

Transmittal

February 8, 2018

To:	Ted Uecker, Department of Ecology	Ref. No.:	11145847
	Eastern Regional Office 4601 N. Monroe Street, Suite 202	From:	Christina McClelland
	Spokane, WA 99205-1295	GHD Tel:	804-237-0303

Subject: Semi-Annual Groundwater Monitoring – July through December 2017

No. of Copies	Description/Title	Drawing No./ Document Ref.	Issue
1	Semi-Annual Groundwater Monitoring – July through December 2017		

Issued for:	⊠ Y □ Y	our information our approval/cor	nments	As requesReturned	sted to you		Construction For re-submission	Quotation
Sent by:		rnight courier	□ Same d	lay courier	⊠ Other:	US	Mail	
Remarks:								
Copy to:		Rich Solomar Spokane Airp	n, P66; Kath ort Busines	ny Reimer, is Park	_		- mariel All.	0
Completed	by:	Christina McC [Please Print]	Clelland		Signed:		4.Malla	ut
Filing: Cor	responde	ence File						

Semi-Annual Groundwater Monitoring – July through December 2017

Phillips 66 Facility No. 6880 Geiger Corrections Facility Spokane, Washington

GHD | 20818 44th Avenue West Suite 190 Lynnwood WA 98036 11145847| 2MN00| Report No 1 | February 8, 2018

Table of Contents

1.	Introd	uction	. 1
	1.1	Background	. 1
2.	Septe	mber 2017 Groundwater Monitoring Field Activities	. 1
	2.1	Hydraulic Monitoring and Groundwater Sampling	. 1
	2.2	Investigation Derived Waste	. 2
3.	Grour	ndwater Monitoring Results	. 2
	3.1	Groundwater Elevation Data	. 2
	3.2	Groundwater Quality Data	. 2
4.	Grour	ndwater Monitoring Conclusions	. 3

Figure Index

Figure 1	Vicinity Map
Figure 2A	Groundwater Elevation Contour and Chemical Concentration Map Shallow Zone – September 14, 2017
Figure 2B	Groundwater Elevation Contour and Chemical Concentration Map Deep Zone – September 14, 2017

Table Index

 Table 1
 Summary of Groundwater Monitoring Data

Appendix Index

- Appendix A Groundwater Monitoring Field Data Sheets
- Appendix B Groundwater Monitoring Analytical Report

1. Introduction

GHD Services Inc. (GHD) is submitting this *Semi-Annual Groundwater Monitoring Report – July through December 2017* on behalf of Phillips 66 Company (P66) for the P66 Facility No. 6880, Geiger Corrections Facility located at the intersection of South Spotted Road and West Will D Alton Drive in Spokane, Washington (Site, Figure 1).

The purpose of this semi-annual report is to present the results of groundwater monitoring conducted between July and December 2017. Groundwater monitoring was conducted in accordance with Tetra Tech's work plan dated February 20, 2017. The September 2017 event was the second of two semi-annual events proposed under that work plan. The project underwent a consultant change in 2017 and was transferred from Tetra Tech to GHD.

1.1 Background

The Geiger Corrections facility consists of a Yellowstone Pipeline (YPL) Company pipeline easement within a minimum security prison. The YPL pipeline enters the Corrections facility property near the intersection of South Spotted Road and West Will D Alton Road. Impacted soil and groundwater resulted from a 1979 release of Jet A turbine fuel from the YPL pipeline. In addition, soil contamination was encountered during removal of two heating oil underground storage tanks (USTs) in 1998. Groundwater monitoring has been conducted at the Site on a quarterly to semi-annual frequency since 2001. Groundwater monitoring was not performed between June 2014 and April 2017 in order to evaluate site strategy options and also as a result of various consultant changes. In October 2016, an Underground Injection Control (UIC) Well Registration Form was submitted to the Washington Department of Ecology (Ecology) in order to request authorization to inject hydrogen peroxide as a means of rehabilitating wells MP-1, MW-2, and MW-5D by cleaning the filter pack and adjacent soils. The well rehabilitation for MP-1 and MW-2 was conducted in November 2016; well MW-5D was not rehabilitated because an Oxygen Release Compound (ORC) sock broke off when attempting removal and remains within the well casing. Groundwater monitoring was resumed in April 2017; the project was transferred to GHD in July 2017.

2. September 2017 Groundwater Monitoring Field Activities

2.1 Hydraulic Monitoring and Groundwater Sampling

The semi-annual groundwater monitoring event for the second half of 2017 was conducted on September 14, 2017. Hydraulic monitoring activities consisted of measuring and recording depth to groundwater from below the top of the well casing for 14 wells. Wells used in the hydraulic monitoring are presented on Table 1. A copy of the field data sheet documenting the hydraulic monitoring data is presented in Appendix A. Groundwater samples were collected from 10 wells using low-flow sampling procedures. Wells used in the groundwater quality monitoring are presented on Table 1 and in Figures 2A and 2B. Well MW-7 could not be sampled because the

ORC sock broke off in the well casing and could not be removed at the time. Wells MW-12A and MW-12B are not included in the monitoring program because wells MW-11A and MW-11B provide adequate down-gradient delineation. In addition to the groundwater samples, one field duplicate sample, one matrix spike and one matrix spike duplicate sample, (MS/MSD) were collected for quality assurance purposes. The field duplicate was collected from well MW-11B, and the MS/MSD samples were collected from well MW-4. Trip blanks provided by the subcontracting laboratory were included in each cooler. Samples collected during the event were placed immediately on ice and transported to Eurofins Lancaster Laboratories in Lancaster, Pennsylvania via courier under chain of custody. Sample analyses included total petroleum hydrocarbons (TPH) as gasoline (TPHg) per Ecology Method NWTPH-Gx; TPH as diesel (TPHd) and oil (TPHo) per Ecology Method NWTPH-Dx, and benzene, toluene, ethylbenzene and xylenes (BTEX) and naphthalene per EPA Method 8260B.

The laboratory analytical report is included in Appendix B.

2.2 Investigation Derived Waste

All investigation derived waste (IDW) including purge water and decontamination water was stored on-Site in a DOT-compliant 55-gallon drum for subsequent disposal.

All disposable personal protective equipment were properly decontaminated and placed in the garbage for disposal.

3. Groundwater Monitoring Results

3.1 Groundwater Elevation Data

The purpose of the hydraulic monitoring is to evaluate groundwater flow direction and gradient and gauge light nonaqueous phase liquid (LNAPL) presence, if any. Based on the data collected, depth to groundwater in the 14 wells gauged ranged from 4.79 feet below ground surface (bgs) to 6.27 feet bgs for the shallow groundwater zone and from 31.76 feet bgs to 34.78 feet bgs for the deep groundwater zone. Groundwater flow was toward the east at a gradient of approximately 0.003 foot per foot for the shallow groundwater zone, which is consistent with historical flow direction and gradient, and toward the southeast at a gradient of approximately 0.001 foot per foot for the deep groundwater zone. Groundwater flow direction and gradient has historically been variable for the deep groundwater zone. LNAPL was not detected in any of the wells gauged; LNAPL has never been observed at the Site. Groundwater elevation data are presented in Table 1 and Figures 2A and 2B.

3.2 Groundwater Quality Data

The purpose of the groundwater sampling program for this Site is to evaluate groundwater concentration trends over time. Historical groundwater quality data is presented on Table 1. Groundwater quality data from the September 2017 sampling event is presented on Figures 2A and 2B. The laboratory analytical report for the September 2017 event is presented in Appendix B.

Laboratory analytical results from the September 2017 event indicate concentrations of one or more analyzed constituents were above MTCA Method A cleanup levels for the following:

- TPHg Well MP-1R, MW-2
- TPHd Well MP-1R, MW-2, MW-5D

None of the other wells sampled contained concentrations above MTCA Method A cleanup levels. Concentrations continue to decrease and nearly all wells have been compliant with MTCA Method A cleanup levels for more than four consecutive quarters with the exception of MP-1R, MW-2, and MW-5D.

4. Groundwater Monitoring Conclusions

Groundwater flow direction and gradient are consistent with historical data. TPHg and TPHd were detected above the MTCA Method A cleanup level in two shallow zone wells and one deep zone well. GHD recommends reducing the groundwater sampling scope to the following wells:

- Shallow: MP-1R, MW-2
- Deep: MW-5D, MW-7

We propose sampling the wells on a quarterly basis during 2018 to establish current seasonal trends and limiting the analytical suite to TPHg and TPHd only. Hydraulic monitoring will be conducted quarterly for all wells. We also propose removing the ORC sock from well MW-7 so that groundwater samples can be collected. After one year of quarterly monitoring, the sampling frequency will be reassessed.

The next scheduled monitoring and sampling event is during first quarter 2018.

All of Which is Respectfully Submitted,

GHD

Christina McClelland, LG

Jeff Gaarder

Figures

CAD File: P:\drawings\11145000s\11145847\11145847-REPORT\11145847-MN00(001)\11145847-MN00(001)GN\1145847-MN00(001)GN\1145847-

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date Jun/2015 - Sep/2016, Accessed: 2017

PHILLIPS 66 FACILITY NO. 6880
GEIGER CORRECTIONS FACILITY
SPOKANE, WASHINGTON11145847-MN00
Dec 21, 2017GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP
SHALLOW ZONE - SEPTEMBER 14, 2017FIGURE 2A

CAD File: P:\drawings\11145000s\11145847.H1145847-REPORT\11145847-MN00(001)\11145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN0

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date Jun/2015 - Sep/2016, Accessed: 2017

PHILLIPS 66 FACILITY NO. 6880
GEIGER CORRECTIONS FACILITY
SPOKANE, WASHINGTON11145847-MN00
Dec 21, 2017GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP
DEEP ZONE - SEPTEMBER 14, 2017FIGURE 2B

CAD File: P:\drawings\11145000s\11145847-I1145847-REPORT\11145847-MN00(001)\11145847-MN00(001)GN\1145847-MN00(001)GN\1145847-MN00(001)G

						_	HYDI	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cl	eanup Leve	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MP-1	08/20/01	NS												
MP-1	11/30/01	Ν						50,300	<750	<0.50	<2.0	<1.0	<1.5	990
MP-1	03/25/02	Ν						9,650	<750	<0.50	<2.0	1.9	23	599
MP-1	06/04/02	Ν						39,700	<500	<0.50	<2.0	1.9	<1.5	353
MP-1	08/20/02	Ν						19,100	<500	<0.50	<2.0	1.1	13	223
MP-1	10/29/02	Ν						20,900	<500	<0.50	<2.0	1.2	13	413
MP-1	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	4.2	62
MP-1	06/05/03	Ν						9,950	<500	<0.50	<2.0	<1.0	<1.5	268
MP-1	09/09/03	Ν						8,430	<500	<0.50	<2.0	<1.0	17	459
MP-1	12/10/03	Ν						13,600	<500	<0.50	<2.0	<1.0	5.9	184
MP-1	06/03/04	Ν						16,800	<500	<0.50	<2.0	<1.0	9.5	246
MP-1	12/01/04	Ν						14,800	<500	<0.50	<2.0	1.7	16	246
MP-1	06/03/05	Ν						17,400	<500	<0.50	<2.0	3.1	29	178
MP-1	11/21/05	Ν						9,900	500	<0.50	<2.0	<1.0	17	32
MP-1	06/15/06	Ν						11,200	<500	<0.50	<2.0	<1.0	18	<20
MP-1	12/19/06	Ν						2,700	<500	<0.50	<2.0	<1.0	7.2	114
MP-1	05/30/07	Ν						6,100	<500	<0.50	<2.0	<1.0	19	120
MP-1	10/30/07	removed from s	sampling sch	edule due to	o well ob	s								
MP-1	02/02/11		2,354.90	3.96		2350.94								
MP-1	04/26/11		2,354.90	4.20		2350.70								
MP-1	07/12/11		2,354.90	DRY										
MP-1	10/28/11		2,354.90	Obstructio	on in Wel	ll at 4.59 F								
MP-1	10/09/13		2,354.90	Well Deco	ommissic	or								
MP-1R	10/12/13	Ν	2,354.78	4.86		2349.92	3,210	1,200	<400	<1.0	<1.0	<1.0	13.9	16.3
MP-1R	03/11/14	Ν	2,354.78	2.15		2352.63	1,260	500	500	<1.0	<1.0	<1.0	<3.0	<4.0
MP-1R	03/11/14	FD					1,300	520	640	<1.0	<1.0	<1.0	<3.0	<4.0

