Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation Prepared for City of Richland Public Works Department February 2018 Prepared by **Parametrix** # Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation Prepared for #### **City of Richland Public Works Department** P.O. Box 190 MS-26 Richland, WA 99352 Prepared by #### **Parametrix** 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com ## **CITATION** Parametrix. 2018. Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation. Prepared by Parametrix, Seattle, WA. February 2018. ## **CERTIFICATION** The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below. Prepared by Lisa Gilbert, LHG Checked by Steve Emge, PE Approved by Dwight Miller, PE ## **TABLE OF CONTENTS** | 1. | | INTROL | DUCTION | 1-1 | |-----|-----|----------|--|-----| | 1 | .1 | Objectiv | ves | 1-1 | | 1 | 2 | Backgro | ound | 1-1 | | | | 1.2.1 | Horn Rapids Landfill Setting | 1-1 | | | | 1.2.2 | Landfill Description | 1-2 | | | | 1.2.3 | Regulatory History and Interim Actions | 1-2 | | 1 | 3 | Hydrog | eologic Setting | 1-3 | | 1 | 4 | Concep | tual Site Model Summary | 1-3 | | | | 1.4.1 | Preliminary Chemicals of Concern | | | | | 1.4.2 | Distribution of Chemicals and Rationale for Selecting Push Probe Locations | 1-4 | | 2. | | PHASE | 1 WORK CONDUCTED – DIRECT PUSH PROBES | 2-1 | | 2 | 2.1 | Push Pr | obe Installation Procedures | 2-1 | | 2 | 2.2 | Phasing | and Selection of Push Probe Locations | 2-3 | | 2 | 2.3 | Ground | water Sampling Procedures | 2-3 | | 2 | 2.4 | Ground | water Analyses | 2-4 | | 3. | | RESULT | S | 3-1 | | 3 | 3.1 | Ground | water Quality Data | 3-1 | | | | 3.1.1 | VOCs | 3-1 | | | | 3.1.2 | Natural Attenuation Parameters | 3-2 | | | | 3.1.3 | Field Data | 3-2 | | 3 | 3.2 | Ground | water Elevations | 3-3 | | 3 | 3.3 | Distribu | tion of Contaminants | 3-3 | | 4. | | CONCLU | JSIONS AND RECOMMENDATIONS | 4-1 | | 4 | .1 | Phase 1 | Conclusions | 4-1 | | 4 | .2 | Phase 2 | Recommendations for Groundwater Monitoring Well | 4-1 | | 5. | | REFERE | NCES | 5-1 | | APP | ENI | DICES | | | | Α | | Field Da | ata | | | В | | Photog | raphs | | | С | | Laborat | ory Reports | | | D | | Data Su | mmary Tables | | | E | | Isoconc | entration Maps | | | F | | 2017 Pc | otentiometric Surface Maps | | | G | | Monito | ring Well Specification | | ## TABLE OF CONTENTS (CONTINUED) #### **LIST OF FIGURES** - 1 Site Location Map - 2 Site Vicinity Map - 3 Site Plan - 4 Push Probe and Proposed Monitoring Well Locations #### **LIST OF TABLES** #### **LIST OF TABLES** | 1 | Preliminary Chemicals of Concern, Horn Rapids Landfill | 1-4 | |---|---|-----| | 2 | Push Probe Construction and Groundwater Level Information, Horn Rapids Landfill | 2-2 | | 3 | Push Probe Groundwater Laboratory Duplicate Analyses, Horn Rapids Landfill | 2-4 | | 4 | November 2017 Concentrations of COCs (μg/L) with Distance from the Landfill | | | | along Groundwater Flow Paths, Horn Rapids Landfill | 3-4 | February 2018 | 553-3820-007 ## **ACRONYMS AND ABBREVIATIONS** BFHD Benton-Franklin Health District COCs Chemicals of Concern City City of Richland City Facility 275-acre permitted waste facility, including Landfill City Property Contiguous property owned by the City of Richland, including the City Facility (approximately 2,306 total acres) DCA Dichloroethane DCE Dichloroethene DO dissolved oxygen Ecology Washington Department of Ecology Expansion proposed 104-acre expansion of the Horn Rapids Landfill located within the City Facility east of the Landfill GWQSs groundwater quality standards (Chapter 173-200 WAC) Landfill 46-acre permitted area where MSW has been placed within the City Facility LFG landfill gas MCL maximum contaminant level (Chapter 246-290 WAC) MSW municipal solid waste MTCA Model Toxics Control Act (Chapter 173-340 WAC) ORP oxidation-reduction potential ORV off-road vehicle PCE Tetrachloroethene QAPP Quality Assurance Project Plan RI/FS remedial investigation and feasibility study SIM Selective Ion Monitoring TCE Trichloroethene TDS Total Dissolved Solids VC Vinyl Chloride VOCs volatile organic compounds ## 1. INTRODUCTION This report summarizes the results of the push probe investigation conducted at the Horn Rapids Landfill in Richland, Washington. The push probe investigation is the first of two phases of work described in the Horn Rapids Landfill Remedial Investigation Work Plan (Parametrix 2017d). The Work Plan was prepared as an exhibit to Agreed Order No. DE 13717 (Agreed Order) entered into between the City of Richland (City) and the Washington State Department of Ecology (Ecology) in accordance with Chapter 173-340 WAC, the Model Toxics Control Act (MTCA) and its implementing regulations. The work is being conducted to fill remaining data gaps identified by the City and Ecology to define the nature and extent of groundwater contamination at the Horn Rapids Landfill. The Phase I investigation results detailed in this report are intended to inform Phase II of the remedial investigation work: selection of a downgradient monitoring well location. The collective information of both Phase I and Phase II will form the basis for the Remedial Investigation and Feasibility Study required under the Agreed Order. For the purposes of this report, the following terminology related to the Horn Rapids Landfill has been developed, as further described in Sections 1.2 and 1.3: - City Facility: 275-acre permitted waste facility, including Landfill - Landfill: 46-acre permitted area where municipal solid waste (MSW) has been and continues to be placed within the City Facility - City Property: Contiguous property owned by the City of Richland, including the City Facility (approximately 2,306 total acres) - Expansion: proposed 104-acre expansion of the Horn Rapids Landfill located within the City Facility east of the Landfill ## 1.1 Objectives The push probe investigation work described in this report had the following objectives: - Define the downgradient extent of contaminants in groundwater originating from the Landfill, and refine the groundwater flow direction. - Select the location of an additional downgradient monitoring well based on push probe results to confirm that natural attenuation of VOCs in groundwater is occurring, and to monitor for future potential impacts from the existing Landfill and proposed Expansion. ## 1.2 Background ## 1.2.1 Horn Rapids Landfill Setting The Horn Rapids Landfill is owned and operated by the City of Richland Public Works Department. It is located northwest of and within the city limits of Richland in an area bounded by Twin Bridges Road on the west, Horn Rapids Road on the north, and State Route 240 on the south. The Landfill is located within the southwest quadrant of the City Facility (see Figure 1). The Landfill includes the 46-acre existing landfill, a support facility, and a 9-acre composting facility. Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation City of Richland Public Works Department As shown on Figure 1, the City Property extends to the west, south and east of the City Facility (a total of approximately 2,306 total acres), with the exception of several small privately owned parcels, two located along the southwest corner of the City Facility, and one within the northeast corner of the City Facility. East of the City Facility are circle-irrigated agricultural fields used to grow alfalfa hay, corn, and potatoes. Irrigated fields are also located west of the City Facility across State Highway 240. These fields have been in use since 1987, with irrigation occurring between the months of April and October (Shaw Environmental Inc. 2003). The remaining City Property south and southeast of the Landfill is undeveloped. As shown on the Site Vicinity Map (Figure 2), the City Property immediately west of the City Facility has been developed as an off-road vehicle (ORV) park, which includes a road racing track and a motocross track facility. The Site Plan (Figure 3) shows the City Facility boundary, the Landfill and other City Facility features, and monitoring locations including gas probes, groundwater monitoring wells, and lysimeters. The area within the City Facility east of the currently permitted 46 acres is the proposed Expansion. #### 1.2.2 Landfill Description The Landfill began receiving MSW in 1974. The Landfill historically accepted only municipal wastes and was initially developed by placing waste into a series of north-south oriented trenches in the Phase 1 western portion of the Landfill. The Landfill (refuse) boundary is shown on Figure 3. Phase 1 was closed in 2011, including installation of a landfill gas (LFG) collection system. MSW is currently being accepted in the Phase 2 eastern portion of the Landfill, and closure of Phase 2 is expected to occur in 2020. The proposed 104-acre Expansion is located east of the currently permitted 46 acres. Engineering plans for the proposed Expansion are presented in the Preliminary Conceptual Engineering Report (Parametrix 2017a). ## 1.2.3 Regulatory History and Interim Actions The Landfill was originally permitted under Chapter 173-301 WAC, and currently operates under the Criteria for Municipal Solid Waste Landfills, Chapter 173-351 WAC and the current Solid Waste Permit (Permit) issued by the Benton-Franklin Health District (BFHD). Monitoring wells MW-1 through MW-4 were installed in 1987, and volatile organic compounds (VOCs) were initially detected in the early 1990's. Two additional monitoring wells (MW-5 and MW-6) were installed downgradient from the Landfill in
1998, and concentrations of VOCs above MTCA cleanup levels were detected (Shannon and Wilson, Inc. 1998). An Early Notice letter was completed in March 2000, and the Landfill was placed on Ecology's Known or Suspected Contaminated Site List based on notification by the City that groundwater results were statistically elevated compared to background. The City Facility has been in assessment monitoring since that notification. The primary VOCs of concern in groundwater are chlorinated ethenes and ethanes. In 2004 and 2005, the City performed an independent two-phased remedial investigation and a pilot study/feasibility study (RI/FS, Shaw Environmental, Inc. 2003, 2004, 2005). The RI determined that LFG is the likely source of the VOCs impacting groundwater. A LFG extraction system was designed (Parametrix 2005) based on pilot study results that showed LFG extraction would effectively remove VOCs from the subsurface, and closure including a LFG extraction system is being implemented in two phases (Parametrix 2011, 2012a, 2012b). Between 2005 and 2010, Phase 1 of the Landfill was filled and graded to approved closure grading plans (EMCON 1999; Parametrix 2006, 2008, 2011), and was closed in 2011 (Parametrix 2011, 2012a, 2012b). The Phase 1 closure included a final cover and gas collection system consisting of in-refuse wells, collection manifold and laterals, a condensate manhole, and a flare station. The collection system has operated 24 hours a day since startup. The applied vacuum from the permanent blower/flare facility produces a pressure gradient within the MSW that causes LFG to flow into the collection field rather than migrate. Phase 2 is currently being filled to grade and closure is expected to occur in 2020. Ongoing environmental monitoring is being conducted quarterly in accordance with Chapter 173-351 WAC and the current Permit, including annual testing for additional Appendix III parameters. ## 1.3 Hydrogeologic Setting The local and regional geology and hydrogeology in the vicinity of the Landfill is detailed in reports documenting previous investigations (Hong West 1991; Shannon & Wilson 1998; Shaw Environmental Inc. 2003; Parametrix 2017c) and summarized in the following paragraphs. Groundwater in the uppermost aquifer occurs under water table conditions in the sand, silt and gravel sediments of the middle Ringold Formation. The water table beneath the Landfill occurs at depths of approximately 75 to 105 ft below ground surface (bgs) and elevations of approximately 385 to 388 ft NAVD88, and typically fluctuates less than a foot throughout the year. Based on the geologic logs of the on-site water well and the adjacent ORV-2 well, the aquifer thickness is approximately 80 to 110 ft. The geologic logs for monitoring wells MW-4, MW-8, and MW-9, located closest to the area of investigation, indicate soils within the water bearing zone are expected to be gravel with approximately 10 to 15 percent silt. Regionally, groundwater flow has been documented to be eastward toward the Columbia River (Shaw 2003, Liikala 1994). However, historical groundwater measurements have indicated the flow direction within the City Facility is influenced by groundwater mounding from irrigated crop circles on the City Facility's eastern boundary, resulting in a general flow direction toward the southeast with seasonal variations from east-southeast to south-southeast. The overall groundwater gradient at the City Facility is low, approximately 0.0005 ft/ft over the past few years, and the calculated rate of groundwater flow is less than 20 ft per year. ## 1.4 Conceptual Site Model Summary The Shannon & Wilson RI concluded that LFG was the primary source of the contaminants observed in groundwater. LFG interacts with moisture in the vadose zone and with groundwater in the capillary zone of the water table, where it becomes dissolved in and transported with groundwater flow. The concentrations of VOCs measured in LFG during the Shannon & Wilson RI were high enough to comprise the primary source of VOCs in groundwater. Although it is possible that some leachate may also be produced within the waste, the on-site lysimeters have demonstrated that little to no leachate is being accumulated below the waste, due to the arid conditions and the ability of the waste to store the moisture that is generated. Groundwater with concentrations above GWQSs has moved beyond the City Facility boundary onto adjacent and downgradient City Property, and natural attenuation is expected to occur prior to movement off City Property due to the low groundwater flow rate. There are no current or anticipated risks to human health or the environment based on the data obtained to date. The presumptive remedy is to continue removing LFG and leachate sources through the system already in progress and to enhance removal through the second phase of landfill closure. A more thorough discussion of the conceptual site model will be included in the Remedial Investigation and Feasibility Study Report required under the Agreed Order. #### 1.4.1 Preliminary Chemicals of Concern Based on the measured concentrations at the City Facility boundary, the VOCs listed in Table 1 are present in concentrations greater than GWQSs and are considered to be the preliminary chemicals of concern (COCs) for the Landfill. Table 1. Preliminary Chemicals of Concern, Horn Rapids Landfill | Parameter | Units | GWQS | MCL | Highest 2017
Concentration Observed at
City Facility Boundary
(Parametrix 2018) | Monitoring Well | |------------------------------|-------|------|-----|--|-----------------| | Bromodichloromethane | μg/L | 0.3 | 80 | 0.83 | MW-8 | | Chloroform | μg/L | 7 | 80 | 11 | MW-8 | | 1,1-Dichloroethane (1,1-DCA) | μg/L | 1 | NA | 4.0 | MW-4 | | Tetrachloroethene (PCE) | μg/L | 0.8 | 5 | 12 | MW-9 | | Trichloroethene (TCE) | μg/L | 3 | 5 | 5.8 | MW-9 | | Vinyl Chloride (VC) | μg/L | 0.02 | 2 | 0.053 | MW-9 | Groundwater quality data collected from other monitoring wells within the City Facility, including upgradient wells MW-1 and MW-11, former upgradient well MW-7, and cross gradient well MW-2, indicate that upgradient sources are contributing to area-wide background concentrations of inorganic compounds, including TDS, chloride, nitrate, and cations. # 1.4.2 Distribution of Chemicals and Rationale for Selecting Push Probe Locations The push probe locations proposed in the Work Plan were selected based on the distribution of VOCs measured in City Facility monitoring wells during 2015. Since the groundwater flow direction is generally toward the southeast, but varies seasonally from east-southeast to south-southeast, the impacted area downgradient from the Landfill is expected to extend from south of MW-9 to east-southeast of MW-4. The contaminant distribution indicated that concentrations exceeding GWQSs were expected to be limited to an estimated distance of approximately 500 ft from the City Facility boundary. This area was explored by push probe (PP) locations PP-2 through PP-5 on City Property. Gas probe data have indicated that LFG is present only in close proximity to the Landfill and only in gas probes GP-2, GP-9, and GP-12. Groundwater impacted by LFG in this area would generally flow toward existing wells MW-8 and MW-9. However, due to groundwater impacts observed in MW-1, and lack of deeper screened gas probes in the southwestern portion of the City Facility, the push probe investigation was also planned to evaluate potential LFG impacts to groundwater in the area near the southwestern City Facility boundary at location PP-1 and downgradient of this area on City Property at location PP-4. ## 2. PHASE 1 WORK CONDUCTED – DIRECT PUSH PROBES This section provides a summary of the push probe field investigation and the results of the laboratory analyses. The Phase 1 investigation consisted of the following sequence of activities: - Five push-probe installations were completed until groundwater was encountered to approximate depths of 100 ft. - Groundwater samples were collected from each push probe at total depth using a portable bladder pump. - The groundwater samples were tested for VOCs and natural attenuation parameters. Detailed field notes are presented in Appendix A. Photographs of each probe and groundwater sampling procedures are presented in Appendix B. The final locations of the five push probes are shown on Figure 4. #### 2.1 Push Probe Installation Procedures The push probes were installed by Atkins (formerly EnergySolutions, Inc.) with oversight by a Parametrix hydrogeologist. Construction information and depth to groundwater measurements for the push probes are presented in Table 2. A variance from WAC 173-160-451(d) was obtained from Ecology (provided in Appendix A) because the probes exceeded the maximum allowed depth of 30 ft. Atkins collected groundwater samples using direct push technology (EPA 2005) at five locations downgradient of the Landfill. One location (PP-1) was in the City Facility and four of the locations (PP-2 through PP-5) were on City Property. Atkins employed their hydraulic hammer probe driving unit that is mounted on a backhoe tractor. Atkins' Single String system driving and sampling system is deployed on 4-ft long 2.5-in. OD x 1.75-in. ID push rods, and features a 2.625-in removable tip design. The direct push tooling method for the Horn Rapids Landfill investigation project was as follows. - Drive down to target depth. - Knock out drive tip (drive tip remains in the hole) and pull back a few inches to ensure tip is free. - Run in a standard stainless steel well screen on tubing and place on the bottom of hole. - Pull back direct push tubing approximately 5 ft. - Run sampling pump and collect groundwater sample. - Remove screen and tubing. - Decommission push hole by introducing grout as drive tubing is removed. Groundwater elevations at
each of the proposed locations were estimated in advance based on projections from the calculated potentiometric groundwater surface using measurements from nearby groundwater monitoring wells. The tooling was driven to a targeted depth approximately 10 ft deeper than the anticipated groundwater depth. Table 2. Push Probe Construction and Groundwater Level Information, Horn Rapids Landfill | Push Probe | Northing | Easting | Installation
Date | Ground
Surface
Elevation
(ft NAVD88) | Total Depth
(ft bgs) | Depth of
Screened
Interval
(ft bgs) | Final Depth to
Groundwater
(ft bgs) | Final
Groundwater
Elevation
