

Oregon Portland | Bend | Baker City California Oakland | Folsom | Irvine

May 23, 2018

Ms. Sonia Fernández VCP Coordinator Toxics Cleanup Program Washington State Department of Ecology – Northwest Regional Office 3190 160th Avenue Southeast Bellevue, Washington 98008-5452

BY MAIL AND EMAIL

RE: RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION FORMER CLEANING CENTER OF REDMOND 15796 REDMOND WAY REDMOND, WASHINGTON FACILITY/SITE IDENTIFICATION NO. 26296554 VCP IDENTIFICATION NO. NW3166 FARALLON PN: 650-001

Dear Ms. Fernández:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter to provide additional information required by the Washington State Department of Ecology (Ecology) for the Former Cleaning Center of Redmond facility located at 15796 Redmond Way in Redmond, Washington (herein referred to as the Property) (Figure 1). The Property is owned by Nelgroup Properties, L.L.C. A "site," as defined by the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340), consists of all areas where the constituents of concern (COCs) have come to be located at concentrations exceeding applicable cleanup levels established under MTCA. The site associated with the Former Cleaning Center of Redmond consisted of the source area proximate to the former dry cleaning facility and an area extending off the Property to the northwest, where tetrachloroethene (PCE) concentrations previously exceeded the applicable MTCA cleanup level for groundwater (herein referred to as the Site) (Figure 2).

The additional information was requested by Ecology in its letter regarding Request for Additional Information to Provide Opinion on the Investigation and Cleanup under the VCP for the following Contaminated Site: Cleaning Center of Redmond, 15796 Redmond Way, Redmond WA 98052 dated March 2, 2018, from Ms. Sonia Fernández of Ecology to Mr. Thomas L. Markl of Nelson Group Properties, L.L.C. [*sic*]¹ (Ecology Letter) as part of an initial checklist-review of the *Site Closure Report Addendum, Former Cleaning Center of Redmond, 15796 Redmond Way, Redmond Way, Redmond, Washington* dated April 26, 2017, prepared by Farallon (Site Closure Report

P:\650 Nelson Properties\650001 Cleaning Cntr Redmond\Reports\Site Closure Report Addendum Response\2018 Closure Addendum Response.docx

¹ The letter references an incorrect company name. Mr. Markl is with Nelson Legacy Group, L.L.C., the Managing Member for the Property owner Nelgroup Properties, L.L.C., not Nelson Group Properties, L.L.C.

Addendum). The additional items requested by Ecology are paraphrased in bold font below, immediately followed by Farallon responses. Documents referenced during the preparation of this letter report are detailed in Attachment A.

ADDITIONAL INFORMATION

1. Provide soil and groundwater data from previous assessments documented in reports from 1999 and 2001.

These data were collected during previous investigations conducted by Alisto Engineering Group in January 1999 and GeoEngineers, Inc. between February and August 2000. Analytical summary tables for soil and groundwater samples, figures, and available analytical laboratory reports from Alisto Engineering Group (1999) and GeoEngineers, Inc. (2001) documents have been included in this letter as Attachments B and C, respectively.

2. No groundwater has been collected since 2007. Current groundwater data may be needed.

Sufficient groundwater monitoring data exists through 2007 for Ecology to approve the conditional point of compliance and issue a Site-wide No Further Action determination for the Site. Monitoring wells associated with the Site were decommissioned on March 30, 2012 and October 2, 2014.

3. Provide a conceptual site model and a terrestrial ecological evaluation (TEE).

The following description provides details regarding the conceptual site model for the Site, including a description of the regional and local geology and hydrogeology, a summary of the source of the COC in soil and groundwater, fate and transport of the COC, and potential exposure pathways, including the information previously submitted to Ecology that provided justification for protection of terrestrial plants and animals in the Site-specific TEE performed for the Site (Attachment D).

Geology and Hydrogeology

The Puget Sound region is underlain by Quaternary sediments deposited during glacial episodes (Galster and Laprade 1991). Deposition occurred during a number of glacial advances and retreats, which created the existing subsurface conditions. The regional sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till that consist of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during the glacial retreats. With the exception of the most recent recessional deposits, the outwash sediments have been over-consolidated by the overriding ice sheets.

Shallow soil encountered during Farallon's subsurface investigation activities in the vicinity of the Site consisted primarily of sand and gravel, with the exception of soil encountered

northwest of the northern commercial building on the Property. The shallow soil at this location included a layer of silt and peat from a depth of approximately 2.5 to 8 feet below ground surface (bgs). Underlying the silt and peat was sand and gravel consistent with the other boring locations.

The shallow aquifer is unconfined and extends to a depth of at least 70 feet bgs at the Site, based on Farallon's deep boring assessment conducted in August 2006. Depth-to-groundwater measured at the Site during the last groundwater monitoring event conducted on May 15, 2007 ranged from 9.62 to 11.99 feet below the top of the well casings. During the 13 monitoring events conducted by Farallon and others from 2000 to 2007, the estimated groundwater flow direction consistently has been to the northwest toward the Sammamish River, similar to the estimated groundwater flow direction depicted on Figure 2 of the Site Closure Report Addendum and Figures 3 and 4 in Attachment C. Groundwater elevations calculated from the monitoring well gauging data indicate that the potentiometric surface of the unconfined aquifer is at a similar elevation as the surface of the Sammamish River, suggesting that they are hydrologically connected, as shown on Figure 3.

Source Area

The source area for the Site is the historical dry cleaning machine at the Former Cleaning Center of Redmond dry cleaner in the northern commercial building on the Property, as shown on attached Figure 2 from the Site Closure Report Addendum. The Former Cleaning Center of Redmond operated as a dry cleaning facility that used PCE in the dry cleaning process from 1990 to October 29, 2002. The dry cleaning machine that used PCE was replaced in 2002 with a cleaning machine that used an environmentally friendly dry cleaning chemical. The current dry cleaning facility operates as a "green" dry cleaning facility or as a dry cleaning drop-off facility.

Constituent of Concern

PCE previously was detected at concentrations exceeding the MTCA Method A cleanup levels in soil and groundwater at the Site and is the only COC for the Site, as referenced by Ecology (2011) in the No Further Action determination for the Property.

Media of Concern

Soil and groundwater were the media of concern for the Site, because the COC previously was detected in these media at concentrations exceeding MTCA Method A cleanup levels established for the Site. Concentrations of PCE were reduced to less than the MTCA Method A cleanup levels in soil and groundwater through operation of a soil vapor extraction (SVE) remediation system from 2003 to 2006; therefore, soil and groundwater are no longer considered media of concern for the Site. Indoor air is not a medium of concern based on the results of the vapor intrusion assessment conducted in 2007, 2010, and 2014 and approved by Ecology (2011, 2014). Surface water is not considered a medium of concern because the COC concentrations in groundwater have been reduced to concentrations less than applicable cleanup levels established in the Site Closure Report Addendum and updated cleanup levels discussed in this letter.

Contaminant Fate and Transport

PCE was released from the historical dry cleaning machine at the Former Cleaning Center of Redmond facility. The PCE migrated through the building foundation into shallow soil and groundwater. Dissolved-phase PCE migrated with the flow of groundwater off the Property to the northwest. An SVE remediation system was installed in 2003 to address concentrations of PCE in soil and groundwater. Performance and confirmational soil and groundwater monitoring data collected at the Site between 2003 and 2007 demonstrated that the SVE remediation system was effective in cleaning up PCE in soil and groundwater to concentrations less than MTCA Method A cleanup levels, and the prior release of PCE at the Site no longer represented a threat to human health or the environment.

Nature and Extent of Contamination

Field work conducted by Alisto Engineering Group (1999) confirmed a release of PCE to soil and groundwater from the dry cleaning machine at the Former Cleaning Center of Redmond facility. Additional soil and groundwater sampling conducted by GeoEngineers, Inc. (2001) bounded the extent of PCE in soil and groundwater. PCE in soil was bounded to an area beneath the slab of the northern commercial building and proximate to the historical dry cleaning machine by soil sample results from borings B-1, B-6, and B-7. PCE in groundwater was bounded to the north-northeast of the source area by groundwater sample results from boring B-4 and monitoring well MW-1, to the source area by groundwater sample results from monitoring well MW-3.

Farallon installed an SVE well through the concrete slab in the former location of the dry cleaning machine inside the Former Cleaning Center of Redmond facility in August 2003. The SVE well was installed to facilitate operation of an SVE remediation system to remove concentrations of PCE in soil at the source area. Operation of the SVE remediation system mitigated or sufficiently decreased the flux of PCE from the source in the vadose (unsaturated) zone to groundwater, resulting in termination of active remediation of groundwater. Concentrations of PCE in groundwater declined during the 3-year operation of the SVE remediation system, which started in August 2003 and ended in August 2006.

Farallon (2006a) conducted an assessment of deep groundwater quality in August 2006 that was performed in response to a letter from Ecology (2006) that stated, "the vertical extent of contamination, in particular tetrachloroethene, in groundwater above the cleanup level(s) has not been determined," among other opinions. The assessment of deep groundwater quality included collection of reconnaissance groundwater samples from boring FB-1, which was advanced by a hollow-stem auger drill rig to a depth of 70 feet bgs down-gradient of monitoring well MW-7 (Figure 2). Reconnaissance groundwater samples were collected from boring FB-1 at depths of 12.5, 31.5, and 68.5 feet bgs during drilling. The analytical results for PCE in all three of the reconnaissance groundwater samples collected were less than the MTCA Method A cleanup level of 5 micrograms per liter (μ g/l) for PCE, confirming that concentrations of

PCE in groundwater attenuated with depth as shown on Figure 4 of the Site Closure Report Addendum.

In accordance with an agreement with Ecology from a September 18, 2006 meeting (Farallon 2006b), in 2006 and 2007 Farallon conducted confirmation soil sampling proximate to the former dry cleaning machine, collected indoor air samples from the nearest tenant space downgradient of the Former Cleaning Center of Redmond facility, and conducted confirmation groundwater monitoring. According to laboratory analytical results, PCE was present at concentrations less than the MTCA Method A cleanup level of 0.05 milligrams per kilogram in confirmation soil samples collected from the Site, confirming that the SVE remediation system was effective in reducing PCE concentrations. Four quarters of confirmation groundwater monitoring were completed at monitoring wells MW-1 through MW-3, MW-7, and MW-9 in August and November 2006, and in February and May 2007. Confirmation groundwater monitoring at monitoring well MW-8, proximate to the Sammamish River, had previously been completed from June 2001 through August 2004. The estimated direction of groundwater flow was to the northwest during confirmation groundwater monitoring events, consistent with prior monitoring events at the Site. PCE was not detected at concentrations exceeding the MTCA Method A cleanup level of 5 μ g/l in confirmation groundwater samples collected from the Site.

Vapor intrusion assessments were conducted in June 2007 and June 2010 as part of the remedial investigation and regulatory closure activities at the Property, respectively. Based on the results of the confirmation soil and groundwater sampling, and the vapor intrusion assessments, on April 1, 2011 Ecology (2011) issued a No Further Action determination for the Property. Additional vapor intrusion assessment was conducted in March 2014 as a condition of the Property-specific No Further Action determination. Results of the additional vapor intrusion assessment demonstrated that residual concentrations of PCE in the subsurface are protective of commercial workers and meet MTCA cleanup standards for protection of human health and the environment.

Potential Exposure Pathways

Two types of exposure risk were identified due to the presence of PCE in groundwater resulting from a historical release of the dry cleaning solvent PCE from the dry cleaning machine at the Former Cleaning Center of Redmond facility. These exposure risks are associated with human and terrestrial ecological receptors. Potential exposure pathways to humans included exposure to contaminated soil, groundwater, and indoor air. The exposure pathways are further discussed below and diagramed on the attached Figure 4.

Soil Exposure Pathway

Human exposure pathways for shallow soil include direct contact, inhalation of fugitive dust, and soil leaching to groundwater and subsequent exposure to such groundwater. The direct contact pathway considers both dermal contact with and ingestion of soil.

The direct contact, inhalation, and soil leaching to groundwater pathways are no longer complete, because PCE concentrations in soil and groundwater have been reduced to concentrations less than applicable cleanup levels established for the Site through the cleanup action implemented by operation of the SVE remediation system from August 2003 to August 2006. Confirmation monitoring of soil, groundwater, and indoor air confirm that these soil exposure pathways are incomplete (Farallon 2007).

Groundwater Exposure Pathway

Human exposure pathways for groundwater include the direct contact pathway, which comprises both the dermal contact and ingestion pathways, and groundwater discharged to a surface water.

The direct contact and discharge to surface water pathways are not complete because PCE concentrations in groundwater have been reduced to concentrations less than applicable cleanup levels established for the Site through implementation of the cleanup action. Results from confirmational groundwater monitoring and SVE remediation system performance monitoring demonstrated that the source of PCE in soil has been remediated, resulting in reduction of PCE concentrations in groundwater to less than the MTCA Method A cleanup level (Farallon 2007, 2017). Confirmation groundwater monitoring confirms that these groundwater exposure pathways are incomplete (Farallon 2007).

Indoor Air Exposure Pathway

Human exposure via inhalation includes exposure to indoor air. The results of the indoor air monitoring conducted in 2007, 2010, and 2014 confirmed that low to non-detect concentrations of PCE in indoor air were protective of the vapor intrusion pathway for the commercial exposure scenario for the northern commercial building on the Property (Farallon 2007, 2010, 2014). Based on current Property uses, the commercial exposure scenario is the applicable screening level for comparison purposes, and no further action is necessary regarding the vapor intrusion pathway (Ecology 2011, 2014). PCE concentrations detected in confirmation groundwater samples down-gradient of the Property do not exceed current MTCA Method B screening levels and therefore the vapor intrusion pathway is incomplete for that portion of the Site (Ecology 2009). Ecology (2014) considers the confirmational indoor air monitoring completed.

Ecological Exposure Pathway

Farallon evaluated ecological exposure pathways pertaining to aquatic and terrestrial organisms. Soil exposure pathways include ingestion and dermal contact by terrestrial organisms. Groundwater exposure pathways include ingestion and dermal contact by aquatic and terrestrial organisms through discharge of COCs to surface water and ingestion of aquatic organisms after discharge to surface water.

COC concentrations in soil formerly were present in the source area beneath the northern commercial building on the Property and have been reduced to concentrations less than the

MTCA Method A cleanup level through operation of the SVE remediation system (Farallon 2007). A TEE previously submitted to Ecology for the Site on March 1, 2011 documented that the cleanup conducted to protect human health receptors was protective of ecological receptors. A copy of the TEE submittal is included as Attachment D. Based on these findings, the ingestion and dermal contact exposure routes for ecological exposure pathways in soil are incomplete.

COC concentrations in groundwater have been reduced to concentrations less than applicable cleanup levels established in the Site Closure Report Addendum and updated cleanup levels detailed under item 4 below. These cleanup levels are protective of the designated/beneficial use of the surface water; therefore, these ecological exposure pathways for groundwater and surface water are incomplete.

4. Discuss the selection of cleanup levels for the Site.

The following is a discussion of the cleanup levels established for the Site.

Soil

Farallon (2007) previously established the MTCA Method A cleanup level for unrestricted land use of 0.05 milligram per kilogram as the cleanup level for PCE in soil at the Cleaning Center of Redmond Site under Ecology Voluntary Cleanup Program Identification No. NW1324.

Groundwater

Farallon (2007) previously established the MTCA Method A cleanup level for unrestricted land use of 5 μ g/l as the cleanup level for PCE at the Cleaning Center of Redmond Site under Ecology Voluntary Cleanup Program Identification No. NW1324. Ecology (2011) concurred with this cleanup level for the Site in the No Further Action determination for the Property. This cleanup level applies to the portion of the Site up-gradient of the proposed conditional point of compliance, former monitoring well MW-8, encompassing former monitoring wells MW-1 through MW-7 and MW-9 (Table 1). Screening levels for the degradation products trichloroethene (TCE), cis-1,2-dichloroethene, and vinyl chloride that were applicable at the time the cleanup was conducted have been included in Table 1 for reference.

Due to the proximity of the northwestern portion of the Site to the Sammamish River, Farallon recommends the use of Washington State Surface Water Quality Criteria (Table 240 of WAC 173-201A-240, updated August 2016) as the basis for the groundwater cleanup level for PCE at the proposed conditional point of compliance on the northwestern portion of the Site to protect the designated/beneficial uses of the surface water. No freshwater aquatic life water quality criteria have been established for PCE, so human health criteria for the consumption of water and aquatic organisms will be used. The water quality criterion for PCE in Table 240 of WAC 173-201A-240 is more stringent than the MTCA Method A cleanup level. The selected groundwater cleanup level for PCE at the conditional point of compliance is $4.9 \mu g/l$ (Table 240, WAC 173-201A-240) (Table 2).

Farallon developed screening levels for TCE, cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride for comparison criteria at the proposed conditional point of compliance (Table 2). These screening levels include:

- Surface water quality criterion of 0.38 μ g/l for TCE from Table 240 of WAC 173-201A-240;
- Standard MTCA Method B value of 16 μ g/l for cis-1,2-DCE from MTCA Cleanup Levels and Risk Calculations for Groundwater; and
- MTCA Method A cleanup level of 0.2 μg/l for vinyl chloride from Table 720-1 of WAC 173-340-900, as revised in 2013.

Indoor Air

Farallon (2014) previously established a MTCA Method B calculated cleanup level for PCE that was protective of commercial workers at 50.2 micrograms per cubic meter. Ecology (2011) also references a cleanup level of 0.93 micrograms per cubic meter for TCE in the No Further Action determination for the Property.

5. Provide figures that show soil data collected in 1999 and 2001.

Historical analytical data and figures from the reports prepared by Alisto Engineering Group (1999) and GeoEngineers, Inc. (2001) are included in this letter report as Attachments B and C, respectively.

6. Provide an updated version of Figure 1, *Site Vicinity Map* from the Site Closure Report Addendum that shows more of the area surrounding the Property, particularly to the east.

An updated version of Figure 1 is provided with this letter report.

7. Only PCE groundwater results were shown in the analytical summary tables for the Site Closure Addendum even though other constituents of concern were sampled.

Concentrations of PCE, TCE, cis-1,2-DCE, and vinyl chloride have been included in Tables 1 and 2 of this letter report. Table 1 compares existing data to the cleanup levels established for the Site in the *Site Closure Report, Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington* dated September 21, 2007, prepared by Farallon. These cleanup levels are applicable for the up-gradient portion of the Site encompassing former monitoring wells MW-1 through MW-7 and MW-9. Table 2 includes the cleanup level protective of surface water that was established for PCE at the conditional point of compliance, former monitoring well MW-8, in the Site Closure Report Addendum. Screening levels protective of the groundwater to surface water pathway are provided in Table 2 for TCE, cis-1,2-dichloroethene, and vinyl chloride. These screening levels are discussed in the response to Item 4 above.

