

TECHNICAL MEMORANDUM

TO: Chris Wend – Washington State Department of Ecology (by mail and e-mail)

cc: Merv Wark – Yakima Steel Fabricators (by e-mail)

Clark Davis – Davis Law Office, PLLC (by e-mail)

FROM: Eric Buer, L.G., L.H.G., Associate Hydrogeologist

Jeff Kaspar, L.G., L.H.G., Principal Geologist

DATE: July 17, 2017

RE: WETLAND EVALUATION TECHNICAL MEMORANDUM

AGRI-TECH AND YAKIMA STEEL FABRICATORS SITE

YAKIMA, WASHINGTON

AGREED ORDER NO. DE 6091

FARALLON PN: 765-001

Farallon Consulting, L.L.C. (Farallon) has prepared this technical memorandum to provide the Washington State Department of Ecology (Ecology) with a summary of the previous soil and sediment investigations and the results of a sediment cleanup site evaluation performed for the approximately 0.45-acre wetland on the southern portion of 6 and 10½ East Washington Avenue in Yakima, Washington (herein referred to as the Site) (Figure 1). This information is provided to support a determination of whether further evaluation of the wetland is needed as part of the Feasibility Study for the Site. Farallon has prepared this memorandum on behalf of Yakima Steel Fabricators, Inc. (YSF) for the YSF and Agri-Tech, Inc. (Agri-Tech) properties that comprise the Site.

The work described in this technical memorandum was performed to meet the requirements of Agreed Order No. DE 6091 dated October 27, 2008, entered into by Ecology and YSF pursuant to the authority of the Washington State Model Toxics Control Act Cleanup Regulation (MTCA); and the First Amendment to Agreed Order No. DE 6091 dated October 17, 2016. Documents used in the preparation of this technical memorandum are provided in Attachment A.

BACKGROUND

The Site consists of Yakima County Tax Parcel Nos. 19133141009 and 19133141409 (Figure 2). Two structures currently are present at the Site: one single-story building currently used for steel fabrication and business offices on the YSF property (YSF building); and one single-story warehouse building on the Agri-Tech property (Agri-Tech building). Currently, the Agri-Tech building is leased by the operator of YSF for use in its steel fabrication operations. The wetland area is present on the southernmost portion of Yakima County Parcel No. 19133141009.

From 2011 through 2014, Farallon conducted a supplemental remedial investigation (RI) of soil and sediment quality to characterize the source, nature, and extent of the chemicals of potential concern (COPCs), including petroleum hydrocarbons, metals, chlorinated pesticides, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and volatile organic compounds (VOCs), in soil and groundwater on the southern parcel (Yakima County Parcel No. 19133141009) of the Site. The original work scope for completion of the supplemental RI was approved by Ecology and established in the *Feasibility Study Work Plan*, *Agri-Tech and Yakima Steel Fabricators*, 6 and 10½ East Washington Avenue, Yakima, Washington dated May 3, 2011, prepared by Farallon (FS Work Plan). This memorandum focuses on the area of the wetland in the southernmost portion of the Site, which can be evaluated as a separate sediment management unit under the Sediment Management Standards (SMS), Chapter 173-204 of the Washington Administrative Code (WAC 173-204).

Pertinent information regarding current and historical uses in this area of the Site and surrounding properties and a summary of previous sampling conducted in the wetlands area is presented below. More detailed descriptions of the Site features, ownership and operation, historical Site use, use of surrounding properties, and previous work conducted at the Site are provided in the FS Work Plan and the *Revised Remedial Investigation Report*, *Agri-Tech & Yakima Steel Fabricators*, 6 and 10½ East Washington Avenue, Yakima, Washington dated June 10, 2004, prepared by Farallon (RI Report).

SITE USAGE AND AREAS OF INVESTIGATION

Based on the historical Site uses, three areas of investigation have been established (Figure 2):

- Area 1 Area 1, north of the Site wetland, includes the former Yakima Farmer Supply lime and sulfur processing plant, and the area of the plant's former waste pit.
- Area 2 Area 2, north of the Site wetland, is present on the central and eastern portions of the YSF property between the YSF building and the east-adjacent automobile recycling facility, and is suspected to have included stockpiles of bulk lime and sulfur.
- Area 3 Area 3 is southwest of the YSF building where a small release of petroleum hydrocarbons was suspected by Ecology proximate to the YSF building and north of the Site wetland. Ecology also identified Area 3 as a potential area of metals contamination due to historical activities at the west-adjacent Bay Chemical Company property, described

in further detail below. Area 3 also currently includes a former pond and the current wetland area.

The wetland was once part of a larger pond where the northern portions were filled during the early years of YSF's acquisition to accommodate steel storage. Since the 1980s the footprint of the pond has continued to shrink to its current size, resulting in the current estimated 0.45-acre wetland. The shrinking condition appears to be largely due to changes in surrounding land use, which changed from rural farming to commercial/industrial. Because of the change in land use, seasonal irrigation channels are no longer introducing water that formerly sustained the pond. The areal photographs presented in Figure 3 depicted the evolution of the pond area to its current wetland status between 1979 to 2016. No buildings have been located, and no activities other than bulk steel storage have reportedly been conducted on the southern portion of the Site. No prior anthropomorphic uses have been documented within the extent of the existing wetland or former pond area.

Historical uses of the Site, including operation of a steel fabrication facility (1980 to present), operation of a fruit packing supply and equipment company (1982 through 1989), and construction and operation of a lime and sulfur formulating plant (1960 through approximately 1978), occurred in Areas 1 and 2, north of Area 3, and in the filled portion of the wetland.

The west-adjacent property is owned by BNSF Railroad Company and historically leased to Bay Chemical Company (Bay Chemical property). A former sludge settling pond area was present on the Bay Chemical property immediately adjacent to the wetland. The sludge settling pond was used for disposal of waste sludge generated during production of liquid zinc sulfate by reacting steel mill flue dust with sulfuric acid on the northern portion of the Bay Chemical property. The sludge settling pond previously was identified as one of two sources of metals contamination to the Site in the technical memorandum regarding Metals Source Evaluation, Agri-Tech and Yakima Steel Fabricators Site, Yakima Steel Fabricators, Yakima, Washington dated October 4, 2016, from Eric Buer and Jeff Kaspar of Farallon to Chris Wend of Ecology (Metals Source Evaluation). According to the Metals Source Evaluation, sampling station WetSed-1 is closest to the Bay Chemical property sludge settling pond from which flue dust and associated metals were likely transported onto the Site by wind and surface water flow.

The Site wetland is bordered by drainage ditches to the south and east that join near the southeastern corner of the Site. No records are available to identify over what period the ditches received dredging and maintenance or when maintenance ceased. As of 2008, the ditches sloped generally to the east/southeast. Based on review of aerial photographs taken in 1979, 1992, 1996, 2003, 2004, 2009, and 2016, the drainage ditches and areas south and east of the Site wetland have remained vegetated and undeveloped since 1979. Site soil to the west and south of the wetland was excavated as part of an Ecology-approved cleanup action that was performed by BNSF between July 30 and October 5, 2007. The cleanup action did not include the wetland area. The excavation extended to a maximum depth of approximately 6 feet below ground surface (bgs) proximate to the drainage ditch south of the wetland. Following the cleanup action, the area was backfilled to the approximate grade currently observed on the Site.

Because the wetland is topographically distinct (3 to 5 feet below the surrounding Site topography); has unique environmental conditions, including seasonal standing water and saturated surface soil; and is subject to sediment criteria that do not apply to other portions of the Site (see below), Farallon recommends that the Site wetland be evaluated as its own area of the Site, Area 4, under the SMS. Wetland buffer areas would remain part of Area 3 as described above.

WETLAND ASSESSMENT AND SEDIMENT EVALUATION

This section presents a description of the Site wetland based on the letter regarding Yakima Steel Fabricators Wetland Assessment Report dated September 13, 2016, from Chris Wend of Ecology to Jeff Kaspar of Farallon (Ecology assessment) (Attachment B). Results of wetland sediment sampling and analysis and sediment bioassay results are also presented.

WETLAND DESCRIPTION AND ECOLOGY ASSESSMENT

A pond has been present on the Site since at least 1979. The present wetland area originally was part of the larger pond. Since the late 1990s, the pond portion of the wetland has transitioned from perennial open water to intermittent standing water with increased growth of reeds and grasses in soft, saturated soil. The footprint of the wetland, including the intermittent pond, was surveyed as part of the RI Report in 1997 and estimated to be approximately 0.4 acre. A wetland delineation performed by Ecology on August 25, 2016 revised the wetland extent to the south and east, and increased the total area to approximately 0.45 acre.

The wetland delineation performed by Ecology was documented in the Ecology assessment provided in Attachment B. The Ecology assessment determined the extent of the wetland based on visual inspection and excavation of an observation pit proximate to the wetland's eastern boundary to confirm the presence of hydric soil.

The Ecology assessment identified the wetland as the area that is "much lower" than the surrounding ground surface, generally within approximately 3 to 5 vertical feet of the pond surface. Because the pond portion of the wetland is sustained by groundwater, approximately 0.3 acre of the 0.45-acre wetland footprint was classified as "emergent" (Figure 3). Per the Ecology assessment, trees and shrubs growing in the area surrounding the wetland and proximate to the ditch to the east, above the area identified to be within 3 to 5 vertical feet of the pond surface area, are in the wetland buffer.

Based on the wetland's morphology, hydrology, and vegetation assemblage, Ecology assigned the wetland a Category III rating. Category III wetlands are identified as having moderate ecological function with some disturbance from their natural state. Category III wetlands are also more isolated from other natural resources in the surrounding landscape than Category II wetlands.

SOIL AND SEDIMENT SAMPLING

Following initial identification of the Site wetland and survey of the wetland boundary in 1997, Ecology requested that soil samples collected from locations with intermittent standing water or perennially saturated conditions be evaluated against SMS criteria as detailed in the letter regarding Feasibility Work Plan Additional Requirements for Wetlands/Pond Area of the Yakima Steel Site Under Agreed Order DE 6091 dated February 16, 2011, from Norman D. Peck of Ecology to Jeff Kaspar of Farallon. SMS criteria include both sediment cleanup objectives (SCOs) and cleanup screening levels (CSLs). Farallon sampled Site wetland soil and sediment on May 23 and 26, 2011 at six locations (Figure 3). Sediment samples were analyzed for the following analytes:

- Metals by U.S. Environmental Protection Agency (EPA) Methods 6000/6010/7000;
- Total petroleum hydrocarbons as gasoline-, as diesel-, and as oil-range organics by Northwest Methods NWTPH-HCID and NWTPH-Dx;
- VOCs by EPA Method 8260B; and
- Pesticides by EPA Method 8081.

Sediment samples were collected from locations that were either intermittently submerged by standing water or were saturated throughout the year from a depth interval of 0 to 10 centimeters below ground surface. However, in the period between Farallon soil and sediment sampling and when the Ecology wetland delineation was performed, saturated conditions associated with the intermittent pond/emergent wetland have expanded to encompass stations previously identified for soil sampling. Thus, all six samples are evaluated as sediment samples in this section.

Analytical results for the wetland samples are provided in Tables 1 through 4. Concentrations of cadmium, lead, and zinc in sediment were elevated in the central portion of the emergent wetland (stations WetSed-1 through WetSed-3) compared to the concentrations observed at the outlying sampling stations (WetSoil-1 and WetSoil-2 to the south, and WetSoil-3 to the north). Cadmium was detected at concentrations exceeding the CSL of 5.4 milligrams per kilogram (mg/kg) in samples collected from the three central sampling stations. Cadmium was detected at concentrations exceeding the SCO of 2.1 mg/kg in sediment collected from sampling station WetSoil-1, south of the central WetSed station group, at a depth of 0 to 6 inches bgs. Other cadmium results for samples collected from stations WetSoil-1 through WetSoil-3 were less than the SCO.

Concentrations of lead and zinc in sediment reflected a similar spatial distribution to that for cadmium, with higher concentrations at stations WetSed-1 through WetSed-3 and slightly elevated concentrations at station WetSoil-1. However, none of the lead or zinc results for samples collected from the Site exceeded their respective SCOs. Concentrations of arsenic were somewhat elevated in samples collected from stations WetSed-2 and WetSed-3, but were less than SCOs. Concentrations of antimony, copper, and mercury did not appear to follow a spatial pattern and were less than SCOs.

Petroleum hydrocarbons, VOCs, and pesticides were either detected at low concentrations less than their respective SCOs or SCLs, or were reported non-detect at the laboratory practical quantitation limit (Tables 2 through 4).

In summary, cadmium concentrations exceeded the CSL in samples collected from three sampling stations and exceeded the SCO in samples collected from one sampling station; all other analytes were detected at concentrations less than their respective SCOs or were reported non-detect at the laboratory practical quantitation limit. Under the SMS, biological test results override chemistry results when determining whether sediments exhibit toxicity to biological organisms. Therefore, bioassays were conducted using the sediment samples collected from the wetlands that exceeded CSLs to further evaluate their toxicity and compliance with SMS biological criteria.

2011 SEDIMENT BIOASSAYS

Bioassay testing of samples collected from stations WetSed-1 through WetSed-3 was performed on May 23, 2011 by Nautilus Environmental (Nautilus) to evaluate the toxicity of the wetland sediments. The Nautilus sediment bioassays included:

- 10-day survival using the amphipod *Hyalella azteca* (*H. azteca*) (EPA method 100.1);
- 20-day growth and survival using the midge *Chironomus dilutus* (*C. dilutus*) (EPA method 100.5); and
- Luminescence readings of the marine bacterium *Vibrio fischeri* after 5 minutes and 15 minutes of exposure to sediment porewater (Microtox testing).

This testing suite meets the current sediment biological testing requirements of WAC 173-204-563(3)(d), requiring two different approved species; three endpoints, including one sublethal endpoint; and one chronic test. Because Microtox testing is no longer an approved method of assessment for freshwater species under the SMS, these results are not discussed further in this memorandum. A summary of bioassay results is provided in Table 5. Bioassay results and discussion are provided in Attachment C.¹

Reductions in the rate of growth of *C. dilutus* were less than the SCO in sediment collected from all three sampling stations (Table 5). Mortality exceeded the CSL in sediment collected from sampling station WetSed-3 on the south-central portion of the emergent wetland in the 20-day survival bioassay using *C. dilutus*. Mortality also exceeded the SCO in sediment collected from sampling station WetSed-2, north of WetSed-3.

Results for the 10-day survival bioassay using *H. azteca* were spatially dissimilar to results for the 20-day survival bioassay using *C. dilutus*. 10-day survival of *H. azteca* at station WetSed-1 exceeded the CSL and exceeded the SCO at station WetSed-2. The CSL is considered to be exceeded if any one test (i.e., 10-day survival of *H. azteca*, 20-day survival of *C. dilutus*, or 20-

_

¹ The 2011 Nautilus study currently is only available in draft form.

day growth of *C. dilutus*) at a station exceeds the CSL or any two tests exceed the SCO. Therefore, all three stations exceeded the CSL in 2011, but only by the minimum number of test results.

Some quality control deviations from standard bioassay methodology that may have affected the bioassay results were noted by Nautilus, including decreased dissolved oxygen levels during the 20-day survival bioassay using *C. dilutus* and adding twice the recommended number of test animals but not increasing the food ration during the 10-day survival bioassay using *H. azteca*.

2013 SEDIMENT BIOASSAYS

Metals concentrations, including cadmium (the only analyte detected at concentrations exceeding the CSL), were relatively similar in all three samples that were evaluated in the Nautilus sediment bioassays (Table 1). To determine whether metals were associated with the observed toxicity in sediment samples collected from stations WetSed-1 through WetSed-3, Farallon contracted with Ramboll-Environ Inc. of Port Gamble, Washington (Environ) to perform a detailed evaluation of wetland sediment. The Environ study had three primary objectives:

- Verify the toxicity results of the Nautilus bioassay testing;
- Conduct a toxicity identification evaluation; and
- Determine, if toxicity was confirmed, whether a Site-specific cleanup level could be developed.

Environ collected sediment samples from stations WetSed-1 through WetSed-3 on December 3, 2013. No standing water was observed at the time sediment sampling was conducted, and water was encountered at approximately 6 inches bgs. The samples were analyzed for the parameters identified below:

- Metals by EPA method 6010C;
- Grain size and total organic carbon by Plumb (1981);
- Percent solids by SM2540G;
- Dissolved sulfides and ammonia by SM4500/NH₃F;
- Acid volatile sulfides and simultaneously extracted metals by EPA (1991);
- 10-day survival using the amphipod *H. azteca* (EPA method 100.1);
- 20-day growth and survival using the midge C. dilutus (EPA method 100.5); and
- Luminescence readings of the marine bacterium *Vibrio fischeri* after 5-minutes and 15-minutes of exposure to sediment porewater (Microtox testing).

This testing suite meets the current sediment biological testing requirements of WAC 173-204-563(3)(d), requiring two different approved species; three endpoints, including one sublethal endpoint; and one chronic test. Because Microtox testing is no longer an approved freshwater species under the SMS, these results are not discussed further in this memorandum. A summary

of bioassay results is provided in Table 5. Bioassay results and discussion are provided in Attachment D.²

Analytical results for metals were similar to those obtained by Farallon in 2011. Cadmium concentrations exceeded the CSL of 5.4 mg/kg in sediment collected from all three sampling stations. Zinc concentrations were similar in samples collected from all three sampling stations to concentrations reported in 2011, with the exception of an elevated concentration of 3,810 mg/kg in a sample collected from station WetSed-3, which exceeded the SCO. Concentrations of manganese and lead were similar to concentrations reported in 2011 and did not exceed applicable screening criteria.

Acute mortality exceeded the CSL in the sediment collected from station WetSed-1, proximate to the Bay Chemical property sludge settling pond, during the 10-day survival bioassay using *H. azteca*. Mortality exceeded the SCO in sediment collected from sampling stations WetSed-2 and Wetsed-3 on the central and south-central portions of the emergent wetland, respectively, during the 20-day survival bioassay using *C. dilutus*. Other bioassay results for 10-day survival of *H. azteca* and 20-day growth of *C. dilutus* were less than their respective SCOs.

In these results, only one station exceeded the CSL for 10-day survival of *H. azteca* and two stations exceeded the SCO for 20-day survival for *C. dilutus*, using the same bioassays as conducted in 2011. This difference may be due to natural recovery over time, sequestration of metals by wetland vegetation, or quality control issues in the 2011 bioassays that adversely affected the results.

Environ identified freely dissolved metals, particularly zinc and potentially manganese, as the primary source of toxicity in sediment. Both metals were present in sediment and dissolved in porewater (Table 15 in Attachment D). Environ concluded that "zinc is likely to be the primary driver in toxicity" in porewater at sampling station WetSed-1. However, a combination of metals likely contributed to toxicity at these stations. Organic analytes were not identified as a source of toxicity in sediments collected from any sampling station, consistent with the chemistry results.

SEDIMENT SITE EVALUATION

Identification of a sediment site under SMS (WAC 173-204-520) requires a cluster of at least three sampling stations where the following conditions are met:

- Concentrations of COPCs in sediments exceed the CSL for bioaccumulative chemicals based on protection of human health, wildlife, birds, or fish;
- Concentrations of COPCs in sediment exceed the CSL chemical criteria identified in Table VI in WAC 173-204-563(2); or
- Toxicity test results exceed biological standards identified in Table VII in WAC 173-204-563(3).

_

² The 2014 Environ study currently is only available in Agency Review Draft form.

No bioaccumulative COPCs have been identified in the wetland area. Cadmium is the only metal that has been detected at concentrations exceeding CSL chemical criteria in samples collected from the sampling stations. Bioassay results for sediment collected from the Site wetlands by Environ identified only a single station, WetSed-1, that exceeded biological CSL criteria.

Under the SMS, the results of biological testing override chemistry results. Therefore, based on WAC 173-204-520, the wetland area of the Site does not qualify for listing as a contaminated sediment site. Although this area has already been identified as part of a listed site, it can be evaluated separately as a sediment management unit to determine whether cleanup is required.

Because this area does not meet the site listing threshold under SMS, and because active cleanup of this area would require disturbance of the wetland, Farallon recommends that this area be formally separated into a sediment management unit and designated as requiring no further action.

SUMMARY AND CONCLUSIONS

A pond of variable size has been present on the Site since at least 1979. Over the past 20 years, the pond has transitioned to include progressively less open standing water and increased growth of reeds and grasses in soft, saturated soil. The City of Yakima first identified the combined open water and saturated soil area as a Type III wetland; this designation was carried forward in the RI Report. The extent of the wetland was surveyed in 1997 and had a total area of approximately 0.4 acre. A subsequent delineation and wetland evaluation was performed by Ecology in 2016. The Ecology assessment revised the wetland's total area to 0.45 acre, including 0.3 acre of emergent wetland. Ecology also assigned the wetland a Category III rating, which indicates some disturbance and isolation from the natural environment and a moderate level of ecological function.

Soil and sediment sampling performed by Farallon in 2011 identified cadmium at concentrations exceeding the CSL of 5.4 mg/kg. A bioassay evaluation was performed by Nautilus at six sampling stations within the wetland on the Site. The Nautilus sediment bioassay results identified minor acute and chronic toxicity in wetland sediment samples, but the results were considered inconclusive due to quality control issues.

Farallon contracted with Environ to perform a detailed evaluation of the Site wetland sediment to confirm sediment toxicity and, if confirmed, identify potential causes of toxicity. The Environ evaluation identified toxicity exceeding both chemical and biological CSLs in sediment collected from sampling station WetSed-1. Environ concluded that the toxicity of tested sediments was primarily associated with zinc in sediment porewater, but was unable to calculate a Site-specific cleanup standard.

Although chemical and biological toxicity results for sampling station WetSed-1 exceed sediment CSLs, the Site wetland does not qualify as a sediment site requiring cleanup under WAC 173-204-520 because there were fewer than three sampling stations that exceeded sediment CSLs.

Therefore, Farallon recommends that the 0.45-acre wetland area be separated as a sediment management unit that does not require further evaluation in the Feasibility Study.

Attachments: Figure 1, Site Vicinity Map

Figure 2, Site Plan and Tax Parcel Locations

Figure 3, Historical Wetland Extent

Figure 4, Wetland Boundaries

Table 1, Sediment Analytical Results for Metals

Table 2, Analytical Results for Petroleum Hydrocarbons

Table 3, Sediment Analytical Results for Volatile Organic Compounds

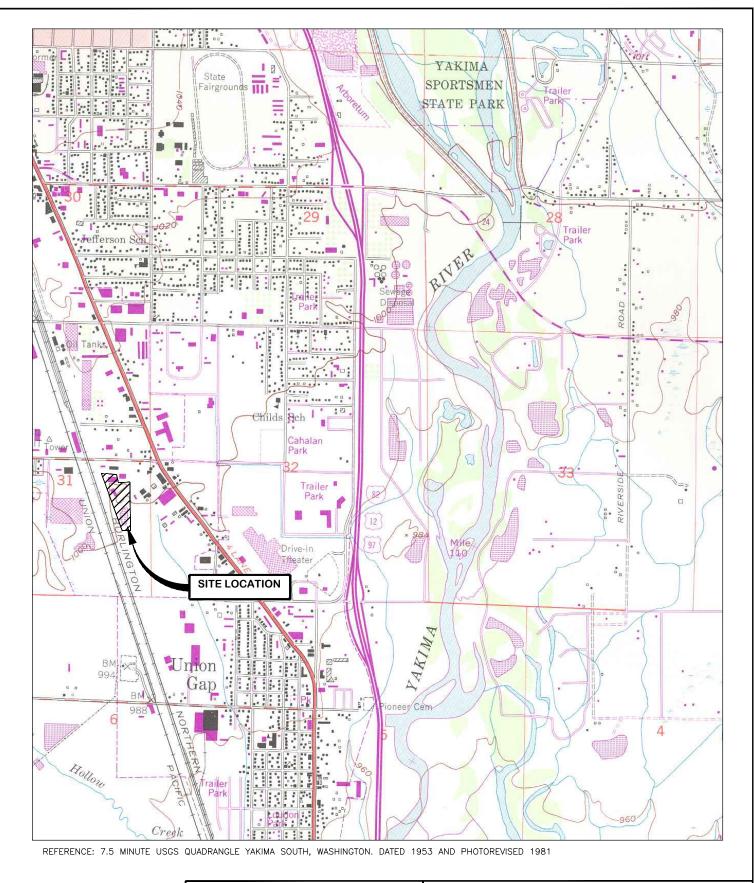
Table 4, Sediment Analytical Results for Pesticides

Table 5, *Bioassay Results Summary*

Attachment A, References

Attachment B, Ecology Wetland Delineation Memorandum

Attachment C, Nautilus Bioassay Report

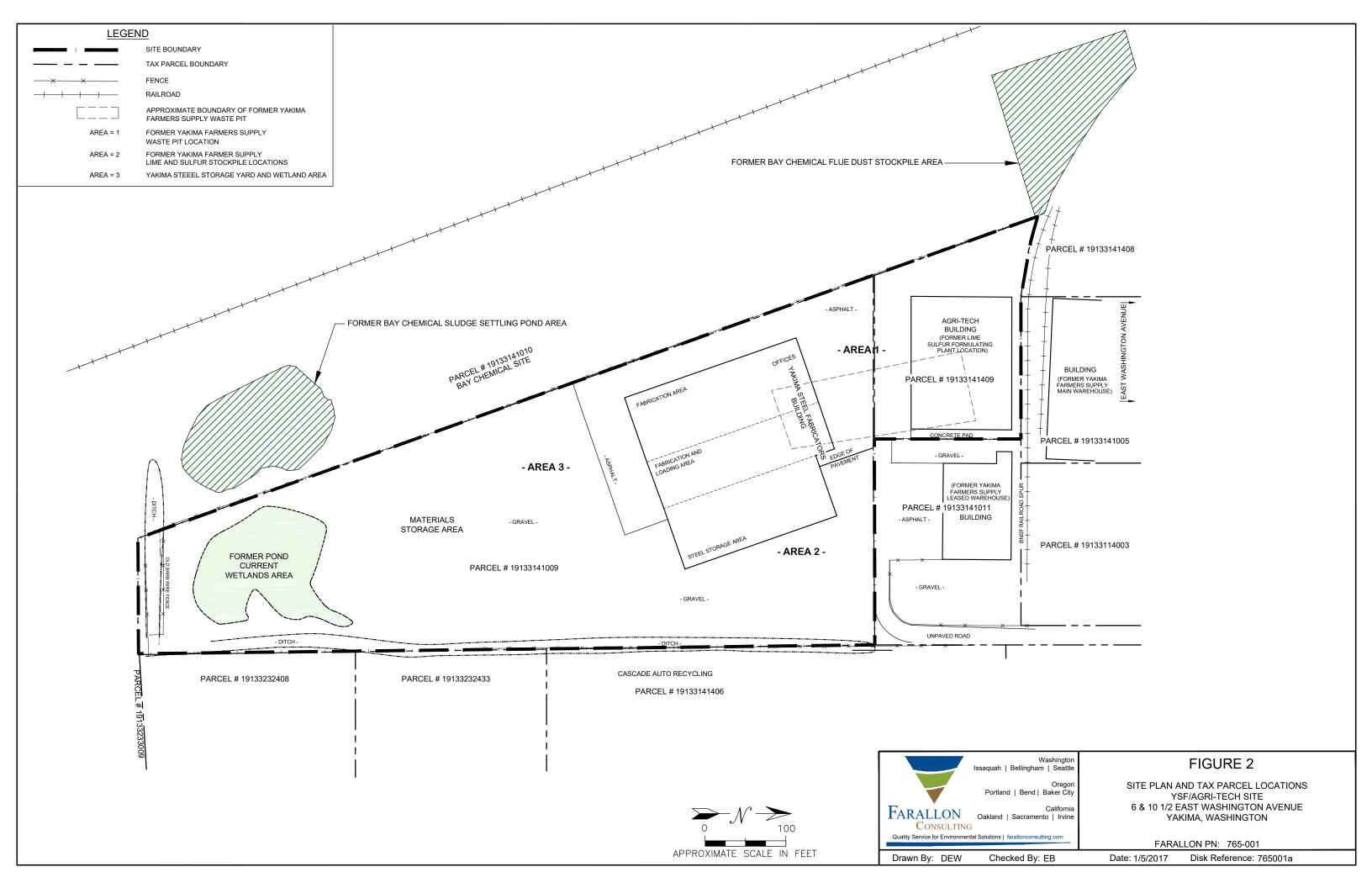

Attachment D, Environ Agri-Tech Yakima Steel Sediment Evaluation

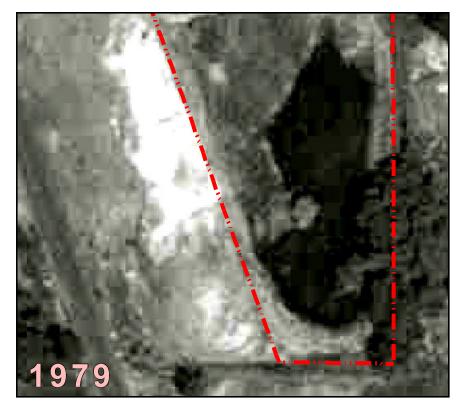
EB:mm

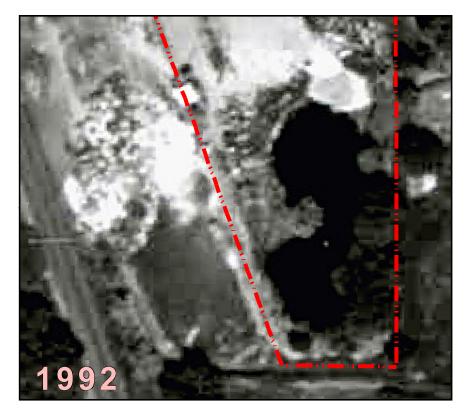
FIGURES

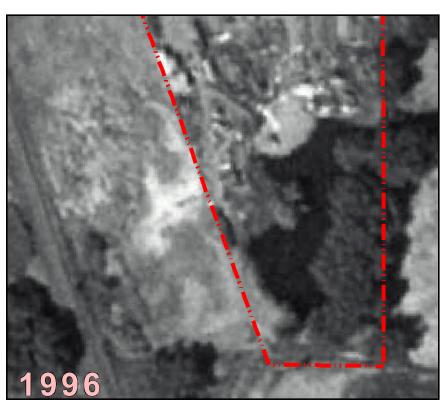
WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

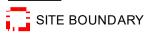



FIGURE 1


SITE VICINITY MAP YSF/AGRI-TECH SITE 6 & 10 1/2 EAST WASHINGTON AVENUE YAKIMA, WASHINGTON


FARALLON PN: 765-001

Date: 1/25/2016 Disk Reference: 765001a



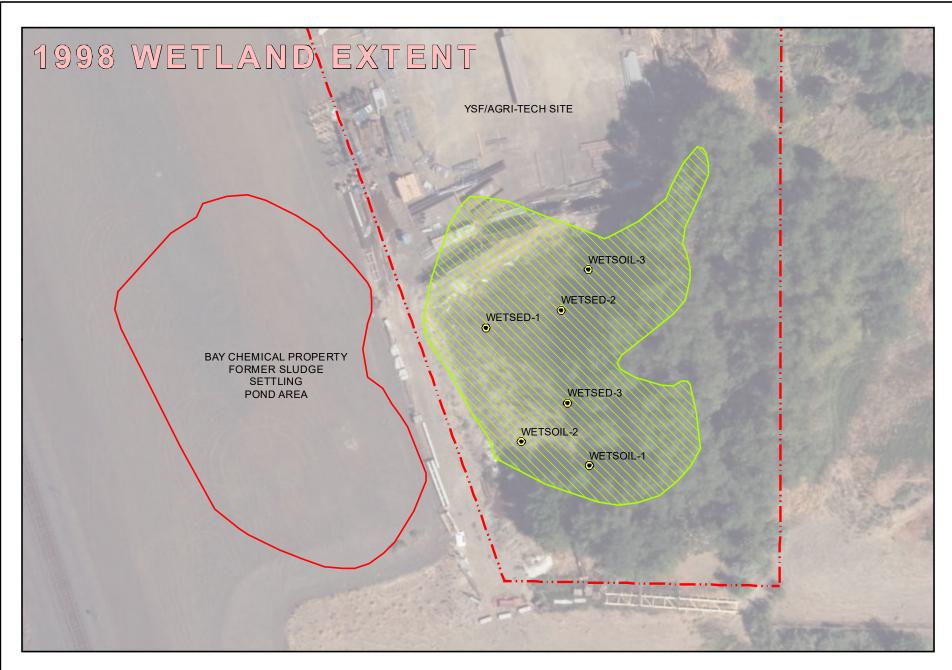
LEGEND

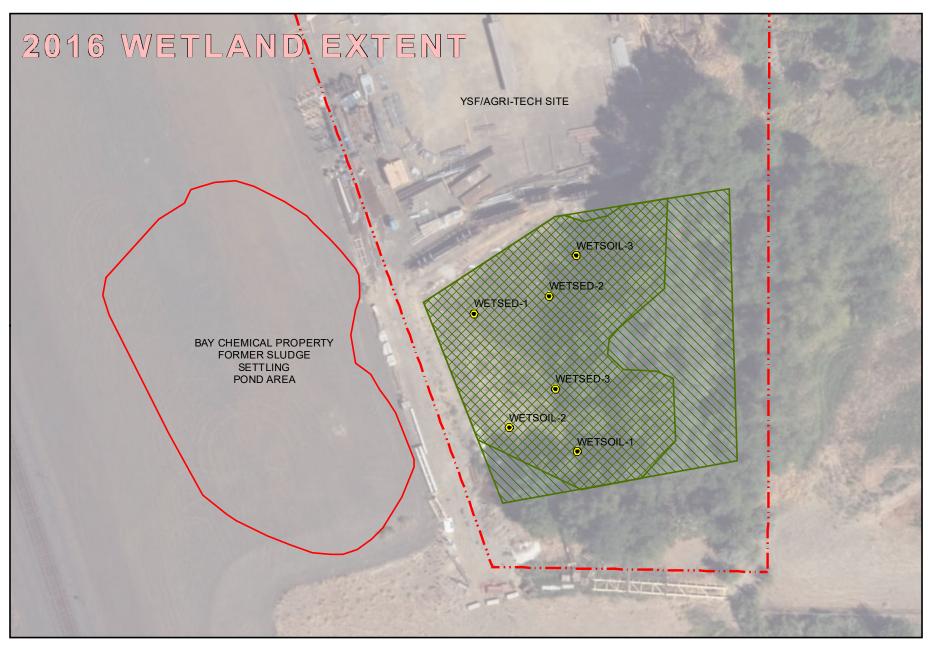
Drawn By: ebuer

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Bend | Baker City

California Oakland | Sacramento | Irvine


Checked By: JC


FIGURE 3

HISTORICAL WETLAND EXTENT YSF/AGRI-TECH SITE 6 & 10 1/2 EAST WASHINGTON AVENUE YAKIMA, WASHINGTON

 $\label{thm:quality} \mbox{Quality Service for Environmental Solutions} \hspace{0.2cm} \mbox{|} \hspace{0.2cm} \mbox{farallonconsulting.com}$

FARALLON PN: 765-001

LEGEND

SAMPLE LOCATION

FORMER SLUDGE SETTLING POND AREA

YSF/AGRI-TECH SITE

1998 WETLAND EXTENT

2016 EMERGENT WETLAND

Drawn By: ebuer

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Bend | Baker City

California Oakland | Sacramento | Irvine

Quality Service for Environmental Solutions | farallonconsulting.com

Checked By: JC

FIGURE 4

WETLAND BOUNDARIES
YSF/AGRI-TECH SITE
6 AND 10 1/2 EAST WASHINGTON AVENUE
YAKIMA, WASHINGTON

FARALLON PN: 555-001

Date: 1/31/2017 Disc Reference:

Document Path: G:\(\mathbb{P}\text{rojects}\)\(\text{765001 Yakima Steel Fab\\GIS\)\(\mathbb{M}\text{apfiles}\)\(\mathbb{W}\text{etland\(\text{Vetland\(\

TABLES

WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

Analytical Results for Metals

Agri-Tech and Yakima Steel Fabricators Site

Yakima, Washington Farallon PN: 765-001

			Laboratory		Sample Depth	Analytical Results (milligrams per kilogram) ²							
Grid	Test Pit	Sample Identification	Report	Sample Date	(feet) 1	Antimony ³	Arsenic ³	Cadmium ⁴	Copper ³	Lead ³	Manganese ³	Mercury 4	Zinc ³
						Wetland Sample	es						
	WetSoil-1	E-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	< 5.1	< 5.1	3.7	39	110	190	0.14	1,700
	WetSon-1	E-wetsoil-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<2.4	<2.4	< 0.40	17	4.2	160	0.043	310
	WatSoil 2	E-wetsoil-2-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<3.4	<3.4	1.6	19	19	250	0.071	670
E	E WetSoil-2	E-wetsoil-2-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	<3.0	<3.0	1.8	20	4.4	270	0.059	870
	WetSed-1	E-wetsed-1-053111	580-26360-1	5/23/2011	0.5	< 5.8	< 5.8	9.2	36	190	210	-	2,700
	WetSed-2	E-wetsed-2-053111	580-26360-1	5/23/2011	0.5	<6.9	7.6	6.8	41	150	220	_	2,800
	WetSed-3	E-wetsed-3-053111	580-26360-1	5/23/2011	0.5	<6.1	8.5	7.8	52	180	270	_	2,700
G	WetSoil-3	G-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	<2.4	<2.4	< 0.40	16	3.5	210	0.044	41
G	Wetson-5	G-wetsoil-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	<4.2	<4.2	1.5	40	80	470	0.14	510
Sediment	ediment Cleanup Objective ⁵						14	2.1	400	360		0.7	3,200
Sediment	liment Cleanup Screening Level ⁵						120	5.4	1,200	1,300		0.8	4,200

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

Result exceeds the sediment cleanup objective.

Result exceeds the sediment cleanup screening level.

-= denotes sample not analyzed

COPC = constituent of potential concern

L = a negative instrument reading had an absolute value greater than the reporting limit

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹ Depth in feet below ground surface.

 $^{^2\,\}mathrm{Analyzed}$ by U.S. Environmental Protection Agency Methods 6000/6010/7000 Series.

³ Constituent was not retained as a COPC following completion of the *Revised Remedial Investigation Report*, *Agri-Tech & Yakima Steel*

Fabricators, 6 and 10 1/2 East Washington Avenue, Yakima, Washington dated June 10, 2004, prepared by Farallon Consulting, L.L.C. (Revised RI Report).

⁴ Identified and retained as COPC in the Revised RI Report.

⁵Table VI, Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria, of Section 563 of Chapter 173-204 of the Washington Administrative Code (WAC 173-204-563).

Table 2 Analytical Results for Petroleum Hydrocarbons Agri-Tech and Yakima Steel Fabricators Site Yakima, Washington

Farallon PN: 765-001

						Analytical Results (milligrams per kilogram)						
		Sample			Sample Depth						Ethyl-	
Grid	Test Pit	Identification	Lab Report	Sample Date	(feet) ¹	GRO ²	DRO ³	ORO ³	Benzene ³	Toluene ³	benzene ³	Xylenes ³
						Wetlan	d Samples					
	Wetsoil-1	E-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	<36	<90	<180	< 0.0019	< 0.0038	<0.0019*	<0.0047*
	W Ctsoll-1	E-wetsoil-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<22	<54	<110	< 0.0012 ^H	< 0.0024 H	$< 0.0012^{H}$	< 0.0036 H
	Wetsoil-2	E-wetsoil-2-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<22	<55	<110	< 0.00091 H	< 0.0018 ^H	< 0.00091 H	< 0.00271 ^H
Е	Wetson-2	E-wetsoil-2-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	<23	<58	<120	< 0.0013 ^H	< 0.0026 H	< 0.0013 ^H	< 0.0039 ^H
	WetSed-1	E-wetsed-1-052311	580-26502-1	5/23/2011	0.5		-	-	< 0.0027	< 0.0054	< 0.0027	< 0.0081
	WetSed-2	E-wetsed-2-052311	580-26502-1	5/23/2011	0.5		ı	-	< 0.0026	< 0.0052	< 0.0026	< 0.0078
	WetSed-3	E-wetsed-3-052311	580-26502-1	5/23/2011	0.5		-	-	< 0.0033	< 0.0066	< 0.0033	< 0.0099
G	Wetsoil-3	G-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	<24	<60	<120	< 0.0013 ^H	< 0.0025 H	< 0.0013 ^H	< 0.0038 ^H
U	Wetson-3	G-wetsoil-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	<30	<74	<150	< 0.00094	< 0.0019	< 0.00094	< 0.00284
Sediment	iment Cleanup Objective ⁴						340	3,600				
Sediment	ment Cleanup Screening Level ⁴						510	4,400			-	

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

COPC = constituent of potential concern

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

ORO = TPH as oil-range organics

H = sample was prepared or analyzed beyond the specified holding time

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

² Analyzed by Northwest Method NWTPH-HCID.

³ Analyzed by Northwest Method NWTPH-Dx.

⁴Table VI, Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria, of Section 563 of Chapter 173-204 of the Washington Administrative Code (WAC 173-204-563).

Analytical Results for Volatile Organic Compounds Agri-Tech and Yakima Steel Fabricators Site

Yakima, Washington Farallon PN: 765-001

										A	nalytical Resu	ılts (milligrams	s per kilogram	2				
Grid	Test Pit	Sample Identification	Lab Report	Sample Date	Sample Depth (feet) ¹	Benzene ³	Ethyl-benzene ³	m,p-Xylene³	o-Xylene ³	Toluene ³	Naphthalene ³	n-Butylbenzene ³	Sec-Butylbenzene ³	Isopropylbenzene ³	Methylene Chloride³	4-Methyl-2-Pentanone ³	4-Isopropyltoluene³	n-Propylbenzene ³
	•	•	•	•				Wetland Sa	mples				<u> </u>			,	,	1
	Wetsoil-1	E-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	< 0.0019	<0.0019*	<0.0038 *	<0.0019 *	< 0.0038	<0.0094 *	<0.0038 *	<0.0038 *	<0.0038 *	< 0.028	< 0.0094	<0.0038 *	<0.0019 *
	Wetson-1	E-wetsoil-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<0.0012 H	<0.0012 H	<0.0024 H	<0.0012 H	<0.0024 H	<0.0060 H	<0.0024 H	<0.0024 H	<0.0024 H	<0.018 H	<0.0060 H	<0.0024 H	<0.0012 H
	Wetsoil-2	E-wetsoil-2-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<0.00091 H	<0.00091 H	<0.0018 H	<0.00091 H	<0.0018 H	<0.0045 H	<0.0018 H	<0.0018 H	<0.0018 H	<0.014 H	<0.0045 H	<0.0018 H	<0.00091 H
E		E-wetsoil-2-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	<0.0013 H	<0.0013 H	<0.0026 H	<0.0013 H	<0.0026 H	<0.0065 H	<0.0026 H	<0.0026 H	<0.0026 H	<0.019 H	<0.0065 H	<0.0026 H	<0.0013 H
	WetSed-1	E-wetsed-1-053111	580-26502-1	5/23/2011	0.5	< 0.0027	< 0.0027	< 0.0054	< 0.0027	< 0.0054	< 0.014	< 0.0054	< 0.0054	< 0.054	< 0.041	< 0.014	< 0.0054	< 0.0027
	WetSed-2	E-wetsed-2-053111	580-26502-1	5/23/2011	0.5	< 0.0026	< 0.0026	< 0.0052	< 0.0026	< 0.0052	< 0.013	< 0.0052	< 0.0052	< 0.0052	< 0.039	< 0.013	< 0.0052	< 0.0026
	WetSed-3	E-wetsed-3-053111	580-26502-1	5/23/2011	0.5	< 0.0033	< 0.0033	< 0.0066	< 0.0033	< 0.0066	< 0.017	< 0.0066	< 0.0066	< 0.0066	< 0.050	< 0.017	< 0.0066	< 0.0033
G	Wetsoil-3	G-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	<0.0013 H	<0.0013 H	<0.0025 H	<0.0013 H	<0.0025 H	<0.0064 H	<0.0025 H	<0.0025 H	<0.0025 H	<0.019 H	<0.0064 H	<0.0025 H	<0.0013 H
	***CtsOff=3	G-wetsoil-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	< 0.00094	< 0.00094	< 0.0019	< 0.00094	< 0.0019	< 0.0047	< 0.0019	< 0.0019	< 0.0019	< 0.014	< 0.0047	< 0.0019	< 0.00094
Sediment C	Cleanup Objectiv	re ⁵																
Sediment C	Cleanup Screenin	ng Level ⁵			•													

NOTES:

Results in \boldsymbol{bold} denote concentrations exceeding applicable cleanup levels.

- $<\!$ denotes analyte not detected at or exceeding the reporting limit listed.
- -- Denotes the initial calibration curve was outside acceptance criteria for Carbon Disulfide. As Carbon Disulfide was not a requested analyte at the time of sample analysis, it cannot be reported.
- * Denotes Internal Standard response or retention time outside acceptable limits.

COPC = constituent of potential concern

H = sample was prepared or analyzed beyond specified holding time

MEK = 2-butanone

NE = not established

PCE = tetrachloroethene

TCE = trichloroethene

VOCs = volatile organic compounds

¹ Depth in feet below ground surface.

² Analyzed by U.S. Environmental Protection Agency Method 8260B.

³ Compound was not retained as a COPC following completion of the *Revised Remedial Investigation Report, Agri-Tech & Yakima Steel Fabricators, 6 and 10 1/2 East Washington Avenue, Yakima, Washington* dated June 10, 2004, prepared by Farallon Consulting, L.L.C. (Revised RI Report).

⁴Identified and retained as a COPC in the Revised RI Report.

⁵Table VI, *Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria*, of Section 563 of Chapter 173-204 of the Washington Administrative Code (WAC 173-204-563).

Analytical Results for Volatile Organic Compounds Agri-Tech and Yakima Steel Fabricators Site

Yakima, Washington Farallon PN: 765-001

										Analytica	l Results (mill	igrams per kild	ogram) ²				
Grid	Test Pit	Sample Identification	Lab Report	Sample Date	Sample Depth (feet) ¹	Acetone ³	1,2,4-Trimethylbenzene ³	1,3,5-Trimethylbenzene ³	Carbon Disulfide ³	1,2-Dichloropropane 4	MEK ³	Chloroform ³	Tetrachloroethene ⁴	Trichloroethene ⁴	1,1-Dichloroethene³	(cis) 1,2-Dichloroethene ⁴	tert-Butylbenzene ³
	-	•	•	•		,					Wetland	Samples	·	·			
	Wetsoil-1	E-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	0.094	<0.0038 *	<0.0094 *	0.0064	< 0.0019	0.010	< 0.0019	< 0.0019	< 0.0019	< 0.0094	< 0.0019	<0.0038 *
	wetson-1	E-wetsoil-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	<0.018 H	<0.0024 H	<0.0060 H	<0.0012 H	<0.0012 H	<0.0060 H	<0.0012 H	<0.0012 H	<0.0012 H	<0.0060 H	<0.0012 H	<0.0024 H
	Wetsoil-2	E-wetsoil-2-052611-0.5-1.0	580-26451-1	5/26/2011	1.0	0.029 H	<0.0018 H	<0.0045 H	0.0010 H	<0.00091 H	<0.0045 H	<0.00091 H	<0.00091 H	<0.00091 H	<0.0045 H	<0.00091 H	<0.0018 H
E	Wetson-2	E-wetsoil-2-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	0.038 H	<0.0026 H	<0.0065 H	<0.0013 H	<0.0013 H	<0.0065 H	<0.0013 H	<0.0013 H	<0.0013 H	<0.0065 H	<0.0013 H	<0.0026 H
	WetSed-1	E-wetsed-1-053111	580-26502-1	5/23/2011	0.5	0.082	< 0.0054	< 0.014	< 0.0027	< 0.0027	< 0.014	< 0.0027	< 0.0027	< 0.0027	< 0.014	< 0.0027	< 0.0054
	WetSed-2	E-wetsed-2-053111	580-26502-1	5/23/2011	0.5	< 0.039	< 0.0052	< 0.013	0.0032	< 0.0026	< 0.013	< 0.0026	< 0.0026	< 0.0026	< 0.013	< 0.0026	< 0.0052
	WetSed-3	E-wetsed-3-053111	580-26502-1	5/23/2011	0.5	0.110	< 0.0066	< 0.017	< 0.0033	< 0.0033	0.025	< 0.0033	< 0.0033	< 0.0033	< 0.017	< 0.0033	< 0.0066
G	Wetsoil-3	G-wetsoil-052611-0.0-0.5	580-26451-1	5/26/2011	0.5	<0.019 H	<0.0025 H	<0.0013 H	<0.0013 H	<0.0013 H	<0.0064 H	<0.0013 H	<0.0013 H	<0.0013 H	<0.0064 H	<0.0013 H	<0.0025 H
G	wetson-3	G-wetsoil-052611-1.0-2.0	580-26451-1	5/26/2011	2.0	< 0.014	< 0.0019	< 0.0047	< 0.00094	< 0.00094	< 0.0047	< 0.00094	< 0.00094	< 0.00094	< 0.0047	< 0.00094	< 0.0019
Sediment C	leanup Objectiv	e ⁵	-		_												
	leanup Screenin	-															

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

- < denotes analyte not detected at or exceeding the reporting limit listed.
- -- Denotes the initial calibration curve was outside acceptance criteria for Carbon Disulfide. As Carbon Disulfide was not a requested analyte at the time of sample analysis, it cannot be reported.
- * Denotes Internal Standard response or retention time outside acceptable limits.

COPC = constituent of potential concern

H = sample was prepared or analyzed beyond specified holding time

MEK = 2-butanone

NE = not established PCE = tetrachloroethene

TCE = trichloroethene

VOCs = volatile organic compounds

¹ Depth in feet below ground surface.

² Analyzed by U.S. Environmental Protection Agency Method 8260B.

³ Compound was not retained as a COPC following completion of the *Revised Remedial Investigation Report*, *Agri-Tech* & *Yakima Steel Fabricators*, 6 and 10 1/2 East Washington Avenue, Yakima, Washington dated June 10, 2004, prepared by Farallon Consulting, L.L.C. (Revised RI Report).

⁴Identified and retained as a COPC in the Revised RI Report.

⁵Table VI, *Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria*, of Section 563 of Chapter 173-204 of the Washington Administrative Code (WAC 173-204-563).

Analytical Results for Pesticides

Agri-Tech and Yakima Steel Fabricators Site Yakima, Washington

Farallon PN: 765-001

										A	nalytical Resu	ılts (milligram	s per kilogram)2				
Grid	Test Pit	Lab Report	Sample Identification	Sample Date	Sample Depth (feet) ¹	Aldrin ³	Alpha Chlordane ⁴	4,4'-DDD ⁴	4,4'-DDE ⁴	4,4'-DDT ³	Dieldrin ⁴	Endosulfan Sulfate 3	Endrin ⁴	Heptachlor Epoxide ⁴	Endrin Aldehyde ³	Gamma Chlordane ³	Heptachlor ³	Endosulfan II
		-				•		Wetland	Samples								· ·	
	WetSoil-1	580-26451-1	E-wetsoil-052611-0.0-0.5	5/26/2011	0.5	< 0.0019	< 0.0019	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0019	< 0.0038	< 0.0019	< 0.0019	< 0.0038
	Wetson-1	360-20431-1	E-wetsoil-052611-0.5-1.0	5/26/2011	1.0	< 0.0011	< 0.0011	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0011	< 0.0022	< 0.0011	< 0.0011	< 0.0022
	WetSoil-2	580-26451-1	E-wetsoil-2-052611-0.5-1.0	5/26/2011	1.0	< 0.0011	< 0.0011	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0011	< 0.0023	< 0.0011	< 0.0011	< 0.0023
E	Weison-2	300-20431-1	E-wetsoil-2-052611-1.0-2.0	5/26/2011	2.0	< 0.0011	< 0.0011	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0023	< 0.0011	< 0.0023	< 0.0011	< 0.0011	< 0.0023
	WetSed-1	580-26360-1	E-wetsed-1-053111	5/23/2011	0.5	<0.0021 H	<0.0021 H	<0.0042 H	<0.0042 H	<0.0042 H	<0.0042 H	<0.0042 H	<0.0042 H	<0.0021 H*	<0.0042 H	<0.0021 H	<0.0021 H	<0.0042 H
	WetSed-2	580-26360-1	E-wetsed-2-053111	5/23/2011	0.5	<0.0022 H	<0.0022 H	<0.0044 H	<0.0044 H	<0.0044 H	<0.0044 H	<0.0044 H	<0.0044 H	<0.0022 H*	<0.0044 H	<0.0022 H	<0.0022 H	<0.0044 H
	WetSed-3	580-26360-1	E-wetsed-3-053111	5/23/2011	0.5	<0.0023 H	<0.0023 H	<0.0047 H	<0.0047 H	<0.0047 H	<0.0047 H	<0.0047 H	<0.0047 H	<0.0023 H*	<0.0047 H	<0.0023 H	<0.0023 H	<0.0047 H
G	WetSoil-3	580-26451-1	G-wetsoil-052611-0.0-0.5	5/26/2011	0.5	< 0.0012	< 0.0012	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0012	< 0.0024	< 0.0012	< 0.0012	< 0.0024
U	Weison-3	360-20431-1	G-wetsoil-052611-1.0-2.0	5/26/2011	2.0	< 0.0016	< 0.0016	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0016	< 0.0031	< 0.0016	< 0.0016	< 0.0031
Sediment	Sediment Cleanup Objective ⁵						-	0.31	0.31	0.10	4.9	1	1	-	1	•	-	
Sediment	Cleanup Scr	eening Level ⁵						0.86	0.9	8.1	9.3							

NOTES

Results in **bold** denote concentrations at or exceeding the Preliminary Screening Level indicated.

* = Response or retention time outside acceptable limits.

COPC = constituent of potential concern

H = sample was prepared or analyzed beyond the specified holding time

NE = not established

< denotes analyte not detected at or above the reporting limit listed.

¹ Depth in feet below ground surface.

 $^{^{2}}$ Analyzed by U.S. Environmental Protection Agency Method 8081.

³Constituent was not retained as a COPC following completion of the Revised Remedial Investigation Report, Agri-Tech & Yakima Steel

Fabricators, 6 and 10 1/2 East Washington Avenue, Yakima, Washington dated June 10, 2004, prepared by Farallon Consulting, L.L.C. (Revised RI Report).

⁴ Identified and retained as a COPC in the Revised RI Report.

⁵Table VI, Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels Chemical Criteria, of Section 563 of Chapter 173-204 of the Washington Administrative Code (WAC 173-204-563).

Table 5 Bioassay Results Summary Agri-Tech and Yakima Steel Fabricators Site Yakima, Washington

Farallon PN: 765-001

Bioassay Evaluation	Screening	Screening Criteria		WETSED-1		SED-2	WETSED-3		
	SCO	CSL	Nautilus	Environ	Nautilus	Environ	Nautilus	Environ	
10-day H . $azteca$ Mortality $(M_T - M_C)$	>15%	>25%	100%	91%	14%	-4%	4%	-4%	
20-day C. dilutus Mortality (M _T -M _C)	>15%	>25%	15%	14%	18%	17%	58%	20%	
20-day C. dilutus Growth (MIG _C -MIG _T)/MIG _C	>0.25	>0.40	-0.22	0.12	0.04	-0.31	0.34	-0.01	

Table based on Attachment C, Table 24, Summary of Sediment Chemistry and Test Results, Agri-Tech/YSF, 2011 and 2013.

NOTES:

Result exceeds sediment cleanup objective.

Result exceeds sediment cleanup screening level.

CSL = Cleanup Screening Level

Environ = Ramboll-Environ Corporation

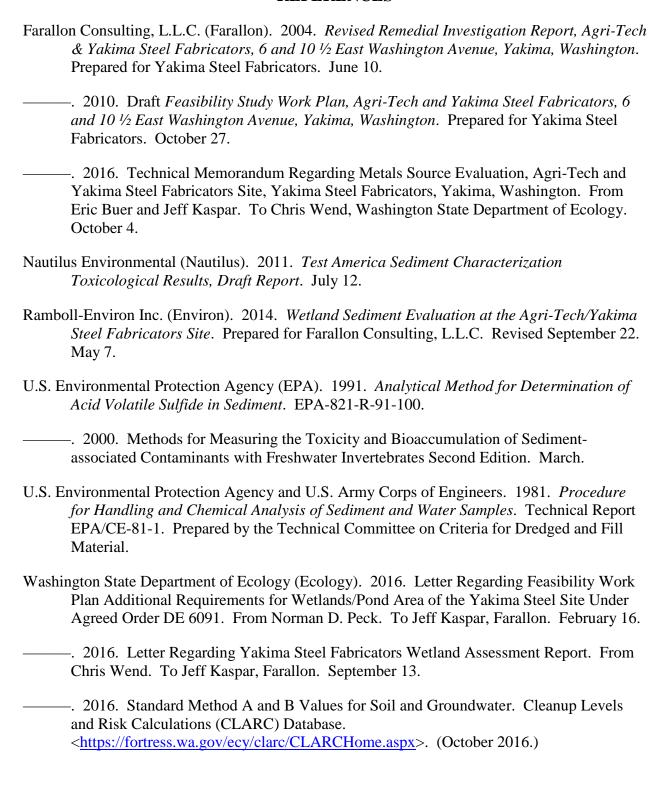
M_C = Control group mortality

MIG_C = Control group mean individual growth

MIG_T = Test group mean individual growth

 M_T = Test group mortality

Nautilus = Nautilus Environmental


SCO = Sediment Cleanup Objective

ATTACHMENT A REFERENCES

WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

REFERENCES

ATTACHMENT B ECOLOGY WETLAND DELINEATION MEMORANDUM

WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

September 13, 2016

Mr. Jeff Kaspar Farallon Consulting 975 5th Avenue Northwest Issaquah, WA 98027

RE: Yakima Steel Fabricators Wetland assessment report

Site Name: Agri Tech Yakima Steel Fabricators
Site Address: 6 & 10 ½ E Washington, Yakima

Facility/Site ID No.: 479 Cleanup Site ID No.: 3639

Dear Mr. Kasper,

Please find enclosed with this letter a full copy of the wetland evaluation report performed by Ecology at the Yakima Steel Fabricators site on August 25, 2016. We now have a designation of the area as a Category III wetland.

Please feel free to include this report as part of the Wetland Appendix in the feasibility study.

Respectfully,

Chris Wend, PhD, PE

Cleanup Project Manager

Toxics Cleanup Program, CRO

DEPARTMENT OF ECOLOGY

Shorelands and Environmental Assistance Program

DATE:

September 6, 2016

TO:

Chris Wend

FROM:

Catherine Reed, PWS, SEA Program

SUBJECT:

Yakima Steel Fabricators site (parcel # 19133141009) wetland

reconnaissance project SIC code JJ222

On August 25, 2016, we walked around a low-lying "pond" area on the above-referenced parcel in order to answer several questions. Was a wetland present on the site? If so, what is the extent of the wetland area, and what buffers would be required to protect the functional values of the wetland?

The general extent of the wetland was determined by visual observation of wetland conditions in the pond area and by digging one observation hole in a low-lying ditch remnant to the east of the wetland to confirm hydric soil conditions in that moist area. The water source of the pond and ditch appears to be primarily groundwater, and the wetland type is "emergent" based on the kind of vegetation (rushes and cattails) present.

The pond area/wetland is located at the extreme south of the parcel and is primarily confined to an area that is much lower (3 to 5 vertical feet to the pond surface) than the surrounding land elevation. Trees and shrubs that grow adjacent to the pond and the ditch are growing in the buffer, just outside of the wetland. There are berms around the pond wetland, probably composed of fill material from excavation of the wetland sometime in the past. There was also a narrow wetland ditch remnant on the northeast corner of the pond on the east side of the berm as well.

Based on old aerial photos of the site and its vegetation, there is evidence that the wetland area of today is a portion of a much larger historic wetland area, which was either filled or drained over time to accommodate development. The current pond area was likely excavated into an existing wetland area. Therefore, even though this wetland has been altered over time, it is still a "jurisdictional" wetland. This is an important fact when determining how much wetland mitigation may be required for future activities that could impact the wetland.

Since the amount of any mitigation required is based on the wetland's functional values, I completed a wetland rating form for the wetland using Ecology's "Washington State Wetland Rating System for Eastern Washington (2014) methodology. The wetland was rated as a Category III wetland. Ecology would generally recommend 75 to 80 foot buffers to protect wetland functional values based on the wetland being located in a

high-intensity development area, but because the habitat scores of the wetland are so low, if stormwater inputs into the wetland were controlled, then smaller buffers can be considered to protect the functional values. If this wetland were to be filled and wetland mitigation was done, replacement ratios for re-establishment or creation of the wetland would be 2:1 (for every one acre of wetland lost, 2 acres of replacement wetlands would need to be provided).

I hope this information will assist you in working with your client to resolve some of the issues on the site.

RATING SUMMARY – Eastern Washington

Name of wetland (or ID #): Agri-Tech	Bay Chemical Date of site visit: 8/25/16
Rated by Catherine Reed (ECY)	Trained by Ecology? Yes No Date of training
HGM Class Used for Rating Dogressional	Unit has multiple HGM classes?YN

NOTE: Form is not complete without the figures requested (figures can be combined).

Source of base aerial photo/map <u>Soogle Maps</u>

OVERALL WETLAND CATEGORY ____

1. Category of wetland based on FUNCTIONS

	_Category I - Total score = 22 - 27
	_Category II - Total score = 19 - 21
X	_Category III - Total score = 16 - 18
	Category IV - Total score = 9 - 15

FUNCTION		nprov ter Qu		Hydrologic			Habitat		
		Circ	le the	ap	propr	iate	rati	ngs	
Site Potential	Н	M	L	(H)	М	L	Н	М	(L)
Landscape Potential	H	M	L	H	М	L	Н	М	P
Value	Н	(M)	L	H	M	(1)	Н	М	2
Score Based on Ratings		-	7		7	7		3	

Score for each function based on three ratings (order of ratings is not important)

9 = H,H,H
8 = H,H,M
7 = H,H,L
7 = H,M,M
6 = H,M,L
6 = M,M,M
5 = H,L,L
5 = M,M,L
4 = M,L,L
3 = L,L,L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATEGORY Circle the appropriate category
Vernal Pools	и ш
Alakali	I
Wetland with high conservation value	I
Bog	I
Old Growth or Mature Forest – slow growing	I
Aspen Forest	I
Old Growth or Mature Forest – fast growing	п
Floodplain forest	II
None of the above	

Maps and figures required to answer questions correctly (Eastern Washington)

Depressional Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes and classes of emergents	D 1.3, H 1.1, H 1.4	
Hydroperiods	D 1.4, H 1.2, H1.3	
Location of outlet (can be added to map of hydroperiods)	D 1.1, D1.4	
Boundary of 150 ft buffer (can be added to another figure)	D 2.2, D 5.2	
Polygon of area 1km from wetland edge - Including polygons for accessible habitat and undisturbed habitat	H 2.1, H2.2	
Screen capture of map of 303d listed waters in basin (from Ecology web site)	D 3.1, D 3.2	
Screen capture of list of TMDL's for WRIA in which unit is found (from web)	D 3.3	
Area of open water (can be added to map of hydroperiods)	H1.3.1	

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes and classes of emergents	H 1.1, H 1.4	
Hydroperiods	H 1.2, H1.3	
Ponded depressions	R 1.1	
Boundary of 150 ft buffer (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Polygon of area 1km from wetland edge -Including polygons for accessible habitat and undisturbed habitat	H 2.1, H2.2	
Screen capture of map of 303d listed waters in basin (from Ecology web site)	R3.1	
Screen capture of list of TMDL's for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake-fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes and classes of emergents	L1.1, L4.1, H1.1, H1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of 150 ft buffer (can be added to another figure)	L2.2	
Polygon of area 1km from wetland edge (Including polygons for accessible habitat and undisturbed habitat)	H 2.1, H2.2	
Screen-capture of map of 303d listed waters in basin (from Ecology web site)	L3.1	
Screen capture of list of TMDL's for WRIA in which unit is found (from web)	L3.3	

Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes and classes of emergents	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants (can be added to figure above)	S 4.1	
Boundary of 150 ft buffer (can be added to another figure)	\$ 2.1, \$ 5.1	
Polygon of area 1km from wetland edge (Including polygons for accessible habitat and undisturbed habitat)	H 2.1, H2.2	
Screen capture of map of 303d listed waters in basin (from Ecology web site)	S 3.1, S 3.2	
Screen capture of list of TMDL's for WRIA in which unit is found (from web)	S 3.3	

Wetland	name	or	number_	
---------	------	----	---------	--

Water Quality Functions - Indicators that the site functions to improve water quality.	(only 1 sco per box)
D 1.0 Does the wetland unit have the <u>potential</u> to improve water quality?	
D 1.1 Characteristics of surface water flows out of the wetland unit:	
Wetland has no surface water outlet - points = 5	
Wetland has an intermittently flowing outlet points = 3	5
Wetland has a highly constricted permanently flowing outlet points = 3	
Wetland has a permanently flowing surface outlet points = 1	
D 1.2 The soil 2 inches below the surface (or duff layer) is clay or organic (use NRCS definitions of soils)	13
YES points = 3 NO points = 0	O
D 1.3 Characteristics of persistent vegetation (emergent, shrub, and/or forest Cowardin class)	
Wetland has persistent, ungrazed, vegetation for > 2/3 of area points = 5	
Wetland has persistent, ungrazed, vegetation from 1/3 to 2/3 of area points = 3	1.0
Wetland has persistent, ungrazed vegetation from 1/10 to < 1/3 of area points = 1	. 5
Wetland has persistent, ungrazed vegetation <1/10 of area points = 0	1
D 1.4 Characteristics of seasonal ponding or inundation.)	
This is the area of ponding that fluctuates every year. Do not count the area that is permanently ponded.	
Area seasonally ponded is > ½ total area of wetland points = 3	1
Area seasonally ponded is ¼ - ½ total area of wetland points = 1	0
Area seasonally ponded is < 1/4 total area of wetland points = 0	
Total for D 1 Add the points in the boxes above	10
Record the rating on the first page	
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site?	
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? Yes = 1 No = 0	1
Record the rating on the first page 0 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? Yes = 1 No = 0 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0	1
Record the rating on the first page $0.2.0$ Does the landscape have the potential to support the water quality function at the site? 12.1 Does the Wetland unit receive stormwater discharges? 12.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants 12.3 Are there are septic systems within 250 ft of the wetland unit? 12.4 Yes = 1 No = 0 12.5 Yes = 1 No = 0	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? Yes = 1 No = 0 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.3 Are there are septic systems within 250 ft of the wetland unit? Yes = 1 No = 0 Yes = 1 No = 0 Yes = 1 No = 0	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants 2.3 Are there are septic systems within 250 ft of the wetland unit? 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source grandwater Cadrown etc. Yes = 1 No = 0 Yes = 1 No = 0	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants 2.3 Are there are septic systems within 250 ft of the wetland unit? 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 – D2.3? Source grandwater Cardinum etc. Yes = 1 No = 0 Add the points in the boxes above	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants 2.3 Are there are septic systems within 250 ft of the wetland unit? 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 – D2.3? Source grandwater Cardrian etc. Yes = 1 No = 0 Add the points in the boxes above	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants 2.3 Are there are septic systems within 250 ft of the wetland unit? 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source 3. Source 4. Add the points in the boxes above 2. Stating of Landscape Potential 2. If score is: 3. or 4 = H 1. or 2 = M Record the rating on the first page	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source grandwater Cardynum etc. Yes = 1 No = 0 Add the points in the boxes above ating of Landscape Potential If score is: 3 or 4 = H 1 or 2 = M Record the rating on the first page	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.3 Are there are septic systems within 250 ft of the wetland unit? 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source Total for D 2 Add the points in the boxes above ating of Landscape Potential If score is: 3 or 4 = H 1 or 2 = M Record the rating on the first page 3.0 Is the water quality improvement provided by the site valuable to society?	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.3 Are there are septic systems within 250 ft of the wetland unit? Yes = 1 No = 0 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions of the points of the points in the boxes above of the points in the boxes above of the points in the boxes above of the rating on the first page of the water quality improvement provided by the site valuable to society? D3.1 Does the unit discharge directly (within 1 mile) to a stream, river, or lake that is on the 303dlist? Yes = 1 No = 0	1
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? Yes = 1 No = 0 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.3 Are there are septic systems within 250 ft of the wetland unit? Yes = 1 No = 0 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source 3.2 Source 3.3 Source 3.4 Add the points in the boxes above Add the points in the boxes above Add the points in the boxes above 3.0 Is the water quality improvement provided by the site valuable to society? D3.1 Does the unit discharge directly (within 1 mile) to a stream, river, or lake that is on the 303dlist? Yes = 1 No = 0 3.2 Is the unit in a basin or sub-basin where water quality is an issue in some aquatic resource (303d list, eutrophic lakes, problems with nuisance and toxic algae)? 3.3 Has the site been identified in a watershed or local plan as important for maintaining water quality? (answer YES if there is a TMDL for the drainage or basin in which unit is found)	7.
Record the rating on the first page 2.0 Does the landscape have the potential to support the water quality function at the site? 2.1 Does the Wetland unit receive stormwater discharges? Yes = 1 No = 0 2.2 Is > 10% of the buffer within 150 ft of wetland unit in land uses that generate pollutants Yes = 1 No = 0 2.3 Are there are septic systems within 250 ft of the wetland unit? Yes = 1 No = 0 2.4 Are there are other sources of pollutants coming into the wetland that are not listed in questions 2.1 - D2.3? Source Pour ford Cod round etc. Yes = 1 No = 0 Add the points in the boxes above ating of Landscape Potential If score is: 3 or 4 = H 1 or 2 = M 0 = L Record the rating on the first page 3.0 Is the water quality improvement provided by the site valuable to society? D3.1 Does the unit discharge directly (within 1 mile) to a stream, river, or lake that is on the 303dlist? Yes = 1 No = 0 3.2 Is the unit in a basin or sub-basin where water quality is an issue in some aquatic resource (303d list, eutrophic lakes, problems with nuisance and toxic algae)? 3.3 Has the site been identified in a watershed or local plan as important for maintaining water quality? (answer)	1

<u>DEPRESSIONAL WETLANDS</u> Hydrologic Functions - Indicators that the site functions to reduce flooding and stream erosion.	Points (only 1 score per box)
D 4. 0 Does the wetland unit have the <u>potential</u> to reduce flooding and erosion?	
D 4.1 Characteristics of surface water flows out of the wetland unit:	
Wetland has no surface water nows out of the wetland and. points = 8	
Wetland has an intermittently flowing outlet points = 4	
Wetland has a highly constricted permanently flowing outlet points = 4	.0
Wetland has a permanently flowing surface outlet points = 0 (If outlet is a ditch and not permanently flowing treat unit as "intermittently flowing")	.8.
D 4.2 Depth of storage during wet periods Estimate the height of ponding above the bottom of the outlet. For units with no outlet measure from the surface of permanent water or deepest part (if dry). Seasonal ponding: => 3 ft above the lowest point in unit or the surface of permanent ponding points = 8 Seasonal ponding: 2 ft -< 3 ft above the lowest point in unit or the surface of permanent ponding points = 6 The wetland is a "headwater" wetland" points = 4 Seasonal ponding: 1 ft -< 2 ft points = 4 Seasonal ponding: 6 in -< 1 ft points = 2 Seasonal ponding: <6 in orr unit has only saturated soils Add the points in the boxes above	4
Total to 54	19
Rating of Site Potential If score is: 12 16 = H 6 - 11 = M 0 - 5 = L Record the rating on the first page	
D 5.0 Does the landscape have the potential to support hydrologic functions at the site?	
D5.1 Does the unit receive any stormwater discharges? Yes = 1 No = 0	1
D5. Is >10% of the land use within 150 ft of the wetland in a land uses that generates runoff? (Yes)= 1 No = 0	1
D 5.3 Is more than 25% of the contributing basin of the wetland unit covered with intensive human land uses? Yes = 1 No = 0	1
Total for D 5 Add the points in the boxes above	3
Rating of Landscape Potential If score is: 3 = H 1,2 = M 0 = L Record the rating on the first page	
D 6.0 Are the hydrologic functions provided by the site valuable to society?	
D 6.0 Are the hydrologic functions provided by the site valuable to society? D 6.1 Is the unit is in a landscape that has flooding problems? Choose the description that best matches conditions around the wetland unit being rated. Do not add points. Choose the highest score if more than one condition is met. The wetland captures surface water that would otherwise flow downgradient into areas where flooding has damaged human or natural resources (e.g. salmon redds), AND O Damage occurs in sub-basin that is immediately downgradient of unit points=2 O Damage occurs in a sub-basin further down-gradient points = 1 The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. Explain why Cally small wetland stormath system with points = 0 There are no problems with flooding downstream of the unit. points = 0 D 6.2 Has the site has been identified as important for flood storage or flood conveyance in a regional flood	6
D 6.1 Is the unit is in a landscape that has flooding problems? Choose the description that best matches conditions around the wetland unit being rated. Do not add points. Choose the highest score if more than one condition is met. The wetland captures surface water that would otherwise flow downgradient into areas where flooding has damaged human or natural resources (e.g. salmon redds), AND O Damage occurs in sub-basin that is immediately downgradient of unit points=2 O Damage occurs in a sub-basin further down-gradient points = 1 The existing or potential outflow from the wetland is so constrained by human or natural conditions that the water stored by the wetland cannot reach areas that flood. Explain why cally small wetland stormwater system within the points = 0	6

Wetland Rating System for Eastern WA: 2014 Update Rating Form

H 1. Does the wetland unit have the <u>potential</u> to provide habitate. H 1.1 Categories of vegetation structure Check the Cowardin vegetation classes present and categories of emerge category is >= ½ acre or >= 10% of the unit if unit is < 2.5 acres		-
Check the Cowardin vegetation classes present and categories of emerg		
	gent plants. Size threshold for each	
Emergent plants 0-12 in. (0 – 30 cm) high are the highest layer Emergent plants >12 – 40 in.(>30 – 100cm) high are the highest layer Emergent plants > 40 in.(> 100cm) high are the highest layer Scrub/shrub (areas where shrubs have >30% cover) Forested (areas where trees have >30% cover)	est layer with >30% cover VCG	
H 1.2. Is one of the vegetation types "aquatic bed?"	YES = 1 point NO = 0 points	0
H 1.3. Surface Water H 1.3.1 Does the unit have areas of "open" water (without herba acre OR 10% of its area during the March to early June OR in Aug Note: answer YES for Lake-fringe water YES = 3 points & go to H 1.4 H 1.3.2 Does the unit have an intermittent or permanent, and un boundaries, or along one side, over at least % acre or 10% of its a YES = 3 points	wetlands NO = go to H 1.3.2 No egetate,d stream within its	0.
H 1.4. Richness of Plant Species Count the number of plant species in the wetland that cover at least a species can be combined to meet the size threshold) You do Do not include Eurasean Milfoil, reed canarygrass, purple loos Canadian Thistle, Yellow-flag Iris, and Salt Cedar (Tamar # of species Scoring: > 9 species = 2 points 4-9 species	not have to name the species. sestrife, Russian Olive, Phragmites, risk)	1
H 1.5. Interspersion of habitats Decide from the diagrams below whether interspersion between types and unvegetated areas (open water or mudflats) is high, medium, low, or Use map of Cowardin plant classes prepared for questions H1.1 of the None = 0 points Low = 1 point Modera	or none.	Figure

H 2.0. Does the landscape have the potential to support habitat at the site?		
H 2.1 Accessible habitat (only area of habitat abutting wetland unit). Calculate: % undisturbed habitat + [(% moderate and low intensity land uses)/2]/ If total accessible habitat is: > 1/3 (33.3%) of 1km circle (~100 hectares) 20 - 33% of 1km circle 10- 19% of 1km circle <10% of 1km circle	points = 3 points = 2 points = 1 points = 0	2
H2.2 Undisturbed habitat in 1km circle around unit. If: Undisturbed habitat > 50% of circle Undisturbed habitat 10 - 50% and in 1-3 patches Undisturbed habitat 10 - 50% and > 3 patches Undisturbed habitat < 10% of circle	points = 3 points = 2 points = 1 points = 0	0
H2.3 Land use intensity in 1 km circle. If: > 50% of circle is high intensity land use Does not meet criterion above	points = (-2) points = 0	22
H 2.4 The wetland unit is in an area where annual rainfall is less than 12 inches, a influenced by irrigation practices, dams, or water control structures. (General boundaries of reclamation areas, irrigation district, or reservoirs)	oints = 3	0
Total for H 2 Add the points in the boxes above		

1-3 = MRating of Landscape Potential If score is: 4-6=H Record the rating on the first page

H 3.0 Is the Habitat provided by the site valuable to society?	
H3.1Does the site provides habitat for species valued in laws, regulations or policies? (choose the highest score) Site meets ANY of the following criteria:	
Site has 1 or 2 priority habitats within 100m (see Appendix B) points = 1	0
Site does not meet any of the criteria above points = 0	

Rating of Value

If score is:

Record the rating on the first page

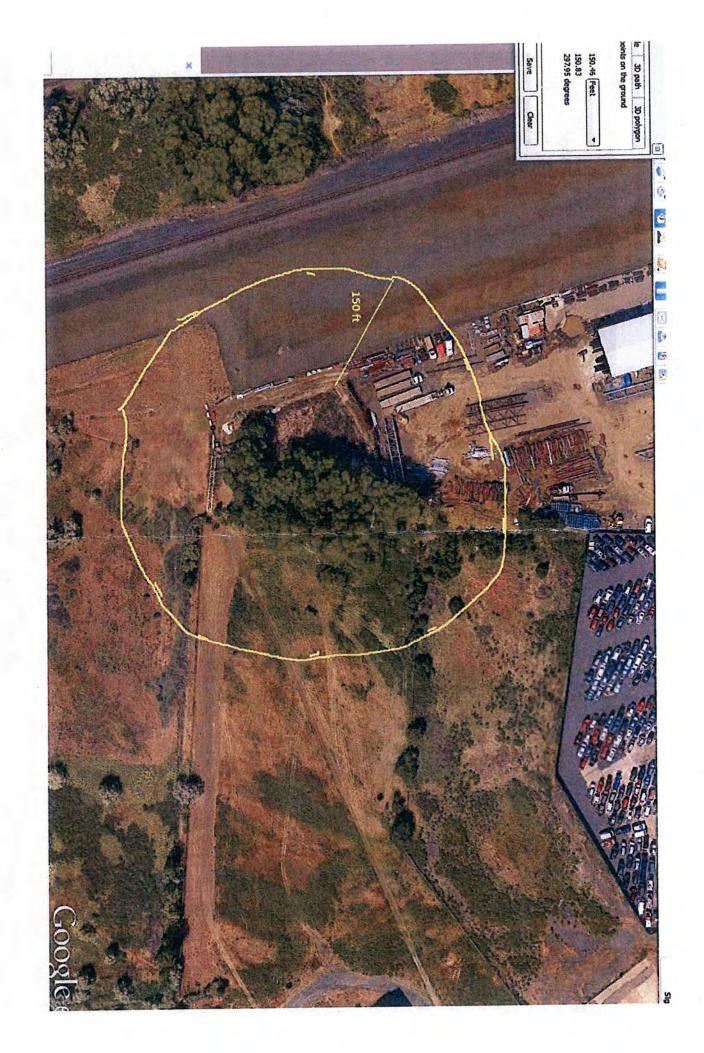
Wetland	name or	number
AA C CTOTTO	HIGHLIG OF	number

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS

Please determine if the wetland unit meets the attributes described below and circle the appropriate Category. NOTE: A wetland may meet the criteria for more than one set of special characteristics. Record all those that apply. NOTE: All units should also be characterized based on their functions.

Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the Category when the	
appropriate criteria are met.	•
SC 1.0 Vernal pools	1
s the wetland unit less than 4000 ft ² , and does it meet at least two of the following criteria?	
 Its only source of water is rainfall or snowmelt from a small contributing basin and has no groundwater input 	
 Wetland plants are typically present only in the spring; the summer 	
vegetation is typically upland annuals. NOTE: If you find perennial,	
"obligate", wetland plants the wetland is probably NOT a vernal pool	
 The soil in the wetland are shallow (<1ft deep (30 cm)) and is underlain by an impermeable layer such as basalt or clay. 	
— Surface water is present for less than 120 days during the "wet" season.	
YES = Go to SC 1.1 NO - not a vernal pool	
SC 1.1 Is the vernal pool relatively undisturbed in February and March?	
YES = Go to SC 1.2 NO – not a vernal pool with special characteristics	
SC 1.2 Is the vernal pool in an area where there are at least 3 separate aquatic resources within 0.5 miles (other wetlands, rivers, lakes etc.)? YES = Category II NO = Category III	Cat. II Cat. III
SC 2.0 Alkali wetlands	
Does the wetland unit meets one of the following two criteria?	
— The wetland has a conductivity > 3.0 mS/cm.	.3
 The wetland has a conductivity between 2.0 - 3.0 mS, and more than 50% of the plant cover in the wetland can be classified as "alkali" species (see 	
Table 4 for list of plants found in alkali systems).	
If the wetland is dry at the time of your field visit, the central part of the	
area is covered with a layer of salt.	1
OR does the wetland unit meets two of the following three sub-criteria?	
 Salt encrustations around more than 80% of the edge of the wetland 	1
 More than ¾ of the plant cover consists of species listed on Table 4 	
 A pH above 9.0. All alkali wetlands have a high pH, but please note that 	
 A pH above 9.0. All alkali wetlands have a high pH, but please note that some freshwater wetlands may also have a high pH. Thus, pH alone is not 	
	Cat. I

SC 3.0 Wetlands with High Conservation Value (WHCV)	
SC 2.1 Has the Department of Natural Resources updated their web site to include the list of Wetlands with High Conservation Value? YES - Go to SC 2.2 NO - Go to SC 2.3 SC 2.2 Is the wetland unit you are rating listed on the DNR database as having a High Conservation Value? YES = Category I NO = not a WHCV SC 2.3 Is the wetland unit being rated in a Section/Township/Range that contains a Natural Heritage wetland?	Cat. I
http://www1.dnr.wa.gov/nhp/refdesk/datasearch/wnhpwetlands.pdf YES contact WNHP/DNR and go to SC 2.4 NO = not a WHCV SC 2.4 Has DNR identified the wetland within the S/T/R as a wetland with High Conservation value and is listed on their web site? YES = Category I NOnot an WHCV	
SC 4.0 Bogs and Calcareous Fens	
Does the wetland unit (or any part of the wetland unit) meet both the criteria for soils and vegetation in bogs or calcareous fens. Use the key below to identify if the wetland is a bog or calcareous fen. If you answer yes you will still need to rate the wetland based on its functions. SC 4.1. Does an area within the wetland unit have organic soil horizons (i.e. layers of organic soil), either peats or mucks, that compose 16 inches or more of the first 32 inches of the soil profile? (See Appendix C for a field key to identify organic soils)? Yes - go to SC 4.3 No - go to SC 4.2 SC 4.2. Does an area within the unit have organic soils, either peats or mucks that are less than 16 inches deep over bedrock or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or pond?? Yes - go to SC 4.3 No - Is not a bog for rating SC 4.3. Does an area within the unit have more than 70% cover of mosses at ground level AND at least 30% of the total plant cover consists of species in Table 5? Yes - Category I bog No - go to SC 4.4 NOTE: If you are uncertain about the extent of mosses in the understory you may substitute that criterion by measuring the pH of the water that seeps into a hole dug at least 16" deep. If the pH is less than 5.0 and the plant species in Table 5 are present, the wetland is a bog. SC 4.4 Is an area with peats or mucks forested (> 30% cover) with subalpine fir, western red cedar, western hemlock, lodgepole pine, quaking aspen, Englemann's spruce, or western white pine, AND any of the species (or combination of species) listed in Table 5 provide more than 30% of the cover under the canopy Yes - Category I bog NO - go to question SC 4.5 5. Do the species listed in Table 6 comprise at least 20% of the total plant cover within an area of peats and mucks? Yes - Is a Calcareous Fen for purpose of rating No - go to Question 6 6. Do the species listed in Table 6 comprise at least 10% of the total plant cover an area of peats and mucks, AND one of the two follow	Cat. I
 The pH of free water ≥ 6.8 AND electrical conductivity ≥ 200 uS/cm at multiple locations within the wetland 	C-4 1
Yes – Is a Category I calcareous fen No - Is not a calcareous fen	Cat. I


SC 5.0 Forested Wetlands		
	of forest rooted within its boundary that meets at least	***
one of the following three criteria? (Continue only if you have identified a forested class is		
present in question H 1.1)		198
 The wetland is within the "10 	00 year" floodplain of a river or stream	
 aspen (Populus tremuloides) species 	represents at least 20% of the total cover of woody	100
- There is at least ¼ acre of tre	es (even in wetlands smaller than 2.5 acres) that are	
	cording to the definitions for these priority habitats	•
developed by WDFW (see de		
YES = go to SC 5.1 NO -not	a forested wetland with special characteristics	
	rest canopy where more than 50% of the tree species (by	
cover) are slow growing native tre	es (see Table 7)	Cat. I
YES = Category I	NO = go to SC 5.2	
SC 5.2 Does the unit have areas where	e aspen (Populus tremuloides) represents at least 20% of	Cat. I
the total cover of woody species.		Cut. I
YES = Category I	NO = go to SC 5.3	
SC 5 3 Does the wetland unit have are	as with a forest canopy where more than 50% of the tree	100
species (by cover) are fast growin		Cot II
species (by cover) are last growing	g species. (see Table 7)	Cat. II
YES = Category II	NO = go to SC 5.5	
	e wetland within the "100 year floodplain" of a river or	
stream?	No.	1.20
YES = Category II		Cat. II
Category of wetland based on Spe		
	ighest" rating if wetland falls into several categories.	
If you ans	wered NO for all types enter "Not Applicable" on p.1	

*** .1 . 1	water Surana	
Wetland	name or nur	mper

Appendix B: WDFW Priority Habitats in Eastern Washington

Priority habitats listed by WDFW (see complete descriptions of WDFW priority habitats, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008. Priority Habitat and Species List. Olympia, Washington. 177 pp. http://wdfw.wa.gov/publications/00165/wdfw00165.pdf) Count how many of the following priority habitats are within 330 ft (100m) of the wetland unit? NOTE: This question is independent of the land use between the wetland unit and the priority habitat. Aspen Stands: Pure or mixed stands of aspen greater than 0.4 ha (1 acre). Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of native fish and wildlife (full descriptions in WDFW PHS report p. 152). Old-growth/Mature forests: Old-growth east of Cascade crest: Stands are highly variable in tree species composition and structural characteristics due to the influence of fire, climate, and soils. In general, stands will be >150 years of age, with 25 trees/ha (10 trees/acre) that are > 53 cm (21 in) dbh, and 2.5-7.5 snags/ha (1 - 3 snags/acre) that are > 30-35 cm (12-14 in) diameter. Downed logs may vary from abundant to absent. Canopies may be single or multi-layered. Evidence of human-caused alterations to the stand will be absent or so slight as to not affect the ecosystem's essential structures and functions. Mature forests: Stands with average diameters exceeding 53 cm (21 in) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80 - 200 years old west and 80 - 160 years old east of the Cascade crest. Oregon white Oak: Woodlands Stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important (full descriptions in WDFW PHS report p. 158 - see web link above). Riparian: The area adjacent to aquatic systems with flowing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other. Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. Caves: A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human. Cliffs: Greater than 7.6 m (25 ft) high and occurring below 5000 ft. Talus: Homogenous areas of rock rubble ranging in average size 0.15 - 2.0 m (0.5 - 6.5 ft), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs. Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 51 cm (20 in) in western Washington and are > 2 m (6.5 ft) in height. Priority logs are > 30 cm (12 in) in diameter at the largest end, and > 6 m (20 ft) long. Shrub-steppe: A nonforested vegetation type consisting of one or more layers of perennial bunchgrasses and a conspicuous but discontinuous layer of shrubs (see Eastside Steppe for sites with little or no shrub cover). Eastside Steppe: Nonforested vegetation type dominated by broadleaf herbaceous flora (i.e., forbs), perennial bunchgrasses, or a combination of both. Bluebunch Wheatgrass (Pseudoroegneria spicata) is often the prevailing cover component along with Idaho Fescue (Festuca idahoensis), Sandberg Bluegrass (Poa secunda), Rough Fescue (F. campestris), or needlegrass (Achnatherum spp.). Juniper Savannah: All juniper woodlands. Note: All vegetated wetlands are by definition a priority habitat but are not included in this list because they are addressed elsewhere.

WETLAND DETERMINATION DATA FORM - Arid West Region

					ditch a
oplicant/Owner: vestigator(s):RC	ed	s	ection, Township, Ran	ge:	
vestigator(s):KC andform (hillslope, terrace, etc.): @UNC ubregion (LRR):	ient floodplai	N_L	ocal relief (concave, c	convex, none): Obnicave	Slope (%):
ubregion (LRR):	evvace	_at:		Long:	Datum:
oil Map Unit Name:				NWI classification:	
e climatic / hydrologic conditions on th	e site typical for this tir	ne of year	7 Yes X No_	(If no, explain in Remarks.)	
e VegetationX_, SollX_, or l				Normal Circumstances" present?	Yes _ X_ No
e Vegetation, Soll, or I				eded, explain any answers in Ren	narks.)
UMMARY OF FINDINGS - A				ocations, transects, impo	rtant features, etc.
Hydrophytic Vegetation Present?			Is the Sampled		
Hydric Soil Present?	Yes X No_		within a Wetlan	The same of the sa	
Vetland Hydrology Present?	Yes X No			43 11 4	
Netland Hydrology Present? Remarks: Whole area subject to His Site and to the Grade and arean-u	southfeast perm to u	und toona vest	erground a	drains. Ditches lo perty - Installation	n of railroad
EGETATION – Use scientific			Dominant Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size:)		Species? Status	Number of Dominant Species That Are OBL, FACW, or FAC:	(A)
				Total Number of Dominant Species Across All Strata:	(B)
				Percent of Dominant Species	
			= Total Cover	That Are OBL, FACW, or FAC:	(A/B)
Sapling/Shrub Stratum (Plot size:		-		Prevalence Index worksheet:	
				Total % Cover of:	
2				OBL species	
3,				FACW species	
1				FAC species	
5			= Total Cover	FACU species	
Herb Stratum (Plot size:)	Late A		UPL species	x 5 =
1. reed canary grass	5	70		Column Totals:	(A)(B)
2,				Prevalence Index = B/A	
3		_		Hydrophytic Vegetation India	
4,		_		Dominance Test is >50%	
5				Prevalence Index is ≤3.01	
3				Morphological Adaptations	(Provide supporting
7		-		data in Remarks or on	a separate sheet)
8			= Total Cover	Problematic Hydrophytic \	regetation' (Explain)
Woody Vine Stratum (Plot size:1.				¹ Indicators of hydric soll and w be present, unless disturbed o	etland hydrology must
2.				De present, unless disturbed o	, problemation
			= Total Cover	Hydrophytic Vegetation	
% Bare Ground In Herb Stratum	% Cover	of Blotic C	crust	Present? Yes	No
Remarks: Willows and Russia	u olive in ad	tjacen to co	1 buffer are	14150 Octobrice Conce	LONG SIL
No holes dug in pon		1	Δ.	11 1 1 1 1 1 A	weren die in

US Army Corps of Engineers

Depth (inches)		mo aopin i	eeded to docum	ent the in	dicator or co	nfirm the abse	nce c	of Indicators.)	
(IIICHES)	Color (moist)	0/		Features	- 1 .	2			
0-8	2,5 Y 3/1		Color (moist)	<u>%</u> .	A COLOR TORS	C ² Texture			emarks
) 0	-210/3/1-		DYR 4/6	12.	Distanct	_ Loc	w.		e taken at
						-			catron becau
							-	pond it	tself known
								to conta	in heavy
									ontamination
								THE COLUMN	
T 0.0									
Type: C=Co Ivdric Soll I	ncentration, D=Depletion	on, RM=Red	duced Matrix, CS=	Covered	or Coated Sar			tion: PL=Pore L or Problematic I	Inling, M=Matrix.
Histosol (Sandy Redox		1.)				Territoria de la constitución de
	pedon (A2)		Stripped Matr	7				ick (A9) (LRR C) ick (A10) (LRR E	
Black His		0.0	Loamy Mucky		F1)			Vertic (F18)	-1
	Sulfide (A4)		Loamy Gleye					ent Material (TF2	2)
	Layers (A5) (LRR C)		Depleted Mat					xplain in Remark	T
	ck (A9) (LRR D)		Redox Dark S						
	Below Dark Surface (A	(11)	Depleted Dark			2		Language of the same	-53-545
	rk Surface (A12) ucky Mineral (S1)		Redox Depres		3)			hydrophytic veg	A SECOND PROPERTY OF THE PROPE
_ Carry wi			Vernal Pools	(19)	7			drology must be	
Sandy GI	eved Matrix (S4)					unloc	on dial		
	eyed Matrix (S4)					unles	ss dis	turbed or probler	nauc.
Restrictive L	eyed Matrix (S4) ayer (if present):					unles	ss dis	turbed or probler	nauc,
Restrictive La	ayer (if present):								
Type: Depth (incl	ayer (if present):	DM (1-10)	. I A lagua	1002 10	CII b	Hydric S	Soll P	resent? Yes	No
Restrictive L. Type: Depth (incl Remarks: . Soil in 40 pm	nes): this locations years	m con	ud have	been	fill, bu	Hydric S	Soll P	resent? Yes	No
Restrictive L. Type: Depth (incl Remarks: . Soil w	nes): this locations years	m con	uld have	bæn	fill, bu	Hydric S	Soll P	resent? Yes	No
Restrictive L. Type: Depth (incl Remarks: SO(1 (W 40 pw. YDROLOG	nes): this 10 costices years SY rology Indicators:			been	fill, bu	Hydric S	Soll P	resent? Yes	No
Restrictive L. Type: Depth (incl Remarks: SO(1 (N 40) PW YDROLOG Vetland Hydica	nes): this locustices years SY rology Indicators: ttors (minimum of one r			been	fill, bu	Hydrics of if so,	Soll P	resent? Yes	No
Restrictive L. Type: Depth (incl Remarks: SO(1 (N 40 PM YDROLOG Vetland Hydi Primary Indica Surface V	ayer (if present): nes): + this location s years syrans rology Indicators: ttors (minimum of one rology (A1)				fill, bu	Hydrics of if so,	Soll P	resent? Yes	No move them or more regulred)
Restrictive L. Type: Depth (incl Remarks: SO(1 (N 40 PM YDROLOG Vetland Hydromary Indicator Surface V High Water	ayer (if present): hes): this lo coefic s years SY rology Indicators: ators (minimum of one related (A1) er Table (A2)		eck all that apply) Salt Crust (B Biotic Crust (11) B12)		Hydrics of if so,	Soll P	resent? Yes	No move them or more required) Riverine)
Restrictive L. Type: Depth (incl Remarks: SO(1 (N 40 PM YDROLOG Vetland Hydromary Indica Surface V High Wate X Saturation	ayer (if present): hes): this lo costic s years SY rology Indicators: tors (minimum of one revolutions (A1) er Table (A2) h (A3)	equired; ch	eck all that apply) Salt Crust (B	11) B12)		Hydric s	econda Wal	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (I	or more required) Riverine) (B2) (Riverine) Riverine)
Primary Indica Surface V High Water Mater Type: Type: Depth (incl Remarks: SO(1 (N) FOR OLOG Primary Indica Surface V High Water Water Ma	ayer (if present): hes): this lo costic s years syrology Indicators: ators (minimum of one r vater (A1) er Table (A2) n (A3) rks (B1) (Nonriverine)	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inve	11) B12) tebrates ((B13) r (C1)	Hydric s	econda Wal	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (I	or more required) Riverine) (B2) (Riverine)
Primary Indica Surface V High Water Ma Sediment	ayer (if present): hes): this lo cost is s years rology Indicators: ttors (minimum of one relater (A1) er Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine)	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inve	11) B12) tebrates ((B13)	Hydric s	econd: Wal Sed	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (I	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad
Primary Indicates Saturation Water Manual Sediment Depth (incl Remarks: SOUL (W Primary Indicates Surface W High Water Manual Sediment Drift Depo	ayer (if present): hes): this lo cost is s years rology Indicators: ttors (minimum of one relater (A1) er Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) sits (B3) (Nonriverine)	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inver Hydrogen Su Oxldlzed Rhi	11) B12) tebrates (lifide Odor zospheres	(B13) r (C1) s along Living lron (C4)	Hydric s cot if so, Se Roots (C3)	econda Wal Sed Driff Dra	ary Indicators (2 ter Marks (B1) (F liment Deposits (b) (B) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad
Printer Mater Mate	ayer (if present): hes): this location s years rology Indicators: ators (minimum of one review (A1) er Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) oil Cracks (B6)	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inverence of Crust (Crust (Crus	11) B12) tebrates (lifide Odor zospheres Reduced Reduction	(B13) r (C1) s along Living Iron (C4) in Tilled Soils	Hydric s cot if so, Se Roots (C3)	econda Wata Sed Driff Dra Dry Cra	resent? Yes 200 ab ly ary Indicators (2 ter Marks (B1) (F liment Deposits (B3) (I inage Patterns (E -Season Water T yfish Burrows (C	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad
Perincipe Land Restrictive Land Type: Depth (incleading the content of the conte	ayer (if present): hes): His location S years rology Indicators: ators (minimum of one revolution (A2) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) cists (B3) (Nonriverine) oil Cracks (B6) n Visible on Aerial Image	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inverence of Crust (B) Yeresence of Crust (B) Thin Muck St	11) B12) tebrates (lifide Odol zospheres Reduced Reduction urface (C7	(B13) r (C1) s along Living lron (C4) in Tilled Solls	Hydric s cot if so, Se Roots (C3)	econda Wal Sed Driffi Dra Cra Satu	resent? Yes 200 ab ly ary Indicators (2 ter Marks (B1) (F liment Deposits (B3) (I inage Patterns (E -Season Water T yfish Burrows (C	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8)
Primary Indicates Vater Manual Sediment Drift Deposition of Water-States Vater-States Vater-Stat	ayer (if present): hes): this to costice s years SY rology Indicators: tors (minimum of one related (A1) ar Table (A2) h (A3) rks (B1) (Nonriverine) peposits (B2) (Nonriverine) oil Cracks (B6) h Visible on Aerial Imagined Leaves (B9)	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inverence of Crust (Crust (Crus	11) B12) tebrates (lifide Odol zospheres Reduced Reduction urface (C7	(B13) r (C1) s along Living lron (C4) in Tilled Soils r)	Hydric S Let 4 S 0, Se Roots (C3) (C6)	econd: Wal Sed Driff Dra Dry Cra Satu	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (Filment Deposits (Filment Deposits (Filment Deposits (Filment Deposits (Filment	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8) In Aerial Imagery (C9) (3)
Primary Indica Sediment Depth (incl Remarks: SOLL (N YDROLOG Vetland Hydi Primary Indica Surface V High Water X Saturation Water Ma Sediment Drift Depo Surface S Inundation Water-Sta Field Observa	ayer (if present): hes): this lo cost is s years SY rology Indicators: ttors (minimum of one relations) rology Indicators: ttors (minimum of one relations) per Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) sits (B3) (Nonriverine) oil Cracks (B6) n Visible on Aerial Imaguined Leaves (B9) atlons:	equired; che erine)) ery (B7)	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inverence of County of Count	11) B12) tebrates (lifide Odor zospheres Reduced Reduction urface (C7 n in Rema	(B13) r (C1) s along Living lron (C4) in Tilled Soils r)	Hydric S Let 4 S 0, Se Roots (C3) (C6)	econd: Wal Sed Driff Dra Dry Cra Satu	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (Filment Deposits (Filment Deposits (Filment Deposits (Filment Deposits (Filment	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8) In Aerial Imagery (C9) (3)
Restrictive L. Type: Depth (incl Remarks: SOLL (N LO PUL YDROLOG Vetland Hydio Primary Indica Surface V High Wate X Saturation Water Ma Sediment Drift Depo Surface S Inundation Water-Sta Surface Water	ayer (if present): Thes): This is cost to see years SY rology Indicators: ators (minimum of one reviter (A1) art Table (A2) a (A3) bress (B1) (Nonriverine) Deposits (B2) (Nonriverine) oil Cracks (B6) a Visible on Aerial Image ined Leaves (B9) ations: Present? Yes The cost of th	equired; ch	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Inver Hydrogen Su Oxidized Rhi Yeresence of Recent Iron I Thin Muck St Other (Explai	11) B12) tebrates (Iffide Odor zospheres Reduced Reduction urface (C7 n in Remains	(B13) r (C1) s along Living lron (C4) in Tilled Solls r) arks)	Hydric s cot if so, Se Roots (C3) (C6) VISIBLE IA	econd: Wal Sed Driff Dra Dry Cra Satu	ary Indicators (2 ter Marks (B1) (F Ilment Deposits (B3) (Inage Patterns (B3)) Season Water Tyfish Burrows (Curation Visible or Illow Aquitard (D:	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8) In Aerial Imagery (C9) (3)
Prince Vater Surface Water Table Prince Vater	ayer (if present): hes): this lo cost is s years rology Indicators: ators (minimum of one relater (A1) er Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) oil Cracks (B6) n Visible on Aerial Image ined Leaves (B9) ations: Present? Yes resent? Yes	equired; chi	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Invertigation of the control of the	11) B12) tebrates (Iffide Odor zospheres Reduced Reduction urface (C7 n in Remains):	(B13) r (C1) s along Living lron (C4) in Tilled Soils r) arks)	Hydrics of if so, Se Roots (C3) VISIBLE IN	econda Wal Sec Driffi Dra Dry Cra Satu Sha FAC	ary Indicators (2 ter Marks (B1) (F liment Deposits (B3) (I inage Patterns (B3) (I Season Water T yrish Burrows (C uration Visible or llow Aquitard (D3) C-Neutral Test (D3)	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8) In Aerial Imagery (C9) (3) (55)
Perinary Indicates Surface V High Water Ma Sediment Drift Deposition of the control of the contr	ayer (if present): hes): this lo cost is s years rology Indicators: ttors (minimum of one relater (A1) er Table (A2) n (A3) rks (B1) (Nonriverine) Deposits (B2) (Nonriverine) oil Cracks (B6) n Visible on Aerial Image ined Leaves (B9) ations: Present? Yes sent? Yes Yes Yes	equired; chi	eck all that apply) Salt Crust (B Biotic Crust (Aquatic Invertigation of the control of the	11) B12) tebrates (Iffide Odor zospheres Reduced Reduction urface (C7 n in Remains):	(B13) r (C1) s along Living lron (C4) in Tilled Soils r) arks)	Hydrics of if so, Se Roots (C3) VISIBLE IN	econda Wal Sec Driffi Dra Dry Cra Satu Sha FAC	ary Indicators (2 ter Marks (B1) (Filment Deposits (B3) (Filment Deposits (Filment Deposits (Filment Deposits (Filment Deposits (Filment	or more required) Riverine) (B2) (Riverine) Riverine) B10) Man-mad Table (C2) (8) In Aerial Imagery (C9) (3) (55)

Wetland visit Yakima Steel Fabricators Chais Wend Cally Reed.

25 AUG 2016 1200 -1300

rocation

South 1) duckused on wher surface

estimated high water mark ~ 2' above aursent level

of weed canary) grass unknown?

russian dive above untland

3) cat tails (4) rushes

willows on buffer sou far

East side 5) unknown plantain rose on highland

somac in highland

Northeast corner - ditch some sufface water (willowd vacsion olive)

Mungell - goil color chart 2.54 3/1 Matrix @ 8"

ordox 19 10yr 4/6 12%

east side of ditch

Northwest side (a) night shade

point of shovel 2 1ft above water estimated extent of gaturation picture taken

ATTACHMENT C NAUTILIS BIOASSAY RESULTS

WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

Test America Sediment Characterization – Toxicological Results

Draft Report

Report date: July 12, 2011

Submitted to:

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

TestAmerica Seattle 5755 8th Street East

Tacoma, WA 98424

TABLE OF CONTENTS

TAE	LE O	OF CONTENTS	
SIGI	JTAN	URE PAGE	III
1.0	INT	RODUCTION	1
2.0	SAN	MPLES	2
3.0	СНІ	IRONOMUS DILUTUS TEST	2
	3.1	Methods	
	3.2	Results	5
	3.3	QA/QC	5
	3.4	Discussion	
4.0	HYA	ALELLA AZTECA TEST	7
	4.1	Methods	7
	4.2	Results	9
	4.3	QA/QC	10
	4.4	Discussion	11
5.0	MIC	CROTOX® TEST	11
	5.1	Methods	11
	5.2	Results	13
	5.3	QA/QC	14
	5.4	Discussion	15
6.0	CO	NCLUSIONS	15
7.0	REE	FERENCES	16

Page

TABLE OF CONTENTS

Page LIST OF TABLES Table 1 Table 2 Summary of sample collection and test initiation dates ______2 Table 3 Table 4 Results of Chironomus dilutus tests. Samples with statistically reduced survival or growth are underlined, and values failing two-hit RSET criteria are shaded gray, Table 5 Summary of water quality parameters for C. dilutus tests (means and ranges). Required values are shown in brackets......6 Table 6 Summary of methods for the 10-day test with *Hyalella azteca*.......9 Table 7 Table 8 Results of Hyalella azteca tests. Samples with statistically reduced survival or are underlined, and values failing two-hit RSET criteria are shaded gray, while Table 9 Summary of water quality parameters for *H. azteca* analyses (means and ranges). Table 10 H. Azteca reference toxicant test results. Table 11 Table 12 Results of Microtox tests. Samples with statistically reduced luminescence are underlined, and values failing two-hit RSET criteria are shaded gray, while Table 13 Table 14 Table 15 LIST OF APPENDICES APPENDIX A - Results Summaries APPENDIX B - Statistical Analyses APPENDIX C - Water Quality Summaries APPENDIX D - Laboratory Bench Sheets APPENDIX E - Reference Toxicant Tests APPENDIX F - Chain-of-Custody Forms

SIGNATURE PAGE

Cat Curran, M.S.

Washington Laboratory Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

On May 23rd, 2011 Test America collected freshwater sediments for biological testing. Test America contracted with Nautilus Environmental to provide toxicity-testing services for the project. The three sediment samples selected for testing included samples E-WetSed-1-052311 (WETSED-1), E-WetSed-2-052311 (WETSED-2), and E-WetSed-3-052311 (WETSED-3). No reference sample was collected in conjunction with this project. The freshwater sediment samples were tested for toxicity using the *Chironomus dilutus* (aka *tentans*) 20-day survival and growth bioassay (USEPA 2000 and ASTM 2000), the *Hyalella azteca* 10-day survival bioassay (USEPA 2000 and ASTM 2000), and the 15-minute 100 percent porewater Microtox® bacteria bioluminescence test. All tests met negative and positive control criteria.

Results were evaluated by comparing test data to the criteria in the Sediment Evaluation Framework for the Pacific Northwest (RSET 2009) guidance document. *C. dilutus, H. azteca*, and Microtox results were compared to control results, and examined for statistically significant effects ($\alpha = 0.05$). Acceptability criteria from the literature are summarized in Table 1.

Table 1 Acceptability criteria for bioassays

Test Type	C. dilutus 20-Day	H. azteca 10-Day	Microtox
Endpoint	Survival and Growth	Survival	Luminescence
Source	RSET 2009	RSET 2009	RSET 2009
Test Criteria	One-hit failure is mortality >	One-hit failure is mortality >	One-hit failure is
	control mortality + 25% <u>and/or</u>	control mortality + 25% and	Luminescence <75% of
	biomass <60% of control biomass	significant difference	control luminescence and
	and significant difference		significant difference
	Two-hit failure is mortality >	Two-hit failure is mortality >	Two-hit failure is
	control mortality + 15% <u>and/or</u>	control mortality + 10% <u>and</u>	Luminescence <85% of
	biomass <75% of control biomass	significant difference	control luminescence and
	and significant difference		significant difference
Control	Negative control ≤32% mortality	Negative control ≤20%	Negative control final light
Criteria	and growth ≥0.48 mg/ind. ash-	mortality	output > 72% of initial
	free dry weight		output

2.0 **SAMPLES**

Upon receipt of samples from Test America, samples were matched with the chain-of-custody form and inspected. Samples were stored at 4 ± 2°C in the dark prior to test initiation. Toxicity tests were initiated within 2 weeks of collection (Table 2). Total ammonia levels in the porewater ranged from <1.0 to 2.7 milligrams per liter (mg/L). Both overlying ammonia and sulfides were also measured during testing, and the results are reported in the QA/QC sections for each test.

Table 2 Summary of sample collection and test initiation dates

Sample ID	Collection Date	Microtox Test Initiation Date	H. azteca Test Initiation Date	C. dilutus Test Initiation Date
E-WetSed-1- 052311				
E-WetSed-2-	N 22 2011	1 (2011	I 7 2011	1 0 2011
052311	May 23, 2011	June 6, 2011	June 7, 2011	June 9, 2011
E-WetSed-3-				
052311				

3.0 **CHIRONOMUS DILUTUS TEST**

3.1 Methods

C. dilutus were exposed to test sediments for 20 days to determine the effects of site sediment on survival and growth. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), and are summarized in Table 3.

