2017 14:30<br>17/2017 16:45 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0228<br>Prepared: 01/16/2017 06:10 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 2:<br>Final Volume: 2 | 5 mL     |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                     | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic                                     |                                                                                                | 7440-38-2                                                      | 1        | 0.200              | 0.954  | ug/L  |                                |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### MW-E (R) 17A0121-02 (Water)

#### Metals and Metallic Compounds

| Method: EPA 200.8 UCT<br>Instrument: ICPMS2 | -KED                                                                                           |                                                                       |                    |        | -     | 12/2017 13:30<br>17/2017 16:50 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0228<br>Prepared: 01/16/2017 06:10 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic                                     |                                                                                                | 7440-38-2 1                                                           | 0.200              | 22.9   | ug/L  |                                |



## **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400 Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### MW-H (R)

#### 17A0121-03 (Water)

#### Metals and Metallic Compounds

| Method: EPA 200.8 UCT<br>Instrument: ICPMS2 | -KED                                                                                           |                                                            |          |                    |        | -     | 12/2017 12:30<br>19/2017 18:39 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0228<br>Prepared: 01/16/2017 06:10 | 79-020 4.1.4 HNO3 matri<br>Sample Size: 2<br>Final Volume: | 25 mL    |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                 | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic                                     |                                                                                                | 7440-38-2                                                  | 5        | 1.00               | 72.2   | ug/L  | D                              |
| Copper                                      |                                                                                                | 7440-50-8                                                  | 5        | 2.50               | ND     | ug/L  | U                              |
| Zinc                                        |                                                                                                | 7440-66-6                                                  | 5        | 20.0               | ND     | ug/L  | U                              |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### DUPL-1 17A0121-04 (Water)

#### Metals and Metallic Compounds

| Method: EPA 200.8 UCT<br>Instrument: ICPMS2 | -KED                                                                                           |                                                                |          |                    |        | 1     | 12/2017 14:35<br>17/2017 16:59 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0228<br>Prepared: 01/16/2017 06:10 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25<br>Final Volume: 2 | 5 mL     |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                     | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic                                     |                                                                                                | 7440-38-2                                                      | 1        | 0.200              | 1.05   | ug/L  |                                |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### MW-1 (R) 17A0121-05 (Water)

#### Metals and Metallic Compounds (dissolved)

| Method: EPA 200.8 UCT<br>Instrument: ICPMS1 | -KED                                                                                           |                                                            |          |                    |        | •     | 12/2017 14:30<br>18/2017 18:10 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0230<br>Prepared: 01/16/2017 07:24 | 79-020 4.1.4 HNO3 matri<br>Sample Size: 2<br>Final Volume: | 25 mL    |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                 | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic, Dissolved                          |                                                                                                | 7440-38-2                                                  | 1        | 0.200              | 0.956  | ug/L  |                                |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

## MW-E (R)

#### 17A0121-06 (Water)

#### Metals and Metallic Compounds (dissolved)

| Method: EPA 200.8 UCT<br>Instrument: ICPMS1 | -KED                                                                                            |                                                                       |                    |        | 1     | 12/2017 13:30<br>18/2017 18:40 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-7<br>Preparation Batch: BFA0230<br>Prepared: 01/16/2017 07:24 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |       |                                |
| Analyte                                     |                                                                                                 | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic, Dissolved                          |                                                                                                 | 7440-38-2 2                                                           | 0.400              | 15.7   | ug/L  | D                              |



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### MW-H (R)

#### 17A0121-07 (Water)

#### Metals and Metallic Compounds (dissolved)

| Method: EPA 200.8 UCT<br>Instrument: ICPMS2 | `-KED                                                                                          |                                                            |          |                    |        | -     | 12/2017 12:30<br>19/2017 18:34 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0230<br>Prepared: 01/16/2017 07:24 | 79-020 4.1.4 HNO3 matri<br>Sample Size: 2<br>Final Volume: | 25 mL    |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                 | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic, Dissolved                          |                                                                                                | 7440-38-2                                                  | 5        | 1.00               | 67.5   | ug/L  | D                              |
| Copper, Dissolved                           |                                                                                                | 7440-50-8                                                  | 5        | 2.50               | ND     | ug/L  | U                              |
| Zinc, Dissolved                             |                                                                                                | 7440-66-6                                                  | 5        | 20.0               | ND     | ug/L  | U                              |



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### DUPL-1 17A0121-08 (Water)

#### Metals and Metallic Compounds (dissolved)

| Method: EPA 200.8 UCT<br>Instrument: ICPMS1 | -KED                                                                                           |                                                            |          |                    |        | •     | 12/2017 14:3:<br>18/2017 18:44 |
|---------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------|--------|-------|--------------------------------|
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFA0230<br>Prepared: 01/16/2017 07:24 | 79-020 4.1.4 HNO3 matri<br>Sample Size: 2<br>Final Volume: | 25 mL    |                    |        |       |                                |
| Analyte                                     |                                                                                                | CAS Number                                                 | Dilution | Reporting<br>Limit | Result | Units | Notes                          |
| Arsenic, Dissolved                          |                                                                                                | 7440-38-2                                                  | 1        | 0.200              | 0.924  | ug/L  |                                |



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### Metals and Metallic Compounds - Quality Control

#### Batch BFA0228 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2

| QC Sample/Analyte    | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------|---------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|-------|
| Blank (BFA0228-BLK1) |         |        |                    | Prepa | ared: 16-Jan-  | -2017 Ana        | lyzed: 17-J | an-2017 13:    | 54  |              |       |
| Arsenic              |         | ND     | 0.200              | ug/L  |                |                  |             |                |     |              | U     |
| Copper               |         | ND     | 0.500              | ug/L  |                |                  |             |                |     |              | U     |
| Zinc                 |         | ND     | 4.00               | ug/L  |                |                  |             |                |     |              | U     |
| LCS (BFA0228-BS1)    |         |        |                    | Prepa | ared: 16-Jan-  | -2017 Ana        | lyzed: 17-J | an-2017 14:    | 14  |              |       |
| Arsenic              |         | 23.7   | 0.200              | ug/L  | 25.0           |                  | 94.8 %      | 80-120         |     |              |       |
| Copper               |         | 27.2   | 0.500              | ug/L  | 25.0           |                  | 109 %       | 80-120         |     |              |       |
| Zinc                 |         | 77.9   | 4.00               | ug/L  | 80.0           |                  | 97.3 %      | 80-120         |     |              |       |



Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BFA0230 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1

| QC Sample/Analyte          | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|---------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Blank (BFA0230-BLK1)       | *       |        |                    | Prep  | ared: 16-Jan   | -2017 Ana        | lyzed: 18-J | an-2017 18:    | 08    |              |       |
| Arsenic                    |         | ND     | 0.200              | ug/L  |                |                  |             |                |       |              | U     |
| Copper                     |         | ND     | 0.500              | ug/L  |                |                  |             |                |       |              | U     |
| Zinc                       |         | ND     | 4.00               | ug/L  |                |                  |             |                |       |              | U     |
| LCS (BFA0230-BS1)          |         |        |                    | Prepa | ared: 16-Jan   | -2017 Ana        | lyzed: 18-J | an-2017 18:    | 26    |              |       |
| Arsenic                    |         | 24.0   | 0.200              | ug/L  | 25.0           |                  | 96.1 %      | 80-120         |       |              |       |
| Copper                     |         | 27.0   | 0.500              | ug/L  | 25.0           |                  | 108 %       | 80-120         |       |              |       |
| Zinc                       |         | 74.9   | 4.00               | ug/L  | 80.0           |                  | 93.7 %      | 80-120         |       |              |       |
| Duplicate (BFA0230-DUP1)   |         | Sou    | rce: 17A0121-05    | Prepa | ared: 16-Jan   | -2017 Ana        | lyzed: 18-J | an-2017 18:    | 12    |              |       |
| Arsenic                    |         | 0.909  | 0.200              | ug/L  |                | 0.956            |             |                | 5.04  | 20           |       |
| Copper                     |         | ND     | 0.500              | ug/L  |                | 0.352            |             |                |       | 20           | U     |
| Zinc                       |         | ND     | 4.00               | ug/L  |                | 1.59             |             |                | 15.90 | 20           | U     |
| Matrix Spike (BFA0230-MS1) |         | Sou    | rce: 17A0121-05    | Prepa | ared: 16-Jan   | -2017 Ana        | lyzed: 18-J | an-2017 18:    | 20    |              |       |
| Arsenic                    |         | 25.4   | 0.200              | ug/L  | 25.0           | 0.956            | 97.9 %      | 75-125         |       |              |       |
| Copper                     |         | 25.3   | 0.500              | ug/L  | 25.0           | 0.352            | 99.9 %      | 75-125         |       |              |       |
| Zinc                       |         | 69.1   | 4.00               | ug/L  | 80.0           | 1.59             | 84.4 %      | 75-125         |       |              |       |

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



WA-DW

Dalton, Olmsted & Fuglevand, IncProject:10827 NE 68th Street Suite BProject Number:Kirkland, WA 98033-4400Project Manager:

Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

### Certified Analyses included in this Report

Ecology - Drinking Water

| Analyte       | Certifications                                     |          |            |
|---------------|----------------------------------------------------|----------|------------|
| EPA 200.8 UC1 | T-KED in Water                                     |          |            |
| Arsenic-75a   | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Copper-63     | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Copper-65     | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Zinc-66       | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Zinc-67       | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Arsenic-75a   | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Copper-63     | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Copper-65     | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Zinc-66       | NELAP,WADOE,WA-DW,E                                | oD-ELAP  |            |
| Zinc-67       | NELAP,WADOE,WA-DW,D                                | OoD-ELAP |            |
| Code          | Description                                        | Number   | Expires    |
| ADEC          | Alaska Dept of Environmental Conservation          | UST-033  | 05/06/2017 |
| CALAP         | California Department of Public Health CAELAP      | 2748     | 02/28/2018 |
| DoD-ELAP      | DoD-Environmental Laboratory Accreditation Program | 66169    | 03/30/2017 |
| NELAP         | ORELAP - Oregon Laboratory Accreditation Program   | WA100006 | 05/11/2017 |
| WADOE         | WA Dept of Ecology                                 | C558     | 06/30/2017 |
|               |                                                    |          |            |

C558

06/30/2017



## **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400 Project: POT-Former Dunlap Mound Project Number: POT-Former Dunlap Mound Project Manager: Dave Cooper

**Reported:** 26-Jan-2017 16:21

#### **Notes and Definitions**

- D The reported value is from a dilution
- J Estimated concentration value detected below the reporting limit.
- U This analyte is not detected above the applicable reporting or detection limit.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- [2C] Indicates this result was quantified on the second column on a dual column analysis.



10 May 2017

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400

RE: POT-Former Dunlap Mound

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17D0422 Associated SDG ID(s) N/A

-----

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

Amanda Volgardsen, Project Management Assistant

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

entirety.

Cert# 100006

**PJLA Testing** 

Accreditation # 66169

The results in this report apply to the samples analyzed in accordance with the

chain of custody document. This analytical report must be reproduced in its

| 100193                        | Turn-around                     | Turn-around Requested: | NUCIUM              |                             | Page:              | -        | of               | 1                               | Analytical chemists and Consultants                                                    |
|-------------------------------|---------------------------------|------------------------|---------------------|-----------------------------|--------------------|----------|------------------|---------------------------------|----------------------------------------------------------------------------------------|
| ARI Client Company:           |                                 | Phone:                 | Phone: 206-660-3446 | 46                          | Date: 4/26)        | 1        | Ice<br>Present?  | ıt?                             | 4611 South 134th Place, Suite 100<br>Tukwila, WA 98168<br>206-695-6200-206-69201 (fax) |
| Client Contact:               |                                 |                        | Ĩ                   |                             | No. of<br>Coolers: |          | Cooler<br>Temps: |                                 | www.arilabs.com                                                                        |
| Client Project Name:          |                                 | 00                     |                     |                             |                    |          |                  | Analysis Requested              | Notes/Comments                                                                         |
| FOI - FORMUL KNUN             | くうのん ったつ                        | 2                      |                     |                             |                    | *        | P                | ¥                               |                                                                                        |
| Client Project #:             | Samplers:                       | N LOOP                 | .0                  |                             |                    | ,        | N:               | 130<br>130                      |                                                                                        |
| Sample ID                     | Date                            | Time                   | Matrix              | No. Containers              | 254<br>254         | AN HOU   | z'm              | 17.12M                          |                                                                                        |
| MW-1 (2)                      | 4/25/17                         | 1345                   | umin                | 2                           | ×                  | ×        |                  |                                 | ALL METTERS BY                                                                         |
| MW-E(A)                       |                                 | 1205                   |                     |                             | ×                  | X        |                  |                                 | 54-000-071                                                                             |
| (u) H -MW                     |                                 | 1120                   |                     |                             | X                  | ×        | ×                | ×                               |                                                                                        |
| DUPOL                         |                                 | 1300                   | -+                  | -                           | $\prec$            | ×        |                  |                                 |                                                                                        |
|                               |                                 |                        |                     |                             |                    |          |                  |                                 |                                                                                        |
|                               |                                 |                        |                     |                             |                    |          |                  |                                 |                                                                                        |
|                               |                                 |                        |                     |                             |                    |          |                  |                                 |                                                                                        |
|                               |                                 |                        |                     |                             |                    |          |                  |                                 |                                                                                        |
| Comments/Special Instructions | Relinquished by:<br>(Signature) | Lid _                  |                     | Received by:<br>(Signature) | ather              | 4. A. 00 | 1                | Relinquished by:<br>(Signature) | Received by:<br>(Signature)                                                            |
| FRU FUTDIN OFTIN              | Printed Name:                   | (n)PEN                 |                     | Printed Name:               | ed Name:           | 1        |                  | Printed Name:                   | Printed Name:                                                                          |
|                               | Company:                        | F                      |                     | Company:                    | Z                  |          |                  | Company:                        | Company:                                                                               |
|                               | Date & Time;                    |                        | 317                 | Date & Time:<br>4/26/17     | 5                  | 1315     |                  | Date & Time:                    | Date & Time:                                                                           |

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract. signed agreement between ARI and the Client.

| Analytical Resources, Incorporated<br>Analytical Chemists and Consultants                                         | Cooler Receipt Form                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ARI Client: DOF<br>COC No(s): NA<br>Assigned ARI Job No: <u>17100422</u><br>Preliminary Examination Phase:        | Project Name: <u>POT-Former Dunlap Mand</u><br>Delivered by: Fed-Ex UPS Courier Hand Delivered Other:<br>Tracking No: NA |
| Were intact, properly signed and dated custody seals attached to<br>Were custody papers included with the cooler? | YES NO<br>YES NO                                                                                                         |
| If cooler temperature is out of compliance fill out form 00070F                                                   | Temp Gun ID#: <u>D005206</u><br>Date: <u>4/26/17</u> Time: <u>1315</u><br>and attach all shipping documents              |
| Log-In Phase:                                                                                                     | and dialon an shipping documents                                                                                         |

| Was a temperature blank included in the cooler?                                                    |          | YES       | NO   |
|----------------------------------------------------------------------------------------------------|----------|-----------|------|
| What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block           | Paper (  | Other:    |      |
| Was sufficient ice used (if appropriate)?                                                          | NA       | (YES)     | NO   |
| Were all bottles sealed in individual plastic bags?                                                |          | YES       | (NO) |
| Did all bottles arrive in good condition (unbroken)?                                               |          | YES       | NO   |
| Were all bottle labels complete and legible?                                                       |          | YES       | NO   |
| Did the number of containers listed on COC match with the number of containers received?           |          | YES       | NO   |
| Did all bottle labels and tags agree with custody papers?                                          |          | YES       | NO   |
| Were all bottles used correct for the requested analyses?                                          |          | YES       | NO   |
| Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) | NA       | YES       | NO   |
| Were all VOC vials free of air bubbles?                                                            | NA       | YES       | NO   |
| Was sufficient amount of sample sent in each bottle?                                               | 0        | (YES)     | NO   |
| Date VOC Trip Blank was made at ARI                                                                | NA       |           |      |
| Was Sample Split by ARI : NA YES Date/Time: Equipment:                                             | <u> </u> | Split by: |      |
| Samples Logged by: <u>B.H.</u> Date: <u>4</u> /27/17 Time: 10                                      | .07      | 7         |      |

