

240 N. Broadway, Suite 203, Portland OR 97227 (503) 847-2740

www.ees-environmental.com

Technical Memorandum

To: Mark Conan, Jonathan Polonsky, & Brent Chadwick, Plaid Pantries, Inc.

From: Paul Ecker LHG, and Chris Rhea, LG

Date: March 31, 2016

Subject: Development of Site-Specific MTCA Method B Soil Cleanup Level for Gasoline

Plaid Pantry Store #112

1002 West Fourth Plain Boulevard

Vancouver, Washington Ecology VCP Project SW1314 EES Project 1179-01/03

This memorandum documents the methodology for and results of calculating the proposed soil cleanup level for gasoline at the Plaid Pantries, Inc. (Plaid) subject Site. The Site includes Plaid's active convenience market and retail fueling station known as Store #112, with gasoline-contaminated soil extending south of the Property boundary beneath the Fourth Plain Boulevard right-of-way.

EES Environmental Consulting, Inc. (EES) developed this Site-specific Method B soil cleanup level in accordance with MTCA regulations (WAC 173-340) and published Ecology guidance (2007 and 2011). Supporting information is provided below and attached in various data tables and site maps.

Figures 1 and 2 illustrate the Site location, layout, and soil sampling locations. Analytical testing results for Site soils are presented on Tables 1 and 2. Method B cleanup level calculations and model outputs are provided in Tables 3 and 3A-3E.

BACKGROUND

As discussed with Plaid and Washington Department of Ecology (Ecology) representatives, Remedial Investigation (RI) activities at the Site are nearly complete. RI data reports, planning documentation, and status updates are provided to Ecology as part of Plaid's participation in the Department's Voluntary Cleanup Program.

Based on Site characterization and the well-defined Conceptual Site Model (CSM) as discussed with Ecology in 2015-2016, we believe that the development and use of a site-specific Method B soil cleanup level for gasoline is appropriate and will be protective of human health and the environment (WAC 173-340-740). Basic elements of the CSM demonstrate the following:

- Gasoline impacts at the Site are well-defined. These impacts are limited to a localized pocket of shallow soil extending up to 13 feet in depth, within the area illustrated on Figure 2. Subsurface gasoline vapors associated with the historical release(s) are also present and are generally centered on the zone of soil contamination. As discussed with Ecology in December 2015 and early 2016, additional soil vapor assessment planning is underway in an effort to resolve potential RI vapor intrusion data gaps for the Property building.
- The local water table is anticipated at depths exceeding 80 feet and is not expected to be affected by historic gasoline release(s) originating at the Property. Recent evaluation of seasonally perched groundwater indicates no gasoline impacts to this media (EES, 3/30/2016).
- Current and reasonably likely future land use at the Property is commercial. No residential use of the Site is anticipated. Affected portions of the adjacent Fourth Plain Boulevard right-of-way will remain in use as a major local thoroughfare. Potential human receptors at the Site include store workers and customers, and potential future construction and excavation workers (including road and utility workers). Note that Method B calculations provided in this report are protective of unrestricted land use scenarios in accordance with Ecology's criteria.
- Terrestrial ecological exposure is unlikely. No adjustment to cleanup values to protect terrestrial ecological receptors is necessary.
- Plaid's operating soil vapor extraction (SVE) system provides source-area vapor control and mitigation. Gasoline concentrations in soil within the treatment zone are effectively reduced by SVE activity.

SITE-SPECIFIC MTCA METHOD B SOIL CLEANUP LEVELS (GASOLINE)

EES calculated a gasoline cleanup level in soil for unrestricted land use at the Site, using Ecology's default model inputs for the protection of human health (WAC 173-340-740). In accordance with published Ecology guidance (September 2011), EES collected and analyzed multiple soil samples from the high-concentration core of residual gasoline contamination, and these analytical findings were used to calculate a median soil cleanup level that is representative of what we believe to be "worst-case" Site conditions. Analytical data used in these calculations were obtained from soil samples collected in September 2015, including samples B-16(6), B-17(9), B-18(3), and B-18(9). Tables 1 and 2 summarize analytical testing results, and laboratory analytical reports are provided in Attachment A.

Soil cleanup level calculations were performed using Ecology's *Workbook for Calculating Soil and Groundwater Cleanup Levels* (2007), and included a combination of Site-specific chemical analytical data and default Ecology input parameters. The calculation results are summarized on Table 3, with detailed worksheets generated using Ecology's model provided as Tables 3A through 3E.

■ The representative median Site-specific Method B soil cleanup level for gasoline was calculated at a concentration of 2,619 mg/kg.

EES proposes to use this Method B gasoline soil cleanup level of 2,619 mg/kg for unrestricted land use and future compliance evaluation purposes. As discussed with Ecology, soil vapor conditions must meet separate protective criteria, to be determined.

We request that Ecology provide a written opinion regarding the proposed soil cleanup level.

ATTACHMENTS

Tables Table 1: Soil Analytical Results – Gasoline, Diesel, and Related Constituents

Table 2: Soil Analytical Results – Volatile Petroleum Hydrocarbons Table 3: Summary of Site-Specific MTCA Method B Calculations

Figures Figure 1: Vicinity Map

Figure 2: Maximum Gasoline Concentrations in Soil (September 2015)

Attachment A: Laboratory Analytical Data Reports

TABLES

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Related Constituents (mg/kg)

Plaid Pantry No. 112 Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening	Levels																		
MTCA Meth	od A ¹ Unrestrict	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Meth	od B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 20	011 Initial Soil Sa	mpling																	
B1-3	09/08/2011	3	24 U	59 U	118 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
B1-9	09/08/2011	9	22 U	54 U	108 U	0.013 U	0.051 U	0.026 U	0.077 U	0.026 U	0.026 U	0.051 U	0.10 U	8.3	0.026 U	0.026 U	0.51 U	0.026 U	0.026 U
B1-15	09/08/2011	15	21 U	52 U	103 U	0.013 U	0.052 U	0.026 U	0.078 U	0.026 U	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B2-3	09/07/2011	3	21 U	53 U	107 U	0.011 U	0.043 U	0.022 U	0.065 U	0.022 U	0.022 U	0.043 U	0.087 U	-	0.022 U	0.022 U	0.43 U	0.022 U	0.022 U
B2-9	09/07/2011	9	25 U	25 U ^{b1}	54 ^{b1}	0.0088 U	0.035 U	0.018 U	0.053 U	0.018 U	0.018 U	0.035 U	0.010 U ^d	-	0.018 U	0.018 U	0.35 U	0.018 U	0.018 U
B2-15	09/09/2011	15	21 U	53 U	105 U	0.0068 U	0.027 U	0.014 U	0.041 U	0.014 U	0.014 U	0.027 U	0.054 U	-	0.014 U	0.014 U	0.27 U	0.014 U	0.014 U
B3-3	09/07/2011	3	23 U	57 U	113 U	0.012 U	0.047 U	0.024 U	0.071 U	0.024 U	0.024 U	0.047 U	0.094 U	-	0.024 U	0.024 U	0.47 U	0.024 U	0.024 U
B3-9	09/07/2011	9	26 U	64 U	128 U	0.014 U	0.055 U	0.028 U	0.083 U	0.028 U	0.028 U	0.055 U	0.11 U	12	0.028 U	0.028 U	0.55 U	0.028 U	0.028 U
B4-3	09/07/2011	3	23 U	57 U	114 U	0.013 U	0.051 U	0.026 U	0.076 U	0.026 U	0.026 U	0.051 U	0.10 U	-	0.026 U	0.026 U	0.51 U	0.026 U	0.026 U
B4-9	09/07/2011	9	21 U	53 U	106 U	0.012 U	0.049 U	0.024 U	0.073 U	0.024 U	0.024 U	0.049 U	0.097 U	-	0.024 U	0.024 U	0.49 U	0.024 U	0.024 U
B5-3	09/08/2011	3	22 U	56 U	112 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5-6	09/08/2011	6	2,900 ^a	>57 ^c	114 U	0.28 U	1.1 U	12	74	0.56 U	0.56 U	1.1 U	14	21	0.56 U	0.56 U	11 U	0.56 U	0.56 U
B5-9	09/08/2011	9	4,070 ^a	>54 ^c	108 U	0.24 U	0.95 U	29	121	0.48 U	0.48 U	0.95 U	8.8	11	0.48 U	0.48 U	9.5 U	0.48 U	0.48 U
B5-12.5	09/08/2011	12.5	444 ^a	638 ^{b,c}	50 U ^b	2.1	0.13 U	5.3	21	0.063 U	0.063 U	0.13 U	1.1	13	0.063 U	0.063 U	1.3 U	0.063 U	0.13 U
B5-20	09/08/2011	20	2.9 Uª	-	-	0.0073 U	0.029 U	0.015 U	0.044 U	0.015 U	0.015 U	0.029 U	0.058 U	-	0.015 U	0.015 U	0.29 U	0.015 U	0.015 U
B6-3	09/08/2011	3	22 U	54 U	107 U	0.0096 U	0.038 U	0.019 U	0.057 U	0.019 U	0.019 U	0.038 U	0.077 U	-	0.019 U	0.019 U	0.38 U	0.019 U	0.019 U
B6-9	09/08/2011	9	23 U	58 U	116 U	0.0093 U	0.037 U	0.019 U	0.056 U	0.019 U	0.019 U	0.037 U	0.074 U	-	0.019 U	0.019 U	0.37 U	0.019 U	0.019 U
B6-12	09/09/2011	12	26 U	64 U	128 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
February 2012	2 Abandoned Ta	nk Decommission	ing																
SVE-1/5.0	02/03/2012	5	22 U	55 U	110 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SVE-1/10.0	02/03/2012	10	2,750 a	>56.1 ^c	112 U	0.39	48	40	301	0.19 U	0.16 U	0.62 U	13	7.6	0.31 U	0.31 U	6.2 U	0.31 U	0.31 U
PIT S/1.5	02/14/2012	1.5	23 U	25 U ^b	116 ^b	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tank Sludge	02/14/2012	NA	2,410 ^a	172 U ^c	345 U	0.040 J	1.9	2.7	19	0.090 U	0.090 U	0.19 U	7.1 ^e	-	0.094 U	0.094 U	2.8 U	0.094 U	0.094 U
PIT N/2	02/14/2012	2	21 U	52 U	104 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT N/6	02/14/2012	6	8.7 U ^a	57 ^c	113 U	0.020 U	0.090 U	0.040 U	0.14	0.040 U	0.040 U	0.090 U	0.17 U	-	0.043 U	0.043 U	0.87 U	0.043 U	0.043 U
PIT S/2	02/14/2012	2	1,320 ^a	54 ^c	109 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT S/6	02/14/2012	6	5,800 ^a	62 ^c	124 U	3.4	23	78	411	0.81 U	0.81 U	1.6 U	34	-	0.81 U	0.81 U	16 U	0.81 U	0.81 U
PIT E/2	02/14/2012	2	24 U	60 U	120 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT E/6	02/14/2012	6	64,200 a	62 ^c	123 U	93	3,570	1,350	9,090	6.5 U	6.5 U	13 U	241	-	6.5 U	6.5 U	182 U	6.5 U	6.5 U
PIT W/2	02/14/2012	2	1,210 a	59 ^c	118 U	-	_	-	-	-	-	-	-	-	-	-	-	-	-
PIT W/6	02/14/2012	6	18,700 a	61 ^c	122 U	26	572	296	1,693	1.6 U	1.6 U	3.2 U	67	-	1.6 U	1.6 U	48 U	1.6 U	1.6 U
PIT Floor/6	02/14/2012	6	34,900 ^a	2,660 ^b	81 U ^b	56	1,460	609	3,605	0.81 U	0.81 U	1.6 U	27 ^e	-	0.81 U	0.81 U	105 U	0.81 U	0.81 U
August 2012 S	Soil Sampling																		
B-7/6	08/16/2012	6	473 ^a	-	-	0.18 J	0.86 U	2.1	12	$0.011~U^e$	0.43 U	0.51 U^g	1.7 U	-	0.21 U^g	0.31 U ^g	8.6 U	0.43 U	0.43 U
B-7/9	08/16/2012	9	1,730 ^a	-	-	0.80	0.82 U	0.89	1.2 U	0.25 U ^g	0.41 U	0.49 U ^g	1.6 U	-	$0.21~$ U g	0.30 U ^g	8.2 U	0.41 U	0.41 U
B-7/13	08/16/2012	13	303 ^a	-	-	0.15	0.089 U	0.17	0.25	0.0089 U ^e	0.045 U	0.089 U	0.30	-	0.045 U	$0.032~U^{g}$	0.89 U	0.045 U	0.045 U
B-7/14	08/16/2012	14	5.8 U ^a	-	-	0.015 U	0.058 U	0.029 U	0.087 U	0.0029 U ^{e,g}	0.029 U	0.058 U	0.12 U	-	0.029 U	0.029 U	0.58 U	0.029 U	0.029 U
B-8/6	08/16/2012	6	8.4 U ^a	-	-	0.026	0.084 U	0.072	0.30	0.0042 U ^{e,g}	0.042 U	0.084 U	0.17 U	-	0.042 U	0.031 U ^g	0.84 U	0.042 U	0.042 U
B-8/9	08/16/2012	9	7.4 U ^a	-	-	0.042	0.074 U	0.037 U	0.25	0.023 U ^g	0.037 U	0.074 U	0.15 U	-	0.037 U	0.027 U ^g	0.74 U	0.037 U	0.037 U
B-8/13	08/16/2012	13	8.9 U ª	-	-	0.022 U	0.089 U	0.044 U	0.13 U	0.0044 U ^{e,g}	0.044 U	0.089 U	0.18 U	-	0.044 U	0.032 U ^g	0.88 U	0.044 U	0.044 U
B-9/3	08/13/2012	3	5.7 U ^a	59 U	117 U	0.0143 U	0.057 U	0.029 U	0.086 U	0.017 U ^g	0.029 U	0.057 U	0.11 U	-	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
B-9/6	08/13/2012	6	5.2 U ^a	-	-	0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B-9/9	08/13/2012	9	8.2 U ^a	-	-	0.020 U	0.082 U	0.041 U	0.12 U	0.025 U ^g	0.041 U	0.082 U	0.16 U	-	0.041 U	0.030 U ^g	0.82 U	0.041 U	0.041 U
B-9/13	08/13/2012	13	5.9 U ^a	-	-	0.015 U	0.059 U	0.029 U	0.088 U	0.018 U ^g	0.029 U	0.059 U	0.12 U	-	0.029 U	0.029 U	0.59 U	0.029 U	0.029 U
B-10/3	08/13/2012	3	5.4 U ^a	55 U	109 U	0.013 U	0.054 U	0.027 U	0.080 U	0.016 U ^g	0.027 U	0.054 U	0.11 U	-	0.027 U	0.027 U	0.54 U	0.027 U	0.027 U
B-10/6	08/13/2012	6	9.2 U ^a	-	-	0.023 U	0.092 U	0.046 U	0.14 U	0.028 U ^g	0.046 U	0.092 U	0.18 U	-	0.046 U	0.033 U ^g	0.92 U	0.046 U	0.046 U
B-10/9	08/13/2012	9	11 U ^a	-	-	0.028 U	0.11 U	0.056 U	0.17 U	0.034 U ^g	0.056 U	0.067 U ^g	0.22 U	-	0.028 U ^g	0.041 U ^g	1.1 U	0.056 U	0.056 U
B-10/13	08/13/2012	13	4.7 U ^a	-	-	0.012 U	0.047 U	0.024 U	0.071 U	0.014 U ^g	0.024 U	0.047 U	0.095 U	-	0.024 U	0.024 U	0.47 U	0.024 U	0.024 U
B-10/18	08/13/2012	18	20 U	51 U	102 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Plaid Pantry No. 112 Vancouver, Washington