					0011		HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cle	anup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MP-1R	06/03/14	Ν	2,354.78	4.95		2349.83	3,890	1,400	<420	<1.0	<1.0	<1.0	13.5	10.6
MP-1R	04/06/17	Ν	2,354.78	3.58		2351.20	430	290	J110	<0.5	<0.5	<0.5	<0.5	<1.0
MP-1R	04/06/17	FD					450	250	J80	<0.5	<0.5	<0.5	<0.5	<1.0
MP-1R	09/14/17	Ν	2,354.78	4.79		2,349.99	2,200	1,400	140 J	<1	<1	<1	<1	5
MW-1	08/20/01	NS												
MW-1	03/25/02	Ν						274	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-1	06/04/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	08/20/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	10/29/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	02/19/03	Ν						9,310	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	06/05/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	09/09/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/10/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	06/03/04	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/01/04	Ν						<250	<500	3.6	<2.0	1.5	2.0	<20
MW-1	06/03/05	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	11/21/05	NS												
MW-1	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	12/19/06	NS												
MW-1	05/30/07	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-1	10/30/07	NS												
MW-1	06/24/08	NS												
MW-1	12/03/08	Ν					<50	<29	<68	<0.50	<0.7	<0.80	<0.80	<1.0
MW-1	06/03/09	Ν					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-1	11/10/09	Ν					<50	80	<383	<1.0M0	<1.0	<1.0	<3.0	<1.0

Summary of Groundwater Monitoring Data Phillips 66 Facility No. 6880 Geiger Corrections Facility Spokane, Washington

Date	Sample Type												
	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
Model Tox	ics Control Act M	lethod A Cle	anup Leve	els		800/1000	500	500	5	1000	700	1000	160
						ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
02/02/10	Ν					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	<1.0
05/18/10	Ν					<50	<76	<379	<1.0	<1.0	<1.0	<3.0	<1.0
08/09/10	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
11/01/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
02/02/11	Ν					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	
04/26/11	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
07/12/11	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
10/27/11	Ν					<50	<78	<390	<1.0	< 1.0	<1.0	<3.0	
10/27/11	FD					<50	<78	<390	<1.0	<1.0	<1.0	<3.0	
07/02/12	Ν	2,354.55	31.90		2322.65	<50	<86	<430	<1.0	<1.0	<1.0	<3.0	<1.0
07/02/12	FD					<50	<82	<410	<1.0	<1.0	<1.0	<3.0	<1.0
10/10/12	Ν	2,354.55	36.02		2318.53	<50	<160	<810	<1.0	<1.0	<1.0	<3.0	<1.0
10/10/12	FD					<50	<160	<800	<1.0	<1.0	<1.0	<3.0	<1.0
03/13/13	FD					<100	<460	<460	<1.0	<1.0	<1.0	<3.0	<4.0
05/15/13	Ν	2,354.55	32.62		2321.93	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
05/15/13	FD					<100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
08/06/13	Ν	2,354.55	34.22		2320.38	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
08/06/13	FD					<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
10/11/13	Ν	2,354.60	35.79		2318.81	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
10/11/13	FD					<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
03/11/14	Ν	2,354.60	35.45		2319.15	<100	<400	500	<1.0	<1.0	<1.0	<3.0	<4.0
06/03/14	Ν	2,354.60	33.90		2320.70	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
06/03/14	FD					<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
04/06/17	Ν	2,354.60	27.10		2327.50	<50	<29	<68	<0.5	<0.5	<0.5	<0.5	<1.0
09/14/17	Ν	2,354.60	33.15		2,321.45	<250	<110	<270	<1	<1	<1	<1	<4
	Model Tox 02/02/10 05/18/10 08/09/10 11/01/10 02/02/11 04/26/11 07/12/11 10/27/11 10/27/11 10/27/11 07/02/12 10/10/12 10/10/12 10/10/12 10/10/12 10/10/12 03/13/13 05/15/13 05/15/13 05/15/13 08/06/13 10/11/13 10/11/13 10/11/13 10/11/13 03/11/14 06/03/14 04/06/17 09/14/17	Model Toxics Control Act M 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 07/12/11 N 10/27/11 FD 07/02/12 FD 10/10/12 FD 07/02/12 FD 10/10/12 FD 03/13/13 FD 05/15/13 N 05/15/13 FD 08/06/13 FD 08/06/13 FD 03/11/14 N 06/03/14 FD 03/11/14 N 06/03/14 FD 04/06/17 N 09/14/17 N	Model Toxics Control Act Method A Classing 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 07/12/11 N 07/02/12 N 2,354.55 07/02/12 FD 10/10/12 FD 03/13/13 FD 05/15/13 N 2,354.55 05/15/13 FD 03/13/13 FD 08/06/13 N 2,354.55 08/06/13 FD 03/13/13 FD 03/06/13 FD 03/06/13 FD 03/06/13 FD 03/11/14 N 2,354.60 06/03/14 FD 04/06/17 N <t< td=""><td>Model Toxics Control Act Method A Cleanup Level 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 02/02/11 N 04/26/11 N 07/12/11 N 10/27/11 FD 07/02/12 N 2,354.55 31.90 07/02/12 FD 10/10/12 FD 03/13/13 FD 05/15/13 N 2,354.55 34.22 08/06/13 N 2,354.60 35.79 10/11/13 FD 03/11/14 N 2,354.60 35.45 06/03/14 FD <</td><td>Model Toxics Control Act Method A Cleanup Levels 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 07/12/11 N 10/27/11 N 07/02/12 N 2,354.55 31.90 07/02/12 FD 07/02/12 FD 03/13/13 FD 05/15/13 N 2,354.55 34.22 08/06/13 N 2,354.55 34.22 08/06/13 FD 08/06/13</td><td>Model Toxics Control Act Method A Cleanup Levels 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 04/26/11 N 10/27/11 N 10/27/11 FD 10/27/12 N 2,354.55 31.90 2322.65 07/02/12 FD 10/10/12 FD 03/13/13 FD 08/06/13</td><td>Model Toxics Control Act Method A Cleanup Levels 800/100 02/02/10 N <</td> <</t<>	Model Toxics Control Act Method A Cleanup Level 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 02/02/11 N 04/26/11 N 07/12/11 N 10/27/11 FD 07/02/12 N 2,354.55 31.90 07/02/12 FD 10/10/12 FD 03/13/13 FD 05/15/13 N 2,354.55 34.22 08/06/13 N 2,354.60 35.79 10/11/13 FD 03/11/14 N 2,354.60 35.45 06/03/14 FD <	Model Toxics Control Act Method A Cleanup Levels 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 07/12/11 N 10/27/11 N 07/02/12 N 2,354.55 31.90 07/02/12 FD 07/02/12 FD 03/13/13 FD 05/15/13 N 2,354.55 34.22 08/06/13 N 2,354.55 34.22 08/06/13 FD 08/06/13	Model Toxics Control Act Method A Cleanup Levels 02/02/10 N 05/18/10 N 08/09/10 N 11/01/10 N 02/02/11 N 04/26/11 N 04/26/11 N 10/27/11 N 10/27/11 FD 10/27/12 N 2,354.55 31.90 2322.65 07/02/12 FD 10/10/12 FD 03/13/13 FD 08/06/13	Model Toxics Control Act Method A Cleanup Levels 800/100 02/02/10 N <	Model Toxics Control Act Method A Cleanup Levels 800/100 ug/L 500 ug/L 02/02/10 N <50	Model Toxics Control Act Method A Cleanup Levels 800/100 500 ug/L <	Model Toxics Control Act Method A Cleanup Levels 800/100 500 500 ug/L ug/L <t< td=""><td>Model Toxics Control Act Method A Cleanup Levels 800/100 500 500 1000 02/02/10 N <50</td> <77</t<>	Model Toxics Control Act Method A Cleanup Levels 800/100 500 500 1000 02/02/10 N <50	Model Toxics Control Act Method A Cleanup Levels 800/1000 ug/L 500 ug/L 500 ug/L 500 ug/L 500 ug/L 500 ug/L 500 ug/L 1000 ug/L 700 ug/L 02/02/10 N -50 -77 -385 -1.0 -1.0 -1.0 05/18/10 N -50 -77 -385 -1.0 -1.0 -1.0 08/09/10 N -50 -77 -385 -1.0 -1.0 -1.0 04/26/11 N -50 -77 -385 -1.0 -1.0 -1.0 04/26/11 N -50 -77 -385 -1.0 -1.0 -1.0 04/26/11 N -50 -78 -3890 -1.0 -1.0 -1.0 01/27/11 N -50 -78 -390 -1.0 <td>Model Toxics Control Act Method A Cleanup Levels 800/1000 500 500 50 5 1000 700 1000 02/02/10 N <50</td> <77	Model Toxics Control Act Method A Cleanup Levels 800/1000 500 500 50 5 1000 700 1000 02/02/10 N <50

MW-2 08/20/01

NS

GHD 11145847 (1)

					0011		HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act N	lethod A Cl	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-2	03/25/02	Ν						19,800	<750	<0.50	<2.0	<1.0	11	216
MW-2	06/04/02	Ν						22,100	<500	<0.50	<2.0	<1.0	8.2	1,320
MW-2	08/20/02	Ν						4,970	<500	<0.50	<2.0	<1.0	6.7	156
MW-2	10/29/02	Ν						13,700	<500	<0.50	<2.0	<1.0	6.1	199
MW-2	10/29/02	FD						15,400	<500	<0.50	<2.0	<1.0	9.3	328
MW-2	02/19/03	Ν						10,400	<500	<0.50	<2.0	<1.0	<1.5	140
MW-2	06/05/03	Ν						4,570	<500	<0.50	<2.0	<1.0	2.0	134
MW-2	06/05/03	FD						4,320	<500	<0.50	<2.0	<1.0	2.4	182
MW-2	09/09/03	Ν						2,560	<500	<0.50	<2.0	<1.0	<1.5	203
MW-2	09/09/03	FD						2,440	<500	<0.50	<2.0	<1.0	<1.5	204
MW-2	12/10/03	Ν						42,100	<500	<0.50	<2.0	<1.0	<1.5	282
MW-2	06/03/04	Ν						6,000	<500	<0.50	2.6	<1.0	6.0	162
MW-2	06/03/04	FD						6,500	<500	<0.50	2.1	<1.0	5.4	170
MW-2	12/01/04	Ν						2,410	<500	<0.50	<2.0	<1.0	5.2	38
MW-2	06/03/05	Ν						2,810	<500	<0.50	<2.0	<1.0	<1.5	129
MW-2	06/03/05	FD						2,910	<500	<0.50	<2.0	<1.0	5.2	129
MW-2	11/21/05	Ν						3,440	<500	<0.50	<2.0	<1.0	<1.5	24
MW-2	11/21/05	FD						3,680	500	<0.50	<2.0	<1.0	<1.5	23
MW-2	06/15/06	Ν						2,750	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-2	06/16/06	FD						11,200	<500	<0.50	<2.0	<1.0	18	<20
MW-2	12/19/06	Ν						2,340	<500	<0.50	<2.0	<1.0	2.6	95
MW-2	05/30/07	Ν						2,790	<500	<0.50	<2.0	<1.0	1.7	98
MW-2	10/30/07	Ν					2,600	1,800	140	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	06/24/08	Ν					1,600	830	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	12/03/08	Ν					1,800	700	<69	<0.50	<0.70	<0.80	<0.80	<1.0
MW-2	06/03/09	Ν					1,730	620	<58	<0.12	<0.21	<0.20	<0.15	
MW-2	11/10/09	Ν					2,230	821	<379	<1.0	<1.0	<1.0	<3.0	3.2

					CDU	-	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cle	anup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-2	02/02/10	Ν					1,450	940	<388	<1.0	<1.0	<1.0	<3.0	3.9
MW-2	05/18/10	Ν					1,330	1,870	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-2	08/09/10	Ν					1,200	831	<396	<1.0	<1.0	<1.0	<3.0	
MW-2	11/01/10	Ν					1,680	2,080	<388	<1.0	<1.0	<1.0	<3.0	
MW-2	02/02/11	Ν					1,700	1,170	<385	<1.0	<1.0	<1.0	<3.0	
MW-2	04/26/11	Ν					3,280	562	<392	<1.0	<1.0	<1.0	<3.0	
MW-2	07/12/11	Ν					1,020	700	<408	<1.0	<1.0	<1.0	<3.0	
MW-2	10/27/11	Ν					2,000	920	<410	<1.0	<1.0	<1.0	<3.0	
MW-2	07/02/12	Ν	2,354.55	4.83		2349.72	1,960	580	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-2	10/10/12	Ν	2,354.55	5.06		2349.49	1,500	680	<840	<1.0	<1.0	<1.0	<3.0	7.4
MW-2	03/13/13	Ν	2,354.55	4.61		2349.94	1,060	620	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	05/15/13	Ν	2,354.55	5.09		2349.46	1,220	990	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	08/06/13	Ν	2,354.55	4.68		2350.51	924	560	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	10/11/13	Ν	2,355.19	5.19		2350.00	833	910	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	03/11/14	Ν	2,355.19	3.21		2351.98	1,900	910	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	06/03/14	Ν	2,355.19	5.10		2350.09	1,870	610	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-2	04/06/17	Ν	2,355.19	4.18		2351.01	1,500	1,200	<73	<0.5	<0.5	<0.5	<0.5	J2.0
MW-2	09/14/17	Ν	2,355.19	4.89		2,350.30	1,200	720	<260	<1	<1	<1	<1	<4
MW-3	08/20/01	NS												
MW-3	03/25/02	Ν						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-3	06/04/02	Ν						267	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	08/02/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	10/29/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	06/05/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	09/09/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20