(ft NAVD88) | |------------|-----------|------------|----------------------|---|-------------------------|--|---|--| | PP-1 | 370136.48 | 1932732.48 | 11/15/17 | 485.83 | 116 | 103-113 | 98.84 | 386.99 | | PP-2 | 369722.92 | 1933633.14 | 11/07/17 | 486.54 | 111 | 100.4-110.4 | 101.68 | 384.86 | | PP-3 | 369779.73 | 1934183.53 | 11/09/17 | 474.80 | 108 | 90.5-100.5 | 90.60 | 384.20 | | PP-4 | 369636.95 | 1933012.80 | 11/13/17 | 481.26 | 105.4 | 95-105 | 95.72 | 385.54 | | PP-5 | 370047.88 | 1934744.04 | 11/16/17 | 453.60 | 89.3 | 79-89 | 67.80 | 385.80 | 2-2 February 2018 | 553-3820-007 A 10-ft temporary standard stainless steel screen was installed into each probe prior to groundwater sample collection. The purpose of the screen was to ensure that the hole remained open and to filter some particulates to reduce turbidity since the formation was expected to contain approximately 10 to 15 percent fine-grained sand and/or silt. The slot size of the screen was 20 slot (0.2 inch) based on the anticipated sediment size in the screened zone. The screen was decontaminated between push probe installations using the procedures described in the Quality Assurance Project Plan (QAPP; Parametrix 2017b). ## 2.2 Phasing and Selection of Push Probe Locations The push probe locations were selected to fill data gaps in the southwest portion of the City Facility (PP-1) and on City Property further downgradient from existing monitoring well locations (PP-2 through PP-5). The objective of the investigation was to define the downgradient extent of contaminants in groundwater originating from the Landfill and to document decreases in measured VOC concentrations with distance from the Landfill to demonstrate that natural attenuation is occurring. The first two push probes were installed at the PP-2 and PP-3 pre-selected locations, hydraulically downgradient from monitoring wells MW-9 and MW-8, respectively. Prior to confirming the third push probe location, laboratory data from PP-2 and PP-3 were reviewed and Ecology was consulted. The PP-2 results showed lower VOC concentrations than those observed in MW-9, consistent with expectations based on the 2015 isoconcentration maps. Specifically, the PP-2 concentration of 1,1-DCA was only slightly above the GWQS, PCE and TCE were not detected, and VC was below the GWQS. The observed concentrations at PP-3 were similar to the results from PP-2 and also consistent with expectations based on the 2015 isoconcentration maps. The PP-1 location within the City Facility had to be adjusted from the original planned location due to the presence of water lines, and it was decided to install the third push probe at the PP-4 location while waiting for utility clearance and consultation with Ecology to confirm the final placement of PP-1 at the fourth location. Following completion of PP-1, it became clear that budgetary and time constraints would limit the investigation to five probes instead of the maximum six probes proposed in the Work Plan since the dense nature of the sediment required greater than anticipated time to install each probe. This was communicated to Ecology, and after reviewing the data for PP-1, the fifth push probe was selected at the PP-5 location in consultation with Ecology. The objective of PP-5 was to confirm VOC concentrations downgradient from MW-4. Since the observed concentrations at previous push probes PP-2, PP-3, and PP-4 showed only low concentrations of VOCs, it was decided that this location for PP-5 would provide more information toward the project objectives than the alternate proposed location that was further downgradient from PP-2 and PP-3. ## 2.3 Groundwater Sampling Procedures Groundwater samples were collected at each probe location using a 0.75-inch diameter portable bladder pump. Stainless steel weights were attached to the bottom of the pump to facilitate introduction to the bottom of the hole. Although full development of the probe was not possible, the portable bladder pump was used to purge some water prior to sampling to reduce the amounts of fines. However, the low pumping rate of the small diameter pump (approximately 20 to 25 ml/min) only allowed a small quantity of water to be purged prior to sampling. The portable bladder pump was decontaminated between push probe locations using the procedures described in the QAPP. Groundwater sampling was conducted using low-flow purging techniques as detailed in SOPs presented in the QAPP. The rate of flow during purging and sampling was approximately 20 to 25 ml/min, lower than typical purge rates of 300 to 500 ml/min described in the QAPP. Field parameters (conductivity, pH, temperature, dissolved oxygen [DO], and oxidation-reduction potential [ORP]) were measured during sampling using a flow through cell. Some of the groundwater samples were observed to have significant turbidity as detailed in the field notes in Appendix A. The observed turbidity was likely related to the pulverized sediment that was removed from the casing at the bottom of each probe prior to introducing the screen. Turbidity present within the samples is not expected to cause significant bias in concentrations of VOCs or dissolved gases (EPA 2005, see Table 3.1). ## 2.4 Groundwater Analyses Groundwater samples collected from the push probe were hand delivered to a local analytical laboratory, Energy Northwest, located in Richland, WA, and tested for VOCs (EPA Method 8260C and 8260C SIM for selected VOCs with low GWQSs) with a 24-hour turnaround so that the results could be used to confirm the location of subsequent push probes. Laboratory procedures and analytical methods are presented in the QAPP. In addition, groundwater samples were tested for the natural attenuation parameters methane, ethane, and ethene (Method RSK 175). Energy Northwest subcontracted these analyses to ALS Environmental. In accordance with the QAPP, duplicate samples collected at selected locations were analyzed as shown on Table 3 to evaluate the quality and reproducibility of the data. Duplicate samples were analyzed by Energy Northwest, and also by TestAmerica, the lab that conducts the routine quarterly groundwater monitoring well sample analyses. The TestAmerica samples were hand delivered to the lab in Tacoma, WA, along with the Fourth Quarter 2017 monitoring well samples that were collected on November 14 and 15, 2017. Specific conductivity, pH, temperature, DO, and ORP were measured in the field. Table 3. Push Probe Groundwater Laboratory Duplicate Analyses, Horn Rapids Landfill | | | VOCs | Natural Attenuati
(methane, eth | | |----------------------------|-------------|-------------|------------------------------------|-------------| | Push Probe Location | Sample Date | TestAmerica | Energy Northwest | TestAmerica | | PP-1 | 11-15-17 | х | х | | | PP-2 | 11-07-17 | | | | | PP-3 | 11-09-17 | x | | х | | PP-4 | 11-13-17 | x | | | | PP-5 | 11-16-17 | | | | ## 3. RESULTS ## 3.1 Groundwater Quality Data Laboratory reports for the push probes samples are presented in Appendix C. The groundwater quality results are summarized in Tables D-1 (VOCs), D-2 (natural attenuation parameters), and D-3 (field data) in Appendix D. Table D-4 presents a summary of the 2017 groundwater monitoring well results including the Fourth Quarter monitoring conducted on November 14 and 15 for comparison with the push probe results (samples collected between November 7 and 16). The laboratory data were reviewed in accordance with data validation procedures outlined in the QAPP, including a review of the laboratory blanks and control standards, and selected sample results were compared with the results for their associated field duplicate. The results of the data review are presented in memoranda in Appendix C. For PP-1, although the concentrations reported by Energy Northwest for vinyl chloride using Method 8260 (less than 0.5 μ g/L) and 8260 SIM (0.35 μ g/L) were internally consistent, the 8260 SIM result was much higher than the Method 8260 result reported by TestAmerica (less than 0.02 μ g/L). Although Energy Northwest's 8260 SIM result of 0.35 μ g/L for PP-1 was used to prepare the isoconcentration map discussed in Section 3.3, this value and associated interpretation are considered an estimate that is potentially biased high. #### 3.1.1 VOCs VOC results are presented in Table D-1. Concentrations of 1,1-DCA, TCE, PCE, and VC were above the GWQS at PP-1, located in the southwestern portion of the City Facility. The concentrations observed at PP-1 were generally in the range of typical concentrations observed at MW-9 in routine and periodic groundwater monitoring performed at the Landfill over the past few years. The only concentration above a GWQS detected in any of the push probes outside the City Facility boundary on City Property was 1,1-DCA in the sample from PP-2 at a concentration of 1.1 μ g/L, slightly above the GWQS of 1.0 μ g/L. The chemical acrylonitrile was also detected in the samples from PP-2, PP-3, and PP-5, with the concentration at PP-5 (0.0705 μ g/L) slightly above the GWQS (0.07 μ g/L). Routine analyses from
the monitoring wells on the City Facility for acrylonitrile have not shown detections, although the reporting limit during routine monitoring is higher (5.0 μ g/L compared to 0.02 μ g/L for the push probe investigation) because the selective ion monitoring (SIM) method is not used. Acetone was detected in all five push probe samples, and the concentrations in PP-2 (46 μ g/L), PP-4 (39 μ g/L), and PP-5 (11 μ g/L) were higher than the range of concentrations measured in Landfill monitoring wells (2.3 to 9.0 μ g/L). The duplicate samples tested at PP-1 (5.0 compared to 4.5 μ g/L) and PP-3 (32 compared to 39 μ g/L) indicated the acetone results were generally reproducible between both laboratories, although the concentration measured at PP-3 (8.8 μ g/L) was not confirmed by its duplicate result of less than 2 μ g/L. Low concentrations of acetone could potentially be attributed to its presence as a trace contaminant associated with products employed during drilling operations. However, acetone is not identified as a component of any of the materials used during the field portion of this investigation. During the push probe installation, pipe lubricant (Jet Lube's Well Guard) was used for the threading on the drill rods, and sealant (RTV Red High Temp Silicon Sealant) was used to secure the knock out tips. Prior to Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation City of Richland Public Works Department deployment, the tooling (pipe, etc) was first cleaned with Simple Green then steam cleaned. The rig was also steam cleaned before deployment. And, although not introduced into the borehole, grease (Redtac grease and Lagermeister 3000 Plus) was used to lubricate the pulley system and the drive hammer. Detergent (ALCONOX) was used to clean the screen. Safety Data Sheets for these materials are included in Appendix A. Acetone in trace concentrations is also sometimes present as a contaminant in preservatives added to sample vials, and acetone is also a contaminant that can be introduced during laboratory sample preparation and analysis. For this project, the vials used were certified to be free of acetone above a quantitation limit of 2 μ g/L (see certification presented in Appendix A). No acetone was detected in any of the trip blanks, method blanks, or matrix spikes/matrix spike duplicates. In conclusion, although it is not possible to identify any specific source that introduced acetone as a contaminant, higher acetone concentrations in push probe samples compared to well samples suggest there could be a possible source related to some aspect of this specific investigation. No GWQS has been established for acetone, and the acetone results are not believed to impact the other results of this study since the COC concentrations are consistent with expectations based on the monitoring well data. #### 3.1.2 Natural Attenuation Parameters Natural attenuation parameter (methane, ethane, and ethene) results are presented in Table D-2. Methane was detected at low concentrations in all the push probes at concentrations ranging from 2.6 to 19 μ g/L (23 μ g/L in PP-3 duplicate). Methane is routinely detected at concentrations between 1,000 and 5,000 μ g/L in monitoring wells along the downgradient edge of the Landfill (MW-5, MW-6, and MW-10) and sporadically at concentrations less than 5 μ g/L in monitoring wells along the City Facility boundary (MW-8 and MW-9). Ethane (0.68 to 7.3 μ g/L) and ethene (1.2 to 5.7 μ g/L) were also detected in the push probe groundwater samples. Ethane and ethene have not been detected during routine groundwater monitoring, although the reporting limits for this push probe investigation were lower (1.0 μ g/L compared to 10 μ g/L during the routine groundwater well monitoring). These detections support the occurrence of natural attenuation that would be expected to result in production of ethene and ethane. #### 3.1.3 Field Data The field data are presented in Table D-3. The specific conductivity data are generally consistent with expectations based on typical results in the monitoring wells. The specific conductivity measured at PP-1 (1,100 μ mhos/cm) was slightly above typical ranges observed in upgradient monitoring well MW-1 and in monitoring wells MW-8 and MW-9 located downgradient of the Landfill along the City Facility boundary. Lower specific conductivity measurements (370 to 551 μ mhos/cm) were observed in push probes PP-2 through PP-5 located within City Property outside the City Facility boundary; these specific conductivity measurements are comparable with monitoring well MW-4, which is further from the Landfill and not impacted by area-wide background influences. DO and ORP measurements in push probe samples were more difficult to interpret compared to the routine monitoring well data. The DO results for the push probe samples ranged from 0.36 to 3.11 mg/L and were lower than or generally consistent with the DO typically observed at MW-9 near the City Facility boundary. ORP results were all negative and lower than typically observed in monitoring wells and did not show any clear pattern. #### 3.2 Groundwater Elevations Potentiometric surface maps calculated for the four quarters of 2017 using data collected at the City Facility monitoring wells are presented in Appendix F. The flow directions are consistent with past results and indicate flow generally toward the southeast with seasonal variations from east-southeast to south-southeast. Groundwater elevations calculated at each push probe using final depth to water measurements (presented on Table 2) are generally consistent with what would be expected based on the elevations measured in nearby monitoring wells. The push probe water level data were not included when preparing the Fourth Quarter potentiometric surface map since they were measured immediately following probe installation and may not reflect complete equilibration at the time of measurement. ### 3.3 Distribution of Contaminants Isoconcentration maps of the maximum concentrations of VOCs detected in 2015 (1,1-DCA, PCE, TCE, cis 1,2-DCE, and VC) were previously presented in the Work Plan. These maps have been updated using data collected during the push probe investigation (November 7 through 16, 2017) and Fourth Quarter 2017 data collected at the groundwater monitoring wells (November 14 and 15, 2017). Data used to prepare the isoconcentration maps are presented in Table D-5, the updated isoconcentration maps are presented in Appendix E. Areas estimated to be impacted by VOCs extend to the southeast of the Landfill in a direction generally consistent with the direction of flow indicated by recent groundwater flow contours. The isoconcentration maps include estimated contours of concentrations equal to GWQSs ("GWQS isocontours"). Areas with concentrations above GWQSs are limited to approximately 500 feet beyond the City Facility boundary. The downgradient limits of concentrations above GWQSs have been defined for PCE, TCE, and VC. The VC isoconcentration map uses the higher of the two measured concentrations for PP-1 and is considered a conservative estimate; the actual area where VC concentrations are above the GWQS may be less extensive than shown. For 1,1-DCA, the isoconcentration contours suggest that concentrations likely decrease to below the GWQS just beyond the location of PP-2. 1,1-DCA was detected at PP-2 at a concentration of 1.1 μ g/L, only slightly above the GWQS of 1.0 μ g/L The detections of VOCs above GWQSs at PP-1 are consistent with its location downgradient from the southwestern corner of the Landfill and near gas probes GP-2, GP-9, and GP-12 where subsurface LFG has routinely been detected. GWQS isocontours have been estimated west of PP-1 using data from well MW-1 and further downgradient PP-4, and suggest that concentrations in the southwesternmost corner of the City Facility are likely below GWQSs. This area is not downgradient of the Landfill and LFG has not routinely been detected in gas probes along the southwestern City Facility boundary (GP-3, GP,4, GP-8, and GP-10). Based on the overall flow direction toward the southeast, the data from the push probes and monitoring wells can generally be considered to fall along one of four predicted general flow paths extending downgradient from the Landfill onto adjacent City Property, as detailed in Table 4. The COC concentrations measured along each of these groundwater flow paths show consistent decreases with distance from the Landfill, demonstrating that natural attenuation is occurring as groundwater flows away from the Landfill. Table 4. November 2017 Concentrations of COCs ($\mu g/L$) with Distance from the Landfill along Groundwater Flow Paths, Horn Rapids Landfill | Flow
Path | Monitoring
Well or Probe | Approximate
Distance
from Landfill
(ft) | 1-1 DCA
(GWQS 1.0) | TCE
(GWQS 3.0) | PCE
(GWQS 0.8) | VC
(GWQS 0.02) | |--------------|-----------------------------|--|-----------------------|-------------------|-------------------|-------------------| | 1 | PP-1* | 450 | 4.8 | 4.9 | 4.1 | 0.35^{1} | | | PP-4 | 950 | <0.5 | <0.5 | <0.5 | <0.005 | | 2 | MW-9* | 500 | 3.9 | 4.8 | 9.6 | <0.02 | | | PP-2 | 950 | 1.1 | <0.5 | <0.5 | 0.005 | | 3 | MW-6* | 50 | 4.5 | 13 | 24 | 3.3 | | | MW-8* | 900 | <0.2 | <0.2 | <0.5 | <0.02 | | | PP-3 | 1250 | 0.74 | <0.5 | <0.5 | 0.009 | | 4 | MW-10* | 50 | 9.4 | 3.1 | 5.8 | 1.0 | | | MW-5* | 50 | 7.7 | 5.1 | 11 | 4.5 | | | MW-4* | 1250 | 4.0 | <0.2 | <0.5 | <0.02 | | | PP-5 | 1600 | <0.5 | <0.5 | <0.5 | <0.02 | ^{*} Within City Facility Shading indicates concentration exceeds GWQS $^{^{1}\}textsc{Estimated}$ concentration; result for duplicate samples was less than 0.02 $\mu\textsc{g}/\textsc{L}$ ## 4. CONCLUSIONS AND RECOMMENDATIONS This section summarizes the conclusions of
the Phase 1 investigation and presents recommendations for the Phase 2 investigation. #### 4.1 Phase 1 Conclusions As shown on isoconcentration maps presented in Appendix E, the areal extent of groundwater downgradient from the Landfill where COC concentrations exceed GWQSs is limited to a distance of approximately 500 ft from the City Facility boundary. Concentrations below GWQSs have been delineated for PCE, TCE, and VC. For 1,1-DCA the area exceeding the GWQS is expected to be limited to just beyond the location of PP-2, but not beyond the other areas explored in this investigation. The presence of low levels of methane, ethane, and ethene in the push probe groundwater samples indicates that natural attenuation is likely occurring, and indicates further that conditions in groundwater are consistent and favorable for biodegradation of chlorinated hydrocarbons. Approximate groundwater elevations measured at the push probes are consistent with the expected flow direction as measured in the City Facility monitoring wells. The areas impacted by VOCs extend to the southeast of the Landfill in a direction generally consistent with the direction of flow indicated by recent groundwater flow contours, and the measured concentrations show attenuation with distance from the Landfill along four general groundwater flow paths as shown on Table 4. ## 4.2 Phase 2 Recommendations for Groundwater Monitoring Well The conclusions of the push probe investigation support installing one downgradient monitoring well on City Property southeast of the Horn Rapids Landfill at the approximate location shown on Figure 4. The proposed location of the monitoring well was selected with a data quality objective to confirm the absence of contamination downgradient from the Landfill, at a distance from the downgradient edge of City Property that is sufficient to allow additional actions to be taken in the event that contaminants are identified. Any contaminants identified at the proposed location (greater than 1,000 ft from the City Property boundary) would not move beyond the City Property for over 50 years at the calculated flow rate of approximately 20 ft per year. The location is downgradient from the approximate center of the contaminant plume and the area outside the City Facility that has been defined by the push probe investigation to have VOC concentrations above GWQSs as shown on isoconcentration maps (Appendix E). It is downgradient from push probe PP-2 where 1,1-DCA was detected at a concentration slightly above the GWQS. The new well will be used as a sentinel well to identify potential contamination releases from the existing Landfill. It is also downgradient from the Expansion Area and can be used as an uncontaminated well for detection monitoring. The City will confirm the location with Ecology prior to installation. The following activities will be conducted: - One groundwater monitoring well will be installed into uppermost groundwater, to a total depth of approximately 100 ft using the air rotary method. - The groundwater monitoring well will be 2-in diameter Schedule 80 PVC, with a 15-ft screened interval. The top of the screen will be set at a depth approximately 5 ft above the water table encountered during drilling. Construction of the monitoring well will follow the specification previously developed for well MW-11 (see Appendix G). - Groundwater samples will be collected and tested for WAC 173-351 Appendix I and II parameters using existing procedures described in the QAPP. ## **5.** REFERENCES - EMCON. 1999. Closure and Post-Closure Plan, Horn Rapids Landfill, Richland, Washington. Prepared for City of Richland. March 26, 1999. - EPA. 2005. Groundwater Sampling and Monitoring with Direct Push Technologies. OSWER No. 9200.1-51 EPA 540/R-04/005 August. - Hong West & Associates. 1991. Geotechnical Report, Richland Landfill. Prepared for R.W. Beck and Associates. February 1991. - Liikala, T. J., 1994. Hydrogeology along the Southern Boundary of the Hanford Site Between the Yakima and Columbia Rivers, Washington. Prepared for the U.S. Department of Energy. September 1994. - Parametrix, Inc. 2005. Horn Rapids Landfill, Landfill Gas Control System (LFGCS) Preliminary Design Technical Memorandum. Prepared for City of Richland Public Works Department. October 2005. - Parametrix, Inc. 2006. Horn Rapids Landfill Closure and Post-Closure Plan Addendum. Prepared for City of Richland Public Works. October 17, 2006. - Parametrix, Inc. 2008. Revised Landfill Closure Plan, Horn Rapids Landfill. Prepared for City of Richland Public Works Department. December 2008. - Parametrix, Inc. 2011. Horn Rapids Landfill Contract Documents and Specifications, Phase 1 Closure Project Contract SB 11-01PW. Prepared for City of Richland Public Works Department. March 2011. - Parametrix, Inc. 2012a. Horn Rapids Landfill Phase 1 Closure Construction Quality Assurance Report. Prepared for City of Richland Public Works Department. March 2012. - Parametrix, Inc. 2012b. Horn Rapids Landfill, Landfill Gas Collection System Operation and Maintenance Manual. Prepared for City of Richland Public Works Department. May 2012. - Parametrix, Inc. 2017a. Horn Rapids Landfill Expansion Preliminary Conceptual Engineering Report. Prepared for City of Richland Public Works Department. January 2017. - Parametrix, Inc. 2017b. Horn Rapids Landfill Expansion Quality Assurance Project Plan. Report prepared for City of Richland Public Works Department. January 2017. - Parametrix, Inc. 2017c. Horn Rapids Landfill Expansion Hydrogeologic Report. Report prepared for City of Richland Public Works Department. January 2017. - Parametrix, Inc. 2017d. Horn Rapids Landfill Remedial Investigation Work Plan. Prepared for City of Richland. April 2017. - Parametrix, Inc. 2018. Horn Rapids Landfill Environmental Monitoring Report, Calendar Year 2017. Prepared for City of Richland. January 2018. Horn Rapids Landfill Remedial Investigation Phase I Push Probe Investigation City of Richland Public Works Department - Shannon & Wilson. 