Description	Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	МТВЕ	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
March Marc	Soil Screening	g Levels	(1001.283)																	
March Marc		-	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
		2			NC		18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵		11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
				,				•	•	,				· · · · · · · · · · · · · · · · · · ·						,
			ontinuea) o	12 a	56.11	112 11	0.017.11	0.068.11	0.024.11	0.10.11	0.021 119	0.024.11	0.068.11	0.14.11		0.024.11	0.025 LI ^g	0.68.11	0.024.11	0.034 U
1.476	-		5												2/					0.41 U
				-											-	_				0.048 U
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}			_	· ·							_				3.3		_			0.029 U
\$17.50				_		_									-					0.028 U
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fr				_	51 U	102 U					-				_				-	-
6227							-	-	-	-	-	-	-	-	-	-	-	-	-	-
							0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	_	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
1479 1479			6	_							_				-					0.040 U
\$12718 \$12719 \$12719 \$12719 \$12719 \$12719 \$12710 \$12719 \$			9		-	-			0.048 U			0.048 U			-	0.048 U			0.048 U	0.048 U
\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fr			13	-	-	-						0.040 U			-		_			0.040 U
6.1576 0.975/2012 3 7.8 u* 0.005 U 0.005 U 0.002 U 0.002 U 0.002 U 0.005 U 0.005 U 0.002 U 0.005 U 0.005 U 0.002 U 0.005 U 0.005 U 0.005 U 0.005 U 0.002 U 0.005 U			18	20 U	50 U	100 U	-	_	-		-	-	-		-	-			-	-
8.136 08,75,7012 6			3	7.8 U ^a	-	-	0.019 U	0.078 U	0.039 U	0.12 U	0.024 U ^g	0.039 U	0.078 U	0.16 U	-	0.039 U	0.028 U ^g	0.78 U	0.039 U	0.039 U
18-39 08-18/2012 3 60 y 0.007 U 0.008 U 0.			6	6.5 U ^a	-	-	0.016 U	0.065 U						0.13 U	-				0.032 U	0.032 U
8449 845/39012 3			9	6.9 U ^a	-	-	0.017 U	0.069 U	0.034 U	0.10 U	0.021 U ^g	0.034 U	0.069 U	0.14 U	-	0.034 U	0.025 ∪ ^g	0.69 U	0.034 U	0.034 U
1-14 0-1	B-13/13	08/15/2012	13	8.0 U ^a	-	-	0.020 U	0.080 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.080 U	0.16 U	-	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
14.49 08.15/2012 3			3	6.6 U ^a	-	-	0.017 U	0.066 U	0.033 U			0.033 U	0.066 U		-	0.033 U		0.66 U	0.033 U	0.033 U
\$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B-14/6	08/15/2012	6	7.0 U ^a	-	-	0.018 U	0.070 U	0.035 U	0.11 U	$0.021~$ U g	0.035 U	0.070 U	0.14 U	-	0.035 U	0.025 U ^g	0.70 U	0.035 U	0.035 U
\$15/3	B-14/9		9	7.6 U ^a	-	-	0.019 U	0.076 U	0.038 U	0.11 U	0.023 U ^g	0.038 U	0.076 U	0.15 U	-	0.038 U	0.027 U ^g	0.76 U	0.038 U	0.038 U
8.15/6 05/15/2012 6	B-14/13	08/15/2012	13	6.2 U ^a	-	-	0.016 U	0.062 U	0.031 U	0.094 U	0.019 U ^g	0.031 U	0.062 U	0.13 U	-	0.031 U	0.023 ∪ ^g	0.62 U	0.031 U	0.031 U
1.5 1.5	B-15/3	08/15/2012	3	6.6 U ^a	-	-	0.017 U	0.066 U	0.033 U	0.099 U	0.020 U ^g	0.033 U	0.066 U	0.13 U	-	0.033 U	0.024 U ^g	0.66 U	0.033 U	0.033 U
8-15/13 08/15/2012 13 6-2 \(\text{o} \)			6	7.9 U ^a	-	-	0.020 U	0.079 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.079 U		-	0.040 U	0.029 U ^g	0.79 U	0.040 U	0.040 U
1.56 6 68/16/2012 6 5 8 U	B-15/9	08/15/2012	9	7.6 U ^a	-	-	0.019 U	0.076 U	0.038 U	0.11 U	$0.023~U^g$	0.038 U	0.076 U	0.15 U	-	0.038 U	0.027 ∪ ^g	0.76 U	0.038 U	0.038 U
8-16/9 88/16/2012 9 8 8.0 y - 0.025 U 0.080 U 0.040 U 12 U 0.029 U 0.080 U 0.040 U 0.029 U 0.030 U 0.0	B-15/13	08/15/2012	13	6.2 U ^a	-	-	0.016 U	0.062 U	0.031 U	0.093 U	0.019 U ^g	0.031 U	0.062 U	0.12 U	-	0.031 U	0.023 U ^g	0.62 U	0.031 U	0.031 U
9-16/13 08/16/2012 13 5.9 u* - 0.015 U 0.059 U 0.030 U 0.089 U 0.030 U 0.003 U 0.005 U 0.12 U - 0.030 U 0.030 U 0.050 U	B-16/6	08/16/2012	6	5.8 U ^a	-	-	0.015 U	0.058 U	0.029 U	0.087 U	0.0030 U ^{e,g}	0.029 U	0.058 U	0.17 U	11	0.029 U	0.029 U	0.58 U	0.029 U	0.029 U
\$\frac{\text{Signer}}{\text{Signer}} \text{Signer}{\text{Signer}} \text{Signer} \text{Signer}{\text{Signer}} \text{Signer}{\text{Signer}} \text{Signer}{\text{Signer}} \text{Signer}{\text{Signer}} \text{Signer}{\text{Signer}} \text{Signer} \text{Signer}{\text{Signer}} Sig	B-16/9	08/16/2012	9	8.0 U ^a	-	-	0.020 U	0.080 U	0.040 U	1.2 U	0.024 U ^g	0.040 U	0.080 U	0.16 U	12	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
SVE-2/12 OS/16/2012 12 S.7 U	B-16/13	08/16/2012	13	5.9 U ^a	-	-	0.015 U	0.059 U	0.030 U	0.089 U	0.0030 U ^{e,g}	0.030 U	0.059 U	0.12 U	-	0.030 U	0.030 U	0.59 U	0.030 U	0.030 U
Section Sect	SVE-2/8	08/16/2012	8	6,800 ^a	-	-	14	48	96	436	0.27 U ^g	0.45 U	0.54 U ^g	27	11	0.22 U ^g	0.32 U ^g	9.0 U	0.45 U	0.45 U
SVE-3/20	SVE-2/12	08/16/2012	12	5.7 U ^a	-	-	0.014 U	0.057 U	0.029 U	0.086 U	0.0029 U ^{e,g}	0.029 U	0.057 U	0.11 U	2.8	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SVE-2/16	08/16/2012	16	7.0 ∪ ^a	-	-	0.018 U	0.070 U	0.035 U	0.11 U	0.0035 U ^{e,g}	0.035 U	0.070 U	0.14 U	-	0.035 U	0.025 ∪ ^g	0.70 U	0.035 U	0.035 U
SVE-3/8 OS/16/2012 8 3,820 ° - - 6.5 117 70 389 0.36 U 0.03 U 0.02 U 1.6 10 0.30 U 0.43 U 0.43 U 0.06 U 0.06 U 0.05 U 0.0	SVE-2/20	08/16/2012	20	5.9 Uª	-	-	0.014 U	0.059 U	0.030 U	0.089 U	0.018 U ^g	0.030 U	0.059 U	0.12 U	-	0.030 U	0.030 U	0.59 U	0.030 U	0.030 U
SVE-3/12.5 08/16/2012 14 14 15 14 15 14 15 14 15 15	SVE-3/5	08/16/2012	5	_	-	-	-	-	-	-	-	-	-	-	13	-	-	-	-	-
	SVE-3/8	08/16/2012	8	3,820 a	-	-	6.5	117	70	389	0.36 U ^g	0.60 U	0.72 U ^g	16	10	0.30 U ^g	0.43 U ^g	12 U	0.60 U	0.60 U
	SVE-3/12.5	08/16/2012	12.5	216 ^a	-	-	1.5	4.8	3.9	21	0.0036 U ^{e,g}	0.36 U	0.43 U ^g		-	0.18 U ^g	0.26 U ^g	7.2 U	0.36 U	0.36 U
SVE-4/6 08/16/2012 6 8.1 U³ - 0.020 U 0.081 U 0.040 U 0.040 U 0.12 U 0.040 U 0.081 U 0.040 U 0.081 U 0.16 U - 0.040 U 0.029 U² 0.81 U 0.040 U 0.05 V 0.05 V 0.074 U 0.081 U 0.072 U 1.4 - 0.036 U 0.025 U² 0.75 U 0.036 U 0.05 U 0.05 V	SVE-3/14	08/16/2012	14	6.3 U ^a	-	-	0.016 U	0.063 U	0.031 U	0.094 U	0.0031 U ^{e,g}	0.031 U	0.063 U	0.13 U	-	0.031 U	0.023 ∪ ^g	0.63 U	0.031 U	0.031 U
SVE-4/9 08/16/2012 9 97 ° - - 0.018 0.072 U 0.30 0.58 0.022 U	SVE-3/20	08/16/2012	20	6.0 U ^a	-	-	0.015 U	0.060 U	0.030 U	0.089 U	$0.018~$ U g	0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
SVE-4/11 08/16/2012 11 54 a - - 0.034 0.15 0.82 1.5 0.0038 0.076 0 1.4 - 0.038 0.008 0.076 0 0.038 0.058 0.076 0 0.038 0.076 0 0.038 0.076 0 0.038 0 0.076 0 0.076 0 0.076 0 0.076 0.076 0 0 0.076 0 0 0.076 0 0 0 0 0 0 0 0 0	SVE-4/6	08/16/2012	6	8.1 U ^a	-	-	0.020 U	0.081 U	0.040 U	0.12 U	0.0040 U ^{e,g}	0.040 U	0.081 U	0.16 U	-	0.040 U	0.029 U ^g	0.81 U	0.040 U	0.040 U
SVE-4/14 08/16/2012 14 0.0 0.0 0.0 0.0 0.0 0.00 0.000 0.	SVE-4/9	08/16/2012		97 ^a	-	-	0.018	0.072 U				0.036 U	0.072 U	1.4	-	0.036 U	0.026 U ^g	0.72 U		0.036 U
SVE-5/5 08/16/2012 5 6.1 U³ - 0.015 U 0.061 U 0.031 U 0.092 U 0.031 U 0.061 U 0.12 U 7.5 0.031 U 0.022 U ^g 0.61 U 0.031 U 0.031 U 0.05	SVE-4/11			54 ^a	-	-	0.034	0.15				0.038 U	0.076 U	1.4	-	0.038 U	0.028 U ^g	0.76 U	0.038 U	0.038 U
SVE-5/7.5 08/16/2012 7.5 793 ° - 0.015 9.0 7.4 57 0.098 v 0.16 U 0.19 v 0.19 v 0.19 v 0.19 v 0.11 0.081 v 0.12 v 0.12 v 0.12 v 0.16 U 0.16 U 0.18 v 0.18 v 0.16 U 0.18 v 0.18 v 0.18 v 0.16 U 0.18 v 0	SVE-4/14			6.0 Uª	-	-	0.015 U	0.060 U	0.030 U	0.090 U		0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
September 2015 Soil Sampling B-16(3) 09/02/2015 3 3.6 U³ -	SVE-5/5	08/16/2012	5		-	-	0.015 U	0.061 U		0.092 U		0.031 U		0.12 U	7.5	0.031 U		0.61 U	0.031 U	0.031 U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SVE-5/7.5	08/16/2012	7.5	793 ^a	-	-	0.15	9.0	7.4	57	0.098 U ^g	0.16 U	0.19 U ^g	21	11	0.081 U ^g	0.12 U ^g	3.2 U	0.16 U	0.16 U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	September 2	015 Soil Samplin	g																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.6 U ^a	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
B-16(9) 09/02/2015 9 928 J ^{1,a}					-	-	0.18 U	0.73 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-16(12) 09/02/2015 12 5.8 U ^a					_	-		-	-	-	-	-	-	-	_	-	-	-	-	-
B-17(3) 09/02/2015 3 7.0 U³					-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
B-17(6) 09/02/2015 6 15 a				_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(9) 09/02/2015 9 9,180 a 0.19 U 0.77 U 0.63 1.2 U				_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					-	-	0.19 U	0.77 U	0.63	1.2 U	-	-	-	-	-	-	-	-	-	-
1179 all tables 03 30	B-17(12)	09/03/2015	12	5.8 U ^a	-	-		-			-	-	-	-	-	-	-	-	-	-

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Related Constituents (mg/kg)

Plaid Pantry No. 112 Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	МТВЕ	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening	Levels																		
MTCA Metho	od A ¹ Unrestricte	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Metho	od B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 20	15 Soil Sampling	g (continued)																	
B-18(3)	09/03/2015	3	4,770 ^a	-	-	0.66 U	2.6 U	2.6	3.9 U	-	-	-	-	-	-	-	-	-	-
B-18(6)	09/03/2015	6	543 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-18(9)	09/03/2015	9	7,820 ^a	-	-	0.19 U	0.74 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-18(12)	09/04/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(3)	09/03/2015	3	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(6)	09/03/2015	6	8.4 ^a	-	-	0.019 U	0.077 U	0.039 U	0.12 U	-	-	-	-	-	-	-	-	-	-
B-19(9)	09/03/2015	9	7.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(6)	09/03/2015	6	5.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(9)	09/03/2015	9	475 J ^{1,a,f}	-	-	0.018 U	0.073 U	0.036 U	0.11 U	-	-	-	-	-	-	-	-	-	-
B-20(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notoci

Gasoline, Diesel, and Heavy Oil/Lube by Method by NWTPH-HCID unless otherwise noted.

Volatiles by EPA Method 8260B

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

PCE = Tetrachloroethene

TCE = Trichloroethene

mg/kg = milligrams per kilogram

Bold values indicate concentrations exceed the Method A cleanup level shown.

Highlighted values exceed Method B cleanup level shown.

Italics indicate analytical reporting limit exceeds lowest cleanup level shown.

U = Undetected at method limit shown

J = Estimated value. Result was below the method reporting limit, but above the method detection limit.

J1 = Data Validation Qualifier. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

X = The detection in the diesel range is due to overlap from a gasoline range product.

NA = Not Applicable/Not Available

NC = Not Calculated

- = Not analyzed for this parameter

¹ Model Toxics Control Act (MTCA) Cleanup Amendments, Method A Soil Cleanup Levels for Unrestricted Land Use (WDOE, CLARC Database, August 2015)

² Per MTCA, the cleanup value for gasoline is 30 mg/kg if benzene is detected and/or if the sum of the toluene, ethylbenzene, and xylenes is greater than one percent of the gasoline concentration, and 100 mg/kg for all other gasoline mixtures.

³ Model Toxics Control Act (MTCA) Cleanup Amendments, Method B Soil Cleanup Levels (cancer endpoint) (WDOE, CLARC Database, August 2015)

⁴ MTCA modified Method B cleanup value calculated using Ecology's Workbook Tool for Calculating Soil and Groundwater Cleanup Levels (revised December 2007). The median soil concentration shown is based on site-specific analytical data combined with generic default assumptions.

⁵ Stated cleanup level is a non-cancer value. No cancer value available.

^a Gasoline by Method NWTPH-Gx/EPA 8260B

^b Diesel and Heavy Oil/Lube by Method NWTPH-Dx

 $^{^{\}rm b1}$ Diesel and Heavy Oil/Lube by Method NWTPH-Dx with silica-gel cleanup

 $^{^{\}rm c}$ Results in the diesel organics range are due to overlap from a gasoline range product.

^d Naphthalene analyzed by EPA Method 8270D SIM. No detections were reported for any of the PAH compounds.

 $^{^{\}rm e}$ 1,2-Dibromoethane (EDB) analyzed by EPA 8260B SIM.

 $[\]ensuremath{^{\text{f}}}$ The chromatographic pattern does not resemble the fuel pattern used for quantitation.

^g The analyte is reported down to the method detection limit. Result is an estimated concentration.

TABLE 2
Soil Analytical Results - Volatile Petroleum Hydrocarbons (mg/Kg)

Plaid Pantry No. 112 Vancouver, Washington

Sample Identification	B-16(6)	B-17(9)	B-18(3)	B-18(9)
Sample Depth (feet bgs)	6	9	3	9
Collection Date	09/02/2015	09/02/2015	09/03/2015	09/03/2015
Aliphatic Hydrocarbon (C5-C6)	6.5	2.4	24	1.8 U
Aliphatic Hydrocarbon (C6-C8)	1.4 UJ	186 J	87 J	41 J
Aliphatic Hydrocarbon (C8-C10)	8.1 J	567 J	277 J	212 J
Aliphatic Hydrocarbon (C10-C12)	175	556	574	409
Aromatic Hydrocarbon (C8-C10)	36	945	548	387
Aromatic Hydrocarbon (C10-C12)	205 J	564 J	513 J	178 J
Aromatic Hydrocarbon (C12-C13)	155 J	180 J	114 J	44 J

Notes:

VPH = Volatile Petroleum Hydrocarbons by NWVPH Method

mg/Kg = Milligrams per kilogram (parts per million) wet weight

bgs = Below ground surface

U = Not detected at method reporting limit shown

 $J = Data\ Validation\ Qualifier.\ The\ result is an estimated quantity.$ The associated numerical value is the approximate concentration of the analyte in the sample.