C. dilutus egg cases were obtained from Aquatic BioSystems (Fort Collins, Colorado) and arrived at the laboratory on June 8, 2011. The egg cases were transported in insulated containers in oxygen-saturated water contained in 500-mL plastic bottles. Upon arrival at the laboratory, water quality parameters were measured and observations of organism condition were made. The egg cases were 20°C at receipt, and were cultured at 23°C. The organisms emerged from the egg cases on June 9th and tests were initiated the same day.

One day prior to test initiation (Day -1), the sediment samples were homogenized, 100-ml of sediment was distributed to each of eight labeled test chambers for each of the samples, and Nautilus Environmental

175-ml diluted mineral water (prepared by diluting two parts Perrier® into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed overnight in diluted mineral water. Eight test chambers were also prepared for the control sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and temperature were measured. Twelve organisms were directly added to each test chamber, in random order.

Each test chamber was provided 1.5 mL of food daily (after the second renewal) starting on Day -1. The food consisted of a mixture of 4 g ground Tetrafin® flakes mixed with 1 L diluted mineral water. The feeding regime was reduced if the presence of excess food was observed on the sediment surface in several test chambers, which occurred on Day 8 only. Abnormal conditions or unusual animal behavior, if observed, were noted daily.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while alkalinity, hardness, ammonia and sulfides were measured on Days 5, 10, and 15. Water was renewed twice daily.

At test termination, subsamples of overlying water were collected from each water quality replicate for ammonia, hardness, alkalinity, and sulfide analyses. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. Animals were removed from the screen and the number of survivors counted and recorded. Presence of pupae, flies, or exuviae (molts) were noted. The larvae were rinsed with deionized water and placed into pre-ashed, pre-weighed weigh boats. The weigh boats were placed in an oven at 60°C for at least 24-hours, then placed in a dessicator until dry weight could be measured. The weigh boats were then placed in a muffle furnace at 550°C for two hours, placed in a dessicator to cool, then weighed again to determine the ash weight. The ash weight was subtracted from the dry weight to determine the ash-free dry weight (AFDW). The number and AFDW of surviving chironomids were evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitney U-test, as appropriate, to determine whether the samples exhibited a significant

decrease in survival or growth relative to the control (p<0.05). Survival data were arcsine transformed, while growth data was either square root or log transformed as needed to stabilize the variances and improve normality of the data prior to performing the t-test. Data that failed to meet parametric assumptions even after transformations were analyzed with the non-parametric Mann-Whitney U-test. Site performance was evaluated against the sediment acceptability criteria outlined in RSET 2009 (Table 1). The criteria for acceptable test performance were an average of \leq 32 percent mortality of control organisms, and an average of at least 0.48 mg/individual AFDW per surviving control organism.

A 96-hour reference toxicant test using copper chloride ($CuCl_2$) was conducted concurrently with the tests on the sediments to determine whether the sensitivity of the test organisms was appropriate. This test was run with four replicates, ten animals per replicate, in diluted mineral water at 23°C, with a small amount of clean control sand as a substrate. Tetrafin® slurry (1.25 mL of 4 g/L Tetrafin) was added to each chamber on days 0 and 2.

Table 3 Summary of methods for the 20-day test with *Chironomus dilutus*

Test initiation date	June 9, 2011	
Test termination date	June 29, 2011	
Test organism source	Aquatic BioSystems; Fort Collins, Colorado	
Organism age at test initiation	< 4 hours post-emergence from egg case	
Par Para	1.5 mL of 4.0 g/L Tetrafin mixture every day;	
Feeding	frequency reduced if excess food observed	
Test chamber	475-mL glass beaker	
Test sediment volume	100 mL	
Dilution water type & volume	175 mL diluted mineral water	
Water renewal	Twice daily	
Control sediment	Sand mixed with peat (1/2 Tbsp)	
Number of organisms/replicate	12	
Number of replicates/sample	8 plus water quality surrogates	
Test temperature	23± 1°C	
Illumination	16 hours light : 8 hours dark	
Aeration	Started on Day 13	
Reference toxicant	Copper chloride	
Acceptability Criteria	≤32% mortality, 0.48 mg/individual AFDW	

3.2 Results

The results of toxicity tests conducted using *C. dilutus* are provided in Table 4. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 4 Results of *Chironomus dilutus* tests. Samples with statistically reduced survival or growth are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1,2}

Sample	Percent Mortality (Mean ± SD)	Mortality Percent Difference From	Ash-Free Dry Weight per Org (mg)	Ash-Free Dry Weight Percent of Control
Control	6.3 ± 7.4		0.91 ± 0.11	
WETSED-1	20.8 ± 21.4	14.6	1.11 ± 0.46	123
WETSED-2	24.0 ± 12.9	17.7	0.87 ± 0.22	96
WETSED-3	63.5 ± 31.2	57.3	0.60 ± 0.57	66

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009), ²Criteria for two-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 15% of control (RSET 2009)

3.3 QA/QC

The *C. dilutus* were received in good condition for the June 9, 2011 test. All water quality parameters remained within acceptable ranges throughout the tests. A summary of the water quality parameters is presented in Table 5. Dissolved oxygen levels were decreased to a level on concern on day 13, and all replicates were aerated from that point forward. There were no deviations from the protocols. The toxicity test for mortality with this species met the control acceptability criterion (<32 percent mortality; >0.48 mg/ind AFDW).

Table 5 Summary of water quality parameters for *C. dilutus* tests (means and ranges). Required values are shown in brackets.

Analyte	Control	WETSED-1	WETSED-2	WETSED-3
		Me	ean	_
		(Min-	Max)	
Tomp (°C) [22 ± 1°C]	22.0	22.0	21.9	21.9
Temp. (°C) $[23 \pm 1$ °C]	(21.7-22.2)	(21.8-22.2)	(21.7-22.1)	(21.7-22.1)
DO (mg/L) [>2.5 mg/L]	6.7	6.7	7.1	7.0
DO (mg/L) [>2.5 mg/L]	(3.3-9.0)	(3.5-9.0)	(5.2-9.1)	(5.2-9.0)
ъН [4 0]	7.34	7.18	7.13	7.35
pH [6-9]	(6.58-7.99)	(6.43-7.89)	(6.46-7.80)	(6.80-7.99)
Cond (uC/cm) [NIA]	208	180	249	251
Cond. (μ S/cm) [NA]	(127-296)	(149-227)	(158-413)	(192-382)
Alkalinity (mg/L	58	65	69	85
CaCO ₃) [<50% variable]	(48-72)	(60-68)	(64-72)	(80-88)
Hardness (mg/L	83	98	195	122
CaCO ₃) [<50% variable]	(80-88)	(80-108)	(84-228)	(100-140)
Total Overlying NH3	1.6	1.2a	1.3a	<1.0
(mg/L) [<50% variable]	(1.1-1.7)	(<1.0-1.3)	(<1.0-1.3)	(<1.0-<1.0)
Total Overlying Sulfides	0.035^{a}	0.028^{a}	0.044^{a}	0.020^{a}
(mg/L) [NA]	(<0.010-0.058)	(<0.010-0.054)	(<0.010-0.044)	(<0.010-0.021)

a estimated value

The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 6. Bench sheets and control charts are provided in Appendix E. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean \pm two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 6 *C. dilutus* reference toxicant test results.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Chironomus dilutus	June 23, 2011	Cu	571 μg/L	401 - 1070 μg/L	22.7

3.4 Discussion

Mortality in the samples ranged from 20.8 to 63.5 percent, compared with 6.3 percent in the control. Sediment samples WETSED-2 and WETSED-3 were significantly different from control and were more than 15 percent higher than the control, failing the two-hit criterion for survival. WETSED-3 was also more than 25 percent higher than the control, failing the one-hit criterion for survival. Survival in WETSED-1 was not significantly different from the control, due to high

variability in the sample. Growth in the samples ranged from 0.60 to 1.11 mg/individual AFDW, compared with 0.91 mg/individual AFDW in the control. Growth in sample WETSED-1 was greater than the control. Growth in WETSED-2 and WETSED-3 was not significantly different from the control. Therefore none of the sites fail either the one- or two-hit failure requirements.

The total ammonia level reached 1.3 mg/L in the test sediments, which was well below the reported 4-day lethal concentration for 50% of test organisms (LC₅₀) range for *C. dilutus* of 82 to 370 mg/L (USEPA 2000). While sulfide toxicity thresholds are not available for this species, they were measured as part of the Ecology reference site study (Nautilus 2008), and samples with porewater sulfide values similar (0.226 to >0.600 mg/L) to the values found in the current study (0.010 to 0.054 mg/L) did not result in measurable effects. Therefore, it is unlikely that ammonia or sulfide levels caused the observed increases in mortality in the test sediments.

4.0 HYALELLA AZTECA TEST

4.1 Methods

H. azteca were exposed to test sediments for 10 days to determine the effects of site sediments on survival. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), and are summarized in Table 7.

H. azteca were obtained from Aquatic Indicators (St. Augustine, Florida) and arrived at the laboratory on June 2, 2011. The organisms were transported in insulated boxes in oxygen-saturated water contained in plastic bags with fine screens as a substrate. Upon arrival at the laboratory, water quality parameters were measured and observations of animal condition were made. The organisms were acclimated to test conditions prior to test initiation over a 96-hour time period. During the acclimation period, the animals were observed for any indication of stress or significant mortality and any observations were recorded.

One day prior to test initiation (Day -1), the sediment samples were homogenized, 100-ml sediment was distributed to each of eight labeled test chambers for each of the samples, and 175-ml diluted mineral water (prepared by diluting two parts Perrier® into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed

overnight in diluted mineral water. Eight test chambers were also prepared for the control sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and temperature were measured. Organisms were carefully separated into groups of 10 amphipods in 30 mL cups containing diluted mineral water. The number of organisms was then recounted and any animals exhibiting signs of stress were replaced. The organisms were then gently added to the test chambers, two cups for each test chamber for a total of 20 organisms per chamber.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while overlying ammonia, sulfide, hardness, and alkalinity were monitored on Day 5. Water was renewed twice daily in all chambers. Abnormal conditions or unusual animal behavior, if observed, were also noted daily. Each test chamber was fed 1 ml of Yeast Trout Chow (YTC) daily after the second renewal.

At test termination, subsamples of overlying water were collected for ammonia, hardness, alkalinity, and sulfides analyses, from each water quality replicate. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. The screen was then placed in diluted mineral water and the number of survivors counted and recorded. The number of surviving amphipods was evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitey U-test, as appropriate, to determine whether the samples exhibited a significant decrease in survival relative to the control (p<0.05). Survival data was arcsin transformed as needed to stabilize the variances and improve normality of the data. Site performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A 96-hour reference toxicant test using copper chloride (CuCl₂) was conducted concurrently with the sediment tests to determine whether the sensitivity of the test organisms was within the range typically observed. The test was run with four replicates, ten animals per replicate, in diluted mineral water with a square of nitex screen as a substrate.

Table 7 Summary of methods for the 10-day test with *Hyalella azteca*.

Test initiation date June 7, 2011
Test termination date June 17, 2011

Test organism source Aquatic Indicators, St. Augustine, Florida

Organism age at test initiation 8 days

Feeding 1 ml of YTC daily
Test chamber 475-ml glass beaker

Test sediment volume 100 ml

Dilution water type & volume 175 ml diluted mineral water

Water renewal Twice daily

Control sediment Sand mixed with peat (1/2 Tbsp)

Number of organisms/replicate 10

Number of replicates/sample 8 plus water quality surrogate

Test temperature $23 \pm 1^{\circ}$ C

Illumination 16 hours light: 8 hours dark

Aeration None

Reference toxicant Copper chloride
Acceptability criterion for control ≥80% survival

4.2 Results

The results of toxicity tests conducted using *H. azteca* are provided in Table 8. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 8 Results of *Hyalella azteca* tests. Samples with statistically reduced survival or are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1,2}

C1-	Percent Mortality	Mortality Percent Difference
Sample	$(Mean \pm SD)$	from Control
Control	1.3 ± 2.3	
WETSED-1	$\underline{100 \pm 0.0}$	98.7
WETSED-2	13.8 ± 11.6	12.5
WETSED-3	3.8 ± 4.4	2.5

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009), ²Criteria for two-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 10% of control (RSET 2009)

4.3 QA/QC

The *H. azteca* were received in good condition and the toxicity tests with this species met the control acceptability criterion (<20 percent mortality). A summary of the water quality parameters is provided in Table 10. All water quality parameters remained within acceptable ranges throughout the tests. Instead of the 10 animals per replicate required by the protocol, 20 animals were added to each replicate. As the controls still met acceptability criteria and water quality stayed within ranges for the test, this deviation is not expected to have affected the results. There were no other deviations from the protocol.

Table 9 Summary of water quality parameters for *H. azteca* analyses (means and ranges). Required values are shown in brackets.

Analyte	Control	WETSED-1	WETSED-2	WETSED-3
		Me	an	
		(Min-	Max)	
Temp. (°C)	22.3	22.2	22.2	22.2
$[23 \pm 1^{\circ}C]$	(21.9-23.4)	(21.9-23.3)	(21.9-23.3)	(21.8-23.2)
DO (mg/L)	7.0	6.3	6.4	6.5
[>2.5 mg/L]	(5.8-8.4)	(5.4-7.3)	(5.4-7.2)	(5.6-7.3)
рН	7.26	6.83	6.83	7.01
[6-9]	(6.50-7.79)	(6.22-7.20)	(6.35-7.18)	(6.63-7.37)
Cond. (µS/cm)	172	188	283	223
[NA]	(145-189)	(164-262)	(190-418)	(159-343)
Alkalinity (mg/L CaCO ₃)	52	67	75	72
[<50% variable]	(44-60)	(60-72)	(64-80)	(68-76)
Hardness (mg/L CaCO ₃)	69	129	199	180
[<50% variable]	(60-76)	(124-132)	(192-204)	(172-188)
Total Overlying NH3	1.0a	1.0a	1.0a	1.0^{a}
(mg/L) [<50% variable]	(<1.0-<1.0)	(<1.0-1.0)	(<1.0-<1.0)	(<1.0-<1.0)
Total Overlying Sulfides	0.091a	0.114	0.058	0.091a
(mg/L) [<50% variable]	(<0.010-0.125)	(0.014 - 0.293)	(0.012 - 0.126)	(<0.010-0.107)

^aestimated value Nautilus Environmental Washington Laboratory The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 10. Bench sheets and control charts are provided in Appendix E. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean \pm two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 10 H. Azteca reference toxicant test results.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Hyalella azteca	June 2, 2011	Cu	188 μg/L	0 - 1360 μg/L	74.6

4.4 Discussion

Mortality in the samples ranged from 3.8 to 100 percent, compared with 1.3 percent in the control. Sediment samples WETSED-1 and WETSED-2 were significantly different from control and were more than 10 percent higher than the control, failing the two-hit criterion for survival. WETSED-1 was more than 25 percent higher than the control, failing the one-hit criterion for survival.

5.0 MICROTOX® TEST

5.1 Methods

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox test. The bacteria were exposed to porewater extracted from sediment samples and light readings were measured after 5 and 15 minutes of exposure. Test equipment included the Microtox Model 500 Analyzer, which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot #s 10K1032, expiration date 10/2012) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with Ecology (2008) test protocol; these methods are summarized in Table 11. Approximately 50 ml of porewater was extracted from each sample by centrifuging for 30 minutes at 4500 G. Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea Marine Mix artificial seasalt. The DO ranged from 7.2 to 8.2 mg/L in the adjusted samples. Since the DO in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L), the samples did not require aeration. The pH was adjusted to 7.8 to 8.2 using NaOH or HCl. None of the porewater samples were diluted below 90 percent. The control was deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox test wells and 1 ml of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 μ l was added to each test cuvette, with mixing after each addition. After an initial incubation period of 5 minutes, the control cuvette was placed in the read chamber of the Microtox Analyzer to set the instrument. Initial light readings (I_0) were then taken by placing each cuvette in the read chamber of the Microtox Analyzer and measurements were recorded on a data sheet. Light output was measured at 5 minutes (I_0) and 15 minutes (I_0) of exposure after the initial light reading (I_0).

Test acceptability criteria were final mean control light output greater than or equal to 72 percent of initial control mean output, and test mean output not greater than 110 percent of control mean output. The data were evaluated statistically by conducting one-tailed t-tests or Mann-Whitney U-tests on the change in output over time for test sediment porewaters compared to the control porewater (where light output was lower than the control). Sediment performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A reference toxicant test using phenol was conducted in conjunction with the sediment tests to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Table 11 Summary of methods for the Microtox test.

-	
Test dates	June 6, 2011
Test organism source	Strategic Diagnostics
Batch number and expiration date	Lot#10K1032, Expiration 10/2012
Control	Saltwater (20 ppt) prepared with Crystal Sea artificial seasalt
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to
	20 ppt using Crystal Sea salt; pH adjustment to 7.8-8.2 ppt; DO
	5.0 to 10.2 mg/L
Test chamber	Glass cuvette
Test volume	1 mL
Volume of inoculum/replicate	10 μL
Number of replicates/sample	5
Test temperature	15 ± 1°C
Aeration	None
Reference toxicant	Phenol
Acceptability criteria	Final control light output ≥72% initial; test output ≤110% control

5.2 Results

The results of toxicity tests conducted using Microtox are provided in Table 12. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 12 Results of Microtox tests. Samples with statistically reduced luminescence are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1, 2}

Sample	<u>5 minute</u>	e reading	15 minute reading		
	Mean % of initial	Significantly	Mean % of initial	Significantly	
	light output	different relative		different relative to	
		to the control	light output	the control	
Control	96 ± 3		84 ± 3		
WETSED-1	$\underline{68 \pm 4}$	Yes	<u>17 ± 1</u>	Yes	
WETSED-2	72 ± 1	Yes	25 ± 1	Yes	
WETSED-3	<u>81 ± 1</u>	Yes	35 ± 2	Yes	

¹Criteria for one-hit failure is luminescence less than 75% of control luminescence **and** significant difference (RSET 2009); ²Criteria for two-hit failure is luminescence less than 85% of control luminescence **and** significant difference (RSET 2009)

5.3 QA/QC

A summary of the water quality parameters for the Microtox tests is provided in Table 13. The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Table 13 Summary of sites water quality parameters for Microtox analyses

Analyte	Mean	Minimum Maximum		Number of	Met
	(st.dev)	MIIIIIIIIIII	Maxiiiiuiii	Readings	Requirements
Initial Salinity (ppt)	1.1 (0.3)	0.8	1.3	3	N/A
Final Salinity (ppt)	19.9 (0.4)	19.5	20.2	3	Y
Initial DO (mg/L)	7.3 (0.2)	7.2	7.5	3	N/A
Final DO (mg/L)	7.3 (0.2)	7.2	7.5	3	Y
Initial pH	7.5 (0.4)	7.2	7.9	3	N/A
Final pH	7.9 (0.02)	7.9	7.9	3	Y
Final Concentration (%)	99.9 (0.0)	99.0	100	3	Y
Total NH3 (mg/L)	$2.0 (1.0)^{1}$	<1.0	2.7	3	N/A

¹estimated value

Results of the reference toxicant test conducted in conjunction with this testing program are provided in Table 14. Bench sheets and control charts are provided in Appendix E. The test was run with the same batch of organisms used in the testing program. The results of this test fell within the range of mean ± two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 14 Microtox reference toxicant test results.

Species	Test date	Toxicant	EC50	Acceptable Range (mean ± 2 S.D.)	CV (%)
Microtox	June 6, 2011	Phenol	5 min: 19.6 mg/L 15 min: 40.9 mg/L	5 min: 24.2 – 55.1 15 min: 31.0 – 92.2	19.5 24.8

5.4 Discussion

Change in light output in the samples at 15 minutes ranged from 17 to 35 percent, compared with 84 percent in the controls. Samples WETSED1, WETSED2, and WETSED3 were all significantly different from the controls and had luminescence less than 75% of controls, failing the one-hit criteria for luminescence.

6.0 CONCLUSIONS

WETSED-1 failed the one-hit criterion for *H. azteca* survival and the one-hit criterion for Microtox luminescence, but did not have a hit in the *C. dilutus* survival or growth criterion (RSET 2009). WETSED-2 failed the two-hit criterion for *C. dilutus* and *H. azteca* survival, and failed the one-hit criterion for Microtox luminescence (RSET 2009). WETSED-3 failed the one-hit criterion for *C. dilutus* survival and Microtox luminescence (RSET 2009).

Table 15 One-hit/Two-hit criteria summary results table

Cit-	C. dilutus	C. dilutus C. dilutus		Microtox
Site	Survival	Growth	Survival	Luminescence
WETSED-1	None	None	One-hit	One-hit
WETSED-2	Two-hit	None	Two-hit	One-hit
WETSED-3	One-hit	None	None	One-hit

7.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- Nautilus Environmental. 2008. Evaluation of Candidate Freshwater Sediment Reference Sites-Toxicological Results. Final Report.
- Regional Sediment Evaluation Team (RSET). 2009. Sediment Evaluation Framework for the Pacific Northwest. May 2009.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology. 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.
- Washington Department of Ecology. 2009. Baseline Characterization of Nine Proposed Freshwater Sediment Reference Sites, 2008. Publication Number 09-03-032.

Appendix A-1. 20-Day Solid Phase Chironomous dilutus Survival & Growth

Test America Sediment Characterization

Test Initiation: June 9, 2011

^c One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Growth data either square root or log transformed prior to analysis Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different; Test sediment Growth/Control sediment Growth <0.7 and significantly different)

						Mean	St	AFDW per	Mean AFDW	St	Significant Compared t	
Site	Donlingto	Dad No	# Alive	# Pupated ^a	% Mortality	% Mortality	Dev	-		Dev	Survival	Growth
Site	Replicate					% Wortailty	Dev	Org (mg)	per Org (mg)	Dev	Survivai	Growth
	1	9	10 12	0	16.7			0.83 0.87				
	2 3	6 15	12	0	0.0 8.3							
				0				0.86				
Control	4	11	12	0	0.0	6.3	7.4	0.93	0.91	0.11		
	5	5	10	0	16.7			1.02				
	6	16	12	0	0.0			1.00				
	7	14	12	0	0.0			1.04				
	8	3	11	0	8.3			0.72				
	1	1	12	0	0.0			1.00				
	2	2	12	0	0.0			0.76				
	3	10	10	0	16.7			0.43				
WETSED-1	4	8	7	0	41.7	20.8	21.4	1.06	1.11	0.46	No	No
	5	12	12	12 0 0.0 1.58		00						
	6	4	9	0	25.0			1.77				
	7	7	5	0	58.3			0.83				
	8	13	9	0	25.0			1.48				
	1	1	9	0	25.0			0.95				No
	2	2	10	0	16.7			0.66				
	3	10	9	0	25.0			1.10				
WETSED-2	4	8	10	0	16.7	24.0	12.9	0.66	0.87	0.22	Yes	
WEISED-2	5	12	8	0	33.3	24.0	12.9	1.26	0.07	0.22	165	INO
	6	4	12	0	0.0			0.78				
	7	7	7	0	41.7			0.74				
	8	13	8	0	33.3			0.81				
	1	1	4	0	66.7			1.63				
	2	2	9	0	25.0			0.61				
	3	10	1	0	91.7			0.14				No
WETCER	4	8	0	0	100.0	00.5	04.0	0.00	0.60 0.57		.,	
WETSED-3	5	12	0	0	100.0	63.5 31	31.2	0.00		0.57	Yes	
	6	4	5	0	58.3			0.49				
	7	7	8	0	33.3			0.94				
	8	13	8	0	33.3			1.01				

^aNumber of pupae and flies

^bAFDW = Ash-Free Dry Weight. Weights are for larvae only, not pupated animals

Appendix Table A-2. *Hyalella azteca* 10-day Survival Test America Sediment Characterization

Test Initiation: June 7, 2011

		#		Mean		Significant Decrease Compared to	
Site	Rep	Alive	% Mortality	% Mortality	St. Dev.	Control ^a	
	1	20	0				
	2	20	0				
	3	20	0				
Control	4	19	5	1.3	2.3		
Control	5	20	0	1.3	2.3		
	6	20	0				
	7	19	5				
	8	20	0				
	1	0	100				
	2	0	100				
	3	0	100				
WETSED-1	4	0	100	100.0	0.0	Yes	
WE I SED-I	5	0	100	100.0	0.0	res	
	6	0	100				
	7	0	100				
	8	0	100				
	1	18	10				
	2	19	5				
	3	19	5				
WETSED-2	4	16	20	13.8	11.6	Yes	
WEISED-2	5	14	30	13.0	11.0	162	
	6	14	30				
	7	20	0				
	8	18	10				
	1	20	0	_	_		
	2	19	5				
	3	18	10				
WETSED-3	4	18	10	3.8	4.4	No	
WE ISED-S	5	19	5	ა.0	4.4	INU	
	6	20	0				
	7	20	0				
	8	20	0				

^a One-tailed t-test. Survival data arcsine square-root transformed prior to analysis. Alpha = 0.05 Shaded values fail RSET one-hit criteria (Test sediment mortality - Control sediment mortality >25% and significantly different) Bold values fail RSET two-hit criteria (Test sediment mortality - Control sediment mortality >10% and significantly different)

Appendix Table A-3. Microtox 100 Percent Sediment Porewater Test Test AmericaSediment Characterization Client: Test America

Test Date: 6/6/2011

						ato: 0/0//					
Site	Reading	1	2	Light R	Reading 4	5	Mean	St.Dev.	T _(mean) / C _(mean)	Change in control light readings compared to initial control	Evaluation of initial light output in site sediments
	J	96	100	104	102	98	100	3.16	(mean)	- c(mean)	(o) I (mean): -(o)C(mean)
	I ₍₀₎	90	100	98	96	94	96	3.85		0.96	
CON	I ₍₅₎	90 82	80	96 85	96 85	94 87	84	3.65 2.77		0.96	
	I ₍₁₅₎									0.64	
	C ₍₅₎	0.94	1.00	0.94	0.94	0.96	0.96	0.03			
	C ₍₁₅₎	0.85	0.80	0.82	0.83	0.89	0.84	0.03			
	I ₍₀₎	80	75	75	80	77	77	2.51			0.77
	I ₍₅₎	58	49	54	51	53	53	3.39			
WETSED-1	I ₍₁₅₎	13	13	12	13	14	13	0.71			
	T ₍₅₎	0.73	0.65	0.72	0.64	0.69	0.68	0.04	0.72		
	T ₍₁₅₎	0.16	0.17	0.16	0.16	0.18	0.17	0.01	0.20		
	I ₍₀₎	81	84	74	78	79	79	3.70			0.79
	I ₍₅₎	57	59	54	56	57	57	1.82			
WETSED-2	I ₍₁₅₎	19	21	19	19	21	20	1.10			
	T ₍₅₎	0.70	0.70	0.73	0.72	0.72	0.72	0.01	0.75		
	T ₍₁₅₎	0.23	0.25	0.26	0.24	0.27	0.25	0.01	0.30		
	I ₍₀₎	74	78	77	77	75	76	1.64			0.76
	I ₍₅₎	59	64	63	63	60	62	2.17			
WETSED-3	I ₍₁₅₎	25	26	29	29	26	27	1.87			
	T ₍₅₎	0.80	0.82	0.82	0.82	0.80	0.81	0.01	0.85		
	T ₍₁₅₎	0.34	0.33	0.38	0.38	0.35	0.35	0.02	0.42		

 $[\]mathbf{I}_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

 $C_{(t)}$, $R_{(t)}$, and $T_{(t)}$ are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Project Name: Test America

Sample: x1

Samp ID: WETSED-1

Alias: Chironomid Growth

Replicates: 8
Mean: 1.114
SD: 0.458
Tr Mean: 0.316
Trans SD: 0.096

Ref Samp: x2

Ref ID: Control

Alias: Chironomid Growth

Replicates: 8
Mean: 0.909
SD: 0.11
Tr Mean: 0.28
Trans SD: 0.025

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.061

SS: 0.07 K: 8

b: 0.258

Alpha Level: 0.05
Calculated Value: 0.9586
Critical Value: <= 0.887

Normally Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.075 Test Residual SD: 0.053

Ref. Residual Mean: 0.02 Ref. Residual SD: 0.013 Deg. of Freedom: 14

Alpha Level: 0.1 Calculated Value: 2.8368

Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes

Transformation: Log10 (x + 1.0)

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 8
Experimental Alpha Level: 0.05

Calculated Value: -1.0133

Critical Value: >= 1.860

Accept Null Hypothesis: Yes

Power: Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1	0.301	0.83	0.262	0.015	0.018			-0.161
2	0.76	0.246	0.87	0.272	0.07	0.008			-0.07
3	0.43	0.155	0.86	0.27	0.161	0.011			-0.053
4	1.06	0.314	0.93	0.286	0.002	0.005			-0.045
5	1.58	0.412	1.02	0.305	0.096	0.025			-0.018
6	1.77	0.442	1	0.301	0.127	0.021			-0.015
7	0.83	0.262	1.04	0.31	0.053	0.03			-0.011
8	1.48	0.394	0.72	0.236	0.079	0.045			-0.008
9									-0.002
10									0.005
11									0.021
12									0.025
13									0.03
14									0.079
15									0.096
16									0.127

Project Name: Test America

Sample: x1

Samp ID: WETSED-1

Alias: Chironomid Mortality

Replicates: 8
Mean: 20.838
SD: 21.358
Tr Mean: 21.765
Trans SD: 19.595

Ref Samp: x2 Ref ID: Control

Alias: Chironomid Mortality

Replicates: 8

Mean: 6.25

SD: 7.397

Tr Mean: 10.216

Trans SD: 11.272

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 13.721 SS: 3577.056

K: 8 b: 57.669

Alpha Level: 0.05
Calculated Value: 0.9297
Critical Value: <= 0.887

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 16.324 Test Residual SD: 8.912 Ref. Residual Mean: 10.216

Ref. Residual SD: 2.788 Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 1.85
Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes
Transformation: ArcSin

Experimental Hypothesis Null: x1 <= x2

Alternate: x1 > x2

Degrees of Freedom: 11

Experimental Alpha Level: 0.05 Calculated Value: 1.445

Critical Value: >= 1.796 Accept Null Hypothesis: Yes

Power:

Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0	0	16.7	24.12	21.765	13.904			-21.765
2	0	0	0	0	21.765	10.216			-21.765
3	16.7	24.12	8.3	16.744	2.355	6.528			-21.765
4	41.7	40.222	0	0	18.457	10.216			-10.216
5	0	0	16.7	24.12	21.765	13.904			-10.216
6	25	30	0	0	8.235	10.216			-10.216
7	58.3	49.778	0	0	28.013	10.216			-10.216
8	25	30	8.3	16.744	8.235	6.528			2.355
9									6.528
10									6.528
11									8.235
12									8.235
13									13.904
14									13.904
15									18.457
16									28.013
1									

Project Name: Test America

Sample: x1

Samp ID: WETSED1

Alias: Hyalella Mortality

Replicates: 8 Mean: 100 SD: 0 Tr Mean: 0.76 Trans SD: 0

Ref Samp: x2

Ref ID: Control

Alias: Hyalella Mortality

Replicates: 8 Mean: 1.25 SD: 2.315 Tr Mean: -0.76 Trans SD: 0.373

Shapiro-Wilk Results: Levene's Results: Residual Mean:

Residual SD: SS: K:

b:

Alpha Level: N/A Calculated Value: N/A Critical Value: N/A

> Normally Distributed: N/A

Override Option: Not Invoked

Test Residual Mean: 0

Test Residual SD: 0 Ref. Residual Mean: 0.302 Ref. Residual SD: 0.187 Deg. of Freedom: 14

Alpha Level: 0.1 Calculated Value: 4.5826 Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes

Transformation: Rankits

Experimental Hypothesis Null: x1 <= x2

Alternate: x1 > x2

Degrees of Freedom: 7 Experimental Alpha Level: 0.05

Calculated Value: 11.5223 Critical Value: >= 1.895

Accept Null Hypothesis: No

Power:

Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	100	0.76	0	-0.962	0	0.202		-0.962	
2	100	0.76	0	-0.962	0	0.202		-0.962	
3	100	0.76	0	-0.962	0	0.202		-0.962	
4	100	0.76	5	-0.156	0	0.605		-0.962	
5	100	0.76	0	-0.962	0	0.202		-0.962	
6	100	0.76	0	-0.962	0	0.202		-0.962	
7	100	0.76	5	-0.156	0	0.605		-0.156	
8	100	0.76	0	-0.962	0	0.202		-0.156	
9								0.76	
10								0.76	
11								0.76	
12								0.76	
13								0.76	
14								0.76	
15								0.76	
16								0.76	
	•	•	·	·	·	•	•	•	

Sample: x1

Samp ID: WETSED-1

Alias: Luminescence Replicates: 5

Mean: 0.686 SD: 0.04 Tr Mean: 4.749 Trans SD: 0.14 Ref Samp: x2

Ref ID: Control

Alias: Luminescence

Replicates: 5

Mean: 0.956

SD: 0.026 Tr Mean: 5.611

Trans SD: 0.076

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.073

SS: 0.102 K: 5

b: 0.308

Alpha Level: 0.05 Calculated Value: 0.9312

Critical Value: <= 0.842

Normally

Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.114
Test Residual SD: 0.058

Ref. Residual Mean: 0.056 Ref. Residual SD: 0.043

Deg. of Freedom: 8

Alpha Level: 0.1 Calculated Value: 1.7951

Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t

Balanced Design: Yes

Transformation: ArcSin

Experimental Hypothesis

Null: x1 >= x2

Alternate: x1 < x2

Degrees of Freedom: 8

Experimental Alpha Level: 0.05

Calculated Value: 12.0584 Critical Value: >= 1.860

Accept Null Hypothesis: No

Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.73	4.901	0.94	5.564	0.152	0.047			-0.161
2	0.65	4.624	1	5.739	0.125	0.129			-0.125
3	0.72	4.868	0.94	5.564	0.118	0.047			-0.047
4	0.64	4.589	0.94	5.564	0.161	0.047			-0.047
5	0.69	4.765	0.96	5.623	0.016	0.012			-0.047
6									0.012
7									0.016
8									0.118
9									0.129
10									0.152

Sample: x1

Samp ID: WETSED-1

Alias: Luminescence 15

Replicates: 5 Mean: 0.166 SD: 0.009 Tr Mean: 2.334 Trans SD: 0.062

Ref Samp: x2

Ref ID: Control

Alias: Luminescence 15

Replicates: 5 Mean: 0.838 SD: 0.034 Tr Mean: 5.251

Trans SD: 0.107

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.057

SS: 0.061 K: 5

b: 0.239

Alpha Level: 0.05 Calculated Value: 0.9289 Critical Value: <= 0.842

Normally

Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.05 Test Residual SD: 0.027

Ref. Residual Mean: 0.08 Ref. Residual SD: 0.059

Deg. of Freedom: 8

Alpha Level: 0.1 Calculated Value: 1.0345 Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t

Balanced Design: Yes

Transformation: ArcSin

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 8

Experimental Alpha Level: 0.05 Calculated Value: 52.6779

Critical Value: >= 1.860

Accept Null Hypothesis: No

Power:

			Trans.	Levene's	Levene's	Mann-		Shipiro-
Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
0.16	2.292	0.85	5.29	0.042	0.038			-0.12
0.17	2.363	8.0	5.132	0.029	0.12			-0.056
0.16	2.292	0.82	5.195	0.042	0.056			-0.042
0.16	2.292	0.83	5.227	0.042	0.024			-0.042
0.18	2.432	0.89	5.413	0.097	0.162			-0.042
								-0.024
								0.029
								0.038
								0.097
								0.162
	Data 0.16 0.17 0.16 0.16	Data Test Data 0.16 2.292 0.17 2.363 0.16 2.292 0.16 2.292	Data Test Data Data 0.16 2.292 0.85 0.17 2.363 0.8 0.16 2.292 0.82 0.16 2.292 0.83	Test Data Trans. Test Data Reference Data Reference Data 0.16 2.292 0.85 5.29 0.17 2.363 0.8 5.132 0.16 2.292 0.82 5.195 0.16 2.292 0.83 5.227	Test Data Trans. Test Data Reference Data Reference Reference Data Test Data Residuals 0.16 2.292 0.85 5.29 0.042 0.17 2.363 0.8 5.132 0.029 0.16 2.292 0.82 5.195 0.042 0.16 2.292 0.83 5.227 0.042	Test Data Trans. Data Reference Data Reference Data Test Data Reference Reference Data Test Data Residuals Residuals 0.16 2.292 0.85 5.29 0.042 0.038 0.17 2.363 0.8 5.132 0.029 0.12 0.16 2.292 0.82 5.195 0.042 0.056 0.16 2.292 0.83 5.227 0.042 0.024	Test Data Trans. Peference Data Reference Data Test Data Residuals Residuals Residuals Residuals Ranks 0.16 2.292 0.85 5.29 0.042 0.038 0.17 2.363 0.8 5.132 0.029 0.12 0.16 2.292 0.82 5.195 0.042 0.056 0.16 2.292 0.83 5.227 0.042 0.024	Test Data Trans. Data Reference Data Reference Data Test Data Residuals Residuals Residuals Ranks Whitney Rankits 0.16 2.292 0.85 5.29 0.042 0.038 0.17 2.363 0.8 5.132 0.029 0.12 0.16 2.292 0.82 5.195 0.042 0.056 0.16 2.292 0.83 5.227 0.042 0.024

Sample: x1

Samp ID: WETSED-2

Alias: Chironomid Growth

 Ref Samp: x2

Ref ID: Control

Alias: Chironomid Growth

Replicates: 8
Mean: 0.909
SD: 0.11
Tr Mean: 0.28
Trans SD: 0.025

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.033

SS: 0.021 K: 8 b: 0.141

Alpha Level: 0.05
Calculated Value: 0.9478
Critical Value: <= 0.887

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.04 Test Residual SD: 0.024 Ref. Residual Mean: 0.02

Ref. Residual SD: 0.013
Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 1.9909
Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes

Transformation: Log10 (x + 1.0)

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 11

Experimental Alpha Level: 0.05

Calculated Value: 0.5526

Critical Value: >= 1.796

Accept Null Hypothesis: Yes

Power:

		_		Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.95	0.29	0.83	0.262	0.021	0.018			-0.049
2	0.66	0.22	0.87	0.272	0.049	0.008			-0.049
3	1.1	0.322	0.86	0.27	0.053	0.011			-0.045
4	0.66	0.22	0.93	0.286	0.049	0.005			-0.029
5	1.26	0.354	1.02	0.305	0.085	0.025			-0.019
6	0.78	0.25	1	0.301	0.019	0.021			-0.018
7	0.74	0.241	1.04	0.31	0.029	0.03			-0.012
8	0.81	0.258	0.72	0.236	0.012	0.045			-0.011
9									-0.008
10									0.005
11									0.021
12									0.021
13									0.025
14									0.03
15									0.053
16									0.085
									2.000

Sample: x1

Samp ID: WETSED-2

Alias: Chironomid Mortality

Replicates: 8
Mean: 23.963
SD: 12.933
Tr Mean: 27.369
Trans SD: 12.382

Ref Samp: x2 Ref ID: Control

Alias: Chironomid Mortality

Replicates: 8

Mean: 6.25

SD: 7.397

Tr Mean: 10.216

Trans SD: 11.272

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 10.163 SS: 1962.613

K: 8 b: 42.307

Alpha Level: 0.05
Calculated Value: 0.912
Critical Value: <= 0.887

Normally Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 8.466
Test Residual SD: 8.45
Ref. Residual Mean: 10.216
Ref. Residual SD: 2.788

Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 0.5562
Critical Value: >= 1.761

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t
Balanced Design: Yes
Transformation: ArcSin

Experimental Hypothesis Null: x1 <= x2

Alternate: x1 > x2

Degrees of Freedom: 14 Experimental Alpha Level: 0.05

Calculated Value: 2.8974
Critical Value: >= 1.761
Accept Null Hypothesis: No

, , ,

Power: Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	25	30	16.7	24.12	2.631	13.904			-27.369
2	16.7	24.12	0	0	3.248	10.216			-10.216
3	25	30	8.3	16.744	2.631	6.528			-10.216
4	16.7	24.12	0	0	3.248	10.216			-10.216
5	33.3	35.244	16.7	24.12	7.875	13.904			-10.216
6	0	0	0	0	27.369	10.216			-3.248
7	41.7	40.222	0	0	12.853	10.216			-3.248
8	33.3	35.244	8.3	16.744	7.875	6.528			2.631
9									2.631
10									6.528
11									6.528
12									7.875
13									7.875
14									12.853
15									13.904
16									13.904

Sample: x1

Samp ID: WETSED2

Alias: Hyalella Mortality

Replicates: 8
Mean: 13.75
SD: 11.573
Tr Mean: 19.462
Trans SD: 11.307

Ref Samp: x2

Ref ID: Control

Alias: Hyalella Mortality

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 7.764 SS: 1145.389

K: 8 b: 31.911

Alpha Level: 0.05
Calculated Value: 0.8891
Critical Value: <= 0.887

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 8.65
Test Residual SD: 6.507
Ref. Residual Mean: 4.845
Ref. Residual SD: 2.991

Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 1.5026
Critical Value: >= 1.761

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t
Balanced Design: Yes
Transformation: ArcSin

Experimental Hypothesis Null: x1 <= x2 Alternate: x1 > x2

Degrees of Freedom: 14
Experimental Alpha Level: 0.05
Calculated Value: 3.5891

Critical Value: >= 1.761
Accept Null Hypothesis: No

Power: Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	10	18.435	0	0	1.027	3.23			-19.462
2	5	12.921	0	0	6.541	3.23			-6.541
3	5	12.921	0	0	6.541	3.23			-6.541
4	20	26.565	5	12.921	7.103	9.691			-3.23
5	30	33.211	0	0	13.749	3.23			-3.23
6	30	33.211	0	0	13.749	3.23			-3.23
7	0	0	5	12.921	19.462	9.691			-3.23
8	10	18.435	0	0	1.027	3.23			-3.23
9									-3.23
10									-1.027
11									-1.027
12									7.103
13									9.691
14									9.691
15									13.749
16									13.749

Sample: x1

Samp ID: WETSED-2

Alias: Luminescence 5

Replicates: 5 Mean: 0.714 SD: 0.013 Tr Mean: N/A Trans SD: N/A Ref Samp: x2

Ref ID: Control

Alias: Luminescence 5

Replicates: 5
Mean: 0.956
SD: 0.026
Tr Mean: N/A
Trans SD: N/A

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.041

SS: 0.032 K: 5 b: 0.16

Alpha Level: 0.05

Calculated Value: 0.8075 Critical Value: <= 0.842

Normally

Distributed: No

Override Option: Not Invoked

Levene's Results:

Test Residual Mean: 0.038 Test Residual SD: 0.016 Ref. Residual Mean: 0.056 Ref. Residual SD: 0.043

Deg. of Freedom: 8

Alpha Level: 0.1 Calculated Value: 0.8791

Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Mann-Whitney

Balanced Design: Yes

Transformation: rank-order

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Mann-Whitney N1: 5

Mann-Whitney N2: 5
Degrees of Freedom:

Experimental Alpha Level: 0.05 Calculated Value: 25

Critical Value: >= 21.000

Accept Null Hypothesis: No

Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.7	1.5	0.94	7	0.048	0.047	1.5		-0.048
2	0.7	1.5	1	10	0.048	0.129	1.5		-0.048
3	0.73	5	0.94	7	0.054	0.047	3.5		-0.047
4	0.72	3.5	0.94	7	0.021	0.047	3.5		-0.047
5	0.72	3.5	0.96	9	0.021	0.012	5		-0.047
6							7		0.012
7							7		0.021
8							7		0.021
9							9		0.054
10							10		0.129

Sample: x1

Samp ID: WETSED-2

Alias: Luminescence 15

Shapiro-Wilk Results:

Ref Samp: x2

Ref ID: Control

Alias: Luminescence 15

Replicates: 5
Mean: 0.838
SD: 0.034
Tr Mean: 5.251

Trans SD: 0.107

•		
Residual Mean:	0	Test Residual N
Residual SD:	0.064	Test Residua
SS:	0.079	Ref. Residual N

K: 5 b: 0.274

Alpha Level: 0.05
Calculated Value: 0.9565
Critical Value: <= 0.842

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.069
Test Residual SD: 0.048
Ref. Residual Mean: 0.08
Ref. Residual SD: 0.059
Deg. of Freedom: 8

Alpha Level: 0.1
Calculated Value: 0.326
Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t
Balanced Design: Yes
Transformation: ArcSin

Experimental Hypothesis Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 8
Experimental Alpha Level: 0.05
Calculated Value: 38.0359

Critical Value: >= 1.860 Accept Null Hypothesis: No

Power: Min. Difference for Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.23	2.749	0.85	5.29	0.116	0.038			-0.12
2	0.25	2.866	8.0	5.132	0.001	0.12			-0.116
3	0.26	2.923	0.82	5.195	0.058	0.056			-0.057
4	0.24	2.808	0.83	5.227	0.057	0.024			-0.056
5	0.27	2.979	0.89	5.413	0.114	0.162			-0.024
6									0.001
7									0.038
8									0.058
9									0.114
10									0.162

Sample: x1

Samp ID: WETSED-3

Alias: Chironomid Growth

Replicates: 8
Mean: 0.603
SD: 0.572
Tr Mean: 0.181
Trans SD: 0.154

Ref Samp: x2

Ref ID: Control

Alias: Chironomid Growth

Replicates: 8
Mean: 0.909
SD: 0.11
Tr Mean: 0.28
Trans SD: 0.025

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.094 SS: 0.17

K: 8 b: 0.397

Alpha Level: 0.05
Calculated Value: 0.9275
Critical Value: <= 0.887

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.123 Test Residual SD: 0.079 Ref. Residual Mean: 0.02

Ref. Residual SD: 0.013
Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 3.668
Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes

Transformation: Log10 (x + 1.0)

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 7

Experimental Alpha Level: 0.05

Calculated Value: 1.8016
Critical Value: >= 1.895

Accept Null Hypothesis: Yes

Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	1.63	0.42	0.83	0.262	0.239	0.018			-0.181
2	0.61	0.207	0.87	0.272	0.026	0.008			-0.181
3	0.14	0.057	0.86	0.27	0.124	0.011			-0.124
4	0	0	0.93	0.286	0.181	0.005			-0.045
5	0	0	1.02	0.305	0.181	0.025			-0.018
6	0.49	0.173	1	0.301	0.008	0.021			-0.011
7	0.94	0.288	1.04	0.31	0.107	0.03			-0.008
8	1.01	0.303	0.72	0.236	0.122	0.045			-0.008
9									0.005
10									0.021
11									0.025
12									0.026
13									0.03
14									0.107
15									0.122
16									0.239

Sample: x1

Samp ID: WETSED-3

Alias: Chironomid Mortality

Replicates: 8
Mean: 63.538
SD: 31.175
Tr Mean: 63.432
Trans SD: 34.433

Ref Samp: x2

Ref ID: Control

Alias: Chironomid Mortality

Replicates: 8

Mean: 6.25

SD: 7.397

Tr Mean: 10.216

Trans SD: 11.272

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 21.992 SS: 9188.96

K: 8 b: 90.436

Alpha Level: 0.05
Calculated Value: 0.89
Critical Value: <= 0.887

Normally
Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 28.035 Test Residual SD: 16.953 Ref. Residual Mean: 10.216 Ref. Residual SD: 2.788

Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 2.9335
Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes
Transformation: ArcSin

Experimental Hypothesis

Null: $x1 \le x2$ Alternate: x1 > x2

Degrees of Freedom: 8

Experimental Alpha Level: 0.05 Calculated Value: 4.1544

Critical Value: >= 1.860

Accept Null Hypothesis: No

Power:

ann- Shipiro-
itney Wilk
anks Rankits Residuals
-33.433
-28.188
-28.188
-13.655
-10.216
-10.216
-10.216
-10.216
-8.677
6.528
6.528
9.823
13.904
13.904
51.159
51.159

Sample: x1

Samp ID: WETSED3

Alias: Hyalella Mortality Replicates: 8

Mean: 3.75 SD: 4.432 Tr Mean: 0.263 Trans SD: 0.953 Ref Samp: x2

Ref ID: Control

Alias: Hyalella Mortality

Replicates: 8
Mean: 1.25
SD: 2.315
Tr Mean: -0.263
Trans SD: 0.582

Shapiro-Wilk Results: Levene's Results:

Residual Mean:
Residual SD:
SS:
K:
b:

Alpha Level: N/A Calculated Value: N/A Critical Value: N/A

Normally
Distributed: N/A

Override Option: Not Invoked

erie s resuits.

Test Residual Mean: 0.84
Test Residual SD: 0.32
Ref. Residual Mean: 0.471
Ref. Residual SD: 0.291
Deg. of Freedom: 14

Alpha Level: 0.1
Calculated Value: 2.4118
Critical Value: >= 1.761

Variances

Homogeneous: No

Test Results:

Statistic: Approximate t

Balanced Design: Yes
Transformation: Rankits

Experimental Hypothesis Null: $x1 \le x2$ Alternate: x1 > x2

Degrees of Freedom: 12
Experimental Alpha Level: 0.05
Calculated Value: 1.3315

Critical Value: >= 1.782
Accept Null Hypothesis: Yes

Power:

Replicate	Test	Trans.	Reference	Trans. Reference	Levene's Test	Levene's Reference	Mann- Whitney		Shipiro- Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0	-0.577	0	-0.577	0.84	0.314		-0.577	. (00.000.0
2	5	0.68	0	-0.577	0.417	0.314		-0.577	
3	10	1.526	0	-0.577	1.263	0.314		-0.577	
4	10	1.526	5	0.68	1.263	0.943		-0.577	
5	5	0.68	0	-0.577	0.417	0.314		-0.577	
6	0	-0.577	0	-0.577	0.84	0.314		-0.577	
7	0	-0.577	5	0.68	0.84	0.943		-0.577	
8	0	-0.577	0	-0.577	0.84	0.314		-0.577	
9								-0.577	
10								-0.577	
11								0.68	
12								0.68	
13								0.68	
14								0.68	
15								1.526	
16								1.526	

Sample: x1

Samp ID: WETSED-3

Alias: Luminescence 5

Replicates: 5
Mean: 0.812
SD: 0.011
Tr Mean: N/A

Trans SD: N/A

Ref Samp: x2

Ref ID: Control

Alias: Luminescence 5

Replicates: 5
Mean: 0.956
SD: 0.026
Tr Mean: N/A

Trans SD: N/A

Shapiro-Wilk Results:

Residual Mean: 0 Residual SD: 0.038

> SS: 0.028 K: 5 b: 0.15

Alpha Level: 0.05 Calculated Value: 0.7975

Critical Value: <= 0.842

Normally
Distributed: No

Override Option: Not Invoked

Levene's Results:

Test Residual Mean: 0.031 Test Residual SD: 0.007 Ref. Residual Mean: 0.056 Ref. Residual SD: 0.043

Deg. of Freedom: 8

Alpha Level: 0.1
Calculated Value: 1.3107
Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Mann-Whitney

Balanced Design: Yes

Transformation: rank-order

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Mann-Whitney N1: 5
Mann-Whitney N2: 5
Degrees of Freedom:
Experimental Alpha Level: 0.05

rimental Alpha Level: 0.05 Calculated Value: 25

Critical Value: >= 21.000

Accept Null Hypothesis: No

Power:

Reference Residuals 0.047 0.129	Whitney Ranks 1.5	Rankits	Wilk Residuals
0.047		Rankits	Residuals
	1.5		
0 120			-0.047
0.123	1.5		-0.047
0.047	4		-0.047
0.047	4		-0.038
0.012	4		-0.038
	7		0.012
	7		0.026
	7		0.026
	9		0.026
	10		0.129
	0.047 0.047	0.047 4 0.047 4 0.012 4 7 7 7 9	0.047 4 0.047 4 0.012 4 7 7 7 9

Sample: x1

Samp ID: WETSED-3

Alias: Luminescence 15

Replicates: 5 Mean: 0.356 SD: 0.023 Tr Mean: 3.419 Trans SD: 0.111

Ref Samp: x2

Ref ID: Control

Alias: Luminescence 15

Replicates: 5 Mean: 0.838 SD: 0.034 Tr Mean: 5.251

Trans SD: 0.107

Shapiro-Wilk Results:

Residual Mean: 0

Residual SD: 0.071

SS: 0.095 K: 5

b: 0.295

Alpha Level: 0.05 Calculated Value: 0.92

Critical Value: <= 0.842

Normally

Distributed: Yes

Override Option: N/A

Levene's Results:

Test Residual Mean: 0.092 Test Residual SD: 0.041 Ref. Residual Mean: 0.08

Ref. Residual SD: 0.059 Deg. of Freedom: 8

Alpha Level: 0.1 Calculated Value: 0.3728 Critical Value: >= 1.860

Variances

Homogeneous: Yes

Test Results:

Statistic: Student's t

Balanced Design: Yes

Transformation: ArcSin

Experimental Hypothesis

Null: x1 >= x2Alternate: x1 < x2

Degrees of Freedom: 8

Experimental Alpha Level: 0.05

Calculated Value: 26.6272 Critical Value: >= 1.860

Accept Null Hypothesis: No

Power:

				Trans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	Residuals	Residuals	Ranks	Rankits	Residuals
1	0.34	3.343	0.85	5.29	0.076	0.038			-0.126
2	0.33	3.293	0.8	5.132	0.126	0.12			-0.12
3	0.38	3.534	0.82	5.195	0.115	0.056			-0.076
4	0.38	3.534	0.83	5.227	0.115	0.024			-0.056
5	0.35	3.392	0.89	5.413	0.028	0.162			-0.028
6									-0.024
7									0.038
8									0.115
9									0.115
10									0.162

Initiated June 9, 2011

				Control				
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfides (mg/l)
0	21.7	8.4	6.58	150	48	80	1.1	0.058
1	22.2	6.3	6.62	127				
2	22.0	6.4	7.12	165				
3	21.9	6.0	7.31	173				
4	22.1	5.8	6.94	216				
5	22.2	5.8	7.19	188	52	80	1.7	< 0.010
6	21.9	5.6	7.27	178				
7	22.0	5.0	7.11	217				
8	22.0	5.2	7.17	212				
9	22.2	6.0	7.14	195				
10	22.0	6.0	7.20	199	56	88	1.6	< 0.010
11	22.2	6.0	7.28	264				
12	22.1	5.6	7.20	195				
13	22.2	3.3	7.11	202				
14	22.1	8.3	7.86	296				
15	22.1	7.9	7.67	220	60	88	1.7	< 0.010
16	22.0	7.8	7.72	232				
17	21.9	9.0	7.92	276				
18	22.2	9.0	7.97	219				
19	21.9	8.9	7.83	248				
20	21.9	8.3	7.99	190	72	80	1.7	0.011
Mean	22.0	6.7	7.34	208	58	83	1.6	nc
Min	21.7	3.3	6.58	127	48	80	1.1	<0.010
Max	22.2	9.0	7.99	296	72	88	1.7	0.058

Initiated June 9, 2011

WETSED-1

Day **Temp** D.O. pН Conductivity **Alkalinity Total Overlying Total Sulfides Hardness** (°C) (mg/l) (units) (umhos/cm) (mg/L CaCO3) (mg/L CaCO3) NH_3 (mg/l) (mg/l) 21.8 7.0 6.43 227 64 0.016 0 100 <1.0 1 22.2 6.1 6.68 215 2 200 21.9 6.0 6.98 3 21.9 5.8 7.06 186 4 22.1 6.6 6.65 185 ---5 22.1 6.5 6.97 180 64 100 1.0 0.014 6 22.0 5.6 7.09 175 ------7 22.1 5.0 6.89 179 ---

180

181

180

190

184

186

162

171

178

155

159

149

153

180

149

227

68

68

60

65

60

68

< 0.010

< 0.010

0.054

nc

<0.010

0.054

1.2

1.3

<1.0

nc

<1.0

1.3

104

108

80

98

80

108

8

9

10

11

12

13

14

15

16

17

18

19

20

Mean

Min

Max

22.0

22.2

22.2

22.2

22.1

22.2

21.9

22.0

22.0

22.0

22.1

22.0

21.8

22.0

21.8

22.2

5.3

6.2

6.0

5.5

5.8

3.5

8.1

7.7

7.8

8.9

8.9

9.0

8.4

6.7

3.5

9.0

7.02

6.97

7.00

7.08

7.09

7.04

7.68

7.67

7.69

7.35

7.89

7.76

7.70

7.18

6.43

7.89

Initiated June 9, 2011

				WETSED-2				
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃ (mg/l)	Total Sulfide
_								
0	21.9	7.2	6.46	389	68	220	<1.0	<0.010
1	22.1	6.9	6.75	413				
2	21.9	6.7	6.95	343				
3	21.8	5.9	6.98	308				
4	21.9	7.1	6.56	329				
5	22.0	6.6	6.81	283	72	220	<1.0	< 0.010
6	21.8	6.1	6.94	266				
7	21.9	5.2	6.87	254				
8	21.9	5.3	6.92	257				
9	22.0	6.7	6.86	238				
10	22.0	6.0	6.90	240	68	228	1.3	< 0.010
11	22.0	6.6	7.11	225				
12	22.0	6.5	7.05	214				
13	22.0	6.0	7.00	206				
14	22.0	8.4	7.74	191				
15	22.0	7.8	7.59	194	72	224	1.2	< 0.010
16	22.0	7.7	7.63	195				
17	22.0	8.9	7.28	176				
18	21.9	8.9	7.80	179				
19	21.7	9.1	7.76	158				
20	21.7	8.5	7.70 7.71	161	64	84	<1.0	0.044
Mean	21.7 21.9	7.1	7.71 7.13	249	69	1 95		
							nc	nc -0.010
Min Max	21.7 22.1	5.2 9.1	6.46 7.80	158 413	64 72	84 228	<1.0 1.3	<0.010 0.044

Initiated June 9, 2011

WETSED-3 Day **Temp** D.O. pН Conductivity **Alkalinity Total Overlying Total Sulfides Hardness** (°C) (mg/l) (units) (umhos/cm) (mg/L CaCO3) (mg/L CaCO3) NH_3 (mg/l) (mg/l) 21.9 6.3 6.80 382 84 0 116 <1.0 0.021 1 22.1 6.5 7.19 373 2 7.32 340 21.7 6.2 3 21.9 6.0 7.30 301 4 6.95 21.9 7.0 311 ---5 22.0 6.3 7.10 274 84 120 <1.0 0.019 6 21.8 5.9 7.19 252 ------7 21.8 5.2 7.13 244 ---8 21.9 5.3 7.15 247 ---9 22.0 220 6.8 7.13 10 22.0 6.2 7.15 244 < 0.010 88 136 <1.0 11 22.0 6.8 7.32 222 12 22.0 6.7 7.24 212 ---13 22.1 7.16 210 5.3 ------14 21.9 8.7 7.92 193 15 21.9 7.9 7.70 221 88 140 <1.0 < 0.010 16 22.0 7.8 7.67 219 ------22.0 17 9.0 7.52 205 ------------18 21.9 8.9 7.99 217 ------19 21.8 8.8 7.78 192 20 21.7 7.73 80 8.4 196 100 <1.0 < 0.010 Mean 21.9 7.0 7.35 251 85 122

192

382

80

88

100

140

Min

Max

21.7

22.1

5.2

9.0

6.80

7.99

nc

<1.0

<1.0

nc

<0.010

0.021

Appendix Table B-2. Ten-Day Solid-Phase Results (*Hyalella Azteca*) Test America Sediment Characterization Water Quality Data

Initiated June 7, 2011

				Control				
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Overlying NH ₃ (mg/l)	Overlying Sulfides (mg/l)
0	23.4	8.0	6.50	145	44	60	<1.0	<0.010
1	22.8	7.1	6.79	149				
2	22.4	6.8	6.81	162				
3	22.3	7.0	7.77	189				
4	21.9	6.2	7.43	180				
5	21.9	6.8	7.51	172	52	72	<1.0	0.056
6	21.9	8.4	7.14	170				
7	22.1	7.0	7.54	176				
8	22.0	6.3	7.79	182				
9	22.1	5.8	7.21	180				
10	22.0	7.4	7.37	182	60	76	<1.0	0.125
Mean	22.3	7.0	7.26	172	52	69	nc	nc
Min	21.9	5.8	6.50	145	44	60	<1.0	<0.010
Max	23.4	8.4	7.79	189	60	76	<1.0	0.125

NC = Not Calculable

				WETSED-1				
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH₃	Overlying Sulfides (mg/l)
0	23.3	6.6	6.27	262	60	124	<1.0	0.014
1	22.8	6.0	6.22	232				0.014
2	22.1	6.4	6.39	202				
3	22.3	6.1	7.20	189				
4	22.0	6.1	7.02	184				
5	21.9	6.2	7.00	174	68	132	<1.0	0.036
6	21.9	7.0	7.00	166				
7	22.1	6.3	7.05	165				
8	21.9	6.0	7.19	164				
9	21.9	5.4	6.87	165				
10	21.9	7.3	6.93	164	72	132	1.0	0.293
Mean	22.2	6.3	6.83	188	67	129	nc	0.114
Min	21.9	5.4	6.22	164	60	124	<1.0	0.014
Max	23.3	7.3	7.20	262	72	132	1.0	0.293

NC = Not Calculable

Appendix Table B-2. Ten-Day Solid-Phase Results (*Hyalella Azteca*) Test America Sediment Characterization Water Quality Data

Initiated June 7, 2011

	WETSED-2											
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH₃	Overlying Sulfides (mg/l)				
•	00.0	0.0	0.45	440	0.4	400	4.0	0.040				
0	23.3	6.9	6.45	418	64	192	<1.0	0.012				
1	22.8	6.2	6.35	402								
2	22.2	6.4	6.41	334								
3	22.3	6.4	7.18	314								
4	21.9	6.1	6.99	273								
5	21.9	6.3	6.97	277	80	200	<1.0	0.037				
6	22.0	7.2	6.65	253								
7	22.1	6.8	7.02	241								
8	21.9	6.1	7.17	210								
9	22.0	5.4	6.89	201								
10	21.9	7.1	7.05	190	80	204	<1.0	0.126				
Mean	22.2	6.4	6.83	283	75	199	nc	0.058				
Min	21.9	5.4	6.35	190	64	192	<1.0	0.012				
Max	23.3	7.2	7.18	418	80	204	<1.0	0.126				

NC = Not Calculable

				WETSED-3				
Day	Temp (°C)	D.O. (mg/l)	pH (units)	Conductivity (umhos/cm)	Alkalinity (mg/L CaCO3)	Hardness (mg/L CaCO3)	Total Overlying NH ₃	Overlying Sulfides (mg/l)
_								
0	23.2	6.6	6.64	343	68	172	<1.0	<0.010
1	22.8	6.1	6.96	288				
2	22.2	6.3	6.63	235				
3	22.3	6.4	7.37	222				
4	22.0	6.5	7.12	216				
5	21.9	6.4	7.11	214	76	180	<1.0	0.074
6	21.8	7.3	6.80	203				
7	22.1	6.9	7.14	204				
8	21.9	6.1	7.23	159				
9	22.0	5.6	6.97	187				
10	21.9	7.2	7.11	184	72	188	<1.0	0.107
Mean	22.2	6.5	7.01	223	72	180	nc	nc
Min	21.8	5.6	6.63	159	68	172	<1.0	<0.010
Max	23.2	7.3	7.37	343	76	188	<1.0	0.107

NC = Not Calculable

Freshwater Sediment 20 Day Water Chemistries

Client:	Test	America	Test #:_		
Site:	WN	Test Or	ganism: (Chironomus tentans	

Start Date & Time: (9 9 11 1100)
End Date & Time: (9 29 11 1300)

NH₃ Alk Sulfide Hard Day pH Conductivity Temp. Renewed Tech. Dissolved O2 (mg/L)(mg/L) (mg/L as CaCO3) (°C) Initials (units) (umhos/cm) (mg/L) am pm Fed 0.058 0 80 1.1 0 8.4 21.7 6.58 150 M7.6.62 6.3 IF 127 22.2 6.4 IF 2 165 22.0 7.12 T91 173 IF 3 7.31 6.0 219 BP 6.94 2110 22.1 5.8 1.7 10.0> 5 BP 52 22.2 80 7.19 188 5.8 6 SP 21.9 7.27 178 5.6 BP 217 22.0 5.0 11.5 8 81 7.17 212 23.0 5.2 20 7.14 195 6.0 9 22.2 40.01 10 1.6 56 98 7.20 199 m 22.0 6.0 BP 11 264 7,28 22.2 6.0 195 7.20 84 12 5.6 22.1 3.3 13 202 22.2 14 296 8.3 22 7.86 15 1.7 60 88 40.01 7,67 220 7.9 22.1 7.72 (X 7.8 22.0 16 232 17 m 7.92 276 21.9 9.0 18 7.97 219 9.0 22.2 N 19 7.83 248 8.9 21.9 1.7 20 72 0.011 80 21.9 7,99 190 8.3

() water subscripte was dark-IF

2 skipped due to pxtra food

Test Chamber: RMA

Test Alreation in bated Ann 13

X

Freshwater Sediment 20 Day Water Chemistries

Client: Test America

1106-1026 Test #:

Start Date & Time: 10/9/11 1100

Site: WETSED 1

Test Organism: Chironomus tentans

1300 End Date & Time:

Day	NH ₃	Sulfide	Alk	Hard	рН	Conductivity	Dissolved O ₂	Temp.	Reno			Tech.	
0	(mg/L)	(mg/L)		CaCO3)	(units)	(umhos/cm)	(mg/L)	21.8	am	pm	Fed	Initials	
1	21.0	0.016	(04	100	6.68	215	7.0	22.2	/	V	1	WF S	1
2					6.98	200	6.0	21.9	1	1	1.	N=	1
3	Periodo de la composición della composición dell				7.06	186	5.8	21.9	V	/	1	NF.	
4					6,65	185	6.6	22.1	V	1	/	BP	
5	1.0	0.014	64	100	6.97	180	Ce.5	22,1	1	1	~	BP	
6				74	7.09	175	5.4	22.0	V	V	V	SP	
7					6.89	179	5.0	22.1	V	V	~	BP	
8					7.02	180	5.3	22.0	1	V	0	Et	
9					6.97	181	6,2	22.2	V	1	1	ce	
10	. 1.2	4001	68	104	7.00	180	6.0	22.2	/	1	1	W	
11					7.08	190	5.5	22.2	~	1	/	SP	
12					7.09,	184	5.8	22.1	1.	/	/	84	
13					7.04	186	3.5	22.2	1./	1	1	X	R
14					7.68	162	8.1	21.9	V	1	1	SP	
15	1.3	40.01	68	108	7.67	171	7.7	22.0	/	~	1	IF	
16					7.69	178	7.8	22.0	~	1	1	84	
17					7.35	155	8.9	22.0	/	1	/	(P)	4
18					7.89	159	8.9	22.1	/	/	1	IF.	4
19					7.70	149	9.0	22.0	/	1	1	®	1
20	<1.0	0.054	60	80	7.70	153	8,4	21,8				BP	

QA Check: U

Oskipped due to

Test Chamber: Rm A

*Testauration imitiated

Freshwater Sediment 20 Day Water Chemistries

Client: Test America

Test #: 100 - TO 27

Start Date & Time: 4

(00) 11 /H/W

Site: WETSEDZ

Test Organism: Chironomus tentans

End Date & Time: 6 29

1300

					THE ROLL OF THE PARTY OF THE PA							
Day	NH ₃	Sulfide	Alk	Hard	pН	Conductivity	Dissolved O ₂	Temp.	Rene			Tech.
	(mg/L)	(mg/L)	(mg/L as	CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials
0	<1.0	X. <0.010	108	220	6.46	389	7.2	21.9	V	/	/	8>
1					6.75	413	6.9	22.1	/	/	/	IF
2					6.95	343	6.7	.21.9	\checkmark	1	/	AF
3					6.98	308	5.9	21.8	/	/	/	IF
4					le,510	329	7,1	21.9	V	1	/	BP
5	<1.0	\$ 40.01	72	220	6.81	283	6.6	22.0	/	1	V.	BP
6					6.94	266	(e,)	21.8	~	V	V	BP
7					6.87	254	5,2	21.9	1	V	K	BP
8					6.92	257	5.3	21.9	1	1	(1)	84
9					6.86	238	6.7	22.0	1	/	/	CC
10	1.3	L0.01	68	228	6.90	240	6.0	22.0	/	/	. /	m
11					7.11	225	6,6	22.0	V	/	/	BP
12					7.05	214	6,5	29.0	~	-	/	ध्
13					7.00	2010	6.0	22.0	~	1	1	8
14					7.74	191	8,4	22.0	V	V	V	BP
15	1.2	40.01	72	224	7.59	194	7.8	22.0	/	-	1	NE
16					7.63	195	7.7	29.0	1	1	1	C/
17					7.28	1720	8.9	22.0	V	V	1	(P)
18	1				7.80	179	8.9	21.9	V	V	1	IF
19					7.76	158	9.1	21.7	V	1	V	m
20	<1.0	0.044	64	84	ור.ד	161	8,5	21,7				BP

QA Check:

Oskipped due to

Test Chamber: RMA

* Test aeration in tiated

X

Freshwater Sediment 20 Day Water Chemistries

Client: Test America

Test #: 1100 - 7028

Start Date & Time: 691

6/9/11 1100

Site: WETSED3

Test Organism: Chironomus tentans

End Date & Time: 4 29

1 1300

Day	NH ₃	Sulfide	Alk	Hard	pН	Conductivity	Dissolved O ₂	Temp.	Rene	ewed		Tech.	
	(mg/L)	(mg/L)	(mg/L as	CaCO3)	(units)	(umhos/cm)	(mg/L)	(°C)	am	pm	Fed	Initials	
0	<1.0	0.021	84	116	4.80	382	6.3	219	V	/	V	8	
1					7.19	373	6.5	22.1	/	/	/	IF	
2					7.32	. 340	6.2	21.7	/	/	/	IF	
3					7.30	301	6.0	21.9	/	/	/	NF	
4					6.95	311	7.0	21.9	V	1	/	BP	
5	41.0	0.019	84	120	7.10	274	6.3	22.0	1	1	/	BP	
6	vers 1				7,19	252	5.9	21.8	V	V	V	OP	
7					7,13	244	5.2	21.8	~	V	V	BP	
8					7.15	247	5.3	21.9	J	/	(D)	St.	
9					7.13	220	6.8	22.0	/	/	/	CC	
10	<1.0	40.01	88	136	7.15	244	6.2	22.0	V	1	V	W.	
11	La				7,32	222	6,8	22.0	/	/	/	SP	
12					7.24	212	6.7	22.0	/	V	1	84,	
13					7.16	210	5.3	22.1	~	/	1	8	7
14					7.92	193	8.7	21,9	V	V	V	BP	
15	41.0	40.01	88	140	7.70	221	7.9	21.9	/	~	/	IF.	
16					7.67	219	7.8	29.9	V	V	1	84	
17					7.52	205	9.0	22.0	V	V	/	(A)	
18					7.99	217	8.9	21.9	/	/	V,	IF	
19					7.78	192	8.8	21.8	1	V	/	@	
20	41.0	40.01	80	100	7,73	196	8,4	21,7				SP	

QA Check:

Oskipped due to excess food

Test Chamber: 2M A

*Test aeration initiated

Freshwater Sediment 20 day Survival

Client: Test America Test #: 1010-1026, -T027, -T028	Start Date & Time: 69 11 1100	
Test #: 100-1026, -T027, -T028	End Date & Time: 6/29/11 13	OD
	Test Organism: Chironomus dilutus	

	Rep	Cont			Surviva	l Day 20		
Site	#	#	Day 0	total	#larvae	#pupae	#flies	Initials/Comments
CON	1		12	10	10	O	<i>O</i>	
	2	39	12	12	12	1	Ĭ	SP SP
	3	18	12	1	1			N
	4	ai	12	12	12		- 1	80
	5	24	12	10	10			DP N
	6	10	12	12	12			
	7	4	12	12	12			8
	8	31	12	8811	11			BP
WETSEDI	1	13	12	12	12			8
**********	2	17	12	12				0)
	3	aa	12	ID	12			SP XX
	4	1	12	14	7			35 *X
	5	26	12	12	12			20
	6	3	12	9	9			BP BP
	7	3 16	12	3				SP SP
	8	6	12	9	5			
WETSEDA	1	14	12	9	9			BP
A CONTRACTOR	2	19	12	-				N)
	3	9	12	9	10			BP
	4	15	12		9			· X
	5	19	12	10	19			BR
	6	30	12	8				80 **
	7	27	12	12	12			SP.
	8		12	8	7 8			
15-11-12	_	17		8				X
VETSED3	1	90	12	4	4			88
	2	2	12	9	9			X \ ★
	3	25	12		. 1			3P
	4	7	12	6	0			XX **
	5	5	12	0	0	-		OP
	6	38	12	5	375	180		
	7	3a	12	8	8		,	BP.
	8 .	33	12.	8	8	1	4	8
	1		12			Dell'inter	THE PARTY	
	2		12				A COLOR	
	3		12	VIII.			Le Horning	
	4		12					
	5		12					
	6		12					
	7		12					
	8		12		0			14 + 3/
	1		12	4 10				
	2		12					
	3		12	1				
	4		12					
	5		12					
	6		12					
	7		12					
	8		12					The company of the

Nautilus Environmental **Washington Laboratory** 5009 Pacific Hwy., E. Suite 2 Tacoma, WA 98424

Client: TU Organism: Chironomus tentans

Test no.: 1106-T026-7T028

Site	Rep #	Cont #	Pan wt. (gm)	Dry wt. (gm)	Ash wt. (gm)	Ash free dry wt. (gm)	No. organisms	Avg. per site (mg)
STATE OF THE PARTY	1		The same of the sa			dry wt. (gm)		site (mg)
CON	2	39	0.07546	0.09222	0.08391		10	
	3		0.06494	0.07685	0.06647		12	HISTORY N
		18	0.0 GAT 7001	0.08554	0.07609		11	
	4	3)	0.07103	0.08411	0.07296		12	
	5	24	0.07895	0.09140	0.08119		10	
	6	10	0.07216	0.08637	0.07433		12	
	7	4	0.06317		0.07236		12	
		31	0.07244	0.08211	0.07417		1)	
WEISED)	1	13	0.05852	0.07271	0.06070		12	
	2	11	0.06231	0.07411	0.06493		12	
	3	99	0.07449	0.01955	0.07526		- 10	
	4		0.06514	0.07418	0.06674		7	
	5	26	0.06976	0.09202	0.07306		12	
	6	3	0.06418	0.08309	0.06717	,	9	
	7	16	0.07372	0.07854	0.07440		5	
	8	6	0.06733	0.08448	0.07116		9	
WETSED	1	14	0.06840,	0.08015	0.07159		9	
	2	/a	0.06564	0.01537	0.06878		10	
	3	9	0.07099	0.08530	0.07540		9	
	4	15	0.06877	0.07905	0.07249		10	
	5	19	0.07891	0.09458	0.08453		8	
	6	30	0.06799	0.08315	0.07383		17	
	7	27	0.06780	0.07498	0.06983		7	
	8	17	0.06625	0.07560	0.06909		8	
VETSED3	1	20	2.06439	0.07396	0.06746		4	
	2	Q	0.06548	0.07344	0.06792		9	
	3	25	0.07850	0.07868	0.07854		.1	
	4	7	0.06719	2005-			0	
	5	5	0.06683	-			0	
	6	२४	0.07732	0.08079	0.07833	2, ii •	5	
	7	32		0.09078	0.08325		8	
	8	23	0.06552	0.07706	0.06901		8	
	1							
	2							
	3							
	4							
	5							
	6			The Street				
	7							
200	8	40//215/		200		EMERICA EMPLOYER		
	Tec	h Initials	X	X	NE		AF.	

1) Dry wt. Date/time in: Dry wt. Date/time out:

Dry wt. Tech:

2) Furnace date/time in: 7/7/11 & T° 550 1200 (*) 100

Furnace date/time out: 7/7/11300 To 550

Furnace tech:

9

Freshwater Sediment 10 day Water Chemistries

Client:

Tost America

Start Date & Time: 6/7/11 1445

Conc. or Site:

End Date & Time: 6/17/11 1545

Test #:

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	рН	Conductivity	Dissolved O ₂	Temp			Technician
	(mg/L, as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	44	60	发<1.0	20.010	6.50	145	8.0	23.4			8
1					6.79	149	7.1	22.8	1		8)
2					6.81	1102	6.8	22.4	/	1,3	8
3					7.77	189	7.0	22.3	/		IF
4			1		7.43	180	6.2	21.9	/		M
5	52	72	41.0	0.054	7.91	172	6.8	21.9	/		IF
6					7,14	170	8.4	21.9	1	模型	BP
7					7.54	176	7,0	22.1	V.		BP
8					7.79	182	6,3	22.0			BP
9				The same	7.21	180	5.8	22.1	1		BP
10	60	7,6	41.0	0.125	7.37	182	7.4	22.0	/		et

Test Chamber: RM. A

Freshwater Sediment 10 day Water Chemistries

Client:

Test #:

Test America

Start Date & Time: 4/7/11 1445

Conc. or Site:

WEISED ! 1100-TO13 End Date & Time: 6-17-11 15

Test Organism: H. azteca

Day	Alk mg/L as	Hard	Ammonia (mg/L)	Sulfide (mg/L)	pH (units)	Conductivity (umhos/cm)	Dissolved O ₂ (mg/L)	Temp (°C)	Fed	Comments	Technician Initials
0		124							reu	Comments	X
0	60	100	<1.0	0.014	6.27	262	6.6	23.3	V		05
1					6.22	232	CO.Q	22.8	/		X
2					6.39	202	6.4	22.	1		85
3					7.20	189	6.1	22.3			W.
4					7.02	184	6.1	22.0	/		IF
5	68	132	<1.0	0.036	7.00	174	6.2	21.9	/		IF
6					7.00	166	7.0	21.9	1		SP
7					7,05	165	6.3	22.1	1		SP
8					7,19	164	6.0	21.9			BP
9					6.87	165	5.4	21,9	/		BP
10	72	132	1.0	0.293	6.93	164	7.3	21.9	1		Et

Test Chamber: RM.A

Freshwater Sediment 10 day Water Chemistries

Client:

Start Date & Time: <u>6/7/11</u> 1445 End Date & Time: <u>6-17-11</u> 1545

Conc. or Site:

Test #:

1106-1014

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pH	Conductivity	Dissolved O ₂	Temp			Technician
	mg/L a	s CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	64	192	<1.0	0.012	6.45	418	6.9	23.3			82
1					6.35	402.	6.2	22.8	V		X
2					6.41	334	6.4	22.2	/		85
3					7.18	314	6.4	22.3	3/		IK
4					6.99	273	6.1	21.9	1		IF
5	80	200	41.0	0.037	6.97	277	6.3	21.9	/		W.
6					(0.105	253	7.2	22.0	1		BP
7					7.02	241	6.8	22.1	v.		BP
8					7.17	210	6.1	21.9			BP
9					6.89	201	5.4	22.0	/	***********	BP
10	80	204	<1.0	0.126	7.05	190	7.1	21.9	/		84

Test Chamber: Am. A

Freshwater Sediment 10 day Water Chemistries

Client: Conc. or Site:

Test #:

1106-7015

Start Date & Time: 6-7111445
End Date & Time: 6-17-11 1545

Test Organism: H. azteca

Day	Alk	Hard	Ammonia	Sulfide	pН	Conductivity	Dissolved O ₂	Temp		77	Technician
	mg/L as	CaCO3	(mg/L)	(mg/L)	(units)	(umhos/cm)	(mg/L)	(°C)	Fed	Comments	Initials
0	600	172	<1.0	40.010	6.64	343	6.6	23.2			8
1					6.61	288	6.1	22.8	/		75
2					6.63	235	6.3	22.2	/		35
3					7.37	222	6.4	22.3	/		14
4					7.12	216	6.5	22.0	/		NF
5	76	180	41.0	0.074	7.11	214	6.4	21.9	✓		IF
6					6.80	203	Se. 7.3	21.8	1		SP
7					7.14	204	6,9	22.1	/		BP
8					7,23	159	(e.	21.9	/		SP
9					6.97	187	5.6	22.0	V		BP
10	72	188	<1.0	0.107	7.11	184	7.2	21.9	1		84

Test Chamber: RM . A

Freshwater Sediment 10 day Survival

Client: 1/67 America Test #: 1/06-T0/3, T0/4, T0/5

Start Date & Time: 6/7/11 1445
End Date & Time: 6/17/11 1545
Test Organism: H. azteca

Conc.	Cont.	Sui	rvival
or site	#	Day 0	Day 10
CON 36	130	20	धान्यव
26		20	50
4		20	30
23		20	19
30		_ 20	20
27		20	90
В		20	19
5		20	90
SEDI 3		20	0
14		20	Ö
6		20	0
16	235	20	0
32		20	0
28		20	0
17		20	0
13		20	0
SED 2 10		20	18
7		20	19
2		20	19
15		20	16
23	Marie San	20	14
24		20	14
18		20	18
31	-	20	18
SED3 21	The second	20	90
		20	19
12		20	18
20	9	20	18
25		20	19
11		20	20
9		20	30
19		20	30 30
		20	
		20	
		20	
AVENUE DE		20	
		20	
		20	
		20	
		20	
		20	
		20	
A 1	Tech Initials		a

Animal Source: Aquatic Indicators

Age at test initiation: 8 days

Freshwater Sediment 10 day Observations

Start Date & Time: 6/7/11 1445
End Date & Time: 6/7/11 1545
Test Organism: H. azteca

		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9
	Initials	10/8/11	G9/11/8	6/10/114	MF	NE	6/138/			
WETSED3	1	N	N'	N	N	N	N	1/	1/	11
WETSED2	2	1	1	1 1	i	1	1	1 /Y	1	1 /
WETSED1	3							<u> </u>		
CON	4									
CON	5									
WETSED1	6									
WETSED2	7									
CON	8									
WETSED3	9									1
WETSED2	10									
WETSED3	11									
WETSED3	12									
WETSED1	13									
WETSED1	14									
WETSED2	15								1 1	
WETSED1	16				1					
WETSED1	17							 		
WETSED2	18									
WETSED3	19									
WETSED3	20									
NETSED3	21						11			
NETSED2	22								1 1	
CON	23									
NETSED2	24								-	-
NETSED3	25						 			<u> </u>
CON	26									
CON	27								-	
WETSED1	28									
CON	29									1
CON	30								1	
VETSED2	31						† \			
WETSED1	32		7		J	J	\ \	7	1 1/	1

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Physical and Chemical Measurements of Porewaters Sediment Bioassays

		Analyst:	
Client :	Test AMERICA	Test Date: 6/6/11	
		Test Type: Microtox 100% Porewater Toxicit	y Tes
Test No:	1106-T040-> T04Z	Test Species: Vibrio fischeri	

		Initial Salinity	Final Salinity	Initial D.O.	Final D.O	Initial pH	Adjusted pH	NaOH or HCl	Final Porewater	
	Site	(ppt)	(ppt)	(mg/L)	(mg/L)			Vol. Used	Conc.	Ammonia
511-048	WETSED-1	0,8	Q0,2	7,3	7.3	7,18	7.92	120ML 0.1 N N40H	99%	1.3
511-049	WETSED-2	1.2	19.5	7.2	7.2	7.33	et 792	0.111 NAOH	99%	2.7
511-050	WETSED-3	1.3	20.1	7,5	7.5	7.95	_	1	100%	21.0
	CON	20,1	20.1	8.2	8.2	8.64	8.18	80.11. 0.114cl	99%	

erromanische ing die		
omments: _		
-		
-		
-		
	0.6	
A Check:		

Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Raw Data Sheet Microtox 100% Sediment Porewater Toxicity

Client Name:

Test America

Test Date: 6/6/11

Sample ID:

WETSED-1,2,3

Test No.: 1106-T040-71106-T042

	Light				Replicate		
Site	Reading	Time	1	. 2	3	4	5
	I ₍₀₎	5 min	96	100	104	102	98
	I ₍₅₎	10min	90	100	98	96	94
CON	I ₍₁₅₎	20 min	82	80	85	85	87
				100			
	. I ₍₀₎ .	5 min	80	75	75	80	77
	I ₍₅₎	10min	58	49	54	51	53
WETSED-1	I ₍₁₅₎	20 min	13	13	12	13	14
	I ₍₀₎	5 min	81	84	74	78	79
	I ₍₅₎	10min	57	59	54	56	57
WETSED-2	I ₍₁₅₎	20 min	19	.21	19	19	21
	I ₍₀₎	5 min	74	78	77	77	75
	I ₍₅₎	10min	59	64	63	63	60
WETSED-3	I ₍₁₅₎	20 min	25	36	29	29	26
					Page 1		
	I ₍₀₎	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					
	I ₍₀₎	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					

Comments:

CC aA

Report Date:

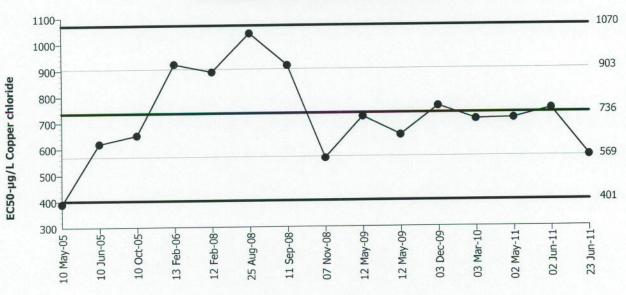
27 Jun-11 13:02 (1 of 1)

Chironomus 96-h Acute Survival Test

Nautilus Environmental WA

Test Type: Survival (96h)

Endpoint: 96h Survival Rate Protocol: EPA/600/R-99/064 (2000)


Organism: Chironomus tentans (Midge)

Material:

Copper chloride

Reference Toxicant-REF Source:

Chironomus 96-h Acute Survival Test

735.9 Mean: 167.4 Sigma:

Count: 14 22.70% CV:

-1s Warning Limit: 568.5 +1s Warning Limit:

-2s Action Limit: 401.1 +2s Action Limit: 1071

Quality Control Data

Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2005	May	10	389.8	-346.1	-2.068	(-)	(-)	03-9785-3768	06-1599-1620
2	2000	Jun	10	619.3	-116.6	-0.6962	(,1.3)		08-3314-6775	08-1540-4607
3		Oct	10	651.6	-84.26	-0.5034			08-1025-4680	04-9254-8883
4	2006		13	921.9	186	1.111	(+)		08-9851-1226	07-3219-0331
5	2008	1 00	12	892.6	156.7	0.9359			15-6976-5200	18-3934-0764
6	2000	Aug	25	1040	304	1.816	(+)		06-6119-9769	09-7546-4295
7		Sep	11	917.7	181.8	1.086	(+)		12-5480-0473	10-6515-6515
8		Nov	7	563	-172.9	-1.033	(-)		11-4948-7713	17-3277-7072
	2009	May	12	721.9	-14.01	-0.08366	` '		07-7016-2012	11-9025-1031
9	2009	iviay	12	650.3	-85.61	-0.5114			10-1811-8659	15-1190-7362
10		Dec	3	760.9	24.96	0.1491			06-1499-1772	06-0264-7224
11	2010		3	710.4	-25.51	-0.1524			17-7743-6517	09-5758-4695
12	2010			713.8	-22.13	-0.1322			05-0735-0656	07-1751-6097
13	2011	May	2		14.1	0.08423			17-9270-0205	04-9353-7895
14		Jun	2	750					15-0478-1400	
15			23	570.5	-165.4	-0.9882			10 0 17 0 1400	

CETIS Summary Report

Report Date: Test Code: 27 Jun-11 13:02 (p 1 of 1) RA062311CT | 15-0478-1400

							100	t code.	Mandila	s Environm	ontal WA		
Chironomus 9	6-h Acute Survi	val Tes	st							SENVIRONIII	ental WA		
Batch ID: Start Date: Ending Date: Duration:	06-1890-9822 23 Jun-11 11:00 27 Jun-11 12:00 4d 1h	0	Test Type: Protocol: Species: Source:	Survival (96h) EPA/600/R-99 Chironomus te Aquatic Biosys	entans	Dilu Brit	Analyst: Meghan Feuk Diluent: Diluted Mineral Water (8:2) Brine: Age:						
	00-0348-0792 23 Jun-11 11:00 23 Jun-11 11:00 N/A	0	Code: Material: Source: Station:	RA062311CT Copper chlorid Reference Tox				Client: Reference Toxicant Test Project:					
Comparison S	ummary												
Analysis ID	Endpoint		NOE		TOEL	PMSD	TU	Method	One Book	Toot			
13-8997-0043	96h Survival Ra	ate	375	750	530.3	26.9%		Steel Mar	ny-One Rank	rest			
Point Estimate Analysis ID 20-5891-4291	Endpoint	ate	Leve EC50		95% LCL 465.9	95% UCL 698.5	TU	Method Spearma	n-Kärber				
	Rate Summary												
Conc-µg/L	Control Type	Cour	nt Mean	95% LCI	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec		
0	Dilution Water	4	0.95	0.9127	0.9873	0.8	1	0.05	0.1	10.53%	0.0%		
187.5		4	0.95	0.9127	0.9873	0.8	1	0.05	0.1	10.53%	0.0%		
375		4	0.7	0.6036	0.7964	0.4	1	0.1291	0.2582	36.89%	26.32%		
750		4	0.35	0.256	0.444	0	0.6	0.1258	0.2517	71.9%	63.16%		
1500		4	0	0	0	0	0	0	0		100.0%		
3000		4	0	0	0	0	0	0	0		100.0%		
96h Survival I	Rate Detail												
Conc-µg/L	Control Type	Rep	1 Rep	2 Rep 3	Rep 4								
0	Dilution Water	1	0.8	1	1								
187.5		8.0	1	1	1								
375		1	0.6	0.4	0.8								
750		0.6	0.4	0	0.4								
1500		0	0	0	0								
3000		0	0	0	0				Strain no.				

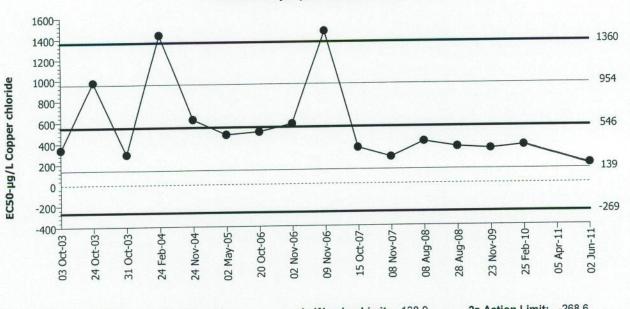
96 Hour Reference Toxicity Test Data Sheet - Nautilus Environmental Freshwater Sediment 96-hr Chronic

	2
Client: Reference Toxicant	Start Date & Time: (6/23/11 160
Sample ID: 3000 ualt CuCl	End Date & Time: 6 /27/11 1200
Test#: 2-10102301Ct	Test Organism: Chironomus tentans
3@	

Conc.	Cont. Survival Dissolved O ₂ (mg/L) pH (units)				Cond. μS/cm					Temperature (°C)													
CuCl ₂	#	0	96	0	24	48	72	96	0	24	48	72	96	0@	24	48	72	96	0	24	48	72	96
0 ug/L	13	5	5	8.0	6.3	6.5	10.60	7.0	7.71	7.44	752	7.50	7.82	8.0	193	194	190	245	21.8	21.1	21.2	21.2	21.8
	19	5	4											184									
	17	5	9																				
	18	5	5																				
187.5 ug/L	11	5	4	8.0	7.0	7.2	7.0	7.1	4.40	7.43	751	7.51	7.81	191	187	182	188	204	21.9	21.4	21.4	21.2	22.2
	3	5	5																				
	22	5	5																				
	15	5	5																				
375 ug/L	12	5	5	8.0	7.2	7.0	7.0	6.9	7.69	7.41	7.52	7.49	7.76	120	1860	185	185	202	21.6	21.3	21.3	21.2	22.1
	I	5	3																				
	12	5	2																				
	2	5	4																				
750 ug/L	21	5	3	7.9	ר,ד	7.3	7.2	6.9	7.67	7,45	7.51	7.49	7.85	179	186	185	185	200	21.6	21.4	21.2	21.3	22.2
	20	5	2								n nu												
	16	5	0																				
	6	5	2																				
1500 ug/L	4	5	0	7.9	7,9	7.4	7.0	7.0	7.60	7,44	7.47	7.36	7.66	181	184	187	176	200	21.6	21.3	313	21.3	22.1
	8	5	0																				
	14	5	0																				
	7	5	0																				
3000 ug/L	24	6	0	3.0	8.0	7.4	7.1	7.3	7.57	7.37	7.42	7.40	7.69	130	186	186	192	196	21.5	21.2	21.4	21.2	22.2
	9	5	0																				
	10	5	0																				
	Le	5	0																				
				^	100	01	(A)	IV.	T													III-DIF-	

Te	ech. Initials: 6	94 (P) M			
est Chamber: 2M.	0		Comme	ents:	
QA Check: (M)					100
nimal Source: 244	Date Received:	10/8/11	Age at test initiation: 2nd Instant		

Report Date: 06 Jun-11 12:58 (1 of 1)


Acute Amphipod Survival Test

Nautilus Environmental WA

Test Type: Survival Organism: Hyalella azteca (Freshwater Amphip Material: Copper chloride

Protocol: ASTM E1706-00 (2000) Endpoint: Survival Rate Source: Reference Toxicant-REF

Acute Amphipod Survival Test

 Mean:
 546.4
 Count:
 16
 -1s Warning Limit:
 138.9
 -2s Action Limit:
 -268.6

 Sigma:
 407.5
 CV:
 74.60%
 +1s Warning Limit:
 953.9
 +2s Action Limit:
 1361

Qualit	ty Con	trol Data	a							
Point	Year	Month	Day	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2003	200000000	3	341.2	-205.2	-0.5035			06-0775-4420	15-2295-2416
2			24	975.3	428.9	1.053	(+)		04-6438-3508	07-9828-8060
3			31	292.7	-253.7	-0.6225			08-3475-1373	04-5200-0455
4	2004	Feb	24	1434	887.3	2.177	(+)	(+)	07-1118-0626	17-7524-5953
5	200	Nov	24	620.2	73.81	0.1811			10-9772-9874	17-7888-1382
6	2005		2	477.4	-69.01	-0.1694			07-5117-5111	11-6732-4104
7	2006		20	503.5	-42.94	-0.1054			10-2603-2608	05-1924-5921
8	2000	Nov	2	576.5	30.14	0.07397			04-1292-4263	07-3082-5987
9			9	1464	917.7	2.252	(+)	(+)	06-5458-2190	12-2747-1591
10	2007	Oct	15	348.4	-198	-0.486			13-4692-2778	05-0675-3882
11	200.	Nov	8	257.2	-289.2	-0.7097			06-6607-2454	13-7012-4549
12	2008		8	403.7	-142.7	-0.3503			00-5616-2222	16-0415-1126
13			28	351.6	-194.8	-0.4781			02-4459-4152	20-2603-1886
14	2009	Nov	23	332.8	-213.6	-0.5242			20-2294-2173	
15	2010		25	365	-181.4	-0.4452			16-9659-3406	11-7559-2786
16	2011		5	0	-546.4	-1.341	(-)		12-7538-8678	19-5580-0324
17		Jun	2	187.5	-358.9	-0.8807			04-1031-1615	02-7338-9085

CETIS Summary Report

Report Date: Test Code: 06 Jun-11 12:58 (p 1 of 1) RA060211HA | 04-1031-1615

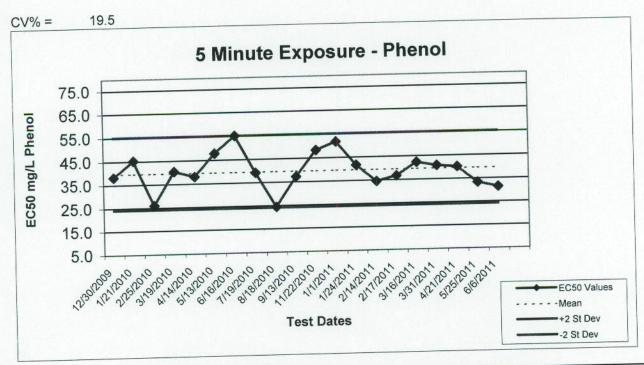
								t oodc.		s Environm	ontal M/A		
Acute Amphip	od Survival Test					Marie W.				S Environii	ientai wa		
Batch ID: Start Date: Ending Date: Duration:	17-7102-7421 02 Jun-11 13:10 06 Jun-11 13:10 96h	02 Jun-11 13:10		Protocol: ASTM E1706-00 (2000) Species: Hyalella azteca Source: Aquatic Indicators					Analyst: Meghan Feuk Diluent: Diluted Mineral Water (8:2) Brine: Age:				
	02 Jun-11 13:10 02 Jun-11 13:10	Ma So	ode: aterial: ource: ation:	RA060211HA Copper chloride Reference Toxio			Client: Reference Toxicant Test Project:						
Comparison S	ummary							Method					
Analysis ID	Endpoint		NOEL		TOEL	PMSD	TU		ny-One Rank	Test			
09-8560-0831	Survival Rate		<187.	5 187.5	N/A	4.59%		Steel Mai	ly-One Rain	t Test			
Point Estimate	e Summary Endpoint		Level	μg/L	95% LCL	95% UCL	TU	Method					
02-7338-9085			EC50		150.6	233.5		Trimmed	Spearman-k	Kärber			
Survival Rate	Summary												
	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec		
0	Dilution Water	4	1	1	1	1	1	0	0	0.0%	0.0%		
187.5		4	0.5	0.4695	0.5305	0.4	0.6	0.04082	0.08165	16.33%	50.0%		
375		4	0	0	0	0	0	0	0		100.0%		
750		4	0	0	0	0	0	0	0		100.0%		
1500		4	0	0	0	0	0	0	0		100.0%		
3000		4	0	0	0	0	0	0	0		100.0%		
Survival Rate	Detail												
Conc-µg/L	Control Type	Rep 1	Rep	2 Rep 3	Rep 4								
0	Dilution Water	1	1	1	1								
187.5		0.5	0.5	0.4	0.6								
375		0	0	0	0								
750		0	0	0	0								
1500		0	0	0	0								
3000		0	0	0	0								

96 Hour Reference Toxicity Test Data Sheet - Nautilus Environmental

Freshwater Sediment 96-hr Chronic

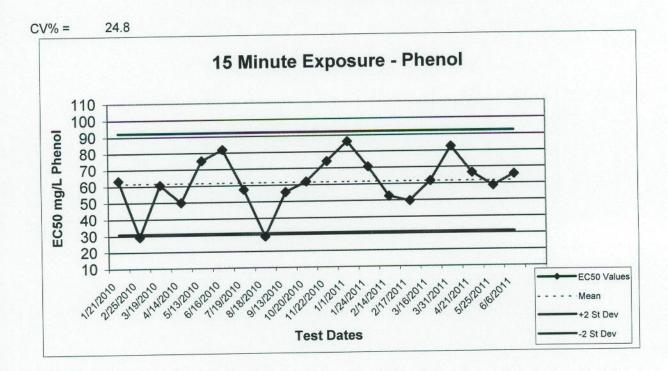
Client:	Reference T	oxicant
Sample ID:	2000 MONTE CUC	do
Test #:	RADIOZII H	a

Start Date & Time: 6 6 1 1310


End Date & Time: 4 14 1 1310

Test Organism: H. azteca

Conc.	Cont.	Surv	vival	D	issolv	red O ₂	(mg/L	-)		pl	l (unit	s)			Coi	nd. μS/	cm			Temp	eratur	e (°C)	
CuCl ₂	#	0	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96
0 ug/L	21	10	10	8.3	8.1	8.0	8.0	8.0	7.81	7.83	7.87	7.20	7.19	189	205	204	210	209	22.7	23.0	23.2	23,5	23.2
	15	10	10																				
	19	10	10		170																	7	
	18	10	10												121	1114	7		74				1,2
187.5	13	10	5	8.2	8.2	8,1	8.3	8.0	7,80	7.83	7.84	7,20	7.16	184	206	200	206	209	22.7	23.0	23,3	23,5	23.3
	1	10	5				77												Egist.	0.70		10	
	14	10	4	771				115				A			Ījju.				174				
	3	10	6										1			置							
375	4	10	0	8.3	7.9	8.1	8,2	7.9	דר.ד	7.80	7.78	7.17	7.00	184	202	202	207	206	22.6	23.3	23.4	23.5	23.5
	1 ii	10	0																		- 10		
	10	10	0						77												-221		
	12	10	0						- 15								Hir I				100		
750	2	10	0	8,3	8.2	8,2	8.2	8.0	15.5	7.78	7.72	7,14	7.02	184	204	200	20le	206	22.5	23.5	23,3	23,4	23.5
	20	10	0			99-1						47									130		
	22	10	0	l le	14		The same													1919		314	
	9	10	0	The		7		B	-											22.1			
1500	5	10	0	8.3	8.2	8.3	8.3	8.1	7,55	7.70	7.61	7.08	7.02	183	204	201	207	210	22.4	23.4	23,3	23.5	23.3
	24	10	0	140								1	711										THE STATE OF
	8	10	0	47						100												THE STATE OF	
	7	10	0				7)	建金			Shi							200	40		110		20.1
3000	17	10	0	8,3	8.3	8.3	8.3	8,1	7,27	7.61	7,50	7.05	7.00	184	204	200	207	208	22.5	23.3	23.3	23.4	23.4
	6	10	0																	530	175	Track Track	
	23	10	0							W.		Ti i								(4)		Harrie .	
	Initials:	10	0													1147						F12	


rech initials.	FIME ION ION			
Animal Source: AT		Comments:		
Date Received: 10 2 11	Dilution Water:	8:2	0	
Age at test initiation:		Test Chamber:	Km. A	QA Check:

Reference Toxicant Control Chart Microtox 5-Minute Exposure

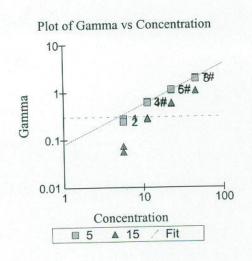
Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
12/30/2009	911	22.5	38.3	39.6	7.7	24.2	55.1
1/21/2010	1015	26.6	45.2	39.6	7.7	24.2	55.1
2/25/2010	1223	15.3	26.0	39.6	7.7	24.2	55.1
3/19/2010	833	23.8	40.5	39.6	7.7	24.2	55.1
	934	23.8	38.1	39.6	7.7	24.2	55.1
4/14/2010	939	29.9	47.8	39.6	7.7	24.2	55.1
5/13/2010	912	34.4	55.0	39.6	7.7	24.2	55.1
6/16/2010	830	24.5	39.2	39.6	7.7	24.2	55.1
7/19/2010	1018	15.3	24.4	39.6	7.7	24.2	55.1
8/18/2010	1214	23.3	37.3	39.6	7.7	24.2	55.1
9/13/2010		30.2	48.3	39.6	7.7	24.2	55.1
11/22/2010	1100	32.3	51.7	39.6	7.7	24.2	55.1
1/1/2011	1436	26.0	41.7	39.6	7.7	24.2	55.1
1/24/2011	829	21.6	34.5	39.6	7.7	24.2	55.1
2/14/2011	1339	23.0	36.8	39.6	7.7	24.2	55.1
2/17/2011	1010	26.5	42.3	39.6	7.7	24.2	55.1
3/16/2011	812	25.5	40.8	39.6	7.7	24.2	55.1
3/31/2011	1154	25.5	40.2	39.6	7.7	24.2	55.1
4/21/2011	917		33.3	39.6	7.7	24.2	55.1
5/25/2011 6/6/2011	848 1220	20.8 19.6	31.4	39.6	7.7	24.2	55.1

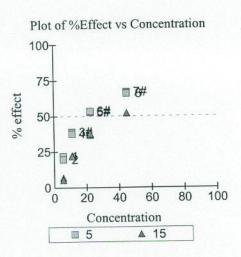
Reference Toxicant Control Chart Microtox 15-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Phenol ^a	Mean	StDev	-2 SD	+2 SD
1/21/2010	1015	37.3	63.3	61.6	15.3	31.0	92.2
2/25/2010	1223	17.2	29.2	61.6	15.3	31.0	92.2
3/19/2010	833	35.6	60.5	61.6	15.3	31.0	92.2
4/14/2010	934	31.2	49.9	61.6	15.3	31.0	92.2
5/13/2010	939	47.0	75.2	61.6	15.3	31.0	92.2
6/16/2010	912	51.2	81.9	61.6	15.3	31.0	92.2
7/19/2010	830	35.9	57.4	61.6	15.3	31.0	92.2
8/18/2010	1018	18.2	29.1	61.6	15.3	31.0	92.2
9/13/2010	1214	34.8	55.7	61.6	15.3	31.0	92.2
10/20/2010	904	38.7	61.9	61.6	15.3	31.0	92.2
11/22/2010	1100	46.4	74.2	61.6	15.3	31.0	92.2
1/1/2011	1436	53.9	86.2	61.6	15.3	31.0	92.2
1/24/2011	829	44.1	70.5	61.6	15.3	31.0	92.2
2/14/2011	1339	32.9	52.6	61.6	15.3	31.0	92.2
2/17/2011	1010	31.0	49.6	61.6	15.3	31.0	92.2
3/16/2011	812	38.5	61.6	61.6	15.3	31.0	92.2
3/31/2011	1154	51.6	82.6	61.6	15.3	31.0	92.2
4/21/2011	917	41.5	66.4	61.6	15.3	31.0	92.2
5/25/2011	848	36.5	58.4	61.6	15.3	31.0	92.2
6/6/2011	1220	40.9	65.4	61.6	15.3	31.0	92.2

a - Highest concentration of Phenol is 160 mg/L

MicrotoxOmni Test Report


Date: 06/06/2011 12:20 PM


Test Protocol: Basic Test Sample: 160mg/L Phenol Toxicant: 160mg/L Phenol Reagent Lot no.: 10K1032

Test description: Reference Toxicant

Test name: RT060611VF

Database file: C:\Program Files\MicrotoxOmni\Edge Analytical.mdb

			5	Mins Data	1:	15 Mins Data:				
Sample	Conc	Io	It	Gamma	% effect	It	Gamma	% effect		
Control		95.37	94.07	0.9864#			0.6723 #			
Control		96.55	96.74	1.002 #		65.20	0.6753#			
1	5.625	102.88	79.94	0.2795	21.84%	64.63	0.0726	6.768%		
2	5.625	99.02	79.24	0.2423	19.51%	63.20	0.0557	5.277%		
3	11.25	103.46	62.83	0.6371#	38.91%	54.10	0.2886	22.40%		
4	11.25	105.65	65.49	0.6038#	37.65%	55.82		21.59%		
5	22.50	107.92	50.83	1.111#	52.62%	46.07	0.5784#	36.65%		
6	22.50	109.63	50.79	1.146#	53.40%	46.09	0.6027#	37.61%		
7	45.00	109.14	35.85	2.027 #	66.96%	35.13	1.093 #	52.23%		
8	45.00	108.87	36.88	1.935	65.93%	35.23	1.082 #	51.98%		

- used in calculation; * - invalid data; D - deleted from calcs. Autocalc has been used.