\*\* Notify Project Manager of discrepancies or concerns \*\*

| Sample ID on B               | ottle                             | Sample ID on COC  | Sample ID on Bottle  | Sample ID on COC |
|------------------------------|-----------------------------------|-------------------|----------------------|------------------|
|                              |                                   |                   |                      | Sample ID on COC |
|                              |                                   |                   |                      |                  |
|                              |                                   |                   |                      |                  |
|                              |                                   |                   |                      |                  |
| dditional Notes, Dis         | screpancies, & R                  | esolutions:       |                      |                  |
| sampling y                   | ear miss                          | ing from b        | bottle labels.       |                  |
| 3y: B-H-                     | Date: 4                           | 127/17            | 121                  |                  |
| B . H .<br>Small Air Bubbles | Date: <sup>2</sup><br>Pesbubbles' |                   | Small → "sm" (<2 mm) | -                |
| 3y: B-H-                     | Date: 4<br>Pasbubbles<br>2-4 mm   | 127/17            | 121                  |                  |
| B . H .<br>Small Air Bubbles | Date: <sup>2</sup><br>Pesbubbles' | LARGE A' Butches] | Small → "sm" (<2 mm) | -                |

Cooler Receipt Form

Revision 014



Printed: 4/27/2017 6:17:21AM

WORK ORDER

## 17D0422

#### Client: Dalton, Olmsted & Fuglevand, Inc

Project Manager: Amanda Volgardsen Project Number: POT-00

#### **Project: POT-Former Dunlap Mound**

## **Preservation Confirmation**

| Container ID | Container Type                 | рН      |
|--------------|--------------------------------|---------|
| 17D0422-01 A | HDPE NM, 500 mL, 1:1 HNO3      | L2 Pass |
| 17D0422-02 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | L2 Pass |
| 17D0422-03 A | HDPE NM, 500 mL, 1:1 HNO3      | L2 Pass |
| 17D0422-04 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 22 Pass |
| 17D0422-05 A | HDPE NM, 500 mL, 1:1 HNO3      | L2 Pass |
| 17D0422-06 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | L2 Pass |
| 17D0422-07 A | HDPE NM, 500 mL, 1:1 HNO3      | 22 Pass |
| 17D0422-08 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 22 Pass |

Preservation Confirmed By

4/27/17 Date

H Reviewed By

4/27/17 Date

Dalton, Olmsted & Fuglevand, Inc Project: POT-Former Dunlap Mound Project Number: POT-00 10827 NE 68th Street Suite B **Reported:** Kirkland WA, 98033-4400 Project Manager: Dave Cooper 10-May-2017 15:20 ANALYTICAL REPORT FOR SAMPLES 5.00 nlo ID Lab , ID Matrix Date Sampled Date Received

| Sample ID | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|-----------|---------------|--------|-------------------|-------------------|
| MW-1 (R)  | 17D0422-01    | Water  | 25-Apr-2017 13:45 | 26-Apr-2017 13:15 |
| MW-1 (R)  | 17D0422-02    | Water  | 25-Apr-2017 13:45 | 26-Apr-2017 13:15 |
| MW-E (R)  | 17D0422-03    | Water  | 25-Apr-2017 12:55 | 26-Apr-2017 13:15 |
| MW-E (R)  | 17D0422-04    | Water  | 25-Apr-2017 12:55 | 26-Apr-2017 13:15 |
| MW-H (R)  | 17D0422-05    | Water  | 25-Apr-2017 11:50 | 26-Apr-2017 13:15 |
| MW-H (R)  | 17D0422-06    | Water  | 25-Apr-2017 11:50 | 26-Apr-2017 13:15 |
| DUPL      | 17D0422-07    | Water  | 25-Apr-2017 13:50 | 26-Apr-2017 13:15 |
| DUPL      | 17D0422-08    | Water  | 25-Apr-2017 13:50 | 26-Apr-2017 13:15 |
|           |               |        |                   |                   |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

**Analytical Report** 

## **Case Narrative**

#### Sample receipt

Samples as listed on the preceding page were received April 26, 2017 under ARI workorder 17D0422. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Total and Dissolved Metals - EPA Method 200.8

The samples were digested and analyzed within the recommended holding times.

There were no target compounds detected in the method blanks.

The LCS percent recoveries were within control limits.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-1 (R)

## 17D0422-01 (Water)

| Metals and Metallic<br>Method: EPA 200.8 UC |                                                                                           |                                                                        |                       | S      | ampled: 04 | /25/2017 13:45 |
|---------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|--------|------------|----------------|
| Instrument: ICPMS1                          | I-KED                                                                                     |                                                                        | Analyzed: 01-May-2017 |        |            |                |
| Sample Preparation:                         | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFE0001<br>Prepared: 01-May-2017 | -79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                       |        | -          |                |
| Analyte                                     | ¥ ¥                                                                                       | CAS Number Dilution                                                    | Reporting<br>Limit    | Result | Units      | Notes          |
| Arsenic                                     |                                                                                           | 7440-38-2 1                                                            | 0.200                 | 0.404  | ug/L       |                |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-1 (R)

## 17D0422-02 (Water)

| Metals and Metallic  | Compounds (dissolved)              |                          |                     |            |               |       |  |
|----------------------|------------------------------------|--------------------------|---------------------|------------|---------------|-------|--|
| Method: EPA 200.8 UC | T-KED                              |                          | Sampled: 04/25/2017 |            |               |       |  |
| Instrument: ICPMS1   |                                    |                          | Anal                | yzed: 02-M | ay-2017 18:09 |       |  |
| Sample Preparation:  | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matrix |                     |            |               |       |  |
|                      | Preparation Batch: BFD0735         | Sample Size: 25 mL       |                     |            |               |       |  |
|                      | Prepared: 28-Apr-2017              | Final Volume: 25 mL      |                     |            |               |       |  |
|                      |                                    |                          | Reporting           |            |               |       |  |
| Analyte              |                                    | CAS Number Dilution      | Limit               | Result     | Units         | Notes |  |
| Arsenic              |                                    | 7440-38-2 1              | 0.200               | 0.399      | ug/L          |       |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-E (R)

### 17D0422-03 (Water)

| Metals and Metallic                                                            | Compounds                  |                     |           |                         |             |                |  |  |
|--------------------------------------------------------------------------------|----------------------------|---------------------|-----------|-------------------------|-------------|----------------|--|--|
| Method: EPA 200.8 UC                                                           | T-KED                      |                     |           | Sampled: 04/25/2017 12: |             |                |  |  |
| Instrument: ICPMS1                                                             |                            |                     |           | Anal                    | lyzed: 03-M | lay-2017 18:31 |  |  |
| Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                            |                     |           |                         |             |                |  |  |
|                                                                                | Preparation Batch: BFE0001 | Sample Size: 25 mL  |           |                         |             |                |  |  |
|                                                                                | Prepared: 01-May-2017      | Final Volume: 25 mL |           |                         |             |                |  |  |
|                                                                                |                            |                     | Reporting |                         |             |                |  |  |
| Analyte                                                                        |                            | CAS Number Dilution | Limit     | Result                  | Units       | Notes          |  |  |
| Arsenic                                                                        |                            | 7440-38-2 10        | 2.00      | 35.5                    | ug/L        | D              |  |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-E (R)

## 17D0422-04 (Water)

| Metals and Metallic  | Compounds (dissolved)              |                          |           |               |            |               |
|----------------------|------------------------------------|--------------------------|-----------|---------------|------------|---------------|
| Method: EPA 200.8 UC | T-KED                              |                          |           | 25/2017 12:55 |            |               |
| Instrument: ICPMS1   | nstrument: ICPMS1                  |                          |           |               | yzed: 02-M | ay-2017 18:31 |
| Sample Preparation:  | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matrix |           |               |            |               |
|                      | Preparation Batch: BFD0735         | Sample Size: 25 mL       |           |               |            |               |
|                      | Prepared: 28-Apr-2017              | Final Volume: 25 mL      |           |               |            |               |
|                      |                                    |                          | Reporting |               |            |               |
| Analyte              |                                    | CAS Number Dilution      | Limit     | Result        | Units      | Notes         |
| Arsenic              |                                    | 7440-38-2 1              | 0.200     | 7.96          | ug/L       |               |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-H (R)

## 17D0422-05 (Water)

| Metals and Metallic  | Compounds                          |                          |          |                       |        |            |               |  |
|----------------------|------------------------------------|--------------------------|----------|-----------------------|--------|------------|---------------|--|
| Method: EPA 200.8 UC | T-KED                              |                          |          | Sampled: 04/25/2017 1 |        |            |               |  |
| Instrument: ICPMS1   |                                    |                          |          |                       | Anal   | yzed: 03-M | ay-2017 16:42 |  |
| Sample Preparation:  | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matrix |          |                       |        |            |               |  |
|                      | Preparation Batch: BFE0001         | Sample Size: 25 1        | nL       |                       |        |            |               |  |
|                      | Prepared: 01-May-2017              | Final Volume: 25         | mL       |                       |        |            |               |  |
|                      |                                    |                          |          | Reporting             |        |            |               |  |
| Analyte              |                                    | CAS Number               | Dilution | Limit                 | Result | Units      | Notes         |  |
| Arsenic              |                                    | 7440-38-2                | 5        | 1.00                  | 55.3   | ug/L       | D             |  |
| Copper               |                                    | 7440-50-8                | 5        | 2.50                  | ND     | ug/L       | U             |  |
| Zinc                 |                                    | 7440-66-6                | 5        | 20.0                  | ND     | ug/L       | U             |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# MW-H (R)

### 17D0422-06 (Water)

| Metals and Metallic  | Compounds (dissolved)              |                          |          |                    |        |            |               |  |
|----------------------|------------------------------------|--------------------------|----------|--------------------|--------|------------|---------------|--|
| Method: EPA 200.8 UC | T-KED                              |                          |          | Sampled: 04/25/201 |        |            |               |  |
| Instrument: ICPMS2   |                                    |                          |          |                    | Anal   | yzed: 04-M | ay-2017 14:35 |  |
| Sample Preparation:  | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matrix |          |                    |        |            |               |  |
|                      | Preparation Batch: BFD0735         | Sample Size: 25 1        | nL       |                    |        |            |               |  |
|                      | Prepared: 28-Apr-2017              | Final Volume: 25         | mL       |                    |        |            |               |  |
|                      |                                    |                          |          | Reporting          |        |            |               |  |
| Analyte              |                                    | CAS Number               | Dilution | Limit              | Result | Units      | Notes         |  |
| Arsenic              |                                    | 7440-38-2                | 5        | 1.00               | 46.7   | ug/L       | D             |  |
| Copper               |                                    | 7440-50-8                | 5        | 2.50               | ND     | ug/L       | U             |  |
| Zinc                 |                                    | 7440-66-6                | 5        | 20.0               | ND     | ug/L       | U             |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# DUPL

## 17D0422-07 (Water)

| Metals and Metallic<br>Method: EPA 200.8 UC |                                                                                          |                                                                        |                    | s      | ampled: 04              | /25/2017 13:50 |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------|--------|-------------------------|----------------|--|--|
| Instrument: ICPMS1                          | rument: ICPMS1                                                                           |                                                                        |                    |        | Analyzed: 01-May-2017 1 |                |  |  |
| Sample Preparation:                         | Preparation Method: REN EPA 600/4<br>Preparation Batch: BFE0001<br>Prepared: 01-May-2017 | .79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |                         |                |  |  |
| Analyte                                     |                                                                                          | CAS Number Dilution                                                    | Reporting<br>Limit | Result | Units                   | Notes          |  |  |
| Arsenic                                     |                                                                                          | 7440-38-2 1                                                            | 0.200              | 0.394  | ug/L                    |                |  |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# DUPL

### 17D0422-08 (Water)

| Metals and Metallic  | Compounds (dissolved)              |                                   |            |               |       |       |
|----------------------|------------------------------------|-----------------------------------|------------|---------------|-------|-------|
| Method: EPA 200.8 UC | T-KED                              |                                   |            | 25/2017 13:50 |       |       |
| Instrument: ICPMS1   |                                    |                                   | yzed: 02-M | ay-2017 18:40 |       |       |
| Sample Preparation:  | Preparation Method: REN EPA 600/4- | PA 600/4-79-020 4.1.4 HNO3 matrix |            |               |       |       |
|                      | Preparation Batch: BFD0735         | Sample Size: 25 mL                |            |               |       |       |
|                      | Prepared: 28-Apr-2017              | Final Volume: 25 mL               |            |               |       |       |
|                      |                                    |                                   | Reporting  |               |       |       |
| Analyte              |                                    | CAS Number Dilution               | Limit      | Result        | Units | Notes |
| Arsenic              |                                    | 7440-38-2 1                       | 0.200      | 0.515         | ug/L  |       |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BFD0735 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1

| Analyte              | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|----------------------|---------|--------|--------------------|-------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Blank (BFD0735-BLK1) |         |        |                    | Prep  | ared: 28-Apr   | -2017 Ana        | alyzed: 02-1 | May-2017 1     | 7:32 |              |       |
| Arsenic, Dissolved   |         | ND     | 0.200              | ug/L  |                |                  |              |                |      |              | U     |
| Copper, Dissolved    | 63      | ND     | 0.500              | ug/L  |                |                  |              |                |      |              | U     |
| Copper, Dissolved    | 65      | ND     | 0.500              | ug/L  |                |                  |              |                |      |              | U     |
| Zinc, Dissolved      | 66      | ND     | 4.00               | ug/L  |                |                  |              |                |      |              | U     |
| Zinc, Dissolved      | 67      | ND     | 4.00               | ug/L  |                |                  |              |                |      |              | U     |
| LCS (BFD0735-BS1)    |         |        |                    | Prep  | ared: 28-Apr   | -2017 Ana        | alyzed: 02-1 | May-2017 1     | 8:13 |              |       |
| Arsenic, Dissolved   |         | 25.6   | 0.200              | ug/L  | 25.0           |                  | 102          | 80-120         |      |              |       |
| Copper, Dissolved    | 63      | 27.2   | 0.500              | ug/L  | 25.0           |                  | 109          | 80-120         |      |              |       |
| Copper, Dissolved    | 65      | 27.0   | 0.500              | ug/L  | 25.0           |                  | 108          | 80-120         |      |              |       |
| Zinc, Dissolved      | 66      | 84.4   | 4.00               | ug/L  | 80.0           |                  | 105          | 80-120         |      |              |       |
| Zinc, Dissolved      | 67      | 82.3   | 4.00               | ug/L  | 80.0           |                  | 103          | 80-120         |      |              |       |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

## **Metals and Metallic Compounds - Quality Control**

#### Batch BFE0001 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

67

87.7

Instrument: ICPMS1

Zinc

| Analyte              | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------|---------|--------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Blank (BFE0001-BLK1) |         |        |                    | Prepa | ared: 01-Ma    | y-2017 An        | alyzed: 01- | May-2017       | 14:07 |              |       |
| Arsenic              |         | ND     | 0.200              | ug/L  |                |                  |             |                |       |              | U     |
| Copper               | 63      | ND     | 0.500              | ug/L  |                |                  |             |                |       |              | U     |
| Copper               | 65      | ND     | 0.500              | ug/L  |                |                  |             |                |       |              | U     |
| Zinc                 | 66      | ND     | 4.00               | ug/L  |                |                  |             |                |       |              | U     |
| Zinc                 | 67      | ND     | 4.00               | ug/L  |                |                  |             |                |       |              | U     |
| LCS (BFE0001-BS1)    |         |        |                    | Prepa | ared: 01-Ma    | y-2017 An        | alyzed: 01- | May-2017       | 14:47 |              |       |
| Arsenic              |         | 26.1   | 0.200              | ug/L  | 25.0           |                  | 105         | 80-120         |       |              |       |
| Copper               | 63      | 27.2   | 0.500              | ug/L  | 25.0           |                  | 109         | 80-120         |       |              |       |
| Copper               | 65      | 26.9   | 0.500              | ug/L  | 25.0           |                  | 108         | 80-120         |       |              |       |
| Zinc                 | 66      | 89.9   | 4.00               | ug/L  | 80.0           |                  | 112         | 80-120         |       |              |       |

ug/L

80.0

110

80-120

4.00

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

# Certified Analyses included in this Report

| Analyte      | Certifications                                       |         |            |  |  |
|--------------|------------------------------------------------------|---------|------------|--|--|
| PA 200.8 UCT | -KED in Water                                        |         |            |  |  |
| Arsenic-75a  | NELAP,WADOE,WA-DW,Do                                 | D-ELAP  |            |  |  |
| Copper-63    | NELAP,WADOE,WA-DW,Do                                 | D-ELAP  |            |  |  |
| Copper-65    | NELAP,WADOE,WA-DW,Do                                 | D-ELAP  |            |  |  |
| Zinc-66      | NELAP,WADOE,WA-DW,Do                                 | D-ELAP  |            |  |  |
| Zinc-67      | inc-67 NELAP,WADOE,WA-DW,DoD-ELAP                    |         |            |  |  |
| Arsenic-75a  | rsenic-75a NELAP,WADOE,WA-DW,DoD-ELAP                |         |            |  |  |
| Copper-63    | pper-63 NELAP,WADOE,WA-DW,DoD-ELAP                   |         |            |  |  |
| Copper-65    | 5 NELAP,WADOE,WA-DW,DoD-ELAP                         |         |            |  |  |
| Zinc-66      | -66 NELAP,WADOE,WA-DW,DoD-ELAP                       |         |            |  |  |
| Zinc-67      | NELAP,WADOE,WA-DW,Do                                 | D-ELAP  |            |  |  |
| Code         | Description                                          | Number  | Expires    |  |  |
| ADEC         | Alaska Dept of Environmental Conservation            | UST-033 | 05/06/2017 |  |  |
| CALAP        | California Department of Public Health CAELAP        | 2748    | 02/28/2018 |  |  |
| DoD-ELAP     | DoD-Environmental Laboratory Accreditation Program   | 66169   | 03/30/2017 |  |  |
| NELAP        | ORELAP - Oregon Laboratory Accreditation Program WA1 |         | 05/11/2017 |  |  |
| WADOE        | WA Dept of Ecology                                   | C558    | 06/30/2017 |  |  |
| WA-DW        | Ecology - Drinking Water                             | C558    | 06/30/2017 |  |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland WA, 98033-4400

Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-May-2017 15:20

#### **Notes and Definitions**

| J Estimated concentration value detected below the reporting limit.                       | U    | This analyte is not detected above the applicable reporting or detection limit.      |
|-------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------|
|                                                                                           | J    | Estimated concentration value detected below the reporting limit.                    |
| D The reported value is from a dilution                                                   | D    | The reported value is from a dilution                                                |
| DET Analyte DETECTED                                                                      | DET  | Analyte DETECTED                                                                     |
| ND Analyte NOT DETECTED at or above the reporting limit                                   | ND   | Analyte NOT DETECTED at or above the reporting limit                                 |
| NR Not Reported                                                                           | NR   | Not Reported                                                                         |
| dry Sample results reported on a dry weight basis                                         | dry  | Sample results reported on a dry weight basis                                        |
| RPD Relative Percent Difference                                                           | RPD  | Relative Percent Difference                                                          |
| [2C] Indicates this result was quantified on the second column on a dual column analysis. | [2C] | Indicates this result was quantified on the second column on a dual column analysis. |



10 August 2017

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400

**RE: POT-Former Dunlap Mound** 

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17G0339 Associated SDG ID(s) N/A

\_\_\_\_\_

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it<sup>-</sup> entirety.



| AHI Assigned Number:                 | Turn-around Requested: | Ng CMAI         |                     |                | Page:              | -                                                 | of /             |                    | Ana Ana      | Analytical Chemists and Consultants                                                       | tants |
|--------------------------------------|------------------------|-----------------|---------------------|----------------|--------------------|---------------------------------------------------|------------------|--------------------|--------------|-------------------------------------------------------------------------------------------|-------|
| ARI Client Company:<br>D0 F          |                        | Phone:<br>20%-6 | ne:<br>206-660-3466 | و              | Date:              | L182/L                                            | Ice<br>Present?  |                    | Tuko<br>Tuko | 4611 South 134th Place, Suite 100<br>Tukwila, WA 98168<br>206-695-6200-206-695-6201 (fax) | 100 I |
| Client Contact:<br>DAV 5 D. COOPER   | ner.                   |                 |                     |                | No. of<br>Coolers: |                                                   | Cooler<br>Temps: |                    | 007<br>MM    | www.arilabs.com                                                                           | (VDI  |
|                                      |                        |                 |                     |                |                    |                                                   | Analys           | Analysis Requested |              | Notes/Comments                                                                            | Π     |
| Client Project #:                    | Conners                | Clungh          |                     |                | 5                  | A                                                 | *                | 7                  |              |                                                                                           |       |
| POT-00                               | D COOPE                | 1 lene          | m                   |                | 1040               | -<br>-                                            | 747              | ~2                 |              |                                                                                           |       |
| Sample ID                            | Date                   | Tim             | Matrix              | No. Containers | IntoT<br>M<br>VA   | Intel<br>MA<br>LA<br>LA<br>Waren<br>Numeren<br>ZA | clere 1 Ct       | 49 <u>-</u>        |              |                                                                                           |       |
| MU-1 (R)                             | 1/281/L                | 1400            | WATER               | 2              | $\times$           | $\times$                                          | -                |                    |              | ALL METALS BT                                                                             |       |
| MU-E (R)                             |                        | 1.3.30          | -                   | (              | $\checkmark$       | ×                                                 |                  |                    |              | ECP- aga - MS                                                                             |       |
| MU-H CR                              |                        | 1430            |                     |                | ×                  | ×                                                 |                  |                    |              |                                                                                           |       |
| 1-741761                             | -1                     | 1405            | -1                  | -              | $(\prec$           | X                                                 |                  |                    |              |                                                                                           |       |
|                                      |                        | -               |                     |                |                    |                                                   |                  |                    |              |                                                                                           |       |
|                                      |                        |                 |                     |                |                    |                                                   | _                |                    |              |                                                                                           | T     |
|                                      |                        |                 |                     |                |                    |                                                   | +                |                    |              |                                                                                           |       |
|                                      |                        |                 |                     |                |                    |                                                   | -                |                    |              |                                                                                           |       |
|                                      |                        |                 |                     |                |                    |                                                   |                  |                    |              |                                                                                           | -     |
| Comments/Special Instructions        | Relinquished by:       | 10              |                     | Received by *  | ~                  | 1                                                 | Relinquished by: | hed by:            | Received by  | ed by:                                                                                    |       |
| + Distrived metals<br>Field Fictered | Printed Name:          | acolo           |                     | ue:            | Paul Mark          | hore                                              | Printed Name     | ame:               | Printed      | Printed Name:                                                                             |       |
| 0.45 µm                              | Company                | *               |                     | Company:       | ART                | 5                                                 | Company:         |                    | Company:     | - fui                                                                                     |       |
|                                      | Date & Time:           | 21 1            | E                   | Date & Time:   | 28/201             | Date & Time:<br>7/28/2017 (5:50                   | Date & Time:     | me:                | Date & Time: | Time:                                                                                     |       |

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.



# Analytical Resources, Incorporated Analytical Chemists and Consultants

# **Cooler Receipt Form**

| ARI Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Project Name: POT - F                                                          | Former Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | incap M    | lound |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| COC No(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                             | Delivered by: Fed-Ex UPS Co                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 A A      |       |
| Assigned ARI Job No: 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30339                          | Tracking No:                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| reliminary Examination Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                             |                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | NA    |
| Were intact, properly signed an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d dated custody seals attache  | ed to the outside of to cooler?                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | NO    |
| Were custody papers properly f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
| Temperature of Cooler(s) (°C) (<br>Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | recommended 2.0-6.0 °C for     | chemistry) C. Le                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES)       | NO    |
| If cooler temperature is out of co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ompliance fill out form 00070F | F                                                                              | Temp Gun ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #: 0005    | 206   |
| ooler Accepted by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM                             | Date: 7/28/2017 Tim                                                            | ie: 15:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Complete custody for           | ms and attach all shipping documents                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| og-In Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Mas a tomas sture blank includ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Was a temperature blank includ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
| What kind of packing material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | Map Wet Ice Gel Packs Baggies Foan                                             | n Block Paper C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other:     | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                | BNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                | Ч.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | umber of containers received?                                                  | - il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES        | NO    |
| Did all bottle labels and tags agr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | are with custody papara?       | uniber of containers received?                                                 | B.H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | n preservation sheet, excluding VOCs)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YES        | NO    |
| Nere all VOC vials free of air bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hhles?                         | r preservation sneet, excluding VOCs)                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                | (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YES        | NO    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                | (internet in the second | YES        | NO    |
| and the defense of the second s |                                |                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |       |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date/ Hille                    | Equipment:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Split by:  |       |
| amples Logged by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B.H. D                         | Date: 7/31/17 Time:                                                            | 10:31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | ager of discrepancies or concerns **                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Sample ID on Bottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample ID on COC               | Sample ID on Bottle                                                            | Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | le ID on C | 00    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>N</u>                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Additional Notes, Discrepanci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                            |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Missing one bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | 2                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate: 7/31/17                   |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| BV: BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lee'                           | $3   Small \rightarrow "Sm" (< 7 mm)$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| By: BA Da<br>Small Air Bubbles<br>- 2mm 2-4 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LANCE MA LOULES                | Small $\rightarrow$ "sm" (<2 mm)<br>Peabubbles $\rightarrow$ "nb" (2 to <4 mm) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |       |
| Small Air Bubbles Peabubb<br>2mm 2-4 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | Peabubbles → "pb" (2 to <4 mm)                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       |
| Small Air Bubbles Peabubb<br>2mm 2-4 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |       |

Revision 014



WORK ORDER

# 17G0339

| Client: Dalton, Olmsted & F<br>Project: POT-Former Dunlag | 8                     |           | Project Manager:<br>Project Number: | : Amanda Volgardsen |  |
|-----------------------------------------------------------|-----------------------|-----------|-------------------------------------|---------------------|--|
| Analysis                                                  | Due                   | ТАТ       | Expires                             | Comments            |  |
| 17G0339-07 DUPL-1 [Wate<br>Time (US &                     | r  Sampled 28-Jul-201 | 7 14:05 ( | (GMT-08:00) Pacific                 |                     |  |
| Met Diss 200.8 - As UCT                                   | 14-Aug-2017 15:00     | 10        | 24-Jan-2018 14:05                   |                     |  |

# **Preservation Confirmation**

| Container ID | Container Type                 | рН      |
|--------------|--------------------------------|---------|
| 17G0339-01 A | HDPE NM, 500 mL, 1:1 HNO3      | L2 Pass |
| 17G0339-02 A | HDPE NM, 500 mL, 1:1 HNO3      |         |
| 17G0339-03 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) |         |
| 17G0339-04 A | HDPE NM, 500 mL, 1:1 HNO3      |         |
| 17G0339-05 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) |         |
| 17G0339-06 A | HDPE NM, 500 mL, 1:1 HNO3      |         |
| 17G0339-07 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) |         |
| 17G0339-08 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) |         |
|              |                                |         |

B.H. Preservation Confirmed By

<u>7/3//17</u> Date

Reviewed By

7/31/1-Date

Page 2 of 2

Project: POT-Former Dunlap Mound

Project Number: POT-00 Project Manager: Dave Cooper **Reported:** 10-Aug-2017 17:41

## ANALYTICAL REPORT FOR SAMPLES

|           |               | M / :  |                   |                   |
|-----------|---------------|--------|-------------------|-------------------|
| Sample ID | Laboratory ID | Matrix | Date Sampled      | Date Received     |
| MW-1 (R)  | 17G0339-01    | Water  | 28-Jul-2017 14:00 | 28-Jul-2017 15:50 |
| MW-E (R)  | 17G0339-02    | Water  | 28-Jul-2017 13:30 | 28-Jul-2017 15:50 |
| MW-E (R)  | 17G0339-03    | Water  | 28-Jul-2017 13:30 | 28-Jul-2017 15:50 |
| MW-H (R)  | 17G0339-04    | Water  | 28-Jul-2017 14:30 | 28-Jul-2017 15:50 |
| MW-H (R)  | 17G0339-05    | Water  | 28-Jul-2017 14:30 | 28-Jul-2017 15:50 |
| DUPL-1    | 17G0339-06    | Water  | 28-Jul-2017 14:05 | 28-Jul-2017 15:50 |
| DUPL-1    | 17G0339-07    | Water  | 28-Jul-2017 14:05 | 28-Jul-2017 15:50 |
| MW-1 (R)  | 17G0339-08    | Water  | 28-Jul-2017 14:00 | 28-Jul-2017 15:50 |



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

## **Case Narrative**

#### Sample receipt

Samples as listed on the preceding page were received July 28, 2017 under ARI workorder 17G0339. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Total and Dissolved Arsenic - EPA Method 200.8

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

A total matrix spike and duplicate were prepared in conjunction with sample MW-1(R). A dissolved matrix spike and duplicate were prepared in conjunction with sample MW-H(R). The matrix spike percent recoveries and duplicate RPD were within QC limits.

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# MW-1 (R)

## 17G0339-01 (Water)

| Metals and Metallic ( | Compounds                                                                                 |                                                                       |                    |        |             |                |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------------|----------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                    | S      | ampled: 07/ | /28/2017 14:00 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                    | Ana    | lyzed: 01-A | ug-2017 15:44  |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0002<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |             |                |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units       | Notes          |
| Arsenic               |                                                                                           | 7440-38-2 1                                                           | 0.200              | 1.46   | ug/L        |                |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

MW-E (R)

17G0339-02 (Water)

| Metals and Metallic ( | Compounds                                                                                 |                                                                       |                    |        |             |               |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                    | S      | ampled: 07/ | 28/2017 13:30 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                    | Ana    | lyzed: 01-A | ug-2017 18:02 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0002<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |             |               |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units       | Notes         |
| Arsenic               |                                                                                           | 7440-38-2 1                                                           | 0.200              | 14.4   | ug/L        |               |



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

MW-E (R)

17G0339-03 (Water)

| Metals and Metallic C | Compounds (dissolved)                                                                     |                                                            |          |                    |        |              |               |
|-----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|----------|--------------------|--------|--------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                            |          |                    | S      | ampled: 07/2 | 28/2017 13:30 |
| Instrument: ICPMS2    |                                                                                           |                                                            |          |                    | Ana    | lyzed: 08-A  | ug-2017 17:30 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0001<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matri<br>Sample Size: 2<br>Final Volume: | 5 mL     |                    |        |              |               |
| Analyte               |                                                                                           | CAS Number                                                 | Dilution | Reporting<br>Limit | Result | Units        | Notes         |
| Arsenic, Dissolved    |                                                                                           | 7440-38-2                                                  | 1        | 0.200              | 30.3   | ug/L         |               |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# MW-H (R)

## 17G0339-04 (Water)

| Metals and Metallic ( | Compounds                                                                                 |                                                                       |                    |        |             |               |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                    | S      | ampled: 07/ | 28/2017 14:30 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                    | Ana    | lyzed: 01-A | ug-2017 17:58 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0002<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |             |               |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units       | Notes         |
| Arsenic               |                                                                                           | 7440-38-2 5                                                           | 1.00               | 81.6   | ug/L        | D             |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# MW-H (R)

## 17G0339-05 (Water)

| Metals and Metallic ( | Compounds (dissolved)                                                                     |                                                                       |                    |        |             |               |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                    | S      | ampled: 07/ | 28/2017 14:30 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                    | Ana    | lyzed: 08-A | ug-2017 17:49 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0001<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |             |               |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units       | Notes         |
| Arsenic, Dissolved    |                                                                                           | 7440-38-2 5                                                           | 1.00               | 90.2   | ug/L        | D             |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# DUPL-1

## 17G0339-06 (Water)

| Metals and Metallic ( | Compounds                                                                                 |                                                                       |                    |        |             |               |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|--------|-------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                    | S      | ampled: 07/ | 28/2017 14:05 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                    | Ana    | lyzed: 01-A | ug-2017 18:07 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0002<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                    |        |             |               |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>Limit | Result | Units       | Notes         |
| Arsenic               |                                                                                           | 7440-38-2 1                                                           | 0.200              | 2.94   | ug/L        |               |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# DUPL-1

## 17G0339-07 (Water)

| Metals and Metallic C | Compounds (dissolved)                                                                     |                                                                       |                      |        |             |               |
|-----------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|--------|-------------|---------------|
| Method: EPA 200.8 UCT | -KED                                                                                      |                                                                       |                      | S      | ampled: 07/ | 28/2017 14:05 |
| Instrument: ICPMS2    |                                                                                           |                                                                       |                      | Ana    | lyzed: 09-A | ug-2017 15:31 |
| Sample Preparation:   | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0001<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mL<br>Final Volume: 25 mL |                      |        |             |               |
| Analyte               |                                                                                           | CAS Number Dilution                                                   | Reporting<br>1 Limit | Result | Units       | Notes         |
| Arsenic, Dissolved    |                                                                                           | 7440-38-2 2                                                           | 0.400                | 4.41   | ug/L        | D             |

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

# MW-1 (R)

17G0339-08 (Water)

| Metals and Metallic (     | Compounds (dissolved)                                                                     |                                                                      |       |                    |        |              |               |
|---------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|--------------------|--------|--------------|---------------|
| Method: EPA 200.8 UCT-KED |                                                                                           |                                                                      |       |                    | S      | ampled: 07/2 | 28/2017 14:00 |
| Instrument: ICPMS2        |                                                                                           |                                                                      |       |                    | Anal   | yzed: 08-A   | ug-2017 17:39 |
| Sample Preparation:       | Preparation Method: REN EPA 600/4-<br>Preparation Batch: BFH0001<br>Prepared: 01-Aug-2017 | 79-020 4.1.4 HNO3 matrix<br>Sample Size: 25 mI<br>Final Volume: 25 m |       |                    |        |              |               |
| Analyte                   |                                                                                           | CAS Number Dil                                                       | ution | Reporting<br>Limit | Result | Units        | Notes         |
| Arsenic, Dissolved        |                                                                                           | 7440-38-2                                                            | 1     | 0.200              | 4.03   | ug/L         |               |