1998. Results of Hydrogeologic Services for the Richland Landfill, Richland, Washington. Prepared for Shannon & Wilson, Inc. June 1998. - Shaw Environmental, Inc. 2003. Phase I Remedial Investigation Summary Report. Horn Rapids Landfill, Richland, Washington. Prepared for City of Richland Department of Public Works. June 16, 2003. - Shaw Environmental, Inc. 2004. Phase 2 Remedial Investigation Summary Report. Horn Rapids Landfill, Richland, Washington. Prepared for City of Richland Department of Public Works. April 2, 2004. - Shaw EMCON/OWT, Inc. 2005. Results of Pilot-Scale Landfill Gas Extraction Test, Horn Rapids Landfill, Richland, Washington. Prepared for Mr. Steve McNutt, Horn Rapids Landfill, May 25, 2005. Figures Facility Boundary Approximate Groundwater Flow Direction City Owned Property FIGURE 1 Horn Rapids Landfill Site Location Map Image Source: NAIP (2015 Imagery) Miles 0.5 Figure 2 Horn Rapids Landfill Vicinity Plan $\langle \langle \rangle \rangle$ N 12 Figure 3 Horn Rapids Landfill Site Plan N 500 SCALE IN FEET 500 SCALE IN FEET #### Legend: **Push Probe Locations** **Groundwater Flow Direction** Figure 4 Push Probe Locations and Proposed Monitoring Well Horn Rapids Landfill Appendix A Field Data #### **Horn Rapids Investigation Field Summary** #### PP-1 Drilling at location PP-1 began on 11/13/2017 and was completed on 11/15/2017. PP-1 was drilled to a maximum depth of 116 feet below ground surface (bgs). Approximately two feet of pulverized material was cleared out of inside of casing. Initial depth to water (dtw) was 102.75 feet bgs. After the screen was installed from 103 to 113 feet bgs and the outer casing was pulled up to 103 feet bgs, the dtw decreased to 98.84 feet prior to sampling. PP-1 was purged at a rate between 20 and 25 ml/min from 8:18 am to 9:10 am on 11/15/17. Initial turbidity of purge water was significant; final turbidity at time of sampling was less than initial observation but still considerable. The groundwater sample was collected from PP-1 at 9:15 am. Duplicate sample 111517-DUP was also collected at PP-1. #### PP-2 Drilling at location PP-2 began on 11/5/2017 and was completed on 11/7/2017. Drilling was extremely hard to approximately 60 feet bgs. PP-2 was drilled to a maximum depth of 111 feet bgs. Approximately two feet of pulverized material was cleared out of inside of casing. Initial dtw was 101.68 feet bgs. The screen was installed from approximately 100.4 feet to 110.4 feet bgs with the outer casing pulled up to 100 feet bgs. PP-2 was purged at a rate of approximately 30 ml/min from 14:40 pm to 15:26 pm on 11/7/17. Turbidity of purge water waslow. The groundwater sample was collected from PP-2 at 15:29 pm. #### PP-3 Drilling at location PP-3 began on 11/8/2017 and was completed on 11/9/2017. PP-3 was drilled to a maximum depth of 108 feet bgs. Approximately four feet of pulverized material was cleared out of inside of casing. Initial dtw was 90.6 feet bgs. The screen was installed from approximately 90.5 feet to 100.5 feet bgs with the outer casing pulled up to 90 feet bgs. PP-3 was purged at a rate between 20 and 25 ml/min from 10:45 am to 11:51 am on 11/9/17. Turbidity of purge water was very significant. The groundwater sample was collected from PP-3 at 11:55 am. Duplicate sample 110917-DUP was also collected at PP-3. #### PP-4 Drilling at location PP-4 began on 11/10/2017 and was completed on 11/13/2017. PP-4 was drilled to a maximum depth of 105.4 feet bgs. Approximately one to two feet of pulverized material was cleared out of inside of casing. Initial dtw was 99.32 feet bgs. The screen was installed from approximately 95 feet to 105 feet bgs with the outer casing pulled up to 95 feet bgs. DTW prior to the start of purging was 95.72 feet bgs. PP-4 was purged at a rate between 20 and 25 ml/min from 9:06 am to 10:12 am on 11/13/17. Turbidity of purge water initially considerable but cleared up considerably
for sampling. The groundwater sample was collected from PP-4 at 10:15 am. Duplicate sample 111317-DUP was also collected at PP-4. #### PP-5 Drilling at location PP-5 began on 11/15/2017 and was completed on 11/16/2017. Drilling at this location was easier than all prior locations. PP-5 was drilled to a maximum depth of 89.3 feet below ground surface (bgs). Approximately one foot of pulverized material was cleared out of inside of casing. Initial depth to water (dtw) was 76.31 feet bgs. After the screen was installed from 79 to 89 feet bgs and the outer casing was pulled up to 79 feet bgs, the dtw decreased to 67.80 feet prior to sampling. PP-5 was purged at a rate between 20 and 25 ml/min from 8:56 am to 9:43 am on 11/16/17. Initial turbidity of purge water was significant; final turbidity at time of sampling was less than initial observation but still considerable. The groundwater sample was collected from PP-5 at 9:55 am. Duplicate sample 111617-DUP was also collected at PP-5. **Atkins** 2345 Stevens Drive, Suite 240 Richland, WA 99354 www.atkinsglobal.com/energy December 13, 2017 LT- 005218R Ms. Lisa Gilbert Senior Hydrologist Parametrix 719 2nd Avenue, Suite 200 Seattle WA 98104 Subject: Transmittal of Project Documents Dear Ms. Gilbert, It was a pleasure working with you and your team in providing the direct push services for the investigation at the City of Richland Horn Rapids Landfill. I hope the ground water data acquired meets the goals and expectations of the project. I will be submitting an invoice this week. I have been waiting for some vendor invoices to clear our system. I am invoicing for some expendable items we took out of our inventory. These have been priced based on current vendor pricing and I have provided the PO for the replacement of these items as a backup for the charges. If this is not acceptable, I will submit a revised invoice once we have received the items. These were long lead items that I chose to use out of our inventory as I was not certain on quantity we would expend. Let me know if you have any questions on the invoice after you have had time to review. I am providing you with the following project documentation we generated in support of the project: - Washington Department of Ecology (WDOE) Notice of Intent to Construct an Environmental Investigation Well - WDOE Notice of Intent to Decommission a Well - WDOE Variance Request - WDOE Letter granting the Variance - WDOE Well Reports - Atkins Daily Field Job Tickets - Atkins Daily Work Records Should you require other documentation not included, please let me know. **Atkins** 2345 Stevens Drive, Suite 240 Richland, WA 99354 www.atkinsglobal.com/energy We look forward to the possibility of working with you in the future. If you have any questions, please contact my office 509-420-5571, my cell 509-942-4244, or at Marty.Gardner@atkinsglobal.com. Sincerely, Martin Gardner Project Director Atkins Energy Americas Division MGG/jil #### Attachments: - 1) NOI to Construct - 2) NOI To Decommission - 3) Variance Request - 4) Variance Approval from Ecology - 5) Well Reports PP1-PP5 - 6) Atkins Daily Field Job Tickets - 7) Atkins Daily Work Records cc: Eric Straalsund Paul Cavanah **Erin Peters** Richland Document Control #### **ATTACHMENT 1** ## Notice of Intent to Construct an Environmental Investigation Well Notification Number EE06902 This form and required fees **MUST BE RECEIVED** by the Department of Ecology **72 HOURS BEFORE** you construct a well. Submit one completed form for each job site and required fee (check or money order only) to: Department of Ecology Cashiering Unit, P.O. Box 47611, Olympia, WA 98504-7611 | Mailing Address 505 Swift Blvd 2. Agent (if different from a Parametrix Mailing Address 3. Well Location Tax Parcel Number, Tounty Name Benton - 3 Well Site Street Address Tax parcel number Latitude Degrees Longitude Degrees | 719 2nd
Township, I
31 | 02 Twin Brid | City | and ¼ ¼ a | Phone Note: The Requirement of the Requirement of the Requirement of the Richland Richl | ed. La | State WA | 06) 39 | Zip Code 94-3700 Zip Code tude (if av | | |---|-------------------------------------|--|---------------------|-------------------------|--|------------------|------------------------|--------|---------------------------------------|------------| | Mailing Address 3. Well Location Tax Parcel Number, Tounty Name Benton - 3 Well Site Street Address Tax parcel number Latitude Degrees | 719 2nd Township, I 31 | Range, Section 1997
1997 1 | tion, ¼, | and ¼ ¼ a | ettle
re Requir | ed. La | State WA | ongi | Zip Code
tude (if av | ailable | | 3. Well Location Tax Parcel Number, Tounty Name Benton - 3 Well Site Street Address Tax parcel number Latitude Degrees | Township, I | Range, Section 1997 1 | tion, ¼, | and ¼ ¼ a | re Requir | | titude and I | ongi | tude (if av | ailable | | Tax Parcel Number, Tounty Name Benton - 3 Well Site Street Address Tax parcel number Latitude Degrees | 31
Township | 02 Twin Brid | ges Rd. | City | | | State | | | ailable | | County Name Benton - 3 Well Site Street Address Tax parcel number Latitude Degrees | 31
Township | 02 Twin Brid | ges Rd. | City | | | State | | | | | Well Site Street Address Tax parcel number Latitude Degrees | Township | Range | F-12 18 1 | 1774 | Richland | d | State | Δ | Zip Cod | | | Tax parcel number Latitude Degrees | Township | Range | F-12 18 1 | 1774 | Richland | d | State | Δ | Zip Cod | | | Latitude Degrees | | | Section | 14.7 | | Y | VV | , , | 120 | e
99354 | | | | | 20 | 1/4 (within 1 | 60 acres) | 1/4 -1/4
N | (within 40 ac | cres) | | | | Longitude Degrees | | Latitude Ti | me
mir | 1 | sec | Horizoi | ntal Collect | ion N | Method | | | | | Longitude ' | Time
mir | 1 | sec | | | | | | | Estimated Start Date Professional's License N | Number | 11/6/2017 | | Project Na | ame | | | | | | | 6. Well Drilling Company | Name _{EN} | IERGY SOLU | ITIONS II | NC | | Pho | ne Number | (509 | 9) 420-557 | 1 | | 7. Well Driller Name MAF | RTIN GARDI | NER | | | | Drille | er License I | | | _ | | Send the entire form. Please copy the notific safe place. Use this ref | eation nun
ference nu | nber (locat
umber whe | ted in ti
en com | he upper a
municatin | and lowe | er righ
he De | nt corners
partment |) and | d keep ii
cology. | n a | | Total Number of wells to be co | | 6 | | This n | otification | number | must be pro | vide | d to your dr | iller: | | Site Fee (1-4 wells) \$ 40.0 | 00 | | | | | | | | EE06902 | | | Total Number of wells exceedi | ling 4 = | 2 x \$ 10 e | ach = \$ | 20 | | | | | | | | Total Due and A | Amount En | iclosed \$6 | 50.00 | | | | | | | | #### **ATTACHMENT 2** ### Notice of Intent to Decommission a Well Notification Number This form and required fees **MUST BE RECEIVED** by the Department of Ecology **72 HOURS BEFORE** you construct a well. AE45893 Submit one completed form for each job site and required fee (check or money order only) to: Department of Ecology Cashiering Unit, P.O. Box 47611, Olympia, WA 98504-7611 | Property Owner City (| Of Richland | | | | Phone N | umber | (509) 942-7 | -00 | |--|-----------------------|---------------------------------|-----------------------|------------------------------|----------------------|-----------|-----------------|-----------------------| | | or Michiganic | | | | | | (509) 942-75 | 500 | | Mailing Address
505 Swift Blvd | | | City | Richland | | 5 | State
WA | Zip Code
99352 | | Agent (if different from a | bove) | Parametrix | | | Phone N | | (206) 394- | 3700 | | Mailing Address | 719 2nd | d Ave Ste 200 | City S | eattle | | 8 | State WA | Zip Code
98104 | | Well Location | | | | | | | | | | Tax Parcel Number, To | ownship, | Range, Sect | ion,¼, a | nd 1/4 1/4 are | Require | d. Latitu | ude and lor | ngitude (if availabl | | County Name Benton | | | | | | | | | | Vell Site Street Address | 3 | 102 Twin Brid | | City
Ric | chland | | State
WA | Zip Code
99354 | | ax Parcel Number | Township | Range | Section | 1/4 (within 1 | 60 acres) | 1/4 -1 | /4 (within 40 a | ocres) | | | 10N | 28E | 20 | NW | | | NE | 10100) | | atitude Degrees | 1014 | | | 1444 | | | 100 | | | attitude Degrees | | Latitude Ti | me
min | | sec F | lorizont | tal Collection | on Method | | ongitude Degrees | | Longitude | Time | | | | | | | | | 2 302 | min | | sec | | | | | Notice of Intent Number being decomissioned | of well | EE06902 | Un | nique Well Ta
ing decomis | ag Numb
sioned (i | er of w | ell
able) | | | 5. Well Type to Decommiss | | ental Protection | on Well - N | lo Fee | | | How Ma | ny? 6 | | 6. Estimated Decommissio | n Start Da | te
11/6/201 | 7 | Project Nan | ne | | | | | 7. Professional's License N | lumber | | | | | | | | | 8. Well Drilling Company | Name E | NERGY SOLU | JTIONS IN | IC . | | Phon | e Number | (509) 420-5571 | | 9. Well Driller Name MAF | RTIN GARD | NER | | | | Drille | r License N | lumber
1584 | | 0. Send the entire form. | | | | | | | | - 10 | | Please copy the notifica this reference number w | tion numb
hen comn | er (located ir
nunicating wi | the uppe
th the De | er and lower
epartment of | right cor
Ecology | ners) a | nd keep in | a safe place. Use | | | | 50.00 | | This | .ve .v. | numbor | and the Cons | Section of Tours | | Water Well : | | 50.00 | | I nis n | otification | number | must be pre | ovided to your drille | | Water Well: Soil Sampling, Dewatering Environmental investigation All other wells: | ,
n wells: N | o Fee
20.00 each | | Inish | otification | AE458 | | ovided to your drille | ### <u>Water Resources Program</u> Variance Request- Minimum Standards for Well Construction WAC173-160-106(1) allows you to request a variance from the Department of Ecology when strict compliance with state well construction standards is impractical. The variance request must propose comparable alternative specifications that will provide equal or greater human health and resource protection than the minimum standards. You must apply for a variance in writing and receive approval before constructing or decommissioning the well. (All fields must be completed.) Requested by: Martin Gardner Mailing Address: 2345 Stevens Dr., Ste 240 City Richland State WA Zip 99354 Daytime Phone: 509-942-4244 Date: October 26, 2107 Property Owner (if different): City of Richland Site Location: NW 1/4 NE 1/4 Section 20 Township 10N Range 28E E or WWM Tax Parcel Number Well Address: 3102 Twin Bridges Rd, Richland, WA 99354 Well Driller/Company (if known): Atkins Energy, Lyle Amos #1224, Martin Gardner #1584 Check one: Water Well Resource Protection Well Dewatering Well What construction standard cannot be met? WAC 173-160-451 Reason why standard cannot be met. Include site map and distances from all known potential sources of contamination if setback variance is being requested. THE DIRECT PUSH ENVIRONMENTAL INVESTIGATION WELLS WILL BE DEIVEN TO A TOTAL DEATH OF 110 to 125 FT. BGS. EXCREDING THE 30 FT. DEPTH LIMIT REGULARING A VARIANCE. SUSMITTED NO! # EE06902 NOTE - RECEIVED VERBAL CONCURRENCE FROM AURRY RICHARDSON 10-26-2017. Alternative construction method that will provide equal or greater protections than those provided by the minimum standard. \mathcal{N}/A (Attach additional pages if necessary.) Complete and return with your site map to the appropriate regional office: Northwest Regional Office Southwest Regional Office Eastern Regional Office Central Regional Office ATTN: Noel Philip ATTN: John Pearch ATTN: Mark Ader ATTN: Avery Richardson 3190 160th Avenue SE PO Box 47775 N 4601 Monroe 15 W Yakima Ave #200 Bellevue, WA 98008 Olympia, WA 98504 Spokane, WA 99205 Yakima, WA 98902 425-649-7044 360-407-0297 509-329-3544 509-575-2639 Fax: 425-649-7098 Fax: 360-407-0284 Fax: 509-329-3529 Fax: 509-454-7830 nphi461@ecy.wa.gov jope461(aecy.wa.gov made461(a)ecy.wa.gov aric461(a.ecv.wa.gov #### STATE OF WASHINGTON DEPARTMENT OF ECOLOGY 1250 W Alder St . Union Gap, WA 98903-0009 . (509) 575-2490 December 11, 2017 City of Richland 505 Swift Blvd. Richland, WA 99352 RE: Direct-Push Environmental Investigation Boring Variance (WAC 173-160-451 (d)) Dear Mr. Jay Marlow: This letter is in response to your request for a variance from the well construction standards contained in Washington Administrative Code (WAC) 173-160, Minimum Standards for the Construction and Maintenance of Wells. This variance request is for the construction of five direct push environmental investigation borings that exceed the 30 foot limitation outlined in WAC 173-160-451(d). The variance is necessary due to the depth of material at
the site overlying the zone targeted for sampling. Direct push technology has advanced rapidly in the last few years, and the 2006 WAC language does not address the current state of technology. Therefore, the Department of Ecology is comfortable issuing this variance. A variance is hereby granted from WAC 173-160-451(d), which states, in part, "Direct push wells shall not be greater than thirty feet in depth". This variance is subject to the provisions below: - 1. This variance is for five environmental investigation borings located in the NW1/4 of the NE¼ of Section 20, Township 10 N., Range 28 E.W.M. The associated Benton County site address is 3102 Twin Bridges Rd., Richland, WA. - 2. The work shall be done by a licensed driller as set forth by WAC 173-162-040. If you have any questions concerning this variance please contact Avery Richardson at 509-575-2639. Avery A. Richardson, LHG Well Construction Coordinator Trevor Hutton, Section Manager Water Resources Program Central Regional Office TH:AR:SS/171219 Enclosure: Your Right to Be Heard By certified mail: 91 7199 9991 7037 1622 4349 Scott Malone, Dept. of Ecology, Water Resources Program HO (ecc) cc: Trevor Hutton, Dept. of Ecology, Water Resources Program CRO (ecc) City of Richland December 11, 2017 Page 2 of 2 #### YOUR RIGHT TO APPEAL You have a right to appeal this Decision to the Pollution Control Hearings Board (PCHB) within 30 days of the date of receipt of this Decision. The appeal process is governed by chapter 43.21B RCW and chapter 371-08 WAC. "Date of receipt" is defined in RCW 43.21B.001(2). To appeal you must do all of the following within 30 days of the date of receipt of this Decision: - File your appeal and a copy of this Decision with the PCHB (see addresses below). Filing means actual receipt by the PCHB during regular business hours. - Serve a copy of your appeal and this Decision on Ecology in paper form by mail or in person. (See addresses below.) E-mail is not accepted. You must also comply with other applicable requirements in chapter 43.21B RCW and chapter 371-08 WAC. | ADDRESS AND LOCATION INFORM | MATION | |---|--| | Street Addresses | Mailing Addresses | | Department of Ecology Attn: Appeals Processing Desk 300 Desmond Drive SE Lacey WA 98503 | Department of Ecology Attn: Appeals Processing Desk PO Box 47608 Olympia WA 98504-7608 | | Pollution Control Hearings Board
1111 Israel Road SW, Suite 301
Tumwater WA 98501 | Pollution Control Hearings Board
PO Box 40903
Olympia WA 98504-0903 | For additional information visit the Environmental Hearings Office Website: http://www.eho.wa.gov To find laws and agency rules visit the Washington State Legislature Website: http://www.leg.wa.gov/CodeReviser ### Water Resources Program Well Construction and Licensing Section:20 Step 7 of 8 - View Summary of Wells for Group 4 of 5 #### **Well Report Summary** 1. Review your information. 2. To make changes use the "Back to Start of Form" button at the bottom of the page. 3. To submit and view your completed well report click the "Submit Well Report" button at the bottom of the page. #### General Information Property Owner Name City Of Richland Property Owner Mailing Address 505 Swift Blvd, Richland, WA 99352 Type of Well Environmental Investigation - Water Sampling Notice of Intent Number EE06902 Decommissioning Notice of Intent Number AE45893 Number of Wells in Group 4 1 Well Tag Number N/A Water Right Permit Number None Variance Yes Well Use NA Type of Work New Method DirectPush Drilling Start Date 11/13/2017 Completion Date 11/15/2017 #### **Location Information** Well Street Address 3102 Twin Bridges Rd. City/State/Zip Richland, WA 99354 County Benton Tax Parcel Number TRS Q / Q Twn 10N R 28E Sec 20 in the NE ¼ of the NW ¼ Lat/Long 46.20328 / 119.2033 Horizontal Collection Method / Datum Unknown / World Geodetic System of 1984 Vertical Collection Method / Datum GPS carrier phase (survey grade unit) / World Geodetic System of 1984 Well Head Elevation 485 ft #### **Work Details** Borehole Diameter before decommissioning 2.88 in Depth of well before decommissioning 116 ft 0 in Drilled To Depth 116 ft #### Individual Well Details - Well Group 4 of 5 Well Your Identifier Water Level Decommission Sealing Materials 1 PP-1 Static Level at: 102 ft 9 in Bentonite #### Lithology No lithology information collected #### **Your Comments** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### **Driller Information** Driller Name License Number MARTIN GARDNER 1584 #### **Drilling Company** ATKINS ENERGY FEDERAL EPC INC. By clicking the "Submit" button below you are creating a digital signature verifying that you are MARTIN GARDNER. Back to Start of Form Submit Well Report Ecology Home | Help | Report a Problem | Wells Construction & Licensing | Data Disclaimer | Privacy Policy Copyright © Washington State Department of Ecology 2017. All Rights Reserved. This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Construction Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 4: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/13/2017 Drilling Completion Date: 11/15/2017 Received by Ecology: 12/5/2017 3:32 PM Dimensions: Borehole Diameter; 2.88 in Depth of completed well: 116 ft 0 in #### **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia- Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 4 of 5) Well Driller's Identifier Water Level 1 PP-1 Static Level at: 102 ft 9 in #### Additional Well Construction Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### Well Group 4 of 5 Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 #### Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 485 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20328 Longitude (DD): 119.2033 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No .: #### Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Decommissioning Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 4: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/13/2017 Drilling Completion Date: 11/15/2017 Received by Ecology: 12/5/2017 3:32 PM **Dimensions:** Diameter of borehole before decommissioning: 2.88 in Well depth before decommissiong: 116 ft 0 in **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia- Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 4 of 5) Well Driller's Identifier Decom Sealing Materials 1 PP-1 Bentonite Additional Well Decommissioning Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 4 of 5 for Decommissioning Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head