						-	HYDF	ROCARBO	DNS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cle	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	12/10/03	Ν						<250	<500	<1.5	<2.0	<1.0	<1.5	<20
MW-3	06/03/04	NS												
MW-3	12/01/04	NS												
MW-3	06/03/05	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	11/21/05	NS												
MW-3	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	12/19/06	NS												
MW-3	05/30/07	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-3	10/30/07	NS												
MW-3	06/24/08	NS												
MW-3	12/03/08	NS												
MW-3	06/03/09	NS												
MW-3	11/10/09	NS												
MW-3	02/02/10	NS												
MW-3	05/18/10	NS												
MW-3	08/09/10	NS												
MW-3	11/01/10	NS												
MW-3	02/02/11	NS												
MW-3	04/26/11	NS												
MW-3	07/12/11	NS												
MW-3	10/27/11	NS												
MW-3	07/02/12	Ν	2,355.18	4.92		2350.26	NS							
MW-3	10/11/12	Ν	2,355.18	5.17		2350.01	<50	<160	<820	<1.0	<1.0	<1.0	<3.0	<1.0
MW-3	03/13/13	NS	2,355.18	4.68		2350.50								
MW-3	05/15/13	Ν	2,355.18	5.16		2350.02	<100	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-3	08/06/13	NS	2,355.18	4.64		2350.80								
MW-3	10/11/13	Ν	2,355.44	5.28		2350.16	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0

						_	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	ТРНо	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cle	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	03/11/14	NS	2,355.44	3.52		2351.92								
MW-3	06/03/14	Ν	2,355.44	4.98		2350.46	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-3	04/06/17	Ν	2,355.44	4.28		2351.16	<50	<28	<66	<0.5	<0.5	<0.5	<0.5	<1.0
MW-3	09/14/17	Ν	2,355.44	4.89		2,350.55	<250	<100	<260	<1	<1	<1	<1	<4
MW-4	08/20/01	NS												
MW-4	03/25/02	Ν						10,600	<750	1.1	3.2	<1.0	1.9	526
MW-4	03/26/02	Ν						5,770	<750	<0.50	<2.0	<1.0	<1.5	344
MW-4	06/04/02	Ν						11,400	<500	<0.50	<2.0	<1.0	<1.5	432
MW-4	06/05/02	Ν						12,500	<500	<0.50	<2.0	1.1	1.6	278
MW-4	08/20/02	Ν						1,500	<500	<0.50	<2.0	<1.0	<1.5	43
MW-4	10/29/02	Ν						2,220	<500	<0.50	<2.0	<1.0	<1.5	72
MW-4	02/19/03	Ν						1,570	<500	<0.50	<2.0	<1.0	<1.5	22
MW-4	06/05/03	Ν						720	<500	<0.50	<2.0	<1.0	<1.5	40
MW-4	09/09/03	Ν						890	<500	<0.50	<2.0	<1.0	<1.5	61
MW-4	12/10/03	Ν						2,750	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	06/03/04	Ν						710	<500	<0.50	<2.0	<1.0	<1.5	41
MW-4	12/01/04	Ν						620	<500	0.69	<2.0	<1.0	<1.5	22
MW-4	06/03/05	Ν						370	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	11/21/05	Ν						920	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	12/19/06	Ν						360	<500	<0.50	<2.0	<1.0	<1.5	31
MW-4	12/19/06	FD						380	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	05/30/07	Ν						449	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-4	05/30/07	FD						445	<500	<0.50	<2.0	<1.0	<1.5	27
MW-4	10/30/07	Ν					700			<0.50	<0.70	<0.80	<0.80	1.0
MW-4	10/30/07	FD					660	650	<94	<0.50	<0.70	<0.80	<0.80	<1.0

						_	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act I	Method A Cle	anup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-4	06/24/08	Ν					190	200	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-4	12/03/08	Ν					330	200	<66	<0.50	<0.70	<0.80	<0.80	<1.0
MW-4	06/03/09	Ν					193	120	<59	<0.12	<0.21	<0.20	<0.15	
MW-4	11/10/09	Ν					380	363	<381	<1.0	<1.0	<1.0	<3.0	2.9
MW-4	02/02/10	Ν					162	286	<388	<1.0	<1.0	<1.0	<3.0	2.7
MW-4	05/18/10	Ν					227	650	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-4	08/09/10	Ν					156	123	<385	<1.0	<1.0	<1.0	<3.0	
MW-4	11/01/10	Ν					374	277	<388	<1.0	<1.0	<1.0	<3.0	
MW-4	02/02/11	Ν					137	201	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	04/26/11	Ν					1,010	185	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	07/12/11	Ν					510	210 J	<392	<1.0	<1.0	<1.0	<3.0	
MW-4	10/27/11	Ν					173	340	<380	<1.0	<1.0	<1.0	<3.0	
MW-4	07/02/12	Ν	2,356.37	5.85		2350.52	241	180	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-4	10/09/12	Ν	2,356.37	6.15		2350.22	113	<160	<810	<1.0	<1.0	<1.0	<3.0	5.1
MW-4	03/13/13	Ν	2,356.37	5.62		2350.75	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	05/15/13	Ν	2,356.37	6.05		2350.32	136	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	08/06/13	Ν	2,356.37	5.68		2350.76	120	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	10/09/13	Ν	2,356.44	6.17		2350.27	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	03/11/14	Ν	2,356.44	4.70		2351.74	192	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	06/03/14	Ν	2,356.44	5.93		2350.51	277	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-4	04/03/17	Ν	2,356.44	5.09		2351.35	200 J	190	<75	<0.5	<0.5	<0.5	<0.5	<1.0
MW-4	09/14/17	Ν	2,356.44	6.27		2,350.17	270	260	<260	<1	<1	<1	<1	<4
MW-5	08/20/01	NS												
MW-5	03/25/02	Ν						1,360	<750	19.1	121	16	123	27
MW-5	06/04/02	Ν						2,720	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	08/20/02	Ν						774	<500	<0.50	<2.0	<1.0	1.6	<20

							HYDF	ROCARBO	DNS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act I	Method A Cle	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-5	10/29/02	Ν						2,580	<500	<0.50	<2.0	<1.0	<1.5	56
MW-5	02/19/03	Ν						1,510	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	06/05/03	Ν						596	<500	<0.50	<2.0	<1.0	<1.5	28
MW-5	09/09/03	Ν								<0.50	<2.0	<1.0	<1.5	40
MW-5	12/10/03	Ν						5,040	800	<0.50	<2.0	<1.0	<1.5	<20
MW-5	06/03/04	Ν						360	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	12/01/04	Ν						4,600	<500	1.8	<2.0	<1.0	<1.5	28
MW-5	06/03/05	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	11/21/05	Ν						2,150	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	12/19/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	05/30/07	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-5	10/30/07	Ν					250	2,500	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-5	06/24/08	Ν					<50	170	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-5	12/03/08	Ν					240	73	<68	<0.50	<0.70	<0.80	<0.80	<1.0
MW-5	06/03/09	Ν					<13	<36	<59	<0.12	<0.21	<0.20	<0.15	
MW-5	11/10/09	Ν					<50	315	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	02/02/10	Ν					<50	81	<388	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	05/18/10	Ν					<50	126	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	08/09/10	NS												
MW-5	11/01/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-5	02/02/11	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-5	04/26/11	Ν					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	
MW-5	07/12/11	Ν					<50	<78	<392	<1.0 UJ	<1.0 UJ	<1.0 UJ	<3.0 UJ	
MW-5	10/27/11	Ν					<50	990	<400	<1.0	<1.0	<1.0	<3.0	
MW-5	07/02/12	Ν	2,354.81	4.73		2350.08	<50	<78	<390	<1.0	<1.0	<1.0	<3.0	<1.0
MW-5	10/09/12	Ν	2,354.81	5.06		2349.75	<50	<170	<830	<1.0	<1.0	<1.0	<3.0	<1.0

						-	HYDF	ROCARBO	DNS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act N	Method A Cle	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-5	03/13/13	Ν	2,354.81	4.51		2350.30	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	05/15/13	Ν	2,354.81	5.01		2349.80	<100	<390	<390	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	08/06/13	Ν	2,354.81	4.67		2350.44	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	10/09/13	Ν	2,355.11	5.05		2350.06	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	03/11/14	Ν	2,355.11	3.40		2351.71	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	06/03/14	Ν	2,355.11	5.05		2350.06	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5	04/03/17	Ν	2,355.11	3.95		2351.16	<50	<30	<69	<0.5	<0.5	<0.5	<0.5	<1.0
MW-5	09/14/17	Ν	2,355.11	4.89		2,350.22	<250	<100	<260	<1	<1	<1	<1	<4
MW-5D	10/11/13	Ν	2,355.03	35.57		2319.46	614	1,100	<450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	03/11/14	Ν	2,355.03	35.48		2319.55	<100	<400	700	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	06/03/14	Ν	2,355.03	33.73		2321.30	128	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-5D	09/14/17	Ν	2,355.03	32.48		2,322.55	<250	560	<250	<1	<1	<1	<1	<4
MW-6	08/20/01	NS												
MW-6	03/25/02	Ν						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/04/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	08/20/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	10/29/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/05/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	09/09/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	12/10/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	06/03/04	NS												
MW-6	12/01/04	NS												
MW-6	06/03/05	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	11/21/05	NS												

						_	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	ТРНо	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	lethod A Cle	anup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-6	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	12/19/06	NS												
MW-6	05/30/07	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-6	10/30/07	NS												
MW-6	06/24/08	Ν					<50	<75	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-6	12/03/08	NS												
MW-6	06/03/09	Ν					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-6	11/10/09	Ν					<50	135	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	02/02/10	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	05/18/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	08/09/10	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	11/01/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-6	02/02/11	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	04/26/11	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-6	07/12/11	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-6	10/27/11	Ν					<50	<78	<390	<1.0	<1.0	<1.0	<3.0	
MW-6	07/02/12	Ν	2,355.87	32.83		2323.04	<50	<82	<410	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	10/09/12	Ν	2,355.87	35.71		2320.16	<50	<160	<800	<1.0	<1.0	<1.0	<3.0	<1.0
MW-6	03/13/13	Ν	2,355.87	32.45		2323.42	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	05/15/13	Ν	2,355.87	33.07		2322.80	<100	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0 UJ
MW-6	08/06/13	Ν	2,355.87	34.91		2321.02	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	10/11/13	Ν	2,355.93	38.50		2317.43	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	03/11/14	Ν	2,355.93	36.59		2319.34	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	06/03/14	Ν	2,355.93	34.65		2321.28	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-6	04/03/17	Ν	2,355.93	27.98		2327.95	<50	<30	<70	<0.5	<05	<0.5	<0.5	<1.0
MW-6	09/14/17	Ν	2,355.93	33.26		2,322.67	<250	<110	<260	<1	<1	<1	<1	<4

							HYDE	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	ТРНо	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	lethod A Cl	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-7	08/20/01	NS												
MW-7	03/25/02	Ν						6,280	<750	<0.50	<2.0	<1.0	25	154
MW-7	06/04/02	Ν						13,100	<500	<0.50	<2.0	<1.0	14	221
MW-7	08/21/02	Ν						6,850	<500	<0.50	<2.0	<1.0	<1.5	65
MW-7	08/21/02	Ν						6,100	<500	0.82	4.0	1.9	13	92
MW-7	10/29/02	Ν						5,460	<500	0.70	<2.0	<1.0	9	172
MW-7	02/19/03	Ν						7,390	<500	<0.50	<2.0	<1.0	6	<20
MW-7	06/05/03	Ν						770	<500	0.99	<2.0	<1.0	<1.5	<20
MW-7	09/09/03	NS												
MW-7	09/11/03	Ν						1,250	<500	<0.50	<2.0	4.7	30	81
MW-7	12/10/03	Ν						7,120	<500	<0.50	<2.0	1.2	15	114
MW-7	06/03/04	Ν						1,000	<500	<0.50	<2.0	<1.0	<1.5	48
MW-7	12/01/04	Ν						1540	<500	<0.50	<2.0	<1.0	<1.5	21
MW-7	06/03/05	Ν						830	<500	<0.50	<2.0	<1.0	<1.5	24
MW-7	11/21/05	Ν						2,970	<500	<0.50	<2.0	<1.0	<1.5	48
MW-7	06/15/06	Ν						1,410	<500	<0.50	<2.0	<1.0	<1.5	23
MW-7	12/19/06	Ν						1,300	<500	<0.50	6.42	2.74	9.43	24
MW-7	05/30/07	Ν						961	<500	0.71	<2.0	<1.0	<1.5	<20
MW-7	10/30/07	Ν					2,700	14,000	<4,700	<0.50	<0.70	<0.80	<0.80	<1.0
MW-7	06/24/08	Ν					1,600	1,200	<95	<0.50	<0.70	<0.80	<0.80	<1.0
MW-7	12/04/08	Ν					1,400	<29	<68	<0.50	<0.70	<0.80	<0.80	<1.0
MW-7	06/04/09	Ν					155	560	<58	<0.12	<0.21	<0.20	<0.15	
MW-7	11/10/09	Ν					577	7,600	<388	<1.0	<1.0	<1.0	<3.0	2.7
MW-7	02/02/10	Ν					214	2,000	<377	<1.0	<1.0	<1.0	<3.0	2.4
MW-7	05/18/10	Ν					717	16,900	<400	<1.0	<1.0	<1.0	<3.0	<1.0
MW-7	08/09/10	Ν					928	22,100	<388	<1.0	<1.0	<1.0	<3.0	
MW-7	11/01/10	Ν					3,130	28,300	<388	<1.0	<1.0	<1.0	<3.0	