Calculations on 5 Mins data:

EC50 Concentration:19.62% (95% confidence range: 18.81 to 20.48)

95% Confidence Factor: 1.043

Estimating Equation:LOG C =1.167 x LOG G +1.293

Coeff. of Determination (R2):0.9980

Slope: 0.8554

Correction Factor: 0.9942

Calculations on 15 Mins data:

EC50 Concentration:40.88% (95% confidence range: 38.35 to 43.57)

95% Confidence Factor: 1.066

Estimating Equation:LOG C =1.132 x LOG G +1.611

Coeff. of Determination (R2):0.9976

Slope: 0.8815

Correction Factor: 0.6738

TestAmerica Seattle

5755 8th Street East Tacoma, WA 98424

Phone (253) 922-2310 Fax (253) 922-5047

Chain of Custody Record

THE LOADER SE OWNEDWINGS, TO STAKE

	Sampler:				b PM:		at water					arrier Track	ing No(s):		COC No:			
Client Information (Sub Contract Lab) Client Contact:				strong, Curtis					580-583	39.1								
Shipping/Receiving	Phone:				Mail:	armetr	rona@	testam	orinoli	no com					Page:			
Company:				Cui	1113.6	armon	ungw	CSIAIII	encan	nc.con					Page 1	of 1		
Nautilus Environmental							(1	An	alysis	Requ	ested			580-263	360-1		
Address: 5009 Pacific Hwy. East, Suite 2,	Due Date Requeste 6/6/2011	ed:						3	W	3	1					ation Co		
City: Tacoma	TAT Requested (da	ays):					8	3	3	3	SCAR				A - HCL B - NaOh		M - Hexan N - None	е
State, Zip:								4	6	3 :	8				C - Zn Ad D - Nitric		O - AsNa0 P - Na2O4	
WA, 98424							-	XX	9	2	K				E - NaHS	504	Q - Na2S0	03
Phone:	PO#:							mon	7	0	F				F - MeOl G - Amch	nlor	R - Na2S2 S - H2SO4	4
Email:	WO #:				or No	102		3	7	10000	9				I - Ice J - DI Wa	rbic Acid	U - Acetor V - MCAA	
Project Name: Yakima Steel	Project #: 58004867				Sample (Yes	200	+	avve	5	100	5			ainer	K - EDTA L - EDA	6	W - ph 4-5 Z - other (s	5
Site:	SSOW#:				mple	MSD (Ye	2 3	Las	Gur	X				containe				
		Sample	Sample Type (C=comp,	(W=water, S=solid, O=waste/oil, BT=Tissue,	Filtered	Perform MS/MS	SUBCONTRACT	Middle	and 6		2 CMIV			Total Number of				
Sample Identification - Client ID	Sample Date	Time	G=grab)	A=Air)	ű.	Į n	S	* >	0	3 -				o t	S	pecial Ir	struction	s/Note:
		<u>~</u>	Preservat	ion Code:	X	\bigvee		<i>y</i> \										
E-WetSed-1-052311	5/23/11	10:10 Pacific		Solid			X-	+	-	-3				1	4	OC	SIL-	-048
E-WetSed-2-052311	5/23/11	10:35 Pacific		Solid			Xr-	-	-	>				1			511-	049
E-WetSed-3-052311	5/23/11	11:10 Pacific		Solid			X	-	-	->				1			511-	050
						П											011	030
					+	\Box												
					+						1							
					+													
					+	H						++			-		_	
					+	\forall				-	++	++						
Possible Hazard Identification					_	Sam	nle Di	ennea	ICAF	00 mc	(ho ac	onned if	nome/			41		
Non-Hazard Flammable Skin Irritant Poiso	on B Unkno	wn \square_R	Radiological			Sam	Retu	m To (l (A I	ee may		posal By	samples a	72078	ed longe live For	r than 1	month) Month:	
Deliverable Requested: I, II, III, IV, Other (specify)						Spec					rements	i:	Lub	Aich	ive i oi _		WORTH	,
Empty Kit Relinguished by:	N.	Datez			Ti	ime:	-			-		Method	of Shipment					
Relinquished by: Athy (14 mbl	Date/Time:	/	1 7216	company (CAA	F	Received	by		-				a:			Company	-
Relinquished by: (18 Markov)	Date/Time: 5/25/11 13:40 Company Date/Time: Company			er		Received	a	nei	n			Date/Time: 5-25-11 160		,00	Way Company	rilus		
Pollogulahad by	. /						Harris Control						a a continue				Company	
Relinquished by:	Date/Time:		C	Company		F	Received	by:					Date/Time): -			Company	
Custody Seals Intact: Custody Seal No.:						C	Cooler Te	emperatu	re(s) °C	C and Ot	ner Rema	ks:						
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		-	100		001117-117			221101111111	20111111111111111			meetical (1)	armining.	CHILD STATE	ammerini (ili)

ATTACHMENT D ENVIRON AGRI-TECH YAKIMA STEEL SEDIMENT EVALUATION

WETLAND EVALUATION TECHNICAL MEMORANDUM
Agri-Tech and Yakima Steel Fabricators Site
Yakima, Washington
Agreed Order No. DE 6091

Farallon PN: 765-001

Wetland Sediment Evaluations at the Agri-Tech/Yakima Steel Fabricators Site

Agency Review Draft

May 7, 2014

Revised: December 30, 2014

Prepared for:

Farallon Consulting

Issaquah, Washington

Prepared by:

Table of Contents

ı.	Introd	luction	6
	1.1 Back	ground and 2011 Investigation	6
		roach for 2013 Supplemental Investigation	
2		ods	
	2.1 Sedi	ment Collection and Handling	11
		mical Analysis	
		Treatment Preparation	
	2.3.1	Test Sediments for Baseline and Dilution Series Toxicity Testing	
	2.4 TIE	Manipulations	
	2.4.1	Whole Sediment TIE Manipulations	
	2.4.1.1	Cation-exchange Resin Beads in Sediment	
	2.4.1.2	Powdered Coconut Charcoal (PCC) in Sediment	
	2.4.2	Porewater TIE Manipulations	
	2.4.2.1	Baseline Toxicity	17
	2.4.2.2	Cation-Exchange Column	17
	2.4.2.3	C-18 Column	
	2.4.2.4	EDTA	18
	2.4.2.5	Filtration Tests	18
	2.5 Toxi	city Test Methods	19
	2.5.1	10-d Acute Amphipod Sediment Test with Hyalella azteca	19
	2.5.2	20-d Chronic Midge Sediment Test with Chironomus dilutus	20
	2.5.3	Microtox® Test	
	2.5.4	Porewater Toxicity Tests	
	2.5.5	Water for Bioassay Testing	22
	2.5.6	Water Quality	
	2.6 Data	Analysis and QA/QC	22
3.		ts	
	3.1 Base	eline and Dilution Series Whole-Sediment Tests	26
	3.1.1	10-Day Benthic Amphipod Test	
	3.1.2	Benthic toxicity tests with Chironomus dilutus	
	3.1.3	Benthic toxicity tests with Microtox®	
	3.2 Toxi	city Identification Tests	
	3.2.1	Porewater Chemistry	35
	3.2.2	Porewater Toxicity Tests with Hyalella azteca	
	3.2.3	Porewater Toxicity Tests with <i>Microtox</i> ®	
	3.2.4	10-Day Benthic (Whole Sediment) Amphipod TIE Test	
4.		ssion	
	4.1 Sum	nmary of Whole-Sediment Baseline Tests	42
	4.2 Con	nparison to the Previous Investigation	43
		ition Series Test	
		icity Identification Evaluation	
	4.4.1	AVS/SEM	
	4.4.2	Whole Sediment TIE Toxicity Testing	
		Porewater TIE Toxicity Testing	
		, and the second se	
_	4.4.4	The Role of Metals in Toxicity	
5.		nary of Findings	
6.	Refer	ences	55

Table of Tables

Table 1 Summary of Wetland Soil and Sediment Chemistry, Agri-Tech/YSF 2011 Survey	7
Table 2 Summary of 2011 Toxicity Test Results for Wetland Sediments, Agri-Tech/YSF	8
Table 3 Negative and Positive Control Performance, 2011 Toxicity Tests	9
Table 4 Station locations, Agri-Tech/YSF 2013	10
Table 5 Chemical and Physical Parameters, Analytical Methods, Detection Limits 2013	14
Table 6 Toxicity Tests and TIE Manipulations Included in Agri-Tech/YSF 2013	16
Table 7 Results of Chemical Analysis of Test Sediments, Agri-Tech/YSF 2013	25
Table 8 Survival Summary for the 10-day Benthic Test with Hyalella azteca, Agri-Tech/YSF 2013	27
Table 9 Water Quality Summary for the 10-day Benthic Test with Hyalella azteca, 2013	28
Table 10 Test Condition Summary for Hyalella azteca, Agri-Tech/YSF 2013	29
Table 11 Survival Summary for the 20-day Benthic Test with Chironomus dilutus, 2013	31
Table 12 Water-Quality Summary - 20-day Benthic Test with Chironomus dilutus, 2013	32
Table 13 Test Condition Summary for Chironomus dilutus, Agri-Tech/YSF 2013	33
Table 14 Summary of Test Results for the Microtox® Test, Agri-Tech/YSF 2013	34
Table 15 Metals in Untreated and Treated WETSED-1 Porewater, Agri-Tech/YSF 2013	35
Table 16 Summary of Results for the 4-day and 10-day Porewater TIE Test with Hyalella azteca	37
Table 17 Summary of Water Quality for the Porewater Test with Hyalella azteca	38
Table 18 Test Condition Summary for the Porewater Test with <i>Hyalella azteca</i>	39
Table 19 Summary of Test Results for the Porewater Microtox® Test	40
Table 20 Survival Summary for the 10-day Benthic Test with Hyalella azteca	41
Table 21 Summary of Water Quality for the Benthic TIE Test with Hyalella azteca	41
Table 22 Test Condition Summary for the Benthic TIE Test with <i>Hyalella azteca</i>	42
Table 23 Summary of Wetland Soil and Sediment Chemistry, Agri-Tech/YSF 2013	43
Table 24 Summary of Sediment Chemistry and Test Results, Agri-Tech/YSF, 2011 and 2013	44
Table 25 Summary of Dilution Series Test Results, Agri-Tech/YSF, 2013	45
Table 26 Results of AVS and SEM Analysis for WETSED-1 Sediment, Agri-Tech/YSF 2013	47
Table 27 Results of Porewater Chemistry and Porewater Toxicity Tests, Agri-Tech/YSF 2013	50

Table of Figures

Figure 1 Agri-1ech/Yakima Steel Wetland study area.	11
Figure 2 Wetland study area with approximate station locations	23
Figure 3 Wetland study area; Sampling Station WS-3.	23
Figure 4 TIE Test Results for the Whole Sediment Test with <i>Hyalella azteca</i>	48
·	

Appendixes

Appendix A: 2011 To	xicity Testing I	Report
---------------------	------------------	--------

Appendix B: Microtox® Report: Baseline and Dilution Series

Appendix C: Amphipod and Chironomus Data Sheets – Baseline and Dilution Series

Appendix D: Porewater TIE Toxicity Test Data Sheets and Porewater Chemistry

Appendix E: Solid-Phase TIE Test Data Sheets

Appendix F: Sediment Chemistry Reports and Bench Sheets

Glossary of Terms

Acute toxicity: Toxicity due to a short-term exposure. The measured effect may be lethal or sub-lethal.

AFDW: Ashed-free dry weight

Amphipod: *Hyalella azteca*: For this program, the amphipod, *Hyalella azteca* was used to evaluate toxicity.

,

Benthic Test: A whole-sediment test, conducted with animals exposed to test sediments

C: Control

Chironomus: The genus for the midge test species, *Chironomus dilutus*. For this report, *Chironomus* is sometimes used to refer to *Chironomus dilutus*.

Chronic toxicity: Toxicity due to a longer duration exposure. The measured effect may be lethal or sublethal (e.g. growth).

COPC: Chemicals of Potential Concern

CSL: Cleanup screening level; levels which may require action

EC50: Median effective concentration. That concentration that elicits an effect on 50% of the test population.

Ecology: Washington Department of Ecology

Hyalella: The genus for the amphipod test species, *Hyalella azteca*. For the purposes of this report, *Hyalella* is sometimes used to refer to *Hyalella azteca*.

LC50: Median lethal concentration. That concentration that is lethal to 50% of the test population.

M: Mortality

Midge: *Chironomus dilutus* – for this program, the midge *Chironomus dilutus* was used to evaluate toxicity.

MIG: Mean individual growth

Porewater Test: Toxicity test with test organisms exposed to porewater extracted from test sediments

RSET: Regional Sediment Evaluation Team

SCO: Sediment cleanup objective; long-term sediment quality goals for cleanup actions

SMS: Sediment management standards

TNWR: Toppenish National Wildlife Refuge

YSF: Yakima Steel Fabricators

1. Introduction

Farallon Consulting LLC (Farallon) is conducting a remedial investigation of a light industrial site in Yakima, Washington. The Agri-Tech/Yakima Steel Fabricator (YSF) property includes a small Type 3 wetland. Previous studies with sediment collected from three wetland stations found cadmium levels above the State screening levels; sediment toxicity testing showed the potential for adverse biological effects. However, the results of previous tests were equivocal. ENVIRON (formerly NewFields) were requested to conduct an evaluation of toxicity and the potential causes of toxicity in sediments from the wetland. The purpose of this supplemental remedial investigation was to inform the feasible remedial analysis and cleanup action plan as it relates to the wetland area by:

- Reevaluating the potential for toxicity in site wetland sediments; and,
- If toxicity is observed, determine whether cadmium or other metals of potential concern are the likely cause.
- Generate data that can lead to a cleanup level for the site.

1.1 Background and 2011 Investigation

Prior studies evaluated wetland soils and sediments at the south end of the Agri-Tech/YSF property (Figure 1) for contaminants of potential concern (COPC) and sediments were evaluated for toxicity (Farallon 2011). Based on the soil and sediment chemistry, cadmium was the only analyte observed at concentrations exceeding the preliminary soil screening levels (Table 1). For the sediment samples, cadmium was the only COPC that exceeded the State of Washington's recently promulgated freshwater sediment cleanup screening level (CSL) and sediment cleanup objective (SCO) criterion. The CSL values represent levels which may require action; whereas the SCO values represent long-term sediment quality goals for cleanup. The CSL chemical criteria are higher than the SCO criteria; likewise, the toxicity thresholds for CSL are higher than those of the SCO. The Freshwater CSL and SCO values are based on a regional dataset with concomitant sediment chemistry and bioassay data. However, this dataset did not include small wetlands and as such they may not necessarily represent the bioavailability and toxicity of chemicals in the largely static sediment reducing environments found in small wetlands.

As required by the Sediment Management Standards (SMS), toxicity tests were conducted on the wetland sediments in 2011. Tests included the 10-day amphipod survival test with the amphipod, *Hyalella azteca*, the 20-day midge growth and survival test with the midge, *Chironomus dilutus*, and the Microtox® test. The bioassay report (Nautilus 2011; Appendix A) compared the test results to control samples based on criteria as defined in the Regional Sediment Evaluation Team (RSET) sediment evaluation framework for dredged material (USACE/EPA 2009). Since that time, the Washington Department of Ecology (Ecology) promulgated biological criteria for the freshwater sediment tests with *Hyalella* and *Chironomus*. The results of the wetland sediment toxicity tests are compared to the Ecology criteria in Table 2. For the Microtox® test, RSET criteria were used as the SMS revisions do not include Microtox® criteria. It should be noted that the RSET criteria are based on a "one-hit/two-hit" evaluation. Toxicity observed at the two-hit level represents a lower level of toxicity and indicates that two toxicity tests would need to exceed the two-hit criteria to fail a sediment treatment. The one-hit

criteria represents a higher level of toxicity and indicates that one toxicity test exceeding the one-hit criteria would fail a sediment treatment.

Toxicity exceeding the CSL criteria was observed in WETSED-1 for the *Hyalella* test, whereas no toxicity was observed in the *Chironomus* test for both survival and growth. WETSED-2 passed the CSL and SCO criteria for *Hyalella* survival and *Chironomus* growth, with *Chironomus* mortality slightly above the SCO criteria. In contrast, the WETSED-3 sediment passed the SCO criteria for the *Hyalella* test, but failed the CSL criteria for *Chironomus* mortality. Survival among the replicates for the *Chironomus* test was highly variable, ranging from 0 to 9 individuals per replicate. Marginal toxicity exceeding the CSL and SCO criteria were observed for each of the test treatments in the Microtox® test.

Table 1. Summary of Wetland Soil and Sediment Chemistry, Agri-Tech/YSF 2011 Survey.

Analyte	WETSED				WETSOII				CSL ³
Analyte	1	2	3	1	2	3	SL ¹	SCO ²	CSL
Grain Size									
Sand	40.4	14.1	4.1						
Silt	48.1	76.8	61.9						
Clay	11.5	9.1	34.0						
TOC (%)	5.3	4.7	3.6						
TVS (%)	82	63	60						
As	<5.8	7.6	8.5	<5.1	<3.4	<2.4	20	14	120
Cd	9.2	<u>6.8</u>	<u>7.8</u>	<u>3.7</u>	1.8	1.5	2	2.1	5.4
Cu	36	41	52	39	19	16	2,960	400	1200
Hg	0.07^{3}	0.04^{3}	0.14^{3}	0.14	0.071	0.14	2	0.66	0.80
Mn	210	220	270	190	250	210	11,000		
Pb	190	150	180	110	19	3.5	1,000	360	>1300
Sb	<5.8	<6.9	<6.1	<5.1	<3.4	<2.4	32		
Zn	2700	2800	2700	1700	670	41	24,000	3200	>4200
TPH-GRO	ND	ND	ND	ND	ND	ND	10		
TPH-DRO	ND	ND	ND	ND	ND	ND	2,000		
TPH-ORO	ND	ND	ND	ND	ND	ND	2,000		
Pesticides/Herbicides	ND	ND	ND	ND	ND	ND			
Acetone	0.082	<0.039	0.110	0.094	0.029	<0.019	3.21		
Carbon Disulfide	<0.003	0.003	<0.003	0.064	0.010	<0.001	5.651		
MEK	<0.014	<0.013	0.025	0.010	<0.0045	<0.0064	22		
Other VOCs	ND	ND	ND	ND	ND	ND			

¹ RI Screening Level

Bold: Exceeds SCO

Underline: Exceeds SCO and CSL

² Sediment Cleanup Objective; ³ Cleanup Screening Level

³ Reported value from nearby WETSOIL station

Table 2. Summary of 2011 Toxicity Test Results for Wetland Sediments, Agri-Tech/YSF.

Test	SCO ¹	CSL ¹	WETSED-1	WETSED-2	WETSED-3					
Hyalella 10-day										
Mortality	$M_{T}-M_{C}^{2} > 15\%$	M _T -M _C >25%	<u>100%</u>	13.8%	3.8%					
iviortanty	1411-1415 >1270	1011-1016 >2370	CSL	Pass	Pass					
Chironomus 20-day	Chironomus 20-day									
Mortality	M _T -M _C >15%	M _T -M _C >25%	14.6%	17.7%	<u>57.3%</u>					
iviortanty	1011-1015 > 1370	1011-1016 >23/0	Pass	SCO	CSL					
Growth	(MIG _c -MIG _t) /MIG _c	$(MIG_c-MIG_t)/MIG_c$	-0.23	0.04	0.34					
diowth	>0.25	>0.40	Pass	Pass	SCO					
Microtox® (evaluated v	vith RSET criteria)									
Test	RSET Criteria	RSET Criteria	WETSED-1	WETSED-2	WETSED-3					
1030	"two hit"	"one hit"	WEISED 1	WEISED 2	WEISED 3					
Change in light	T/C <85%	T/C <75%	<u>70.8%</u>	75.0%	84.4%					
output @ 5 minutes	1/0 <8370	1/0 3/0</td <td>70.870</td> <td>75.070</td> <td>04.4/0</td>	70.870	75.070	04.4 /0					
Change in light	T/C <85%	T/C <75%	20.2%	29.8%	41.7%					
output @ 15 minutes	1/0 <03/0	1/0 3/0</td <td><u> 20.2/0</u></td> <td>23.0/0</td> <td>41.7/0</td>	<u> 20.2/0</u>	23.0/0	41.7/0					
COPCs										
Cadmium	2.1	5.4	<u>9.2</u>	<u>6.8</u>	<u>7.8</u>					

¹ Biological criteria in revised Sediment Management Standards

Bold: Exceeds SCO

Underline: Exceeds SCO and CSL

Overall the QA/QC was acceptable for the toxicity tests (summary in Table 3; full report in Appendix A). Survival and growth in the negative control sediment (clean silica sand routinely used in freshwater sediment tests or laboratory seawater for the Microtox® test) were within acceptable limits. The positive control (reference-toxicant tests) with the exception of the Microtox® LC₅₀ for the 5 minute reading, which was slightly below the acceptable range. Water quality parameters, including ammonia and sulfide values were within the tolerance limits for the test organisms. The amphipod test was initiated with 20 test organisms rather than 10; however, the food ration was not altered for the increased loading rate. While this may have affected test organism fitness and growth, it is unlikely that this would result in the high mortality observed in WETSED-1. For the Chironomus test, there was high inter-replicate variability with coefficients of variation ranging from 49% to 102%. This test can be subject to error at test initiation if proper care is not taken placing the extremely small larval Chironomus into the test chambers. Nematodes were observed in some test replicates, which could result in predation and loss of early Chironomid larvae which are very small (about the size of an eyelash). Additionally, the duration of this test is very near the hatch stage and it is possible to have a loss of test organisms when they have developed into flies. While it is not possible to determine if these were sources of the variability from the available data, high variability is an indication that noncontaminant interactions may have affected the test results.

²M: mortality; MIG: mean individual growth: T: treatment; C: control

Table 3. Negative and Positive Control Performance, 2011 Toxicity Tests.

Test	Negative Control Performance	Acceptable Limit	Positive Control Performance	Acceptable Range	
Hyalella	1.3% mortality	<20%	188 μg/L Cu	0 – 1,360 μg/L Cu	
Chironomus	6.3% mortality	<32%	571 μg/L Cu	401 – 1,070 μg/L Cu	
Cilifoliolilas	0.91 mg AFDW/ind	>0.48 mg AFDW/ind	3/1 μg/L Cu	401 – 1,070 μg/ L Cu	
Microtov	5 min: 96%	72% - 110%	19.6 mg/L phenol	24.2 – 55.1 mg/L	
Microtox	5 min: 84%	72% - 110%	40.9 mg/L phenol	31.0 – 92.2 mg/L	

Although cadmium concentrations were generally similar for the three wetland sediments (6.8 to 9.2 mg/kg), the observed toxicity was highly variable across the site. Sample WETSED-1 had 100% mortality in the *Hyalella* test, but did not show toxicity in the *Chironomus* test; sample WETSED-3 had 57% mortality in the *Chironomus* test, but high survival in the *Hyalella* test. With the exception of the Microtox® test, WETSED-2 showed little toxicity. While it would not be unexpected to have different cadmium sensitivities among test species, the pattern of responses for each test would be expected to be somewhat consistent across the test treatments if cadmium was the primary cause of toxicity as the sediment chemistry might suggest.

There was consistency in response for all sediment treatments for the Microtox® test results. However, Microtox® tests have been shown to be highly sensitive to non-contaminant factors such as turbidity, ammonia, sulfides, organics, and holding times (Brouwer and Murphy 1994; Benton et al. 1995; Pardos et al 1999; Bennet and Cubbage 1992). In Microtox® tests with marine samples, holding times have been associated with toxicity (NewFields 2009). In a holding-time study, no toxicity was observed for samples tested within 2 to 4 days of collection; however, nearly half of the samples were found to exceed SMS criteria for samples tested 20 days after collection. All samples tested 37 days after collection failed in the Microtox®. In the Microtox® tests conducted with the Agri-Tech/YSF wetland sediments holding times were 15 days and likely affected the test results.

Site-specific factors (e.g. pH, redox potential, sediment grain size, and organic carbon) can affect metals availability and toxicity, as well as the ability of chemical criteria to predict a relationship between COPCs and toxicity. In many cases, the pH in wetland sediments may be lower than for larger, more dynamic water bodies. Lower pH tends to favor adsorption of metals onto finer sediment particles (John and Leventhal 1994). Furthermore, wetland sediments typically have elevated total organic carbon content due to the dense vegetation, which is not exported, from the system. Binding with organic carbon also reduces availability. Organically enriched sediments can form a strongly reducing (anoxic) environment which promotes sulfate reduction and sulfide mineral deposition. In such environments, free cadmium (the more toxic fraction) can form less toxic insoluble sulfide complexes. As such, the measured cadmium concentrations may not be similarly available or toxic as in riverine or lake systems. National chemical criteria or guidance values (e.g. Threshold and Probable Effects Levels), are based on datasets developed in water bodies that are quite different than the small wetland on the Agri-Tech/YSF

site. The dataset used in developing the recently promulgated SMS criteria includes large water bodies such as Portland Harbor, the Columbia River, Lake Roosevelt and the Spokane River.

The potential differences in availability and toxicity in wetland sediments versus sediments from larger water bodies are a significant source of uncertainty in developing a cause-effect relationship between screening level exceedances of chemicals of potential concern and toxicity. This is reinforced by a lack of consistency between the observed concentrations of cadmium and other metals in the sediment samples and toxicity among the three sediment samples. Confirming the cause of toxicity is an important step to determining appropriate subsequent actions for the wetland site, for completing the Feasibility Study, developing the conceptual site model, and for developing the cleanup action plan (CAP). Since Ecology has indicated that the success of the cleanup action will be based on the absence of toxicity, it is critical that appropriate criteria define any cleanup action for the wetland and be used to determine when the cleanup action is complete.

1.2 Approach for 2013 Supplemental Investigation

In order to determine whether site-related metals were associated with the observed toxicity, ENVIRON conducted a targeted study to accomplish the following objectives:

- Verify toxicity in the WETSED samples from each of the three stations;
- If toxicity is confirmed, determine whether cadmium or other metals present in the wetland site are the likely cause;
- If toxicity is confirmed and related to metals, determine whether a site-specific clean-up level would be appropriate.

The approach to address these study objectives was to conduct a sampling and analysis program that included resampling the three wetland stations previously tested, conducting confirmatory toxicity tests and targeted analytical chemistry, and performing a suite of forensic toxicity tests called toxicity identification evaluations (TIEs). The TIEs are a series of sample manipulations intended to alter the availability of certain classes of compounds (such as cationic metals) which are followed by toxicity tests with the manipulated sample. If sample toxicity changes in a manner predicted by the TIE manipulation, it provides a line of evidence that that class of compounds is associated with the observed toxicity. A suite of manipulations are included in this program to provide multiple lines of evidence. It should be noted that the TIE may not necessarily identify synergistic or additive effects, however, it may identify key factors that are driving factors in any observed toxicity. The results of the toxicity tests and TIE studies will then be evaluated in combination with the analytical chemistry to better understand the availability of site-related metals and the potential sources of observed toxicity.

2 Methods

2.1 Sediment Collection and Handling

Surface sediment collection was conducted on December 3, 2013. Surface samples were collected from the three previously sampled WETSED stations at the Agri-Tech/YSF site (Site; Figure 1) as well as from one location at the Toppenish National Wildlife Refuge (TNWR) for use in dilution series testing. The WETSED stations were located within the wetland and were immediately east of, and distinctly separate from the previous backfill area associated with Bay Chemical sediment removal. Stations were located using a WAAS enabled GPS and visual landmarks. Final station coordinates were recorded in the field and are presented in Table 4.

Surface sediment to a depth of 6" was collected from each of the WETSED stations. This sampling depth targeted the depth of sediment considered to be biologically active and most relevant to evaluating risk at the site. The site was dominated by cattails (*Typha* sp.) which had a root system that extended to approximately 6". Additionally, many of the wetland invertebrates (e.g. amphipods, Chironomids) occupy the upper most sediment surface (1"-2"). The wetland at the Site was dry at the time of sampling and sediment was collected by hand to a depth of 6 inches using stainless steel scoops. Collection tools were washed with warm soapy water, rinsed with deionized water, and then rinsed with acetone. Stainless steel spoons and scoops were cleaned at the Port Gamble laboratory and wrapped in foil.

Prior to sampling, above-ground vegetation was cleared from the sampling area. Care was taken during sampling to avoid roots and other large organic debris. Sediment from the TNWR was collected using a small stainless steel van Veen sampler from Toppenish Creek. Sediment was collected from an area closed to hunting, approximately 25 to 30 ft. upstream of a small bridge. Approximately five gallons of sediment was collected from each location to provide sufficient sample volume to support the analyses and TIE manipulations. Sediment from each station was placed into clean, food-grade plastic bags, labeled with station number, and then placed into a cooler. Sediment for AVS/SEM analysis was placed directly into certified clean glass sample jars with no head space. The samples remained on ice and in the dark until they were delivered to the ENVIRON laboratory for processing.

At the laboratory, sediment from each station was homogenized and then subsampled for chemical analysis. Samples were sent to the analytical laboratory (Analytical Resources Incorporated). Target analytes for project sediments included sediment grain size, total organic carbon, AVS/SEM, and total Cd, Mn, Pb, and Zn.

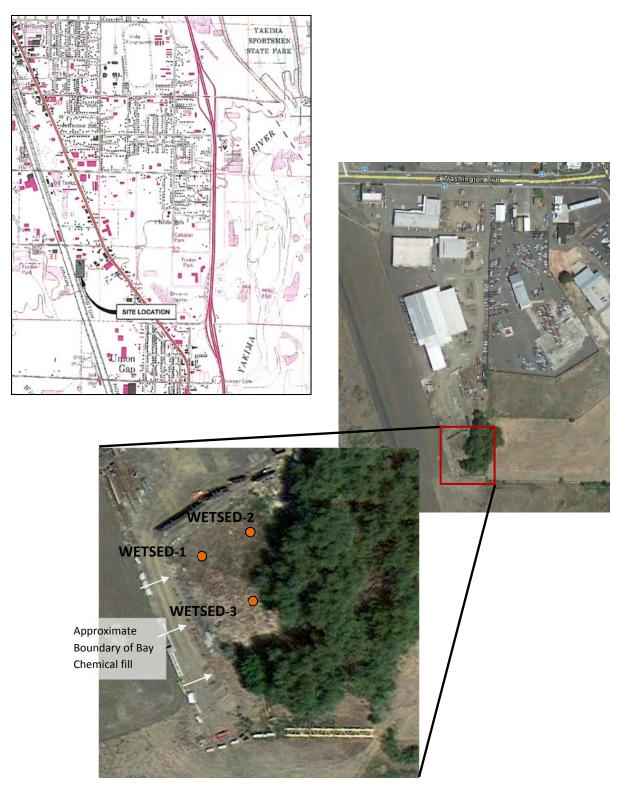


Figure 1. Agri-Tech/Yakima Steel Wetland study area.

Table 4. Station locations, Agri-Tech/YSF 2013.

Station	Latitude	Longitude	Time	Comments
WETSED-1-13	46° 34.034	120° 20.416	12:31	Dry silt/clay overlying wet cobble; heavy vegetation
WETSED-2-13	46° 34.036	120° 29.406	13:06	Dry silt/clay; heavy vegetation
WETSED-3-13	46° 34.028	120° 29.406	13:36	Dry silt/clay with sand overlying moist silt/sand; heavy vegetation
TNWR	46° 18.508	120° 20.786	10:01	Silty sand

2.2 Chemical Analysis

The three WETSED test sediments and dilution series sediments were analyzed for grain size, total organic carbon (TOC), porewater ammonia and sulfides, the metals cadmium (Cd), lead (Pb), manganese (Mn), and zinc (Zn), and AVS/SEM (Table 5). Note that the 0% dilution (TNWR only) was not submitted for chemical analysis. With the exception of ammonia and sulfides, laboratory analyses were conducted by Analytical Resources Inc. of Tukwila, Washington. Porewater ammonia and sulfides were measured at the ENVIRON laboratory.

Sediment grain size was analyzed to determine the general size classes that make up the sediment (e.g., gravel, sand, silt, and clay). Grain size was conducted using the gravimetric procedure described in PSEP (1986) and Plumb (1981). The TOC, made up of volatile and nonvolatile organic compounds, was determined following Plumb (1981). This procedure involved dissolving inorganic carbon (carbonates and bicarbonates) with hydrochloric acid or sulfuric acid prior to TOC analysis. Total solids were also measured to convert concentrations of the chemical parameters from a wet-weight to a dry-weight basis. Percent solids were determined by Standard Method SM2540G (APHA 2002).

The analysis for the project specific metals was conducted using an inductively coupled plasma emissions spectrometer equipped with a mass detector (ICP-MS), in accordance with USEPA 6010C Rev.3 (EPA 2007). Porewater samples were collected by ENVIRON and were analyzed for ammonia and dissolved sulfides. Total ammonia as nitrogen was measured using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S⁻² were measured using a HACH DR/2800V Spectrophotometer.

The methods for acid volatile sulfides followed EPA (1991). In this colorimetric method, sulfide in the sample was converted to hydrogen sulfide by the addition of hydrochloric acid at room temperature. The hydrogen sulfide (H_2S) was purged from the sample by an inert gas and trapped in a sodium hydroxide (NaOH) solution. With the addition of a mixed-diamine reagent (MDR), the sulfide was

Table 5. Chemical and Physical Parameters, Analytical Methods, and Target Detection Limits, Agri-Tech/ YSF 2013.

Agri Techy 131 2013.								
			Sediment Target					
Parameter	Method	Procedure	Reporting Limit					
			(dry weight)					
Conventionals								
Grain Size	PSEP; Plumb (1981)	Sieve/Pipette	1.0%					
TOC	Plumb (1981)	Combustion IR	0.1%					
Percent Solids	SM2540G	Gravimetric	0.1%					
Dissolved Sulfides	SM4500	Colorimetric	0.001 mg/L					
Ammonia	SM 4500N H3F	Probe	0.001 mg/L					
Metals								
Cadmium (Cd)	USEPA 6010c	ICP-MS	0.2 mg/kg					
Lead (Pb)	USEPA 6010c	ICP-MS	2 mg/kg					
Manganese (Mn)	USEPA 6010c	ICP-MS	0.1 mg/kg					
Zinc (Zn)	USEPA 6010c	ICP-MS	1 mg/kg					
AVS	EPA 1991	Colorimetric	0.05					
SEM	EPA 1991	ICP-MS	As above					
	Bi	oassays						
Acute Toxicity	USEPA 100.1	Amphipod	NA					
Acute Toxicity	SAPA 2008	Microtox®	NA					
Chronic Toxicity	USEPA 100.5	Larval Midge	NA					

converted to methylene blue and measured on a UV-VIS spectrometer. The acid-sediment slurry was centrifuged to settle the sediment. The supernatant was poured into an acid cleaned Teflon bottle and then analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for cadmium, lead, manganese, and zinc following a modification of EPA Method 1638. The amount of each metal that is soluble in the porewater is dependent upon the amount of sulfides to bind with and the relative affinity of the metal to bind with sulfides. For these four metals, lead can replace the other three metals bound to sulfides, followed by cadmium replacing zinc and manganese (EPA 2005). Zinc and manganese will then bind to what sulfides are available.

2.3 Test Treatment Preparation

2.3.1 Test Sediments for Baseline and Dilution Series Toxicity Testing

The potential for benthic toxicity in sediment from the three stations was evaluated using three benthic toxicity tests: the 10-day acute toxicity test with the amphipod *Hyalella azteca*, the 20-day chronic test with the midge *Chironomus dilutus*, and the Microtox® test using bioluminescent bacteria. The purpose of the baseline toxicity tests was to establish a baseline for subsequent TIE and to confirm or refine earlier estimates of toxicity from the 2011 toxicity tests. A dilution series test was also conducted using decreasing concentrations of WETSED-3 test sediment mixed with sediment collected from TNWR. The dilution series test was included to determine whether there was a dose-response to the test sediment

to assist in determining a site-specific clean up criteria if required. As indicated in the results section, there was no response in the WETSED-3 sediment dilution test.

The baseline tests were conducted with homogenized sediment from the three on-site stations (WETSED 1, WETSED-2, and WETSED-3), a series of dilutions of WETSED-3, and a laboratory control sediment. The laboratory control sediment was tested with two benthic tests to validate test results and verify that test conditions were suitable for test organism health. The laboratory control sediment was silica sand that was thoroughly rinsed with diluted mineral water (DMW).

The dilution series test was conducted with a series of sediment dilutions prepared using sediment from WETSED-3 and gradually increasing volumes of TNWR sediment. Sediment dilutions tested were 100%, 67%, 33%, and 11% test sediment in reference sediment and targeted whole sediment cadmium concentrations of 9, 6, 3, 1 mg/kg Cd. Sediment dilutions were prepared volumetrically based on the whole sediment concentration of 9 mg/kg Cd in WETSED-3 sediment. An appropriate mass of test and dilution sediment was combined in 1-gal glass jars. The sediment was homogenized using a clean, stainless-steel spoon and then fitted with Teflon-line lids. Jars were then placed onto a roller table and mixed continuously for 24 hours to evenly distribute the test and dilution sediment. After the mixing period, the test jars were placed in the cold-room (4°C) to allow for equilibration. A subsample of each dilution was submitted to the analytical laboratory to confirm the test cadmium concentration.

2.4 TIE Manipulations

Based on the results of the baseline testing, TIE tests were conducted with both sediment and porewater from the WETSED-1 sample. TIE procedures followed methods outlined in EPA (2007) and WERF (2007). Porewater was collected by double centrifugation. After the sediment was centrifuged once, the supernatant was decanted into another clean Teflon jar and centrifuged again. The supernatant in this jar was decanted into a glass container. This was the unmanipulated WETSED-1 sample for the porewater TIE. A TIE treatment control was tested concurrent to each of the sediment and porewater TIE manipulations. For sediment tests, the TIE control was comprised of silica sand (control sediment) plus the respective treatment. For the porewater TIE manipulations, the negative controls were diluted mineral water (control water) plus the respective treatment. The TIE manipulations included in this evaluation are summarized in Table 6 and the methods are summarized in the following sections.

Table 6. Toxicity Tests and TIE Manipulations Included in Agri-Tech/YSF 2013.

Matrix	TIE Method	Target Chemical Class	Test	Control
Sediment	SIR-300	Cationic Metals	10-d Amphipod	Silica sand + SIR-300
Sediment	Powdered Coconut Charcoal	Organics	10-d Amphipod	Silica sand + PCC
Porewater	EDTA (4 and 2 mg/L)	Metals	10-d Amphipod	Control water + EDTA (4 and 2 mg/L)
Porewater	SIR-300	Cationic Metals	10-d Amphipod Microtox	Control water filtered through SIR-300
Porewater	C18 Column	Organics	10-d Amphipod	Control water filtered through C18 column
Porewater	Filtration	Particulate bound contaminants	10-d Amphipod	Filtered control water

2.4.1 Whole Sediment TIE Manipulations

Two whole sediment manipulations were included in the TIE evaluations to evaluate the role of metals and organic contaminants of potential concern. Whole sediment TIE tests were conducted with *Hyalella azteca*. The following section describes the methods for the whole sediment TIE manipulations.

2.4.1.1 Cation-exchange Resin Beads in Sediment

SIR-300 is a macroporous, weak-acid cation exchange resin which has chelating properties for heavy metal ions. SIR-300 beads can be mixed directly into sediments to reduce cationic metal bioavailability (Burgess et al. 2000).

To prepare the resin beads, approximately 50 g of beads (Resin Tech Inc. West Berlin NJ), were placed in a polycarbonate tube fitted with a nytex screen and rinsed with tapwater and then deionized (DI) water. A 10% mixture of SIR-300 resin in test sediment by wet weight was prepared by manually mixing 25 g of resin beads into 225g sediment for a total mass of 250 g. Once visually homogenous, the mixture was placed on a rolling table for 24 hours, and then placed in test chambers and tested following the standard procedure for the 10-day test.

A SIR-300 blank was also tested concurrently by creating a 10% mixture of the resin beads in control sediment following the procedure described above.

2.4.1.2 Powdered Coconut Charcoal (PCC) in Sediment

Powdered coconut charcoal is pyrolized activated coconut husk that has been ground to <45 μ m. PCC can be added to whole sediment to reduce bioavailability of a broad spectrum of organic contaminants (Ho et al. 2004). This treatment was added to determine whether site-related organics were related to observed toxicity. Previous studies have shown a toxic threshold for PCC at 15% (WERF 2007), therefore a 5% mixture was used.

PCC was prepared by hydrating the charcoal with deionized water in a 2000 mL Erlenmeyer flask. Excess moisture was then removed after hydration using a vacuum filter. Once the free moisture was removed from the PCC, a 5% mixture by wet weight was prepared by homogenizing 40 g of PCC in 800 g of WETSED-1 test sediment. Once uniform in appearance, the test sediment was placed on rolling table for 24 hours, and then placed in test chambers following the standard procedure.

A PCC blank was also tested concurrently by creating a mixture of PCC in control sediment (45 g PCC in 900 g control sediment) following the procedure described above.

2.4.2 Porewater TIE Manipulations

Porewater from WETSED-1 was extracted from the whole sediment and treated with several targeted TIE manipulations. Porewater toxicity tests were conducted with amphipods and Microtox®; larval midge (*C. dilutus*) do not survive well in water-only exposures and are not typically included in porewater evaluations.

2.4.2.1 Baseline Toxicity

The baseline toxicity test was conducted on unmanipulated porewater samples. For the purposes of this study, undiluted porewater was tested without a dilution series. Porewater was collected from the whole sediment by double centrifugation as described above. The supernatant was then collected into a clean, glass jar taking care to avoid collection of the fine particulates from the sediment-water interface. Porewater was then held at 4°C until it was used in toxicity tests or treated following the TIE procedures described below.

2.4.2.2 Cation-Exchange Column

Sediment interstitial water was pumped through a cation exchange column to extract cationic metals. When combined with chemical analysis of the rinsate, a removal of toxicity in the rinsate can be used to identify the cause of toxicity (USEPA 1996; Burgess et al. 1997).

The cation exchange column was prepared by packing SIR-300 resin beads in a Supelco LC-WCX column. A peristaltic pump fitted with solastic tubing was attached to the input fitting of the extraction column and the flow adjusted to 2.5 mL per minute. In order to prepare the resin beads, 2 mL of methanol was pumped through the column followed by 6 mL of deionized water. Care was taken to keep the resin column moist between each step.

Control water was passed through the cation-exchange column at a flow rate of 2.5 mL per minute and collected in a clean glass beaker. The column was re-prepared using methanol followed by deionized water prior to filtering the WETSED-1 porewater. Sufficient porewater was passed through the resin column to allow for testing and chemical analysis. The SIR-300 control and the treated porewater were then placed in the temperature-controlled room to equilibrate to test temperature prior to testing.

2.4.2.3 C-18 Column

Sediment interstitial water was pumped through an organic compound solid-phase extraction column, or C-18 exchange column, to remove non-ionic organic toxicants from interstitial water. Reduction of toxicity in the column rinsate provides evidence to characterize toxicity caused by organic compounds (USEPA 1991).

An Oasis HLB organic solid-phase extraction column was fitted with solastic tubing. A peristaltic pump was used with the flow adjusted to 1 mL per minute. In order to prepare the column, 3 mL of methanol was pumped through the column followed by 5 mL of DI water. Care was taken to keep the column moist between each step.

Control water was passed through the C18 column at a flow rate of 2 mL per minute and collected in a clean glass beaker. The column was re-prepared using methanol followed by DI water prior to filtering the WETSED-1 porewater. Sufficient porewater was passed through the column to allow for testing and chemical analysis. The C18 control and the treated porewater were then placed in the temperature-controlled room to equilibrate to test temperature.

2.4.2.4 EDTA

Disodium ethylenediaminetetraacetic acid (EDTA) is an organic chelating molecule that preferentially binds divalent metals. When added directly to interstitial water samples, EDTA can reduce the bioavailability and toxicity of metals such as cadmium and zinc. EDTA can also exhibit toxicity to aquatic invertebrates, so care must be taken not to use concentrations that approach the effects thresholds for *Hyalella*.

An EDTA stock solution was prepared by adding 2.78 g disodium EDTA in 100-mL of DI water and mixed with a stir bar. While some guidance recommends EDTA concentrations as high as 60 mg/L, we have previously observed *Hyalella* toxicity at 8 mg/L (Weston 2007). The target EDTA concentrations for this study were 4 mg/L and 2 mg/L in order to minimize EDTA toxicity in the treated porewater preparations. WETSED-1 porewater was treated with 0.16 μ L and 0.08 μ L of stock solution for each mL of test water. The EDTA was mixed with the control and test porewater for 3 hours. The resulting pH of the treated porewater sample was low (pH = 2) and was adjusted to within the test range by adding NaOH. A high and low EDTA control was prepared in a similar manner with 0.16 μ L and 0.08 μ L of stock solution per mL dilution water.

2.4.2.5 Filtration Tests

Filtration tests were performed to determine whether the chemicals causing toxicity were bound to particulate matter in the porewater. A reduction in toxicity following filtration indicates that chemicals are particulate bound; the filtration step is also used as a control for the SIR-300 and C18 methods that filter samples during treatment. The WETSED-1 porewater was prepared by filtering the sample (50 mL) through a 1 μ m glass fiber filter with a vacuum pump. A filtration-control was prepared by filtering dilution water (control water) in a similar manner.

2.5 Toxicity Test Methods

2.5.1 10-d Acute Amphipod Sediment Test with Hyalella azteca

Testing methods for the amphipod bioassay followed procedures outlined in the test method 100.1 of the Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates (USEPA 2000). The 10-day endpoint measured the impact of the site sediments on the survival of *H. azteca*.

Test organisms were exposed to the test sediments and the laboratory control sediment in 300-mL glass jars fitted with screened ports to allow for water renewals. Approximately 100 mL of test and control sediment (to a depth of 1 cm) was placed in each of eight replicate test chambers with 175 mL of moderately hard diluted mineral water (DMW; 80-100 mg/L CaCO₃). Two surrogate chambers were set up for each treatment to allow for pore water ammonia measurement at test initiation and termination. An additional surrogate was set up for water quality measurements on days 0-10 to limit the impact of disturbance to the test organisms. Test chambers were placed in predetermined random positions and allowed to equilibrate to test conditions overnight. The amphipod test was run under a 16-hour light: 8-hour dark photoperiod at a temperature of $23\pm1^{\circ}$ C.

Prior to test initiation, an initial set of water quality parameters was measured in the overlying water of the water quality surrogate. The water quality parameters included temperature, dissolved oxygen, pH, and conductivity. Hardness, alkalinity, and ammonia were measured in the overlying water of a composite from replicates within each treatment. In addition, one surrogate replicate from each test treatment was used to extract pore water via centrifugation for subsequent analysis of ammonia. The water quality instruments were calibrated daily or on their recommended schedule. Records of instrument calibration were retained in the laboratory logs.

Amphipods (*H. azteca*) were supplied by Aquatic Biosystems of Fort Collins, Colorado. To initiate the test, 10 amphipods were randomly selected and placed into each test chamber. Amphipods remaining in the water column and exhibiting abnormal behavior after one hour were replaced. Each test chamber was outfitted with a Zumwalt style water delivery system to facilitate twice daily water renewals. Each test chamber was fed daily with 1 mL of stock YCT/Tetrafin™ solution. The number of dead and surfaced animals was noted for each replicate daily. On Day 10, the sediments from each chambers was sieved through a 0.5-mm screen and the number of survivors was recorded. Test acceptability criterion was greater than 80 percent mean control survival.

To evaluate the relative sensitivity of the organisms, a 4-day water-only reference toxicant test was conducted using ammonium chloride with nominal concentrations of 0, 5, 10, 20, 40, and 80 mg/L total ammonia to establish the sensitivity of test organisms used in the evaluation of the project sediments. The reference-toxicant LC_{50} for the population of test organisms used in the project tests were compared to laboratory control charts to determine their sensitivity relative to populations previously tested at the ENVIRON laboratory.

2.5.2 20-d Chronic Midge Sediment Test with *Chironomus dilutus*

Testing methods for the midge larvae bioassay followed procedures outlined in the test method 100.5 of the Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates (EPA 2000). The 20-day endpoint measured the impact of the site sediments on the survival and growth of *C. dilutus*.

Test organisms were exposed to the test sediments and the laboratory control sediment in 300-mL glass jars fitted with screened ports to allow for water renewals. Approximately 100 mL of test and control sediment (to a depth of 1 cm) was placed in each of eight replicate test chambers with 175 mL of moderately hard diluted mineral water (DMW; $80-100 \text{ mg/L CaCO}_3$). Two surrogate chambers were set up for each treatment to allow for pore water ammonia measurement at test initiation and termination. An additional surrogate was set up for water quality measurements on days 0-10 to limit the impact of disturbance to the test organisms. Test chambers were placed in predetermined random positions and allowed to equilibrate to test conditions overnight. The larval midge test was run under a 16-hour light: 8-hour dark photoperiod at a temperature of $22 \pm 1^{\circ}$ C.

Prior to test initiation, an initial set of water quality parameters was measured in the overlying water of the water quality surrogate. The water quality parameters included temperature, dissolved oxygen, pH, and conductivity. Hardness, alkalinity, and ammonia were measured in the overlying water of a composite from replicates within each treatment. In addition, one surrogate replicate from each test treatment was used to extract pore water via centrifugation for subsequent analysis of ammonia. Water quality instruments were calibrated daily or on their recommended schedule. Records of instrument calibration were retained in the laboratory logs.

Chironomus dilutus egg cases were obtained from Aquatic BioSystems of Fort Collins, Colorado and cultured to obtain larvae <2-hours in age for the test. Egg cases were held in diluted mineral water at 23°C until test initiation. Larvae began hatching after approximately 2 − 4 days. To select organisms for the test, egg cases were transferred to petri dishes with culture water and observed under a dissecting microscope. Healthy organisms were considered those actively moving and less than two hours separated from their egg cases. Twelve (12) larvae were transferred directly to each test chamber using a fine-tip Pasteur pipette. A squirt bottle with diluted mineral water was used to spray the surface to ensure no animals were caught in the surface tension and to allow animals to successfully bury into the sediment. The chambers were outfitted with a Zumwalt style water delivery system to facilitate twice daily water renewals. Water quality parameters were measured in the water quality surrogate. The number of dead and surfaced animals was noted for each replicate daily. Organisms were fed 6 mg of ground Tetramin™ per test chamber daily.

On Day 20, the sediments from the chambers were sieved through a 0.5-mm screen and the number of survivors was recorded. Survivorship was measured as the number of *C. dilutus* larvae, pupae, and flies remaining at test termination; however, only the larvae were utilized for determining the growth endpoint. Surviving larvae from each replicate were placed in pre-ashed and pre-weighed aluminum

20

boats and dried at 60°C for 24 hours to determine dry weights. The weigh boats were subsequently ashed at 550°C for 2 hours and reweighed in order to calculate the ash-free dry weight (AFDW) of the surviving larvae. Mean AFDW per surviving individual (growth) and per original number (biomass) was calculated. Test acceptability criteria were >68% mean control survival (≤32% mean mortality) and a mean growth per survivor (MIG) of greater than 0.60 mg AFDW. The formula for growth was as follows:

Growth = (Dry Weight – Ashed Weight)/ N_t Biomass = (Dry Weight – Ashed Weight)/ N_i MIG = [(Dry Weight – Ashed Weight)/ N_t]/20

where:

 N_t = total number of animals recovered at test termination N_i = number of animals added at test initiation.

A reference toxicant test was conducted using copper sulfate with concentrations of 0, 250, 500, 1000, 2000, and 4000 μ g/L Cu²⁺ to establish the sensitivity of test organisms used in the evaluation of the project sediments. The reference-toxicant LC₅₀ for the population of test organisms used in the project tests were compared to laboratory control charts to determine their sensitivity relative to populations previously tested at the ENVIRON laboratory.

2.5.3 Microtox® Test

The Microtox® test was performed by Rainier Environmental LLC. The Microtox test exposed the luminescent marine bacterium *Vibrio fischeri* to porewater extracted from test sediments, as well as for the SIR-300 treated porewater and SIR-300 control. Bacterial light output was measured using the Microtox® Model 500 Analyzer at 5 and 15 minutes of exposure. Light output from the test porewater was compared to that of the reference treatments at both time intervals. A complete description of the Microtox® test methods is presented in Appendix B.

2.5.4 Porewater Toxicity Tests

Porewater toxicity tests were conducted during the toxicity identification evaluations with the amphipod *Hyalella azteca*. Tests were conducted as static, acute exposures with 15 mL of whole and treated porewater, treatment controls, and a laboratory control in 20 mL glass vials. Porewater was collected from the whole sediment by double centrifugation. Test sediment was placed in 1-L Teflon jars and centrifuged for 30 minutes at 3200 g. After the sediment was centrifuged once, the supernatant was decanted into another clean Teflon jar and centrifuged again. The supernatant was then collected into a clean, glass jar taking care to avoid collection of the fine particulates from the sediment-water interface. Prior to testing, porewater and control samples were placed in a temperature-controlled room and allowed to equilibrate. Porewater samples were provided trickle flow aeration prior to testing to ensure that dissolved oxygen would remain within acceptable ranges throughout the test.

The porewater tests were conducted with four amphipods in each of five test chambers for a total test population of 20 organisms. Test chambers were placed in predetermined random positions and allowed to equilibrate to test conditions. The amphipod test was run under a 16-hour light: 8-hour dark photoperiod at a temperature of $23 \pm 1^{\circ}$ C.

Prior to test initiation, an initial set of water quality parameters was measured. Amphipods (*H. azteca*) were supplied by Aquatic Biosystems and were 6 to 8 days old at test initiation. To initiate the test, four amphipods were randomly selected and placed into each test chamber. Each test chamber was fed with 1 mL of stock YCT/Tetrafin™ solution on test day 5. The number of dead animals was noted for each replicate on test days 4 and 10. Test acceptability criterion was greater than 80 percent mean control survival.

2.5.5 Water for Bioassay Testing

The laboratory water used in this study was diluted mineral water (DMW). This water was prepared by diluting Perrier® mineral water with laboratory de-ionized water to the appropriate hardness. This water source has been used successfully on numerous similar bioassay testing programs conducted at the Port Gamble Laboratory. Extensive testing with a variety of species has shown that this water source provide good survival in laboratory controls.

2.5.6 Water Quality

Water quality was monitored daily and readings were recorded on data sheets. Dissolved oxygen and temperature were measured using a Hach™ HQ40d multimeter with a Luminescent Dissolved Oxygen (LDO) probe. Conductivity was measured using an Orion™ 5-Star multimeter with a conductivity probe; pH was measured using a YSI™ pH100 meter with a pH probe. Ammonia was analyzed using an Orion™ 5-Star multimeter with an ammonia ion-selective electrode calibrated with a three-point calibration curve (1, 10, and 100 mg/L). Hardness and alkalinity were measured utilizing Hach™ titration kits.

2.6 Data Analysis and QA/QC

Water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

Hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of the calculations and data sorting were reviewed for errors. Review counts were conducted on apparent outliers.

Statistical comparisons were made using a t-test following guidance in USEPA (2000). Data reported as percent survival were transformed using an arcsine square root transformation prior to statistical analysis. Data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. For samples failing to meet assumptions of normality, a Mann-Whitney test was

conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

For AVS/SEM evaluations, total SEM was calculated as the sum of the four metals analyzed during SEM and AVS measurements. Total excess SEM (free metal ions) was calculated as the molar AVS concentration subtracted from the molar total SEM concentration. This value was divided by the fraction of TOC in the sediment sample for comparison to the equilibrium sediment benchmarks as described by the EPA (EPA 2005). The result is the TOC normalized-total SEM in excess of the sediment binding capacity (μ mol SEM/gToC).

3. Results

Each of the three WETSED stations was reoccupied and sediment was collected to a depth of 6". There was no standing water at the time of sampling, with the water-level at approximately 6" below ground surface (Figures 2 and 3). Sediment was moist at the surface to wet at the bottom of the 6" sampling horizon. At each of the stations, the sediment surface was covered with a heavy layer of large organic debris, primarily dead and decaying cattails. Care was taken to remove heavy organic debris and large root matter.

Sediment from WETSED-1 was dominated by sand (68%), with moderate amounts of silt (28.3%) and clay (13.4%; Table 7). Total organic carbon was 5.15%. Sediment from Stations WETSED-2 and WETSED-3 were dominated by clayey silt, with 76.7% and 88.3% silt and clay, respectively. TOC for sediment from WETSED-2 and WETSED-3 was 3.79% and 4.37%, respectively. While large plant material was removed from samples prior to chemical analysis, it is likely that this material contributed to the organic carbon. Porewater ammonia concentrations were generally low, below 1 mg/kg in each of the sediment treatments. Similarly, porewater sulfide concentrations were generally low, ranging from 0.036 to 0.055 mg/L. Porewater pH ranged from 7.14 to 7.28.

Figure 2. Wetland study area with approximate station locations.

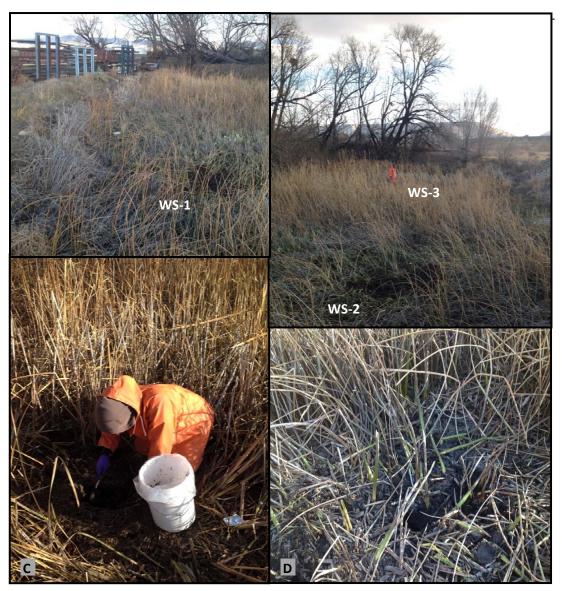


Figure 3. A and B. Wetland study area; C and D. Sampling Station WS-3.

Table 7. Results of Chemical Analysis of Test Sediments, Agri-Tech/YSF 2013.

Analyte	sco	CSL	WETSED-1	WETSED-2	WETSED-3
Sand/Gravel (%)		a	58.3	23.4	11.8
Silt (%)	_	_	28.3	56.7	63.6
Clay (%)	_	_	13.4	20.0	24.7
TOC (%)	_	_	5.15	3.79	4.37
Total Solids (%)	_	_	46.9	47.2	38.7
Acid Volatile Sulfides (mg/kg)	_	_	1570	294	231
Total Ammonia (mg/L)	_	_	0.46	0.35	0.61
Total Sulfides (mg/L)			0.046	0.055	0.036
Porewater pH			7.14	7.25	7.28
·	2.4				
Cadmium	2.1	5.4	<u>6.5</u>	<u>7.4</u>	<u>9.4</u>
Lead	360	1300	147	146	178
Manganese			189	342	324
Zinc	3200	4200	2240	2940	3810
			Test Trea	atmont.	
	4.0	001	r en		1 400/
Analyte	100		67%	33%	10%
o.,	WETS	SED-3	WETSED-3	WETSED-3	WETSED-3
Cadmium	7.	.1	5.1	2.9	1.1
Lead	13	39	97	48	20
Manganese	158		436	571	1560
Zinc	3,0	90	2150	1,140	451

^a--: no value **Bold**: Fails SCO

Underline: Fails SCO and CSL

Concentrations of metals were generally similar to those observed during the initial site investigation (Farallon 2011). Cadmium concentrations in the 2013 sediment samples ranged from 6.5 to 9.4 mg/kg; cadmium concentrations in 2011 ranged from 6.8 to 9.2 mg/kg. Concentrations of lead, manganese, and zinc in 2013 were generally similar across the site and were also similar to values observed in 2011. Zinc concentrations were 2240 to 3810 mg/kg in the 2013 samples.

3.1 Baseline and Dilution Series Whole-Sediment Tests

3.1.1 10-Day Benthic Amphipod Test

The 10-d amphipod test with *Hyalella azteca* was initiated on December 13, 2013. A summary of test conditions, test results and water quality observations for the test are presented in Tables 8 to 10. All data sheets are presented in Appendix C. With the exception of temperature and pH, water quality parameters remained within the recommended ranges throughout the duration of the test. Temperature was within range from Day 0 to 9; test temperature on Day 10 was 20.0° to 20.5°C. This temperature is within the tolerance range for *Hyalella azteca* and was observed only at test termination, and therefore was unlikely to have affected test performance. Porewater ammonia in the three test treatments was 0.3 to 1.1 mg/L total ammonia in the treatments. This was below the project-specific LC_{50} of for ammonia of 1.46 mg/L total ammonia. The test was validated by 91% survival in the controls. The LC_{50} for the ammonia reference-toxicant test was 1.46 mg/L total ammonia, within the control chart limits (1.2 – 26 mg/L), indicating that the test animals were similar in sensitivity to previous populations used at the Port Gamble laboratory.

Mean percentage mortality in the test treatments WETSED-2 and WETSED-3 was 5% and was not significantly different than that of the control. Mean mortality in the two treatments was lower than that of the control, passing the SMS criteria. Mean mortality in the WETSED-1 sediment was 100% and was significantly different from the control. Mean mortality in the WETSED-1 treatment was 91.8% greater than that of the control and failing the CSL for the amphipod test (M_T-M_C>25%). The dilution series test was conducted concurrent with the baseline tests to evaluate the relationship between the cadmium concentration and toxicity. Based on an initial screen of metals concentrations, WETSED-3 was selected for use in the dilution series test, with test concentrations targeting cadmium concentrations of 9, 6, 3, and 1 mg/kg. Concentrations observed in the 100%, 67%, 33%, and 11% treatments were 7.1, 5.1, 2.9, 1.1 mg/kg Cd, respectively (Table 7). The dilution series showed no relationship between the total cadmium concentration and survival, with no significant changes in mean percentage survival, relative to the control, across the dilution series. This was true for total lead, manganese, and zinc as well. Survival ranged from 88.8% to 97.5% for the different test treatments.

Table 8. Survival Summary for the 10-day Benthic Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

Treatment	Mean Percentage Survival	Standard Deviation	Mean Percentage Mortality	M _T -M _C ³
		Baseline Te	est	
Control	91.2	8.3	8.8	
WETSED-1	0.0 S ¹	0.0	100	<u>91.2</u>
WETSED-2	95.0	5.3	5.0	-3.8
WETSED-3	95.0	7.6	5.0	-3.8
		Dilution Series	Test²	
100% WETSED-3	95.0	7.6	5.0	-3.8
67% WETSED-3	93.8	7.4	6.2	-2.6
33% WETSED-3	88.8	5.3	11.2	1.4
11% WETSED-3	93.8	7.4	6.2	-2.6
TNWR	97.5	7.0	2.5	-7.3

¹ S: Mean value is statistically different than the mean value in the control treatment

Bold: Fails SCO

Underline: Fails SCO and CSL

²Treatments listed as nominal concentrations

 $^{^{3}}SCO: M_{T}-M_{C}>15\%; CSL: M_{T}-M_{C}>25\%$

Table 9. Water Quality Summary for the 10-day Benthic Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

		lved Ox (mg/L)	ygen	Temperature (°C)		Conductivity (mS/cm)			рН			
Treatment	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
				Ва	seline T	est						
Control	6.6	5.4	8.6	22.3	20.3	22.8	197	183	203	7.5	7.3	8.1
WETSED-1	5.7	4.5	7.5	22.4	20.4	23.2	233	199	320	7.1	6.8	7.3
WETSED-2	5.8	4.7	7.2	22.3	20.3	23.2	255	231	307	7.4	7.3	7.5
WETSED-3	6.0	5.2	7.9	20.0	19.4	20.2	268	229	354	7.5	7.3	7.8
				Dilutio	on Serie	s Test¹						
100% WETSED-3	6.0	5.2	7.9	22.5	20.4	23.9	268	229	354	7.5	7.3	7.8
67% WETSED-3	5.6	3.8	6.9	22.3	20.2	23.5	263	229	343	7.4	7.3	7.6
33% WETSED-3	5.6	4.1	6.9	22.5	20.4	23.4	239	217	283	7.3	7.1	7.6
11% WETSED-3	5.3	2.9	8.0	22.2	20.3	22.7	231	204	269	7.4	7.0	8.0
TNWR	6.2	4.6	8.5	21.9	20.1	23.7	216	202	225	7.5	7.2	8.1

¹Treatments listed as nominal concentrations

Table 10. Test Condition Summary for Hyalella azteca, Agri-Tech/YSF 2013.

	Test Conditions: <i>H. azteca</i>						
Supplier	Aquatic Biosystems						
Date acquired	12/11/2013						
Acclimation/holding time	2 days						
Age class	Adult						
Test type/duration	10-Day Benthic						
Test dates	December 13 - 23						
Weeks of Holding	<2 weeks						
Control Sediment	Silica Sand						
Test temperature	Recommended: 23 \pm 1 $^{\circ}$ C	Achieved: 19.4 – 23.9 °C					
Test dissolved oxygen	Recommended: > 2.5 mg/L	Achieved: 2.9 – 8.6 mg/L					
Test pH	Recommended: 6-9	Achieved: 7.0 – 8.1					
Control performance	Recommended: Control ≤ 10% mortality	Achieved: 9%					
Reference Toxicant LC50	1.46 mg/L total ammo	nia					
Acceptable Range	1.2 – 26 mg/L total amm	nonia					
Test chamber	300 mL glass chambe	er					
Replicates/treatment	8 + 2 surrogates for measuring porewa	ter ammonia levels					
Organisms/replicate	10						
Exposure volume	100 mL sediment/ 275 mL	. water					
Feeding	Daily with 1 mL of stock YCT/Tetr	afin™ solution					
Water renewal/Lighting	Twice daily/16:8						
Test Protocol Deviations	Temperature						

3.1.2 Benthic toxicity tests with *Chironomus dilutus*

The 20-d chronic test with larval midge (*C. dilutus*) was initiated on December 13, 2013. A summary of test conditions, test results and water quality observations for the test are presented in Tables 11 through 13. Test results and water quality observations for each of the test replicates and supporting information of the *Chironomus* test is presented in Appendix C. Mean percentage survival in the control sediment was 90.6%, meeting the performance criteria of >68% survival for the controls. Mean growth in the controls was 1.82 mg AFDW/ind, meeting the performance criteria of ≥0.60 mg/ind.

Water quality measurements were within target limits with the exception of dissolved oxygen and temperature. Dissolved oxygen dropped to below target parameters on Day 19 and trickle-flow aeration was added to all chambers for the duration of the test period. Because the decrease in DO was observed at the end of the test period and renewals were performed twice daily limiting the duration of the deviation, it is unlikely that survival or growth endpoints were affected. While the published range for temperature is 23° ±1°C, the test conducted for this study targeted a range of 21° to 23°C to prevent larvae from prematurely pupating. Temperatures were slightly above this range at test initiation; however, at the time animals were placed in the test chambers, test temperatures were within range. On test day 10, test temperature was below 21°C, but was within 1°C in all chambers. Ammonia values

were below NOEC values for C. dilutus. The LC₅₀ values for the copper sulfate reference-toxicant tests were 1.18 mg/L, within the control chart limits of 0.30 - 2.12 mg/L. This indicates that the test organisms were of similar sensitivity to those previously tested at the Port Gamble Laboratory.

Mean mortality in the test treatments ranged from 22.9% to 29.2%. There was no statistically significant increase in mortality in WETSED-1, relative to the control. Mean percent mortality in WETSED-2 and WETSED-3 were statistically different from the control; however, the difference between mean mortality observed in each of the WETSED test treatments and the control was 13.5% to 19.8%, which was within the CSL criterion for *Chironomus* survival (M_T - M_C >25%). Mean mortality in WETSED-2 and WETSED-3 was slightly above the SCO for mortality (M_T - M_C >15%). *Chironomus* survival in both the WETSED-2 and WETSED-3 test treatments exceeded the control performance criteria.

No statistical decreases in growth were observed in the test treatments, relative to the control. With the exception of WETSED-1, growth in the test treatments exceeded that of the control. Mean individual growth in WETSED-1 was 1.61 mg/ind AFDW, which was 11.5% of the control treatment. This difference was within both the SCO and CSL for freshwater sediments.

The dilution series showed no relationship between the total metals concentrations and survival, with no significant changes in mean percentage survival, relative to the control, across the dilution series. Mean mortality for the different test treatments ranged from 22.3% to 37.5%, with the TNWR (0% WETSED-3) showing the highest mortality for each of the dilution series treatments. *Chironomus* growth in each of the dilution series treatments was greater than that of the control. The highest growth was observed in the 10% and 0% treatments, however, there were no significant differences across the treatments.

Table 11. Survival Summary for the 20-day Benthic Test with Chironomus dilutus, Agri-Tech/YSF 2013.

Treatment	Mean Percentage Survival	SD	Mean Percentage Mortality	M _T -M _C ^{3,4}	Mean AFDW per Survivor ² (mg)	SD	(MIG _c -MIG _t) / MIG _c ^{3,4}
			Baselin	e Test			
Control	90.6	9.4	9.4		1.82	0.17	
WETSED-1	77.1	19.3	22.9	13.5	1.61	0.28	0.12
WETSED-2	74.0	10.4	26.0	16.6 S ¹	2.39	0.49	-0.31
WETSED-3	70.8	7.7	29.2	19.8 S	1.83	0.63	-0.01
			Dilution Se	eries Test ²			
100% WETSED-3	70.8	7.7	29.2	19.8 S	1.83	0.63	-0.01
67% WETSED-3	72.9	20.8	27.1	17.7	2.39	0.74	-0.31
33% WETSED-3	77.1	22.2	22.3	13.5	2.06	0.28	-0.13
11% WETSED-3	62.5	27.8	37.5	28.1 S	3.16	0.84	-0.74
TNWR	69.8	16.6	30.2	20.8 S	2.86	0.52	-0.57

¹ S: Mean value is statistically different than the mean value in the control treatment

 $\label{eq:migcont} MIG_c: \ \ Mean\ individual\ growth\ in\ the\ control;\ MIG_t:\ \ Mean\ individual\ growth\ in\ the\ treatment$

Bold: Fails SCO

Underline: Fails SCO and CSL

²Treatments listed as nominal concentrations

 $^{^3}SCO\colon M_T\text{-}M_C\text{>}15\%;$ (MIG $_c\text{-}MIG_t)$ /MIG $_c$ >0.25

 $^{^4}$ CSL: M_T - M_C >25%; (MIG $_c$ -MIG $_t$) /MIG $_c$ >0.40

Table 12. Water-Quality Summary - 20-day Benthic Test with *Chironomus dilutus*, Agri-Tech/YSF 2013.

		ved Ox (mg/L)	ygen	Temperature (°C)		Conductivity (mS/cm)		рН				
Treatment	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
				Вс	aseline T	est						
Control	5.3	2.3	8.7	22.7	20.0	23.9	201	170	213	7.3	7.0	7.8
WETSED-1	5.1	2.0	8.6	22.6	20.0	24.0	213	183	318	7.1	6.8	7.8
WETSED-2	4.8	1.8	7.6	22.3	20.1	23.0	246	219	306	7.4	7.1	7.6
WETSED-3	4.7	2.1	7.8	22.4	20.0	23.6	248	228	341	7.4	7.2	7.6
				Dilutio	on Serie	s Test¹						
100% WETSED-3	4.7	2.1	7.8	22.4	20.0	23.6	248	228	341	7.4	7.2	7.6
67% WETSED-3	4.5	3.0	7.7	22.3	20.4	23.6	243	222	323	7.4	7.1	7.7
33% WETSED-3	6.6	3.1	9.0	22.3	20.0	22.9	234	214	301	7.6	7.1	8.2
11% WETSED-3	6.7	2.8	8.4	22.4	20.1	24.0	225	210	259	7.6	7.2	8.0
TNWR	7.0	2.7	9.3	22.1	20.0	24.0	219	183	242	7.7	7.2	8.5

¹Treatments listed as nominal concentrations

Table 13. Test Condition Summary for Chironomus dilutus, Agri-Tech/YSF 2013.

	Test Conditions: C. dilutus						
Supplier	Aquatic Biosystems						
Date acquired	12/11/13						
Acclimation/holding time	NA						
Age class	<2-day old						
Test type/duration	20-Day Benthic Chror	nic					
Test dates	December 13 – January 2	, 2014					
Weeks of Holding	<2 weeks						
Control Sediment	Silica sand						
Test temperature	Recommended: 22 \pm 1 °C	Achieved: 20.0 – 24.0 °C					
Test dissolved oxygen	Recommended: > 2.5 mg/L	Achieved: 1.8 – 9.3 mg/L					
Test pH	Recommended: 6-9	Achieved: 6.8 – 8.5					
Control performance	Recommended: Control < 10% mortality	Achieved: 9%					
Reference Toxicant LC50	1.18 mg/L Cu						
Acceptable Range	0.3 – 2.12 mg/L Cu						
Test chamber	300 mL glass chambe	er					
Replicates/treatment	8 + 2 surrogates for measuring porewa	ter ammonia levels					
Organisms/replicate	12						
Exposure volume	100 mL sediment/ 275 mL	water					
Feeding	6 mg of ground Tetramin™ per test	chamber daily					
Water renewal/Lighting	Twice daily/16:8						
Test Protocol Deviations	DO, Temperature						

3.1.3 Benthic toxicity tests with Microtox®

The Microtox® tests were performed by Rainier Environmental using the luminescent marine bacterium *Vibrio fischeri* in combination with the Microtox® Model 500 Analyzer. Light output of the bacterium reacting with the test sample was measured at 5 and 15 minutes of exposure. The test compared sample porewater extracts to the controls and the data was evaluated statistically on the change in output over time. Full test results with benchsheets are presented in Appendix B.

Water quality parameters were within target ranges with dissolved oxygen ranging from 6.2 to 7.5 mg/L and pH ranging from 7.14 to 8.15. The final mean light output in the control treatment was 80% of initial output, exceeding the control performance criteria of 72% (Table 14). The estimated LC₅₀ for the reference toxicant test was 1209 μ g/L and 438 μ g/L Cu for the 5 and 15 minute exposures, respectively. These values were within the laboratory historical limits (5 min: 929 – 1666 μ g/L; 15 min: 425-613 μ g/L Cu), indicating that the test organisms were similar to those tested previously at the Rainier Environmental laboratory.

Table 14. Summary of Test Results for the Microtox® Test, Agri-Tech/YSF 2013.

-	5-Minute Read	ling	15-Minute Reading		
Treatment ²	Mean Percentage Change in Light Output	T/C ^{3,4}	Mean Percentage Change in Light Output	T/C ^{3,4}	
Control	91 ±4		80 ±4		
WETSED-1	59 ±3	<u>0.65</u> S ¹	11 ±1	<u>0.14</u> S	
WETSED-2	94 ±3	1.03	78 ±4	0.98	
WETSED-3	97 ±2	1.07	80 ±2	1.00	
Control	91 ±3		79 ±4		
100% WETSED-3	95 ±5	1.04	77 ±4	0.97	
67% WETSED-3	94 ±3	1.03	80 ±7	1.01	
33% WETSED-3	98 ±3	1.08	84 ±5	1.06	
11% WETSED-3	98 ±2	1.08	85 ±2	1.08	
TNWR	97 ±1	1.07	86 ±2	1.09	

¹ S: Mean value is statistically different than the mean value in the control treatment

Bold: Fails SCO; Underline: Fails SCO and CSL

With the exception of WETSED-1, no significant differences in mean percentage light output were observed in the WETSED or dilution test samples. Light output was >90% of the initial reading at 5 minutes, and >77% at 15 minutes; ≥97% of the control. Light output in the WETSED-1 treatment was 35% that of the control at 5 minutes and was 14% of the control at 15 minutes (a reduction in light output of 86%). The WETSED-1 light output failed the RSET Microtox® criteria for both time intervals.

3.2 Toxicity Identification Tests

Porewater was extracted from the whole sediment collected from Station WETSED-1 using centrifugation. Porewater samples and whole sediment were then treated following the methods outlined in Section 2.4. The toxicity identification evaluation of the WETSED-1 sediment included the following targeted chemical classes and associated methods:

- <u>Cationic metals</u> cation exchange resin beads in sediment and in porewater filtered through SIR-300 to address the role of cationic metals;
- Metals EDTA in porewater to address the role of metals in general;
- Organics Powdered coconut charcoal (PCC) in sediment and sediment filtered through a solidphase extraction column (C-18 cartridge) to address the potential role of non-ionic organics;
- Ammonia/sulfides compare porewater concentration with species sensitivity data; and,
- Particulates filtered sample to address the potential role of particulates.

²Dilution series treatments listed as nominal concentrations

³RSET low (two hit): T/C <0.85 ⁴RSET high (one-hit): T/C <0.75

3.2.1 Porewater Chemistry

Treated and untreated porewater samples were analyzed for metals (Table 15). Cadmium and lead were undetected in the WETSED-1 porewater, with detection limits of 0.002 mg/L and 0.02 mg/L, respectively. Zinc was observed at a concentration of 28.3 mg/kg in the WETSED-1 porewater, with a manganese concentration of 4.49 mg/kg. Ammonia in the WETSED-1 porewater was 0.46 mg/L.

With the exception of the SIR-300 treatment, porewater concentrations of metals were unchanged by the TIE manipulations. Two concentrations of EDTA were added to the porewater; however, neither treatment decreased the concentration of manganese or zinc in the porewater. The target concentrations of EDTA were 0.25 and 0.5 times the EDTA LC_{50} and were considered an upper concentration for testing with Hyalella azteca. Filtration of the porewater also did not decrease the concentration of manganese or zinc, indicating that these metals were not associated with particulates but were present in a dissolved phase. As expected, treatment of the WETSED-1 porewater with the C18 column did not alter the concentrations of metals in the porewater.

Treatment of the WETSED-1 porewater with the SIR-300 cation-exchange resin effectively decreased the concentrations of both manganese and zinc. The concentration of manganese was decreased from 4.49 mg/L to 0.053 mg/L Mn; zinc was decreased from 28.3 to 0.13 mg/L Zn.

Table 15. Metals in Untreated and Treated WETSED-1 Porewater, Agri-Tech/YSF 2013.

			Ammonia		
Treatment	Cadmium	Lead	Manganese	Zinc	(mg/L Total)
WETSED-1	0.002 U	0.02 U	4.49	28.3	0.46
WS-1 SIR-300	0.002 U	0.02 U	0.053	0.13	0.40
WS-1 EDTA Low	0.002 U	0.02 U	4.18	26.0	
WS-1 EDTA High	0.002 U	0.02 U	4.36	26.9	
WS-1 C18	0.002 U	0.02 U	4.25	26.0	
WS-1 Filtered	0.002 U	0.02 U	4.37	25.8	

U: Undetected. Actual concentration below reported concentration

3.2.2 Porewater Toxicity Tests with Hyalella azteca

Water-only toxicity tests were conducted with the amphipod Hyalella azteca. The porewater test was conducted as a 10-day test, with both a 96-h and 10-d endpoint. The porewater test was initiated on January December 13, 2013. A summary of test conditions, test results, and water quality observations for the test are presented in Tables 16 to 18. Data for all replicates, as well as testing bench sheets are presented in Appendix D. Water quality parameters remained within the recommended ranges throughout the duration of the test. The test was validated by 90% survival in the controls. The LC_{50} for the ammonia reference-toxicant test was 6.79 mg/L total ammonia, within the control chart limits (0.0 – 26.5 mg/L), indicating that the test animals were similar in sensitivity to previous populations used at the Port Gamble laboratory.

Mean percentage survival in the unfiltered WETSED-1 porewater was 0.0%, with complete effects observed at the 96-h endpoint. Mean percentage survival in the two EDTA treatments, the C18 treated and filtered porewater was also 0%, indicating that these treatments did not decrease toxicity. Survival in the EDTA and C18 controls (clean DI treated in a similar manner) ranged from 75% to 95%, indicating that the observed toxicity was not associated with the EDTA or C18 treatments.

Mean percentage survival in the SIR-300 treated porewater was 50% at 96-hours, showing a significant increase in survival relative to the WETSED-1 porewater. This provided a strong indication cationic metals were likely to have had a role in the toxicity observed in the WETSED-1 porewater. This observation was further strengthened by the low ammonia concentrations observed in the porewater samples (<1 mg/L total ammonia). Ammonia concentrations can sometimes be increased by SIR-300 treatment, potentially contributing to toxicity. No significant toxicity was observed in the SIR-300 control, indicating that the cation exchange resin did not affect amphipod survival.

While there was some additional mortality at 10-days of exposure, this was due to one to two additional mortalities in both the SIR-300 treatment and control. Because the effects in the WETSED-1 treatment were observed at 96-hours and little change was observed across the test between 96-hour and 10-day, the 96-hour endpoint was used for evaluating toxicity.

Table 16. Summary of Results for the 4-day and 10-day Porewater TIE Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

	96-h Er	ndpoint	10-day I	Endpoint
Treatment	Mean Percentage Survival	Standard Deviation	Mean Percentage Survival	Standard Deviation
Control	90.0	13.7	90.0	13.7
WETSED-1	0.0	0.0	1	
WS-1 Filtered	0.0	0.0		
WS-1 SIR-300	50.0 S ²	30.6	40.0 S	37.9
SIR-300 Control	90.0	13.7	85.0	13.7
WS-1 EDTA Low	0.0	0.0		
EDTA-Low Control	75.0	30.6		
WS-1 EDTA High	0.0	0.0		
EDTA High Control	95.0	11.2		
WS-1 C18	0.0	0.0		
C18 Control	90.0	22.4		

¹Test treatment terminated at 96-hours.

²S: Statistically significantly different, relative to the TIE treatment control.

Table 17. Summary of Water Quality for the Porewater Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

		lved Ox (mg/L)	ygen	Temperature (°C)		Conductivity (mS/cm)			рН			
Treatment	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.6	4.8	9.1	22.6	21.9	23.8	325	195	505	7.4	6.8	7.9
WETSED-1	7.3	4.7	8.3	23.1	22.0	23.9	1723	1612	1805	5.9	5.1	6.5
WS-1 Filtered	8.1	7.3	9.1	23.4	22.3	24.5	1721	1655	1772	7.0	6.9	7.1
WS-1 SIR-300	6.7	4.3	8.9	22.9	22.1	23.9	2031	1631	2270	7.3	6.5	8.6
SIR-300 Control	6.1	3.5	8.8	22.7	21.8	24.5	262	179	381	7.3	6.7	7.8
WS-1 EDTA Low	7.8	6.1	8.9	23.2	22.0	24.3	1728	1672	1798	7.3	7.2	7.5
EDTA-Low Control	8.0	7.1	8.9	23.6	22.9	24.5	162	155	173	7.0	6.0	7.5
WS-1 EDTA High	7.9	6.0	9.4	23.4	22.0	24.4	1719	1648	1793	6.9	6.7	7.1
EDTA High Control	7.9	6.0	9.4	23.4	22.0	24.4	467	161	561	6.9	6.7	7.1
WS-1 C18	7.6	6.3	8.5	23.1	22.2	23.9	1688	1589	1751	7.1	6.9	7.2
C18 Control	8.4	7.5	8.8	23.2	22.2	23.7	220	188	272	7.8	7.7	7.8

Table 18. Test Condition Summary for the Porewater Test with Hyalella azteca, Agri-Tech/YSF 2013.

	Test Conditions: H. azteca					
Supplier	Aquatic Biosystems	3				
Date acquired	01/28/14					
Acclimation/holding time	2 days					
Age class	Adult					
Test type/duration	96-h and 10-d Porewate	r Test				
Test dates	January 31					
Weeks of Holding	8 weeks					
Control Sediment	Silica Sand					
Test temperature	Recommended: 23 \pm 1 °C	Achieved: 21.8 – 24.7 °C				
Test dissolved oxygen	Recommended: > 2.5 mg/L	Achieved: 3.5 – 7.9 mg/L				
Test pH	Recommended: 6-9	Achieved: 7.7 – 8.5				
Control performance	Recommended: Control ≤ 10% mortality	Achieved: 10%				
Reference Toxicant LC50	6.79 mg/L total ammo	nia				
Acceptable Range	0.0 – 26.5 mg/L total amı	monia				
Test chamber	20-mL glass vials					
Replicates/treatment	5					
Organisms/replicate	4					
Exposure volume	15 mL					
Feeding	Day 5; 1 mL of stock YCT/Tetraf	in™ solution				
Water renewal/Lighting	None/16:8					
Test Protocol Deviations	Temperature					

3.2.3 Porewater Toxicity Tests with *Microtox*®

Based on the results of the amphipod TIE tests, the Microtox® TIE included the WETSED-1 porewater and SIR-300 treated porewater. A summary of the test results are presented in Table 19. Data for all replicates, as well as testing bench sheets are presented in Appendix D. The final mean light output in the control treatment was 77% of initial output, meeting the control performance criteria of >72%.

The WETSED-1 porewater sample showed significantly decreased light output, relative to the control, at both the 5 minute and 15 minute time interval. Light output in the untreated WETSED-1 porewater was 88% and 67% that of the control for the 5 and 15 minute interval, respectively. While this is decreased relative to the control, the effects were less than those observed from the whole sediment samples. This may have been due to the loss of fines during the centrifugation process.

Treatment with SIR-300 completely removed toxicity, with no significant effects observed in the SIR-300 treated porewater. Light output in this treatment exceeded the control water both at the 5 and 15 minute interval (104% of the control). No effects were observed in the SIR-300 control.

Table 19. Summary of Test Results for the Porewater Microtox® Test, Agri-Tech/YSF 2013.

	5-Minute Reading	S	15-Minute Reading			
Treatment	Mean Percentage Change in Light Output	T/C ^{1,2}	Mean Percentage Change in Light Output	T/C ^{1,2}		
Control	85 ±2		77 ±3			
WS-1	75 ±2	0.88 S	49 ±3	<u>0.63 S</u>		
WS-1 SIR300	89 ±3	1.04	81 ±3	1.04		
SIR300 Control	93 ±4	1.09	86 ±3	1.11		

¹RSET low (two hit): T/C < 0.85

Bold: Fails SCO

Underline: Fails SCO and CSL

3.2.4 10-Day Benthic (Whole Sediment) Amphipod TIE Test

The 10-d benthic TIE test with *Hyalella azteca* was initiated on January 31, 2014. A summary of test conditions, test results and water quality observations for the test are presented in Tables 20 to 22 and Appendix E. With the exception of temperature, water quality parameters remained within the recommended ranges throughout the duration of the test. Temperature generally ranged between 21.0 to 23.0°C, which is within the tolerance range for this species and was unlikely to have affected test performance. The test was validated by 87.5% survival in the controls, which met the control performance standard of \geq 80% survival. The LC₅₀ for the ammonia reference-toxicant test was 6.79 mg/L total ammonia, within the control chart limits (0.0 – 26.5 mg/L), indicating that the test animals were similar in sensitivity to previous populations used at the Port Gamble laboratory.

Mean percentage mortality in the WETSED-1 sediment was similar to that of the first round of tests, with 100% mortality. Treatment with SIR-300 decreased toxicity, with mean percentage mortality of 32.5%. Survival in the SIR-300 treated sediment was not statistically different from the control and the difference between the SIR-300 treated sediment and the control was 20%, within the CSL criteria of \leq 25%.

Treatment with powdered coconut charcoal did not alter toxicity, with 0% survival in the PCC amended WETSED-1 sediment. However, survival in the PCC control was 5%, indicating that the PCC amendment likely contributed to toxicity in the PCC treatments.

²RSET high (one-hit): T/C < 0.75

S: Significantly different than treatment control

Table 20. Survival Summary for the 10-day Benthic Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

Treatment	Mean Percentage Survival	Standard Deviation	Mean Percentage Mortality	M _T -M _C ²					
TIE Tests									
Control	87.5	9.6	12.5						
WETSED-1	0.0 S¹	0.0	100	<u>87.5</u>					
WETSED-1 SIR-300	67.5	25.0	32.5	20.0					
SIR-300 Blank	82.5	12.6	17.5	5.0					
WETSED-1 PCC	0.0 S	0.0	100	<u>87.5</u>					
PCC Blank	5.0 S	5.8	95	<u>82.5</u>					

¹ **S**: Mean value is statistically different than the mean value in the control treatment

Bold: Fails SCO

Underline: Fails SCO and CSL

Table 21. Summary of Water Quality for the Benthic TIE Test with *Hyalella azteca*, Agri-Tech/YSF 2013.

	Dissolved Oxygen (mg/L)			Temperature (°C)		Conductivity (mS/cm)			рН			
Treatment	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	6.4	5.0	8.9	21.9	21.2	22.3	201	189	207	7.5	7.2	7.8
WETSED-1	5.8	4.5	8.4	21.9	20.8	22.6	229	186	326	7.2	6.8	7.6
WETSED-1 SIR-300	6.2	4.6	8.3	22.0	21.1	22.5	239	172	430	7.1	6.6	7.4
SIR-300 Blank	8.3	7.0	8.8	21.9	21.5	22.7	172	145	235	7.7	7.0	8.1
WETSED-1 PCC	5.9	3.7	8.5	21.9	21.4	22.6	241	184	399	7.2	6.9	7.4
PCC Blank	5.7	4.4	8.9	21.9	21.2	22.5	208	188	239	7.4	7.1	8.0

 $^{^{2}}SCO: M_{T}-M_{C} > 15\%; CSL: M_{T}-M_{C} > 25\%$

Table 22. Test Condition Summary for the Benthic TIE Test with Hyalella azteca, Agri-Tech/YSF 2013.

Test Conditions: <i>H. azteca</i>							
Supplier Aquatic Biosystems							
Date acquired	01/28/14						
Acclimation/holding time	2 days						
Age class	Adult						
Test dates	January 31						
Weeks of Holding	8 weeks						
Control Sediment	Silica Sand						
Test temperature	Recommended: 23 \pm 1 $^{\circ}$ C	Achieved: 20.8 -22.7 °C					
Test dissolved oxygen	Recommended: > 2.5 mg/L	Achieved: 3.7 -8.9 mg/L					
Test pH	Recommended: 6-9	Achieved: 6.6 – 8.0					
Control performance	Recommended: Control ≤ 10% mortality	Achieved: 12.5%					
Reference Toxicant LC50	6.79 mg/L total ammo	nia					
Acceptable Range	0.0 – 26.5 mg/L total amr	monia					
Test chamber	300-mL glass chambe	er					
Replicates/treatment	5						
Organisms/replicate	4						
Exposure volume	100 mL with 175 mL wa	ater					
Feeding	Daily; 1 mL of stock YCT/Tetrafi	n™ solution					
Water renewal/Lighting	None/16:8						
Test Protocol Deviations	Temperature						

4. Discussion

As part of the remedial investigation of the Agri-Tech/YSF property, sediment evaluations were conducted to refine estimates of toxicity in wetland sediments and to better understand the potential relationship between site-related chemicals and observed affects. The results of this investigation are intended to inform the cleanup action plan as it pertains to the wetland.

4.1 Summary of Whole-Sediment Baseline Tests

Concentrations of cadmium exceeded the CSL of 5.4 mg/kg in each of the sediment treatments. With the exception of zinc in sediment from WETSED-3, concentrations of lead, manganese, and zinc were below screening levels. Zinc in sediment from WETSED-3 was 3810 mg/kg, slightly above the SCO of 3200 mg/kg.

In the baseline toxicity tests, WETSED-1 failed the CSL criteria for both the 10-day acute amphipod test and the Microtox® test (Table 23). No significant toxicity was observed in WETSED-1 sediment for either mortality or growth in the 20-day chronic test with *Chironomus dilutus*. Sediment from WETSED-2 and WETSED-3 met the CSL criteria for all three sediment tests. Mortality in the chronic toxicity test with *Chironomus dilutus* exceeded the SCO for both of these treatments, however, control-normalized mortality was within 2% and 5% of the criterion for WETSED-2 and 3, respectively.

Table 23. Summary of Wetland Soil and Sediment Chemistry, Agri-Tech/YSF 2013.

Toxicity Endpoint	SCO	CSL	WETSED-1	WETSED-2	WETSED-3
Amphipod $M_T - M_C$	>15%	>25%	Fails CSL	Pass	Pass
Chironomus $M_T - M_C$	>15%	>25%	Pass	Fails SCO Pass CSL	Fails SCO Pass CSL
Chironomus $(MIG_C - MIG_T) / MIG_C$	>0.25	>0.40	Pass	Pass	Pass
Microtox $^{\circ}$ 5 minute T/C	<85%	<75%	Fails CSL	Pass	Pass
Microtox® 15 minute T/C	<85%	<75%	Fails CSL	Pass	Pass
Sta	ation Summary	Fails CSL	Fails SCO	Fails SCO	

4.2 Comparison to the Previous Investigation

In general, the conventional sediment characteristics and metals concentrations were similar between the current samples (2013) and those samples during the previous wetland investigation (2011). Sediment from Station WETSED-1 was characterized as a mixture of sand and silt/clay, with 5% TOC (Table 24). Both WETSED-2 and WETSED-3 were dominated by fine-grained sediment, with slightly lower TOC (3.6% to 4.7% TOC).

Concentrations of cadmium were similar across the two studies, with concentrations ranging from 6.6 to 9.9 mg/kg, with all measured concentrations exceeding the CSL for cadmium. As in the initial investigation, concentrations of lead and zinc were below CSL levels.

The results of the 2013 amphipod tests confirmed the findings of the 2011 study. Acute toxicity was observed for sediment from WETSED-1, with 100% mortality. While mortality was higher in 2011 for WETSED-2 (14%), this treatment met SMS criteria in both studies. No significant mortality was observed in sediment from WETSED-3 in either 2011 or 2013.

For the chronic sediment test with *Chironomus dilutus*, earlier results for WETSED-1 and WETSED-2 sediments were confirmed with no significant mortality or decreased growth observed in sediment from WETSED-1; marginal mortality was observed in WETSED-2, passing CSL criteria. Mortality and growth in WETSED-3 passed CSL criteria, which failed CSL criteria during the 2011 tests.

Microtox® tests showed marked improvement during the current study. Tests were conducted within two days of collection to minimize effects associated with holding times. No toxicity was observed for either the WETSED-2 or WETSED-3 treatments for either the 5 minute or 15 minute endpoint. Both sediment treatments failed CSL criteria in 2011. The CSL failures observed in the WETSED-1 treatment in 2011 was confirmed, with similar responses to those of 2011.

Table 24. Summary of Wetland Sediment Chemistry and Test Results, Agri-Tech/YSF, 2011 and 2013.

Analyte	WETS	ED-1	WETSED-2		WETSED-3		SMS ¹			
Analyte	2011	2013	2011	2013	2011	2013	SCO ²	CSL ³		
% Sand and Gravel	40.4	58.3	14.1	23.4	4.1	11.8				
% Fines (silt/clay)	59.6	41.7	85.9	76.6	95.9	88.2				
TOC (%)	5.3	5.2	4.7	3.8	3.6	4.4				
Cd	9.2	<u>6.5</u>	6.8	7.4	7.8	9.4	2.1	5.4		
Mn	210	147	220	146	270	178				
Pb	190	189	150	342	180	324	360	>1300		
Zn	2700	2240	2800	2940	2700	3810	3200	>4200		
	Toxicity Tests									
Analyta	WETSED-1		WETSED-2		WETSED-3		SMS			
Analyte	2011	2013	2011	2013	2011	2013	SCO	CSL		
Hyalella Mortality M_T - M_C	100%	91%	14%	-4%	4%	-4%	>15%	>25%		
Chironomus Mortality M_T - M_C	15%	14%	18%	17%	<u>58%</u>	20%	>15%	>25%		
Chironomus Growth (MIGc-MIGt) /MIGc	-0.22	0.12	0.04	-0.31	0.34	-0.01	>0.25	>0.40		
Microtox® 5 minute <i>T/C</i>	<u>0.71</u>	0.65	0.75	1.03	0.84	1.07	<0.85	<0.75		
Microtox® 15 minute T/C	<u>0.20</u>	0.14	<u>0.30</u>	0.98	0.42	1.00	<0.85	<0.75		

¹Sediment Management Standards

Bold: Fails SCO

<u>Underline</u>: Fails SCO and CSL

²Sediment Cleanup Objective

³Cleanup Screening Level

4.3 Dilution Series Test

Each of the toxicity tests (*Hyalella*, *Chironomus*, and Microtox) were conducted with a series of sediment dilutions prepared with test sediment WETSED-3 diluted with reference sediment from the Toppenish National Wildlife Refuge. The dilution series test was conducted concurrent to the baseline tests. WETSED-3 was selected based on the concentration of cadmium, which was highest among the three test treatments. Measured concentrations of cadmium, lead, and zinc showed a decrease with test sediment dilutions, with cadmium concentrations generally achieving the target concentration (Table 7). Manganese concentrations in the test sediments increased with dilution, with the highest concentration of manganese found in the 1% WETSED-3 treatment.

In general, there was little difference in response across the dilution series for each of the tests. *Chironomus* growth was higher in the 0% and 11% WETSED-3 treatments (Table 25); however, the variability for this endpoint was quite high and differences were not significant. In all treatments, *Chironomus* growth was greater than in the control sediment. Based on the dilution series test, the total metals concentrations in the WETSED-3 treatment did not appear to be predictive of effects.

Table 25. Summary of Dilution Series Test Results, Agri-Tech/YSF, 2013.

Treatment	Hyalella	Chir	onomus	Microtox [®]		
(Nominal)	Survival M _T -M _C	Survival M _T -M _C	Growth (MIG _c -MIG _t)/MIG _c	5 minute T/C	15 minute T/C	
Control Result	91%	91%	1.82 mg/ind/d	91%	80%	
100% WETSED-3	-3.8	19.8	-0.01	1.04	0.97	
67% WETSED-3	-2.6	17.7	-0.31	1.03	1.01	
33% WETSED-3	1.4	13.5	-0.13	1.08	1.06	
11% WETSED-3	-2.6	28.1	-0.74	1.08	1.08	
TNWR	-7.3	20.8	-0.57	1.07	1.09	

Bold: Fails SCO

Underline: Fails SCO and CSL

4.4 Toxicity Identification Evaluation

Based on the results of the baseline toxicity tests, WETSED-1 was selected for further evaluations of the source of toxicity. Toxicity identification evaluations with both sediment and porewater samples provided multiple lines of evidence to relate the observed toxicity in WETSED-1 with contaminants of potential concern. The following section provides a summary of the TIE findings which are then used in a weight of evidence approach to draw conclusions regarding the source(s) of toxicity with the sediments represented by WETSED-1.

4.4.1 **AVS/SEM**

Total metals concentrations in sediment can be unreliable predictors of toxicity because the availability of metals to aquatic organisms depends upon a number of site-specific factors. ... The primary route of exposure for benthic organisms is uptake via the interstitial pore water that occurs between the grains of sediment. Metals in this aqueous phase tend to be more bioavailable than those bound to sediment (DiToro et al. 1991). Metals bound to sediment solids in various forms are largely unavailable to aquatic organisms and are considered to be far less toxic than dissolved metals in the pore water. The precipitation of metal sulfides (AVS) and the adsorption of metals to organic carbon in sediment are two processes that serve to control the equilibrium between metals on the sediment and dissolved metals in the pore water. The AVS:SEM ratio based on measured acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) allow for a site-specific prediction of the bioavailability of certain metals. The AVS:SEM analysis addresses the question of whether certain metals are present at concentrations that exceed the binding capacity of the sediment matrix. If those metals are not bound, they may be more readily available and more biologically active.

AVS is an operationally defined measurement of metal sulfides that naturally occur in sediments. AVS represents the iron and manganese sulfide minerals in the sediments that react with certain metals. Cationic metals, such as cadmium, form sulfide minerals less soluble than natural AVS. As a result, these toxic metals displace iron or manganese from AVS and are themselves sequestered in a very insoluble and biologically unavailable form. (U.S. EPA 1994; DiToro et al. 1996). The precipitation of metals by AVS is assumed to eliminate the mobility and toxicity of that metal, so it is important to account for this removal when computing the porewater concentration of metal from the concentration on the solids. The amount of AVS can vary in different sediments, resulting in differing binding capacities. Once the binding capacity of the AVS is met, the metals are available for uptake or for other binding mechanisms. Thus, the ratio of simultaneously extracted metals (SEM) to AVS can be used to predict whether metals toxicity should not occur; when SEM:AVS is less than 1. It should be noted that the SEM/AVS model does not necessarily predict toxicity when the SEM:AVS is greater than 1, due to other factors that may control toxicity.

The binding capacity of AVS is competitive between metals with the sulfide form of each metal having its own solubility. The least soluble sulfide-metal will precipitate completely before the other metals are bound by the available AVS. The complete order of sulfide solubilities is: Cu < Pb < Cd < Zn < Ni. This means that for a given amount of AVS, CuS will always precipitate before any others. If the total Hg is greater than the AVS, then all the AVS will be CuS and the remaining metals would not for insoluble precipitates. Mercury will also bind with AVS, however, concentrations observed in previous wetland soil samples were between 0.04 and 0.14 mg/kg (Table 1) and would not result in significant binding of the observed AVS. .

The SEM and AVS measured in the WETSED-1 treatment and the SEM-AVS ratio is presented in Table 26. The SEM for cadmium, lead, and manganese were similar to those of the whole sediment, whereas the SEM $_{\rm Zn}$ was 4,790 mg/kg, which is higher than the total zinc measured in the initial analysis of the WETSED-1 sediment. The total SEM, based on a suite of five metals was 5,096 mg/kg (Table 25, Column 3) or 76.3 μ mol/g (Table 25, Column 4). The AVS in the WETSED-1 was 48.9 μ mol/g (Table 25, Column 6) and the SEM:AVS ratio was greater than 1 indicating the potential for metals toxicity. Based on the preferential binding capacity of AVS (Table 25, Column 8), all of the copper, cadmium, and lead were predicted to be entirely bound by AVS and in the particulate form. Approximately 60% of the zinc SEM was predicted to be bound to sulfides, with approximately 40% of the zinc and all the remaining manganese predicted to be unbound by sulfides.

Table 26. Results of AVS and SEM Analysis for Sediment from WETSED-1, Agri-Tech/YSF 2013.

1	2	3	4	5	6	7	8	9
							Total	TOC-Normalized
		SEM	SEM	AVS	AVS ²	Fraction	SEM - AVS	SEM - AVS
Metal	MW^1	(mg/kg)	(µmol/g)	(mg/kg)	(µmol/g)	TOC	(μmol/g)	(μmol/gOC)
Cu ³	63.6	36	0.6				-48.4	
Cd	112.4	6.6	0.1				-48.3	
Pb	207.2	183	0.9				-47.4	
Zn	65.4	4790	73.2				+25.8	
Mn	54.9	80.9	1.5				+26.7	
Total		5096.5	76.3	1570	48.9	0.052	+26.7	518

¹MW= molecular weight;

As indicated above, simply knowing that metals are available does not predict effects. Previous studies have compared the available metals (SEM-AVS) to the fraction of total organic carbon (TOC) in the sediments and ranked the likelihood of toxicity (Besser et al. 2013; DiToro et al. 1991; 1992). The TOC normalized SEM/AVS (SEM-AVS divided by the fraction of TOC) can be ranked into one of three categories: metals unlikely to cause toxicity (<130 μ mol/goc), potential metals toxicity (130-3000 μ mol/goc) and metals toxicity expected (>3000 μ mol/goc). The TOC-normalized SEM-AVS for the WETSED-1 sediment was 518 μ mol/goc, falling in the category of metals potentially being the cause of observed toxic effects (Table 26).

² Mass of AVS divided by molecular weight of sulfur (32.087) to obtain AVS molar mass

³Copper concentration based on total copper measurement (Table 1).

4.4.2 Whole Sediment TIE Toxicity Testing

To confirm the role of metals in the toxicity predicted by the SEM/AVS model, amphipod toxicity tests were conducted with WETSED-1 sediment treated with SIR-300 cation-resin beads. The SIR-300 resin preferentially binds cationic metals, reducing their bioavailability and resulting toxicity. Mean percentage survival in the treated sediment was then compared to the untreated sample.

A significant decrease in toxicity was observed in the SIR-300 treated sediment, with 32% mortality in the SIR-300 treatment compared to 100% mortality in the untreated WETSED-1 sediment (Figure 4). Furthermore, amphipod survival in the SIR-300 treated sample met the CSL criteria for the amphipod test.

The WETSED-1 sediment was also treated with powdered coconut charcoal to confirm that site-related organics are not associated with toxicity in the WETSED-1 sediment. PCC binds non-ionic organic contaminants. Toxicity was not altered in the PCC treatment with 100% mortality, indicating that toxicity was not associated with organics (removal of organics present did not alter toxicity). However, the PCC control (PCC in control sediment) also showed toxicity, with 95% mortality. PCC has been shown to elicit a toxic response in some invertebrates, with the fine powder adhering to the gills and other external surfaces. While PCC was added at concentrations below toxicity thresholds, effects were clearly present, making it difficult to distinguish between toxicity associated with PCC and that of the original sample.

Figure 4. TIE Test Results for the Whole Sediment Test with *Hyalella azteca*.

4.4.3 Porewater TIE Toxicity Testing

In order to further assess the role of metals in toxicity observed in the WETSED-1 sediment, TIE tests were conducted with porewater extracted from the whole sediment. Porewater tests have the advantage of focusing toxicity estimates on the more bioavailable form of contaminants of potential concern. Toxicity evaluations were conducted with the two species that showed toxicity in the baseline tests, *Hyalella azteca* (96-h endpoint) and Microtox®. Analytical chemistry was conducted on untreated and treated porewater to directly measure changes in metals concentrations before and after treatment.

4.4.3.1 Porewater TIEs

The porewater TIE study included six treatments (Table 27), including the following:

- untreated WETSED-1 porewater;
- treatments to reduce metals availability (cation-exchange resin, EDTA Low and High);
- a treatment to reduce organics availability (solid-phase extraction (SPE) C18 column); and,
- a treatment to reduce particulate-bound metals (filtration).

Toxicity was observed in the untreated porewater in both the amphipod and Microtox® tests. Amphipod mortality was 100% and Microtox® showed a 66% reduction in light output, relative to the control.

Treatment of the WETSED-1 porewater with the cation-exchange resin resulted in a significant decrease in toxicity for both the amphipod and Microtox® tests. Control normalized mortality in the amphipod test was reduced to 44%. While there was a significant reduction in amphipod toxicity, some toxicity remained in the SIR-300 treated porewater. Toxicity removal was complete in the Microtox® test with light output exceeding that of the control for both the 5-minute and 15-minute time interval.

No significant differences were observed for the amphipod test in the C18, filtered porewater, and EDTA treatments, with 100% mortality in each treatment. The C18 solid-phase extraction test did not improve survival, a sign that organic contaminants were not a significant contributor to toxicity. Similarly, filtration had no effect, indicating the cause of toxicity was not bound to particles, i.e. free metal ions. The two concentrations of EDTA used did not reduce toxicity. However, the EDTA preparations did not appear to fully dissolve making it difficult to evaluate the binding potential of these treatments.

4.4.3.2 Porewater Chemistry

Cadmium and lead were not detected in the untreated porewater, indicating that while cadmium was observed in whole sediment at concentrations above the CSL, it was not present in the more readily available form. Both manganese and zinc were observed in the untreated WETSED-1 porewater at concentrations of 4.5 mg/L and 28.3 mg/L, respectively. These results are consistent with the AVS binding affinity of the different metals (SEM_{Pb}>SEM_{Cd}>SEM_{Zn}), and suggest that the AVS is sufficient to bind both lead and cadmium, but are not sufficient to completely bind zinc.

Treatment with the SIR-300 cation resin reduced manganese and zinc concentrations by two orders of magnitude, with resulting concentrations of 0.05 mg/L Mn and 0.13 mg/L Zn. EDTA treatments did not

alter the concentrations of manganese and zinc. This may be due to insufficient dissolved EDTA in an effort to avoid EDTA toxicity. There were no changes in metals concentrations with filtration, indicating that the manganese and zinc in the WETSED-1 porewater were not associated with particulates.

Table 27. Results of Porewater Chemistry and Porewater Toxicity Tests, Agri-Tech/YSF 2013.

	Cadmium	Lead	Manganese	Zinc	<i>Hyalella</i> 96-Hour	Microtox light output	
Treatment	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Survival (%)	5 min.	15 min.
WETSED-1	0.002 U	0.02 U	4.49	28.3	0.0	0.88	0.63
SIR-300	0.002 U	0.02 U	0.053	0.13	50.0	1.04	1.04
EDTA-Low	0.002 U	0.02 U	4.18	26.0	0.0	-	
EDTA-High	0.002 U	0.02 U	4.36	26.9	0.0		
C18 SPE	0.002 U	0.02 U	4.25	26.0	0.0		
Filtered	0.002 U	0.02 U	4.37	25.8	0.0		

U= analyte undetected at given reporting limit

Bold: Fails SCO

Underline: Fails SCO and CSL

4.4.4 The Role of Metals in Toxicity

As indicated above, cadmium and lead were not observed in porewater at concentrations above the limits of detection (Cd: 2 ppb; Pb: 20 ppb). This is well below effects levels for *Hyalella azteca*, as well as for *Chironomus dilutus*. Furthermore, the preferential binding of AVS predicted that cadmium and lead would be present as metal-sulfide precipitates and would not be in the more readily available dissolved form. The potential for toxicity associated with particulate cadmium and lead was ruled out in the tests with filtered porewater samples, with no change in toxicity with the removal of particulates.

Zinc and manganese were predicted to be available in the freely dissolved phase and were present in the porewater samples that were associated with toxicity. A toxic-unit approach was used to further evaluate the role of zinc and manganese in porewater toxicity and to better understand the toxicity remaining following SIR-300 treatment. The toxic unit (TU) approach compares the chemical concentration in a sample to a standard measure of toxicity. Typically the toxic unit is defined as the median-lethal concentration, or LC_{50} . For the purpose of this study, the zinc and manganese toxic units were defined as the respective LC_{50} values based toxicity data for *Hyalella azteca* available in the literature.

For zinc, previous laboratory studies with *Hyalella azteca* have found the zinc LC_{50} to be between 0.049 mg/L and 0.245mg/L Zn (Phipps et al 1995, Borgmann et al 2005). These studies were performed using differing water characteristics (e.g. hardness) as well as varying exposure durations (7-10 days), providing a good approximation for the sensitivity of *H. azteca* to zinc. The average LC_{50} was 0.147mg/L and was used as the TU_{Zn} for this analysis.