Elevation: 485 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20328 Longitude (DD): 119.2033 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No.: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Address: Drilling Company: ROM EMICK City, State, Zip: #### Water Resources Program Well Construction and Licensing Section:20 Step 7 of 8 - View Summary of Wells for Group 1 of 5 #### **Well Report Summary** 1. Review your information. 2. To make changes use the "Back to Start of Form" button at the bottom of the page. To submit and view your completed well report click the "Submit Well Report" button at the bottom of the page. #### **General Information** Property Owner Name City Of Richland Property Owner Mailing Address 505 Swift Blvd, Richland, WA 99352 Type of Well Environmental Investigation - Water Sampling Notice of Intent Number Decommissioning Notice of Intent Number EE06902 AE45893 Number of Wells in Group 1 1 N/A Well Tag Number Water Right Permit Number None Yes Variance Well Use Type of Work NA New Method Drilling Start Date Completion Date DirectPush 11/6/2017 11/8/2017 #### **Location Information** Well Street Address City/State/Zip 3102 Twin Bridges Rd. Richland, WA 99354 County Benton Tax Parcel Number TRS Q / Q Twn 10N R 28E Sec 20 in the NE 1/4 of the NW 1/4 46.20287 / 119.202 Horizontal Collection Method / Datum Unknown / World Geodetic System of 1984 Vertical Collection Method / Datum GPS carrier phase (survey grade unit) / World Geodetic System of 1984 Well Head Elevation 486 ft #### Work Details Borehole Diameter before decommissioning Depth of well before decommissioning Drilled To Depth 2.88 in 110 ft 4 in 110 ft #### Individual Well Details - Well Group 1 of 5 Well Your Identifier **Water Level** **Decommission Sealing Materials** PP-2 Static Level at: 101 ft 8.4 in Bentonite #### Lithology No lithology information collected #### **Your Comments** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### **Driller Information** **Driller Name** License Number MARTIN GARDNER 1584 **Drilling Company** ATKINS ENERGY FEDERAL EPC INC. By clicking the "Submit" button below you are creating a digital signature verifying that you are MARTIN GARDNER. Back to Start of Form Submit Well Report Ecology Home | Help | Report a Problem | Wells Construction & Licensing | Data Disclaimer | Privacy Policy Copyright @ Washington State Department of Ecology 2017. All Rights Reserved. This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Construction Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 1: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/6/2017 Drilling Completion Date: 11/8/2017 Received by Ecology: 12/5/2017 2:38 PM **Dimensions:** Borehole Diameter: 2.88 in Depth of completed well: 110 ft 4 in #### **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia- Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 1 of 5) Well Driller's Identifier Water Level 1 PP-2 Static Level at: 101 ft 8.4 in #### Additional Well Construction Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 1 of 5 Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 486 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20287 Longitude (DD): 119.202 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No .: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Traince Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK # DEPARTMENT OF ECOLOGY #### RESOURCE PROTECTION WELL REPORT This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Decommissioning Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 1: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/6/2017 Drilling Completion Date: 11/8/2017 Received by Ecology: 12/5/2017 2:38 PM Dimensions: Diameter of borehole before decommissioning: 2.88 in Well depth before decommissiong: 110 ft 4 in **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia- Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 1 of 5) Well Driller's Identifier Decom Sealing Materials I PP-2 Bentonite Additional Well Decommissioning Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 1 of 5 for Decommissioning Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 486 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20287 Longitude (DD): 119.202 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No .: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK #### Water Resources Program Well Construction and Licensing Section:20 Step 7 of 8 - View Summary of Wells for Group 2 of 5 #### Well Report Summary 1. Review your information. 2. To make changes use the "Back to Start of Form" button at the bottom of the page. 3. To submit and view your completed well report click the "Submit Well Report" button at the bottom of the page. #### General Information Property Owner Name City Of Richland Property Owner Mailing Address 505 Swift Blvd, Richland, WA 99352 Type of Well Environmental Investigation - Water Sampling Notice of Intent Number Decommissioning Notice of Intent Number FF06902 AE45893 Number of Wells in Group 2 1 Well Tag Number N/A Water Right Permit Number Variance None Well Use Yes Type of Work NA New Method DirectPush **Drilling Start Date** Completion Date 11/8/2017 11/9/2017 #### **Location Information** Well Street Address 3102 Twin Bridges Rd. Richland, WA 99354 City/State/Zip County Benton Tax Parcel Number TRS Q/Q Twn 10N R 28E Sec 20 in the NE 1/4 of the NW 1/4 Lat/Long 46.20291 / 119.2012 Horizontal Collection Method / Datum Unknown / World Geodetic System of 1984 Vertical Collection Method / Datum GPS
carrier phase (survey grade unit) / World Geodetic System of 1984 Well Head Elevation 474 ft #### Work Details Borehole Diameter before decommissioning 2.88 in Depth of well before decommissioning 108 ft 0 in Drilled To Depth 108 ft #### Individual Well Details - Well Group 2 of 5 Well **Your Identifier** Water Level **Decommission Sealing Materials** PP-3 Static Level at: 90 ft 7.2 in Bentonite #### Lithology No lithology information collected #### **Your Comments** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### Driller Information **Driller Name** License Number MARTIN GARDNER 1584 **Drilling Company** ATKINS ENERGY FEDERAL EPC INC. By clicking the "Submit" button below you are creating a digital signature verifying that you are MARTIN GARDNER. Back to Start of Form Submit Well Report Ecology Home | Help | Report a Problem | Wells Construction & Licensing | Data Disclaimer | Privacy Policy Copyright @ Washington State Department of Ecology 2017, All Rights Reserved This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Construction Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 2: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/8/2017 **Drilling Completion Date: 11/9/2017** Received by Ecology: 12/5/2017 3:04 PM **Dimensions:** Borehole Diameter: 2.88 in Depth of completed well: 108 ft 0 in **Construction Details** Casings: From Depth To Depth Stickup Type Diameter N/A Perforations: Total Type Size From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia-Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material To From Depth Depth N/A Individual Well Details (Group 2 of 5) Driller's Identifier Water Level Well Static Level at: 90 ft 7.2 in Additional Well Construction Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 2 of 5 Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 474 ft Elevation Datum: WGS84 To Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20291 Longitude (DD): 119.201 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No .: From Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at Material least one entry for each change of information. Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington. well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Decommissioning Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 2: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/8/2017 Drilling Completion Date: 11/9/2017 Received by Ecology: 12/5/2017 3:04 PM Dimensions: Diameter of borehole before decommissioning: 2.88 in Well depth before decommissiong: 108 ft 0 in #### **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia-Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 2 of 5) Well Driller's Identifier Decom Sealing Materials 1 PP-3 Bentonite #### Additional Well Decommissioning Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 2 of 5 for Decommissioning Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 474 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20291 Longitude (DD): 119.201 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No.: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK #### Water Resources Program Well Construction and Licensing Section:20 Step 7 of 8 - View Summary of Wells for Group 3 of 5 #### Well Report Summary 1. Review your information. 2. To make changes use the "Back to Start of Form" button at the bottom of the page. 3. To submit and view your completed well report click the "Submit Well Report" button at the bottom of the page. #### **General Information** Property Owner Name City Of Richland Property Owner Mailing Address 505 Swift Blvd, Richland, WA 99352 Type of Well Environmental Investigation - Water Sampling Notice of Intent Number Decommissioning Notice of Intent Number FF06902 AE45893 Number of Wells in Group 3 1 Well Tag Number N/A Water Right Permit Number Variance None Yes Well Use Type of Work NA New Method Drilling Start Date DirectPush 11/9/2017 Completion Date 11/13/2017 #### **Location Information** Well Street Address 3102 Twin Bridges Rd. City/State/Zip Richland, WA 99354 County Benton Tax Parcel Number Twn 10N R 28E Sec 20 in the NE 1/4 of the NW 1/4 TRS Q/Q Lat/Long 46.20278 / 119.202 Horizontal Collection Method / Datum Unknown / World Geodetic System of 1984 Vertical Collection Method / Datum GPS carrier phase (survey grade unit) / World Geodetic System of 1984 Well Head Elevation 481 ft #### Work Details Borehole Diameter before decommissioning 2.88 in Depth of well before decommissioning 105 ft 0 in Drilled To Depth 105 ft #### Individual Well Details - Well Group 3 of 5 Well **Your Identifier** Water Level **Decommission Sealing Materials** PP-4 Static Level at: 90 ft 7.2 in Bentonite #### Lithology No lithology information collected #### **Your Comments** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### **Driller Information** **Driller Name** License Number MARTIN GARDNER 1584 **Drilling Company** ATKINS ENERGY FEDERAL EPC INC. By clicking the "Submit" button below you are creating a digital signature verifying that you are MARTIN GARDNER. Back to Start of Form Submit Well Report Ecology Home | Help | Report a Problem | Wells Construction & Licensing | Data Disclaimer | Privacy Policy Copyright @ Washington State Department of Ecology 2017. All Rights Reserved This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Construction Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 3: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/10/2017 Drilling Completion Date: 11/13/2017 Received by Ecology: 12/5/2017 3:23 PM **Dimensions:** Borehole Diameter: 2.88 in Depth of completed well: 105 ft 0 in #### **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia-Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual
Well Details (Group 3 of 5) Well Driller's Identifier Water Level 1 PP-4 Static Level at: 95 ft 8.64 in #### Additional Well Construction Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### Well Group 3 of 5 Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 #### Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 481 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20278 Longitude (DD): 119.2029 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No.: #### Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material to surface as the push tubing was back pulled. Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Decommissioning Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 3: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/10/2017 Drilling Completion Date: 11/13/2017 Received by Ecology: 12/5/2017 3:23 PM **Dimensions:** Diameter of borehole before decommissioning: 2.88 in Well depth before decommissiong: 105 ft 0 in **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Dia-Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 3 of 5) Well Driller's Identifier Decom Sealing Materials 1 PP-4 Bentonite **Additional Well Decommissioning Information** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 3 of 5 for Decommissioning Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 481 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20278 Longitude (DD): 119.2029 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No.: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Drilling Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK #### Water Resources Program Well Construction and Licensing Section:20 Step 7 of 8 - View Summary of Wells for Group 5 of 5 #### Well Report Summary 1. Review your information. 2. To make changes use the "Back to Start of Form" button at the bottom of the page. 3. To submit and view your completed well report click the "Submit Well Report" button at the bottom of the page. #### **General Information** Property Owner Name City Of Richland Property Owner Mailing Address 505 Swift Blvd, Richland, WA 99352 Type of Well Environmental Investigation - Water Sampling Notice of Intent Number Decommissioning Notice of Intent Number EE06902 AE45893 Number of Wells in Group 5 Well Tag Number 1 N/A Water Right Permit Number Variance None Yes Well Use Type of Work Method NA New DirectPush Drilling Start Date Completion Date 11/15/2017 11/16/2017 #### **Location Information** Well Street Address City/State/Zip 3102 Twin Bridges Rd. Richland, WA 99354 County Benton Tax Parcel Number TRS Q/Q Twn 10N R 28E Sec 20 in the NE 1/4 of the NW 1/4 46.20316 / 119.2004 Horizontal Collection Method / Datum Unknown / World Geodetic System of 1984 Vertical Collection Method / Datum GPS carrier phase (survey grade unit) / World Geodetic System of 1984 Well Head Elevation 453 ft #### **Work Details** Borehole Diameter before decommissioning Depth of well before decommissioning 2.88 in 89 ft 3 in Drilled To Depth 89 ft #### Individual Well Details - Well Group 5 of 5 Well Your Identifier Water Level **Decommission Sealing Materials** PP-5 Static Level at: 67 ft 9.6 in Bentonite #### Lithology No lithology information collected #### Your Comments Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. #### **Driller Information** **Driller Name** License Number MARTIN GARDNER 1584 **Drilling Company** ATKINS ENERGY FEDERAL EPC INC. By clicking the "Submit" button below you are creating a digital signature verifying that you are MARTIN GARDNER. Back to Start of Form Submit Well Report Ecology Home | Help | Report a Problem | Wells Construction & Licensing | Data Disclaimer | Privacy Policy Copyright © Washington State Department of Ecology 2017. All Rights Reserved # ECOLOGY #### RESOURCE PROTECTION WELL REPORT This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. #### Construction Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 5: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/15/2017 **Drilling Completion Date: 11/16/2017** Received by Ecology: 12/5/2017 3:41 PM Dimensions: Borehole Diameter: 2.88 in Depth of completed well: 89 ft 3 in #### **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Dia-Slot Type From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 5 of 5) Well Driller's Identifier Water Level Static Level at: 67 ft 9.6 in #### **Additional Well Construction Information** Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 5 of 5 Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA. 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 453 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20316 Longitude (DD): 119,2004 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No.: #### Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK This is a report of the activities of a licensed Washington well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. ####
Decommissioning Type of Well: Environmental Investigation - Water Sampling Number of Wells in Group 5: 1 well Type of Work: New Method: DirectPush Drilling Start Date: 11/15/2017 Drilling Completion Date: 11/16/2017 Received by Ecology: 12/5/2017 3:41 PM Dimensions: Diameter of borehole before decommissioning: 2.88 in Well depth before decommissiong; 89 ft 3 in **Construction Details** Casings: From Depth To Depth Type Diameter Stickup N/A Perforations: Type Size Total From To Perforations Depth Depth N/A Screens: Manufacturer Type Día- Slot From To meter Size Depth Depth N/A Sand/Gravel Packings: Material From To Depth Depth N/A Individual Well Details (Group 5 of 5) Well Driller's Identifier Decom Sealing Materials 1 PP-5 Bentonite Additional Well Decommissioning Information Drove push tubing to total depth, knocked out drive point, installed temporary SS wire wrapped 20 slot screen to bottom, back pulled drive tubing 10 ft. Installed small diameter bladder pump and collected water samples. Removed pump and well screen. Decommissioned push hole by placing Benseal granular bentonite down tubing from TD to surface as the push tubing was back pulled. Well Group 5 of 5 for Decommissioning Construction Notice of Intent Number: EE06902 Decommissioning Notice of Intent Number: AE45893 Unique Ecology Well ID Tag Number: N/A Property Owner Name: City Of Richland Property Owner Address: 505 Swift Blvd, Richland, WA 99352 Well Location: Well Street Address: 3102 Twin Bridges Rd. City, State, Zip: Richland, WA, 99354 County: Benton Township: 10N Range: 28E Section: 20 in the NE 1/4 of the NW 1/4 Well Head Elevation: 453 ft Elevation Datum: WGS84 Elevation Method: GPS carrier phase (survey grade unit) Latitude (DD): 46.20316 Longitude (DD): 119.2004 Datum: WGS84 Horizontal Coordinate Collection Method: Unknown Tax parcel No .: Lithology Layer: Describe by color, character, size of material and structure, and the kind and nature of the material in each layer penetrated, with at least one entry for each change of information. From To Material Well Construction Certification: I constructed and/or accept responsibility for construction of this well and its compliance with all Washington well construction standards. Material used and information reported above are true to the best of my knowledge and belief. Driller/Engineer/Trainee Printed Name: MARTIN GARDNER Driller or trainee License Number: 1584 If trainee, Driller's License Number: Drilling Company: ROM EMICK #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 | D - 1 | | | | | | | | | |--|---|-------------------|-----------------|-------------------|----------|--------------------------|----------|-----| | Date | | Contract/Task No. | | ct Titl | | | | | | 11-6. | -17 | 553-3820-007 | Horn | Rapid | ds Asse | essment Monitorin | g | | | Location | | | Drille | r/Sup | ervisor | Rig No. | Rig Type | | | Richland | d Horn | Rapids Landfill | | Amos | | (a) #2 | DPT | | | | | Pay Items | - | - | - | Equipment/Cons | sumables | | | Item # | Item [| Description | | Unit | Qty | Description | | Qty | | 1 | | zation | | EA | 1 | 298 Drive he | ad | 1 | | 2 | Direct | Push Drilling | | HR | 6.5 | Lynch Pins | | 10 | | 3 | | mmissioning | | HR | 0 | Lynch Pins
TIP Heider | | 1 | | 4 | | Sample Collection | | HR | 0 | | | | | 5 | - | bilization | | EA | 0 | | | | | 10 | Stand | by | | HR | | | - | | | | | - // / | | | 0 | 00.2 | | | | Sately
Work Si | Topic Topic | - JHH and ugen | | loc
work | ation | | | | | Work Si | Topic Topic | depth of 51. | | loc
work
Ex | tremel, | x hace driv | roge. | | | Work Si
Drove | Topic Topic Personn | depth of 51. | 4 | Lx A | tkins Si | y hord driv | Jn | | | Work Si
Drove | Topic Topic Personn | depth of 51. | 4 <i>f</i> 4. | Lx A | tkins Si | x hace driv | Jn | | | Work Si
Drove | Topic Topic Personn Ands tetile | depth of 51. | 4 <i>ft</i> Hrs | Lx A | tkins Si | y hord driv | Jn | | | Work Si
Drove | Personn And a | depth of 51. | 4 <i>ft</i> Hrs | Ex | tkins Si | upervisor Print/Sig | Jn | | | Work Si
Drove | Topic Topic Personn Ands tetile | depth of 51. | Hrs 10 10 | Ex | tkins Si | upervisor Print/Sig | Jn | | | Work Si
Drove
Atkins F
Office
Ring S
Kelly
Marty | Personn And Tettle Olson Gardin | depth of 51. | Hrs ; & 10 10 | Ex | tkins Si | upervisor Print/Sig | Jn | | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 | Date | | Contract/Task No. | Proje | | | IICKEI | | | |--|--------|-------------------|--------|------|--------------|---------------------|---------|---------------| | | 7-17 | | | | | essment Monitorin | na | | | | | 333-3620-007 | | | 11111111 | | 670 | - | | Location | | Rapids Landfill | | | ervisor | | | ig Type
PT | | Richan | u Hom | Rapius Lanonii | Lyle / | Amos | | Cut #2 | . 0 | r k | | | | Pay Items | | | | Equipment/Con: | sumable | S | | Item # | | Description | | Unit | Qty | Description | | Qty | | 1 | Mobili | zation | | EA | | Expendable | Tip. | 1 | | 2 | | Push Drilling | | HR | 5.5 | Rivits | | 4 | | 3 | | nmissioning | | HR | | Lynch Pins | | 6 | | 4 | | Sample Collection | | HR | 14 | Nylatron Wa | sher | 1 | | 5 | Demo | bilization | | EA | | | | | | 10 | Stand | by | | HR | | | | | | | | | 1_ | | | | | | | Comme | nts | | | | | | | | | | | | | | | | | | | Work Si
Pushe,
Cleare,