						_	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act N	Method A Cle	anup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-7	02/02/11	Ν					704	10,700	<392	<1.0	<1.0	<1.0	<3.0	
MW-7	04/26/11	Ν					5,710	3,690	<400	<1.0	<1.0	<1.0	<3.0	
MW-7	07/12/11	Ν					278	2,540	<392	<1.0	<1.0	<1.0	<3.0	
MW-7	10/26/11	Ν					2,420	37,200	<380	<1.0	<1.0	<1.0	<3.0	
MW-7	07/02/12	Ν	2,356.25	31.84		2324.41	<50	78	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-7	10/10/12	Ν	2,356.25	35.24		2321.01	207	350	<820	<1.0	<1.0	<1.0	<3.0	5.4
MW-7	03/13/13	Ν	2,356.25	31.94		2324.31	104	<440	<440	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	05/14/13	Ν	2,356.25	32.74		2323.51	< 100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	08/06/13	Ν	2,356.25	34.54		2321.77	250	<420	<420	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	10/12/13	Ν	2,356.31	36.11		2320.20	410	600	< 450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	03/11/14	Ν	2,356.31	35.62		2320.69	448	430	550	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	06/04/14	Ν	2,356.31	34.37		2321.94	201	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-7	04/05/17	NS	2,356.31	26.25		2330.06								
MW-7	09/14/17	NS	2,356.31	33.17		2,323.14								
MW-8	08/20/01	NS												
MW-8	03/25/02	Ν						<250	<750	<0.50	<2.0	<1.0	<1.5	<20
MW-8	06/04/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	08/21/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	10/29/02	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	02/19/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	06/05/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	09/09/03	NS												
MW-8	09/11/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	12/10/03	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	06/03/04	NS												
MW-8	12/01/04	NS												

						_	HYD	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	Т	Е	Х	Naph
	Model Tox	ics Control Act I	Method A Cle	eanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-8	06/03/05	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	11/21/05	NS												
MW-8	06/15/06	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	12/19/06	NS												
MW-8	05/30/07	Ν						<250	<500	<0.50	<2.0	<1.0	<1.5	<20
MW-8	10/30/07	NS												
MW-8	06/24/08	Ν					<50	<75	<94	<0.50	<0.70	<0.80	<0.80	<1.0
MW-8	12/04/08	Ν					<50	35,000	<3,500	<0.50	<0.70	<0.80	<0.80	<1.0
MW-8	06/04/09	Ν					<13.4	<36	<59	<0.12	<0.21	<0.20	<0.15	
MW-8	11/10/09	Ν					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	02/02/10	Ν					<50	<76	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	05/18/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	08/09/10	Ν					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	
MW-8	11/01/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-8	02/02/11	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-8	04/26/11	Ν					<50	<80	<400	<1.0	<1.0	<1.0	<3.0	
MW-8	07/12/11	Ν					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	
MW-8	10/26/11	Ν					<50	<76	<380	<1.0	<1.0	<1.0	<3.0	
MW-8	07/02/12	Ν	2,356.57	32.36		2324.21	<50	<86	<430	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	10/10/12	Ν	2,356.57	35.56		2321.01	<50	<170	<830	<1.0	<1.0	<1.0	<3.0	<1.0
MW-8	03/13/13	Ν	2,356.57	32.66		2323.91	<100	<440	<440	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	05/14/13	Ν	2,356.57	33.12		2323.45	<100	<390	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	08/06/13	Ν	2,356.57	34.83		2321.77	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	10/12/13	Ν	2,356.60	36.36		2320.24	<100	<430	<430	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	03/11/14	Ν	2,356.60	36.98		2319.62	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	06/04/14	Ν	2,356.60	34.75		2321.85	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-8	04/05/17	Ν	2,356.60	29.20		2327.40	<50	<30	<69	<0.5	<0.5	<0.5	<0.5	<1.0

						_	HYDF	ROCARBO	ONS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act I	Method A C	eanup Leve	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-8	09/14/17	Ν	2,356.60	33.04		2,323.56	<250	<100	<250	<1	<1	<1	<1	<4
MW1A				re	moved f	rom sampli	na schedule	due to we	ell obstructio	n				
MW1A	02/02/11	NS	2 357 25	Obstructio	n in We	ll at 3 25 F								
MW1A	04/26/11	NS	2,357.25	Obstructio	n in We	ll at 3 25 F								
MW1A	09/14/17	NS	2,357.25	34.47		2,322.78								
MW-11B	08/20/01	NS												
MW-11B	03/25/02	NS												
MW-11B	06/04/02	NS												
MW-11B	10/29/02	NS												
MW-11B	02/19/03	NS												
MW-11B	06/05/03	NS												
MW-11B	09/09/03	NS												
MW-11B	12/10/03	NS												
MW-11B	06/03/04	NS												
MW-11B	12/01/04	NS												
MW-11B	06/03/05	NS												
MW-11B	11/21/05	NS												
MW-11B	06/15/06	NS												
MW-11B	12/19/06	NS												
MW-11B	05/30/07	NS												
M\\/_11B	10/30/07	NS												
M\\/_11B	06/24/08	NS												
M\\/_11B	12/02/08	NS												
	12/03/00	NI NI												
	11/10/00	IN NI					<10	<00 1 / /	<00	<0.12	<u.z i<="" td=""><td><0.20</td><td><0.10</td><td></td></u.z>	<0.20	<0.10	
ININA-LUB	11/10/09	IN					<00	144	<201	<1.0	<1.0	<1.0	<3.0	<1.0

							HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	TOC	DTW	SPH	GWE	TPHg	TPHd	ТРНо	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	Method A Cle	eanup Leve	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-11B	02/02/10	Ν					<50	<76	<381	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	05/18/10	Ν					<50	<77	<385	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	08/09/10	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-11B	11/01/10	Ν					<50	<78	<388	<1.0	<1.0	<1.0	<3.0	
MW-11B	02/02/11	Ν					<50	<79	<396	<1.0	<1.0	<1.0	<3.0	
MW-11B	04/26/11	Ν					<50	<80	<400	<1.0	<1.0	<1.0	<3.0	
MW-11B	07/12/11	Ν					<50	<78	<392	<1.0	<1.0	<1.0	<3.0	
MW-11B	10/26/11	Ν					<50	<75	<380	<1.0	<1.0	<1.0	<3.0	
MW-11B	07/02/12	Ν	2,357.78	33.82		2323.96	<50	<77	<380	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	10/10/12	Ν	2,357.78	37.18		2320.60	<50	<160	<810	<1.0	<1.0	<1.0	<3.0	<1.0
MW-11B	03/13/13	Ν	2,357.78	33.67		2324.11	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	05/14/13	Ν	2,357.78	34.52		2323.26	<100	<450	<450	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	08/06/13	Ν	2,357.78	36.34		2321.51	<100	<380	<380	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	10/12/13	Ν	2,357.85	37.96		2319.89	<100	<410	<410	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	03/12/14	Ν	2,357.85	38.10		2319.75	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	06/04/14	Ν	2,357.85	35.97		2321.88	<100	<400	<400	<1.0	<1.0	<1.0	<3.0	<4.0
MW-11B	04/05/17	Ν	2,357.85	28.38		2329.47	<50	<30	<70	<0.5	<0.5	<0.5	<0.5	<1.0
MW-11B	09/14/17	Ν	2,357.85	34.78		2,323.07	<250	<110	<260	<1	<1	<1	<1	<4
MW-12A	08/20/01	NS												
MW-12A	03/25/02	NS												
MW-12A	06/04/02	NS												
MW-12A	10/29/02	NS												
MW-12A	02/19/03	NS												
MW-12A	06/05/03	NS												
MW-12A	09/09/03	NS												
MW-12A	12/10/03	NS												

						-	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act M	lethod A Cle	eanup Leve	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-12A	06/03/04	NS												
MW-12A	12/01/04	NS												
MW-12A	06/03/05	NS												
MW-12A	11/21/05	NS												
MW-12A	06/15/06	NS												
MW-12A	12/19/06	NS												
MW-12A	05/30/07	NS												
MW-12A	10/30/07	NS												
MW-12A	06/24/08	NS												
MW-12A	12/03/08	NS												
MW-12A	06/03/09	Ν					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-12A	11/10/09	not part of curre	nt monitoring	g program										
MW-12A	07/02/12	NS	2,355.12	31.23		2323.89								
MW-12A	10/09/12	NS	2,355.12	34.66		2320.46								
MW-12A	03/12/13	NS	2,355.12	30.97		2324.15								
MW-12A	05/14/13	NS	2,355.12	32.00		2323.12								
MW-12A	08/05/13	NS	2,355.12	33.74		2321.48								
MW-12A	10/18/13	NS	2,355.22	35.36		2319.86								
MW-12A	03/11/14	NS	2,355.22	35.02		2320.20								
MW-12A	06/02/14	NS	2,355.22	33.38		2321.84								
MW-12A	04/03/17	NS	2,355.22	25.76		2329.46								
MW-12A	09/14/17	NS	2,355.22	32.27		2,322.95								
MW-12B	08/20/01	NS												
MW-12B	03/25/02	NS												
MW-12B	06/04/02	NS												
MW-12B	10/29/02	NS												

						-	HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	ics Control Act	Method A Cle	eanup Leve	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-12B	02/19/03	NS												
MW-12B	06/05/03	NS												
MW-12B	09/09/03	NS												
MW-12B	12/10/03	NS												
MW-12B	06/03/04	NS												
MW-12B	12/01/04	NS												
MW-12B	06/03/05	NS												
MW-12B	11/21/05	NS												
MW-12B	06/15/06	NS												
MW-12B	12/19/06	NS												
MW-12B	05/30/07	NS												
MW-12B	10/30/07	NS												
MW-12B	06/24/08	NS												
MW-12B	12/03/08	NS												
MW-12B	06/03/09	Ν					<13	<35	<58	<0.12	<0.21	<0.20	<0.15	
MW-12B	11/10/09	not part of curr	ent monitoring	g program										
MW-12B	07/02/12	NS	2,355.02	30.85		2324.17								
MW-12B	10/09/12	NS	2,355.02	34.24		2320.78								
MW-12B	03/12/13	NS	2,355.02	30.72		2324.30								
MW-12B	05/14/13	NS	2,355.02	31.56		2323.46								
MW-12B	08/05/13	NS	2,355.02	33.36		2321.73								
MW-12B	10/18/13	NS	2,355.09	35.00		2320.09								
MW-12B	03/11/14	NS	2,355.09	34.99		2320.10								
MW-12B	06/02/14	NS	2,355.09	33.03		2322.06								
MW-12B	04/03/17	NS	2,355.09	26.35		2328.74								
MW-12B	09/14/17	NS	2,355.09	31.76		2,323.33								

Summary of Groundwater Monitoring Data Phillips 66 Facility No. 6880 Geiger Corrections Facility Spokane, Washington

							HYDF	ROCARBO	NS		PRIMA	RY VOCs		
Sample ID	Date	Sample Type	тос	DTW	SPH	GWE	TPHg	TPHd	TPHo	В	т	Е	Х	Naph
	Model Tox	kics Control Act M	ethod A C	leanup Lev	els		800/1000	500	500	5	1000	700	1000	160
							ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

Notes:

DTW = Depth to Water in feet

GWE = Groundwater Elevation in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

TOC = Top of Casing in feet above mean sea level; before August 13, 2009, relative to arbitrary benchmarks

All results are in micrograms per liter (μ g/L) unless otherwise indicated

TPHg = Total petroleum hydrocarbons as gasoline analyzed by NWTPH---Gx unless otherwise noted. The higher value is based on the assumption that

no benzene is present in the groundwater sample. If any detectable amount of benzene is present in the groundwater sample, then the lower TPHg cleanup level is applicab

TPHd = Total petroleum hydrocarbons as diesel, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

TPHo = Total petroleum hydrocarbons as oil, analyzed by NWTPH---Dx with silica gel cleanup unless otherwise noted.

VOCs = Volatile organic compounds

BTEX = Benzene, toluene, ethylbenzene, and xylenes analyzed by EPA Method 8260B unless otherwise noted.