8. Ensure that data has been submitted to the Environmental Information Management (EIM) database.

Analytical data collected by Farallon was uploaded to the EIM database in 2011 and 2014. Email acknowledgements from Ecology documenting these submittals are included as Attachment E.

CLOSING

Farallon appreciates the opportunity to provide environmental consulting services for this project. Please contact Brani Jurista at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

h. Moor

Jennifer L. Moore Senior Scientist

Branolar Brani Jurista, L.G., P.G.

Senior Geologist

BRANISLAV JURISTA

Was

Attachments: Figure 1, Site Vicinity Map

Figure 1, Sile Figure 1, Sile Figure 2, Groundwater Elevation Contours and PCE Concentrations in Groundwater
Figure 3, Cross Section A-A'
Figure 4, Human and Ecological Exposure Pathway Analysis
Table 1, Summary of Groundwater Analytical Results – HVOCs
Table 2, Summary of Groundwater Analytical Results at Conditional Point of
Compliance – HVOCs
Attachment A, References
Attachment B, Excerpts from 1999 Alisto Engineering Group Report
Attachment C, Excerpts from 2001 GeoEngineers, Inc. Report
Attachment D, Site-Specific Terrestrial Ecological Evaluation
Attachment E, EIM Submittal Acknowledgments

cc: Mr. Tom Markl, CEO; Nelson Legacy Group, L.L.C. (by email) Mr. William Joyce; Joyce Ziker Parkinson PLLC (by email)

JLM/BJ:cm

FIGURES

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

Figure 4 Human and Ecological Exposure Pathway Analysis Former Cleaning Center of Redmond 15796 Redmond Way **Redmond**, Washington Farallon PN: 650-001

otential	Receptors
rcial	Temporary
	Construction
15	Worker
	I
	I
	I
	I
	I
	I
	I

TABLES

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

Table 1Summary of Groundwater Analytical Results - HVOCsFormer Cleaning Center of RedmondRedmond, WashingtonFarallon PN: 650-001

				Analytical Results (m	icrograms per liter) ¹	
Well/Sample Identification	Date Sampled	Sample Collected By	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride
	3/6/2000	GeoEngineers	1.6	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	5.4	<1.0	<5.0	<5.0
	12/20/2000	Farallon	2.7	< 0.20	< 0.20	< 0.20
	6/6/2001	Farallon	1.3	< 0.20	<0.20	< 0.20
	6/28/2002	Farallon	2.1	< 0.20	<0.20	< 0.20
	8/13/2003	Farallon	1.2	< 0.20	<0.20	< 0.20
	11/12/2003	Farallon	3.3	0.22	< 0.20	< 0.20
MW-1	2/18/2004	Farallon	2.9	<0.20	< 0.20	< 0.20
	5/10/2004	Farallon	4.0	< 0.20	< 0.20	<0.20
	8/27/2004	Farallon	8.5	0.84	1.2	0.76
	2/15/2006	Farallon	2.4	<0.20	<0.20	< 0.20
	8/23/2006	Farallon	3.3	< 0.20	< 0.20	<0.20
	11/21/2006	Farallon	4.5	0.26	< 0.20	<0.20
	2/28/2007	Farallon	2.3	< 0.20	<0.20	< 0.20
	5/15/2007	Farallon	3.3	<0.20	<0.20	<0.20
	3/6/2000	GeoEngineers	<1.0	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	2.9	<1.0	<5.0	<5.0
	12/20/2000	Farallon	2.9	<0.20	<0.20	<0.20
	6/6/2001	Farallon	1.9	< 0.20	<0.20	<0.20
	6/28/2002	Farallon	0.81	<0.20	<0.20	<0.20
	8/13/2003	Farallon	0.99	< 0.20	<0.20	<0.20
	11/12/2003	Farallon	0.66	< 0.20	<0.20	<0.20
MW-2	2/18/2004	Farallon	0.88	< 0.20	<0.20	< 0.20
	5/10/2004	Farallon	0.54	<0.20	<0.20	<0.20
	8/27/2004	Farallon	0.56	<0.20	<0.20	<0.20
	2/15/2006	Farallon	1.1	<0.20	<0.20	<0.20
	8/23/2006	Farallon	1.0	<0.20	<0.20	<0.20
	11/21/2006	Farallon	1.1	<0.20	<0.20	<0.20
	2/28/2007	Farallon	0.83	<0.20	<0.20	<0.20
	5/15/2007	Farallon	1.30	<0.20	<0.20	<0.20
	3/6/2000	GeoEngineers	<1.0	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	<1.0	<1.0	<5.0	<5.0
	12/20/2000	Farallon	0.34	<0.20	<0.20	<0.20
	6/6/2001	Farallon	2.0	<0.20	<0.20	<0.20
	6/28/2002	Farallon	2.0	<0.20	<0.20	<0.20
	8/13/2003	Farallon	1.3	<0.20	0.49	<0.20
MW 2	2/18/2004	Farallon	4.3	0.21	<0.20	<0.20
IVI W -5	2/18/2004	Farallon	2.8	<0.20	<0.20	<0.20
	8/27/2004	Farallon	5.5	0.20	0.20	<0.20
	2/15/2004	Farallon	2.1	<0.20	<0.24	<0.20
	8/23/2006	Farallon	2.1	<0.20	<0.20	<0.20
	11/21/2006	Farallon	5.0	0.20	<0.20	<0.20
	2/28/2007	Farallon	1.8	<0.21	<0.20	<0.20
	5/15/2007	Farallon	2.5	<0.20	<0.20	<0.20
	3/6/2000	GeoEngineers	50	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	<u> </u>	<1.0	<5.0	<5.0
	12/20/2000	Farallon	28	0.43	0.78	<0.20
MW-4	6/6/2001	Farallon	16	0 32	0.80	<0.20
	6/28/2002	Farallon	14	0.5	1.50	<0.20
			Well	Removed 2003		
MTCA Classes I	l		502	5 0 ²	80 ²	0.2.2
IVITCA Cleanup Lev	eis for Groundwate	C1	5.0	5.0	00	0.4

1 of 3

Table 1Summary of Groundwater Analytical Results - HVOCsFormer Cleaning Center of RedmondRedmond, WashingtonFarallon PN: 650-001

				Analytical Results (mi	crograms per liter) ¹	
Well/Sample		Sample Collected				
Identification	Date Sampled	By	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride
	3/6/2000	GeoEngineers	<1.0	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	<1.0	<1.0	<5.0	<5.0
	12/20/2000	Farallon	2.0	<0.20	<0.20	< 0.20
	6/6/2001	Farallon	1.7	<0.20	<0.20	< 0.20
	6/28/2002	Farallon	1.6	<0.20	<0.20	< 0.20
MW-5	8/13/2003	Farallon	0.2	<0.20	<0.20	< 0.20
11110 5	11/12/2003	Farallon	3.6	<0.20	<0.20	< 0.20
	2/18/2004	Farallon	4.8	<0.20	<0.20	< 0.20
	5/10/2004	Farallon	1.6	<0.20	<0.20	< 0.20
	8/27/2004	Farallon	1.4	<0.20	<0.20	< 0.20
	2/15/2006	Farallon	4.8	< 0.20	<0.20	< 0.20
	8/23/2006	Farallon	1.0	<0.20	<0.20	< 0.20
	3/6/2000	GeoEngineers	11	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	27	<1.0	<5.0	<5.0
MW-6	12/20/2000	Farallon	15	0.24	< 0.20	< 0.20
WI W -0	6/6/2001	Farallon	8.6	< 0.20	< 0.20	< 0.20
	6/28/2002	Farallon	6.3	<0.20	0.29	< 0.20
			Well I	Removed 2003		
	3/28/2000	GeoEngineers	15	3	<5.0	<5.0
	8/8/2000	GeoEngineers	14	<1.0	<5.0	<5.0
	12/21/2000	Farallon	12	< 0.20	<0.20	< 0.20
	6/6/2001	Farallon	7.6	< 0.20	< 0.20	< 0.20
	6/28/2002	Farallon	3.9	< 0.20	<0.20	< 0.20
	8/13/2003	Farallon	5.3	< 0.20	< 0.20	< 0.20
	11/12/2003	Farallon	4.5	< 0.20	< 0.20	< 0.20
MW-7	2/18/2004	Farallon	3.6	< 0.20	< 0.20	< 0.20
	5/10/2004	Farallon	3.3	< 0.20	< 0.20	< 0.20
	8/30/2004	Farallon	3.6	< 0.20	< 0.20	< 0.20
	2/15/2006	Farallon	2.5	<0.20	<0.20	< 0.20
	8/23/2006	Farallon	2.3	< 0.20	< 0.20	< 0.20
	11/21/2006	Farallon	2.2	< 0.20	< 0.20	< 0.20
	2/28/2007	Farallon	2.1	<0.20	<0.20	< 0.20
	5/15/2007	Farallon	2.9	<0.20	<0.20	< 0.20
	4/14/2000	GeoEngineers	7.4	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	8.5	<1.0	<5.0	<5.0
	12/20/2000	Farallon	5.7	0.33	0.48	< 0.20
	6/6/2001	Farallon	3.9	0.23	0.36	<0.20
MW-8	6/28/2002	Farallon	4.1	0.29	0.46	< 0.20
	8/13/2003	Farallon	3.4	0.26	0.46	<0.20
	11/12/2003	Farallon	0.62	<0.20	<0.20	< 0.20
	2/18/2004	Farallon	0.3	< 0.20	<0.20	< 0.20
	5/10/2004	Farallon	2.8	0.25	0.37	< 0.20
	8/27/2004	Farallon	0.43	< 0.20	< 0.20	< 0.20
	8/13/2003	Farallon	7.4	0.27	0.42	<0.20
	11/12/2003	Farallon	3.7	<0.20	<0.20	< 0.20
	2/18/2004	Farallon	2.9	<0.20	<0.20	<0.20
	5/10/2004	Farallon	2.5	<0.20	<0.20	<0.20
MW-9	8/27/2004	Farallon	3.0	<0.20	< 0.20	< 0.20
111 11 - 2	2/15/2006	Farallon	2.5	<0.20	<0.20	<0.20
	8/23/2006	Farallon	1.6	<0.20	<0.20	<0.20
	11/21/2006	Farallon	2.1	<0.20	<0.20	<0.20
	2/28/2007	Farallon	2.4	<0.20	<0.20	<0.20
	5/15/2007	Farallon	1.8	<0.20	<0.20	<0.20
MTCA Cleanup Lev	els for Groundwat	er	5.0 ²	5.0 ²	80 ²	0.2 ²

Table 1Summary of Groundwater Analytical Results - HVOCsFormer Cleaning Center of RedmondRedmond, WashingtonFarallon PN: 650-001

				Analytical Results (micrograms per liter) ¹					
Well/Sample Identification	Date Sampled	Sample Collected By	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride			
			Reconnaissance Groundwa	ater Samples					
FB-1-GW-12.5	8/21/2006	Farallon	2.4	< 0.20	< 0.20	< 0.20			
FB-1-GW-31.5	8/21/2006	Farallon	0.95	< 0.20	< 0.20	< 0.20			
FB-1-GW-68.5	8/21/2006	Farallon	<0.20	<0.20	< 0.20	< 0.20			
MTCA Cleanup Leve	els for Groundwate	er	5.0 ²	5.0 ²	80 ²	0.2 ²			

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹ Analyzed by U.S. Environmental Protection Agency Method 8260B.

² Cleanup levels established for site closure in the *Site Closure Report, Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington* prepared by Farallon, dated September 21, 2007.

Farallon = Farallon Consulting, L.L.C. GeoEngineers = GeoEngineers, Inc. PCE = tetrachloroethene TCE = trichloroethene

Table 2 Summary of Groundwater Analytical Results at Conditional Point of Compliance - HVOCs **Former Cleaning Center of Redmond Redmond**, Washington Farallon PN: 650-001

				Analytical Results (m	icrograms per liter) ¹	
Well/Sample Identification	Date Sampled	Sample Collected By	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride
	4/14/2000	GeoEngineers	7.4	<1.0	<5.0	<5.0
	8/8/2000	GeoEngineers	8.5	<1.0	<5.0	<5.0
	12/20/2000	Farallon	5.7	0.33	0.48	< 0.20
	6/6/2001	Farallon	3.9	0.23	0.36	< 0.20
MW 8	6/28/2002	Farallon	4.1	0.29	0.46	< 0.20
IVI VV -0	8/13/2003	Farallon	3.4	0.26	0.46	< 0.20
	11/12/2003	Farallon	0.62	< 0.20	<0.20	< 0.20
	2/18/2004	Farallon	0.3	< 0.20	<0.20	< 0.20
	5/10/2004	Farallon	2.8	0.25	0.37	< 0.20
	8/27/2004	Farallon	0.43	< 0.20	<0.20	< 0.20
MTCA Cleanup Lev	els for Groundwate	er	4.9 ²	0.38 ²	16 ³	0.2 4

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed

¹ Analyzed by U.S. Environmental Protection Agency Method 8260B.

Farallon = Farallon Consulting, L.L.C. GeoEngineers = GeoEngineers, Inc. PCE = tetrachloroethene TCE = trichloroethene

² Value from Table 240, Section 240 of the Water Quality Standards for Surface Waters of the State of Washington, as established in Chapter 173-201A of the Washington Administrative Code, as amended August 1, 2016.
 ³ Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Cleanup Levels and Risk Calculations, Standard Method B Values for

Groundwater, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx.

⁴ MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

ATTACHMENT A REFERENCES

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

REFERENCES

- Alisto Engineering Group. 1999. Environmental Soil and Groundwater Sampling, Cleaning Center of Redmond, Redmond, Washington. March 18.
- Farallon Consulting, L.L.C. (Farallon). 2006a. Letter Regarding Semiannual Groundwater Monitoring Event and Assessment of Deep Groundwater Quality, The Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington. From Jennifer Cyr and J. Riley Conkin. To Tom Markl, Nelson Real Estate Management, L.L.C. September 20.
 - ———. 2006b. Letter Regarding Summary of Meeting Results, Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington. From Clifford T. Schmitt. To Michael Kuntz, Washington State Department of Ecology. September 27.
 - __. 2007. Site Closure Report, Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington. September 21.
 - . 2010. Letter Regarding Indoor Air Quality Assessment Results, Cleaning Center of Redmond Site, Redmond, Washington. From Clifford T. Schmitt. To Michael Kuntz, Washington State Department of Ecology. August 31.
 - _____. 2014. Letter Regarding 2014 Indoor Air Assessment Results, Cleaning Center of Redmond Site, Redmond, Washington. From Clifford T. Schmitt. To Michael Kuntz, Washington State Department of Ecology. May 16.

_____. 2017. Site Closure Report Addendum, Former Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington. April 26.

- Galster, Richard W., and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists* 28 (no. 3): 235-302.
- GeoEngineers, Inc. 2001. Phase II Environmental Site Assessment, The Cleaning Center of Redmond, Redmond, Washington. March 22.
- Washington State Department of Ecology (Ecology). 2006. Letter Regarding Further Action Determination under WAC 173-340-515(5) Notice to Remove Site from Voluntary Cleanup Program for the following Hazardous Waste Site: Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington 98052, Facility/Site ID No. 26296554, VCP No.: 1324. From the Washington State Department of Ecology. To Nelson Properties. June 2.
 - —. 2009. Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*. Publication No. 09-09-047. Revised February 2016 and April 2018. October.
- . 2011. Letter Regarding No Further Action at a Property Associated with a Site: Cleaning Center of Redmond, 15796 Redmond Way, Redmond, WA 98052. From Michael Kuntz. To Thomas Markl, Nelson Real Estate Management, L.L.C. April 1.

- . 2014. Letter Regarding Conformational Monitoring Successfully Completed: Cleaning Center of Redmond, 15796 Redmond Way, Redmond, WA 98052. From Michael Kuntz. To Thomas Markl, Nelson Real Estate Management, L.L.C. June 13.
 - . 2018. Letter Regarding Request for Additional Information to Provide Opinion on the Investigation and Cleanup under the VCP for the following Contaminated Site: Cleaning Center of Redmond, 15796 Redmond Way, Redmond WA 98052. From Sonia Fernández. To Thomas Markl, Nelson Group Properties, L.L.C. March 2.