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

#### Metals and Metallic Compounds - Quality Control

#### Batch BFH0002 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: CC

| QC Sample/Analyte         | Isotope | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------|---------|---------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Blank (BFH0002-BLK1)      |         |         |                    | Prepa | ared: 01-Aug   | g-2017 Ana       | alyzed: 01- | Aug-2017 1     | 4:33 |              |       |
| Arsenic                   | 75a     | ND      | 0.200              | ug/L  |                |                  |             |                |      |              | U     |
| LCS (BFH0002-BS1)         |         |         |                    | Prepa | ared: 01-Aug   | g-2017 Ana       | alyzed: 01- | Aug-2017 1     | 4:38 |              |       |
| Arsenic                   | 75a     | 25.8    | 0.200              | ug/L  | 25.0           |                  | 103         | 80-120         |      |              |       |
| Duplicate (BFH0002-DUP1)  |         | Source: | 17G0339-01         | Prepa | ared: 01-Aug   | g-2017 Ana       | alyzed: 01- | Aug-2017 1     | 5:39 |              |       |
| Arsenic                   | 75a     | 1.52    | 0.200              | ug/L  |                | 1.46             |             |                | 4.24 | 20           |       |
| Matrix Spike (BFH0002-MS1 | )       | Source: | 17G0339-01         | Prepa | ared: 01-Aug   | g-2017 Ana       | alyzed: 01- | Aug-2017 1     | 5:49 |              |       |
| Arsenic                   | 75a     | 27.4    | 0.200              | ug/L  | 25.0           | 1.46             | 104         | 75-125         |      |              |       |

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BFH0001 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: TCH

| QC Sample/Analyte         | Isotope | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------|---------|---------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Blank (BFH0001-BLK1)      |         |         |                    | Prepa | ared: 01-Aug   | g-2017 An        | alyzed: 08- | Aug-2017 1     | 7:25 |              |       |
| Arsenic, Dissolved        | 75a     | ND      | 0.200              | ug/L  |                |                  |             |                |      |              | U     |
| LCS (BFH0001-BS1)         |         |         |                    | Prepa | ared: 01-Aug   | g-2017 An        | alyzed: 08- | Aug-2017 1     | 7:59 |              |       |
| Arsenic, Dissolved        | 75a     | 25.5    | 0.200              | ug/L  | 25.0           |                  | 102         | 80-120         |      |              |       |
| Duplicate (BFH0001-DUP1)  |         | Source: | : 17G0339-05       | Prepa | ared: 01-Aug   | g-2017 An        | alyzed: 08- | Aug-2017 1     | 7:44 |              |       |
| Arsenic, Dissolved        | 75a     | 85.8    | 1.00               | ug/L  |                | 90.2             |             |                | 5.09 | 20           | D     |
| Matrix Spike (BFH0001-MS1 | )       | Source: | 17G0339-05         | Prepa | ared: 01-Aug   | g-2017 An        | alyzed: 08- | Aug-2017 1     | 7:54 |              |       |
| Arsenic, Dissolved        | 75a     | 111     | 1.00               | ug/L  | 25.0           | 90.2             | 82.7        | 75-125         |      |              | D     |

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.



## Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

**Reported:** 10-Aug-2017 17:41

## Certified Analyses included in this Report

| Analyte      | Certifications                                           |                   |                                     |
|--------------|----------------------------------------------------------|-------------------|-------------------------------------|
| EPA 200.8 UC | T-KED in Water                                           |                   |                                     |
| Arsenic-75a  | NELAP,WADOE,WA-DW,D                                      | oD-ELAP           |                                     |
| Arsenic-75a  | NELAP,WADOE,WA-DW,D                                      | oD-ELAP           |                                     |
|              |                                                          |                   |                                     |
| Code         | Description                                              | Number            | Expires                             |
| Code<br>ADEC | Description<br>Alaska Dept of Environmental Conservation | Number<br>UST-033 |                                     |
|              | 1                                                        |                   | Expires<br>09/01/2017<br>02/28/2018 |

| CALAP    | California Department of Public Health CAELAP      | 2748     | 02/28/2018 |
|----------|----------------------------------------------------|----------|------------|
| DoD-ELAP | DoD-Environmental Laboratory Accreditation Program | 66169    | 02/07/2019 |
| NELAP    | ORELAP - Oregon Laboratory Accreditation Program   | WA100006 | 05/11/2018 |
| WADOE    | WA Dept of Ecology                                 | C558     | 06/30/2018 |
| WA-DW    | Ecology - Drinking Water                           | C558     | 06/30/2018 |

Analytical Resources, Inc.



# **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland WA, 98033-4400

Project: POT-Former Dunlap Mound Project Number: POT-00 Project Manager: Dave Cooper

Reported: 10-Aug-2017 17:41

#### **Notes and Definitions**

| This analyte is not detected above the applicable reporting or detection limit.      |
|--------------------------------------------------------------------------------------|
| Estimated concentration value detected below the reporting limit.                    |
| The reported value is from a dilution                                                |
| Analyte DETECTED                                                                     |
| Analyte NOT DETECTED at or above the reporting limit                                 |
| Not Reported                                                                         |
| Sample results reported on a dry weight basis                                        |
| Relative Percent Difference                                                          |
| Indicates this result was quantified on the second column on a dual column analysis. |
|                                                                                      |



10 November 2017

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland, WA 98033-4400

RE: POT-Former Dunlap Mound

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 17J0522 Associated SDG ID(s) N/A

\_\_\_\_\_

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in itrentirety.



| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>W</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e contra |
| later.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Record & Laboratory Analysis Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1750522                                           |                  |                        | Norma  | mal                | Date.              | lo /26/17      | 7                  |         |                              | Analytical Chemists and Consultants                    |
|---------------------------------------------------|------------------|------------------------|--------|--------------------|--------------------|----------------|--------------------|---------|------------------------------|--------------------------------------------------------|
| ARI Client Company:<br>Dalton Olmsted & Fuglevand |                  | Phone:<br>206-660-3466 | 166    |                    | Page:              | 1              | of ]               | Þ       |                              | 4611 South 134th Place, Suite 100<br>Tukwila, WA 98168 |
| Client Contact:<br>Dave Cooper                    |                  |                        |        |                    | No. of<br>Coolers: |                | Cooler Z X         | Do      |                              | 206-695-6200 206-695-6201 (fax)                        |
| Client Project Name:                              |                  |                        |        |                    |                    |                | Analysis Requested | tuested | -                            | Notes/Comments                                         |
| Former Dunlap Mound                               | Samplers:        |                        | 5      |                    |                    | - slej         |                    |         |                              |                                                        |
|                                                   | DG Cooper        | 2 herry                | 4      | 2. Baning          | - slete            | iəM b          |                    |         |                              |                                                        |
| Sample ID                                         | Date             | Time                   | Matrix | No. Containers     | etal MetoT<br>As   | evlozziD<br>sA |                    |         |                              |                                                        |
| Gw MW-1(R)                                        | F1/26/17         | 10:15                  | water  | 2                  | x.                 | X              |                    |         |                              | CLOW/LIW                                               |
| Gu MW-E(R)                                        | (                | 10:45                  | water  | 2                  |                    |                |                    |         |                              | a.                                                     |
| Gu MW-H(R)                                        |                  | 02:6                   | water  | 2                  |                    |                |                    |         |                              |                                                        |
| GW, DUPL-1                                        | Ð                | 9:30                   | water  | 2                  | Ð                  | -              |                    |         |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    |         |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    | +       |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    |         |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    |         |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    |         |                              |                                                        |
|                                                   |                  |                        |        |                    |                    |                |                    |         |                              |                                                        |
| Comments/Special Instructions                     | Relinquished by: | A V                    |        | Received by:       | 1                  | 11 hor         | Relinquished by:   | by      | Received by:<br>(Simplified) |                                                        |
| Is field                                          | Printed Name:    | ~ ~ ~                  |        | Printed Name:      | 1 all              | 12 11          | Printed Name       |         | Printed Name:                |                                                        |
| tiltered 0.45um                                   | Company:         | C. Mars                |        | Company<br>Company | 444                |                | Company:           |         | Company:                     |                                                        |
|                                                   | Date & Time:     |                        | וחיוכ  | Date & Time;       |                    | 2141           | Date & Time:       |         | Date & Time:                 |                                                        |

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client. Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.



WORK ORDER

|                                                                             |                       | 1                 | 7J0522                                |                                              |
|-----------------------------------------------------------------------------|-----------------------|-------------------|---------------------------------------|----------------------------------------------|
| Client: Dalton, Olmsted & I<br>Project: POT-Former Dunlaj                   | 0                     |                   |                                       | Amanda Volgardsen<br>POT-Former Dunlap Mound |
| Analysis                                                                    | Due                   | TAT               | Expires                               | Comments                                     |
| 17J0522-06 GW MW-H(R)<br>Pacific Time (US & Canada)                         |                       | et-2017           | 09:20 (GMT-08:00)                     |                                              |
| Met Diss 200.8 - As UCT                                                     | 09-Nov-2017 15:00     | 10                | 24-Apr-2018 09:20                     |                                              |
| Filter 0.45 micron                                                          | 09-Nov-2017 15:00     | 10                | 27-Oct-2017 14:15                     |                                              |
| 17J0522-07 GW DUPL-1 [V<br>Pacific Time (US & Canada)<br>Met 200.8 - As UCT |                       | - <b>2017 0</b> 9 | 9:30 (GMT-08:00)<br>24-Apr-2018 09:30 |                                              |
| Met 200.8 - AS 0C1                                                          | 09-1107-2017 13.00    | 10                | 24-Apt-2018 09:30                     |                                              |
|                                                                             | Vaterl Sampled 26-Oct | -2017 09          | 9:30 (GMT-08:00)                      |                                              |
| 17J0522-08 GW DUPL-1 [W<br>Pacific Time (US & Canada)                       |                       |                   |                                       |                                              |
|                                                                             |                       | 10                | 24-Apr-2018 09:30                     |                                              |

# **Preservation Confirmation**

| Container ID | Container Type                 | рН  |       |
|--------------|--------------------------------|-----|-------|
| 17J0522-01 A | HDPE NM, 500 mL, 1:1 HNO3      | 67  | pMSS  |
| 17J0522-02 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 52  | p0155 |
| 17J0522-03 A | HDPE NM, 500 mL, 1:1 HNO3      | 63  | pass  |
| 17J0522-04 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 52  | 10145 |
| 17J0522-05 A | HDPE NM, 500 mL, 1:1 HNO3      | 52  | peres |
| 17J0522-06 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | < 2 | pass  |
| 17J0522-07 A | HDPE NM, 500 mL, 1:1 HNO3      | 52  | NASC. |
| 17J0522-08 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 52  | 10,99 |

Preservation Confirmed By

BF

10/27/17\_ Date

| Analytical Resources, Incorporated<br>Analytical Chemists and Consultants Cooler Receipt                                                                                   | Form                       |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------|
| ARI Client: <u>Dalton Olmsted 4 Gyglerand</u><br>COC No(s): NA Delivered by: Fed-Ex UPS Courier Hand                                                                       | Moun                       | cr Dunlay<br>C |
| Assigned ARI Job No: TJ0522 Tracking No: Preliminary Examination Phase:                                                                                                    |                            | NA             |
| Were intact, properly signed and dated custody seals attached to the outside of to cooler?<br>Were custody papers included with the cooler?                                | YES<br>YES<br>YES          | NO<br>NO       |
| Time:       1717         If cooler temperature is out of compliance fill out form 00070F       Temp Gu         Cooler Accepted by:       584    Date: 10/26/2017 Time: 140 | Jn ID#: <u>100</u> _<br>1√ | 5206           |
| Complete custody forms and attach all shipping documents                                                                                                                   | -                          |                |

#### Log-In Phase:

| Was a temperature blank included in the cooler?                                                       | YES       | NO   |
|-------------------------------------------------------------------------------------------------------|-----------|------|
| What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Baggies Foam Block Paper        |           | 0.9  |
| Was sufficient ice used (if appropriate)?                                                             | YES       | (NO) |
| Were all bottles sealed in individual plastic bags?                                                   | YES       | (NO) |
| Did all bottles arrive in good condition (unbroken)?                                                  | TES       | NO   |
| Were all bottle labels complete and legible?                                                          | (YES)     | NO   |
| Did the number of containers listed on COC match with the number of containers received?              | TES       | NO   |
| Did all bottle labels and tags agree with custody papers?                                             | YES       | NO   |
| Were all bottles used correct for the requested analyses?                                             | -         |      |
| Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA | (VES)     | NO   |
| Were all VOC vials free of air hubbles?                                                               | VES       | NO   |
| Was sufficient amount of sample sent in each bottle?                                                  | YES       | NO   |
|                                                                                                       | YES       | NO   |
| Was Sample Split by ARI : YES Date/Time: Equipment:                                                   | Split by: |      |

Samples Logged by:

BI=\_\_\_\_\_Date: \_\_\_\_\_O/27/17\_\_\_\_\_Time: \*\* Notify Project Manager of discrepancies or concerns \*\*

| Sample ID on Bottle                     | Sample ID on COC         | Sample ID on Bottle                        | Sample ID on COC |
|-----------------------------------------|--------------------------|--------------------------------------------|------------------|
| MWH-I(R)                                | GWMW-HCF                 | 2)                                         |                  |
|                                         | 1                        | <i>y</i>                                   |                  |
| 1                                       |                          |                                            |                  |
| dditional Notes, Discrepanc             | ies, & Resolutions:      |                                            |                  |
|                                         |                          |                                            |                  |
| - 10<br>                                |                          |                                            |                  |
| 21                                      | 21-21                    |                                            |                  |
| sy: BF C                                | Date: 10/27/17           |                                            |                  |
| Small Air Bubbles Peabubbles'           |                          | Emall NH 11 ( 12 )                         |                  |
|                                         | ables' LARGE Air Bubbles | Small → "sm" (<2 mm)                       |                  |
| Small Air Bubbles Pesbut<br>- 2mm 2-4 n |                          | Peabubbles $\rightarrow$ "pb" (2 to <4 mm) |                  |
|                                         |                          |                                            | ÷                |

0016F 3/2/10

Cooler Receipt Form

0.1

Revision 014

155

Time:



Analytical Resources, Incorporated Analytical Chemists and Consultants

# Cooler Temperature Compliance Form

| Cooler#: Temp Sample ID                   | erature(°C): 3.2<br>Bottle Count |                                       |
|-------------------------------------------|----------------------------------|---------------------------------------|
| d 1. 1. 1. 1. 1.                          | Dottie Count                     | Bottle Type                           |
| Sample recieved above                     | 600                              |                                       |
| any a recorde arous                       |                                  | *                                     |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  | · · ·                                 |
|                                           |                                  |                                       |
|                                           | -                                |                                       |
| -                                         |                                  |                                       |
|                                           |                                  |                                       |
| -                                         |                                  | · ·                                   |
| Cooler#: Temp                             |                                  |                                       |
| Sample ID                                 | Bottle Count                     | Bottle Type                           |
|                                           | x - 40                           |                                       |
| e *                                       |                                  |                                       |
|                                           |                                  |                                       |
| -                                         |                                  |                                       |
|                                           |                                  |                                       |
|                                           | -                                |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
| Cooler#: Tempe                            | ( ( )                            | 1                                     |
| Sample ID                                 | erature(°C):                     | 1 m //1 m                             |
|                                           | Bottle Count                     | Bottle Type                           |
|                                           | 4                                |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
|                                           | 1                                |                                       |
| 6                                         |                                  |                                       |
|                                           |                                  |                                       |
|                                           |                                  |                                       |
| Cooler#: Temps                            | erature(°C):                     |                                       |
| Sample ID                                 | Bottle Count                     | Bottle Type                           |
|                                           |                                  | I morrie IAhe                         |
|                                           |                                  |                                       |
|                                           | 1                                |                                       |
| ar an | 1                                | 8                                     |
|                                           |                                  |                                       |
|                                           | :                                |                                       |
|                                           | ÷                                |                                       |
|                                           | 1                                |                                       |
|                                           |                                  |                                       |
|                                           |                                  | · · · · · · · · · · · · · · · · · · · |
|                                           |                                  |                                       |
| completed by:JBW                          | 1 1                              | e: 107612017 Time: 1917               |

1

Cooler Temperature Compliance Form



Project: POT-Former Dunlap Mound

Project Number: POT-002 Project Manager: Dave Cooper **Reported:** 10-Nov-2017 17:01

## ANALYTICAL REPORT FOR SAMPLES

| Sample ID  | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|------------|---------------|--------|-------------------|-------------------|
| GW MW-1(R) | 17J0522-01    | Water  | 26-Oct-2017 10:15 | 26-Oct-2017 14:15 |
| GW MW-1(R) | 17J0522-02    | Water  | 26-Oct-2017 10:15 | 26-Oct-2017 14:15 |
| GW MW-E(R) | 17J0522-03    | Water  | 26-Oct-2017 10:45 | 26-Oct-2017 14:15 |
| GW MW-E(R) | 17J0522-04    | Water  | 26-Oct-2017 10:45 | 26-Oct-2017 14:15 |
| GW MW-H(R) | 17J0522-05    | Water  | 26-Oct-2017 09:20 | 26-Oct-2017 14:15 |
| GW MW-H(R) | 17J0522-06    | Water  | 26-Oct-2017 09:20 | 26-Oct-2017 14:15 |
| GW DUPL-1  | 17J0522-07    | Water  | 26-Oct-2017 09:30 | 26-Oct-2017 14:15 |
| GW DUPL-1  | 17J0522-08    | Water  | 26-Oct-2017 09:30 | 26-Oct-2017 14:15 |
|            |               |        |                   |                   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 10-Nov-2017 17:01

## **Case Narrative**

#### Sample receipt

Samples as listed on the preceding page were received October 26, 2017 under ARI workorder 17J0522. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Total and Dissolved Arsenic - EPA Method 200.8

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

There were no target compounds detected in the method blanks.