Total Xylenes = o---xylene + m,p---xylene

<x = Not detected at laboratory reporting limit x

--- = Not analyzed

Concentrations in bold type indicate the analyte was detected above the Model Toxics Control Act (MTCA) Method A cleanup level

Appendices

Appendix A Groundwater Monitoring Field Data Sheets

Project Data:	Project Name: Ref. No.:	Gieger	Correction 45847	ons		Date: Personnel:	9/14/1 EPM/	7 07		-	
Monitoring W Va Mea Constructed V Measured V Depth of	Vell Data: Well No.: apour PID (ppm): asurement Point: Vell Depth (m/ft): Vell Depth (m/ft): Sediment (m/ft):	MW-3 TOC 14.0 (3.6	0 6 (s	aturated Screen L Depth to Pump In Well Diamet Well Screen Volu Initial Depth to	ength (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): ume, V _s (L) ⁽²⁾ : Water (m/ft):	24	PVC			
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	рН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
		Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
0716	Puraino										
0725	100	4.92	0.03	16.21	0.599	30.7	1.50	6.07	86		
0730		4.92	0.03	16.28	0.597	29.4	1.48	6.07	93		
0735		4.92	0.03	16.26	0.596	28.0	1.48	6.07	95		
0780	Sampled	(02).	DHSON7-D	91417.DT	·MU3						
	- www.										
										-	
· · · · · · · · · · · · · · · · · · ·											-
								ada and a succession of the su			
									1		

Notes:

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

(5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Monitoring	Well	Record	for	Low-F.	•	arging
				(Forr	n	SP-09)

Project Data:	Project Name: Ref. No.:	Geiger In458	PRISON			Date: Personnel:	9/14 b.T~	117 den			
Monitoring We Va Meas Constructed W Measured W Depth of S	ell Data: Well No.: pour PID (ppm): surement Point: 'ell Depth (m/ft): 'ell Depth (m/ft): Sediment (m/ft):	MP - TO(12.3		S	aturated Screen L Depth to Pump In Well Diamet Well Screen Volu Initial Depth to	Length (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): une, V _s (L) ⁽²⁾ : Water (m/ft):	2:1	PUC 19			
	Pumping	Depth to	Drawdown from Initial							Volume	No. of Well Screen Volumes
	Rate	Water	Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	DO	рН	ORP	Purged, Vp	Purged ⁽⁴⁾
Time	(mL/min)	(m/ft)	(m/ft)	°C	(mS/cm)	NTU	(mg/L)		(mV)	(L)	-
		Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
0800	Stort	pump									
0830	100	4.81	0.02	14.06	1.485	262	1.05	5.96	-101		
0835	1	4.81	0.02	14.20	1,484	24.4	1,02	5.96	-105		
0840		4.81	0.02	14.18	1.481	25.0	1.00	5,97	-106		
0845	Sampled	60 1114	5847-9141	7-DT-MF	IR						
						1					

Notes:

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

(5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Monitoring Well Record for Low-Frow Purging (Form SP-09)

Project Data:		ſ					~ I				
	Project Name:	bener	- Prison			Date:	9/10	117_		-	
	Ref. No.:	01	1145847			Personnel:		011000	/	-	
Monitorina We	ell Data:						V.1	Nacarc	,	-	
Monitoring W	Well No.:	Mω	2_								
Va	apour PID (ppm):			s	aturated Screen L	_ength (m/ft):				_ _	-
Mea	asurement Point:	TUC		-	Depth to Pump Ir	ntake (m/ft) ⁽¹⁾ :		~			-
Constructed V	Nell Depth (m/ft):	1110		-	Well Diamet	er, D (cm/in):	Znpu	C		- =	-
Depth of	Sediment (m/ft):	19.2	[-	Initial Depth to	Water (m/ft):	4.80	3			-
Deptiloi				-	innua 20pti to			2			
	1		Drawdown								No. of Well
	Pumping	Depth to	from Initial							Volume	Screen Volumes
	Rate	Water	Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	DO	рН	ORP	Purged, Vp	Purged ⁽⁴⁾
Time	(mL/min)	(m/ft)	(m/ft)	0°C	(mS/cm)	NTU	(mg/L)	10.4.11+-:++	(mV)	(L)	
Electro	LA MAIS	Prec	ision Required ^(*) :	±3 %	±0.005 or 0.01 ⁽³⁾	±10 %	±10 %		±10 mV	1	
DIACTON	100	U.97	0.04	1740	M (Lag	440	1.70	6.76	-16n		
0190	100	L 29	(1.024	1969	0.672	77.1	0.10	9.73	-11.04-0		
		1.75	0,09	17.75	0.622	72.6	0.00	0.10	-147	<u> </u>	
0140		1.16	0.03	11.5	0.675	72.0	0,00	6.71	- 197		
0145	SAMPILO	6W 11	45841.41	<u>411-p1</u>	.mwc						
				1			· · · · · · · · · · · · · · · · · · ·				
									1		
	C . 1 . 100	colun	011.15		2			6	~1.5		
Sample ID:	<u> </u>	12841	<u>· 4[41]·</u>	$\underline{D} \cdot \underline{M} \overline{W}$	<u></u>	S	ample Time:	-0	442		
Notes:											
(4)	T .		1 - (1)			. (0 (1)				- 16	
(1)	The pump intake	e will be placed	at the well screer	n mid-point or at a	a minimum of 0.6 n	n (∠π) above a	iny seament $\sqrt{2}$	accumulated	at the well b	ottom.	
(2)	The well scieen			netres (5-100t) sc	ieen iengin (L). Fi	or metric units,	v _s -JI (I) L	in mL, where	r (I-D/Z) and	Lale in cin.	
(2)	For imperial unit	S, V _s =л°(г)°L°	(2.54), where ra	and L are in inche		ntan sata stanul		1 500 1 /			
(3)	Purging will cont	inue until stab	water level should	not exceed 0.1 m d or until 20 well	i (0.3 π). The pum screen volumes ha	ping rate shou	d not exceed	1 500 mL/min rae water ren	naine vieually	turbid	
17/	and appears to b	be clearing, or	unless stabilization	n parameters are	varying slightly ou	tside of the sta	bilization crit	eria and app	ear to be		
	stabilizing), No.	of Well Screer	Nolumes Purged	= Vp/Vs.	,						
(5)	For conductivity,	the average v	alue of three read	ings <1 mS/cm ±	0.005 mS/cm or wi	here conductivi	ity >1 mS/cm	1 ±0.01 mS/ci	n.		
Form SP-09 - Revision	02 - August 8, 2017										

Project Data:		7	0				A1.	1			
	Project Name:	(seige	1 P11500	2		Date:	<u> </u>	117			
	Ref. No.:	11143	847			Personnel:	<u>,</u>			-	
Monitoring We	li Data:						<i>p.j.</i>	Men V		-	
womtornig we	Well No.:	ML	5								
Va	pour PID (ppm):			s	aturated Screen L	ength (m/ft):					
Mea	surement Point:	TOC.		-	Depth to Pump In	take (m/ft) ⁽¹⁾ :					
Constructed V	/ell Depth (m/ft):	, –	·	- -	Well Diamet	er, D (cm/in):	2"	nuc			•
Measured V	/ell Depth (m/ft):	13.2	.6	-	Well Screen Volu	ume, V _s (L) ^{-/} :					
Depth of	Sediment (m/ft):				Initial Depth to	Water (m/ft):	- 4	. 87			1
			Descudence	1	r	r					No. of Moll
	Pumping	Depth to	from Initial							Volume	NO. OF WEII
	Pata	Water	Mator Loval ⁽³⁾	Tomporatura	Conductivity	Turbidity		5 4	OPP	Purgod Vp	Burgod ⁽⁴⁾
Time	(ml/min)	(m/ft)	(m/ft)	°C	(mS/cm)	NTU	(mg/L)	рп	(mV)	ruigeu, vp	Fulgeu
	(,	Preci	sion Required ⁽⁵⁾ :	±3 %	+0.005 or 0.01 ⁽⁶⁾	±10 %	±10 %	±0.1 Units	±10 mV	1 (-)	
Start De	mp In	15								1	
1020	100	5.71	0.87	18.69	1.146	179	(2.90)	5.43	47	+ +	
1025	100	681	0.07	10.01	1142	171	1.30	5.30			
1032		6 84	0.12	1970	1147	170	0 70	6 20	6		
1010	- V	5.01	0.15	10.17			6 70	2.20 E 21	6/		
1045		5.01	0.10	(3.85	1.110		0.13	2.26	61		
1020	sampled										
										1	
	I	I	- ry, 1905-101-00001-000-0001-1-001		I	J			1		
Sample ID:	(n. 11)	159417	· 91417. r	T.ML	15	c	ample Time:	10	$n \leq n$		
oampie ib.		10-1-1-		// /// -		- 3	ample rime.				
Notes:											
(1)	The pump intake	will be placed	at the well screen	i mid-point or at a	a minimum of 0.6 m	ı (2 ft) above a	inv sediment a	accumulated	at the well bo	ottom.	
(2)	The well screen	, volume will be	based on a 1.52 n	netres (5-foot) sc	reen length (L). Fo	or metric units.	, V₅=л*(r ²)*L i	n mL, where	r (r=D/2) and	L are in cm.	
• •	For Imperial units	s. V _s =л*(r ²)*L*	(2.54) ³ , where r a	ind L are in inche	is s	,	5 . 7 - 1	,	. ,		
(3)	The drawdown fr	om the initial v	vater level should	not exceed 0 1 m	 i (0.3 ft). The num	oing rate shou	ld not exceed	500 ml /min			
(4)	Purging will conti	nue until stabi	lization is achieved	d or until 20 well	screen volumes ha	ve been purae	d (unless pur	ge water rem	ains visually	turbid	
	and appears to b	e clearing, or	unless stabilization	n parameters are	varying slightly out	side of the sta	bilization crite	eria and appe	ar to be		
	stabilizing), No. o	of Well Screen	Volumes Purged=	= Vp/Vs.							
(5)	For conductivity,	the average v	alue of three readi	ngs <1 mS/cm ±	0.005 mS/cm or wh	nere conductiv	ity >1 mS/cm	±0.01 mS/cn	٦.		

Project Data:	Project Name: Ref. No.:	6:eger	Corre	ctions		Date: Personnel:	9/14/ EPM	17 DT		_	
Monitoring We Va Mea Constructed W Measured W Depth of	ell Data: Well No.: pour PID (ppm): surement Point: /ell Depth (m/ft): /ell Depth (m/ft): Sediment (m/ft):	MW	4 : : s	s	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	Length (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): Ime, V _s (L) ⁽²⁾ : Water (m/ft):	6.	2 ″ 27			
Time	Pumping Rate	Depth to Water	Drawdown from Initial Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	DO (mg/l.)	рН	ORP (mV)	Volume Purged, Vp	No. of Well Screen Volumes Purged ⁽⁴⁾
1 me	(1112/1111)		cision Poquired:	+3 %	±0.005 or 0.01 ⁽⁵⁾	+10 %	+10 %	+0.1 Units	+10 mV	(=/	
1012	Duca: 40		cision Required.		20.005 01 0.01	210 /0				1	
1073	150	6.29		18.28	0.767	3.39	0.24	6.77	-3.9		
1028				10.30	0.770	2.38	0.26	6.77	-22.1		
033				18.36	0.774	2.4Z	0.20	6.80	-30.8		
10 38				18.34	0.775	2.22	0.22	6.73	-34.8		
10 50	Sample	GW-1114	5847-091	417-DT-	MW4 CO	ilected					
						· · · · · ·					
					l						
										· · · · · · · · · · · · · · · · · · ·	
	<u> </u>		<u> </u>	· .	1		1		ļ		<u> </u>

MS/MSD collected

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing). No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Project Data:	Project Name: _ Ref. No.: _	Gieger 111458	- Conrec: 47	tions		Date: Personnel:	9/14 EPM/	IT DT		-	
Monitoring We Vap Meas Constructed W Measured W Depth of S	ell Data: Well No.: pour PID (ppm): surement Point: /ell Depth (m/ft): /ell Depth (m/ft): Sediment (m/ft):	MW- 4	5D 5.24	s	aturated Screen L Depth to Pump In Well Diamet Well Screen Volu Initial Depth to	.ength (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): ıme, V _s (L) ^{\∠} ': Water (m/ft):	3	7 2.48			
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	рН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
	L	Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
1302	Purging										
1320	150	22.98	0,50	15.60	0.774	74.2	0.80	6.53			
1325		32.99	6.51	15.51	6.773	75.4	0.78	6.54			
.430		32.99	0.51	15.47	0.114	72.1	m. 81	6.54			
1335	Sam pled	6 4 11	45847.914	17.01.	MUGD						
					· · · · · · · · · · · · · · · · · · ·						
					•						
······································											
							-				
							/			-	
L	I		L		, <u> </u>	A	Lange Street Street		I		J

Notes: SOCK REMOVED

Bladder pump used

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

(5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

			ŵ.								
Project Data:	.	1.0		1		Deter	9/14	117			
	Project Name:	Gelae	and Dillon		-	Date:				-	
	Ref. No.:	111720	347			Fersonner.	D Toul	<u>sc</u>		-	
Monitoring We	ell Data:		,				<u>p.(10</u>			-	
monitoring its	Well No.:	MW-1	6								
Va	pour PID (ppm):			s	aturated Screen L	ength (m/ft):					-
Mea	surement Point:	TOL		- -	Depth to Pump In	take (m/ft) ⁽¹⁾ :		-		- 🔚	-
Constructed W	/ell Depth (m/ft):	-	/ · ->	-	Well Diamete	er, D (cm/in):	2" 00	<u> </u>		- 1	-
Measured W	/ell Depth (m/ft):	<u> </u>	43	-	well Screen volu	Inne, v _s (L) ^{···}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 51			-
Depth of	Sediment (m/ft):			-	Initial Depth to	water (m/nt):	>	2.60		_	ليم
			Drawdown	I	T	<u> </u>				1	No. of Well
	Pumping	Denth to	from Initial							Volume	Screen Volumes
	Rate	Water	Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	ро	pΗ	ORP	Purged, Vp	Purged ⁽⁴⁾
Time	(mL/min)	(m/ft)	(m/ft)	°C	(mS/cm)	NTU	(mg/L)	P	(mV)	(L)	j
		Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
1400	Pump	starte	ļ								
1430	180	33.73	0.47	13.95	0,424	34.6	2.80	6.45	75		
1435	1	33.71	0.45	13.91	0.424	32.8	Z.85	6.44	77		
1440		33.70	0.44	13.88	0.425		2.85	6.44	78		
1445	Sampled	(ce)	11145847.9	1417-DT	· MU.6			-			
										-	
						1					· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·							
							1				1
					+						
		l	<u> </u>			L		<u> </u>	I		l

Notes:

Bladder pump used

(1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.