Pulled | 11 | | scree | OC | which set pu | is 4.8' stick | t sp. | | | Atkins F | ersonn | el | Hrs | At | kins Su | upervisor Print/Sig | n | | | Olin | And | r | 10 | | | | | 01 | | Rory | Steff | ir | 10 | K | Dry 3 | 2 Steffler/ | 1.3 | Still | | Kelly | Olson | | 10 | | / | | / | 17 | | Mke. | Went | dex | 10 | CI | ient Pri | int/Sign | | | | Marty | Guril | Ner | 2 | | Ad | am Romey | | | | / | | | | | , 10 | 11 | | | | | | | | | | MI | 7 | | | | ommen | | | | | | | | | Client | | ts: | | | | | | | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 DAILY FIELD JOB TICKET | Doto | | | _ | | JUBI | ICKET | | | | |------------------|---------|---------------------|--------------|--------|----------|-------------------|----------|-------------|--------| | Date | | Contract/Task No. | | ct Tit | | annest Manii- | alm a | | | | 11-8- | | 553-3820-007 | | 11.19 | | essment Monito | ring | | | | Location | | | | | ervisor | Rig No. | | Rig Type | | | Richlan | d Horn | Rapids Landfill | Lyle | Amos | 3 | CAT | 2 | DPT | | | | | Pay Items | | | | Equipment/Co | nsumal | oles | | | Item # | Item I | Description | | Unit | Qty | Description | | | Qty | | 1 | Mobil | ization | | EA | | Granulas | | lonite | 5 6 45 | | 2 | | t Push Drilling | | HR | 8.0 | 25/8 Drive | head | | | | 3 | | mmissioning | | HR | 1.75 | Nylation w | wher | | t | | 4 | | r Sample Collection | | HR | - | Lynch Pin | ٢. | | 8 | | 5 | Demo | bilization | | EA | _ | / | | | | | 10 | Stand | lby | | HR | - | | | | | | Work S Peropose | ummar | and PP-2 and | тоц
108'. | ed | over | to PP-3 a | L set | up and | l | | Atkins I | Personr | nel | Hrs | IA | tkins Su | upervisor Print/S | Sian | | | | Olin | Anos | | 10 | | | | | | , j = | | Kelly | | | 10 | | Rocu | z Stefflei | -/1 | 2 St | 111 | | | West | | 10 | | lory | | 1 11 | J. Nill | | | | Gara | | 10 | C | lient Pr | int/Sign | | | | | | Koch | | 2 | | Ad | am P | N440- | | | | | | | | | | int/Sign | mey
2 | | | | Client (| Comme | nts: | | | | | | | | | | | | | | | | | | | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 | Date ContractTask No. Project Title 1/9-/7 | Data | | | | | JOB | IICKEI | | | |--|-----------
-----------|-------------------|--------|--------|----------|---------------------|-----------|------| | Location Driller/Supervisor Rig No. Rig Type Richland Hom Rapids Landfill Lyle Amos Cff # 2 DPT Pay Items Equipment/Consumables Item # Item Description Unit Qty Description Qty 1 Mobilization EA | Date | | Contract/Task No. | | | | | | | | Richland Hom Rapids Landfill Pay Items Pay Items Equipment/Consumables Item # Item Description Unit Qty Description Qty Direct Push Drilling Decommissioning HR 25 Ny Latra, Washer Water Sample Collection BA Expendable Tip / Expend | | | 553-3820-007 | | | | | | | | Pay Items Equipment/Consumables | | | | Drille | er/Sup | ervisor | Rig No. | Rig Type | | | Item # Item Description Unit Oty Description Oty Mobilization EA / Espendabe Tip / Direct Push Drilling HR 2.5 Nullified Washer / Water Sample Collection HR 2.5 Restaute (Rugs) 4.25 Demobilization EA / Espendabe Tip / Demobilization EA / Espendabe Tip / Demobilization EA / Espendabe Tip / Standby HR / 2.5 Restaute (Rugs) 4.25 Comments State relocation and set up was late in the day, it was deceded not to start diving. This will allow the sition to set up overnight. Work Summary Kneeted est & 4 of blockage in PP-3 Sampled IP-3 Decommissional IP-3 Relacated and set up an PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rery Z Steffler (Co. Oth Amas io Collection Plants) Note Washing I Co. Oth Amas Io Collection Hrs Adding Remen | Richlan | d Horn | Rapids Landfill | Lyle | Amos | | #z | DPT | | | 1 Mobilization EA / Expendance Tip / 2 Direct Push Drilling HR 2.5 No lefter Washer / 3 Decommissioning HR 1.25 Rentante (Bugs) 4.25 4 Water Sample Collection HR 2.55 Rivers 4 5 Demobilization EA / 10 Standby HR / 10 Standby HR / Comments Since referation and set up was late in the day it was decided not to start driving. This will allow the silven to set up averaged. Work Summary Knocked out 4 of blockage in PP-3. Sampled IP-3 Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Oth Ames 10 Rory Z Steffler 16 Oth Ames 10 Rory C Steffler 16 Oth Ames 10 Rory C Steffler 10 | | | Pay Items | | | | Equipment/Consu | mables | | | 1 Mobilization EA / Expendence Tip / 2 Direct Push Drilling HR 2.5 No later Washer / 3 Decommissioning HR 1.25 Bestowte (Rugs) 4.25 4 Water Sample Collection HR 2.75 Riverts Washer / 5 Demobilization EA / 10 Standby HR / Comments Since referation and set up was late in the day it was decoded not to start above, This will allow the silveon to set up averaged. Work Summary Kneeted est = 4' of blackage in PP-3. Sampled PP-3 Relacated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory 2 Steffler 10 Olly Amos 10 Mathy Olson 10 Mike Westley 10 Client Print/Sign Marty Gardher 1 Adam Somey | Item # | Item | Description | | Unit | Qty | Description | | Qty | | Direct Push Drilling A Decommissioning HR 1.25 Rentante (Bugs) 4 Water Sample Collection HR 2.25 Rivits 4 Water Sample Collection HR 2.25 Rivits 4 Water Sample Collection HR 2.25 Rivits HR 5 Demobilization EA 10 Standby HR Comments Sacce referation and set up was late in the day it was decided not to start driving. This will allow the silven to set up principally. Work Summary Kneeked out & Y of blockage in PP-3. Sampled IP-3 Relecated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rocy Z Steffler Olsa Amer io Rocy Z Steffler Olsa Amer io Client Print/Sign Marty Gardher I Adam Borney Marty Gardher I Adam Borney Marty Gardher | | | | | EA | | 1 Expendab. | TIA | 1 | | Decommissioning HR 1.25 Bestewite (Bugs) Water Sample Collection HR 2.15 Rivits Demobilization EA 10 Standby HR Comments Space, referation and set up was late in the day, it was decyded not to start driving. This will allow the silven to set up averaget. Work Summary Kneeked at = 4 of blockage in PP-3. Sampled PP-3 Relacated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rery Z Stettler Olin Amer 10 Rory Z Stettler A3. Steff Mike Weakley 10 Client Print/Sign Marty Gardher 1 Addam Romey Marty Gardher 1 Addam Romey | | | | | HR | 2.5 | Nylatron Wa | sher | 1 | | Work Summary Work Summary Knocked out = 4' of blockage in PP-3 Scarpfed PP-3 Relacated and set up on PP-4 Atkins Personnel Rocy Z Steffler Olin Amer Kelly Olson Narty Gurdher Narty Gurdher Narty Gurdher HR 2.15 Rivits | | | | | HR | 1.25 | Bentonte CA | | 4.25 | | Demobilization Standby HR Comments Since relocation and set up was late in the day it was accided not to start aliving. This will allow the silicon to set up overnight. Work Summary Kneeked out = 4' of blockage in PP-3 Sampled IP-3 Deformissional IP-3 Relocated and set up on PP-4 Atkins Personnel Rory Z Stettlic Olin Amos Kelly Olson IO Mike Weakley IO Client Print/Sign Marty Sardher I Addan Begrey Marty Sardher I Addan Begrey | | | | | HR | | Rivits | | 4 | | Comments Since relocation and set up was late in the day it was decided not to start driving. This will allow the silven to set up overnight. Work Summary Knocked out = 4' of blockage in PP-3. Sampled PP-3 Relocated and set up on PP-4 Atkins Personnel Rory Z Steffler Oll Amos Kelly Olsen IO Mile Meakly IO Client Print/Sign Marty Sandher I Adam Rowey Marty Sandher I Adam Rowey | | Demo | obilization | | EA | | | | | | Since referation and set up was late in the day it was decided not to start driving. This will allow the silven to set up avernight. Work Summary Knocked out ~ 4' of blockage in PP-3. Sampled IP-3 Relacated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler Olia Amos Kelly Olson IC Mike Weakley IO Client Print/Sign Marty Gardaer I Adam Romey Marty Gardaer I Adam Romey | 10 | Stand | ydt | | HR | | | | | | Since referation and set up was late in the day it was decided not to start driving. This will allow the silven to set up avernight. Work Summary Knocked out ~ 4' of blockage in PP-3. Sampled IP-3 Relacated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler Olia Amos Kelly Olson IC Mike Weakley IO Client Print/Sign Marty Gardaer I Adam Romey Marty Gardaer I Adam Romey | Comme | nts | | _ | | | | | 4 | | Knocked out = 4' of blockage in PP-3. Sampled PP-3 Decommissioned PP-3 Relocated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Olin Amos 10 Rory Z Steffler /R3. Styffl Kelly Olson 10 Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Barney Marty Gardner 1 Adam Barney | | do | of to start de | Eving | e 7 | Lis is | all allow the | silicon | to | | Knocked out = 4' of blockage in PP-3. Sampled IP-3 Decommissioned IP-3 Relocated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Olin Amos 10 Rory Z Steffler 10 Nelly Olson 10 Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Bayney Marty Gardner 1 Adam Bayney | | | V | | | | * | | | | Knocked out = 4' of blockage in PP-3. Sampled PP-3 Decommissioned PP-3 Relocated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Olin Amos 10 Rory Z Steffler /R3. Styffl Kelly Olson 10 Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Barney Marty Gardner 1 Adam Barney | | 4 | | | | | | | | | Decommissioned PP-3 Relocated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Rory Z Steffler 10 Rory Z Steffler 10 Rory Z Steffler 12. Steffler Nike Weakley 10 Client Print/Sign Marty Gardher 1 Adam Romey Narty Gardher 1 Adam Romey | - | | | | | | | | | | Decommissioned PP-3 Relocated and set up on PP-4 Atkins Personnel Hrs Atkins Supervisor Print/Sign Rory Z Steffler 10 Rory Z Steffler 10 Rory Z Steffler 10 Rory Z Steffler 12. Steffler Nike Weakley 10 Client Print/Sign Marty Gardher 1 Adam Romey Narty Gardher 1 Adam Romey | | | st = 4 of bloc | Kage | 10/ | OP-3 | | | | | Atkins Personnel Rory Z Steffler Olin Amos Kelly Olson Marty Gardner Learner L | 1 | | -3 | 0 | | | | | | | Atkins Personnel Rory Z Steffler Olic Ames Kelly Olsen Marty Gardner I Adam Romey Adam Romey Adam Romey Adam Romey | Decom | 11 | | 00 4 | , | | | _ | | | Rory Z Steffler 10 Olin Ames 10 Rory Z Steffler / R.Z. Steffler Kelly Olson 10 Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Barrey 10 Marty Gardner 1 Adam Barrey | Aclaca | IA A | nd set up on t | 7-7 | | | | | | | Rory Z Steffler 10 Olin Amos 10 Rory Z Steffler / R.J. Steffler Kelly Olson 10 Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Barrey | Atkins F | | | Hrs | At | kins Su | pervisor Print/Sign | | | | Olin Ames Kelly Olson 10 Rory Z Stettler / R.Z. Steff Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Ramey | Rock | 2 51 | Effler | 10 | | | | 1 11 | 14 | | Mike Weakley 10 Client Print/Sign Marty Gardner (Adam Remey | Olia | Amos | | | TR | Dry Z | 2 Steffler / | 13. Still | | | Mike Weakley 10 Client Print/Sign Marty Gardner 1 Adam Barrey | Kelly | Olson | | 10 | 7 | / | -,, | 1 | | | Marty Gardher Adam Barney | | | | 3 | CI | ient Pri | nt/Sign | | | | Nizz | | | | | | A . | | | | | Client Comments: | / | | | | - ' | | Nizo | | | | | Client C | ommei | | | _ | | / / | | | | | O.O.II. O | 01,111101 | no. | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 | Date | | | FF 130m 0 0 | ILL | , , , | FICKET | | | | |--|-----------------------------------|-------------------|-------------|---------|----------|-----------------|--------------|----------|-----| | | | Contract/Task No. | | ct Titl | | | | | | | 11-10 | -17 | 553-3820-007 | Horn | Rapid | ds Asse | essment Monito | oring | | | | Location | | | Drille | r/Sup | ervisor | Rig No. | | Rig Type | | | Richland | d Horn | Rapids Landfill | | Amos | | Cut Rig # | 2 | DPT | | | | | Pay Items | | | | Equipment/C | onsuma | bles | | | Item # | Item D | Description | | Unit |
Qty | Description | or real real | | Qty | | 1 | | zation | | EA | | 25/8 Priv | her | 1 | 1 | | 2 | | Push Drilling | | HR | 9 | Nulatron | | | 1 | | 3 | | nmissioning | | HR | | Drive Pi | | | 1 | | 4 | | Sample Collection | | HR | | Lynch Pi | | | 8 | | 5 | Demo | bilization | | EA | | | | | | | 10 | Stand | by | | HR | | | | | | | Comme | | | | | | | | | | | \\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\. | | | | | | | | | | | Regar
Wade | umman
I | tal 100 ft. | y . T. | arget | dep | off - 105' | | | | | Regar
! Vade | IT. | tal 100 ft. | | | | | | | | | Regarde Vade | Personn | tal 100 ft. | Hrs | A | tkins S | upervisor Print | /Sign | | | | Regard Atkins F | Personn | tal 100 ft. | Hrs | A | tkins S | upervisor Print | /Sign | 2 44/ | | | Atkins F | Personr
Steff! | tal 100 ft. | Hrs 16 | A | tkins S | | /Sign | r. Style | | | Atkins F RZ 3 0/12 | Personn
Steffle
Amos
Wen | tal 100 ft. | Hrs 16 | A A | tkins Si | upervisor Print | /Sign | ?. Styff | | | Atkins F | Personn
Steffle
Amos
Wen | tal 100 ft. | Hrs 16 | A A | tkins Si | upervisor Print | /Sign | ?. Styff | | | Atkins F RZ 3 Olia IMake | Personn
Steffle
Amos
Wen | tal 100 ft. | Hrs 16 | A A | tkins Si | upervisor Print | /Sign | 2. Styff | | | Atkins F RZ 3 Olia IMake | Personn
Steffle
Amos
Wen | tal 100 ft. | Hrs 16 | A A | tkins Si | upervisor Print | /Sign | ?. Styff | | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 DAILY FIELD JOB TICKET | Date | | Contract/Task No. | Projec | - | - | IOILLI | | | | |----------|--------|-------------------|--------|-------|----------|-----------------|--------|-----------------|----------| | | 2 1- | | Horn F | Rapid | ds Asse | ssment Monito | orina | | | | 11-1. | | 553-3820-007 | | | | | | Dia Tuna | | | Location | | | | | ervisor | Rig No. | | Rig Type
DPT | | | Richlan | d Horn | Rapids Landfill | Lyle A | mos | | Cat # | | 10.00 | | | | | Pay Items | | | | Equipment/C | onsuma | ables | | | Item # | Item I | Description | | Init | Qty | Description | | | Qty | | 1 | Mobil | zation | | Α | _ | Bugs of | Bento. | rite | 5 | | 2 | Direct | Push Drilling | | IR | 4 | Exp. Ty | 0 | | | | 3 | | mmissioning | | IR_ | 1.5 | Lynch | Pins | | 6 | | 4 | | Sample Collection | | IR | 3.25 | 2/3/8" dr. | ve he | nd | | | 5 | - | bilization | | Α | - | Rivits | | | 19 | | 10 | Stand | lby | - 1 | IR_ | | | | | | | | | | | | 1 | | - | | | | Comme | nts | Work S | ummar | у . | | | | | | | | | Firest | ed | driving to de | the o. | 2/ | PP-4 | Knocked | gut 7 | top and | blockage | | set p | /m // | and sampled | PP- | 4. | Decor | , Knocked | (PP- | 14. Rela | cutel | | und | set | 10 on PPI-1. | Prove | tob | ing 7 | to 29 ft. | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | Atkins I | | | Hrs | A | tkins Si | upervisor Print | /Sign | | | | RZ | Steff | ler | 10 | | Alle | 0 | 1 m/ | 10- | 4111 | | Olin | Am | 24, | 10 | _ | , 10% | Rory Z ST | ettle | 171.7. | sugge | | Mike | Wen | Kley | 10 | | | | | | 11 | | Kelly | 0/50 | / | 10 | C | lient Pr | int/Sign | | | | | Marty | Garda | c | 2 | | Ala | on Rome | | | | | / | | | | | 1 1000 | 11-1 | 2 | | | | | | | | | | 10 | /_ | | | | Client (| Comme | nts: | | | | | 1 | | | | 14 | #### ATKINS ENERGY FEDERAL EPC 2345 STEVENS DRIVE RICHLAND, WA 99354 FIELD SERVICES GROUP (509) 420-5571 DAILY FIFLD JOB TICKET | H-1/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Driller/Supervisor Rig No. Rig Type | H-17 553-3820-007 Horn Rapids Assessment Monitoring | H-17 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Richland Horn Rapids Landfill Lyle Amos Pay Items Requipment/Consumables Requipment/Consumables Rem# Item Description Item # Des | Horn Rapids Assessment Monitoring Cocation | Horn Rapids Assessment Monitoring Diriller/Supervisor Rig No. Rig Type | Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Diriller/Supervisor Rig No. Rig Type | Horn Rapids Assessment Monitoring Cocation | Horn Rapids Assessment Monitoring Location | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling A Water Sample Collection Demobilization EA Value Find Finished driving on PP-1 to depth Knocked of the place | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling Decommissioning HR Water Sample Collection Demobilization EA Value Find Standby Work Summary Finished driving on PP-1 to depth Knocked out to place and afteracte to place a fine fine for the place of | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | H- 17 553-3820-007 Horn Rapids Assessment Monitoring | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type DPT | H-17 553-3820-007 Horn Rapids Assessment Monitoring | H-17 553-3820-007 Horn Rapids Assessment Monitoring | H-/7 553-3820-007 Horn Rapids Assessment Monitoring | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling Decommissioning HR Water Sample Collection Demobilization EA Value Water Sample Collection Standby HR Work Summary Finished driving on PP-1 to depth Knocked out to place and afteracte to place a fig. Science of the inspect. Smith of Something blacking the Irap helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling Decommissioning HR Water Sample Collection Demobilization EA Value Water Sample Collection Standby HR Work Summary Finished driving on PP-1 to depth Knocked out to place and afteracte to place a fig. Science of the inspect. Smith of Something blacking the Irap helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling Decommissioning HR Water Sample Collection Demobilization EA Value Water Sample Collection Standby HR Work Summary Finished driving on PP-1 to depth Knocked out to place and afteracte to place a fig. Science of the inspect. Smith of Something blacking the Irap helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type Pay Items Pay Items Item # Item Description Direct Push Drilling A Water Sample Collection Demobilization EA Value Find Finished driving on PP-1 to depth Knocked of the place | Horn Rapids Assessment Monitoring Location Driller/Supervisor Rig No. Rig Type | Horn Rapids Assessment Monitoring Location | Horn Rapids Assessment Monitoring Location |
--	--	--	---
--	--	--	--
--	--	--	--
--	--	--	---
---	---	---	--
--	---	---	--
---	--	--	--
--	--	--	---
---	--	--	--
--	--	--	--
--	--	--	--
Items Pay Items Equipment/Consumables	Driller/Supervisor Rig No. Rig Type Richland Horn Rapids Landfill Lyle Amos Pay Items Pay Items Equipment/Consumables Item # Item Description Mobilization EA 2	Driller/Supervisor Rig No. Rig Type Richland Horn Rapids Landfill Lyle Amos Pay Items Pay Items Equipment/Consumables	Driller/Supervisor Rig No. Rig Type Richland Horn Rapids Landfill Lyle Amos Pay Items Pay Items Equipment/Consumables
Description Direct Push Drilling A Decommissioning HR 8.5 Expendable Tro 1 Water Sample Collection HR 1.25 Invacy Pins Demobilization EA Invacy Pins Demobilization EA Invacy Pins Comments Work Summary Finished driving on PP-1 to depth Knocked out to and aftersite to place screen, Removed screen to inspect, Stillook, Something placeing the tip helder.	Richland Horn Rapids Landfill Pay Items Pay Items Pay Item Bescription Item # Item Description Direct Push Drilling A Decommissioning HR 8.5 Expendable Tro 1 Water Sample Collection HR 1.25 Invacy Pins Demobilization EA Invacy Pins Demobilization EA Invacy Pins Comments Work Summary Finished driving on PP-1 to depth Knocked out to and aftersite to place screen, Removed screen to inspect, Stillook, Something placeing the tip helder.	Richland Horn Rapids Landfill Pay Items Pay Items Pay Item Bescription Item # Item Description Direct Push Drilling A Decommissioning HR 8.5 Expendable Tro 1 Water Sample Collection HR 1.25 Invacy Pins Demobilization EA Invacy Pins Demobilization EA Invacy Pins Comments Work Summary Finished driving on PP-1 to depth Knocked out to and aftersite to place screen, Removed screen to inspect, Stillook, Something placeing the tip helder.	Richland Horn Rapids Landfill Pay Items Pay Items Pay Item Bescription Item # Item Description Pay Item Bescription Item # Item Description
attented to place a screen to inspect. Still OK. Semething blocking the tip holder.	Item # Item Description Unit Qty Description Qty 1 Mobilization EA 25/R drive head 1 2 Direct Push Drilling HR 8.5 Expandable Tip 1 3 Decommissioning HR Nylatron waskers 2 4 Water Sample Collection HR 1,25 I waskers 17 5 Demobilization EA Rivits 1 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth, Knocked, but tip and attented to place a screen to inspect. Still OK. Semething blocking the tip holder.	Item # Item Description Unit Qty Description Qty 1 Mobilization EA 25/R drive head 1 2 Direct Push Drilling HR 8.5 Expendable Tip 1 3 Decommissioning HR Nylatron waskers 2 4 Water Sample Collection HR 1,25 I wach Pins 14 5 Demobilization EA Rivits 9 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth, Knocked, out tip and attented to place a screen to inspect. Still OK. Something blocking the tip holder.	Item # Item Description Unit Qty Description Qty 1 Mobilization EA 25/8 drive head 1 2 Direct Push Drilling HR 8.5 Expendable Tip 1 3 Decommissioning HR Notation Wasters 2 4 Water Sample Collection HR 1,25 Notation Wasters 1/9 5 Demobilization EA Notation HR 1,25 Notation 1/9 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth, Knocked, ast tip and affected to place screen to inspect, Still ok. Something blocking the tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign
attenstee to place a screen to inspect. Still OK. Semething place are tip helder.	Item # Item Description Unit Qty Description Qty 1 Mobilization EA 25/8 drive head 1 2 Direct Push Drilling HR 8.5 Expandable Tip 1 3 Decommissioning HR Nylatron waskers 2 4 Water Sample Collection HR 1.25 I/vach Pins 15 5 Demobilization EA I/vach Pins 15 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth, Knocked, but tip and attenstee to place a screen to inspect. Still OK. Semething place are tip helder.	Item # Item Description Unit Qty Description Qty 1	Item # Item Description Unit Qty Description Qty 1 Mobilization EA 25/8 drive head 1 2 Direct Push Drilling HR 8.5 Expandable Tip 1 3 Decommissioning HR Nylatron waskers 2 4 Water Sample Collection HR 1.25 I/vach Pins 15 5 Demobilization EA I/vach Pins 15 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth, Knocked, but tip and attenstee to place a screen to inspect. Still OK. Semething place are tip helder.
PP-1, to depth, Knocked, at tip and attente to place screen. Removed screen to inspect. Still OK. Something Florking the tip helder.	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1/25 1/40 5 Demobilization EA 1/25 1/40 1/4 1/4 1/4 1/4 1/4 1/4 1/	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1/25 1/40 5 Demobilization EA 1/25 1/40 1/4 1/4 1/4 1/4 1/4 1/4 1/	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1.25
Collection HR Demobilization EA Water Sample Collection HR Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen, Removed screen to inspect, Still OK, Something Flocking the tip helder.	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1/25 Hynch Pins 1/3 10 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked of the and afterate to place screen, Removed screen to inspect, Still OK, Something placking the try holder.	Mobilization EA 2 Struck head I Direct Push Drilling HR Butter	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1.25 Lynch Pins 1/5 10 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen, Removed screen to inspect, Still OK, Something blocking the tip holder.