The untreated porewater had a zinc concentration equivalent to 192 toxic units. This indicated that the untreated porewater had concentrations of zinc that were nearly 200 times higher than the LC₅₀ and would be expected to cause the observed amphipod toxicity. The SIR-300 treated porewater had a zinc concentration equivalent to 0.9 toxic units, or a concentration of zinc that was very near to the median lethal concentration. Indeed, the 96-hour control-normalized mean percent mortality in the treated porewater was 44%. This analysis indicated that the concentrations of zinc in the WETSED-1 porewater effectively predicted the level of toxicity observed for both the untreated and treated porewater, indicating that zinc was a driver of toxicity in the WETSED-1 porewater. For manganese, previous laboratory studies with Hyalella azteca reported a mean LC₅₀ of 2.77 mg/L Mn (Borgmann et al 2005) which was used as the TU_{Mn} for this analysis. The untreated porewater had a manganese concentration equivalent to 1.6 toxic units. This indicated that the untreated porewater had concentrations of manganese that were similar to the LC₅₀. While manganese cannot be ruled out as a contributor to toxicity, it would not be expected to cause the level of amphipod toxicity observed in the untreated sample. The SIR-300 treated porewater had a manganese concentration equivalent to 0.02 toxic units, or a concentration of zinc that was two one-hundredths of the LC₅₀. This analysis indicated that the concentrations of manganese in the WETSED-1 porewater were not sufficient to predict toxicity in either the untreated and treated porewater.

As discussed in this section, sediment processes act to sequester cationic metal either through precipitation as metal sulfide phases or through adsorption onto organic carbon, greatly reducing their bioavailability and toxicity (Gambrell 1994). However, the extent to which cationic metal elements are bound and made unavailable are affected by environmental conditions.

AVS concentrations vary seasonally, but are generally considered to decrease in the cold winter months, presumably due to a decrease in the generation of sulfide by sulfide-reducing bacteria at cooler temperatures (Ankley et al. 1996). Conversely higher AVS and an increased binding capacity may occur during warmer months due to increased production of organic matter and increased activity of sulfate-reducing bacterial (Herlihy and Mills 1985). Decreases in AVS would predict an increase freely dissolved cationic metals. Based on the preferential binding of sulfides, zinc would continue to be the driver in toxicity prior to cadmium and lead.

Hydrogen ion activity (pH) is also an important factor in determining metals availability. As surface sediments become oxidized in the spring and summer months, pH decreases resulting in the release of adsorbed metal ions into the dissolved phase (John and Leventhal 1995). This release of metal ions can occur for Zn at moderately low pHs and may result in an increase in toxicity. These two seasonal influences did not appear to alter the presence of toxicity in WETSED-1 or the relatively low toxicity in sediment from WETSED-2, with similar results being observed in 2011 and 2013 for the benthic tests with *Hyalella* and *Chironomus*. The Microtox® test results in 2011 appear to have been influenced by extended holding times. Differences in Chironomus toxicity tests for WETSED-3 in 2011 and 2013 may be due to refinements in test methods or seasonal influences.

5. Summary of Findings

As part of the remedial investigation of the Agri-Tech/Yakima Steel Fabricators site in Yakima, Washington, ENVIRON conducted a supplemental investigation of sediments from a small wetland located at the south end of the site. The purpose of this investigation were as follows:

- Verify toxicity in the WETSED samples from each of the three stations;
- If toxicity is confirmed, determine whether cadmium or other metals present in the wetland site are the likely cause;
- If toxicity is confirmed and related to metals, determine whether a site-specific clean-up level would be appropriate.

Physical and Chemical Characteristics of Wetland Sediments:

The physical characteristics of the sediments collected in 2013 were similar to those collected in 2011. Sediment at two stations, WETSED-2 and WETSED-3 was predominantly fine-grained, with approximately 4% TOC. Sediment from Station WETSED-1 was sandier in nature, with approximately 50% fines and 5% TOC. The area sampled was a cattail marsh, with a high amount of fine and coarse plant material present in the sediments. Organic carbon was likely influenced by the presence of the plant material, creating elevated levels relative to grain size.

Sediment pH based on porewater samples collected from homogenized sediment samples ranged from 7.14 to 7.28. However, after sediments had been held in anaerobic conditions, pH in the WETSED -1, 2, and 3 treatments dropped to pH 5.6, 7.0, and 6.8, respectively. This may provide an indication that the organically enriched sediments at WETSED-1 may alter pH and thereby affect availability of metals in this portion of the wetland.

Concentrations of total metals were similar in sediment from the three stations and were similar to values observed during previous investigation. Concentrations of cadmium ranged from 6.6 to 9.9 mg/kg, exceeding the CSL of 5.4 mg/kg for cadmium. As in the initial investigation, concentrations of lead and zinc were below CSL levels. The concentration of zinc at WETSED-3 (3,810 mg/kg Zn) was above the SCO (3,200 mg/kg Zn).

Whole-Sediment Toxicity:

WETSED-1 was the only test treatment that exceeded the CSL thresholds for benthic toxicity, based on the responses in the *Hyalella azteca* and Microtox® tests conducted in 2013. Both WETSED-2 and WETSED-3 exceeded the SCO threshold for mortality in the *Chironomus* test. However, the level of response observed in WETSED-2 and WETSED-3 was near the SCO threshold,was similar to that of the reference sediment, and was within the control performance criteria for this test. The findings from the whole-sediment toxicity tests were as follows:

• For the amphipod test with *Hyalella azteca*, acute toxicity was observed in sediment from Station WETSED-1, with 100% mortality; no toxicity was observed in the WETSED-2 or 3 test treatments. These results were similar to those observed during the 2011 investigation.

- For the *Chironomus* test, all test sediment met the CSL criteria for mortality and growth; all test treatments also met the SCO criteria for the more sensitive growth endpoint. The SCO criteria for *Chironomus* mortality was exceeded by 2% and 5% in sediment from WETSED-2 and WETSED-3, respectively. The mortality observed in both treatments was similar to or less than the mortality observed in the reference sediment used in the dilution series test and was within the control performance criteria for mortality (>68% survival). With the exception of WETSED-3, the responses observed in the *Chironomus* test in 2013 were generally similar to those of 2011. Mortality and growth responses were greater in the 2011 tests for WETSED-3. This may be due to the control of sources of test variability or seasonal differences in sediment characteristics.
- For the Microtox® test, no toxicity was observed in the WETSED-2 and WETSED-3 test treatments. Toxicity exceeding the CSL screening level was observed for the WETSED-1 treatment. Tests conducted in 2011 showed toxicity in all Microtox® tests; however, this was likely due to longer holding times prior to analysis, which have been shown to correlate with increased false-positive results (NewFields 2009). Tests conducted in 2013 were initiated less than two days from sample collection in order to avoid this source of variability.
- Total metals concentrations were not predictive to toxicity responses observed in 2013. The
 responses did not correspond to whole sediment total metals concentrations in the three
 WETSED treatments or in the dilution series test.

Sources of Toxicity:

Toxicity identification evaluations conducted with treatment WETSED-1 indicated that metals, specifically freely dissolved cationic metals, were associated with the observed toxicity. The primary findings of the TIE evaluations were as follows:

- The AVS:SEM and organic carbon normalized SEM-AVS indicated that simultaneously extractable
 metals were present at concentrations exceeding the AVS binding capacity of the sediment and
 predicted that freely-dissolved cationic metals in the sample were a potential cause of toxicity.
- WETSED-1 sediment treated with the cation exchange resin SIR-300, showed a significant
 decrease in amphipod mortality and Microtox® response, suggesting that cationic metals were
 associated with the observed toxicity. Relative to the control, the SIR-300-treated sediment
 passed CSL criteria. Sediment treated with PCC did not show a change in toxicity, suggesting that
 organic COPCs were not associated with toxicity.
- Porewater from WETSED-1 sediment treated with the cation exchange resin SIR-300, showed a significant decrease in amphipod mortality and Microtox® response, further suggesting that dissolved cationic metals were associated with the observed toxicity.
- Porewater from WETSED-1 sediment treated with filtration and with C-18 solid-phase extraction showed no change in amphipod mortality, indicating that particulates and organic COPCs, respectively were not related to toxicity. EDTA-treated porewater also showed no change in amphipod mortality. However, the analytical chemistry demonstrated that metals concentrations were unaffected by the EDTA treatment; therefore, this TIE manipulation could not be used to formulate conclusions regarding porewater toxicity.

The Role of Metals in Observed Toxicity

Toxicity observed during the 2013 tests was primarily due to zinc and potentially manganese. Cadmium and lead did not appear to be related to the observed toxicity. The primary findings related to the role of metals in the observed toxicity were as follows:

- TIE results indicated that freely dissolved metals were mostly likely associated with toxicity (as stated above).
- The AVS:SEM preferential binding affinities of the cationic metals predicted that cadmium and lead would be entirely bound to AVS and would not be present in the more toxic dissolved form.
 Both zinc and manganese were predicted to be present in the more bioavailable, dissolved phase.
- Cadmium and lead were not detected in the porewater samples; zinc and manganese were detected in porewater samples.
- Treatment of the porewater with the cation resin SIR-300 effectively removed both zinc and manganese, decreasing the concentrations by two orders of magnitude. Toxicity was also reduced in the SIR-300 treated porewater as a direct result of the SIR-300.
- The concentration of zinc in the SIR-300 treated porewater predicted the magnitude of toxicity observed in the treated porewater (0.9 TU). Zinc is likely to be a primary driver in toxicity.
- Manganese concentrations were also decreased with SIR-300 treatment, but remaining Mn concentrations were well below those that would predict biological effects (0.02 TU).
 Manganese was not likely to have been primary driver in toxicity.
- Seasonal site conditions may alter the concentrations of dissolved cationic metals. However, zinc is the most likely driver of toxicity based on the corresponding binding affinities and the SEM concentrations of zinc.

Based on the findings of the investigation work herein, no CSL exceedances for biological criteria were observed at Stations WETSED-2 and WETSED-3. Acute toxicity exceeding the CSL criteria was observed in sediment from Station WETSED-1. TIE evaluations of both sediment and porewater indicate that metals, specifically cationic metals were associated with the observed responses. Concentrations of metals observed in the WETSED-1 porewater and correlation analysis using a toxic unit approach indicate that zinc is the likely contributor to toxicity. The adjacent Bay Chemical Site is a known source of zinc in soil and groundwater resulting from former operations at that site. A source of a release of zinc has not been identified on the Agri-Tech/Yakima Steel Fabricators site.

6. References

Ankley, GT, K Liber, DJ Call, TP Markee, TJ canfield, and CG Ingersoll. 1996. A field investigation of the relationshic between sinze and acid volatile sulfide concentrations in freshwater sediments. J Aquat. Ecosystem Health. 5:255-264.

APHA/AWWA (American Public Health Association/American Water Works Association). 2002. Standard Methods for the Examination of Water and Wastewater (20th Edition). Edited by L.S. Clesceri, A.E. Greenberg and A.D. Eaton. APHA, Philadelphia, PA.

Bennett J. and J. Cubbage .1992. Review and Evaluation of Microtox™ Test for Freshwater Sediments. Prepared for the Sediment Management Unit, Washington State Department of Ecology.

Benton, M.J, M. Mallott, S.S. Knight, C. M. Cooper, and W.H. Benson. 1995. Influence of Sediment Composition on Apparent Toxicity in a Solid-phase Test Using Luminescent Bacteria. Environ. Toxicol. Chem. 14(3):411-414.

Besser, JM, WB Brumbaugh, CG Ingersoll, CD Ivey, JL Kunz, NE Kemble, CE Schlekat, and ER Garman. 2013. Chronic toxicity of nickel-spiked freshwater sediments: Variation in toxicity among eight invertebrate taxa and eight sediments, Environ. Toxicol. Chem. 32(11): 2495-2506

Borgmann, U., Y. Couillard, P. Doyle, and D.G. Dixon 2005 Toxicity of Sixty-Three Metals and Metalloids to *Hyalella azteca* at Two Levels of Water Hardness. Environ. Toxicol. Chem. 24(3): 641-652.

Brouwer H. and T. Murphy. 1994. Volatile Sulfides and Their Toxicity in Freshwater Sediments. Environ. Toxicol. Chem. 14(2):203-208.

Burgess, R. M., J. B. Charles, A. Kuhn, K. T. Ho, L. E. Patton and D. G. McGovern. 1997. Development of a cation exchange methodology for marine toxicity identification (TIE) application. Environ. Toxicol. Chem. 16(6): 1203-1211.

DiToro, DM, JD Mahony, DJ Hansen, KJ Scott, AR Carlson, and GT Ankley. 1992. Acid volatile sulfide predict acute toxicity of cadmium and nickel in sedimetrs. Environ. Sci. Technol. 26:96-101.

DiToro, DM, CS Zarba, DJ Hansen, WJ Berry, RC Schwartz, CE Cowen, SP Pavlou, NA Thomas, and RP Paquin. 1991. Technical basis for establishing seimdnt quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10:1541-1583.

Farallon Consulting. 2011. Feasibility Study Work Plan. Agri-Tech and Yakima Steel Fabricators 6 and 10½ East Washington Avenue Yakima, Washington. Prepared by Farallon Consulting, LLC, Issaquah, WA.

Farallon Consulting. 2004. Revised Remedial Investigation Report. Agri-Tech and Yakima Steel Fabricators 6 and 10½ East Washington Avenue Yakima, Washington. Prepared by Farallon Consulting, LLC, Issaquah, WA.

Gambrell, R.P. 1994. Trace and toxic metals in wetlands—a review. J. Environ. Qual. 23, 883-891.

Herlihy, AT and AL Mills. 1985. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl. Environ. Microbiol. 49:179-186.

Ho, K. T., R. M. Burgess, M. C. Pelletier, J. R. Serbst, H. Cook, M. G. Cantwell, S. A. Ryba, M. M. Perron, J. A. Lebo, J. N. Huckins and J. D. Petty (2004). Use of powdered coconut charcoal as a TIE manipulation for organic toxicants. Environ. Toxicol. Chem. 23(9): 2124-2131.

John, D., and J. Leventhal. 1994. Chapter 2: Bioavailability of Metals. *Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Models*. US Geological Survey, Denver. pp: 95-831.

Nautilus. 2011. Test America Sediment Characterization – Toxicological Results. Prepared for Farallon, Issaquah, WA. Report prepared by Nautilus Environmental, Fife, WA.

NewFields. 2009. Tier 2 Biological Testing of Sediment for March Point Landfill, Anacortes, Washington. Report to AMEC Geometrix, Seattle, WA. Report by NewFields, Port Gamble, WA.

Pardos, M., C. Benninghoff, R.L. Thomas, and S. Khim-Heang. 1999. Confirmation of Elemental Sulfur Toxicity in the Microtox™ Assay Duirng Organic Extracts Assessments of Freshwater Sediments. Environ. Toxicol. Chem. 18(2).

Phipps, G.L., V.R. Mattson, and G.T. Ankley 1995 Relative Sensitivity of Three Freshwater Benthic Macroinvertebrates to Ten Contaminants Arch. Environ. Contam. Toxicol.28(3): 281-286.

Plumb, R. H., Jr. 1981. Procedure for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. U.S. Environmental Protection Agency/U.S. Army Corps of Engineers Technical Committee on criteria for dredged and fill material, U.S. Army Waterways Experimental Station. Vicksburg, MS.

PSEP. 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.

RSET. 2009. Sediment Evaluation Framework for the Pacific Northwest. Regional Sediment Evaluation Team. May 2009.

USEPA. 2007. Sediment Toxicity identification Evaluation (TIE). Phases I, II, and III Guidance Document. EPA/600/R-07/080. US Environmental Protection Agency, Office of Research and Development, Washington DC.

USEPA. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium copper, lead, nickel, silver, zinc). EPA/600/R-02/011. Office of Research and Development, Washington DC.

USEPA. 2001. SW-846 On-line, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. Office of Solid Waste. Washington DC.

USEPA. 2000. Methods for Measuring the Toxicity and bioaccumulation of Sediment associated Contaminants with Freshwater Invertebrates. EPA/600/R-00/064. US Environmental Protection Agency, Office of Water, Washington DC.

USEPA. 1991. Analytical Method for Determination of Acid Volatile Sulfide in Sediment. EPA-821-R-91-100. US Environmental Protection Agency. Office of Water. Washington DC.

WERF. 2007. Navigating the TMDL Process: Sediment Toxicity. Prepared for the Water Environment Research Foundation, Alexandria, VA. Prepared by UC Davis, Department of Environmental Toxicology, Marine Pollution Laboratory.

Weston. 2007. TIE Evaluation of Toxicity in Stormwater Effluents in Tijuana Slough, CA. Prepared by Weston Solutions, Port Gamble, WA.

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix A

2011 Toxicity Report

Test America Sediment Characterization – Toxicological Results

Draft Report

Report date: July 12, 2011

Submitted to:

Washington Laboratory 5009 Pacific Hwy East Suite 2 Tacoma, WA 98424

TestAmerica Seattle 5755 8th Street East

Tacoma, WA 98424

TABLE OF CONTENTS

TAE	LE O	OF CONTENTS	
SIGI	JTAN	URE PAGE	III
1.0	INT	RODUCTION	1
2.0	SAN	MPLES	2
3.0	СНІ	IRONOMUS DILUTUS TEST	2
	3.1	Methods	
	3.2	Results	5
	3.3	QA/QC	5
	3.4	Discussion	
4.0	HYA	ALELLA AZTECA TEST	7
	4.1	Methods	7
	4.2	Results	9
	4.3	QA/QC	10
	4.4	Discussion	11
5.0	MIC	CROTOX® TEST	11
	5.1	Methods	11
	5.2	Results	13
	5.3	QA/QC	14
	5.4	Discussion	15
6.0	CO	NCLUSIONS	15
7.0	REE	FERENCES	16

Page

TABLE OF CONTENTS

Page LIST OF TABLES Table 1 Table 2 Summary of sample collection and test initiation dates ______2 Table 3 Table 4 Results of Chironomus dilutus tests. Samples with statistically reduced survival or growth are underlined, and values failing two-hit RSET criteria are shaded gray, Table 5 Summary of water quality parameters for C. dilutus tests (means and ranges). Required values are shown in brackets......6 Table 6 Summary of methods for the 10-day test with *Hyalella azteca*.......9 Table 7 Table 8 Results of Hyalella azteca tests. Samples with statistically reduced survival or are underlined, and values failing two-hit RSET criteria are shaded gray, while Table 9 Summary of water quality parameters for *H. azteca* analyses (means and ranges). Table 10 H. Azteca reference toxicant test results. Table 11 Table 12 Results of Microtox tests. Samples with statistically reduced luminescence are underlined, and values failing two-hit RSET criteria are shaded gray, while Table 13 Table 14 Table 15 LIST OF APPENDICES APPENDIX A - Results Summaries APPENDIX B - Statistical Analyses APPENDIX C - Water Quality Summaries APPENDIX D - Laboratory Bench Sheets APPENDIX E - Reference Toxicant Tests APPENDIX F - Chain-of-Custody Forms

SIGNATURE PAGE

Cat Curran, M.S.

Washington Laboratory Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

On May 23rd, 2011 Test America collected freshwater sediments for biological testing. Test America contracted with Nautilus Environmental to provide toxicity-testing services for the project. The three sediment samples selected for testing included samples E-WetSed-1-052311 (WETSED-1), E-WetSed-2-052311 (WETSED-2), and E-WetSed-3-052311 (WETSED-3). No reference sample was collected in conjunction with this project. The freshwater sediment samples were tested for toxicity using the *Chironomus dilutus* (aka *tentans*) 20-day survival and growth bioassay (USEPA 2000 and ASTM 2000), the *Hyalella azteca* 10-day survival bioassay (USEPA 2000 and ASTM 2000), and the 15-minute 100 percent porewater Microtox® bacteria bioluminescence test. All tests met negative and positive control criteria.

Results were evaluated by comparing test data to the criteria in the Sediment Evaluation Framework for the Pacific Northwest (RSET 2009) guidance document. *C. dilutus, H. azteca*, and Microtox results were compared to control results, and examined for statistically significant effects ($\alpha = 0.05$). Acceptability criteria from the literature are summarized in Table 1.

Table 1 Acceptability criteria for bioassays

Test Type	C. dilutus 20-Day	H. azteca 10-Day	Microtox
Endpoint	Survival and Growth	Survival	Luminescence
Source	RSET 2009	RSET 2009	RSET 2009
Test Criteria	One-hit failure is mortality >	One-hit failure is mortality >	One-hit failure is
	control mortality + 25% <u>and/or</u>	control mortality + 25% and	Luminescence <75% of
	biomass <60% of control biomass	significant difference	control luminescence and
	and significant difference		significant difference
	Two-hit failure is mortality >	Two-hit failure is mortality >	Two-hit failure is
	control mortality + 15% <u>and/or</u>	control mortality + 10% <u>and</u>	Luminescence <85% of
	biomass <75% of control biomass	significant difference	control luminescence and
	and significant difference		significant difference
Control	Negative control ≤32% mortality	Negative control ≤20%	Negative control final light
Criteria	and growth ≥0.48 mg/ind. ash-	mortality	output > 72% of initial
	free dry weight		output

2.0 **SAMPLES**

Upon receipt of samples from Test America, samples were matched with the chain-of-custody form and inspected. Samples were stored at 4 ± 2°C in the dark prior to test initiation. Toxicity tests were initiated within 2 weeks of collection (Table 2). Total ammonia levels in the porewater ranged from <1.0 to 2.7 milligrams per liter (mg/L). Both overlying ammonia and sulfides were also measured during testing, and the results are reported in the QA/QC sections for each test.

Table 2 Summary of sample collection and test initiation dates

Sample ID	Collection Date	Microtox Test Initiation Date	H. azteca Test Initiation Date	C. dilutus Test Initiation Date	
E-WetSed-1- 052311					
E-WetSed-2-	N 22 2011	June 6, 2011	June 7, 2011	June 9, 2011	
052311	May 23, 2011 J				
E-WetSed-3-					
052311					

3.0 **CHIRONOMUS DILUTUS TEST**

3.1 Methods

C. dilutus were exposed to test sediments for 20 days to determine the effects of site sediment on survival and growth. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), and are summarized in Table 3.

C. dilutus egg cases were obtained from Aquatic BioSystems (Fort Collins, Colorado) and arrived at the laboratory on June 8, 2011. The egg cases were transported in insulated containers in oxygen-saturated water contained in 500-mL plastic bottles. Upon arrival at the laboratory, water quality parameters were measured and observations of organism condition were made. The egg cases were 20°C at receipt, and were cultured at 23°C. The organisms emerged from the egg cases on June 9th and tests were initiated the same day.

One day prior to test initiation (Day -1), the sediment samples were homogenized, 100-ml of sediment was distributed to each of eight labeled test chambers for each of the samples, and Nautilus Environmental

175-ml diluted mineral water (prepared by diluting two parts Perrier® into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed overnight in diluted mineral water. Eight test chambers were also prepared for the control sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and temperature were measured. Twelve organisms were directly added to each test chamber, in random order.

Each test chamber was provided 1.5 mL of food daily (after the second renewal) starting on Day -1. The food consisted of a mixture of 4 g ground Tetrafin® flakes mixed with 1 L diluted mineral water. The feeding regime was reduced if the presence of excess food was observed on the sediment surface in several test chambers, which occurred on Day 8 only. Abnormal conditions or unusual animal behavior, if observed, were noted daily.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while alkalinity, hardness, ammonia and sulfides were measured on Days 5, 10, and 15. Water was renewed twice daily.

At test termination, subsamples of overlying water were collected from each water quality replicate for ammonia, hardness, alkalinity, and sulfide analyses. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. Animals were removed from the screen and the number of survivors counted and recorded. Presence of pupae, flies, or exuviae (molts) were noted. The larvae were rinsed with deionized water and placed into pre-ashed, pre-weighed weigh boats. The weigh boats were placed in an oven at 60°C for at least 24-hours, then placed in a dessicator until dry weight could be measured. The weigh boats were then placed in a muffle furnace at 550°C for two hours, placed in a dessicator to cool, then weighed again to determine the ash weight. The ash weight was subtracted from the dry weight to determine the ash-free dry weight (AFDW). The number and AFDW of surviving chironomids were evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitney U-test, as appropriate, to determine whether the samples exhibited a significant

decrease in survival or growth relative to the control (p<0.05). Survival data were arcsine transformed, while growth data was either square root or log transformed as needed to stabilize the variances and improve normality of the data prior to performing the t-test. Data that failed to meet parametric assumptions even after transformations were analyzed with the non-parametric Mann-Whitney U-test. Site performance was evaluated against the sediment acceptability criteria outlined in RSET 2009 (Table 1). The criteria for acceptable test performance were an average of \leq 32 percent mortality of control organisms, and an average of at least 0.48 mg/individual AFDW per surviving control organism.

A 96-hour reference toxicant test using copper chloride ($CuCl_2$) was conducted concurrently with the tests on the sediments to determine whether the sensitivity of the test organisms was appropriate. This test was run with four replicates, ten animals per replicate, in diluted mineral water at 23°C, with a small amount of clean control sand as a substrate. Tetrafin® slurry (1.25 mL of 4 g/L Tetrafin) was added to each chamber on days 0 and 2.

Table 3 Summary of methods for the 20-day test with *Chironomus dilutus*

Test initiation date	June 9, 2011
Test termination date	June 29, 2011
Test organism source	Aquatic BioSystems; Fort Collins, Colorado
Organism age at test initiation	< 4 hours post-emergence from egg case
Par Para	1.5 mL of 4.0 g/L Tetrafin mixture every day;
Feeding	frequency reduced if excess food observed
Test chamber	475-mL glass beaker
Test sediment volume	100 mL
Dilution water type & volume	175 mL diluted mineral water
Water renewal	Twice daily
Control sediment	Sand mixed with peat (1/2 Tbsp)
Number of organisms/replicate	12
Number of replicates/sample	8 plus water quality surrogates
Test temperature	23± 1°C
Illumination	16 hours light : 8 hours dark
Aeration	Started on Day 13
Reference toxicant	Copper chloride
Acceptability Criteria	≤32% mortality, 0.48 mg/individual AFDW

3.2 Results

The results of toxicity tests conducted using *C. dilutus* are provided in Table 4. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 4 Results of *Chironomus dilutus* tests. Samples with statistically reduced survival or growth are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1,2}

Sample	Percent Mortality (Mean ± SD)	Mortality Percent Difference From	Ash-Free Dry Weight per Org (mg)	Ash-Free Dry Weight Percent of Control
Control	6.3 ± 7.4		0.91 ± 0.11	
WETSED-1	20.8 ± 21.4	14.6	1.11 ± 0.46	123
WETSED-2	24.0 ± 12.9	17.7	0.87 ± 0.22	96
WETSED-3	63.5 ± 31.2	57.3	0.60 ± 0.57	66

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009), ²Criteria for two-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 15% of control (RSET 2009)

3.3 QA/QC

The *C. dilutus* were received in good condition for the June 9, 2011 test. All water quality parameters remained within acceptable ranges throughout the tests. A summary of the water quality parameters is presented in Table 5. Dissolved oxygen levels were decreased to a level on concern on day 13, and all replicates were aerated from that point forward. There were no deviations from the protocols. The toxicity test for mortality with this species met the control acceptability criterion (<32 percent mortality; >0.48 mg/ind AFDW).

Table 5 Summary of water quality parameters for *C. dilutus* tests (means and ranges). Required values are shown in brackets.

Analyte	Control	WETSED-1	WETSED-2	WETSED-3
		Me	ean	_
	Max)			
Tomp (°C) [22 ± 1°C]	22.0	22.0	21.9	21.9
Temp. (°C) $[23 \pm 1$ °C]	(21.7-22.2)	(21.8-22.2)	(21.7-22.1)	(21.7-22.1)
DO (mg/L) [>2.5 mg/L]	6.7	6.7	7.1	7.0
DO (mg/L) [>2.5 mg/L]	(3.3-9.0)	(3.5-9.0)	(5.2-9.1)	(5.2-9.0)
ъН [4 0]	7.34	7.18	7.13	7.35
pH [6-9]	(6.58-7.99)	(6.43-7.89)	(6.46-7.80)	(6.80-7.99)
Cond (uC/cm) [NIA]	208	180	249	251
Cond. (μ S/cm) [NA]	(127-296)	(149-227)	(158-413)	(192-382)
Alkalinity (mg/L	58	65	69	85
CaCO ₃) [<50% variable]	(48-72)	(60-68)	(64-72)	(80-88)
Hardness (mg/L	83	98	195	122
CaCO ₃) [<50% variable]	(80-88)	(80-108)	(84-228)	(100-140)
Total Overlying NH3	1.6	1.2a	1.3a	<1.0
(mg/L) [<50% variable]	(1.1-1.7)	(<1.0-1.3)	(<1.0-1.3)	(<1.0-<1.0)
Total Overlying Sulfides	0.035^{a}	0.028^{a}	0.044^{a}	0.020^{a}
(mg/L) [NA]	(<0.010-0.058)	(<0.010-0.054)	(<0.010-0.044)	(<0.010-0.021)

a estimated value

The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 6. Bench sheets and control charts are provided in Appendix E. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean \pm two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 6 *C. dilutus* reference toxicant test results.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Chironomus dilutus	June 23, 2011	Cu	571 μg/L	401 - 1070 μg/L	22.7

3.4 Discussion

Mortality in the samples ranged from 20.8 to 63.5 percent, compared with 6.3 percent in the control. Sediment samples WETSED-2 and WETSED-3 were significantly different from control and were more than 15 percent higher than the control, failing the two-hit criterion for survival. WETSED-3 was also more than 25 percent higher than the control, failing the one-hit criterion for survival. Survival in WETSED-1 was not significantly different from the control, due to high

variability in the sample. Growth in the samples ranged from 0.60 to 1.11 mg/individual AFDW, compared with 0.91 mg/individual AFDW in the control. Growth in sample WETSED-1 was greater than the control. Growth in WETSED-2 and WETSED-3 was not significantly different from the control. Therefore none of the sites fail either the one- or two-hit failure requirements.

The total ammonia level reached 1.3 mg/L in the test sediments, which was well below the reported 4-day lethal concentration for 50% of test organisms (LC₅₀) range for *C. dilutus* of 82 to 370 mg/L (USEPA 2000). While sulfide toxicity thresholds are not available for this species, they were measured as part of the Ecology reference site study (Nautilus 2008), and samples with porewater sulfide values similar (0.226 to >0.600 mg/L) to the values found in the current study (0.010 to 0.054 mg/L) did not result in measurable effects. Therefore, it is unlikely that ammonia or sulfide levels caused the observed increases in mortality in the test sediments.

4.0 HYALELLA AZTECA TEST

4.1 Methods

H. azteca were exposed to test sediments for 10 days to determine the effects of site sediments on survival. These tests were conducted according to methods presented in USEPA (2000) and ASTM (2000), and are summarized in Table 7.

H. azteca were obtained from Aquatic Indicators (St. Augustine, Florida) and arrived at the laboratory on June 2, 2011. The organisms were transported in insulated boxes in oxygen-saturated water contained in plastic bags with fine screens as a substrate. Upon arrival at the laboratory, water quality parameters were measured and observations of animal condition were made. The organisms were acclimated to test conditions prior to test initiation over a 96-hour time period. During the acclimation period, the animals were observed for any indication of stress or significant mortality and any observations were recorded.

One day prior to test initiation (Day -1), the sediment samples were homogenized, 100-ml sediment was distributed to each of eight labeled test chambers for each of the samples, and 175-ml diluted mineral water (prepared by diluting two parts Perrier® into eight parts deionized water) was added to each container. Control sediment consisted of clean, rinsed silica sand (50/50 mix of #30 and #70) mixed with peat moss (1/2 Tbsp) that was rinsed

overnight in diluted mineral water. Eight test chambers were also prepared for the control sediment. An additional replicate was included for each sediment sample and the control sediment as a sacrificial test chamber for routine water quality measurements.

The test chambers were randomized and the sediments were left to settle overnight. On Day 0, overlying ammonia, sulfide, hardness, alkalinity, dissolved oxygen (DO), pH, conductivity, and temperature were measured. Organisms were carefully separated into groups of 10 amphipods in 30 mL cups containing diluted mineral water. The number of organisms was then recounted and any animals exhibiting signs of stress were replaced. The organisms were then gently added to the test chambers, two cups for each test chamber for a total of 20 organisms per chamber.

Temperature, DO, pH, and conductivity were monitored daily in the water quality replicate for each sample, while overlying ammonia, sulfide, hardness, and alkalinity were monitored on Day 5. Water was renewed twice daily in all chambers. Abnormal conditions or unusual animal behavior, if observed, were also noted daily. Each test chamber was fed 1 ml of Yeast Trout Chow (YTC) daily after the second renewal.

At test termination, subsamples of overlying water were collected for ammonia, hardness, alkalinity, and sulfides analyses, from each water quality replicate. The contents of each test chamber were gently mixed to suspend the sediment and poured through a 0.5-mm Nitex screen. The sediment was rinsed through the screen using dechlorinated tap water. The screen was then placed in diluted mineral water and the number of survivors counted and recorded. The number of surviving amphipods was evaluated statistically by one-tailed t-test, or one-tailed Mann-Whitey U-test, as appropriate, to determine whether the samples exhibited a significant decrease in survival relative to the control (p<0.05). Survival data was arcsin transformed as needed to stabilize the variances and improve normality of the data. Site performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A 96-hour reference toxicant test using copper chloride (CuCl₂) was conducted concurrently with the sediment tests to determine whether the sensitivity of the test organisms was within the range typically observed. The test was run with four replicates, ten animals per replicate, in diluted mineral water with a square of nitex screen as a substrate.

Table 7 Summary of methods for the 10-day test with *Hyalella azteca*.

Test initiation date June 7, 2011
Test termination date June 17, 2011

Test organism source Aquatic Indicators, St. Augustine, Florida

Organism age at test initiation 8 days

Feeding 1 ml of YTC daily
Test chamber 475-ml glass beaker

Test sediment volume 100 ml

Dilution water type & volume 175 ml diluted mineral water

Water renewal Twice daily

Control sediment Sand mixed with peat (1/2 Tbsp)

Number of organisms/replicate 10

Number of replicates/sample 8 plus water quality surrogate

Test temperature $23 \pm 1^{\circ}$ C

Illumination 16 hours light: 8 hours dark

Aeration None

Reference toxicant Copper chloride
Acceptability criterion for control ≥80% survival

4.2 Results

The results of toxicity tests conducted using *H. azteca* are provided in Table 8. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 8 Results of *Hyalella azteca* tests. Samples with statistically reduced survival or are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1,2}

C1-	Percent Mortality	Mortality Percent Difference
Sample	$(Mean \pm SD)$	from Control
Control	1.3 ± 2.3	
WETSED-1	$\underline{100 \pm 0.0}$	98.7
WETSED-2	13.8 ± 11.6	12.5
WETSED-3	3.8 ± 4.4	2.5

¹Criteria for one-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 25% of control (RSET 2009), ²Criteria for two-hit failure is significant decrease in mortality (p<0.05), **and** mortality greater than 10% of control (RSET 2009)

4.3 QA/QC

The *H. azteca* were received in good condition and the toxicity tests with this species met the control acceptability criterion (<20 percent mortality). A summary of the water quality parameters is provided in Table 10. All water quality parameters remained within acceptable ranges throughout the tests. Instead of the 10 animals per replicate required by the protocol, 20 animals were added to each replicate. As the controls still met acceptability criteria and water quality stayed within ranges for the test, this deviation is not expected to have affected the results. There were no other deviations from the protocol.

Table 9 Summary of water quality parameters for *H. azteca* analyses (means and ranges). Required values are shown in brackets.

Analyte	Control	WETSED-1	WETSED-2	WETSED-3
		Me	an	
		(Min-	Max)	
Temp. (°C)	22.3	22.2	22.2	22.2
$[23 \pm 1^{\circ}C]$	(21.9-23.4)	(21.9-23.3)	(21.9-23.3)	(21.8-23.2)
DO (mg/L)	7.0	6.3	6.4	6.5
[>2.5 mg/L]	(5.8-8.4)	(5.4-7.3)	(5.4-7.2)	(5.6-7.3)
рН	7.26	6.83	6.83	7.01
[6-9]	(6.50-7.79)	(6.22-7.20)	(6.35-7.18)	(6.63-7.37)
Cond. (µS/cm)	172	188	283	223
[NA]	(145-189)	(164-262)	(190-418)	(159-343)
Alkalinity (mg/L CaCO ₃)	52	67	75	72
[<50% variable]	(44-60)	(60-72)	(64-80)	(68-76)
Hardness (mg/L CaCO ₃)	69	129	199	180
[<50% variable]	(60-76)	(124-132)	(192-204)	(172-188)
Total Overlying NH3	1.0a	1.0a	1.0a	1.0^{a}
(mg/L) [<50% variable]	(<1.0-<1.0)	(<1.0-1.0)	(<1.0-<1.0)	(<1.0-<1.0)
Total Overlying Sulfides	0.091a	0.114	0.058	0.091a
(mg/L) [<50% variable]	(<0.010-0.125)	(0.014 - 0.293)	(0.012 - 0.126)	(<0.010-0.107)

^aestimated value Nautilus Environmental Washington Laboratory The result of the reference toxicant test conducted in conjunction with this testing program is provided in Table 10. Bench sheets and control charts are provided in Appendix E. This test was run with the same batch of organisms used in the testing program. The result of this test fell within the range of mean \pm two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 10 H. Azteca reference toxicant test results.

Species	Test date	Toxicant	LC50	Acceptable Range	CV (%)
Hyalella azteca	June 2, 2011	Cu	188 μg/L	0 - 1360 μg/L	74.6

4.4 Discussion

Mortality in the samples ranged from 3.8 to 100 percent, compared with 1.3 percent in the control. Sediment samples WETSED-1 and WETSED-2 were significantly different from control and were more than 10 percent higher than the control, failing the two-hit criterion for survival. WETSED-1 was more than 25 percent higher than the control, failing the one-hit criterion for survival.

5.0 MICROTOX® TEST

5.1 Methods

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox test. The bacteria were exposed to porewater extracted from sediment samples and light readings were measured after 5 and 15 minutes of exposure. Test equipment included the Microtox Model 500 Analyzer, which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot #s 10K1032, expiration date 10/2012) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with Ecology (2008) test protocol; these methods are summarized in Table 11. Approximately 50 ml of porewater was extracted from each sample by centrifuging for 30 minutes at 4500 G. Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea Marine Mix artificial seasalt. The DO ranged from 7.2 to 8.2 mg/L in the adjusted samples. Since the DO in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L), the samples did not require aeration. The pH was adjusted to 7.8 to 8.2 using NaOH or HCl. None of the porewater samples were diluted below 90 percent. The control was deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox test wells and 1 ml of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 μ l was added to each test cuvette, with mixing after each addition. After an initial incubation period of 5 minutes, the control cuvette was placed in the read chamber of the Microtox Analyzer to set the instrument. Initial light readings (I_0) were then taken by placing each cuvette in the read chamber of the Microtox Analyzer and measurements were recorded on a data sheet. Light output was measured at 5 minutes (I_0) and 15 minutes (I_0) of exposure after the initial light reading (I_0).

Test acceptability criteria were final mean control light output greater than or equal to 72 percent of initial control mean output, and test mean output not greater than 110 percent of control mean output. The data were evaluated statistically by conducting one-tailed t-tests or Mann-Whitney U-tests on the change in output over time for test sediment porewaters compared to the control porewater (where light output was lower than the control). Sediment performance was evaluated against sediment acceptability criteria outlined by the Northwest Regional Sediment Evaluation Framework (RSET 2009), as presented in Table 1.

A reference toxicant test using phenol was conducted in conjunction with the sediment tests to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Table 11 Summary of methods for the Microtox test.

-	
Test dates	June 6, 2011
Test organism source	Strategic Diagnostics
Batch number and expiration date	Lot#10K1032, Expiration 10/2012
Control	Saltwater (20 ppt) prepared with Crystal Sea artificial seasalt
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to
	20 ppt using Crystal Sea salt; pH adjustment to 7.8-8.2 ppt; DO
	5.0 to 10.2 mg/L
Test chamber	Glass cuvette
Test volume	1 mL
Volume of inoculum/replicate	10 μL
Number of replicates/sample	5
Test temperature	15 ± 1°C
Aeration	None
Reference toxicant	Phenol
Acceptability criteria	Final control light output ≥72% initial; test output ≤110% control

5.2 Results

The results of toxicity tests conducted using Microtox are provided in Table 12. Statistics were conducted using Biostat software, which follows the flowchart recommended by RSET. Comparisons are shown to the control. A detailed summary of results is provided in Appendix A. Summary and detailed statistical analyses for endpoint measurements are provided in Appendix B. Summaries of water quality data are provided in Appendix C. Benchsheets are provided in Appendix D.

Table 12 Results of Microtox tests. Samples with statistically reduced luminescence are underlined, and values failing two-hit RSET criteria are shaded gray, while samples failing one-hit RSET criteria are bold.^{1, 2}

Sample	<u>5 minute</u>	e reading	15 minut	e reading	
	Mean % of initial	Significantly	Mean % of initial	Significantly	
		different relative	different relative		different relative to
	light output	to the control	light output	the control	
Control	96 ± 3		84 ± 3		
WETSED-1	$\underline{68 \pm 4}$	Yes	<u>17 ± 1</u>	Yes	
WETSED-2	72 ± 1	Yes	25 ± 1	Yes	
WETSED-3	<u>81 ± 1</u>	Yes	35 ± 2	Yes	

¹Criteria for one-hit failure is luminescence less than 75% of control luminescence **and** significant difference (RSET 2009); ²Criteria for two-hit failure is luminescence less than 85% of control luminescence **and** significant difference (RSET 2009)

5.3 QA/QC

A summary of the water quality parameters for the Microtox tests is provided in Table 13. The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Table 13 Summary of sites water quality parameters for Microtox analyses

Analyte	Mean	Minimum	Maximum	Number of	Met
	(st.dev)	MIIIIIIIIIII	Maxiiiiuiii	Readings	Requirements
Initial Salinity (ppt)	1.1 (0.3)	0.8	1.3	3	N/A
Final Salinity (ppt)	19.9 (0.4)	19.5	20.2	3	Y
Initial DO (mg/L)	7.3 (0.2)	7.2	7.5	3	N/A
Final DO (mg/L)	7.3 (0.2)	7.2	7.5	3	Y
Initial pH	7.5 (0.4)	7.2	7.9	3	N/A
Final pH	7.9 (0.02)	7.9	7.9	3	Y
Final Concentration (%)	99.9 (0.0)	99.0	100	3	Y
Total NH3 (mg/L)	$2.0 (1.0)^{1}$	<1.0	2.7	3	N/A

¹estimated value

Results of the reference toxicant test conducted in conjunction with this testing program are provided in Table 14. Bench sheets and control charts are provided in Appendix E. The test was run with the same batch of organisms used in the testing program. The results of this test fell within the range of mean ± two standard deviations of historical results, indicating that the sensitivity of the test organisms was appropriate.

Table 14 Microtox reference toxicant test results.

Species	Test date	Toxicant	EC50	Acceptable Range (mean ± 2 S.D.)	CV (%)
Microtox	June 6, 2011	Phenol	5 min: 19.6 mg/L 15 min: 40.9 mg/L	5 min: 24.2 – 55.1 15 min: 31.0 – 92.2	19.5 24.8

5.4 Discussion

Change in light output in the samples at 15 minutes ranged from 17 to 35 percent, compared with 84 percent in the controls. Samples WETSED1, WETSED2, and WETSED3 were all significantly different from the controls and had luminescence less than 75% of controls, failing the one-hit criteria for luminescence.

6.0 CONCLUSIONS

WETSED-1 failed the one-hit criterion for *H. azteca* survival and the one-hit criterion for Microtox luminescence, but did not have a hit in the *C. dilutus* survival or growth criterion (RSET 2009). WETSED-2 failed the two-hit criterion for *C. dilutus* and *H. azteca* survival, and failed the one-hit criterion for Microtox luminescence (RSET 2009). WETSED-3 failed the one-hit criterion for *C. dilutus* survival and Microtox luminescence (RSET 2009).

Table 15 One-hit/Two-hit criteria summary results table

Cit-	C. dilutus	C. dilutus	H. azteca	Microtox
Site	Survival	Growth	Survival	Luminescence
WETSED-1	None	None	One-hit	One-hit
WETSED-2	Two-hit	None	Two-hit	One-hit
WETSED-3	One-hit	None	None	One-hit

7.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- Nautilus Environmental. 2008. Evaluation of Candidate Freshwater Sediment Reference Sites-Toxicological Results. Final Report.
- Regional Sediment Evaluation Team (RSET). 2009. Sediment Evaluation Framework for the Pacific Northwest. May 2009.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology. 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.
- Washington Department of Ecology. 2009. Baseline Characterization of Nine Proposed Freshwater Sediment Reference Sites, 2008. Publication Number 09-03-032.

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix B

Microtox Report Baseline and Dilution Series

Toxicological Evaluation of Freshwater Sediments

Microtox

Report date: March 28, 2013

Submitted to:

NEWFIELDS NORTHWEST

P.O. Box 216

Port Gamble, WA 98364

5013 Pacific Hwy East Suite 20 Tacoma, WA 98424

TABLE OF CONTENTS

TAB]	LE OF CONTENTS	I
SIGN	IATURE PAGE	.II
1.0	INTRODUCTION	1
2.0	METHODS	1
	2.1 Sample Collection and Transportation	1
	2.2 Test Procedures	
3.0	RESULTS	3
	QA/QC	
	REFERENCES	
	LIST OF TABLES	
Table	e 1. Summary of methods for the Microtox test.	3
Table	2. Results of Microtox tests	3
Table	e 3. Statistical analyses of Microtox results.	4
Table	e 4. Reference toxicant test results	4
	LICT OF APPENDICES	

LIST OF APPENDICES

APPENDIX A - Result Summaries

APPENDIX B - Laboratory Bench Sheets

APPENDIX C - Water Quality Results

APPENDIX D - Reference Toxicant Tests

APPENDIX E - Chain-of Custody Forms

SIGNATURE PAGE

Eric Tollefson

Project Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

Freshwater sediment samples were collected and evaluated for toxicity as part of a project being conducted by NewFields Northwest. Freshwater sediment samples were tested for toxicity using Microtox® tests.

2.0 METHODS

2.1 Sample Collection and Transportation

NewFields personnel collected three freshwater sediment porewater subsamples on March 18, 2014. Samples were shipped by Fed Ex and received by Rainier Environmental on March 19, 2014. Sample containers were inspected upon receipt and the contents verified against information on the chain-of-custody form. The samples were stored at 4°C in the dark until used for testing.

2.2 Test Procedures

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox® tests. The bacteria were exposed to porewater extracted from the sediment samples and light readings were measured after a 5 minute incubation period and then after an additional 5 minutes and 10 minutes of exposure. Testing was performed using the Microtox® Model 500 Analyzer which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot # 12B4010, Expiration date 2/15) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox® Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with Washington Department of Ecology (WDOE, 2008) test protocol, which are summarized in Table 1. Approximately 25 milliliters (mL) of porewater was extracted from each sample by centrifugation for 30 minutes at 4500 G (Porewater extracted at Newfields). Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea artificial sea salt. The dissolved oxygen (DO) in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L) and did not require aeration. The pH was adjusted to 7.9 to 8.2, as necessary, using NaOH or HCl. The laboratory control consisted of deionized water adjusted to 20 ppt with artificial seasalt.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox® test wells and 1 mL of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 microliters (μ L) were added to each test cuvette. After an initial incubation period of 5 minutes, the first control cuvette was placed in the read chamber of the Microtox® Analyzer to set the instrument. Initial light readings (I_0) were then taken by placing each cuvette in the read chamber of the Microtox® Analyzer and measurements were recorded on a data sheet. Light output was measured in each cuvette after an additional 5 minutes (I_0) and 10 minutes (I_{10}) of exposure. Test acceptability criteria is a mean control final light output greater than 72 percent of initial output and a test mean output not greater than 110 percent of the control mean output.

The data were evaluated statistically by conducting one-tailed t-tests on the change in light output over time for the test sediment porewaters compared to the control

A reference toxicant test using copper chloride was conducted in conjunction with the sediment porewater test to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Table 1. Summary of methods for the Microtox test.

Test date	March 19, 2014
Test organism source	Strategic Diagnostics
Batch number and expiration date	Lot#12B4010, Expiry 2/15
Control	Saltwater (20 ppt) prepared with Crystal Sea Marine Mix
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to
F-1	20 ppt using Crystal Sea Marine Mix; pH adjustment to 7.9-8.2
Test chamber	Glass cuvette
Test volume	1 mL
Volume of inoculum/replicate	10 μL
Number of replicates/sample	5
Test temperature	15 ± 1℃
Aeration	None
Reference toxicant	Copper Chloride

3.0 RESULTS

The results of toxicity tests conducted using Microtox® are provided in Tables 2 and 3. Sample WETSED 1 had a test mean output of less than 75 percent of the control mean output, at 15 minutes, indicating a Washington State Department of Ecology Sediment Quality Standard (SQS) failure and a Cleanup Screening Level (CSL) failure for freshwater Sediments. The other samples did not exceed sediment quality standards for the State of Washington (WDOE 2008).

Table 2. Results of Microtox® tests.

Sample ID	Change in light output as a % of Control (5 minutes)	Change in light output as a % of Control (15 minutes)
WETSED-1	88	63
SIR-300	104	104
SIR-300 Control	109	111

Table 3. Statistical analyses of Microtox results.

<u> 1900 an an Airte San an Air</u> Marangan an Airte	5-minute	reading	15 minute reading			
Sample ID	Mean % change in light output	Significantly different relative to the control	Mean % change in light output	Significantly different relative to the control		
Control	85 ± 2		77 ± 3			
WETSED-1	75 ± 2	No	49 ± 3	Yes		
SIR-300	89 ± 3	No	81 ± 3	No		
SIR-300 Control	93±4	No	86 ± 3	No		

4.0 QA/QC

The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Results of reference toxicant test used to monitor laboratory performance and test organism sensitivity are provided in Table 4. The results for the reference toxicant test fell within the range of mean ± two standard deviations of historical results, indicating that test organisms were of an appropriate degree of sensitivity.

Table 4. Reference toxicant test results.

Exposure Duration	Test date	Toxicant	EC50	Acceptable Range	CV (%)
5 Minutes			135 2 μg/L	978-1614	12.3
15 Minutes	March 19, 2014	Copper	414 μg /L	375-615	12.1

5.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology (WDOE). 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.

APPENDIX A – Results Summaries

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites WESTSED1, SIR-300, SIR-300 Con

Client NewFields Test Date: 3/19/2014

2650 <u>27,640,98</u>	Variation from	The second second second	protest and the		1000	te. 3/ (3/	7414				
Site		Light Reading Replicate							T _(mean) /	Quality Co Change in control light readings compared to initial control	entrol Steps Evaluation of initial light output in site sediments
	Reading	1111	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	(0)T(mean) (0)C(mean
	I ₍₀₎	91	96	108	104	107	101				
	1(5)	77	81	90	88	94	86			0.85	
CON	l ₍₁₅₎	70	77	78	81	85	78			0.77	100 Sept. 1989
	C ₍₅₎	∷ 0.85	0.84	0.83	0.85	0.88	0.85	0.02			
	C ₍₁₅₎	0.77	0.80	0.72	0.78	0.79	0.77	0.03			
	1 ₍₀₎	81	76	78	80	79	79				0.78
	l ₍₅₎	60	56	59	62	59	59				and a state of the
WETSED1	(15)	39	35	37	42	40	39				
	T ₍₅₎	0.74	0.74	0.76	0.78	0.75	0.75	0.02	0.88		
	T ₍₁₅₎	0.48	0.46	0.47	0.53	0.51	0.49	0.03	0.63	all of the second	alampa wa aka sina a sa
	I ₍₀₎	92	94	90	93	93	92				ംവ ം:91
p to	(5)	. 79	86	83	81	80	82				
SIR-300	Seption C	71	77	75	76	73	74				
	T _(S)	0.86	0.91	0.92	0,87	0.86	0.89	0.03	1.04		
	T ₍₁₅₎	0.77	0.82	0.83	0.82	0.78	0.81	0.03	1.04		and an artist and the second s
िल		. 93	105	103	92	93	97				0.96
	(5)	88	90	98	85	90	90				
SIR-300 Con	Î(15)	81	85	92	78	80	83				
	T ₍₅₎	0.95	0.86	0.95	0.92	0.97	0.93	0.04	1.09		
	F ₍₁₅₎	0.87	0.81	0.89	0.85	0.86	0.86	0.03	1.11		
	1(0)						#DIV/0!				#DIV/0!
	j ₍₅₎						#DIV/0!				
g o da gara ya magay da ma da	(15)	1000					#DIV/0!				
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DiV/0!	#DIV/01		
;	T ₍₁₅₎	#DIV/0!	#DIV/0!	#D1V/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	reservations of the state of the state of	
i skortistico	- t ₍₀₎						#DIV/0!		Kellinger Notes		#DIV/01-
	I ₍₆₎						#DIV/0!				
****	J ₍₁₅₎				.		#DIV/0!			Maria da Salaya.	
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!		
	T(15)	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01	#DIV/0!	#DIV/0!		s de la companya de l

I(0) is the light reading after the initial five minute incubation period

Co, Ro, and To are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps: **

S5

ditterne

genapi dipati serak dalah 14. /.

1. Is control final mean output greater than or equal to 72% control initial mean output?

(5):Fic(mean)/ c(mean):

YES 85%

I(15):Fc(mean)/Ic(mean):

77% YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

I_{T(mean)}/I_{C(mean)}: NO 78% **S1** IT(mean)/Ic(mean): **\$2** 91% YE\$ T(mean) C(mean): 96% YES **S**3 I_{T(mean)}/I_{C(mean)}; #DIV/0! #DIV/0! **S4**

I_{T(mean)}/I_{C(mean}): INVALD: If the test sediment is greater than 110%, the results in uninterpretable

#DIV/0! #DIV/0!

YES: If test sediment is reference, reference is acceptable

I(5) is the light reading five minutes after I(0)

 $I_{(15)}$ is the light reading fifteen minutes after $I_{(0)}$

APPENDIX B - Laboratory Bench Sheets

Rainier Environmental
5013 Pacific Hwy. E., Suite 20
Tacoma, WA 98424

Raw Data Sheet
Microtox
100% Sediment Porewater Toxicity

Client Name:

NEWFIELDS

Test Date: 3/19/2014

Sample ID:

WETSED-1, SIR-300, SIR-300

Test No.: 1403-029, 1403-030, 1403-031

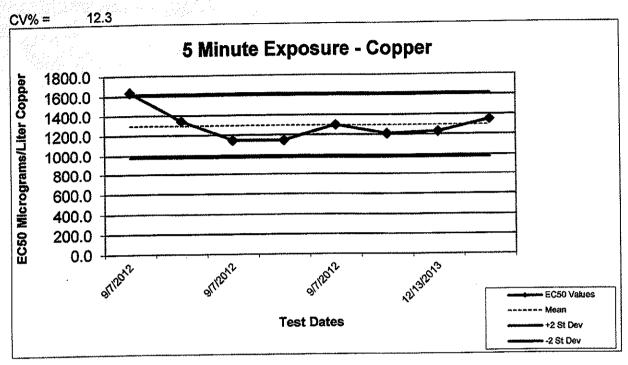
	Light				Replicate		
Site	Reading	Time	1	26			
754 74	I ₍₀₎	5 min	91	96	108	104	107
	I ₍₅₎	10min	77	81	90	88	94
CON	I ₍₁₅₎	20 min	70	77	78	81	85
					-		
	I ₍₀₎	5 min	81	76	78	80	79
	I ₍₅₎	10min	60	56	59	62	59
WET SED-1	$L_{(15)}$	20 min	39	35	37	42	40
	I ₍₀₎	5 min	92	94	90	93	93
	<u>I₍₅₎</u>	10min	79	86	83	<u>81</u>	80
5IR-300	I ₍₁₅₎	20 min	71	77	75	76	/3
CDD 200	I ₍₀₎	5 min	93	105	103	92	93
SIR-300 CON	I ₍₅₎	10min	98	90	98	85	90
CON	I ₍₁₅₎	20 min	81	85	92	78	80
				T		l	
	<u>I(0)</u>	5 min					
	<u>I₍₅₎</u>	10min					
	I ₍₁₅₎	20 min					
The state of the s	T	5 min				This representational analysis of production	9 7701
	I ₍₀₎	10min				A . 445.40	
	I ₍₅₎	20 min				18 + 2 · .	
	I ₍₁₅₎	ZV III II	<u>L</u>		L	er encommunication a const	

Comments:		والمراجع والمناطقية والمناطق والمناطقية والمناطقية والمناطقية والمناطقية والمناطقية والم
Comments.	الماد المعاصرة أنبه الحارب مي ويوال ويوال الميارية المعارض ويوال ويوال الميارية المعارض ويوال ويوال الميارية والميارية ويوال الميارية والميارية ويوال ويوال الميارية ويوال ويو	

APPENDIX C - Water Quality Results

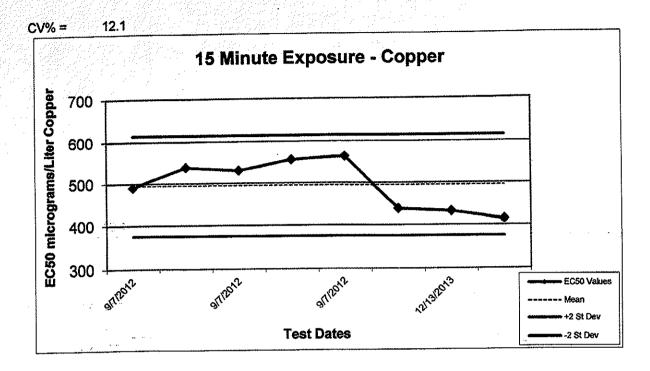
Nautilus Environmental Washington Laboratory 5009 Pacific Hwy. E., Suite 2 Tacoma, WA 98424 Physical and Chemical Measurements of Porewaters Sediment Bioassays

		Analyst: 3
Client :	NEW FIELDS	Test Date: 3/19/14
	•	Test Type: Microtox 100% Porewater Toxicity Test


Test No: 1403-029,1403-030,1403-03) Test Species: Vibrio fischeri

Suc	inutal Salitin 1996	Salaar Salaar Sappa	Initial DiO (mg/L)	Final D:O (mg/L)	Anital pH	Adjusted. pH	NaOH or HCL Vol. Used	finat Pusewater Conca	Ammonra?
CON	19,3	19,3	8.1)	7,53	8.13	JUQUH	99.9%	41.0
WETSEDI	1,3	30.6	7,8)	7,2)	803	1100/UL 0.1v1/40H	95,6% 4 99,6%	41.0
5Ik~300	1,4	19.4	7.8		ક્ષ:38		119UL OIN NOOH	99.6	∠1, 0
SFR-300 CON	0.1	30.5	8,0	<u> </u>	8.04			100%	21.0

Sample Description:	
Comments:	
QA Check: 9	


APPENDIX D - Reference Toxicant Tests

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 μ/L Copper ^a	Mean	StDev	-2 SD	+2 SD
9/7/2012	8:53	81.8	1636.0	1295.6	159.1	977.5	1613.7
9/7/2012	9:36	67.2	1344.0	1295.6	159.1	977.5	1613.7
9/7/2012	10:00	57.4	1148.0	1295.6	159.1	977.5	1613.7
9/7/2012	10:28	57.4	1148.0	1295.6	159.1	977.5	1613.7
9/7/2012	10:54	65.0	1300.0	1295.6	159.1	977.5	1613.7
12/5/2013	17:17	60.4	1208.8	1295.6	159.1	977.5	1613.7
12/13/2013	13:22	61.4	1228.0	1295.6	159.1	977.5	1613.7
3/19/2014	13:15	67.6	1352.0	1295.6	159.1	977.5	1613.7

Reference Toxicant Control Chart Microtox 15-Minute Exposure

Date	Time	EC50 %	EC50 μg/L Copper ^{aμ}	Mean	StDev	-2 SD	+2 SD
9/7/2012	853	24.6	491.0	495.2	59.9	375.3	615.0
9/7/2012	937	26.9	537.8	495.2	59.9	375.3	615.0
9/7/2012	1001	26.5	530.2	495.2	59.9	375.3	615.0
9/7/2012	1028	27.8	555.4	495.2	59.9	375.3	615.0
9/7/2012	1055	28.2	563.0	495.2	59.9	375.3	615.0
12/5/2013	1717	21.9	438.0	495.2	59.9	375.3	615.0
12/13/2013	1322	21.6	432.0	495.2	59.9	375.3	615.0
3/19/2014	1315	20.7	414.0	495.2	59.9	375.3	615.0

a - Highest concentration of copper is 2000 micro grams/Liter

MicrotoxOmni Sample Results Report

Result Name:

RT031914VF

Test Date/Time:

3/19/2014 1:15:00PM

Sample Name:

Sample 1

Test Name:

Basic Test

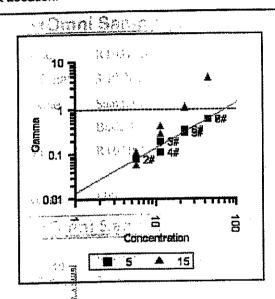
Description:

RT031914VF

Toxicant

Test Location:

Fife


Instrument ID:

MASTER

Reagent Lot #:

User ID:

MANAGER

Time	Sample	Conc	10	lt	Gamma	%Effect
Mins 🐇	4 P T					· · · · · · · · · · · · · · · · · · ·
	Control	0.00	105	{94 }	0.8943#	. •
	Control	0.00	101	93	0.9216#.	· · · · · · · · · · · · · · · · · · ·
and the second s	1	5.63	101	89	0.0266*	2.59%
. **	2	5.63	103	87	0.0797#	7 200/
+ 50 4	3	11.25	103	79	0.1918#	16.10%
	4	11.25	100	81	0.1112#	10.01%
	5	22.50	89	62	0.3034#	23.28%
ا امو سم سمونیست د	6	22.50	106	71	0.3554#	26.22%
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	45.00	106	59	0.6185#	38.22%
	e ganada 8 e da dago escentia	45.00	113	64	0.6028#	37.61%

Result Name:

RT031914VF

Test Date/Time:

3/19/2014 1:15:00PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

D201**0** 1 0 0 0

RT031914VF

Instrument ID: Reagent Lot #:

_MASTER

Toxicant

Test Location:

Fife

User ID:

MANAGER

Control	0.00	105	72	0.6836#	
Control	0.00	101	73	0.7203#	
1	5.63	101	67	0.0546#	5.18%
2	5.63	103	65	0.1051#	9.51%
3	11.25	103	51	0.4149#	29.32%
4 .	11.25	100	55	0.2743#	21.52%
5	22.50	89	30	1.058#	51.42%
6	22.50	106	35	1.094#	52.24%
7	45.00	106	13	4.570#	82.05%
8	45.00	113	14	4.528#	81.91%

- included, * - invalid

Statistics:

Data: 5 Mins

EC50 Concentration: 67.63%

(95% Confidence Range: 46.51 to 98.33)

EC50 value was calculated from extrapolated data.

95% Confidence Factor: 1.454

Estimating Equation:

 $LOGC = 0.9478 \times LOGG + 1.830$

Correction Factor: 0.9080

Slope: 1.006

Coeff of Determination (R^2): 0.9535

Data: 15 Mins

Page 2 of 3

Result Name:

RT031914VF

Test Date/Time:

3/19/2014 1:15:00PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

Test Location:

RT031914VF

Instrument ID: Reagent Lot #: _MASTER

Toxicant

Fife

User ID:

MANAGER

EC50 Concentration: 20.69%

(95% Confidence Range: 18.52 to 23.13)

95% Confidence Factor: 1.118

Estimating Equation:

 $LOG C = 0.5061 \times LOG G + 1.316$

Correction Factor: 0.7019

Slope: 1.940

Coeff of Determination (R^2): 0.9816

The contents of this report are private and confidential.

Printed:

3/20/2014

8:43:12AM

Signature:

APPENDIX E - Chain-of Custody Forms

CHAIN OF CUSTODY

"INewFields

Shipping: 4770 NE View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364

Tel: (360) 297-6045, Fax: (360)297-6901

Destination Lab: Sample Originator: Sample Originator: Port Gamble Environmental So				Report Results To: Phone:					Phone:					
Destination Contact: Contact Name: Bill Gardiner					Contact Name:						Fax:			
Date	Addrace:				Address:				Émail:					
Turn	3/18/14 -Around-Time	\dashv												
	ect Name	Phone:	01	na /aem			<u> </u>				Involcing To:	<u> </u>		
, (Yakima Steel	Fax:	360-10	17-6080	ļ	1	Ana	iysis			Comments or Special I	antouationes.	<u> </u>	
		rax:									Comments of Special II	ipriactionia;		i
Cont	racVPO:	E-mail			ŏ									
												Sample Temp		
No.	Sample ID	Matrix	No. & Type of Container	Date & Time	Microtox						Preservation	Upon Receipt	L	AB ID
1	WETSED-1	FW	1 glass	3/18/14 1125	Х						Onle	4.7	14-03	
2	SIR-300	FW	1 glass	3/18/14 1140	Х							45	14-03	
3	SIR-300 Control	FW	1 glass	3/18/14 1115	Х						V	4.5 4.5	14-03	6
ړ			-										, ,	
5					 									
6		<u></u>			-									
7		····												
8												·		
9														
10													•••	
_11		•			-									
12														
13												1		
14				***************************************										
15														
16					ļ .									
17														
18														
19														
20												-		
	Relinguished by:	Drint Name	Recieved	l by:	Print Na	na:	Relinqui	ished by:			Print Name:	Recieved by:		Matrix Codes
Print Name: Collin Kay Print Na Signature: Signature: Signature		Signature:	ENIC 10	<u>LPtSg/V</u>	Signatur						Signature:			FW = Fresh Water
	iation: PGES	Affiliation:	ERIC TOL Eric Tall Raining &	ov a mit t	Affiliation						Affiliation:			WW ≃ Weste Weter SB ≃ Sait & Brackish Weter
€	e/Time: 12/18/19 1350	Date/Time:	3/19/14	1000	Date/Tin						Date/Time:			SS = Soil & Sediment
		Print Name:			Print Na						Print Name:			TS = plant & Animal Tissue
		Signature:			Signatur						Signature:			OT = Other
		Affiliation:			Affiliation						Affiliation:	····		a see a see e
Date/Time: Date/Time			te/Time:			Date/Time:				Date/Time:			<u> </u>	

Toxicological Evaluation of Freshwater Sediments

Microtox

Report date: December 28, 2013

Submitted to:

NEWFIELDS NORTHWEST

P.O. Box 216 Port Gamble, WA 98364

5013 Pacific Hwy East Suite 20 Tacoma, WA 98424

TABLE OF CONTENTS

TABLE OF CONTENTS	I
SIGNATURE PAGE	II
1.0 INTRODUCTION	1
2.0 METHODS	1
3.0 RESULTS	3
4.0 QA/QC	4
5.0 REFERENCES	5
LIST OF TABLES	
Table 1. Summary of methods for the Microtox test.	3
Table 2. Results of Microtox tests.	3
Table 3. Statistical analyses of Microtox results.	
Table 4. Reference toxicant test results.	4
LIST OF APPENDICES	
APPENDIX A – Result Summaries	
APPENDIX B - Laboratory Bench Sheets	
APPENDIX C - Water Quality Results	
APPENDIX D - Reference Toxicant Tests	
APPENDIX E - Chain-of Custody Forms	

SIGNATURE PAGE

Eric Tollefson

Project Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

Freshwater sediment samples were collected and evaluated for toxicity as part of a project being conducted by NewFields Northwest. Freshwater sediment samples were tested for toxicity using Microtox® tests.

2.0 METHODS

2.1 Sample Collection and Transportation

NewFields personnel collected three freshwater sediment subsamples on December 4, 2013. Samples were shipped by Fed Ex and received by Rainier Environmental on December 5, 2013. Sample containers were inspected upon receipt and the contents verified against information on the chain-of-custody form. The samples were stored at 4°C in the dark until used for testing.

2.2 Test Procedures

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox® tests. The bacteria were exposed to porewater extracted from the sediment samples and light readings were measured after a 5 minute incubation period and then after an additional 5 minutes and 10 minutes of exposure. Testing was performed using the Microtox® Model 500 Analyzer which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot # 12B4010, Expiration date 2/15) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox® Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

The tests were conducted in accordance with Washington Department of Ecology (WDOE, 2008) test protocol, which are summarized in Table 1. Approximately 25 milliliters (mL) of porewater was extracted from each sample by centrifugation for 30 minutes at 4500 G. Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea artificial sea salt. The dissolved oxygen (DO) in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L) and did not require aeration. The pH was adjusted to 7.9 to 8.2, as necessary, using NaOH or HCl. The laboratory control consisted of deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox® test wells and 1 mL of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 microliters (µL) were added to each test cuvette. After an initial incubation period of 5 minutes, the first control cuvette was placed in the read chamber of the Microtox® Analyzer to set the instrument. Initial light readings (I_o) were then taken by placing each cuvette in the read chamber of the Microtox® Analyzer and measurements were recorded on a data sheet. Light output was measured in each cuvette after an additional 5 minutes (I₅) and 10 minutes (I₁₅) of exposure. Test acceptability criteria is a mean control final light output greater than 72 percent of initial output and a test mean output not greater than 110 percent of the control mean output.

The data were evaluated statistically by conducting one-tailed t-tests on the change in light output over time for the test sediment porewaters compared to the control

A reference toxicant test using copper chloride was conducted in conjunction with the sediment porewater test to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Table 1. Summary of methods for the Microtox test.

Test date	December 5, 2013
Test organism source	Strategic Diagnostics
Batch number and expiration date	Lot#12B4010, Expiry 2/15
Control	Saltwater (20 ppt) prepared with Crystal Sea Marine Mix
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to
* -	20 ppt using Crystal Sea Marine Mix; pH adjustment to 7.9-8.2
Test chamber	Glass cuvette
Test volume	1 mL
Volume of inoculum/replicate	10 μL
Number of replicates/sample	5
Test temperature	15 ± 1°C
Aeration	None
Reference toxicant	Copper Chloride

3.0 RESULTS

The results of toxicity tests conducted using Microtox® are provided in Tables 2 and 3. Sample WETSED 1 had a test mean output of less than 75 percent of the control mean output indicating a Washington State Department of Ecology Sediment Quality Standard (SQS) failure and a Cleanup Screening Level (CSL) failure for freshwater Sediments. The other samples did not exceed sediment quality standards for the State of Washington (WDOE 2008).

Table 2. Results of Microtox® tests.

Sample ID	Change in light output as a % of Control (5 minutes)	Change in light output as a % of Control (15 minutes)
WETSED 1	65	14
WETSED 2	103	98
WETSED 3	107	100

Table 3. Statistical analyses of Microtox results.

	5-minute	reading	15 minute reading		
Sample ID	Mean % change in light output	Significantly different relative to the control	Mean % change in light output	Significantly different relative to the control	
Control	91 ± 4		80 ± 4	===	
WETSED 1	59 ± 3	Yes	11 ± 1	Yes	
WETSED 2	94 ± 3	No	78 ± 4	No	
WETSED 3	97± 2	No	80 ± 2	No	

4.0 QA/QC

The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Results of reference toxicant test used to monitor laboratory performance and test organism sensitivity are provided in Table 4. The results for the reference toxicant test fell within the range of mean \pm two standard deviations of historical results, indicating that test organisms were of an appropriate degree of sensitivity.

Table 4. Reference toxicant test results.

Exposure	Test date	Toxicant	EC50	Acceptable	CV (%)
Duration				Range	
5 Minutes	D	Common	1209μg/L	929-1666	14.2
15 Minutes	December 5, 2013	Copper	438 μg /L	425-613	9.1

5

5.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology (WDOE). 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.

APPENDIX A - Results Summaries

Appendix Table A. Microtox 100 Percent Sediment Porewater Test Sites WESTSED1, WETSED2, WETSED3

Client NewFields Test Date: 12/5/13

						rate. IL					
Site				Light F	Reading				T. /	Quality Co Change in control light readings compared to initial control	entrol Steps Evaluation of initial light output in site sediments
3105	Reading	1	2	3	4	5	Mean	St.Dev.	T _(mean) / C _(mean)		(0)T(mean) ^{/]} (0)G(mean
	I ₍₀₎	91	92	87	79	90	88				
	I ₍₅₎	87	82	77	75	78	80			0.91	
CON	I ₍₁₅₎	76	75	66	66	67	70			0.80	
	C ₍₅₎	0.96	0.89	0.89	0.95	0.87	0.91	0.04			
	C ₍₁₅₎	0.84	0.82	0.76	0.84	0.74	0.80	0.04			
	l ₍₀₎	63	62	63	66	59	63				0.71
	l ₍₅₎	36	35	38	40	37	37				1.0004
WETSED1	I ₍₁₅₎	7	6	7	8	7	7				
	T ₍₅₎	0.57	0.56	0.60	0.61	0.63	0.59	0.03	0.65		
	T ₍₁₅₎	0.11	0.10	0.11	0.12	0.12	0.11	0.01	0.14		
·	l ₍₀₎	80	86	77	75	67	77				88.0
	[[] (5)	72	81	71	71	66	72				
WETSED2	I ₍₁₅₎	62	66	58	57	57	60			0.000	
	T ₍₅₎	0.90	0.94	0.92	0.95	0.99	0.94	0.03	1.03		
	T ₍₁₅₎	0.78	0.77	0.75	0.76	0.85	0.78	0.04	0,98		
	I ₍₀₎	77	78	70	68	67	72				0.82
	I ₍₅₎	73	73	68	69	67	70		-		
WETSED3	l ₍₁₅₎	60	61	56	56	55	58				
	T ₍₅₎	0.95	0.94	0.97	1.01	1.00	0.97	0.03	1.07		
	T ₍₁₅₎	0.78	0.78	0.80	0.82	0.82	0.80	0.02	1.00		
	1(0)						#DIV/0!				#DIV/0!
	I ₍₅₎						#DIV/0!				
	l ₍₁₅₎						#DIV/0!				
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		10 Co. 10 Co.
	T ₍₁₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#D{V/0!	#DIV/0!	#DIV/0!		
	1(0)		,				#D!V/0!				#DIV/0!
	l ₍₅₎						#DIV/0!				
	(15)		S.,,,,				#DIV/0!				
	T ₍₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!		
	T ₍₁₅₎	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	100000000000000000000000000000000000000	100000

 $I_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

 $l_{(15)}$ is the light reading fifteen minutes after $l_{(0)}$

C₍₀₎, R₍₀₎, and T₍₀₎ are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. is control final mean output greater than or equal to 72% control initial mean output?

I₍₅₎:F_{c(mean)}/I_{c(mean)}:

91% YES

 $I_{(15)}$: $F_{c(mean)}/I_{c(mean)}$:

80% YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

\$1 | I_{T(mean)}/I_{C(mean)}: 71% NO \$2 | I_{T(mean)}/I_{C(mean)}: 88% YES \$3 | I_{T(mean)}/I_{C(mean)}: 82% YES

\$4 | I_{T(mean)}/I_{C(mean)}: #DIV/0! #DIV/0! \$5 | I_{T(mean)}/I_{C(mean)}: #DIV/0! #DIV/0!

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

APPENDIX B - Laboratory Bench Sheets

Rainier Environmental 5013 Pacific Hwy. E., Suite 20 Tacoma,WA 98424 Raw Data Sheet
Microtox
100% Sediment Porewater Toxicity

Client	Name:
CHULL	Rame.

New Fields

Test Date: 12/5/18/13

Sample ID:

WETSEDI, WETSEDZ, WETSEDZ

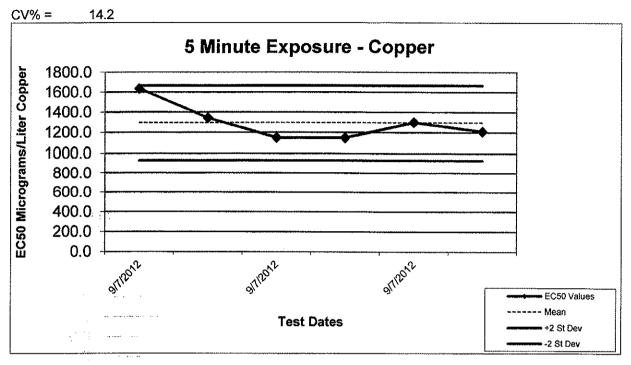
Test No.: 13/2-027, 13/2-028, 13/2-029

	Light				Replicate		
Site	Reading	Time	1	2	3.0	- 4	5
	I ₍₀₎	5 min	91	98	87	79	90
es 44	I ₍₅₎	10min	87	୫ର	77	79	78
CON	I ₍₁₅₎	20 min	76	75	66	66	67
	$\mathbf{I}_{\!\scriptscriptstyle{(0)}}$	5 min	63	દર	63	66	59
	I ₍₅₎	10min	36	3 <i>5</i>	38	40	37
WET SEDI	I ₍₁₅₎	20 min	07	0€	07	Og	07
	I ₍₀₎	5 min	90	8 6	77	75	67
	I ₍₅₎	10min	78	81	71	71	66 57
WET SEDA	I ₍₁₅₎	20 min	62	66	59	57	57
	$\mathbf{I}_{(0)}$	5 min	77	78	70	68	67
	I ₍₅₎	10min	73	73	68	69	67
WET SEb3	$I_{(15)}$	20 min	60	61	56	56	55
	I ₍₀₎	5 min					
	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					
	$\mathbf{I}_{(0)}$	5 min					
The state of the s	I ₍₅₎	10min					
	I ₍₁₅₎	20 min					

Comments:	

APPENDIX C - Water Quality Results

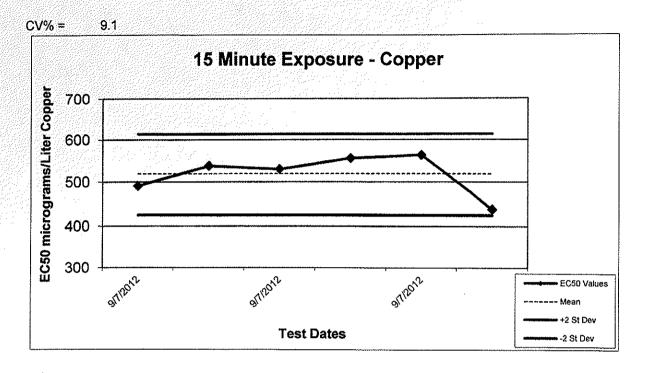
Rainier Environmental 5013 Pacific Hwy. E. Suite 20 Tacoma, WA 98424 Physical and Chemical Measurements of Porewaters Sediment Bioassays


		Analyst: 9t
Client :	Newfildo	Test Date: 12/5/13
		Test Type: Microtox 100% Porewater Toxicity Test
Test No:	1312-027, 1312-028 1312-029	Test Species: Vibrio fischeri

Sitě	Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Final Porewater Conc.	Ammonia
CON	ે0 ,3	20,3	6,7	6.7	8,07			100%	0.0
WETSEDI	0.7	19,7	6,2	6.9	7.14	7,93	120M2 NaOH	99.5%	41.0
WETSEDQ	0,2	20,3	6,3	6,3	7,25	7,97	80/4 NaOH	99.7%	41.0
WETSER3	Oig	19.5	6,3	6,3	7,28	8.01	100 LVL Na OH	99.6	1.7

omments:		 ·····

		 <u></u>


APPENDIX D - Reference Toxicant Tests

Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Copper ^a	Mean	StDev	-2 SD	+2 SD
9/7/2012	8:53	81.8	1636.0	1297.5	184.0	929.4	1665.5
9/7/2012	9:36	67.2	1344.0	1297.5	184.0	929.4	1665.5
9/7/2012	10:00	57.4	1148.0	1297.5	184.0	929.4	1665.5
9/7/2012	10:28	57.4	1148.0	1297.5	184.0	929.4	1665.5
9/7/2012	10:54	65.0	1300.0	1297.5	184.0	929.4	1665.5
12/5/2013	17:17	60.4	1208.8	1297.5	184.0	929.4	1665.5
	• • • •						
							2.
	. *************************************		i 1				
	Žosi#		1				-100
: 1							7888.7
							ajerja
	2 4 1. **						-
	: "						111111
							1,000
	į						

Reference Toxicant Control Chart Microtox 15-Minute Exposure

Date	Time	EC50 %	EC50 mg/L Copper ^a	Mean	StDev	-2 SD	+2 SD
9/7/2012	853	24.6	491.0	519.2	47.1	425.1	613.4
9/7/2012	937	26.9	537.8	519.2	47.1	425.1	613.4
9/7/2012	1001	26.5	530.2	519.2	47.1	425.1	613.4
9/7/2012	1028	27.8	555.4	519.2	47.1	425.1	613.4
9/7/2012	1055	28.2	563.0	519.2	47.1	425.1	613.4
12/5/2013	1717	21.9	438.0	519.2	47.1	425.1	613.4

a - Highest concentration of copper is 2000 micro grams/Liter

MicrotoxOmni Sample Results Report

Result Name:

RT120513VF

Test Date/Time:

12/5/2013 5:17:11PM

Sample Name:

Sample 1

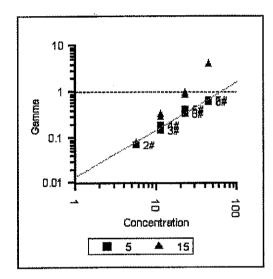
Test Name:

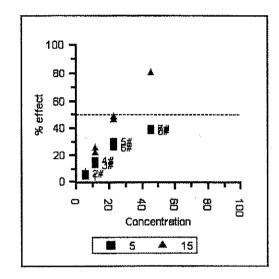
Basic Test

Description:

instrument ID:

_MASTER


Reagent Lot #:


Toxicant: Test Location:

rainier

User ID:

MANAGER

Time	Sample	Conc	10	lt	Gamma	%Effect
5 Mins		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***	
	Control	0.00	92	110	1.187#	
	Control	0.00	98	110	1.130#	
	1	5.63	101	112	0.0490*	4.67%
	2	5.63	101	109	0.0722#	6.73%
	3	11.25	105	105	0.1504#	13.07%
	4	11.25	102	99	0.1921#	16.12%
	5	22.50	101	82	0.4342#	30.28%
	6	22.50	102	88	0.3524#	26.06%
	7	45.00	105	74	0.6583#	39.70%
	8	45.00	96	68	0.6318#	38.72%

Result Name:

RT120513VF

Test Date/Time:

12/5/2013 5:17:11PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

Instrument ID:

Toxicant:

Reagent Lot #:

Test Location:

rainier User ID:

MANAGER

_MASTER

Control	0.00	92	82	0.8903#	
Control	0.00	98	84	0.8608#	
1	5.63	101	82	0.0797#	7.38%
2	5.63	101	82	0.0777#	7.21%
3	11.25	105	71	0.2811#	21.94%
4	11.25	102	67	0.3382#	25.27%
5	22.50	101	45	0.9571#	48.90%
6	22.50	102	48	0.8749#	46.66%
7	45.00	105	18	4.128#	80.50%
8	45.00	96	17	4.069#	80.27%

- included, * - invalid

Statistics:

Data: 5 Mins

EC50 Concentration: 60.44%

(95% Confidence Range: 45.87 to 79.63)

EC50 value was calculated from extrapolated data.

95% Confidence Factor: 1.318

Estimating Equation:

 $LOG C = 0.9300 \times LOG G + 1.781$

Correction Factor: 1.159

Slope: 1.044

Coeff of Determination (R^2): 0.9706

Data: 15 Mins

Result Name:

RT120513VF

Test Date/Time:

12/5/2013 5:17:11PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

Instrument ID:

_MASTER

Toxicant:

Reagent Lot #:

Test Location:

rainier

User ID:

MANAGER

EC50 Concentration: 21.90%

(95% Confidence Range: 20.68 to 23.18)

95% Confidence Factor: 1.059

Estimating Equation:

 $LOG C = 0.5329 \times LOG G + 1.340$

Correction Factor: 0,8756

Slope: 1.868

Coeff of Determination (R^2): 0.9954

The contents of this report are private and confidential.

Printed:

12/30/2013 9:12:29AM

Signature:

APPENDIX E - Chain-of Custody Forms

NewFields Northwest, LLC. Shipping: 4729 NE View Dr. Mailing: P.O. Box 216

CHAIN OF CUSTODY 12000

1				Tel: (360) 29	: Gambie 197-6040.	e, W.A. Fax∷t	. 98364 (360)29'	7-7268					100	13.0	
es	tination Lab: Rahajer Entitonament	Samr	ple Originator:			, x anti-		lesults To:				Phone:			
)es	stination Lab: Ramier Environmenta stination Contact: Enc Tollefson	Conta	act Name: BIII	Gardiner			Contact N	lame:	Authororous			Fax:			
ate	* 12/4/13	Addre	ess:	- CANCILLO		·····	Address:					Email:			
urr	ie: 12/4/13 n-Around-Time S-fandard eject Name		See 1	Hove.											
roj	ject Name	Phone	ie:				Ana	alysis		-	invoicing To:				
1	#INAS	Fax:	V	·							Comments or Special I	instructions:			_
oni	racur y	E-mail	aardiner	onewfields co	nă an					ļ		1			
lo.		Matrix	No. & Type of Container	Onewfields con	E cra				- Constitution of the Cons		Preservation	Sample Temp Upon Receipt	į	LAB ID	
1		SS	Iglass	12/4/3 1420	X							4,9	13-1	149	
2	WETSED 2		4		X							4,2	13-1	150	
3	WETSED 3	V	V	V	X	<u> </u>		<u> </u>				4.5	13-	151	
4	4	 			ļ'		<u> </u>	ļ	1						
5	-	 			<u> </u>			ļ	-			<u> </u>			
6						<u> </u>		<u> </u>						····	
7					<u> </u>			<u> </u>	 -						
8					<u> </u>	ļ	-	<u> </u>	 -		ļ				
9					ļ!	 		<u> </u>	 -						
10					-				-						
11 12						 		 	+			 			
12 13						Ĺ			-			 			
14		l			-				-		<u> </u>	 			
15								 	 -			 			
16			+		 				-			-	· · · · · · · · · · · · · · · · · · ·		
17		<u> </u>	-												
18					† †		1					 			
19		i	-		.!			-/10	-			1	***************************************		
20															
	Relinquished by:	Print Name:	Recieved	d by:	Drint Max		Relinqui					Recieved by:		Matrix Codes	
	(DIIIN ISAV)	ينکا	ic Telleton	<u>~</u>	Print Nam						Print Name:			FW = Frosh Water WW = Wasle Water	
		Signature:	ERIC TOLL	FFSa N	Signature	i:					Signature:			SB = Salt & Brackish Water	et .
18	tation: Nou Helds	Affiliation	LINIER		Affiliation:	:	******				Affiliation:			_SS = Soll & Sediment TS = plant & Animal Tissue	e
ate	New Helds	K/ iDate/Time:	VINTEN	^	Date/Time	<u> </u>					Data Giliana	·····		OT = Other	

Date/Time:

WHITE - return to originator • YELLOW - lab • PINK - retained by originator

Date/Time: |2/5/13

Date/Time:

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix C

Amphipod and Chironomus Data Sheets Baseline and Dilution Series

Appendix C.1

10-Day Solid-Phase Test with Hyalella azteca

NewFields

10 DAY SOLID PHASE TEST DATA SHEET - FRESHWATER

CLUENT Far	allo:	n			JECT ekim	a Ste		OB NU	MBER	- 1	JECT M	- 1	BORATO		- 1	PROTOC		SPEC	IES	Hyalle.	1 a	ACCLM.MORT	•]
Lar	a			1.0	z r z m	a oce	CT				_	INT D								пуатте	La					
3≃ no burrows p vl≕ dead on surface p	. = anoxic i= fungal p i= no air f i= excess	oatches low (DC food)5)	DATE \2/	CIAN	DATE YU TECHNICIA	S I	ATE	(V)	DATE 12 TECHNIC	X.3345X	DATE	& (ed with the	า	DATE *) JAN	DATE 2/2 TECHNICI	IAN	DATE 122 TECHNICIAN	DATE 12/23 TECHNICIAN	NUMBER REMAINING	WEIGH BOAT NUMBER	ARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY WEIGHT (mg)
CLIENT/ NEWFIELDS IS	REP	JAR #	INITIAL #	OBSERV		OBSERVN	s. c	BSER	MS.	OBSERV	NS.	M/M/		BERVNS	21	/ OBSERV	/	OBSERVA	vs.	OBSERVNS.	UR OBSERVNS.	NUME	WEIG	TARE	TOTA (mg)	ASH F WEIGI
	1			7)	7		N		N)	N		2	Ī	N		2		7	N	9			209.67	
_	2			1		1		1		ĺ		}]		1		1		{	1.	100	2	207.22	207,50	
	3																		********			10	3	208,51	208.93	
Control / .	4																					10	4	206.81	207,23	
3011202 , .	5																					9	5	210.62	211.00	
	6																					8	V	206.59	Ocob bb	206.8
	7																				\	9	-	209,67	208,28	210.00
	8									Terretorae												В	8		20990	
	1																					10	9	209.21	209.80	
	2																					10	10	207.21	207.98	
	3																					10		209.06	208.77	
TNWR / .	4																					10	12	S		
	5									-												8	13	207.26	207.86	
	6																		.,			10	14	204.58	205.29	
	7																			-		10	15	26.50	207.08	
	8																			e de la companya de l		10	16	210.31	211.01	
•	1																					Ø	17	201.23		
	2							ĺ		and the second										-		ھر	2/	207.43		
	3							1		- The second										23		حک	19	210.55		
WETSED1 / .	4							j														Ø	20	710.54		
	5																					Ø	21	20962		
	6						\mathbf{I}							1				\				Ø	77	Z 10.00		
,	7]						<i>I.</i>								8	73	207.88		
	8				Ü	Ū		1		<u> </u>		V		T.		1					Ψ	Ø	24	206.98		
Zev	o ti	We.	<u> </u>	Ta	ve u	ut.		Жy	W	ر. ا							**		٢	(1)	6 in ho	at		E. JC 40		
	į			204	e.52	2 mg		ž	06	5.72	m	9								(1)	(- 11-)	1021,20	۱۲ ت	S Je Un	2/14	
	2			206	.7	t ma		Z	06	. 9	Lm	9										100110	, (), UC 10	414.	
	3			20-	7.71	Nt. ? mg + mg . mg		2	,OF	. 8	9 ~	·9.														

NewFields

10 DAY SOLID PHASE TEST DATA SHEET - FRESHWATER

CLIENT				PROJE		O+ 1	JOB NUME	BER	PROJEC			ATORY		PROTOCOL	SPECIES	rr 7 7	- 3 -	ACCLM.MOR	T.			
Pal	rallo	n		Yak	ıma	Steel					er Port			ERVATION		Hyalle	ela					į
M≔ dead on surface	L = anoxic F= fungal D= no air t U= excess	patches low (Do	s	DATE 12/16		ATE VO/15 ECHNICIAN	DATE ())))		ATE 12/17 ECHNICIAN	DAT	E 2//8 HNICIAN	DATE		DATE 12120	DATE 12/21 TECHNICIAN	DATE QU TECHNICIAN	DATE 12123	R	BOAT R	ARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY WEIGHT (mg)
CLIENT/ NEWFIELDS	ID REP	JAR #	INITIAL #	OBSERVA	s. o	りし BSERVNS.	M/V OBSERVA		ال BSERVNS.	N	IMB ERVNS.		MO	TECHNICIAN OBSERVINS.	U L OBSERVNS.	ال OBSERVNS.	MMS OBSERVNS.	NUMBER REMAINING	WEIGH BOAT	TAREW	TOTAL (mg)	ASH FR WEIGH
	1			7		Ŋ	N		P		N		<u>)</u>	2	7	2	2	9		208.82		
	3		<u> </u>	999000										<u> </u>				10	26	205.46	206.0S 209.77	
WETSED2 / .	4			TO CONTRACTOR OF THE CONTRACTO	-		}											10		2/2.87		
WEISEDZ / .	5																	10	1291	209.57	210.00	
	6 7			and the second								 		1				9		208.66		
	8		ļ										••••••					10	31	207.83 204.77	208.51	
1 2	1				\top			1		╁				1			175	8	33	203.81	204.27	
												,	1			1	10	34	207.52	203.06		
	3										ļ				ļ			9	35	207.61	208.15	
9 ppm Cd / .	5] [10	ろか	205.87 208.79	206.50	***************************************
	6						Magaz											9	3 %	207.33	207.86	
	7		ļ															10		209.61		
	8					_											1-1/2	10		206.91 205.75		
	2	ļ	 														1 7	10		208.79		
3 3 6 ppm Cd / .	3		ļ													-		10	43	207.94	208.55	
			ļ	entreproduction of the control of th														10		210.04		
	6			SCATA														10		209.03 207.09		
	7		<u> </u>				A				y							9	44	207.71	208.22	
	8			U		J			4			٣		-	¥	J	J	9	48	203.59		

18 in weighbort

CLIENT	7.3				ROJECT			JOB NU	MBER		OJECT		ABORA		- 1	OTOCOL	SPECIE				ACCLM.MOI	₹ Τ.			1
ł'ar	allo	n			Yakin	na St	eel					1		amble, W		RVATIO			Hyalle	la				•	
B≃ no burrows M≃ dead on surface = [. ≖ anoxid == fungal D≖ no air i J≖ excess	patches flow (D)	s	TECH	/(A NICIAN	DATE	15	DATE))\o	DATE	18, 333	DATE 12/19	S MAI	DATE 13/15	DA 1	[5/20	DATE 1401 TECHNICIA		DATE Y2/22 TECHNICIAN	DATE	R R IING	BOAT R	ARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY WEIGHT (mg)
CLIENT/ NEWFIELDS II	D REP	JAR #	INITIAL #	OBSE	PVNS.	OBSER	VNS.	MI OBSER	WB	C OBSER	VNS.	M/M OBSERVA	6	WWŁ	>	SERVINS.	ال OBSERVNS		りし OBSERVNS.	OBSERVNS.	NUMBER REMAINING	WEIGH BOAT NUMBER	TARE W	rotal. .mg)	ASH FR WEIGHT
	1			1	ر	1	J	M	2	١)	N		2		7	N		2	N	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ца	3 4 -	200,44	
_	2			9007160000	1		1		l			١ ،		١						1	9	50		210.56	
	3			og o																	9	51		210.89	
3 ppm Cd / .	4				ļ																q	52	206.89	207.56	
	5		ļ	TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN T	ļ	ļ						ļļ.					ļ				8	53		208.76	
	6 7 8		ļ		ļ							ļļ					ļ				9		207,47	@ * * * * * * * * * * * * * * * * * * *	
			ļ	**********	ļ			***********	ļ	ļļ									9		211.05	B			
	1				-										_		ļ	_			10		206.42		
	2				ļ				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 					.				9				
	3	ļ	ļ	Acceptance of the control of the con	ļ							.				-}	.			1			204.10		
	4		†			ļ					 	-					ļ			-	118		208.39 208.18	208,71	
1 ppm Cd / .	5		ļ							 :	.}	 				-	ļ			1	9			208.20	
	6		†	objection of the contract of t		······					1	 								1	10		107.62		
	7	ļ	†·····					***************************************	3		†	1					 				10	63	207.31	202.99	
	8		1	The second			·············	(1		1	'	*********				₩	,,,,,		4	iŎ		208.40		

ENT				PROJ	ECT			SPEC					LABORATO	RY		PROTOC	OI
Fara	allon	,			Yakima	Ste	el		H	lyal	lela		Por	t Gamble,	AW	98014 2000 •	138,0000
NUMBER				PROJ	ECT MANAGER			TEST	START DATE		TIME		TEST END			TIME	
					Bill Gar	dir	ner		13Dec1	.3	144	5		23Dec13			
					Ì		VATER Q										
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		COND (µS/cm) vary <	50%	рн 7.8-8.2	DILUT	TION WATER BAT		TEMP.REC	DR./HOBO)#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L.	meter	TEMP °C	C(meter	NDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER I	RENEWAL PM	F
Control / .	0	WQ	22	7	8.6	7	22.5	2	183	Þ	7	7	8.1	MMB	MMS	><	1
Control / .	1	WQ	22	7	7.4	3	22.3	2	184	\prod	1	3	7.3	リレ	Ju-		-
Control / .	2	WQ	22	7	7.2	7	22.4	2	186			\	74	リル	JL-		
Control / .	3	WQ	22	7	ک ہو	7	22.6	2	202	0		Ś	7.3	UL	JL	HE	M
Control / .	4	WQ	22	7	· 6.2	1	22.4	2	202		\	5	7,3	リレ	Ur	He	- 1
Control / .	5	WQ	22	7	14-85.7	7	22.2	ı	202			5	8.0	The	142-		
Control / .	6	WQ	22	7	6.5	7	24. 3	J	20 A	ripappi	\ /	2	7.4	MIMB	MMB	R	6
Control / .	7	WQ	22	7	5.6	7	22.3	2	101	the state of the s	V	5	7.3	W5.			
Control / .	8	WQ	22	7	6.4	12	22.8	2	200	The control of	V T	5	7.3	ع ال	<u> </u>		17
Control / .	9	WQ	22	7	6.1	7	22.8	2	201			2	7,4	Jι	JL -		-
Control / .	10	WQ	22	7	5.4	7	20.3	2	203	77		5	7.3	CR			
TNWR / .	0	WQ	5	7	6.6	7	23.7	2	202			5	7,3	ca	MMS	$\geq \leq$	<u></u>
TNWR / .	1	WQ	5	7	5.9	3	22.0	2	221			5	7.3	UL	d-		士
TNWR / .	2	WQ	5	17	5.8	1	22.1	2	214	NO THE REAL PROPERTY.		S	7,4	JL	Jr -		土
TNWR / .	3	WQ	5	ゴ	5,8	1	22.0	2	225	1		15	7.3	ひし	N	75	М
TNWR / .	4	WQ	5	7	4.9	12	22.0	2	219	***************************************		[2]	7.2	<u> </u>	UL	HE	8
TNWR / .	5	WQ	5	7	4.6	1	21.0	Z	223	,	-	5	7.3	¥9.	11/2		+ 5
TNWR / .	6	WQ	5	7	4. 7	7	21.7	ၣ	216	A SOUTH AND A SOUTH ASSOCIATION ASSOCIATION AND A SOUTH ASSOCIATION AND A SOUT		5	7.4	MIMB	minis	IR	
TNWR / .	7	WQ	5	7			yro.o	7	212				<u> ۱۰۲ (- بـ دِك</u>	1d		-	
TNWR / .	8	WQ	5	7	<u>85</u>	7	22.5	2	208			15	8.1	<u>J</u>	00-		<u> </u>
TNWR / .	9	WQ	5	7	8.5	1	22,2	2				15	8.0	JL	ال	<u>:</u>	
TNWR / .	10	WQ	5	17	2.1	7	ZO. 1	2	219			S	7.9				

CLIENT	PROJECT	SPECIES	
Farallon	Yakima Steel	Hyalle	la
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME
	Bill Gardiner	13Dec13	

WATER QUALITY DATA #1																
				DO (m	ng/ L) > 2.5		TEMP (C) 23±1.		COND.(µS/cm) Vary <	1000	Н		UTION WATER BA	тсн	TEMP.RECDR./HOBO)#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	Co	ONDUCTIVITY µS/cm	meter	Salinity ppt	met	рН	TECHNICIAN	WATER RENEWAL	FEED- ING
WETSED1 / .	0	WQ	19	7	7 . S	7	22.7	ဍ	277	F,	ic.	// <		MME	mms ><	Ju
WETSED1 / .	1	WQ	19	7	67	7	22.3	2	320	5		IIs	W7-371	\\rangle	J	
WETSED1 / .	2	WQ	19	7	6.0	7	22.9	2	256			LŠ	6.0	UL	Jo-	 ->
WETSED1 / .	3	WQ	19	7	6.2	1	22,8	2	294			5	6.9	UL	Jr - 116	
WETSED1 / .	4	WQ	19	7	۲۰گ	1	22.4	2	728			ls	7.2	رار	IL HE	the
WETSED1 / .	5	WQ	19	7	5.8	7	27.6	1	210		$\setminus I$	5	7.3	11/2	7 HE	
WETSED1 / .	6	WQ	19	7	5.8	7	Da.3	Ç	213		$\setminus I$	C	7.1	Nime	MMB CR	CR
WETSED1 / .	7	WQ	19	7	4.5	7	22.2	2	205ª		\mathcal{M}	5		NE.		
WETSED1 / .	8	WQ	19	7	4.7	17	22.3	7	201		\mathcal{N}			, yr	UL-	3-7
WETSED1 / .	9	WQ	19	7	<u> 5.2</u>	17	23.2	2	199			2	7.2	ا لا	<u> </u>	 = 7
WETSED1 / .	10	WQ	19	7	4.8	7	20.4	2	201	NA CONTRACTOR	_/_	5	7.1	(r	į	
WETSED2 / .	0	WQ	46	4	7.2	7	29.S	7	259	5	· /=	410	1 1 1	MMB	MMS ><	Jr
WETSED2 / .	1	WQ	46	7	6.5	13	22.4	2	307		$/ \perp$		7-14	ノレ	UL +	+->
WETSED2 / .	2	WQ	46	7	63	7	22.3	2	265	,	$I \perp I$	\$	7.4	U.	リレー	ک ے
WETSED2 / .	3	WQ	46	7	5.7	3	22.6	2	261			S		ひ	Ur HE	MMB
WETSED2 / .	4	WQ	46	7	5.4	12	22,4	2	277	5		5		<u> </u>	JL HE	Hez
WETSED2 / .	5	WQ	46	7	5.0	7	22.3	2	258		ļ	1.5		Hr.	PE	-
WETSED2 / .	6	WQ	46	7	6.2	17	23, 3	2	246			18	·	MMB	Mus CR	CR
WETSED2 / .	7	WQ	46	7	5.1	7		2	235			5		Jr.	H	
WETSED2 / .	8	WQ	46	7	5.9	Caronaccon T	23.2	2		Ш		<u> </u>		Ú.	UL	
WETSED2 / .	9	WQ	46	7	5.2	7	_	2	231	Ш		\ 5		<u> </u>	リレ	1-3
WETSED2 / .	10	WQ	46	7	4.7	17	20.3	Z	231			\ 5	7.4	CR		
	01	MR. J	L 12/	14/1	3.		(i)	1	06 1	4	17	(10				

LABORATORY

TEST END DATE

Port Gamble, WA

23Dec13

PROTOCOL.

TIME

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal.	lela	Port Gamble, WA	SERVE SOUS A SERVING SHARING
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		23Dec13	

						V	VATER Q	UA	LITY DAT	A #	1					<u>'</u>	
				DO (n	ng/ L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) vary < :	50%	р Н 7.8-8)ILU1	TION WATER BA	rсн)	TEMP.RECDR./HOBO) #
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP	C meter	ONDUCTIVITY	meter	Salinity	1	neter	pH unit	TECHNICIAN	WATER RENEWAL	FEED-
9 ppm Cd / .	0	WQ	66	7	7.9	7	23.9	2	284	15			5	7-7	CR	Mms ><	JL
9 ppm Cd / .	1	ΨQ	66	7	6.7	3	22.5	2	354	\prod			5	7.5	ÚL	7.7	-7
9 ppm Cd $/$.	2	WQ	66	7	6.2	17	22.5	2	290			consees.	5	74	0	ルー	17
9 ppm Cd / .	3	WQ	66	7	6.1	1	22.3	2	280			eses eses eses es	5	<u> </u>	リレ	Ju HE	MM
9 ppm Cd / .	4	WQ	66	Ä	5.4	7	22.4	2	267	\		ptydantyngd	5	7.5	リレ	UL HE	1/2
9 ppm Cd $/$.	5	WQ	66	7	5.3	7	225	2	259				- 1	07.4	化-	D 74E-	5
9 ppm Cd / .	6	WQ	66	7	5. 3	7	23.2	9	42c-		$\setminus T$		S	7.7	Myrs	MUS CR	CR
9 ppm Cd $/$.	7	WQ	66	J	5.9	7	22.7	2	250	U SALAMATA	1	opposite Co.	5	7.5	H	46	
9 ppm Cd / .	8	WQ	66	7	5,8	7	22.9	2	240	SECONDARY SECONDARY		and the same	5	7,4	ĴU	J	7
9 ppm Cd $/$.	9	WQ	66	7	6.1	7	22.6	2	229	CONTRACT		Section 2	5	7,5	ÚL	JL	7
9 ppm Cd $/$.	10	WQ	66	7	5.2	7	20.4	2	236		V		5	7.8	CR		
6 ppm Cd $/$.	0	WQ	61	T	6,9	7	۶, 4 ç	7	291		Ι Λ		5	7.6	MMS	mus >	JL
6 ppm Cd $/$.	1	WQ	61	Z	6.2	17	22.4	2	343				5	74	UL	()L	7
6 ppm Cd / .	2	WQ	61	7	6.2	7	22.2	2	282	,		escense	5	73	JL	JL	777
6 ppm Cd / .	3	WQ	61	7	6.6	7	22.4	2	274			common	5	7.3	JL	UL HE	MMB
6 ppm Cd $/$.	4	WQ	61	コ	5.6	7	22.3	2	271	CONTESTION		ACCUSATION OF THE PERSONS ASSESSMENT ASSESSMENT ASSESSMENT OF THE PERSONS ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSE	S	7.4	S	J. 142	HE
6 ppm Cd / .	5	WQ	61	7	5.1	7	V2.3	7	258			The state of the s	5	7.3	162 -	D 24E	_=5
6 ppm Cd / .	6	WQ	61	4	S. 3	7	39.3	ػ	248	\prod		erancemon.	6	7 .3	Mans	MUB CR	ar
6 ppm Cd $/$.	7	WQ	61	7	5.9	7	- 22,4	Z	237	\prod		\	5	7.4	#L	H.	
6 ppm Cd / .	8	WQ	61	7	5.2	7		2	229	\prod			5	7.3	リレ	JL +	7
6 ppm Cd / .	9	WQ	61	7	5.3	7	23,5	2	234	\prod		\ \	5	7.4	J	Ju	7
6 ppm Cd / .	10	WQ	61	7	3.8	7	20.2	2	229	1		$\int_{\mathbb{R}^{2}}$	5	7.3	CR		
	0	T110	² Sibl	e	H4 12/1	B								•			

Page 3 of 4

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL.
Hyal	lela	Port Gamble, WA	1258 July + 184 mgorberrendt
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		23Dec13	

WATER QUALITY DATA #1															
				DO (n	ng/L) > 2.5		TEMP(C) 23±1		cond(µs/cm) vary <	50%	р Н 7.8-8	DIL 2	UTION WATER BA	т сн 0	TEMP.RECDR./HOBO#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	Ci	ONDUCTIVITY	meter	Salinity	met	pН	TECHNICIAN	WATER RENEWAL FEED-
3 ppm Cd / .	0	WQ	40	7	6.9	7	ે - કર	2	741	1		/5	J.6	MME	MWB > 1
3 ppm Cd / .	1	WQ	40	7	6.3	7	22.5	2	283			113	7.4	JL	JL ====================================
3 ppm Cd / .	2	WQ	40	7	6.4	그	22.4	2	253				(F)	√	Ju
3 ppm Cd / .	3	WQ	40	7	5.8	2	22.3	2	249	\		$\int \int $	7.(رل	UL HE MMB
3 ppm Cd / .	4	WQ	40	7	4.8,	1	22.7	2	257	4	\	(74	N	Je Ha the
3 ppm Cd / .	5	WQ	40	3	5.1	7	22.5	7	236	CONTRACTOR	\	5	7.2	14-	7 12 -
3 ppm Cd / .	6	WQ	40	7	5.6	7	27.3	ဍ				5	7.4	MMB	MINE CR CR
3 ppm Cd / .	7	WQ	40	7	L(-8	7	25.8	Z	224				7.3	一大	
3 ppm Cd / .	8	WQ	40	7	5.2	7	23.4	2	222		\mathcal{M}		7.3	ジア	10
3 ppm Cd / .	9	WQ	40	ገ	<u>V.1</u>	7	23.0	2	217	5	-V	5	7.4	リレ	UL
3 ppm Cd / .	10	WQ	40	7	4.1	7	20,4	2	221		λ	15	7.4	CR	
1 ppm Cd /	0	WQ	60	7	6.6	7	22.5	2	232		/\	5	7.5	MMB	MMB > Jr
1 ppm Cd / .	1	WQ	60	7	5.1	7	22.3	2	269		/ \		7.3	ル	人 十一 7
1 ppm Cd / .	2	WQ	60	7	8.2	2	22.2	2	245	and			73	JL	JL
1 ppm Cd / .	3	WQ	60	7	4,4	7	22,5	2	241			Š	7.0	V.L	UZ HE MMB
1 ppm Cd / .	4	WQ	60	7	3.9	7	22.5	2	237	, management		3		JL	in the the
1 ppm Cd / .	5	WQ	60	7	3.6	7	22.3	Z	228			5	7.3	14 -	> Parce
l ppm Cd / .	6	WQ	60	7	2.9	7	J. 3	J	. 2-8 0			1 9	7.2	MMB	MIMB CR CR
1 ppm Cd / .	7	WQ	60	7	პ.ე	7	22.6	2	218				7.1	11/2	
1 ppm Cd / .	8	WQ	60	7	7.9	字	22.7	2	204			13	1	75	Jı_—
1 ppm Cd / .	9	WQ	60	7	8.0	7	22.1	2	216	\int		\ 3	7.9	UL	V
$1 ext{ ppm Cd / }.$	10	WQ	60	7	8,0	7	20.3	2	222			\\s	8.0	CR	

Page	of
1 4454	O1

Ammonia and Sulfide Analysis Record

Client/Project: Favallon/Yakima Steel	Organism: Hvalella	Test Duration (days):		
PRETEST / INITIAL / FINAL / OTHER (circle one) DAY of TEST: Ø OVERLYING (OV) / POREWATER (PW) (circle one) Comments:				
•	NG (OV) / POREWATER	R (PW) (circle one)		
Comments:	NG (OV) / POREWATER	Sample temperature should be within +1°C of standards temperature at time		

	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	рH	Cond. (µS/cm)	Hardn- ess	Alkali- nity
W	Control	Surr	12/13/13 MMB	0.158	20.6	12/13/13 7/15			නි 8	72
	TNWR	Surr		0.141	1				90	84
	WETSED1	Surr		0.179					106	68
	WETSED2	Surr		0.146					110	86
	WETSED3	Surr		0.163				X .	110	77
	6 ppm Cd	Surr		0.193					104	86
	3 ppm Cd	Surr		0.144					86	74
	1 ppm Cd	Surr	Į.	0.164	d	J			88	7.6
pw	Control	Surv.	0 —							
	TNWK		12/13/13 MMB	1.15	20.1	(2/13/13 MMB	6.9	527		
	WERSEDI			0.903			6.1	1101		
	WETSED Z			0.362			0.4	734	\setminus	
	WEISED 3			1.14			6.8	880	/	
	6 ypm Cd			1.02			6.8	744		
	3 ppm cd		3	0.967		0	6.9	675		
	1 ppm cd	L	y	1.42	\forall	y	6.9	524		
	-									
	er ,									

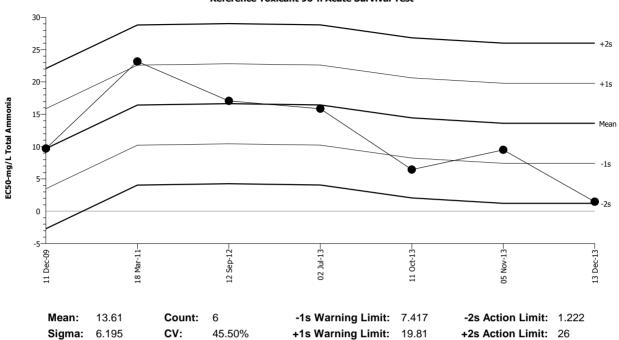
O Insufficient PW collected for analysis, MMB 12/13/13

Page	of
_	

Ammonia and Sulfide Analysis Record

Client/Project:	Organism:	Test Duration (days):					
Favallon/ Yakina Steel	tlyalella	10					
PRETEST / INITIAL OVERLYIN Comments:	G (OV) / OTHER (circle on	e) DAY of TEST: 10) (oircle one)					
Calibration Stand	lards Temperature	Sample temperature should be within					
Date: 1/02/13-14	Temperature: 22.8°C	±1°C of standards temperature at time					
30		and date of analysis.					