ATTACHMENT B EXCERPTS FROM 1999 ALISTO ENGINEERING GROUP REPORT

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

TABLE 1 - SUMMARY OF RESULTS OF SOIL AND GROUNDWATER SAMPLING CLEANING CENTER OF REDMOND REDMOND WAY REDMOND, WASHINGTON

PROJECT NO. 20-74

(ppm) 5 270 >1000 350 322	(mg/kg) ND<0.05 ND<0.05 2.86 1.40	(mg/kg) ND<0.05 ND<0.05 ND<0.05	(mg/kg) ND<0.5 ND<0.5	(mg/kg) 2.71 25.3	(mg/kg) ND<0.05	(mg/kg)	(mg/kg)	
5 270 >1000 350 322	ND<0.05 ND<0.05 2.86 1.40	ND<0.05 ND<0.05 ND<0.05	ND<0.5 ND<0.5	2.71	ND<0.05			
270 >1000 350 322	ND<0.05 2.86 1.40	ND<0.05 ND<0.05	ND<0.5	25.3	140<0.05			
>1000 350 322	2.86 1.40	ND<0.05	249 ST 2.		ND<0.05	ND<0.05	ND<0.05	NCA
350 322	1.40		ND<0.5	664	ND<0.05	ND<0.05	ND<0.05	NCA
322		ND<0.05	ND<0.5	131	ND<0.05	ND<0.05	ND -0.05	NGA
OLL	1.55	ND<0.05	ND<0.5	106	ND<0.05	ND<0.05	ND<0.05	NCA
			0.5	0.5	20	0.5		
	(µg/)	(µg⁄l)	(µg/l)	(µg⁄l)	(µg/l)	(µg/l)	(µg/l)	
	1.72	1.49	ND<0.5	6530	ND<1.00	6.46	ND<1.00	NCA
ip levels			5.0	5.0	200.0	5.0	0.2	
	up levels	(µg/l) 1.72 up levels	(μg/l) (μg/l) 1.72 1.49 up levels	(µg/l) (µg/l) (µg/l) 1.72 1.49 ND<0.5 up levels 5.0	(µg/l) (µg/l) (µg/l) (µg/l) 1.72 1.49 ND<0.5 6530 up levels 5.0 5.0	(μg/l) (μg/l) (μg/l) (μg/l) (μg/l) 1.72 1.49 ND<0.5 6530 ND<1.00 p levels 5.0 5.0 200.0	(μg/l) (μg/l) (μg/l) (μg/l) (μg/l) 1.72 1.49 ND<0.5	(μg/l) (μg/l) (μg/l) (μg/l) (μg/l) (μg/l) (μg/l) 1.72 1.49 ND<0.5

 fbg
 Feet below ground surface

 mg/kg
 Milligrams per kilogram

 (μg/l)
 Micograms per liter

 ND
 Not detected above the indicated detection limit

 NCA
 North Creek Analytical

 PID
 Photoionization detector

 Seattle
 18939 12.
 .venue NE, Suite 101, Bothell, WA 98011-9508 425,420,9200
 (ax 425,420,9210)

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 (ax 509,924,9290)

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906 9200
 (ax 503,906,9210)

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310
 (ax 541,382,7588)

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
HB-EI	B901497-01	Soil	1/28/99
HB-N1	B901497-02	Soil	1/28/99
HB-S1	B901497-03	Soil	1/28/99
HB-W1	B901497-04	Soil	1/28/99

North Creek Analytical - Botbell

Kirk Gendron, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939 12
 Jenue NE, Suite 101, Bothell, WA 98011-9508

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 Bend
 20354 Empire
 Avenue, Suite E-9, Bend, OR 97708-1883
 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99	
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99	
Issaquah. WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18	

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HR_F1			P0014	07.01			C - 11	
Bromodichloromethane	0200017	7/1/00	2/1/00	27-01	0.0500	ND	<u>3011</u>	
Bromoform	"	11	2/1/22		0.0500	ND	mg/kg dry	
Bromomethane					0.0500	ND		
Carbon tetrachloride					0.0500	ND		
Chlorobenzene					0.0500	ND		
Chloroethane			н		0.0500	ND		
Chloroform			- 1		0.0500	ND		
Chloromethane	R.		н		0.0300	ND		
Dibromochloromethana			ñ		0.0500	ND		
1.2 Dichlorohonzana	Ū.				0.0500	ND		
1.2 Dichlorobenzene					0.0500	ND		
1,3-Dichlorobenzene	II.				0.0500	ND		
1,4-Dichlorobenzene					0.0500	ND		
1,1-Dichlorethane					0.0500	ND		
1,2-Dichloroethane					0.0500	ND		
1,1-Dichloroethene	12.5				0.0500	ND		
cis-1,2-Dichloroethene					0.0500	ND	.0	
trans-1.2-Dichloroethene					0.0500	ND		
1,2-Dichloropropane					0.0500	ND	"	
cis-1,3-Dichloropropene					0.0500	ND		
trans-1,3-Dichloropropene					0.0500	ND		
Methylene chloride					0.500	ND		
1,1,2,2-Tetrachloroethane			o.		0.0500	ND	н.	
Tetrachloroethene	9				0.0500	2.71		
1,1,1-Trichloroethane		н			0.0500	ND		
1,1,2-Trichloroethane		n,	a		0.0500	ND		
Trichloroethene		н	. 10		0.0500	ND	Ψ.	
Trichlorofluoromethane			-0		0.0500	ND	- n.	
Vinyl chloride	ų		-0-		0.0500	ND		
Surrogate: 4-BFB (ELCD)	"	n	"	50.0-150		86.9	%	
IB-NI			R90149	7-02			Soil	
Bromodichloromethane	0290017	7/1/99	2/1/99		0.0500	ND	ma/ka dry	
Bromoform	"		"		0.0500	ND	" "	
Bromomethane		·u-	н		0.0500	ND		
Carbon tetrachloride	10				0.0500	ND	. ii	
Chlorobenzene		п			0.0500	ND		
Thloroethane		n			0.0500	ND	1.	
² hloroform					0.0500	NU		
		0	2		0.0500	ND	19	

North Creek Analytical - Bothell

Kirk Gendron, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

*Refer to end of report for text of notes and definitions.

Seattle 18939 12 enue NE, Suite 101, Bothell, WA 98011-9508 425.420.9 lax 425.420.9210
 425.420.92...
 Tax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B. Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW. Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HB-N1 (continued)			B0014	07.07			Sail	
Chloromethane	0290017	2/1/00	2/1/00	27-02	0.0500	ND	<u>son</u> ma/ka day	
Dibromochloromethane	"	"	11/33		0.0500	ND	mg/kg ury	
1.2-Dichlorobenzene			ín.		0.0500	ND		
1.3-Dichlorobenzene					0.0500	ND		
1.4-Dichlorobenzene					0.0500	ND	ü	
L Dichloroethane		H.			0.0500	ND		
1.2 Dichloroethane					0.0500	ND		
1,2-Dichloroothane	n.				0.0500	ND	ä	
ais 1.2 Dishlarasthana	a la				0.0300	ND		
tis-1,2-Dichloroethene	1.0				0.0500	ND		
trans-1,2-Dichloroethene					0.0500	ND		
1,2-Dichloropropane					0.0500	ND		
cis-1,3-Dichloropropene		4			0.0500	ND		
trans-1,3-Dichloropropene					0.0500	ND		
Methylene chloride					0.500	ND	"	
1,1,2,2-Tetrachloroethane					0.0500	ND		
Tetrachloroethene			2/2/99		0.500	25.3		
1,1,1-Trichloroethane			2/1/99		0.0500	ND	"	
1,1,2-Trichloroethane	1. A A A A A A A A A A A A A A A A A A A				0.0500	ND		
Trichloroethene		<u>0</u>	ii.		0.0500	ND		
Trichlorofluoromethane	ų				0.0500	ND		
Vinyl chloride	n		N.		0.0500	ND	.0	
Surrogate: 4-BFB (ELCD)	"	"	"	50.0-150		78.9	%	
HB-S1			B90149	7-03			Soil	
Bromodichloromethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg drv	
Bromoform					0.0500	ND	"	
Bromomethane					0.0500	ND	н.	
Carbon tetrachloride	**				0.0500	ND		
Chlorobenzene			n.		0.0500	ND		
Chloroethane		н	u		0.0500	ND		
Chloroform					0.0500	ND		
Chloromethane	0		<u>a</u>		0.0500	ND	- U	
Dibromochloromethane					0.0500	ND	a	
1.2-Dichlorobenzene	a .	n.			0.0500	2.86		
1.3-Dichlorobenzene			**		0.0500	0 0841	н	
4-Dichlorobenzene					0.0500	0.186		
1-Dichloroethane		n			0.0500	ND		
2-Dichloroethans					0.0500	NID	a n	
					0.0200	UND.		

North Creek Analytical - Bothell

Kirk Gendron, Phject Manager

*Refer to end of report for text of notes and definitions.

Seattle 18939 12 enue NE, Suite 101, Bothell, WA 98011-9508 425.420 9200 lax 425.420 9210

Spokane East 11115 Montgomery, Suite B. Spokane, WA 99206-4776 509.924 9200 fax 509.924.9290 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

503.906.9200 fax 503.906.9210

Bend 20354 Empire Avenue, Suite E 9, Bend, OR 97708-1883 541.383.9310 (ax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting	1		
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HB-S1 (continued)			B9014	97-03			Soil	
1,1-Dichloroethene	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
cis-1,2-Dichloroethene		u.			0.0500	ND	"	
trans-1,2-Dichloroethene					0.0500	ND		
1,2-Dichloropropane	- 1	- 0			0.0500	ND		
cis-1,3-Dichloropropene		.n.			0.0500	ND	11	
trans-1,3-Dichloropropene		n			0.0500	ND		
Methylene chloride	.9	n -	Ξ.		0.500	ND		
1.1,2,2-Tetrachloroethane					0.0500	ND		
Tetrachloroethene			2/2/99		25.0	664		
1,1,1-Trichloroethane			2/1/99		0.0500	ND		
1,1,2-Trichloroethane					0.0500	ND		
Trichloroethene					0.0500	ND	"	
Trichlorofluoromethane					0.0500	ND	Girl .	
Vinyl chloride					0.0500	ND		
Surrogate: 4-BFB (ELCD)	"	u		50.0-150	0.0500	91.9	%	
HR-W1			P00140	7.04			C-11	
Bromodichloromethane	0200017	2/1/00	2/1/00	1-04	0.0500	ND	<u>5011</u>	
Bromoform	"	2/1/99	2/1/99		0.0300	ND	mg/kg ary "	
Bromomethane					0.0500	ND		
Carbon tetrachloride					0.0300	ND		
Chlorobenzane	ii i				0.0500	ND		
Chloroethane					0.0500	ND		
Chloroform					0.0500	ND		
Chloromethane					0.0500	ND		
Dibromachlaramathana					0.0500	ND		
1.2 Dichlorohonzana			Č.		0.0500	ND		
1,2-Dichlorobenzene			-		0.0500	1.55		
1.3-Dichlorobenzene			-		0.0500	ND		
1.4-Dichlorobenzene					0.0500	ND		
			n 		0.0500	ND		
1,2-Dichloroethane					0.0500	ND		
1,1-Dichloroethene					0.0500	ND		
cis-1.2-Dichloroethene					0.0500	ND		
rans-1,2-Dichloroethene					0.0500	ND	- H.	
,2-Dichloropropane			n		0.0500	ND		
cis-1.3-Dichloropropene	"	U.	п		0.0500	ND		

trans-1,3-Dichloropropene Methylene chloride

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

ND

ND

=

.,

Kirk Gendron, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

0.0500

0.500

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HB-W1 (continued)			<u>B9014</u>	97-04			Soil	
1,1,2,2-Tetrachloroethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
Tetrachloroethene			2/2/99		2.50	106	"	
1,1,1-Trichloroethane			2/1/99		0.0500	ND	.u 5	
1,1,2-Trichloroethane		-11			0.0500	ND		
Trichloroethene					0.0500	ND	1 (m)	
Trichlorofluoromethane		(B)			0.0500	ND	и	
Vinyl chloride	"	9	0		0.0500	ND	0.00	
Surrogate: 4-BFB (ELCD)	n	"	n	50.0-150		79.5	%	

North Creek Analytical - Bothell Kirk Gendron Project Manager

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. Environmental Laboratory Network

1.8

 Seattle
 18939 12
 zenne NE, Suite 101, Bothell, WA 98011-9508

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Dry Weight Determination North Creek Analytical - Bothell

Sample Name	Lab ID	Matrix	Result	Units
HB-E1	B901497-01	Soil	93.9	%
HB-N1	B901497-02	Soil	91.7	%
HB-S1	B901497-03	Soil	89.6	%
HB-W1	B901497-04	Soil	91.4	%

North Creek Analytical - Bothell Kirk Gendron, Project Manager

 Seattle
 18939 12L
 enue NE, Suite 101, Bothell, WA 98011-9508 425 420 9200
 fax 425 420 9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509 924 9200
 fax 509.924 9290

 Portland
 9405 SW Nimbus Avenue, Beaver(on, OR 97008-7132 503 906 9200
 fax 503 906 9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah. WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Halogenated Volatile Organics by EPA Method 8021B (modified)/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0290017	Data Prena	rad: 2/1/0			Extractiv	n Mathadi ED	A 5030D	Maou		
Blank	0200017 BI		2		Extraction	on Methou, Er	A JUJUD	Imeorit		
Bromodichloromethane	2/1/00	UNI		ND	ma/lea de	0.0500				
Bromoform	2/1/99			ND	mg/kg ur	y 0.0500				
Bromomethane				ND		0.0500				
Carbon tatrachlarida				ND		0.0500				
Chlorobenzane	÷.			ND		0.0500				
Chlorosthana	-			ND		0.0500				
Chlaroform				ND		0.0500				
Chloromothana	n			ND		0.0500				
Dibromachloromathana				ND		0.0500				
1.2 Disklasskassas				ND		0.0500				
1,2-Dichlorobenzene				ND		0.0500				
1.3-Dichlorobenzene	1.21			ND		0.0500				
1,4-Dichlorobenzene				ND		0.0500				
1,1-Dichloroethane				ND		0.0500				
1,2-Dichloroethane				ND		0.0500				
1,1-Dichloroethene				ND		0.0500				
cis-1,2-Dichloroethene				ND		0.0500				
trans-1,2-Dichloroethene				ND		0.0500				
1.2-Dichloropropane				ND		0.0500				
cis-1,3-Dichloropropene				ND	u.	0.0500				
trans-1,3-Dichloropropene				ND		0.0500				
Methylene chloride				ND		0.500				
1,1,2,2-Tetrachloroethane				ND		0.0500				
Tetrachloroethene	a.			ND	e.	0.0500				
1,1,1-Trichloroethane				ND		0.0500				
1,1,2-Trichloroethane				ND		0.0500				
Trichloroethene				ND		0.0500				
Trichlorofluoromethane				ND		0.0500				
Vinyl chloride				ND	u	0.0500				
Surrogate: 4-BFB (ELCD)	"	2.00		1.89	"	50.0-150	94.5			
LCS	0290017-BS1	1								
Chlorobenzene	2/1/99	1.00		0.826	mg/kg drv	60.0-140	82.6			
1.1-Dichloroethene	II.	1.00		0.811	"	60.0-140	81.1			
Trichloroethene		1.00		0.853	ñ	60.0-140	85 3			
Surrogate: 4-DFB (ELCD)	"	2.00		1.76	"	50.0-150	88.0			

North Greek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Kirk Gendron, Project Manager

 Seattle
 18939 12C
 anue NE, Smite 101, Bothell, WA 98011-9508

 425.420.920u
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Smite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906 9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/4/99 11:18

Halogenated Volatile Organics by EPA Method 8021B (modified)/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike	0290017-MS	L E	8901497-01							
Chlorobenzene	2/1/99	1.07	ND	0.951	mg/kg dr	y 60.0-140	88.9			
1,1-Dichloroethene		1.07	ND	0.906	, , , , , , , , , , , , , , , , , , , ,	60.0-140	84.7			
Trichloroethene	н	1.07	ND	0.962	n.	60.0-140	89.9			
Surrogate: 4-BFB (ELCD)	"	2.13		1.88	11	50.0-150	88.3			
Matrix Spike Dup	0290017-MSI	<u>D1 B</u>	901497-01							
Chlorobenzene	2/1/99	1.07	ND	0.955	mg/kg dry	60.0-140	89.3	30.0	0.449	
1,1-Dichloroethene	11	1.07	ND	0.864		60.0-140	80.7	30.0	4.84	
Trichloroethene	ų	1.07	ND	0.852	in .	60.0-140	79.6	30.0	12.2	
Surrogate: 4-BFB (ELCD)	"	2.13		1.76	"	50.0-150	82.6			

North Crepk Analytical - Bothell Kirk Gendron, Project Manager

*Refer to end of report for text of notes and definitions.

 Seattle
 18939 12C
 enue NE, Snite 101, Bothell, WA 98011-9508

 425 420.9200
 fax 425 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509 924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Smite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto EngineeringProject:1145 12th Avenue, Suite C4AProject Number:Issaquah, WA 98027Project Manager:		Dry Cleaning 20-73 Dave Cooper	Sampled: Received: Reported:	1/28/99 1/28/99 2/4/99 11:18	
		No	tes and Definitions		
#	Note				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED	at or above the reporting lin	nit		
NR	Not Reported				
dry	Sample results reported on a	a dry weight basis			
Recov.	Recovery				
RPD	Relative Percent Difference				

nue NE, Suite 101, Bothell, WA 98011-9508 ax 425 420,9210 Seattle 18939 1201 425.420.926. 425.420.920. ax 425.420.9210 Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9200 Portland 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 Bend 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541.383.9310 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99	7
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99	
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58	

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
HB-EI	B901497-01	Soil	1/28/99
HB-N1	B901497-02	Soil	1/28/99
HB-S1	B901497-03	Soil	1/28/99
HB-W1	B901497-04	Soil	1/28/99
HB-S2	B901497-06	Soil	1/28/99

North Greek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5

North Creek Analytical, Inc. Environmental Laboratory Network

Kirk Gendron Ploject Manager

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
UD F1			00014	07.01			6.1	
Bromodichloromethane	0200017	2/1/00	2/1/00	97-01	0.0500	ND	<u>5011</u>	
Bromoform	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
Desmanathere					0.0500	ND		
Carbon total hand					0.0500	ND		
Chloride			. g		0.0500	ND		
Chlorobenzene					0.0500	ND		
Chloroformane					0.0500	ND		
Chloroform					0.0500	ND		
Chloromethane					0.0500	ND		
Dibromochloromethane			-		0.0500	ND		
1.2-Dichlorobenzene	2				0.0500	ND		
1.3-Dichlorobenzene					0.0500	ND		
1.4-Dichlorobenzene					0.0500	ND		
1.1-Dichloroethane					0.0500	ND		
1,2-Dichloroethane					0.0500	ND		
1,1-Dichloroethene					0.0500	ND		
cis-1.2-Dichloroethene					0.0500	ND		
trans-1.2-Dichloroethene					0.0500	ND	200	
1.2-Dichloropropane	n.				0.0500	ND		
cis-1,3-Dichloropropene	н		-ц		0.0500	ND	- 19	
trans-1.3-Dichloropropene			н		0.0500	ND	9	
Methylene chloride					0.500	ND		
1.1.2.2-Tetrachloroethane					0.0500	ND	н	
Tetrachloroethene	C.0 (1)	-91-	. U		0.0500	2.71		
1,1,1-Trichloroethane	n -	e			0.0500	ND		
1.1.2-Trichloroethane	H		н		0.0500	ND	11	
Trichloroethene					0.0500	ND	00	
Trichlorofluoromethane	- II	n.	н		0.0500	ND		
Vinyl chloride		n			0.0500	ND		
Surrogate: 4-BFB (ELCD)	"	"	"	50.0-150		86.9	%	
HB-NI			B00140	7-02			Soil	
Bromodichloromethane	0200017	2/1/00	2/1/00	<u>7-02</u>	0.0500	ND	<u>oon</u> mu/ka.dm/	
Bromoform	0290017	2/1/99	2/1/99		0.0500	ND	"	
Bromowethane					0.0500	ND		
Carbon tetrachlaride					0.0500	ND		
Chlorobenzene	<i>u</i>				0.0500	NID	n.	
Chloroothane			w.		0.0500	ND		
hland and a		Ω.			0.0500	NUN		
moroion					0.0500	ND		

North Creek Analyzical - Bothell

*Refer to end of report for text of notes and definitions.