Collection HR 1.25 Lyach Pins 1/5 5 Demobilization EA Living HR 1.25 Lyach Pins 1/5 10 Standby HR Comments Work Summary Finished driving on PP-1 to depth. Knocked out tip and afterote to place screen. Removed screen to inspect. Still OK. Something blokking the tip holder. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Mobilization 1 Mobilization 2 Direct Push Drilling 3 Decommissioning 4 Water Sample Collection 5 Demobilization EA 1.25 Lynch Pins 1/5 10 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and after the top lace, screen, Removed screen to inspect, Still OK, Something blocking the tip helder.	Mobilization 1 Mobilization EA 2 S/B acree head 1 2 Direct Push Drilling HR B. S. Expendable Tep 1 3 Decommissioning HR Water Sample Collection HR 1.25 Livach Pins 1/3 Demobilization EA 1/25 Livach Pins 1/3 1/4 Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and afterate to place screen, Removed screen to inspect, Still OK, Something blocking the tip helder.	
OK, Something blotking the tip holder.	Direct Push Drilling Begin Bright Drilling Decommissioning HR Decomm	Direct Push Drilling Direct Push Drilling Decommissioning HR Water Sample Collection HR Demobilization EA Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afterplet to place screen. Removed screen to inspect, Still OK, Something placking the tip helder.	Direct Push Drilling Direct Push Drilling Decommissioning HR Water Sample Collection HR Demobilization EA Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afterplet to place screen. Removed screen to inspect, Still OK, Something placking the tip helder.
PP-1, to depth, Knocked, out tip and afterplet to place screen. Removed screen to inspect. Still OK. Something placking the tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1,25 Demobilization EA Note Pins 1/2 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen. Removed screen to inspect. Still OK. Something Placking the tip belier. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1,25 Demobilization EA Note Pins 1/2 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afternite to place screen. Removed screen to inspect. Still OK. Something blocking the tip belier. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1,25 Demobilization EA Note Pins 1/2 Standby HR Comments Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afternite to place screen. Removed screen to inspect. Still OK. Something blocking the tip belier. Atkins Personnel Hrs Atkins Supervisor Print/Sign
tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1.25 Demobilization EA Note Pins 19 Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen. Removed screen to inspect. Still OK. Something placking the tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1.25 Demobilization EA Note Pins 19 Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen. Removed screen to inspect. Still OK. Something placking the tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign	Decommissioning HR Water Sample Collection HR 1.25 Demobilization EA Note Pins 19 Comments Work Summary Finished driving on PP-1, to depth, Knocked, at tip and attente to place screen. Removed screen to inspect. Still OK. Something placking the tip helder. Atkins Personnel Hrs Atkins Supervisor Print/Sign
Work Summary Finished driving on PP-1, to depth, Knocked, out tip and after to place screen, Removed screen to inspect, Still OK, Something beloking the tip helder.	Water Sample Collection HR 1.25 Lynch Pins Demobilization EA Livits Work Summary Finished driving on PP-1, to depth Knocked out tip and after the place screen. Removed screen to inspect. Still OK. Something bloking the tip holder.	Water Sample Collection HR 1.25 Lynch Pins Demobilization EA Livits Work Summary Finished driving on PP-1, to depth Knocked out tip and after the place screen. Removed screen to inspect. Still OK. Something bloking the tip holder.	Water Sample Collection HR 1.25 Lynch Pins Demobilization EA Livits Work Summary Finished driving on PP-1, to depth Knocked out tip and after the place screen. Removed screen to inspect. Still OK. Something bloking the tip helder.
Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1 to depth Knocked out tip and afterstee to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1 to depth Knocked out tip and afterstee to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked, out tip and after to place screen, Removed screen to inspect, Still OK. Something blocking the tip holder.
Something blocking the tip holder.	Comments Work Summary Finished driving on PP-1, to depth Knocked at tip and attempte to, place screen, Removed screen to inspect. Still OK. Something blocking the tip holder.	Comments Work Summary Finished driving on PP-1, to depth Knocked at tip and attempte to, place screen, Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to death, Knocked at tip and attempte to place screen Removed screen to inspect. Still OK. Something blocking the tip holder.
Something placking the tip holder.	Work Summary Finished driving on PP-1, to depth Knocked out tip and afterate to place screen Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth Knocked, out tip and afterate to place screen, Removed screen to inspect, Still OK. Something placking the tip holder.	Work Summary Finished driving on PP-1, to depth Knocked out tip and afterpte to place screen Removed screen to inspect. Still OK. Something placking the tip holder.
Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afterpte to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked out tip and aftereste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked out tip and aftereste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.
Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked out tip and aftereste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afterpte to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Work Summary Finished driving on PP-1, to depth, Knocked, out tip and afterpte to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.
Something blocking the tip holder.	Finished driving on PP-1, to depth Knocked out tip and afterste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Finished driving on PP-1, to depth Knocked out tip and afterste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.	Finished driving on PP-1, to depth Knocked out tip and afterste to place screen. Removed screen to inspect. Still OK. Something blocking the tip holder.
Steffler	Olin Amos 10 Rory Z Steffler / R.Z. Steffle	Olin Amos 10 Rory Z Steffler / R.Z. Steffle	Olin Amos 10 Rory Z Steffler / R.Z. Steffle
Steffle	Olin Amos io Rory Z Steffler / R.Z. Steffle	Olin Amos, 10 Rory 2 Steffler / R.Z. Steffle	Olin Amos, 10 Rory Z Stettler / R.Z. Steffle
(111)	0- 1111	0- (111)	7 - 1 NY
AHA: /V/			GEOPHYSICAL LOGGING Boring # Interval: Type
---	--------------------------	--	--
--	-------------------------------	--	--------------------------
lunded	. Water a	f 67.	8.
Dynamic: Not applicable. Kinematic: Not applicable. Solvent content: 0.0 % Organic solvents: Solids content: 100 % No additional information available. 9.2 Other information: # 10 Stability and Reactivity #### 10.1 Reactivity: # 10.2 Chemical stability: #### Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications. #### 10.3 Possibility of hazardous reactions: Reacts with acids. Reacts with strongalkali. Reacts with strong oxidizing agents. #### 10.4 Conditions to avoid: No additional information available. # 10.5 Incompatible materials: No additional information available. # 10.6 Hazardous decomposition products: Carbon monoxide and carbon dioxide Phosphorus compounds Sulphur oxides (SOx) # 11 Toxicological Information # 11.1 Information on toxicological effects: Toxicity data: No additional information available. **Primary irritant effect:** On the skin: Irritating to skin and mucous membranes. On the eye: Strong irritant with the danger of severe eye injury. Sensitization: No sensitizing effects known. # HANFORD GHS-SDS#013539A Page 6/8 Safety Data Sheet according to 1907/2006/EC (REACH), 1272/2008/EC (CLP), and GHS Effective date: 11/20/2014 Revision: 05/12/2015 #### **ALCONOX** #### Additional toxicological information: The product shows the following dangers according to the calculation method of the General EU Classification Guidelines for Preparations as issued in the latest version: Irritant. Swallowing will lead to a strong caustic effect on mouth and throat and to the danger of perforation ofesophagus and stomach. # 12 Ecological Information #### 12.1 Toxicity: Aquatic toxicity: No additional information available. 12.2 Persistence and degradability: No additional information available. 12.3 Bioaccumulative potential: Not worth-mentioning accumulating in organisms. 12.4 Mobility in soil: No additional information available. Ecotoxical effects: Remark: Harmful to fish #### Additional ecological information: General notes: Water hazard class 2 (German Regulation) (Self-assessment): hazardous for water. Do not allow product to reach ground water, water course or sewage system. Danger to drinking water if even small quantities leak into the ground. # 12.5 Results of PBT and vPvB assessment: **PBT:** Not applicable. **vPvB:** Not applicable. 12.6 Other adverse effects: No additional information available. # 13 Disposal Considerations # 13.1 Waste treatment methods: #### Recommendation: Smaller quantities can be disposed of with household waste. Small amounts may be diluted with plenty of water and washed away. Dispose of bigger amounts in accordance with Local Authority requirements. The surfactant used in this product complies with the biodegradability criteria as laid down in Regulation (EC) No. 648/2004 on detergents. Data to support this assertion are held at the disposal of the competent authorities of the Member States and will be made available to them, at their direct request or at the request of a detergent manufacturer. #### Uncleaned packaging: Recommendation: Disposal must be made according to official regulations. Recommended cleansing agents: Water, together with cleansing agents, if necessary, # **14 Transport Information** 14.1 UN-Number: DOT, ADR, ADN, IMDG, IATA: Not Regulated 14.2 UN proper shipping name: DOT, ADR, IMDG, IATA: Not Regulated 14.3 Transport hazard class(es): DOT. ADR. IMDG. IATA: Class: Not Regulated Label: 14.4 Packing group: DOT, ADR, IMDG, IATA: Not Regulated # HANFORD GHS-SDS#013539A Page 7/8 # Safety Data Sheet according to 1907/2006/EC (REACH), 1272/2008/EC (CLP), and GHS Effective date: 11/20/2014 Revision: 05/12/2015 #### **ALCONOX** 14.5 Environmentalhazards: Marine pollutant: No 14.6 Special precautions for user: Not applicable. 14.7 Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code: Not applicable. UN "Model Regulation": Not Regulated # 15 Regulatory Information 15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture: United States (USA): SARA: Section 355 (extremely hazardous substances): None of the ingredient is listed. Section 313 (Specific toxic chemical listings): None of the ingredient is listed. TSCA(Toxic Substances Control Act): All ingredients are listed. Proposition 65 (California): Chemicals known to cause cancer: None of the ingredient is listed. Chemicals known to cause reproductive toxicity for females: None of the ingredient is listed. Chemicals known to cause reproductive toxicity for males: None of the ingredient is listed. Chemicals known to cause developmental toxicity: None of the ingredient is listed. #### CarcinogenicCategories: EPA (Environmental Protection Agency): None of the ingredient is listed. TLV (Threshold Limit Value established by ACGIH): None of the ingredient is listed. NIOSH-Ca (National Institute for Occupational Safety and Health): None of the ingredient is listed. OSHA-Ca (Occupational Safety & Health Administration): None of the ingredient is listed. #### Canadá: Canadian Domestic Substances List (DSL): All ingredients are listed. Canadian Ingredient Disclosure list (limit 0.1%): None of the ingredient is listed. Canadian Ingredient Disclosure list (limit 1%): 497-19-8 Sodium Carbonate 7722-88-5 Tetrasodium pyrophosphate 151-21-3 Sodium dodecylsulphate 15.2 Chemical safety assessment: A Chemical Safety Assessment has not been carried out. #### 16 Other Information This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship. ### Relevant phrases: H320: Causes eye irritation. # HANFORD GHS-SDS#013539A Page 8/8 # Safety Data Sheet according to 1907/2006/EC (REACH), 1272/2008/EC (CLP), and **GHS** Effective date: 11/20/2014 Revision: 05/12/2015 # **ALCONOX** #### **Abbreviations and Acronyms:** ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road. IMDG: International Maritime Code for Dangerous Goods. DOT: US Department of Transportation. IATA: International Air Transport Association. GHS: Globally Harmonized System of Classification and Labelling of Chemicals. ACGIH: American Conference of Governmental Industrial Hygienists. NFPA: National Fire Protection Association (USA). HMIS: Hazardous Materials Identification System (USA). WHMIS: Workplace Hazardous Materials Information System (Canada). VOC: Volatile Organic Compounds (USA, EU). LC50: Lethal concentration, 50 percent. LD50: Lethal dose, 50 percent. # SDS Created by: Global Safety Management, Inc. 10006 Cross Creek Bivd Tampa, FL, 33647 Tel: 1-844-GSM-INFO (1-844-476-4636) Website: www.GSMSDS.com # **SAFETY DATA SHEET** Issuing Date 02-Jun-2015 Revision Date 15-Mar-2017 Revision Number 1 # 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND THE COMPANY/UNDERTAKING **GHS** product identifier **Product Name** **WELL-GUARD®** Other means of identification Product Code(s) 185 **Synonyms** JET-LUBEÒ WELL-GUARDÒ Recommended use of the chemical and restrictions on use Recommended Use Lubricants, Greases and Release Products Uses advised against No information available Supplier's details **Manufacturer Address** Jet-Lube, LLC 930 Whitmore Dr. Rockwall, Texas 75087 TEL: 972-771-1000 Toll Free: 1-800-669-6318 Emergency telephone number **Emergency Telephone** CHEMTREC: +1-703-527-3887 (INTERNATIONAL) Number 1-800-424-9300 (NORTH AMERICA) # 2. HAZARDS IDENTIFICATION #### Classification This chemical is not considered hazardous according to the OSHA Hazard Communication Standard 2012 (29 CFR 1910.1200). #### GHS Label elements, including precautionary statements #### **Emergency Overview** Signal Word None The product contains no substances which at their given concentration are considered to be hazardous to health Appearance Beige Physical State Semi-Solid, Paste. Odor Seed oil smell (slight) #### **Precautionary Statements** Prevention None #### **General Advice** None #### Storage None #### Disposal None #### Hazard Not Otherwise Classified (HNOC) Not applicable #### Other information 93.5% of the mixture consists of ingredient(s) of unknown toxicity. # 3. COMPOSITION/INFORMATION ON INGREDIENTS #### **Synonyms** JET-LUBEÒ WELL-GUARDÒ	Chemical Name	CAS-No	Weight %
procedures Personal Precautions Avoid contact with the skin and the eyes. Refer to Section 8 for personal protective equipment. **Environmental Precautions** Environmental Precautions Do not allow material to contaminate ground water system. See Section 12 for additional Ecological Information. # Methods and materials for containment and cleaning up Methods for Containment Prevent further leakage or spillage if safe to do so. Methods for Cleaning Up Dam up. Soak up with inert absorbent material. Pick up and transfer to properly labeled containers. # 7. HANDLING AND STORAGE #### Precautions for safe handling Handle in accordance with good industrial hygiene and safety practice. Avoid contact with skin and eyes. #### Conditions for safe storage, including any incompatibilities Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from oxidizing materials. Incompatible Products Strong oxidizing agents. # 8. EXPOSURE CONTROLS / PERSONAL PROTECTION #### Control parameters #### **Exposure Guidelines**	Chemical Name	ACGIH TLV	OSHA PEL
transportation, disposal and release and is not to be considered as a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other material or in any process, unless specified in the text. **End of Safety Data Sheet** 2006 (REACH) Printed * 25.11.2015 revision 08.07.2015 (GB) Version 1.9 **LAGERMEISTER 3000 PLUS** A01-02874 # SECTION 1: Identification of the substance/mixture and of the company/undertaking #### 1.1. Product identifier Name of product LAGERMEISTER 3000 PLUS # 1.2. Relevant Identified uses of the substance or mixture and uses advised against Recommended intended purpose(s) Lubricating grease #### 1.3. Details of the supplier of the safety data sheet Manufacturer/distributor FUCHS LUBRITECH GMBH Werner-Heisenberg-Straße 1, D-67661 Kaiserslautern/Germany Phone +49 (0) 6301 3206 - 0, Fax +49 (0) 6301 3206 - 940 E-Mail reach@fuchs-lubritech.de Internet www.fuchs-lubritech.com Advice Product Safety Management Phone +49 (0) 6301 3206 - 0 Fax +49 (0) 6301 3206 - 940 E-mail (competent person): reach@fuchs-lubritech.de #### 1.4. Emergency telephone number **Emergency advice** +49 (0)171 / 4632154 Phone 06301/3206-808 This number is only available at office times. #### **SECTION 2: Hazards identification** #### 2.1. Classification of the substance or mixture #### Classification according to 67/548/EEC or 1999/45/EC R52/53 #### R-phrases 52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. #### Classification according to Regulation (EC) No 1272/2008 [CLP/GHS] Hazard classes and Hazard categories Hazard Statements Classification procedure Aquatic Chronic 3 H412 # 2.2. Label elements # Labelling according to Regulation (EC) No 1272/2008 [CLP/GHS] #### **Hazard Statements** H412 Harmful to aquatic life with long lasting effects. #### **Precautionary Statements** P273 Avoid release to the environment. #### 2.3. Other hazards #### Information pertaining to special dangers for human and environment none at appropriate handling and storage #### **SECTION 3: Composition/information on ingredients** #### 3.1. Substances not applicable #### 3.2. Mixtures #### Description Thickening system and additives in highly refined mineral oil FUCHS LUBRITECH GmbH, 67661 Kaiserslautern/Germany 2006 (REACH) Printed revision 25.11.2015 08.07.2015 (GB) Version 1.9 #### **LAGERMEISTER 3000 PLUS** A01-02874	Hazardous	ingredients	
available. # 10.2. Chemical stability No information available. #### 10.3. Possibility of hazardous reactions No information available. #### 10.4. Conditions to avoid none at appropriate handling and storage #### 10.5. Incompatible materials #### Materials to avoid none at appropriate handling and storage #### 10.6. Hazardous decomposition products No hazardous decomposition products known. # Thermal decomposition Remark No decomposition if used as directed. #### **SECTION 11: Toxicological information** #### 11.1. Information on toxicological effects #### Acute toxicity/Irritability/Sensitization		Value/Validation	Species
dispersing vapors and to protect personnel. Cool equipment exposed to fire with water, if it can be done safely. Avoid spreading burning liquid with water used for cooling purposes. See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits # SECTION 6: Accidental release measures **Personal precautions, protective equipment and emergency procedures:** This material may burn, but will not ignite readily. Keep all sources of ignition away from spill/release. Stay upwind and away from spill/release. Avoid direct contact with material. For large spillages, notify persons down wind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures. **Environmental Precautions:** Stop and contain spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems, and natural waterways. Use water sparingly to minimize environmental contamination and reduce disposal requirements. If spill occurs on water notify appropriate authorities and advise shipping of any hazard. Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802). LBPH721570 - Redtac® Grease Issue Date: 22-Jun-2016 Page 3/7 Status: FINAL Methods and material for containment and cleaning up: Notify relevant authorities in accordance with all applicable regulations. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal. If spilled on water remove with appropriate methods (e.g. skimming, booms or absorbents). In case of soil contamination, remove contaminated soil for remediation or disposal, in accordance with local regulations. Recommended measures are based on the most likely spillage scenarios for this material; however local conditions and regulations may influence or limit the choice of appropriate actions to be taken. See Section 13 for information on appropriate disposal. # SECTION 7: Handling and storage **Precautions for safe handling:** Keep away from flames and hot surfaces. Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment (see section 8). Spills will produce very slippery surfaces. High pressure injection of hydrocarbon fuels, hydraulic oils or greases under the skin may have serious consequences even though no symptoms or injury may be apparent. This can happen accidentally when using high pressure equipment such as high pressure grease guns, fuel injection apparatus or from pinhole leaks in tubing of high pressure hydraulic oil equipment. Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. Do not wear contaminated clothing or shoes. Conditions for safe storage: Keep container(s) tightly closed and properly labeled. Use and store this material in cool, dry, well-ventilated area away from heat and all sources of ignition. Store only in approved containers. Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage. "Empty" containers retain residue and may be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, or other sources of ignition. They may explode and cause injury or death. "Empty" drums should be completely drained, properly bunged, and promptly shipped to the supplier or a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations. Before working on or in tanks which contain or have contained this material, refer to OSHA regulations, ANSI Z49.1, and other references pertaining to cleaning, repairing, welding, or other contemplated operations. # SECTION 8: Exposure controls/personal protection	Chemical Name	ACGIH	OSHA