	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	pН	Cond. (μS/cm)	Hardn- ess	Alkali- nity
OV	Control	Surr	12/23/13 BH	0.598	22.0	1/02/14 1	\		83	88
	TNWR	Surr)	0,197	1				89	89
	WETSED1	Surr		0.323					81	73
	WETSED2	Surr		0.452					101	100
	WETSED3	Surr		0.437			/		106	48 89 0
	6 ppm Cd	Surr		0.361					96	98-910
	3 ppm Cd	Surr		0,466			/		94	વા
	1 ppm Cd	Surr	T .	0.603			/		90	89
					,					
pw	Control	Surv.	12/23/13 BH	1.09	22,2	402/14 10				/
1	NWR			0.474	1					
	WETSED 1			0.382						
	WEISED2			0.240						
	WEISED3			0,459						X
	6 ppm Cd			0,554						
	3 ppm Cd			0.443						
	3 ppmCd lypmCd	J	Ψ	0,668	l	J				
-									·	
-										


DWC. JU 402/19.

CETIS QC Plot Report Date: 05 Aug-14 09:56 (1 of 1)

Reference Toxicant 96-h Acute Survival Test All Matching Labs

Test Type:SurvivalOrganism:Hyalella azteca (Freshwater AmphipMaterial:Total AmmoniaProtocol:EPA/600/R-99/064 (2000)Endpoint:Proportion SurvivedSource:Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

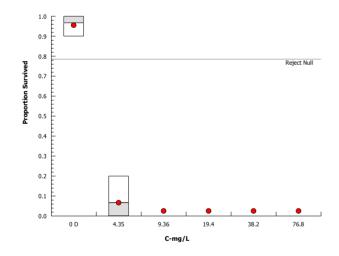
Quali	ty Con	trol Data	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2009	Dec	11	16:05	9.69	-3.92	-0.6328			06-0392-7981	04-0353-3462	NewFields
2	2011	Mar	18	17:40	23.15	9.544	1.541	(+)		14-6934-6989	08-7287-0236	NewFields
3	2012	Sep	12	15:30	17.06	3.451	0.5571			15-6980-0340	09-8032-3348	NewFields
4	2013	Jul	2	16:54	15.85	2.238	0.3612			14-0245-1637	17-3940-1363	NewFields
5		Oct	11	16:30	6.435	-7.175	-1.158	(-)		02-6747-8290	14-5731-2244	NewFields
6		Nov	5	14:15	9.487	-4.123	-0.6656			00-2973-8704	14-7798-0524	NewFields
7		Dec	13	16:00	1.461	-12.15	-1.961	(-)		18-8979-3951	13-5696-3347	NewFields

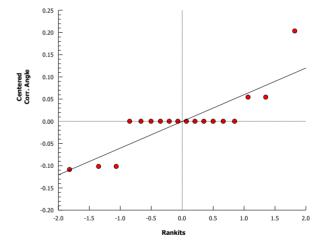
76.8

Report Date: Test Code: 05 Aug-14 09:54 (p 1 of 2) 70A3F79F | 18-8979-3951

Reference Tox	cicant 96-h Acu	te Surv	vival Test						-	-	NewField		
Analysis ID: Analyzed:	01-5892-6385 03 Jan-14 10:5	59	Endpoint: Analysis:		urvived Iultiple Compa	arison		IS Version		.8.6			
Batch ID:	09-4030-4577		Test Type:	Survival			Analyst:						
tart Date:	13 Dec-13 16:0	00	Protocol:	EPA/600/R-9	9/064 (2000)		Dilu	ent: Dil	uted Mineral	Water			
inding Date:	17 Dec-13 14:0)5	Species:	Hyalella azte	ca		Brir	ne: No	t Applicable				
Ouration:	94h		Source:	Aquatic Bios	Age	Age:							
Sample ID:	17-4447-7814		Code:	67FA9E76			Clie	nt: Int	ernal Lab				
Sample Date:	27 Sep-11		Material:	Total Ammor	nia		Pro	ject: Re	ference Toxi	cant			
Receive Date:	27 Sep-11		Source:	Reference To	oxicant								
Sample Age:	808d 16h		Station:	p110927.179	1								
ata Transfori	m	Zeta	Alt H	yp Trials	Seed		PMSD	Test Res	sult				
Ingular (Corre	cted)	NA	C > T	NA	NA		18.8%	Fails pro	portion survi	/ed			
unnett T3 Mu	ıltiple Compari	son Te	st										
Control	vs C-mg/L		Test \$	Stat Critical	MSD DF	P-Value	P-Type	Decisio	n(α:5%)				
Dilution Water	4.35*		9.523	2.335	0.269 3	0.0011	CDF	Significa	nt Effect				
NOVA Table													
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)				
Between 1.806068			1.806		1	90.68	0.0007	Significant Effect					
rror	0.0796689	98	0.019	91724	4								
otal	0.07966898 1.885737				5								
Distributional	Tests												
Attribute	Test			Test St	at Critical	P-Value	Decision	ι(α:1%)					
ariances	Variance	Ratio F	=	3.499	199	0.4445	Equal Va	riances					
Distribution	Shapiro-\	Wilk W	Normality	0.836	0.43	0.1207	Normal D	istribution					
roportion Su	rvived Summa	ry											
C-mg/L	Control Type	Cour	nt Mean	95% LC	L 95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
)	Dilution Water	3	0.966	7 0.8232	1	1	0.9	1	0.03333	5.97%	0.0%		
.35		3	0.066	67 0	0.3535	0	0	0.2	0.06667	173.2%	93.1%		
.36		3	0	0	0	0	0	0	0		100.0%		
9.4		3	0	0	0	0	0	0	0		100.0%		
88.2		3	0	0	0	0	0	0	0		100.0%		
76.8		3	0	0	0	0	0	0	0		100.0%		
Angular (Corre	ected) Transfor	med S	ummary										
C-mg/L	Control Type	Cour	nt Mean	95% LC	L 95% UCL	Median	Min	Max	Std Err	CV%	%Effect		
)	Dilution Water	3	1.358	1.124	1.591	1.412	1.249	1.412	0.05432	6.93%	0.0%		
4.35		3	0.260	4 -0.1768	0.6976	0.1588	0.1588	0.4636	0.1016	67.59%	80.82%		
9.36		3	0.158	8 0.1588	0.1588	0.1588	0.1588	0.1588	0	0.0%	88.31%		
9.4		3	0.158	8 0.1588	0.1588	0.1588	0.1588	0.1588	0	0.0%	88.31%		
38.2		3	0.158	8 0.1588	0.1588	0.1588	0.1588	0.1588	0	0.0%	88.31%		
6.8		3	0.158	8 0.1588	0.1588	0.1588	0.1588	0.1588	0	0.0%	88.31%		
Proportion Su	rvived Detail												
C-mg/L	Control Type	Rep '	1 Rep 2	Rep 3									
	Dilution Water	1	0.9	1									
.35		0.2	0	0									
0.36		0	0	0									
9.4		0	0	0									
8.2		0	0	0									
		-	-										

0 0


Report Date: Test Code: 05 Aug-14 09:54 (p 2 of 2) 70A3F79F | 18-8979-3951


					rest Code.	10A31191	110-0979-3931
Reference To	oxicant 96-h Acu	ite Surviva	l Test				NewFields
Analysis ID: Analyzed:	01-5892-6385 03 Jan-14 10:5			oportion Survived arametric-Multiple Comparison	CETIS Version: Official Results:	CETISv1.8.6 Yes	
Angular (Co	rected) Transfor	rmed Detai	I				
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3			
0	Dilution Water	1.412	1.249	1.412			
4.35		0.4636	0.1588	0.1588			
9.36		0.1588	0.1588	0.1588			
19.4		0.1588	0.1588	0.1588			
38.2		0.1588	0.1588	0.1588			
76.8		0.1588	0.1588	0.1588			

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	10/10	9/10	10/10	
4.35		2/10	0/10	0/10	
9.36		0/10	0/10	0/10	
19.4		0/10	0/10	0/10	
38.2		0/10	0/10	0/10	
76.8		0/10	0/10	0/10	

Graphics

CETIS Summary Report

Report Date: Test Code: 05 Aug-14 09:55 (p 1 of 1) 70A3F79F | 18-8979-3951

D (-												
Reference To	oxicant 96-h Acu	te Surv	vival Test								1	NewFields
Batch ID: Start Date: Ending Date: Duration:	09-4030-4577 13 Dec-13 16:0 17 Dec-13 14:0 94h		Test Type: Protocol: Species: Source:	Survival EPA/600/R-9 Hyalella aztec Aquatic Biosy	a			Analyst: Diluent: Brine: Age:		ted Mineral Applicable	Water	
Sample ID: Sample Date: Receive Date Sample Age:	: 27 Sep-11		Code: Material: Source: Station:	67FA9E76 Total Ammon Reference To p110927.179				Client: Project:		rnal Lab erence Toxid	cant	
Comparison				·								
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Met	hod			
	Proportion Sur	vived	<4.35		NA	18.8%				3 Multiple C	omparison	Test
Point Estimat	te Summary											
Analysis ID	Endpoint		Level	mg/L	95% LCL	95% UCL	TU	Met	hod			
Analysis ID Endpoint 13-5696-3347 Proportion Survived Proportion Survived Summary			EC5 EC10 EC15 EC20 EC25 EC40 EC50	0.09425 0.1974 0.3102 0.4337 0.5688 1.056	0.08002 0.1663 0.2594 0.3598 0.4681 0.8463 1.15	0.1305 0.2774 0.4426 0.6284 0.8372 1.632 2.338		Line	ar Into	erpolation (I	CPIN)	
Proportion S	urvived Summa	rv										
C-mg/L	Control Type	Cour	nt Mean	95% LC	L 95% UCL	Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.966		1	0.9	1	0.03		0.05774	5.97%	0.0%
4.35		3	0.066	67 0	0.3535	0	0.2	0.06	6667	0.1155	173.2%	93.1%
9.36		3	0	0	0	0	0	0		0		100.0%
		-2	0	0	0	0	0	0		0		100.0%
19.4		3		0			^	^		^		100.0%
38.2		3	0	0	0	0	0	0		0		
38.2 76.8				0	0	0	0	0		0		100.0%
38.2 76.8 Proportion S	urvived Detail	3	0	0								
38.2 76.8	Control Type	3 3 Rep	0 0 1 Rep 2	0 Rep 3								
38.2 76.8 Proportion S o C-mg/L 0		3	0	0								
38.2 76.8 Proportion S C-mg/L 0 4.35	Control Type	3 3 Rep	0 0 1 Rep 2 0.9	Rep 3								
38.2 76.8 Proportion S o C-mg/L	Control Type	3 3 Rep 1 0.2	0 0 1 Rep 2 0.9 0	0 Rep 3 1 0								
38.2 76.8 Proportion S C-mg/L 0 4.35 9.36	Control Type	3 3 Rep 1 0.2 0	0 0 1 Rep 2 0.9 0	Rep 3 1 0 0								
38.2 76.8 Proportion Security On Security	Control Type	3 3 Rep 1 0.2 0	0 0 1 Rep 2 0.9 0 0	Rep 3 1 0 0								
38.2 76.8 Proportion Security C-mg/L 0 4.35 9.36 19.4 38.2 76.8	Control Type	Rep 1 0.2 0 0 0	0 0 1 Rep 2 0.9 0 0 0	0 Rep 3 1 0 0 0 0 0 0 0								
38.2 76.8 Proportion Security C-mg/L 0 4.35 9.36 19.4 38.2 76.8	Control Type Dilution Water urvived Binomia	Rep 1 0.2 0 0 0	0 0 1 Rep 2 0.9 0 0 0 0	Rep 3 1 0 0 0 0 0 0								
38.2 76.8 Proportion St C-mg/L 0 4.35 9.36 19.4 38.2 76.8 Proportion St C-mg/L 0	Control Type Dilution Water	3 3 Rep 1 0.2 0 0 0 0 0 0	0 0 1 Rep 2 0.9 0 0 0 0 0	Rep 3 1 0 0 0 0 0 0								
38.2 76.8 Proportion St C-mg/L 0 4.35 9.36 19.4 38.2 76.8 Proportion St C-mg/L 0 4.35	Control Type Dilution Water urvived Binomia	3 3 Rep 1 0.2 0 0 0 0 1 1 10/10 2/10	0 0 0 1 Rep 2 0.9 0 0 0 0 0 0 0 0 0	Rep 3 1 0 0 0 0 0 0 0 1 Rep 3 10/10 0/10								
38.2 76.8 Proportion St C-mg/L 0 4.35 9.36 19.4 38.2 76.8 Proportion St C-mg/L 0 4.35 9.36	Control Type Dilution Water urvived Binomia	3 3 Rep 1 0.2 0 0 0 0 1ls Rep 2/10 0/10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Rep 3 1 0 0 0 0 0 0 0 1 Rep 3 10/10 0/10 0/10								
38.2 76.8 Proportion St C-mg/L 0 4.35 9.36 19.4 38.2 76.8 Proportion St C-mg/L 0 4.35 9.36 19.4	Control Type Dilution Water urvived Binomia	3 3 Rep 1 0.2 0 0 0 0 1 1 10/10 2/10 0/10 0/10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rep 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
38.2 76.8 Proportion Security Office of Security O	Control Type Dilution Water urvived Binomia	3 3 Rep 1 0.2 0 0 0 0 1ls Rep 2/10 0/10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Rep 3 1 0 0 0 0 0 0 0 1 Rep 3 10/10 0/10 0/10								

Appendix C.2

10-Day Solid-Phase Test with Chironomus dilutus

CLIENT					DJECT			NEWFIE		1			1		BORATOR	1		SPE							
Far	allo	n)	Yakin	na St	eel		0						Bath 4		thes low	E MOST	Chiı	conom	us t	entan	ıs		
									END	POIN	T DA	TA &	OBS	ERV.	ATION	IS									
B= no burrows M= dead on surface	L = anox F= fung: D= no a U= exce	al patci ir flow (ss food	nes (DO?)	DATE 12/14 TECHNICIAN UL		DATE 12/15 TECHNICIAN		DATE 13	DATE 13/16 TECHNICIAN MB		CHNICIAN TECHNICIAN		12/17 12/		2//8		NICIAN	DATE		DATE 1/	121	DATE \2\2 TECHNIC		DATE 12/ TECHNIC	2-3 Jan
ID	REP	#	#		RVNS.	OBSE		OBSE			ERVNS.	OBSE	RVNS.	l√\u00e9	UB SERVNS.	OBSER		OBSE		OBSE		OBSER	A RVNS.		
	1			7)		J	N)	1	J		1		J	i		1	þ	,	J	Ą	J		
	2			Ï	••••••		1	1	1	l	<u></u>	,			Ī	Ĭ			······		1	•••••			
)	3							T		l					1	1		**********	1	**********	1	.,,,,,,,,,,,,,,	1		
0	4			•••••						1											Ī				
Sand Control /	5						1)	1		Ī													
	6]										I						
	7																								
	8																								
	1			, , , , , , , , , , , , , , , , , , , ,	<u> </u>								ļ												
•	2				<u> </u>]										ļ								
	3									ļ			ļ				ļ								
TNWR / .	4							ļ		ļ			ļ	ļ		.,	ļ								
	5				ļ								ļ									•			
	6					ļ				 			ļ												
	8				ļ	·						ļ			-}						•••••				
	1				-							-										— —			
	2				 	-		-		 							ļ		ļ		••••••				
	3					·				 	•••••	ł	•••••			 							···· / ·····		
	4					1	 			1				 							} 		/		
wetsed1 / .	5	······			t	†	ļ			1	••••••	i	•••••	·····†	************	/			Ì		ļ	,	/		
	6	ļ			1	1	\		ì	1	**********			! }		V			1		ļ	<i>†</i>			
	7				1	T	1		†	1	***************************************	i	************			T \			1			N			
	8				<i>V</i>	1	U	1 ──~		1	<i>-</i>		<i>1</i>		<i>y</i>	·····/	••••••		J	Ī	£	,	1		

CLIENT				PROJECT		NEWFIELDS JOB			LDS LABORATOR	1	SPECIES		
Far	allo	n		Yaki	ma Steel	0	i			ESA 2000 Method 100.	Chi	ronomus t	entans
						END	POINT DA	TA & OBS	ERVATIO	VS			
B= no burrows M= dead on surface	L = ano: F= fung: D= no a U= exce	al patci ir flow	hes (DO?)	DATE 12/14 TECHNICIAN	DATE 1205 TECHNICIAN	DATE	DATE したして TECHNICIAN	DATE 13418	DATE (2)(9) TECHNICIAN	DATE 17/120 TECHNICIAN	DATE V/21 TECHNICIAN	DATE 12/22 TECHNICIAN	DATE 12/23 TECHNIÇIAN
CLIENT/ NEWFIELDS	REP	JAR #	INITIAL #	JV OBSERVNS.	OBSERVNS.	MM6 OBSERVNS.	OBSERVNS.	NWS OBSERVAS.	MM6 OBSERVNS.	OBSERVNS.	OBSERVNS.	りし OBSERVNS.	OBSERVNS.
10	1	#	#	P OBSERVINS.	OBSERVINS.		UBSERVINS.	N)	NO COBSERVINS.	Ţ			VU
	2			······································		N	ļ	12		<u>i</u> Ú	ν,	2	
	3					 		 					
							 	ļ					
WETSED2 / .	5				-			ļ					
								ļ					
	67												
					.			ļ					
	8					ļ ļ				_			ļ
	1							.					
	2												
	3						ļ						
WETSED3 / .	4				.				ļļ				.
	5				.	ļ		ļ	. .				
	6											ļ	ļ
					.		ļ	ļ	ļ				
	8				 	<u> </u>			1		ļ		
	1				.			.					ļ
	2			ļ	ļ		 	 					ļ
	3				.	 	 	 	 	.	 		ļ
6 ppm Cd / .	4				-	ļ		 	 		-		
	5				.		 		 	ļ			
	7				-		ļ	 	-	 			\f\
	8			ļ	<u> </u>	1	-		 	17	 	 	√
	-	<u> </u>		┖───	<u> </u>	I V		<u> </u>	<u> </u>	1 \:	t	3	I

CLIENT				PR	OJECT			NEWFIE	LDS JOB	NO. PR	OJECT M	AN.	NEWFIE	LDS L	ABORATOR	PROTO	OL	SPE	CIES				
Far	allo	n			Yakir	na Ste	eel		0	Bi	111 Ga:	rdine	r Port	Gambl	e Bath 4	UPA 1959 A	bethia 160.	. 1 15vd	Chi	ronon	ıus t	enta	ıns
				. 24 n. t.					END	POIN	T DA	TA 8	OBS	ERV	ATION	vs		·			***************************************		
OBSERVATIONS KEY	18 may 27 11			W. S. S. S. S.	97/438989	100000000	AV.900000	e overene e.	SA 801090	YEAR ST	. 1.65. by/s/85	3888880	J.5 & 389808	Newspaper	15 2 (A. 1803) 1849	20050000 A.C.). Avaigang	: Wassing II.	5.05.00000	308590008.73	5-50-2800889E	Server of	: V36 (-39)
B= no burrows M= dead on surface	L = ano. F= fung D= no a U= exce	al patc ir flow	hes (DO?)	DATE 12 TECHNI	(4 ICIAN	DATE	S	DATE L TECHNI	16	DATE 12 TECHNI	[[Y		H/8		119	DATE 12	no	DATE T2 TECHNI		DATE 12		DATE Z	[73
CLIENT/ NEWFIELDS	REP	JAR #	INITIAL #	OBSI	ERVNS.	OBSE		M OBSE	MS RVNS.) U ERVNS.	M	SERVNS.	M	MS SERVNS.		12		シン	_	RVNS.		ERVNS.
	1			1) L	<u> </u>) 	r	J		<u>)</u>	1	N		N	ħ	J		7	1	\mathcal{I}		V
	2]	1			Ì		i		1		1		Ĵ	l	1	l	}	· · · · · ·	
	3																	l					
3 ppm Cd / .	4				<u> </u>													Ī					
	5						ļ								T								
	6					<u> </u>							1		Ī								
	7				1	<u> </u>	<u> </u>																
	8																						
	1						<u> </u>																
	2	,																					
	3																						1
1 ppm Cd / .	4					<u> </u>																	
, == ,	5				<u> </u>									[]									
	6																						
	7								.								T		Į				/
	8				₽/			ľ			t	U	<i>T</i>	U			·····		J	Ī	1		V

■■NewFields

20 DAY SOLID PHASE TEST DATA SHEET

CLIENT			· · ·		DJECT	·		NEWFIELDS JOE	NO. PROJECT M	AN. NEWFIE	LDS LABORATOR	PROTOCOL	SPECIES			ACCLM.	MORT.	٦	
Far	allo	on			Yakim	na Ste	el	0	Bíll Ga		Gamble Bath 4		Chi	ronomus t	entans				
80 B8 800 000		ξ1.	5.415	1,5455.	194			END	POINT DA	TA & OBS	ERVATION	VS		. 1.					- 1 2
B≕ no burrows M= dead on surface	F= fung D= no a U= exca S∪v-{	LIADII	es	DATE 17/ TECHNI OBSE	zy cian KU	DATE 12/2 TECHNICI OBSER	AN	DATE 12/26 TECHNICIAN OBSERVNS.	DATE (2(27) TECHNICIAN)C OBSERVNS.	DATE 12/28 TECHNICIAN JU OBSERVNS.	DATE 12/14 TECHNICIAN OBSERVAS.	DATE 12/30 TECHNICIAN OBSERVNS.	DATE 19131 TECHNICIAN MMB OBSERVIS.	DATE/// TECHNICIAN OBSERVINS.	DATE TECHNICIAN OBSERVNS.	NUMBER REMAINING	Tare Weight	AFDW	Weighboat
78 A - 12 - 2 - 2	1		"	F	J	1			15	LS	12	15	N	M	ODDER THO:		- 44		
	2			} <i>-</i>	1			ÌS	25	P	Įς	N	١	1 18		·if········ig···	65		2
	3							N 15 15	25 (5	Įζ	35						47		3
Sand Control /	4	ļļ.			ļ		<u> </u>	Ŋ	ρ	Ŋ	N					-g	.60		3 4 2 2
	5	ļļ.					ļ		<u>(Ş</u>		<u> </u>	V		 		8	1.38		••••g
	6 7	 -				• • • • • • • • • • • • • • • • • • • •	}	<u> </u>	7	ļļ	-	<u> </u>	ļ	.			.25		9
	8	 -				*************	ļ	IS N	15 15	17	25		ý			[43 42		8
	1							Ĭ	N	15 P	N N	N	2			-	17	_	79
	2					**************	ļ		<i>i</i>	i		1	1				.37		10
	3	<u> </u>					 									-8	.67		
TNWR / .	4															4 8	291		_ \/2
	5					*************							4			્ર	28		13
	6	ļļ.					ļ						1-fly			5/	.22		14
	7	ļļ.				•••••	ļ						12	.		.j	.63		\>
		-					-						N		<u> </u>	S	.46 . 91	_	1/2
	1 2	 								ļ			12	<u> </u>		5	See Williams	ļ	18
	3	╂		····			ļ		 		·		- 			5	<u> </u>	endone:	19
	4	 					ļ				}		·			2			
wetsed1 / .	5	1	•••••		**********		}						***************************************			1	(3)		2° 21
7.23	6			į)	************							·				Ġ	153		22
	7				/_/							l \/		V		5	158		22 24
	8			,	\vee		₽.	<u> </u>	l b		<u> </u>	<u> </u>		1			1.42		_ 24
		0 = P	Wa.	l											Weighbood 17	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	χρο 1. (mg 1.5°	<u>)</u>	
	•		1												18		ا. کا.ا		
															19	ت ح	1.4	Ţ	
A Transfer															•	~	-, ; -, -, -, -, -, -, -, -, -, -, -, -, -, -	ፓ ጋ	
t en															20	2	71.6 51.4	.1	
, i															21	٤	31.4	1	

Page 1 of 3

CLIENT				PROJ			1		NO. PROJECT N	1		LDS LABORATO	l .	SPECIES			ACCL	M.MORT.	
Far	allo	n		Υá	akim	a Steel		0					4 EPA 1990 Method 1	orina Chi	ronomus t	entans			
							E	END	POINT DA	TA & C	DBSE	ERVATIO	NS						
	L = ano			DATE		DATE	DATE	6.N38988	DATE	DATE		DATE	DATE	DATE	DATE	DATE		NORTHER DUTY	
M≈ dead on surface	F≕ fung. D≕ no a	ir flow	(DO2)	1212		12/25	12	·	12/27	12/2		14/24	12150	15/31	171/19		. 9	ht .	<u>.</u>
A= avoidance	لع (15 exce	67	water	TECHNICIA	AN '	TECHNICIAN	TECHNIC		TECHNICIAN	TECHNICI		TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	TECHNICIAN	: NUMBER REMAINING	Tare Weight	ory weight AFDW
CLIENT/ NEWFIELDS ID	REP		INITIAL #	OBSER	℃	OBSERVNS	3	C N/NS	J∖ OBSERVNS.	OBSER		ひし OBSERVNS.	OBSERVNS	OBSERVNS.	OBSERVNS.	OBSERVNS.	UME EM/	are	AFDW
	1		. "	N	viio.	ہی	1		N			N N	ODSERVING	N N	N ODSERVING.	OBSERVING.		51:47	3 4
	2			17						<u> </u>	······		······································		<u>'</u>		·-g		
J	3							*********		-		·····						SI.53	
	4									•								51.33 51.69	bu
WETSED2 / .	 5			······		····				•				(SW				2/10 2/10	
	6			······		·····		••••••		•				1 30		• • • • • • • • • • • • • • • • • • • •	g		
	7					·····				•	•••••••		-			* *************************************	3	51.36	
	8					 				-	********			<u> </u>	-		8 %	104	
	1																	51.36 51.41	
	2				••••••					•		·····		22				······································	
	3										•••••	·····			-			51.34	·····
	4										••••			I SI SU	9			44.E	
WETSED3 / .	5			·····						•	•••••			<u> </u>				·····	
	6							•••••	·····	•		·····						51.W. 51.SO	
	7									·		·····					38	31.30 51.50	
	8					<u>-</u>			·····	•	• • • • • • • • • • • • • • • • • • • •	·····		<u> </u>				?!5\# 5\.33	washam
······	1						1			1				N	+		- 2 8-		an or
	2							}		· 					-			3(.3(= , 0	gu
•	3					-		·		·								€.⊌	down
	4					 				· 					-			514	у сего дого с
6 ppm Cd / .	5									· • · · · · · · · · · · · · · · · · · ·					-			51.54	andopus conjugate
	6								ļ									51.45	and the second
	7	•••••									······		1 17					3.64	d
	8				<i>}</i>	ļ					}		-	- 	_	-	6 5	51.57	orași de la constante de la co
	Ü							<u> </u>	<u> </u>		ಲ		<u> </u>		1 0	<u> </u>		51,40	9 3

CLIENT				1	JECT			NEWFIEL	DS JOB	NO. PRO	JECT M.	AN.	NEWFIE	LDS LABO	RATOR	PROTO	COL	SPE	CIES				ACCL	M.MOR	r.	
Fara	allo	n			Yakim	na St	eel		0	Bi	ll Gar	diner	Port (Gamble B	ath 4	alektioners	- Messella 1999.	. Fixed	Chii	conon	nus t	entans				
							* ₁		NDI	POIN	T DA	TA & 0	OBS	ERVA	TION	IS										
OBSERVATIONS KEY			entinente se	2000/00E415	NEW YORK	\$555500 N.O		\$155\$V4157.3		Singlish (1)	S. J. 380030	SSSSS CO.	\$ 1 WHEN	000000000000000000000000000000000000000	au 1900/2	See See	, 5 do 1 de 1995	STANCE.	00 C 200 C 200 C	N980811	Xa e sassis	Same of Nations		200		
B= no burrows 1	t. = anox F= funga D= no aii	al patch	ace nes DO?)	DATE \ጊነ	24	DATE	125	DATE (2/7	16	DATE []	27	DATE 12/		DATE		DATE \て]	30	DATE (2)	31	DATE	In	DATE		it		
A= avoidance	1	<u> </u>	ī i	TECHNI		TECHNIC		TECHNIC	IAN	TECHNIC	CIAN	TECHNIC	IAN	TECHNICI	IAN S	TECHN		TECHNIC		TECHN		TECHNICIAN	: IMBER MAINING	Weight	Dry Weight	Ŋ(
D	REP	#	#	OBS	VNS.	OBSE	RVNS.	OBSE			RVNS.	OBSE		OBSER			ERVNS.	OBSE	RVNS.		ERVNS.	OBSERVNS.	NO.	Tare	Ωv	AFDW
	1			1	J	١	<u>) </u>	1)	7)	~)	7			V	7	3	N			No and a second	51.24	•	
Š.	2				•			1		************	i	\		(1	1					2000	51.3		1
,	3	1	*********										***********		********		/	1						5153		a constant
2 63 /	4	1						1								<i>[</i>	************	1			1514		33	5151		· · · · ·
3 ppm Cd / .	5	•••••						1							*********	1		1			······································			51.}\$		q
	6		********				. , ,		ļ	·····			**********	\				1	**********		************			51.50		and any and a
	7				************			1	†		**********				·····	l		1		1	***********		8	51.19		a
	8	1	*********		***********					**********				************	†			J J		!	IF(+		8	51.04		N COLUMN
	11								1				••••••					1 (<	~ ₩	1			• • • }	51.52		
	2	·····			*************				1	***********	*********				†			12						51.46		
	3	****	**********		************		ļ		ļ					************	1			1			IFTY			51.49		· · · · · · · · · · · · · · · · · · ·
	4	••••†					!		ļ			!	•		·					1	¥			51.67		
1 ppm Cd / .	5		**********		*******		1		·		 	·····		• • • • • • • • • • • • • • • • • • • •	†		ļ	\ \	 }					50.99		
	6	•••••	•••••	·····\	*********	!	1	·····	†		ļ				}	····		3 5					XXXXXXXXX	57.54		
	7			············	\ \		+	 	<i>††</i>		 	 	······································	• • • • • • • • • • • • • • • • • • • •		()	\/	N	<u>w</u>		······			聲~~~~~~~~		
	8			-	 							f	7		1		f	N		v	ļ			21.24 21.04		

Yakima Steel

Sample	Rep	Initial Number	# Larvae Remaining	# of Pupae	Total # of Survivors	Percent Survival (%)	Mean Survival TOTAL (%)	SD	# of Adult Flys	Total # of Survivors (with flys)	Percent Survival (%) (with flys)	Mean Survival TOTAL (%) (with flys)	Tare Weight (mg)	Total Dry Weight (mg)	Total Ashed Weight (mg)	AFDW (mg)	AFDW per Survivor (mg)	Mean AFDW per Survivor (mg)	SD	AFDW per Original Number [ON] (mg)	Mean AFDW per ON (mg)	ds
	1	12	Q	0	9				Ø				51.44	73.61	54.52							<u> </u>
	2	12	8	3				ĺ	Ø Ø				51.65	669	53.17			1				
	3	12	10	0	10			Ì	Ø				51.47	73. M	76,14			1				
and Control	4	12	٥	3	12				QQ				51.60	28.14	56.67							
and Contion	5	12	6	20					BOOK				51.38	66.52	54.46			1				
	6	12	10	190	るこ)			Ø				50.85	7444	55.52							
	7	12	10	2	12				Ð				51.43	7032	53.80 58.08							
	8	12	10	0	12				Ø				51.42	79.45	58.08							
	1	12	3 5	2200					0 8 & 5 M O M M N	·			51.47	6464	54.95 56.03							
	2	12	5	3_					Ø				51.37	65.85	54.95		,]				
Ì	3	12	6						5				51.62	71.48	56.03							
TNWR	4	12	900 900	3					3_				50.91	عاتد اها	53.22 54.85 52.30							
	5	12	ರ್ಡ	0	· O				O				50.84	<u>69.28</u>	54.85]				
	6	12	1	532			,ès	Ø.	3				51.28	55.40	52.30]				
	7	12	4	3					3_				51.63	60.03	55.18]				
	8	12											51.46	61-01	F3.83							ļ
	1	12	7	Ŕ					B				51.59	11-60	*54.77 57.24]				
	2	12		0					Ŕ				51.60	3438	57.24							
	3	12	12	D					-0				51.44	71.32	56.02]		***************************************		
NETSED1	4	12	6	0									51.62 51.44	61.30	53.30]				
	5	12	10	Þ					P				51.44	77-24	57.83							
	6	12	Щ	25					25				51.53	93.00	57,79							
	7	12	8	Æ					æ				51.58	71.00	55HI			1				
	8	12	δ	ھر					Ð				51.42	69.96	55.71							
	1	12	6 8	2					1				51.47	72.81	57.63 57.08]				
٠.	2	12		3					0				51.53	7259	57.08							
	3	12	4	3					æ				51.33	63.5 4	53.59			.				
WETSED2	4	12							Ø				51.69	63.7 €	54.93			.				
	5	12	6	3									51.10	હ9.44	56.16							
	6	12	10	1									51.36	30014	5650			.				
	7	12	4	3					2				51.64	67.0	5650 55.01 354.26]				
	8	12	4	2					1				51.20	مُلَّةُ مِأْهُ ا	2 54.24			1		1		

DWC.

Dwc.

Onoix" on jar-possibly no animals added at in: Hatron; #Ronvae = 6, # pmpne = 2, # flys = 8 in Swir.)

weighbood 13. Mars

Sample	Rep	Initial Number	# Larvae Remaining	# of Pupae	Total # of Survivors	Percent Survival (%)	Mean Survival TOTAL (%)	as	# of Adult Flys	Total # of Survivors (with flys)	Percent Survival (%) (with flys)	Mean Survival TOTAL (%) (with flys)	Tare Weight (mg)	Total Dry Weight (mg)	Total Ashed Weight (mg)	AFDW (mg)	AFDW per Survivor (mg)	Mean AFDW per Survivor (mg)	SD	AFDW per Original Number [ON] (mg)	Mean AFDW per ON (mg)	as
	1	12	V	3					Ð				51.41	6514	55.01							
	2	12	7	Ø					Ø				51.34	67.18	55.16 57.29 58.54]				
	3	12	8	0									51.44	७१.५०	57.29]				
WETSED3	4	12	& S	Ø					0	a			51.44	74.32	58.54							
, 0	5	12							Øð				>1.67	しゅうけん	74.63							
	6	12	10	0					Ó				51.50	37.3c	59.83]				
	7	12	8	Ø						.			51.56	74.38	57.17			ļ,				
	8	12	6	-					Q1	2			51.37				-					ļ
	1	12	3 8	à					فر				51.71	63.30	5458		***************************************					
	2	12		2					1				51.68 51.71	31.16	56.46	****]]				
	3	12	11	00									51.71	80.48	63.10]				
6 ppm Cd	4	12	10						0				51.54 51.65	76.09	57.96							
- pp	5	12	<u> </u>	2	****				1				51.65	73.15	56,97			Ì				
	6	12	5	Ŧ					Ħ				51.62	V8.83	56.59							
	7	12	3	3					0				51.57	63.35	53.4							
	8	12	6	Ø									5.40	69:79	54.24							2.5
	1	12	9	2					Ø				51.26	73.59	56.06		-					
	2	12	7	1					1				51.36	6 3 .6€	55,12			1				
	3	12	വവ	ك					Ì				51.36 51.53	69.02	-56.49							
3 ppm Cd	4	12	IJ	3					Z				51.5)	(ob 98	55.46 5-3.23 60.90							
5 ppin Cd	5	12	D()	Q					1				51.75	51.55	5-3.23							
	6	12	13	Ø					0				51.50	82.15	60.90							}
	7	12	11	1									51.14	81.12	60.01		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	8	12	6	J					20				51.04	12 Feb	60.01 54.58							
	1	12	7	033					Ø				51.32	₹ C1°	54.94				······			
	2	12	7	3					ğ				51.32 51.40	7i 29	57.45	,	**					
	3	12	4	237					3				51.45									
4 01	4	12	1	<u>ک</u>					ĺ				51.07	55.3	5190							
1.ppm Cd	5	12	ī	50					Ò				50.95	Sil 3~	51.11					<u> </u>		
	6	12	6	1					4				51.57	(sto 2)	55 < 1							1
	7	12		à					2				51.09	10.7W	55.52 55.77							
	8	12	NΜ	7					<u> </u>				5 .54	V4.1V	52.23							

D swn.=#lanval: 3, # papal: 3, #flies: & in weighboat 58.
D NC 1.2.14 BH Ocame, Opephe, Yexune
318 CR 1/2/14

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
0	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Chironomus t	tentans	Port Gamble Bath 4	ESW 1000 Myselvi 10012 tour
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13	1340	02Jan14	

	ю (mg/L) .5 mg	/L	S TEMPS		C	100	mS/cm) /A		pH 6-9	SS 27 V SS 5	(mg/L) < 4.0			DILO	ITION WATE	КВА	0		TEMP.RECDR./HOR NA	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	moter	D.O. mg/L	meter	TEMP °C	CON meter	mS/cm	meter	pH unit	Techn.	Hardness mg/L	A Techn.	dkalinity mg/L	INT Techn.	ER. Ammonia mg/L	TECH	Date RENE	····· Feed
and Control /	0	МÕ	22 \	7	8.6	7	23.9	E C	178	5	73							CR	12/13 M	XIR
and Control /	1	WQ	22	٦	7.2	コ	27.5	2	170	5	7.2							5	12/14/14	- 7
and Control /	2	MÖ	22	7	67	7	22.5	2	190	5	7.2							1	12/15 11	7
and Control /	3	WQ	22	7	6.1	7	22.7	2	204	5	7.2							ال	12/16 DL 3	HE M
and Control /	4	WQ	22	7	6.0	7	22.6	2	204	5	7,4							JL	12/17 11	t t
and Control /	5	WQ	22	7	5.5	7	1	Z	204	5	7.4							The	17/18 He	
and Control /	6	WΩ	22	7	5.2	7	અ. ૬	a	705	S	7.4							MIMB	1719mms	
and Control /	7	WQ	22	17	4.5	7	23.0	7	201	5	7.4							19	1420 4	
and Control /	8	WQ	22	7	5.2	7	22.9	2	203	8	7.2				/			JL	12/21 14	_ 7
and Control /	9	WQ	22	7	4.8	7	22,9	2	203	5	7.2			\prod	<u> </u>			ル	12/22/1	
and Control /	10	WQ	22	7	3,7	4	20.0	2	206	5	1.3			\mathbb{Z}				PE	1423 1	
sand Control /	11	WQ	22	1	4.0	7	23.2	2	200	5	7.1							14	12/24 HE	
and control /	12	WQ	22	17	3.5	7	23.2	2	213	5	7.1							人	12/25 4	
BIO CONTROL /	13	WQ	22	1	4.3	7	23.0	2	210	5	75							J,	Rpb as	
Sand Control /	14	WQ	22	9	4.5	7	22.5	2	203	5	1.5					/		1		Je o
land Control /	15	WQ	22	12	5.5	7	23.2	2	203	5	7.1							U	12/28 14	
and Control /	16	WQ	22	1	517	5	27.3	2	205	5	20		/					16	12/29 Jc	
and Control /	17	MQ	22	7	5.2	7	23.5	2	203	5	7.6		/					th	17/30 14	RY
and Control /	18	MÕ	22	1	5.1	7	23.3	2	202	5		\perp	1			<u> </u>		MME	12/31 M	X 1
and Control /	19	WQ	22	17	2.33	19	22.2	2	204	5	7.2	V				<u> </u>	\	BH	1/1 131	
ind Control /	20	WQ	22	7	8.7	7	21.3	2	205		7.8		instial.					GR	112	

20 DAY SOLID PHASE TEST DATA SHEET

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
0	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Chironomus tent	ans	Port Gamble Bath 4	2-8 2705 Method 359, 8 Med
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		02Jan14	

		YESTE	válviti.	alika a					W			LITY DA	ΛTA										_
		90 (mg/L) • 5 mc		OF ZS±	c) 1	C		(mS/cm) /A		рн 6-9		(mg/L) < 4.0			DILL	JTION WATI	ER BA	тсн О		TEMP.RECE	nr./Hobo NA	#	
	CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CO	MDUCTIVITY mS/cm		pH unit	Techn.	Hardness	1	Alkalinity	ļ	TER. Ammonia	TECH	Date	RENEWA	Feeding	֓֟֝֟֟ ֚
84	TNWR / .	0	WQ	5	T)	7.3	7	24,0	-	183	meter 5		Techn.	mg/L	Techn	mg/L	Yechn.	mg/L	cr	12/13	AM PN	+	-
	TNWR / .	1	WQ	5	7	1.5	5	22.2	2	720	5				┢			/	1 1			<u> 190</u>	-
	TNWR / .	2	WQ	5	1	3.0	7		2		S (c		\forall		╂			/-	JL	12/14	<u> </u>		-
	TNWR / .	3	WQ	5	4	5,3	1	22.2		203	0	7.2	<u> </u>	.	ļ		<u> </u>	- /-	J		1 / 1	\$ 403.0	+
-	TNWR / :	4	WQ	5	7		1	22.3		215	7	73		\ 	┝		┝	/	ł	12/16	A	& MMB	4
ļ	TNWR / .				7		7	22,3	2	213	5		H	 \ 	-			/	JL	1417	LA	1 1/2	=
ŀ	<u> 461 - 444 - 45</u>	5	WQ	5		4.7	1	22.1	7	715	5	7.4		-	┞				HE	12/18	1		-
-	TNWR / .	6	WQ	5	7	4.1	7	29.3			Ş					ļ	\not _		MYB	12119	MB		4
ļ	TNWR /	7	WQ	5	7	3.63	+	11.4	2	219	5	7.2							The	17/20	4	1	7
-	TNWR / .	8	WQ	5	7	4,7	7	22.9	2	222	5	7.7			_		_		Ň	12/21	<u> </u>	 7	╛
	TNWR / .	9	WQ	5	3	8.1	7	22.6		226	5	7.9			\prod				æ	12/22	J4 -	 	
	TNWR / .	10	WQ	5	7	8.3	7	29.0	2	233	5	8.0							TE	12/23	#	<u> </u>	
	TNWR / .	11	WQ	5	7	2.72	7	23.1	2	242	5	1.3			/				th	12124	746-		
	TNWR / .	ຸ12	WQ	- 5	٦	ે 8, છ	7	22.0	2	238	5	8.0		/	ľ				JL	12/25	JU-	+-	
	TNWR / .	13	WQ	5	7	8,8	7	21.7	2	230	Ø	83							JL	12/26	147	CR	1
	TNWR / .	.14	WQ	5	4	9.3	7	21.1	2	730	5	8. <							46	12/27	يار کې	ء ال	1
	TNWR / .	15	WQ	. 5 .	¥	% .%	7	72.1	2	226	5	8,0		7			1		d.	12/28		7	1
	TNWR / .	16	WQ	5	7	8.6	7	22,5	2	219	5	78		/					JL	12/29	ارا	+->	1
	TNWR / .	17	WQ	5.4	7	8.8	7	21.9	7	212	~	8.4							Ne.	12/30	1/2 4	e ce	
	TNWR / .	18	WQ	5.	3	8.4	7	33.2	2	211	5		/		Г				mus	12/31	2.1	1/2	7
	TNWR / .	19	WQ	5	7	91	7	22.0	2	310	5	8.0	/				Г		OH	1/1	BN-	 ``>	1
	TNWR / .	20	WQ	5	7	8.8	7	21.4	2	207	ζ	7.9	_					·	CR	1/2	W. J	—	1
Ľ			N. 18 18			_ ~ ~		-	L		ايسينا				ŧ		L	l	. <i>'</i>		<u> 1 </u>	<u> </u>	

(3) Aentin Initiated

Dribw restored to bath controlling temperature DairFlow restored to chamber

Page 2 of 8

ulus

CLIENT		PROJECT
A STATE OF THE STA	Farallon	Yakima Steel
NEWFIELDS JOB	NUMBER	PROJECT MANAGER
	0	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL.
Chironomus tent	ans:	Port Gamble Bath 4	ELV COMO BOLLENS PROFE 1894
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		02Jan14	

+ 1 A.,								W	ATER C	ĮŪĀ	LITY DA	ΛTΑ									
	00 (mg/L) 5 mc		TEMP (C		(mS/cm) I/A		рн 6 - 9		(mg/L) < 4.0			DILU	TION WATE	RBA	тсн 0		TEMP.RECE	r./hobo NA	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	mater	TEMP °C	COI	MDUCTIVITY mS/cm	meter	pH unit	Techn.	Hardness mg/L	A Techn.	lkalinity mg/L	IN Techn.	TER. Ammonia mg/L	TECH	Date	RENEWA	- Feeding
wetsed1 / .	0	WQ	19	7	8.0	7	24.0	2	274	5	7.2							CR	12/13	Mχ	(gr
WETSED1 / .	1	WQ	19	7	6.1	7	22.6	2	318	5	6.9							Ju	12/14	14	7
WETSED1 / .	2	WQ	19	7	5.8	7	224	2	206	5	6.9							J	1415) -	+->
WETSED1 / .	3	WQ	19	7		7	22.6	2	230	5	7.0							J	12/16	J 76	EMMB
WETSED1 / .	4	WQ	19	7	5.6	7	22.4	2	218	5	7.2						/	N	1417	N #	#
WETSED1 / .	5	WQ	19	7	5.8	1	22,3	2	208	5	7.3					,		K	12/18	1/2	7
WETSED1 / .	6	WQ	19	4	5.8	+	4.66	5	206	5	7.2					7		Maus	12/19/	us	
WETSED1 / .	7	WQ	19	7	5.4	7	22.9	1	(99	5	7.2				/			1/2	142	¥ °	
WETSED1 / .	8	WQ	19	7	4.8	7	23,3	2	199	5	7.0		1					L	12/21	11-	-7
WETSED1 / .	9	WQ	19	7	5.2	7	22.9	2	196	5	371			1	7			<i>A</i>	2/22	Jr -	+>
WETSED1 / .	10	WQ	19	9	5.0	4	w.0	2	202	5	7.2				X			1/2	1213	W-	\supset
WETSED1 / .	11	WQ	19	7	š.\	7	230	ı	204	S	1.0			/				14	12124	15	+>
WETSED1 / .	12	WQ	19	7	4.6	7	23.0	2	212	5	7.1			/				5	12/25	16-	
WETSED1 / .	13	WQ	19	7	45	7	22.5	2	209	5	7.4		/	1				JL	Rps	J-7	CK
wetsed1 / .	14	WQ	19	7	5.3	7	22.2	2	212	2	7.4				Y			The	(2177	JL 74	2 A
WETSED1 / .	15	WQ	19	7	4.2	7	230	2	203	S	6.9							U	12/28	JU -	+-3
WETSED1 / .	16	WQ	19	7	3.9	7	231	2	196	5	6.8							5	1429	00	+->
WETSED1 / .	17	WQ	19	F	3.5	1	23.4	7	192	5	7.3		/					H	17/30	Heur	4R
WETSED1 / .	18	WQ	19	7	3.2	7	<i>३</i> ड. ड	5	188	Š	7.0		,					MMS	12/31	MK	1/2
WETSED1 /	19	WQ	19	7	2.9	7	22.0	2	180	5	7.1	7						BH	1/i	1/21	43
WETSED1 / .	20	WQ	19	7	8.6	7	21.1	2	183	R	7.8						,	a	1/2		

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
0	Bill Gardiner

SPECIES		NEWFIEL	DS LABORATO	ORY	PROTOCOL
Chironomus tent	ans	Port	Gamble	Bath 4	E1A 2000 Methics 100.1 Med
TEST START DATE	TIME	TEST EN	D DATE		TIME
13Dec13			02Jan1	4	

		Yaiaaa						W	ATER C	ĮŪΑ	LITY DA	ΙTΑ		<u> </u>							
10 m	DO (mg/L) 2.5 mc		TEMP	2024 1988	C		(mS/cm) I/A		р н 6-9		(mg/L) < 4.0			DILL	TION WAT	ER BA	TCH ()		TEMP.RECI	ORJHOBO NA	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#		D.O.		TEMP	со	NDUCTIVITY	00000000	рН	2000000	Hardness	P	lkalinity	IN	TER. Ammonia	тесн	Date	RENEWA	
	-			meter	mg/L	meter		meter	mS/cm	meter	unit	Yeahn.	mg/L	Yechn.	mg/L	Techn.	mg/L	1201		AM PN	1
WETSED2 / .	0	WQ	46	17	7.6	7	23.0	2	250	5	7.6							CR	12/13	MX	142
WETSED2 / .	1	WQ	46	17	6.6	7	22.3	2	306	5	4.4							K	12/14	14	7
WETSED2 / .	2	WQ	46	17	6.2	7	22,4	12	272	5	7.4							S	12/5	lk -	- >
WETSED2 / .	3	WQ	46	17	6.2	7	1	2	291	5	7,4							UL	12/16	1	EMMB
WETSED2 / .	4	WQ	46	1	6.0	3	22.0	2	259	5	7.5							ů		JL 7	14
WETSED2 / .	5	WQ	46	7	5.8	7	22.0	1	251	2	7.4							14	12/18	7	-
WETSED2 / .	6	WQ	46	3	5, S	7	99.0	3	248	3						┢		MMB	12/19		
WETSED2 / .	7	WQ	46	7		4	22.3	2	241	5	7.4							#4	12/20	1.)	
WETSED2 / .	8	WQ	46	1	5.8	7	12,4	2	290	7	7.5			H				J _L	12/21		
WETSED2 / .	9	WO	46	7	5.0	7	22.5	2	239	6	7.3			\vdash				<u>J</u>	12/22	1	7
WETSED2 / .	10	WQ	46	7	612	7	!	_		7								(h	······ 1	the	
WETSED2 / .	+	<u> </u>	. 46	-	41.6	7	20.1	4	236	5	7.4			\vdash		-		142	11113		
Service Agency Street and Color	11	WQ	111.	7		H	22.4	1	234	5	7, 1		·		<u> </u>			凝	17/29		7
WETSED2 / .	12	WQ	46	7	3.0	7	22.5	2	292	5	7.2			_				JC	12/20	 	1-7
WETSED2 / .	13	WQ	46	7	31	7	223	2	237	5	7.4			<u></u>				Ųι	12/26	炒	CV
WETSED2 / .	14	WQ	46	7	3.8	7	22.0	Z	237	5	7.6	:						Ale	12127)L 76	; V
WETSED2 / .	15	WQ	46	17	4.5	7	22.3	2	239	5	7.3							U	12/28	14-	 3
WETSED2 / .	16	WQ	46	7	4,1	7	22.8	2	239	5	7.1							OL.	12/29	14	-77
WETSED2 / .	17	WQ	46	7	38	7	22.9	2	235	5	7.6							Hi	12130	#CI	2 CR
WETSED2 /	18	WQ	46	7	~~~	7	,	2		S	7.3	<u> </u>						MMS		WH	九
WETSED2 / .	19	WQ	46	7	3.3	7	22.6	2	219	2	7.6	ļ						141	1/1	a	+ 5
WETSED2 /	20	WQ	46	7	1.8	أ	21.6	2		5	7.1							CR	1/2		

20 DAY SOLID PHASE TEST DATA SHEET

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
1	Bill Gardiner

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Chironomus tent	ans	Port Gamble Bath 4	11% (990 Nothed 100),1 90d
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		02Jan14	
1			1

									<u> W</u>	ATER C			<u>\TA</u>										. 1
		00 (mg/L) 5 mc		192 281	(C) 1	C	ALEKTRIKA GE	(mS/cm) I/A		р н 6-9	NH3 (mg/L) . 4.0			DILU	TION WATE	R BA	TCH ()		TEMP RECD	RJHOBO# NA		į.
ı		-			Ī	D.O.		TEMP	CO	NDUCTIVITY		рН		Hardness	A	lkalinity	ואו	ER. Ammonia			RENEWAL		
	CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	mg/L	meter	°C	meter	mS/cm	meter	unit	Techn.	mg/L	Techn.	mg/L	Techn.	mg/L	TECH	Date	AM PM	Feeding	i i
	WETSED3 / .	0	WQ	66	7	7.8	7	23.6	2	256	S	7.6							CR	12/13	MX	CR	
	WETSED3 / .	1	WQ	66	7	5.9	7	22.3	2	341	5	7.5				·			JL	12/14	l i	٦	
	WETSED3 / .	2	WQ	66	7	5.9	2	22.2	2	290	5	7.5							UL	1415)\ <u> </u>		ĺ
	WETSED3 / .	3	WQ	66	7	5.9	7	22,2	2	279	5	714							ال	12/16	儿准	MMB	
	WETSED3 / .	4	WQ	66	7	8,7	7	22.2	2	262	5	7,5							ル	12/17	Je H	12	
	WETSED3 / .	5	WQ	66	7	5.5	7	22.0	z	250	5	7.5							the	12118	26	-5	
	WETSED3 / .	6	WQ	66	7	5.8	7	25.0	5		S	7.5	Ш						MMB	(3/P)	MAR		
	WETSED3 / .	7	WQ	66	7	4.6	7	21.5	2	236	5	7.3							14	17/10	And T		
	WETSED3 / .	8	WQ	66	7	5.3	7	22.7	2	229	5	7.5	Ш						d	12/21	JL-	7	
	WETSED3 / .	9	WQ	66	7	4.8	7	22.7	2	.232	5	7,4							JL	12/22	\downarrow	9	
	WETSED3 / .	10	WQ	66	7	3.7	7	20.0	7	231	5	7.4							TE	17123	<u> </u>		
	WETSED3 / .	11	WQ	66	┺	니.0	7	23.0	.2	232	5	7.2							程	12/24	15-	-7	
	WETSED3 / .	12	WQ	66	7	4.0	7	23.(2	241	5	7,4							JL	12/25)	7	
	WETSED3 / .	13	WQ	66	7	0-													1KO	171-7		CR	
	WETSED3 / .	14	WQ	66	7	3.7	7	22.1	2	231	5	7.4							74	12127	JC 91E	UL	
	WETSED3 / .	15	WQ	66	7	4.3	7	27.1	2	238	5	7,3					Ш		d	12/19	ju-		
	WETSED3 / .	16	WQ	66	1	3,7	7	23.0	2	279	5	7.2								12/201	J.\		
	WETSED3 / .	17	WQ	66	1	4.2	7	22.9	2	228	5	7.5							199	15/20	If GR	a	
	WETSED3 / .	18	WQ	66	7	3.9	7	27.8	2	231	5	7.4							Mins	12/31	W W	PH	
	WETSED3 / .	19	WQ	66	7	3.3	7	221	2	229	5	7.2							on	1/1	BN-	-3	
	WETSED3 / .	20	MÕ	66	7	2,1	7	21.5	2	236	S	7.2							CR	1/2			

Owater quality not recorded. It 2/26/13.

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
	1 KOSEC I IIIANAOLIK

SPECIES		NEWFIELDS LABORATORY	PROTOCOL
Chironomus tent	ans	Port Gamble Bath 4	EIA 2008 Method 1881,1 Med
TEST START DATE	TIME	TEST END DATE	TIME
13Dec13		02Jan14	

			· · · · · · · · · · · · · · · · · · ·					W	ATER C	UA	LITY DA	ΛTΑ		•							
	DO (mg/L) 2.5 mc		TEMP AJAS±	(C) 1	0	488	(mS/cm) I/A		р н 6-9		(mg/L) < 4.0			DILL	ITION WATI	ER BA	тсн 0		TEMP:RECE	R/HOBO NA	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#		D.O.		TEMP	1-	NDUCTIVITY		рН		Hardness		Alkalinity		TER. Ammonia	TECH	Date	RENEWA	Feeding
6 ppm Cd / .	0	WQ	61	meter		meter	°C	meter	mS/cm	meter	unit 7 7	Techn.	mg/L.	Techn	. mg/L,	Techn.	mg/L	10	مادد	AM PN	<u> </u>
6 ppm Cd / .	1	WQ	61	7	7.7	1	23.6	2	250	5		 		┝		\vdash		CR	12/13	M X	14
	<u> </u>		61	7	5,8	1	22.3	2	323)	7.5	<u> </u>		_				U レ	12/14	I . 1	1
6 ppm Cd / .	2	WQ	1	7	<u> </u>	1	22.3		282	Ž	7,5			_				JL	 ' :'' 	Ju-	
6 ppm Cd / .	3	WQ	61	13	7,,	7	22.1	2	277	2	7.4	<u> </u>		-				UL.	12/16	1 .7	MMB
6 ppm Cd / .	4	WQ	61	17		7	22.1	2	264	5	7.5	_			<u> </u>			<i>J</i>	12/17	1 -1	1 /K
6 ppm Cd / .	5	WQ	61	7	5.6	7	11.0	 	252	5	7.4	L						the	17118	#	
6 ppm Cd / .	6	WQ	61	7	4.8	7	39.0	1	4									MMB	12/19		
6 ppm Cd / .	7	WQ	61	7	4.8	£	22.2	2	235 '	5	7.3							He		K	₹
6 ppm Cd / .	8	WQ	61	7	5.0	7	22,4	2	230	5	7,4							J	12/21	Ju-	7
6 ppm Cd / .	9	WQ	61	7	4.3	7	22.6	2	231	5	73							JL	12/22	4-	 7
6 ppm Cd / .	10	WQ	61	7	3.0	7	20.4	2	230	5	7.3							世	12(23	/ -	>
6 ppm Cd / .	11	WQ	61	7	3.7	7	22.7	2	257	5	7.2							th	12/24	7JŹ	
6 ppm Cd / .	12	WQ	61	7	3,5	Ų	22.8	2	W	5	7,3							Ju	12/15	75-	7
6 ppm Cd / .	13	WQ	61	7	34	7	22.7	2	222	5	7.4							بار	12/26	Jc-7	CF
6 ppm Cd / .	14	WQ	61	7	4.4	4	11.0	2	225	5	7.4							the	12127	7 H	e du
6 ppm Cd / .	15	WQ	61	٦	4.1	7	12.9	2	230	5	7.2							d	12 28	Ů.	
6 ppm Cd / .	16	WQ	61	7	3.5	7	22.8	2	229	8	7,1							JL	12/29	<u> </u>	+
6 ppm Cd / .	17	WQ	61	h	4.3	7	23.0	Z	226	5'	7.4							THE	2130	7da Co	e IR
6 ppm Cd / .	18	WQ	61	7	3.9	5	2) . ¢	2	99 €					<u> </u>				MMB		M	
6 ppm Cd / .	19	WQ	61	彳	3.3		220	! 	222	5	7.5			<u> </u>				BM	1/1	KIL	#S
6 ppm Cd / .	20	WQ	61	7		7	21.5	•		5	7.2							CR	112		

CLIENT	PROJECT
Farallon	Yakima Steel
NEWFIELDS JOB NUMBER	PROJECT MANAGER
0	Bill Gardiner

SPECIES	NEWFIELDS LABORATORY	PROTOCOL
Chironomus tenta		
TEST START DATE TIL	ME TEST END DATE	TIME
13Dec13	02Jan14	

									W			LITY DA	ΙTΑ										
0.0	> 2	00 (mg/L) .5 mg	ſ/L	1EMP	(C) _1	C	2000	(mS/cm) I/A		рн 6-9	NH3	(mg/L) < 4.0			DILL	TION WAT	ER BA	T CH O		TEMP.RECE	rjhobo NA	#	
CLIE	NT/NEWFIELDS ID	DAY	REP	JAR#		D.O.		TEMP	 	NDUCTIVITY		pH		Hardness		lkalinity 		TER. Ammonia	TECH	Date	RENEWA	··· Feeding	ng
3 7	pm Cd / .	0	WQ	40	meter	· ·	meter		meter	mS/cm	meter		Techn.	mg/L	Techn.	mg/L	Techn,	mg/L	10	10/10	AM PI	100	-
) —					1/	7.9	4	22.4	2	243	5	7.8			\vdash		<u> </u>		CR	12/13	MX	14	\dashv
	pm Cd / .	1	WQ	40	13	6.5	1	22.2	2	301	5	7.3			_		_		ال	12/14		+-	4
-	pm Cd / .	2	WQ	40	17	6.2	3	72.2	12	254	5				L		_		Jr.	1715	灶	1	オ
3 p	pm Cd / .	3	WQ	40	13	0.0	7	22.3	2	258	5	7.3							U	1416	Jet	Z MM	48
3 p	pm Cd / .	4	WQ	40	17	5.4	7	22.0	2	249	5	7.4							d	1417	1	4 12	
3 p	pm Cd / .	5	WQ	40	17	4.2	7	22.2	2	140	5	1.3							the	12/18		-	\neg
3 p	pm Cd / .	6	WQ	40	7	4.5	7	1.66	2	240	5	7.3							MILLS	1941911	eve.		
3 p	pm Cd / .	7	WQ	40	7	4.5	7	72.5	7	230	5	7.3							7/2	17120	#	\$ >	┨
3 p	pm Cd / .	8	WQ	40	17	4.7	7	22.5	2	225	5	7.1							UL		(->	
3 p	pm Cd / .	9	WQ	40	3		7	225	2	221	5	7.2							5	12/22	14	#	3
3 p	pm Cd / .	10	WQ	40	7	***************************************	7	10.0	2	220	5	7.4							M	12/23	16-		7
3 p	pm Cd / .	11	WQ	40	7	3.16	7	72.9	2	221	5	7.1		-					1	12/24	ĦΣ	 ->	
1 3 p	pm Cd / .	12	WQ	40	7	8.1	7	22.7	2	214	5	7,9							JU	12/25		+->	.]
3 p	opm Cd / .	13	WQ	40	7	8.4	7	22.2	ı	216	5	8.1			ļ				J	12/26	J7	CR	2
3 p	pm Cd / .	14	WQ	40	7	4.3		22.2	2	224	5	8.2							14	12127	12 78	ال ع	7
3 p	pm Cd / .	15	WQ	40	7	_	7	22,8	2	223	5	7.8							JL	12/28	1	>	
3 p	opm Cd / .	16	WQ	40	7	8.4	7	22.8	2	118	5	7.7							UL	12/29	k+	-	
3 p	pm Cd / .	17	WQ	40	7	8.4	7	22.8	Z	ध्य	5	8.2							199	12130	X 4	2 CK	
3 p	opm Cd / .	18	WQ	40	7	8.3	7	J.66	٦	342	Ś	8							MMB	19131	MIK		
3 p	pm Cd / .	19	WQ	40	7	9.0	7	22.4	2	228	þ	8.0							13/1	1/i	1311_	1>	
3 p	pm Cd / .	20	WQ	40	7	8.7	7	21.5	2	225	S	7.9							CR	1/2			
				1) AR	191	in Ini	tia	ted											•				_

20 DAY SOLID PHASE TEST DATA SHEET

1	CLIENT	PROJECT
	Farallon	Yakima Steel
1	NEWFIELDS JOB NUMBER	PROJECT MANAGER
	0	Bill Gardiner

SPECIES	Ī	NEWFIELI	DS LABORATO	ORY	PROTOCOL
Chironomus tenta	ans	Port	Gamble		MA 1990 Method 199,1 Med
TEST START DATE TI	IME 1	TEST EN	DATE		TIME
13Dec13			02Jan1	4	

								W	ATER C		LITY DA	TΑ									
	00 (mg/L) .5 mg	/L	TEMP(0	Sec. 365	(mS/cm) /A		рн 6-9		(mg/L) < 4.0			DILL	ITION WAT	ER BA	тсн 0		TEMPIRECE	rjhobo NA	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP	COI	NDUCTIVITY mS/cm	meter	pH unit	Techn.	Hardness mg/L	Techn.	lkalinity mg/L	IN Techn.	TER. Ammonia mg/L.	TECH	Date	RENEWA	- Feeding
1 ppm Cd / .	0	WΩ	60	7	7.3	7	24.0	2	216	5	7-6				13			CR	12/13	мχ	CR
1 ppm Cd / .	1	WQ	60	7	5,4	7	22,3	2	259	5	7,4			T				U	14/4	r	>
1 ppm Cd / .	2	WQ	60	7	5.5	7	22,1	2	234	5	7,3							r	12/15		>
1 ppm Cd / .	3	WQ	60	7	55	7	22.4	2	237	5	7.2							Ú-			MMB
1 ppm Cd / .	4	WQ	60	7		7	22.1	2	221	5	7.4							JL	12/17	N #	路
1 ppm Cd / .	5	WQ	60	7	U5,5	7	31.7	2	230	5	7.5							1992	12/18	14=	->
1 ppm Cd / .	6	WQ	60	7	3.9	7	99.0	2	390	8	7.3							MARE	19119	MR	1
1 ppm Cd / .	7	WQ	60	7	3,46	7	22.2	ν	220	5	1.2					ļ		HE	12120	ME.	
1 ppm Cd / .	8	WQ	60	7	7,5	7	22.8	2	210	5	7.8			<u> </u>				UL	12/21	j. <u>-</u>	
1 ppm Cd / .	9	WQ	60	7	7.7	7	22.4	2	219	5	7.7	ļ		<u>.</u>				()L	1422		+>
1 ppm Cd / .	10	WQ	60	1	4.3	7	101		27222	•	7.9	_		ļ				Ke	12123	K	7
1 ppm Cd / .	11	WQ	60	7	7.6	7	22.7	2	224	5	7.7	_				<u> </u>		Be	12/14	,	-7
1 ppm Cd / .	12	MQ	60	1	7.3	7	22.50		226230		\$2-18				<u> </u>	-		JĽ_	12/25	1	-7
1 ppm Cd / .	13	WQ	60	7	7-1	7		2	us	5	<u></u>	_				╂		11	12/26	 	· · · · · ·
1 ppm Cd / .	14	WQ	60 60	7	9.4	7	27.4	7	224	5	28.0	_		┡		-		10te	1217)(E UL
1 ppm Cd / . 1 ppm Cd / .	15 16	WQ WQ	60	7	7,7	구 구	72.8	2	225	7	7.7	-		\vdash		lacksquare		1	12/28	0-	7
1 ppm Cd / .	17	WQ	60	7	8,0 7.8	"T	<u> </u>	1	226	5	7.5 9 2.4 78	<u> </u>		╁		\mathbf{I}		<i>H</i>	12/30	74 C	0 10
1 ppm Cd / .	18	WQ	60	7	7.5	ا د	22.9 22.6	2	<u> </u>	5	F	┢		\vdash		┡		1.		. 4	11
1 ppm Cd / .	19	WQ	60	7	8.6	7	22.2	7		5		\vdash		1		+		mins	(2 /31	BN.	W-
1 ppm Cd / .	20	WQ	. 60	7	7.8	7	21.4	2	217	5	7.6			1		\vdash		CR	112	1	+

Owe He 12118 real data: 41,22,2,222, 222, 1.3 @MR @ In 1223 The HE 12/24/13. 426 He 12127 (5 Wrong Page HE 12/30

Page 8 of 8

		•
Page	^	t.
I ago	v	1

Ammonia and Sulfide Analysis Record

Client/Project; Favallon / Yakima Steel	Organism: dilutus Chivonomus fentans	Test Duration (days): 20
PRETEST / INITIAL OVERLYIN Comments:	FINAL / OTHER (circle	one) DAY of TEST: W) (circle one)
Calibration Stan Date: 12/13/13	dards Temperature Temperature: 20\%	Sample temperature should be within ±1°C of standards temperature at time

	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value _(mg/L)	Temp °C	Date of Reading and Initials	рН	Cond. (μS/cm)	Hardn- ess	Alkali- nity
oν	Control	Surr	12/13/13 MMB	0.1580.180	20.6	12/13/13 915	\	/	73	62
	TNWR	Surr		0.141					90	84
	WETSED1	Surr		0.179					106	68
	WETSED2	Surr		0.146					110	8/2
	WETSED3	Surr		0.163			/		110	77
	6 ppm Cd	Surr		0.193					104	86
	3 ppm Cd	Surr		0.144					86	74
J	1 ppm Cd	Surr		0.164		U	7		88	76
W	Control	Sur.	a —					>		
	TNWP		17/13/13 nune	1.15	20.1	12/13/13MMB	6.9	597		
	WETSED I			0.903	1	\ \	6.1	101		
	WETSEDZ			0.362			9.0	734		
	WEISED 3			1.14			<i>ل</i> ه. ها	880		$\sqrt{}$
	6 ppm cd			1.62			b.8	744	/	
	3 ppm Cd			0.967			6.9	V75		
	Ippm Cd	J	J	1.42	ما	4	6.9	594		
	•									

Owners Data sheet. In 12/13/13. Disoufficient two collected for analysis, MMVB 12/13/13.

Page	of

Ammonia and Sulfide Analysis Record

Client/Project: Favallory Yakima Steel	Organism: Chivonomus ditutus	Test Duration (days):
PRETEST / INITIAL OVERLYIN Comments:	FINAL OTHER (circle on G (OV) POREWATER (PW	
Calibration Stan		Sample temperature should be within
Date: 1/02/14		± 1 °C of standards temperature at time and date of analysis.

	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	pН	Cond. (μS/cm)	Hardn- ess	Alkali- nity
04	Control	Surr	462/14 Ju	0.826	27.0	162/14 10	\	/	83	80
	TNWR	Surr		0.166	ſ				85	81
	WETSED1	Surr		0.469					74	68
	WETSED2	Surr		0.482				/	99	94
	WETSED3	Surr		0.379				X	i 06	96
	6 ppm Cd	Surr		0.479					94	93
	3 ppm Cd	Surr		0.107					95	88
J	1 ppm Cd	Surr		0.0749					94	86
pw	Control	Sun.	1/02/14 Ju	0.892	23.1	402/14 1	7.5	3	\	
	TNWR		0}-			The state of the s			- \	
	MERSEDI			0.984		-	6.5	161		
	WEISED 2			0.472			7.1	258		
	WETSED3	4		0.586			71	284	X	
	6 ppm cd			1.31			7.063	255,40		
L	3 ppm Cd			0.330			7.1	275		
<u>ک</u>	[ppm cd		J	0.318	J		6.9	269		
		- 212								

Deurogate broken down for test endpoints. It 1/02/14. DWC, It 1/02/14. Dinsufficient volume collected. It 1/02/14.

Report Date:

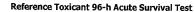
03 Jan-14 13:10 (1 of 1)

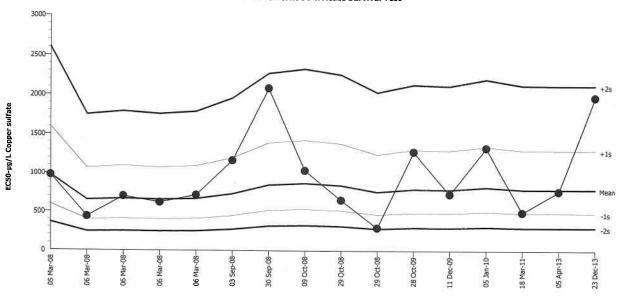
Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-99/064 (2000)


Organism: Chironomus tentans (Midge)


Endpoint: Proportion Survived

Material:

Copper sulfate

Source: Reference Toxicant-REF

Mean: 791.6 Sigma: NA

Count: CV:

15 63.50%

-1s Warning Limit: +1s Warning Limit:

484.2 1295

-2s Action Limit: 296.1

+2s Action Limit: 2117

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2008	Mar	5	16:00	974.8	183.3	0.4236			17-5088-4869	11-7430-3641
2			6	14:05	437.1	-354.4	-1.208	(-)		10-4266-7095	07-8420-5733
3			6	15:05	700.2	-91.36	-0.2494			09-6742-7330	06-0683-4966
4			6	16:00	619.4	-172.1	-0.4987			02-0080-2416	15-7152-5574
5			6	16:15	715.4	-76.15	-0.2057			12-5808-8991	12-4168-5866
6		Sep	3	16:30	1165	373.2	0.7855			01-8134-6872	13-6131-9850
7			30	18:00	2084	1292	1.968	(+)		05-7665-9837	05-0478-5679
8		Oct	9	16:45	1035	243.7	0.5459	, ,		19-1052-3253	20-8060-3660
9			29	14:15	653.3	-138.2	-0.3904			02-9367-4519	13-0089-1252
10			29	14:30	293.9	-497.6	-2.015	(-)	(-)	03-9491-8836	07-7627-7935
11	2009		28	17:30	1278	486.9	0.9749	. ,	()	04-4419-7321	11-1661-0546
12		Dec	11	0:00	731.4	-60.12	-0.1607			07-8382-2402	16-5362-0061
13	2010	Jan	5	15:35	1329	537.7	1.054	(+)		14-8176-7957	10-7765-4505
14	2011	Mar	18	17:55	494.5	-297.1	-0.9569	()		02-8320-1653	15-5071-3578
15	2013	Apr	5	15:30	767.9	-23.63	-0.06162			20-0809-1169	11-3931-6693
16		Dec	23	14:20	1968	1177	1.852	(+)		05-8986-6629	12-7746-8734

Report Date:

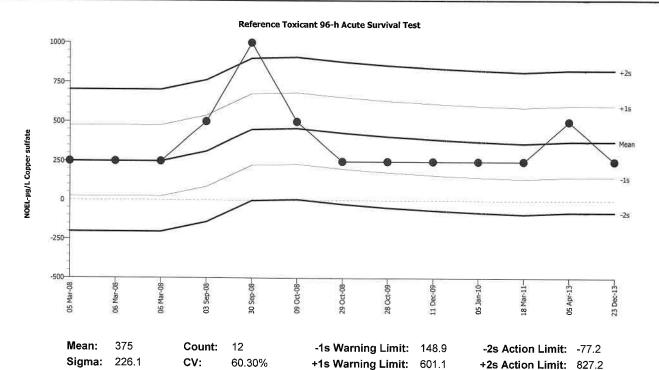
03 Jan-14 13:10 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-99/064 (2000)


Organism: Chironomus tentans (Midge)

Endpoint: Proportion Survived

Material:

Copper sulfate

Source: Reference Toxicant-REF

Qua	lity Cor	trol Dat	а						
Poir	nt Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action
1	2008	Mar	5	16:00	250	-125	-0.5529		

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2008	Mar	5	16:00	250	-125	-0.5529			17-5088-4869	07-1723-5244
2			6	16:00	250	-125	-0.5529			02-0080-2416	08-2909-0446
3			6	16:15	250	-125	-0.5529			12-5808-8991	07-2685-6747
4		Sep	3	16:30	500	125	0.5529			01-8134-6872	09-4866-9316
5			30	18:00	1000	625	2.764	(+)	(+)	05-7665-9837	13-6324-1710
6		Oct	9	16:45	500	125	0.5529			19-1052-3253	06-1542-1647
7			29	14:15	250	-125	-0.5529			02-9367-4519	04-2601-2129
8	2009		28	17:30	250	-125	-0.5529			04-4419-7321	13-1806-8962
9		Dec	11	0:00	250	-125	-0.5529			07-8382-2402	10-8260-1706
10	2010	Jan	5	15:35	250	-125	-0.5529			14-8176-7957	17-4968-8256
11	2011	Mar	18	17:55	250	-125	-0.5529			02-8320-1653	04-7138-7893
12	2013	Apr	5	15:30	500	125	0.5529			20-0809-1169	13-5361-1168
13		Dec	23	14:20	250	-125	-0.5529			05-8986-6629	20-5449-8532

000-173-185-3

Report Date: Test Code: 03 Jan-14 13:03 (p 1 of 2) 2328A685 | 05-8986-6629

Refere	nce Toxic	ant 96-h Acu	ite Surviv	al Test					t oode.		020/1000	NewFields
Analys	sis ID: 1	 2-7746-8734	Eı	ndpoint:	Proportion Su	rvived		CE.	ΓIS Version:	CETIS		
Analyz	zed: 0	3 Jan-14 13:0		nalysis:	Linear Regres				cial Results	_	71.0.0	
Batch	ID: 0	8-4027-1305	Te	est Type:	Survival			Ana	ılyst:			
Start D	Date: 2	3 Dec-13 14:		rotocol:	EPA/600/R-99	9/064 (2000)				ited Minera	al Water	
		7 Dec-13 14:	55 S _I	pecies:	Chironomus to	entans		Brin		Applicable		
Duration	on: 4	d 1h	S	ource:	Aquatic Biosy	stems, CO		Age				
Sampl	e ID: 1	7-8394-4451	C	ode:	6A54D503			Clie	ent: Inte	rnal Lab		
Sampl	e Date: 2	2 May-12	M	aterial:	Copper sulfate	e				erence To	xicant	
Receiv	re Date:		Sc	ource:	Reference To:	xicant		·				
Sample	e Age: 58	80d 14h	St	ation:	p120522.36							
Linear	Regression	on Options										
	Function			Thres	hold Option	Threshold	Optimize	d Pooled	Het Corr	Weighte	ed	
Log-No	rmal [NED	=A+B*log(X)]		Contro	ol Threshold	1E-07	Yes	No	No	Yes	SAIL TO THE REAL PROPERTY.	
Regres	ssion Sum	mary										
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	n(a:5%)	
15	-96.09	199.4	201.7	3.294	0.5081	0.8051	2.36	3.16	0.1055		nificant La	ack of Fit
Point E	Estimates											
Level	μg/L	95% LCL	95% UC	L								
EC5	287.3	146.5	430.4									
EC10	439.5	259.8	611.1									
EC15	585.4	379.7	779.7									
EC20	735.3	509.6	953.3									
EC25	894.1	650.8	1141									
EC40	1463	1146	1890									
EC50	1968	1546 	2669									
Regres	sion Para	meters										
Parame		Estimate	Std Erro	r 95% L	CL 95% UCL	. t Stat	P-Value	Decision	(a:5%)			
Thresho	old	6.66E-08	4.08E-05	5 -8E-05	8.00E-05	0.001632	0.9987		ificant Param	neter		
Slope		1.968	0.2832	1.413	2.523	6.949	<0.0001	-	t Parameter			
Intercep	ot	-6.484 	0.8942	-8.236	-4.731	-7.251	<0.0001	Significan	t Parameter			
ANOVA	Table											
Source		Sum Squa	ares Me	an Squar	e DF	F Stat	P-Value	Decision	(a:5%)			
Model		72.58878	72.	58878	1	97.01	<0.0001	Significan				
Lack of		4.436558		78853	3	2.36	0.1055	Non-Signi	ficant			
Pure Er		11.27713		26507	18							
Residua		15.71368	0.7	48271	21							
	al Analysis	5										
Attribut		Method			Test Stat	Critical	P-Value	Decision	(α:5%)			
Goodne	ss-of-Fit	Pearson C	•		15.71	32.67	0.7855	_	ficant Hetero			
Variance	es	Likelihood Mod Lever			16.86	32.67	0.7197		ficant Hetero	genity		
Distribut		Shapiro-W			ce 2.245 0.9171	2.773 0.9169	0.0942	Equal Var				
		Anderson-		-		2.492	0.0504 0.0507	Normal Di Normal Di				
Proport	ion Surviv	ed Summar	v								7 97	
C-μg/L		rol Type	Count	Mean	Min	Max	ated Variat Std Err		C)/0/	0/ Ess. 1		<u>ar</u> s
0		on Water	4	1	1	1 1	0	Std Dev 0	CV%	%Effect	A 40	B 40
250			4	1	1	1	0	0	0.0% 0.0%	0.0% 0.0%	40 35	40 35
500			4	0.85	0.7	1	0.06455	0.1291	0.0% 15.19%	15.0%	35 34	35 40
1000			4	0.65	0.4	0.8	0.0866	0.1732	26.65%	35.0%	26	40
2000			4	0.55	0.4	0.7	0.06455	0.1291	23.47%	45.0%	22	40 40
4000			4	0.275	0.2	0.4	0.04787	0.09574	34.82%	72.5%	11	40
											1	

CETIS™ v1.8.6.7

Report Date:

03 Jan-14 13:03 (p.2 of 2) 2328A685 | 05-8986-6629

Test Code:

Reference Toxicant 96-h Acute Survival Te	est
---	-----

NewFields

Analysis ID:	12-7746-8734
Analyzed:	03 Jan-14 13:02

Endpoint: Proportion Survived Analysis:

Linear Regression (MLE)

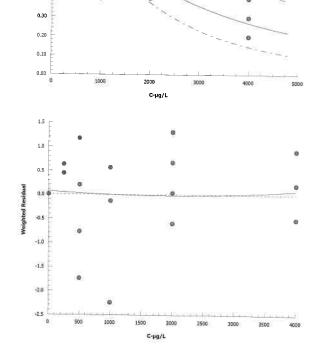
CETIS Version: Official Results: Yes

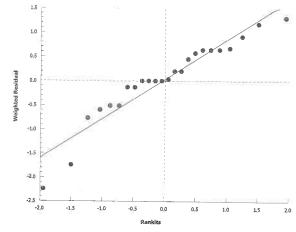
CETISv1.8.6

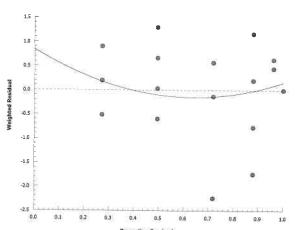
Proportion	Survived	Detail
------------	----------	--------

Control Type	Rep 1	Rep 2	Rep 3	Rep 4
Dilution Water	1	1	1	1
	1	1	1	1
	0.8	0.7	1	0.9
	0.7	0.4	0.8	0.7
	0.7	0.6	0.5	0.4
	0.3	0.2	0.4	0.2
		Dilution Water 1 1 0.8 0.7 0.7	Dilution Water 1 1 1 1 1 0.8 0.7 0.7 0.4 0.7 0.6	Dilution Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Proportion Survived Binomials


C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Dilution Water	10/10	10/10	10/10	10/10
250		10/10	10/10	5/5	10/10
500		8/10	7/10	10/10	9/10
1000		7/10	4/10	8/10	7/10
2000		7/10	6/10	5/10	4/10
4000		3/10	2/10	4/10	2/10


Graphics


0.81

Proportion Survived 0.61

Log-Normal [NED=A+B*log(X)]

Report Date: Test Code:

03 Jan-14 13:03 (p 1 of 2) 2328A685 | 05-8986-6629

Reference Toxicant 96-h Acute Survival Test NewFields Analysis ID: 20-5449-8532 Endpoint: Proportion Survived CETIS Version: CETISv1.8.6 Analyzed: 03 Jan-14 13:02 Analysis: Parametric-Control vs Treatments Official Results: Yes Batch ID: 08-4027-1305 Test Type: Survival Analyst: Start Date: 23 Dec-13 14:20 Protocol: EPA/600/R-99/064 (2000) Diluent: Diluted Mineral Water **Ending Date:** 27 Dec-13 14:55 Species: Chironomus tentans Brine: Not Applicable **Duration:** 4d 1h Source: Aquatic Biosystems, CO Age: Sample ID: 17-8394-4451 Code: 6A54D503 Client: Internal Lab Sample Date: 22 May-12 Material: Copper sulfate Project: Reference Toxicant Receive Date: Source: Reference Toxicant Sample Age: 580d 14h Station: p120522.36 **Data Transform** Zeta Alt Hyp **Trials** Seed **PMSD** NOEL LOEL **TOEL** TU Angular (Corrected) NA C > T NΑ NA 13.3% 250 500 353.6 **Dunnett Multiple Comparison Test** Control VS C-µg/L Test Stat Critical MSD DF P-Value P-Type Decision(a:5%) Dilution Water 250 0.1869 2.407 0.215 6 0.7724 CDF Non-Significant Effect 500* 2.489 2.407 0.215 6 0.0427 CDF Significant Effect 1000* 5.249 2.407 0.215 6 0.0001 CDF Significant Effect 2000* 6.445 2.407 0.215 6 < 0.0001 Significant Effect CDF 4000* 9.682 2.407 0.215 6 < 0.0001 Significant Effect CDF **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) Between 2.314478 0.4628955 5 29.06 < 0.0001 Significant Effect Error 0.2867599 0.01593111 18 Total 2.601238 23 **Distributional Tests** Attribute Test Critical Test Stat P-Value Decision(a:1%) Variances Mod Levene Equality of Variance 2.058 4.248 0.1186 **Equal Variances** Variances Levene Equality of Variance 3.384 4.248 0.0249 Equal Variances Distribution Shapiro-Wilk W Normality 0.9654 0.884 0.5549 Normal Distribution **Proportion Survived Summary** C-µg/L **Control Type** Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Dilution Water 4 1 1 1 1 1 1 0 0.0% 0.0% 250 4 1 1 1 1 1 1 0 0.0% 0.0% 500 4 0.85 0.6446 1 0.85 0.7 1 0.06455 15.19% 15.0% 1000 4 0.65 0.3744 0.9256 0.7 0.4 8.0 0.0866 26.65% 35.0% 2000 4 0.55 0.3446 0.7554 0.55 0.4 0.7 0.06455 23.47% 45.0% 4000 4 0.275 0.1227 0.4273 0.25 0.2 0.4 0.04787 34.82% 72.5% Angular (Corrected) Transformed Summary C-µg/L **Control Type** Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Dilution Water 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.0% 0.0% 250 4 1.395 1.342 1.448 1.412 1.345 1.412 0.01668 2.39% 1.18% 500 4 1.19 0.9005 1.479 1.178 0.9912 1.412 0.09091 15.28% 15.73% 1000 4 0.9435 0.6555 1.232 0.9912 0.6847 1.107 0.0905 19.18% 33.18% 2000 4 0.8368 0.6273 1.046 0.8357 0.6847 0.9912 0.06584 15.74% 40.73% 4000

Analyst: _____QA:____

19.41%

61.2%

0.7171

0.5216

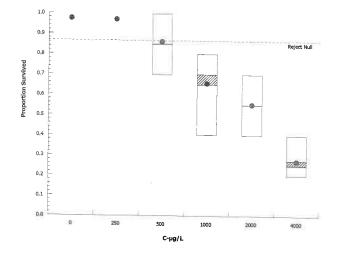
0.4636

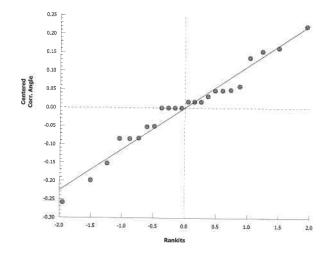
0.6847

0.05317

0.5479

0.3787


Report Date:


03 Jan-14 13:03 (p 2 of 2)

Test Code:

2328A685 | 05-8986-6629

						Test Code:	2328A685	5 05-8986-6629
Reference To	oxicant 96-h Acu	ıte Surv	vival Test					NewFields
Analysis ID: Analyzed:	20-5449-8532 03 Jan-14 13:	02	Endpoint: Analysis:	Proportion Su Parametric-C	urvived ontrol vs Treatments	CETIS Version: Official Results:	CETISv1.8.6 Yes	
Proportion S	urvived Detail							
C-μg/L	Control Type	Rep	1 Rep 2	Rep 3	Rep 4			
0	Dilution Water	1	1	1	1			
250		1	1	1	1			
500		8.0	0.7	1	0.9			
1000		0.7	0.4	0.8	0.7			
2000		0.7	0.6	0.5	0.4			
4000		0.3	0.2	0.4	0.2			
Angular (Cor	rected) Transfor	med De	etail					
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	1.412	1.412	1.412	1.412			
250		1,412	1.412	1.345	1.412			
500		1.107	0.9912	2 1.412	1,249			
1000		0.991	2 0.6847	7 1.107	0.9912			
2000		0.991	2 0.886	0.7854	0.6847			
4000		0.579	6 0.4636	0.6847	0.4636			
Proportion Su	urvived Binomia	ıls						
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
0	Dilution Water	10/10	10/10	10/10	10/10			
250		10/10	10/10	5/5	10/10			
500		8/10	7/10	10/10	9/10			
1000		7/10	4/10	8/10	7/10			
2000		7/10	6/10	5/10	4/10			
4000		3/10	2/10	4/10	2/10			
Graphics								

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix D

Porewater TIE Test Data Sheets and Analytical Chemistry

Appendix D.1

10-Day Porewater TIE Test with Hyalella azteca

10 DAY POREWATER TEST - OBSERVATIONS

uent Fara	1100		PROJECT	na Steel	JOB NUMBER	PROJECT I	MAN. LABOR	CATORY	PROTOCOL	SPECIES	Hyallel	l a	ACCLM.MOI	RT.	#REF!		
fdLd	TIOU		Iakli	ng preer		•	1		ERVATIO		nyarren	. a			HILEL.		<u>يا</u>
= no burrows F= = dead on surface D=	anoxic s fungal pa no air flo excess f	atches ow (DO?)	DATE UDI	DATE 2/02 TECHNICIAN		DATE 2 4	DATE S	DATE / G	DATE / 7	DATE 2/08 TECHNICIAN	DATE 2/09 TECHNICIAN	DATE 2110 TECHNICIAN	NUMBER REMAINING	WEIGH BOAT NUMBER	FARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY
CLIENT/ NEWFIELDS ID	REP	JAR INITIA	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	MK OBSERVNS.	MV OBSERVNS.	JU OBSERVNS.	OBSERVNS.	OBSERVNS.	NUME	WEIG	TARE	TOTA (mg)	ASH
	1.		1,	N	2	NH	N	Ņ	NŸ	支	4	4		K	20858	a)	
	2		D3 100	-	ĺ	,3(૦)	,		3	3	3	3		2	206A8	0	
Control / .	3					니			Ч	4	4	4		3	z08.36		
	4					4			4	4	4	4		ે 4	36518		Ton Andrews
	: 5			b	3	3(0)	V	$ \Psi $	3	3	3	弘		5/	10782		
7	1		N	N	Ŋ	O(4	<u> </u>	<u> </u>	<u> </u>		<u> </u>	7			<u>.</u>		
	2		1 1			o (4)		1							<u></u>		
WS-1 PW / .	3		1_1			0(4)		<u> </u>				\					
	4		.]			o (4)										,	
	5		<u> </u>		<u>.</u>	0(4)		1_/	ļ\			\			ļ	<u> </u>	
	1		1 2	Ŋ	Ų	0(4	\	<u> </u>	<u> </u>	7	<u> </u>						
	2		.]		.	0(4		1			<u> </u>				ļ		
S-1 PW C18 / .	3			.	<u> </u>	છ (ધ)											
	4		<u> </u>	.		०(५)											
	5	_		با	a d	૦(૫)	igwedge		<u> </u>			 		-	ļ	ļ	<u> </u>
ŀ	1		l iM	<i>\(\bar{\gamma} \)</i>	Ρ	2(0	\	<u> </u>	(·3(0)	\	<u> </u>	 			ļ	1	
10 0	2		1-7-	 	 	4	\	+	\			 					
18 Control / .	3		1	 	ļ	વ	 \	 		-						ļ	
•	5		1-1-	 	1	9	+	+-	 		 \ -	 	 				}
	$\frac{3}{1}$		12	1	<u> </u>		10	+ "	1(1)	· · · \	1	1					+
ŀ	2		15	7	ا ۲	2(1)	4			1 7	1 7				1		
	3		1		-	((1)	1		Ø(1)	2	2	2			<u></u>		
	4		·}	·		1,60	 	1	1,000	}		1			}		
	5		- 	1		₩a	$\mathbb{L}_{\mathbb{V}}$	1 1	4	/		4			1		
ŧ.			.l	21.	L	I	1 <u>o</u>	1	.I	4	14		.1	.i.	, <u>\$</u>	l	,,, i

OKIN YOU

Dobs 2/4 normal, #alive, (#dead) CR Dwc Mx 2/1 Data Sheet. IL 2/10/14

10 DAY POREWATER TEST - OBSERVATIONS

JENT Farallon				PROJECT	a Steel	JOB NUMBER	PROJECT N	l l	RATORY Gamble, WA	PROTOCOL	SPECIES	Hyalle	la	ACCLM.MORT. #REF!					
	MAGNES		_	1		<u>.</u>	ENDPO	INT DAT	A & OBS	ERVATIO	ONS								
= no burrows F = dead on surface E	≈ anoxic ≈ fungal p i= no air fi i= excess	atches ow (DO?) lood		DATE / 61 TECHNICIAN	DATE J 02 TECHNICIAN	DATE VIS TECHNICIAN	TECHNICIAN	DATE 2/5 TECHNICIAN	DATE CONTROL	DATE 1 1	DATE 2/08 TECHNICIAN	DATE 2/09 TECHNICIAN	DATE, 2/10 TECHNICIAN	NUMBER REMAINING	WEIGH BOAT NUMBER	TARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY WEIGHT (ma)	
CLIENT/ NEWFIELDS I	REP	JAR INT	ZAL.	OBSERVINS.	OBSERVNS)レ OBSERVNS.	R OBSERVNS.	OBSERVNS.	MV- OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	OBSERVNS.	NUME	WEIG	TARE	ATOT (gm)	ASH	
	1	No.		N	Ъ	Ŋ	N36	2	N	3(0)	3	3	3						
	2			7	<u> </u>		3(0)	1		30)	3	3	3				1	A	
SIR300 Control	3						4			14	3(1NB)		3					AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	
	4					†	ч		1-1-	l u	4	4	4		1		***************************************		
	5		}	U	tt		4	4	1 4	1 1	1	4	u		1		4		
	1			7	72	1 3	0(4) 10	\	V	/ /	/ /	\	\ \		1				
7	2			1			0(4)	-		T\	1	1			7		Ş	deceptati	
WS-1 EDTA 1 / .	3						0(4)	\ \ \	T	1 \	1	T\-		1	alateration 1	Accessed to the second	- San Carlot	-	
	4				Pingue .		0(4)			1 \			/				1	- Automatic	
	5				Ţ	1 .	ં		1	4/	, , , , , , , , , , , , , , , , , , ,			1	1		· 6		
	1			N	iγ	13	1(0)	T	Y \	\	1	(- Annual Control of the Control of t	- Symmetry	
	2			1	1	Ī	4	\	1	1	1	 					· Constitution of the cons	1	
DTA 1 Control	3						14	 \	1	1	1	1				1	· •		
	4				ing a la		3(0)	\		1							- Carrier	Ì	
	5			·········	レン	1 1	3(0)		T								***************************************		
	1			Ŋ	٦	N	0(4)	/	1	N	T	, , , , , , , , , , , , , , , , , , ,	N				7		
	2					ſ	0(4)				11	1.7							
WS-1 EDTA 2 /	3						0(4)	\											
	4						0(4)												
	5			T.			0(4)						1						
	1			P	٦	η,	3(0)			1	/	`	\						
	2		X.				4		$\Gamma \setminus$	\prod	\prod								
_/SA 2 Control	3						4			$I \setminus$									
	4			sire ets.	A A		4											1	
WS-1 Filtered /	5			V	L.	Į į	4												
	1			Ь	P	Ŋ	0(3)			<u> </u>		\						TO T	
	2		000	I			6(4)			1\							***************************************	1	
	3						0(4)		1										
	4						D(4)										www	3	
	5		3	U	1	Ġ	Volú		1	<u> </u>	,	,	,	4				-	

OWC CR 2/4 Dobs 2/4 normal,#alive, (#dead)

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES			LABORATORY		PROTOCOL	
Farallon	Yakima Steel		Hyalle	la	Port Gamble, WA	Gamble, WA		
JOB NUMBER	PROJECT MANAGER		TEST START DATE	TIME	TEST END DATE		TIME	
	Bill Gardiner		31Jan14		10Feb14			

						٧	VATER Q	UA	LITY DAT	Α#	1						
				DO (n	ng/L) > 2.5		TEMP(C) 23±1		COND.(µS/cm) vary <		р Н 7.8-8.2	DILU	TION WATER BA	тсн 0	TEMP.REC	DR./HOBO#	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN		RENEWAL PM	FEED- ING
Control / .	0	WQ	Surr	7	8.7	7	20.9	2	195	12	0.1	8	7.6	cms			
Control / .	1	WQ	Surr	Ь	8.4	5	23.8	6	207	1	07	(7-9	ل ل ا			
Control / .	2	WQ	Surr	6	જે.(5	22.8	Ь	218	Ø		Š	7.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Control / .	3	WQ	Surr	7	8.8	7	22.	6	20.	to constant		5	7.9	CR			
Control / .	4	WQ	Surr	وز). ۲	6	6.66	6	245	occord code		5	7.9	MMB			
Control / .	5	WQ	Surr	7	4.8	4	23.1	7	248	G TONGEL		8	6.8	MMP			
Control / .	6	WQ	Surr	Ĺ	5.8	5	23.0	6	276	Variation of the last		5	7.6	MK			
Control / .	7	WQ	Surr	7	6.0	8	21.9	2	485	SCOLOGISCO.		४	6.9	MK			
Control / .	8	WQ	Surr	B	7.1	5	22.3	2	505	Associated (5	6.9	リレ			
Control / .	9	WQ	Surr	6	ገ .8	5	225	6	494	•		5	क्रा	JU			
Control / .	10	WQ	Surr	Q	8.7	5	22.8	6	466	тохначе		5	7.4	MK			

OWC. Je 2601

CLIENT	PROJECT	SPECIES		LABORATORY	PROTOCOL
Farallon	Yakima Steel	Hyallela	a	Port Gamble, WA	COURT COM - KINGTON PANGOO
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TME
	Bill Gardiner	31Jan14		10Feb14	

Γ		1													
	at-	FEED-	ING												The state of the s
	TEMP.RECDRJHOBO# 0	NEWAL	PM												
	P.RECD	WATER RENEWAL	AM												
	TEM														
		TECHNICIAN	XICIAIN	Q	١	د	3	Q.							
	I	1002	מט	FAKIB	5	7	3	MMMB							
	DILUTION WATER BATCH	_		WOMBAN	anonusis	(~)	7	10	*********	Obazioneo c	omesass.) Secondaria) COUNTING	A Secondary	1
	N WATE	동	unit	8 5.40	115	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S	<u>ن</u> و							
	ошпа		meter	<u>છ</u>	5	40	N	ហ							
				<u>Vodakesioo</u>	olessa Augustida	<u>edentificaçõe</u>					-			i de la constante de la consta	
	7.8-	Salinity	ppt												
¥4	50%		meter						0200002	ļ					
WATER QUALITY DATA #1	COND(us/cm) pH vary < 508 7.8-8.2	TIVITY	nS/cm	805	।अध्य	152	=	4							l
	COND.	CONDUCTIVITY					1691	i i							
AUG		Ö	meter	T	0	ھ	9	و.			enouses	Q.11004000	antacens antacens	**********	a
ER	(c) 23±1	TEMP	ပွ	۶	5.9	1.62	1.87	30.66							
MAI	TEMP (C) 23	111	F	7 23.3	7	7								ļ	
	10		meter	 	\ <u>\</u>		-	و	rosensus:		Ossession				
	/J > 2.5	5.0.	mg/L	ナナ	8.3	4	80	Ø. ←							
	ро (mg/L) >		meter	4	رو	عر	1	<u>ا</u>	(R	<u> </u>					l
	2	*	" " "	Surr	Surr	Surr	Surr	Surr	Surr	Surr	Surr	Surr	Surr	Surr	
									-	_	รร	S	S		
ŀ		010	, L	ÕΜ	ÕМ	ÕM	ÕМ	WQ	ÕΜ	ΜQ	ΜŎ	MQ	ŎΜ	ÕM	
ŀ		AVG		0	τ-	2	3	4	5	ဗ	7	œ	တ	10	
				\vdash											
		CI IENT(NEIMEIEI DE 10	# 673		,	• /		. /			. /				
		- CALETARES	LIANE BALL	Md 1	l PW	Md I	Mď 1	Md	PW	PW	Md .	ÞW.	PW.	ΡW	
		C. IENT		WS-1	WS-1	WS-1	WS-1	MS-1	WS-1	WS-1	WS-1	WS-1	WS-1	WS-1	
L							L.								