Kirk Gendron) Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939 120t
 nue NE, Stute 101, Bothell, WA 98011-9508 425 420 9200
 fax 425 420 9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509 924 9200
 fax 509 924 9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200
 fax 503.906 9210

 Bend
 20354 Empire Avenue, State F-9, Bend, OR 97708-1883 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
			Doot					
HB-INI (continued)	0200017	2/1/00	<u>B9014</u>	97-02	0.0500	210	<u>Soil</u>	
Chloromethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
Dibromochloromethane					0.0500	ND		
1,2-Dichlorobenzene					0.0500	ND		
1,3-Dichlorobenzene	2				0.0500	ND		
1,4-Dichlorobenzene		u	-0-		0.0500	ND	n.	
1,1-Dichloroethane	0		.0.		0.0500	ND		
1,2-Dichloroethane		.n.			0.0500	ND	. N.	
1,1-Dichloroethene	"	.n.	(C)		0.0500	ND	H	
cis-1.2-Dichloroethene					0.0500	ND		
trans-1,2-Dichloroethene	0 m	a,	н		0.0500	ND	*	
1.2-Dichloropropane	u	н			0.0500	ND		
cis-1,3-Dichloropropene	(n .)		10		0.0500	ND		
trans-1.3-Dichloropropene			10 J		0.0500	ND	- 10 - 10	
Methylene chloride		Ξ.			0.500	ND	0	
1.1.2,2-Tetrachloroethane					0.0500	ND		
Tetrachloroethene		н	2/2/99		0.500	25.3	C 10	
1.1.1-Trichloroethane			2/1/99		0.0500	ND	u.	
1.1.2-Trichloroethane		- H -			0.0500	ND		
Trichloroethene					0.0500	ND		
Trichlorofluoromethane					0.0500	ND	- 00	
Vinvl chloride					0.0500	ND		
Surrogate: 4-BFB (ELCD)	"	"	"	50.0-150	0.0200	78.9	%	
							0.5	
<u>HB-S1</u>	and should be a		<u>B90149</u>	<u>7-03</u>	1 505 7 arts	3.75	Soil	
Bromodichloromethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
Bromoform		· · · ·			0.0500	ND		
Bromomethane	"		. н <u>с</u>		0.0500	ND		
Carbon tetrachloride	j¢.		н		0.0500	ND		
Chlorobenzene			4		0.0500	ND		
Chloroethane		a			0.0500	ND	n	
Chloroform					0.0500	ND	- 0.	
Chloromethane		u.			0.0500	ND		
Dibromochloromethane					0.0500	ND	11	
1.2-Dichlorobenzene	8	0	ш		0.0500	2.86	- W	
1,3-Dichlorobenzene					0.0500	0.0841	u	
1,4-Dichlorobenzene			91		0.0500	0.186	-0	
1,1-Dichloroetbane		Ĥ	1		0.0500	ND	<u>.</u>	
1.2-Dichloroethane			n .		0.0500	ND	π	
					0.0000	110		

North Creek Analytical - Bothell

Kirk Gendron, Project Manager

 Seattle
 18939 120, 425 420,9200
 nue NE. Suite 101, Bothell, WA 98011-9508 425 420,9200
 fax 425 420,9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509,924,9200
 fax 509,924,9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503,906,9200
 fax 503,906,9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883 541,383,9310
 fax 541,382,7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

A Design of	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
UP S1 (continued)			P0014	07.03			C . 11	
1 Dichloroathana	0200017	2/1/00	2/1/00	97-03	0.0500	ND	<u>5011</u>	
ria 1.2 Dichlospathana	0290017	2/1/99	2/1/99		0.0300	ND	mg/kg dry	
cis-1.2-Dichloroethene	w				0.0500	ND		
trans-1,2-Dichloroethene					0.0500	ND		
1.2-Dichloropropane					0.0500	ND		
cis-1.3-Dichloropropene					0.0500	ND		
trans-1,3-Dichloropropene					0.0500	ND		
Methylene chloride					0.500	ND		
1,1,2,2-Tetrachloroethane	**				0.0500	ND		
Tetrachloroethene			2/2/99		25.0	664		
1,1,1-Trichloroethane	"		2/1/99		0.0500	ND		
1,1,2-Trichloroethane					0.0500	ND	M	
Trichloroethene	**				0.0500	ND		
Trichlorofluoromethane	. 10	. 0.			0.0500	ND	n.	
Vinyl chloride		. 11	11		0.0500	ND	Ĥ I	
Surrogate: 4-BFB (ELCD)	"	"	"	50.0-150		91.9	%	
HB-W1			B90149	07-04			Soil	
Bromodichloromethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg dry	
Bromoform					0.0500	ND	"	
Bromomethane		1 10 D	÷.		0.0500	ND	- n	
Carbon tetrachloride	9	. n			0.0500	ND	n.	
Chlorobenzene	0	Citer 1			0.0500	ND	- C0-	
Chloroethane	ũ I	10	û.		0.0500	ND	- n	
Chloroform			- u		0.0500	ND	-n-	
Chloromethane					0.0500	ND		
Dibromochloromethane					0.0500	ND		
1.2-Dichlorobenzene		0			0.0500 0.0500	1.55		
1 3-Dichlorobenzene		v			0.0500	ND		
1 4-Dichlorobenzene					0.0500	ND	- air	
1.1-Dichloroethana	n.		ø		0.0500	ND		
1.2-Dichloroethane					0.0500	ND		
1.1. Dichloroethane		μ.			0.0500	ND		
sis 1.2 Diablamathana					0.0500	ND		
trans 1.2 Diskland					0.0500	ND		
1.2 Dishlass					0.0500	ND		
1.2-Dichloropropane					0.0500	ND		
cis-1,3-Dichloropropene			n.		0.0500	ND		
trans-1.3-Dichloropropene					0.0500	ND		
Methylene chloride					0.500	ND		

North Creek Analytical - Bothell

Kirk Gendron, Project Manager

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah. WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

	Batch	Date	Date	Surrogate	Reporting	T 6.335		
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HB-W1 (continued)			B9014	97-04			Soil	
1.1.2.2-Tetrachloroethane	0290017	2/1/99	2/1/99		0.0500	ND	mg/kg drv	
Tetrachloroethene	н		2/2/99		2.50	106	"	
1.1.1-Trichloroethane	16	н	2/1/99		0.0500	ND	u.	
1.1.2-Trichloroethane					0.0500	ND	0	
Trichloroethene	.ti				0.0500	ND	a a a a a a a a a a a a a a a a a a a	
Trichlorofluoromethane	<u>1</u>		n.		0.0500	ND	<i>u</i>	
Vinyl chloride					0.0500	ND	и	
Surrogate: 4-BFB (ELCD)		"		50.0-150	0.0500	79.5	%	
							5.5	
HB-S2			<u>B90149</u>	7-06			Soil	
Bromodichloromethane	0290351	2/11/99	2/11/99		0.0500	ND	mg/kg dry	
Bromoform			a		0.0500	ND		
Bromomethane					0.0500	ND		
Carbon tetrachloride					0.0500	ND		
Chlorobenzene	34				0.0500	ND		
Chloroethane			<i></i>		0.0500	ND		
Chloroform	"	n	"		0.0500	ND		
Chloromethane	n.	a	u.		0.0500	ND		
Dibromochloromethane	"	. 6	u.		0.0500	ND	0	
1,2-Dichlorobenzene			0		0.0500	1.40	- M	
1,3-Dichlorobenzene		a.			0.0500	0.0543		
1,4-Dichlorobenzene			0		0.0500	0.115		
1,1-Dichloroethane	"		n		0.0500	ND		
1.2-Dichloroethane		n.	.11		0.0500	ND	ŧř	
1,1-Dichloroethene			н		0.0500	ND	н	
cis-1,2-Dichloroethene		- 11			0.0500	ND	0.7	
trans-1,2-Dichloroethene		100	9		0.0500	ND	0	
1,2-Dichloropropane		- 9	n,		0.0500	ND	n	
cis-1,3-Dichloropropene			C.H.		0.0500	ND		
trans-1,3-Dichloropropene	0	a			0.0500	ND	0.0	
Methylene chloride	0	- 9			0.500	ND		
1,1,2,2-Tetrachloroethane	- ú -	a.			0.0500	ND	E.W.	
Tetrachloroethene	0	u.	10		2.50	131	min -	
1.1.1-Trichloroethane		w	'n		0.0500	ND		
1.1.2-Trichloroethane	<i>n</i>				0.0500	ND		
Trichloroethene	.0		n -		0.0500	ND	ar .	
Frichlorofluoromethane		9			0.0500	ND	n.	
Vinyl chloride		"			0.0500	ND	- 11	

North Greek Analytical - Bothell

Kirk Gendron, Project Manager

North Creek Analytical, Inc.

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
HB-S2 (continued)			<u>B9014</u>	<u>97-06</u>			Soil	
Surrogate: 4-BFB (ELCD)	0290351	2/11/99	2/11/99	50.0-150		84.4	%	

North Cleek Analytical - Bothell Kirk Gendron, Project Manager

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939 1
 venue NE, Suite 101, Bothell, WA 98011-9508

 425.420.s______
 fax 425.420 9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924 9200
 fax 509.924 9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

Dry Weight Determination North Creek Analytical - Bothell

Sample Name	Lab ID	Result	Units	
HB-E1	B901497-01	Soil	93.9	%
HB-N1	B901497-02	Soil	91.7	%
IB-S1	B901497-03	Soil	89.6	%
B-WI	B901497-04	Soil	91.4	%
IB-S2	B901497-06	Soil	88.7	%

North Creek Analytical - Bothell

Kirk Gentlrdn Project Manager

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes
Batch: 0290017	Date Pret	pared: 2/1/9	9		Extractio	n Method: EP	A 5030B	[MeOH]		
Blank	0290017-)	BLKI								
Bromodichloromethane	2/1/99	1000		ND	mg/kg dry	0.0500				
Bromoform	н			ND		0.0500				
Bromomethane	9			ND		0.0500				
Carbon tetrachloride	v			ND	. 11	0.0500				
Chlorobenzene				ND		0.0500				
Chloroethane				ND		0.0500				
Chloroform	"			ND		0.0500				
Chloromethane	н			ND	0.00	0.0500				
Dibromochloromethane				ND		0.0500				
1,2-Dichlorobenzene				ND		0.0500				
1.3-Dichlorobenzene				ND		0.0500				
1,4-Dichlorobenzene	Ξŧ.			ND		0.0500				
1,1-Dichloroethane	. 1			ND		0.0500				
1,2-Dichloroethane				ND		0.0500				
1.1-Dichloroethene	- 11			ND	0	0.0500				
cis-1.2-Dichloroethene	.10			ND		0.0500				
trans-1,2-Dichloroethene	.0			ND	n -	0.0500				
1,2-Dichloropropane				ND		0.0500				
cis-1.3-Dichloropropene				ND	n	0.0500				
trans-1.3-Dichloropropene				ND	Ú.	0.0500				
Methylene chloride				ND	ii.	0.500				
1,1,2,2-Tetrachloroethane	- 00			ND		0.0500				
Tetrachloroethene				ND		0.0500				
1.1.1-Trichloroethane				ND	H.	0.0500				
1.1.2-Trichloroethane				ND		0.0500				
Trichloroethene				ND	0 ×	0.0500				
Trichlorofluoromethane	0			ND	п	0.0500				
Vinyl chloride	11			ND	0	0.0500				
Surrogate: 4-BFB (ELCD)	11	2.00		1.89	<i>n</i>	50.0-150	94.5			
LCS	0290017-B	<u>S1</u>								
Chlorobenzene	2/1/99	1.00		0.826	mg/kg dry	60.0-140	82.6			
1.1-Dichloroethene		1.00		0.811	"	60.0-140	81.1			
Trichloroethene	ir.	1.00		0.853	(H.)	60.0-140	85.3			
Surrogate: 4-BFB (ELCD)	"	2.00		1.76	"	50.0-150	88.0			

North Creek Analytical - Bothell

Kirk Gendron Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

1.11	Date	Spike	Sample	QC	Re	porting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike	0290017-M	SI B	901497-01							
Chlorobenzene	2/1/99	1.07	ND	0.951	mg/kg dry	60.0-140	88.9			
1,1-Dichloroethene		1.07	ND	0.906	n 1	60.0-140	84.7			
Trichloroethene		1.07	ND	0.962	ũ.	60.0-140	89.9			
Surrogate: 4-BFB (ELCD)	"	2.13		1.88	"	50.0-150	88.3	_		
Matrix Spike Dup	0290017-M	SD1 B9	01497-01							
Chlorobenzene	2/1/99	1.07	ND	0.955	mg/kg dry	60.0-140	89.3	30.0	0.449	
1,1-Dichloroethene	11	1.07	ND	0.864		60.0-140	80.7	30.0	4.84	
Trichloroethene	a.	1.07	ND	0.852		60.0-140	79.6	30.0	12.2	
Surrogate: 4-BFB (ELCD)	"	2.13		1.76	"	50.0-150	82.6			
Batch: 0290351	Date Prepar	ed: 2/11/9	2		Extraction Method: EPA 5030B [MeOH]					
Blank	0290351-BL	KI								
Bromodichloromethane	2/11/99			ND	mg/kg dry	0.0500				
Bromoform				ND	n.	0.0500				
Bromomethane	"			ND	, n	0.0500				
Carbon tetrachloride	"			ND	μ.	0.0500				
Chlorobenzene				ND		0.0500				
Chloroethane				ND		0.0500				
Chloroform	<i>n</i>			ND	н	0.0500				
Chloromethane	, m			ND	н	0.0500				
Dibromochloromethane				ND		0.0500				
1,2-Dichlorobenzene				ND		0.0500				
1,3-Dichlorobenzene				ND		0.0500				
1,4-Dichlorobenzene				ND		0.0500				
1.1-Dichloroethane	u			ND	- H - 1	0.0500				
1.2-Dichloroethane				ND		0.0500				
1,1-Dichloroethene				ND	iii	0.0500				
cis-1.2-Dichloroethene				ND	n	0.0500				
rans-1.2-Dichloroethene				ND		0.0500				
1.2-Dichloropropane	9			ND		0.0500				
sis-1.3-Dichloropropene				ND	w.	0.0500				
rans-1.3-Dichloropropene				ND		0.0500				
vlethylene chloride				ND		0.500				
.1.2.2-Tetrachloroethane				ND		0.0500				
Cetrachloroethene	Ω. I			ND	н	0.0500				
.1.1-Trichloroethane				ND	- a	0.0500				
1.2-Trichlorochane				ND		0.0500				
						0.0000				

North Creek Analytical - Bothell

Kirk Gendron. Project Manager

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah. WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	1.5
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Blank (continued)	0290351-BI	LKI								
Trichloroethene	2/11/99			ND	mg/kg dry	0.0500				
Trichlorofluoromethane	.0			ND		0.0500				
Vinyl chloride				ND)j	0.0500				
Surrogate: 4-BFB (ELCD)	"	2.00		2.00	"	50.0-150	100			
LCS	0290351-BS	51								
Chlorobenzene	2/11/99	1.00		0.824	mg/kg dry	60.0-140	82.4			
1,1-Dichloroethene		1.00		0.815		60.0-140	81.5			
Trichloroethene	0	1.00		0.848	5 HC	60.0-140	84.8			
Surrogate: 4-BFB (ELCD)	"	2.00		1.83	<i>n</i>	50.0-150	91,5			-
Matrix Spike	0290351-M	<u>S1 B9</u>	002165-03							
Chlorobenzene	2/11/99	1.15	ND	0.992	mg/kg dry	60.0-140	86.3			
1,1-Dichloroethene	H .	1.15	ND	0.881		60.0-140	76.6			
Trichloroethene	u .	1.15	ND	0.973	, n	60.0-140	84.6			
Surrogate: 4-BFB (ELCD)	"	2.30		2.02	"	50.0-150	87.8			
Matrix Spike Dup	0290351-MS	SD1 B9	002165-03							
Chlorobenzene	2/11/99	1.15	ND	0.985	mg/kg dry	60.0-140	85.7	30.0	0.698	
1,1-Dichloroethene	0	1.15	ND	0.984	n	60.0-140	85.6	30.0	11.1	
Trichloroethene	n	1.15	ND	1.01	0	60.0-140	87.8	30.0	3.71	
Surrogate: 4-BFB (ELCD)	<i>n</i> -	2.30		2.04	"	50.0-150	88.7			

North Creek Analytical Bothell

Kirk Gendron, Project Manager

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939 1/.
 venue NE, Suite 101, Bothell, WA 98011-9508

 425.420.92uv
 fax 425420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Dry Cleaning	Sampled:	1/28/99
1145 12th Avenue, Suite C4A	Project Number:	20-73	Received:	1/28/99
Issaquah, WA 98027	Project Manager:	Dave Cooper	Reported:	2/16/99 09:58

Notes and Definitions

#	Note
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

North Creek Analytical - Bothell

Kirk Gendron, Project Manager

NORTH CREEK ANALYTICAL Environmental Laboratory Services

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779
 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

 (425) 420-9200
 FAX 420-9210

 (509) 924-9200
 FAX 924-9290

 (503) 906-9200
 FAX 906-9210

-	
-	-
1	
	-

CHAIN OF CUSTODY REPORT

Work Order # <u>B 901497</u>

REPORT TO:			INVOI	CE TO:							1				
ATTENTION Alista - 1		0			d., .	1.					TURNAROUND REQUEST in Business Days *				
ADDRESS: 1(45-124)	Aur AV	CUA	ATTEN		an	ne	-					Organic & In	organic Analyses		
Issagual La	A 980	\sim	(00086a).								Staniani				
MIONE: 425 837-394	4 FAX: 83	7-8543	PONUMBER 20-73								-	Fuels & Hydrocarbon Analyses			
PROJECT NAME DEV CLOC	ninc		Analysis	7	1	7	7		17	1		Sturklard	La Day		
PRUJECT NUMBER: 20-73			Request:	85	/	//	/ /	/	/	//	OTHER	1			
SAMPLED BY: Bill Done	cherty		1	Star /	/	/	/	/ /	/ /	//	* Turnarouni	Specify: Requests less than :	aundard muy incur Rush Charges.		
CLIENT SAMPLE	SAMPLING /	NCA SAMPLE ID	à l	\$/ /	/	11	/ /	/	/	/	MATRIX	# OF			
	V alia	(Laboratory Use Only)							(-1		(W. S. A. O)	CONTAINERS	COMMENTS		
HB-CI	128/10:50	B901 191 - 01	X					_	-		5	1			
HB-NI	1/28/11:30	02	X							2412	5	1			
HB-51	1/28/12:00	> 03	X								5	1			
HB-WI	1/28/12:20	> 04	X								5				
HB-WZ	1/28/19:00	> 05	×								5		11 []		
HB-52	1/28/13:50) (110	X			1			-		<	1	<u> </u>		
1+B-E7	1/22/14:5	$\overline{0}$ $\overline{07}$	X		-				-		5		Hold		
H3- N12	Y-115-				-+		-	-		-			Hold		
	128/15:2	D 08	X		-	-	-	-			5	1	Hold		
9	h	<u> </u>			-	-		1							
		11			-		_		1		1				
RELINQUISITED BY ISTERNAL Dorth	chofor	tz		DATE 25	29	RECEIVED	BY ISignuture	ĸ	ath	4 11	chob		DATES 24/97		
PRINT NAME:	/	FIRM:		TIME: 16.	30	PRINTNAM	1E:		1			FIRM: AC	4 TIME 14:30		
RELINQUISHED BY (J. pressor)	4			DATE:	,	RECEIVED	BY (Signature	Ŀ							
PRINT NAME:		FIRM:		TIME:	F	PRINT NAM	(E;					CID14	DATE:		
ADDITIONAL REMARKS:												1-	ПМЕ:		
												6/0	110		
							_	-				A	AGE OF		