Components Lubricant Base Oil (Petroleum) **Carcinogenicity:** The petroleum base oils contained in this product have been highly refined by a variety of processes including severe hydrocracking/hydroprocessing to reduce aromatics and improve performance characteristics. All of the oils meet the IP-346 criteria of less than 3 percent PAH's and are not considered carcinogens by NTP, IARC, or OSHA. # **SECTION 12: Ecological information** #### GHS Classification: #### No classified hazards **Toxicity:** All acute aquatic toxicity studies on samples of lubricant base oils show acute toxicity values greater than 100 mg/L for invertebrates, algae and fish. These tests were carried out on water accommodated fractions and the results are consistent with the predicted aquatic toxicity of these substances based on their hydrocarbon compositions. **Persistence and Degradability:** The hydrocarbons in this material are not readily biodegradable, but since they can be degraded by microorganisms, they are regarded as inherently biodegradable. **Bioaccumulative Potential:** Log Kow values measured for the hydrocarbon components of this material are greater than 5.3, and therefore regarded as having the potential to bioaccumulate. In practice, metabolic processes may reduce bioconcentration. **Mobility in Soil:** Volatilization to air is not expected to be a significant fate process due to the low vapor pressure of this material. In water, base oils will float and spread over the surface at a rate dependent upon viscosity. There will be significant removal of hydrocarbons from the water by sediment adsorption. In soil and sediment, hydrocarbon components will show low mobility with adsorption to sediments being the predominant physical process. The main fate process is expected to be slow biodegradation of the hydrocarbon constituents in soil and sediment. Other adverse effects: None anticipated. # **SECTION 13: Disposal considerations** The generator of a waste is always responsible for making proper hazardous waste determinations and needs to consider state and local requirements in addition to federal regulations. This material, if discarded as produced, would not be a federally regulated RCRA "listed" hazardous waste and is not believed to exhibit characteristics of hazardous waste. See Sections 7 and 8 for information on handling, storage and personal protection and Section 9 for physical/chemical properties. It is possible that the material as produced contains constituents which are not required to be listed in the SDS but could affect the hazardous waste determination. Additionally, use which results in chemical or physical change of this material could subject it to regulation as a hazardous waste. This material under most intended uses would become "Used Oil" due to contamination by physical or chemical impurities. Whenever possible, Recycle used oil in accordance with applicable federal and state or local regulations. Container contents should be completely used and containers should be emptied prior to discard. # **SECTION 14: Transport information** U.S. Department of Transportation (DOT) UN Number: Not regulated UN proper shipping name: None Transport hazard class(es): None Packing Group: None Environmental Hazards: This product does not meet the DOT/UN/IMDG/IMO criteria of a marine pollutant Special precautions for user: If shipped by land in a packaging having a capacity of 3,500 gallons or more, the provisions of 49 CFR, Part 130 apply. (Contains oil) Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code: Not applicable # **SECTION 15: Regulatory information** #### CERCLA/SARA - Section 302 Extremely Hazardous Substances and TPQs (in pounds): This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372. LBPH721570 - Redtac® Grease Page 6/7 Issue Date: 22-Jun-2016 Status: FINAL #### CERCLA/SARA - Section 311/312 (Title III Hazard Categories) Acute Health Hazard: Chronic Health Hazard: No Fire Hazard: No **Pressure Hazard:** No **Reactive Hazard:** No #### CERCLA/SARA - Section 313 and 40 CFR 372: This material contains the following chemicals subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR 372:	Chemical Name	Concentration¹	de minimis
Sealant	Hazardous Component(s)	CAS Number	Percentage*
protection of property and persons against any hazards that may be involved in the handling and use of any Henkel's products. In light of the foregoing, Henkel specifically disclaims all warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, arising from sale or use of Henkel's products. Henkel further disclaims any liability for consequential or incidental damages of any kind, including lost profits. IDH number: 198817 Product name: LOCTITE® SUPERFLEX® RED HIGH TEMP RTV V Silicone Adhesive Sealant Silicone Adhesive Sealant Version No. 13000-14B Issue Date: September 13, 2014 Supersedes Date: January 7, 2014 , 2014 OSHA HCS-2012 / GHS Section 1: IDENTIFICATION Product Name: Simple Green® All-Purpose Cleaner **Additional Names:** Manufacturer's Part Number: *Please refer to Section 16 **Recommended Use:** Cleaner & Degreaser for water tolerant surfaces. **Restrictions on Use:** Do not use on non-rinsable surfaces. Company: Sunshine Makers, Inc. Telephone: 800-228-0709 • 562-795-6000 Mon - Fri, 8am - 5pm PST 15922 Pacific Coast Highway Fax: 562-592-3830 Huntington Beach, CA 92649 USA Email: info@simplegreen.com **Emergency Phone:** Chem-Tel 24-Hour Emergency Service: 800-255-3924 #### Section 2: HAZARDS IDENTIFICATION This product is not classified as hazardous under 2012 OSHA Hazard Communication Standards (29 CFR 1910.1200). OSHA HCS 2012 Label Elements Cianal Marde Signal Word: None Hazard Symbol(s)/Pictogram(s): None required Hazard Statements: None Precautionary Statements: None Hazards Not Otherwise Classified (HNOC): None Other Information: None Known # Section 3: COMPOSITION/INFORMATION ON INGREDIENTS	Ingredient	CAS Number	Percent Range
user needs to be aware of/comply with, in connection None known. with transport or conveyance either within or outside their premises: U.S. (DOT) / Canadian TDG: Not Regulated for shipping. ICAO/ IATA: Not classified as Hazardous IMO / IDMG: Not classified as Hazardous ADR/RID: Not classified as Hazardous Section 15: REGULATORY INFORMATION All components are listed on: TSCA and DSL Inventory. **SARA Title III:** Sections 311/312 Hazard Categories – Not applicable. Sections 313 Superfunds Amendments and Reauthorizations Act of 1986 - Not applicable. Sections 302 - Not applicable. Clean Air Act (CAA): Not applicable Clean Water Act (CWA): Not applicable <u>State Right To Know Lists:</u> No ingredients listed <u>California Proposition 65:</u> No ingredients listed Texas ESL: Ethoxylated Alcohol 68439-46-3 60 μ g/m³ long term 600 μ g/m³ short term Sodium Citrate 68-04-2 5 μ g/m³ long term 50 μ g/m³ short term Sodium Carbonate 497-19-8 5 μ g/m³ long term 50 μ g/m³ short term Citric Acid 77-92-9 10 μ g/m³ long term 100 μ g/m³ short term ### Section 16: OTHER INFORMATION	<u>Size</u>	<u>UPC</u>	<u>Size</u>
Isopropylbenzene	98-82-8	m.N.D.	μg/L
11/8/2017			sec-Butylbenzene
108-88-3	< 0.5	µg/L	EPA 8260C
Recovery	Control Limits		-----------
µg/L	EPA 8260C	0.5	0.036
11/16/2017		1,2-Dibromo-3-chloropropane	96-12-8
106-43-4	m.N.D.	μg/L	EPA 8260C
μg/L	EPA 8260C	10	2.9355
μg/L	EPA 8260C	0.5	0.1447
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	4068-004		Pennsylvania DEP
at the time of sample receipt. #### Methane, Ethene and Ethane Analysis The samples were analyzed for methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). A known amount of liquid was displaced by injecting 8.0 milliliters of helium creating a headspace in the sample vial. Each sample vial was agitated using a sonic disrupter for fifteen minutes and then allowed to equilibrate for at least two hours. A volume of the headspace was withdrawn using a gas-tight syringe and analyzed using a manual injection technique. The amount of dissolved gases (methane, ethene and ethane) in the original sample was calculated using Henry's Law. This method was performed with guidance from RSK 175. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP accreditation. The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report. Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory. 2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com # ALS Environmental - Simi Valley #### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS	Agency	Web Site	Number
the laboratory reporting limit. MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. # RESULTS OF ANALYSIS Page 1 of 1 **Client: Energy Northwest** **Client Sample ID: 180535-02** ALS Project ID: P1705680 Client Project ID: Horn Rapids Landfill ALS Sample ID: P1705680-002 Test Code: **RSK 175** Date Collected: 11/9/17 Instrument ID: HP5890A/GC10/FID Date Received: 11/10/17 Analyst: Mike Conejo Date Analyzed: 11/13/17 Sample Type: Water Volume(s) Analyzed: 0.10 ml(s) Test Notes:	CAS#	Compound	Result
ample ID	Sample ID Customer ID	Sife	Sample Location
results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. If you have any questions, please call me at (805) 526-7161. Respectfully submitted, ALS	Environmental Kate Kaneko Project Manager 2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com Client: Energy Northwest Service Request No: P1705797 Project: Horn Rapids Landfill #### **CASE NARRATIVE** The sample was received intact under chain of custody on November 16, 2017 and was stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time of sample receipt. #### Methane, Ethene and Ethane Analysis The sample was analyzed for methane, ethene and ethane using a gas chromatograph equipped with a flame ionization detector (FID). A known amount of liquid was displaced by injecting 8.0 milliliters of helium creating a headspace in the sample vial. Each sample vial was agitated using a sonic disrupter for fifteen minutes and then allowed to equilibrate for at least two hours. A volume of the headspace was withdrawn using a gas-tight syringe and analyzed using a manual injection technique. The amount of dissolved gases (methane, ethene and ethane) in the original sample was calculated using Henry's Law. This method was performed with guidance from RSK 175. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP accreditation. The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report. Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory. 2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com #### ALS Environmental - Simi Valley #### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS	Agency	Web Site
7-001.03	40III VOATICE		
Water 11/16/2017 09:55 # ALS's Sample Routing Sheet 11/21/2017 11/2: (509) 377-8058 Fax: (509) 377-8464 350 Hills Street, Suite 107 Richland, WA 99354-5511	Method	RSK-175	RSK-175
9.746	101.68	97.46	4.24
page. 3 7 8 9 ### **Definitions/Glossary** Client: Parametrix, Inc. Project/Site: Horn Rapids Investigation TestAmerica Job ID: 580-72948-1 ### **Qualifiers** ### **GC/MS VOA** LCS or LCSD is outside acceptance limits. ### **Glossary**	Abbreviation	These commonly used abbreviations may or may not be present in this report.	
Analyzed	Dil Fac		------------------------------
TestAmerica Job ID: 580-72948-1 Project/Site: Horn Rapids Investigation Client Sample ID: Trip Blank Lab Sample ID: 580-72948-4 Date Collected: 11/09/17 00:01 Matrix: Water Date Received: 11/16/17 09:40	Surrogate	%Recovery	Qualifier
(Surr)	104		86 - 126
----------	-------	--------	-----------
253-922-5047 www.testamericainc.com		Rush Short Hold	Plot
--		Client PARZAMIETE 1X	
Company	Custody Seals Intact. A Yes A No # **Login Sample Receipt Checklist** Client: Parametrix, Inc. Job Number: 580-72948-1 Login Number: 72948 List Source: TestAmerica Seattle List Number: 1 Creator: Gall, Brandon A	Creator. Gail, Brandon A	
Validation** Horn Rapids 553-3820-007 QA/QC completed by: Lisa Gilbert Sample number: PP-1 through PP-5 November 7 through 16, 2017 Sample Date: **Energy Northwest** All within limits Holding Times: All compounds indicated on COC were analyzed Chain vs Data: (List any compounds detected) Blanks: MB 1,2-Dibromoethane 0.0018 ug/L (PP-4) Trip 1,2-Dibromoethane 0.0033 ug/L (PP-2), 0.0020 ug/L (PP-3), 0.0017 ug/L (PP-4) MS/MSD: NA Lab Control Sample: NA Surrogate: NA Lab Comments: NA Report results for 1,2-dibromoethane as <0.001 ug/L due to detection in Trip blank and method blank Parametrix Comments: # PRECLEANED CERTIFIED Certificate of Compliance The enclosed containers have been chemically cleaned by using the specified USEPA cleaning procedures for low level chemical analysis. Representative containers have been tested by independent certified laboratories for their appropriate use. ESS containers meet and exceed the required detection limits established by the USEPA in SPECIFICATIONS AND GUIDANCE FOR CONTAMINANT-FREE SAMPLE CONTAINERS (OSWER Directive #9240.0-05A).			EXTRACTABL
< 0.20	<0.5	<0.5	<0.20
America		Analyte	Units
<0.20	<0.20	<0.20	<0.20
---	---	-------------	---
		500 **	500 **
MW-8	MW-8	MW-8	(MW-8 Dup)
Ammonia-Nitrogen | mg/L as N | | | <0.20 | <0.20 | <0.5 | <0.50 | NA | NA | NA | NA | | | Total Organic Carbon | mg/L | | | 4.1 | 3.9 | 4.1 | 4.4 | NA | NA | NA | NA | | | Total Dissolved Solids | mg/L | 500 ** | 500 ** | 1300 | 1300 | 1300 | 1300 | NA | NA | NA | NA | | | Total Suspended Solids | mg/L | | | <2.0 H | <2.0 | <2.0 | <2.0 | NA | NA | NA | NA | | METALS | Antimony, Total | mg/L | | 6 * | < 0.0004 | <0.0004 | <0.0004 | < 0.0004 | NA | NA | NA | NA | | | Arsenic, Total | mg/L | 0.00005 *** | 0.01 * | 0.0057 | 0.0047 | 0.0046 | 0.0047 | NA | NA | NA | NA | | | Barium, Total | mg/L | 1 * | 2 * | 0.120 | 0.110 | 0.110 | 0.100 | NA | NA | NA | NA | | | Beryllium, Total | mg/L | | 0.004 * | < 0.0004 | <0.0004 | <0.0004 | <0.0004 | NA | NA | NA | NA | | | Cadmium, Total | mg/L | 0.01 * | 0.005 * | < 0.0004 | <0.0004 | <0.0004 | <0.0004 | NA | NA | NA | NA | | | Chromium, Total | mg/L | 0.05 * | 0.1 * | 0.0028 | 0.0046 | 0.0056 | 0.0031 | NA | NA | NA | NA | | | Cobalt, Total | mg/L | 0.03 | 0.1 | < 0.0028 | <0.0040 | <0.0004 | <0.0004 | NA | NA | NA | NA | | | Copper, Total | mg/L | 1 ** | | <0.002 | <0.002 | <0.0004 | <0.002 | NA | NA | NA | NA | | | Lead, Total | mg/L | 0.05 * | | <0.002 | <0.002 | <0.0008 | <0.002 | NA | NA | NA | NA | | | Nickel, Total | mg/L | 0.03 | 0.1 * | <0.003 | <0.003 | <0.003 | <0.003 | NA | NA | NA | NA | | | Selenium, Total | mg/L | 0.01 * | 0.05 * | 0.0093 | 0.0082 | <0.008 | <0.008 | NA | NA | NA | NA | | | Silver, Total | mg/L | 0.05 * | 0.03 | < 0.0093 | <0.0004 | <0.0004 | <0.0004 | NA | NA | NA | NA | | | Thallium, Total | mg/L | 0.03 | 0.002 * | < 0.0004 | <0.001 | <0.001 | <0.0004 | NA | NA | NA | NA | | | Vanadium, Total | mg/L | | 0.002 | 0.011 | 0.0092 | 0.0097 | 0.0098 | NA | NA | NA | NA | | | Zinc, Total | mg/L | 5 ** | 5 ** | < 0.007 | <0.0092 | <0.0037 | <0.007 | NA | NA | NA | NA | | VOLATILE ORGANIC | 1,1,1,2-Tetrachloroethane | μg/L | 3 | 3 | <0.007 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | COMPOUNDS | 1,1,1-Trichloroethane | | 200 * | 200 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | COMPOUNDS | | μg/L | 200 | 200 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane | μg/L | | 5 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | | μg/L | 1 *** | 3 ' | <0.20 | <0.20 | | <0.20 | | <0.20 | <0.20 | | | | 1,1-Dichloroethane | μg/L | 1 | 7 * | - | | <0.20 | | <0.20 | | | <0.20 | | | 1,1-Dichloroethene | μg/L | | 7 * | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 1,2,3-Trichloropropane | μg/L | | 0.2 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | 1,2-Dibromo-3-Chloropropane | μg/L | 0.004 *** | 0.2 * | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | 1,2-Dibromoethane | μg/L | 0.001 *** | 0.05 * | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | | | 1,2-Dichlorobenzene | μg/L | 0 F +++ | 600 * | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | | | 1,2-Dichloroethane | μg/L | 0.5 *** | 5 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | 1,2-Dichloropropane | μg/L | 0.6 *** | 5 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | 1,4-Dichlorobenzene | μg/L | 4 *** | 75 * | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | <0.30 | | | 2-Butanone | μg/L | | | <15 | <15 | <15 | <15 | <15 | <15 | <15 | <15 | | | 2-Hexanone | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | 4-Methyl-2-pentanone | μg/L | | | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | Table D-4. Groundwater Quality Monitoring Results, Horn Rapids Landfill, 2017 | | | | | | | | MW-21 | | | | | | | | | |---------------------|-----------------------------|-------|----------|-------------|-------------------|-------------------|-------------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------------|--------------------| | | Analyte | Units | GWQS | MCL | MW-1
2/16/2017 | MW-1
5/24/2017 | (MW-1 Dup)
5/24/2017 | MW-1
8/28/2017 | MW-1
11/14/2017 | MW-2
2/16/2017 | MW-2
5/23/2017 | MW-2
8/28/2017 | MW-2
11/15/2017 | MW-3
8/29/2017 | MW-3
11/15/2017 | | VOLATILE ORGANIC | Acetone | μg/L | | | <2.0 | <2.0 | 2.4 | <2.0 | 2.7 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 2.0 | | COMPOUNDS (Cont.) | Acrylonitrile | μg/L | 0.07 *** | | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | | Benzene | μg/L | 1 *** | 5 * | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | | | Bromochloromethane | μg/L | | | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | Bromodichloromethane | μg/L | 0.3 *** | 80 * THM | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | Bromoform | μg/L | 5 *** | 80 * THM | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Bromomethane | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Carbon Disulfide | μg/L | | | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | Carbon Tetrachloride | μg/L | 0.3 *** | 5 * | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | | | Chlorobenzene | μg/L | | 100 * | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | | | Chloroethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Chloroform | μg/L | 7 *** | 80 * THM | < 0.20 | <0.20 | < 0.20 | <0.20 | 0.27 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.63 | 0.90 | | | Chloromethane | μg/L | | | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | | | cis-1,2-Dichloroethene | μg/L | | 70 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.47 | 0.43 | | | cis-1,3-Dichloropropene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Dibromochloromethane | μg/L | | 80 * THM | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Dibromomethane | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Ethylbenzene | μg/L | | 700 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Iodomethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Methylene Chloride | μg/L | 5 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | m,p-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | o-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Styrene | μg/L | | 100 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Tetrachloroethene | μg/L | 0.8 *** | 5 * | 5.0 | 4.1 | 4.1 | 4.7 | 0.73 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | | | Toluene | μg/L | | 1000 * | < 0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | | | trans-1,2-Dichloroethene | μg/L | | 100 * | < 0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | | | trans-1,3-Dichloropropene | μg/L | | | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | | | trans-1,4-Dichloro-2-butene | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | Trichloroethene | μg/L | 3 *** | 5 * | 0.34 | 0.27 | 0.28 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | | | Trichlorofluoromethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Vinyl Acetate | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Vinyl Chloride | μg/L | 0.02 *** | 2 * | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | | | Total Xylenes | μg/L | | 10000 * XYL | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | NATURAL ATTENUATION | Methane | μg/L | | | <1.2 | <1.2 | <1.2 | <5 | <1.2 | <1.2 | <1.2 | <5 | <1.2 | <5 | <1.2 | | PARAMETERS | Ethane | μg/L | | | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <10 | <5 | <10 | | | Ethene | μg/L | | | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <10 | <5 | <10 | Table D-4. Groundwater Quality Monitoring Results, Horn Rapids Landfill, 2017 | | | | | | | | | | | MW-21 | | | | | | | | |-------------------------|-----------------------------|-------|----------|--------------|-----------|-----------|-----------|------------|-----------|------------|-----------|-----------|------------|-----------|-----------|-----------|------------| | | | | | | MW-4 | MW-4 | MW-4 | MW-4 | MW-5 | (MW-5 Dup) | MW-5 | MW-5 | MW-5 | MW-6 | MW-6 | MW-6 | MW-6 | | | Analyte | Units | GWQS | MCL | 2/15/2017 | 5/24/2017 | 8/28/2017 | 11/15/2017 | 2/16/2017 | 2/16/2017 | 5/23/2017 | 8/28/2017 | 11/15/2017 | 2/16/2017 | 5/24/2017 | 8/29/2017 | 11/15/2017 | | VOLATILE ORGANIC | Acetone | μg/L | | | <2.0 | <2.0 | <2.0 | 2.7 | <2.0 | <2.0 | <2.0 | <2.0 | 3.5 | <2.0 | <2.0 | <2.0 | 2.3 | | COMPOUNDS (Cont.) | Acrylonitrile | μg/L | 0.07 *** | | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | | Benzene | μg/L | 1