Oremeasured prior to initiation pH=6.5 3 T

3 Testing discardinated mans 2/5/14

10 DAY POREWATER - WATER QUALITY DATA SHEET

Bill Gardiner 31Jan14 10Feb14	CLIENT	PROJECT	SPECIES		LABORATORY		PROTOCOL
Bill Gardiner 31Jan14 10Feb14	Farallon	Yakima Steel	Hyalle	ela	Port Gamble,	WA	NORTH TOOL - EVEN WOUR-PROXE
	JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE		TIME
		Bill Gardiner	31Jan14		10Feb14		
WATER QUALITY DATA #1		WATER (QUALITY DATA #1				

						V	VATER Q	UA	LITY DAT	A #	1	•				23, 235, 66.0
TIC 2012				DO (n	ng/L) > 2.5		TEMP (C) 23±1		cond.(ps/cm) vary <		рн 7.8-8.2		TION WATER BA	тсн)	TEMP.RECOR./HOBO/	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWAL AM PM	FEED- ING
WS-1 PW C18 / .	0	WQ	Surr	7	ଟ.3	7	22.2	2	1751	2000000		8	5.10	KNB	100 No. 100 No	
WS-1 PW C18 / .	1	MQ	Surr	6	8.5	5	23.9	ما	1750	and the second		5	7.2	ال		
WS-1 PW C18 / .	2	WQ	Surr	6	7,8	5	23,2	Ь	1691	Quantum .			3.2000	J.		
WS-1 PW C18 / .	3	WQ	Surr	7	7.1	7	23.5	6	1659			5	7,0	CR.	ER	
WS-1 PW C18 / .	4	WQ	Surr	Ġ	6.3	6	22.7	6	100	Constitution of the Consti		5	69	MMB		
WS-1 PW C18 / .	5	WQ	Surr	3	Š								•			
WS-1 PW C18 / .	6	WQ	Surr			- Carrier										
WS-1 PW C18 / .	7	WQ	Surr			9		Cleanand		CONTRACTOR		un manenti (m			. 41.24%	Seria
WS-1 PW C18 / .	8	WQ	Surr			ODD TO THE THE		700		OCCUPATION OF THE PROPERTY OF		population				NAS
WS-1 PW C18 / .	9	WQ	Surr							on and and and and and and and and and an						
WS-1 PW C18 / .	10	WQ	Surr							Satura		XIII TO THE PARTY OF THE PARTY				

10 M J 25% NoOH added bringing pH to 7.0 3 Testing discontinued 215/14 mms

10 DAY POREWATER - WATER QUALITY DATA SHEET

	CLIENT	PROJECT	SP
	Farallon	Yakima Steel	
N	JOB NUMBER	PROJECT MANAGER	TE
		Bill Gardiner	

SPECIES		LABORATORY	PROTOCOL
Hyall	lela	Port Gamble, WA	CMIN 2000 - EPA/COU/p-19/00/A
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

					·····	V	VATER Q	UAI	LITY DAT	ГА #	1		<u> </u>			- 5,5	
110				DO (n	ng/L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) vary <		рн 7.8-8.2		ION WATER BA	тсн 0	TEMP.RE	CDR./HOBO/ O	Å
CLIENT/NEWFIELDS ID	DAY.	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	DNDUCTIVITY μS/cm	meter	L	meter	pH unit	TECHNICIAN		RENEWAL PM	FEED- ING
C18 Control / .	0	WQ	Surr	7	୫.୫	7	DJ 4-523	12	<i>(8</i> %	1/2	0 o. L	ප	7.8	CR			
C18 Control / .	5015	WQ	Surr	6	8.4	5	23.7	6	202	S	1-0	5	7.8	JL			
C18 Control / .	2	WQ	Surr	6	7,5	<	23.2	Ь	204			5	7.8	Ú/		N. S.	
C18 Control / .	3	WQ	Surr	7	8.4	7	23.6	6	236			5	7.8	CR.	CSE	1 1 1 1 1 1 1	
C18 Control / .	4	WQ	Surr	Y	8.7	V	22.2	J	272			5	7.7	MIMS			
C18 Control / .	5	WQ	Surr	3)	,			deplease									
C18 Control / .	6	WQ	Surr					o di			Ì						
C18 Control / .	7	WQ	Surr					, acres					i i				10000000000000000000000000000000000000
C18 Control / .	8	WQ	Surr					CSECULAR					Parka, B		UNIV.		
C18 Control / .	9	WQ	Surr					COCCOCC		, contains							
C18 Control / .	10	WQ	Surr					30000									

OWP OR 1/3/ correct temp. = 23.1°C

3 Testing discontinued mans 215/14

10 DAY POREWATER - WATER QUALITY DATA SHEET

	 4.4
CLIENT PROJECT	SPECIES
Farallon Yakima Steel	Barrier.
tararion lagrand greet	
JOB NUMBER PROJECT MANAGER	TEST ST
7.77 6	
Bill Gardiner	

SPECIES	***************************************	LABORATORY	PROTOCOL	
Hyallel	a 	Port Gamble, WA	USEPA 2000 - ZPA/600/8-93/641	
TEST START DATE	TIME	TEST END DATE	TIME	
31Jan14	. 1 , 1 : 4 :	10Feb14		

						NAM V	NATER Q	UALITY DAT	A#	1 950 (5975)		e				1.0
				DO (n	ng/L) > 2.5		TEMP (C) 23±1	COND.(μS/cm) vary <		рН 7.8-8.2	DILUT	ION WATER BA	гсн)	TEMP.REC	dr./hobo/ 0	¥
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CONDUCTIVITY meter µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER R	RENEWAL PM	FEED ING
WS-1 SIR300 / .	0	MQ	Surr	7	8.(17	22.8	2 2247			ව	5.5 D	KMB			
WS-1 SIR300 / .	1	WQ	Surr	ا ا	6,5	15	23.8	62.27 mg/a	15	/	S	7.7	UL		÷.	
WS-1 SIR300 / .	2	WQ	Surr	6	5.0	15	23.3	6 2.21 mg/c	17		5	7.3	ر کد			
WS-1 SIR300 / .	3	MQ	Surr	7	7.7	17	23.9	6 2169			5	7.4	cr	ye	·	
WS-1 SIR300 / .	4	WQ	Surr	9	7.1	9	3.66	16 2095	1		5	7.2	MMB			
WS-1 SIR300 / .	5	WQ	Surr	7	4.9	7	23.2	2 1982		V_{i}	8	5.کار	MMB			
WS-1 SIR300 / .	6	WQ	Surr	6	34-84;	45	四五十	6 190 319		Λ	5	2 6-07.U	MK			
WS-1 SIR300 / .	7	WQ	Surr	(P)	37.03) 5°x	-21.8	UB 1912		/ \	8	ا حا، حا	MK			
WS-1 SIR300 / .	8	WQ	Surr	وا	" ትऽ	5	22.4	6 505	@ /		5	ユー	JL			
WS-1 SIR300 / .	9	WQ	Surr	6	7,8	15	22.6	6 1766	\parallel		5	7.1	ئال			
WS-1 SIR300 / .	10	WQ	Surr	0	37.4	5	22.6	6 1631	1		5	7.4	nek			

OZSUL 25% added to bring pH to 8.6

Oxfilled come of the solution while doing mp me elufy e wrong page me

De probe manglotely placed in viols

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT]	SPECIES		LABORATORY	PROTOCOL
Farallon Yakima Steel		Hyallel	a	Port Gamble, WA	02E0V 5056 - 618/659/8-33/600
JOB NUMBER PROJECT MANAGER		TEST START DATE	TIME	TEST END DATE	TIME
Bill Gardiner		31Jan14		10Feb14	¥

					Mark Ville	٧	VATER Q	UA	LITY DAT	ΓA #	1		·				
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		рн 7.8-8.2		TION WATER BA	тсн Э	TEMP.REC	DR./HOBO# ()	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	Co meter	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER R	ENEWAL PM	FEED- ING
SIR300 Control / .	0	WQ	Surr	7	8.7	7	22.0	2	179		_	8	7.2	kub			
SIR300 Control / .	1	WQ	Surr	ط	8.8	5	24.5	6	193	Š	/	5	7.8	JU			
SIR300 Control / .	2	WQ	Surr	6	7.5	5	23.1	6	201	3		5	7.6	Ju			
SIR300 Control / .	3	WQ	Surr	7	6.8	7	23.9	6	218		\setminus /	5	7.6	CR	62		
SIR300 Control / .	4	WQ	Surr	9	0.8	16	72.3	6	263	copparates		Ŋ	7.6	NWE			
SIR300 Control / .	5	WQ	Surr	7	~5.2	7	23.2	ð	265		X	8	6.9	MMB			
SIR300 Control / .	6	WQ	Surr	6	De. 95.1	5	21.8	6	0 157 19	144		5	US-17.7	5 MK			
SIR300 Control / .	7	WQ	Surr	87	3.5	8	22,0	2	328	CONCERNO	/ \	8	6.7	MK			i İ
SIR300 Control / .	8	WQ	Surr	6	4.0	5	22.3	6	333		/	5	6.9	ソン			
SIR300 Control / .	9	WQ	Surr	6	5.1	5	22.4	6	332			5	7.2	J			
SIR300 Control / .	10	WQ	Surr	ن	5.0	5	22.4	6	381	I)	5	74	MK			

Dwrong page we 2/6/14

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT PROJECT	SPECIES	LABORATORY	PROTOCOL
Farallon Yakima Steel	Hyallela	Port Gamble, WA	1085V 5000 - VAVIAGOAS-Jārācs
JOB NUMBER PROJECT MANAGER	TEST START DATE TIME	TEST END DATE	TIME
Bill Gardiner	31Jan14	10Feb14	-

						· V	VATER Q	UA	LITY DAT	Α#	1 magazar		4. *				
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		р н 7.8-8.2		TION WATER BAT	aran di kaman di Kalaman di Kalama	TEMP.REC	or./hobo# ()	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C mete	ONDUCTIVITY	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER R	ENEWAL PM	FEED- ING
EDTA 1 Control / .	0	WQ	Surr	4	8.9	7	22.9	2	14t155			8	10 8 8 med (1)	kmb			
EDTA 1 Control / .	1	MÖ	Surr	G	8.6	K	245	ما	and the second s			S	72690	JU			
EDTA 1 Control / .	2	WQ	Surr	6	7.3	15	23.4	6	155			5	33	. 00			
EDTA 1 Control / .	3	WQ	Surr	7	2.3	17	24.0	6				5	7.5	cr	Le		
EDTA 1 Control / .	4	WQ:	Sürr	6	7.1	6		0				5		MMB			,
EDTA 1 Control / .	5	WQ	Surr	12.7				Sostonation									
EDTA 1 Control / .	6	WQ	Surr					aptoron		Tax Control		CONTRACTOR S					
EDTA 1 Control / .	7	WQ	Surr			usoseani.			Agana.	-							
EDTA 1 Control / .	8	WQ	Surr			1		owner.co		-		OCCUPATION OF THE PARTY OF THE					
EDTA 1 Control / .	9	WQ	Surr			and the same of th		Openion		S				_			}
EDTA 1 Control / .	10	WQ	Surr							- Constant							

1) WC. KNB 1/31/14

1 WP, JU 2/01

10 DAY POREWATER - WATER QUALITY DATA SHEET

	SPECIES	LABORATORY	PROTOCOL
Farallon Yakima Stee	el Hyallela	Port Gamble, WA	1000cc-andodana = 0000 blass
JOB NUMBER PROJECT MANAGER	TEST START DATE TIME	TEST END DATE	TIME
Bill Gardin	er 31Jan14	10Feb14	4 4

						V	VATER Q	UA	LITY DAT	A #	1:	diaver.	North Charles	1, 444,			
				DO (n	ng/L) > 2.5		TEMP(C) 23±1		cond.(µS/cm) vary <		р н 7.8-8.2		ION WATER BA	т сн)	TEMP.RECI	OR./HOBO# ()	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C meter	ONDUCTIVITY pS/cm	meter	Salinity ppt	meter	pH unit &	TECHNICIAN	WATER R	ENEWAL PM	FEED ING
WS-1 EDTA 1 / .	0	MQ	Surr	4	ا. اصعا	7	22.0	2		18\		8	(/	6 KMB			***************************************
WS-1 EDTA 1 / .	1	WQ	Surr	ما	7.7	5	24.3	6	1749			5	7,2	JU			
WS-1 EDTA 1 / .	2	WQ	Surr	6	7.8	5	73.2	Į į.	1			S	7.3	Ù			
WS-1 EDTA 1 / .	3	WQ	Surr	7	8.4	7	24.2	6	/	one of the last		5	7.3	CR	e		
WS-1 EDTA 1 / .	4	WQ	Surr	8	8,9	V	224	16	1672		1	5	7.5	MNUS			
WS-1 EDTA 1 / .	5	WQ	Surr					Personal		accompany of the contract of t				and the same of th			
WS-1 EDTA 1 / .	6	WQ	Surr			NO COLOR		OTTER CONTRACTOR		O TOTAL OF THE PARTY OF THE PAR		The second					
WS-1 EDTA 1 / .	7	WQ	Surr					Secretory of the secretory of the secre		-		O CONTRACTOR OF THE CONTRACTOR		ACCOUNT OF THE PERSON OF THE P			
WS-1 EDTA 1 / .	8	WQ	Surr					Vicenoori Vicenoori									
WS-1 EDTA 1 / .	9	WQ	Surr					N COUNTERSON		Trademo	1	cossos					
WS-1 EDTA 1 / .	10	WQ	Surr					O CONTRACTOR OF THE PARTY OF TH				Constanting					

() WC. KNB 1/11/14 (2) 75ML 25% NaOH added to bring pH to 7.3

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT		PROJECT	SPECIES		LABORATORY	PROTOCOL.
	Farallon	Yakima Steel	Hyal.	lela	Port Gamble, WA	USEPA 2000 - XPA/600/R-99/663
JOB NUMBER		PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
		Bill Gardiner	31Jan14		10Feb14	
			R QUALITY DATA #			

						V	VATER Q	UAI	ITY DAT	Α#	1						
				DO (i	mg/L) > 2.5		TEMP (C) 23±1		cond.(µs/cm) vary <	50%	рн 7.8-8.2		ION WATER BA	тсн 0	TEMP.REC	dr./Hobo# 0	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CC meter	NDUCTIVITY µ\$/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN		RENEWAL PM	FEED- ING
EDTA 2 Control / .	0	WQ	Surr	7	9.0	7	22.0	2	161	SECONDS:		ව	6.3	KMB			
EDTA 2 Control / .	1	WQ	Surr	Ь	8.2	5		6	- 1	COCCUS		5	7.3	JL			******
EDTA 2 Control / .	2	WQ	Surr	6	7.9	5	23,4	6	532				7,6	しし			
EDTA 2 Control / .	3	WQ	Surr	7	8,5	7	24.2	6	541			5	7.8	cr	ER		
EDTA 2 Control / .	4	WQ	Surr			6	22.3	6	561	Succession		5	7.9	MMB			
EDTA 2 Control / .	5	WQ	Surr			OCCUPATION OF THE PROPERTY OF				-			:				
EDTA 2 Control / .	6	WQ	Surr			CONTRACTOR						de la constante					
EDTA 2 Control / .	7	WQ	Surr			ncereox											
EDTA 2 Control / .	8	WQ	Surr			Outsweep											
EDTA 2 Control / .	9	WQ	Surr			Special Color						Contraction of the Contraction o					
EDTA 2 Control / .	10	WQ	Surr			anaceana						COUTERSCOO					

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES		LABORATORY	PROTOCOL
Farallon	Yakima Steel	Hyallel	ā	Port Gamble, WA	SSCHA 2009 + SPAZERSZYPHRYSEA
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
	Bill Gardiner	31Jan14		10Feb14	

						V	VATER Q	UA	LITY DAT	A #	1						
				DO (r			TEMP (C)		COND.(µS/cm)				ION WATER BA		i i	DR./HOBO#	
					> 2.5		23±1			50%	7.8-8.2		<u></u>				
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	<u> </u>	D.O.	<u></u>	TEMP	C	ONDUCTIVITY		Salinity	L	рН	TECHNICIAN		RENEWAL	FEED-
				meter	mg/L	meter	°C	meter	μS/cm	meter	ppt	meter	unit		AM	PM	ING
WS-1 EDTA 2 / .	0	WQ	Surr	7	6.0	7	22.0	2	1793	*		8	2.80	FMB			
WS-1 EDTA 2 / .	1	WQ	Surr	0	7,8	5	24,4	Ь	1750			5	6.8	JL			
WS-1 EDTA 2 / .	2	WQ	Surr	Ь	7.9	5	23.3	6	1701			5	7.0	Ü			
WS-1 EDTA 2 / .	3	WQ	Surr	7	8.6	7	24.3	6	1701	accentories.		5	7.1	CR	-CR		
WS-1 EDTA 2 / .	4	WQ	Surr	S	9.4	9	22.8	ġ	1648	or a second		S	1.4	MMB			
WS-1 EDTA 2 / .	5	WQ	Surr			orienterstran				oanoano.	•	2100000000					
WS-1 EDTA 2 / .	6	WQ	Surr			itemotion				and the second		oredoopen.					
WS-1 EDTA 2 / .	7	WQ	Surr			resecutors				A.M.		ACOUNT OF THE PERSON					
WS-1 EDTA 2 / .	8	WQ	Surr			openingo openingo		of the same		distance of the second		ceeenoso					
WS-1 EDTA 2 / .	9	WQ	Surr			decount											
WS-1 EDTA 2 / .	10	WQ	Surr			neman		Name of the last				exposed (V)					

DNaOH added to bring pH to 7.8 wrong page OR 1/3 75.4L 25%

■■NewFields

10 DAY POREWATER - WATER QUALITY DATA SHEET

CLIENT	PROJECT	SPECIES		LABORATORY	PROTOCOL
Farallon	Yakima Steel	Hyallei	la	Port Gamble, WA	0099A 2000 - VHAVQOOVE-6949C1
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
	Bill Gardiner	31Jan14		10Feb14	

			.,			V	NATER Q	UA	LITY DAT	A #	1						
				DO (r	ng/L) > 2.5		TEMP (C) 23±1		COND.(μS/cm) vary <		рН 7.8-8.2		TION WATER BA	тсн 0	TEMP.REC	DR./НОВО# ()	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	Cometer	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER F	ENEWAL PM	FEED- ING
WS-1 Filtered / .	0	WQ	Surr	7	7.3	7	22.3	2	1772			න්	95.85	ķмр			
WS-1 Filtered / .	1	WQ	Surr	6	8.3	15	24.5	5	1760			5	6.9	JL			
WS-1 Filtered / .	2	WQ	Surr	ما	8.1	5	23.3	6	1-10			5	6.9	ÜL			
WS-1 Filtered / .	3	WQ	Surr	7	7.7	7	24.4	2_	1705			8	7.0	CR	68		
WS-1 Filtered / .	4	WQ	Surr	9	9.1	6	22.3					5	7.1	MWB			
WS-1 Filtered / .	5	WQ	Surr			descurrent description of the second		Account of the contract of the					T				
WS-1 Filtered / .	6	WQ	Surr			-		CESCOSION									
WS-1 Filtered / .	7	WQ	Surr			, and the same of											
WS-1 Filtered / .	8	WQ	Surr			, and a second		OF COLUMN			•						
WS-1 Filtered / .	9	WQ	Surr			- metassatu											
WS-1 Filtered / .	10	WQ	Surr			A)(Innovative		Same and the same									

Oremasured prior to initiation pH = 6.9

of

Ammonia and Sulfide Analysis Record

Client/Project: Farrallon / Yakima Steel	Organism: Hyalella azteca	Test Duration (days):
PRETEST / INITIAL OVERLYING Comments:	FINAL OTHER (circle G (OV) / POREWATER (P	one) DAY of TEST: 10 (circle one)
Calibration Stand	lards Temperature	Sample temperature should be within
Date: 2/10/14	Temperature: 21.70	$\frac{1}{2}$ $\frac{\pm 1^{\circ}\text{C}}{1}$ of standards temperature at time and date of analysis.

- 1 (2) (4) (4) (4) (4) (5) (5) (5) (6) (6) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	pН	Cond. (µS/cm)	Hardn- ess	Alkali- nity
οV	Ø	Swv.	2/10/14 mms	0,821	21.2	2/10/14 JL	NA	NA	84	78
DV W	NETSED 1			0.513					80	74
1 1	IEISED I SIR-300		PROPERTY OF THE PROPERTY OF TH	0.249					76	66
	NEISED I PCC			0.433					79	72
	Sir.300 Blank			0.409		on company of Advan			46	58
I	PCC Blank	J		1.34		J			82	74
								Y		
pW	8	Sur.	2/10/14/1	0	22.3	2/10/19 16	1		NA	NA
	WESED 1			0.763			6.5			
	WETSEDI SIR 300			1.08			6.2			
	WETSED!			0.738		#FFRESCRIPTION	6.5			
	SIR. 300 Blank			5.54			7.3			CT CENT
l	PCC Blank	l		2.3500			7.0			

¹⁾ insufficient volume collected for analyses. It 2/10/14,

DWC. JL 2/10/14.

NewFierds

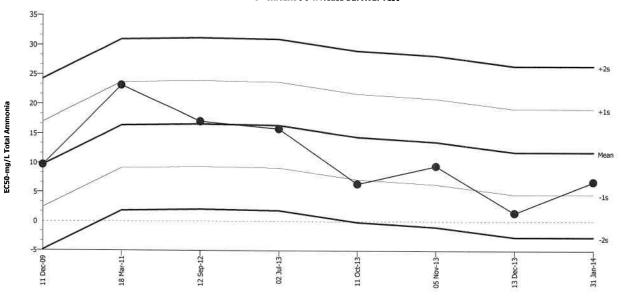
Page	of
I CLESC	O.

Ammonia and Sulfide Analysis Record

Client/Project: Favallor/ Yakima (te	Organism: Hyalella ut	Test Duration (days):
PRETEST / (NIT	LAL / FINAL / OTHER (ci	, <u>——</u>
Comments:	LYING (OX) / POREWATE	ER (PW) (circle one)
Comments:	NLYING (OV) / POREWATE	Sample temperature should be within ±1°C of standards temperature at time

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	рН	Cond. (µS/cm)	Hardn- ess	Alkali- nity
Ø	Suw.	131/14 CR			2/14/14 UL	NA	NA	79	76 58
WEISEDI	1				[128	58
WEISEDI SIR-300		Control of the Contro						0.575g	52
SIR-300 Blank								52	66
WETSED I PCC								136	58
PCC Blank	J	J			v	ı	V	78	64

CETIS QC PlotReport Date: 13 Mar-14 10:27 (1 of 1)


Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival Organism: Hyalella azteca (Freshwater Amphip Material: Total Ammonia

Protocol: EPA/600/R-99/064 (2000) Endpoint: Proportion Survived Source: Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

 Mean:
 11.88
 Count:
 7
 -1s Warning Limit:
 4.592
 -2s Action Limit:
 -2.693

 Sigma:
 7.285
 CV:
 61.30%
 +1s Warning Limit:
 19.16
 +2s Action Limit:
 26.45

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2009	Dec	11	16:05	9.69	-2.19	-0.3006			06-0392-7981	04-0353-3462
2	2011	Mar	18	17:40	23.15	11.27	1.548	(+)		14-6934-6989	08-7287-0236
3	2012	Sep	12	15:30	17.06	5.181	0.7112			15-6980-0340	09-8032-3348
4	2013	Jul	2	16:54	15.85	3.968	0.5447			14-0245-1637	17-3940-1363
5		Oct	11	16:30	6.435	-5.445	-0.7475			02-6747-8290	14-5731-2244
6		Nov	5	14:15	9.487	-2.393	-0.3285			00-2973-8704	14-7798-0524
7		Dec	13	16:00	1.461	-10.42	-1.43	(-)		18-8979-3951	13-5696-3347
8	2014	Jan	31	17:30	6.788	-5.092	-0.699	55(3)		04-3440-6883	07-6457-6634

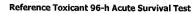
CETIS QC Plot Report Date: 13 Mar-14 10:27 (1 of 1)

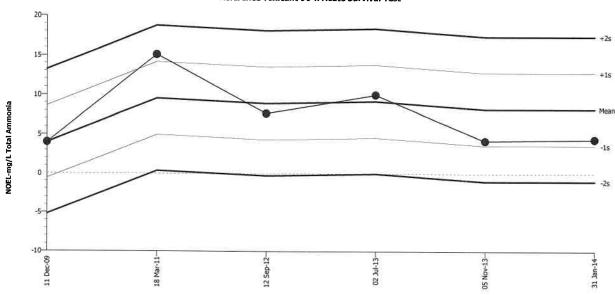
Reference Toxicant 96-h Acute Survival Test

NewFields

Test Type: Survival

Protocol: EPA/600/R-99/064 (2000)


Organism: Hyalella azteca (Freshwater Amphip


Endpoint: Proportion Survived

Source:

Material: Total Ammonia

Reference Toxicant-REF

Mean: 8.192 Sigma: 4.602 Count: CV:

5 56.20%

-1s Warning Limit: 3.59 +1s Warning Limit: 12.79

-2s Action Limit: -1.012 +2s Action Limit: 17.4

Quality Control Data

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID
1	2009	Dec	11	16:05	4.01	-4.182	-0.9087			06-0392-7981	12-3327-0136
2	2011	Mar	18	17:40	15.1	6.908	1.501	(+)		14-6934-6989	04-6091-1142
3	2012	Sep	12	15:30	7.65	-0.542	-0.1178			15-6980-0340	11-2557-0477
4	2013	Jul	2	16:54	10	1.808	0.3929			14-0245-1637	04-9865-2715
5		Nov	5	14:15	4.2	-3.992	-0.8674			00-2973-8704	21-2079-0542
6	2014	Jan	31	17:30	4.4	-3.792	-0.824			04-3440-6883	19-1835-3562

CETIS Summary Report

Report Date:

13 Mar-14 10:26 (p 1 of 1) 19E485E3 | 04-3440-6883

 Reference Toxicant 96-h Acute Survival Test
 Test Code:
 19E485E3 | 04-3440-6883

 Batch ID:
 11-6605-7715
 Test Type:
 Survival
 Analyst:

Start Date: 31 Jan-14 17:30 Ending Date: 04 Feb-14 16:52

Protocol: EPA/600/R-99/064 (2000)
Species: Hyalella azteca

Diluent:

Diluted Mineral Water

Duration: 95h Source:

Hyalella azteca Aquatic Biosystems, CO

Brine: Age: Not Applicable

Sample ID:

20-6890-6766 **Code**:

7B51030E

p110927.191

Client:

Internal Lab

Sample Date: 27 Sep-11 Receive Date: 27 Sep-11 Sample Age: 857d 17h Material: Source: Station: Total Ammonia Reference Toxicant Project: Reference Toxicant

Comparison Summary

Analysis ID Endpoint NOEL LOEL TOEL PMSD TU Method

19-1835-3562 Proportion Survived 4.4 9.43 6.441 32.7% Dunnett Multiple Comparison Test

Point Estimate Summary

 Analysis ID
 Endpoint
 Level
 mg/L
 95% LCL
 95% UCL
 TU
 Method

 07-6457-6634
 Proportion Survived
 EC50
 6.788
 6.052
 7.612
 Trimmed Spearman-Kärber

Proportion Survived Summary

C-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.9333	0.7899	1	0.9	1	0.03333	0.05774	6.19%	0.0%
4.4		3	0.8667	0.4872	1	0.7	1	0.08819	0.1528	17.63%	7.1 4 %
9.43		3	0.1333	0	0.707	0	0.4	0.1333	0.2309	173.2%	85.71%
19.8		3	0.03333	0	0.1768	0	0.1	0.03333	0.05774	173.2%	96.43%
42.5		3	0	0	0	0	0	0	0	.,	100.0%
91.3		3	0	0	0	0	0	0	0		100.0%

Proportion Survived Detail

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3		
0	Dilution Water	1	0.9	0.9		
4.4		0.9	1	0.7		
9.43		0.4	0	0		
19.8		0.1	0	0		
42.5		0	0	0		
91.3		0	0	0		

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	10/10	9/10	9/10
4.4		9/10	10/10	7/10
9.43		4/10	0/10	0/10
19.8		1/10	0/10	0/10
42.5		0/10	0/10	0/10
91.3		0/10	0/10	0/10

Appendix D.2

10-Day Porewater TIE Test with Microtox

Toxicological Evaluation of Freshwater Sediments

Microtox

Report date: December 28, 2013

Submitted to:

NEWFIELDS NORTHWEST

P.O. Box 216 Port Gamble, WA 98364

5013 Pacific Hwy East Suite 20 Tacoma, WA 98424

TABLE OF CONTENTS

TAB	LE OF CONTENTS	I
SIGN	IATURE PAGEI	I
1.0	INTRODUCTION	1
2.0	METHODS	
	2.1 Sample Collection and Transportation	
3.0	RESULTS	3
4.0	QA/QC	4
5.0	REFERENCES	5
	LIST OF TABLES	
Table	e 1. Summary of methods for the Microtox test	3
	e 2. Results of Microtox tests.	
Tabl Tabl	e 3. Statistical analyses of Microtox results	4
	LIST OF APPENDICES	
APP	ENDIX A – Result Summaries	
APP	ENDIX B – Laboratory Bench Sheets	
APP	ENDIX C - Water Quality Results	
APP	ENDIX D - Reference Toxicant Tests	
APP	ENDIX E - Chain-of Custody Forms	

SIGNATURE PAGE

Eric Tollefson

Project Manager

This report has been prepared based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party.

1.0 INTRODUCTION

Freshwater sediment samples were collected and evaluated for toxicity as part of a project being conducted by NewFields Northwest. Freshwater sediment samples were tested for toxicity using Microtox® tests.

2.0 METHODS

2.1 Sample Collection and Transportation

NewFields personnel collected three freshwater sediment subsamples on December 10, 2013. Samples were shipped by Fed Ex and received by Rainier Environmental on December 12, 2013. Sample containers were inspected upon receipt and the contents verified against information on the chain-of-custody form. The samples were stored at 4°C in the dark until used for testing.

2.2 Test Procedures

The luminescent marine bacterium *Vibrio fischeri* was used as the test organism for the Microtox® tests. The bacteria were exposed to porewater extracted from the sediment samples and light readings were measured after a 5 minute incubation period and then after an additional 5 minutes and 10 minutes of exposure. Testing was performed using the Microtox® Model 500 Analyzer which measures light output and is equipped with a 15°C chamber to maintain test temperature in the samples and a 4°C chamber to keep the rehydrated bacteria chilled.

Vials of freeze-dried bacteria (Microtox® Acute Reagent Lot # 12B4010, Expiration date 2/15) were obtained from Strategic Diagnostics, Inc. and stored at -20°C until use. On the day of the test, a vial was rehydrated with 1.0 ml of Microtox® Reconstitution Solution, mixed thoroughly, and allowed to equilibrate for 30 minutes at 4°C. The bacteria were used within 2 hours of rehydration.

Rainier Environmental 1

The tests were conducted in accordance with Washington Department of Ecology (WDOE, 2008) test protocol, which are summarized in Table 1. Approximately 25 milliliters (mL) of porewater was extracted from each sample by centrifugation for 30 minutes at 4500 G. Each porewater extract was adjusted to a salinity of 20 parts per thousand (ppt) with Crystal Sea artificial sea salt. The dissolved oxygen (DO) in each sample was between 50 and 100 percent saturation (5.0 to 10.2 mg/L) and did not require aeration. The pH was adjusted to 7.9 to 8.2, as necessary, using NaOH or HCI. The laboratory control consisted of deionized water adjusted to 20 ppt with artificial seasalt. Each porewater was tested within 3 hours of extraction.

Tests were conducted using five replicates. Disposable glass cuvettes were placed in the Microtox® test wells and 1 mL of salinity-adjusted porewater was added. The rehydrated bacteria (reagent) were thoroughly mixed and 10 microliters (μ L) were added to each test cuvette. After an initial incubation period of 5 minutes, the first control cuvette was placed in the read chamber of the Microtox® Analyzer to set the instrument. Initial light readings (I_0) were then taken by placing each cuvette in the read chamber of the Microtox® Analyzer and measurements were recorded on a data sheet. Light output was measured in each cuvette after an additional 5 minutes (I_0) and 10 minutes (I_0) of exposure. Test acceptability criteria is a mean control final light output greater than 72 percent of initial output and a test mean output not greater than 110 percent of the control mean output.

The data were evaluated statistically by conducting one-tailed t-tests on the change in light output over time for the test sediment porewaters compared to the control

A reference toxicant test using copper chloride was conducted in conjunction with the sediment porewater test to ensure that the sensitivity of the test was within the acceptable range of historical values determined in this laboratory.

Rainier Environmental 2

Table 1. Summary of methods for the Microtox test.

Test date	December 13, 2013				
Test organism source	Strategic Diagnostics				
Batch number and expiration date	Lot#12B4010, Expiry 2/15				
Control	Saltwater (20 ppt) prepared with Crystal Sea Marine Mix				
Sample preparation	Centrifugation at 4500 G for 30 minutes; salinity adjustment to				
	20 ppt using Crystal Sea Marine Mix; pH adjustment to 7.9-8.2				
Test chamber	Glass cuvette				
Test volume	1 mL				
Volume of inoculum/replicate	10 μL				
Number of replicates/sample	5				
Test temperature	15 ± 1°C				
Aeration	None				
Reference toxicant	Copper Chloride				

3.0 RESULTS

The results of toxicity tests conducted using Microtox® are provided in Tables 2 and 3. The samples did not exceed sediment quality standards for the State of Washington (WDOE 2008).

Table 2. Results of Microtox® tests.

Sample ID	Change in light output as a % of Control (5 minutes)	Change in light output as a % of Control (15 minutes)
9	104	98
6	104	102
3	107	107
1	107	107
0	106	110

Rainier Environmental

Table 3. Statistical analyses of Microtox results.

	5-minute	reading	15 minute	reading
Sample ID	Mean % change in light output	Significantly different relative to the control	Mean % change in light output	Significantly different relative to the control
Control	91 ± 3		79 ± 4	
9	95 ± 5	No	77 ± 4	No
6	94±3	No	80 ± 7	No
3	98 ± 3	No	84 ± 5	No
1	98 ± 2	No	85 ± 2	No
1	97±1	No	86 ± 2	No

4.0 QA/QC

The Microtox tests met control acceptance criteria and there were no deviations from protocol.

Results of reference toxicant test used to monitor laboratory performance and test organism sensitivity are provided in Table 4. The results for the reference toxicant test fell within the range of mean \pm two standard deviations of historical results, indicating that test organisms were of an appropriate degree of sensitivity.

Table 4. Reference toxicant test results.

Exposure	Test date	Toxicant	EC50	Acceptable	CV (%)
Duration	1 CSt date			Range	
5 Minutes	D 1 10 0010	C	1228 μg/L	948-1628	13.2
15 Minutes	December 13, 2013	Copper	432 μg/L	398-615	10.7

5.0 REFERENCES

- American Society of Testing and Materials (ASTM). 2000. Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. ASTM Designation E 1706-00.
- U.S. Environmental Protection Agency (USEPA). 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA/600/R-99/064.
- Washington Department of Ecology (WDOE). 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards Publication No. 03-09-043. Revised February 2008.

APPENDIX A - Results Summaries

Appendix Table A. Microtox 100 Percent Sediment Porewater Test

Sites 9,6,3,1,0 Client NewFields Test Date: 12/13/13

						acc. IZ/I					
Site				Light R	_		,		T _(mean) /	control light readings compared to initial control	ntroi Steps Evaluation of initial light output in site sediments
	Reading	1	2	3	4	5	Mean	St.Dev.	C _(mean)	F _{c(mean)} /I _{c(mean)}	(0)T(mean) (0)C(mean
	I ₍₀₎	92	93	88	95	92	92				
	I ₍₅₎	81	86	80	84	87	84			0.91	
CON	1(15)	68	77	70	73	75	73			0.79	
	C ₍₅₎	0.88	0.92	0.91	0.88	0.95	0.91	0.03			
	C ₍₁₅₎	0.74	0.83	0.80	0.77	0.82	0.79	0.04			
	1(0)	85	83	89	89	90	87		- 1		0.95
	l ₍₅₎	77	77	91	85	83	83				
9	(15)	64	62	75	69	67	67				
	T ₍₅₎	0.91	0.93	1.02	0.96	0.92	0.95	0.05	1.04		
	T ₍₁₅₎	0.75	0.75	0.84	0.78	0.74	0.77	0.04	0.98		
	I ₍₀₎	97	93	89	87	89	91				0.99
<i>4.</i>	1(6)	88	87	83	85	85	86				
6	(15)	. 73	70	70	80	71	73				
	T ₍₅₎	0.91	0.94	0.93	0.98	0.96	0.94	0.03	1.04		
	T ₍₁₅₎	0.75	0.75	0.79	0.92	0.80	0.80	0.07	1.02		
2.5	. Joj	89	83	85	82	83	84				0.92
	(5)	87	79	81	79	86	82				
3	(15)	74	66	67	72	76	71				
	Ť ₍₅₎	0.98	0.95	0.95	0.96	1.04	0.98	0.03	1.07		
	T ₍₁₅₎	0.83	0.80	0.79	0.88	0.92	0.84	0.05	1.07		
	. l _{eos}	85	82	72	84	82	81				0.88
	l _(s)	80	82	70	82	81	79				
1	/(15)	70	71	59	73	70	69		T T		
	T ₍₅₎	0.94	1.00	0.97	0.98	0.99	0.98	0.02	1.07		
	T ₍₁₅₎	0.82	0.87	0.82	0.87	0.85	0.85	0.02	1.07		
	l(0)	87	84	82	83	85	84				0.92
	I ₍₅₎	84	82	80	80	81	81				
. 0	~ - 1(15)	75	72	71	74	72	73		I I		
	T ₍₅₎	0.97	0.98	0.98	0.96	0.95	0.97	0.01	1.06		
	T ₍₁₅₎	0.86	0,86	0.87	0.89	0.85	0.86	0.02	1.10		

 $\mathbf{I}_{(0)}$ is the light reading after the initial five minute incubation period

 $I_{(5)}$ is the light reading five minutes after $I_{(0)}$

m adaditis isto

I(15) is the light reading fifteen minutes after I(0)

 C_{00} , R_{00} , and T_{00} are the changes in light readings from the intial reading in each sample container for the control, reference sediment

Quality Control Steps:

1. Is control final mean output greater than or equal to 72% control initial mean output?

(5) Formean)/Ic(mean): 9

91% YES

1₍₁₅₎:F_{c(mean)}/I_{c(mean)}:

79% YES

YES: Control results are acceptable and can be used for statistical analyses.

NO: Control results are unacceptable (use reference sediment for statistical analysis if available).

2. Are test initial mean values greater than or equal to 80% of control initial mean values?

I_{T(mean)}/I_{C(mean)}: 95% YES **S1** I_{T(mean)}/I_{C(mean)}: S2 99% YE\$ Tr(mean)/IC(mean): 92% YES **S**3 I_{T(mean)}/I_{C(mean)}: 88% YES S4 92% YES I_{T(mean)}/I_{C(mean}): S5

INVALD: If the test sediment is greater than 110%, the results in uninterpretable

YES: If test sediment is reference, reference is acceptable

APPENDIX B - Laboratory Bench Sheets

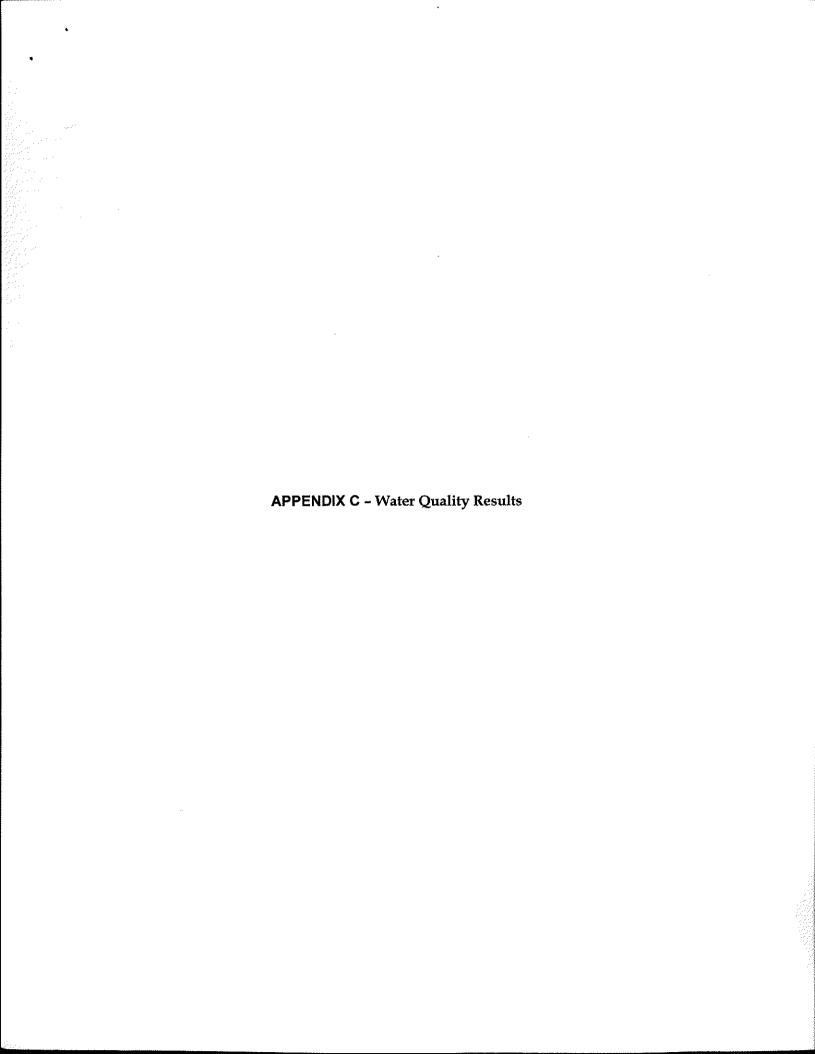
Rainier Environmental 5013 Pacific Hwy. E., Suite 20 Tacoma,WA 98424 Raw Data Sheet
Microtox
100% Sediment Porewater Toxicity

Client Name:

Men Fields

Test Date: 12/13/13

Sample ID:


9,6,3,1,0

Test No.: 13 12-030, 13 12-031, 13 13

312-0331312-034

	Light				Replicate		
Site	Reading	Time	1	2			3
\$ 15 m	I ₍₀₎	5 min	92	93	88	95	92
	I ₍₅₎	10min	81	86	80	84	87
CON	I ₍₁₅₎	20 min	હિલ	77	70	73	75
	$\mathbf{I}_{(o)}$	5 min	89	83	89	89	90
	I ₍₅₎	10min	77	77	91	85	93
9	I ₍₁₅₎	20 min	64	62	75	69	67
						_	
	$I_{(0)}$	5 min	97	93	89	87	89
_	I ₍₅₎	10min	88	<u>87</u>	<i>9</i> 3	85	85
8	I ₍₁₅₎	20 min	73	70	70	୫୦	71
			4.0			glendes d'enviserables de l'étables	
	I ₍₀₎	5 min	89	93	85	92	83
	I ₍₅₎	10min	87	79	81	79	%
3	I ₍₁₅₎	20 min	74	66	67	<u>7a</u>	76
			- 6				0.0
	I ₍₀₎	5 min	85	82	フス	84	82
•	I ₍₅₎	10min	% 0	83	70	89	81
	I ₍₁₅₎	20 min	70	71	59	73	70
All with the	Y Fig.	F	87	84	ಇ ಎ	93	85
	I ₍₀₎	5 min 10min	84	82	90	80	8)
O	I ₍₅₎	20 min	75	72	71	7 4	7 <u>4</u>
	I ₍₁₅₎	20 mm	10	/ 🗸			

~			
C'	١m	MA	nts:

Rainier Environmental 5013 Pacific Highway E., Suite 20 Tacoma, WA 98424

Physical and Chemical Measurements of Porewaters **Sediment Bioassays**

Analyst:	43	

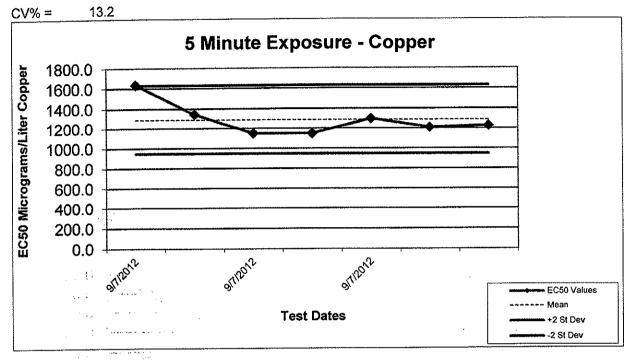
Client:

NewFields

Test Date: 18/13/13

Test Type: Microtox 100% Porewater Toxicity Test

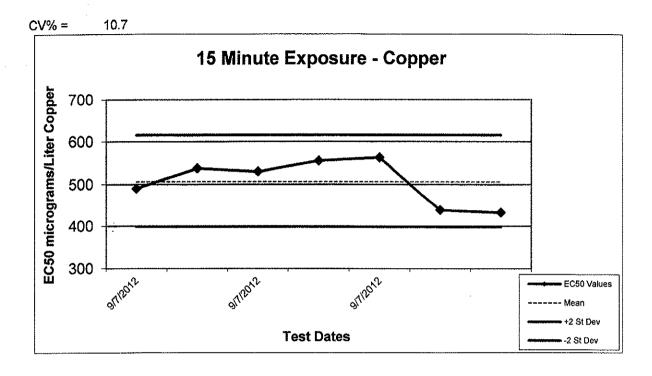
Test No:


13/2-030, 13/2-031, 13/2-032 Test Species: Vibrio fischeri
13/2-033, 13/2-034

Site	Initial Salinity (ppt)	Final Salinity (ppt)	Initial D.O. (mg/L)	Final D.O (mg/L)	Initial pH	Adjusted pH	NaOH or HCl Vol. Used	Final Porewater Conc.	Ammonia
CON	20.0	20,0	7,6	7,5	8.15	ÚS-		100%	21,0
9	0,0	19,3	6.7	6.7	7,99		***************************************	100%	41.0
6	0,0	20.1	7,2	7,2	7,83	7.92	10/11 0.1 N NaOH	99,9%	21.0
3	0.0	20,6	6.8	6.8	7.68	7,97	5011 0.1N Na.OH	99.8%	1.0
1	0,0	20,7	6.7	6.7	7.58	7.98	100/1L OJA NaOH	99.6%	<1.0
0	0.0	19,5	7.0	7.0	7.54	7,95	140UL OIN NaOH	99.4	41.0
							-		

Sample Desc	eription:			 	
Comments:	· · · · · · · · · · · · · · · · · · ·	····		 	
			<u></u>	 	
				 ·····	
		,			
QA Check:	G-				

APPENDIX D - Reference Toxicant Tests


Reference Toxicant Control Chart Microtox 5-Minute Exposure

Date	Time	EC50 %	EC50 µ/L Copper ^a	Mean	StDev	-2 SD	+2 SD
9/7/2012	8:53	81.8	1636.0	1287.5	170.0	947.5	1627.6
9/7/2012	9:36	67.2	1344.0	1287.5	170.0	947.5	1627.6
9/7/2012	10:00	57.4	1148.0	1287.5	170.0	947.5	1627.6
9/7/2012	10:28	57.4	1148.0	1287.5	170.0	947.5	1627.6
9/7/2012	10:54	65.0	1300.0	1287.5	170.0	947.5	1627.6
12/5/2013	17:17	60.4	1208.8	1287.5	170.0	947.5	1627.6
12/13/2013	13:22	61.4	1228.0	1287.5	170.0	947.5	1627.6
12/10/2010	,10,24	•					1.0
ļ							24
1							
	'						-± 80
•	والمناز المعاد إلى عمار						
			ļ				32.13
							929.5
	7					•	611
	12.00						7.5
_							
ĺ						1	

a - Highest concentration of Copper is 2000 micro grams/Liter

Reference Toxicant Control Chart Microtox 15-Minute Exposure

Date	Time	EC50 %	EC50 µg/L Copper ^a	Mean	StDev	-2 SD	+2 SD
9/7/2012	853	24.6	491.0	506.8	54.2	398.4	615.1
9/7/2012	937	26.9	537.8	506.8	54.2	398.4	615.1
9/7/2012	1001	26.5	530.2	506.8	54.2	398.4	615.1
9/7/2012	1028	27.8	555.4	506.8	54.2	398.4	615.1
9/7/2012	1055	28.2	563.0	506.8	54.2	398.4	615.1
12/5/2013	1717	21.9	438.0	506.8	54.2	398.4	615.1
12/13/2013	1322	21.6	432.0	506.8	54.2	398.4	615.1

a - Highest concentration of copper is 2000 micro grams/Liter

MicrotoxOmni Sample Results Report

Result Name:

RT121313VF

Test Date/Time:

12/13/2013 1:22:05PM

Sample Name:

Sample 1

Test Name:

Basic Test

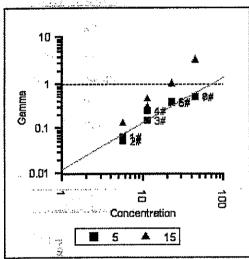
Description:

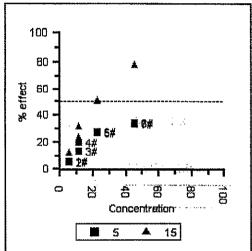
Reference Toxicant

Instrument ID:

_MASTER

Toxicant:


Reagent Lot #:


User ID:

MANAGER

Test Location:

Time	Sample	Conc	10	it	Gamma	%Effect
Mins -						· ·
· ·	Control	0.00	93	95	1.022#	
-	Control	0.00	95	95	1.010#	The state of the s
ta.	1	5.63	99	95	0.0648#	6.09%
50	2	5.63	99	96	0.0509#	4.84%
	3	11.25	98	87	0.1474#	12.84%
	4	11.25	100	82	0.2416#	19.46%
3.	5	22.50	98	73	0.3616#	26.56%
بعوده والرامة	6	22.50	97	71	0.3848#	27.79%
•	7	45.00	103	70	0.4961#	33.16%
;	8	45.00	98	66	0.5090#	33.73%

Result Name:

RT121313VF

Test Date/Time:

12/13/2013 1:22:05PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

Reference Toxicant

Instrument ID:

MASTER

Toxicant:

Reagent Lot #:

Test Location:

User ID:

MANAGER

Control	0.00	93	71	0.7699#	
Control	0.00	95	72	0.7641#	
1	5.63	99	68	0.1279#	11.34%
2	5.63	99	72	0.0557#	5.28%
3	11.25	98	57	0.3074#	23.51%
4	11.25	100	53	0.4518#	31.12%
5	22.50	98	37	1.002#	50.05%
6	22.50	97	36	1.037#	50.92%
7	45.00	103	18	3.440#	77.48%
8	45.00	98	17	3.396#	77.25%

- included, * - invalid

Statistics:

Data: 5 Mins

EC50 Concentration: 61.38%

(95% Confidence Range: 37.14 to 101.4)

EC50 value was calculated from extrapolated data.

95% Confidence Factor: 1.653

Estimating Equation:

 $LOG C = 0.8712 \times LOG G + 1.788$

Correction Factor: 1.016

Slope: 1.037

Coeff of Determination (R^2): 0.9034

Data: 15 Mins

Page 2 of 3

Result Name:

RT121313VF

Test Date/Time:

12/13/2013 1:22:05PM

Sample Name:

Sample 1

Test Name:

Basic Test

Description:

Reference Toxicant

Instrument ID:

_MASTER

Toxicant:

Test Location:

Reagent Lot #:

User ID:

MANAGER

EC50 Concentration: 21.60%

(95% Confidence Range: 18.55 to 25.15)

95% Confidence Factor: 1.164

Estimating Equation:

 $LOG C = 0.5534 \times LOG G + 1.334$

Correction Factor: 0.7670

Slope: 1.747

Coeff of Determination (R^2): 0.9667

The contents of this report are private and confidential.

Printed:

12/30/2013 9:11:06AM

Signature:

APPENDIX E - Chain-of Custody Forms

CHAIN OF CUSTODY

****NewFields**

Shipping: 4770 NE View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364

Tel: (360) 297-6045, Fax: (360)297-6901

Desti	ination Lab: Rainier Environmental	Sample	NewFields				Report Results To:					Phone:			
Desti	ination Contact: Eric Tollefson	Contac	t Name:	Bill Gardiner			Contact Name:					Fax:			
Date:		Addres	Address: See Above									Email:			
Turn-	12/11/2013 Around-Time										;				
L	act Name	Phone	Phone:					ysis			Involcing To:	<u></u>			
,	AT/YS	<u> </u>	Fax:				Aildi;	,313 		——	Comments or Special In	1structions:			
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•			
Contr	ontract/PO:		E-mail							Į		1			
		bgardiner@newfields.com			S.				1	1	Proconstion	Sample Temp	1.6	λΒ ID	
No.	Sample ID	Matrix	No. & Type of Container	Date & Time	Microtox						Preservation	Upon Receipt			
1	9	SS	1 glass	12/10/2013 1250	Х						4 deg C	4,2	13-16	`[
2		SS	1 glass	12/10/2013 1305	Х						4 deg C	3,9		<u> </u>	
	3	SS	1 glass	12/10/2013 1340	Х						4 deg C	4,5	13-1	63	
4	1	SS	1 glass	12/10/2013 1415	Х			1			4 deg C	4.6	3 - 3 - 3 - 2 -	64	
5	0	SS	1 glass	12/10/2013 1440	Х						4 deg C	4.5	/2~,	16.5	
6															
7		~~~~													
											T				
8							\Box					-			
9			 		\vdash	 	\dagger								
10					 	 	\Box	\vdash							
_11					 	 	1	\vdash				 			
12			 		 	-	†	\vdash							
13		•	+	 		1	+	 	-+				 		
14			<u> </u>			+	+	ļ	-+			 			
15			+	-	 	+	+				 	+			
16	1				-	 		\vdash			1				
17				 	 	+		\vdash			-	+			
18			<u> </u>			-					!	-			
19			 		-	-					<u> </u>	-	ļ		
20			1	1 hus	<u> </u>		Dallacer	shed b		-		Recieved by:		Matrix Codes	
Prin	Relinguished by:	Print Name	Recieved	LEISON	Print Na	me:	Kenngui	ished by:			Print Name:	ivenesan na		FW = Fresh Water	
		Signature:	que Talla	eem	Signatur						Signature:			WW = Waste Woter	
Affil	liation: New Fields	Affiliation:	Rainin E	wissenstal	Affiliatio						Affiliation:			SB = Salt & Brackish Water	
	e/Time: 12/11/13 1005	Date/Time:	12/12/13	1200	Date/Tir						Date/Time: Print Name:			SS = Soil & Sediment	
		Print Name	:		Print Na Signatu						Print Name: Signature:	TS = plant & Animal Tisaue			
		Signature: Affiliation:		***************************************	Affiliatio			~		******	Affiliation:	OT ≠ Other			
1	1,444	Date/Time:			Date/Tir						Date/Time:				
_						***************************************	*******								

Appendix D.3

Porewater TIE Test – Analytical Chemistry

Table of Contents: ARI Job XY02

Client: Newfields Northwest	Project: Yakima Steel

	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation		_5_
Case Narrative, Data Qualifiers, Control Limits	4	9
Metals Analysis		
Report and Summary QC Forms	10	67
+ RAW DATA		

Be

February-12-2014

Signature

Date

February 13, 2014

Bill Gardiner Newfields Northwest 4729 NE View Drive Port Gamble, WA 98364

RE: Client Project: Yakima Steel

ARI Job No.: XY02

Dear Bill:

Please find enclosed the Chain-of-Custody record (COC), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and analytical details are discussed in the Case Narrative.

An electronic copy of this data and associated raw data will be kept on file with ARI. Should you have any questions or problems, please feel free to contact me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro
Project Manager
(206) 695-6214
cheronneo@arilabs.com

www.ariblas.com

cc: eFile XY02

Enclosures

Page 1 of <u>67</u>

Chain of Custody Documentation

ARI Job ID: XY02

Shipping: 4770 NE View Dr. Mailing: P.O. Box 216 Port Gamble, WA. 98364

Tel: (360) 297-6045, Fax: (360)297-6901

Des	tination Lab: Analytical Resources Inc	Sampl	Sample Originator: NewFields					sults To:	NewField	s	Phone			
Des	chination Contact Cheronne Oreiro	Contac	Contact Name Bill Gardiner					ame	Bill Gardin		Fax			
Date		Addres	ss	Bill Gardiner			Address		Dill Galuit	CI	Email			
Turn	2/3/14 n-Around-Time	-												
Proi	Standard Ject Name	Phone		-17-0-1				huata .		Invoicing To:				
,,,,,	Yakima Steel	Fax	· //-				lysis		Comments or Special I	netairtions:				
	500000						Se			Comments or Special	natiuotions.			
Con	ntract/PO	E-mail			_ <u>≒</u>		ane							
					ᄩ	ပ	ge	ğ			Sample Temp		- 12-22	
No	. Sample ID	Matrix	No. & Type of Container	Date & Time	Cadmium	Zinc	Manganese	Lead		Preservation	Upon Receipt		AB ID	
	WETSED-1	FW	1 Glass	2/3/2014 14:00	x	х	х	х		HCI				
7	2 WS-1 SIR 300	FW	1 Glass	2/3/2014 14:00	x	х	х	х		HCI			1 2 2 2 2	
3	3 WS-1 EDTA-low	FW	1 Glass	2/3/2014 14:00	х	x	х	х		HCI				
	WS-1 EDTA- high	FW	1 Glass	2/3/2014 14:00	х	x	х	х		HCI				
	5 WS-1 C18	FW	1 Glass	2/3/2014 14:00	х	х	х	х		HCI				
	WS-1 Fittered	FW	1 Glass	2/3/2014 14:00	х	x	х	×		HCI				
٦	7													
8	8													
-													980/2	
10				K-2				Section Control						
11	87/6													
12														
13		W-18-2		X 40										
14														
15	110000000000000000000000000000000000000													
16														
17														
18														
19													- 10 10 10 10 10 10 10 10 10 10 10 10 10	
20	1 -44- 500 500 500 500 500 500 500 500 500 50	116711												
	Relinquished by:		Recieved				Relinqui	shed by:			Recieved by:	_	Matrix Codes	
	oo liiri ay	rint Name	A-Volgar	olden	Print Nar			1143214		Print Name.			FW = Fresh Water	
-	(4105)	gnature.		- 200	Signature				- 67	Signature:			WW = Waste Water	
_		filiation:		1000	Affiliation Date/Tim					Affiliation Date/Time:			SB = Saft & Brackish Water	
		ate/Time		020	Print Nar	0.00				Print Name			SS = Soil & Sediment	
_		gnature.			Signature	330001	159			Signature:	1100000		TS = plant & Animal Tissue OT = Other	
	MINO 2007 IN 1	filiation		- 44	Affiliation			4115		Affiliation	72 3118		O1 = Other	
	1 Table 1	ate/Time	3-3-00	-0.0	Date/Tim	V		150	2410	Date/Time			1	

Cooler Receipt Form

ARI Client New Fulc	18	Project Name	maste	0.1	
COC No(s).	(NA)	Delivered by Fed-Ex UPS Cou	rier Hand Deliv	ered Other	
Assigned ARI Job No:	109	Tracking No. <u>3978</u> 04	17 1370		NA
Preliminary Examination Phase:					
Were intact, properly signed and d	ated custody seals attached to	the outside of to cooler?		YES	(NO)
Were custody papers included with	the cooler?		(YES)	NO
Were custody papers properly fille	d out (ink, signed, etc.)			YES	NO
Temperature of Cooler(s) (°C) (red				•	110
If cooler temperature is out of com	pliance fill out form 00070F		Temp Gun ID	# 908	7-7952
Cooler Accepted by	A	Date: 2/4/14 Time	e: _1000		
W X X W		and attach all shipping documents			•
Log-In Phase:					
Was a temperature blank included	in the cooler?			YES	(NO
What kind of packing material wa		Wet Ice Gel Packs Baggies Foam	Block Paper C	6177170	NO
Was sufficient ice used (if appropri			NA NA	(ES)	NO
Were all bottles sealed in-individua	ANALON C. SAN SECURIOR AND SAN			YES	(NO
Did all bottles arrive in good condit				(ES	NO
Were all bottle labels complete and				(ES)	NO
		er of containers received?			
				(ES	NO
				(ES)	NO
Were all bottles used correct for th				YES	(NO
and the second s		servation sheet, excluding VOCs)	NA Co	(YE)	NO
Were all VOC vials free of air bubb			(NA)	YES	NO
Was sufficient amount of sample s				(ES	NO
and the second of the second o			(NA)		
Was Sample Split by ARI) YES Date/Time:	Equipment:		Split by:_	
Samples Logged by	Date:	2/4/14 Time	1132		
		r of discrepancies or concerns **			
0 115 5 11		~~~			
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Samp	le ID on Co	oc
		787			
Additional Notes, Discrepancies	2 Pacalutiona		L		
Samples receive	d in 202 wide	e mouth Jars, pr	CSC VVCC	tiw k	N+KI
A ,	1.1.7				
	= 2/4/14				
Small Air Bubbles Peabubble 2mm 2-4 mm	LANGE AN OUDDRES	Small → "sm" (< 2 mm)			
	• II ~ ~ ~ I +	Peabubbles → "pb" (2 to < 4 mm)			
		Large → "lg" (4 to < 6 mm)			
The state of the s		Headspace → "hs" (>6 mm)			

0016F 3/2/10 Cooler Receipt Form

Revision 014

XX05:00001

PRESERVATION VERIFICATION 02/04/14

Analysis Requested: 02/04/14

Page 1 of 1

Inquiry Number: NONE

ANALYTICAL RESOURCES INCORPORATED

ARI Job No: XY02

PC: Cheronne VTSR: 02/04/14

Project #:

Project: Yakima Steel

Sample Site:

SDG No:

Analytical Protocol: In-house

Contact: Gardiner, Bill
Client: Newfields Northwest
Logged by: AV
Sample Set Used: Yes-481
Validatable Package: Lv4
Deliverables:

LOGNUM ARI ID	CLIENT ID	CN >12	WAD >12	NH3 <2	COD <2	FOG <2	MET <2	PHEN <2	PHOS <2	TKN <2	NO23 <2	TOC <2	S2 >9	TPHD <2		DOC	PARAMETER	ADJUSTE TO		AMOUNT ADDEI	
14-1901 XY02A	WETSED-1						K TOT												mp2692	2mr	2.04.18 00
14-1902 XY02B	WS-1 SIR 300						TOT.											1	1	1	1
14-1903 XY02C	WS-1 EDTA-LOW						TOT										1				
14-1904 XY02D	WS-1 EDTA-HIGH						TOT														
14-1905 XY02E	WS-1 C18						TOT.	,													
14-1906 XY02F	WS-1 FILTERED						TOT						-					1	1	1	1

* Weak

スペロン・四回のロコ

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: XY02

Case Narrative

Client: Newfields Project: Yakima Steel ARI Job No.: XY02

Sample Receipt

Six water samples were received on February 4, 2014 under ARI job XY02. The cooler temperature measured by IR thermometer following ARI SOP was 0.8°C. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

Metals by SW6010C

The samples and associated laboratory QC were digested and analyzed within the method recommended holding times.

The method blank was clean at the reporting limits. The LCS percent recoveries were within control limits.

Case Narrative XY02 Page 1 of 1

XYAP: MAMA?

Sample ID Cross Reference Report

ARI Job No: XY02

Client: Newfields Northwest

Project Event: N/A

Project Name: Yakima Steel

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	WETSED-1	XY02A	14-1901	Water	02/03/14 14:00	02/04/14 10:20
2.	WS-1 SIR 300	XY02B	14-1902	Water	02/03/14 14:00	02/04/14 10:20
3.	WS-1 EDTA-LOW	XY02C	14-1903	Water	02/03/14 14:00	02/04/14 10:20
4.	WS-1 EDTA-HIGH	XY02D	14-1904	Water	02/03/14 14:00	02/04/14 10:20
5.	WS-1 C18	XY02E	14-1905	Water	02/03/14 14:00	02/04/14 10:20
6.	WS-1 FILTERED	XY02F	14-1906	Water	02/03/14 14:00	02/04/14 10:20

Printed 02/04/14 Page 1 of 1

Quality Control Parameters for Metals Analysis-ICP-OES EPA Methods 200.7 and 6010C Aqueous Samples² Spike Recovery Solids³ Tissue⁴ RPD⁵ DL1 LOD1 LOQ1 Matrix LOQ LOQ Analyte LCS µg/L µg/L µg/L Spike mg/kg mg/kg Aluminum 25 50 75 - 12580 - 1207.57 ≤ 20 5.0 1.0 Antimony 6.28 25 50 75 - 12580 - 120≤ 20 5.0 1.0 25 Arsenic 3.33 50 75 - 12580 - 120≤ 20 5.0 1.0 75 - 125**Barium** 1.33 1.5 3.0 80 - 120≤ 20 0.3 0.06 Beryllium 0.16 0.5 1.0 75 - 12580 - 120≤ 20 0.1 0.02 7.39 10 20 75 - 125Boron 80 - 120≤ 20 2.0 0.4 Cadmium 0.18 0.5 2.0 75 - 12580 - 120≤ 20 0.2 0.04 Calcium 11.27 25 50 75 - 12580 - 120≤ 20 5.0 1.0 Chromium 1.24 2.5 75 - 1255.0 80 - 120≤ 20 0.5 0.1 0.27 75 - 125Cobalt 1.5 3.0 80 - 120≤ 20 0.3 0.06 Copper 0.92 1.0 2.0 75 - 12580 - 120≤ 20 0.2 0.04 7.50 25 50 75 - 12580 - 1205.0 Iron ≤ 20 1.0 10 75 - 125Lead 1.55 20 80 - 120≤ 20 2.0 0.4 Magnesium 9.61 25 50 75 - 12580 - 120≤ 20 5.0 1.0 0.28 0.5 1.0 75 - 12580 - 1200.1 0.02 Manganese ≤ 20 0.79 75 - 125Molybdenum 2.5 5.0 80 - 120≤ 20 0.5 0.1 75 - 125Nickel 3.86 5.0 10 80 - 120≤ 20 1.0 0.2 **Potassium** 65.70 250 500 75 - 12580 - 120≤ 20 50 10 50 75 - 125Selenium 4.99 25 80 - 120≤ 20 5.0 1.0 Silicon 8.17 30 60 75 - 12580 - 120≤ 20 (6)(6)75 - 125Silver 0.43 1.5 3.0 80 - 120≤ 20 0.3 0.06 75 - 125Sodium 11.35 250 500 80 - 120≤ 20 50 10 Strontium 0.09 1.0 1.0 75 - 12580 - 1200.1 0.02 ≤ 20

75 - 125(1) Detection Limit (DL), Limit of Detection Limit (LOD) and Limit of Quantitation (LOQ) as defined in ARI SOP 1018S

75 - 125

75 - 125

75 - 125

75 - 125

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

≤ 20

≤ 20

≤ 20

≤ 20

≤ 20

5.0

1.0

0.5

0.3

1.0

1.0

0.2

0.1

0.06

0.2

(2) 50 mL sample and 50 mL final volume

3.10

1.41

2.11

0.27

1.45

Thallium

Titanium

Version 002

Vanadium

Tin

Zinc

(3) Solids LOQ based on 100% solids using 1.0 g sample with 100 mL final volume.

50

10

5.0

3.0

10

- (4) Tissue is reported on an "as received" (wet weight) basis using 2.5 g sample with 50 mL final volume.
- (5) Relative Percent Difference between analytes in replicate analyzes. If Co and Co are the concentrations of the

Page 1 of 1

 $RPD = \frac{\left| C_O - C_D \right|}{C_O + C_D} \times 100$ original and duplicate respectively then

25

5.0

2.5

1.5

5.0

(6) ARI does not analyze for Silicon in solids or tissue samples

5/1/12 ENNNN: CNYX

Metals Analysis Report and Summary QC Forms

ARI Job ID: XY02

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

SDG: XY02

	CLIENT ID	ARI ID	ARI LIMS ID REPREP
W	VETSED-1	XY02A	14-1901
P	PBW	XY02MB1	14-1901
I	LCSW	XY02MB1SPK	14-1901
W	WS-1 SIR 300	XY02B	14-1902
W	WS-1 EDTA-LOW	XY02C	14-1903
W	WS-1 EDTA-HIGH	XY02D	14-1904
W	WS-1 C18	XY02E	14-1905
W	WS-1 FILTERED	XY02F	14-1906

Were ICP interelement corrections applied ?	Yes/No	YES
Were ICP background corrections applied ? If yes - were raw data generated before	Yes/No	YES
application of background corrections ?	Yes/No	NO
Comments:		
THIS DATA PACKAGE HAS BEEN REVIEWED AND AUTHORIZED FOR	R RELEASE	BY:
Signature: Name: Jay Kuhn		
Date: Title: Inorganic	s Directo	r

COVER PAGE

TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02A

LIMS ID: 14-1901 Matrix: Water

Data Release Authorized

Reported: 02/11/14

Sample ID: WETSED-1 SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	4.49	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	28.3	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02B

LIMS ID: 14-1902 Matrix: Water

Data Release Authorized:

Reported: 02/11/14

Sample ID: WS-1 SIR 300

SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	0.053	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	0.13	

U-Analyte undetected at given RL RL-Reporting Limit

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02C

LIMS ID: 14-1903 Matrix: Water

Data Release Authorized

Reported: 02/11/14

Sample ID: WS-1 EDTA-LOW

SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	4.18	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	26.0	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02D

LIMS ID: 14-1904 Matrix: Water

Data Release Authorized Reported: 02/11/14

Sample ID: WS-1 EDTA-HIGH SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	4.36	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	26.9	

U-Analyte undetected at given RL RL-Reporting Limit

XYM2: MMM15

TOTAL METALS
Page 1 of 1

Lab Sample ID: XY02E

LIMS ID: 14-1905 Matrix: Water

Data Release Authorized Reported: 02/11/14

Sample ID: WS-1 C18 SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	4.25	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	26.0	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02F

LIMS ID: 14-1906 Matrix: Water

Data Release Authorized

Reported: 02/11/14

Sample ID: WS-1 FILTERED

SAMPLE

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: 02/03/14 Date Received: 02/04/14

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	4.37	
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	25.8	

U-Analyte undetected at given RL RL-Reporting Limit

TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02LCS

LIMS ID: 14-1901 Matrix: Water

Data Release Authorized

Reported: 02/11/14

Sample ID: LAB CONTROL

QC Report No: XY02-Newfields Northwest

Project: Yakima Steel

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	*	
Analyte	Method	Found	Added	Recovery	Q
Cadmium	6010C	0.524	0.500	105%	
Lead	6010C	2.04	2.00	102%	
Manganese	6010C	0.509	0.500	102%	
Zinc	6010C	0.53	0.50	106%	

Reported in mg/L

N-Control limit not met Control Limits: 80-120%

FORM-VII

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: XY02MB

LIMS ID: 14-1901 Matrix: Water

Data Release Authorized: Reported: 02/11/14

Sample ID: METHOD BLANK

QC Report No: XY02-Newfields Northwest Project: Yakima Steel

Date Sampled: NA Date Received: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	RL	mg/L	Q
3010A	02/06/14	6010C	02/10/14	7440-43-9	Cadmium	0.002	0.002	U
3010A	02/06/14	6010C	02/10/14	7439-92-1	Lead	0.02	0.02	U
3010A	02/06/14	6010C	02/10/14	7439-96-5	Manganese	0.001	0.001	U
3010A	02/06/14	6010C	02/10/14	7440-66-6	Zinc	0.01	0.01	U

U-Analyte undetected at given RL RL-Reporting Limit

Calibration Verification

RESOURCES INCORPORATED

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

SDG: XY02

UNITS: ug/L

ANALYTE	EL	M	RUN	ICVTV	ICV	%R	CCVTV	CCV1	%R	CCV2	&R	CCA3	%R	CCV4	%R	CCV5	%R
Cadmium	CD	ICP	IP021071	1000.0	1021.02	102.1	1000.0	1037.66	103.8	1031.39 1	103.1	1028.76	102.9		===		
Lead	PB	ICP	IP021071	2000.0	1994.99	99.7	2000.0	1984.89	99.2	2021.14 1	101.1	2013.35 1	100.7				
Manganese	MN	ICP	IP021071	1000.0	1014.11	101.4	1000.0	974.80	97.5	979.42	97.9	974.61	97.5				
Zinc	ZN	ICP	IP021071	1000.0	1027.58	102.8	1000.0	1031.52	103.2	1034.46 1	103.4	1032.061	103.2				

CRDL Standard

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

UNITS: ug/L

SDG: XY02

ANALYTE	EL	M	RUN	CRA/I	TV	CR-1	%R	CR-2	%R	CR-3	%R	CR-4	%R	CR-5	%R	CR-6	%R
Cadmium	CD	ICP	IP021071	2	.0	2.23	111.5										
Lead	PB	ICP	IP021071	20	.0	21.04	105.2										
Manganese	MN	ICP	IP021071	1	.0	1.13	113.0										
Zinc	ZN	ICP	IP021071	10	.0	9.70	97.0										

Calibration Blanks

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

SDG: XY02

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	C	CCB1	С	CCB2	С	CCB3	С	CCB4	С	CCB5	С
Cadmium	CD	ICP	IP021071	5.0	2.0	2.0	υ	2.0	U	2.0	U	2.0	υ	1000			
Lead	PB	ICP	IP021071	3.0	20.0	20.0	U	20.0	U	20.0	υ	20.0	U				
Manganese	MN	ICP	IP021071	15.0	1.0	1.0	U	1.0	υ	1.0	U	1.0	U				
Zinc	ZN	ICP	IP021071	20.0	10.0	10.0	υ	10.0	υ	10.0	υ	10.0	U				

ICP Interference Check Sample

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

SDG: XY02

ICS SOURCE: I.V.

RUNID: IP021071

INSTRUMENT ID: OPTIMA ICP 2

UNITS: ug/L

ANALYTE	ICSA TV	ICSAB TV	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R	ICSA3	ICSAB3	%R
Aluminum	200000	200000	198625.1	199999.1	100.0						
Antimony		1000	7.2	1028.7	102.9						
Arsenic		1000	33.1	1045.1	104.5						
Barium		1000	-3.3	1011.1	101.1						
Beryllium		1000	0.1	1022.1	102.2						
Boron			-8.2	-8.9							
Cadmium		1000	0.7	1046.6	104.7						
Calcium	100000	100000	100159.7	100768.2	100.8						
Chromium		1000	0.6	1022.8	102.3						
Cobalt		1000	2.6	975.0	97.5						
Copper		1000	0.3	1033.8	103.4						
Iron	200000	200000	197981.8	198919.4	99.5						
ead		1000	-11.6	959.9	96.0						
agnesium	100000	100000	100975.9	98344.0	98.3						
langanese		1000	-0.1	957.3	95.7						
folybdenum			5.2	6.0							
Nickel		1000	1.2	985.7	98.6						
otassium			25.4	30.2							
Selenium		1000	28.1	1040.8	104.1						
Silicon			-20.7	-17.6							
Silver		1000	-0.6	1026.1	102.6						
Sodium		•	10.5	11.3							
Strontium			5.5	5.5							
Challium		1000	29.2	976.1	97.6						
rin			-16.2	-18.2							
itanium			4.9	5.3							
anadium		1000	-1.8	966.5	96.7						
linc		1000	-0.7	986.4	98.6						

IDLs and ICP Linear Ranges

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

SDG: XY02

UNITS: ug/L

ANALYTE	EL	METH	INSTRUMENT	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL DATE	ICP LINEAR RANGE (ug/L)	ICP LR DATE
Cadmium	CD	ICP	OPTIMA ICP 2	228.80		5	2.0	4/1/2012	20000.0	1/3/2014
Lead	РВ	ICP	OPTIMA ICP 2	220.35		3	20.0	4/1/2012	300000.0	1/3/2014
Manganese	MN	ICP	OPTIMA ICP 2	257.61		15	1.0	4/1/2012	30000.0	1/3/2014
Zinc	ZN	ICP	OPTIMA ICP 2	213.86		20	10.0	4/1/2012	100000.0	1/3/2014

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

IEC DATE: 1/3/2014

ANALYTICAL RESOURCES INCORPORATED

SDG: XY02	12								INSTRUMENT	ID:	OPTIMA ICP 2
ANALYTE	WAVELENGTH	AL	AS	BA	BE	đ	8	8	GR	B	FE
Aluminum	308.22	0.000000.0	0,000000.0	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.000000.0	0.000000
Antimony	206.84	0.000000.0	0.00000000	0.0000000	0.0000000	0.00000000	0.000000.0	0.0000000	13.0001730	0.0000000	0.000000.0
Arsenic	188.98	0.0000000	0.0000000	0.0000000	0.0000000	0.1128300	0.000000.0	-1.1418810	1,4701580	0.000000.0	0.000000.0
Barium	233.53	0,0000000	0.0000000	0.0000000	0.00000000	0.000000.0	0.000000.0	-0.1914790	0.0000000	0.00000000	0.1344770
Beryllium	313.04	0.0000000	0.00000000	0.000000.0	0.0000000	0.00000000	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0
Boron	249.67	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.0000000	0.000000.0	2.1178670	0.000000.0	0.000000.0	0.000000.0
Cadmium	228.80	0.0000000	5.1456370	0.0000000	0.00000000	0.000000.0	0.000000.0	0.1519640	0.0000000	0.000000.0	0.000000.0
Calcium	317.93	0.0000000	0.000000.0	0.0000000	0.0000000	0.0000000	0.000000.0	0.00000000	0.0000000	0.000000.0	0.000000.0
Chromium	267.72	0.0000000	0.000000.0	0.000000.0	0.0000000	0.0095990	0.00000000	0.0000000	0.0000000	0.000000.0	-0.0528610
Cobalt	228.62	0.0000000	0.000000.0	0.0956050	0.0000000	0.000000.0	0.00000000	0.000000.0	0.0000000	0.000000.0	0.000000.0
Copper	324.75	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0000000	0.000000.0	-0.1731660	0.0000000	0.000000.0	-0.0508090
Iron	273.96	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00000000	-1.3572290	0.000000.0	0.000000.0
Lead	220.35	-0.2628260	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	-1.8955100	1.3683810	0.0527180
Magnesium	1 279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.1322750	0.000000.0	-1,6154620	-1.2018020	0.000000.0	0.7412760
Manganese	257.61	0.0065340	0.0000000	0.0000000	0.0000000	0.0043550	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Molybdenum	um 202.03	0.000000.0	0.0000000	0.0000000	0.000000.0	0.0132610	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0
Nickel	231,60	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0
Selenium	196.03	0.000000	0.0000000	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.4704930	0.0000000	0.000000.0	0.000000.0
Silicon	288.16	0.0000000	0.0000000	0.0000000	0.00000000	0.0000000	-3.8483140	0.000000.0	-0.6009380	0.000000.0	0.000000.0
Silver	328.07	0.0000000	0.000000.0	0.000000.0	0.000000.0	-0.0074910	0.000000.0	0.000000.0	0.000000.0	0.00000000	0.000000.0
Sodium	589.59	0.000000.0	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0
Thallium	190.80	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.000000.0	5.8939530	0.4135750	0.000000.0	-0.1349480
Tin	189.93	0.00000000	0.0000000	0.000000.0	0.00000000	-0.1372110	0.00000000	0.000000.0	0.0000000	0.000000.0	0.000000.0
Titanium	334.90	0.00000000	0.0000000	0.0000000	0.0000000	0.0738540	0.0000000	0.000000.0	0.1910190	0.000000.0	0.000000.0
Vanadium	292.40	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	-4.1255090	0.000000.0	0.0607850
Zinc	206.20	0.0000000	0.000000.0	0.000000.0	0.00000000	0.0000000	0.000000.0	0.000000.0	-0.2680380	0.000000.0	0.00000000

FORM XI

CLIENT: Newfields Northwest

PROJECT: Yakima Steel

1/3/2014 IEC DATE:

ANALYTICAL RESOURCES INCORPORATED

SDG: XY02								ī	INSTRUMENT	ID: OPTIMA	MA ICP 2
ANALYTE	WAVELENGTH	MG	WIN	MO	IN	PB	SB	TI	TL	٥	ZN
Aluminum	308.22	0.0000000	0.000000.0	15.7116050	0.000000.0	0.000000.0	0.000000.0	2.0154950	0.000000.0	14.6504130	0.00000000
Antimony	206.84	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.0000000	0.0000000	-0.7865220	0.00000000	-3.6308690	0.000000.0
Arsenic	188.98	0.000000.0	0.000000.0	3.3640920	0.000000.0	0.000000.0	0.00000000	-35,7069030	0.000000.0	0.000000.0	0.000000.0
Barium	233.53	0.000000.0	0.000000.0	0.000000.0	0.1263190	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.2049710	0.000000.0
Beryllium	313.04	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.0000000	0.0109650	0.000000.0	0.2471980	0.00000000
Boron	249.67	0.000000.0	0.000000.0	-1,1300970	0.000000.0	0.000000.0	0.0000000	0.000000.0	0,0000000	0.000000.0	0.000000.0
Cadmium	228.80	0.000000.0	0.000000.0	0.00000000	-0.9924980	0.0000000	0.0000000	0.0000000	0.0000000	0.0519140	0.000000.0
Calcium	317.93	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Chromium	267.72	0.0846880	0.000000.0	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.0000000	0.0000000	0.3711990	0.000000.0
Cobalt	228.62	0.000000.0	0.000000.0	-0.1573840	0.1604620	0.0000000	0.000000.0	1.7865010	0.000000.0	0.00000000	0.00000000
Copper	324.75	0.0050268	0.000000.0	0.3207980	0.0000000	0.000000.0	0.000000.0	0.1968290	0.0000000	0.0000000	0.000000.0
Iron	273.96	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0	8.0715790	0.000000.0
Lead	220.35	0.000000.0	0.0000000	0.00000000	0.1183620	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
Magnesium	279.08	0.000000.0	0.000000.0	-5.0356720	0.000000.0	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
Manganese	257.61	0.0030740	0.000000.0	0.000000.0	0.000000.0	-0.2132560	0.000000.0	0.000000.0	0.000000.0	-0.0238460	0.000000.0
Molybdenum	202.03	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Nickel	231.60	0.000000.0	0.000000.0	0.00000000	0.00000000	0.000000.0	-0.5233870	0.000000.0	0.4243640	0.000000.0	0.000000.0
Potassium	766.49	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
Selenium	196.03	0.000000.0	0.0000000	0.000000.0	0.00000000	0.0000000	0.0000000	0.0000000	0.000000.0	0.6221340	0.000000.0
Silicon	288.16	0.000000.0	0.00000000	0.000000.0	0.000000.0	0.0000000	0.000000.0	0.0000000	0.000000.0	0.000000.0	0.000000.0
Silver	328.07	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.0000000	0.0000000	0.000000.0	0.000000.0	-0.2593400	0.000000.0
Sodium	589.59	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0000000 265.0683530	0.000000.0	0.0000000	288.8015530
Thallium	190.80	0.000000.0	0.000000.0	-1,6229180	0.000000.0	0.0000000	0.0000000	0.0000000	0.000000.0	3.6063050	0.000000.0
Tin	189.93	0.000000.0	0.0000000	0.000000.0	0.00000000	-0.0356520	-0.5555490	-0.1890930	0.000000.0	0.0000000	0.000000.0
Titanium	334.90	0.000000.0	0.000000.0	0.9536400	0.000000.0	0.0000000	0.000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
Vanadium	292.40	0.000000.0	-0.1515920	-0.5364060	0.000000.0	0.00000000	0.000000.0	0.5783020	0.000000.0	0.000000.0	0,000000.0
Zinc	206.20	0.000000.0	0.00000000	0.2492000	0.000000.0	-0.0717780	0.00000000	0.0000000	0.000000.0	0.0000000	0.0000000

FORM XI

Preparation Log

CLIENT: Newfields Northwest

ANALYSIS METHOD: ICP

PROJECT: Yakima Steel

ARI PREP CODE: TWC

SDG: XY02

PREPDATE: 2/6/2014

CLIENT ID	ARI ID	MASS (g)	INITIAL VOLUME (mL)	FINAL VOLUME (mL)
WETSED-1	XY02A	0.000	25.0	25.0
WS-1 SIR 300	XY02B	0.000	25.0	25.0
WS-1 EDTA-LOW	XY02C	0.000	25.0	25.0
WS-1 EDTA-HIGH	XY02D	0.000	25.0	25.0
WS-1 C18	XY02E	0.000	25.0	25.0
WS-1 FILTERED	XY02F	0.000	25.0	25.0
PBW	XY02MB1	0.000	25.0	25.0
LCSW	XY02MB1SPK	0.000	25.0	25.0

Analysis Run Log

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Newfields Northwest

PROJECT: Yakima Steel INSTRUMENT ID: OPTIMA ICP 2 START DATE: 2/10/2014

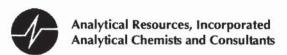
SDG: XY02 RUNID: IP021071 METHOD: ICP END DATE: 2/10/2014

550			210212				_																							
CLIENT ID	ARI ID	DIL. TIME	%R	AG AI	AS	В	BA E	BE (CA C	0 0	co c	R C	U FI	E HG	K	MG	MN	MO I	NA	NI	PB	SB	SE	SI	SN	TI	TL	U	v	ZN
s0	S0	1.00 10453							2	<							Х				Х		П							X
S2	S2	1.00 10493							2	<							Х						1							
S3	S3	1.00 10512			1																Х			1						Х
S4	S4	1.00 10534																		ē										
S 5	S5	1.00 10555																												
ICV	ICV	1.00 10590			Ĭ				2	۲							Х	1			х									x
ICB	ICB	1.00 11030							2	۲							х				х									х
CRI	CRII	1.00 11070							2	۲.							Х				x									Х
ICSA	ICSAI	1.00 11110			1				2	۲							Х				х									Х
ICSAB	ICSABI	1.00 11152							2	۲							х				х									X
ZZZZZZ	DICHECK	1.00 11203													1															
CCV	CCV1	1.00 11243						- 1	2	۲							Х				х									Х
CCB	CCB1	1.00 11283							2	۲							Х				х							1		X
ZZZZZZ	XW40MB1	2.00 11323																												
ZZZZZZ	XW40A-L	10.00 11363			1																									
ZZZZZZ	XW40A	2.00 11403						i					1																	
ZZZZZZ	XW40ADUP	2.00 11442			Ì						Ì																			
ZZZZZZ	XW40ASPK	2.00 11482																						1						
ZZZZZZ	ZZZZZZ	2.00 11520																												
ZZZZZZ	XW40B	2.00 11555			1					1																				
ZZZZZZ	XW40MB1SPK	2.00 11593																												
CCA	CCV2	1.00 12033		225					2	۲.							х				Х									Х
CCB	CCB2	1.00 12073							2	۲.					1		х				х									Х
PBW	XY02MB1	1.00 12113			1				2	ζ.							х		5¥		x									Х
ZZZZZZ	XW40MB1	2.00 12153													1		Δ.													
WETSED-1	XY02A	1.00 12193																		3										
WS-1 SIR 300	XY02B	1.00 12243							,	<							х				х									x
WS-1 EDTA-LOW	XY02C	1.00 12285							2	۲.							x				х			İ					1	Х
WS-1 EDTA-HIGH	XY02D	1.00 12331							,	۲.							x				х			1						х
WS-1 C18	XY02E	1.00 12372							2	K			1				x				x			1						х
WS-1 FILTERED	XY02F	1.00 12414							,	4							х				х									х
WETSED-1	XY02A	1.00 12455							2	κ							х				х									х
LCSW	XY02MB1SPK	1.00 12501							2	ĸ							х			3	х									х
CCV	CCV3	1.00 12541							100	<							x				x									х
ССВ	CCB3	1.00 12581		96					1.0	ζ.							x	3		8	x									x

SPIKING LOG

Analyst:	-DW	Final Volume 25	
Date:	2.06-14	Final Volume (Hg):	

	Prepcode.	THE		
Spik	e Solution:	ICP Routine	ICP No GFA	GFA
Sta	ndard No .	81845		
Vol A	dded (mL):	0.26		
	Ag	50	-11	2.0
S	Al	200	200	777
T	As	200		10
0	Ва	200	200	
С	Ве	50	50	
K	Ca	1000	1000	
	Cd	50 🗸		2.0
	Co	50	50	
С	Cr	50	50	
0	Cu	50	50	
Ν	Fe	200	200	
С	K	1000	1000	
Е	Mg	1000	1000	71.; ;
Ν	Mn	50 🗸	50	
T	Na	1000	1000	
R	Ni	50	50	
Α	Pb	200 🗸		10
Ţ	Se	200		10
1	Sr	50	50	
0	TI	200		10
Ν	V	50	50	
	Zn	50 🗸	50	


	ICP-MS #1	ICP-MS #2	ICP-MS Minerals
			, minorale
۸۵	25		
Ag Al	25		500
As	25		300
Ba	25		-
Ве			
Са	25		500
Cd	25		300
Co	25	ļ	-
Cr	25		
Cu	25		
Fe	25		500
K			500
			500
Mg Mn	25		500
Mo	25	25	
Na		20	500
Ni	25		
Pb	25		-
Sb		25	
Se	80		
TI	25		
U	25		
٧	25		
Zn	80		

Element	Prepcode	Analysis	Stock Conc	Stock Added	Std No
Hg		CVA	1.0		
Hg MBSPK		CVA	1.0		
Sb		ICP	2000		
Sb		GFA	100		
В		ICP	500		
Мо		ICP	500		
Si		ICP	10000		
Sn		ICP	500		
Tı		ICP	2000		

Sample ID XYOZ MOFFPY

Additional Elements:

Element	Prepcode	Analysis	Stock Conc.	Stock Added	Std.

Digestion Log

Analy	st:o	<u></u>				Date:	02.8	١٥٠ اط	Time: _ <i>O</i>	iS	
Matrix	(: Notice		Block ID	#-	1	Bloc	k Tem	p: 00°2	Thermom	neter:^	1828
Sa	ARI mple ID	Bti #	pH<2	lni Wt	Code: tial (g) (mL)		nai (mL)	Prep Code: Initial Wt (g) Vol (mL)	Final Vol (mL)	Co	mments
XWZ	KOR A	7	1	25	.0	25.0	>				
11	В	7	1								
11	c	7	1								
11	D	7	1								
11	E	7	1								
14	EOUP	٦	1								
"	ESPY	٦	4								
<i>u</i>	F	٦	1								
11	G	J	1								
h	Н	7	v								
11	MBI	_	1								
" (MBIBPL	-	4								
×Y2	4 A	C	1								
n	6	L	1								
ir	MBI	_	1								
þ	MBISPE		4								
×Y)2 A	1	_							Preger	ed in Lab
И	8	-	_								
N	c	1	1							F	
ħ	0	١	-								
n	E	١	-								
n	F	1	-								
11	WeI	-	-	,	,	,	1		V4-0-412-1		/
"	MBISAL	_	-	25	.0	25	٥.			Praecri	red in Lab
					_	204	-14	om -		-	

Chemical/Reagent ID: HNDB: COOR2

HC1: 60454

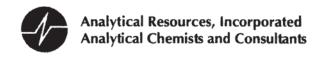
TUBE LOT #

5061F

M2592

Page 26228

Version 005 1/10/12


Metals Data Review Checklist

Method: ICPICP-MS GFA CVA

Analysis Date: 2-10-14

Analyst, Date, Method info Sample ID's		4 91	
Analyst, Date, Method info Sample ID's Standard/QC solution ID's recorded Prep codes Dilution factors Crossouts/Corrections/Deletions Calibration: Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Standard/QC solution ID's recorded Prep codes Dilution factors Crossouts/Corrections/Deletions Calibration: Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Prep codes Dilution factors Crossouts/Corrections/Deletions Calibration: Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Prep codes Dilution factors Crossouts/Corrections/Deletions Calibration Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Crossouts/Corrections/Deletions Calibration: Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Calibration: Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Blank & Standard intensities Standard deviations Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:	~		
Curve fit Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:	-		
Calibration Verification: ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:	~		
ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:	~		
ICV/CCV ICB/CCB Samples: RSD's & SD's Internal Standards Carry-over Method QC:			
Samples: RSD's & SD's Internal Standards Carry-over Method QC:	~	· · · · · · · · · · · · · · · · · · ·	
RSD's & SD's Internal Standards Carry-over Method QC:	~		
RSD's & SD's Internal Standards Carry-over Method QC:		* · · · · · · · · · · · · · · · · · · ·	The state of the s
Carry-over Method QC:	~		Suloa
Method QC:	~		300.1013
Method QC:	~		
	Sales A		ARTH CARREST
CITI/CITA	V		
ICSA/ICSAB	V		
Post Spikes/Serial Dilutions	V		
Analytic Spikes			
Matrix QC:	3		
SRM/LCS	·-		
Matrix Spikes	~		
Matrix Duplicates	~		xw40
Method Blanks	~		
Data Distribution:		e in the second	XW40
Requested elements/isotope identified			4.5
Correct samples identified for distribution	V		
Raw data match distributed data	V		
Data filename correct	~		
Necessary Analysts Notes and CAF's	V	/	AN-XUHO

CAF-XW40

SAMPLE RUN LOG-ICP-OES-02 Perkin Elmer OPTIMA 7300 Serial No. – 077C8121202

IEC Date: 1-3-14	Analysis Date: 2-10-14	Analyst: BA
LR Date: 1-3-14		Page: 1 of 4

	,	by analyst un	less otherwise noted.			10-14	
Edit Label	Delete Data	AR	l Sample ID		ep. ode	Dilution	Comments
		<	O 075				C0531
		~					
			2				C0556
	-		3				C0557
			4			<u> </u>	C0558
			√ 5				C0560
			ICV				82567
			ICB_				5700
			CRI				Ca538
		Z.	CSA				CQ532
		I	CSAB				CQ333
		DI	Chuck				
		C	CVI				ICV
		C.	CBI				STDO
		XW4C	MBI	5v	VC.	2	2-1 (0.01420.mg/L) (A.d.)
			A-L		L	10	
			A			2	
			ADUP			1	CLZ-1 RPD Pb = RLd. E.
			ASEK			'	,
222			ARST				
			В				
		1	MBISPK		V	1	
			CV2				
			CB 2				
		ĺ	2 m31	7	VC		

5076F ICP-OES-02-Daily Run Log Page 04466

Revision 000 3/20/09

SAMPLE RUN LOG-ICP-OES-02 Perkin Elmer OPTIMA 7300 Serial No. – 077C8121202

IEC Date:		Analysis Date:	2-10-14	Analyst: BA
LR Date:				Page: 2 of 4
All corrections m	ade hy analyst un	less otherwise noted.		

All correc	Delete	by analyst unless o		Pro	ep.		
Label	Data	ARI Sar	nple ID	Co	de	Dilution	Comments
	/	XW40	MBI	SWC		2	Zot confirmed
	/	XY02	A	7	NC		Did not inject
			В		<u> </u>		
			C				
			D				
			Ε				
			Ā				
		V	MBISPK		<u> </u>		
		CC	-Y3				
		رر	3				E-U (XW40, X462)
		XW92	MB	TU	VC		/
			ADUR	1			
			A				
			ASPK			1	SKSTL
			В				
					RA	1	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MBSPK		1/2	11-14	
		C	-VH				
		<u> </u>	CBH				
		XYOS	M32	DI	na		
			F				
			G				
	1		4				
		1	EDUP	1	V		Y

XX05:00033

Page

Analysis Begun

Start Time: 2/10/2014 9:07:27 AM Plasma On Time: 2/10/2014 8:20:12 AM

Technique: ICP Continuous Logged In Analyst: Metals

Spectrometer: Optima 7300 DV, S/N 077C8121202 Autosampler: ESI

Sample Information File: C:\pe\metals\Sample Information\BLKS.sif

Batch ID:

Results Data Set: I2140210

Results Library: C:\Documents and Settings\All Users\PerkinElmer\ICP\Data\Results\Results.mdb

MSF File:

Method Loaded

Method Name: 7300bcESI2FAST Method Last Saved: 8/13/2012 7:13:22 AM

IEC File: IEC010314.iec

Method Description: 12Axial Elements

Analyte	Calibration Equation	Processing	View	Internal Standard	IEC
Ag 328.068	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Al 308.215	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
As 188.979	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
B 249.677	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ba 233.527	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Be 313.042	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ca 317.933	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Cd 228.802	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Co 228.616	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Cr 267.716	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Cu 324.752	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Fe 273.955	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
K 766.490	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Mg 279.077	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Mn 257.610	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Mo 202.031	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Na 589.592	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Na 330.237	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Ni 231.604	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Pb 220.353	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Sb 206.836	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Se 196.026	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Si 288.158	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Sn 189.927	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Sr 421.552	Lin Thru 0	Peak Area	Radial	ScR 361.383	No
Ti 334.903	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
Tl 190.801	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
V 292.402	Lin Thru 0	Peak Area	Axial	ScA 357.253	Yes
Zn 206.200	Lin Thru 0	Peak Area	Radial	ScR 361.383	Yes
ScA 357.253	Lin, Calc Int	Peak Area	Axial	n/a	n/a
ScR 361.383	Lin, Calc Int	Peak Area	Radial	n/a	n/a

Sequence No.: 1

As 188.979†

Autosampler Location: 1 Sample ID: B1 Date Collected: 2/10/2014 9:07:33 AM

Data Type: Original Dilution: 1.000000X

Nebulizer Parameters: B1 Back Pressure Analyte Flow

197.0 kPa All 0.75 L/min

-12.2

Mean Data: B1		T	3			
	Mean Corrected	Calib.	. ,	Sample		
Analyte	Intensity	Conc. Units	Std Dev.	Conc. Units	Std.Dev.	RSD
ScA 357.253	11165.4	100.0 % ;	0.64	Service Control of the	0.64%	
ScR 361.383	-134.6	100.0 % 7/10	14 44.40			44.40%
Ag 328.068†	1009.6	2/10	1, 1		54.67	5.42%
Al 308.215†	107.2		1.		67.18	62.67%

XYM2: MMM3H

2.07 17.01%

Analysis Begun

Start Time: 2/10/2014 10:45:36 AM Plasma On Time: 2/10/2014 9:56:43 AM

Logged In Analyst: Metals Technique: ICP Continuous

Spectrometer: Optima 7300 DV, S/N 077C8121202 Autosampler: ESI

Sample Information File: C:\pe\metals\Sample Information\CRISETMON.sif

Batch ID:

Results Data Set: I2140210

Results Library: C:\Documents and Settings\All Users\PerkinElmer\ICP\Data\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 1

Sample ID: Calib Blank 1 Date Collected: 2/10/2014 10:45:38 AM

Date Mana Original

Data Type: Original

Nebulizer Parameters: Calib Blank 1

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

	Mean	Data:	Calib	Blank	1
--	------	-------	-------	-------	---

	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2101497.7	10278.62	0.49%	100.0	8
ScR 361.383	228142.8	1529.98	0.67%	100.0	ક
Ag 328.068†	960.5	41.70	4.34%	[0.00]	mg/L
Al 308.215†	85.4	1.85	2.17%	[0.00]	mg/L
As 188.979†	-14.2	2.44	17.17%	[0.00]	mg/L
B 249.677†	-1.0	1.54	157.08%	[0.00]	mg/L
Ba 233.527†	33.1	1.78	5.39%	[0.00]	mg/L
Be 313.042†	685.2	3.75	0.55%	[0.00]	mg/L
Ca 317.933†	-35.1	5.99	17.08%	[0.00]	mg/L
Cd 228.802†	179.0	2.29	1.28%	[0.00]	mg/L
Co 228.616†	-135.9	5.64	4.15%	[0.00]	mg/L
Cr 267.716†	-66.4	2.49	3.75%	[0.00]	mg/L
Cu 324.752†	2781.8	30.19	1.09%	[0.00]	mg/L
Fe 273.955†	-58.3	0.91	1.55%	[0.00]	mg/L
K 766.490†	330.0	51.87	15.72%	[0.00]	mg/L
Mg 279.077†	45.2	3.58	7.91%	[0.00]	mg/L
Mn 257.610†	5.8	2.30	39.45%	[0.00]	mg/L
Mo 202.031†	70.9	2.90	4.08%	[0.00]	mg/L
Na 589.592†	-526.1	23.26	4.42%	[0.00]	mg/L
Na 330.237†	-16.7	5.19	31.13%	[0.00]	mg/L
Ni 231.604†	21.0	5.21		[0.00]	mg/L
Pb 220.353†	-29.7	3.23	10.88%	[0.00]	mg/L
Sb 206.836†	34.5	5.06	14.65%	[0.00]	mg/L
Se 196.026†	-47.1	6.54	13.87%	[0.00]	mg/L
Si 288.158†	-7.9	1.66	21.09%	[0.00]	mg/L
Sn 189.927†	-11.2	1.40	12.52%	[0.00]	mg/L
Sr 421.552†	107.1	32.06	29.94%	[0.00]	mg/L
Ti 334.903†	109.6	13.11	11.96%	[0.00]	mg/L
Tl 190.801†	-32.9	2.26	6.86%	[0.00]	mg/L
V 292.402†	186.7	4.28	2.29%	[0.00]	
Zn 206.200†	-18.5	0.61	3.28%	[0.00]	mg/L

Sequence No.: 2 Autosampler Location: 2

Sample ID: STD2 Date Collected: 2/10/2014 10:49:38 AM

Data Type: Original

Calib

Nebulizer Parameters: STD2

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: STD2

Mean Corrected

Method: 7300bcESI2FAST Page 2 Date: 2/10/2014 10:57:21 AM

Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2071341.0	4114.68	0.20%	98.56	ક
ScR 361.383	223794.1	662.71	0.30%	98.09	ક
Ba 233.527†	45232.3	366.51	0.81%	[10]	mg/L
Cd 228.802†	185149.9	152.55	0.08%	[10]	mg/L
Co 228.616†	292414.1	106.35	0.04%	[10]	mg/L
Cr 267.716†	53866.9	83.81	0.16%	[10]	mg/L
Cu 324.752†	2089385.1	4288.01	0.21%	[10]	mg/L
Mn 257.610†	301592.1	821.16	0.27%	[10]	mg/L
V 292.402†	1172250.2	2109.98	0.18%	[10]	mg/L

Sequence No.: 3
Sample ID: STD3

Autosampler Location: 3

Date Collected: 2/10/2014 10:51:24 AM

Data Type: Original

Nebulizer Parameters: STD3

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: STD3					
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357.253	2081210.2	15691.30	0.75%	99.03	용
ScR 361.383	226740.3	868.71	0.38%	99.39	용
Ag 328.068†	191475.1	319.59	0.17%	[1.0]	mg/L
As 188.979†	11083.9	120.38	1.09%	[10]	mg/L
B 249.677†	45895.3	159.03	0.35%	[10]	mg/L
Be 313.042†	2006368.8	7749.13	0.39%	[5.0]	mg/L
Na 589.592†	519566.9	405.90	0.08%	[50]	mg/L
Ni 231.604†	28871.0	165.58	0.57%		
Pb 220.353†	69578.9	750.60	1.08%	[10]	mg/L
Se 196.026†	12086.1	164.34	1.36%	[10]	mg/L
Sr 421.552†	3246855.1	14962.03	0.46%	[5]	mg/L
Tl 190.801†	14399.8	157.47	1.09%	[10]	mg/L
Zn 206.200†	29842.0	66.35	0.22%	[10]	mg/L

Sequence No.: 4 Sample ID: STD4 Autosampler Location: 4

Date Collected: 2/10/2014 10:53:41 AM

Data Type: Original

Nebulizer Parameters: STD4

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: STD4

	Mean Corrected					
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units	
ScA 357.253	2105851.3	4116.05	0.20%	100.2	8	
ScR 361.383	227101.1	1037.03	0.46%	99.54	ક	
Mo 202.031†	151494.2	566.15	0.37%	[10]	mg/L	
Sb 206.836†	23118.9	46.87	0.20%	[10]	mg/L	
Si 288.158†	10049.6	121.97	1.21%	[10]	mg/L	
Sn 189.927†	34264.8	117.38	0.34%	[10]	mg/L	
Ti 334.903†	171052.5	421.25	0.25%	[10]	mg/L	

Sequence No.: 5 Autosampler Location: 5

Sample ID: STD5 Date Collected: 2/10/2014 10:55:56 AM

Data Type: Original

Nebulizer Parameters: STD5

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: ST	D5						
	Me	an Corrected	525 2 30 C		Calib		
Analyte		Intensity	Std.Dev. RSD		c. Units		
ScA 357.253		1969054.4	9420.16 0.48		70 %		
ScR 361.383		225259.6	679.07 0.30		74 %		
Al 308.215†		24652.3	87.22 0.35	E. S.	0) mg/L		
Ca 317.933†		219517.8	664.23 0.30		0] mg/L		
Fe 273.955†		77787.6	227.82 0.29		00] mg/L		
K 766.490†		180206.9	134.67 0.07	10. N. T 10.000	00] mg/L		
Mg 279.077† Na 330.237†		20913.6 2083.9	63.22 0.30 12.91 0.62		00] mg/L 00] mg/L		
Calibration S	ummary						
Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	191500	0.00000	1.000000	
Al 308.215	1	Lin Thru 0	0.0	821.7	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	1108	0.00000	1.000000	
B 249.677	1	Lin Thru 0	0.0	4590	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	4523	0.00000	1.000000	
Be 313.042	1	Lin Thru 0	0.0	401300	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	7317	0.00000	1.000000	
Cd 228.802	1	Lin Thru 0 Lin Thru 0	0.0	18510	0.00000	1.000000	
Co 228.616 Cr 267.716	1	Lin Thru 0	0.0	29240 5387	0.00000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	208900	0.00000	1.000000	
Fe 273.955	1	Lin Thru 0	0.0	777.9	0.00000	1.000000	
K 766.490	ī	Lin Thru 0	0.0	1802	0.00000	1.000000	
Mg 279.077	1	Lin Thru 0	0.0	697.1	0.00000	1.000000	
Mn 257.610	ī	Lin Thru 0	0.0	30160	0.00000	1.000000	
Mo 202.031	ī	Lin Thru 0	0.0	15150	0.00000	1.000000	
Na 589.592	1	Lin Thru 0	0.0	10390	0.00000	1.000000	
Na 330.237	1	Lin Thru 0	0.0	20.84	0.00000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	2887	0.00000	1.000000	
Pb 220.353	1	Lin Thru 0	0.0	6958	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	2312	0.00000	1.000000	
Se 196.026	1	Lin Thru 0	0.0	1209	0.00000	1.000000	
Si 288.158	1	Lin Thru 0	0.0	1005	0.00000	1.000000	
Sn 189.927	1	Lin Thru 0	0.0	3426	0.00000	1.000000	
Sr 421.552	1	Lin Thru 0	0.0	649400	0.00000	1.000000	
Ti 334.903	1	Lin Thru 0	0.0	17110	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	1440	0.00000	1.000000	
V 292.402	1	Lin Thru 0	0.0	117200	0.00000	1.000000	
Zn 206.200	1	Lin Thru 0	0.0	2984	0.00000	1.000000	

Analysis Begun

Start Time: 2/10/2014 10:59:06 AM Plasma On Time: 2/10/2014 9:56:43 AM

Logged In Analyst: Metals Technique: ICP Continuous

Spectrometer: Optima 7300 DV, S/N 077C8121202 Autosampler: ESI

Sample Information File: C:\pe\metals\Sample Information\CRISETMON.sif

Batch ID:

Results Data Set: I2140210

Results Library: C:\Documents and Settings\All Users\PerkinElmer\ICP\Data\Results\Results.mdb

Sequence No.: 1 Autosampler Location: 7

Sample ID: CV Date Collected: 2/10/2014 10:59:07 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CV

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: CV
 Mean Corrected
 Calib.

 Intensity
 Conc. Units
 Std.Dev.