The LCS percent recoveries were within control limits.

A total matrix spike and duplicate were prepared in conjunction with sample GW MW-1(R). The matrix spike percent recovery and duplicate RPD were within QC limits.

A dissolved duplicate was prepared in conjunction with sample GW MW-1(R). The duplicate RPD was within QC limits.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

10-Nov-2017 17:01

| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |
|----------------------------------|----------------------------------|
| 10827 NE 68th Street Suite B     | Project Number: POT-002          |
| Kirkland WA, 98033-4400          | Project Manager: Dave Cooper     |
|                                  | GW MW-1(R)                       |
|                                  |                                  |
|                                  | 17J0522-01 (Water)               |

# Metals and Metallic Compounds

Method: EPA 200.8 UCT-KED Instrument: ICPMS2 Sampled: 10/26/2017 10:15 Analyzed: 09-Nov-2017 20:28

| Sample Preparation: | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matri | X        |           |        |       |       |
|---------------------|------------------------------------|-------------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0045         | Sample Size: 2          | 5 mL     |           |        |       |       |
|                     | Prepared: 02-Nov-2017              | Final Volume:           | 25 mL    |           |        |       |       |
|                     |                                    |                         |          | Reporting |        |       |       |
| Analyte             |                                    | CAS Number              | Dilution | Limit     | Result | Units | Notes |
| Arsenic             |                                    | 7440-38-2               | 1        | 0.200     | 2.32   | ug/L  |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

10-Nov-2017 17:01

Dalton, Olmsted & Fuglevand, Inc Project: POT-Former Dunlap Mound
10827 NE 68th Street Suite B Project Number: POT-002
Kirkland WA, 98033-4400 Project Manager: Dave Cooper
GW MW-1(R)
17J0522-02 (Water)

## Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KED Instrument: ICPMS2 Sampled: 10/26/2017 10:15 Analyzed: 07-Nov-2017 22:11

| Sample Preparation: | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matri | x        |           |        |       |       |
|---------------------|------------------------------------|-------------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0037         | Sample Size: 2          | 25 mL    |           |        |       |       |
|                     | Prepared: 02-Nov-2017              | Final Volume:           | 25 mL    |           |        |       |       |
|                     |                                    |                         |          | Reporting |        |       |       |
| Analyte             |                                    | CAS Number              | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved  |                                    | 7440-38-2               | 1        | 0.200     | 0.825  | ug/L  |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Analytical Report**

| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |                             |
|----------------------------------|----------------------------------|-----------------------------|
| 10827 NE 68th Street Suite B     | Project Number: POT-002          | Reported:                   |
| Kirkland WA, 98033-4400          | Project Manager: Dave Cooper     | 10-Nov-2017 17:01           |
|                                  | GW MW-E(R)                       |                             |
|                                  | 17J0522-03 (Water)               |                             |
|                                  |                                  |                             |
| Metals and Metallic Compounds    |                                  |                             |
| Method: EPA 200.8 UCT-KED        |                                  | Sampled: 10/26/2017 10:45   |
| Instrument: ICPMS2               |                                  | Analyzed: 09-Nov-2017 20:08 |
|                                  |                                  |                             |

| Preparation Method: REN EPA 600/4-7 | 79-020 4.1.4 HNO3 matri    | ix                                                                                             |                                                                  |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                    |
|-------------------------------------|----------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preparation Batch: BFK0045          | Sample Size: 2             | 25 mL                                                                                          |                                                                  |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                    |
| Prepared: 02-Nov-2017               | Final Volume:              | 25 mL                                                                                          |                                                                  |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                    |
|                                     |                            |                                                                                                | Reporting                                                        |                                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                    |
|                                     | CAS Number                 | Dilution                                                                                       | Limit                                                            | Result                                                                                                                                       | Units                                                                                                                                        | Notes                                                                                                                                                                              |
|                                     | 7440-38-2                  | 10                                                                                             | 2.00                                                             | 26.1                                                                                                                                         | ug/L                                                                                                                                         | D                                                                                                                                                                                  |
|                                     | Preparation Batch: BFK0045 | Preparation Batch: BFK0045 Sample Size: 2<br>Prepared: 02-Nov-2017 Final Volume:<br>CAS Number | Prepared: 02-Nov-2017 Final Volume: 25 mL<br>CAS Number Dilution | Preparation Batch: BFK0045     Sample Size: 25 mL       Prepared: 02-Nov-2017     Final Volume: 25 mL       Reporting<br>CAS Number Dilution | Preparation Batch: BFK0045     Sample Size: 25 mL       Prepared: 02-Nov-2017     Final Volume: 25 mL       Reporting<br>CAS Number Dilution | Preparation Batch: BFK0045     Sample Size: 25 mL       Prepared: 02-Nov-2017     Final Volume: 25 mL       Reporting       CAS Number     Dilution     Limit     Result     Units |

| Analytical Resources, In | c. |
|--------------------------|----|
|--------------------------|----|

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

10-Nov-2017 17:01

| Dalton, Olmsted & Fuglevand, Inc          | Project: POT-Former Dunlap Mound |  |
|-------------------------------------------|----------------------------------|--|
| 10827 NE 68th Street Suite B              | Project Number: POT-002          |  |
| Kirkland WA, 98033-4400                   | Project Manager: Dave Cooper     |  |
|                                           | GW MW-E(R)                       |  |
|                                           | 17J0522-04 (Water)               |  |
|                                           |                                  |  |
| Metals and Metallic Compounds (dissolved) |                                  |  |

#### **Metals**

Method: EPA 200.8 UCT-KED Instrument: ICPMS2

Sampled: 10/26/2017 10:45 Analyzed: 07-Nov-2017 21:51

| Sample Preparation: | Preparation Method: REN EPA 600/4-7 | 79-020 4.1.4 HNO3 matrix |          |           |        |       |       |
|---------------------|-------------------------------------|--------------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0037          | Sample Size: 25          | mL       |           |        |       |       |
|                     | Prepared: 02-Nov-2017               | Final Volume: 25         | 5 mL     |           |        |       |       |
|                     |                                     |                          |          | Reporting |        |       |       |
| Analyte             |                                     | CAS Number               | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved  |                                     | 7440-38-2                | 1        | 0.200     | 25.1   | ug/L  |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |  |  |
|----------------------------------|----------------------------------|--|--|
| 10827 NE 68th Street Suite B     | Project Number: POT-002          |  |  |
| Kirkland WA, 98033-4400          | Project Manager: Dave Cooper     |  |  |
|                                  | GW MW-H(R)                       |  |  |
|                                  | GW MW-H(R)                       |  |  |
|                                  | GW MW-H(R)<br>17J0522-05 (Water) |  |  |

## **Metals and Metallic Compounds**

Method: EPA 200.8 UCT-KED Instrument: ICPMS2

**Reported:** 10-Nov-2017 17:01

Sampled: 10/26/2017 09:20 Analyzed: 09-Nov-2017 20:13

| Sample Preparation: | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matri | ix       |           |        |       |       |
|---------------------|------------------------------------|-------------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0045         | Sample Size: 2          | 25 mL    |           |        |       |       |
|                     | Prepared: 02-Nov-2017              | Final Volume:           | 25 mL    |           |        |       |       |
|                     |                                    |                         |          | Reporting |        |       |       |
| Analyte             |                                    | CAS Number              | Dilution | Limit     | Result | Units | Notes |
| Arsenic             |                                    | 7440-38-2               | 10       | 2.00      | 60.3   | ug/L  | D     |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

10-Nov-2017 17:01

|                                  | GW MW-H(R)<br>17J0522-06 (Water) |
|----------------------------------|----------------------------------|
| Kirkland WA, 98033-4400          | Project Manager: Dave Cooper     |
| 10827 NE 68th Street Suite B     | Project Number: POT-002          |
| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |

#### Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KED Instrument: ICPMS2 Sampled: 10/26/2017 09:20 Analyzed: 08-Nov-2017 22:26

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                 |          |           |        |       |       |
|---------------------|------------------------------------------------------------|-----------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0037                                 | Sample Size: 25 |          |           |        |       |       |
|                     | Prepared: 02-Nov-2017                                      | Final Volume: 2 | 25 mL    |           |        |       |       |
|                     |                                                            |                 |          | Reporting |        |       |       |
| Analyte             |                                                            | CAS Number      | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved  |                                                            | 7440-38-2       | 10       | 2.00      | 50.5   | ug/L  | D     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

10-Nov-2017 17:01

| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |
|----------------------------------|----------------------------------|
| 10827 NE 68th Street Suite B     | Project Number: POT-002          |
| Kirkland WA, 98033-4400          | Project Manager: Dave Cooper     |
|                                  | GW DUPL-1                        |
|                                  | 17J0522-07 (Water)               |
|                                  |                                  |
| Metals and Metallic Compounds    |                                  |
| Method: EPA 200.8 UCT-KED        |                                  |

Method: EPA 200.8 U Instrument: ICPMS2 Sampled: 10/26/2017 09:30 Analyzed: 09-Nov-2017 20:18

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                    |          |           |        |       |       |
|---------------------|------------------------------------------------------------|--------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0045                                 | Sample Size: 25 mL |          |           |        |       |       |
|                     | Prepared: 02-Nov-2017                                      | Final Volume: 2    | 25 mL    |           |        |       |       |
|                     |                                                            |                    |          | Reporting |        |       |       |
| Analyte             |                                                            | CAS Number         | Dilution | Limit     | Result | Units | Notes |
| Arsenic             |                                                            | 7440-38-2          | 10       | 2.00      | 60.3   | ug/L  | D     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Dalton, Olmsted & Fuglevand, Inc

| 10827 NE 68th Street Suite B              | Project Number: POT-002      | Reported:                   |
|-------------------------------------------|------------------------------|-----------------------------|
| Kirkland WA, 98033-4400                   | Project Manager: Dave Cooper | 10-Nov-2017 17:01           |
|                                           | GW DUPL-1                    |                             |
|                                           | 17J0522-08 (Water)           |                             |
|                                           |                              |                             |
| Metals and Metallic Compounds (dissolved) |                              |                             |
| Method: EPA 200.8 UCT-KED                 |                              | Sampled: 10/26/2017 09:30   |
| Instrument: ICPMS2                        |                              | Analyzed: 08-Nov-2017 22:31 |
|                                           |                              |                             |

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                 |          |           |        |       |       |
|---------------------|------------------------------------------------------------|-----------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BFK0037                                 | Sample Size: 25 |          |           |        |       |       |
|                     | Prepared: 02-Nov-2017                                      | Final Volume: 2 | 5 mL     |           |        |       |       |
|                     |                                                            |                 |          | Reporting |        |       |       |
| Analyte             |                                                            | CAS Number      | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved  |                                                            | 7440-38-2       | 10       | 2.00      | 51.7   | ug/L  | D     |

Project: POT-Former Dunlap Mound

| Analytical | Resources, | Inc. |
|------------|------------|------|
|------------|------------|------|

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 10-Nov-2017 17:01

#### Metals and Metallic Compounds - Quality Control

#### Batch BFK0045 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: CC

| QC Sample/Analyte          | Isotope | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|----------------------------|---------|---------|--------------------|-------|----------------|------------------|-------------|----------------|-------|--------------|-------|
| Blank (BFK0045-BLK1)       |         |         |                    | Prepa | ared: 02-Nov   | v-2017 Ana       | alyzed: 09- | Nov-2017 (     | 01:51 |              |       |
| Arsenic                    | 75a     | ND      | 0.200              | ug/L  |                |                  |             |                |       |              | U     |
| LCS (BFK0045-BS1)          |         |         |                    | Prepa | ared: 02-Nov   | v-2017 Ana       | alyzed: 09- | Nov-2017 (     | 02:39 |              |       |
| Arsenic                    | 75a     | 25.0    | 0.200              | ug/L  | 25.0           |                  | 100         | 80-120         |       |              |       |
| Duplicate (BFK0045-DUP2)   |         | Source: | 17J0522-01         | Prepa | ared: 02-Nov   | v-2017 Ana       | alyzed: 09- | Nov-2017 2     | 20:23 |              |       |
| Arsenic                    | 75a     | 2.04    | 0.200              | ug/L  |                | 2.32             |             |                | 12.80 | 20           |       |
| Matrix Spike (BFK0045-MS2) |         | Source: | 17J0522-01         | Prepa | ared: 02-Nov   | v-2017 Ana       | alyzed: 09- | Nov-2017 2     | 20:33 |              |       |
| Arsenic                    | 75a     | 27.7    | 0.200              | ug/L  | 25.0           | 2.32             | 102         | 75-125         |       |              |       |

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 10-Nov-2017 17:01

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BFK0037 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: CC

| QC Sample/Analyte        | Isotope | Result  | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------|---------|---------|--------------------|-------|----------------|------------------|-------------|----------------|------|--------------|-------|
| Blank (BFK0037-BLK1)     |         |         |                    | Prepa | ared: 02-Nov   | -2017 An         | alyzed: 06- | Nov-2017 1     | 8:41 |              |       |
| Arsenic, Dissolved       | 75a     | ND      | 0.200              | ug/L  |                |                  |             |                |      |              | U     |
| LCS (BFK0037-BS1)        |         |         |                    | Prepa | ared: 02-Nov   | -2017 An         | alyzed: 06- | Nov-2017 1     | 9:02 |              |       |
| Arsenic, Dissolved       | 75a     | 28.2    | 0.200              | ug/L  | 25.0           |                  | 113         | 80-120         |      |              |       |
| Duplicate (BFK0037-DUP2) |         | Source: | 17J0522-02         | Prepa | ared: 02-Nov   | -2017 An         | alyzed: 07- | -Nov-2017 2    | 2:06 |              |       |
| Arsenic, Dissolved       | 75a     | 0.890   | 0.200              | ug/L  |                | 0.825            |             |                | 7.58 | 20           |       |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



## Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 10-Nov-2017 17:01

# Certified Analyses included in this Report

| Analyte       | Certifications                                |            |            |
|---------------|-----------------------------------------------|------------|------------|
| EPA 200.8 UC1 | F-KED in Water                                |            |            |
| Arsenic-75a   | NELAP,WADOE,WA-D                              | N,DoD-ELAP |            |
| Arsenic-75a   | NELAP,WADOE,WA-D                              | N,DoD-ELAP |            |
| Code          | Description                                   | Number     | Expires    |
| ADEC          | Alaska Dept of Environmental Conservation     | UST-033    | 09/01/2017 |
| CALAP         | California Department of Public Health CAELAP | 2748       | 02/28/2018 |
|               |                                               |            |            |

| CALAP    | California Department of Public Health CAELAP      | 2748     | 02/28/2018 |
|----------|----------------------------------------------------|----------|------------|
| DoD-ELAP | DoD-Environmental Laboratory Accreditation Program | 66169    | 02/07/2019 |
| NELAP    | ORELAP - Oregon Laboratory Accreditation Program   | WA100006 | 05/11/2018 |
| WADOE    | WA Dept of Ecology                                 | C558     | 06/30/2018 |
| WA-DW    | Ecology - Drinking Water                           | C558     | 06/30/2018 |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 10827 NE 68th Street Suite B Kirkland WA, 98033-4400

Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 10-Nov-2017 17:01

#### **Notes and Definitions**

| J Estimated concentration value detected below the reporting limit.                       |  |
|-------------------------------------------------------------------------------------------|--|
| D The reported value is from a dilution                                                   |  |
| DET Analyte DETECTED                                                                      |  |
| ND Analyte NOT DETECTED at or above the reporting limit                                   |  |
| NR Not Reported                                                                           |  |
| dry Sample results reported on a dry weight basis                                         |  |
| RPD Relative Percent Difference                                                           |  |
| [2C] Indicates this result was quantified on the second column on a dual column analysis. |  |



06 February 2018

Dave Cooper Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue, WA 98007

RE: POT-Former Dunlap Mound

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) 18A0469 Associated SDG ID(s) N/A

\_\_\_\_\_

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in itrentirety.



| Chain of Custody Record & Laboratory Analysis Request |
|-------------------------------------------------------|
| & Laboratory                                          |
| ustody Record &                                       |
| Chain of C                                            |

| Analysis Requested Notes/Comments                                                   |                                             | Samplers:     Samplers:       DG Cooper     L Kerner       DG Cooper     L Kerner       Date     Time       Matrix     No. Containers | 2 × × × | water 2 K | <ul> <li>1035 water 2 次 Ý</li> </ul> |  |  | Relinquished by:<br>(Signature) | Cylle Kry Stephen Kunie Fisiw            | Company: Com<br>DOF         | $\frac{\text{Delg}  \delta  \Gamma \text{Trues}}{O \Gamma^2 S \Gamma^2 O I Q} \frac{\text{Dele}  \delta  \text{Trues}}{\Gamma(\mathcal{O}) \Gamma(\mathcal{O})} \frac{1}{O \mathcal{D}} \frac{1}$ |
|-------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|--------------------------------------|--|--|---------------------------------|------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARI Eliént Company:<br>Dalton Olmsted & Fuglevand<br>Client Contact:<br>Dave Cooper | Client Project Name:<br>Former Dunlap Mound | Client Project #<br>POT-002<br>Sample ID                                                                                              | MW-1(R) | MW-H(R)   | DUPL-1                               |  |  |                                 | * Dissolved metals field Filtered 0.45um | ** All metals by ICP-QQQ-MS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Project: POT-Former Dunlap Mound

Project Number: POT-002 Project Manager: Dave Cooper **Reported:** 06-Feb-2018 12:13

## ANALYTICAL REPORT FOR SAMPLES

| Sample ID | Laboratory ID | Matrix | Date Sampled      | Date Received     |
|-----------|---------------|--------|-------------------|-------------------|
| MW-1(R)   | 18A0469-01    | Water  | 31-Jan-2018 10:50 | 31-Jan-2018 13:27 |
| MW-1(R)   | 18A0469-02    | Water  | 31-Jan-2018 10:50 | 31-Jan-2018 13:27 |
| MW-E(R)   | 18A0469-03    | Water  | 31-Jan-2018 11:45 | 31-Jan-2018 13:27 |
| MW-E(R)   | 18A0469-04    | Water  | 31-Jan-2018 11:45 | 31-Jan-2018 13:27 |
| MW-H(R)   | 18A0469-05    | Water  | 31-Jan-2018 11:10 | 31-Jan-2018 13:27 |
| MW-H(R)   | 18A0469-06    | Water  | 31-Jan-2018 11:10 | 31-Jan-2018 13:27 |
| DUPL-1    | 18A0469-07    | Water  | 31-Jan-2018 10:55 | 31-Jan-2018 13:27 |
| DUPL-1    | 18A0469-08    | Water  | 31-Jan-2018 10:55 | 31-Jan-2018 13:27 |
|           |               |        |                   |                   |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 06-Feb-2018 12:13

**Analytical Report** 

## **Case Narrative**

#### Sample receipt

Samples as listed on the preceding page were received January 31, 2018 under ARI workorder 18A0469. For details regarding sample receipt, please refer to the Cooler Receipt Form.

#### Total and Dissolved Arsenic - EPA Method 200.8

The samples were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

| Analytical | Resources, | Inc |
|------------|------------|-----|
| Anarytical | Resources, | me. |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



WORK ORDER 18A0469

| Client: Dalton, Olmsted & Fuglevand, Inc<br>Project: POT-Former Dunlap Mound |                        |          | Project Manager:<br>Project Number: | Amanda Volgardsen<br>POT-002 |  |
|------------------------------------------------------------------------------|------------------------|----------|-------------------------------------|------------------------------|--|
| Analysis                                                                     | Due                    | TAT      | Expires                             | Comments                     |  |
| 18A0469-06 MW-H(R) [W<br>Pacific Time (US & Canada                           |                        | 018 11:1 | 0 (GMT-08:00)                       |                              |  |
| Met Diss 200.8 - As UCT                                                      | 14-Feb-2018 15:00      | 10       | 30-Jul-2018 11:10                   |                              |  |
| Filter 0.45 micron                                                           | 14-Feb-2018 15:00      | 10       | 01-Feb-2018 13:27                   |                              |  |
| 18A0469-07 DUPL-1  Wat<br>Time (US & Canada)                                 | er] Sampled 31-Jan-201 | 8 10:55  | (GMT-08:00) Pacific                 |                              |  |
| Met 200.8 - As UCT                                                           | 14-Feb-2018 15:00      | 10       | 30-Jul-2018 10:55                   |                              |  |
| 18A0469-08 DUPL-1 [Wat<br>Time (US & Canada)                                 | er  Sampled 31-Jan-201 | 8 10:55  | (GMT-08:00) Pacific                 |                              |  |
| Met Diss 200.8 - As UCT                                                      | 14-Feb-2018 15:00      | 10       | 30-Jul-2018 10:55                   |                              |  |
| Met Diss 200.8 - As UCT                                                      | 14100 2010 15.00       |          |                                     |                              |  |

# **Preservation Confirmation**

| Container ID | Container Type                 | рН      |
|--------------|--------------------------------|---------|
| 18A0469-01 A | HDPE NM, 500 mL, 1:1 HNO3      | 12 0005 |
| 18A0469-02 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 62 pars |
| 18A0469-03 A | HDPE NM, 500 mL, 1:1 HNO3      | L2 pagy |
| 18A0469-04 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | 62 pays |
| 18A0469-05 A | HDPE NM, 500 mL, 1:1 HNO3      | LZ Dall |
| 18A0469-06 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | LZ pags |
| 18A0469-07 A | HDPE NM, 500 mL, 1:1 HNO3      | EZ Pall |
| 18A0469-08 A | HDPE NM, 500 mL, 1:1 HNO3 (FF) | LZ PAPS |

Preservation Confirmed By

FD

1/31/14 Date

| Ana<br>Ana                                 | alytical Resourc<br>alytical Chemist          | es, Incorporated<br>s and Consultants             | Coole                                                | r Rece                                 | ipt Forn                      | <b>)</b> |
|--------------------------------------------|-----------------------------------------------|---------------------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------|----------|
| ARI Client:                                | -40<                                          |                                                   | Project Name:                                        | Former                                 | Dunlay                        | ) Moura  |
| COC No(s):                                 | 1 10 10                                       | NA                                                |                                                      |                                        | Hand Delivered Oth            |          |
| Assigned ARI Jo                            | ob No: 3404                                   | f(q)                                              | Tracking No:                                         |                                        | the second second stations of | 1        |
| Preliminary Exar                           |                                               |                                                   | Trucking No.                                         |                                        |                               | NA       |
| Were intact, pro                           | perly signed and da                           | ted custody seals attache                         | ed to the outside of to cooler                       | ?                                      | YES                           | (NO )    |
|                                            |                                               |                                                   |                                                      |                                        | (YES)                         | NO       |
| Were custody pa<br>Temperature of<br>Time: | epers properly filled<br>Cooler(s) (°C) (recc | out (ink, signed, etc.)<br>mmended 2.0-6.0 °C for | chemistry) 2.2                                       |                                        | YES                           | NO       |
|                                            | ature is out of comp                          | liance fill out form 00070F                       | - <u>), /</u>                                        |                                        | emp Gun ID#: D6               | Daces    |
| Cooler Accepted b                          |                                               | SEF                                               | Date: ( 31 (                                         | 18 Time:                               | 1327                          | 02365    |
| -                                          |                                               | Complete custody for                              | ms and attach all shipping                           | documents                              | 1561                          | -        |
| Log-In Phase                               | e:                                            |                                                   |                                                      |                                        |                               |          |
| Was a temperatu                            | ure blank included in                         | the cooler?                                       |                                                      |                                        | -                             | 00       |
| What kind of p                             | acking material was                           |                                                   | Vrap Wet Ice Gel Packs Ba                            |                                        | YES                           | NO       |
| Was sufficient ice                         | e used (if appropriat                         | e)?                                               |                                                      |                                        | NA (YES)                      | NO       |
| Were all bottles s                         | sealed in Individual                          | plastic bags?                                     |                                                      |                                        | YES                           | NO       |
| Did all bottles arr                        | ive in good conditio                          | n (unbroken)?                                     |                                                      |                                        | YES                           | NO       |
| Were all bottle la                         | bels complete and I                           | egible?                                           |                                                      |                                        | YES                           | NO       |
| Did the number o                           | of containers listed c                        | n COC match with the nu                           | umber of containers received                         | d?                                     | TES                           | NO       |
| Ware of bottles u                          | is and tags agree w                           | ith custody papers?                               |                                                      | •••••                                  | TES                           | NO       |
| Do any of the ana                          |                                               | equested analyses?                                |                                                      |                                        | YES                           | > NO     |
| Were all VOC via                           | is free of air bubble                         |                                                   | preservation sheet, excludir                         | ng VOCs)                               | NA YES                        | NO       |
| Was sufficient am                          | nount of sample sen                           | t in each bottle?                                 |                                                      |                                        | NA YES                        | NO       |
| Date VOC Trip BI                           | lank was made at A                            | RI                                                |                                                      |                                        | (TES)                         | NO       |
| Was Sample Split                           | t by ARI : NA                                 | YES Date/Time:                                    | Equipme                                              | •••••••••••••••••••••••••••••••••••••• | MA '                          |          |
|                                            |                                               |                                                   | 2                                                    | ent                                    | Split by:                     |          |
| Samples Logged by                          | y:                                            |                                                   | ate: <u>  (3)   18</u><br>ger of discrepancies or co | Time: ( (<br>oncerns **                | 250                           |          |
| Sample ID o                                | n Bottle                                      | Sample ID on COC                                  | Sample ID on I                                       | Bottle I                               | Sample ID on (                | 200      |
|                                            |                                               |                                                   |                                                      |                                        | Cemple ID on C                |          |
|                                            |                                               |                                                   |                                                      |                                        |                               |          |
|                                            |                                               |                                                   |                                                      |                                        |                               |          |
| Additional Nata                            | Disercitor                                    |                                                   |                                                      |                                        |                               |          |
| Additional Notes,                          | , Discrepancies, &                            | Resolutions:                                      |                                                      |                                        |                               |          |
| -                                          | ~                                             |                                                   |                                                      |                                        |                               |          |
| -                                          | 2.00                                          |                                                   |                                                      |                                        |                               |          |
| By:<br>Small Air Bubbles                   | Date:                                         |                                                   | Small N 4. W                                         | +                                      |                               |          |
| Sman Air Buobles<br>= 2mm                  | Pasbubbles'<br>2-4 mm                         | LARGE A'r Bubiles                                 | Small → "sm" (<2 mm                                  |                                        |                               |          |
| 5 6                                        | 0,0,0                                         | 000                                               | Peabubbles → "pb" (2 th                              |                                        |                               |          |
|                                            | 0 7                                           |                                                   | Large → "lg" (4 to < 6 m                             |                                        |                               |          |
|                                            |                                               |                                                   | Headspace → "hs" (>6                                 | mm)                                    |                               |          |

0016F 3/2/10

Cooler Receipt Form

Revision 014



| Project: POT-Former Dunlap Mound |                                                                    |
|----------------------------------|--------------------------------------------------------------------|
| Project Number: POT-002          | Reported:                                                          |
| Project Manager: Dave Cooper     | 06-Feb-2018 12:13                                                  |
| MW-1(R)                          |                                                                    |
| 18A0469-01 (Water)               |                                                                    |
|                                  |                                                                    |
|                                  |                                                                    |
|                                  | Sampled: 01/31/2018 10:50                                          |
|                                  | Analyzed: 01-Feb-2018 16:09                                        |
| •                                | Project Number: POT-002<br>Project Manager: Dave Cooper<br>MW-1(R) |

| Sample Preparation: | ample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                 |                     |           |        |       |       |
|---------------------|-------------------------------------------------------------------------------|-----------------|---------------------|-----------|--------|-------|-------|
|                     | Preparation Batch: BGB0001                                                    | Sample Size: 2: | Sample Size: 25 mL  |           |        |       |       |
|                     | Prepared: 01-Feb-2018                                                         | Final Volume: 2 | Final Volume: 25 mL |           |        |       |       |
|                     |                                                                               |                 |                     | Reporting |        |       |       |
| Analyte             |                                                                               | CAS Number      | Dilution            | Limit     | Result | Units | Notes |
| Arsenic             |                                                                               | 7440-38-2       | 1                   | 0.200     | 0.682  | ug/L  |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Notes

| Dalton, Olmsted & Fuglevand, Inc          | Project: POT-Former Dunlap Mound |                             |
|-------------------------------------------|----------------------------------|-----------------------------|
| 1420 - 156th Ave., NE STE C1              | Project Number: POT-002          | Reported:                   |
| Bellevue WA, 98007                        | Project Manager: Dave Cooper     | 06-Feb-2018 12:13           |
|                                           | MW-1(R)                          |                             |
|                                           | 18A0469-02 (Water)               |                             |
|                                           |                                  |                             |
| Metals and Metallic Compounds (dissolved) |                                  |                             |
| Method: EPA 200.8 UCT-KED                 |                                  | Sampled: 01/31/2018 10:50   |
| Instrument: ICPMS2                        |                                  | Analyzed: 02-Feb-2018 17:59 |

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                |          |           |        |       |  |  |  |  |
|---------------------|------------------------------------------------------------|----------------|----------|-----------|--------|-------|--|--|--|--|
|                     | Preparation Batch: BGB0031                                 | Sample Size: 2 | 25 mL    |           |        |       |  |  |  |  |
|                     | Prepared: 02-Feb-2018                                      | Final Volume:  | 25 mL    |           |        |       |  |  |  |  |
|                     |                                                            |                |          | Reporting |        |       |  |  |  |  |
| Analyte             |                                                            | CAS Number     | Dilution | Limit     | Result | Units |  |  |  |  |
| Arsenic, Dissolved  |                                                            | 7440-38-2      | 1        | 0.200     | 0.349  | ug/L  |  |  |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |                             |
|----------------------------------|----------------------------------|-----------------------------|
| 1420 - 156th Ave., NE STE C1     | Project Number: POT-002          | Reported:                   |
| Bellevue WA, 98007               | Project Manager: Dave Cooper     | 06-Feb-2018 12:13           |
|                                  | MW-E(R)                          |                             |
|                                  | 18A0469-03 (Water)               |                             |
|                                  |                                  |                             |
| Metals and Metallic Compounds    |                                  |                             |
| Method: EPA 200.8 UCT-KED        |                                  | Sampled: 01/31/2018 11:45   |
| Instrument: ICPMS1               |                                  | Analyzed: 01-Feb-2018 16:13 |

| Sample Preparation: | Preparation Method: REN EPA 600/4- | 79-020 4.1.4 HNO3 matri | х                   |           |        |       |       |
|---------------------|------------------------------------|-------------------------|---------------------|-----------|--------|-------|-------|
|                     | Preparation Batch: BGB0001         | Sample Size: 2          | Sample Size: 25 mL  |           |        |       |       |
|                     | Prepared: 01-Feb-2018              | Final Volume:           | Final Volume: 25 mL |           |        |       |       |
|                     |                                    |                         |                     | Reporting |        |       |       |
| Analyte             |                                    | CAS Number              | Dilution            | Limit     | Result | Units | Notes |
| Arsenic             |                                    | 7440-38-2               | 1                   | 0.200     | 2.07   | ug/L  |       |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

06-Feb-2018 12:13

| Dalton, Olmsted & Fuglevand, Inc          | Project: POT-Former Dunlap Mound |  |
|-------------------------------------------|----------------------------------|--|
| 1420 - 156th Ave., NE STE C1              | Project Number: POT-002          |  |
| Bellevue WA, 98007                        | Project Manager: Dave Cooper     |  |
|                                           | MW-E(R)                          |  |
|                                           | 18A0469-04 (Water)               |  |
|                                           |                                  |  |
| Metals and Metallic Compounds (dissolved) |                                  |  |