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4779
 '9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132

 (425)
 420-9200
 FAX
 420-9210

 (509)
 924-9200
 FAX
 924-9290

 (503)
 906-9200
 FAX
 906-9210

N OF CUSTODY REPORT

NORTH

REEK

ANALYTICAL

Environmental Laboratory Services

CHAIN OF CUSTODY REPORT

Work Order #

REPORT TO: INVOICE TO: TURNAROUND REQUEST in Business Days * ATTENTION: coler ATTENTION: Sam Organic & Inorganic Analyses C4A ADDRESS: 10 ADDRESS: I have 98027 Fuels & Hydrocarbon Analyses 837-8543 FAX: 20 Day PHONE: P.O. NUMBER: 5 3-4 2 1 NCA QUOTE #: PROJECT NAME: Analysis Request: OTHER PROJECT NUMBER: O Sparity 8021 * Turnaround Requests less than standard may incur Rush Charges SAMPLED BY: -PI 80 CLIENT SAMPLE SAMPLING -NCA SAMPLE ID MATRIX IDENTIFICATION DATE/TIME (Laboratory Use Only) (W. S. A. O) CONTAIN B901-197-01 X 10:2D X 02 :30 03 2:00 × 04 5 X × 5 05 P. Of .5 X ore 5 1 5 14:50 07 2 5 18 X N 15:20 10. 160 RELINQUISHED BY (Signature) DATE RECEIVED BY (Signuture) DATE :30 PRINT NAME: FIRM: TIME: / PRINT NAME FIRM: TIME RELINQUISHED BY Ingenters DATE: RECEIVED BY (Sugarant DATE: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM TIME: ADDITIONAL REMARKS: PAGE OF Car

 Seattle
 18939 1:
 venue NE, Suite 101, Bothell, WA 98011-9508

 425,420 s...
 fax 425,420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924 9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E, 9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Cleaning Center of Remond	Sampled:	3/4/99
1145 12th Avenue, Suite C4A	Project Number:	20-74	Received:	3/4/99
Issaquah, WA 98027	Project Manager:	Bill Dougherty	Reported:	3/10/99 12:34

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
WP-WI	B903115-01	Water	3/4/99

North Creek Analytical - Bothell

A Ň Kink Gendron, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939
 Avenue NE. Sinte 101, Bothell, WA 98011-9508

 425.420....00
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Sinte B, Spokane, WA 99206-4776

 509.324.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Sinte E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Cleaning Center of Remond	Sampled:	3/4/99
1145 12th Avenue, Suite C4A	Project Number:	20-74	Received:	3/4/99
Issaquah, WA 98027	Project Manager:	Bill Dougherty	Reported:	3/10/99 12:34

Halogenated Volatile Organics by EPA Method 8021B (modified) North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
<u>WP-W1</u>			B9031	15-01			Water	
Bromodichloromethane	0390216	3/8/99	3/8/99		1.00	ND	110/1	
Bromoform		u	н		1.00	ND	"	
Bromomethane			н.		1.00	ND	- C. R	
Carbon tetrachloride		0			1.00	ND		
Chlorobenzene	n	- ai	000		1.00	ND		
Chloroethane		н	H		1.00	ND	, ni	
Chloroform					1.00	ND		
Chloromethane		- H-			1.00	ND	e.	
Dibromochloromethane		н	- 11		1.00	ND	u .	
1,2-Dichlorobenzene					1.00	1.72		
1,3-Dichlorobenzene	in in		19.		1.00	ND		
1,4-Dichlorobenzene			le.		1.00	ND		
1,1-Dichloroethane	in .				1.00	ND		
1,2-Dichloroethane					1.00	ND	ÿ	
1,1-Dichloroethene		H			1.00	ND		
cis-1,2-Dichloroethene	. W.	a			1.00	1.49	W.	
trans-1,2-Dichloroethene		- iii			1.00	ND		
1.2-Dichloropropane					1.00	ND	u.	
cis-1,3-Dichloropropene	in Chi		ni i		1.00	ND		
trans-1,3-Dichloropropene					1.00	ND		
Methylene chloride			34		5.00	ND	00.0	
1,1,2,2-Tetrachloroethane	Ω.				1.00	ND		
Tetrachloroethene	. e		3/9/99		200	6530	u .	
1,1.1-Trichloroethane			3/8/99		1.00	ND		
1,1,2-Trichloroethane	- in				1.00	ND		
Trichloroethene	.9		.u.		1.00	6.46		
Trichlorofluoromethane	10 -				1.00	ND	- m	
Vinyl chloride			-n-		1.00	ND		
Surrogate: 4-BFB (ELCD)	"	"		50.0-150		86.5	%	

North Creek Analytical - Bothell Kirk Gendron, Ifoject Manager

 Seattle
 18939 1
 venue NE, Suite 101, Bothell, WA 98011-9508

 425.420.9200
 fax 425.420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906 9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto Engineering	Project:	Cleaning Center of Remond	Sampled:	3/4/99
1145 12th Avenue, Suite C4A	Project Number:	20-74	Received:	3/4/99
Issaquah, WA 98027	Project Manager:	Bill Dougherty	Reported:	3/10/99 12:34

Halogenated Volatile Organics by EPA Method 8021B (modified)/Quality Control North Creek Analytical - Bothell

L. Touris	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Note
Rotch: 0300716	Data Prena	mad. 2/9/0	0		Fature	des Maderla CD		IDCTI	
Blank	Date Frepa	I V 1	2		Extrac	tion Method: EP	A SUSUB	IE/II	
Bromodichloromethane	2/8/00	UNI		NID		1.00			
Bromotorm	3/0/99			ND	ug/1	1.00			
Bromomothana	n.			ND		1.00			
Carbon tetrachlorida				ND		1.00			
Chlorobenzano				ND		1.00			
Chlorosthana				ND		1.00			
Chloroform				ND	a	1.00			
Chloromothene				ND		1.00			
Dibases blasses the				ND		1.00			
Dibromocnioromethane				ND		1.00			
1,2-Dichlorobenzene				ND		1.00			
1,3-Dichlorobenzene				ND		1.00			
1,4-Dichlorobenzene				ND		1.00			
I.I-Dichloroethane				ND	"	1.00			
1.2-Dichloroethane				ND		1.00			
1.1-Dichloroethene	20			ND	"	1.00			
cis-1,2-Dichloroethene				ND		1.00			
trans-1,2-Dichloroethene				ND		1.00			
1,2-Dichloropropane				ND	a	1.00			
cis-1,3-Dichloropropene	y			ND	1.98	1.00			
trans-1,3-Dichloropropene				ND		1.00			
Methylene chloride	a			ND		5.00			
1,1,2,2-Tetrachloroethane				ND		1.00			
Tetrachloroethene				ND		1.00			
1,1.1-Trichloroethane				ND		1.00			
1,1,2-Trichloroethane	**			ND		1.00			
Trichloroethene	17 I			ND		1.00			
Trichlorofluoromethane	ų.			ND		1.00			
Vinyl chloride	u u			ND		1.00			
Surrogate: 4-BFB (ELCD)	n	10.0		10.4	"	50.0-150	104		
LCS	0390216-BS1	1							
Chlorobenzene	3/8/99	10.0		9.77	ug/l	70.0-130	97.7		
1,1-Dichloroethene		10.0		10.4	"	70.0-130	104		
Trichloroethene		10.0		9.91		70.0-130	99.1		
Surrogate: 4-BFB (ELCD)	"	10.0		9.63	"	50.0-150	96.3		

North Creek Analytical - Bothell

*Refer to end of report for text of notes and definitions.

Kirk Gendron, Project Manager

Alisto Engineering	Project:	Cleaning Center of Remond	Sampled:	3/4/99
1145 12th Avenue, Suite C4A	Project Number:	20-74	Received:	3/4/99
Issaquah, WA 98027	Project Manager:	Bill Dougherty	Reported:	3/10/99 12:34

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Matrix Spike	0390216-MS	B	903002-19							
Chlorobenzene	3/8/99	10.0	ND	8.30	ug/l	70.0-130	83.0			
1,1-Dichloroethene		10.0	ND	8.21		70.0-130	82.1			
Trichloroethene		10.0	ND	8.70		70.0-130	87.0			
Surrogate: 4-BFB (ELCD)	"	10.0		8.76	"	50.0-150	87.6			
Matrix Spike Dup	0390216-MSI	D1 B9	03002-19							
Chlorobenzene	3/8/99	10.0	ND	8.54	ug/l	70.0-130	85.4	20.0	2.85	
1.1-Dichloroethene		10.0	ND	7.96		70.0-130	79.6	20.0	3.09	
Trichloroethene	.0	10.0	ND	8.08	• •	70.0-130	80.8	20.0	7.39	
Surrogate: 4-BFB (ELCD)	"	10.0		9.20	"	50.0-150	92.0			

North Creek Analytical - Bothell

Kirk Gendron, Project Manager

*Refer to end of report for text of notes and definitions.

North Creek Analytical, Inc. Environmental Laboratory Network

 Seattle
 18939 1
 venue NE, Snite 101, Bothell, WA 98011-9508

 425,420.5....
 fax 425,420.9210

 Spokane
 East 11115 Montgomety, Suite B, Spokane, WA 99206-4776

 509.924.9200
 fax 509.924.9200

 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132

 503.906.9200
 fax 503.906.9210

 Bend
 20354 Empire Avenue, Suite E-9, Bend, OR 97708-1883

 541.383.9310
 fax 541.382.7588

Alisto E 1145 12 Issaquah	Alisto EngineeringProject:145 12th Avenue, Suite C4AProject Number:ssaquah, WA 98027Project Manager:		Cleaning Center of Remond 20-74 Bill Dougherty	Sampled: Received: Reported:	3/4/99 3/4/99 3/10/99 12:34
		No	tes and Definitions		
#	Note				
DET	Analyte DETECTED				
ND	Analyte NOT DETECTED at or above	e the reporting lin	nit		
NR	Not Reported				
dry	Sample results reported on a dry weig	ht basis			

- Recov. Recovery
- RPD Relative Percent Difference

North Creek Analytical - Bothell Kirk Gendron, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (206) 481-9200 FAX 485-2992
 East 11115 Montgomery, Suite B. Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290
 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 643-9200 FAX 644-2202

CHAIN OF CUSTODY REPORT

2115 Work Order #

REPORT TO:		1	INVO	CE TO:										TURN	AROUND REQUES	T in Business Days *
ATTENTION: MISTO ENG	incering	Group	ATTEN	TION:	S	2 6:197	<u>c</u>)	Organic & Inorg	anic Analyses
ADDRESS: 1145-12= 140	e 1000,	<u>C474</u>	ADDRI	ESS:	_									7	5 4	3 2 1 Same
-Lssapuan, W	A 7802	0717	-	_										Standard	Fuels & Hydro	xarbon Analyses
PHONE: 425 831-3744	FAX: 031	-85 43	P.O. NL	MBER:	6 /				NCA Q	JOTE #:					5 3-4	2 1 Same Day
OJECT NAME: Geaning (a	enter of	Redwood	Analysis		N	/	/	/	/	/	/	1.	/			
PROJECT NUMBER: 20-14				. 45	7	/ /	/ /	/	/	/	/	/		OTHER	Specify:	
SAMPLED BY: 15:11 DOLLE	herty		1	N.	/	/	/	/	/	/	/	/		• Turnaround	Requests less than stan	dard may incur Rush Charges
IDENTIFICATION	DATE/TIME	NCA SAMPLE ID (Laboratory Use Only)		×,	/	/	/	/	/	/	/	/		MATRIX	# UF	
WP-1,11	3/4/79/17.4.	RONZILE DI	X	ſſ			f		(((\neg)		(W, S, A, O)	CONTAINERS	COMMENTS
	14.12	promo of	A			-							-	w	2	
2								-			-		_			
3.											11					
4																
			-							-	-					
5.					-	-	_	_		-						
6.											11					
									1-1							
													-			
8.		1.000			~					-	-					
9.					1											
10.	h_{Λ}	1		574		1.1		1.3								
RELINQUISHED BY (Signature)	Latert			DATE:	2 #	159	beenu			N	0.		0	\cap		3/41.
	and a f	Alix		DATE.	11.		RECEIVE	DBY t	Sognwure I.	n	na 1	$\sim r$	ree	H	-	DATE 1991
PRINT NAME:		FIRM: /ILISCO		TIME:	Ti	20	PRINTN	AME:		H,	da	()	Kee	20	FIRM: NCA-1	3 TIME 1420
RELINQUISHED BY (Signature)				DATE:			RECEIVE	DBY	Signalure L							DATE
PRINT NAME:		FIRM:		TIME:			PRINTN	AME:							FIRM	11.46
AUDITIONAL REMARKS:																11812.
			1													1.000
			w0/	2			11.5	· c								PAGE OF

ATTACHMENT C EXCERPTS FROM 2001 GEOENGINEERS, INC. REPORT

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services

Telephone: Fax: GeoEnginanis MAR Routing FIIO

360-459-4670

360-459-3432

.....

.7

March 15, 2000

Jim Roth GeoEngineers, Inc. 8410 154th Ave. NE Redmond, WA 98052

Dear Mr. Roth:

Please find enclosed the analytical data report for the Cleaning Center of Redmond Project in Redmond, Washington. StrataProbe and Mobile Laboratory services were conducted on February 29, 2000. Soil and water samples were analyzed on and off site for Specific Halogenated Hydrocarbons and BTEX by Method 8021B.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to GeoEngineers, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michael a Korsu

Michael A. Korosec President

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis, the sample is stored at 4^o C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

SAMPLE DESCRIPTION		Method Blank	Method Blank	B-1	B-2	B-3	B-4	B-5	B-6
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
DATE SAMPLED DATE ANALYZED	MDL	2/29/00 2/29/00	2/29/00 3/1/00						
Vinyl Chloride	5.0	nd	nd	nd	nd	nd	nd	nd	nd
Benzene	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Toluene	1.0	nd	nd	2.9	2.3	2.5	2.5	2.5	0.6
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd	nd	9.0 nd
Total Xylenes	1.0	nd	nd	3.4	nd	nd	nd	14	5.2
1,1-Dichloroethene	1.0	nd	nd	nd	nd	nd	nd	nd	J.Z
Methylene Chloride	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Trans-1,2-dichlorethene	1.0	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Cis-1,2-dichloroethene	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Chloroform	1.0	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Carbontetrachloride	1.0	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	1.0	nd	nd	nd	nd	1.0	nd	1.6	57
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	1.0	nd	nd	nd	7.2	56	4.4	47	25
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATE RECOVERY (%)		132	98	103	102	93	95	103	103

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Michael Dee DATA REVIEWED BY: Sherry Chilcutt CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

QA/QC DATA - EPA 8021B ANALYSES

		Matrix Spike	1 L		Matrix Spike Duplicate					
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)	RPD (%)			
BENZENE	40	45	113%	40	49	122%	7.5%			
TOLLENE	40	46	115%	40	50	125%	8.1%			
TRICHLOROETHENE (TCE)	40	45	111%	40	49	123%	10.0%			
SURROGATE RECOVERY (%)			82%			102%	22%			

QA/QC DATA - EPA 8021B ANALYSES

	Laboratory (Control Samp	le
	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)
BENZENE	100	105	105%
TOLUENE	100	102	102%
TRICHLOROETHENE (TCE)	100	84	84%
SURROGATE RECOVERY (%)			119%

QA/QC DATA - EPA 8021B ANALYSES

	Laboratory (Control Samp	le
BENZENE TOLUENE TRICHLOROETHENE (TCE)	Spiked Conc. (ug/l)	Measured Conc. (ug/l)	Spike Recovery (%)
BENZENE	100	112	112%
TOLUENE	100	107	107%
TRICHLOROETHENE (TCE)	100	90	90%
SURROGATE RECOVERY (%)			75%

CLEANING CENTER OF REDMOND PROJECT

Redmond, Washington GeoEngineers, Inc.

Project No. 3352-003-00

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Water

SAMPLE DESCRIPTION		B-7	B-8	B-9	B-10	B-11
	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
DATE SAMPLED	MDL	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00
DATE ANALYZED	0.01	2/29/00	2/29/00	2/29/00	3/1/00	3/1/00
Vinyl Chloride	5.0	nd	nd	nd	<250	nd
Benzene	1.0	nd	nd	nd	<50	nd
Tolucne	1.0	3.6	3.9	4.6	<50	4.6
Ethylbenzene	1.0	nd	nd	nd	<50	nd
Total Xylenes	1.0	2.5	2.9	3.6	<50	1.9
1,1-Dichloroethene	1.0	nd	nd	nd	<50	nd
Methylene Chloride	1.0	nd	nd	nd	<50	nd
Trans-1,2-dichlorethene	1.0	nd	nd	nd	<50	nd
1,1-Dichloroethane	1.0	nd	nd	nd	<50	nd
Cis-1,2-dichloroethene	1.0	8.0	nd	nd	<50	6.4
Chloroform	1.0	nd	nd	nd	<50	nd
1,1,1-Trichloroethane (TCA)	1.0	nd	nd	nd	<50	nd
Carbontetrachloride	1.0	nd	nd	nd	<50	nd
1,2-Dichloroethane	1.0	nd	nd	nd	<50	nd
Trichloroethene (TCE)	1.0	1.9	nd	nd	<50	8.7
1,1,2-Trichloroethane	1.0	nd	nd	nd	<50	nd
Tetrachloroethene (PCE)	1.0	58	3.0	1.3	2000	530
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	<50	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	<50	nd
SURROGATE RECOVERY (%)	_	92	126	84	102	103

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Michael Dee DATA REVIEWED BY: Sherry Chilcutt

CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Soil

SAMPLE DESCRIPTION		Method Blank	Method Blank	B-1-10	B-2-12.5	B-3-15	B-4-8.5	B-5-8.5	B-6-20
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DATE SAMPLED DATE ANALYZED	MDL	2/29/00 2/29/00	2/29/00 3/1/00	2/29/00 2/29/00	2/29/00 2/29/00	2/29/00 2/29/00	2/29/00 2/29/00	2/29/00 2/29/00	2/29/00 2/29/00
Vinyl chloride	0.25	nd	nd	nd	nd	nd	nd	nd	nd
Benzene	0.05	nd	nd	nd	nd	nd	nd	nd	ba
Toluene	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Total Xylenes	0.05	nd	nd	nd	nd	0.06	nd	nđ	nd
1,1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Methylene chloride	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Trans-1,2-dichlorethene	0.05	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Cis-1,2-dichloroethene	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.05	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane (TCA)	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Carbontetrachloride	0.05	nd	nd	nd	nd	nd	nd	. nd	nd
1,2-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.05	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.05	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATE RECOVERY (%)		92	95	107	97	86	90	103	123

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Michael Dee DATA REVIEWED BY: Sherry Chilcutt

CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

QA/QC DATA - EPA 8021B ANALYSES

		Matrix Spike		- + L3	Matrix Spike	Duplicate	
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	RPD
BENZENE	2.00	2.30	115%	2.00	2.35	118%	2 2%
TOLUENE TRICHLOROFTHENE (TOTE)	2.00	2.25	113%	2.00	2.30	115%	2.2%
TRICHLOROETHENE (ICE)	2.00	2.25	113%	2.00	2.30	115%	2.2%
SURROGATE RECOVERY (%)			99.0%			90.0%	9.5%

QA/QC DATA - EPA 8021B ANALYSES

L.