(2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches

(3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.

(4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.

(5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Monitoring	Well	Record	for	Low-F.	•	arging
				(F	orm	SP-09)

Project Data:	Project Name: Ref. No.:	(-;eger 111458	- Correi	ctions		Date: Personnel:	9/14/ DT/E	17 PM		-	
Monitoring We Vaj Meas Constructed W Measured W Depth of S	Well Data: Well No.: pour PID (ppm): surement Point: fell Depth (m/ft): fell Depth (m/ft): Sediment (m/ft):	MW- 50.1 50.1	[[s	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	ength (m/ft): take (m/ft) ⁽¹⁾ er, D (cm/in): me, V _s (L) ^{(-/} : Water (m/ft):	33	.[5			
	Pumping	Depth to	Drawdown from Initial						,	Volume	No. of Well Screen Volumes
	Rate	Water	Water Level ⁽³⁾	Temperature	Conductivity	Turbidity	DO (mar/l)	pН	ORP	Purged, Vp	Purged ⁽⁴⁾
Time	(mL/min)	(m/tt)	(m/ft)	<u>ا</u> کې کې ا	(mS/cm)	+10 %	(mg/L) +10 %	+0 1 Unite	(mv) +10 mV		
1570	Dura	Pier	cision Required.	23 76	±0.005 or 0.01	210 78	210 /0	20.1 01110			
120	10191	19		100.00	6 1 11 10-1	(1-1	2 6%	1.60	00		
1235	150	33.20	0.02	19.21	0.941	67.	5.00	6.30			
1540		33.20	0.05	14,18	0.441	60.7	3.10	6.48	48		
1545		33.20	0.05	14.13	0.94	65.0	3.07	6.47	100		
1550	JAM ple	2 60	11145847.	91417-D1	- MUI						
	8										
				-	-						
L	I	1				I					/

Bladder Pump Used

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*(2.54)^3$, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Project Data:	Project Name: Ref. No.:	Gieger 111458	Lorrez. 47	tions		Date: _ Personnel: _	9/14	117		-	
Monitoring We Va Meas Constructed W Measured W Depth of	Well Data: Well No.: pour PID (ppm): surement Point: /ell Depth (m/ft): /ell Depth (m/ft): Sediment (m/ft):	MW-2	P	s	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	ength (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): ime, V _s (L) ⁽⁴⁾ : Water (m/ft):	211	33.04			
Time	Pumping Rate (mL/min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	рН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
		Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
1620	Start	pump				-					
1640	150	34:26	1.22	13.63	6.684	48.3	1.56	6.51	104	-	
1645		37.30	1.26	13.58	6.696	31.8	1.48	6.48	98		
1650		34.30	1.26	13.56	0.693	30.7	1.45	6.48	95		
1655		37.31	1.27	13.49	0.694	29.8	1,45	6.48	94		
1700	Sampled	60.	11145847	91417.0	F-MW8						
				•							
		-		-							
	1										
L		.l	<u></u>			RIL	lor 1	VIIIA.A	11600	./	

Bladder 2001 Pump

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Project Data:	Project Name: Ref. No.:	6:090	er Cor 47	rection	5	Date: Personnel:	9/14 EPM /	/17 PT		-	
Monitoring We Va Meas Constructed W Measured W Depth of	ell Data: Well No.: pour PID (ppm): surement Point: /ell Depth (m/ft): /ell Depth (m/ft): Sediment (m/ft):	<u>q5-М</u> (49.05 49.	N-11B 04	s	aturated Screen L Depth to Pump In Well Diamete Well Screen Volu Initial Depth to	ength (m/ft): take (m/ft) ⁽¹⁾ : er, D (cm/in): me, V _s (L) ^{(2/} : Water (m/ft):		34.78			
Time	Pumping Rate (ml./min)	Depth to Water (m/ft)	Drawdown from Initial Water Level ⁽³⁾ (m/ft)	Temperature °C	Conductivity (mS/cm)	Turbidity NTU	DO (mg/L)	pН	ORP (mV)	Volume Purged, Vp (L)	No. of Well Screen Volumes Purged ⁽⁴⁾
Inne	(inc/inii)	Pre	cision Required:	±3 %	±0.005 or 0.01 ⁽⁵⁾	±10 %	±10 %	±0.1 Units	±10 mV		
1730	PUMP St	harkd									
1745	150	37.93	0.15	13.40	0.304	29.40	3.27	6.72	105		
1750	- P	1		13.36	0.309	14.(3.36	6.70	107		
17 65				13.28	0.3(1	11.5	3.26	6.69	107		
1768				13.26	0.3(2	11.43	3.62	6.69	lop		
1200	Grimole	(-u/-11	45847-	191417-	DT-MWI	B (dl	lecteo	(
	ZUMPIO										
	anun al	020									
	Prof Gu	. Brw									
			I							-	
L	<u> </u>		<u>L</u>		1				I		L

Bladder pump used

- (1) The pump intake will be placed at the well screen mid-point or at a minimum of 0.6 m (2 ft) above any sediment accumulated at the well bottom.
- (2) The well screen volume will be based on a 1.52 metres (5-foot) screen length (L). For metric units, $V_s = \pi^*(r^2)^*L$ in mL, where r (r=D/2) and L are in cm. For Imperial units, $V_s = \pi^*(r^2)^*L^*$ (2.54)³, where r and L are in inches
- (3) The drawdown from the initial water level should not exceed 0.1 m (0.3 ft). The pumping rate should not exceed 600 mL/min.
- (4) Purging will continue until stabilization is achieved or until 20 well screen volumes have been purged (unless purge water remains visually turbid and appears to be clearing, or unless stabilization parameters are varying slightly outside of the stabilization criteria and appear to be stabilizing), No. of Well Screen Volumes Purged= Vp/Vs.
- (5) For conductivity, the average value of three readings <1 mS/cm ±0.005 mS/cm or where conductivity >1 mS/cm ±0.01 mS/cm.

Appendix B Groundwater Monitoring Analytical Report

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYSIS REPORT

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

GHD 4550 Kruse Way Suite 300 Lake Oswego OR 97035

Report Date: September 25, 2017

Project: Geiger Corrections Center

Account #: 42241 Group Number: 1851331 PO Number: 34019866 Release Number: 11145847 State of Sample Origin: WA

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To GHD Electronic Copy To GHD Electronic Copy To GHD Attn: Eric Maise Attn: Jeffrey Cloud Attn: Christina McClelland

Respectfully Submitted,

Elisabeth a.

Élisabeth A. Knisley Project Manager

(717) 556-7262

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

SAMPLE INFORMATION

Client Sample Description	Collection Information	ELLE#
GW-11145847-091417-DT-MW3 Grab Groundwater	09/14/2017 07:50	9213141
GW-11145847-091417-DT-MP1R Grab Groundwater	09/14/2017 08:45	9213142
GW-11145847-091417-DT-MW2 Grab Groundwater	09/14/2017 09:45	9213143
GW-11145847-091417-DT-MW5 Grab Groundwater	09/14/2017 10:50	9213144
GW-11145847-091417-DT-MW4 Grab Groundwater	09/14/2017 10:50	9213145
GW-11145847-091417-DT-MW4 MS Grab Groundwater	09/14/2017 10:50	9213146
GW-11145847-091417-DT-MW4 MSD Grab Groundwater	09/14/2017 10:50	9213147
GW-11145847-091417-DT-MW5D Grab Groundwater	09/14/2017 13:35	9213148
GW-11145847-091417-DT-MW6 Grab Groundwater	09/14/2017 14:45	9213149
GW-11145847-091417-DT-MW1 Grab Groundwater	09/14/2017 15:50	9213150
GW-11145847-091417-DT-MW8 Grab Groundwater	09/14/2017 17:00	9213151
GW-11145847-091417-DT-MW11B Grab Groundwater	09/14/2017 18:00	9213152
GW-11145847-091417-DT-DUP Grab Groundwater	09/14/2017 18:20	9213153
Trip Blank Water	09/14/2017	9213154

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW3 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213141 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	07:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

03GCC

CAT No.	Analysis Name			CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-84	5 826	0в	ug/l	ug/l	ug/l	
10945	Benzene			71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene			100-41-4	N.D.	0.5	1	1
10945	Naphthalene			91-20-3	N.D.	1	4	1
10945	Toluene			108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)			1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97	7-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C2	12		n.a.	N.D.	50	250	1
GC Pet	roleum	ECY 9	7-602	NWTPH-Dx	ug/l	ug/l	ug/l	
Hydroc	arbons	modif:	led					
12899	DX DRO C12-C24			n.a.	N.D.	47	100	1
12899	DX HRO C24-C40			n.a.	N.D.	100	260	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172642AA	09/21/2017	16:53	Anthony H Downey	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172642AA	09/21/2017	16:53	Anthony H Downey	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17263B20A	09/20/2017	19:51	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	17263B20A	09/20/2017	19:51	Brett W Kenyon	1
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	04:48	Amy Lehr	1
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MP1R Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213142 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	08:45	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

1RGCC

CAT No.	Analysis Name			CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	5 826	0в	ug/l		ug/l	ug/l	
10945	Benzene			71-43-2	N.D.		0.5	1	1
10945	Ethylbenzene			100-41-4	N.D.		0.5	1	1
10945	Naphthalene			91-20-3	5		1	4	1
10945	Toluene			108-88-3	N.D.		0.5	1	1
10945	Xylene (Total)			1330-20-7	N.D.		0.5	1	1
GC Vol	atiles	ECY 97	7-602	NWTPH-Gx	ug/l		ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	2,200		50	250	1
GC Pet Hydrod	roleum arbons	ECY 97 modifi	7-602 Led	NWTPH-Dx	ug/l		ug/l	ug/l	
- 12899	DX DRO C12-C24			n.a.	1,400		46	100	1
12899	DX HRO C24-C40			n.a.	140	J	100	260	1

Sample Comments

State of Washington Lab Certification No. C457

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/21/2017	23:50	Hu Yang	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/21/2017	23:50	Hu Yang	1	
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	14:16	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	14:16	Marie D Beamenderfer	1	
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	05:12	Amy Lehr	1	
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW2 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213143 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	09:45	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

02GCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	1,200	50	250	1
GC Pet	roleum	ECY 97-	-602 NWTPH-Dx	ug/l	ug/l	ug/l	
Hydroc	arbons	modifie	ed				
12899	DX DRO C12-C24		n.a.	720	47	100	1
12899	DX HRO C24-C40		n.a.	N.D.	100	260	1

Sample Comments

State of Washington Lab Certification No. C457

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	00:11	Hu Yang	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	00:11	Hu Yang	1	
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	14:42	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	14:42	Marie D Beamenderfer	1	
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	05:36	Amy Lehr	1	
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW5 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213144 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	10:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

05GCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97	-602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C2	12	n.a.	N.D.	50	250	1
GC Pet	roleum	ECY 97	-602 NWTPH-Dx	ug/l	ug/1	ug/l	
Hydroc	arbons	modille	ed				
12899	DX DRO C12-C24		n.a.	N.D.	46	100	1
12899	DX HRO C24-C40		n.a.	N.D.	100	260	1

Sample Comments

State of Washington Lab Certification No. C457

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	00:32	Hu Yang	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	00:32	Hu Yang	1		
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	15:07	Marie D Beamenderfer	1		
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	15:07	Marie D Beamenderfer	1		
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	05:59	Amy Lehr	1		
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW4 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213145 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	10:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

04GCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	270	50	250	1
GC Pet	croleum	ECY 97-	602 NWTPH-Dx	ug/l	ug/l	ug/l	
нуагос	ardons	modifie	a				
12899	DX DRO C12-C24		n.a.	260	48	110	1
12899	DX HRO C24-C40		n.a.	N.D.	110	260	1

Sample Comments

State of Washington Lab Certification No. C457

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/21/2017	22:45	Hu Yang	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/21/2017	22:45	Hu Yang	1		
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	11:42	Marie D Beamenderfer	1		
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	11:42	Marie D Beamenderfer	1		
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	06:23	Amy Lehr	1		
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW4 MS Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213146 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	10:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

04GCC

CAT No.	Analysis Name			CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	826	0в	ug/l	ug/l	ug/l	
10945	Benzene			71-43-2	22	0.5	1	1
10945	Ethylbenzene			100-41-4	21	0.5	1	1
10945	Naphthalene			91-20-3	19	1	4	1
10945	Toluene			108-88-3	21	0.5	1	1
10945	Xylene (Total)			1330-20-7	61	0.5	1	1
GC Vol	atiles	ECY 97	-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	1,500	50	250	1
GC Pet Hvdroc	croleum carbons	ECY 97 modifi	'-602 .ed	NWTPH-Dx	ug/l	ug/l	ug/l	
12899	DX DRO C12-C24			na	560	45	100	1
12899	DX HRO C24-C40			n.a.	N.D.	100	250	1

Sample Comments

State of Washington Lab Certification No. C457

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/21/2017	23:07	Hu Yang	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/21/2017	23:07	Hu Yang	1		
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	12:08	Marie D Beamenderfer	1		
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	12:08	Marie D Beamenderfer	1		
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	06:46	Amy Lehr	1		
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW4 MSD Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213147 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	10:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

04GCC

CAT No.	Analysis Name			CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-84	6 826	0в	ug/l	ug/l	ug/l	
10945	Benzene			71-43-2	22	0.5	1	1
10945	Ethylbenzene			100-41-4	21	0.5	1	1
10945	Naphthalene			91-20-3	19	1	4	1
10945	Toluene			108-88-3	22	0.5	1	1
10945	Xylene (Total)			1330-20-7	60	0.5	1	1
GC Vol	atiles	ECY 9	7-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	1,500	50	250	1
GC Pet Hvdroc	croleum carbons	ECY 9 modif	7-602 ied	NWTPH-Dx	ug/l	ug/l	ug/l	
12899	DX DRO C12-C24			n.a.	610	48	110	1
12899	DX HRO C24-C40			n.a.	N.D.	110	270	1

Sample Comments

State of Washington Lab Certification No. C457

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/21/2017	23:28	Hu Yang	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/21/2017	23:28	Hu Yang	1	
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	12:34	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	12:34	Marie D Beamenderfer	1	
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	07:10	Amy Lehr	1	
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW5D Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213148 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	13:35	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

5DGCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C2	12	n.a.	N.D.	50	250	1
GC Pet	roleum	ECY 97-	602 NWTPH-Dx	ug/l	ug/l	ug/l	
нуагос	arbons	modifie	a				
12899	DX DRO C12-C24		n.a.	560	45	100	1
12899	DX HRO C24-C40		n.a.	N.D.	100	250	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	00:54	Hu Yang	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	00:54	Hu Yang	1			
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	15:33	Marie D Beamenderfer	1			
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	15:33	Marie D Beamenderfer	1			
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	08:20	Amy Lehr	1			
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1			

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW6 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213149 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	14:45	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

06GCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	N.D.	50	250	1
GC Pet Hydroc	croleum carbons	ECY 97- modifie	602 NWTPH-Dx	ug/l	ug/l	ug/l	
12899	DX DRO C12-C24		n.a.	N.D.	48	110	1
12899	DX HRO C24-C40		n.a.	N.D.	110	260	1

Sample Comments

State of Washington Lab Certification No. C457

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	01:16	Hu Yang	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	01:16	Hu Yang	1			
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	15:58	Marie D Beamenderfer	1			
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	15:58	Marie D Beamenderfer	1			
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	08:44	Amy Lehr	1			
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1			

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW1 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213150 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	15:50	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

01GCC

CAT No.	Analysis Name			CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260)в	ug/l	ug/l	ug/l	
10945	Benzene			71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene			100-41-4	N.D.	0.5	1	1
10945	Naphthalene			91-20-3	N.D.	1	4	1
10945	Toluene			108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)			1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97	-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	N.D.	50	250	1
GC Pet	roleum	ECY 97	-602	NWTPH-Dx	ug/l	ug/l	ug/l	
нуагос	arbons	mourri	eu					
12899	DX DRO C12-C24			n.a.	N.D.	48	110	1
12899	DX HRO C24-C40			n.a.	N.D.	110	270	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	01:38	Hu Yang	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	01:38	Hu Yang	1			
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	16:50	Marie D Beamenderfer	1			
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	16:50	Marie D Beamenderfer	1			
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	09:07	Amy Lehr	1			
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1			

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW8 Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213151 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	17:00	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

08GCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C2	12	n.a.	N.D.	50	250	1
GC Pet	roleum	ECY 97-	602 NWTPH-Dx	ug/l	ug/l	ug/l	
нуагос	arbons	mourre	.u				
12899	DX DRO C12-C24		n.a.	N.D.	45	100	1
12899	DX HRO C24-C40		n.a.	N.D.	100	250	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	02:00	Hu Yang	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	02:00	Hu Yang	1			
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	17:15	Marie D Beamenderfer	1			
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	17:15	Marie D Beamenderfer	1			
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	09:31	Amy Lehr	1			
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1			

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-MW11B Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213152 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	18:00	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

1BGCC

CAT No.	Analysis Name			CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260)в	ug/l	ug/l	ug/l	
10945	Benzene			71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene			100-41-4	N.D.	0.5	1	1
10945	Naphthalene			91-20-3	N.D.	1	4	1
10945	Toluene			108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)			1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97	-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	1	n.a.	N.D.	50	250	1
GC Pet	croleum	ECY 97 modifi	-602 ed	NWTPH-Dx	ug/l	ug/l	ug/l	
10000		mourr		~ ~	ND	4.0	110	1
12899	DX DRO C12-C24			n -	N.D.	48	260	1
17933	DA HRU C24-C40		1	11.a.	N.D.	TTO	200	T

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	02:21	Hu Yang	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	02:21	Hu Yang	1	
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	17:41	Marie D Beamenderfer	1	
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	17:41	Marie D Beamenderfer	1	
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610010A	09/20/2017	09:54	Amy Lehr	1	
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610010A	09/18/2017	20:02	Christine E Gleim	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: GW-11145847-091417-DT-DUP Grab Groundwater Geiger Corrections Center

ELLE Sample # WW 9213153 ELLE Group # 1851331 Account # 42241

Project Name: Geiger Corrections Center

Collected:	09/14/2017	18:20	by DT	GHD
				4550 Kruse Way
Submitted:	09/16/2017	09:45		Suite 300
Reported:	09/25/2017	20:39		Lake Oswego OR 97035

FDGCC

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10945	Benzene		71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10945	Naphthalene		91-20-3	N.D.	1	4	1
10945	Toluene		108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	atiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	N.D.	50	250	1
GC Pet	croleum	ECY 97- modifie	602 NWTPH-Dx	ug/l	ug/l	ug/l	
12899	DX DRO C12-C24		na	ND	48	110	1
12899	DX HRO C24-C40		n.a.	N.D.	110	260	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/22/2017	02:42	Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/22/2017	02:42	Hu Yang	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017	18:07	Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017	18:07	Marie D Beamenderfer	1
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	172610011A	09/20/2017	09:07	Amy Lehr	1
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	172610011A	09/18/2017	20:02	Christine E Gleim	1

Analysis Report

250

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water Geiger Corrections Center

Project Name: Geiger Corrections Center

Collected: 09/14/2017

Submitted: 09/16/2017 09:45 Reported: 09/25/2017 20:39

ΤE

IBGCC										
CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor			
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l				
10945	Benzene		71-43-2	N.D.	0.5	1	1			
10945	Ethylbenzene		100-41-4	N.D.	0.5	1	1			
10945	Naphthalene		91-20-3	N.D.	1	4	1			
10945	Toluene		108-88-3	N.D.	0.5	1	1			
10945	Xylene (Total)		1330-20-7	N.D.	0.5	1	1			
GC Vo	latiles	ECY 97	-602 NWTPH-Gx	ug/l	ug/l	ug/l				

08273 NWTPH-Gx water C7-C12

Sample Comments

N.D.

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

n.a.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	VOCs- 5ml Water by 8260B UST	SW-846 8260B	1	F172643AA	09/21/2017 22:0	2 Hu Yang	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F172643AA	09/21/2017 22:0	2 Hu Yang	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	17265A94A	09/22/2017 11:1	7 Marie D Beamenderfer	1
01146	GC VOA Water Prep	SW-846 5030B	1	17265A94A	09/22/2017 11:1	7 Marie D Beamenderfer	1

ELLE Sample # WW 9213154 ELLE Group # 1851331 Account # 42241

1

GHD 4550 Kruse Way Suite 300 Lake Oswego OR 97035

50

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Reported: 09/25/2017 20:39 Group Number: 1851331

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Batch number: F172642AA	Sample number	(s): 921314	1
Benzene	N.D.	0.5	1
Ethylbenzene	N.D.	0.5	1
Naphthalene	N.D.	1	4
Toluene	N.D.	0.5	1
Xylene (Total)	N.D.	0.5	1
Batch number: F172643AA	Sample number	(s): 921314	2-9213154
Benzene	N.D.	0.5	1
Ethylbenzene	N.D.	0.5	1
Naphthalene	N.D.	1	4
Toluene	N.D.	0.5	1
Xylene (Total)	N.D.	0.5	1
Batch number: 17263B20A	Sample number	(s): 921314	1
NWTPH-Gx water C7-C12	N.D.	50	250
Batch number: 17265A94A	Sample number	(s): 921314	2-9213154
NWTPH-Gx water C7-C12	N.D.	50	250
Batch number: 172610010A	Sample number	(s): 921314	1-9213152
DX DRO C12-C24	N.D.	45	100
DX HRO C24-C40	N.D.	100	250
Batch number: 172610011A	Sample number	(s): 921315	3
DX DRO C12-C24	N.D.	45	100
DX HRO C24-C40	N.D.	100	250

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: F172642AA	Sample number	r(s): 9213	141						
Benzene	20	20.16			101		78-120		
Ethylbenzene	20	19.74			99		78-120		
Naphthalene	20	18.94			95		59-120		
Toluene	20	20.24			101		80-120		
Xylene (Total)	60	58.48			97		80-120		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Reported: 09/25/2017 20:39 Group Number: 1851331

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: F172643AA	Sample numbe	r(s): 92133	142-9213154						
Benzene	20	20.39			102		78-120		
Ethylbenzene	20	19.96			100		78-120		
Naphthalene	20	16.4			82		59-120		
Toluene	20	20.56			103		80-120		
Xylene (Total)	60	58.17			97		80-120		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 17263B20A	Sample numbe	r(s): 92133	141						
NWTPH-Gx water C7-C12	1100	1039.98			95		80-120		
Batch number: 17265A94A	Sample numbe	r(s): 92133	142-9213154						
NWTPH-Gx water C7-C12	1100	1135.02			103		80-120		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 172610010A DX DRO C12-C24	Sample numbe 600	r(s): 92133 330.3	141-9213152		55		40-122		
Batch number: 172610011A	Sample numbe	r(s): 92133	153						
DX DRO C12-C24	600	355.68			59		40-122		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name		Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number:	F172642AA	Sample numbe	r(s): 9213	141 UNSP	K: P213105						
Benzene		N.D.	20	22.57	20	22.04	113	110	78-120	2	30
Ethylbenzene		N.D.	20	22.16	20	22.02	111	110	78-120	1	30
Naphthalene		N.D.	20	18.06	20	18.12	90	91	59-120	0	30
Toluene		N.D.	20	22.51	20	22.6	113	113	80-120	0	30
Xylene (Total)		N.D.	60	64.09	60	64.02	107	107	80-120	0	30
Batch number:	F172643AA	Sample numbe	r(s): 9213	142-9213	154 UNSPK: 9	9213145					
Benzene		N.D.	20	21.97	20	21.88	110	109	78-120	0	30
Ethylbenzene		N.D.	20	20.98	20	20.79	105	104	78-120	1	30
Naphthalene		N.D.	20	18.83	20	19.26	94	96	59-120	2	30
Toluene		N.D.	20	21.17	20	21.71	106	109	80-120	3	30
Xylene (Total)		N.D.	60	61.39	60	60.15	102	100	80-120	2	30
		ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number:	17263B20A	Sample numbe	r(s): 9213	141 UNSP	K: P213158						
NWTPH-Gx water	C7-C12	N.D.	1100	1200.7	1100	1183.22	109	108	80-120	1	30

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Reported: 09/25/2017 20:39 Group Number: 1851331

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 17265A94A NWTPH-Gx water C7-C12	Sample numb 270.04	er(s): 9213 1100	3142-9213 1482.26	154 UNSPK: 1100	9213145 1477.1	110	110	80-120	0	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 172610010A DX DRO C12-C24	Sample numb 257.34	er(s): 9213 598	3141-9213 556.7	152 UNSPK: 641	9213145 611.84	50	55	40-122	9	20
Batch number: 172610011A DX DRO C12-C24	Sample numb 61.63	er(s): 9213 628	3153 UNSP 204.71	K: P213158 639	164.89	23*	16*	40-122	22*	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. For dual column analyses, the surrogate (at least one surrogate for multi-surrogate tests) must be within the acceptance limits on at least one of the two columns.