UJ = Data Validation Qualifier. The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

TABLE 3 SUMMARY OF SITE-SPECIFIC MTCA METHOD B CALCULATIONS PLAID PANTRY NO. 112 VANCOUVER, WASHINGTON

Parameter	B-16(6)	B-17(9)	B-18(3)	B-18 (9)
	Т	est Current Condition	is	
Measured TPH	587.490	3002.110	2143.180	1273.300
HI	0.2824	1.083	0.8487	0.4694
ECR	4.956E-09	5.231E-09	1.817E-08	5.231E-09
Pass/Fail?	PASS	FAIL	PASS	PASS
	ı	Protective Conditions	;	
Set Criteria	HI = 1	NA	HI=1	HI=1
TPH Concentration	2080.25	NA	2525.20	2714.96
HI	1	NA	1	1
ECR	1.75E-08	NA	2.14E-08	1.12E-08
Pass/Fail	PASS	NA	PASS	PASS
		Test Conditions		
Test TPH	NA	2760	NA	NA
HI	NA	0.995	NA	NA
ECR	NA	4.81E-09	NA	NA
Pass/Fail?	NA	PASS	NA	NA

- Arithmetic Average Concentration (based on protective and test conditions) = 2519.26 mg/Kg
- Calculated TPH using arithmetic average concentrations of constituents

Parameter	Average
Test Current	Conditions
Measured TPH	1751.250
HI	0.6708
ECR	8.397E-09
Pass/Fail?	PASS
Protective (Conditions
Set Criteria	HI = 1
TPH Concentration	2610.66
HI	1
ECR	1.25E-08
Pass/Fail	PASS
Test Con	ditions
Test TPH	NA
HI	NA
ECR	NA
Pass/Fail?	NA

Median Concentration (as per guidance) = 2618.51 mg/Kg

TABLE 3A

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Name: Plaid Pantry 112

Site	Name:	Plaid Pantry
Sample	Name:	B-16-6

		Current	Condition			Adjusted C	ondition	
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass o
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	-
Petroleum EC Fraction					Ing Ng	unticss	unitiess	+
AL_EC >5-6	6.5	5.17E-05			6.50E+00	5.17E-05		
AL_EC >6-8	0.7	5.57E-06			7.00E-01			
AL EC >8-10	8.1	3.65E-03				5.57E-06		
AL_EC >10-12	175	7.89E-02			8.10E+00 1.75E+02	3.65E-03		
AL_EC >12-16	0	7,072.02			0.00E+00	7.89E-02		
AL_EC >16-21	0				0.00E+00			
AL_EC >21-34	0				0.00E+00			
AR_EC >8-10	36	4.87E-03			3.60E+01	4.87E-03	-	
AR_EC >10-12	205	1.39E-01			2.05E+02	1.39E-01		
AR_EC >12-16	155	5.58E-02			1.55E+02	5.58E-02		
AR_EC >16-21	0				0.00E+00	J.36E-02		
AR_EC >21-34	0				0.00E+00			
Benzene	0.09	2.82E-04	4.96E-09		9.00E-02	2.82E-04	4.95E-09	+
Toluene	0.365	6.08E-05			3.65E-01	6.08E-05	4.93E-09	
Ethylbenzene	0.185	2.48E-05			1.85E-01			
Total Xylenes	0.55	3.69E-05			5.50E-01	2.48E-05		
Naphthalene	0	0.072.00			0.00E+00	3.69E-05		
-Methyl Naphthalene	0				0.00E+00	0.00E+00		
-Methyl Naphthalene	0				0.00E+00	0.00E+00		
-Hexane	0				0.00E+00	0.00E+00 0.00E+00		
ИТВЕ	0				0.00E+00	0.00E+00		
thylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
enzo(a)anthracene	0		0.00E+00	For	0.00E+00	-10025.00	0.00E+00	For
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	
hrysene	0		0.00E+00		0.00E+00		0.00E+00	
ribenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	Σ Risk=
ideno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00
Sum	587.49	2.82E-01	4.96E-09		5.87E+02	2.82E-01	4.95E-09	

TEST CURRENT CONDITION	
Measured TPH Soil Conc, mg/kg= 587.490	
HI= 2.824E-01	
RISK= 4.956E-09	
Pass or Fail? Pass	

This tool allows the user to calculate protective TPH soil concentration based on various soil quality criteria. The Waste Constitution of the content of th

protective TPH soil concentration based on various soil quality criteria. The Workbook uses the same composition ratio as for the measured data.

Calculate Protective TPH Soil Conc

Selected Criterion: @HI=1 Most Stringent? YES

Protetive TPH Soil Conc, mg/kg = 2080.25

HI = 1.00E+00

RISK = 1.75E-08

TEST ADJUSTED CONDITION

This tool allows the user to test whether a particular TPH soil concentration is protective of human health. The Workbook uses the same composition ratio as for the measured data.

Test Adjusted TPH Soil

Tested TPH Soil Conc, mg/kg = 587.4

HI = 2.82E-01

RISK = 4.95E-09

Pass or Fail? Pass

TABLE 3B

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-17(9)

		Current (Condition			Adjusted Co	ondition	
Chemical of Concern or EC group	Measured Soil Conc @dry basis	НQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	
Petroleum EC Fraction								†
AL EC >5-6	2.4	1.91E-05			2.21E+00	1.76E-05		
AL EC >6-8	186	1.48E-03			1.71E+02	1.36E-03		
AL EC >8-10	567	2.56E-01			5.21E+02	2.35E-01		
AL EC >10-12	556	2.51E-01			5.11E+02	2.31E-01		
AL EC >12-16	0				0.00E+00			
AL_EC >16-21	0				0.00E+00			
AL_EC >21-34	0				0.00E+00			
AR_EC >8-10	945	1.28E-01			8.69E+02	1.18E-01		
AR_EC >10-12	564	3.82E-01			5.19E+02	3.51E-01		
AR_EC >12-16	180	6.48E-02			1.65E+02	5.96E-02		
AR_EC >16-21	0				0.00E+00			
AR_EC >21-34	0				0.00E+00			
Benzene	0.095	2.97E-04	5.23E-09		8.73E-02	2.73E-04	4.81E-09	
Toluene	0.385	6.41E-05			3.54E-01	5.90E-05		
Ethylbenzene	0.63	8.44E-05			5.79E-01	7.76E-05		
Total Xylenes	0.6	4.03E-05			5.52E-01	3.70E-05		
Naphthalene	0				0.00E+00	0.00E+00		
1-Methyl Naphthalene	0				0.00E+00	0.00E+00		
2-Methyl Naphthalene	0				0.00E+00	0.00E+00		
n-Hexane	0				0.00E+00	0.00E+00		
MTBE	0				0.00E+00			
Ethylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
1,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
Benzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For
Benzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all
Benzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs
Benzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	
Chrysene	0		0.00E+00		0.00E+00		0.00E+00	
Dibenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	Σ Risk=
ndeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+0
Sum	3002.11	1.08E+00	5.23E-09	Fail	2.76E+03	9.95E-01	4.81E-09	VI. 1982 - Internal of the

TEST CURRENT CONDITION	
 Measured TPH Soil Conc, mg/kg= 3002.110	
HI= 1.083E+00	
RISK= 5.231E-09	
Pass or Fail? Fail	

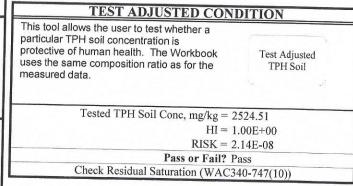
CALCULATE I ROTECTIV	E CONDITION
This tool allows the user to calculate protective TPH soil concentration based on various soil quality criteria. The Workbook uses the same composition ratio as for the measured data.	Calculate Protective TPH Soil Conc
	51
Selected Criterion:	
Selected Criterion: Most Stringent?	
	:
Most Stringent?	

This tool allows the user to test whether a particular TPH soil concentration is	<i></i>
protective of human health. The Workbook	Test Adjusted
ses the same composition ratio as for the neasured data.	TPH Soil
Tested TPH Soil Conc. mg/kg = 2	2760
Tested TPH Soil Conc, mg/kg = 1 HI = 9	2760 9.95E-01
	9.95E-01
HI = 9	9.95E-01 4.81E-09

TABLE 3C

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)


Date: 12/3/2015 Site Name: Plaid Pantry 112

Sample Name: B-18(3)

		Current	Condition			Adjusted C	ondition	and the second
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	НQ	RISK	Pass o
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	
Petroleum EC Fraction					III GAR	untiess	difficess	
AL_EC >5-6	24	1.91E-04			2.83E+01	2.25E-04		1
AL_EC >6-8	87	6.92E-04			1.02E+02	8.16E-04		
AL EC >8-10	277	1.25E-01			3.26E+02		1	
AL_EC >10-12	574	2.59E-01			6.76E+02	1.47E-01		
AL_EC >12-16	0	2.072.01			0.00E+00	3.05E-01		
AL_EC >16-21	0				0.00E+00		-	
AL_EC >21-34	0				0.00E+00			
AR_EC >8-10	548	7.42E-02			6.46E+02	8.73E-02		-
AR_EC >10-12	513	3.47E-01			6.04E+02	4.09E-01		
AR_EC >12-16	114	4.10E-02			1.34E+02	4.83E-02		
AR_EC >16-21	0				0.00E+00	4.0312-02		
AR_EC >21 - 34	0				0.00E+00			
Benzene	0.33	1.03E-03	1.82E-08		3.89E-01	1.22E-03	2.14E-08	
Γoluene	1.3	2.17E-04			1.53E+00	2.55E-04	2.1.12.00	
Ethylbenzene	2.6	3.48E-04	= _		3.06E+00	4.10E-04		
Total Xylenes	1.95	1.31E-04			2.30E+00	1.54E-04		
Naphthalene	0				0.00E+00	0.00E+00		-
-Methyl Naphthalene	0	11: 7-			0.00E+00	0.00E+00		
-Methyl Naphthalene	0			1 - 1	0.00E+00	0.00E+00		
n-Hexane	0				0.00E+00	0.00E+00		
MTBE	0				0.00E+00	0.00E 700		
Ethylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
Benzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	
hrysene	0		0.00E+00		0.00E+00		0.00E+00	
ribenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	ΣRisk=
ndeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00
Sum	2143.18	8.49E-01	1.82E-08		2.52E+03	1.00E+00	2.14E-08	

TEST C	CURRENT CONDITION
Measured TPI	H Soil Conc, mg/kg= 2143.180
	HI = 8.487E-01
	RISK= 1.817E-08
	Pass or Fail? Pass
Check Residue	al Saturation (WAC340-747(10))

This tool allows the user to calculate protective TPH soil concentration based on various soil quality criteria. The Workbook uses the same composition ratio as for the measured data.	Calculate Protective TPH Soil Conc
Selected Criterion: @HI=1	
Selected Criterion: @HI=1 Most Stringent? YES	
Most Stringent? YES	2525.20
Most Stringent? YES Protetive TPH Soil Conc, mg/kg =	2525.20 1.00E+00

TABLE 3D

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-18(9)

		Current	Condition			Adjusted C	ondition	
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass o
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	
Petroleum EC Fraction			T		3 3		unitess	_
AL_EC >5-6	0.9	7.16E-06			1.92E+00	1.53E-05		
AL_EC >6-8	41.4	3.30E-04			8.82E+01	7.02E-04		
AL EC >8-10	212	9.56E-02			4.52E+02	7.02E-04 2.04E-01		
AL_EC >10-12	409	1.84E-01			8.71E+02	3.93E-01		
AL_EC >12-16	0				0.00E+00	3.93E-01		
AL_EC >16-21	0				0.00E+00			
AL_EC >21-34	0			- 1	0.00E+00			
AR_EC >8-10	387	5.24E-02			8.24E+02	1.12E-01		
AR_EC >10-12	178	1.20E-01			3.79E+02	2.57E-01		
AR_EC >12-16	43.8	1.58E-02			9.33E+01	3.36E-02		
AR_EC >16-21	0				0.00E+00	0.002.02		
AR_EC >21-34	0				0.00E+00			
Benzene	0.095	2.97E-04	5.23E-09		2.02E-01	6.33E-04	1.11E-08	
Toluene	0.37	6.16E-05	_		7.88E-01	1.31E-04		
Ethylbenzene	0.185	2.48E-05			3.94E-01	5.28E-05		
Total Xylenes	0.55	3.69E-05			1.17E+00	7.86E-05		
Naphthalene	0				0.00E+00	0.00E+00		-
I-Methyl Naphthalene	0				0.00E+00	0.00E+00		1
2-Methyl Naphthalene	0				0.00E+00	0.00E+00		
n-Hexane	0				0.00E+00	0.00E+00		
MTBE	0				0.00E+00			
Ethylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
Benzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For
Benzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all
Benzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs
Benzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	
Chrysene	0		0.00E+00		0.00E+00		0.00E+00	
Dibenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	ΣRisk=
ndeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00
Sum	1273.3	4.69E-01	5.23E-09		2.71E+03	1.00E+00	1.11E-08	

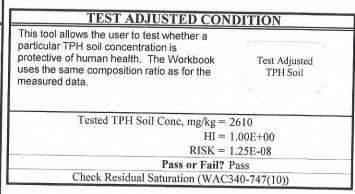
	TEST CURRENT CONDITION	Edicate (
	Measured TPH Soil Conc, mg/kg= 1273.300	
	HI = 4.694E-01	
-	RISK= 5.231E-09	
	Pass or Fail? Pass	
	Check Residual Saturation (WAC340-747(10))	P1.0000001
) //	

This tool allows the user to calculate protective TPH soil concentration based on various soil quality criteria. The Workbook uses the same composition ratio as for the measured data.	Calculate Protective TPH Soil Cone
Selected Criterion: @HI=1	
Selected Criterion: @HI=1 Most Stringent? YES	
Most Stringent? YES	2714.96
Most Stringent? YES Protetive TPH Soil Conc, mg/kg =	2714.96 1.00E+00

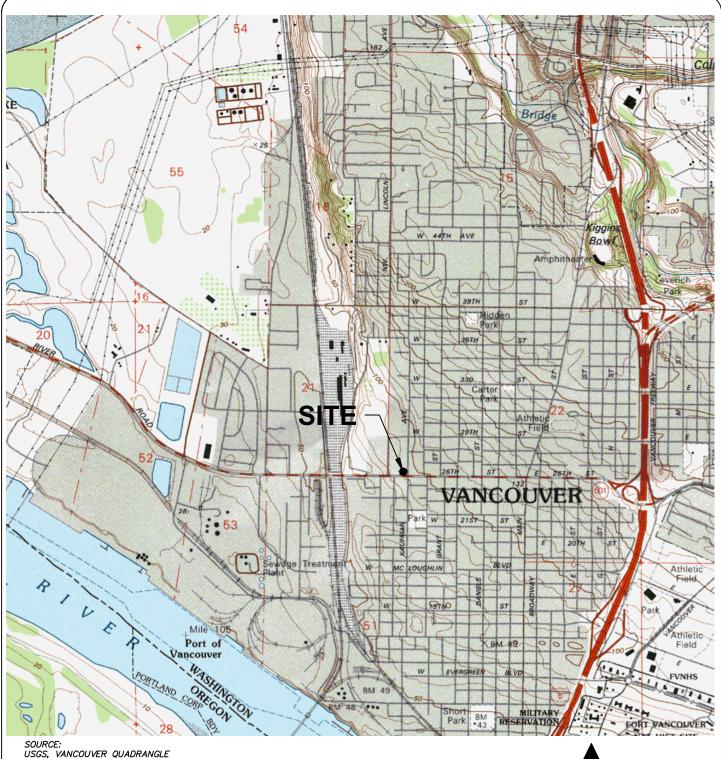
This tool allows the user to test whether a particular TPH soil concentration is	,
protective of human health. The Workbook uses the same composition ratio as for the measured data.	Test Adjusted TPH Soil
Tested TPH Soil Conc, mg/kg = 2	712.52
	712.52 .00E+00
	.00E+00
HI = 1	.00E+00 .11E-08

TABLE 3E

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use


A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740)


Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: Average

		Current	Condition			Adjusted C	ondition	
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass o
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	
Petroleum EC Fraction							T T T T T T T T T T T T T T T T T T T	_
AL_EC >5-6	8.41	6.69E-05			1.25E+01	9.98E-05		
AL_EC >6-8	78.65	6.26E-04			1.17E+02	9.33E-04		
AL_EC >8-10	266.02	1.20E-01			3.96E+02	1.79E-01		
AL_EC >10-12	428.5	1.93E-01			6.39E+02	2.88E-01		
AL_EC >12-16	0	2001/00/2009 2005			0.00E+00	2.68L-01		
AL_EC >16-21	0				0.00E+00			
AL_EC >21-34	0				0.00E+00	7-57		
AR_EC >8-10	478.9	6.48E-02			7.14E+02	9.66E-02		
AR_EC >10-12	365	2.47E-01			5.44E+02	3.68E-01		
AR_EC >12-16	123.2	4.44E-02			1.84E+02	6.61E-02		
AR_EC >16-21	0				0.00E+00	0.012 02		
AR_EC >21-34	0				0.00E+00			
Benzene	0.1525	4.77E-04	8.40E-09		2.27E-01	7.11E-04	1.25E-08	
Toluene	0.605	1.01E-04		-	9.02E-01	1.50E-04		
Ethylbenzene	0.9	1.21E-04			1.34E+00	1.80E-04		
Total Xylenes	0.9125	6.12E-05			1.36E+00	9.12E-05		
Naphthalene	0				0.00E+00	0.00E+00		-
-Methyl Naphthalene	0				0.00E+00	0.00E+00		
2-Methyl Naphthalene	0				0.00E+00	0.00E+00		
n-Hexane	0				0.00E+00	0.00E+00		
MTBE	0				0.00E+00			
Ethylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00	
Benzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For
Benzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all
Benzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	
Chrysene	0		0.00E+00		0.00E+00		0.00E+00	
Dibenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	Σ Risk=
ndeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+0
Sum	1751.25	6.71E-01	8.40E-09		2.61E+03	1.00E+00	1.25E-08	

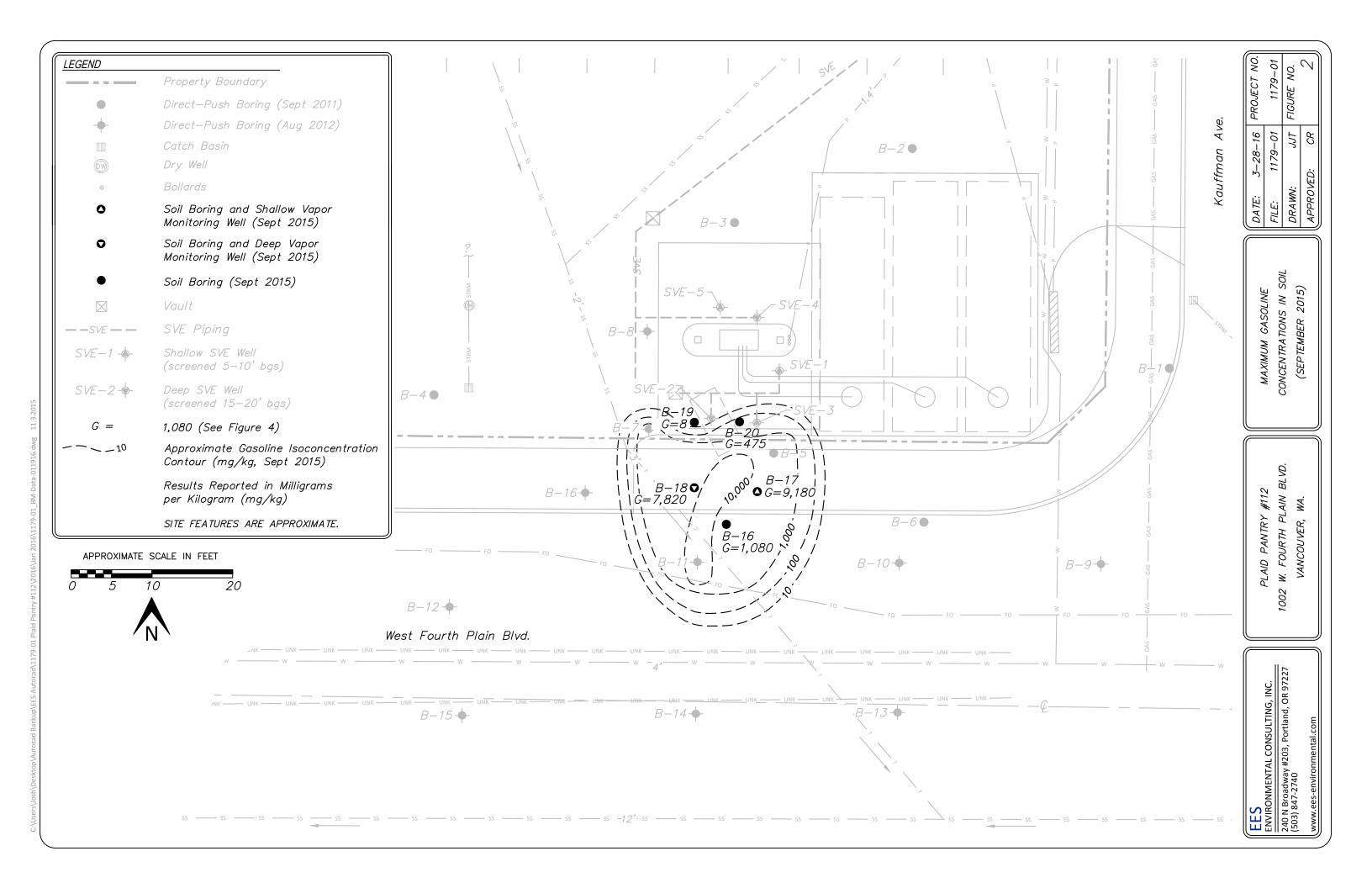
CALCULATE PROTECTIV This tool allows the user to calculate protective TPH soil concentration based on	/
various soil quality criteria. The Workbook uses the same composition ratio as for the measured data.	Calculate Protective TPH Soil Conc
Selected Criterion: @HI=1	
Selected Criterion: @HI=1 Most Stringent? YES	
	2610.66
Most Stringent? YES Protetive TPH Soil Cone, mg/kg =	= 2610.66 = 1.00E+00

FIGURES

SOURCE: USGS, VANCOUVER QUADRANGLE WASHINGTON—OREGON 7.5 MINUTE SERIES (TOPOGRAPHIC)

APPROXIMATE SCALE IN FEET

EES ENVIRONMENTAL CONSULTING, INC.
240 N Broadway #203 Portland OR 97227


(503) 847-2740

www.ees-environmental.com

VICINIT	Y	MAP

PLAID PANTRY #112 1002 W. FOURTH PLAIN BLVD. VANCOUVER, WA.

0 10	<u> 2000 2000 </u>	4000
DATE:	12-18-13	PROJECT NO.
FILE:	1179-01	1179-01
DRAWN:	JJT	FIGURE NO.
APPROV	ŒD: CR	1

ATTACHMENT A

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-03

Enclosed are the results of analyses for work order <u>A5I0103</u>, which was received by the laboratory on 9/3/2015 at 12:25:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pne<u>renberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION											
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received								
B-16(3)	A5I0103-03	Soil	09/02/15 12:10	09/03/15 12:25								
B-16(6)	A5I0103-04	Soil	09/02/15 12:28	09/03/15 12:25								
B-16(9)	A5I0103-05	Soil	09/02/15 12:40	09/03/15 12:25								
B-16(12)	A5I0103-07	Soil	09/02/15 14:40	09/03/15 12:25								
B-17(3)	A5I0103-10	Soil	09/02/15 15:05	09/03/15 12:25								
B-17(6)	A5I0103-11	Soil	09/02/15 15:10	09/03/15 12:25								
B-17(9)	A5I0103-12	Soil	09/02/15 15:15	09/03/15 12:25								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 13:59

ANALYTICAL SAMPLE RESULTS

Gase	oline Rang	e Hydroca	rbons (Ben	zene through N	laphthalen	e) by NWTPH-G	x	
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
B-16(3) (A5I0103-03)			Matrix: So	il Bat	ch: 5090392			
Gasoline Range Organics	ND		3.64	mg/kg dry	50	09/16/15 17:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		R	ecovery: 78 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			82 %	Limits: 50-150 %	"	"	"	
B-16(6) (A5I0103-04)			Matrix: So	il Bat	ch: 5090184			
Gasoline Range Organics	1080		73.2	mg/kg dry	500	09/08/15 18:59	NWTPH-Gx (MS)	(
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 111 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			92 %	Limits: 50-150 %	"	"	"	
B-16(9) (A5I0103-05)			Matrix: So	il Bat	ch: 5090184			
Gasoline Range Organics	928		83.1	mg/kg dry	500	09/08/15 19:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 109 %	Limits: 50-150 %	1	"	II .	
1,4-Difluorobenzene (Sur)			93 %	Limits: 50-150 %	"	"	"	
B-16(12) (A5I0103-07RE1)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	ND		5.80	mg/kg dry	50	09/09/15 10:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 101 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
B-17(3) (A5I0103-10)			Matrix: So	il Bat	ch: 5090392			
Gasoline Range Organics	ND		7.04	mg/kg dry	50	09/16/15 17:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		R	ecovery: 84 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			83 %	Limits: 50-150 %	"	"	"	
B-17(6) (A5I0103-11RE1)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	14.8		8.67	mg/kg dry	50	09/09/15 11:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 113 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	"	"	"	
B-17(9) (A5I0103-12RE1)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	9180		1530	mg/kg dry	10000	09/09/15 11:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 119 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 20

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

ANALYTICAL SAMPLE RESULTS

		B1	TEX Compo	unds by EPA 82	60B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
B-16(6) (A5I0103-04)			Matrix: So	il Bato	:h: 5090184			
Benzene	ND		183	ug/kg dry	500	09/08/15 18:59	5035/8260B	
Toluene	ND		732	"	"	"	"	
Ethylbenzene	ND		366	"	"	"	"	
Xylenes, total	ND		1100	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 96 %	Limits: 70-130 %	1	II .	"	
1,4-Difluorobenzene (Surr)			99 %	Limits: 70-130 %	"	n .	"	
Toluene-d8 (Surr)			99 %	Limits: 70-130 %	"	n .	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 70-130 %	"	"	"	
B-17(9) (A5I0103-12)			Matrix: So	il Bato	:h: 5090184	ļ		
Benzene	ND		192	ug/kg dry	500	09/08/15 21:14	5035/8260B	
Toluene	ND		767	"	"	"	"	
Ethylbenzene	629		383	"	"	"	"	
Xylenes, total	ND		1230	"	"	"	"	R-02
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 97 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			101 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 13:59

ANALYTICAL SAMPLE RESULTS

	Conventional Chemistry Parameters												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes					
B-16(6) (A5I0103-04)			Matrix: Soil										
Batch: 5090318 Total Organic Carbon	1400		200	mg/kg	1	09/16/15 14:35	SM 5310B MOD						
B-17(9) (A5I0103-12)			Matrix: Soil										
Batch: 5090318 Total Organic Carbon	1100		200	mg/kg	1	09/16/15 14:35	SM 5310B MOD						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203

Portland, OR 97227

Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 13:59

ANALYTICAL SAMPLE RESULTS

Analyzed Method Notes
7/15 09:07 EPA 8000C
/15 08:18 EPA 8000C Q-38
/15 08:18 EPA 8000C Q-38
/15 08:18 EPA 8000C Q-38
7/15 09:07 EPA 8000C
/15 08:18 EPA 8000C Q-38

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 5035A							Soi	1				
Blank (5090184-BLK1)				Prep	ared: 09/0	08/15 08:28	Analyzed:	09/08/15 1	4:51			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 102 %	Limits: 50-	150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-1	150 %		"					
LCS (5090184-BS2)				Prep	ared: 09/0	08/15 08:28	Analyzed:	09/08/15 1	3:28			
NWTPH-Gx (MS)												
Gasoline Range Organics	25.7		5.00	mg/kg wet	50	25.0		103	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 102 %	Limits: 50-	150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50-1	150 %		"					
Duplicate (5090184-DUP1)				Prep	ared: 09/0	02/15 12:28	Analyzed:	09/08/15 1	9:26			
QC Source Sample: B-16(6) (A5I0103	-04)											
NWTPH-Gx (MS)												
Gasoline Range Organics	517		57.4	mg/kg dry	500		1080			70	30%	Q
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 50-	150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50-1	150 %		"					
Batch 5090205 - EPA 5035A							Soil	ĺ				
Blank (5090205-BLK1)				Prep	ared: 09/0	09/15 08:00	Analyzed:	09/09/15 1	0:31			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50-	150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50-1	150 %		"					
LCS (5090205-BS2)				Prep	ared: 09/0	9/15 08:00	Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg wet	50	25.0		94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 100 %	Limits: 50-	150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-1	150 %		"					
Duplicate (5090205-DUP1)				Prep	oared: 09/0	03/15 08:25	Analyzed:	09/09/15 1	12:33			
QC Source Sample: Other (A5I0181-0	1)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.19	mg/kg dry	50		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolin	e Range	Hydrocarb	ons (Benz	zene thro	ugh Naphi	thalene) l	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soi	1				
Duplicate (5090205-DUP1)				Pre	epared: 09/	03/15 08:25	Analyzed:	09/09/15 12	2:33			
QC Source Sample: Other (A5I0181-	-01)											
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 104 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (5090205-DUP2)				Pr	epared: 09/	09/15 14:26	Analyzed:	09/09/15 17	':57			V-15
QC Source Sample: Other (A510226-	-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-04
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 118 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Napht	:halene) l	y NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090392 - EPA 5035A							Soil					
Blank (5090392-BLK1)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 11	:01			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 95 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					
LCS (5090392-BS2)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 10):37			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.7		5.00	mg/kg wet	50	25.0		91	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 92 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					
Duplicate (5090392-DUP1)				Pre	pared: 09/	11/15 19:15	Analyzed: (09/16/15 18	3:52			V-1:
QC Source Sample: Other (A5I0331-0	(2)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.04	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 78 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			85 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

					ounds l	· , =							
Analyte	Result	MDL	Reporting Limit	Units	Dil.		pike nount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 5035A	1							Soil					
Blank (5090184-BLK1)					Prepared:	09/08/15	08:28	Analyzed:	09/08/15 1	14:51			
5035/8260B													
Benzene	ND		8.33	ug/kg v	vet 50)							
Toluene	ND		33.3	"	"								
Ethylbenzene	ND		16.7	"	"								
Xylenes, total	ND		50.0	"	"								
Surr: Dibromofluoromethane (Surr)		1	Recovery: 99 %	Limits:	70-130 %		Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %			"					
Toluene-d8 (Surr)			100 %		70-130 %			"					
4-Bromofluorobenzene (Surr)			103 %		70-130 %			"					
LCS (5090184-BS3)					Prepared:	09/08/15	12:28	Analyzed:	09/08/15 1	3:55			
5035/8260B													
Benzene	1010		12.5	ug/kg v	vet 50) 1	000		101	65-135%			
Toluene	1000		50.0	"	**		"		100	"			
Ethylbenzene	1010		25.0	"	**		"		101	"			
Xylenes, total	3080		75.0	"	•	3	000		103	"			
Surr: Dibromofluoromethane (Surr)		Re	ecovery: 105 %	Limits:	70-130 %		Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %			"					
Toluene-d8 (Surr)			99 %		70-130 %			"					
4-Bromofluorobenzene (Surr)			101 %		70-130 %			"					
Duplicate (5090184-DUP1)					Prepared:	09/02/15	12:28	Analyzed:	09/08/15 1	9:26			
QC Source Sample: B-16(6) (A5I010	3-04)												
5035/8260B													
Benzene	ND		143	ug/kg d				ND				30%	
Toluene	ND		574	"	"			ND				30%	
Ethylbenzene	ND		287	"	**			ND				30%	
Xylenes, total	ND		861	"	"			ND				30%	
Surr: Dibromofluoromethane (Surr)		1	Recovery: 96 %	Limits:	70-130 %		Dilu	tion: 1x					
1,4-Difluorobenzene (Surr)			99 %		70-130 %			"					
Toluene-d8 (Surr)			99 %		70-130 %			"					
4-Bromofluorobenzene (Surr)			101 %		70-130 %			"					
Matrix Spike (5090184-MS1)					Prepared:	09/08/15	14:06	Analyzed:	09/08/15 2	23:55			V-