 2077902.1
 98.88 %
 0.588

 221761.4
 97.20 %
 0.415

 0.0060
 0.0060
 Sample Conc. Units Analyte Std.Dev. RSD ScA 357.253 0.59% 97.20 % 0.415 0.0060 1.040 mg/L 0.0060 0.58% 2.030 mg/L 0.0151 2.030 mg/L 0.0151 0.74% 2.035 mg/L 0.0123 2.035 mg/L 0.0123 0.61% 1.027 mg/L 0.0066 1.027 mg/L 0.0066 0.64% 1.022 mg/L 0.0045 1.022 mg/L 0.0045 1.022 mg/L 0.0045 0.44% 1.039 mg/L 0.0054 1.039 mg/L 0.0054 0.52% 2.069 mg/L 0.0087 1.021 mg/L 0.0087 0.85% 0.9945 mg/L 0.00777 0.9945 mg/L 0.00777 0.78% 1.032 mg/L 0.0074 1.032 mg/L 0.00777 0.78% 1.032 mg/L 0.0074 1.032 mg/L 0.0074 0.52% 2.051 mg/L 0.0074 1.032 mg/L 0.0074 0.0087 0.85% 0.9945 mg/L 0.00777 0.9945 mg/L 0.00777 0.78% 1.032 mg/L 0.0074 1.049 mg/L 0.0074 0.70% 2.051 mg/L 0.0069 2.051 mg/L 0.0069 0.82% 19.91 mg/L 0.036 0.18% 1.980 mg/L 0.0108 1.980 mg/L 0.0180 0.54% 1.014 mg/L 0.0069 1.014 mg/L 0.0069 0.68% 0.9733 mg/L 0.00535 0.9733 mg/L 0.00535 0.55% 51.02 mg/L 0.067 51.02 mg/L 0.0054 0.52% 1.035 mg/L 0.0054 1.035 mg/L 0.0054 0.52% ScR 361.383 0.43% Ag 328.068† 1694.8 2220.7 4716.9 4625.3 Al 308.215† As 188.979† B 249.677† Ba 233.527† 417100.5 Be 313.042† 15139.4 Ca 317.933† Cd 228.802† 19079.8 29137.1 5562.7 Co 228.616† Cr 267.716† 219132.6 Cu 324.752† Fe 273.955† 1600.7 35874.3 K 766.490† 1376.0 Mg 279.077† 30572.1 14744.9 Mn 257.610† Mo 202.031† 530160.0 Na 589.592†

 51.70 mg/L
 0.681
 51.70 mg/L
 0.681
 1.32%

 1.035 mg/L
 0.0054
 1.035 mg/L
 0.0054
 0.52%

 1.995 mg/L
 0.0120
 1.995 mg/L
 0.0120
 0.60%

 2.093 mg/L
 0.0098
 2.093 mg/L
 0.0098
 0.47%

 2.022 mg/L
 0.0097
 2.022 mg/L
 0.0097
 0.48%

 2.028 mg/L
 0.0054
 2.028 mg/L
 0.0054
 0.27%

 1.001 mg/L
 0.0086
 1.001 mg/L
 0.0086
 0.86%

 1.017 mg/L
 0.0021
 1.017 mg/L
 0.0021
 0.21%

 0.9922 mg/L
 0.00148
 0.9922 mg/L
 0.00148
 0.15%

 2.064 mg/L
 0.0066
 2.064 mg/L
 0.0066
 0.32%

 1.013 mg/L
 0.0058
 1.013 mg/L
 0.0058
 0.58%

 1.028 mg/L
 0.0068
 1.028 mg/L
 0.0068
 0.66%

 1078.0 Na 330.237† 2988.4 Ni 231.604† Pb 220.353† 13873.4 4842.0 2444.7 Sb 206.836† Se 196.026† 2033.4 Si 288.158† Sn 189.927† 3425.5 660734.7 Sr 421.552† 16993.1 Ti 334.903† Tl 190.801† 2983.5 118241.2 V 292.402† 3064.8 Zn 206.200†

YYAP: GAARR

Page 2

Autosampler Location: 1 Sequence No.: 2

Date Collected: 2/10/2014 11:03:08 AM Sample ID: TCB Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow
198.0 kPa 0.75 L/min All

Mean Data: CB							
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev. RSD
ScA 357.253	2063626.0	98.20	8	0.659			0.67%
ScR 361.383	225198.1	98.71	8	0.668			0.68%
Ag 328.068†	17.9	0.00009		0.000301	0.00009	mg/L	0.000301 320.60%
Al 308.215†	-3.8	-0.00470		0.003082	-0.00470	mg/L	0.003082 65.59%
As 188.979†	0.8	0.00071	mg/L	0.001734	0.00071	mg/L	0.001734 243.65%
B 249.677†	8.8	0.00192	mg/L	0.000775	0.00192	mg/L	0.000775 40.26%
Ba 233.527†	1.8	0.00040	mg/L	0.000119	0.00040	mg/L	0.000119 29.54%
Be 313.042†	32.1	0.00008	mg/L	0.000011	0.00008	mg/L	0.000011 13.78%
Ca 317.933†	4.4	0.00061		0.000672	0.00061	mg/L	0.000672 110.75%
Cd 228.802†	-0.3	-0.00002	mg/L	0.000198	-0.00002	mg/L	0.000198 >999.9%
Co 228.616†	-6.7	-0.00023	mg/L	0.000010	-0.00023	mg/L	0.000010 4.24%
Cr 267.716†	2.8	0.00051	mg/L	0.000863	0.00051	mg/L	0.000863 168.76%
Cu 324.752†	32.0	0.00015	mg/L	0.000207	0.00015	mg/L	0.000207 135.41%
Fe 273.955†	-2.0	-0.00251	mg/L	0.001153	-0.00251		0.001153 45.87%
K 766.490†	26.6	0.01478	mg/L	0.011287	0.01478	mg/L	0.011287 76.35%
Mg 279.077†	3.2	0.00460		0.007884	0.00460		0.007884 171.29%
Mn 257.610†	6.4	0.00021	mg/L	0.000147	0.00021	mg/L	0.000147 69.36%
Mo 202.031†	20.7	0.00137	mg/L	0.000414	0.00137	mg/L	0.000414 30.28%
Na 589.592†	69.9	0.00673	mg/L	0.005393	0.00673	mg/L	0.005393 80.19%
Na 330.237†	-7.1	-0.3406		0.47502	-0.3406	mg/L	0.47502 139.48%
Ni 231.604†	-1.4	-0.00049	mg/L	0.000852	-0.00049		0.000852 173.44%
Pb 220.353†	7.1	0.00102	-	0.000155	0.00102		0.000155 15.16%
Sb 206.836†	10.1	0.00436		0.001539	0.00436		0.001539 35.28%
Se 196.026†	-2.3	-0.00193	2	0.000868	-0.00193		0.000868 45.00%
Si 288.158†	-7.0	-0.00700	mg/L	0.004418	-0.00700		0.004418 63.08%
Sn 189.927†	4.8	0.00140	mg/L	0.000306	0.00140	mg/L	0.000306 21.94%
Sr 421.552†	21.8	0.00003	mg/L	0.000044	0.00003		0.000044 132.36%
Ti 334.903†	10.2	0.00059	mg/L	0.000632	0.00059		0.000632 106.62%
Tl 190.801†	1.2	0.00084		0.002198	0.00084		0.002198 260.50%
V 292.402†	19.7	0.00017		0.000139	0.00017		0.000139 81.36%
Zn 206.200†	-0.2	-0.00008	mg/L	0.000235	-0.00008	mg/L	0.000235 293.04%

Sequence No.: 3 Sample ID: CRI Autosampler Location: 301

Date Collected: 2/10/2014 11:07:08 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CRI

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: CRI								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2081201.5	99.03	8	0.736				0.74%
ScR 361.383	228512.8	100.2	%	0.21				0.21%
Ag 328.068†	633.6	0.00331	mg/L	0.000236	0.00331	mg/L	0.000236	7.13%
Al 308.215†	39.0	0.04730	mg/L	0.011461	0.04730	mg/L	0.011461	24.23%
As 188.979†	58.1	0.05253	mg/L	0.003106	0.05253	mg/L	0.003106	5.91%
B 249.677†	96.3	0.02098	mg/L	0.000830	0.02098	mg/L	0.000830	3.95%
Ba 233.527†	11.3	0.00249	mg/L	0.000365	0.00249	mg/L	0.000365	14.66%
Be 313.042†	418.9	0.00104	mg/L	0.000011	0.00104	mg/L	0.000011	1.02%
Ca 317.933†	349.1	0.04771	mg/L	0.000225	0.04771	mg/L	0.000225	0.47%
Cd 228.802†	46.1	0.00223	mg/L	0.000103	0.00223	mg/L	0.000103	4.61%
Co 228.616†	90.4	0.00308		0.000216	0.00308	mg/L	0.000216	7.00%
Cr 267.716†	27.7	0.00514		0.000484	0.00514	mg/L	0.000484	9.41%
Cu 324.752†	449.2	0.00215	mg/L	0.000225	0.00215	mg/L	0.000225	10.46%
Fe 273.955†	37.8	0.04861		0.001745	0.04861	mg/L	0.001745	3.59%
K 766.490†	926.3	0.5140		0.01381	0.5140	mg/L	0.01381	2.69%
Mg 279.077†	32.8	0.04702	mg/L	0.005140	0.04702	mg/L	0.005140	10.93%
Mn 257.610†	33.9	0.00113	mg/L	0.000109	0.00113	mg/L	0.000109	9.65%
Mo 202.031†	82.6	0.00545	mg/L	0.000086	0.00545	mg/L	0.000086	1.57%
Na 589.592†	5409.3	0.5206	mg/L	0.00300	0.5206	mg/L	0.00300	0.58%
Na 330.237†	-0.5	-0.02490	mg/L	0.511377	-0.02490	mg/L	0.511377	>999.9%
Ni 231.604†	33.2	0.01152	mg/L	0.001373	0.01152	mg/L	0.001373	11.92%
Pb 220.353†	146.3	0.02104	mg/L	0.000371	0.02104		0.000371	1.76%
Sb 206.836†	123.4	0.05339	mg/L	0.002197	0.05339	mg/L	0.002197	4.11%
Se 196.026†	62.9	0.05203		0.006264	0.05203	mg/L	0.006264	12.04%
Si 288.158†	53.1	0.05287	mg/L	0.003465	0.05287	mg/L	0.003465	6.55%
Sn 189.927†	37.8	0.01105		0.000472	0.01105	mg/L	0.000472	4.27%
Sr 421.552†	653.6	0.00101	mg/L	0.000015	0.00101	mg/L	0.000015	1.54%
Ti 334.903†	56.3	0.00328		0.001370	0.00328	mg/L	0.001370	41.78%
Tl 190.801†	70.9	0.04920		0.001861	0.04920	mg/L	0.001861	3.78%
V 292.402†	370.5	0.00318		0.000197	0.00318	mg/L	0.000197	6.19%
Zn 206.200†	28.9	0.00970	mg/L	0.000605	0.00970	mg/L	0.000605	6.23%

XYWZ: WWWW

Date: 2/10/2014 11:14:46 AM

Sequence No.: 4

Autosampler Location: 302

Sample ID: ICSA

Date Collected: 2/10/2014 11:11:09 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: ICSA

Analyte

Back Pressure Flow 198.0 kPa 0.75 L/min All 198.0 kPa

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	. Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	2003634.1	95.34	8	0.587				0.62%
ScR 361.383	221086.1	96.91	8	0.548				0.57%
Ag 328.068†	-263.4	-0.00062	mg/L	0.000364	-0.00062	mg/L	0.000364	58.40%
Al 308.215†	163218.9	198.6	mg/L	1.57	198.6	mg/L	1.57	0.79%
As 188.979†	48.7	0.03306	mg/L	0.000827	0.03306		0.000827	2.50%
B 249.677†	-37.5	-0.00816	mg/L	0.000891	-0.00816	mg/L	0.000891	10.92%
Ba 233.527†	105.4	-0.00333	mg/L	0.000037	-0.00333	mg/L	0.000037	1.12%
Be 313.042†	31.6	0.00008	mg/L	0.000027	0.00008	mg/L	0.000027	34.96%
Ca 317.933†	732894.7	100.2	mg/L	0.90	100.2	mg/L	0.90	0.90%
Cd 228.802†	17.8	0.00074		0.000148	0.00074	mg/L	0.000148	20.14%
Co 228.616†	75.4	0.00255	mg/L	0.000124	0.00255	mg/L	0.000124	4.84%
Cr 267.716†	-1.7	0.00063		0.000977	0.00063	mg/L	0.000977	155.77%
Cu 324.752†	-1925.7	0.00033	mg/L	0.000267	0.00033	mg/L	0.000267	80.83%
Fe 273.955†	154005.3	198.0	mg/L	0.74	198.0	mg/L	0.74	0.37%
K 766.490†	45.7	0.02536	mg/L	0.023255	0.02536	mg/L	0.023255	91.71%
Mg 279.077†	70503.8	101.0		0.87	101.0	mg/L	0.87	0.86%
Mn 257.610†	57.7	-0.00014	mg/L	0.000356	-0.00014	mg/L	0.000356	251.32%
Mo 202.031†	99.2	0.00522	mg/L	0.000415	0.00522	mg/L	0.000415	7.94%
Na 589.592†	108.8	0.01047		0.003075	0.01047	mg/L	0.003075	29.37%
Na 330.237†	-21.7	-1.040		0.4482	-1.040	mg/L	0.4482	43.09%
Ni 231.604†	3.4	0.00116		0.002160	0.00116		0.002160	185.50%
Pb 220.353†	-371.2	-0.01157		0.000780	-0.01157		0.000780	6.74%
Sb 206.836†	17.1	0.00721		0.001244	0.00721	mg/L	0.001244	17.27%
Se 196.026†	34.0	0.02810	-	0.001997	0.02810	mg/L	0.001997	7.10%
Si 288.158†	-20.8	-0.02067		0.005027	-0.02067		0.005027	24.31%
Sn 189.927†	-102.8	-0.01 <u>6</u> 25		0.001566	-0.01625	mg/L	0.001566	9.64%
Sr 421.552†	3577.9	0.00551	mg/L cont	0.000060	0.00551	mg/L	0.000060	1.09%
Ti 334.903†	211.2	0.00494		0.000419	0.00494		0.000419	8.49%
Tl 190.801†	3.6	0.02917		0.006045	0.02917		0.006045	20.72%
V 292.402†	1200.7	-0.00180		0.000578	-0.00180		0.000578	32.16%
Zn 206.200†	-2.0	-0.00069	mg/L	0.001158	-0.00069	mg/L	0.001158	168.10%

Date: 2/10/2014 11:18:32 AM

Sequence No.: 5 Autosampler Location: 303

Sample ID: ICSAB Date Collected: 2/10/2014 11:15:24 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: ICSAB

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Corrected Calib. Std.Dev Conc. Units Std.Dev Conc. Units Std.Dev Conc. Units Std.Dev Conc. Units Std.Dev RSD 1.15% ScR 357.253 2014724.0 95.87 % 0.429 0.429 0.448 Ag 328.068† 196283.1 1.026 mg/L 0.0140 1.026 mg/L 0.0140 1.026 mg/L 0.0140 1.026 mg/L 0.111 0.55% As 188.979† 1170.9 1.045 mg/L 0.00178 1.045 mg/L 0.00178 1.045 mg/L 0.00237 -0.00890 mg/L 0.002037 22.88% Days 233.527† 4695.1 1.011 mg/L 0.00237 -0.00890 mg/L 0.002037 22.88% Days 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.35% Days 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.35% Days 233.527† 4695.1 1.012 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Days 233.527† 4695.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Days 233.527† 4695.1 1.023 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Days 233.527† 4695.1 1.023 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Days 233.527† 4695.1 1.023 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Days 233.527† 0.0062 0.008 mg/L	Mean Data: ICSAB								
SCA 357.253 2014724.0 95.87 % 1.099 1.15% SCR 361.383 221233.1 96.97 % 0.429 0.449 0.0140 1.026 mg/L 0.0140 1.36% 0.14% 0.0140 1.026 mg/L 0.0140 1.36% 0.0148 1.36% 0.0148 0.0148 0.0148 0.0158 1.24 0.0178 1.15% 0.0178 1.24 0.0020 0.0181 1.24 0.0035 1.24 0.00237 2.28% 0.0052 0.6		Mean Corrected		Calib.			Sample		
SCR 361.383 221233.1 96.97 % 0.429 0.448 Ag 328.068† 196283.1 1.026 mg/L 0.0140 1.026 mg/L 0.0140 1.36% Al 308.215† 164359.7 200.0 mg/L 0.111 200.0 mg/L 0.111 0.55% As 188.979† 1170.9 1.045 mg/L 0.00178 1.045 mg/L 0.0178 1.70% B 249.677† -31.4 -0.00890 mg/L 0.002037 -0.00890 mg/L 0.002037 22.88% Ba 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.35% Ba 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Ca 317.933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 1.22 1.21% Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.60% Cc 228.616† 28517.1 0.9750 mg/L 0.00613 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.60% Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 0.222 198.9 mg/L 0.222 1.12% K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.0881 98.34 mg/L 0.881 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00890 0.9573 mg/L 0.00099 0.9573 mg/L 0.000266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.00266 0.01125 mg/L 0.00266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.00266 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.00231 0.09859 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.00181 1.041 mg/L 0.0181 1.74% Si 288.158† -22.4 -0.01758 mg/L 0.00235 -0.01818 mg/L 0.00185 41.61% Sn 189.927† -111.8 -0.01818 mg/L 0.00255 -0.01758 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005 0.09553 mg/L 0.000005	Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	RSD
Ag 328.068† 196283.1 1.026 mg/L 0.0140 1.026 mg/L 0.0140 1.368 Al 308.215† 164359.7 200.0 mg/L 1.11 200.0 mg/L 1.11 0.558 As 188.979† 1170.9 1.045 mg/L 0.0178 1.045 mg/L 0.0178 1.045 mg/L 0.0178 1.058 Ba 249.677† −31.4 −0.00890 mg/L 0.002037 −0.00890 mg/L 0.002037 22.888 Ba 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.358 Be 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.638 Ca 317.933† 737347.0 100.8 mg/L 0.0168 1.047 mg/L 0.0168 1.604 0.0168 1.604 0.0168 1.604 0.0168 1.608 0.288.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 0.1513 0.0750 mg/L 0.0131 1.278 Cc 22.61.024 1.9464.9 1.023 mg/L 0.0062 1.023 mg/L 0.0131 1.278 C	ScA 357.253	2014724.0	95.87	용	1.099				1.15%
Ai 308.215† 164359.7 200.0 mg/L 1.11 200.0 mg/L 1.11 0.558 As 188.979† 1170.9 1.045 mg/L 0.0178 1.045 mg/L 0.0178 1.708 Mg/L 0.0178 1.708 Mg/L 0.002037 22.88% Ba 249.677† -31.4 -0.00890 mg/L 0.002037 -0.00890 mg/L 0.002037 22.88% Ba 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.35% Be 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.63% Ca 317.933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 1.22 100.8 mg/L 1.22 12.18 Mg/L 0.22 Mg/L 0.0065 0.63% Ca 317.933† 737347.0 100.8 mg/L 0.0168 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.60% Co 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.0168 1.60% Ca 224.752† 213967.2 1.034 mg/L 0.0168 1.034 mg/L 0.0161 1.55% Ca 273.955† 154739.6 198.9 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 98.34 mg/L 0.881 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.00321 5.37% Na 330.237† -8.1 -0.6710 mg/L 0.02666 0.01125 mg/L 0.00321 5.37% Na 330.237† -8.1 -0.6710 mg/L 0.02666 0.01125 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00321 0.0399 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00321 0.0399 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.00899 0.9758 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.00307 0.00899 mg/L 0.001295 0.9599 mg/L 0.00266 20.14% Na 330.237† -81.1 -0.0181 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Sc 1288.158† -22.4 -0.01758 mg/L 0.00855 -0.01758 mg/L 0.000055 0.9553 mg/L 0.000055 0.9553 mg/L 0.000055 0.9553 mg/L 0.000065 0.00553 mg/L 0.000065 0.00553 mg/L 0.000065 0.00553 mg/	ScR 361.383	221233.1	96.97	8	0.429				0.44%
As 188.979† 1170.9 1.045 mg/L 0.0178 1.045 mg/L 0.0178 1.708 B 249.677† −31.4 −0.00890 mg/L 0.002037 −0.00890 mg/L 0.002037 22.888 Ba 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.358 Be 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.638 Ca 317.933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 1.22 1.218 Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.608 Co 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.558 Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.608 Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.278 Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 0.0131 1.278 Fe 273.955† 154739.6 198.9 mg/L 0.019013 0.03020 mg/L 0.019013 62.958 Mg 279.077† 6867.7 98.34 mg/L 0.0881 98.34 mg/L 0.0899 Mg 279.077† 68667.7 98.34 mg/L 0.0881 98.34 mg/L 0.00899 Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.378 Na 589.592† 116.9 0.01125 mg/L 0.0002266 0.01125 mg/L 0.002266 20.148 Ni 231.604† 2845.3 0.9857 mg/L 0.002266 0.01125 mg/L 0.002266 20.148 Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.318 Pb 220.335† 6381.5 0.9599 mg/L 0.00307 0.9857 mg/L 0.00307 0.318 Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.748 Si 288.158† −22.4 −0.01758 mg/L 0.00825 −0.01758 mg/L 0.00825 4.548 Sr 421.552† 3589.2 0.00553 mg/L 0.000825 −0.01758 mg/L 0.000825 4.548 Sr 421.552† 3589.2 0.00553 mg/L 0.000825 −0.01758 mg/L 0.000819 7.928 Ti 130.881† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00081 0.988 Ti 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00081 0.00861 0.898 V 292.4027† 114200.5 0.9665 mg/L 0.00288 0.9665 mg/L 0.00286 1.338	Ag 328.068†	196283.1	1.026	mg/L	0.0140	1.026	mg/L	0.0140	1.36%
B 249.677†	Al 308.215†	164359.7	200.0	mg/L	1.11	200.0	mg/L	1.11	0.55%
Ba 233.527† 4695.1 1.011 mg/L 0.0035 1.011 mg/L 0.0035 0.358 Be 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.638 Ca 317.933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 1.22 1.218 Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.608 Cc 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.608 Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.278 Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 0.01911 1.278 K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 0.908 Mm 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.948 Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.378 Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.00327 6.2116 Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.26116 38.928 Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.318 Pb 220.353† 6381.5 0.9959 mg/L 0.00307 0.9857 mg/L 0.00307 0.318 Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.748 Si 288.158† -22.4 -0.01758 mg/L 0.00315 -0.01758 mg/L 0.00315 1.758 Sr 421.552† 3589.2 0.00553 mg/L 0.000419 0.00559 mg/L 0.000059 mg/L 0.000059 mg/L 0.00031 7.985 Na 189.927† -111.8 -0.01818 mg/L 0.00819 0.00559 mg/L 0.000059 mg/L 0.000059 mg/L 0.000059 mg/L 0.000059 mg/L 0.000059 mg/L 0.000059 mg/L 0.000005 0.098 Ti 334.903† 221.3 0.00529 mg/L 0.000419 0.00559 mg/L 0.000019 7.928 Ti 190.801† 1380.8 0.9761 mg/L 0.00419 0.00559 mg/L 0.000019 7.928 Ti 190.801† 1380.8 0.9761 mg/L 0.00419 0.00559 mg/L 0.00018 1.338	As 188.979†	1170.9	1.045	mg/L	0.0178	1.045	mg/L	0.0178	1.70%
Be 313.042† 410244.1 1.022 mg/L 0.0065 1.022 mg/L 0.0065 0.638 Ca 317.933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 1.22 1.21% Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.0168 1.60% Cc 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.60% Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 2.22 1.12% K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.081 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.00321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.000321 0.00599 mg/L 0.00321 5.37% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.00125 mg/L 0.00327 Sb 206.836† 2401.2 1.029 mg/L 0.0125 0.9587 mg/L 0.00307 0.31% Sc 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Sr 138.927† -111.8 -0.01818 mg/L 0.000355 mg/L 0.000825 -0.01818 mg/L 0.00085 1.35% Sr 288.158† -22.4 -0.01758 mg/L 0.00035 0.00553 mg/L 0.00085 1.36% Sr 334.903† 21.3 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.00521 0.00681 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.001288 1.33%	B 249.677†	-31.4	-0.00890	mg/L	0.002037	-0.00890	mg/L	0.002037	22.88%
Ca 317,933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 0.0168 1.047 mg/L 0.0168 1.60% Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.01513 1.60% Cc 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.60% Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 0.0131 1.27% K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 0.9089 Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 0.981 0.981 Ma 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.00231 0.00327 0.00321 5.37%	Ba 233.527†	4695.1	1.011	mg/L	0.0035	1.011	mg/L	0.0035	0.35%
Ca 317,933† 737347.0 100.8 mg/L 1.22 100.8 mg/L 0.0168 1.047 mg/L 0.0168 1.60% Cd 228.802† 19464.9 1.047 mg/L 0.0168 1.047 mg/L 0.01513 1.60% Cc 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.60% Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 0.0131 1.27% K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 0.9089 Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 0.981 0.981 Ma 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.00231 0.00327 0.00321 5.37%	Be 313.042†	410244.1	1.022	mg/L	0.0065	1.022	mg/L	0.0065	0.63%
Co 228.616† 28517.1 0.9750 mg/L 0.01513 0.9750 mg/L 0.01513 1.55% Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.60% Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 2.22 1.12% K 766.490† 54.4 0.03020 mg/L 0.019013 0.0599 mg/L 0.00813 0.908 Mn 279.0717 68667.7 98.34 mg/L <td>Ca 317.933†</td> <td>737347.0</td> <td>100.8</td> <td>mg/L</td> <td>1.22</td> <td>100.8</td> <td>mg/L</td> <td>1.22</td> <td>1.21%</td>	Ca 317.933†	737347.0	100.8	mg/L	1.22	100.8	mg/L	1.22	1.21%
Cr 267.716† 5505.0 1.023 mg/L 0.0062 1.023 mg/L 0.0062 0.023 mg/L 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0081 0.0089 0.0094 0.0094 0.00899 0.0948 0.00899 0.00899	Cd 228.802†	19464.9	1.047	mg/L	0.0168	1.047	mg/L	0.0168	1.60%
Cu 324.752† 213967.2 1.034 mg/L 0.0131 1.034 mg/L 0.0131 1.27% Fe 273.955† 154739.6 198.9 mg/L 2.22 198.9 mg/L 2.22 1.12% K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.0881 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.9573 mg/L 0.00321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.26116 38.92% Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9959 mg/L 0.01295 0.9599 mg/L 0.01295 Sb 206.836† 2401.2 1.029 mg/L 0.01295 0.9599 mg/L 0.01295 Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.0213 2.08% Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Si 288.158† -22.4 -0.01758 mg/L 0.007315 -0.01758 mg/L 0.007315 41.61% Sn 189.927† -111.8 -0.01818 mg/L 0.007315 -0.01758 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00553 mg/L 0.000419 0.00529 mg/L 0.000419 7.92% Ti 190.801† 1380.8 0.9761 mg/L 0.00419 0.00529 mg/L 0.000419 7.92% Ti 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.9865 mg/L 0.001288 1.33%	Co 228.616†	28517.1	0.9750	mg/L	0.01513	0.9750	mg/L	0.01513	1.55%
Fe 273.955†	Cr 267.716†	5505.0	1.023	mg/L	0.0062	1.023	mg/L	0.0062	0.60%
K 766.490† 54.4 0.03020 mg/L 0.019013 0.03020 mg/L 0.019013 62.95% Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.02616 38.92% Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.001295 0.9599 mg/L 0.01295 0.9599 mg/L 0.01295 0.9599 mg/L 0.00213 2.08% Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.0181 1.74% Sc 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Sn 189.927† -111.8 -0.01818 mg/L 0.007315 -0.01758 m	Cu 324.752†	213967.2	1.034	mg/L	0.0131	1.034	mg/L	0.0131	1.27%
Mg 279.077† 68667.7 98.34 mg/L 0.881 98.34 mg/L 0.881 0.90% Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.26116 38.92% Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.01295 0.9599 mg/L 0.01295 1.35% Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.01295 1.35% Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Sn 189.927† -111.8 -0.01818 mg/L 0.000325 -0.01758 mg/L 0.0000825 -0.01818 mg/L 0.0000529 mg/L 0.	Fe 273.955†	154739.6			2.22	198.9	mg/L	2.22	1.12%
Mn 257.610† 28925.8 0.9573 mg/L 0.00899 0.9573 mg/L 0.00899 0.94% Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.26116 38.92% Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.01295 0.9599 mg/L 0.01295 1.35% Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.0213 2.08% Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Si 288.158† -22.4 -0.01758 mg/L 0.007315 -0.01758 mg/L 0.007315 41.61% Sr 421.552† 3589.2 0.00553 mg/L 0.000825 -0.01818 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00553 mg/L 0.000825 -0.01818 mg/L 0.000005 0.09% Ti 334.903† 221.3 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 7.92% Tl 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	K 766.490†	54.4	0.03020	mg/L	0.019013	0.03020	mg/L	0.019013	62.95%
Mo 202.031† 110.9 0.00599 mg/L 0.000321 0.00599 mg/L 0.000321 5.37% Na 589.592† 116.9 0.01125 mg/L 0.002266 0.01125 mg/L 0.002266 20.14% Na 330.237† -8.1 -0.6710 mg/L 0.26116 -0.6710 mg/L 0.26116 38.92% Ni 231.604† 2845.3 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.9857 mg/L 0.00307 0.31% Pb 220.353† 6381.5 0.9599 mg/L 0.01295 0.9599 mg/L 0.01295 1.35% Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.0213 2.08% Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Si 288.158† -22.4 -0.01758 mg/L 0.007315 -0.01758 mg/L 0.007315 41.61% Sn 189.927† -111.8 -0.01818 mg/L 0.00825 -0.01818 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00529 mg/L 0.00005 0.00553 mg/L 0.00005 0.09% Ti 334.903† 221.3 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 7.92% Tl 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	Mg 279.077†	68667.7	98.34	mg/L	0.881	98.34	mg/L	0.881	0.90%
Na 589.592†	Mn 257.610†	28925.8	0.9573	mg/L	0.00899	0.9573	mg/L	0.00899	0.94%
Na 330.237†	Mo 202.031†	110.9	0.00599	mg/L	0.000321	0.00599	mg/L	0.000321	5.37%
Ni 231.604†	Na 589.592†	116.9			0.002266	0.01125	mg/L	0.002266	20.14%
Pb 220.353† 6381.5 0.9599 mg/L 0.01295 0.9599 mg/L 0.01295 1.35% Sb 206.836† 2401.2 1.029 mg/L 0.0213 1.029 mg/L 0.0213 2.08% Se 196.026† 1259.2 1.041 mg/L 0.0181 1.041 mg/L 0.0181 1.74% Si 288.158† -22.4 -0.01758 mg/L 0.007315 -0.01758 mg/L 0.007315 41.61% Sn 189.927† -111.8 -0.01818 mg/L 0.000825 -0.01818 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00553 mg/L 0.00005 0.00553 mg/L 0.00005 0.09% Ti 334.903† 221.3 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 7.92% Tl 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	Na 330.237†	-8.1	-0.6710	mg/L	0.26116	-0.6710	mg/L	0.26116	38.92%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni 231.604†	2845.3			0.00307	0.9857	mg/L	0.00307	0.31%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb 220.353†	6381.5			0.01295	0.9599	mg/L	0.01295	1.35%
Si 288.158† -22.4 -0.01758 mg/L 0.007315 -0.01758 mg/L 0.007315 41.61% Sn 189.927† -111.8 -0.01818 mg/L 0.000825 -0.01818 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00553 mg/L cant. 0.000005 0.00553 mg/L 0.000553 mg/L 0.000055 0.00553 mg/L 0.000419 0.000529 mg/L 0.000419 7.92% Tl 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00655 mg/L 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	Sb 206.836†	2401.2	1.029	mg/L	0.0213	1.029	mg/L	0.0213	2.08%
Sn 189.927† -111.8 -0.01818 mg/L 0.000825 -0.01818 mg/L 0.000825 4.54% Sr 421.552† 3589.2 0.00553 mg/L cant. 0.000005 0.00553 mg/L 0.00553 mg/L 0.000553 mg/L 0.000553 mg/L 0.000419 0.00529 mg/L 0.000419 0.000419 7.92% T1 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 0.01288 1.33%	Se 196.026†				0.0181	1.041	mg/L	0.0181	1.74%
Sr 421.552† 3589.2 0.00553 mg/L cant. 0.000005 0.00553 mg/L 0.00005 0.00553 mg/L 0.00005 0.00553 mg/L 0.00005 0.00529 mg/L 0.000419 0.00529 mg/L 0.000419 0.000419 7.92% T1 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.9761 mg/L 0.0028 0.9665 mg/L 0.01288 V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288	Si 288.158†	-22.4	-0.01758	mg/L	0.007315	-0.01758	mg/L	0.007315	41.61%
Ti $334.903\dagger$	Sn 189.927†	-111.8	-0.01818	mg/L	0.000825			0.000825	4.54%
T1 190.801† 1380.8 0.9761 mg/L 0.00861 0.9761 mg/L 0.00861 0.88% V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	Sr 421.552†	3589.2	0.00553	mg/L Ca	A 0.000005	0.00553	mg/L	0.000005	0.09%
V 292.402† 114200.5 0.9665 mg/L 0.01288 0.9665 mg/L 0.01288 1.33%	Ti 334.903†		0.00529	mg/L	0.000419				7.92%
그러는 반시와 하면 하면 하면 하면 하면 하면 하면 하면 하면 하면 하면 하면 하면	T1 190.801†				0.00861	0.9761	mg/L	0.00861	0.88%
Zn 206.200† 2942.7 0.9864 mg/L 0.00729 0.9864 mg/L 0.00729 0.74%	. 그렇는 그 마다 하게 되었다면 하다 가장이 있다면 하고 이래하다.				0.01288	0.9665	mg/L	0.01288	1.33%
그는 그는 그는 그는 그는 그는 그는 그는 그는 그는 그는 그는 그는 그	Zn 206.200†	2942.7	0.9864	mg/L	0.00729	0.9864	mg/L	0.00729	0.74%

XYM2: MMMU2

Page 6

Autosampler Location: 304 Sequence No.: 6

Sample ID: DI CHECK Date Collected: 2/10/2014 11:20:33 AM

Data Type: Original Dilution: 1.000000X

Nebulizer Parameters: DI CHECK

Analyte Back Pressure Flow 198.0 kPa 0.75 L/min All

Mean Data: DI CHEC	CK						
	Mean Corrected		Calib.			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2122017.1	101.0	8	0.77			0.77%
ScR 361.383	233049.5	102.2	Se .	2.15			2.10%
Ag 328.068†	0.9	0.00000		0.000379	0.00000		0.000379 >999.9%
Al 308.215†	-0.7	-0.00087		0.003606	-0.00087		0.003606 414.94%
As 188.979†	4.2	0.00376	mg/L	0.003196	0.00376	mg/L	0.003196 85.01%
B 249.677†	-3.7	-0.00081	mg/L	0.000779	-0.00081	mg/L	0.000779 96.28%
Ba 233.527†	-2.6	-0.00058	mg/L	0.000690	-0.00058	mg/L	0.000690 118.16%
Be 313.042†	10.2	0.00003	mg/L	0.000043	0.00003	mg/L	0.000043 170.85%
Ca 317.933†	26.4	0.00361	mg/L	0.001170	0.00361	_	0.001170 32.36%
Cd 228.802†	-3.0	-0.00018		0.000239	-0.00018		0.000239 132.73%
Co 228.616†	20.2	0.00069	mg/L	0.000076	0.00069	mg/L	0.000076 10.99%
Cr 267.716†	-0.6	-0.00011		0.000765	-0.00011	mg/L	0.000765 677.22%
Cu 324.752†	-30.3	-0.00014		0.000092	-0.00014		0.000092 63.34%
Fe 273.955†	2.1	0.00264	mg/L	0.005047	0.00264		0.005047 190.88%
K 766.490†	35.9	0.01991		0.013569	0.01991	-	0.013569 68.16%
Mg 279.077†	1.9	0.00274		0.007312	0.00274	mg/L	0.007312 266.46%
Mn 257.610†	1.3	0.00004	mg/L	0.000054	0.00004	mg/L	0.000054 124.61%
Mo 202.031†	-4.1	-0.00027	mg/L	0.000160	-0.00027		0.000160 58.95%
Na 589.592†	23.7	0.00228	-	0.003567	0.00228		0.003567 156.15%
Na 330.237†	-5.0	-0.2412	2.000 - 1 00 1000	0.20593	-0.2412		0.20593 85.37%
Ni 231.604†	1.0	0.00034	-	0.001368	0.00034	-	0.001368 399.52%
Pb 220.353†	1.9	0.00027		0.001022	0.00027		0.001022 381.03%
Sb 206.836†	-9.7	-0.00420	-	0.000434	-0.00420		0.000434 10.34%
Se 196.026†	9.6	0.00798		0.001837	0.00798		0.001837 23.01%
Si 288.158†	-4.3	-0.00427	-	0.000429	-0.00427		0.000429 10.04%
Sn 189.927†	2.8	0.00081	mg/L	0.001227	0.00081	mg/L	0.001227 152.09%
Sr 421.552†	7.4	0.00001		0.000006	0.00001		0.000006 55.18%
Ti 334.903†	-3.6	-0.00021		0.000477	-0.00021		0.000477 225.49%
Tl 190.801†	9.3	0.00643		0.003164	0.00643		0.003164 49.24%
V 292.402†	11.8	0.00010		0.000109	0.00010		0.000109 109.50%
Zn 206.200†	2.8	0.00094	mg/L	0.000202	0.00094	mg/L	0.000202 21.51%

Page 7 Date: 2/10/2014 11:27:56 AM Method: 7300bcESI2FAST

Sequence No.: 7 Autosampler Location: 7

Date Collected: 2/10/2014 11:24:32 AM Sample ID: CV

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 198.0 kPa 0.75 L/min All

Mean Data: CV	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc	Units	Std.Dev.	Conc	Units	Std.Dev.	RSD
ScA 357.253	2054308.4	97.75		0.471	cone.	Onites	sta.Dev.	0.48%
ScR 361.383	224236.6	98.29		0.291				0.30%
Ag 328.068†	201649.6	1.053		0.0027	1.053	mg/L	0.0027	0.25%
Al 308.215†	1685.2	2.018		0.0078	2.018		0.0078	0.399
As 188.979†	2255.3	2.066		0.0031	2.066		0.0031	0.159
B 249.677†	4681.3	1.019		0.0048	1.019		0.0048	0.479
Ba 233.527†	4621.1	1.021		0.0057	1.021		0.0057	0.569
Be 313.042†	417134.1	1.039		0.0031	1.039		0.0031	0.309
Ca 317.933†	15169.7	2.073		0.0058	2.073		0.0058	0.289
Cd 228.802†	19390.9	1.038	W. C.	0.0055	1.038		0.0055	0.539
Co 228.616†	29550.7	1.009		0.0036	1.009		0.0036	0.369
Cr 267.716†	5559.3	1.032	mg/L	0.0032	1.032	mg/L	0.0032	0.319
Cu 324.752†	220684.8	1.056	mg/L	0.0080	1.056	mg/L	0.0080	0.769
Fe 273.955†	1607.7	2.060		0.0119	2.060	mg/L	0.0119	0.589
K 766.490†	35558.3	19.73	mg/L	0.080	19.73	mg/L	0.080	0.409
Mg 279.077†	1381.8	1.988	mg/L	0.0093	1.988	mg/L	0.0093	0.479
Mn 257.610†	29386.6	0.9748		0.00278	0.9748		0.00278	0.29
Mo 202.031†	14979.4	0.9888	mg/L	0.00821	0.9888	mg/L	0.00821	0.83
Na 589.592†	525931.5	50.61	mg/L	0.233	50.61	mg/L	0.233	0.46
Na 330.237†	1070.4	51.33	mg/L	0.144	51.33	mg/L	0.144	0.289
Ni 231.604†	2991.9	1.037	mg/L	0.0015	1.037	mg/L	0.0015	0.14
Pb 220.353†	13803.3	1.985	mg/L	0.0122	1.985	mg/L	0.0122	0.62
Sb 206.836†	4912.8	2.124	mg/L	0.0041	2.124	mg/L	0.0041	0.20
Se 196.026†	2484.1	2.054	mg/L	0.0069	2.054		0.0069	0.33
Si 288.158†	2014.4	2.009	mg/L	0.0106	2.009	mg/L	0.0106	0.53
Sn 189.927†	3472.6	1.015	mg/L	0.0037	1.015	mg/L	0.0037	0.36
Sr 421.552†	657594.6	1.013	mg/L	0.0029	1.013	mg/L	0.0029	0.29
ri 334.903†	16972.1	0.9909		0.00323	0.9909		0.00323	0.33
rl 190.801†	3038.7	2.102		0.0118	2.102		0.0118	0.56
V 292.402†	120120.6	1.029	3.00 (10 0.00) 1.00	0.0026	1.029	1900	0.0026	0.26
Zn 206.200†	3076.6	1.032	mg/L	0.0046	1.032	mg/L	0.0046	0.44

Sequence No.: 8 Sample ID: CB

Autosampler Location: 1

Date Collected: 2/10/2014 11:28:34 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 199.0 kPa 0.75 L/min All 199.0 kPa

Mean Data: CB								
nean baca. Cb	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc	Units	Std.Dev	RSD
ScA 357.253	2102050.7	100.0		0.21	conc.	0.1.2.00	DCG.DGV.	0.21%
ScR 361.383	227662.2	99.79		0.387				0.39%
Ag 328.068†	46.1	0.00024	mg/L	0.000309	0.00024	mg/L	0.000309	
Al 308.215†	0.5	0.00059		0.005563	0.00059		0.005563	
As 188.979†	0.7	0.00068		0.001060	0.00068	-	0.001060	
B 249.677†	4.3	0.00093	mg/L	0.002727	0.00093	mq/L	0.002727	
Ba 233.527†	2.5	0.00056	mg/L	0.000539	0.00056	mg/L	0.000539	95.95%
Be 313.042†	34.8	0.00009	mg/L	0.000024	0.00009		0.000024	27.58%
Ca 317.933†	14.8	0.00202		0.000571	0.00202		0.000571	28.29%
Cd 228.802†	-0.7	-0.00004	mg/L	0.000055	-0.00004	mg/L	0.000055	129.74%
Co 228.616†	1.9	0.00007	mg/L	0.000256	0.00007	mg/L	0.000256	390.88%
Cr 267.716†	-7.8	-0.00144	mg/L	0.000683	-0.00144	mg/L	0.000683	47.30%
Cu 324.752†	2.4	0.00001	mg/L	0.000099	0.00001	mg/L	0.000099	909.94%
Fe 273.955†	-2.2	-0.00284	mg/L	0.001568	-0.00284	mg/L	0.001568	55.19%
K 766.490†	41.8	0.02319		0.011497	0.02319	mg/L	0.011497	49.58%
Mg 279.077†	4.1	0.00586	mg/L	0.009455	0.00586	mg/L	0.009455	161.22%
Mn 257.610†	3.1	0.00010	mg/L	0.000037	0.00010	mg/L	0.000037	36.25%
Mo 202.031†	16.3	0.00108		0.000515	0.00108	mg/L	0.000515	47.85%
Na 589.592†	80.6	0.00776		0.005798	0.00776	mg/L	0.005798	74.75%
Na 330.237†	0.4	0.01870		0.171332	0.01870	mg/L	0.171332	916.39%
Ni 231.604†	0.3	0.00010		0.000277	0.00010		0.000277	277.57%
Pb 220.353†	-2.1	-0.00030		0.001066	-0.00030	mg/L	0.001066	350.96%
Sb 206.836†	10.2	0.00442		0.000986	0.00442	mg/L	0.000986	22.31%
Se 196.026†	1.1	0.00090		0.002529	0.00090		0.002529	281.40%
Si 288.158†	-5.2	-0.00518		0.002649	-0.00518		0.002649	51.15%
Sn 189.927†	2.1	0.00062		0.000729	0.00062		0.000729	117.25%
Sr 421.552†	44.3	0.00007		0.000039	0.00007		0.000039	57.68%
Ti 334.903†	4.8	0.00028		0.000186	0.00028		0.000186	66.68%
T1 190.801†	2.9	0.00202		0.001071	0.00202		0.001071	53.14%
V 292.402†	19.4	0.00016		0.000123	0.00016		0.000123	76.50%
Zn 206.200†	1.6	0.00052	mg/L	0.000836	0.00052	mg/L	0.000836	161.29%

Method: 7300bcESI2FAST

Sequence No.: 9

Autosampler Location: 305

Sequence No.: 9
Sample ID: XW40 MB1 SWC

Date Collected: 2/10/2014 11:32:34 AM

Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 MB1 SWC

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: XW40 M	B1 SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2094439.9	99.66	e e	1.402				1.41%
ScR 361.383	225741.1	98.95	8	0.489				0.49%
Ag 328.068†	-10.8	-0.00006	mg/L	0.000107	-0.00011	mg/L	0.000213	190.53%
Al 308.215†	27.5	0.03344	mg/L	0.007975	0.06688	mg/L	0.015950	23.85%
As 188.979†	-1.1	-0.00092	mg/L	0.002302	-0.00184		0.004605	249.95%
B 249.677†	4.1	0.00089	mg/L	0.001799	0.00178	mg/L	0.003599	201.95%
Ba 233.527†	-0.5	-0.00010	mg/L	0.000695	-0.00020	mg/L	0.001390	693.63%
Be 313.042†	16.0	0.00004	mg/L	0.000030	0.00008		0.000061	76.78%
Ca 317.933†	225.7	0.03085	mg/L	0.001510	0.06170	mg/L	0.003020	4.90%
Cd 228.802†	0.2	0.00001	mg/L	0.000076	0.00003	mg/L	0.000152	507.92%
Co 228.616†	-0.5	-0.00002	mg/L	0.000308	-0.00004	mg/L	0.000616	>999.9%
Cr 267.716†	-2.6	-0.00049	mg/L	0.000554	-0.00098	mg/L	0.001109	112.88%
Cu 324.752†	45.8	0.00022	mg/L	0.000267	0.00044	mg/L	0.000534	122.18%
Fe 273.955†	2.9	0.00367	mg/L	0.002425	0.00735	mg/L	0.004850	66.00%
K 766.490†	41.4	0.02299	mg/L	0.018857	0.04598	mg/L	0.037715	82.02%
Mg 279.077†	10.3	0.01483	mg/L	0.002131	0.02966	mg/L	0.004263	14.37%
Mn 257.610†	6.3	0.00021	mg/L	0.000059	0.00042	mg/L	0.000118	28.13%
Mo 202.031†	2.4	0.00016	mg/L	0.000282	0.00031	mg/L	0.000564	180.00%
Na 589.592†	133.0	0.01280		0.004694	0.02560	mg/L	0.009387	36.67%
Na 330.237†	-9.4	-0.4532	mg/L	1.10155	-0.9063	mg/L	2.20310	243.09%
Ni 231.604†	0.2	0.00006		0.001023	0.00012	mg/L	0.002046	>999.9%
Pb 220.353†	-0.6	-0.00008		0.001126	-0.00015	mg/L	0.002251	>999.9%
Sb 206.836†	-0.4	-0.00015	mg/L	0.002695	-0.00029	mg/L	0.005390	>999.9%
Se 196.026†	-2.6	-0.00216	mg/L	0.002033	-0.00432	mg/L	0.004067	94.20%
Si 288.158†	2.2	0.00224	mg/L	0.003253	0.00447	mg/L	0.006507	145.45%
Sn 189.927†	1.4	0.00041	mg/L	0.000617	0.00081	mg/L	0.001235	151.92%
Sr 421.552†	19.2	0.00003		0.000050	0.00006	mg/L	0.000099	167.80%
Ti 334.903†	41.7	0.00244		0.000282	0.00487	mg/L	0.000563	11.56%
T1 190.801†	0.2	0.00013	mg/L	0.001767	0.00026	mg/L	0.003533	>999.9%
V 292.402†	18.9	0.00016	mg/L	• 0.000079	0.00032	mg/L	0.000158	50.18%
Zn 206.200†	42.4	0.01420	mg/L	0.000638	0.02840	mg/L	0.001275	4.49%

Sequence No.: 10

Autosampler Location: 306

Sample ID: XW40 A-L SWC Date Collected: 2/10/201

Date Collected: 2/10/2014 11:36:35 AM

Data Type: Original

Dilution: 10.000000X

Nebulizer Parameters: XW40 A-L SWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XW40 A	-L SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2118718.3	100.8	8	0.18				0.18%
ScR 361.383	232186.8	101.8	8	0.22				0.22%
Ag 328.068†	-70.2	-0.00021	mg/L	0.000250	-0.00207	mg/L	0.002502	121.07%
Al 308.215†	22556.2	27.44	mg/L	0.059	274.4	mg/L	0.59	0.22%
As 188.979†	-61.3	0.01460	mg/L	0.001507	0.1460	mg/L	0.01507	10.32%
B 249.677†	29.5	0.00637	mg/L	0.000526	0.06373	mg/L	0.005261	8.26%
Ba 233.527†	505.1	0.1054	mg/L	0.00297	1.054	mg/L	0.0297	2.81%
Be 313.042†	229.6	0.00052	mg/L	0.000023	0.00523	mg/L	0.000234	4.47%
Ca 317.933†	128853.1	17.61	mg/L	0.018	176.1	mg/L	0.18	0.10%
Cd 228.802†	2.1	0.00045	mg/L	0.000017	0.00449	mg/L	0.000166	3.70%
Co 228.616†	648.2	0.01855	mg/L	0.000273	0.1855	mg/L	0.00273	1.47%
Cr 267.716†	258.7	0.04922	mg/L	0.000304	0.4922	mg/L	0.00304	0.62%
Cu 324.752†	9475.5	0.04726	mg/L	0.000698	0.4726	mg/L	0.00698	1.48%
Fe 273.955†	36152.6	46.48	mg/L	0.210	464.8	mg/L	2.10	0.45%
K 766.490†	7057.8	3.916	mg/L	0.0247	39.16	mg/L	0.247	0.63%
Mg 279.077†	8741.5	12.50	mg/L	0.016	125.0	mg/L	0.16	0.12%
Mn 257.610†	19960.6	0.6615	mg/L	0.00191	6.615	mg/L	0.0191	0.29%
Mo 202.031†	36.9	0.00220	mg/L	0.000290	0.02205	mg/L	0.002895	13.13%
Na 589.592†	31754.5	3.056	mg/L	0.0033	30.56	mg/L	0.033	0.11%
Na 330.237†	47.8	2.795	mg/L	0.1319	27.95	mg/L	1.319	4.72%
Ni 231.604†	179.6	0.06221	mg/L	0.000488	0.6221	mg/L	0.00488	0.78%
Pb 220.353†	-6.3	0.00389	mg/L	0.001539	0.03889	mg/L	0.015386	39.56%
Sb 206.836†	8.3	0.00488	mg/L	0.002645	0.04876	mg/L	0.026448	54.23%
Se 196.026†	4.1	0.00335		0.002148	0.03349	mg/L	0.021477	64.12%
Si 288.158†	914.5	0.9100	mg/L	0.00657	9.100	mg/L	0.0657	0.72%
Sn 189.927†	-31.8	-0.00648	mg/L	0.001528	-0.06476	mg/L	0.015277	23.59%
Sr 421.552†	58132.4	0.08952	mg/L	0.000123	0.8952	mg/L	0.00123	0.14%
Ti 334.903†	34446.9	2.013	mg/L	0.0032	20.13	mg/L	0.032	0.16%
Tl 190.801†	5.7	0.00968	mg/L	0.003558	0.09684	mg/L	0.035584	36.75%
V 292.402†	12644.3	0.1042	mg/L	0.00117	1.042	mg/L	0.0117	1.13%
Zn 206.200†	314.5	0.1056	mg/L	0.00088	1.056	mg/L	0.0088	0.84%

Method: 7300bcESI2FAST

Sequence No.: 11 Autosampler Location: 307

Sample ID: XW40 A SWC Date Collected: 2/10/2014 11:40:34 AM
Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 A SWC

Analyte Back Pressure Flow

All 198.0 kPa 0.75 L/min

Mean Data: XW40 A	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2086263.7	99.28	8	0.260				0.26%
ScR 361.383	227386.3	99.67	8	0.283				0.28%
Ag 328.068†	-307.8	-0.00084	mg/L	0.000191	-0.00167	mg/L	0.000382	22.81%
Al 308.215†	111379.4	135.5	mg/L	0.81	271.0	mg/L	1.61	0.59%
As 188.979†	-323.7	0.04661	mg/L	0.006617	0.09322	mg/L	0.013233	14.20%
B 249.677†	141.7	0.03066	mg/L	0.000416	0.06132	mg/L	0.000832	1.36%
Ba 233.527†	2438.8	0.5092	mg/L	0.00258	1.018	mg/L	0.0052	0.51%
Be 313.042†	1068.7	0.00243	mg/L	0.000012	0.00486	mg/L	0.000025	0.51%
Ca 317.933†	624605.9	85.36	mg/L	0.193	170.7	mg/L	0.39	0.23%
Cd 228.802†	25.7	0.00314	mg/L	0.000343	0.00628	mg/L	0.000685	10.92%
Co 228.616†	3011.7	0.08546	mg/L	0.000315	0.1709	mg/L	0.00063	0.37%
Cr 267.716†	1201.3	0.2286	mg/L	0.00038	0.4572	mg/L	0.00077	0.17%
Cu 324.752†	46390.8	0.2311	mg/L	0.00061	0.4622	mg/L	0.00123	0.27%
Fe 273.955†	172635.6	221.9	mg/L	0.23	443.9	mg/L	0.46	0.10%
K 766.490†	34668.7	19.24	mg/L	0.043	38.48	mg/L	0.085	0.22%
Mg 279.077†	42495.9	60.78	mg/L	0.159	121.6	mg/L	0.32	0.26%
Mn 257.610†	95594.2	3.168	mg/L	0.0048	6.336	mg/L	0.0095	0.15%
Mo 202.031†	103.4	0.00569	mg/L	0.000467	0.01139	mg/L	0.000933	8.20%
Na 589.592†	156555.1	15.07	mg/L	0.063	30.13	mg/L	0.126	0.42%
Na 330.237†	251.1	14.50	mg/L	0.042	28.99	mg/L	0.085	0.29%
Ni 231.604†	848.1	0.2938	mg/L	0.00367	0.5875	mg/L	0.00733	1.25%
Pb 220.353†	-66.1	0.01457	mg/L	0.001045	0.02914		0.002089	7.17%
Sb 206.836†	14.6	0.01276	mg/L	0.002069	0.02552	mg/L	0.004138	16.21%
Se 196.026†	30.8	0.02513		0.001937	0.05025	mg/L	0.003873	7.71%
Si 288.158†	4398.3	4.377		0.0166	8.754	mg/L	0.0332	0.38%
Sn 189.927†	-88.3	-0.01221	mg/L	0.000546	-0.02441	mg/L	0.001092	4.47%
Sr 421.552†	283336.1	0.4363	mg/L	0.00207	0.8726		0.00414	0.47%
Ti 334.903†	166970.2	9.755	mg/L	0.0406	19.51	mg/L	0.081	0.42%
Tl 190.801†	-2.6	0.02563		0.001687	0.05126	mg/L	0.003374	6.58%
V 292.402†	59510.7	0.4899	mg/L	0.00214	0.9799	mg/L	0.00429	0.44%
Zn 206.200†	1483.0	0.4978	mg/L	0.00153	0.9957	mg/L	0.00306	0.31%

Sequence No.: 12 Autosampler Location: 308

Sample ID: XW40 ADUP SWC Date Collected: 2/10/2014 11:44:20 AM Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 ADUP SWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XW40 Z	ADUP SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2101104.4	99.98	ક	0.252				0.25%
ScR 361.383	233799.1	102.5	8	0.97				0.95%
Ag 328.068†	-404.1	-0.00096	mg/L	0.000093	-0.00191	mg/L	0.000186	9.75%
Al 308.215†	118698.5	144.4	mg/L	0.88	288.9	mg/L	1.76	0.61%
As 188.979†	-202.4	0.05963	mg/L	0.006902	0.1193	mg/L	0.01380	11.58%
B 249.677†	131.3	0.02845	mg/L	0.000966	0.05690	mg/L	0.001933	3.40%
Ba 233.527†	1758.3	0.3625	mg/L	0.00217	0.7250	mg/L	0.00433	0.60%
Be 313.042†	1173.5	0.00273	mg/L	0.000038	0.00547	mg/L	0.000075	1.38%
Ca 317.933†	1015478.4	138.8	mg/L	1.52	277.6	mg/L	3.03	1.09%
Cd 228.802†	14.7	0.00193	mg/L	0.000017	0.00386	mg/L	0.000033	0.86%
Co 228.616†	2212.8	0.06269	mg/L	0.000171	0.1254	mg/L	0.00034	0.27%
Cr 267.716†	1033.0	0.1959	mg/L	0.00161	0.3917	mg/L	0.00322	0.82%
Cu 324.752†	35374.3	0.1775	mg/L	0.00024	0.3550	mg/L	0.00048	0.14%
Fe 273.955†	150994.8	194.1	mg/L	0.26	388.2	mg/L	0.53	0.14%
K 766.490†	24511.2	13.60	mg/L	0.080	27.20		0.160	0.59%
Mg 279.077†	38399.4	54.92		0.356	109.8	mg/L	0.71	0.65%
Mn 257.610†	85102.0	2.820		0.0033	5.640	mg/L	0.0067	0.12%
Mo 202.031†	116.3	0.00583	mg/L	0.000522	0.01167	mg/L	0.001045	8.95%
Na 589.592†	174952.2	16.84		0.178	33.67	mg/L	0.355	1.06%
Na 330.237†	298.3	16.11		0.027	32.23	mg/L	0.054	0.17%
Ni 231.604†	673.0	0.2331		0.00408	0.4662	mg/L	0.00817	1.75%
Pb 220.353†	550.0	0.1069		0.00127	0.2139		0.00254	1.19%
Sb 206.836†	7.9	0.00799		0.005114	0.01598		0.010227	63.99%
Se 196.026†	32.8	0.02686	mg/L	0.003315	0.05371	mg/L	0.006631	12.34%
Si 288.158†	670.2	0.6670		0.01147	1.334	mg/L	0.0229	1.72%
Sn 189.927†	-103.7	-0.00986		0.000833	-0.01973	mg/L	0.001667	8.45%
Sr 421.552†	607504.3	0.9355		0.00855	1.871		0.0171	0.91%
Ti 334.903†	123661.7	7.219		0.0359	14.44		0.072	0.50%
Tl 190.801†	23.4	0.04035		0.004030	0.08071		0.008059	9.99%
V 292.402†	52346.8	0.4318	-	0.00059	0.8636	mg/L	0.00118	0.14%
Zn 206.200†	1191.6	0.3995	mg/L	0.00285	0.7990	mg/L	0.00570	0.71%

Sequence No.: 13

Date Collected: 2/10/2014 11:48:21 AM

Data Type: Original

Autosampler Location: 309

Dilution: 2.000000X

Sample ID: XW40 ASPK SWC

Nebulizer Parameters: XW40 ASPK SWC

Analyte

Back Pressure Flow 199.0 kPa 0.75 L/min All

	ASPK SWC Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2060665.9	98.06		0.547				0.56
ScR 361.383	225844.1	98.99		0.190				0.19
Ag 328.068†	95498.7	0.4999		0.00287	0.9997		0.00575	0.57
Al 308.215†	125698.4	152.9		1.25	305.9	mg/L	2.50	0.82
As 188.979†	1996.3	2.051	mg/L	0.0114	4.103	mg/L	0.0227	0.55
3 249.677†	125.4	0.02606		0.001532	0.05211	mg/L	0.003063	5.88
Ba 233.527†	10444.9	2.277	mg/L	0.0158	4.553		0.0317	0.70
Be 313.042†	194958.8	0.4855	mg/L	0.00757	0.9711	mg/L	0.01514	1.56
Ca 317.933†	838181.4	114.5		1.04	229.1	mg/L	2.08	0.91
Cd 228.802†	10029.2	0.5331	mg/L	0.00292	1.066	mg/L	0.0058	0.55
Co 228.616†	17450.1	0.5832	mg/L	0.00315	1.166	mg/L	0.0063	0.54
Cr 267.716†	4021.9	0.7510	mg/L	0.00211	1.502	mg/L	0.0042	0.28
Cu 324.752†	148612.5	0.7217	mg/L	0.00391	1.443	mg/L	0.0078	0.54
Fe 273.955†	186548.8	239.8	mg/L	1.54	479.6	mg/L	3.07	0.64
K 766.490†	43948.8	24.39	mg/L	0.141	48.78	mg/L	0.282	0.58
Mg 279.077†	56480.0	80.83	mg/L	0.621	161.7	mg/L	1.24	0.77
Mn 257.610†	117386.4	3.891	mg/L	0.0304	7.782	mg/L	0.0608	0.78
40 202.031†	114.6	0.00604	mg/L	0.000493	0.01209	mg/L	0.000986	8.16
Na 589.592†	295911.4	28.48	mg/L	0.213	56.95	mg/L	0.426	0.75
Na 330.237†	545.7	27.86		0.068	55.72	mg/L	0.137	0.25
Ni 231.604†	2296.1	0.7945	mg/L	0.00216	1.589	mg/L	0.0043	0.27
Pb 220.353†	13538.9	1.974	mg/L	0.0128	3.948	mg/L	0.0257	0.65
Sb 206.836†	27.6	0.01131	mg/L	0.005974	0.02262	mg/L	0.011948	52.83
Se 196.026†	2431.2	2.011	mg/L	0.0154	4.021	mg/L	0.0307	0.76
Si 288.158†	3349.3	3.335	mg/L	0.0147	6.671		0.0293	0.44
Sn 189.927†	-101.5	-0.01242		0.000634	-0.02484	mg/L	0.001268	5.10
Sr 421.552†	717360.6	1.105		0.0088	2.209		0.0176	0.80
ri 334.903†	126287.9	7.374		0.0635	14.75		0.127	0.86
190.801†	2764.5	1.945		0.0064	3.890	100 m = 100 m 100 m	0.0128	0.33
V 292.402†	113145.9	0.9500		0.00627	1.900		0.0125	0.66
Zn 206.200†	2913.7	0.9773		0.00315	1.955		0.0063	0.32

XYG2:00050

Date: 2/10/2014 11:55:15 AM

Sequence No.: 14

Sample ID: XW40 APOST SWC ZZZZZZ

Autosampler Location: 310

Date Collected: 2/10/2014 11:52:07 AM

Data Type: Original

Dilution: 2.000000X

3A 2/10/14

Nebulizer Parameters: XW40 APOST SWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XW40 A	APOST SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2076385.2	98.81	용	0.243				0.25%
ScR 361.383	228563.5	100.2	용	0.51				0.50%
Ag 328.068†	92595.4	0.4846	mg/L	0.00290	0.9691	mg/L	0.00580	0.60%
Al 308.215†	111098.3	135.2	mg/L	0.69	270.3	mg/L	1.38	0.51%
As 188.979†	1912.4	2.058	mg/L	0.0077	4.116	mg/L	0.0155	0.38%
B 249.677†	154.9	0.03251	mg/L	0.000844	0.06502	mg/L	0.001688	2.60%
Ba 233.527†	11340.4	2.477	mg/L	0.0185	4.954	mg/L	0.0370	0.75%
Be 313.042†	191150.1	0.4760	mg/L	0.00315	0.9520	mg/L	0.00631	0.66%
Ca 317.933†	690303.7	94.34	mg/L	0.631	188.7	mg/L	1.26	0.67%
Cd 228.802†	9841.7	0.5233	mg/L	0.00052	1.047	mg/L	0.0010	0.10%
Co 228.616†	17138.7	0.5686	mg/L	0.00126	1.137	mg/L	0.0025	0.22%
Cr 267.716†	3858.1	0.7208	mg/L	0.00302	1.442	mg/L	0.0060	0.42%
Cu 324752†	152701.2	0.7400	mg/L	0.00338	1.480	mg/L	0.0068	0.46%
Fe 273.955†	173029.4	222.4	mg/L	1.66	444.9	mg/L	3.32	0.75%
K 766.490†	52285.8	29.01	mg/L	0.108	58.03	mg/L	0.217	0.37%
Mg 279.077†	48831.1	69.87	mg/L	0.323	139.7	mg/L	0.65	0.46%
Mn 257.610†	109225.1	3.621	mg/L	0.0257	7.241		0.0514	0.71%
Mo 202.031†	109.6	0.00598	mg/L	0.000149	0.01196	mg/L	0.000297	2.48%
Na 589.592†	260149.1	25.04	mg/L	0.118	50.07	mg/L	0.236	0.47%
Na 330.237†	456.8	24.18	mg/L	0.423	48.37	mg/L	0.847	1.75%
Ni 231.604†	2240.6	0.7753	mg/L	0.00465	1.551	mg/L	0.0093	0.60%
Pb 220.353†	13348.0	1.943	mg/L	0.0011	3.885	mg/L	0.0023	0.06%
Sb 206.836†	23.5	0.01180		0.001926	0.02359	mg/L	0.003852	16.33%
Se 196.026†	2519.3	2.084	mg/L	0.0053	4.167	mg/L	0.0106	0.25%
Si 288.158†	4324.4	4.306	mg/L	0.0216	8.611	mg/L	0.0433	0.50%
Sn 189.927†	-91.7	-0.01193	mg/L	0.002175	-0.02386	mg/L	0.004351	18.23%
Sr 421.552†	601650.3	0.9265	mg/L	0.00490	1.853		0.0098	0.53%
Ti 334.903†	164603.8	9.616	mg/L	0.0524	19.23		0.105	0.54%
Tl 190.801†	2723.1	1.914	mg/L	0.0066	3.828		0.0133	0.35%
V 292.402†	115258.0	0.9676		0.00535	1.935		0.0107	0.55%
Zn 206.200†	2990.3	1.003	mg/L	0.0062	2.006	mg/L	0.0125	0.62%

XYM2: MMM51

Date: 2/10/2014 11:59:01 AM

Sequence No.: 15 Autosampler Location: 311

Sample ID: XW40 B SWC Date Collected: 2/10/2014 11:55:53 AM
Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 B SWC

 Analyte
 Back Pressure
 Flow

 All
 199.0 kPa
 0.75 L/min

Mean Data: XW40 B	SWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2072821.0	98.64	용	0.646				0.66%
ScR 361.383	227227.0	99.60	8	0.570				0.57%
Ag 328.068†	-359.2	-0.00080	mg/L	0.000162	-0.00160	mg/L	0.000323	20.26%
Al 308.215†	116640.2	141.9	mg/L	0.46	283.8	mg/L	0.91	0.32%
As 188.979†	-311.2	0.05541	mg/L	0.001090	0.1108	mg/L	0.00218	1.97%
B 249.677†	145.1	0.03141		0.001064	0.06282	mg/L	0.002127	3.39%
Ba 233.527†	1299.1	0.2573		0.00057	0.5146	mg/L	0.00113	0.22%
Be 313.042†	1168.2	0.00268		0.000022	0.00535	mg/L	0.000043	0.80%
Ca 317.933†	923650.6	126.2		0.52	252.5	mg/L	1.04	0.41%
Cd 228.802†	18.1	0.00269		0.000019	0.00538		0.000038	0.70%
Co 228.616†	3087.9	0.08798	-	0.001089	0.1760		0.00218	1.24%
Cr 267.716†	1410.4	0.2658	1000 B 10 10 10 10 10 10 10 10 10 10 10 10 10	0.00163	0.5316		0.00326	0.61%
Cu 324.752†	37060.1	0.1863	-	0.00178	0.3727		0.00357	0.96%
Fe 273.955†	172188.2	221.4		1.29	442.7		2.57	0.58%
K 766.490†	20913.8	11.61		0.040	23.21		0.079	0.34%
Mg 279.077†	52242.9	74.76		0.272	149.5		0.54	0.36%
Mn 257.610†	103464.5	3.429		0.0210	6.858		0.0420	0.61%
Mo 202.031†	111.7	0.00570		0.000472	0.01140		0.000944	8.28%
Na 589.592†	200083.2	19.25	-	0.086	38.51		0.172	0.45%
Na 330.237†	331.9	18.40		0.250	36.79		0.500	1.36%
Ni 231.604†	906.4	0.3140		0.00125	0.6279		0.00250	0.40%
Pb 220.353†	-112.7	0.00973		0.000391	0.01947		0.000782	4.02%
Sb 206.836†	4.6	0.00796		0.002736	0.01591		0.005472	34.39%
Se 196.026†	40.9	0.03345		0.004768	0.06691		0.009535	14.25%
Si 288.158†	3312.9	3.297		0.0166	6.593		0.0332	0.50%
Sn 189.927†	-106.6	-0.01192		0.001100	-0.02384		0.002201	9.23%
Sr 421.552†	499108.8	0.7686		0.00306	1.537		0.0061	0.40%
Ti 334.903†	167985.8	9.811		0.0368	19.62		0.074	0.38%
Tl 190.801†	4.1	0.03014		0.003079	0.06027		0.006157	10.22%
V 292.402†	59972.3	0.4941		0.00629	0.9881	3	0.01257	1.27%
Zn 206.200†	1387.0	0.4655	mg/L	0.00359	0.9309	mg/L	0.00718	0.77%

XYM2: MMM52

Page 16 Date: 2/10/2014 12:03:00 PM

Sequence No.: 16

Autosampler Location: 312 Sample ID: XW40 MB1SPK SWC

Date Collected: 2/10/2014 11:59:39 AM

Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 MB1SPK SWC

Back Pressure Flow

All 199.0 kPa 0.75 L/min

ScA 357.253 2101199.8 99.99 % 0.280 Ag 328.068t 102354.7 0.5348 mg/L 0.00682 1.070 mg/L 0.0136 1 Al 308.215t 1744.3 2.115 mg/L 0.0184 4.230 mg/L 0.0368 0 As 188.979t 2339.9 2.110 mg/L 0.00162 -0.00246 mg/L 0.0485 1 Be 249.677t -0.7 -0.00123 mg/L 0.000162 -0.00246 mg/L 0.00437 1 Be 313.042t 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.00447 1 Be 317.933t 76528.4 10.46 mg/L 0.015 20.92 mg/L 0.031 0 Cd 228.802t 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 Cc 228.616f 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0011 1 Cu 324.752t 105473.0 0.5049 mg/L 0.00298 1.075 mg/L 0.0057 0 Cu 324.752t 105473.0 0.5049 mg/L 0.00295	Mean Data: XW40	MB1SPK SWC							
Analyte		Mean Corrected		Calib.			Sample		
SCA 357.253 2101199.8 99.99 % 0.280 Ag 328.068t 102354.7 0.5348 mg/L 0.06682 1.070 mg/L 0.0136 1 Al 308.215t 1744.3 2.115 mg/L 0.0184 4.230 mg/L 0.0368 0 As 188.979t 2339.9 2.110 mg/L 0.00162 -0.00246 mg/L 0.0485 1 Be 249.677t -0.7 -0.00123 mg/L 0.000162 -0.00246 mg/L 0.00437 1 Be 313.042t 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.00447 1 Be 313.042t 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.0006 0 Ca 317.933t 76528.4 10.46 mg/L 0.0015 20.92 mg/L 0.031 0 Cd 228.802t 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 Ce 228.616t 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0011 1 Ce 227.716t 2992.0 0.5376 mg/L 0.00298 1.075 mg	Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev	. RSD
Ag 328.068† 102354.7 0.5348 mg/L 0.00682 1.070 mg/L 0.0136 l Al 308.215† 1744.3 2.115 mg/L 0.0184 d.230 mg/L 0.0368 l 0 As 188.979† 2339.9 2.110 mg/L 0.0243 d.220 mg/L 0.0485 l 1 B 249.677† -0.7 -0.00123 mg/L 0.000162 d.224 mg/L 0.0043 mg/L 0.00046 mg/L 0.000323 l3 Ba 233.527† 9549.2 2.111 mg/L 0.0224 d.222 mg/L 0.0447 l 1 Be 313.042† 203241.8 0.5064 mg/L 0.0015 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.031 leg. mg/L 0.0011 leg. mg/	ScA 357.253	2101199.8	99.99	8	0.280				0.28%
Al 308.215† 1744.3 2.115 mg/L 0.0184 4.230 mg/L 0.0368 0 As 188.979† 2339.9 2.110 mg/L 0.0243 4.220 mg/L 0.0485 1 B 249.677† -0.7 -0.00123 mg/L 0.000162 -0.00246 mg/L 0.000323 13 B 233.527† 9549.2 2.111 mg/L 0.0224 4.222 mg/L 0.0447 1 B 233.527† 9549.2 2.111 mg/L 0.00224 4.222 mg/L 0.0447 1 B 233.042† 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.0006 0 C 238.802† 10045.7 0.5321 mg/L 0.0046 1.064 mg/L 0.0098 0 C 228.802† 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 C 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 C 267.716† 2902.0 0.5376 mg/L 0.00285 1.010 mg/L 0.0057 0 C 234.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 F 273.955† 1676.9 2.152 mg/L 0.00285 1.010 mg/L 0.0057 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 K 766.490† 18927.9 10.50 mg/L 0.0035 1.023 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.0035 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.0035 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.0035 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00069 21.48 mg/L 0.0069 21.48 m	ScR 361.383	229397.7			0.54				0.53%
As 188.979† 2339.9 2.110 mg/L 0.0243 4.220 mg/L 0.0485 1 B 249.677† -0.7 -0.00123 mg/L 0.000162 -0.00246 mg/L 0.000323 13 Ba 233.527† 9549.2 2.111 mg/L 0.0224 4.222 mg/L 0.0447 1 B 313.042† 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.0006 0 Ca 317.933† 76528.4 10.46 mg/L 0.015 20.92 mg/L 0.031 0 Cd 228.802† 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 Cc 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mn 230.031† 27.3 0.00166 mg/L 0.0048 0.00333 mg/L 0.0067 0 Mn 230.031† 27.3 0.00166 mg/L 0.0048 0.00333 mg/L 0.0067 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.096 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.096 0 Ni 231.604† 1553.7 0.5373 mg/L 0.0067 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.096 21.48 mg/L 0.0997 301 Sb 206.836† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.00997 301 Sc 196.026† 2561.4 2.119 mg/L 0.006023 0.00424 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.00399 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.000721 0.01308 mg/L 0.001443 11	Ag 328.068†	102354.7	0.5348	mg/L	0.00682	1.070	mg/L	0.0136	1.27%
B 249.677†	Al 308.215†	1744.3	2.115	mg/L	0.0184	4.230	mg/L	0.0368	0.87%
Ba 233.527† 9549.2 2.111 mg/L 0.0224 4.222 mg/L 0.0447 1 Be 313.042† 203241.8 0.5064 mg/L 0.00029 1.013 mg/L 0.0006 0 Ca 317.933† 76528.4 10.46 mg/L 0.015 20.92 mg/L 0.031 0 Cd 228.802† 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 Co 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00298 1.075 mg/L 0.0060 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.03	As 188.979†	2339.9	2.110	mg/L	0.0243	4.220	mg/L	0.0485	1.15%
Be 313.042† 203241.8	B 249.677†	-0.7	-0.00123	mg/L	0.000162	-0.00246	mg/L	0.000323	13.14%
Ca 317.933† 76528.4 10.46 mg/L 0.015 20.92 mg/L 0.031 0 0 Cd 228.802† 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 0 Co 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 1 Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 0 Na 589.592† 111339.0 10.71 mg/L 0.00428 0.00333 mg/L 0.0067 0 0 Na 330.237† 227.1 10.74 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.007 0<	Ba 233.527†	9549.2	2.111	mg/L	0.0224	4.222	mg/L	0.0447	1.06%
Cd 228.802† 10045.7 0.5321 mg/L 0.00446 1.064 mg/L 0.0089 0 Co 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.00428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 231.604† 1553.7 0.5373 mg/L 0.096 21.48 mg/L 0.0192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0	Be 313.042†	203241.8	0.5064	mg/L	0.00029			0.0006	0.06%
Co 228.616† 15007.8 0.5129 mg/L 0.00553 1.026 mg/L 0.0111 1 Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.028 21.43 mg/L 0.056 0 Na 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 mg/L Na 220.353† 14238.1 2.047 mg/L 0.00200 4.094 mg/L 0.0040 mg/L S	Ca 317.933†	76528.4	10.46	mg/L	0.015	20.92	mg/L	0.031	0.15%
Cr 267.716† 2902.0 0.5376 mg/L 0.00298 1.075 mg/L 0.0060 0 Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.0056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.0192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.00400 0 Se 196.026† 2561.4 2.119 mg/L 0.001498 0.00100 mg/L 0.00299 30 Sr 288.158†	Cd 228.802†	10045.7	0.5321	mg/L	0.00446	1.064	mg/L	0.0089	0.84%
Cu 324.752† 105473.0 0.5049 mg/L 0.00285 1.010 mg/L 0.0057 0 0 Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.00297 301 Sc 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.00297 301	Co 228.616†	15007.8			0.00553	1.026	mg/L	0.0111	1.08%
Fe 273.955† 1676.9 2.152 mg/L 0.0130 4.305 mg/L 0.0259 0 K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Sc 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.002997 301 Sc 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.00599 1 Si 288.158† -0.3 0.00212 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Cr 267.716†	2902.0	0.5376	mg/L	0.00298	1.075	mg/L	0.0060	0.55%
K 766.490† 18927.9 10.50 mg/L 0.047 21.01 mg/L 0.095 0 Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.0192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.00329 35 Sr 421.552† 341292.1 0.5256 mg/L <td>Cu 324.752†</td> <td>105473.0</td> <td>0.5049</td> <td>mg/L</td> <td>0.00285</td> <td>1.010</td> <td>mg/L</td> <td>0.0057</td> <td>0.56%</td>	Cu 324.752†	105473.0	0.5049	mg/L	0.00285	1.010	mg/L	0.0057	0.56%
Mg 279.077† 7506.2 10.77 mg/L 0.073 21.53 mg/L 0.146 0 Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.00376 1.075 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.00300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L <td< td=""><td></td><td>1676.9</td><td></td><td></td><td>0.0130</td><td>4.305</td><td>mg/L</td><td>0.0259</td><td>0.60%</td></td<>		1676.9			0.0130	4.305	mg/L	0.0259	0.60%
Mn 257.610† 15419.5 0.5116 mg/L 0.00335 1.023 mg/L 0.0067 0 Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	K 766.490†	18927.9	10.50	mg/L	0.047	21.01	mg/L	0.095	0.45%
Mo 202.031† 27.3 0.00166 mg/L 0.000428 0.00333 mg/L 0.000857 25 Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.001443 11	Mg 279.077+	7506.2	10.77	mg/L	0.073	21.53	mg/L	0.146	0.68%
Na 589.592† 111339.0 10.71 mg/L 0.028 21.43 mg/L 0.056 0 Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Mn 257.610†	15419.5	0.5116	mg/L	0.00335	1.023	mg/L	0.0067	0.66%
Na 330.237† 227.1 10.74 mg/L 0.096 21.48 mg/L 0.192 0 Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Mo 202.031†	27.3	0.00166	mg/L	0.000428	0.00333	mg/L	0.000857	25.76%
Ni 231.604† 1553.7 0.5373 mg/L 0.00376 1.075 mg/L 0.0075 0 Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Na 589.592†		10.71	mg/L	0.028	21.43	mg/L	0.056	0.26%
Pb 220.353† 14238.1 2.047 mg/L 0.0200 4.094 mg/L 0.0400 0 Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Na 330.237†	227.1	10.74	mg/L	0.096	21.48	mg/L	0.192	0.89%
Sb 206.836† 13.0 0.00050 mg/L 0.001498 0.00100 mg/L 0.002997 301 Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Ni 231.604†	1553.7	0.5373	mg/L	0.00376	1.075	mg/L	0.0075	0.70%
Se 196.026† 2561.4 2.119 mg/L 0.0300 4.237 mg/L 0.0599 1 Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Pb 220.353†	14238.1	2.047	mg/L	0.0200	4.094	mg/L	0.0400	0.98%
Si 288.158† -0.3 0.00212 mg/L 0.006023 0.00424 mg/L 0.012045 284 Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Sb 206.836†		0.00050	mg/L	0.001498	0.00100	mg/L	0.002997	301.08%
Sn 189.927† -20.9 -0.00459 mg/L 0.001649 -0.00918 mg/L 0.003299 35 Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	그리었다. 얼마나다일하다 얼마나다면 하다.				0.0300	4.237	mg/L	0.0599	1.41%
Sr 421.552† 341292.1 0.5256 mg/L 0.00123 1.051 mg/L 0.0025 0 Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Si 288.158†	-0.3			0.006023	0.00424	mg/L	0.012045	284.41%
Ti 334.903† 126.9 0.00654 mg/L 0.000721 0.01308 mg/L 0.001443 11	Sn 189.927†		-0.00459	mg/L	0.001649	-0.00918	mg/L	0.003299	35.92%
	Sr 421.552†	341292.1			0.00123	1.051	mg/L	0.0025	0.23%
m3 100 0011	Ti 334.903†		0.00654	mg/L	0.000721	0.01308	mg/L	0.001443	11.03%
	Tl 190.801†	3003.6	2.081	mg/L	0.0256	4.162	mg/L	0.0511	1.23%
V 292.402† 61339.6 0.5254 mg/L 0.00657 1.051 mg/L 0.0131 1	V 292.402†	61339.6	0.5254	mg/L	0.00657	1.051	mg/L	0.0131	1.25%
Zn 206.200† 1622.1 0.5439 mg/L 0.00316 1.088 mg/L 0.0063 0	Zn 206.200†	1622.1	0.5439	mg/L	0.00316	1.088	mg/L	0.0063	0.58%

Date: 2/10/2014 12:07:01 PM

Sequence No.: 17 Sample ID: CV 2

Autosampler Location: 7 Date Collected: 2/10/2014 12:03:38 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 199.0 kPa 0.75 L/min All

Mean Data: CV	Mean Corrected		Calib			01-		
Analyte	Intensity	C	Calib. Units	Chd Dave		Sample	01.1 0	200
ScA 357.253	2090218.3	99.46		Std.Dev. 0.122	Cone.	Units	Std.Dev.	RSD
ScR 361.383	224668.9	98.48		0.544				0.12
Ag 328.068†	200565.7	1.048		0.0065	1.048	m = /T	0.0065	0.55
Al 308.215†	1697.7	2.033		0.0138				0.62
As 188.979†	2252.2	2.063		0.0136	2.033		0.0138	0.68
B 249.677†	4699.1		_			2.	0.0035	0.17
Ba 233.527†	4597.4	1.023		0.0085	1.023		0.0085	0.83
		1.016		0.0089	1.016	2	0.0089	0.88
Be 313.042†	417217.6	1.039		0.0052	1.039		0.0052	0.50
Ca 317.933†	15211.4	2.079		0.0159	2.079	-	0.0159	0.77
Cd 228.802†	19274.5	1.031		0.0023	1.031		0.0023	0.23
Co 228.616†	29491.5	1.007		0.0036	1.007		0.0036	0.36
Cr 267.716†	5589.6	1.037		0.0061	1.037		0.0061	0.59
Cu 324.752†	219876.7	1.052		0.0051	1.052	-	0.0051	0.48
Fe 273.955†	1626.5	2.084		0.0145	2.084		0.0145	0.70
K 766.490†	36080.8	20.02	_	0.078	20.02	mg/L	0.078	0.39
Mg 279.077†	1388.0	1.997		0.0118	1.997	mg/L	0.0118	0.59
Mn 257.610†	29525.7	0.9794	mg/L	0.00621	0.9794	mg/L	0.00621	0.63
Mo 202.031†	15286.8	1.009	mg/L	0.0022	1.009	mg/L	0.0022	0.21
Na 589.592†	532106.1	51.21	mg/L	0.195	51.21	mg/L	0.195	0.38
Na 330.237†	1073.6	51.48	mg/L	0.208	51.48	mg/L	0.208	0.40
Ni 231.604†	2995.5	1.038	mg/L	0.0059	1.038		0.0059	0.57
Pb 220.353†	14055.3	2.021		0.0024	2.021	mg/L	0.0024	0.12
Sb 206.836†	4891.2	2.114		0.0020	2.114	mg/L	0.0020	0.09
Se 196.026†	2481.4	2.052		0.0064	2.052		0.0064	0.31
Si 288.158†	2028.7	2.023		0.0192	2.023		0.0192	0.95
Sn 189.927†	3471.3	1.015		0.0020	1.015		0.0020	0.19
Sr 421.552†	660853.4	1.018		0.0043	1.018		0.0043	0.42
Ti 334.903†	16990.9	0.9920		0.00413	0.9920		0.00413	0.42
rl 190.801†	3030.3	2.096		0.0031	2.096		0.0031	0.15
V 292.402†	119419.1	1.023		0.0055	1.023	The state of the s	0.0055	0.54
Zn 206.200†	3085.4	1.034		0.0068	1.034		0.0068	0.66

Sequence No.: 18 Autosampler Location: 1

Sample ID: CB 2 Date Collected: 2/10/2014 12:07:39 PM Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: CB								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2078060.7	98.88	ole Ole	0.935				0.95%
ScR 361.383	226454.9	99.26	%	0.367				0.37%
Ag 328.068†	47.8	0.00025	mg/L	0.000059	0.00025	mg/L	0.000059	23.49%
Al 308.215†	3.7	0.00447	mg/L	0.000926	0.00447	mg/L	0.000926	20.73%
As 188.979†	4.2	0.00380	mg/L	0.000537	0.00380	mg/L	0.000537	14.11%
B 249.677†	5.9	0.00130	mg/L	0.000986	0.00130	mg/L	0.000986	76.00%
Ba 233.527†	0.4	0.00010	mg/L	0.000632	0.00010	mg/L	0.000632	643.17%
Be 313.042†	35.0	0.00009	mg/L	0.000016	0.00009	mg/L	0.000016	17.99%
Ca 317.933†	13.8	0.00188	mg/L	0.001607	0.00188	mg/L	0.001607	85.27%
Cd 228.802†	1.0	0.00003	mg/L	0.000107	0.00003	mg/L	0.000107	311.82%
Co 228.616†	0.8	0.00003	mg/L	0.000118	0.00003	mg/L	0.000118	441.62%
Cr 267.716†	-2.4	-0.00045	mg/L	0.000968	-0.00045		0.000968	217.13%
Cu 324.752†	25.3	0.00012	mg/L	0.000123	0.00012	mg/L	0.000123	102.40%
Fe 273.955†	-2.4	-0.00304	mg/L	0.003489	-0.00304	mg/L	0.003489	114.70%
K 766.490†	2.1	0.00119	mg/L	0.014910	0.00119		0.014910	>999.9%
Mg 279.077†	6.2	0.00884	mg/L	0.005174	0.00884	mg/L	0.005174	58.53%
Mn 257.610†	4.1	0.00014	mg/L	0.000056	0.00014	mg/L	0.000056	40.97%
Mo 202.031†	21.2	0.00140		0.000208	0.00140	mq/L	0.000208	14.89%
Na 589.592†	68.6	0.00660	mg/L	0.003200	0.00660		0.003200	48.47%
Na 330.237†	-5.2	-0.2479	mg/L	0.76422	-0.2479	mg/L	0.76422	308.34%
Ni 231.604†	-3.9	-0.00135	mg/L	0.000421	-0.00135	mq/L	0.000421	31.07%
Pb 220.353†	6.4	0.00092	mg/L	0.000415	0.00092		0.000415	45.19%
Sb 206.836†	9.9	0.00430	mg/L	0.001838	0.00430		0.001838	42.72%
Se 196.026†	1.5	0.00123	mg/L	0.003602	0.00123	mg/L	0.003602	293.47%
Si 288.158†	-1.8	-0.00183		0.004428	-0.00183	mg/L	0.004428	242.41%
Sn 189.927†	1.5	0.00044		0.000219	0.00044		0.000219	49.94%
Sr 421.552†	35.6	0.00005		0.000051	0.00005		0.000051	93.40%
Ti 334.903†	5.6	0.00032		0.000162	0.00032		0.000162	49.91%
Tl 190.801†	3.5	0.00241		0.003019	0.00241		0.003019	
V 292.402†	24.1	0.00020		0.000189	0.00020		0.000189	92.20%
Zn 206.200†	-1.1	-0.00037		0.000421	-0.00037		0.000421	

Sample ID: XY02 MB1 TWC

Date: 2/10/2014 12:15:01 PM

Sequence No.: 19

Autosampler Location: 313
Date Collected: 2/10/2014 12:11:39 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 MB1 TWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XY02 M	B1 TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2084235.3	99.18		0.634				0.64%
ScR 361.383	226452.2	99.26	%	1.356				1.37%
Ag 328.068†	9.1	0.00005	mg/L	0.000157	0.00005	mq/L	0.000157	
Al 308.215†	3.3	0.00404		0.004810	0.00404		0.004810	
As 188.979†	1.7	0.00156		0.000612	0.00156	mg/L	0.000612	39.27%
B 249.677†	. 2.6	0.00056		0.000735	0.00056		0.000735	
Ba 233.527†	1.3	0.00028		0.000660	0.00028		0.000660	
Be 313.042†	7.9	0.00002	mg/L	0.000037	0.00002		0.000037	186.57%
Ca 317.933†	53.9	0.00737	mg/L	0.000993	0.00737		0.000993	13.48%
Cd 228.802†	-1.1	-0.00007	mg/L	0.000208	-0.00007		0.000208	302.21%
Co 228.616†	-10.7	-0.00037	mg/L	0.000172	-0.00037		0.000172	46.90%
Cr 267.716†	0.4	0.00008	mg/L	0.000713	0.00008		0.000713	939.44%
Cu 324.752†	44.6	0.00021	mg/L	0.000154	0.00021		0.000154	72.22%
Fe 273.955†	0.1	0.00015	mg/L	0.002645	0.00015	mg/L	0.002645	>999.9%
K 766.490†	39.0	0.02163		0.019104	0.02163		0.019104	88.31%
Mg 279.077†	5.0	0.00724		0.004282	0.00724		0.004282	59.17%
Mn 257.610†	4.9	0.00016		0.000100	0.00016	mg/L	0.000100	61.94%
Mo 202.031†	6.9	0.00045	mg/L	0.000308	0.00045	mg/L	0.000308	67.89%
Na 589.592†	31.6	0.00304	mg/L	0.000488	0.00304	mg/L	0.000488	16.03%
Na 330.237†	4.4	0.2109	mg/L	0.46955	0.2109	mg/L	0.46955	222.60%
Ni 231.604†	1.5	0.00052	mg/L	0.002167	0.00052	mg/L	0.002167	419.22%
Pb 220.353†	2.2	0.00031	mg/L	0.000742	0.00031	mg/L	0.000742	237.34%
Sb 206.836†	5.3	0.00227	mg/L	0.000729	0.00227		0.000729	32.05%
Se 196.026†	-7.0	-0.00575	mg/L	0.001474	-0.00575		0.001474	25.62%
Si 288.158†	1.8	0.00181	mg/L	0.000687	0.00181		0.000687	37.92%
Sn 189.927†	0.2	0.00006	mg/L	0.000936	0.00006	mg/L	0.000936	>999.9%
Sr 421.552†	-7.9	-0.00001		0.000023	-0.00001		0.000023	189.74%
Ti 334.903†	8.6	0.00050	mg/L	0.000722	0.00050	mg/L	0.000722	143.91%
Tl 190.801†	1.6	0.00110	mg/L	0.002730	0.00110		0.002730	247.69%
V 292.402†	-2.0	-0.00002		0.000224	-0.00002	mg/L	0.000224	
Zn 206.200†	28.0	0.00938	mg/L	0.000622	0.00938		0.000622	6.63%

Date: 2/10/2014 12:19:00 PM

Sequence No.: 20

Sample ID: XW40 MB1 SWC

Autosampler Location: 328 Date Collected: 2/10/2014 12:15:39 PM Data Type: Original

Dilution: 2.000000X

Nebulizer Parameters: XW40 MB1 SWC

Analyte

Back Pressure Flow 198.0 kPa 0.75 L/min All

	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	RSD
ScA 357.253	2108795.0	100.3	8	0.35				0.35
ScR 361.383	231447.6	101.4	8	0.29				0.28
Ag 328.068†	-5.8	-0.00003	mg/L	0.000284	-0.00006	mg/L	0.000569	960.039
Al 308.215†	31.3	0.03803	mg/L	0.003678	0.07606	mg/L	0.007355	9.67
As 188.979†	2.4	0.00231	mg/L	0.002403	0.00461	mg/L	0.004806	104.15
B 249.677†	2.7	0.00059	mg/L	0.000764	0.00117	mg/L	0.001529	130.50
Ba 233.527†	-2.5	-0.00056	mg/L	0.000462	-0.00112	mg/L	0.000924	82.41
Be 313.042†	6.1	0.00002	mg/L	0.000035	0.00003	mg/L	0.000069	231.17
Ca 317.933†	385.5	0.05268	mg/L	0.002030	0.1054	mg/L	0.00406	3.85
Cd 228.802†	-1.8	-0.00011	mg/L	0.000073	-0.00021		0.000146	68.41
Co 228.616†	5.2	0.00017	mg/L	0.000160	0.00034	mg/L	0.000321	93.21
Cr 267.716†	4.2	0.00077	mg/L	0.000631	0.00154	mg/L	0.001262	82.01
Cu 324.752†	12.3	0.00006	mg/L	0.000061	0.00012	mg/L	0.000122	104.52
Fe 273.955†	4.7	0.00601	mg/L	0.007547	0.01202	mg/L	0.015094	125.55
K 766.490†	38.5	0.02135	mg/L	0.005571	0.04270	mg/L	0.011142	26.10
1g 279.077†	12.4	0.01779	mg/L	0.004907	0.03559	mg/L	0.009814	27.58
Mn 257.610†	6.2	0.00021	mg/L	0.000060	0.00041	mg/L	0.000121	29.44
40 202.031†	4.6	0.00030	mg/L	0.000239	0.00060	mg/L	0.000477	79.60
Na 589.592†	2103.8	0.2025	mg/L	0.00288	0.4049	mg/L	0.00577	1.42
Na 330.237†	1.6	0.07140	mg/L	0.362583	0.1428	mg/L	0.72517	507.84
Ni 231.604†	0.0	0.00001	mg/L	0.001679	0.00002	mg/L	0.003359	>999.9
Pb 220.353†	0.2	0.00004	mg/L	0.000621	0.00008	mg/L	0.001241	>999.9
Sb 206.836†	-6.1	-0.00265	mg/L	0.001448	-0.00530	mg/L	0.002895	54.67
Se 196.026†	0.3	0.00025	mg/L	0.002078	0.00051	mg/L	0.004157	818.95
Si 288.158†	-5.8	-0.00581	mg/L	0.002005	-0.01162	mg/L	0.004011	34.51
Sn 189.927†	1.7	0.00050		0.000323	0.00100		0.000645	64.80
Sr 421.552†	24.0	0.00004		0.000013	0.00007		0.000027	36.36
ri 334.903†	61.8	0.00361		0.000151	0.00721		0.000302	4.19
rl 190.801†	4.7	0.00323		0.001908	0.00646		0.003815	59.03
V 292.402†	24.2	0.00021		0.000156	0.00041		0.000311	75.12
Zn 206.200†	62.6	0.02098		0.000229	0.04196		0.000458	1.09

Date: 2/10/2014 12:24:01 PM

Sequence No.: 21

Sample ID: XY02 A TWC

Dilution: 1.000000X

Dal

Autosampler Location: 314
Date Collected: 2/10/2014 12:19:38 PM
Data Type: Original

Nebulizer Parameters: XY02 A TWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XY02 A	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
ScA 357.253	(5117127.5)	243.5	g '	18.53				(7.61%)
ScR 361.383	566933.4	248.5	_8.	4.19				1.69%
Ag 328.068†	-607.0	-0.00317	mg/L	0.000152	-0.00317	mg/L	0.000152	4.80%
Al 308.215†	-58.1	-0.07058	mg/L	0.001659	-0.07058	mg/L	0.001659	2.35%
As 188.979†	9.6	0.00858		0.000177	0.00858	mg/L	0.000177	2.07%
B 249.677†	0.5	0.00009	mg/L	0.001002	0.00009	mg/L	0.001002	>999.9%
Ba 233.527†	-21.6	-0.00478	mg/L	0.000411	-0.00478	mg/L	0.000411	8.60%
Be 313.042†	-453.1	-0.00113	mg/L	0.000009	-0.00113	mg/L	0.000009	0.80%
Ca 317.933†	33.7	0.00461		0.001324	0.00461	mg/L	0.001324	28.71%
Cd 228.802†	-44.9	-0.00248		0.000696	-0.00248	mg/L	0.000696	28.13%
Co 228.616†	79.8	0.00274		0.000182	0.00274	mg/L	0.000182	6.67%
Cr 267.716†	43.1	0.00800	mg/L	0.000274	0.00800	mg/L	0.000274	3.43%
Cu 324.752†	-1949.8	-0.00933		0.000304	-0.00933	mg/L	0.000304	3.26%
Fe 273.955†	36.8	0.04729		0.001034	0.04729	mg/L	0.001034	2.19%
K 766.490†	-168.2	-0.09335	-	0.004018	-0.09335	mg/L	0.004018	4.30%
Mg 279.077†	-29.6	-0.04248		0.003060	-0.04248	mg/L	0.003060	7.20%
Mn 257.610†	-3.4	-0.00011		0.000083	-0.00011	mg/L	0.000083	74.29%
Mo 202.031†	-41.7	-0.00275		0.000163	-0.00275	mg/L	0.000163	5.93%
Na 589.592†	310.8	0.02991		0.001936	0.02991	mg/L	0.001936	6.47%
Na 330.237†	14.3	0.6846		0.10918	0.6846		0.10918	15.95%
Ni 231.604†	-12.6	-0.00438	-	0.000493	-0.00438		0.000493	11.26%
Pb 220.353†	22.4	0.00322		0.000158	0.00322		0.000158	4.91%
Sb 206.836†	-18.2	-0.00797		0.001144	-0.00797		0.001144	14.35%
Se 196.026†	27.2	0.02255		0.001982	0.02255		0.001982	8.79%
Si 288.158†	3.8	0.00379		0.002995	0.00379		0.002995	79.01%
Sn 189.927†	7.1	0.00206		0.000162	0.00206		0.000162	7.87%
Sr 421.552†	-80.0	-0.00012		0.000013	-0.00012		0.000013	10.37%
Ti 334.903†	-61.9	-0.00362		0.000256	-0.00362		0.000256	7.07%
Tl 190.801†	19.6	0.01359		0.001485	0.01359	-	0.001485	10.92%
V 292.402†	-109.8	-0.00091		0.000076	-0.00091	2	0.000076	8.42%
Zn 206.200†	13.0	0.00437	mg/L	0.000413	0.00437	mg/L	0.000413	9.45%

XYMP: MMM58

Method: 7300bcESI2FAST

Autosampler Location: 315 Sequence No.: 22

Sample ID: XY02 B TWC Date Collected: 2/10/2014 12:24:39 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 B TWC

Analyte Back Pressure Flow

0.75 L/min 199.0 kPa All

Mean Data: XY02	Mean Corrected	l	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	1991513.4	94.77	용	0.156				0.16%
ScR 361.383	224320.9	98.32	8	0.532				0.54%
Ag 328.068†	50.8	0.00030	mg/L	0.000083	0.00030	mg/L	0.000083	27.63%
Al 308.215†	44.0	0.05350	mg/L	0.008837	0.05350	mg/L	0.008837	16.52%
As 188.979†	4.2	0.00333	mg/L	0.000396	0.00333	mg/L	0.000396	11.91%
B 249.677†	449.6	0.09796	mg/L	0.001875	0.09796		0.001875	1.91%
Ba 233.527†	9.2	0.00151	mg/L	0.000201	0.00151	mg/L	0.000201	13.26%
Be 313.042†	4.5	0.00001	mg/L	0.000035	0.00001	mg/L	0.000035	315.70%
Ca 317.933†	33280.5	4.548	mg/L	0.0212	4.548	mg/L	0.0212	0.47%
Cd 228.802†	5.3	0.00027	mg/L	0.000059	0.00027	mg/L	0.000059	21.64%
Co 228.616†	-0.4	-0.00002	mg/L	0.000094	-0.00002		0.000094	497.17%
Cr 267.716†	6.1	0.00121	mg/L	0.001440	0.00121	mg/L	0.001440	118.54%
Cu 324.752†	746.5	0.00376	mg/L	0.000121	0.00376	mg/L	0.000121	3.22%
Fe 273.955†	2951.3	3.794	mg/L	0.0255	3.794	mg/L	0.0255	0.67%
K 766.490†	3760.1	2.087	mg/L	0.0193	2.087	mg/L	0.0193	0.93%
Mg 279.077†	584.0	0.8344	mg/L	0.01331	0.8344	mg/L	0.01331	1.59%
Mn 257.610†	1598.8	0.05299	mg/L	0.000525	0.05299	mg/L	0.000525	0.99%
Mo 202.031†	15.7	0.00098	mg/L	0.000206	0.00098	mg/L	0.000206	21.16%
Na 589.592†	4812064.3	463.1	mg/L	4.54	463.1	mg/L	4.54	0.98%
Na 330.237†	9548.3	458.2	mg/L	1.74	458.2	mg/L	1.74	0.38%
Ni 231.604†	9.1	0.00314		0.002024	0.00314	mg/L	0.002024	64.49%
Pb 220.353†	-3.8	-0.00074	mg/L	0.000175	-0.00074	mg/L	0.000175	23.76%
Sb 206.836†	7.4	0.00388	mg/L	0.000366	0.00388	mg/L	0.000366	9.45%
Se 196.026†	0.5	0.00045	mg/L	0.000887	0.00045		0.000887	197.84%
Si 288.158†	11176.9	11.12	mg/L	0.027	11.12	mg/L	0.027	0.24%
Sn 189.927†	305.9	0.08991	mg/L	0.001537	0.08991	mg/L	0.001537	1.71%
Sr 421.552†	7718.7	0.01189	mg/L	0.000043	0.01189	mg/L	0.000043	0.36%
Ti 334.903†	40.4	0.00203	mg/L	0.000166	0.00203		0.000166	8.18%
Tl 190.801†	3.8	0.00316	mg/L	0.001443	0.00316		0.001443	45.60%
V 292.402†	84.8	0.00050		0.000122	0.00050		0.000122	24.23%
Zn 206.200†	372.8	0.1270	mg/L	0.00045	0.1270	mg/L	0.00045	0.35%

XYGP: GGGGG

_

Sequence No.: 23 Sample ID: XY02 C TWC Autosampler Location: 316
Date Collected: 2/10/2014 12:28:56 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 C TWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

V D-4 19700 0								
Mean Data: XY02 C								
	Mean Corrected		Calib.	2.2		Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	1988255.6	94.61		0.535				0.57%
ScR 361.383	217290.1	95.24		0.279				0.29%
Ag 328.068†	-378.2	0.00027	_	0.000065	0.00027		0.000065	23.87%
Al 308.215†	95.9	0.1165		0.00527	0.1165		0.00527	4.52%
As 188.979†	79.3	0.03920		0.006456	0.03920		0.006456	16.47%
B 249.677†	186.5	0.04036		0.000435	0.04036		0.000435	1.08%
Ba 233.527†	155.7	0.03351		0.000323	0.03351	mg/L	0.000323	0.96%
Be 313.042†	42.1	0.00010		0.000006	0.00010	mg/L	0.000006	5.42%
Ca 317.933†	2194751.8	299.9	mg/L	0.43	299.9	mg/L	0.43	0.14%
Cd 228.802†	14.1	0.00043	mg/L	0.000210	0.00043	mg/L	0.000210	48.39%
Co 228.616†	4071.2	0.1391	mg/L	0.00071	0.1391		0.00071	0.51%
Cr 267.716†	34.0	0.00147	mg/L	0.000261	0.00147	mg/L	0.000261	17.72%
Cu 324.752†	1344.5	0.00666	mg/L	0.000083	0.00666		0.000083	1.24%
Fe 273.955†	5413.9	6.960	mg/L	0.0551	6.960	mg/L	0.0551	0.79%
K 766.490†	8416.5	4.670	mg/L	0.0294	4.670		0.0294	0.63%
Mg 279.077†	19156.3	27.43		0.212	27.43	mg/L	0.212	0.77%
Mn 257.610†	125959.0	4.175		0.0172	4.175	100 C	0.0172	0.41%
Mo 202.031†	126.7	0.00439	mg/L	0.000544	0.00439		0.000544	12.40%
Na 589.592†	571537.9	55.00		0.176	55.00		0.176	0.32%
Na 330.237†	1267.9	53.34		1.006	53.34		1.006	1.89%
Ni 231.604†	177.4	0.06143		0.001043	0.06143		0.001043	1.70%
Pb 220.353†	-32.9	-0.00505		0.000363	-0.00505		0.000363	7.19%
Sb 206.836†	21.5	0.01051		0.000729	0.01051		0.000729	6.94%
Se 196.026†	36.2	0.02987		0.002298	0.02987		0.002298	7.69%
Si 288.158†	12050.0	11.99		0.063	11.99		0.063	0.53%
Sn 189.927†	564.2	0.2058		0.00125	0.2058		0.00125	0.61%
Sr 421.552†	439917.5	0.6775		0.00224	0.6775		0.00123	0.33%
Ti 334.903†	653.3	0.01603		0.000308	0.01603		0.000308	1.92%
Tl 190.801†	57.4	0.03996		0.000908	0.03996		0.000308	2.27%
V 292.402†	76.4	0.00087		0.000071	0.00087		0.000908	8.20%
Zn 206.200†	77681.1	26.03		0.121	26.03		0.000071	0.46%
	,,,,,,,	20.05	mg/ n	0.121	20.03	mg/L	0.121	0.408

Sequence No.: 24 Autosampler Location: 317

Sample ID: XY02 D TWC Date Collected: 2/10/2014 12:33:12 PM
Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 D TWC

Analyte Back Pressure Flow

All 200.0 kPa 0.75 L/min

Mean Data: XY02 D								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	1969617.1	93.72	8	0.482				0.51%
ScR 361.383	217325.0	95.26	ક	0.726				0.76%
Ag 328.068†	-422.3	0.00013	mg/L	0.000071	0.00013	mg/L	0.000071	55.98%
Al 308.215†	56.6	0.06863	mg/L	0.006529	0.06863	mg/L	0.006529	9.51%
As 188.979†	81.8	0.04008	mg/L	0.001375	0.04008		0.001375	3.43%
B 249.677†	198.7	0.04299	mg/L	0.001121	0.04299		0.001121	2.61%
Ba 233.527†	158.4	0.03423	mg/L	0.001173	0.03423		0.001173	3.43%
Be 313.042†	36.3	0.00009	mg/L	0.000018	0.00009	mg/L	0.000018	20.08%
Ca 317.933†	2278226.2	311.3	mg/L	3.74	311.3		3.74	1.20%
Cd 228.802†	15.4	0.00049	mg/L	0.000156	0.00049	mg/L	0.000156	31.83%
Co 228.616†	4243.8	0.1451	mg/L	0.00105	0.1451		0.00105	0.73%
Cr 267.716†	38.3	0.00204	mg/L	0.001817	0.00204	mg/L	0.001817	88.95%
Cu 324.752†	1203.1	0.00594	mg/L	0.000261	0.00594		0.000261	4.40%
Fe 273.955†	4745.2	6.100	mg/L	0.0689	6.100		0.0689	1.13%
K 766.490†	8524.6	4.730	mg/L	0.0525	4.730	mg/L	0.0525	1.11%
Mg 279.077†	19816.7	28.38	mg/L	0.288	28.38		0.288	1.01%
Mn 257.610†	131606.6	4.362	mg/L	0.0652	4.362	mq/L	0.0652	1.49%
Mo 202.031†	130.6	0.00449	mg/L	0.000364	0.00449	mg/L	0.000364	8.11%
Na 589.592†	763671.8	73.49	mg/L	1.195	73.49		1.195	1.63%
Na 330.237†	1654.9	71.67	mg/L	0.828	71.67		0.828	1.16%
Ni 231.604†	180.1	0.06238		0.001400	0.06238	mg/L	0.001400	2.24%
Pb 220.353†	-38.2	-0.00578		0.001772	-0.00578		0.001772	30.68%
Sb 206.836†	31.1	0.01491	mg/L	0.002900	0.01491	mg/L	0.002900	19.46%
Se 196.026†	37.2	0.03074	mg/L	0.003039	0.03074		0.003039	9.89%
Si 288.158†	14184.3	14.11	mg/L	0.036	14.11		0.036	0.25%
Sn 189.927†	689.6	0.2440		0.00456	0.2440	mg/L	0.00456	1.87%
Sr 421.552†	459838.5	0.7081	mg/L	0.01034	0.7081		0.01034	1.46%
Ti 334.903†	633.4	0.01402		0.000942	0.01402	mg/L	0.000942	6.72%
Tl 190.801†	59.8	0.04150		0.002133	0.04150		0.002133	5.14%
V 292.402†	36.8	0.00062	mg/L	0.000127	0.00062		0.000127	20.61%
Zn 206.200†	80163.5	26.87		0.272	26.87		0.272	1.01%

Sequence No.: 25 Autosampler Location: 318

Sample ID: XY02 E TWC Date Collected: 2/10/2014 12:37:28 PM
Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 E TWC

AnalyteBack Pressure

Flow

198.0 kPa

0.75 L/min

Mean Data: XY02 E	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	1990856.2	94.74	%	0.282				0.30%
ScR 361.383	216729.4	95.00	8	0.736				0.77%
Ag 328.068†	-433.4	0.00001	mg/L	0.000106	0.00001	mg/L	0.000106	>999.9%
Al 308.215†	106.7	0.1296	mg/L	0.00517	0.1296	mg/L	0.00517	3.99%
As 188.979†	80.7	0.04001	mg/L	0.003437	0.04001	mg/L	0.003437	8.59%
B 249.677†	545.2	0.1185	mg/L	0.00396	0.1185	mg/L	0.00396	3.35%
Ba 233.527†	152.5	0.03350	mg/L	0.000311	0.03350	mg/L	0.000311	0.93%
Be 313.042†	38.2	0.00009	mg/L	0.000049	0.00009	mg/L	0.000049	52.05%
Ca 317.933†	2218364.9	303.2	mg/L	3.63	303.2	mg/L	3.63	1.20%
Cd 228.802†	38.0	0.00175	mg/L	0.000108	0.00175	mg/L	0.000108	6.17%
Co 228.616†	4102.8	0.1402	mg/L	0.00046	0.1402	mg/L	0.00046	0.33%
Cr 267.716†	38.0	0.00189	mg/L	0.000458	0.00189	mg/L	0.000458	24.28%
Cu 324.752†	2555.9	0.01220	mg/L	0.000159	0.01220	mg/L	0.000159	1.31%
Fe 273.955†	1335.3	1.717	mg/L	0.0245	1.717	mg/L	0.0245	1.43%
K 766.490†	5946.4	3.300	mg/L	0.0309	3.300	mg/L	0.0309	0.94%
Mg 279.077†	19263.5	27.59	mg/L	0.417	27.59	mg/L	0.417	1.51%
Mn 257.610†	128084.3	4.246	mg/L	0.0620	4.246	mg/L	0.0620	1.46%
Mo 202.031†	124.5	0.00420	mg/L	0.000517	0.00420	mg/L	0.000517	12.30%
Na 589.592†	402958.0	38.78	mg/L	0.572	38.78	mg/L	0.572	1.48%
Na 330.237†	937.6	37.50	mg/L	1.327	37.50	mg/L	1.327	3.54%
Ni 231.604†	262.2	0.09082	mg/L	0.001947	0.09082	mg/L	0.001947	2.14%
Pb 220.353†	-44.1	-0.00639	mg/L	0.001200	-0.00639	mg/L	0.001200	18.80%
Sb 206.836†	23.0	0.01189	mg/L	0.000514	0.01189	mg/L	0.000514	4.32%
Se 196.026†	35.3	0.02911	mg/L	0.001621	0.02911	mg/L	0.001621	5.57%
Si 288.158†	12956.0	12.89	mg/L	0.165	12.89	mg/L	0.165	1.28%
Sn 189.927†	918.9	0.3098	mg/L	0.00171	0.3098	mg/L	0.00171	0.55%
Sr 421.552†	447781.4	0.6896	mg/L	0.01032	0.6896	mg/L	0.01032	1.50%
Ti 334.903†	602.7	0.01283	mg/L	0.000598	0.01283	mg/L	0.000598	4.66%
Tl 190.801†	58.7	0.04019	mg/L	0.005552	0.04019		0.005552	13.81%
V 292.402†	-0.9	0.00054	mg/L	0.000065	0.00054		0.000065	12.02%
Zn 206.200†	77560.2	25.99	mg/L	0.334	25.99	mg/L	0.334	1.28%
						100000000000000000000000000000000000000		

XYM2: MMME2

Date: 2/10/2014 12:45:21 PM

Autosampler Location: 319

Sequence No.: 26 Sample ID: XY02 F TWC

Date Collected: 2/10/2014 12:41:43 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 F TWC

Back Pressure Flow 199.0 kPa 0.75 L/min All

Mean Data: XY02 F	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	1983033.5	94.36	8	1.502				1.59%
SCR 361.383	219762.6	96.33	8	0.264				0.27%
Ag 328.068†	-410.4	0.00022	mg/L	0.000100	0.00022	mg/L	0.000100	45.46%
Al 308.215†	36.0	0.04358	mg/L	0.009813	0.04358	mg/L	0.009813	22.52%
As 188.979†	87.5	0.04476	mg/L	0.004682	0.04476	mg/L	0.004682	10.46%
B 249.677†	520.5	0.1131	mg/L	0.00087	0.1131	mg/L	0.00087	0.77%
Ba 233.527†	154.6	0.03415	mg/L	0.000782	0.03415	mg/L	0.000782	2.29%
Be 313.042†	27.6	0.00007	mg/L	0.000034	0.00007	mg/L	0.000034	50.10%
Ca 317.933†	2308495.7	315.5	mg/L	0.45	315.5	mg/L	0.45	0.14%
Cd 228.802†	8.4	0.00009	mg/L	0.000259	0.00009	mg/L	0.000259	292.78%
Co 228.616†	4275.4	0.1461	mg/L	0.00186	0.1461	mg/L	0.00186	1.27%
Cr 267.716†	36.5	0.00132	mg/L	0.001781	0.00132	mg/L	0.001781	135.02%
Cu 324.752†	841.9	0.00391	mg/L	0.000184	0.00391	mg/L	0.000184	4.69%
Fe 273.955†	208.1	0.2675	mg/L	0.00516	0.2675	mg/L	0.00516	1.93%
K 766.490†	8004.9	4.442	mg/L	0.0063	4.442	mg/L	0.0063	0.14%
Mg 279.077†	20062.3	28.74	mg/L	0.073	28.74	mg/L	0.073	0.26%
Mn 257.610†	131875.8	4.371	mg/L	0.0216	4.371	mg/L	0.0216	0.49%
Mo 202.031†	126.3	0.00416	mg/L	0.000772	0.00416	mg/L	0.000772	18.58%
Na 589.592†	410192.0	39.47	mg/L	0.087	39.47	mg/L	0.087	0.22%
Na 330.237†	939.6	37.66	mg/L	0.303	37.66	mg/L	0.303	0.81%
Ni 231.604†	181.9	0.06301	mg/L	0.000776	0.06301	mg/L	0.000776	1.23%
Pb 220.353†	-43.0	-0.00616	mg/L	0.001791	-0.00616	mg/L	0.001791	29.06%
Sb 206.836†	24.0	0.01088	mg/L	0.001224	0.01088	mg/L	0.001224	11.25%
Se 196.026†	38.9	0.03212	mg/L	0.005904	0.03212	mg/L	0.005904	18.38%
Si 288.158†	13119.0	13.05	mg/L	0.052	13.05	mg/L	0.052	0.40%
Sn 189.927†	257.9	0.1186	mg/L	0.00077	0.1186	mg/L	0.00077	0.65%
Sr 421.552†	461974.2	0.7114	mg/L	0.00158	0.7114	mg/L	0.00158	0.22%
Ti 334.903†	600.5	0.01180	mg/L	0.000714	0.01180	mg/L	0.000714	6.05%
Tl 190.801†	58.5	0.03981	mg/L	0.002218	0.03981	mg/L	0.002218	5.57%
V 292.402†	-16.8	0.00052	mg/L	0.000010	0.00052		0.000010	2.00%
Zn 206.200†	76878.8	25.76	mg/L	0.054	25.76		0.054	0.21%

_______ Autosampler Location: 314

Sequence No.: 27 Sample ID: XY02 A TWC

Date Collected: 2/10/2014 12:45:59 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 A TWC