Method: EPA 200.8 UCT-KED Instrument: ICPMS2 Sampled: 01/31/2018 11:45 Analyzed: 02-Feb-2018 18:03

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                 |          |           |        |       |       |  |  |
|---------------------|------------------------------------------------------------|-----------------|----------|-----------|--------|-------|-------|--|--|
|                     | Preparation Batch: BGB0031                                 | Sample Size: 25 |          |           |        |       |       |  |  |
|                     | Prepared: 02-Feb-2018                                      | Final Volume: 2 |          |           |        |       |       |  |  |
|                     |                                                            |                 |          | Reporting |        |       |       |  |  |
| Analyte             |                                                            | CAS Number      | Dilution | Limit     | Result | Units | Notes |  |  |
| Arsenic, Dissolved  |                                                            | 7440-38-2       | 1        | 0.200     | 5.36   | ug/L  |       |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |                        |
|----------------------------------|----------------------------------|------------------------|
| 1420 - 156th Ave., NE STE C1     | Project Number: POT-002          | Reported:              |
| Bellevue WA, 98007               | Project Manager: Dave Cooper     | 06-Feb-2018 12:13      |
|                                  | MW-H(R)                          |                        |
|                                  | 18A0469-05 (Water)               |                        |
|                                  |                                  |                        |
| Metals and Metallic Compounds    |                                  |                        |
| Method: EPA 200.8 UCT-KED        |                                  | Sampled: 01/31/2018 11 |

Met Instrument: ICPMS2

01/31/2018 11:10 Analyzed: 02-Feb-2018 18:31

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                     |           |        |       |       |  |  |  |
|---------------------|------------------------------------------------------------|---------------------|-----------|--------|-------|-------|--|--|--|
|                     | Preparation Batch: BGB0001                                 | Sample Size: 25 mL  |           |        |       |       |  |  |  |
|                     | Prepared: 01-Feb-2018                                      | Final Volume: 25 mL |           |        |       |       |  |  |  |
|                     |                                                            |                     | Reporting |        |       |       |  |  |  |
| Analyte             |                                                            | CAS Number Dilution | Limit     | Result | Units | Notes |  |  |  |
| Arsenic             |                                                            | 7440-38-2 20        | 4.00      | 55.7   | ug/L  | D     |  |  |  |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



**Reported:** 

06-Feb-2018 12:13

| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound |  |
|----------------------------------|----------------------------------|--|
| 1420 - 156th Ave., NE STE C1     | Project Number: POT-002          |  |
| Bellevue WA, 98007               | Project Manager: Dave Cooper     |  |
|                                  |                                  |  |
|                                  | MW-H(R)                          |  |
|                                  | MW-H(K)<br>18A0469-06 (Water)    |  |

# Metals and Metallic Compounds (dissolved)

Method: EPA 200.8 UCT-KED Instrument: ICPMS2 Sampled: 01/31/2018 11:10 Analyzed: 02-Feb-2018 18:27

| Sample Preparation: | Preparation Method: REN EPA 600/4-7 | 79-020 4.1.4 HNO3 matrix | х        |           |        |       |       |
|---------------------|-------------------------------------|--------------------------|----------|-----------|--------|-------|-------|
|                     | Preparation Batch: BGB0031          | Sample Size: 2           |          |           |        |       |       |
|                     | Prepared: 02-Feb-2018               | Final Volume: 2          |          |           |        |       |       |
|                     |                                     |                          |          | Reporting |        |       |       |
| Analyte             |                                     | CAS Number               | Dilution | Limit     | Result | Units | Notes |
| Arsenic, Dissolved  |                                     | 7440-38-2                | 20       | 4.00      | 50.9   | ug/L  | D     |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



| Dalton, Olmsted & Fuglevand, Inc | Project: POT-Former Dunlap Mound                |                             |  |  |  |
|----------------------------------|-------------------------------------------------|-----------------------------|--|--|--|
| 1420 - 156th Ave., NE STE C1     | Project Number: POT-002                         | Reported:                   |  |  |  |
| Bellevue WA, 98007               | Bellevue WA, 98007 Project Manager: Dave Cooper |                             |  |  |  |
|                                  | DUPL-1                                          |                             |  |  |  |
|                                  | 18A0469-07 (Water)                              |                             |  |  |  |
| Metals and Metallic Compounds    |                                                 |                             |  |  |  |
| Method: EPA 200.8 UCT-KED        |                                                 | Sampled: 01/31/2018 10:55   |  |  |  |
| Instrument: ICPMS1               |                                                 | Analyzed: 01-Feb-2018 16:22 |  |  |  |

| Sample Preparation: | Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                     |           |        |       |       |  |  |  |
|---------------------|------------------------------------------------------------|---------------------|-----------|--------|-------|-------|--|--|--|
|                     | Preparation Batch: BGB0001                                 | Sample Size: 25 mL  |           |        |       |       |  |  |  |
|                     | Prepared: 01-Feb-2018                                      | Final Volume: 25 mL |           |        |       |       |  |  |  |
|                     |                                                            |                     | Reporting |        |       |       |  |  |  |
| Analyte             |                                                            | CAS Number Dilution | Limit     | Result | Units | Notes |  |  |  |
| Arsenic             |                                                            | 7440-38-2 1         | 0.200     | 0.929  | ug/L  |       |  |  |  |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



| Dalton, Olmsted & Fuglevand, Inc          | Project: POT-Former Dunlap Mound |                             |
|-------------------------------------------|----------------------------------|-----------------------------|
| 1420 - 156th Ave., NE STE C1              | Project Number: POT-002          | Reported:                   |
| Bellevue WA, 98007                        | Project Manager: Dave Cooper     | 06-Feb-2018 12:13           |
|                                           | DUPL-1                           |                             |
|                                           | 18A0469-08 (Water)               |                             |
|                                           |                                  |                             |
| Metals and Metallic Compounds (dissolved) |                                  |                             |
| Method: EPA 200.8 UCT-KED                 |                                  | Sampled: 01/31/2018 10:55   |
| Instrument: ICPMS2                        |                                  | Analyzed: 02-Feb-2018 18:36 |

| Sample Preparation: Preparation Method: REN EPA 600/4-79-020 4.1.4 HNO3 matrix |                            |                    |                    |           |        |       |       |  |  |
|--------------------------------------------------------------------------------|----------------------------|--------------------|--------------------|-----------|--------|-------|-------|--|--|
|                                                                                | Preparation Batch: BGB0031 | Sample Size: 25 m  | Sample Size: 25 mL |           |        |       |       |  |  |
|                                                                                | Prepared: 02-Feb-2018      | Final Volume: 25 n |                    |           |        |       |       |  |  |
|                                                                                |                            |                    |                    | Reporting |        |       |       |  |  |
| Analyte                                                                        |                            | CAS Number Di      | ilution            | Limit     | Result | Units | Notes |  |  |
| Arsenic, Dissolved                                                             |                            | 7440-38-2          | 1                  | 0.200     | 0.329  | ug/L  |       |  |  |

| Analytical Resources, Ir | ıc. |
|--------------------------|-----|
|--------------------------|-----|

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper Analytical Report

**Reported:** 06-Feb-2018 12:13

#### Metals and Metallic Compounds - Quality Control

#### Batch BGB0001 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS1 Analyst: TCH

| QC Sample/Analyte    | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------|---------|--------|--------------------|-------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Blank (BGB0001-BLK1) |         |        |                    | Prep  | ared: 01-Feb   | -2018 Ana        | alyzed: 01-I | Feb-2018 14    | :09 |              |       |
| Arsenic              | 75a     | ND     | 0.200              | ug/L  |                |                  |              |                |     |              | U     |
| LCS (BGB0001-BS1)    |         |        |                    | Prep  | ared: 01-Feb   | -2018 Ana        | alyzed: 01-I | Feb-2018 14    | :49 |              |       |
| Arsenic              | 75a     | 27.5   | 0.200              | ug/L  | 25.0           |                  | 110          | 80-120         |     |              |       |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper **Analytical Report** 

**Reported:** 06-Feb-2018 12:13

#### Metals and Metallic Compounds (dissolved) - Quality Control

#### Batch BGB0031 - REN EPA 600/4-79-020 4.1.4 HNO3 matrix

Instrument: ICPMS2 Analyst: CC

| QC Sample/Analyte    | Isotope | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|----------------------|---------|--------|--------------------|-------|----------------|------------------|--------------|----------------|------|--------------|-------|
| Blank (BGB0031-BLK1) |         |        |                    | Prep  | ared: 02-Feb   | -2018 Ana        | alyzed: 02-l | Feb-2018 17    | :23  |              |       |
| Arsenic, Dissolved   | 75a     | ND     | 0.200              | ug/L  |                |                  |              |                |      |              | U     |
| LCS (BGB0031-BS1)    |         |        |                    | Prep  | ared: 02-Feb   | -2018 Ana        | alyzed: 02-1 | Feb-2018 17    | ':44 |              |       |
| Arsenic, Dissolved   | 75a     | 25.3   | 0.200              | ug/L  | 25.0           |                  | 101          | 80-120         |      |              |       |

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

Reported:

**Analytical Report** 

06-Feb-2018 12:13

# Certified Analyses included in this Report

| Analyte       | Certifications                                         |                            |            |  |  |
|---------------|--------------------------------------------------------|----------------------------|------------|--|--|
| EPA 200.8 UC1 | -KED in Water                                          |                            |            |  |  |
| Arsenic-75a   | NELAP,WADOE,WA-DW                                      | ,DoD-ELAP                  |            |  |  |
| Arsenic-75a   | NELAP,WADOE,WA-DW                                      | NELAP,WADOE,WA-DW,DoD-ELAP |            |  |  |
| Code          | Description                                            | Number                     | Expires    |  |  |
| ADEC          | Alaska Dept of Environmental Conservation              | UST-033                    | 05/11/2018 |  |  |
| CALAP         | California Department of Public Health CAELAP          | 2748                       | 02/28/2018 |  |  |
|               | DeD Environmental Laboratory (Assured) to the Descrete | 00100                      | 00/07/0040 |  |  |

| CALAP    | California Department of Public Health CAELAP      | 2748     | 02/28/2018 |
|----------|----------------------------------------------------|----------|------------|
| DoD-ELAP | DoD-Environmental Laboratory Accreditation Program | 66169    | 02/07/2019 |
| NELAP    | ORELAP - Oregon Laboratory Accreditation Program   | WA100006 | 05/11/2018 |
| WADOE    | WA Dept of Ecology                                 | C558     | 06/30/2018 |
| WA-DW    | Ecology - Drinking Water                           | C558     | 06/30/2018 |

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Analytical Report**

Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue WA, 98007

Project: POT-Former Dunlap Mound Project Number: POT-002 Project Manager: Dave Cooper

**Reported:** 06-Feb-2018 12:13

#### **Notes and Definitions**

| U    | This analyte is not detected above the applicable reporting or detection limit.      |
|------|--------------------------------------------------------------------------------------|
| J    | Estimated concentration value detected below the reporting limit.                    |
| D    | The reported value is from a dilution                                                |
| DET  | Analyte DETECTED                                                                     |
| ND   | Analyte NOT DETECTED at or above the reporting limit                                 |
| NR   | Not Reported                                                                         |
| dry  | Sample results reported on a dry weight basis                                        |
| RPD  | Relative Percent Difference                                                          |
| [2C] | Indicates this result was quantified on the second column on a dual column analysis. |
|      |                                                                                      |

# ATTACHMENT C

2017 Sample Collection Forms Former Arkema 3009 Taylor Way Site Tacoma, Washington

# Dalton, Olmsted & Fuglevand, I Client/Project: FAMIN NUVLAO Job No.: PDT-0072 MOUND

Job No.: ADT-002 Sampled by: DGC

|                    | LOCATION / DATA |           |          |                                        |                                       |          |  |  |  |
|--------------------|-----------------|-----------|----------|----------------------------------------|---------------------------------------|----------|--|--|--|
| DateSampled        | 1/12/17         | 1/12/17   | 1/12/17  | 1/12/17                                |                                       |          |  |  |  |
| Well No.           | MW-H(R)         | MW-E(R)   | Mw-1 (2) | QUPULAR                                |                                       |          |  |  |  |
| well depth         | 13.1            | 10.0      | 10,2     | 0F                                     |                                       |          |  |  |  |
| water level        | 7.15            | 10.0      | 2.60     | $m\omega/(n)$                          |                                       |          |  |  |  |
| water depth        | 59              | 3.4       | 7.6      | ······································ |                                       |          |  |  |  |
| Casing/Volume      |                 |           |          |                                        |                                       | •        |  |  |  |
| type: PVC          | 2"\$            | 24        | 2"       | 2-                                     |                                       |          |  |  |  |
| vol/ft             |                 |           |          |                                        |                                       |          |  |  |  |
| tot. vol           |                 |           |          |                                        |                                       |          |  |  |  |
| 3 x vol            | 2.8             | 1.7       | 3.8      |                                        |                                       |          |  |  |  |
| Purge Volume       |                 |           |          | •                                      | · · · · · · · · · · · · · · · · · · · |          |  |  |  |
| gallons purged     | 1.5             | 1         | 2        |                                        |                                       |          |  |  |  |
| purge/bail/type    | PENIMAL         |           |          |                                        |                                       |          |  |  |  |
| Water Sample       |                 | morso ary |          |                                        |                                       |          |  |  |  |
| Sample No.         | MW-H(A)         | MW-E(R)   | M - I(n) | Augl-1                                 |                                       | ]        |  |  |  |
| Sample Method      | Permonal.       |           | 110-11-1 |                                        |                                       |          |  |  |  |
| Time               | 1730            | 1330      | 1430     | 475                                    |                                       |          |  |  |  |
| No. Cont.          | 1230            |           |          | 435                                    |                                       |          |  |  |  |
| Cont. Type         | 20              |           |          |                                        | ··· ···                               |          |  |  |  |
| Initials           | NGE             | 061       | 8-1      | Not                                    |                                       |          |  |  |  |
| Temperature        |                 |           |          |                                        |                                       |          |  |  |  |
| value (Degrees C.) | 11.5            | 125       | 10.6     |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Sp Cond            |                 |           |          |                                        |                                       |          |  |  |  |
| value (uS/cm)      | 13,53B          | 1261      | RZB      |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Dissolved Oxygen   |                 |           |          |                                        |                                       | -        |  |  |  |
| value (mg/l)       | 0.47            | 0.40      | 0.29     |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| рН                 |                 |           |          |                                        |                                       |          |  |  |  |
| value              | 6.3             | 6.4       | 6.7      |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| ORP                |                 |           |          |                                        |                                       |          |  |  |  |
| value (mv)         | 18.1            | -57.0     | -12.9    |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Turbidity          |                 |           |          |                                        | -                                     |          |  |  |  |
| value (NTU's)      | 12.1            | 60.5      | 73.1     |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Alkalinity         |                 |           |          |                                        |                                       |          |  |  |  |
| Total - mg/l       |                 |           |          |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Ferrous Iron       |                 |           |          |                                        |                                       |          |  |  |  |
| mg/l               | 5.0             | 4,5       | 4.5      |                                        |                                       |          |  |  |  |
|                    |                 |           |          |                                        |                                       |          |  |  |  |
| Calibrati          | ons             |           |          | Comments                               |                                       |          |  |  |  |
| рН                 |                 | PISC      | OLVN MEI | TU FIELD                               | FILTENS C.                            | 45M3     |  |  |  |
| Conductivity       |                 |           |          |                                        |                                       | <u> </u> |  |  |  |
| DO                 |                 |           |          |                                        |                                       |          |  |  |  |
| ORP - mv           |                 |           |          |                                        |                                       |          |  |  |  |
| Turbidity          |                 |           |          |                                        |                                       |          |  |  |  |

Note: 2" dia. PVC has 0.164 gal/ft; bail 0.5 gal/ft for 3 casing volumes

# Water Sampling Record

÷.