Apex Laboratories

5035/8260B

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

BTEX Compounds by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 5035A	\						Soi	I				
Matrix Spike (5090184-MS1)				Pre	pared: 09/	08/15 14:06	Analyzed:	09/08/15 23	3:55			V-15
QC Source Sample: Other (A5I0185	-08)											
Benzene	1650		18.7	ug/kg dry	50	1490	ND	110	65-135%			
Toluene	1610		74.6	"	"	"	ND	108	"			
Ethylbenzene	1620		37.3	"	"	"	ND	108	"			
Xylenes, total	4900		112	"	"	4480	ND	109	"			
Surr: Dibromofluoromethane (Surr)		Red	covery: 105 %	Limits: 70-	-130 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			97 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			102 %	70-	130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conve	ntional Ch	nemistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090318 - PSEP TOC	:						Soil					
Blank (5090318-BLK1)				Pre	pared: 09/	14/15 07:17	Analyzed:	09/16/15 14	:35			
SM 5310B MOD												
Total Organic Carbon	ND		200	mg/kg	1							
LCS (5090318-BS1)				Pre	pared: 09/	14/15 07:17	Analyzed:	09/16/15 14	:35			
SM 5310B MOD												
Total Organic Carbon	10000			mg/kg	1	10000		101	85-115%			
Duplicate (5090318-DUP1)				Pre	pared: 09/	14/15 07:17	Analyzed:	09/16/15 14	:35			
QC Source Sample: B-16(6) (A5I010	03-04)											
SM 5310B MOD												
Total Organic Carbon	1400		200	mg/kg	1		1400			0.4	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090259 - Total Soli	ds (Dry We	eight)					Soil					
Duplicate (5090259-DUP1)				Prep	ared: 09/	10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A51018	31-05)											
EPA 8000C												
% Solids	83.6		1.00	% by Weight	1		83.5			0.1	10%	Q-3
Duplicate (5090259-DUP2)		Prepared: 09/10/15 12:05 Analyzed: 09/11/15 08:18										
QC Source Sample: Other (A51023	1-02)											
EPA 8000C												
% Solids	84.6		1.00	% by Weight	1		84.8			0.2	10%	Q-3
Duplicate (5090259-DUP3)		Prepared: 09/10/15 12:05 Analyzed: 09/11/15 08:18										
QC Source Sample: Other (A5I023	8-10)											
EPA 8000C												
% Solids	87.5		1.00	% by Weight	1		88.2			0.7	10%	Q-3
Duplicate (5090259-DUP4)		Prepared: 09/10/15 12:05 Analyzed: 09/11/15 08:18										
QC Source Sample: Other (A5I024	9-06)											
EPA 8000C												
% Solids	90.6		1.00	% by Weight	1		91.1			0.5	10%	Q-3
Duplicate (5090259-DUP5)		Prepared: 09/10/15 14:43 Analyzed: 09/11/15 08:18										
QC Source Sample: Other (A5I024	4-02)											
EPA 8000C												
% Solids	90.8		1.00	% by Weight	1		90.5			0.3	10%	Q-3
Duplicate (5090259-DUP6)				Prep	ared: 09/	10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A51028	36-01)											
EPA 8000C												
% Solids	86.6		1.00	% by Weight	1		86.7			0.2	10%	Q-3
Duplicate (5090259-DUP7)				Prep	ared: 09/	10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A51029	3-01)											
EPA 8000C												
% Solids	87.0		1.00	% by Weight	1		87.4			0.5	10%	O-3

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Project Number: 1179-03 Portland, OR 97227 Project Manager: Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

Project: PP112

				Percent l	Ory Wei	ght						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 5090337 - Total Solids	(Dry We	eight)					Soi	I				
Duplicate (5090337-DUP1)				Prep	ared: 09/	4/15 13:12	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5I0346-03	3)											
EPA 8000C	00.0		1.00	0/1 337:14	,		00.0			0.01	100/	
% Solids	99.9		1.00	% by Weight	1		99.9			0.01	10%	
Duplicate (5090337-DUP2)				Prep	ared: 09/	14/15 14:11	Analyzed:	09/15/15 09:	:07			
QC Source Sample: Other (A5I0188-10))											
EPA 8000C												
% Solids	92.3		1.00	% by Weight	1		92.2			0.09	10%	
Duplicate (5090337-DUP3)				Prep	ared: 09/	14/15 14:11	Analyzed:	09/15/15 09:	:07			
QC Source Sample: Other (A5I0330-04	l)											
EPA 8000C												
% Solids	87.5		1.00	% by Weight	1		87.2			0.3	10%	
Duplicate (5090337-DUP4)				Prep	ared: 09/	14/15 14:11	Analyzed:	09/15/15 09:	:07			
QC Source Sample: Other (A510343-08	3)											
EPA 8000C												
% Solids	82.4		1.00	% by Weight	1		82.7			0.3	10%	
Duplicate (5090337-DUP5)				Prep	ared: 09/	4/15 17:20	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5I0363-02	2)											
EPA 8000C												
% Solids	85.6		1.00	% by Weight	1		88.1			3	10%	
Duplicate (5090337-DUP6)				Prep	ared: 09/	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5I0373-02	<u></u>											
EPA 8000C												
% Solids	85.5		1.00	% by Weight	1		85.8			0.3	10%	
Duplicate (5090337-DUP7)				Prep	ared: 09/	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5I0379-02	<u></u>											
EPA 8000C												
% Solids	82.0		1.00	% by Weight	1		86.5			5	10%	
Duplicate (5090337-DUP8)				Prep	ared: 09/	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5I0383-02	2)											
Apex Laboratories					The results	in this report	apply to the s	amples analyz	ed in accor	dance wit	h the chain	of

Philip Maenberg

custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total Soli	ds (Dry We	ight)					Soil					
Duplicate (5090337-DUP8)				Prep	ared: 09/	14/15 19:21	Analyzed: (09/15/15 09	:07			
QC Source Sample: Other (A51038 EPA 8000C % Solids	94.3		1.00	% by Weight	1		94.6			0.3	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

SAMPLE PREPARATION INFORMATION

	(Gasoline Range Hyd	rocarbons (Benzene	through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 5090184							
A5I0103-04	Soil	NWTPH-Gx (MS)	09/02/15 12:28	09/02/15 12:28	5.49g/5mL	10g/10mL	0.91
A5I0103-05	Soil	NWTPH-Gx (MS)	09/02/15 12:40	09/02/15 12:40	4.84g/5mL	10g/10mL	1.03
atch: 5090205							
A5I0103-07RE1	Soil	NWTPH-Gx (MS)	09/02/15 14:40	09/02/15 14:40	4.72g/5mL	10g/10mL	1.06
A5I0103-11RE1	Soil	NWTPH-Gx (MS)	09/02/15 15:10	09/02/15 15:10	4.4g/5mL	10g/10mL	1.14
A5I0103-12RE1	Soil	NWTPH-Gx (MS)	09/02/15 15:15	09/02/15 15:15	4.64g/5mL	10g/10mL	1.08
atch: 5090392							
A5I0103-03	Soil	NWTPH-Gx (MS)	09/02/15 12:10	09/02/15 12:10	11.64g/5mL	10g/10mL	0.43
A5I0103-10	Soil	NWTPH-Gx (MS)	09/02/15 15:05	09/02/15 15:05	4.54g/5mL	10g/10mL	1.10
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 5090184							
A5I0103-04	Soil	5035/8260B	09/02/15 12:28	09/02/15 12:28	5.49g/5mL	10g/10mL	0.91
A5I0103-12	Soil	5035/8260B	09/02/15 15:15	09/02/15 15:15	4.64g/5mL	10g/10mL	1.08
			Conventional Chem	nistry Parameters			
Prep: PSEP TOC					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 5090318							
A5I0103-04	Soil	SM 5310B MOD	09/02/15 12:28	09/14/15 07:17	5g/5g	5g/5g	NA
A5I0103-12	Soil	SM 5310B MOD	09/02/15 15:15	09/14/15 07:17	5g/5g	5g/5g	NA
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weig	ht)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
atch: 5090259							
A5I0103-04	Soil	EPA 8000C	09/02/15 12:28	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0103-05	Soil	EPA 8000C	09/02/15 12:40	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0103-07	Soil	EPA 8000C	09/02/15 14:40	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Philip Nerenberg, Lab Director

Page 16 of 20

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 13:59

SAMPLE PREPARATION INFORMATION

Percent Dry Weight							
(Dry Weight)			Sample	Default	RL Prep	
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Soil	EPA 8000C	09/02/15 15:10	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA	
Soil	EPA 8000C	09/02/15 15:15	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA	
Soil	EPA 8000C	09/02/15 12:10	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
Soil	EPA 8000C	09/02/15 15:05	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
	Matrix Soil Soil	Soil EPA 8000C Soil EPA 8000C Soil EPA 8000C	(Dry Weight) Matrix Method Sampled Soil EPA 8000C 09/02/15 15:10 Soil EPA 8000C 09/02/15 15:15 Soil EPA 8000C 09/02/15 12:10	(Dry Weight) Matrix Method Sampled Prepared Soil EPA 8000C 09/02/15 15:10 09/10/15 12:05 Soil EPA 8000C 09/02/15 15:15 09/10/15 12:05 Soil EPA 8000C 09/02/15 12:10 09/14/15 14:11	(Dry Weight) Sample Matrix Method Sampled Prepared Initial/Final Soil EPA 8000C 09/02/15 15:10 09/10/15 12:05 1N/A/1N/A Soil EPA 8000C 09/02/15 15:15 09/10/15 12:05 1N/A/1N/A Soil EPA 8000C 09/02/15 12:10 09/14/15 14:11 1N/A/1N/A	(Dry Weight) Sample Default Matrix Method Sampled Prepared Initial/Final Initial/Final Soil EPA 8000C 09/02/15 15:10 09/10/15 12:05 1N/A/1N/A 1N/A/1N/A Soil EPA 8000C 09/02/15 15:15 09/10/15 12:05 1N/A/1N/A 1N/A/1N/A Soil EPA 8000C 09/02/15 12:10 09/14/15 14:11 1N/A/1N/A 1N/A/1N/A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc Project: PP112 240 N Broadway Ste 203 Project Number: 1179-03 Reported: 09/28/15 13:59 Portland, OR 97227 Project Manager: Chris Rhea

Notes and Definitions

Qualifiers:

O-04	Spiles recover	wand/or DDD is	outsida aantral	limita dua ta a	non homogonoo	is sample matrix.
()-()4	ODIKE TECOVEL	v and/of Kell is	outside control	minus que to a	1 11011-11011102611601	is samule madrix.

Q-38 Oven outside of control limits during drying step.

Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control Q-42 limits. (Refer to the QC Section of Analytical Report.)

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Notes and Conventions:

DET	Analyte DETECTED
-----	------------------

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected. dry

Relative Percent Difference RPD

If MDL is not listed, data has been evaluated to the Method Reporting Limit only. MDL

Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C. WMSC

Batch In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS QC

Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional Policy chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

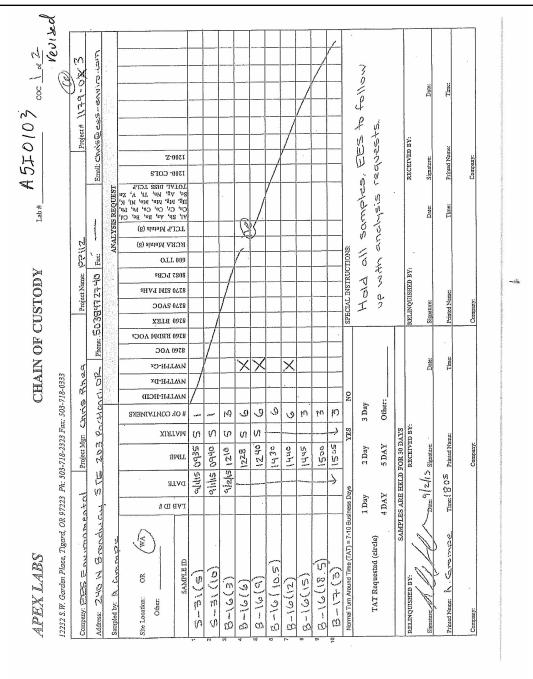
Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Philip Nerenberg, Lab Director

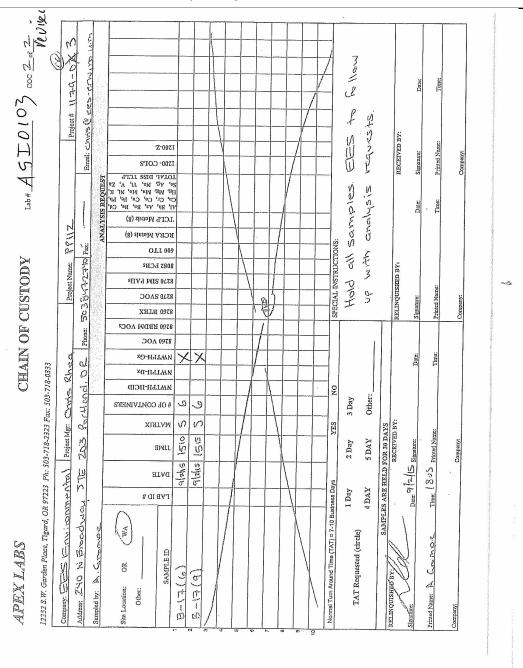
Philip Nevenberg

Page 18 of 20

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Reported:Portland, OR 97227Project Manager:Chris Rhea09/28/15 13:59

Apex Laboratories


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 EES Environmental Inc
 Project:
 PP112

 240 N Broadway Ste 203
 Project Number:
 1179-03
 Reported:

 Portland, OR 97227
 Project Manager:
 Chris Rhea
 09/28/15 13:59

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Apex Laboratories
Philip Nerenberg
12232 S.W. Garden Place
Tigard, OR 97223

RE: A5I0103 Lab ID: 1509193

September 22, 2015

Attention Philip Nerenberg:

Fremont Analytical, Inc. received 2 sample(s) on 9/15/2015 for the analyses presented in the following report.

Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

Date: 09/22/2015

09/15/2015 3:10 PM

B-17(9)

CLIENT: Apex Laboratories Work Order Sample Summary

Project: A5I0103 **Lab Order:** 1509193

1509193-002

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1509193-001
 B-16(6)
 09/02/2015 12:28 PM
 09/15/2015 3:10 PM

09/02/2015 3:15 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1509193**Date: **9/22/2015**

CLIENT: Apex Laboratories

Project: A5I0103

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1509193**

Date Reported: 9/22/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

WO#: **1509193**

Date Reported: 9/22/2015

Client: Apex Laboratories Collection Date: 9/2/2015 12:28:00 PM

Project: A5I0103

Lab ID: 1509193-001 **Matrix:** Soil

Client Sample ID: B-16(6)

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Batc	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	6.50	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C6-C8)	ND	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C8-C10)	8.07	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C10-C12)	175	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Aromatic Hydrocarbon (C8-C10)	35.6	1.39	Q	mg/Kg	1	9/16/2015 5:41:00 AM
Aromatic Hydrocarbon (C10-C12)	205	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Aromatic Hydrocarbon (C12-C13)	155	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Surr: 1,4-Difluorobenzene	100	65-140		%REC	1	9/16/2015 5:41:00 AM
Surr: Bromofluorobenzene	111	65-140		%REC	1	9/16/2015 5:41:00 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

WO#: **1509193**

Date Reported: 9/22/2015

Client: Apex Laboratories Collection Date: 9/2/2015 3:15:00 PM

Project: A5I0103

Lab ID: 1509193-002 **Matrix:** Soil

Client Sample ID: B-17(9)

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	2.35	2.24		mg/Kg	1	9/16/2015 12:51:00 PM
Aliphatic Hydrocarbon (C6-C8)	186	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM
Aliphatic Hydrocarbon (C8-C10)	567	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM
Aliphatic Hydrocarbon (C10-C12)	556	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM
Aromatic Hydrocarbon (C8-C10)	945	22.4	DQ	mg/Kg	10	9/16/2015 6:17:00 AM
Aromatic Hydrocarbon (C10-C12)	564	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM
Aromatic Hydrocarbon (C12-C13)	180	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM
Surr: 1,4-Difluorobenzene	109	65-140		%REC	1	9/16/2015 12:51:00 PM
Surr: Bromofluorobenzene	129	65-140	D	%REC	10	9/16/2015 6:17:00 AM