Analysis Name: VOCs- 5ml Water by 8260B UST Batch number: F172642AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
9213141	99	101	103	98
Blank	98	103	103	95
LCS	99	101	103	99
MS	101	101	104	100
MSD	98	104	105	100
Limits:	80-120	80-120	80-120	80-120

Analysis Name: VOCs- 5ml Water by 8260B UST Batch number: F172643AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
9213142	100	102	102	97
9213143	101	104	101	98
9213144	101	102	102	97
9213145	100	103	103	97
9213146	101	104	103	98
9213147	99	103	103	98
9213148	100	101	104	98
9213149	102	102	102	96
9213150	99	102	102	96
9213151	101	103	102	98

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Reported: 09/25/2017 20:39 Group Number: 1851331

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. For dual column analyses, the surrogate (at least one surrogate for multi-surrogate tests) must be within the acceptance limits on at least one of the two columns.

Analysis Name: VOCs- 5ml Water by 8260B UST Batch number: F172643AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
9213152	100	100	102	95
9213153	102	100	103	95
9213154	101	102	104	95
Blank	101	103	103	95
LCS	99	100	104	98
MS	101	104	103	98
MSD	99	103	103	98
Limits	80-120	80-120	80-120	80-120

Analysis Name: NWTPH-Gx water C7-C12 Batch number: 17263B20A

	I rifluorotoluene-F	
9213141	87	
Blank	87	
LCS	91	
MS	97	
MSD	98	
Limits:	63-135	

Analysis Name: NWTPH-Gx water C7-C12 Batch number: 17265A94A

	Thiluorololuene-F
9213142	77
9213143	76
9213144	79
9213145	80
9213146	83
9213147	80
9213148	79
9213149	78
9213150	78
9213151	79
9213152	79
9213153	78
9213154	89
Blank	79
LCS	82
MS	83
MSD	80

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: GHD Reported: 09/25/2017 20:39 Group Number: 1851331

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. For dual column analyses, the surrogate (at least one surrogate for multi-surrogate tests) must be within the acceptance limits on at least one of the two columns.

Analysis Name: NWTPH-Gx water C7-C12 Batch number: 17265A94A

Limits: 63-135

Analysis Name: DRO/DX Mini-extraction Master Batch number: 172610010A

Onnoterprieny
92
97
97
78
100
90
93
91
100
96
92
97
95
90
90
93
50-150

Analysis Name: DRO/DX Mini-extraction Master Batch number: 172610011A

	Orthoterphenyl
9213153	97
Blank	100
LCS	97
MS	80
MSD	72
Limits:	50-150

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Phillips 66 Analysis Request/Chain of Cust	odv
--	-----

Contemporate Conte	Eurofins I Group # _ Instructio	Lanc S ons or	aster Lal SI33 reverse sic	oorato	ories Sam ^{spond}	Enviro ple #	onme 12 rcled nu	ntal L S I Imbers	ise or	^{nly} st	(С	C S	# O	316	605	
Client Information	1		Matrix	(Δ	nah	ISAS	Re	nues	sted				: #·				
Site # / AOC #			inter in	Ì	1				Pres	serva	tion	Cod	les								
1114584 /										T	T		T	T			Pre	serva	tion C	odes	alian da an andarana
Site Address <u>350755potted</u> Rd. Spokane WA 99260 SAP PO # PSX PM		ediment	Ground _, Surface	Àir												H N S	= HCI = HNO₃ = H₂SO₄	Ren	T = B = 0 = narks	Thiosulf NaOH Other	ate
Consultant/Office <u>GHD</u> - Lynnwood WA Consultant Project Mgr.		Ũ]	ers			03													
Christina McClelland			able ES		tain	Ś		26	0												
Sampler D. Trudeav E. Maise State where samples were collected: For Compliance:	ite		Pota NPD		of Cont	PH-	X A X	6	545												
WA Yes No Collection	ab mpos	oil [ater		tal # c	WT	SRO	00	15/	•											
Sample Identification Date Time	ဗ် ပိ	Sc	Wa	Ö	P	\geq		\geq	V												
6W-11145847-091417-DT-MW39/140750,	X				δ	Υľ	ĺΧ	X													
6W-11145847-091417-DT-MPIR 0845,	X				\mathcal{S}	X	X	X													
(SW-11145847-091417-DT-MW2 0945)	X				S	Ϋ́	[X]	X													
GW-11145847-091417-DT-MWS 1050,	\boldsymbol{X}				8	X	X	X						ŀ							
GW-11145847-091417-DT-MW4 1050	X				24	X	\times	X	X							N	15/1	<u>456</u>	>		
GW-11145847-091417-DT-MWSD 1335	\checkmark				Ð	X	X	X									•				
GW-11145847-091417-DT-MW6 1445	X				\mathcal{S}	X	ĺΧ	X													
GW-11145847-091417-DT-MW1 1550,	X				S	X	X	X													
GW-11145847-091417-DT-MW8 1700	\mathbf{X}				P	X	X	X													
GW-11145847-091417-DT-MWIIB 1800	X				૪	X	X	X													
Turnaround Time Requested (TAT) (please circle) F (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) F	Relinquishe	d by:	hi	~			Date	5/	17	Time	30	P	leceiv	ed by:			No. of Concession, Name of	Date		Time	
Standard 5 day 72 hour 48 hour 24 hour	reinquisite	a by.			Non-Second	States -	Dale	Ì		inic		1	ICCCIV	su by.				Date			
Data Package Options (please circle if required)FFull ValidationReducedRaw Data	Relinquishe	d by:			-		Date	~~~		Time		F	leceiv	ed by		<u>La</u>		Date	6/17	Time 95	5
TX TRRP MAMCP CTRCP NYASP A/B	Relinquishe	d by	Commercl	al Carri	ier:	X			Othe	or				Te	mpei	ature	uponi	receip	<u>77-</u>	<u>ۍ ز</u>	
EDD Needed? Yes (Format:) No					·	, Cus	tody	Se	als I	ntac	t?		(es)	No	1	NA				

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster Page 1225 E26 onmental. The yellow copy should be retained by the client.

Phillips 66 Analysis Request/Chain of Custody

Exercise Acct. # <u>U</u>	124 (For	r Eurof Group	ns Laj # ructions	on revei	rse side	orator S _{corres}	ies E ampl pond w	nviro le # rith circ	nmer <u>() 2 (</u> :led nui	ntal µ 3 /	sq or	<u>ક્રેન</u>					coc	;#O	316	04
			T	Ма	atrix					А	nalv	ses	Requ	este	d		SCR #:			
				—							Pres	ervat	ion C	odes						
11145847								Ι			T						Pr	eserva	tion C	odes
Site Address																	H = HCI		T = 1	Thiosulfate
3507 5. Sported Rd. Spokane Wi	7 99Z6	60	ţ		မ္တ	.											N = HNO	D ₃	B =	NaOH
SAP PO # PSX PM					ΨĔ	Ai			1								S = H ₂ S	O ₄	0 =	Other
				5	ທັ													Re	marks	
GHD Lynnwood WA		/	<u> </u>				ŝ	$\overline{\mathbf{V}}$		2										
Consultant Project Mgr. Christina McClelland				able	ES		taineı	5		20										
D. Trudeav E. Maise			_ te	Pot	NPD		f Con	P#-	J X	9										
State where samples were collected: For Compliance:					<u>ب</u>		.0 #	F	0	2										
C	ollection	ab		5	ate	_	otal	بح	X	2										
Sample Identification Data	ite Time	Ū	ŭ ″		>	ö	Ĕ	Y			,									
GW-11145847-091417-DT-DUP 9/	14 1820	X					8	X	X	X										
	-																			
					·															
															+					
														_						
					• •															
		╂╍╍┼	+										+							
		Dellerer	Vala d I						Data			Timo		Roci	pived by			Date		Time
Turnaround Time Requested (TAT) (please ci	rcle)		lisned i	эу: Л Л	-	-				151	17	12	$z \land$	INect	aveu by		and the second se	Date		
(Rush TAT is subject to Lancaster Laboratories approval and si	ircharge.)	Beling	vishord I		n				Date	121		Time	//	Bece	aived by	:	and the second	Date	Concession of the local division of the loca	Time
Standard 5 day 72 hour 48 hour	24 hour	i tomiq	1011001	, y.	-				Duio											A STREET CONTRACTOR CONTRACTOR CONTRACTOR
Data Package Ontions (please circle if require	¹ d)	Relinq	uished I	oy:			- Charleson		Date-	Charles and the second		Time		Rec	wed by			Date		Time
Full Validation Reduced Raw D	ata													1-1		11	AL	11	6/17	745
TX TBBP MAMCP CTBCP NY	ASP A/B	Relinq	uished I	oy Com	mercial	Carri	ər:				1			\uparrow					.79	4. (To
NJFull NJRed Other:		ι I	JPS_			Fed	Ex_>	$\langle \$			Othe	ər			Т	empe	ature upo	n recei	pt <u> </u>	<u>···</u> C
EDD Needed? Yes (Format:)	No						(Cust	tody	Sea	als I	ntact	?	Ľ	es	Nc	NA			

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

The white copy should accompany samples to Eurofins Lancaster paper before for the performental. The yellow copy should be retained by the client.

🔹 eurofins

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

194674

Group Number(s):[85(33]

Client: Phillips 66

Delivery Method:	<u>Fed Ex</u>		Arrival Timestamp:	<u>09/16/2017</u>	9:45
Number of Packages:	<u>4</u>		Number of Projects:	<u>2</u>	
State/Province of Origin:	<u>WA</u>				
	Arriv	al Con	dition Summary		
Shipping Container Sealed:		Yes	Sample IDs on COC n	natch Containers:	Yes
Custody Seal Present:		Yes	Sample Date/Times m	atch COC:	Yes
Custody Seal Intact:		Yes	VOA Vial Headspace	≥ 6mm:	Νο
Samples Chilled:		Yes	Total Trip Blank Qty:		4
Paperwork Enclosed:		Yes	Trip Blank Type:		HCI
Samples Intact:		Yes	Air Quality Samples P	resent:	No
Missing Samples:		No			
Extra Samples:		No			
Discrepancy in Container Qt	y on COC:	No			

Samples Chilled Details

			oumpio	• • • • • • • •			
The	ermometer Type	s: DT = Digi	tal (Temp. Bottl	e) IR =	Infrared (Sur	face Temp)	All Temperatures in °C.
Cooler #	Thermometer ID	Corrected Temp	<u>Therm. Type</u>	Ice Type	Ice Present?	Ice Container	Elevated Temp?
1	DT42-01	2.9	DT	Wet	Y	Bagged	Ν
2	DT42-01	4.5	DT	Wet	Y	Bagged	Ν
3	DT42-01	3.2	DT	Wet	Y	Bagged	Ν
4	DT42-01	3.6	DT	Wet	Y	Bagged	Ν

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL	Below Minimum Quantitation Level	mg	milligram(s)
С	degrees Celsius	mL	milliliter(s)
cfu	colony forming units	MPN	Most Probable Number
CP Units	cobalt-chloroplatinate units	N.D.	non-detect
F	degrees Fahrenheit	ng	nanogram(s)
g	gram(s)	NTU	nephelometric turbidity units
IU	International Units	pg/L	picogram/liter
kg	kilogram(s)	RL	Reporting Limit
Ĺ	liter(s)	TNTC	Too Numerous To Count
lb.	pound(s)	μg	microgram(s)
m3	cubic meter(s)	μL	microliter(s)
meq	milliequivalents	umhos/cm	micromhos/cm

< less than

> greater than

- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- **Dry weight basis** Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

🔅 eurofins

Data Qualifiers

Lancaster Laboratories Environmental

Qualifier	Definition
С	Result confirmed by reanalysis
D1	Indicates for dual column analyses that the result is reported from column 1
D2	Indicates for dual column analyses that the result is reported from column 2
E	Concentration exceeds the calibration range
J (or G, I, X)	Estimated value >= the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)
Р	Concentration difference between the primary and confirmation column >40%. The lower result is reported.
U	Analyte was not detected at the value indicated
V	Concentration difference between the primary and confirmation column >100%. The reporting limit is raised
	due to this disparity and evident interference.
W	The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.
Z	Laboratory Defined - see analysis report

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.