*** | 5 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.33 | 0.32 | 0.27 | 0.29 | 0.29 | 0.50 | 0.52 | 0.51 | 0.56 | | | Bromochloromethane | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Bromodichloromethane | μg/L | 0.3 *** | 80 * THM | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Bromoform | μg/L | 5 *** | 80 * THM | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Bromomethane | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Carbon Disulfide | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Carbon Tetrachloride | μg/L | 0.3 *** | 5 * | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | | | Chlorobenzene | μg/L | | 100 * | < 0.20 | < 0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | | | Chloroethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Chloroform | μg/L | 7 *** | 80 * THM | 0.58 | 0.51 | 0.46 | 0.48 | < 0.20 | 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | | | Chloromethane | μg/L | | | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | | | cis-1,2-Dichloroethene | μg/L | | 70 * | 2.7 | 2.9 | 2.6 | 2.7 | 34 | 35 | 33 | 34 | 30 | 57 | 120 J | 55 H | 55 | | | cis-1,3-Dichloropropene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | < 0.50 | | | Dibromochloromethane | μg/L | | 80 * THM | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Dibromomethane | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Ethylbenzene | μg/L | | 700 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Iodomethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Methylene Chloride | μg/L | 5 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | m,p-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | o-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Styrene | μg/L | | 100 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Tetrachloroethene | μg/L | 0.8 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 16 | 16 | 12 | 15 | 11 | 34 | 33 | 30 | 24 | | | Toluene | μg/L | | 1000 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | | | trans-1,2-Dichloroethene | μg/L | | 100 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.62 | 0.56 | 0.54 | 0.69 | 0.54 | 1.8 | 1.9 | 1.8 | 1.7 | | | trans-1,3-Dichloropropene | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | trans-1,4-Dichloro-2-butene | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | Trichloroethene | μg/L | 3 *** | 5 * | 0.22 | 0.23 | < 0.20 | < 0.20 | 6.6 | 6.6 | 5.2 | 5.7 | 5.1 | 16 | 16 | 14 | 13 | | | Trichlorofluoromethane | μg/L | | | 0.88 J | 0.87 | 0.95 | 0.88 | < 0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | <0.50 | | | Vinyl Acetate | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Vinyl Chloride | μg/L | 0.02 *** | 2 * | 0.042 | 0.043 | 0.042 | <0.020 | 4.8 | 4.7 | 4.0 | 4.3 | 4.5 | 2.8 | 2.7 | 2.7 | 3.3 | | | Total Xylenes | μg/L | | 10000 * XYL | <0.50 | <0.50 | <0.50 | <0.50 | < 0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | < 0.50 | <0.50 | <0.50 | <0.50 | | NATURAL ATTENUATION | Methane | μg/L | | - | <1.2 | <1.2 | <5 | <1.2 | 1700 J | 1200 J | 1300 | 2200 | 1000 | 3800 | 3300 | 4900 | 2400 | | PARAMETERS | Ethane | μg/L | | | <10 | <10 | <5 | <10 | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <10 | | - | Ethene | μg/L | | | <10 | <10 | <5 | <10 | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <10 | Table D-4. Groundwater Quality Monitoring Results, Horn Rapids Landfill, 2017 | | | | | | | | | MW-21 | | | | | | MW-21 | | | | | |---------------------|-----------------------------|-------|----------|-------------|-----------|-----------|-----------|------------|--------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|------------| | | | | | | MW-8 | MW-8 | MW-8 | (MW-8 Dup) | MW-8 | MW-9 | MW-9 | MW-9 | MW-9 | (MW-9 Dup) | MW-10 | MW-10 | MW-10 | MW-10 | | | Analyte | Units | GWQS | MCL | 2/16/2017 | 5/24/2017 | 8/29/2017 | | | 2/16/2017 | 5/23/2017 | 8/29/2017 | 11/14/2017 | 11/14/2017 | 2/16/2017 | 5/23/2017 | 8/29/2017 | 11/14/2017 | | VOLATILE ORGANIC | Acetone | μg/L | | | <2.0 | 2.2 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 17 | <2.0 | <2.0 | 9.0 | | COMPOUNDS (Cont.) | Acrylonitrile | μg/L | 0.07 *** | | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | | Benzene | μg/L | 1 *** | 5 * | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | 0.34 | 0.27 | 0.30 | 0.84 | | | Bromochloromethane | μg/L | | | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | | | Bromodichloromethane | μg/L | 0.3 *** | 80 * THM | 0.83 | 0.69 | 0.34 | 0.35 | 0.66 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | | | Bromoform | μg/L | 5 *** | 80 * THM | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Bromomethane | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Carbon Disulfide | μg/L | | | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | | | Carbon Tetrachloride | μg/L | 0.3 *** | 5 * | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | | | Chlorobenzene | μg/L | | 100 * | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | | | Chloroethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 0.66 | < 0.50 | 0.75 | < 0.50 | | | Chloroform | μg/L | 7 *** | 80 * THM | 11 | 9.3 | 5.3 | 5.2 | 9.0 | 0.36 | 0.34 | 0.24 | 0.30 | 0.30 | 0.57 | 0.67 | 1.0 | 0.65 | | | Chloromethane | μg/L | | | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | | | cis-1,2-Dichloroethene | μg/L | | 70 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 13 | 13 | 9.4 | 13 | 13 | 16 | 14 | 17 | 17 | | | cis-1,3-Dichloropropene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Dibromochloromethane | μg/L | | 80 * THM | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Dibromomethane | μg/L | | | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | | | Ethylbenzene | μg/L | | 700 * | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | | | Iodomethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Methylene Chloride | μg/L | 5 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 1.5 | 2.1 | 2.6 | 1.3 | | | m,p-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | o-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Styrene | μg/L | | 100 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Tetrachloroethene | μg/L | 0.8 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | 11 | 12 | 11 | 9.6 | 9.7 | 6.6 | 5.3 | 6.7 | 5.8 | | | Toluene | μg/L | | 1000 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | | | trans-1,2-Dichloroethene | μg/L | | 100 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.32 | 0.36 | 0.30 | 0.37 | 0.42 | < 0.20 | < 0.20 | < 0.20 | 0.22 | | | trans-1,3-Dichloropropene | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | < 0.20 | < 0.20 | <0.20 | <0.20 | | | trans-1,4-Dichloro-2-butene | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | Trichloroethene | μg/L | 3 *** | 5 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 5.8 | 5.5 | 3.6 | 4.8 | 5.0 | 3.3 | 2.7 | 3.2 | 3.1 | | |
Trichlorofluoromethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Vinyl Acetate | μg/L | | | <1.0 | <1 F1 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Vinyl Chloride | μg/L | 0.02 *** | 2 * | < 0.020 | <0.020 | <0.020 | < 0.020 | <0.020 | 0.053 | 0.042 | 0.029 | <0.020 | <0.020 | 1.1 | 0.95 | 0.97 | 1.0 | | | Total Xylenes | μg/L | | 10000 * XYL | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | | NATURAL ATTENUATION | Methane | μg/L | | | <1.2 | <1.2 | <5 | <5 | <1.2 | <1.2 | <1.2 | <5 | 1.6 | <1.2 | 1500 | 360 | 1700 | 930 | | PARAMETERS | Ethane | μg/L | | | <10 | <10 | <5 | <5 | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <10 | <5 | <10 | | | Ethene | μg/L | | | <10 | <10 | <5 | <5 | <10 | <10 | <10 | <5 | <10 | <10 | <10 | <10 | <5 | <10 | Table D-4. Groundwater Quality Monitoring Results, Horn Rapids Landfill, 2017 | | Analyte | Units | GWQS | MCL | MW-11
2/16/2017 | MW-11
5/23/2017 | MW-11
8/28/2017 | MW-11
11/14/2017 | Trip Blank
2/16/2017 | Trip Blank
5/23/2017 | Trip Blank
8/28/2017 | Trip Blank
11/14/2017 | |---------------------|-----------------------------|-------|----------|-------------|--------------------|--------------------|--------------------|---------------------|-------------------------|-------------------------|-------------------------|--------------------------| | VOLATILE ORGANIC | Acetone | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | 4.5 | <2.0 | | COMPOUNDS (Cont.) | Acrylonitrile | μg/L | 0.07 *** | | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | <5.0 | | | Benzene | μg/L | 1 *** | 5 * | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | < 0.20 | < 0.20 | | | Bromochloromethane | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Bromodichloromethane | μg/L | 0.3 *** | 80 * THM | <0.20 | <0.20 | <0.20 | < 0.20 | <0.20 | <0.20 | <0.20 | <0.20 | | | Bromoform | μg/L | 5 *** | 80 * THM | < 0.50 | < 0.50 | < 0.50 | < 0.50 | <0.50 | < 0.50 | < 0.50 | < 0.50 | | | Bromomethane | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Carbon Disulfide | μg/L | | | < 0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | <0.20 | < 0.20 | | | Carbon Tetrachloride | μg/L | 0.3 *** | 5 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Chlorobenzene | μg/L | | 100 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Chloroethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Chloroform | μg/L | 7 *** | 80 * THM | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Chloromethane | μg/L | | | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | < 0.30 | | | cis-1,2-Dichloroethene | μg/L | | 70 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | cis-1,3-Dichloropropene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Dibromochloromethane | μg/L | | 80 * THM | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Dibromomethane | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Ethylbenzene | μg/L | | 700 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Iodomethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Methylene Chloride | μg/L | 5 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | m,p-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | o-Xylene | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Styrene | μg/L | | 100 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Tetrachloroethene | μg/L | 0.8 *** | 5 * | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Toluene | μg/L | | 1000 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | 0.25 B | < 0.20 | < 0.20 | < 0.20 | | | trans-1,2-Dichloroethene | μg/L | | 100 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | trans-1,3-Dichloropropene | μg/L | | | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | trans-1,4-Dichloro-2-butene | μg/L | | | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | | | Trichloroethene | μg/L | 3 *** | 5 * | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | < 0.20 | | | Trichlorofluoromethane | μg/L | | | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | | Vinyl Acetate | μg/L | | | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | | | Vinyl Chloride | μg/L | 0.02 *** | 2 * | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | | | Total Xylenes | μg/L | | 10000 * XYL | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | < 0.50 | | NATURAL ATTENUATION | Methane | μg/L | | | <1.2 | <1.2 | <5 | <1.2 | <1.2 | <1.2 | <5 | <5 | | PARAMETERS | Ethane | μg/L | | | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <5 | | | Ethene | μg/L | | | <10 | <10 | <5 | <10 | <10 | <10 | <5 | <5 | Notes: GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200) MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290) * = Primary ** = Secondary *** = Carcinogen **Bold** = Does not meet GWQS or MCL NA = Not analyzed ^{*}THM = Primary MCL for the sum of all trihalomethanes ^{*}XYL = Primary MCL for the sum of all xylenes J = Estimated value; see lab report for details R = Rejected value; field instrument calibration error H = Estimated value; analyzed beyond specified holding time B = Detected in reagent blank or trip blank Table D-5. Groundwater Monitoring Well and Push Probe Results for Selected VOCs used in Isoconcentration Maps, Horn Rapids Landfill, 2017 | | | | | | Groundwater Samples | | | | | | | | | | Pu | sh Probe Samp | oles | | |------------------------|-------|----------|------|------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|---------------|------------|------------| | | | | | MW-1 | MW-2 | MW-3 | MW-4 | MW-5 | MW-6 | MW-8 | MW-9 | MW-10 | MW-11 | PP-1 | PP-2 | PP-3 | PP-4 | PP-5 | | | Units | GWQS | MCL | 11/14/2017 | 11/15/2017 | 11/15/2017 | 11/15/2017 | 11/15/2017 | 11/15/2017 | 11/14/2017 | 11/14/2017 | 11/14/2017 | 11/14/2017 | 11/15/2017 | 11/7/2017 | 11/9/2017 | 11/13/2017 | 11/16/2017 | | 1,1-Dichloroethane | μg/L | 1 *** | | <0.20 | <0.20 | 0.48 | 4.0 | 7.7 | 4.5 | <0.20 | 3.9 | 9.4 | <0.20 | 4.8 | 1.1 | 0.74 | <0.5 | <0.5 | | cis-1,2-Dichloroethene | μg/L | | 70 * | <0.20 | <0.20 | 0.43 | 2.7 | 30 | 55 | <0.20 | 13 | 17 | <0.20 | 28 | <0.5 | 0.67 | <0.5 | <0.5 | | Tetrachloroethene | μg/L | 0.8 *** | 5 * | 0.73 | <0.50 | <0.50 | <0.50 | 11 | 24 | <0.50 | 9.6 | 5.8 | <0.50 | 4.1 | <0.5 | <0.5 | <0.5 | <0.5 | | Trichloroethene | μg/L | 3 *** | 5 * | <0.20 | <0.20 | <0.20 | <0.20 | 5.1 | 13 | <0.20 | 4.8 | 3.1 | <0.20 | 4.9 | <0.5 | <0.5 | <0.5 | <0.5 | | Vinyl Chloride | μg/L | 0.02 *** | 2 * | <0.020 | <0.020 | <0.020 | <0.020 | 4.5 | 3.3 | <0.020 | <0.020 | 1.0 | <0.020 | 0.3481 | 0.0052 | 0.0087 | <0.005 | <0.02 | **Notes:** GWQS = Water Quality Standards for Ground Waters of the State of Washington (WAC 173-200) MCL = Maximum Contaminant Level, State Drinking Water Regulations (WAC 246-290) * = Primary *** = Carcinogen **Bold** = Does not meet GWQS or MCL January 2018 | 553-3820-007 Page 1 of 1 Appendix E Isoconcentration Maps Figure 1 November 2017 Concentrations of 1,1-Dichloroethane (µg/L) in Groundwater Horn Rapids Landfill Figure 2 November 2017 Concentrations of Tetrachloroethene (µg/L) in Groundwater Horn Rapids Landfill Figure 3 November 2017 Concentrations of Trichloroethene (µg/L) in Groundwater Horn Rapids Landfill Parametrix DATE: January 24, 2018 Legend: SCALE IN FEET DATE: January 24, 2018 FILE: PS3820004P04T02-F4 Facility Boundary Refuse Limit Closure Limit Isoconcentration Contour cis-1, 2-Dichloroethene MCL = 70 µg/L Figure 4 November 2017 Concentrations of cis-1, 2-Dichloroethene (µg/L) in Groundwater Horn Rapids Landfill Figure 5 November 2017 Concentrations of Vinyl Chloride (µg/L) in Groundwater Horn Rapids Landfill ## Appendix F 2017 Potentiometric Surface Maps screens Approximate groundwater flow direction SCALE IN FEET First Quarter 2017 Gas Probe (1, 2, 3) with variable-depth **Horn Rapids Landfill** Groundwater elevation contour Gas Probe (1, 2, 3) with variable-depth Approximate groundwater flow direction screens SCALE IN FEET ## **Second Quarter 2017 Horn Rapids Landfill** Gas Probe (1, 2, 3) with variable-depth Approximate groundwater flow direction screens SCALE IN FEET Third Quarter 2017 **Horn Rapids Landfill** Gas Probe (1, 2, 3) with variable-depth Approximate groundwater flow direction Fourth Quarter 2017 **Horn Rapids Landfill** # Appendix G Monitoring Well Specification APPROVED | NUMBER NORTHING EASTING GRADE ELEVATION ELEVATION EXTRACTION WELLS 50.90 468.00 50.90 GW-5 372390.66 2291954.81 512.90 468.00 50.90 GW-6 372240.63 2291954.46 514.70 468.00 50.90 GW-7 372090.52 2291954.25 515.70 468.00 50.90 GW-8 371940.66 2291954.40 516.80 468.00 50.90 GW-9 371790.84 2291954.50 516.60 468.00 50.90 GW-10 371640.01 2291955.17 515.00 468.00 50.90 GW-11 371490.79 2291954.10 513.90 468.00 50.90 GW-12 371340.44 2291953.94 514.50 468.00 50.90 GW-13 371190.00 2291954.83 515.40 468.00 50.90 GW-14 371040.70 2291954.49 510.40 468.00 50.90 GW-15 372380.77 2292 | .90
.70 |
---|-------------------| | EXTRACTION WELLS GW-5 372390.66 2291954.46 512.90 468.00 506 GW-6 372240.63 2291954.46 514.70 468.00 506 GW-7 372090.52 2291954.25 515.70 468.00 507 GW-8 371940.66 2291954.40 516.80 468.00 508 GW-9 371790.84 2291954.50 516.60 468.00 507 GW-10 371640.01 2291955.17 515.00 468.00 507 GW-11 371490.79 2291954.10 513.90 468.00 507 GW-12 371340.44 2291953.94 514.50 468.00 507 GW-13 371190.00 2291954.83 515.40 468.00 507 GW-14 371040.70 2291954.49 510.40 468.00 507 GW-15 372380.77 2292092.47 514.60 454.00 507 GW-16 371078.39 2292100.27 519.50 454.00 51 | .90
.70
.70 | | GW-5 372390.66 2291954.81 512.90 468.00 506 GW-6 372240.63 2291954.46 514.70 468.00 506 GW-7 372090.52 2291954.25 515.70 468.00 507 GW-8 371940.66 2291954.40 516.80 468.00 508 GW-9 371790.84 2291954.50 516.60 468.00 507 GW-10 371640.01 2291955.17 515.00 468.00 507 GW-11 371490.79 2291954.10 513.90 468.00 507 GW-12 371340.44 2291953.94 514.50 468.00 507 GW-13 371190.00 2291954.83 515.40 468.00 507 GW-14 371040.70 2291954.49 510.40 468.00 507 GW-15 372380.77 2292092.47 514.60 454.00 507 GW-16 371078.39 2292100.27 519.50 454.00 507 GW-17 372363.24 <th>.70
.70</th> | .70
.70 | | GW-6 372240.63 2291954.46 514.70 468.00 500 GW-7 372090.52 2291954.25 515.70 468.00 500 GW-8 371940.66 2291954.40 516.80 468.00 500 GW-9 371790.84 2291954.50 516.60 468.00 500 GW-10 371640.01 2291955.17 515.00 468.00 500 GW-11 371490.79 2291954.10 513.90 468.00 500 GW-12 371340.44 2291953.94 514.50 468.00 500 GW-13 371190.00 2291954.83 515.40 468.00 500 GW-14 371040.70 2291954.49 510.40 468.00 500 GW-15 372380.77 2292092.47 514.60 454.00 500 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .70
.70 | | GW-7 372090.52 2291954.25 515.70 468.00 50 GW-8 371940.66 2291954.40 516.80 468.00 508 GW-9 371790.84 2291954.50 516.60 468.00 508 GW-10 371640.01 2291955.17 515.00 468.00 50 GW-11 371490.79 2291954.10 513.90 468.00 50 GW-12 371340.44 2291953.94 514.50 468.00 50 GW-13 371190.00 2291954.83 515.40 468.00 50 GW-14 371040.70 2291954.49 510.40 468.00 50 GW-15 372380.77 2292092.47 514.60 454.00 50 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .70 | | GW-8 371940.66 2291954.40 516.80 468.00 508 GW-9 371790.84 2291954.50 516.60 468.00 508 GW-10 371640.01 2291955.17 515.00 468.00 507 GW-11 371490.79 2291954.10 513.90 468.00 508 GW-12 371340.44 2291953.94 514.50 468.00 507 GW-13 371190.00 2291954.83 515.40 468.00 507 GW-14 371040.70 2291954.49 510.40 468.00 507 GW-15 372380.77 2292092.47 514.60 454.00 507 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | | | GW-9 371790.84 2291954.50 516.60 468.00 500 GW-10 371640.01 2291955.17 515.00 468.00 500 GW-11 371490.79 2291954.10 513.90 468.00 500 GW-12 371340.44 2291953.94 514.50 468.00 500 GW-13 371190.00 2291954.83 515.40 468.00 500 GW-14 371040.70 2291954.49 510.40 468.00 500 GW-15 372380.77 2292092.47 514.60 454.00 500 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | | | GW-10 371640.01 2291955.17 515.00 468.00 50 GW-11 371490.79 2291954.10 513.90 468.00 50 GW-12 371340.44 2291953.94 514.50 468.00 50 GW-13 371190.00 2291954.83 515.40 468.00 50 GW-14 371040.70 2291954.49 510.40 468.00 50 GW-15 372380.77 2292092.47 514.60 454.00 50 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .80 | | GW-11 371490.79 2291954.10 513.90 468.00 503 GW-12 371340.44 2291953.94 514.50 468.00 504 GW-13 371190.00 2291954.83 515.40 468.00 503 GW-14 371040.70 2291954.49 510.40 468.00 503 GW-15 372380.77 2292092.47 514.60 454.00 504 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .60 | | GW-12 371340.44 2291953.94 514.50 468.00 500 GW-13 371190.00 2291954.83 515.40 468.00 500 GW-14 371040.70 2291954.49 510.40 468.00 500 GW-15 372380.77 2292092.47 514.60 454.00 500 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .00 | | GW-13 371190.00 2291954.83 515.40 468.00 50 GW-14 371040.70 2291954.49 510.40 468.00 50 GW-15 372380.77 2292092.47 514.60 454.00 50 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .90 | | GW-14 371040.70 2291954.49 510.40 468.00 500 GW-15 372380.77 2292092.47 514.60 454.00 500 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .50 | | GW-15 372380.77 2292092.47 514.60 454.00 500 GW-16 371078.39 2292100.27 519.50 454.00 51 GW-17 372363.24 2292229.23 519.00 455.00 51 | .40 | | GW-16 371078.39 2292100.27 519.50 454.00 51°
GW-17 372363.24 2292229.23 519.00 455.00 51° | .40 | | GW-17 372363.24 2292229.23 519.00 455.00 51 | .60 | | | .50 | | CW_18 371351.05 2292177.70 528.80 455.00 520 | .00 | | GW-10 3/1331.03 22321/7.70 320.00 433.00 320 | .80 | | GW-19 371085.43 2292249.96 529.90 455.00 52 | .90 | | GW-20 372343.76 2292376.40 519.00 455.00 51 | .00 | | GW-21 372143.80 2292384.48 529.70 455.00 52 | .70 | | GW-22 371944.55 2292377.54 531.80 455.00 523 | .80 | | GW-23 371748.86 2292341.31 535.50 455.00 52 | .50 | | GW-24 371549.98 2292339.94 535.20 455.00 52 | .20 | | GW-25 371353.81 2292378.15 532.80 455.00 524 | .80 | | GW-26 371155.11 2292385.19 532.80 455.00 524 | | | GW-27 371003.77 2292375.44 532.40 455.00 524 | .80 | #### NOTE: BOTTOM BORING ELEVATION SHALL BE FIELD VERIFIED BASED ON ACTUAL REFUSE LIMITS. OWNER SHALL SURVEY WELL LOCATION AND LABEL EXISTING GROUND SURFACE AND WELL NUMBER. **GROUNDWATER MONITORING WELL (MW-11)** 6"ø MIN. DETAIL Parametrix LOCKING STEEL CAP AND CASING- PROTECTIVE CASING (SEE SPECIFICATIONS) -2" PVC SLIP CAP - CEMENT/BENTONITE SLURRY -2" SCHEDULE 40 PVC RISER PIPE - BENTONITE SEAL - SILICA SAND 100 MESH - SILICA SAND 20-40 MESH - 2" SCHEDULE 40 PVC WITH 0.010 in SLOT SCREEN PIPE CONCRETE PAD HORN RAPIDS LANDFILL GAS and GROUNDWATER WELLS INSTALLATION PROJECT RICHLAND, WA **DETAILS and WELL SCHEDULE** DRAWING NO. 3 OF 4 C4