Dalton, Olmsted Fuglevand, Inc. Project: FMM DWDAP MOUNS Sampled by: A COPH Date: 4/25/17

-

| Well No.             | MW.HCR)    | MW-E(R)         | MW.I(R)    | AURUS   |   |            |
|----------------------|------------|-----------------|------------|---------|---|------------|
| well depth (top PVC) | 13,1       | 10.0            | 10.2       | DUGUCAE |   |            |
| water level(top PVC) | 7.20       | 1.81-6.15       | <u>B.3</u> | DUGUCAE |   |            |
| water height         | 5.9        | 3.8             | B.3        | MW-1(a) |   |            |
| time                 | 1131       | 1133            | 1136       |         |   |            |
| Casing/Volume        |            |                 |            |         |   |            |
| type:                | 2"-        | -2              | >          |         |   |            |
| type: other          | XIT to AUC |                 |            |         |   |            |
| vol/ft               |            |                 |            |         |   |            |
| tot. vol             |            |                 |            |         |   |            |
| 3 x vol              | 3.9        | 19              | 4.1        |         |   |            |
| Purge Volume         |            |                 |            |         |   |            |
| gallons purged       | 2          | í               | 2          |         |   | T          |
| purge/bail/type      | PRINTALINA |                 | >          |         |   |            |
| Water Sample         |            |                 |            |         |   |            |
| Sample No.           | MW-It(A)   | MW-E(R)         | MW-i(R)    | JUPL    |   | 1          |
| Sample Method        | Phismal    |                 |            | NOT C   |   |            |
| Time                 | 1150       | 1255            | 1345       | 0251    |   |            |
| No. Cont.            | 2          | 2               | 2          | 2       |   |            |
| Initials             | Ne         | N.C.            | DOL        | Del.    |   |            |
| pН                   |            |                 |            |         |   | - <b>L</b> |
| value                | 6.45       | 6.66            | 6.75       |         | 1 |            |
| time                 |            |                 | 0.10       |         |   |            |
| Conductivity (S/cm)  |            |                 |            |         |   | 1          |
| value                | 9242       | 646             | 853        |         |   | 1          |
| time                 |            |                 |            |         |   |            |
| Temp. (Celsius)      |            |                 |            |         |   |            |
| value                | 11.5       | 10.3            | 11.7       |         |   | T          |
| time                 |            | 1.1.3           |            |         |   |            |
| DO (mg/l)            |            |                 |            |         |   |            |
| value                | 0.60       | 0.30            | 0.11       |         | I | Г          |
| time                 | 0.60       | 0.00            | 0.11       |         |   |            |
| ORP (mV)             |            |                 |            |         | L |            |
| value                | -0.2       | 17.2            | -1.3       |         |   |            |
| time                 |            |                 |            |         |   |            |
| Ferrous Iron (mg/l)  |            |                 |            |         | I |            |
| value                | 4.2        | 5.5             | Z.E        |         | Г | 1          |
| time                 |            | <u>د.</u> ( د.) | 2.0        |         |   |            |
| Turbidity (ntu)      |            |                 |            |         |   |            |
| value                | 146        | 45.6            | SI.Z       |         | 1 |            |
| time                 | 1.10       | 73.6            | SIL        |         |   |            |
| COMMENTS             |            |                 |            |         |   |            |

COMMENTS:

\* \*

" AL WATT INTE MATCHIN IN 10-MILLITE PINIOD ATT EQULIAMITON

QUEQUÉS MÉTALS FIELS FILTENÉS 0.45 MM

100 70% 0.3 @ 1102m

# Water Sampling Record

Dalton, Olmsted Fuglevand, Inc. Project: FOUMM WALAP MOWEN Sampled by: NODIM Date: 7/28/17

| Well No.             |             |                                         |          |                                       |   |   |
|----------------------|-------------|-----------------------------------------|----------|---------------------------------------|---|---|
|                      | HW-H(R)     | MW-E(R)                                 | MW-1(R)  | RUPL-1                                |   |   |
| well depth (top PVC) | 13.1        | 10.0                                    | 10.2     | purycos?                              |   |   |
| water level(top PVC) | 7.36        | 10.0                                    | 4.36     | OF GLAR                               |   |   |
| water height         | 5.2         | 2.4                                     | 5.9      | MW-I/R)                               |   |   |
| time                 | 1240        | 1246                                    | 1243     |                                       |   |   |
| Casing/Volume        |             |                                         |          |                                       |   |   |
| type:                | 2'-         |                                         | >        | · · · · · · · · · · · · · · · · · · · |   | T |
| type: other          | XH 40 AC    |                                         |          |                                       |   |   |
| vol/ft               |             |                                         |          |                                       |   |   |
| tot. vol             |             |                                         |          |                                       |   |   |
| 3 x vol              | 2.6         | 1.2                                     | 29       |                                       |   |   |
| Purge Volume         |             |                                         |          |                                       | 1 |   |
| gallons purged       | 1,5         | 0.5                                     | 1.5      |                                       |   |   |
| purge/bail/type      | PENISMUTIC- |                                         |          |                                       |   |   |
| Water Sample         |             |                                         |          |                                       |   |   |
| Sample No.           | MU-H(R)     | MW-E(R)                                 | MW-1/2)  | Jar L-1                               |   |   |
| Sample Method        | PERUMATIC-  |                                         |          | JUILEI                                |   |   |
| Time                 | -1300-1430  | 1300 1330                               | 1400     | 1405                                  |   |   |
| No. Cont.            | 2           |                                         |          | 1405<br>Z                             | · |   |
| Initials             | 0/sC        | - Z<br>Ki                               | Z<br>VoC | Nol.                                  |   |   |
| Temp. (Celsius)      |             |                                         |          | del_                                  |   |   |
| value                | 18.6        | 17.6                                    | 17.18    |                                       |   | 1 |
| time                 |             |                                         |          |                                       |   |   |
| Conductivity (uS/cm) |             |                                         |          |                                       |   |   |
| value                | 1.311       | 2216                                    | 00       |                                       |   |   |
| time                 |             |                                         | 1-10     |                                       |   |   |
| pH                   |             |                                         |          |                                       |   |   |
| value                | 6.08        | 6.21                                    | 6.39     |                                       |   |   |
| time                 |             |                                         |          |                                       |   |   |
| DO (mg/l)            |             |                                         |          |                                       |   |   |
| value                | 1.37        | 1,01                                    | 0.67     |                                       |   |   |
| time                 |             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |                                       |   |   |
| ORP (mV)             |             |                                         |          |                                       |   |   |
| value                | -20.1       | - 13,9                                  | -263     | ······                                |   |   |
| time                 |             |                                         | -Lb->    |                                       |   |   |
| errous Iron (mg/l)   |             |                                         |          |                                       |   |   |
| value                | 6.0         | 6.5                                     | 6.0      |                                       |   |   |
| time                 |             |                                         | 6.9      |                                       |   |   |
| urbidity (ntu)       |             |                                         |          |                                       |   |   |
| value                | 4.3         | 2,6                                     | 4,0      |                                       |   |   |
| time                 |             | - 142                                   | 7,0      |                                       |   |   |
| OMMENTS:             |             |                                         |          |                                       |   |   |

LOW TIDE 1.6 @ 1518 PM

ALL WASTA LEVEW MEDINGS WINTEN 10-MINUTE PENSI FOLLWING EQUILIBRATION DISSOLVED METALS FIELD FILTAGE D.A. Im

1

Dalton, Olmsted Fuglevand, Inc.

# Water Sampling Record

Former Arkema Manufacturing Tacoma, WA

Sampled by: There P. Browing Date: 10-16-17

| Well No.             | MW-H(R)            | MW-ECR)        | MU-I(R)             | DUPL-1                                |                                                                                                                 |
|----------------------|--------------------|----------------|---------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| well depth (top PVC) | MV-H(R)<br>13.1'   | 10,01          |                     | Duplicate                             |                                                                                                                 |
| water level(top PVC) | 7.85               | 7.0'           | 10.2'<br><b>2.7</b> |                                       |                                                                                                                 |
| water height         | 5.25               | 31             | 7.49                | MW-HCR)                               |                                                                                                                 |
| time                 | 9:30               | -9:42-9:40     | 9:34                |                                       |                                                                                                                 |
| Casing/Volume        |                    |                |                     | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |
| type:                | 2"                 |                |                     | $\rightarrow$                         |                                                                                                                 |
| type: other          | JCH YOPUr          |                |                     | 5                                     |                                                                                                                 |
| vol/ft               | 163.1/4            |                |                     |                                       |                                                                                                                 |
| tot. vol             | 0.85 611           | 6. <b>4</b> 89 | 1,22087             |                                       |                                                                                                                 |
| 3 x vol              | 2.35 51<br>2.56 54 | 1.467          | 3,66                |                                       |                                                                                                                 |
| Purge Volume         |                    |                |                     |                                       |                                                                                                                 |
| gallons purged       | 1.5 gall           | O.Sgal         | 1.5gal              |                                       | The second se |
| purge/bail/type      | Paristal til       |                |                     | $\rightarrow$                         |                                                                                                                 |
| Water Sample         |                    |                | •                   |                                       |                                                                                                                 |
| Sample No.           | GN MUH             | GUMW-ECR)      | GUAW-ICR)           | GW DUPI -1                            |                                                                                                                 |
| Sample Method        | Paristallin        |                |                     |                                       |                                                                                                                 |
| Time                 | 9:20               | 1095           | 10:15-              | 930                                   |                                                                                                                 |
| No. Cont.            | 2                  |                | 2                   | 2                                     |                                                                                                                 |
| Initials             | ZNY                |                | ANK                 | ZNK                                   |                                                                                                                 |
| pH                   |                    |                |                     |                                       |                                                                                                                 |
| value                | 6.02               | 6.43           | 6.74 6.74           |                                       |                                                                                                                 |
| time                 |                    |                | 4                   |                                       |                                                                                                                 |
| Conductivity (S/cm)  |                    |                |                     | •                                     |                                                                                                                 |
| value                | 23,373 W/m         | 1845.6         | -834 834            |                                       |                                                                                                                 |
| time                 |                    |                |                     |                                       |                                                                                                                 |
| Temp. (Celsius)      |                    |                |                     |                                       |                                                                                                                 |
| value                | 16.11              | 16.30          | 15.03               |                                       |                                                                                                                 |
| time                 |                    |                | 10 10 10            |                                       |                                                                                                                 |
| DO (mg/l)            |                    |                |                     |                                       |                                                                                                                 |
| value                | 0.35               | 0.39           | 0.67                |                                       |                                                                                                                 |
| time                 |                    |                |                     |                                       |                                                                                                                 |
| ORP (mV)             |                    |                |                     |                                       |                                                                                                                 |
| value                | 15,8               | - 30.7         | -8,9                |                                       |                                                                                                                 |
| time                 |                    |                |                     |                                       |                                                                                                                 |
| TDS (ppt)            |                    |                |                     |                                       |                                                                                                                 |
| value                | 15                 | 1              | 1                   |                                       |                                                                                                                 |
| time                 |                    |                |                     |                                       |                                                                                                                 |
| Turbidity (ntu)      |                    |                |                     |                                       |                                                                                                                 |
| value                | 21.8               | 6.21           | 5.64                | 1                                     |                                                                                                                 |
| time                 |                    | <u></u>        | T                   | · · · · · ·                           |                                                                                                                 |
| Ferrous Iron (mg/l)  |                    |                |                     |                                       |                                                                                                                 |
| value 7 4            | - 57.75 D          | 36.75          | 6.9                 |                                       |                                                                                                                 |
| time                 |                    |                | 0.1                 |                                       |                                                                                                                 |
| Sulfide (mg/l)       |                    |                |                     |                                       | <b>L</b>                                                                                                        |
| value                | 1                  |                |                     |                                       |                                                                                                                 |
| time                 |                    |                |                     |                                       |                                                                                                                 |
| COMMENTS: _ D:       |                    | Filled O. 45M  |                     |                                       |                                                                                                                 |

- D: Stolved Meths Field Filled O. 45 Mm

- All viter levels Measural fin 10 minutes following Equilibration

Well Volumes: Lew Tide @ 3:70 um O.S'2"= 0.163 gal/ft x 3 = 0.5 4" = 0.653 gal/ft x 3 = 2.0

Arkema MWSAMPL

Dalton, Olmsted & Fuglevand, Local Client/Project: Arkema/ Former Dun. .ound Sampled by: Luke Kerner 01318 WATER SAMPLING RECORD

| DateSampled        | 1-31-18               | 1.3-18      | 1-31-18                       |                                       |                                        |                                       |  |
|--------------------|-----------------------|-------------|-------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|--|
| Well No.           | MW-H(R)               | MW-E(R)     | MW-1(R)                       | DUPL-1                                |                                        |                                       |  |
| well depth         | 13.1                  | 10          | 10.2                          | DUPLICATE                             |                                        |                                       |  |
| water level        | 7.09                  | 4.75        | 1.55                          | of                                    |                                        |                                       |  |
| water height       |                       |             |                               | MW-1 (R )                             |                                        |                                       |  |
| time               | 10:35                 | 10:30       | 10.25                         |                                       |                                        |                                       |  |
| Casing/Volume      |                       |             |                               |                                       |                                        |                                       |  |
| type: PVC          | 2"                    | 2"          | 2"                            |                                       |                                        |                                       |  |
| Type: other        | SCH 40 PVC            | SCH 40 PVC  | SCH 40 PVC                    |                                       |                                        |                                       |  |
| vol/ft             | .163 gal/ft           | .163 gal/ft | .163 gal/ft                   |                                       |                                        |                                       |  |
| tot. vol           |                       |             |                               |                                       |                                        |                                       |  |
| 3 x vol            |                       |             |                               |                                       |                                        |                                       |  |
| Purge Volume       |                       |             |                               |                                       |                                        |                                       |  |
| gallons purged     | /.5gel<br>Peristaltic | O.Sgal      | 1.5 441                       |                                       | · · ·                                  |                                       |  |
| purge/bail/type    | Peristaltic           | Peristaltic | <b>1.5 gal</b><br>Peristaltic |                                       |                                        |                                       |  |
| Water Sample       |                       |             |                               | ·······                               |                                        |                                       |  |
| Sample No.         | MW-H(R)               | MW-E(R)     | MW-1(R)                       | DUPL-1                                |                                        |                                       |  |
| Sample Method      | Peristaltic           | Peristaltic | Peristaltic                   |                                       |                                        |                                       |  |
| Time               | 11:10<br>2            | 1195        | 10:50                         | 10:55                                 |                                        |                                       |  |
| No. Cont.          | 2                     | 2           | 2                             | 2                                     |                                        |                                       |  |
| Initials           | INK                   | JNK         | ANK                           | ZNK                                   |                                        |                                       |  |
| Temperature        |                       |             |                               |                                       |                                        | · · · · · · · · · · · · · · · · · · · |  |
| value (Degrees C.) | 10.14                 | 10.01       | 9.31                          |                                       |                                        |                                       |  |
|                    |                       |             |                               |                                       |                                        |                                       |  |
| Sp Cond            |                       |             |                               | · · · · · · · · · · · · · · · · · · · |                                        |                                       |  |
| value              | 12,883                | 612         | 1176                          |                                       |                                        |                                       |  |
|                    |                       |             |                               |                                       |                                        |                                       |  |
| рН                 |                       |             |                               |                                       |                                        |                                       |  |
| value              | 6.37                  | (0.42       | 6.69                          |                                       |                                        |                                       |  |
|                    |                       |             |                               |                                       |                                        |                                       |  |
| Dissolved Oxygen   |                       |             |                               |                                       |                                        |                                       |  |
| value (mg/l)       | 2.08                  | 0,77        | 0.40                          |                                       |                                        |                                       |  |
|                    |                       |             |                               |                                       |                                        |                                       |  |
| ORP                |                       |             |                               |                                       |                                        |                                       |  |
| value (mv)         | .28.2                 | - 109       | -34.3                         |                                       |                                        |                                       |  |
|                    |                       |             |                               |                                       |                                        |                                       |  |
| Turbidity          |                       |             |                               |                                       |                                        | <u></u>                               |  |
| value ( NTU's)     | 4.104                 | 4.77        | 43.5                          |                                       |                                        | [                                     |  |
|                    |                       |             | , v                           |                                       |                                        |                                       |  |
| Ferrous Iron       |                       | . <u> </u>  |                               |                                       | ······································ |                                       |  |
| mg/l               | 22                    | 7.8         | 2.8                           |                                       |                                        | Γ                                     |  |
|                    |                       |             |                               | ······                                |                                        |                                       |  |
|                    |                       | C           | alibrations                   |                                       |                                        |                                       |  |
| oH H               | <u> </u>              |             |                               |                                       |                                        |                                       |  |
| Conductivity       | /                     |             |                               |                                       |                                        | - <u>184</u>                          |  |
| DO                 | 3 Calibra             | k B (       | TEDTECH                       | 01-30-2018                            |                                        |                                       |  |
| ORP - mv           |                       |             | Her all                       | VI- 20- (VI 8                         |                                        | <u> </u>                              |  |
| Turbidity          | 5: 0.02 R : 0.02      | 5:20 R: 19! | 19                            | 5:100 R: 91.3 5: 800 R: 798           |                                        |                                       |  |
| Comments:          |                       | <u></u>     |                               |                                       |                                        | 17: +70                               |  |
|                    | · · · ·               |             |                               |                                       |                                        |                                       |  |
| Low lid            | e 6.5'6               | 10:56a      | ~                             |                                       |                                        |                                       |  |

All voter Levels Measured within 15 minutes period following "Izhow Equilibrium Dissolved Metals Field Filtered 0.45 jum \*TotAL & Dissolved Arsenic."