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Date: 9/22/2015

Work Order: 1509193

QC SUMMARY REPORT

CLIENT: Apex Laboratories

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-11845	SampType	e: LCS			Units: mg/Kg		Prep Dat	e: 9/15/20 ²	15	RunNo: 248	395	
Client ID: LCSS	Batch ID:				3 3		Analysis Dat			SeqNo: 468		
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	•		RPD Ref Val	·	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		30.4	2.00	30.00	0	101	70	130				
Aliphatic Hydrocarbon (C6-C8)		11.0	2.00	10.00	0	110	70	130				
Aliphatic Hydrocarbon (C8-C10)		9.96	2.00	10.00	0	99.6	70	130				
Aliphatic Hydrocarbon (C10-C12)		9.10	2.00	10.00	0	91.0	70	130				
Aromatic Hydrocarbon (C8-C10)		52.0	2.00	40.00	0	130	70	130				
Aromatic Hydrocarbon (C10-C12)		11.4	2.00	10.00	0	114	70	130				
Aromatic Hydrocarbon (C12-C13)		11.3	2.00	10.00	0	113	70	130				
Surr: 1,4-Difluorobenzene		3.16		2.500		126	65	140				
Surr: Bromofluorobenzene		2.88		2.500		115	65	140				
Sample ID: MB-11845	SampType	e: MBLK			Units: mg/Kg		Prep Dat	e: 9/15/20 1	15	RunNo: 248		
Client ID: MBLKS	Batch ID:	11845					Analysis Dat	e: 9/16/20 1	15	SeqNo: 468	959	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)		ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)		ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)		ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)		ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)		ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)		ND	2.00		0	0						
Surr: 1,4-Difluorobenzene		2.71		2.500		108	65	140				
Surr: Bromofluorobenzene		2.71		2.500		108	65	140				
Sample ID: 1509194-001ADUP	SampType	e: DUP			Units: mg/Kg		Prep Dat	e: 9/15/20 1	15	RunNo: 248		
Client ID: BATCH	Batch ID:	11845					Analysis Dat	e: 9/16/20 1	15	SeqNo: 468	3955	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)		19.3	1.92		0	0			23.89	21.3	25	
, inprincise i fydroddi borr (Go Go)		10.0	1.0=			•						

Date: 9/22/2015

Work Order: 1509193

QC SUMMARY REPORT

CLIENT: Apex Laboratories

A5I0103

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1509194-001ADUP SampType: DUP			Units: mg/Kg			Prep Date: 9/15/2015			RunNo: 24895		
Client ID: BATCH	Batch ID: 11845				Analysis Date: 9/16/2015 SeqNo: 4689					8955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	557	1.92		0	0			389.4	35.5	25	RE
Aliphatic Hydrocarbon (C10-C12)	474	1.92		0	0			474.9	0.182	25	Ε
Aromatic Hydrocarbon (C8-C10)	431	1.92		0	0			413.2	4.22	25	EQ
Aromatic Hydrocarbon (C10-C12)	355	1.92		0	0			362.1	2.03	25	E
Aromatic Hydrocarbon (C12-C13)	110	1.92		0	0			140.2	23.9	25	E
Surr: 1,4-Difluorobenzene	2.69		2.395		112	65	140		0		
Surr: Bromofluorobenzene	7.15		2.395		299	65	140		0	0	S

NOTES:

Project:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID: 1509194-002AMS	SampType: MS			Units: mg/Kg		Prep Da	te: 9/15/20	15	RunNo: 248	395	
Client ID: BATCH	Batch ID: 11845					Analysis Da	te: 9/16/20	15	SeqNo: 468	3956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	38.4	1.78	53.29	0	72.1	70	130				
Aliphatic Hydrocarbon (C6-C8)	48.3	1.78	17.76	41.44	38.6	70	130				SE
Aliphatic Hydrocarbon (C8-C10)	237	1.78	17.76	177.6	336	70	130				SE
Aliphatic Hydrocarbon (C10-C12)	224	1.78	17.76	210.6	76.2	70	130				Е
Aromatic Hydrocarbon (C8-C10)	295	1.78	71.05	264.4	43.3	70	130				SE
Aromatic Hydrocarbon (C10-C12)	156	1.78	17.76	154.8	8.92	70	130				SE
Aromatic Hydrocarbon (C12-C13)	46.9	1.78	17.76	43.79	17.5	70	130				S
Surr: 1,4-Difluorobenzene	2.44		2.220		110	65	140				
Surr: Bromofluorobenzene	5.27		2.220		237	65	140				S

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

S - Analyte concentration was too high for accurate spike recoveries.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Sample Log-In Check List

С	lient Name:	APEX	Work O	rder Numl	per: 1509193	
L	ogged by:	Mike Ridgeway	Date Re	ceived:	9/15/2015	3:10:00 PM
Cha	in of Cust	<u>ody</u>				
1.	Is Chain of C	ustody complete?	Yes	✓	No 🗆	Not Present
2.	How was the	sample delivered?	<u>UPS</u>			
Log	ı In					
	Coolers are p	present?	Yes	✓	No 🗌	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No 🗌	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 📙	Not Required ✓
6.	Was an atten	npt made to cool the samples?	Yes	\checkmark	No 🗌	NA 🗌
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes	✓	No 🗌	na 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes	✓	No 🗌	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?	Yes		No 🗹	NA 🗆
12.	Is there head	space in the VOA vials?	Yes		No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No 🗌	
17.	Were all hold	ling times able to be met?	Yes	✓	No 🗌	
Spe	ecial Handl	ing (if applicable)				
18	Was client no	otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified: Date	e:			
	By Who	m: Via:	еМа	il 🗌 Ph	one 🗌 Fax [In Person
	Regardi	ng:				
	Client Ir	nstructions:				
19.	Additional rer	marks:				
	Sample	jars not provided to conduct sample moisture chec	k			

Item Information

Item #	Temp °C
Cooler	2.3
Sample	7.5
Temp Blank	8.5

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT ORDER

Co59/14/15,

Apex Laboratories A5I0103

1509193

SENDING LABORATORY:

Apex Laboratories

12232 S.W. Garden Place

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 718-0333

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

Fremont Analytical 3600 Fremont Avenue N.

Seattle, WA 98103 Phone :(206) 352-3790 Fax: (206) 352-7178

Sample Name: B-16(6)		Soil Sar	npled: 09/02/15 12:28	(A5I0103-04)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied: 140 mL VOA - 5035 (MeOH)	09/25/15 17:00	09/16/15 12:28		
Sample Name: B-17(9)		Soil Sar	npled: 09/02/15 15:15	(A5I0103-12)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied: (E)40 mL VOA - 5035 (MeOH)	09/25/15 17:00	09/16/15 15:15		

-Be some weights one on VOA. STANDARD TAT Watch Expiration

Received By

eceived By

Released By

UPS (Shipper)

Date

Date

UPS (Shipper)

Date

09/15/15 3:10

Page 1 of 1

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-03

Enclosed are the results of analyses for work order <u>A5I0181</u>, which was received by the laboratory on 9/4/2015 at 11:40:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pne<u>renberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:06

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
B-17(12)	A5I0181-01	Soil	09/03/15 08:25	09/04/15 11:40							
B-18(3)	A5I0181-04	Soil	09/03/15 11:00	09/04/15 11:40							
B-18(6)	A5I0181-05	Soil	09/03/15 11:25	09/04/15 11:40							
B-18(9)	A5I0181-06	Soil	09/03/15 11:35	09/04/15 11:40							
B-18(12)	A5I0181-07	Soil	09/04/15 10:05	09/04/15 11:40							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203

Portland, OR 97227

Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 14:06

ANALYTICAL SAMPLE RESULTS

Gaso	oline Rang	e Hydroca	rbons (Ben	zene through N	laphthalene	e) by NWTPH-G	х	
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
B-17(12) (A5I0181-01)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	ND		5.76	mg/kg dry	50	09/09/15 12:09	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 101 %	Limits: 50-150 %	1	"	II .	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
B-18(3) (A5I0181-04)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	4770		263	mg/kg dry	2000	09/09/15 12:58	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 137 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"	
B-18(6) (A5I0181-05)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	543		59.1	mg/kg dry	500	09/09/15 13:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 125 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
B-18(9) (A5I0181-06RE1)			Matrix: So	il Bat	ch: 5090205			V-15
Gasoline Range Organics	7820		744	mg/kg dry	5000	09/09/15 17:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 142 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			105 %	Limits: 50-150 %	"	"	"	
B-18(12) (A5I0181-07)			Matrix: So	il Bat	ch: 5090205			
Gasoline Range Organics	ND		5.77	mg/kg dry	50	09/09/15 14:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 106 %	Limits: 50-150 %	1	"	11	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	II .	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:06

ANALYTICAL SAMPLE RESULTS

		ВТ	EX Compo	unds by EPA 82	:60B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-18(3) (A5I0181-04)			Matrix: So	il Bato	h: 5090205			
Benzene	ND		657	ug/kg dry	2000	09/09/15 12:58	5035/8260B	
Toluene	ND		2630	"	"	"	"	
Ethylbenzene	2600		1310	"	"	"	"	
Xylenes, total	ND		3940	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 114 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			107 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			97 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 70-130 %	"	"	"	
3-18(9) (A5I0181-06)			Matrix: So	il Bato	h: 5090205			
Benzene	ND		186	ug/kg dry	500	09/09/15 13:47	5035/8260B	
Toluene	ND		744	"	"	"	"	
Ethylbenzene	ND		372	"	"	"	"	
Xylenes, total	ND		1120	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 105 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			105 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			101 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 14:06

ANALYTICAL SAMPLE RESULTS

			Percent l	Dry Weight				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-17(12) (A5I0181-01)			Matrix: Soil	Bato	ch: 5090259			
% Solids	93.6		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-38
B-18(3) (A5I0181-04)			Matrix: Soil	Bate	ch: 5090259			
% Solids	84.3		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-38
B-18(6) (A5I0181-05)			Matrix: Soil	Bate	ch: 5090259			
% Solids	83.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-38
B-18(9) (A5I0181-06)			Matrix: Soil	Bate	ch: 5090259			
% Solids	76.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-38
B-18(12) (A5I0181-07)			Matrix: Soil	Bate	ch: 5090259			
% Solids	95.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-38

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:06

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range F	lydrocarb	ons (Benz	ene thro	ugh Naph	thalene) l	y NWT	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soil					
Blank (5090205-BLK1)				Pre	pared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:31			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 105 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50-	150 %		"					
LCS (5090205-BS2)				Pre	pared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg wet	50	25.0		94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 100 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					
Duplicate (5090205-DUP1)				Pre	pared: 09/	03/15 08:25	Analyzed:	09/09/15 1	2:33			
QC Source Sample: B-17(12) (A5I0181	1-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.19	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 104 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50-	150 %		"					
Duplicate (5090205-DUP2)				Pre	pared: 09/	09/15 14:26	Analyzed:	09/09/15 1	7:57			V-15
QC Source Sample: Other (A5I0226-0	1)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 118 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:06

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	Comp	ounds by	/ EPA 8260E	<u> </u>					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soi	il				
Blank (5090205-BLK1)					Prepared: 0	9/09/15 08:00	Analyzed:	09/09/15	10:31			
5035/8260B												
Benzene	ND		8.33	ug/kg w	vet 50							
Toluene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Xylenes, total	ND		50.0	"	"							
Surr: Dibromofluoromethane (Surr)		Re	covery: 108 %	Limits:	70-130 %	Dii	lution: 1x					
1,4-Difluorobenzene (Surr)			104 %		70-130 %		"					
Toluene-d8 (Surr)			101 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			103 %		70-130 %		"					
LCS (5090205-BS1)					Prepared: 0	9/09/15 08:00	Analyzed:	09/09/15 (09:43			
5035/8260B												
Benzene	1010		12.5	ug/kg w	vet 50	1000		101	65-135%			
Toluene	988		50.0	"	"	"		99	"			
Ethylbenzene	995		25.0	"	"	"		100	"			
Xylenes, total	3120		75.0	"	"	3000		104	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits:	70-130 %	Dii	lution: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %		"					
Toluene-d8 (Surr)			98 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			98 %		70-130 %		"					
Duplicate (5090205-DUP1)					Prepared: 0	9/03/15 08:25	Analyzed:	09/09/15	12:33			
QC Source Sample: B-17(12) (A5I018												
5035/8260B												
Benzene	ND		13.0	ug/kg d	ry 50		ND				30%	
Toluene	ND		51.9	"	"		ND				30%	
Ethylbenzene	ND		25.9	"	"		ND				30%	
Xylenes, total	ND		77.8	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 111 %	Limits:	70-130 %	Dii	lution: 1x					
1,4-Difluorobenzene (Surr)			105 %		70-130 %		"					
Toluene-d8 (Surr)			103 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			102 %		70-130 %		"					
Matrix Spike (5090205-MS1)					Drangrad: ()	9/09/15 14:26	Analyzad:	09/09/15 2	20:02			V

Apex Laboratories

5035/8260B

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Project Number: 1179-03 Portland, OR 97227 Project Manager: Chris Rhea

Reported: 09/28/15 14:06

QUALITY CONTROL (QC) SAMPLE RESULTS

Project: PP112

			BTE	X Compou	nds by l	EPA 8260B						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A	A						Soi					
Matrix Spike (5090205-MS1)				Pre	pared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			V-1
QC Source Sample: Other (A5I0226	5-05)											
Benzene	980		13.0	ug/kg dry	50	1040	ND	94	65-135%			
Toluene	980		51.9	"	"	"	ND	94	"			
Ethylbenzene	975		25.9	"	"	"	ND	94	"			
Xylenes, total	3030		77.8	"	"	3120	ND	97	"			
Surr: Dibromofluoromethane (Surr)		Red	covery: 105 %	Limits: 70-	130 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			101 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			97 %	70-	130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-03
Project Manager: Chris Rhea

Reported: 09/28/15 14:06

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090259 - Total Solids	s (Dry We	eight)					Soil					
Duplicate (5090259-DUP1)				Prep	ared: 09/	10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: B-18(6) (A5I0181	1-05)											
EPA 8000C												
% Solids	83.6		1.00	% by Weight	1		83.5			0.1	10%	Q-:
Duplicate (5090259-DUP2)				Prep	ared: 09/	10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A5I0231-	02)											
EPA 8000C												
% Solids	84.6		1.00	% by Weight	1		84.8			0.2	10%	Q-3
Duplicate (5090259-DUP3)				Prep	ared: 09/	10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510238- EPA 8000C	10)											
% Solids	87.5		1.00	% by Weight	1		88.2			0.7	10%	Q-3
Duplicate (5090259-DUP4)				Prep	ared: 09/	10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A5I0249-	06)											
EPA 8000C												
% Solids	90.6		1.00	% by Weight	1		91.1			0.5	10%	Q-:
Duplicate (5090259-DUP5)				Prep	ared: 09/	10/15 14:43	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510244-	02)											
EPA 8000C												
% Solids	90.8		1.00	% by Weight	1		90.5			0.3	10%	Q
Duplicate (5090259-DUP6)				Prep	ared: 09/	10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510286-	01)											
EPA 8000C												
% Solids	86.6		1.00	% by Weight	1		86.7			0.2	10%	Q-:
Duplicate (5090259-DUP7)				Prep	ared: 09/	10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510293-	01)											
EPA 8000C												
% Solids	87.0		1.00	% by Weight	1		87.4			0.5	10%	Q-3

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:06

SAMPLE PREPARATION INFORMATION

	•	Sasoline Range Hydi	rocarbons (Benzene	through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090205							
A5I0181-01	Soil	NWTPH-Gx (MS)	09/03/15 08:25	09/03/15 08:25	4.93g/5mL	10g/10mL	1.01
A5I0181-04	Soil	NWTPH-Gx (MS)	09/03/15 11:00	09/03/15 11:00	5.25g/5mL	10g/10mL	0.95
A5I0181-05	Soil	NWTPH-Gx (MS)	09/03/15 11:25	09/03/15 11:25	6.09g/5mL	10g/10mL	0.82
A5I0181-06RE1	Soil	NWTPH-Gx (MS)	09/03/15 11:35	09/03/15 11:35	5.53g/5mL	10g/10mL	0.90
A5I0181-07	Soil	NWTPH-Gx (MS)	09/04/15 10:05	09/04/15 10:05	4.73g/5mL	10g/10mL	1.06
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090205							
A5I0181-04	Soil	5035/8260B	09/03/15 11:00	09/03/15 11:00	5.25g/5mL	10g/10mL	0.95
A5I0181-06	Soil	5035/8260B	09/03/15 11:35	09/03/15 11:35	5.53g/5mL	10g/10mL	0.90
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weigl	<u>ht)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090259							
A5I0181-01	Soil	EPA 8000C	09/03/15 08:25	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-04	Soil	EPA 8000C	09/03/15 11:00	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-05	Soil	EPA 8000C	09/03/15 11:25	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-06	Soil	EPA 8000C	09/03/15 11:35	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
11010101 00							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc Project: PP112 240 N Broadway Ste 203 Project Number: 1179-03 Reported: 09/28/15 14:06 Portland, OR 97227 Project Manager: Chris Rhea

Notes and Definitions

Qualifiers:

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Q-38 Oven outside of control limits during drying step.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Notes and Conventions:

Analyte DETECTED DET

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected. dry

RPD Relative Percent Difference

If MDL is not listed, data has been evaluated to the Method Reporting Limit only. MDL

Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C. WMSC

Batch In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS QC

Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to 1/2 the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially Policy biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 12

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Reported:Portland, OR 97227Project Manager:Chris Rhea09/28/15 14:06

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	IR 97223 P	h: 503-	.718-23	23 Fax:	503-7.	18-033	<u></u>)			6	(2
Company: The Company of the Company	100000000000000000000000000000000000000		Project Mgr.	Ti.	¥1	\$ \$4	r			Proj	Project Name:		5. A.	Ü					Project #		1	10
Address: スペン シャート	1000	9	7. 7.	n).	10 10	1.	- ut.	Phone:	% #	Phone: Control Control	fr fri	<i>Q</i>	Hax:		-		Email:	Ţ,	(a)			
Sampled by:												-	A	TALY	ANALYSIS REQUEST	UEST						1
Site Location: OR WA	# OI	Э	3		FH-HCID	PH-Dx	PH-Gx	AOC	BLEX BBDM AOC?	SAOC	SHA9 IMIS		-	/ Metals (8)	As, Ba, Be, Cd,	DISS LCFS '' NIU' MU' IL'	COFS	7				
SAMPLE ID		TAG	TIMIT	TAM			LMN				0478	7808	L 009		ון, Sb,	ie, Ag		7-00Z1	77.7			
11	ξί	40 53 8	16	(7)	<u></u>		X					l	-	-	-	L S			-		1	1
		6.0	0000	1	363			 		_			-	+-					_		1	+
		173	1. 11. 11.		193			-	-	_			-	-					-		\dagger	-
(1) (2)		2000	0 12		٠,0	_	×	1	-					\vdash					_			-
		470.00	10		197		X	-		_			-		_			-	-		-	
			Ųi ki		5.92		×	-		_			-	-							+	-
(200)	1)45	2/11/5	VI O		J		X		-					-					_		\vdash	\vdash
18 (18)			0000)	K)						<u></u>				-				\vdash	-		\vdash	-
6-(8(20)			(42)		iO.			_					-	<u> </u>				-	L			-
The same state and same same state states are same states and same states are same states as a same state of the		The same of the sa			\vdash	1		-		1				\vdash								-
Normal Turn Around Time (TAT) = 7-10 Business Days	isiness Days			YES	NO			1	SP	SPECIAL INSTRUCTIONS:	INST	RUCTI	ONS									-
£ 57.6	1 Day	7	2 Day	3 1	3 Day					TO I	Ţ	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V)	800	Ø O		() (1)	Ĵ,	5 1) 1,1	h A	1	. 1
1.A.1 Kequesied (circle)	4 DAY	w	5 DAY	ŏ	Other:			ì		5	K.	7	System of	e) v)	i,		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ed.				
	SAMPLES ARE HELD FOR 30 DAYS	LD FO	R 30 DA	AS					_													
DISHED BY:	Ì	128	RECEIVED BY:	BY:	1	1.4			REI	RELINQUISHED BY:	SHED	BY:					RECEI	RECEIVED BY				
	Date: 114113 Signature:		mature				Date:			Simature:					Date:		Signature				Date:	
Printed Name: A Company of the Printed Name:	Time: 11	- 1	Printed Name		177		Time:	1,3	T.	Printed Name:	ij		1		Time:		Printed Name	lame:		I	Time:	
Company:		රි	Соппрану:	1		V			- US	Сопрану:							Сотрапу:	ii.				1
				74																		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Apex Laboratories
Philip Nerenberg
12232 S.W. Garden Place
Tigard, OR 97223

RE: A5I0181 Lab ID: 1509194

September 22, 2015

Attention Philip Nerenberg:

Fremont Analytical, Inc. received 2 sample(s) on 9/15/2015 for the analyses presented in the following report.

Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway President

Date: 09/22/2015

CLIENT: Apex Laboratories Work Order Sample Summary

Project: A5I0181 **Lab Order:** 1509194

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1509194-001
 B-18(3)
 09/03/2015 11:00 AM
 09/15/2015 3:10 PM

 1509194-002
 B-18(9)
 09/03/2015 11:35 AM
 09/15/2015 3:10 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1509194**Date: **9/22/2015**

CLIENT: Apex Laboratories

Project: A5I0181

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1509194**

Date Reported: 9/22/2015

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

WO#: **1509194**

Date Reported: 9/22/2015

Client: Apex Laboratories Collection Date: 9/3/2015 11:00:00 AM

Project: A5I0181

Lab ID: 1509194-001 **Matrix:** Soil

Client Sample ID: B-18(3)

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	23.9	1.92		mg/Kg	1	9/16/2015 6:53:00 AM
Aliphatic Hydrocarbon (C6-C8)	86.5	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Aliphatic Hydrocarbon (C8-C10)	277	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aliphatic Hydrocarbon (C10-C12)	574	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C8-C10)	548	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C10-C12)	513	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C12-C13)	114	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Surr: 1,4-Difluorobenzene	112	65-140		%REC	1	9/16/2015 6:53:00 AM
Surr: Bromofluorobenzene	114	65-140	D	%REC	20	9/16/2015 4:45:00 PM
NOTES						

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

WO#: 1509194

Date Reported: 9/22/2015

Client: Apex Laboratories Collection Date: 9/3/2015 11:35:00 AM

Project: A5I0181

Lab ID: 1509194-002 **Matrix:** Soil

Client Sample ID: B-18(9)

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Bato	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	ND	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Aliphatic Hydrocarbon (C6-C8)	41.4	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Aliphatic Hydrocarbon (C8-C10)	212	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aliphatic Hydrocarbon (C10-C12)	409	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C8-C10)	387	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C10-C12)	178	35.5	D	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C12-C13)	43.8	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Surr: 1,4-Difluorobenzene	120	65-140		%REC	1	9/16/2015 8:05:00 AM
Surr: Bromofluorobenzene	116	65-140	D	%REC	20	9/16/2015 5:20:00 PM

NOTES:

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Date: 9/22/2015

Work Order: 1509194

QC SUMMARY REPORT

CLIENT: Apex Laboratories

Volatile Petroleum Hydrocarbons by NWVPH

Project: A5I0181						V	olatile P	etroleum F	lydrocarb	ons by N	WVF
Sample ID: LCS-11845	SampType: LCS			Units: mg/Kg		Prep Date	e: 9/15/20	15	RunNo: 248	95	
Client ID: LCSS	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	30.4	2.00	30.00	0	101	70	130				
Aliphatic Hydrocarbon (C6-C8)	11.0	2.00	10.00	0	110	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.96	2.00	10.00	0	99.6	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.10	2.00	10.00	0	91.0	70	130				
Aromatic Hydrocarbon (C8-C10)	52.0	2.00	40.00	0	130	70	130				
Aromatic Hydrocarbon (C10-C12)	11.4	2.00	10.00	0	114	70	130				
Aromatic Hydrocarbon (C12-C13)	11.3	2.00	10.00	0	113	70	130				
Surr: 1,4-Difluorobenzene	3.16		2.500		126	65	140				
Surr: Bromofluorobenzene	2.88		2.500		115	65	140				
Sample ID: MB-11845	SampType: MBLK			Units: mg/Kg		Prep Date	e: 9/15/20	15	RunNo: 248	95	
Client ID: MBLKS	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0						
Surr: 1,4-Difluorobenzene	2.71		2.500		108	65	140				
Surr: Bromofluorobenzene	2.71		2.500		108	65	140				
Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg		Prep Date	e: 9/15/20 1	15	RunNo: 248	95	
Client ID: B-18(3)	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	19.3	1.92		0	0			23.89	21.3	25	
Allphatic Hydrocarbon (C3-C0)	10.0	1.02		•	U			20.00		20	

Date: 9/22/2015

Work Order: 1509194

QC SUMMARY REPORT

CLIENT: Apex Laboratories

A5I0181

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg			e: 9/15/20		RunNo: 248		
Client ID: B-18(3)	Batch ID: 11845					Analysis Dat	e: 9/16/20	15	SeqNo: 468	8955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	557	1.92		0	0			389.4	35.5	25	RE
Aliphatic Hydrocarbon (C10-C12)	474	1.92		0	0			474.9	0.182	25	Ε
Aromatic Hydrocarbon (C8-C10)	431	1.92		0	0			413.2	4.22	25	EQ
Aromatic Hydrocarbon (C10-C12)	355	1.92		0	0			362.1	2.03	25	Ε
Aromatic Hydrocarbon (C12-C13)	110	1.92		0	0			140.2	23.9	25	Е
Surr: 1,4-Difluorobenzene	2.69		2.395		112	65	140		0		
Surr: Bromofluorobenzene	7.15		2.395		299	65	140		0	0	S

NOTES:

Project:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID: 1509194-002AMS	SampType: MS			Units: mg/Kg		Prep Da	te: 9/15/20	15	RunNo: 248	395	
Client ID: B-18(9)	Batch ID: 11845					Analysis Da	te: 9/16/20	15	SeqNo: 468	3956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	38.4	1.78	53.29	0	72.1	70	130				
Aliphatic Hydrocarbon (C6-C8)	48.3	1.78	17.76	41.44	38.6	70	130				SE
Aliphatic Hydrocarbon (C8-C10)	237	1.78	17.76	177.6	336	70	130				SE
Aliphatic Hydrocarbon (C10-C12)	224	1.78	17.76	210.6	76.2	70	130				Ε
Aromatic Hydrocarbon (C8-C10)	295	1.78	71.05	264.4	43.3	70	130				SE
Aromatic Hydrocarbon (C10-C12)	156	1.78	17.76	154.8	8.92	70	130				SE
Aromatic Hydrocarbon (C12-C13)	46.9	1.78	17.76	43.79	17.5	70	130				S
Surr: 1,4-Difluorobenzene	2.44		2.220		110	65	140				
Surr: Bromofluorobenzene	5.27		2.220		237	65	140				S

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

S - Analyte concentration was too high for accurate spike recoveries.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Sample Log-In Check List

С	lient Name:	APEX	Work O	rder Num	nber: 1509194	
Lo	ogged by:	Clare Griggs	Date Re	ceived:	9/15/2015 3	3:10:00 PM
Cha	nin of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the	sample delivered?	<u>UPS</u>			
Log	ı İn					
	Coolers are p	oresent?	Yes	✓	No 🗌	NA 🗌
4.	Shipping con	tainer/cooler in good condition?	Yes	✓	No \square	
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes		No 🗌	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes	✓	No 🗌	NA 🗌
7.	Were all item	s received at a temperature of >0°C to 10.0°C	* Yes	✓	No 🗌	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗌	
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	\checkmark	No \square	
10.	Are samples	properly preserved?	Yes	✓	No 🗌	
11.	Was preserva	ative added to bottles?	Yes		No 🗹	NA 🗌
12.	Is there head	space in the VOA vials?	Yes		No 🗆	NA 🗹
13.	Did all sample	es containers arrive in good condition(unbroker	n)? Yes	✓	No 🗌	
14.	Does paperw	ork match bottle labels?	Yes	✓	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes	✓	No 🗆	
17.	Were all hold	ing times able to be met?	Yes	✓	No 🗌	
Spe	cial Handl	ing (if applicable)				
		otified of all discrepancies with this order?	Yes		No 🗌	NA 🗹
	Person	Notified:	Date:			
	By Who		Via: eMa	il 🗌 P	hone Fax	In Person
	Regardi					<u> </u>
	_	estructions:				
10	Additional rer	marks:				1
19.		iars not provided to conduct sample moisture of	ah a ak			

Item Information

Item #	Temp °C
Cooler	2.3
Sample	7.5
Temp Blank	8.5

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT ORDER

Apex Laboratories

A5I0181

1509 194

SENDING LABORATORY:

Apex Laboratories

12232 S.W. Garden Place

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 718-0333

Project Manager:

Philip Nerenberg

RECEIVING LABORATORY:

Fremont Analytical

3600 Fremont Avenue N.

Scattle, WA 98103

Phone:(206) 352-3790

Fax: (206) 352-7178

Sample Name: B-18(3)

Soil

Sampled:

09/03/15 11:00

(A5I0181-04)

Analysis

Due

Expires

Comments

NWTPH-VPH (Sub)

09/25/15 17:00

09/25/15 17:00

09/17/15 11:00

Containers Supplied:

(F)40 mL VOA - 5035 (MeOH)

Soil

Sampled:

09/03/15 11:35

(A5I0181-06)

Analysis

Comments

Due

Expires 09/17/15 11:35

NWTPH-VPH (Sub)

Sample Name: B-18(9)

Containers Supplied:

(F)40 mL VOA - 5035 (MeOH)

Be seneweights are on vow. STANDARD TAT WATELY Expiration

UPS (Shipper)

Released By

Date

Date

Regerved By

Received By

UPS (Shipper)

Date

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-01

Enclosed are the results of analyses for work order <u>A5I0188</u>, which was received by the laboratory on 9/4/2015 at 11:40:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pne<u>renberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION				
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-19 (3)	A5I0188-01	Soil	09/03/15 14:10	09/04/15 11:40
B-19 (6)	A5I0188-02	Soil	09/03/15 14:20	09/04/15 11:40
B-19 (9)	A5I0188-03	Soil	09/03/15 14:30	09/04/15 11:40
B-19 (12)	A5I0188-04	Soil	09/03/15 16:20	09/04/15 11:40
B-20 (6)	A5I0188-07	Soil	09/03/15 15:45	09/04/15 11:40
B-20 (9)	A5I0188-08	Soil	09/03/15 16:00	09/04/15 11:40
B-20 (12)	A5I0188-10	Soil	09/03/15 17:10	09/04/15 11:40

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

ANALYTICAL SAMPLE RESULTS

Gase	oline Rang	e Hydrocar	bons (Ben	zene through N	aphthalene	e) by NWTPH-G	х	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-19 (3) (A5I0188-01)			Matrix: Soi	l Bate	ch: 5090392			
Gasoline Range Organics	ND		5.75	mg/kg dry	50	09/16/15 18:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Rec	overy: 79 % 83 %	Limits: 50-150 % Limits: 50-150 %	1	"	"	
B-19 (6) (A5I0188-02)			Matrix: Soi	I Bate	ch: 5090205			
Gasoline Range Organics	8.40		7.71	mg/kg dry	50	09/09/15 14:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 109 % 98 %	Limits: 50-150 % Limits: 50-150 %	1	"	"	
B-19 (9) (A5I0188-03)			Matrix: Soi	I Bate	ch: 5090205			
Gasoline Range Organics	ND		7.91	mg/kg dry	50	09/09/15 15:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50-150 %	1	"	II.	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
B-19 (12) (A5I0188-04)			Matrix: Soi	l Bate	ch: 5090205			
Gasoline Range Organics	ND		5.73	mg/kg dry	50	09/09/15 15:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
B-20 (6) (A5I0188-07)			Matrix: Soi	l Bate	ch: 5090205			
Gasoline Range Organics	ND		5.90	mg/kg dry	50	09/09/15 15:51	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
B-20 (9) (A5I0188-08RE1)			Matrix: Soi	l Bate	ch: 5090244			
Gasoline Range Organics	475		145	mg/kg dry	1000	09/10/15 12:17	NWTPH-Gx (MS)	F-
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 127 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	
B-20 (12) (A5I0188-10RE1)			Matrix: Soi	l Bate	ch: 5090244			
Gasoline Range Organics	ND		5.67	mg/kg dry	50	09/10/15 11:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

ANALYTICAL SAMPLE RESULTS

		ВТ	EX Compo	unds by EPA 82	60B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-19 (6) (A5I0188-02)			Matrix: So	il Bato	:h: 5090205	}		
Benzene	ND		19.3	ug/kg dry	50	09/09/15 14:36	5035/8260B	
Toluene	ND		77.1	"	"	"	"	
Ethylbenzene	ND		38.6	"	"	"	"	
Xylenes, total	ND		116	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rece	overy: 105 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			102 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
B-20 (9) (A5i0188-08)			Matrix: So	il Bato	:h: 5090205	;		
Benzene	ND		18.1	ug/kg dry	50	09/09/15 16:16	5035/8260B	
Toluene	ND		72.5	"	"	"	"	
Ethylbenzene	ND		36.2	"	"	"	"	
Xylenes, total	ND		109	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Reco	overy: 106 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			103 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203