	Laboratory C	Control Samp	le
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
BENZENE	5.00	5.25	105%
TOLUENE	5.00	5.10	102%
TRICHLOROETHENE (TCE)	5.00	4.20	84%
SURROGATE RECOVERY (%)			119%

CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

Specific Halogenated and Arom	atic Hydrocar	bons (EPA 8	021B) in Soil					Dupl
SAMPLE DESCRIPTION		B-8-8	B-9-14	B-7-16	B-11-9	B-10-0.5	B-10-5.0	B-6-20
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DATE SAMPLED	MDL	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00
DATE ANALYZED		2/29/00	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00	2/29/00
Vinvi chloride	0.25	nd	nd	nd	nd	nd	nd	nd
Benzene	0.05	nd	nd	nd	nd	nd	nd	nd
Tohuene	0.05	nd	nd	nd	nd	nd	nd	nd
Fihvlbenzene	0.05	nd	nd	nd	nd	nd	nd	nd
Total Xvienes	0.05	nd	0.10	0.30	nd	nd	nd	nd
1.1-Dichloroethene	0.05	nd	nd	nd	nd	nd	nd	nd
Methylene chloride	0.05	nd	nd	nd	nd	nd	nd	nd
Trans-1.2-dichlorethene	0.05	nd	nd	nd	nd	nd	nd	nd
1.1-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd
Cis-1.2-dichloroethene	0.05	nd	nd	nd	nd	nd	nd	ba
Chloroform	0.05	nd	nd	nd	nd	nd	nd	nd
1.1.1-Trichloroethane (TCA)	0.05	nd	nd	nd	nd	nd	nd	nd
Carbontetrachloride	0.05	nd	nd	nd	nd	nd	nd	nd
1.2-Dichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd
Trichloroethene (TCE)	0.05	nd	nd	nd	nd	nd	nd	nd
1.1.2-Trichloroethane	0.05	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene (PCE)	0.05	0.31	0.11	nd	2.7	22	114	nd
1.1.1.2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd	nd	nd	nd
SURROGATE RECOVERY (%)		113	127	79	98	99	103	103

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135% "J" Indicates Approximate Value.

ANALYSES PERFORMED BY: Michael Dee DATA REVIEWED BY: Sherry Chilcutt

CLEANING CENTER OF REDMOND PROJECT Redmond, Washington GeoEngineers, Inc. Project No. 3352-003-00

Specific Halogenated and Aromatic Hydrocarbons (EPA 8021B) in Soil

SAMPLE DESCRIPTION	mg/kg	Method Blank mg/kg	B-10-9
DATE SAMPLED	MDL	2/29/00	2/29/00
DATE ANALYZED	N 25	3/2/00	3/2/00
Vinyl chloride	0.25	nd	nd
Benzene	0.05	nd	nd
Toluene	0.05	nd	nd
Ethylbenzene	0.05	nd	nd
Total Xylenes	0.05	nd	nd
1,1-Dichloroethene	0.05	nd	nd
Methylene chloride	0.05	nd	nd
Trans-1,2-dichlorethene	0.05	nd	nd
1,1-Dichloroethane	0.05	nd	nd
Cis-1,2-dichloroethene	0.05	nd	nd
Chloroform	0.05	nd	nd
1,1,1-Trichloroethane (TCA)	0.05	nd	nd
Carbontetrachloride	0.05	nd	nd
1,2-Dichloroethane	0.05	nd	nd
Trichloroethene (TCE)	0.05	nd	nd
1,1,2-Trichloroethane	0.05	nd	nd
Tetrachloroethene (PCE)	0.05	nd	4.6
1,1,1,2-Tetrachloroethane	0.05	nd	nd
1,1,2,2-Tetrachloroethane	0.05	nd	nd
SURROGATE RECOVERY (%)		92	100

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Chlorobenzene): 65%-135%

ANALYSES PERFORMED BY: Michael Dee DATA REVIEWED BY: Sherry Chilcutt

CLIENT:		GE	I							-	DAT	E: 2-	-29-	-00	ر	- 21	PAGE_	Z	OF		_
ADDRESS.											PRC	JECT	NAM	1E: (le	an	NG C	ent	ar of	LES	
//25	01										1.00	ATION	. K	Isi	MAG	NA					
PHONE:	- 861	-600	50	FA	X: _						LUC	AIIUI	V		11.01		0.77		DATE OF	~ .	-0
CLIENT PROJEC	#: 3	352-0	003-0	0 PROJE	CTN	ANA	GER:	1	GR	_	COL	LECT	OR: 4	AU	-LC	RA	14		_ COLLECTIO	ON 2-2	17~
Sample Number	Depth	Time	Sample Type	Container Type	AND VO	1563 1000 1000 1000 1000 1000 1000 1000 10	10 14 10 814 10 82 80 11	O HO STOR	5 989 5	0015 010 0015 010	99 29 29 100 X	50 50 14 10 50 14 10 50 14 10					NO	DTES		Total Number of Containers	Laboratory Mote Number
B-1		1105	W	(2)40m/	X											03					+-
B-Z	-	1150	1.1		X												1				+
B-3	-	1300			X		_				-		-				++				+
B-4		1405			X	_				_					-		\rightarrow	1			
B-6	-	1620			X	- 12	-		1	-			-	-			X	Ka	ain L	veo	1
B-7	-	1920			X					-			-	1	1.1		4	71	1.15	olle	Ne
B-8	-	1725			15					_				- YN	0011			/ 10	ib (1	c me	T
0-1	-	18105			X					-					<u> </u>	-	5/				1
B-10	-	2210			X	-			+			++		-	-		14				1
D. B-11	-	2100)		X	_		+	+						-						
B-5	-	1530	1	1	X					-			-		-						1
2.									-												1
3.						_			+-+												
4	1			-	+							++									
5	1		•						1	-			-								
δ	-			-		-		++-	++	-											
7.		-				-				-											
3.			TETIME	PECEI		V (Sign	ature)	DATE	TIME	T	SA	MPLE	RECEIF	PT I			LABORAT	ORY NO	TES:		
ELINQUISHED BY (Sign	nature)	UA		ALC A	1	A	uluio/	. 00		TOTA	LNUMB	ER OF C	CONTAI	NERS		1.11					
P	7	2-29	-00/14	14) Du	Un	V (Sign	no.	2.27 DATE	TIME	CHAI	N OF CU	STODY	SEALS	Y/N/N	A						
ELINQUISHED BY (Sig	nature)	DA	I EM IME	RECEI	VLUD	i (olgii	auroj	5,		SEAL	S INTAC	T? Y/N/M	NA								
										RECE	IVED GO	DOD CO	ND./CC	DLD							
	S	AMPLE	DISPOS	AL INSTRUC	TION	15				-	14.5						Tum Arou	nd Time:			

teg		ANSGLOI EN	BAL VIRONMI GE	SC ENTAL OSCIENCES	022	6-3			Ć)				C	HA	IN-	OF	-CUSTOD	(he	co	RD
CLIENT:	1	GE	I									DAT	F:	7-	29-	00		PAGE /	05		ð.
ADDRESS:	84	10 - 1	54th	AVE NO	- 0	EDA	200	ND	1	14	2	DDC		-						p.	
DUONE 4-					1 ~	2/1	10	~~	10	0//	-	PH	JJECI	NAN		.CE	<u>~~~</u>	NG CENTE	12 or	KR	-0
FROME	3-0	61-6	000	F/	X:2	561-	601	50		-	-	LOC	CATIO	N:	KE	Omo	ND				
CLIENT PROJE	ECT #:	3352	-003-	00 PROJE		NAGEF	R:	JG	R		_	COL	LECT	OR:	P	AU	LC	RAILY	DATE OF	NZ-2	29-0
Sample Numbe	r Depth	Time	Sample Type	Container Type	LOANE CONTRACT	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	0011 10 000 00 100	Contra 1 and the	Tou Constant	CH. 6015 (00000)	60100100	VEL CO. BOOD	Clan Clant	an less	1 100 M	A Star	Y			otal Number of Containers	aboratory lote Number
B-1-10	10	1055	5	402					1	ÍÍ	1	1	1T	Ť	IXT	Í	1	(F 0	75
B-2-12.5	12.5	1145												1	X						
B-3-15	15	1250													X						
B-4-8.5	8.5	1330									1				Ŷ			Mobil	tab		
B-5-8,5	8.5	1505	-		1.				-					1	12				Univ		-
8-6-20	20.0	1630			ŧ				-								-			+	_
B-8-8	8.0	1700							1		-	-			X					+ +	-
B-9-14	14.0	1000							-		-	1	-	-				+/		+	
B-7-16	16.0	1910	1.000						-		-	-		-	2		-	-1/		+ +	
B-11-9	9,0	2035									-				2	-		h			
B-10-0.5	0.5	2110						-			+			-				14 han in	fixedi	lab	
B-10-5.0	5.0	2120					1.				-	-		-	X	++	+	(Bell	PULLE		
			1									15		-			-	2 1001			
*								-	1			-		-			-				
		-				1			-	-	+						+				
1 70	-	1.1				100		-	100		+		-		-					+	
						<u> in a</u>			-					-		-			- 11		
											+				-		-				-
RELINQUISHED BY	(Signatu	re) (DATE/TIME	RECEIVED	BY (Sigr	nature)	DATE	E/TIME	4				E DEO			44	LIAF	OBATORY NOTES			
01	6	. 7-	79-00	huma and	0 0	c. 10	2	20.0		TOTAL	NII INA	DED	E HEU	TAINE			-	ionalon notes.			
ELINQUISHED BY	(Signatu		DATE/TIME	BECEIVED	RV (Sign	Alt	DATE	CT C	2-	CHAIN	OF	LISTO	DV CEN	INIE		-	1				
	(originato	-, -		. HEGEWED	or (sign	ature	DATE		. 15	SEALC	INITA	CT2V	NINA	10 1/1	w/wA	-	1				
	_				<u></u>				-	BECE	VED	GOOD	COND				1				
	CTTP	G DISPOSA	E DISPOS	BAL INSTRUCTIONS	7 Plobus					NOTES		4000	COND.	JULU			1				
		2 5101 00A			л гіскир					OTES							1				

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services Telephone: 360-459-4670 Fax: 360-459-3432

March 20, 2000

Jim Roth GeoEngineers, Inc. 8410 154th Ave. NE Redmond, WA 98052

Dear Mr. Roth:

Please find enclosed the analytical data report for the Nelson Properties Project in Redmond, Washington. Soil and water samples were analyzed for Oil and Grease by 413.2 and Specific Halogenated Hydrocarbons and BTEX by Method 8021B on March 6 & 7, 2000.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to GeoEngineers, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

...

midiaela koron

Michael A. Korosec President

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis, the sample is stored at 4° C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

Purgeable Volatile Aromatics (BTEX, EPA 8021B)

A check standard is run at the beginning of the day. The check standard is run at the end of the day. Both open and close standards must be within 15% of the continuing calibration curve value. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135% unless high sample concentrations interfere with the determination of the recovery percentage. At least 1 method blank is run per day.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

TPH-Heavy Fuel Hydrocarbons (EPA 418.1)

Calibration standards are run at the beginning of the day. The standards must be within 15% of the continuing calibration curve value. Check standards are run at the close of the day. A duplicate sample is run at a rate of 1 per 10 samples. At least 1 method blank is run per 20 samples analyzed.

TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

TEG Job Number:	S00306-5
Client:	GEI
Client Job Name:	NELSON PROPERTIES
Client Job Number:	3352-003-00

Analytical Results				030600
BTEX		MTH BLK	LCS	PURGE
Matrix	Water	Water	Water	Water
Date extracted	Reporting	03/06/00	03/06/00	03/06/00
Date analyzed	Limits	03/06/00	03/06/00	03/06/00
BTEX, µg/L				
Benzene	1.0	nd	112%	nd
Toluene	1.0	nd	107%	nd
Ethylbenzene	1.0	nd		nd
Xylenes	1.0	nd		nd
Surrogate recoveries:				
Trifluorotoluene		90%	91%	99%
Bromofluorobenzene		93%	102%	115%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35% TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

.

S00306-5
GEI
NELSON PROPERTIES
3352-003-00

Analytical Results					MS	MSD	RPD
8021B ug/kg		MTH BLK	LCS	COMPOSITE	COMPOSITE	COMPOSITE	COMPOSITE
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00
Date analyzed	Limits	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00
Moisture, %	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			19%	19%	19%	
Chloromethane	250	nd		nd			
Bromomethane	250	nd		nd			
Vinyl chloride	250	nd		nd			
Chloroethane	250	nd		nd			
cis-1,2-Dichloroethene	250	nd		nd	22.00		
1,1-Dichloroethene	250	nd	100%	nd	89%	80%	11%
Methylene Chloride	250	nd		nd			
trans-1,2-Dichloroethene	250	nd		nd			
1,1-Dichloroethane	250	nd		nd			
Chloroform	50	nd		nd			
1.1.1-Trichloroethane	50	nd		nd			
Carbontetrachloride	50	nd		nd			
1,2-Dichloroethane	250	nd		nd			
Trichloroethene	50	nd	90%	nd	86%	80%	7%
1,2-Dichloropropane	250	nd		nd			
Bromodichloromethane	250	nd		nd			
cis-1,3-Dichloropropene	250	nd		nd			
trans-1,3-Dichloropropene	250	nd		nd			
Chlorobenzene	250	nd	96%	nd	88%	82%	7%
1,1,2-Trichloroethane	50	nd		nd			
Tetrachloroethene	50	nd		nd			
Dibromochloromethane	250	nd		nd			
Bromoform	250	nd		nd			
1,1,2,2-Tetrachloroethane	250	nd		nd			
1.1.1.2-Tetrachloroethane	250	nd		nd			
Bromobenzene	250	nd		nd	51		
1.2.3-Trichloropropane	250	nd		nd			
Dibromomethane	250	nd		nd			
m-Dichlorobenzene	50	nd		nd			
p-Dichlorobenzene	50	nd		nd	BL		
o-Dichlorobenzene	50	nd		nd	li		
Benzene	50	nd	112%	nd	106%	97%	9%
Toluene	50	nd	107%	nd	110%	93%	17%
Ethylbenzene	50	nd		. no	1		
Xylenes	50	'nd	_	nd	(
Surrogate recoveries:							Ψ.
Bromochloromethane		69%	75%	79%	5 116%	119%	5
1 4-Dichlorobutane		77%	70%	76%	103%	106%	þ
Bromochloropropane		70%	86%	91%	108%	5 111%	6
Trifluorotoluene		90%	91%	98%	99%	103%	6
Bromofluorobenzene		93%	102%	109%	5 110%	5 111%	0

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

÷
TEG Job Number: Client: Client Job Name: Client Job Number:

ā,

S00306-5 GEI NELSON PROPERTIES 3352-003-00

Analytical Results

Matrix		MW4-22.	
Matrix	Soil	So	
Date extracted	Reporting	03/07/0	
Date analyzed	Limits	03/07/0	
Moisture, %		179	
Chloromethane	250	D	
Bromomethane	250		
Vinyl chloride	250		
Chloroethane	250		
cis-1,2-Dichloroethene	250		
1,1-Dichloroethene	250		
Methylene Chloride	250		
trans-1.2-Dichloroethene	250	n	
1.1-Dichloroethane	250	n	
Chloroform	50	n	
1.1.1-Trichloroethane	50	n	
Carbontetrachloride	50	nc	
1 2-Dichloroethane	50	nc	
Trichloroethene	250	no	
1.2-Dicbloropropage	50	nd	
Brorr dichloromethane	250	no	
cis-1 3-Dickloropropene	250	nd	
trans-1 3-Dichloropropene	250	nd	
Chlorobenzene	250	nd	
1 1 2-Trichloroethana	250	nd	
Tetrachloroethono	50	nd	
Dibtomochloromethana	50	140	
Bromoform	250	nd	
1 1 2 2 Tetrachloroothana	250	nd	
1 1 1 2 Tetrachloroethane	250	nd	
Promobaszasa	250	nd	
123 Trichlerantenan	250	nd	
Dibromomethese	250	nd	
	250	nd	
m-Dichlorobenzene	50	nd	
p-Dichlorobenzene	50	nd	
o-Dichlorobenzene	50	nd	
Benzene	50	nd	
loluene	50	nd	
Ethylbenzene	50	nd	
Xylenes	50	nd	
Surrogate recoveries:			
Bromochloromethane		84%	
1,4-Dichlorobutane		75%	
Bromochloropropane		95%	
Trifluorotoluene		99%	
Bromofluorobenzene			

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

TEG Job Number:	S00306-5
Client:	GEI
Client Job Name:	NELSON PROPERTIES
Client Job Number:	3352-003-00

Analytical Results

8021B, µg/l		MTH BLK	LCS	MW-1	MW-2	MW-3	MW-4	MW-5
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00
Date analyzed	Limits	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00
Chlaramathana	50	nd		ba	nd	nd	nd	ad
Bromomethane	5.0	nd		nd	nd	nd	nd	nd
Mondoblasida	5.0	nd		nd	nd	nd	nd	nd
Chloroothana	5.0	nd		nd	nd	nd	nd	nd
chioroeulane	5.0	nd		nd	nd	nd	nd	nd
1 1 Dichloroothana	5.0	nd	100%	nd	nd	nd	nd	nd
Mothydene Chloride	5.0	nd	100.0	nd	nd	nd	nd	nd
trans_1 2-Dichloroathana	5.0	nd		nd	nd	nd	nd	nd
1 1-Dichlorosthane	50	nd		nd	nd	nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd	nd	nd
1 1 1-Trichloroethane	1.0	nd		nd	nd	nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd	nd	nd
1.2-Dichloroethane	5.0	nd		nd	nd	nd	nd	nd
Trichloroethene	10	nd	90%	nd	nd	nd	nd	nd
1.2-Dichloropropage	5.0	nd		nd	nd	nd	nd	nd
Bromodichloromethane	5.0	nd		nd	nd	nd	nd	nd
cis-1 3-Dichloropropene	5.0	nd		nd	nd	nd	nd	nd
trans-1 3-Dichloropropene	5.0	nd		nd	nd	nd	nd	nd
Chlorobenzene	5.0	nd	96%	nd	nd	nd	nd	nd
1 1 2-Trichloroethane	1.0	nd		nd	nd	nd	nd	nd
Tetrachloroethene	1.0	nd		1.6	nd	nd	50	nd
Dibromochloromethane	5.0	nd		nd	nd	nd	nd	nd
Bromoform	5.0	nd		nd	nd	nd	nd	nd
1 1 2 2-Tetrachloroethane	5.0	nd		nd	nd	nd	nd	nd
1.1.1.2-Tetrachloroethane	5.0	nd		nd	nd	nd	nd	nd
Bromobenzene	5.0	nd		nd	nd	nd	nd	nd
1.2.3-Trichloropropane	5.0	nd		nd	nd	nd	nd	nd
Dibromomethane	5.0	nd		nd	nd	nd	nd	nd
m-Dichlorobenzene	1.0	nd		nd	nd	• nd	nd	nd
p-Dichlorobenzene	1.0	nd		nd	nd	nd	nd	nd
o-Dichlorobenzene	1.0	nd		nd	nd	nd	nd	nd
Benzene	1.0	nd	112%	nd	nd	nd	nd	nd
Toluene	1.0	nd	107%	nd	nd	nd	nd	nd
Ethylbenzene	1.0	nd		nd	nd	nd	nd	nd
Xylenes	1.0	nd		nd	nd	nd	nd	nd
Surrogate recoveries:					1.5			
Bromochloromethane		69%	75%	82%	79%	75%	84%	83%
1,4-Dichlorobutane		77%	70%	74%	72%	75%	79%	76%
Bromochloropropane		70%	86%	90%	96%	97%	98%	98%
Trifluorotoluene		90%	91%	100%	99%	101%	101%	100%
Bromofluorobenzene		93%	102%	112%	112%	112%	111%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

11

S00306-5
GEI
NELSON PROPERTIES
3352-003-00

Analytical Results		MS	MSD	RPD		DUD	DDD
8021B, µg/l		MW-5	MW-5	MW-5	MMA	MAKE	RPL
Matrix	Water	Water	Water	Water	Motor	IVIV-0	MW-6
Date extracted	Reporting	03/07/00	03/07/00	03/07/00	03/07/00	02/07/00	Water
Date analyzed	Limits	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00	03/07/00
					00/01/00	03/07/00	03/07/00
Chloromethane	5.0				bd		
Bromomethane	5.0				nd	na	
Vinyl chloride	5.0				nd	na	
Chloroethane	5.0				nd	na	
cis-1,2-Dichloroethene	5.0				nd	na	
1,1-Dichloroethene	5.0	88%	97%	10%	nd	na	
Methylene Chloride	5.0	in the start		10 %	nd	na	
trans-1,2-Dichloroethene	5.0				nd	na	
1,1-Dichloroethane	5.0				nd	na	
Chloroform	1.0				nd	nd	
1,1,1-Trichloroethane	1.0				nd	nd	
Carbontetrachloride	10				na	nd	
1.2-Dichloroethane	50				na	nd	
Trichloroethene	10	83%	85%	201	na	nd	
1,2-Dichloropropane	50	00 %	05.0	2.10	na	nd	
Bromodichloromethane	50				na	nd	
cis-1.3-Dichloropropene	50				na	nd	
trans-1.3-Dichloropropene	50				na	nd	
Chlorobenzene	5.0	8694	899/	201	nd	nd	
1.1.2-Trichloroethane	1.0	00 %	00%	2%	nd	nd	
Tetrachloroethene	1.0				na	nd	
Dibromochloromethane	5.0				11	12	8%
Bromoform	5.0				nd	nd	
1.1.2.2-Tetrachloroethane	5.0				nd	nd	
1.1.1.2-Tetrachloroethane	5.0				nd	nd	
Bromobenzene	5.0				nd	nd	
1 2 3-Trichloropropage	5.0				nd	nd	
Dibromomethane	5.0				nd	nd	
m-Dichlorobenzene	1.0				nd	nd	
p-Dichlorobenzene	1.0				nd	nd	
Dichlorobenzene	1.0				nd	nd	
Benzene	1.0	10004	10501		nd	nd	
Toluena	1.0	102%	105%	3%	nd	nd	
Ethylhanzana	1.0	99%	102%	3%	nd	nd	
Lulyidenzene Kulenes	1.0				nd	nd	
Aylenes	1.0	×			nd	nd	
Surrogate recoveries:							
Bromochloromethane		122%	125%		86%	116%	
,4-Dichlorobutane		105%	107%		76%	102%	
Bromochloropropane		114%	118%		97%	112%	
rifluorotoluene		103%	106%		98%	99%	
Bromofluorobenzene		113%	115%		111%	11.404	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC.

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services Telephone: 360-459-4670 Fax: 360-459-3432

April 3, 2000

GeoEngineers

Jim Roth GeoEngineers, Inc. 8410 154th Ave. NE Redmond, WA 98052 APR 0 5 2000 Routing

Dear Mr. Roth:

1 ÷

Please find enclosed the analytical data report for the Nelson Properties Project in Redmond, Washington. One water sample was analyzed for Specific Halogenated Hydrocarbons and BTEX by Method 8021B on March 27, 2000.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to GeoEngineers, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michael a Korosce

Michael A. Korosec President

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis, the sample is stored at 4^o C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

TEG Job Number:	S00327-2
Client:	GEOENGINEERS
Client Job Name:	NELSON PROPERTIES
Client Job Number:	3352-003-00

Analytical Results					MS	MSD	RPD
8021B, ug/l		MTH BLK	LCS	MW-7	MW-7	MW-7	MW-7
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00
Date analyzed	Limits	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00	03/27/00
Chloromethane	5.0	nd		nd			
Bromomethane	5.0	nd		nd			
Vinyl chloride	5.0	nd		nd			
Chloroethane	5.0	nd		nd			
cis-1,2-Dichloroethene	5.0	nd		nd			
1,1-Dichloroethene	5.0	nd	105%	nd	91%	91%	0%
Methylene Chloride	5.0	nd		nd			
trans-1,2-Dichloroethene	5.0	nd		nd			
1,1-Dichloroethane	5.0	nd		nd			
Chloroform	1.0	nd		nd			
1.1.1-Trichloroethane	1.0	nd		nd			
Carbontetrachloride	1.0	nd		nd			
1 2-Dichloroethane	5.0	nd		nd			
Trichloroethene	1.0	nd	98%	3.0	91%	91%	0%
1.2-Dichloropropane	5.0	nd		nd			
Bromodichloromethane	5.0	nd		nd			
cis-1 3-Dichloropropene	5.0	nd		nd			
trans-1.3-Dichloropropene	5.0	nd		nd			
Chlorobenzene	5.0	nd	97%	nd	91%	92%	1%
1.1.2-Trichloroethane	1.0	nd		nd			
Tetrachloroethene	1.0	nd		15			
Dibromochloromethane	5.0	nd		nd			
Bromoform	5.0	nd		nd			
1.1.2.2-Tetrachloroethane	5.0	nd		nd			
1 1 1 2-Tetrachloroethane	5.0	nd		nd			
Bromobenzene	5.0	nd		nd			
1 2 3-Trichloropropane	5.0	nd		nd			
Dibromomethane	5.0	nd		nd			
m-Dichlorobenzene	1.0	nd		nd			
n-Dichlorobenzene	1.0	nd		nd			
o-Dichlorobenzene	1.0	nd		nd			κ
Benzene	1.0	nd	118%	nd	112%	110%	2%
Toluene	1.0	nd	112%	nd	107%	105%	2%
Ethydhenzene	10	nd	10,000	nd			
Xylenes	1.0	nd		1.7			
Surrogate recoveries:		010/	000	019/	900/	044	0%
Bromochloromethane		91%	90%	91%	03%	0504	0%
1,4-Dichlorobutane		92%	99%	1044	91%	10.4%	0%
Bromochloropropane		99%	109%	104%	9070	220/	0%
Trifluorotoluene		93%	94%	91%	1070	00%	0%
Bromofluorobenzene		98%	98%	9/%	107%	90%	0%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

TRANSGLOBAL 500327-2 ENVIRONMENTAL GEOSCIENCES	
CLIENT: GeoBhsingers	CHAIN-OF-CUSTODY RECOR
ADDRESS: <u>8410 15454 Ave NE Ralmond WA</u> PHONE: (425) 86(-6076 FAX: (425) 861-6050 CLIENT PROJECT #: <u>2352-003-00</u> PROJECT MANAGER: J:M Roll	- DATE: 3/27/00 PAGE OF OF PROJECT NAME: Nekon Properties
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a) a) b) c) c) c) c) c) c) c) c) c) c
8. 9. 10. 11.	
12. 13. 14. 15.	
ELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME 3/27/00 (230) / af Vice 3/27/07AL NUI ELINQUISHED BY (Signature) DATE/TIME PECENTER	SAMPLE RECEIPT LABORATORY NOTES:
SAMPLE DISPOSAL INSTRUCTIONS RECEIVED BY (SigNature) DATE/TIMES CHAIN OF C SEALS INTA TEG DISPOSAL @ \$2.00 each Return Pickun	CUSTODY SEALS Y/N/NA ACT? Y/N/NA GOOD COND./COLD

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis, the sample is stored at 4^o C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

TEG Job Number:	S00414-1
Client:	GEI
Client Job Name:	NELSON PROPERTIES
Client Job Number:	3352-003-00

Analytical Results

00210, µg/i		MW-8
Matrix	Water	Wate
Date extracted	Reporting	04/14/00
Date analyzed	Limits	04/14/00
Chloromethane	50	nd
Bromomethane	5.0	nd
Vinyl chloride	5.0	nd
Chloroethane	5.0	nd
cis-1,2-Dichloroethene	5.0	nd
1,1-Dichloroethene	50	nd
Methylene Chloride	50	nd
trans-1,2-Dichloroethene	50	nd
1,1-Dichloroethane	5.0	nd
Chloroform	10	nd
1,1,1-Trichloroethane	1.0	nd
Carbontetrachloride	1.0	nd
1,2-Dichloroethane	50	nd
Trichloroethene	1.0	nd
1,2-Dichloropropane	50	nu
Bromodichloromethane	5.0	na
cis-1,3-Dichloropropene	5.0	na
trans-1.3-Dichloropropene	5.0	na
Chlorobenzene	5.0	na
1.1.2-Trichloroethane	1.0	na
Tetrachloroethene	1.0	
Dibromochloromethane	5.0	1.4
Bromoform	5.0	ng
1.1.2.2-Tetrachloroethane	5.0	na
1.1.1.2-Tetrachloroethane	5.0	na
Bromobenzene	5.0	· na
1.2.3-Trichloropropage	5.0	na
Dibromomethane	5.0	nd
m-Dichlorobenzene	5.0	nd
p-Dichlorobenzene	1.0	na
o-Dichlorobenzene	1.0	na
Benzene	1.0	na
Toluene	1.0	na
Ethylbenzene	1.0	na
Xvienes	1.0	nd
- The second s	1.0	nd
Surrogate recoveries:		
Bromochloromethane		114%
,4-Dichlorobutane		104%
Bromochloropropane		109%
Influorotoluene		100%
Bromofluorobenzene		106%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed C - coelution with sample peaks M - matrix interference J - estimated value Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC. GeoEngineers

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

62		ALLS 2.1 2000
7	-	160 ~ 2000
	Routing	
	Telephone:	360-459-4670
	Fax:	360-459-3432

Mobile Environmental Laboratories Environmental Sampling Services

August 17, 2000

Jim Roth GeoEngineers, Inc. 8410 154th Ave. NE Redmond, WA 98052

Dear Mr. Roth:

Please find enclosed the analytical data report for the Nelson Properties Project in Redmond, Washington. Water samples were analyzed for Specific Halogenated Hydrocarbons and BTEX by Method 8021B on August 9, 2000.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. An invoice for this work is also enclosed.

TEG Northwest appreciates the opportunity to have provided analytical services to GeoEngineers, Inc. for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

michaela Karoner

Michael A. Korosec President

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis. the sample is stored at 4^o C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

TEG Job Number:	S00809-1		
Client:	GEOENGINEERS		
Client Job Name:	NELSON PROPERTIES		
Client Job Number:	3352-003-00		

8021B, µg/l	1.000	MTH BLK	LCS	MW-1	MW-2	MW-3	MW-4	MW-5
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
	Reporting						1	
Date analyzed	Limits	08/09/00	08/09/00	08/09/00	08/09/00	08/09/00	08/09/00	08/09/00
Chloromethane	5.0	nd		nd	nd	nd	nd	nd
Bromomethane	5.0	nd		nd	nd	nd	nd	nd
Vinvi chloride	5.0	nd		nd	nd	nd	nd	nd
Chloroethane	5.0	nd		nd	nd	nd	nd	nd
cis-1.2-Dichloroethene	5.0	nd		nd	nd	nd	nd	nd
1.1-Dichloroethene	5.0	nd	124%	nd	nd	nd	nd	nd
Methviene Chloride	5.0	nd		nd	nd	nd	nd	nd
trans-1.2-Dichloroethene	5.0	nd		nd	nd	nd	nd	nd
1.1-Dichloroethane	5.0	nd		nd	nd	nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd	nd	nd
1.1.1-Trichloroethane	1.0	nd		nd	nd	nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd	nd	nd
1.2-Dichloroethane	5.0	nd		nd	nd	nd	nd	nd
Trichloroethene	1.0	nd	113%	nd	nď	nd	nd	nd
1.2-Dichloropropane	5.0	nd		nd	nd	nd	nd	nd
Bromodichloromethane	5.0	nd		nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	5.0	nd		nd	nd	nd	nd	nd
trans-1.3-Dichloropropene	5.0	nd		nd	nd	nd	nd	nd
Chlorobenzene	5.0	nd	125%	nd	nd	nď	nd	nd
1.1.2-Trichloroethane	1.0	nd		nd	nd	nd	nd	nd
Tetrachloroethene	1.0	nd		5.4	2.9	nd	9.2	nd
Dibromochloromethane	5.0	nd		nd	nd	nd	nd	nd
Bromoform	5.0	nd		nd	'nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	5.0	nd		nd	nd	nd	nd	nd
1.1.1.2-Tetrachloroethane	5.0	nd		nd	nd	nd	nd	nd
Bromobenzene	5.0	nd		nd	nd	nd	nd	nd
1,2,3-Trichloropropane	5.0	nd		nd	nd	nd	nd	nd
Dibromomethane	5.0	nd		nd	nd	nd	nd	nd
m-Dichlorobenzene	1.0	nd		nd	nd	. nd	nd	nd
p-Dichlorobenzene	1.0	nd		nd	nd	nd	nd	no
o-Dichlorobenzene	1.0	nd		nd	nd	nd	nd	na
Surrogate recoveries:								
Bromochloromethane		80%	86%	87%	68%	82%	72%	92%
1,4-Dichlorobutane		98%	94%	101%	84%	123%	92%	104%
Bromochloropropane		90%	102%	103%	68%	78%	77%	105%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

TEG Job Number:	S00809-1
Client	GEOENGINEERS
Client Job Name:	NELSON PROPERTIES
Client Job Number:	3352-003-00
Client Job Number:	3352-003-00

Analytical Results		MS	MSD	RPD			
8021B, µg/l		MW-5	MW-5	MW-5	MW-6	MW-7	MW
Matrix	Water	Water	Water	Water	Water	Water	Wate
D.t.	Reporting						vvate
Date analyzed	Limits	08/09/00	08/09/00	08/09/00	08/09/00	08/09/00	08/09/00
Chloromethane	50						
Bromomethane	5.0				nd	nd	nc
Vinvl chloride	5.0				nd	nd	nc
Chloroethane	5.0				nd	nd	na
cis-1.2-Dichloroethene	5.0				nd	nd	nc
1.1-Dichloroethene	5.0	720/			nd	nd	nd
Methylene Chloride	5.0	13%	84%	14%	nd	nd	nd
trans-1.2-Dichloroethene	5.0				nd	nd	nd
1.1-Dichloroethane	5.0				nd	nd	nd
Chloroform	3.0				nd	nd	nd
1.1.1-Trichloroethane	1.0				nd	nd	nd
Carbontetrachloride	1.0				nd	nd	nd
1.2-Dichloroethane	1.0				nd	nd	nd
Trichloroethene	5.0	4050			nd	nd	nd
1 2-Dichloropropage	1.0	125%	120%	4%	nd	nd	nd
Bromodichloromethane	5.0				nd	nd	nd
cis-1 3-Dichloropropene	5.0				nd	nd	nd
trans-1.3-Dichloronronene	5.0				nd	nd	nd
Chlorobenzene	5.0	0.404			nd	nd	nd
1 1 2-Trichloroethane	5.0	94%	128%	31%	nd	nd	nd
Tetrachloroethene	1.0				nd	nd	nd
Dibromochloromethane	1.0				27	14	8.5
Bromoform	5.0				nd	nd	nd
1 1 2 2-Tetrachloroethana	5.0				nd	nd	nd
1 1 2 Tetrachloroethane	5.0				nd	nd	nd
Bromobenzene	5.0				nd	nd	nd
23Trichloropropage	5.0				nd	nd	nd
Dibromomethane	5.0				nd	nd	nd
Dichlombenzene	5.0				nd	nd	nd
Dichlorobenzene	1.0				nd	nd	nd
Dichlorobenzene	1.0				nd	nd	nd
-Bidillolobelizelle	1.0	_			nd	nd	nd
surrogate recoveries:							
romochloromethane		77%	88%		88%	91%	81%
,4-Dichlorobutane		107%	115%		111%	119%	87%
romochloropropane		89%	106%		154%	156%	1100/