Portland, OR 97227

Project : **PP112**Project Number: 1179-01
Project Manager: Chris Rhea

Reported: 09/28/15 14:46

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
			Reporting		•			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
B-19 (3) (A5I0188-01)			Matrix: Soil	Bato	ch: 5090337			
% Solids	86.0		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-19 (6) (A5I0188-02)			Matrix: Soil	Bato	ch: 5090337			
% Solids	80.9		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-19 (9) (A5I0188-03)			Matrix: Soil	Bate	ch: 5090337			
% Solids	75.6		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-19 (12) (A5I0188-04)			Matrix: Soil	Bate	ch: 5090337			
% Solids	91.6		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-20 (6) (A5I0188-07)			Matrix: Soil	Bate	ch: 5090337			
% Solids	86.5		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-20 (9) (A5I0188-08)			Matrix: Soil	Bate	ch: 5090337			
% Solids	82.0		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
B-20 (12) (A5I0188-10)			Matrix: Soil	Bate	ch: 5090337			
% Solids	92.2		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ugn Naph	itnaiene)	by NWT	PH-GX			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soi	I				
Blank (5090205-BLK1)				Pre	epared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:31			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 105 %	Limits: 50	0-150 %	Dii	lution: Ix					
1,4-Difluorobenzene (Sur)			99 %	50	-150 %		"					
LCS (5090205-BS2)				Pre	epared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg wet	50	25.0		94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 100 %	Limits: 50	0-150 %	Dii	lution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					
Duplicate (5090205-DUP1)				Pre	epared: 09/	03/15 08:25	Analyzed:	09/09/15 1	12:33			
QC Source Sample: Other (A5I0181-0	01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.19	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 104 %	Limits: 50		Dii	lution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50)-150 %		"					
Duplicate (5090205-DUP2)				Pre	epared: 09/	09/15 14:26	Analyzed:	09/09/15 1	17:57			V-15
QC Source Sample: Other (A5I0226-0	01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 118 %	Limits: 50	0-150 %	Dii	lution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					
Batch 5090244 - EPA 5035A							Soi	I				
Blank (5090244-BLK1)				Pro	epared: 09/	10/15 08:00	Analyzed:	09/10/15 1	1:04			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 107 %	Limits: 50	0-150 %	Dii	lution: Ix					
1,4-Difluorobenzene (Sur)			104 %	50	-150 %		"					
LCS (5090244-BS2)				Pro	epared: 09/	10/15 08:00	Analyzed:	09/10/15 1	0:39			
NWTPH-Gx (MS)												
Gasoline Range Organics	21.6		5.00	mg/kg wet	50	25.0		86	70-130%			

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	e Range H	ydrocarb	ons (Benz	ene thro	ugh Naph	thalene) l	y NWTP	H-Gx			
Analyte	Result	MDL 1	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090244 - EPA 5035 <i>i</i>	4						Soil					
LCS (5090244-BS2)				Pro	epared: 09/	10/15 08:00	Analyzed:	09/10/15 10	:39			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	-150 %		"					
Duplicate (5090244-DUP1)				Pro	epared: 09/	08/15 14:06	Analyzed:	09/10/15 15	5:11			V-1
QC Source Sample: Other (A5I0185	5-12)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.99	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 122 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	-150 %		"					
Duplicate (5090244-DUP2)				Pro	epared: 09/	08/15 14:06	Analyzed:	09/10/15 17	':19			V-1
QC Source Sample: Other (A510185	5-16)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.65	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)	·	Recove	ery: 124 %	Limits: 50	0-150 %	Dil	ution: 1x	·	·	·		·
1,4-Difluorobenzene (Sur)			111 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 17

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090392 - EPA 5035A	A						Soil					
Blank (5090392-BLK1)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 11	:01			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 95 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					
LCS (5090392-BS2)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 10):37			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.7		5.00	mg/kg wet	50	25.0		91	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 92 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					
Duplicate (5090392-DUP1)				Pre	pared: 09/	11/15 19:15	Analyzed:	09/16/15 18	3:52			V-1
QC Source Sample: Other (A5I0331	-02)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.04	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 78 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			85 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	x Comp	ounds by	EPA 8260E	5					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soi	I				
Blank (5090205-BLK1)					Prepared: 09	/09/15 08:00	Analyzed:	09/09/15 1	10:31			
5035/8260B												
Benzene	ND		8.33	ug/kg w	vet 50							
Toluene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Xylenes, total	ND		50.0	"	"							
Surr: Dibromofluoromethane (Surr)		Re	covery: 108 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		70-130 %		"					
Toluene-d8 (Surr)			101 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			103 %		70-130 %		"					
LCS (5090205-BS1)					Prepared: 09	/09/15 08:00	Analyzed:	09/09/15 (09:43			
5035/8260B												
Benzene	1010		12.5	ug/kg w	vet 50	1000		101	65-135%			
Toluene	988		50.0	"	"	"		99	"			
Ethylbenzene	995		25.0	"	"	"		100	"			
Xylenes, total	3120		75.0	"	"	3000		104	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %		"					
Toluene-d8 (Surr)			98 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			98 %		70-130 %		"					
Duplicate (5090205-DUP1)					Prepared: 09	/03/15 08:25	Analyzed:	09/09/15 1	12:33			
QC Source Sample: Other (A5I0181-	01)											
5035/8260B												
Benzene	ND		13.0	ug/kg d	ry 50		ND				30%	
Toluene	ND		51.9	"	"		ND				30%	
Ethylbenzene	ND		25.9	"	"		ND				30%	
Xylenes, total	ND		77.8	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 111 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			105 %		70-130 %		"					
Toluene-d8 (Surr)			103 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			102 %		70-130 %		"					
Matrix Spike (5090205-MS1)					Prepared: 00	/09/15 14:26	Analyzed:	09/09/15 3	20:02			V

Apex Laboratories

5035/8260B

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by l	EPA 8260B						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A	A						Soi					
Matrix Spike (5090205-MS1)				Pre	pared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			V-1
QC Source Sample: Other (A5I0226	5-05)											
Benzene	980		13.0	ug/kg dry	50	1040	ND	94	65-135%			
Toluene	980		51.9	"	"	"	ND	94	"			
Ethylbenzene	975		25.9	"	"	"	ND	94	"			
Xylenes, total	3030		77.8	"	"	3120	ND	97	"			
Surr: Dibromofluoromethane (Surr)		Red	covery: 105 %	Limits: 70-	130 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			101 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			97 %	70-	130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227 Project Number: 1179-01
Project Manager: Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent D	ry Wei	ght						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total Solids	(Dry We	eight)					Soi	l				
Duplicate (5090337-DUP1)				Prepa	ared: 09/1	4/15 13:12	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510346-03 EPA 8000C	3)											
% Solids	99.9		1.00	% by Weight	1		99.9			0.01	10%	
Duplicate (5090337-DUP2)				Prepa	ared: 09/1	4/15 14:11	Analyzed:	09/15/15 09	:07			
QC Source Sample: B-20 (12) (A5I0188 EPA 8000C	8-10)											
% Solids	92.3		1.00	% by Weight	1		92.2			0.09	10%	
Duplicate (5090337-DUP3)				Prepa	ared: 09/1	4/15 14:11	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510330-04 EPA 8000C	4)											
% Solids	87.5		1.00	% by Weight	1		87.2			0.3	10%	
Duplicate (5090337-DUP4)				Prepa	ared: 09/1	4/15 14:11	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510343-08	3)											
EPA 8000C	93.4		1.00	0/ by Waight	1		92.7			0.2	100/	
% Solids	82.4		1.00	% by Weight	1		82.7			0.3	10%	
Duplicate (5090337-DUP5)				Prepa	ared: 09/1	4/15 17:20	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510363-02	2)											
EPA 8000C % Solids	85.6		1.00	% by Weight	1		88.1			3	10%	
Duplicate (5090337-DUP6)				Prepa	ared: 09/1	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510373-02 EPA 8000C	2)											
% Solids	85.5		1.00	% by Weight	1		85.8			0.3	10%	
Duplicate (5090337-DUP7)				Prepa	ared: 09/1	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510379-02 EPA 8000C	2)											
% Solids	82.0		1.00	% by Weight	1		86.5			5	10%	
Duplicate (5090337-DUP8)				Prepa	ared: 09/1	4/15 19:21	Analyzed:	09/15/15 09	:07			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total So	lids (Dry We	ight)					Soil					
Duplicate (5090337-DUP8)				Prep	ared: 09/	14/15 19:21	Analyzed: (09/15/15 09	:07			
QC Source Sample: Other (A5103	383-02)											
EPA 8000C												
% Solids	94.3		1.00	% by Weight	1		94.6			0.3	10%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 17

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Portland, OR 97227Project Manager:Chris Rhea

Reported: 09/28/15 14:46

SAMPLE PREPARATION INFORMATION

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090205							
A5I0188-02	Soil	NWTPH-Gx (MS)	09/03/15 14:20	09/03/15 14:20	4.73g/5mL	10g/10mL	1.06
A5I0188-03	Soil	NWTPH-Gx (MS)	09/03/15 14:30	09/03/15 14:30	5.25g/5mL	10g/10mL	0.95
A5I0188-04	Soil	NWTPH-Gx (MS)	09/03/15 16:20	09/03/15 16:20	5.17g/5mL	10g/10mL	0.97
A5I0188-07	Soil	NWTPH-Gx (MS)	09/03/15 15:45	09/03/15 15:45	5.65g/5mL	10g/10mL	0.89
Batch: 5090244							
A5I0188-08RE1	Soil	NWTPH-Gx (MS)	09/03/15 16:00	09/03/15 16:00	4.96g/5mL	10g/10mL	1.01
A5I0188-10RE1	Soil	NWTPH-Gx (MS)	09/03/15 17:10	09/03/15 17:10	5.17g/5mL	10g/10mL	0.97
3atch: 5090392							
A5I0188-01	Soil	NWTPH-Gx (MS)	09/03/15 14:10	09/03/15 14:10	5.9g/5mL	10g/10mL	0.85
			BTEX Compounds	s by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090205							
A5I0188-02	Soil	5035/8260B	09/03/15 14:20	09/03/15 14:20	4.73g/5mL	10g/10mL	1.06
A5I0188-08	Soil	5035/8260B	09/03/15 16:00	09/03/15 16:00	4.96g/5mL	10g/10mL	1.01
			Percent Dr	v Woight			
Prep: Total Solids ((Dry Woigh	ht)	r ercent br	y vveignt	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090337			r	- K			
A5I0188-01	Soil	EPA 8000C	09/03/15 14:10	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
A5I0188-02	Soil	EPA 8000C	09/03/15 14:20	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
A5I0188-03	Soil	EPA 8000C	09/03/15 14:30	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
A5I0188-04	Soil	EPA 8000C	09/03/15 14:30	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
A5I0188-07	Soil	EPA 8000C	09/03/15 15:45	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
A5I0188-08	Soil	EPA 8000C	09/03/15 16:00	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA
	Soil	EPA 8000C					NA

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 17

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc Project: PP112 240 N Broadway Ste 203 Project Number: 1179-01 Reported: 09/28/15 14:46 Portland, OR 97227 Project Manager: Chris Rhea

Notes and Definitions

Qualifiers:

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of

sampling.

Notes and Conventions:

Analyte DETECTED DET

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected. dry

RPD Relative Percent Difference

If MDL is not listed, data has been evaluated to the Method Reporting Limit only. MDL

Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C. WMSC

Batch In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS QC

Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to 1/2 the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially Policy biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the

blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

 EES Environmental Inc
 Project:
 PP112

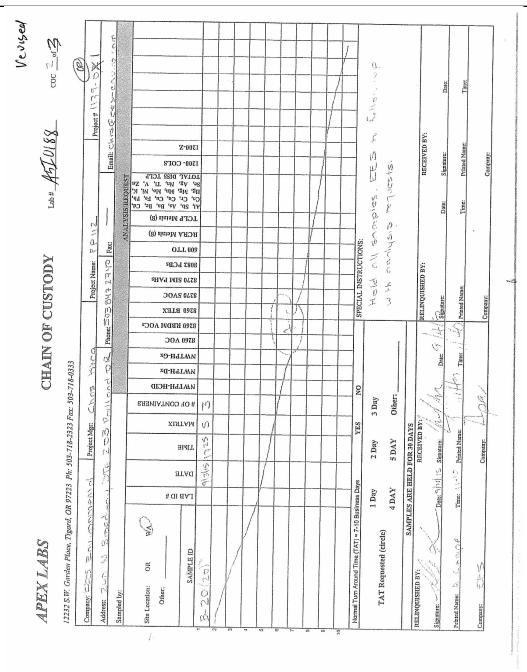
 240 N Broadway Ste 203
 Project Number:
 1179-01
 Reported:

 Portland, OR 97227
 Project Manager:
 Chris Rhea
 09/28/15 14:46

APEX LABS						CHAIN OF CUSTODY	A	0			0	M			Lab # AGI0148	B	7	188	202	COCof
12232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333	IR 97223	Ph: 5(13-718-2	323 Fc	x: 503	-718-03	33								*Unitural*	Josh	7	米		(3)
Company: EEE E Control	1000	70	Project Mgr:		Chris		Sart.			<u>P</u>	Project Name:	ame:	0	1	N	-		발	0 600	X
2 0 12	yı T		2009		41000		d. 0	Phon	15 15 15 15 15 15 15 15 15 15 15 15 15 1	391	Phone: 등성공약시 1.구너	ę	Fax:			핊	alt:	Email: Control of	6) V	83 21760
Sampled by: Sammed							-			-			4	MALY	ANALYSIS REQUEST	ST	-			
Site Location: OR WA					VIMERS				VOC5		sHA				is (8)					
Other:	ID#	E	Е	TRIX	t COME	TPH-HCT	TPH-Gx	0 AOC	KBDM	D RAGE	'd WIS C	5 LCB2	OTT	RA Meta	LP Meta Sb, As, 1 Ct, Co, Mg, Mn,		0-COF			
SAMPLEID	LAB	DYJ	MIT	WV.	10#			978	1978		-	-	009	-						
(3)		Sileip	0(5)	(/)	to												_			
0.1			1420		Q.		×										-			
			CS 75		9		X			_							-			
(7) 61-8		*********	075)		٥		X							_						
			(Se 3)		10												-			
(21) (12)			16.45	en menson	Ю															
(19) D.J. (62)			555)		0		X													
8.26		10 # 10 M P P P P P P P P P P P P P P P P P P	905)		ب		X													
(P 0) 0Z - P			026)		٧															
0-20(12)		÷	9	97	9		X	- 7												
Normal Turn Around Time (TAT) = 7-10 Business Days	Jusiness D	ays		YES	1	NO			П	SPECI	SPECIAL INSTRUCTIONS:	TRUC	TION	.,						
	1 Day		2 Day		3 Day					I	00	3	\hat{y}	1:41	Hold all samples. EES to		W		J- 2:0119	
TAT Requested (circle)	4 DAY	7	5 DAY	2	Other:	E				25	WHY andysis	O	10	N	s reguests	D)	V)			
	LES ARI	HELD	SAMPLES ARE HELD FOR 30 DAYS	DAYS					П							Î		, and		
RELINQUISHED BY:	i.	7	RECEIVED BY:	ÆD BY			D.	(2)	- 175	RELINGU	RELINQUISHED BY	3D BY:			Date	2 5	RECEIVED BY: Signature:	D BY:	Date	
Printed Numer	Time:	75	Printed Name	lame:	1000	1.3	7. Time:	1 1	11.4	Printed Name	Уате:				Time:	E	Printed Name:	ne:	Time:	
V			Commany	5		1 30				Company	¥					රි	Company:			
		-			-										2000 DODGE					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

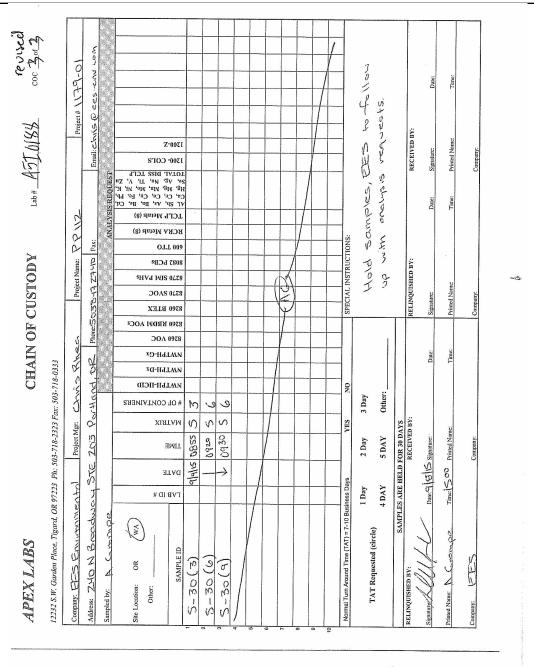

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 17

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Reported:Portland, OR 97227Project Manager:Chris Rhea09/28/15 14:46


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Manherg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc
240 N Broadway Ste 203
Project Number: 1179-01
Portland, OR 97227
Project Manager: Chris Rhea
Reported:
99/28/15 14:46

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.