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

CLIENT: GEOLUGINEERS FUL.							. DA	ATE:	\$/3	1.	2		AGE_	1	OF	٢	_			
ADDRESS: 22	110	150	The	Var V	JE	2	EDM	~2,	wn	. PF	OJEC		1E:	NEL	Su-	, ?,	107.			
PHONE 425	26	160	00	FA	X: 4	5	2.00	60	50	LC	CATIO	DN:	72	0~14	40	14-1	2			
CLIENT PROJEC	CT #: <u>3</u>	352-	003-	PROJE		AGEF	1: 51	n D.	1170		DLLEC	TOR:	6	15.	2			UATE OF	N 8/	:1
Sample Number	Depth	Time	Sample Type	Container Type	Nor Spines	0 00 00 00 00 00 00 00 00 00	Con 16, 0250	10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	72 4 00 5 00 001100	75570000000000000000000000000000000000	Deserver of	01 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HUNDER CO	ALL ST		FIE		ES	Total Number of Containers	Laboratory
Mw-1		1042	W	ZVAA		\square	TT	1		T			K	11	Í	1				
Mw-2		12.01	W	4		- 1							X							
Mw-3		1510	W	×									X							
mw-4		1119	W	ч .									X							
MV-5		1010	W	4	N all								X							
MW-6		1332		ч									X	H L						
Mw-7		1416	W	ч									X							
Mw-5		1536	W	4									x							
			->					4												
						•	1.												1	
	-											. 19		120		-				-
1		1.7.4	\sum									213		_						_
			/			-														
	_	-																	_	_
	5					-		_												
		~										_								_
			1													1				
EVINDUISHED BY	Signatur	e)	DATE/TIME	E RECEIVED) BY (Sign	nature)	DATE	TIME		SAM	PLE RE	CEIPT			- LAB	ORATORY	NOTES:			
DAV			14/30 10	SIOVAMV.	201	8/4	2/02	010	TOTAL	NUMBEF	OF CO	ONTAINE	RS		-					
ELINOUSHED BY (Signatur	e)	DATE/TIME	E AECEIVED	BY (Sigr	natu/e)	DATE	TIME	CHAIN	OF CUS	TODY S	EALS Y	N/NA	-	-					
									SEALS	INTACT?	Y/N/NA	A			-	;	-1-	/	-	
RECEIVED G										ED GOOD COND./COLD 64 Cig										

TABLE 1

SUMMARY OF GROUND WATER ELEVATIONS AND ORGANIC VAPOR CONCENTRATIONS IN MONITORING WELLS¹ CLEANING CENTER OF REDMOND

Well Number	Date Measured	Depth to Ground Water (feet)	Ground Water Elevation ² (feet)	Organic Vapor ³ Concentrations (ppm)
MW-1	04/14/00	10.55	89.53	0.6
	08/08/00	12.33	87.75	
MW-2	04/14/00	11.74	89.02	0.3
	08/08/00	13.34	87.42	
MW-3	04/14/00	9.39	89.02	0.8
	08/08/00	10.99	87.42	
MW-4	04/14/00	9.26	89.56	2.2
	08/08/00	11.04	87.78	- <u>-</u>
MW-5	04/14/00	11.37	89.74	1.7
	08/08/00	13.28	87.83	
MW-6	04/14/00	9.48	89.04	0.6
	08/08/00	10.90	87.62	1 <u>1</u>
MW-7	04/14/00	9.45	88.84	
	08/08/00	10.97	87.32	
MW-8	04/14/00	11.08	88.03	1.1.1.1
	08/08/00	12.33	86.78	

REDMOND, WASHINGTON

Notes:

¹Approximate well locations are shown in Figures 3 through 6.

²Elevations referenced to a temporary benchmark on the southwest corner of a concrete vault located at the approximate location shown in Figures 4 and 5. The benchmark has an assumed elevation of 100.00 feet. ³Organic vapor measurements made on 03/06/00 using a photo-ionization detector (PID).

- = not measured

ppm = parts per million

p:\00\finals\3352003phaselldata\table1.xls

TABLE 2

SUMMARY OF SOIL CHEMICAL ANALYTICAL DATA¹

CLEANING CENTER OF REDMOND REDMOND, WASHINGTON

Sample Identification ¹	Sample Depth (feet)	Date Sampled	Tetrachloroethene ^{2,3} (PCE) (mg/kg)
B-1-10	10.0	02/29/00	<0.05
B-2-12.5	12.5	02/29/00	<0.05
B-3-15	15.0	02/29/00	<0.05
B-4-8.5	8.5	02/29/00	<0.05
B-5-8.5	8.5	02/29/00	<0.05
B-6-20	20.0	02/29/00	<0.05
B-7-16	16.0	02/29/00	<0.05
B-8-8	8.0	02/29/00	0.31
B-9-14	14.0	02/29/00	0.11
B-10-0.5	0.5	02/29/00	22
B-10-5.0	5.0	02/29/00	114
B-10-9.0	9.0	02/29/00	4.6
B-11-9	9.0	02/29/00	2.7
MW-4-22.5	22.5	03/06/00	0.140
A Method A Cleanup Level			0.5

Notes:

¹Chemical analyses of samples were conducted by Transglobal Environmental Geosciences Northwest located in Bellevue, WA, ²Only compounds exceeding laboratory detection limits are listed. See laboratory reports for a complete list of analytes and detection limits.

³Analyzed using EPA Method 8021B

mg/kg = milligrams per kilogram MTCA = Model Toxics Control Act

Shaded values indicate concentrations greater than MTCA Method A cleanup levels.

p:\00\finals\3352003phase11data\table2.xls

TABLE 3 (Page 1 of 2)

SUMMARY OF GROUND WATER CHEMICAL ANALYTICAL DATA¹

CLEANING CENTER OF REDMOND

REDMOND, WASHINGTON

Sample Location ¹	Date Sampled	Dissolved Oxygen ² (mg/l)	Toluene ³ (µg/l)	Xylenes ³ (µg/l)	Tetrachloroethene ^{3,4} (PCE) (µg/l)	Trichloroethene ^{3,4} (TCE) (ug/l)
B-1	02/29/00		2.9	3.4	<1.0	<1.0
B-2	02/29/00		2.3	<1.0	7.2	<1.0
B-3	02/29/00		2.5	<1.0	5.6	10
B-4	02/29/00		2.5	<1.0	4.4	<1.0
B-5	02/29/00		2.5	1.4	47	16
B-6	02/29/00		9.6	5.2	25	57
B-7	02/29/00		3.6	2.5	58	1.0
B-8	02/29/00		3.9	2.9	3.0	
B-9	02/29/00		4.6	3.6	1.3	<1.0
B-10	02/29/00		<50 ⁵	<50 ⁵	2 000	<50
B-11	02/29/00		4.6	1.9	530	87
MW-1	03/06/00	10.79	<1.0	<1.0	16	<1.0
	08/08/00	0.90	-	-	54	<1.0
MW-2	03/06/00	6.68	<1.0	<1.0	<1.0	<1.0
	08/08/00	1.32	-		2.9	<1.0
MW-3	03/06/00	9.80	<1.0	<1.0	<1.0	<1.0
	08/08/00	0.57	-		<1.0	<1.0
MW-4	03/06/00	1.26	<1.0	<1.0	50	<1.0
	08/08/00	0.69			92	<1.0
MW-5	03/06/00	6.59	<1.0	<1.0	<1.0	<1.0
	08/08/00	0.75	_		<1.0	<1.0
MW-6	03/06/00	1.04	<1.0	<1.0	11	<1.0
	08/08/00	0.42	_		27	<1.0
MW-7	03/28/00	1.35	1.7	1.7	15	3.0
	08/08/00	0.74	-	_	14	<1.0
MW-8	04/14/00	0.44	<1.0	<1.0	7.4	<1.0
	08/08/00	0.39	-		8.5	<1.0
CA Method A	Cleanup Level	N/A	40.0	20.0	5.0	5.0

Notes appear on page 2 of 2.

TABLE 3 (Page 2 of 2)

Notes:

¹Chemical analyses of samples were conducted by Transglobal Environmental Geosciences Northwest located in Bellevue, Washington

²Measured in field with YSI 55 dissolved oxygen meter or Horiba U-10 water checker.

³Analyzed using EPA Method 8021B.

⁴Only compounds exceeding laboratory detection limits are listed. See laboratory reports for a complete list of analytes and detection limits.

⁵Detection limit is greater than MTCA Method A cleanup level.

µg/l = micrograms per liter

mg/l = milligrams per liter

— = not measured or analyzed

MTCA = Model Toxics Control Act

Shaded values indicate concentrations greater than MTCA Method A cleanup levels.

p:\00\finals\3352003round2\table3.xls

33520030 i.d

<u>L</u>1

52003F.DWG

11

Ц.

YF P:\3352003\CAD\3352003

9/28/00

ATTACHMENT D SITE-SPECIFIC TERRESTRIAL ECOLOGICAL EVALUATION

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

March 1, 2011

Mr. Michael Kuntz Toxics Cleanup Program Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504

RE: REQUESTED INFORMATION CLEANING CENTER OF REDMOND SITE 15796 REDMOND WAY, REDMOND, WASHINGTON VCP IDENTIFICATION NO. NW1324 FARALLON PN: 650-001

Dear Mr. Kuntz:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter to transmit the information requested in your email dated January 31, 2011 that is necessary for Washington State Department of Ecology (Ecology) to issue a property-specific No Further Action determination for the release of the dry cleaning solvent tetrachloroethene (PCE) at the Cleaning Center of Redmond at 15796 Redmond Way in Redmond, Washington. The Cleaning Center of Redmond site is enrolled in the Ecology Voluntary Cleanup Program (VCP) and has been assigned VCP Identification No. NW1324. The requested information includes the following:

- 1) The tax parcel number for the Cleaning Center of Redmond facility;
- 2) The legal description for the subject property of the VCP Application;
- 3) A notice from the Ecology Environmental Information Management Data Coordinator that all data has been electronically submitted; and
- 4) A Terrestrial Ecological Evaluation for the site as described in Section 7493 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-7493).

The Cleaning Center of Redmond is located on King County Assessor Tax Parcel No. 719890-0080. The legal description for this property is as follows:

LOT 1 OF CITY OF REDMOND LOT LINE REVISION LLR-90-01, AS RECORDED IN VOLUME 79 OF SURVEYS, AT PAGES 161 AND 161A, RECORDED UNDER RECORDING NO. 9104039002, RECORDS OF KING COUNTY, WASHINGTON.

Farallon has submitted all data collected after October 2005 at the Cleaning Center of Redmond Site to the Ecology Environmental Information Management Data Coordinator. The Data Coordinator confirmed receipt and acceptance of the data on March 1, 2011.

Washington State Department of Ecology March 1, 2011 Page 2

A completed Terrestrial Ecological Evaluation Form is attached to this letter. The release of PCE to soil and groundwater was cleaned up using a soil vapor extraction system as described in the Site Closure Report, Cleaning Center of Redmond, 15796 Redmond Way, Redmond, Washington dated September 21, 2007, prepared by Farallon. As documented in this report, concentrations of PCE were reduced to below the Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels in soil and groundwater. Concentrations of PCE in confirmation soil samples collected at the former source area beneath the Cleaning Center of Redmond were less than 0.022 milligrams per kilogram. The area where the release of PCE to soil occurred is covered by a building floor slab and asphalt-surfaced loading dock area, which are not accessible to ecological receptors. As listed on the attached Terrestrial Ecological Evaluation Form under Section C: Site-Specific Evaluation, Item 1, this is not problematic because the release of PCE to soil was addressed by the cleanup action conducted to protect human health. In addition, PCE is not a chemical listed in MTCA Table 749-3 for protection of terrestrial plants and animals, nor under the references cited in footnotes c or d of this table. Therefore, the residual concentrations of PCE in soil at the former source area beneath the building floor slab that are below MTCA Method A cleanup levels for unrestricted land uses are considered protective of terrestrial ecological receptors.

Farallon trusts that this letter provides the information requested in your email dated January 31, 2011. Farallon looks forward to receipt of the Opinion Letter from Ecology providing a property-specific No Further Action determination. Other actions to assess potential residual concentrations of PCE in groundwater in the southeast portion of the Redmond Center property will be addressed by the City of Redmond and any other potentially liable persons. Please contact the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

Oufford T. Schmitt

Clifford T. Schmitt, L.G., L.H.G. Principal

Attachment: Terrestrial Ecological Evaluation Form

cc: Mr. Thomas L. Markl, CEO, Nelson Real Estate Management, LLC

CTS:bw

G \Projects\650 Nelson Properties\650001 Cleaning Cntr Redmond\Correspondence\Ecology Req for Information\Ecology Req for Info Response Itr docx

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation. You still need to submit your evaluation as part of your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Cleaning Center of Redmond

Facility/Site Address: 15796 Redmond Way, Redmond, Washington 98052

Facility/Site No:

VCP Project No.: NW1324

Title: Principal

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Gerald Portele

Organization: Farallon Consulting, L.L.C.

Mailing address: 975 5th Avenue Northwest

City: Issaquah		State: WA	A Zip code: 98027	
Phone: 425-295-0800	Fax: 425-295-0850	E-ma	ail: jportele@farallonconsulting.com	

A.	Exclusion	n from further evaluation.
1.	Does the	Site qualify for an exclusion from further evaluation?
		(es If you answered "YES," then answer Question 2.
	Unkr	No or nown If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.
2.	What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
	Point of Co	ompliance: WAC 173-340-7491(1)(a)
		All soil contamination is, or will be,* at least 15 feet below the surface.
		All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
	Barriers to	Exposure: WAC 173-340-7491(1)(b)
		All contaminated soil, is or will be,* covered by physical barriers (such as buildings of paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
	Undevelop	ped Land: WAC 173-340-7491(1)(c)
		There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
		For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
	Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)
		Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
* A acc	An exclusion ceptable to E	based on future land use must have a completion date for future development that is Ecology.
± " pre	Undevelope vent wildlife	d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil
# " hig	Contiguous" hways, exte	undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area

в.	Simplified	valuation.						
1.	Does the	e qualify for a simplified evaluation?						
		s If you answered "YES," then answer Question 2 below.						
	🔲 l Unki	or If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.						
2.	Did you c	duct a simplified evaluation?						
		s If you answered "YES," then answer Question 3 below.						
		If you answered "NO," then skip to Step 3C of this form.						
3.	Was furth	evaluation necessary?						
		s If you answered "YES," then answer Question 4 below.						
		If you answered "NO," then answer Question 5 below.						
4.	If further	aluation was necessary, what did you do?						
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.						
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.						
5.	If no further evaluation was necessary, what was the reason? Check all that apply. Then skip to Step 4 of this form.							
	Exposure	alysis: WAC 173-340-7492(2)(a)						
		Area of soil contamination at the Site is not more than 350 square feet.						
	Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.							
	Pathway A	alysis: WAC 173-340-7492(2)(b)						
	Ľ	No potential exposure pathways from soil contamination to ecological receptors.						
	Contamina	Analysis: WAC 173-340-7492(2)(c)						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determine using Ecology-approved bioassays.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, an institutional controls are used to manage remaining contamination.						

1.	Was there	a problem? Se	ee WAC 173-340-7493(2).
		es If you and	wered "VES " then answer Question 2 below
		lo <i>If you ans</i> below:	wered "NO," then identify the reason here and then skip to Question 5
			No issues were identified during the problem formulation step.
		\boxtimes	While issues were identified, those issues were addressed by the cleanup actions for protecting human health.
2.	What did y	ou do to resolv	ve the problem? See WAC 173-340-7493(3).
		Used the conc <i>Question 5</i> be	entrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to elow.</i>
		Used one or m address the id	nore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below.</i>
3.	lf you con Check all ti	ducted further s hat apply. See W	site-specific evaluations, what methods did you use? /AC 173-340-7493(3).
		Literature surv	eys.
		Soil bioassays	
		Wildlife exposi	ure model.
		Biomarkers.	
		Site-specific fi	eld studies.
		Weight of evid	ence.
		Other methods	s approved by Ecology. If so, please specify:
4.	What was	the result of the	ose evaluations?
		Confirmed the	re was no problem.
		Confirmed the	re was a problem and established site-specific cleanup levels.
5.	Have you problem r	already obtaine esolution steps	ed Ecology's approval of both your problem formulation and ?
	X Y	es If so, plea	se identify the Ecology staff who approved those steps: Michael Kuntz
		lo	

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

ATTACHMENT E EIM SUBMITTAL ACKNOWLEDGMENTS

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION Former Cleaning Center of Redmond 15796 Redmond Way Redmond, Washington

Farallon PN: 650-001

Cliff,

I have received the EIM submittal,, Terrestrial Ecological Evaluation and the legal description. The EIM submittal is acceptable. It was my understanding that a summary sheet describing the Evaluation would be attached to the form. I will accept the summary in the letter however I will attach a copy of the summary to the form and make note of it on the form. The legal description is not acceptable. A copy of the recorded survey is required. If you have questions please do not hesitate to contact me by the means provided below.

Sincerely,

Mike

Michael Kuntz Toxics Cleanup Program Department of Ecology POB 47600 Olympia, WA 98504 (360) 407-7239 <u>Mkun461@ecy.wa.gov</u> *Wear good boots and carry plenty of water.*

From: Durkee, Jenna (ECY) To: Brani Jurista Subject: FW: VCNW2693-Nelgroup Properties, LLC, Redmond, WA Date: Thursday, May 29, 2014 2:14:05 PM

Hi Brani,

Just wanted to include you on this as well. The EIM data that has been submitted for this site is loaded and will be available in EIM tomorrow. Thank you, Jenna Durkee Environmental Specialist TCP EIM Data Coordinator Washington Department of Ecology (509) 454-7865 Jenna.Durkee@ecy.wa.gov From: Durkee, Jenna (ECY) Sent: Thursday, May 29, 2014 2:00 PM To: 'Lyndsey Needham' Ci: Yuntz, Michael G. (ECY)

Subject: VCNW2693-Nelgroup Properties, LLC, Redmond, WA

All submitted data has been successfully loaded into EIM for the following study. The Ecology Project Manager should verify the results and locations, and that the study in EIM contains the correct number of results. Here is review guidance for the Ecology Project Manager:

http://aww.ecology/programs/tcp/Site_Manager_Resource_Ctr/Policy_Resources/Policy_Resources_main.html

FS ID:281

Study ID: VCNW2693

Study Name: Nelgroup Properties, LLC, Redmond, WA

Locations: 2

Results: 46

You can view the data **tomorrow** by using the following link and searching by the above Study ID: <u>http://ecyeim/search/Eim/EIMSearch.aspx?SearchType=AllEIM&State=newsearch&Section=all</u> Jenna Durkee Environmental Specialist TCP EIM Data Coordinator

TCP EIM Data Coordinator Washington Department of Ecology (509) 454-7865 Jenna.Durkee@ecy.wa.gov