Analyte Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XY02 A	TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2001305.7	95.23	8	0.449				0.47%
ScR 361.383	219672.4	96.29	8	0.458				0.48%
Ag 328.068†	-415.9	0.00022	mg/L	0.000189	0.00022	mg/L	0.000189	86.97%
Al 308.215†	626.9	0.7625	mg/L	0.00186	0.7625	mg/L	0.00186	0.24%
As 188.979†	84.2	0.04289	mg/L	0.000805	0.04289	mg/L	0.000805	1.88%
B 249.677†	191.7	0.04146	mg/L	0.001378	0.04146	mg/L	0.001378	3.32%
Ba 233.527†	182.4	0.03760	mg/L	0.000302	0.03760	mg/L	0.000302	0.80%
Be 313.042†	38.5	0.00009	mg/L	0.000025	0.00009	mg/L	0.000025	26.21%
Ca 317.933†	2333255.9	318.9	mg/L	0.88	318.9	mg/L	0.88	0.28%
Cd 228.802†	20.2	0.00074	mg/L	0.000029	0.00074	mg/L	0.000029	3.90%
Co 228.616†	4416.0	0.1509	mg/L	0.00107	0.1509	mg/L	0.00107	0.71%
Cr 267.716†	32.2	0.00153	mg/L	0.000797	0.00153	mg/L	0.000797	51.97%
Cu 324.752†	2433.7	0.01254	mg/L	0.000185	0.01254	mg/L	0.000185	1.47%
Fe 273.955†	15838.7	20.36	mg/L	0.171	20.36	mg/L	0.171	0.84%
K 766.490†	8127.7	4.510	mg/L	0.0319	4.510	mg/L	0.0319	0.71%
Mg 279.077†	20286.5	29.04	mg/L	0.105	29.04	mg/L	0.105	0.36%
Mn 257.610†	135451.6	4.490	mg/L	0.0109	4.490	mg/L	0.0109	0.24%
Mo 202.031†	135.8	0.00474	mg/L	0.000256	0.00474	mg/L	0.000256	5.40%
Na 589.592†	342940.9	33.00	mg/L	0.061	33.00	mg/L	0.061	0.19%
Na 330.237†	837.6	32.06	mg/L	0.535	32.06	mg/L	0.535	1.67%
Ni 231.604†	192.2	0.06656	mg/L	0.000536	0.06656	mg/L	0.000536	0.81%
Pb 220.353†	-4.4	-0.00150	mg/L	0.000862	-0.00150	mg/L	0.000862	57.41%
Sb 206.836†	25.1	0.01238	mg/L	0.001880	0.01238	mg/L	0.001880	15.19%
Se 196.026†	36.3	0.02994	mg/L	0.006261	0.02994	mg/L	0.006261	20.91%
Si 288.158†	12796.2	12.73	mg/L	0.080	12.73	mg/L	0.080	0.63%
Sn 189.927†	689.9	0.2451	mg/L	0.00149	0.2451		0.00149	0.61%
Sr 421.552†	470856.6	0.7251	mg/L	0.00033	0.7251	mg/L	0.00033	0.05%
Ti 334.903†	1343.1	0.05496	mg/L	0.000822	0.05496	mg/L	0.000822	1.50%
Tl 190.801†	57.0	0.04145	mg/L	0.002363	0.04145		0.002363	5.70%
V 292.402†	454.4	0.00330		0.000151	0.00330		0.000151	4.57%
Zn 206.200†	84299.1	28.25		0.176	28.25		0.176	0.62%
			· ·			300000000		

XY02:000EH

Date: 2/10/2014 12:53:39 PM

Sequence No.: 28

Autosampler Location: 320 Sample ID: XY02 MB1SPK TWC

Date Collected: 2/10/2014 12:50:16 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XY02 MB1SPK TWC

Back Pressure Flow

All 199.0 kPa 0.75 L/min

Mean Data: XY02 M	B1SPK TWC							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2075929.8	98.78	%	0.917				0.93%
ScR 361.383	225316.9	98.76	%	0.218				0.22%
Ag 328.068†	102307.8	0.5345	mg/L	0.00584	0.5345	mg/L	0.00584	1.09%
Al 308.215†	1722.0	2.088	mg/L	0.0057	2.088	mg/L	0.0057	0.27%
As 188.979†	2271.1	2.048	mg/L	0.0153	2.048	mg/L	0.0153	0.75%
B 249.677†	0.5	-0.00098	mg/L	0.000821	-0.00098		0.000821	83.85%
Ba 233.527†	9453.1	2.090	mg/L	0.0043	2.090	mg/L	0.0043	0.20%
Be 313.042†	200677.3	0.5000	mg/L	0.00444	0.5000	mg/L	0.00444	0.89%
Ca 317.933†	75922.1	10.38	mg/L	0.137	10.38		0.137	1.32%
Cd 228.802†	9893.9	0.5243	mg/L	0.00609	0.5243	mg/L	0.00609	1.16%
Co 228.616†	15103.2	0.5162	mg/L	0.00444	0.5162		0.00444	0.86%
Cr 267.716†	2904.9	0.5382	mg/L	0.00157	0.5382	mg/L	0.00157	0.29%
Cu 324.752†	107343.2	0.5139	mg/L	0.00395	0.5139		0.00395	0.77%
Fe 273.955†	1664.4	2.136	mg/L	0.0087	2.136	mg/L	0.0087	0.41%
K 766.490†	18927.8	10.50		0.138	10.50		0.138	1.31%
Mg 279.077†	7460.6	10.70	mg/L	0.025	10.70	mg/L	0.025	0.23%
Mn 257.610†	15345.7	0.5092	mg/L	0.00551	0.5092	mg/L	0.00551	1.08%
Mo 202.031†	34.0	0.00211	mg/L	0.000248	0.00211	mg/L	0.000248	11.78%
Na 589.592†	111602.7	10.74		0.147	10.74	mg/L	0.147	1.37%
Na 330.237†	232.4	11.00	mg/L	0.264	11.00		0.264	2.40%
Ni 231.604†	1534.4	0.5306	mg/L	0.00400	0.5306		0.00400	0.75%
Pb 220.353†	14177.8	2.038	mg/L	0.0247	2.038	mg/L	0.0247	1.21%
Sb 206.836†	18.2	0.00276	mg/L	0.000367	0.00276	mg/L	0.000367	13.31%
Se 196.026†	2368.9	1.959	mg/L	0.0109	1.959		0.0109	0.56%
Si 288.158†	15.8	0.01811	mg/L	0.004897	0.01811		0.004897	27.04%
Sn 189.927†	-20.9	-0.00460		0.001112	-0.00460	mg/L	0.001112	24.18%
Sr 421.552†	342738.6	0.5278	mg/L	0.00722	0.5278	mg/L	0.00722	1.37%
Ti 334.903†	33.9	0.00111		0.000324	0.00111		0.000324	29.18%
Tl 190.801†	2957.2	2.049		0.0134	2.049		0.0134	0.65%
V 292.402†	62614.7	0.5363		0.00607	0.5363		0.00607	1.13%
Zn 206.200†	1590.5	0.5333		0.00048	0.5333		0.00048	0.09%

Sequence No.: 29 Sample ID: CV 3

Autosampler Location: 7

Date Collected: 2/10/2014 12:54:17 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CV

Analyte

Back Pressure Flow 199.0 kPa 0.75 L/min All

Mean Data: CV			83						
	Mean Corrected		Calib.			Sample			
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD	
ScA 357.253	2105029.6	100.2		0.49				0.49	
ScR 361.383	230445.8	101.0	8	0.41				0.40	
Ag 328.068†	198280.7	1.036		0.0032	1.036	mg/L	0.0032	0.31	
Al 308.215†	1662.3	1.991	mg/L	0.0209	1.991	mg/L	0.0209	1.05	
As 188.979†	2233.6	2.046	mg/L	0.0057	2.046	mg/L	0.0057	0.28	
B 249.677†	4628.9	1.008	mg/L	0.0034	1.008	mg/L	0.0034	0.33	
Ba 233.527†	4537.1	1.003	mg/L	0.0045 .	1.003	mg/L	0.0045	0.45	
Be 313.042†	415177.6	1.034	mg/L	0.0052	1.034	mg/L	0.0052	0.50	
Ca 317.933†	15137.6	2.069	mg/L	0.0104	2.069		0.0104	0.50	
Cd 228.802†	19224.2	1.029	mg/L	0.0042	1.029	mg/L	0.0042	0.41	
Co 228.616†	29128.7	0.9943	mg/L	0.00454	0.9943		0.00454	0.46	
Cr 267.716†	5540.9	1.028	mg/L	0.0063	1.028	mg/L	0.0063	0.62	
Cu 324.752†	217625.7	1.041	mg/L	0.0060	1.041		0.0060	0.589	
Fe 273.955†	1609.5	2.062	mg/L	0.0062	2.062		0.0062	0.30	
K 766.490†	35579.0	19.74	mg/L	0.016	19.74		0.016	0.08	
Mg 279.077†	1370.1	1.971	mg/L	0.0013	1.971		0.0013	0.06	
Mn 257.610†	29380.5	0.9746		0.00118	0.9746	mg/L	0.00118	0.12	
Mo 202.031†	14776.9	0.9754	mg/L	0.00485	0.9754	mg/L	0.00485	0.50	
Na 589.592†	523005.2	50.33	mg/L	0.111	50.33		0.111	0.229	
Na 330.237†	1053.6	50.52	mg/L	0.211	50.52	mg/L	0.211	0.429	
Ni 231.604†	2980.5	1.033	mg/L	0.0045	1.033	mg/L	0.0045	0.44	
Pb 220.353†	14001.2	2.013	mg/L	0.0096	2.013	mg/L	0.0096	0.489	
Sb 206.836†	4846.2	2.095	mg/L	0.0158	2.095		0.0158	0.76	
Se 196.026†	2467.9	2.041		0.0135	2.041		0.0135	0.66	
Si 288.158†	2006.1	2.001	mg/L	0.0090	2.001	mg/L	0.0090	0.45	
Sn 189.927†	3465.5	1.013		0.0017	1.013		0.0017	0.169	
Sr 421.552†	651810.1	1.004		0.0009	1.004		0.0009	0.09	
Ti 334.903†	16839.2	0.9832		0.00328	0.9832		0.00328	0.339	
Tl 190.801†	3006.4	2.080	mg/L	0.0095	2.080		0.0095	0.46	
V 292.402†	118205.6	1.013		0.0028	1.013		0.0028	0.289	
Zn 206.200†	3078.2	1.032		0.0053	1.032		0.0053	0.529	

Sequence No.: 30 Sample ID: CB 3

Autosampler Location: 1 Date Collected: 2/10/2014 12:58:19 PM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 199.0 kPa 0.75 L/min A11

Ai 308.215† 3 As 188.979† 2	city Conc. 100.5 18 101.4 18 0.00005 15 0.00422	% mg/L	Std.Dev. 0.45 0.71 0.000111	Conc.	Sample Units	Std.Dev.	
ScA 357.253 2112936 ScR 361.383 231386 Ag 328.068† 8 Al 308.215† 3 As 188.979† 2	1.0 100.5 1.8 101.4 1.8 0.00005 1.5 0.00422	% % mg/L	0.45 0.71	Conc.		Std.Dev.	
ScR 361.383 231386 Ag 328.068† 8 Al 308.215† 3 As 188.979† 2	1.8 101.4 1.8 0.00005 1.5 0.00422	% mg/L	0.71				
Ag 328.068† 8 Al 308.215† 3 As 188.979† 2	.8 0.00005 .5 0.00422	mg/L					0.45%
Al 308.215† 3 As 188.979† 2	.5 0.00422	-	0.000111				0.70%
As 188.979† 2		A 1997 A STORY	0.000111	0.00005	mg/L	0.000111	240.36%
- 13 TOTAL LA TRATATORIA TOTALA TATATA		mg/L	0.007504	0.00422	mg/L	0.007504	177.69%
B 249 677+	.2 0.00197	mg/L	0.001683	0.00197	mg/L	0.001683	85.30%
D 243.0771	0.00132	mg/L	0.000932	0.00132		0.000932	70.40%
Ba 233.527† 3	.7 0.00083	mg/L	0.000033	0.00083	mg/L	0.000033	3.96%
Be 313.042† 38	.2 0.00010		0.000018	0.00010	mg/L	0.000018	19.24%
Ca 317.933† 35	.8 0.00489	mg/L	0.000820	0.00489	mg/L	0.000820	16.79%
Cd 228.802† -5	.0 -0.00028	mg/L	0.000086	-0.00028		0.000086	30.43%
Co 228.616† 3	.6 0.00012	mg/L	0.000189	0.00012		0.000189	153.67%
Cr 267.716† 1	.5 0.00028	mg/L	0.001834	0.00028		0.001834	
Cu 324.752† -20	.5 -0.00010	mg/L	0.000045	-0.00010		0.000045	45.49%
Fe 273.955† -1	.1 -0.00141	mg/L	0.002360	-0.00141		0.002360	167.13%
K 766.490† 13			0.002481	0.00742		0.002481	33.46%
Mg 279.077† -0	.4 -0.00063		0.005728	-0.00063	mg/L	0.005728	
Mn 257.610† 4	.8 0.00016	mg/L	0.000154	0.00016		0.000154	96.17%
Mo 202.031† 18	.2 0.00120	mg/L	0.000379	0.00120		0.000379	31.49%
Na 589.592† 101			0.001798	0.00973		0.001798	18.48%
Na 330.237† 1	.5 0.07298		0.649995	0.07298		0.649995	
Ni 231.604† -2	.1 -0.00073		0.000964	-0.00073		0.000964	
Pb 220.353† 2	.6 0.00038		0.000236	0.00038		0.000236	62.35%
Sb 206.836† 6	.0 0.00261		0.000977	0.00261		0.000977	37.48%
Se 196.026† 1	.9 0.00157		0.000633	0.00157		0.000633	40.42%
Si 288.158† 0	.4 0.00035	mq/L	0.001790	0.00035		0.001790	
Sn 189.927† 0	.9 0.00027		0.000746	0.00027		0.000746	
Sr 421.552† 58			0.000070	0.00009		0.000070	77.98%
Ti 334.903† -2			0.000383	-0.00015		0.000383	
Tl 190.801† 0	.9 0.00063		0.001705	0.00063		0.001705	
V 292.402† 21			0.000091	0.00018		0.000091	49.61%
	.9 0.00097		0.000312	0.00097		0.000312	32.24%

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix D

Solid-Phase TIE Test Data Sheets

Appendix D.1

10-Day Solid-Phase TIE Test with Hyalella azteca

10 DAY POREWATER-TEST - OBSERVATIONS

Sediment

ENT Fa:	rallo	'n		- 1	ROJECT Yakin	na Si	teel	JOB N	UMBER	- 1	DJECT I		į.	ATORY Gamble	, WA	PROTO(SPECIE:		lyalle.	la	ACCLM.MOR	Г.	#REF!		
				1.					55 A ST	1			<u> </u>			ERV	ATIC	NS								4
avoidance	L = anoxio F= fungal D= no air U= excess	patche flow (E s food	es (O?)		61 NICIAN	TECHN	/62 Vician JU	DATE 2	63 NICIAN	TECHN	14 ICIAN JB	DATE 	S	DATE 2/(TECHNI	CIAN	DATE 1/1 TECHNIC	CIAN	DATE 2/08 TECHNICIAN	V TE	2109 CHNIGIAN	DATE 2/10 TECHNICIAN	NUMBER REMAINING	WEIGH BOAT	TARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY
JENT/ NEWFIELDS	ID REP	#	#	OBSE	RVNS.	OBSE	RVNS.	OBSE	RVNS.	OBSER	VNS.	OBSER		OBSER		OBSERV	VNS.	OBSERVNS.	. 08	BSERVNS.	OBSERVNS.		3,	Constitution of the Consti		
	1	ļ	10	1	٠, ح		ပု	ļ	۲	1)	١	7	Ņ	ļ	Ņ		h		ν	N	8	l	20852	208.95	ļ
Control / .	2		10		<u> </u>					. 1	.,					<u> </u>						0	12	206.75	207.29	ļ
	3		10		<u> </u>					.	.											8	3	200.29	208.68	
<i>i</i>	4		10			<u> </u>	\perp			<u> </u>	1										<u> </u>		14	205.27	205.79	<u> </u>
	1	ļ	10					.	<u> </u>	.	<u> </u>		.								G/U	<u>)</u>	15	207.74	31050	(D)
WETSED1 / .	2	<u>.</u>	10					.		ļ			<u> </u>		*********		,,					0	عا إ	211.50		
	3	ļ	10						<u> </u>		<u></u>		1									0	17	204.05		
	4		10					ļ					1								V	D	8	209.31		
	1	ļ	10				.]	ļ		<u> </u>	<u> </u>				,					M	ļν	4			210,50	
rsed1-sir300 /	/ 2	<u></u>	10		,-,,-,		1	<u> </u>	<u> </u>													10	10	20578	206,51	ļ
	3	<u> </u>	10					<u></u>	<u> </u>											7786		6] [[209.42	20997	ļ
	4		10							L									┸		V	7	12	207.15	207.70	
¥.	1		10]	ļ	ļ]							N	Q		207,33		3
NETSED1-CC:/	. 2	ļ	10	2007140000				ļ		ļ						<u> </u>						9		209.68		ļ
	3	ļ	10				<u> </u>	ļ		<u> </u>											1, , , , , , , , , , , , , , , , , , ,	<u> </u>	115			
	4		10				<u> </u>				_		anaccon a								V	0		208.29		
	1	ļ	10				ļ	ļ	ļ						ļ						l N	70	. ž		210.34	
:: R300 Blank /	2	ļ	10			1		ļ	<u></u>	ļ					ļ						1	8			208.24	
	3		10		ļ	<u> </u>	ļ	.	ļ	.					ļ			ļļ				10		· \$	210,31	en university
	4		10		1		<u> </u>		<u> </u>		1		\perp		_						<u> V </u>	8			211,60	
	1	.	10	resonant and a	_		<u> </u>	ļ	ļ	ļ	.	ļ			<u> </u>						G,U	<u> </u>			208.27	}
CC-Blank / .	2	ļ	10	2000000	ļ		-	 	<u> </u>	ļ	ļ		ļ								<u> </u>	Ø	W	206.61		
	. 3	ļ	10	e e e e e e e e e e e e e e e e e e e	1	ļ	1	<u> </u>		_	V	ļ	<u> </u>	`	Ŋ	-	ł				<u> </u>				208.29	
	4		10	THE PERSON	V		L	l	1		•	Ų	X		٧	"	.	9		ď	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B	29	1210.01		†

Os animals in weighboat

(DWC.) 2/13/14.

26 209.02 27 269,24

10 DAY POREWATER - WATER QUALITY DATA SHEET

Stainent

CLIENT		PROJECT
	Farallon	Yakima Steel
JOB NUMBER		PROJECT MANAGER
		Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyallel	l.a	Port Gamble, WA	nochy 1860 - Francock-Aakors
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

	WATER QUALITY DATA #1															
				DO (m	g/L) > 2.5		temp (C) 23±1		cond.(µS/cm) vary < :		рн 7.8-8.2		TION WATER BA	т сн 0	TEMP.RECOR./HC	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	Đ.O. mg/L	meter	TEMP °C	CC meter	DNDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEW	
Control / .	0	WQ	Surr	7	8.9	દ્ર	22.0	2	197		/	8	ティフ	46		
Control / .	1	WQ	Surr	6	67 LU	<	22.2	وا	023920	3		5	7.7.20) Ul		
Control / .	2	WQ	Surr	٩	6.4	5	22.3	6	205			5	7.4	JU		
Control / .	3	WQ	Surr	و_	6.0	5	22.1	لما	201			5	7.3	UL		
Control / .	4	WQ	Surr	9	5.7	S	23.1	وا	g of		X	S	7.7	MMB		
Control / .	5	WQ	Surr	Ϋ́	6.9	8	21.9	9	360		/\	8	7.2	MMS		
Control / .	6	WQ	Surr	9	6-5	5	21.6	6	203			5	7.8	MK		
Control / .	7	WQ	Surr	7	5.0	8	21.2	2	207			8	7.4	MK		
Control / .	8	WQ	Surr		5,0	5	21.7	6	200	\int		5	7.3	رال		
Control / .	9	₩Q	Surr	6	ها. ط	5	22.0	b	198	$\int_{-\infty}^{\infty}$		5	7.4	Ŭ.		
Control / .	10	WQ	Surr	6	6.8	5	22.3	6	189			5	7.4	MK		

Ownorg page. or 20114.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
Angles (A. 1907) Description	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal.	lela	Port Gamble, WA	SSERM 1980 - TRAINSOIP+95/644
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

Γ	WATER QUALITY DATA #1																
					DO (m	g/L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) Vary < '		рн 7.8-8.2		ION WATER BA	т сн)	TEMP, RECDR./HOBO	#
	CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CO meter	NDUCTIVITY μS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWAL AM PM	FEED- ING
	WETSED1 / .	0	WQ	Surr	7	8.4	7	22.0	2	316			8	6.9	1216		
	WETSED1 / .	1	WQ	Surr	Va	7,4	5	22.5	6	326	VIII VIII VIII VIII VIII VIII VIII VII		5	7.0	ひし		
	WETSED1 / .	2	WQ	Surr	L	5.3	5	226	6	257		/	5	7.12	UL		
Г	WETSED1 / .	3	WQ	Surr	6	1.97,40	95	2220	62	22250			5	717 C	υl		
Г	WETSED1 / .	4	WQ	Surr	4	4.8	5	0.66	b	416		\ /	S	7.5	MMB		
Г	WETSED1 / .	5	WQ	Surr	7	5.0	8	21.7	7	200 3	canacter		8	b. 8	MWG		
	WETSED1 / .	6	WQ	Surr	6	5,5	5	21.6	6	201		X	5	7.6	MK		
Γ	WETSED1 / .	7	WQ	Surr	7	4,5	8	20.8	2	203			8	7.0	MK		
Γ	WETSED1 / .	8	WQ	Surr	И	5.3	5	218	ما	192			S	7.3	UL		
Γ	WETSED1 / .	9	WQ	Surr	6	4.6	5	22.0	6	196			5	7.4	しし		
	WETSED1 / .	10	WQ	Surr	6	4.8	5	22.1	6	186			5	7.3	MK	999	

D 16. Je 2/03/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
···	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal	lela	Port Gamble, WA	120284 2000 - EPAF60078-307664
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	,

						1	NATER Q	UAI	LITY DAT	Α#	1					
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		р н 7.8-8.2	DILU.	TION WATER BA	тсн О	TEMP.RECDR./HO	BO#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	DNDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWA	
wetsed1-sir300 / .	0	WQ	Surr	2	ව .3	7	22.0	٦	430			ક	7.1	KINB		BH
WETSED1-SIR300 / .	1	WQ	Surr	b	6.7	5	22.5	6	4-05	B		5	7,1	JV	JL-	
WETSED1-SIR300 / .	2	WQ	Surr	و	6.7	5	22.5	ما	287	5	\ /	<u></u>	7.1	ひし	ルー	
WETSED1-SIR300 / .	3	WQ	Surr	6	5.7	5	22.1	b	231	+		5	7.0	Uu	U-	
WETSED1-SIR300 / .	4	WQ	Surr	9	6.9	5	22.0	b	30 S	and the state of t	X	S	4.4	MMB	MINE-	-3
WETSED1-SIR300 / .	5	WQ	Surr	7	4.6	8	21.9	9	190	egardol del produce	/\	8	6.6	MWB	mms	
WETSED1-SIR300 / .	6	WQ	Surr	Ġ	5.6	5	21.4	Ç	187			5	7.4	MK	MK-	
WETSED1-SIR300 / .	7	WQ	Surr		5.4	8	21.1	2	174			8	6.8	MK	We -	
WETSED1-SIR300 / .	8	WQ	Surr	0	4.8	5	21.9	ما	122			5	6.9	UL	Jr	
WETSED1-SIR300 / .	9	WQ	Surr	6	6.(5	21.9	ط	175			5	7.0	JU	ルー	
WETSED1-SIR300 / .	10	WQ	Surr	9	6.9	5	22.2	6	173 (company		5	7.3	MK		

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyallel	a	Port Gamble, WA	uprea 2000 - 1966/00/0+90/064
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

						V	VATER Q	UAL	ITY DAT	Ά#	1				
				DO (m	ig/L) > 2.5		TEMP (C) 23±1		COND.(μS/cm) Vary <		рн 7.8-8.2		TION WATER BA	т сн)	TEMP.RECDR./HOBO#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CC meter	NDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWAL FEED AM PM ING
WETSED1-CC / .	0	WQ	Surr	7	8-5	3	22.0	2	352	1	/	8	7.0	AUB	BH BH
WETSED1-CC / .	1	WQ	Surr	6	6.6	5	22.6	6	399		/	C	7.2	ت ل	ر ا
WETSED1-CC / .	2	WQ	Surr	6	6.8	5	22.3	Ь	262	दि		5	7.2	رار	JU
WETSED1-CC / .	3	WQ	Surr	6	94.53	5	22.0	6	243	Total Production of	\ /	5	7.2	リレ	Jul ====================================
WETSED1-CC / .	4	WQ	Surr	9	ه. ک	5	33.0	b	234		\bigvee	5	4.6	MMB	MWB -
WETSED1-CC / .	5	WQ	Surr	7	4.6	8	21.7	2	269	GREANERS	Λ	8	6.9	MMB	MMB =
WETSED1-CC / .	6	WQ	Surr	9	4.6	5	21.6	يا	204		/ \	5	7.4	MK	MK 7
WETSED1-CC / .	7	WQ	Surr	7	3.7	8	21.4	2	201			४	7.0	MK	MK
WETSED1-CC / .	8	WQ	Surr	9	5.7	5	21.7	6	ાકવ	T		5	7.2	ひし	Ju
WETSED1-CC / .	9	WQ	Surr	6	5.1	S	22.0	6	ાક્ષ	Marketon		ځ	7.3	d	J
WETSED1-CC / .	10	WQ	Surr	8	5.3	5	22.1	6	184	WINDOWS .		15	7.2	MK	

OMP. Ju 2/03/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal	lela	Port Gamble, WA	02FPA 2000 + 59A/600/8+09/06\$
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

						V	VATER Q	UAL	ITY DAT	A #	1						
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) vary <		р Н 7.8-8			ION WATER BA (тсн 0	TEMP.RECDR./HOBO	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter.	TEMP °C	CC meter	NDUCTIVITY µS/cm	meter	Salinity ppt		meter	pH unit	TECHNICIAN	WATER RENEWAL	FEED- ING
SIR300 Blank / .	0	WQ	Surr	7	8.8	7	22.0	Z	235	٨			8	7.4	KB		BH
SIR300 Blank / .	1	WQ	Surr	6	600	6	22.7	6	220	1		7	5	70	(JL	()L	
SIR300 Blank / .	2	WQ	Surr	(2)	8.4	5	22.3	6	175	Ţ-\	/	/	Š	7.7	J.	JL	1-5
SIR300 Blank / .	3	WQ	Surr	6	8.7	5	22.0	6	160	out and the	\setminus /	Hadungela	5	7.9	JL	Ju	7
SIR300 Blank / .	4	WQ	Surr	9	8.8	S	3> .0	6	152		V	Ortonital	S	8.1	MMB	mme -	*
SIR300 Blank / .	5	WQ	Surr	7	8.8	8	21.7	7	145	and the second	Λ	, and the same	8	7.7	MMB	MMB	- 7
SIR300 Blank / .	6	WQ	Surr	9	7.8	5	21.7	Ce	190	CERTIFICATION OF THE PERSON OF	/ \	COSCOSION	5	8.0	MK	MK	-7
SIR300 Blank / .	7	WQ	Surr	7	7.3	8	21.5	Z	158	Carpendary.	/ \		8	7,9	MK	MK	
SIR300 Blank / .	8	WQ	Surr	6	8.5	5	2LS	6	153				5	8.0	JL	从 	-)
SIR300 Blank / .	9	WQ	Surr	6	8.6	5	21.9	ها	153				5	7.9	Ju	V	₽ P
SIR300 Blank / .	10	WQ	Surr	6	8.5	5	22.1	6	154	1		Z	5	7.4	MK		

¹⁾ Aevapón initiated to all veps. Je 2/01/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET Sediment

CLIENT		PROJECT
N. Britania	Farallon	Yakima Steel
JOB NUMBER		PROJECT MANAGER
		Bill Gardiner

SPECIES		LABORATORY	PROTOCOL.
Hyalle.	la	Port Gamble, WA	08658 2080 - APA/678/R+99/065
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

A Carlo						٧	VATER Q	UA	LITY DAT	Α#	1					
				DO (m	yL) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		рн 7.8-8.2		TION WATER BA	тсн 0	TEMP.RECOR./HOE	O#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWA	FEED- ING
CC-Blank / .	0	WQ	Surr	7	8.9	7	22.0	z	236		7	8	7,4	KB		BH
CC-Blank / .	1	WQ	Surr	6	3-1	6	22.2	6	239			5	7.2	リレ	JL-	7 J
CC-Blank / .	2	WQ	Surr	Ь	5.8	5	22.5	Ь	219		\/	5	7,3	U ^L	الد	
CC-Blank / .	3	WQ	Surr	6	8.2	5	22.0	Ь	202		\ /	5	43	JL	كالخ	+>
CC-Blank / .	4	WQ	Surr	9	5,2	5	99.0	b	900		\	5	7.6	MMB	MMB-	-5
CC-Blank / .	5	WQ	Surr	7	4.4	8	31.8	2	199	operations:	V	8	₹.\	MMB	MMG	
CC-Blank / .	6	WQ	Surr	(a)	4.5	5	21.7	(e	205		Λ	5	7.6	MK	MC	19
CC-Blank / .	7	WQ	Surr	7	5.0	8	21.2	2	206	COMPAND		8	7.3	AUL	MK	
CC-Blank / .	8	WQ	Surr	6	4.8	15	21,7	6	195	operation of the same of the s	/ \	5	7,3	Λ.		الم
CC-Blank / .	9	WQ	Surr	وا	\$.0	5	22,0	b	195		/	5	7.5	J	JL	 >
CC-Blank / .	10	WQ	Surr	6	6.1	5	22.1	6	188			5	7.4	MC		

Ammonia and Sulfide Analysis Record

Client/Project: Valeina Stel ME	Organism: Hyalila	Test Duration (days):					
PRETEST / (NIT	· · · · · · · · · · · · · · · · · · ·	le one) DAY of TEST:					
OVER Comments:	LYING (OV) / POREWATER	(PW) (circle one)					
Comments:	LYING (OV) / POREWATER Standards Temperature	Sample temperature should be within					
Comments:	, use a second control of the second control						

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Cord Sat (XXX)	Sulf. mg/L
PW NEED !	EMM).	214/14 Mars	0.315	19.5	2/4/14 MMB	. 2	5.39	<u>leb3</u>	
MEDED 1			1.09				4.57	00.0	X
WEISED ! WEISED!	J.	y	0.518	K		<u> </u>	5.47	653	
								,,,,,	
,									
					<u> </u>				
							·		

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix E

Solid-Phase TIE Test Data Sheets

Appendix E.1

10-Day Solid-Phase TIE Test with Hyalella azteca

10 DAY POREWATER-TEST - OBSERVATIONS

Sediment

ENT Fa:	rallo	'n		- 1	ROJECT Yakin	na Si	teel	JOB N	UMBER	- 1	DJECT I		į.	ATORY Gamble	, WA	PROTO(SPECIE:		lyalle.	la	ACCLM.MOR	Г.	#REF!		
				1.					55 A ST	1			<u> </u>			ERV	ATIC	NS								4
avoidance	L = anoxio F= fungal D= no air U= excess	patche flow (E s food	es (O?)		61 NICIAN	TECHN	/62 Vician JU	DATE 2	63 NICIAN	TECHN	14 ICIAN JB	DATE 	S	DATE 2/(TECHNI	CIAN	DATE 1/1 TECHNIC	CIAN	DATE 2/08 TECHNICIAN	V TE	2109 CHNIGIAN	DATE 2/10 TECHNICIAN	NUMBER REMAINING	WEIGH BOAT	TARE WEIGHT (mg)	TOTAL WEIGHT (mg)	ASH FREE DRY
JENT/ NEWFIELDS	ID REP	#	#	OBSE	RVNS.	OBSE	RVNS.	OBSE	RVNS.	OBSER	VNS.	OBSER		OBSER		OBSERV	VNS.	OBSERVNS.	. 08	BSERVNS.	OBSERVNS.		3,	Constitution of the Consti		
	1	ļ	10	1	٠, ح		ပု	ļ	۲	1)	١	7	Ņ	ļ	Ņ		h		ν	N	8	l	20852	208.95	ļ
Control / .	2		10		<u> </u>					. 1	.,					<u> </u>						0	12	206.75	207.29	ļ
	3		10		<u> </u>					.	.											8	3	200.29	208.68	
<i>i</i>	4		10			<u> </u>	\perp			<u> </u>	1										<u> </u>		14	205.27	205.79	<u> </u>
	1	ļ	10					.	<u> </u>	.	<u> </u>		.								G/U	<u>ئ</u> 0	15	207.74	31050	(D)
WETSED1 / .	2	<u>.</u>	10					.		ļ			<u> </u>		*********		,,					0	عا إ	211.50		
	3	ļ	10						<u> </u>		<u></u>		1									0	17	204.05		
	4		10					ļ					1								V	D	8	209.31		
	1	ļ	10				.]	ļ		<u> </u>	<u> </u>				,						ļν	4			210,50	
TSED1-SIR300	/ 2	<u></u>	10		,-,,-,		1	<u> </u>	<u> </u>													10	10	20578	206,51	ļ
•	3	<u> </u>	10					<u></u>	<u> </u>											7786		6] [[209.42	20997	ļ
	4		10							L									┸		V	7	12	207.15	207.70	
¥.	1		10					.	ļ	ļ]							N	Q		207,33		3
NETSED1-CC:/	. 2	ļ	10	2007140000				ļ		ļ						<u> </u>						9		209.68		ļ
	3	ļ	10				<u> </u>	ļ		<u> </u>											1, , , , , , , , , , , , , , , , , , ,	<u> </u>	115			
	4		10				<u> </u>				_	ļ	wa.com								V	0		208.29		
	1	ļ	10				ļ	ļ	ļ						ļ						l N	70	. ž		210.34	
:: R300 Blank /	2	ļ	10			V.		ļ	<u></u>	ļ					ļ						1	8			208.24	
	3		10		ļ	<u> </u>	ļ	.	ļ	.					ļ			ļļ				10		· \$	210,31	en marine
	4		10		1		<u> </u>		<u> </u>		1		\perp		_						<u> V </u>	8			211,60	
	1	.	10	resonant and a	_		<u> </u>	ļ	ļ	ļ	.	ļ			<u> </u>						G,U	<u> </u>			208.27	}
CC-Blank / .	2	ļ	10	2000	ļ		-	 	<u> </u>	ļ	ļ		ļ								<u> </u>	Ø	W	206.61		
	. 3	ļ	10	e e e e e e e e e e e e e e e e e e e	1	ļ	1	<u> </u>		_	V	ļ	<u> </u>	`	Ŋ	-	ł	<u> </u>			<u> </u>				208.29	
	4		10	THE PERSON	V		L	l	1		•	Ų	X		٧	"	.	9		ď	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B	29	1210.01		†

Os animals in weighboat

(DWC.) 2/13/14.

26 209.02 27 269,24

10 DAY POREWATER - WATER QUALITY DATA SHEET

Stainent

CLIENT		PROJECT
	Farallon	Yakima Steel
JOB NUMBER		PROJECT MANAGER
		Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyallel	l.a	Port Gamble, WA	nochy 1860 - Francock-Aakors
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

						٧	VATER Q	UAI	LITY DAT	A #	:1					
				DO (m	g/L) > 2.5		temp (C) 23±1		cond.(µS/cm) vary < :		рн 7.8-8.2		TION WATER BA	т сн 0	TEMP.RECOR./HC	
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	Đ.O. mg/L	meter	TEMP °C	CC meter	DNDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEW	
Control / .	0	WQ	Surr	7	8.9	દ્ર	22.0	2	197		/	8	ティフ	46		
Control / .	1	WQ	Surr	6	67 LU	<	22.2	وا	023920	3		5	7.7.20) Ul		
Control / .	2	WQ	Surr	٩	6.4	5	22.3	6	205			5	7.4	JU		
Control / .	3	WQ	Surr	و_	6.0	5	22.1	لما	201			5	7.3	UL		
Control / .	4	WQ	Surr	9	5.7	S	23.1	وا	g of		X	S	7.7	MMB		
Control / .	5	WQ	Surr	Ϋ́	6.9	8િ	21.9	9	360		/\	8	7.2	MMS		
Control / .	6	WQ	Surr	9	6-5	5	21.6	6	203			5	7.8	MK		
Control / .	7	WQ	Surr	7	5.0	8	21.2	2	207			8	7.4	MK		
Control / .	8	WQ	Surr		5,0	5	21.7	6	200	\int		5	7.3	رال		
Control / .	9	₩Q	Surr	6	ها. ط	5	22.0	b	198	$\int_{-\infty}^{\infty}$		5	7.4	Ŭ.		
Control / .	10	WQ	Surr	6	6.8	5	22.3	6	189			5	7.4	MK		

Ownorg page. or 20114.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
Angles (A. 1907) Description	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal.	lela	Port Gamble, WA	SSERM 1980 - TRAINSOIP+95/644
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

Γ	441						V	VATER Q	UAL	ITY DAT	Α#	1					
					DO (m	g/L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) Vary < '		рн 7.8-8.2		ION WATER BA	т сн)	TEMP, RECDR./HOBO	#
	CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CO meter	NDUCTIVITY μS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWAL AM PM	FEED- ING
	WETSED1 / .	0	WQ	Surr	7	8.4	7	22.0	2	316			8	6.9	1216		
	WETSED1 / .	1	WQ	Surr	Va	7,4	5	22.5	6	326	VIII.		5	7.0	ひし		
	WETSED1 / .	2	WQ	Surr	L	5.3	5	226	6	257		/	5	7.12	UL		
Г	WETSED1 / .	3	WQ	Surr	6	1.97,40	95	2220	62	22250			5	717 C	υl		
Г	WETSED1 / .	4	WQ	Surr	4	4.8	5	0.66	b	416		\ /	S	7.5	MMB		
Г	WETSED1 / .	5	WQ	Surr	7	5.0	8	21.7	7	200 3	canacena		8	b. 8	MWG		
	WETSED1 / .	6	WQ	Surr	6	5,5	5	21.6	6	201		X	5	7.6	MK		
Γ	WETSED1 / .	7	WQ	Surr	7	4,5	8	20.8	2	203			8	7.0	MK		
Γ	WETSED1 / .	8	WQ	Surr	И	5.3	5	218	ما	192			S	7.3	UL		
Γ	WETSED1 / .	9	WQ	Surr	6	4.6	5	22.0	6	196			5	7.4	しし		
	WETSED1 / .	10	WQ	Surr	6	4.8	5	22.1	6	186			5	7.3	MK	999	

D 16. Je 2/03/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
···	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal	lela	Port Gamble, WA	120284 2000 - EPAF60078-307664
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	,

						1	NATER Q	UAI	LITY DAT	Α#	1					
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		р н 7.8-8.2	DILU.	TION WATER BA	тсн О	TEMP.RECDR./HO	BO#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	DNDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWA	
wetsed1-sir300 / .	0	WQ	Surr	2	ව .3	7	22.0	٦	430			ક	7.1	KINB		BH
WETSED1-SIR300 / .	1	WQ	Surr	b	6.7	5	22.5	6	4-05	B		5	7,1	JV	JL-	
WETSED1-SIR300 / .	2	WQ	Surr	و	6.7	5	22.5	ما	287	5	\ /	<u></u>	7.1	ひし	ルー	
WETSED1-SIR300 / .	3	WQ	Surr	6	5.7	5	22.1	b	231	+		5	7.0	Uu	U-	
WETSED1-SIR300 / .	4	WQ	Surr	9	6.9	5	22.0	b	30 S	and the state of t	X	S	4.4	MMB	MINE-	-3
WETSED1-SIR300 / .	5	WQ	Surr	7	4.6	8	21.9	9	190	egardol del part	/ \	8	6.6	MWB	mms	
WETSED1-SIR300 / .	6	WQ	Surr	Ġ	5.6	5	21.4	Ç	187			5	7.4	MK	MK-	
WETSED1-SIR300 / .	7	WQ	Surr		5.4	8	21.1	2	174			8	6.8	MK	We -	
WETSED1-SIR300 / .	8	WQ	Surr	0	4.8	5	21.9	ما	122			5	6.9	UL	Jr	
WETSED1-SIR300 / .	9	WQ	Surr	6	6.(5	21.9	ط	175			5	7.0	JU	ルー	
WETSED1-SIR300 / .	10	WQ	Surr	9	6.9	5	22.2	6	173 (company		5	7.3	MK		

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL	
Hyall	ela	Port Gamble, WA	1078A 2000 - 48668079+9976	
TEST START DATE	TIME	TEST END DATE	TIME	
31Jan14	***	10Feb14		

						V	VATER Q	UAL	ITY DAT	Ά#	1				
				DO (m	ig/L) > 2.5		TEMP (C) 23±1		COND.(μS/cm) Vary <		рн 7.8-8.2		TION WATER BA	т сн)	TEMP.RECDR./HOBO#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	CC meter	NDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWAL FEED AM PM ING
WETSED1-CC / .	0	WQ	Surr	7	8-5	3	22.0	2	352	1	/	8	7.0	AUB	BH BH
WETSED1-CC / .	1	WQ	Surr	6	6.6	5	22.6	6	399		/	C	7.2	ت ل	ر ا
WETSED1-CC / .	2	WQ	Surr	6	6.8	5	22.3	Ь	262	दि		5	7.2	رار	JU
WETSED1-CC / .	3	WQ	Surr	6	94.53	5	22.0	6	243	Total Production of	\ /	5	7.2	リレ	Jul ====================================
WETSED1-CC / .	4	WQ	Surr	9	ه. ک	5	33.0	b	234		\bigvee	5	4.6	MMB	MWB -
WETSED1-CC / .	5	WQ	Surr	7	4.6	8	21.7	2	269	GREANERS	Λ	8	6.9	MMB	MMB =
WETSED1-CC / .	6	WQ	Surr	9	4.6	5	21.6	يا	204		/ \	5	7.4	MK	MK 7
WETSED1-CC / .	7	WQ	Surr	7	3.7	8	21.4	2	201			४	7.0	MK	MK
WETSED1-CC / .	8	WQ	Surr	9	5.7	5	21.7	6	ાકવ	T		5	7.2	ひし	Ju
WETSED1-CC / .	9	WQ	Surr	6	5.1	S	22.0	6	ાક્ષ	Marketon		ځ	7.3	d	J
WETSED1-CC / .	10	WQ	Surr	8	5.3	5	22.1	6	184	WINDOWS .		15	7.2	MK	

OMP. Ju 2/03/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET

Sediment

CLIENT	PROJECT
Farallon	Yakima Steel
JOB NUMBER	PROJECT MANAGER
	Bill Gardiner

SPECIES		LABORATORY	PROTOCOL
Hyal	lela	Port Gamble, WA	02FPA 2000 + 59A/600/8+09/06\$
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

	WATER QUALITY DATA #1																
				DO (n	ng/L) > 2.5		TEMP (C) 23±1		COND.(µS/cm) vary <		р Н 7.8-8			ION WATER BA (тсн 0	TEMP.RECDR./HOBO	#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter.	TEMP °C	CC meter	NDUCTIVITY µS/cm	meter	Salinity ppt		meter	pH unit	TECHNICIAN	WATER RENEWAL	FEED- ING
SIR300 Blank / .	0	WQ	Surr	7	8.8	7	22.0	Z	235	٨			8	7.4	KB		BH
SIR300 Blank / .	1	WQ	Surr	6	600	6	22.7	6	220	1		7	5	70	(JL	()L	
SIR300 Blank / .	2	WQ	Surr	(2)	8.4	5	22.3	6	175	Ţ-\	/	/	Š	7.7	J.	JL	1-5
SIR300 Blank / .	3	WQ	Surr	6	8.7	5	22.0	6	160	on and an and an and an an an an an an an an an an an an an	\setminus /	Hadungela	5	7.9	JL	Ju	7
SIR300 Blank / .	4	WQ	Surr	9	8.8	S	3> .0	6	152		V	Ortonital	S	8.1	MMB	mme -	*
SIR300 Blank / .	5	WQ	Surr	7	8.8	8	21.7	7	145	and the second	Λ	, and the same	8	7.7	MMB	MMB	- 7
SIR300 Blank / .	6	WQ	Surr	9	7.8	5	21.7	Ce	190	CERTIFICATION OF THE PARTY OF T	/ \	COSCOSION	5	8.0	MK	MK	-7
SIR300 Blank / .	7	WQ	Surr	7	7.3	8	21.5	Z	158	Carpendary.	/ \		8	7,9	MK	MK	
SIR300 Blank / .	8	WQ	Surr	6	8.5	5	2LS	6	153				5	8.0	JL	从 	-)
SIR300 Blank / .	9	WQ	Surr	6	8.6	5	21.9	ها	153				5	7.9	Ju	V	₽ P
SIR300 Blank / .	10	WQ	Surr	6	8.5	5	22.1	6	154	1		Z	5	7.4	MK		

¹⁾ Aevapón initiated to all veps. Je 2/01/14.

10 DAY POREWATER - WATER QUALITY DATA SHEET Sediment

CLIENT		PROJECT
N. Britania	Farallon	Yakima Steel
JOB NUMBER		PROJECT MANAGER
		Bill Gardiner

SPECIES		LABORATORY	PROTOCOL.
Hyalle.	la	Port Gamble, WA	08658 2080 - APA/678/R+99/065
TEST START DATE	TIME	TEST END DATE	TIME
31Jan14		10Feb14	

A Carlo						٧	VATER Q	UA	LITY DAT	Α#	1					
				DO (m	yL) > 2.5		TEMP (C) 23±1		cond.(µS/cm) vary <		рн 7.8-8.2		TION WATER BA	тсн 0	TEMP.RECOR./HOE	O#
CLIENT/NEWFIELDS ID	DAY	REP	JAR#	meter	D.O. mg/L	meter	TEMP °C	C(meter	ONDUCTIVITY µS/cm	meter	Salinity ppt	meter	pH unit	TECHNICIAN	WATER RENEWA	FEED- ING
CC-Blank / .	0	WQ	Surr	7	8.9	7	22.0	z	236		7	8	7,4	KB		BH
CC-Blank / .	1	WQ	Surr	6	3-1	6	22.2	6	239			5	7.2	リレ	JL-	7 J
CC-Blank / .	2	WQ	Surr	Ь	5,8	5	22.5	Ь	219		\/	5	7,3	U ^L	ال	
CC-Blank / .	3	WQ	Surr	6	8.2	5	22.0	Ь	202		\ /	5	43	JL	كالخ	+>
CC-Blank / .	4	WQ	Surr	9	5,2	5	99.0	b	900		\	5	7.6	MMB	MMB-	-5
CC-Blank / .	5	WQ	Surr	7	4.4	8	31.8	2	199	operations:	V	8	₹.\	MMB	MMG	
CC-Blank / .	6	WQ	Surr	(a)	4.5	5	21.7	(e	205		Λ	5	7.6	MK	MC	19
CC-Blank / .	7	WQ	Surr	7	5.0	8	21.2	2	206	COMPAND		8	7.3	AUL	MK	
CC-Blank / .	8	WQ	Surr	6	4.8	15	21,7	6	195	CECCOON STATE	/ \	5	7,3	Λ.		الم
CC-Blank / .	9	WQ	Surr	وا	\$.0	5	22,0	b	195		/	5	7.5	J	JL	 >
CC-Blank / .	10	WQ	Surr	6	6.1	5	22.1	6	188			5	7.4	MC		

Ammonia and Sulfide Analysis Record

Client/Project: Valeima Stel ME	Organism: Hyalila	Test Duration (days):
PRETEST / (NIT	· · · · · · · · · · · · · · · · · · ·	le one) DAY of TEST:
OVER Comments:	LYING (OV) / POREWATER	(PW) (circle one)
Comments:	LYING (OV) / POREWATER Standards Temperature	Sample temperature should be within
Comments:	, use a second control of the second control	

The second control of the control of	necessing and topics of the entire	recovered a Areabers are a Area and	Tar	Lancing Company of the	a contra a companya da contra persona a contra persona da contra persona da contra persona da contra persona d	The state of a State of a state of	a reconstruction of set of all	Cord	and a second
Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sat (XIII)	Sulf. mg/L
PW NEEDI	EWN).	214/14 Mars	0.315	19.5	2/4/14 mms	, N	5.39	\b\3\	
WEISED			1.09		,		4.57	0.00	X
J PCC WEISED !	J.	ل	0.518	k		<u> </u>	5.47	₆ 53	

			· · · · · · · · · · · · · · · · · · ·						

Agri-Tech/Yakima Steel Wetland Sediment Evaluation

Appendix F

Sediment Chemistry

Appendix F.1

Whole Sediment Chemistry

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: XQ27A

LIMS ID: 13-26633 Matrix: Sediment

Data Release Authorized:

Reported: 12/06/13

Percent Total Solids: 46.0%

Sample ID: WETSED 1

SAMPLE

QC Report No: XQ27-Newfields Northwest

Project: AT/YS

Date Sampled: 12/04/13
Date Received: 12/05/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	12/06/13	6010C	12/06/13	7440-43-9	Cadmium	0.4	6.5	
3050B	12/06/13	6010C	12/06/13	7439-92-1	Lead	4	147	
3050B	12/06/13	6010C	12/06/13	7439-96-5	Manganese	0.2	189	
305 0 B	12/06/13	6010C	12/06/13	7440-66-6	Zinc	2	2,240	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Lab Sample ID: XQ27B

LIMS ID: 13-26634 Matrix: Sediment

Data Release Authorized:

Reported: 12/06/13

Percent Total Solids: 46.4%

Sample ID: WETSED 2
SAMPLE

QC Report No: XQ27-Newfields Northwest

Project: AT/YS

Date Sampled: 12/04/13 Date Received: 12/05/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	12/06/13	6010C	12/06/13	7440-43-9	Cadmium	0.4	7.4	
3050B	12/06/13	6010C	12/06/13	7439-92-1	Lead	4	146	
3050B	12/06/13	6010C	12/06/13	7439-96-5	Manganese	0.2	342	
3050B	12/06/13	6010C	12/06/13	7440-66-6	Zinc	2	2,940	

 $\begin{array}{c} \hbox{U-Analyte undetected at given LOQ} \\ \hbox{LOQ-Limit of Quantitation} \end{array}$

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: XQ27C LIMS ID: 13-26635 Matrix: Sediment

Data Release Authorized: Reported: 12/06/13

Percent Total Solids: 38.2%

Sample ID: WETSED 3

SAMPLE

QC Report No: XQ27-Newfields Northwest

Project: AT/YS

Date Sampled: 12/04/13 Date Received: 12/05/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	12/06/13	6010C	12/06/13	7440-43-9	Cadmium	0.5	9.4	
3050B	12/06/13	6010C	12/06/13	7439-92-1	Lead	5	178	
3050B	12/06/13	6010C	12/06/13	7439-96-5	Manganese	0.3	324	
3050B	12/06/13	6010C	12/06/13	7440-66-6	Zinc	3	3,810	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: XQ27LCS

LIMS ID: 13-26635 Matrix: Sediment

Data Release Authorized:

Reported: 12/06/13

Sample ID: LAB CONTROL

QC Report No: XQ27-Newfields Northwest

Project: AT/YS

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Cadmium	6010C	50.6	50.0	101%	
Lead	6010C	197	200	98.5%	
Manganese	6010C	47.5	50.0	95.0%	
Zinc	6010C	49	50	98.0%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

INORGANICS ANALYSIS DATA SHEET

TOTAL METALS

Page 1 of 1

Lab Sample ID: XQ27MB

LIMS ID: 13-26635 Matrix: Sediment

Data Release Authorized: Reported: 12/06/13

Sample ID: METHOD BLANK

QC Report No: XQ27-Newfields Northwest

Project: AT/YS

Date Sampled: NA Date Received: NA

Percent Total Solids: NA

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	12/06/13	6010C	12/06/13	7440-43-9	Cadmium	0.2	0.2	U
3050B	12/06/13	6010C	12/06/13	7439-92-1	Lead	2	2	U
3050B	12/06/13	6010C	12/06/13	7439-96-5	Manganese	0.1	0.1	U
3050B	12/06/13	6010C	12/06/13	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Table of Contents: ARI Job XQ29

Client: Newfields Northwest	Project: AT/YS	
	Page From:	Page To:
Inventory Sheet		
Cover Letter		
Chain of Custody Documentation		4
Case Narrative, Data Qualifiers, Control Limits	5	10
Metals Analysis + RAW DATA		
Report and Summary QC Forms		76
General Chemistry Analysis		
Report and Summary QC Forms	77	85
Geotechnical Analysis		
Report and Summary QC Forms	86	_8/_
Total Solids		
Report and Summary QC Forms	92	24
General Chemistry Raw Data		

BC

December-17-2013

Signature

Analyst Notes and Raw Data

Date

Chain of Custody Documentation

ARI Job ID: XQ29

Appendix F.2

AVS/SEM Chemistry, Dilution Series, and Sediment Conventionals

Agri-Tech/Yakima Steel Wetland Sediment Chemistry - Dilution Series

ARI ID	Client ID	Sampled	Rec	Prep	Analyzed	Method	cas	Compound	Value	Ιq	Units
13-27104-XR07A	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	10.5	<u> </u>	mg/kg
13-27104-XR07ADP	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	9.2		mg/kg
13-27104-XR07AMS	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	132		mg/kg
13-27104-XR07A	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	173		mg/kg
13-27104-XR07ADP	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	176		mg/kg
13-27104-XR07AMS	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	631		mg/kg
13-27104-XR07A	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	318		mg/kg
13-27104-XR07ADP	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	320		mg/kg
13-27104-XR07AMS	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	432		mg/kg
13-27104-XR07A	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	4,050		mg/kg
13-27104-XR07ADP	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	3,820		mg/kg
13-27104-XR07AMS	9	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	3,840		mg/kg
13-27105-XR07B	6	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	5.1		mg/kg
13-27105-XR07B	6	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	97		mg/kg
13-27105-XR07B	6	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	436		mg/kg
13-27105-XR07B	6	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	2,150		mg/kg
13-27106-XR07C	3	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	2.9		mg/kg
13-27106-XR07C	3	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	48		mg/kg
13-27106-XR07C	3	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	571		mg/kg
13-27106-XR07C	3	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	1,140		mg/kg
13-27107-XR07D	1	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	1.1		mg/kg
13-27107-XR07D	1	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	20		mg/kg
13-27107-XR07D	1	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	560		mg/kg
13-27107-XR07D	1	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	451		mg/kg
13-27108-121313MB	Method Blank			12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	0.2	U	mg/kg
13-27108-121313LCS	Lab Control			12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	51.4		mg/kg
13-27108-XR07E	0	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-43-9	Cadmium	0.4	U	mg/kg
13-27108-121313MB	Method Blank			12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	2	U	mg/kg
13-27108-121313LCS	Lab Control			12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	199		mg/kg
13-27108-XR07E	0	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-92-1	Lead	4	U	mg/kg
13-27108-121313MB	Method Blank			12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	0.1	U	mg/kg
13-27108-121313LCS	Lab Control			12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	48.4		mg/kg
13-27108-XR07E	0	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7439-96-5	Manganese	507		mg/kg
13-27108-121313MB	Method Blank			12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	3		mg/kg
13-27108-121313LCS	Lab Control			12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	50		mg/kg
13-27108-XR07E	0	12/10/13	12/12/13	12/13/13	12/17/13	SW6010C-Total	7440-66-6	Zinc	48		mg/kg

Cooler Receipt Form

ARI Client: New Folds	Project Name: AT 145		
COC No(s):	Delivered by Fed-Ex UPS Cour	ier Hand Delivered Other:	
Assigned ARI Job No: X 6 7 9	Tracking No: 7977 1 4/6	-	NA NA
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attac	ched to the outside of to cooler?	YES	NÒ
Were custody papers included with the cooler?		YES	NO
Were custody papers properly filled out (ink, signed, etc.)		YEŞ	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C filme:			
If cooler temperature is out of compliance fill out form 0007		Temp Gun ID#: St. S	77557
Cooler Accepted by:	Date	1676	
	forms and attach all shipping documents		
Log-In Phase:			
Was a temperature blank included in the cooler?	MANAGEM AS AN AS AND THE SECOND STATE OF THE S	YES	NO.
	Wrap Wet Ice Gel Packs Baggies Foam 6		, •• /
Was sufficient ice used (if appropriate)?		NA YES	NO
Were all bottles sealed in individual plastic bags?		_	CNO
Did all bottles arrive in good condition (unbroken)?	***************************************	YES	NO
Were all bottle labels complete and legible?	***************************************	YES	NO
Did the number of containers listed on COC match with the	number of containers received?	YES-	NO
Did all bottle labels and tags agree with custody papers?		KE S	NO
Were all bottles used correct for the requested analyses?		YES'	NO
Do any of the analyses (bottles) require preservation? (atta	ach preservation sheet, excluding VOCs)	(NA) YES	NO
Were all VOC vials free of air bubbles?		NA YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI		NA	
Was Sample Split by ARI: NA YES Date/Time	Equipment:	Split by:	
Samples Logged by:	Date:17-5-13_ Time:	16:14	
** Notify Project M.	anager of discrepancies or concerns **		
Sample ID on Bottle Sample ID on CO	C Sample ID on Bottle	Sample ID on CO	C
Additional Notes, Discrepancies, & Resolutions:			
But Date:			
By: Date:	Small → "sm" (<2 mm)		
Small Air Bubbles Peabubbles LARGE Air Bubbk 2mm 2-4 mm > 4 mm	Peabubbles > "pb" (2 to < 4 mm)		
	Large → "lg" (4 to < 6 mm)		
	Headspace -> "hs" (>6 mm)		

0016F 3/2/10 Cooler Receipt Form

Revision 014

XO29: BBBB!

Case Narrative

Client: Newfields Project: AT/YS ARI Job No.: XQ29

Sample Receipt

Three sediment samples were received on December 5, 2013 under ARI job XQ29. The cooler temperature measured by IR thermometer following ARI SOP was 0.6°C. The samples were analyzed for AVS/SEM, TOC, and Grain Size. Total metals results have been reported under a separate cover. For further details regarding sample receipt, please refer to the Cooler Receipt Form.

AVS/SEM Metals by SW6010C

The samples were digested and analyzed within the method recommended holding times.

The method blank was clean at the reporting limits. The LCS percent recoveries were within control limits.

The matrix spike percent recoveries and duplicate RPDs were within control limits.

General Chemistry Parameters

The samples were prepared and analyzed within method recommended holding times.

The method blanks were clean at the reporting limits. The LCS percent recoveries were within control limits.

The SRM percent recovery was in control.

The matrix spike percent recoveries of Acid Volatile Sulfide and Total Organic Carbon were outside the control limits for sample **WETSED 1**. All other quality control parameters were met for these analyses. No corrective action was taken.

Geotechnical Parameters

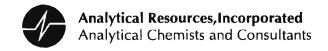
A laboratory-specific narrative follows this page.

Case Narrative XQ29 Page 1 of 1

YO29: GOOGE

Sample ID Cross Reference Report

ARI Job No: XQ29


Client: Newfields Northwest

Project Event: N/A Project Name: AT/YS

	Sample I	D	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1.	WETSED 1		XQ29A	13-26636	Sediment	12/04/13 14:00	12/05/13 10:20
2.	WETSED 2		XQ29B	13-26637	Sediment	12/04/13 14:00	12/05/13 10:20
3,.	WETSED 3		XQ29C	13-26638	Sediment	12/04/13 14:00	12/05/13 10:20

Printed 12/05/13 Page 1 of 1

X020:00002

Spike Recovery Control Limits for Conventional Wet Chemistry Effective 5/1/09

Control limits are updated periodically. Assure that you have ARI's current control limits by downloading the files at the time of use. http://www.arilabs.com/portal/downloads/ARI-CLs.zip

	ARI's Control Limits			
Sample Matrix:	Water	Soil / Sediment		
Matrix Spike Recoveries	% Recovery	% Recovery		
Ammonia	75 - 125	75 - 125		
Bromide	75 125	75 - 125		
Chloride	75 125	75 - 125		
Cyanide	75 - 125	75 - 125		
Ferrous Iron	75 - 125	75 - 125		
Fluoride	75 - 125	75 - 125		
Formaldehyde	75 - 125	75 - 125		
Hexane Extractable Material		78 - 114		
Hexavalent Chromium	75 - 125	75 - 125		
Nitrate/Nitrite	75 - 125	75 - 125		
Oil and Grease	75 - 125	75 - 125		
Phenol	75 - 125	75 - 125		
Phosphorous	75 - 125	75 - 125		
Sulfate	75 - 125	75 - 125		
Sulfide	75 - 125	75 - 125		
Total Kjeldahl Nitrogen	75 - 125	75 - 125		
Total Organic Carbon	75 - 125	75 - 125		
Duplicate RPDs				
Acidity	±20%	±20%		
Alkalinity	±20%	±20%		
BOD	±20%	±20%		
Cation Exchange	±20%	±20%		
COD	±20%	±20%		
Conductivity	±20%	±20%		
Salinity	±20%	±20%		
Solids	±20%	±20%		
Turbidity	±20%	±20%		

XOZQ: OOG40

Cover Page

INORGANIC ANALYSIS DATA PACKAGE

CLIENT: Newfields Northwest

PROJECT: AT/YS

SDG: XQ29

CLIENT	ID ID	ARI ID	ARI LIMS ID	REPREP
	11 344		-210	
WETSED	1	XQ29A	13-26636	
WETSED	10	XQ29ADUP	13-26636	
WETSED	15	XQ29ASPK	13-26636	
WETSED :	2	XQ29B	13-26637	
PBS		XQ29MB1	13-26637	
LCSS		XQ29MB1SPK	13-26637	
WETSED :	3	XQ29C	13-26638	

Were ICP	interelement corrections applied ?	Yes/No	YES
Were ICP	Yes/No	YES	
applicati	on of background corrections ?	Yes/No	NO
Comments:			
THIS DATA	PACKAGE HAS, BEEN REVIEWED AND AUTHORIZED	FOR RELEASE	BY:

Signature:

Name: Jay Kuhn

Title: Inorganics Director

X029:20012

INORGANICS ANALYSIS DATA SHEET AVS/SEM METALS

Page 1 of 1

Lab Sample ID: XQ29B

LIMS ID: 13-26637 Matrix: Sediment

Data Release Authorized:

Reported: 12/17/13

Percent Total Solids: 47.2%

Sample ID: WETSED 2 SAMPLE

QC Report No: XQ29-Newfields Northwest

Project: AT/YS

Date Sampled: 12/04/13 Date Received: 12/05/13

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
6010C	12/13/13	6010C	12/16/13	7440-43-9	Cadmium	0.2	8.4	
6010C	12/13/13	6010C	12/16/13	7439-92-1	Lead	2	149	
6010C	12/13/13	6010C	12/16/13	7439-96-5	Manganese	0.1	160	
6010C	12/13/13	6010C	12/16/13	7440-66-6	Zinc	. 1	3,240	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

XQ29:00014

INORGANICS ANALYSIS DATA SHEET AVS/SEM METALS

Page 1 of 1

Lab Sample ID: XQ29A

LIMS ID: 13-26636 Matrix: Sediment

Data Release Authorized

Reported: 12/17/13

Sample ID: WETSED 1
MATRIX SPIKE

QC Report No: XQ29-Newfields Northwest

Project: AT/YS

Date Sampled: 12/04/13 Date Received: 12/05/13

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	&	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Cadmium	6010C	6.6	66.4	52.7	113%	
Lead	6010C	183	391	211	98.6%	
Manganese	6010C	80.9	141	52.7	114%	
Zinc	6010C	4,790	5,490	52.7	1330%	H

Reported in mg/kg-dry

N-Control Limit Not Met

H-% Recovery Not Applicable, Sample Concentration Too High

NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

FORM-V

X029:00016

INORGANICS ANALYSIS DATA SHEET AVS/SEM METALS

Page 1 of 1

Lab Sample ID: XQ29LCS

LIMS ID: 13-26637

Matrix: Sediment

Data Release Authorized:

Reported: 12/17/13

Sample ID: LAB CONTROL

QC Report No: XQ29-Newfields Northwest

Project: AT/YS

Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

	Analysis	Spike	Spike	8	
Analyte	Method	Found	Added	Recovery	<u>Q</u>
Cadmium	6010C	28.0	25.0	112%	
Lead	6010C	109	100	109%	
Manganese	6010C	25.6	25.0	102%	
Zinc	6010C	27.9	25.0	112%	

Reported in mg/kg-dry

N-Control limit not met

NA-Not Applicable, Analyte Not Spiked

Control Limits: 80-120%

FORM-VII

YOOO: GOOLS

7000:00000

Calibration Verification

CLIENT: Newfields Northwest

PROJECT: AT/YS

SDG: XQ29

UNITS: ug/L

ANALYTE	EL	M	RUN	ICVIV	ICV	%R	CCVTV	CCV1	₽R	CCV2 %R	CCV3	%R	CCV4	%R	CCV5	%R
Cadmium	CD	ICP	IP121671	1000.0	1030.59	103.1	1000.0	1027.39 1	02.7	1034.17 103.4	1023.32	102.3	1012.87	101.3		
Lead	PB	ICP	IP121671	2000.0	2015.66	100.8	2000.0	2068.85 1	03.4	2032.30 101.6	2011.05	100.6	2052.37	102.6		
Manganese	MN	ICP	IP121671	1000.0	978.39	97.8	1000.0	973.11	97.3	981.98 98.2	965.65	96.6	978.40	97.8		
Zinc	ZN	ICP	IP121671	1000.0	1010.11	101.0	1000.0	1021.82 1	02.2	1024.40 102.4	1012.97	101.3	1029.67	103.0		

Calibration Blanks

CLIENT: Newfields Northwest

PROJECT: AT/YS

SDG: XQ29

UNITS:ug/L

ANALYTE	EL	METH	RUN	CRDL	IDL	ICB	С	ССВ1	С	CCB2	С	CCB3	С	CCB4	С	CCB5	C
Cadmium	CD	ICP	IP121671	5.0	2.0	2.0	υ	2.0	υ	2.0	U	2.0	Ū	2.0	U		
Lead	PB	ICP	IP121671	3.0	20.0	20.0	U	20.0	U	20.0	U	20.0	U	20.0	U		
Manganese	MN	ICP	IP12 16 71	15.0	1.0	1.0	υ	1.0	υ	1.0	ט	1.0	U	1.0	U		
Zinc	ZN	ICP	IP121671	20.0	10.0	10.0	σ	10.0	σ	10.0	ט	10.0	Ū	10.0	υ		

IDLs and ICP Linear Ranges

ANALYTICAL RESOURCES INCORPORATED

CLIENT: Newfields Northwest

PROJECT: AT/YS

SDG: XQ29

UNITS: ug/L

ANALYTE	EL	METH	INSTRUMENT	WAVELENTH (nm)	GFA BACK- GROUND	CLP CRDL	RL	RL DATE	ICP LINEAR ICP LR RANGE (ug/L) DATE
Cadmium	CD	ICP	OPTIMA ICP 2	228.80		5	2.0	4/1/2012	20000.0 6/10/2013
Lead	PB	ICP	OPTIMA ICP 2	220.35		3	20.0	4/1/2012	300000.0 6/10/2013
Manganese	MN	ICP	OPTIMA ICP 2	257.61		15	1.0	4/1/2012	30000.0 6/10/2013
Zinc	ZN	ICP	OPTIMA ICP 2	213.86		20	10.0	4/1/2012	100000.0 6/10/2013

X020:00024

ICP Interelement Correction Factors

CLIENT: Newfields Northwest

PROJECT: AT/YS

SDG: XQ29

IEC DATE: 10/22/1913

INSTRUMENT ID: OPTIMA ICP 2

ANALYTE	WAVELENGTH	MG	MN	МО	NI	PB	SB	TI	TL	v	ZN
Aluminum	308.22	0.0000000	0.0000000	16.0812590	0.0000000	0.0000000	0.0000000	1.9531650	0.0000000	15.6704600	0.0000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	-0.8263670	0.0000000	-3.8485090	0.0000000
Arsenic	188.98	0.0000000	0.0000000	3,4165090	0.0000000	0.0000000	0.0000000	-32.1596340	0.0000000	0.0000000	0.0000000
Barium	233.53	0.0000000	0.0000000	0.0000000	0.1266550	0.0000000	0.0000000	0.0000000	0.0000000	0.2235440	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0102770	0.0000000	0.2401990	0.0000000
Boron	249.67	0.0000000	0.0000000	-1.0759410	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	228.80	0.0000000	0.0000000	0.0000000	-0.9387840	0.0000000	0.0000000	0.0000000	0.0000000	0.0597550	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0679630	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.3212800	0.0000000
Cobalt	228.62	0.0000000	0.0000000	-0.1256200	0.1682020	0.0000000	0.0000000	1.7253070	0.0000000	0.0000000	0.0000000
Copper	324.75	0.0064738	0.0000000	0.3004190	0.0000000	0.0000000	0.0000000	0.1851800	0.0000000	0.0000000	0.0000000
Iron	273.96	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	7.2530080	0.0000000
Lead	220.35	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Magnesium	279.08	0.0000000	0.0000000	-5.2138260	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0021200	0.0000000	0.0000000	0.0000000	-0.1832430	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	-0.5439300	0.0000000	0.4201630	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.5911140	0.0000000
Silicon	288.16	-0.1473260	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	320.07	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	-0.2887870	0.0000000
Sodium	589.59	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	287.1603720	0.0000000	0.0000000	06.9999840
Thallium	190.80	0.0000000	0.0000000	-1.5891790	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	3.6439390	0.0000000
Tin	189.93	0.0000000	0.0000000	0.0000000	0.0000000	-0.0384380	-0.4873020	-0.2074990	0.0000000	0.0000000	0.0000000
Titanium	334.90	0.0000000	0.0000000	0.9474070	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	-0.1525200	-0.5409400	0.0000000	0.0000000	0.0000000	0.5527510	0.0000000	0.0000000	0.0000000
Zinc	206.20	0.0000000	0.0000000	0.2376970	0.0000000	0.0608720	0.0000000	0.000000	0.0000000	0.0000000	0.0000000

Analysis Run Log

CLIENT: Newfields Northwest

PROJECT: AT/YS

INSTRUMENT ID:

OPTIMA ICP 2

START DATE: 12/16/2013

SDG: XQ29

RUNID: IP121671

METHOD: ICP

END DATE: 12/16/2013

ANALYTICAL RESOURCES

INCORPORATED

SO SO 1.00 08332	CLIENT ID	ARI ID	DIL. TIME	₩R	AG	AL A	S B	BA BI	CA	ZD (CO CR	CU	FR R	3 K	MG	MN	MO N	IA N	I E	В 9	3B S	SE S	SI	SN :	TI	TL	U	v :	ZN
\$\frac{\text{S3}}{\text{S4}}\$ & \$\frac{\text{S4}}{\text{CP}}\$ & \$\frac{\text{S4}}{\text{CP}}\$ & \$\frac{\text{S4}}{\text{CP}}\$ & \$\frac{\text{S4}}{\text{S4}}\$ & \$\frac{\text{S4}}{\text{CP}}\$ & \$\frac{\text{S5}}{\text{S5}}\$ & \$\frac{\text{S5}}{\text{CN}}\$ & \$\frac{\text{CN}}{\text{CP}}\$ & \$\frac{\text{CN}}{\text{CP}}\$ & \$\frac{\text{CN}}{\text{CN}}\$ & \$\frac{\text{N}}{\text{N}}\$ & \$\text{N	S0 S	S0	1.00 08332							Х						X		П		X	T								X
S4	S2 S	S2	1.00 08373							х						х													
S5	S3 S	\$3	1.00 08392			H														x									x
ICV	S4 S	S4	1.00 08420			П		1																					
TCB	S5 S	S5	1.00 08441					1 3												- [- 1
CRI	ICV	ICV	1.00 08520							х						х				x									x
ICSA	ICB	ICB	1.00 08561							х						x				x					- 1				x
ICSAB	CRI	CRII	1.00 09002						11 1	х						х		1		x									x
ZZZZZZ	ICSA	ICSAI	1.00 09044							x						x				x									x
CCV	ICSAB	ICSABI	1.00 09085						11	х						x				x				1					x
CCB CCB1 1.00 09224 X	ZZZZZZ	DICHECK	1.00 09142						11																				
PBW XQ29MB1 1.00 09265	CCV	CCV1	1.00 09183					4		х						х			- 1	х									х
WETSED 2 XQ29B 1.00 09311 X	CCB	CCB1	1.00 09224					1		х						х			- 1	x	+	į							x
WETSED 3 XQ29C 1.00 09351 X	PBW	XQ29MB1	1.00 09265						1	x						x				x									х
WETSED 1D	WETSED 2	XQ29B	1.00 09311							х						х				x				1					х
WETSED 1 XQ29A 1.00 09433 X	WETSED 3	XQ29C	1.00 09351							х						x				х	-			1					х
WETSED 1S XQ29ASPK 1.00 09473 LCSW XQ29MB1SPK 1.00 09513 CCV CCV2 1.00 09553 CCB CCB2 1.00 09593 ZZZZZZZ XQ82MB 1.00 10035 ZZZZZZZ XQ47MB 5.00 10081 ZZZZZZZ XQ47ADUP 5.00 10124 ZZZZZZZ XQ47ASPK 5.00 10211 ZZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZZ XQ82ADUP 1.00 10295 ZZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ92MBSPK 1.00 10383 CCV CCV3 1.00 10423 CCB CCB3 1.00 10463 ZZZZZZZ XQ85MB 1.00 10505	WETSED 1D	XQ29ADUP	1.00 09393							х						x				x		- 1							x
LCSW	WETSED 1	XQ29A	1.00 09433					1	H	х						x				x									х
CCV	WETSED 1S	xQ29ASPK	1.00 09473						li l	х						х				x									х
CCB CCB2 1.00 09593 X X X X ZZZZZZ XQ82MB 1.00 10035 X	LCSW	XQ29MB1SPK	1.00 09513						1	- 1															İ				
ZZZZZZ XQ47MB 5.00 10035 ZZZZZZ XQ47MB 5.00 10124 ZZZZZZ XQ47ADUP 5.00 10170 ZZZZZZ XQ47ASPK 5.00 10211 ZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZ XQ82A 1.00 10295 ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ82MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X X ZZZZZZ XQ85MB 1.00 10463 X X X X X	CCV	CCV2	1.00 09553						i i	х						x				x									х
ZZZZZZ	CCB	CCB2	1.00 09593			l f			1	х						х				x									х
ZZZZZZ XQ47ADUP 5.00 10124 ZZZZZZ XQ47A 5.00 10170 ZZZZZZ XQ47ASPK 5.00 10211 ZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZ XQ82A 1.00 10295 ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ92MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X CCB CCB3 1.00 10463 X X X X ZZZZZZ XQ85MB 1.00 10505	ZZZZZZ	XQ82MB	1.00 10035											1		,				ı		- 1					ı		
ZZZZZZ XQ47A 5.00 10170 ZZZZZZ XQ47ASPK 5.00 10211 ZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZ XQ82A 1.00 10295 ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ92MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X X CCB CCB3 1.00 10463 X X X X X ZZZZZZ XQ85MB 1.00 10505	ZZZZZZ	XQ47MB	5.00 10081									1																	
ZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZ XQ82A 1.00 10295 ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ82MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X X CCB CCB3 1.00 10463 X X X X X ZZZZZZ XQ85MB 1.00 10505	ZZZZZZ	XQ47ADUP	5.00 10124					1																					
ZZZZZZ XQ82ADUP 1.00 10253 ZZZZZZ XQ82A 1.00 10295 ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ92MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X X CCB CCB3 1.00 10463 X X X X X X ZZZZZZ XQ85MB 1.00 10505	ZZZZZZ	XQ47A	5.00 10170						1							1		1			- 1			Ш					
ZZZZZZ	ZZZZZZ	XQ47ASPK	5.00 10211						li l						1														
ZZZZZZ XQ82ASPK 1.00 10341 ZZZZZZ XQ92MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X CCB CCB3 1.00 10463 X X X X X ZZZZZZ XQ85MB 1.00 10505	ZZZZZZ	XQ82ADUP	1.00 10253			11		1	1										- 1										
ZZZZZZ XQ82MBSPK 1.00 10383 CCV CCV3 1.00 10423 X X X X X X X X X X X X X X X X X X X	ZZZZZZ	XQ82A	1.00 10295																								1	- 8	
CCV	ZZZZZZ	XQ82ASPK	1.00 10341					1 1	11 1	- 1		1 6			ř.	١.			Ш		- }								
CCB	ZZZZZZ	XQ82MBSPK	1.00 10383																				- 1	1	Ì				
ZZZZZZ XQ85MB 1.00 10505	CCA	CCV3	1.00 10423							x						x				x									x
	CCB	ССВ3	1.00 10463							x					-	x	1			x									х
ZZZZZZ XQ85A 1.00 10550	ZZZZZZ	XQ85MB	1.00 10505																i										
	ZZZZZZ	XQ85A	1.00 10550																										

Sulfide Digestion Log

Balan	ice ID:	Pretre	eatmen	t Data					Samp	le Extrac	tion Date		T T	_	
	Sample ID	Date	Sample Weight	Extract Method*	Acid	Required pH	mL DI Water	Observed mL acid	Date	Sample Weight	mL Acid Required	mL DI Water Required	Trap Volume (mL)	Spike ID	Spike Volum
Blu		NA	NA	PSEP	HCIEM	<3	NA	NA	12/4/13	NA	MA	(00 mL	word		NA
w	5	1	1			1	11							00 144 D	lind
XQ	7341									5.159				NA	NA
	AI LUR					1		11 / _		5.02					1
	- A1 MS									5.057				BOLLER	
	81									2068				M	NK
	La	12	1		1	1	1	14	1	5.668	2	1		IT	1
31		NA	NA	AUS/SEA	THE	41	NA	NA	12/43	WA	NA-	100 m	$+ \bot$	NA	M
LC	.5		ſ	1		[1		1	L				20144-10)ml
XQ	79 A1									5.134				NA	NA
	A dup					, t - 040				5.048					1
	AI MS								e ²	5.054				00 M4 7D	11-1-
	BI									5.056				NA	NA
	L C1			1						5.001			1		
V	268 A,			AUS						5.009					
	Bi									5.176					
	- CI	الم	4	4	L	1	1	7	1	5,214	X		<u> </u>	1	7
								11	<u> </u>						
						+	1217	2/11/12	<u> </u>	1-7-					
							h -						-	\Rightarrow	-

* Extract Methods: PSEP = PSEP; 9030A = 9030A Acid Soluble; 9030A = 9030A acid insoluble; AVS = Acid Volatile, Reactive = 5VV-040 reactive

Analyst Name: _____ Date: _____ Date: _____ Time: ______ Time: ______

6171F

Page 00796

Metals Data Review Checklist

Method: (ICP)ICP-MS GFA CVA

Analysis Date: 12 - 16 - 13

ICP2	Analyst	Peer 12-17	Comment
Logbook:			
Analyst, Date, Method info	/		
Sample ID's	-		
Standard/QC solution ID's recorded	_		
Prep codes	· ·		
Dilution factors	~		
Crossouts/Corrections/Deletions	V		
Calibration:			
Blank & Standard intensities	·		¥.
Standard deviations	2 V	/	
Curve fit	V		
Calibration Verification:			
ICV/CCV			
ICB/CCB	~		
Samples:		1000年度	
RSD's & SD's	V-		sauloa
Internal Standards	~		13
Carry-over	~		
Method QC:	4.24.201	建	
CRI/CRA	~		MARKET WORLD COMPANY TO THE PARTY OF THE PAR
ICSA/ICSAB	1	/	
Post Spikes/Serial Dilutions	~		
Analytic Spikes			<u> </u>
Matrix QC:			The state of the state of
SRM/LCS	W		
Matrix Spikes	V		
Matrix Duplicates	~		
Method Blanks	~	/	XRO9
Data Distribution:			
Requested elements/isotope identified	/		
Correct samples identified for distribution	~	/	
Raw data match distributed data	_		
Data filename correct	~	1/	
Necessary Analysts Notes and CAF's			AN-XROA

Metals Data Review 5073F

Revision 1 4/02/01

5076F

ICP-OES-02-Daily Run Log

SAMPLE RUN LOG-ICP-OES-02 Perkin Elmer OPTIMA 7300 Serial No. – 077C8121202

IEC Date	ə:	-	Analysis D	ate:	12	-16	-13 Analyst: BA
LR Date	:	-	-	17			Page: 2_ of 5
All correct		by analyst unles	s otherwise noted.				
Edit Label	Delete Data	ARIS	Sample ID		rep. ode	Dilution	Comments
		XQ4	1 ADUR	LE	تما	5	
			A		1_		
		1	ASPK		<u> </u>	1	
		XOSS	ADMP		WC	1	
			A				
			ASPK				
			MBSPK		V_	1	
	٠.	CC	- √3				
			<u>B3</u>				
		XQ85	mB	TV	VC.		
			A				MINOS LR
			В			0	My, Na, > LR My, Na > LR Sch naisy My, Na, Sr > LR
							Marka St > LR
							1
			MBSPK				
, ,		4/	MBSPD		,	v	
		XQ29	MBISPK	WA	12		o.cometep Sok
		CC	2/4				
			CB4				End XQ29
==	==	XROL	mBI	SV	√ C	- 2-	
			B		8	4	143
			A-L	_	0	102/4	H13
			A			2	
			ADUP			1	

Page 04347

vano anali

Revision 000

3/20/09

Analysis Begun

Start Time: 12/16/2013 8:33:20 AM

Logged In Analyst: Metals

Spectrometer: Optima 7300 DV, S/N 077C8121202

Plasma On Time: 12/16/2013 7:13:48 AM

Technique: ICP Continuous

Autosampler: ESI

Sample Information File: C:\pe\metals\Sample Information\BLKS.sif

Batch ID:

Results Data Set: I2131216

Results Library: C:\Documents and Settings\All Users\PerkinElmer\ICP\Data\Results\Results.mdb

Sequence No.: 1

Sample ID: Calib Blank 1

Autosampler Location: 1

Date Collected: 12/16/2013 8:33:22 AM

Data Type: Original

Nebulizer Parameters: Calib Blank 1

All

Back Pressure

Flow

210.0 kPa 0.75 L/min

Mean Data: Calib 1	alank 1					
Mean Data: Callb 1	Mean Corrected				Calib	
Analyte	Intensity	Std.Dev.	RSD	Conc.		
ScA 357.253	2762037.1	12153.35	0.44%	100.0		
ScR 361.383	272684.3	1430.72	0.52%	100.0		
Ag 328.068†	612.2	34.00	5.55%	[0.00]	mg/L	
Al 308.215†	114.9	3.82	3.32%	[0.00]	mg/L	
As 188.979†	-15.3	2.35	15.29%	[0.00]	mg/L	
B 249.677†	56.4	3.22	5.70%	[0.00]	mg/L	
Ba 233.527†	32.8	2.98	9.10%	[0.00]	mg/L	
Be 313.042†	777.6	9.51	1.22%	[0.00]	mg/L	
Ca 317.933†	-165.5	5.96	3.60%	[0.00]		
	<u>252.0</u>	2.83 _		— -[0.00]		
Co 228.616†	-104.7	2.42	2.31%	[0.00]		
Cr 267.716†	-57.9	5.89	10.18%	[0.00]		
Cu 324.752†	3705.6	23.10	0.62%	[0.00]	-	
Fe 273.955†	-43.7	0.97	2.23%	[0.00]	mg/L	
к 766.490†	480.6	24.06	5.01%	[0.00]	mg/L	
Mg 279.077†	-60.3	4.29	7.10%	[0.00]	_	
Mn 257.610†	154.4	2.48	1.61%	[0.00]		
Mo 202.031†	72.4	1.51	2.08%	[0.00]		
Na 589.592t	-219.6	20.37	9.28%	[0.00]		
Na 330.237†	-101.9	7.72	7,58%	[0.00]	mg/L	
Ni 231.604†	4.1	3.79	91.44%	[0.00]	mg/L	
Pb 220.353†	16.4	2.19	13.33%	[0.00]	_	
Sb 206.836†	65.4	1.50	2.30%	[0.00]		
Se 196.026†	-38.3	4.75	12.41%	[0.00]		
Si 288.158†	-20.2	1.78	8.78%	[0.00]	mg/L	
Sn 189.927†	-6.8	3.81	55.68%	[0.00]	mg/L	
Sr 421.552†	2.7	30.89	>999.9%	[0.00]	mg/L	
Ti 334.903†	130.2	3.44	2.64%	[0.00]	mg/L	
Tl 190.801†	-36.1	3.94	10.90%	[0.00]		
V 292.402†	280.3	24.74	8.83%	[0.00]		
Zn 206.200†	-2.6	2.48	96.93%	[0.00]	mg/L	

Sequence No.: 2

Sample ID: STD2

Autosampler Location: 2

Date Collected: 12/16/2013 8:37:38 AM

Data Type: Original

Nebulizer Parameters: STD2

Analyte

All

Back Pressure Flow 209.0 kPa

0.75 L/min

Mean Data: STD2

Mean Corrected

Calib

XQ29: QQQ36

Mean Data: STD5					
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
ScA 357,253	2620005.4	13430.31	0.51%	94.86	ક
ScR 361.383	271329.3	1131.80	0.42%	99.50	8
Al 308.215†	34622.4	113.98	0.33%	[30]	mg/L
Ca 317.933†	258991.7	959.08	0.37%	[30]	mg/L
Fe 273.955†	107274.4	691.04	0.64%	[100]	mg/L
K 766.490†	224248.3	147.04	0.07%	[100]	mg/L
Mg 279.077†	26308.4	91.40	0.35%	[30]	mg/L
Na 330.237†	2474.7	9.39	0.38%	[100]	mg/L

Calibration Summary

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	215300	0.00000	1.000000	_
Al 308.215	1	Lin Thru 0	0.0	1154	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	1555	0.00000	1.000000	
B 249,677	1	Lin Thru 0	0.0	6172	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	4420	0.00000	1.000000	
Be 313.042	1	Lin Thru 0	0.0	532800	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	8633	0.00000	1.000000	
Cd 228.802	1	Lin Thru 0	0.0	26760	0.00000	1.000000	
Co 228.616	1	Lin Thru 0	0.0	40500	0.00000	1,000000	
Cr 267.716	1	Lin Thru 0	0.0	5927	0.00000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	275800	0.00000	1.000000	
Fe 273.955	1	Lin Thru O	0.0	1073	0.00000	1.000000	
K 766.490	1	Lin Thru 0	0.0	2242	0.00000	1.000000	
Mg 279.077	1	Lin Thru 0	0.0	876.9	0.00000	1.000000	
Mn 257.610	1	Lin Thru 0	0.0	38450	0.00000	1.000000	
Mo 202.031	1	Lin Thru 0	0.0	17820	0.00000	1.000000	
Na 589.592	1	Lin Thru 0	0.0	13870	0.00000	1.000000	
Na 330.237	1	Lin Thru 0	0.0	24.75	0.00000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	3763	0.00000	1.000000	
Pb 220.353	1	Lin Thru 0	0.0	8158	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	3038	0.00000	1.000000	
Se 196.026	1	Lin Thru 0	0.0	1401	0.00000	1.000000	
Si 288.158	1	Lin Thru 0	0.0	1449	0.00000	1.000000	
Sn 189.927	1	Lin Thru 0	0.0	3402	0.00000	1.000000	
Sr 421.552	1	Lin Thru 0	0.0	887800	0.00000	1.000000	
Ti 334.903	1	Lin Thru 0	0.0	19350	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	1961	0.00000	1.000000	
V 292.402	1	Lin Thru 0	0.0	142600	0.00000	1.000000	
Zn 206.200	1	Lin Thru 0	0.0	3597	0.00000	1.000000	

YO20: DOGGE

Sequence No.: 2 Sample ID: TCB

Zn 206.200†

Autosampler Location: 1

Date Collected: 12/16/2013 8:56:12 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Back Pressure Flow Analyte 0.75 L/min A11 210.0 kPa

Mean Data: CB Mean Corrected Calib. Sample | Titensity | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | 2807388.3 | 101.6 % | 0.19 | 0.19% | 0.24 | 0.24% | 0.24% | 0.24% | 0.000095 | 0.00022 | mg/L | 0.000095 | 43.67% | 0.24% | 0.000011 | mg/L | 0.003412 | -0.00751 | mg/L | 0.003412 | 45.43% | 0.02 | 0.00022 | mg/L | 0.000875 | 826.95% | 13.6 | 0.00220 | mg/L | 0.000421 | 0.00220 | mg/L | 0.000421 | 19.19% | 0.15 | 0.00000 | mg/L | 0.000201 | -0.00038 | mg/L | 0.000201 | 53.52% | 1.5 | 0.00000 | mg/L | 0.00039 | 0.00000 | mg/L | 0.000039 | >999.9% | 1.1 | 0.00013 | mg/L | 0.000894 | 0.00013 | mg/L | 0.000894 | 694.87% | -0.5 | -0.00020 | mg/L | 0.000019 | -0.000020 | mg/L | 0.000019 | 111.13% | -2.7 | -0.00002 | mg/L | 0.000126 | -0.00007 | mg/L | 0.000126 | 190.27% | 7.6 | 0.00129 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00022 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00134 | mg/L | 0.000167 | -0.00021 | mg/L | 0.000167 | 75.88% | 1.4 | 0.00012 | mg/L | 0.000166 | -0.00471 | mg/L | 0.002564 | 32.51% | -0.8 | -0.00012 | mg/L | 0.000166 | -0.00017 | mg/L | 0.000166 | 52.58% | -0.8 | -0.00005 | mg/L | 0.000339 | -0.00005 | mg/L | 0.000339 | 741.69% | -0.8 | -0.003391 | mg/L | 0.001460 | 0.00017 | mg/L | 0.001460 | 0.00044 | mg/L | 0.001460 | 0.00044 | mg/L | 0.001460 | 0.00044 | mg/L | 0.001460 | 0.00044 | mg/L | 0.000661 | -0.000641 | mg/L | 0.000661 | -0.000661 | mg/L | 0.000661 | -0.000661 | mg/L | 0.000661 | -0.000661 Intensity Conc. Units
2807388.3 101.6 %
280575.7 102.9 % Std.Dev. Std.Dev. RSD Conc. Units Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527± Be 313.042† Ca 317.933† Cd 228.802t Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077t Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† 0.001607 365.28% 1.6 0.00044 mg/L 0.001607 0.00044 mg/L Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

MOSS: WWW.

Sequence No.: 4 Sample ID: ICSA

Autosampler Location: 302 Date Collected: 12/16/2013 9:04:43 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: ICSA

Back Pressure Flow 209.0 kPa 0.75 L/min Analyte

A11

Mean Data: ICSA								
	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2673580.6	96.80		0.485				0.50%
ScR 361.383	268883.7	98.61		0.247				0.25%
Ag 328.068†	-299.7	-0.00069		0.000245	-0.00069	-	0.000245	35.71%
Al 308.215†	232480.9	201.4		0.23	201.4		0.23	0.11%
As 188.979†	51.6	0.02629		0.001167	0.02629	-	0.001167	4.44%
B 249.677†	47.3	0.00766	J .	0.001398	0.00766	J .	0.001398	18.26%
Ba 233.527†	114.5	-0.00534		0.000775	-0.00534	3.	0.000775	14.51%
Be 313.042†	20.0	0.00003	mg/L	0.000005	0.00003		0.000005	14.11%
Ca 317.933†	877265.9	101.6	mg/L	0.36	101.6	_	0.36	0.35%
Cd 228.802†	29.0	-0.00109	mg/L	0.000217	-0.00109	mg/L	0.000217	19.92%
Co 228.616†	79.2	0.00194	mg/L	0.000121	0.00194	2.	0.000121	6.25%
Cr 267.716†	14.3	0.00441	mg/L	0.000886	0.00441	mg/L	0.000886	20.08%
Cu 324.7521	-2512.3	0.00015	mg/L	0.000132	0.00015	mg/L	0.000132	87.23%
Fe 273.955†	214120.5	199.6	mg/L	0.71	199.6	mg/L	0.71	0.35%
K 766.490†	18.8	0.00840	mg/L	0.010363	0.00840	mg/L	0.010363	
Mg 279.077†	91232.1	103.9	mg/L	1.69	103.9	mg/L	1.69	1.63%
Mn 257.610†	68.1	0.00004	mg/L	0.000268	0.00004	mg/L		652.68%
Mo 202.031†	81.6	0.00325	mg/L	0.000723	0.00325	mg/L	0.000723	22.27%
Na 589.592†	144.6	0.01043	mg/L	0.002763	0.01043	mg/L	0.002763	26.50%
Na 330.237†	-7.0	-0.2789	mg/L	0.17709	-0.2789	mg/L	0.17709	63.49%
Ni 231.604†	4.0	0.00108	mg/L	0.001586	0.00108	mg/L	0.001586	
Pb 220.353†	-378.9	-0.00588	mg/L	0.002552	-0.00588	mg/L	0.002552	43.39%
Sb 206.836†	56.3	0.01830	mg/L	0.003012	0.01830		0.003012	16.46%
Se 196.026†	39.0	0.02230	mg/L	0.009765	0.02230	mg/L	0.009765	43.80%
Si 288,158†	-8.3	0.00960	mg/L	0.002335	0.00960	mg/L	0.002335	24.32%
Sn 189.927†	-91.3	-0.01 <u>24</u> 8	mg/L	0.000859	-0.01248	mg/L	0.000859	6.88%
Sr 421.552†	4867.1	0.00548	mg/L رب	<u>4</u> 0.000045	0.00548	mg/L	0.000045	0.83%
Ti 334.903†	185.7	0.00263	mg/L	0.000333	0.00263	mg/L	0.000333	12.64%
Tl 190.801t	-31.7	0.00811	mg/L	0.008585	0.00811	mg/L	0.008585	105.85%
V 292.402†	1546.6	-0.00089	mg/L	0.000292	-0.00089	mg/L	0.000292	32.82%
Zn 206.200†	3.2	-0.00094	mg/L	0.000654	-0.00094	mg/L	0.000654	69.52%

Y009:00012

Sequence No.: 6 Sample ID: DI CHECK Autosampler Location: 304 Date Collected: 12/16/2013 9:14:23 AM

Data Type: Original

Dilution: 1.000000X

Zn 206.200†

Nebulizer Parameters: DI CHECK

Analyte Back Pressure Flow 209.0 kPa 0.75 L/min A11

Mean Data: DI CHECK Mean Corrected Calib. Sample
 Intensity
 Conc. Units
 Std.Dev.

 2842886.1
 102.9 %
 0.39

 283818.0
 104.1 %
 0.84
 Conc. Units Std.Dev. RSD Analyte 2842886.1 283818.0 0.38% ScA 357.253 ScR 361.383 283818.0 104.1 % 0.84 0.80%

11.5 0.00005 mg/L 0.000152 0.00005 mg/L 0.000152 286.06%

-3.7 -0.00316 mg/L 0.006317 -0.00316 mg/L 0.006317 199.83%

5.4 0.00345 mg/L 0.003215 0.00345 mg/L 0.003215 93.16%

3.9 0.00064 mg/L 0.00088 0.00064 mg/L 0.00088 13.78%

-0.1 -0.00002 mg/L 0.000813 -0.00002 mg/L 0.000813 >999.9%

6.2 0.00001 mg/L 0.000009 0.00001 mg/L 0.000009 73.30%

21.5 0.00249 mg/L 0.000863 0.00249 mg/L 0.000863 34.68%

5.5 0.00019 mg/L 0.000124 0.00019 mg/L 0.000124 66.47%

16.6 0.00041 mg/L 0.000168 0.00041 mg/L 0.000168 40.88%

7.1 0.00119 mg/L 0.000862 0.00119 mg/L 0.000168 40.88%

7.1 0.00119 mg/L 0.000862 0.00119 mg/L 0.000862 72.21%

-57.9 -0.00021 mg/L 0.000059 -0.00021 mg/L 0.0001319 18.34%

11.5 0.00514 mg/L 0.001319 0.00719 mg/L 0.001319 18.34%

10.7 0.01216 mg/L 0.001306 0.01216 mg/L 0.003079 59.86%

10.7 0.01216 mg/L 0.001306 0.01216 mg/L 0.000307 59.86%

10.7 0.01216 mg/L 0.001306 0.01216 mg/L 0.000307 59.86%

10.7 0.01216 mg/L 0.001306 0.01216 mg/L 0.001306 10.74%

-9.5 -0.00025 mg/L 0.000090 -0.00025 mg/L 0.000163 23.84%

30.7 0.00221 mg/L 0.004352 0.00221 mg/L 0.004352 196.90%

0.8 0.03339 mg/L 0.409354 0.03339 mg/L 0.409354 >999.9%

3.5 0.0000 mg/L 0.000000 0.00020 mg/L 0.000603 65.45% 0.80% Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490+ Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330,237† 0.000803 85.45% 0.00094 mg/L 0.000800 0.00029 mg/L 0.000800 -0.00094 mg/L 0.00029 mg/L 0.000800 0.00029 mg/L 0.00252 mg/L 0.000563 -0.00252 mg/L 0.001220 0.00981 mg/L 0.00427 mg/L Ni 231.604+ -3.5-0.000800 278.18% 2.3 Pb 220.353†

 2.3
 0.00029 mg/L
 0.000800
 0.00029 mg/L
 0.000800 278.18%

 -7.6
 -0.00252 mg/L
 0.000563
 -0.00252 mg/L
 0.000563 22.37%

 13.7
 0.00981 mg/L
 0.001220
 0.00981 mg/L
 0.001220 12.43%

 -6.2
 -0.00427 mg/L
 0.000975 -0.00427 mg/L
 0.000975 22.84%

 2.8
 0.00081 mg/L
 0.000400 0.00081 mg/L
 0.000021 mg/L
 0.000023 3135.09%

 -3.9
 -0.00020 mg/L
 0.000242 -0.00020 mg/L
 0.000242 119.50%

 11.7
 0.00598 mg/L
 0.001202 0.00598 mg/L
 0.001202 0.008

 5.2
 0.00047 mg/L
 0.000094 0.00004 mg/L
 0.0000858 0.00047 mg/L
 0.000858 181.17%

 Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

YOOO: OOOUU

Sequence No.: 8 Sample ID: CB

Autosampler Location: 1 Date Collected: 12/16/2013 9:22:42 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 209.0 kPa 0.75 L/min 209.0 kPa All

Mean Data: CB	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2787226.8	100.9		0.35				0.349
ScR 361.383	275164.3	100.9		0.35				0.359
Ag 328.068†	-4.5	-0.00002		0.000050	-0.00002	mg/L	0.000050	239,629
Al 308.215†	-4.0	-0.00345	-	0.001494	-0.00345	mg/L	0.001494	43.379
As 188,979†	-0.9	-0.00058	mg/L	0.001354	-0.00058	mg/L	0.001354	231.489
B 249.677†	11.6	0.00188		0.000484	0.00188	mg/L	0.000484	25.71%
Ba 233.527†	0.1	0,00002	mq/L	0.001074	0.00002	mg/L	0.001074	>999.98
Be 313.042†	8.0	0.00002	mg/L	0.000014	0.00002	mg/L	0.000014	96.12%
Ca 317.933†	-5.2	-0.00061	mg/L	0.001545	-0.00061	mg/L	0.001545	254.289
Cd 228.802†	0.4	0.00002	mg/L	0.000186	0.00002	mg/L	0.000186	>999.98
Co 228.616†	-3.5	-0,00009	mg/L	0.000075	-0.00009	mg/L	0.000075	86.66%
Cr 267.716†	2.4	0.00040	mg/L	0.000675	0.00040	mg/L	0.000675	168.279
Cu 324,752†	30.5	0.00011	mg/L	0.000099	0.00011	mg/L	0.000099	89.51%
Fe 273.955t	1.0	0.00095	mg/L	0.000978	0.00095	mg/L	0.000978	103.21%
K 766.490†	38.9	0.01736	mg/L	0.009271	0.01736	mg/L	0.009271	53.40%
Ma 279.077†	3.3	0.00372	mg/L	0.004625	0.00372	mg/L	0.004625	124.32%
Mn 257.610†	-0.4	-0.00001	mg/L	0.000036	-0.00001	mg/L	0.000036	309.109
Mo 202,031†	1.0	0.00006	mg/L	0.000297	0.00006	mg/L	0.000297	525.80%
Na 589.592†	15.2	0.00110	mg/L	0.000915	0.00110	${ m mg/L}$	0.000915	83.40%
Na 330.237†	2.5	0.1010	mg/L	0.14008	0.1010	mg/L	0.14008	138.76%
Ni 231.604†	1.3	0.00035	mg/L	0.000551	0.00035	mg/L	0.000551	
Pb 220.353†	0.9	0.00011	mg/L	0.000570	0.00011		0.000570	
Sb 206.836†	8.5	0.00279	mg/L	0.001515	0.00279		0.001515	54.349
Se 196.026†	3.4	0.00244	mg/L	0.003980	0.00244		0.003980	
Si 288.158†	0.5	0.00037	mg/L	0.004819	0.00037	mg/L	0.004819	
Sn 189.927†	1.8	0.00054	mg/L	0.000620	0.00054	mg/L	0.000620	
Sr 421.552†	59.7	0.00007		0.000019	0.00007	3	0.000019	28.629
Ti 334.903†	4.0	0.00021	mg/L	0.000135	0.00021		0.000135	65.949
Tl 190.801†	0.9	0.00046	mg/L	0.001519	0.00046		0.001519	
V 292.402†	15.5	0.00011	mg/L	0.000081	0.00011	٥.	0.000081	74.119
Zn 206.200†	-1.0	-0.00029	mg/L	0.000115	-0.00029	mg/L	0.000115	39.629

voca anale

Sequence No.: 10 Sample ID: XQ29 B WMN Autosampler Location: 306

Date Collected: 12/16/2013 9:31:14 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ29 B WMN

Back Pressure Flow 210.0 kPa 0.75 L/min

a: XQ29 B WMN

| Mean Corrected | Calib. | Thrensity | Conc. Units | Std.Dev. | Conc. Units | Sta.Dev. | Conc. Units | Conc. Uni Mean Data: XQ29 B WMN Analyte ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592†

 244.2
 1.054 mg/L
 0.2644
 1.054 mg/L
 0.2644
 25.07%

 270.0
 0.07174 mg/L
 0.000461
 0.07174 mg/L
 0.000461
 0.64%

 11550.6
 1.421 mg/L
 0.0030
 1.421 mg/L
 0.0030
 0.21%

 6.8
 0.00525 mg/L
 0.004266
 0.00525 mg/L
 0.004266
 81.32%

 26.0
 0.01251 mg/L
 0.001562
 0.01251 mg/L
 0.001562
 12.48%

 46256.4
 31.92 mg/L
 0.135
 31.92 mg/L
 0.135
 0.42%

 -57.8
 -0.00157 mg/L
 0.001968
 -0.00157 mg/L
 0.001968
 125.60%

 282067.9
 0.3177 mg/L
 0.00119
 0.3177 mg/L
 0.00136
 0.56%

 18.0
 0.01770 mg/L
 0.002700
 0.01770 mg/L
 0.002700
 0.01770 mg/L
 0.00283
 0.4229 mg/L
 0.00283
 0.4229 mg/L
 0.00283
 0.67%

 111446.9
 30.99 mg/L
 0.209
 30.99 mg/L
 0.209
 0.67%

 Na 330.237† Ni 231.604† Pb 220.353† Sb 206.836† Se 196.026t Si 288.158t Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402† Zn 206.200†

Sequence No.: 12

Sample ID: XQ29 ADUP WMN

Autosampler Location: 308

Date Collected: 12/16/2013 9:39:32 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ29 ADUP WMN

Analyte

Back Pressure Flow 210.0 kPa 0.75 L/min All

Mean Data: XQ29	ADUP WMN							
	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2787693.8	100.9	8	0.35				0.34%
ScR 361,383	281188.4	103.1	ક	0.81				0.79%
Ag 328.068†	-168.5	-0.00044	mg/L	0.000210	-0.00044	-	0.000210	48.19%
Al 308.215†	23381.7	20.25	mg/L	0.058	20.25	-	0.058	0.29%
As 188.979†	-3.5	0.04570	mg/L	0.002882	0.04570	-	0.002882	6.31%
B 249.677†	148.7	0.02397	mg/L	0.001162	0.02397	•	0.001162	4.85%
Ba 233.527†	2469.1	0.5489	mg/L	0.00513	0.5489	mg/L	0.00513	0.93%
Be 313.042†	1182.4	0.00214	mg/L	0.000034	0.00214	mg/L	0.000034	1.58%
Ca 317.933†	334190.2	38.71	mg/L	0.225	38.71	mg/L	0.225	0.58%
Cd 228.802†	1861.0	0.06897	mg/L	0.000154	0.06897	mg/L	0.000154	0.22%
Co 228.616†	2532.9	0.05976	mg/L	0.000203	0.05976	mg/L	0.000203	0.34%
Cr 267.716†	117.5	0.02182	mg/L	0.000741	0.02182	mg/L	0.000741	3.40%
Cu 324.752†	61561.5	0.2260	mg/L	0.00061	0.2260	mg/L	0.00061	0.27%
Fe 273,955†	66741.1	62.21	mg/L	0.278	62.21	mg/L	0.278	0.45%
K 766,490†	6870.1	3.064	mg/L	0.0081	3.064	mg/L	0.0081	0.26%
Mg 279.077†	9068.3	10.30	mq/L	0.097	10.30	mg/L	0.097	0.94%
Mn 257.610†	29581.3	0.7694	mg/L	0.00253	0.7694	mg/L	0.00253	0.33%
Mo 202.031†	82.8	0.00414	mg/L	0.000189	0.00414	mg/L	0.000189	4.57%
Na 589.592†	19641.7	1.416	mg/L	0.0073	1.416	mg/L	0.0073	0.52%
Na 330.237†	392.3	1.240		0.2324	1.240	mg/L	0.2324	18.74%
Ni 231.604†	245.3	0.06519	mg/L	0.001253	0.06519	mg/L	0.001253	1.92%
Pb 220.353†	13258.5	1.627		0.0037	1.627	mg/L	0.0037	0.23%
Sb 206.836†	7.1	0.00437	_	0.002798	0.00437	mg/L	0.002798	64.07%
Se 196.026†	16.8	0.00969	_	0.001620	0.00969	mg/L	0.001620	16.71%
Si 288.158†	30243.6	20.87		0.058	20.87	mq/L	0.058	0.28%
Sn 189.927†	-22.3	-0.00071	-	0.000726	-0.00071	mg/L	0.000726	101.77%
Sr 421.552†	140184.1	0.1579	-	0.00048	0.1579		0.00048	0.30%
Ti 334.903†	30498.2	1.573	-	0.0061	1.573	mg/L	0.0061	0.39%
Tl 190.801†	7.4	0.00998		0.002215	0.00998	mq/L	0.002215	22.19%
V 292.402†	38948.9	0.2688	-	0.00095	0.2688		0.00095	0.35%
Zn 206.200†	176499.1	49.08	_	0.215	49.08	-	0.215	0.44%

Autosampler Location: 310

Sequence No.: 14 Sample ID: XQ29 ASPK WMN

Date Collected: 12/16/2013 9:47:32 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ29 ASPK WMN

 Analyte
 Back Pressure
 Flow

 All
 210.0 kPa
 0.75 L/min

Mean Data: XQ29	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2780144.4	100.7	8	0.34				0.34%
ScR 361.383	278800:5	102.2	용	0.50				0.49%
Ag 328.068†	109941.2	0.5112	mg/L	0.00075	0.5112	mg/L	0.00075	0.15%
AÍ 308.215†	30886.3	26.75	mg/L	0.110	26.75	mg/L	0.110	0.41%
As 188.979†	3375.1	2.223	mg/L	0.0081	2.223	mg/L	0.0081	0.36%
B 249.677†	426.0	0.06779	mg/L	0.001303	0.06779	mg/L	0.001303	1.92%
Ba 233.527†	12055.0	2.715	mg/L	0.0193	2.715	mg/L	0.0193	0.71%
Be 313.042†	258996.2	0.4859	mg/L	0.00148	0.4859	mg/L	0.00148	0.30%
Ca 317.933†	428853.3	49.68	mg/L	0.215	49.68	mg/L	0.215	0.43%
Cd 228.802†	17182.2	0.6297	mg/L	0.00269	0.6297	mg/L	0.00269	0.43%
Co 228.616†	23734.2	0.5827	mg/L	0.00203	0.5827	mg/L	0.00203	0.35%
Cr 267.716†	3219.0	0.5448	mg/L	0.00175	0.5448	mg/L	0.00175	0.32%
Cu 324.752†	208037.1	0.7578	mg/L	0.00224	0.7578	mg/L	0.00224	0.30%
Fe 273.955†	83104.4	77.46	mg/L	0.191	77.46	mg/L	0.191	0.25%
K 766.490†	30396.0	13.55	mg/L	0.055	13.55	mg/L	0.055	0.40%
Mg 279.077†	19301.1	21.96	mg/L	0.064	21.96	mg/L	0.064	0.29%
Mn 257.610†	51365.3	1.336	mg/L	0.0022	1.336	mg/L	0.0022	0.17%
Mo 202.031†	89.1	0.00432	mg/L	0.000178	0.00432	mg/L	0.000178	4.11%
Na 589.592†	230646.2	16.63	mg/L	0.039	16.63	mg/L	0.039	0.23%
Na 330.237†	822.2	17.76	mg/L	0.190	17.76	mg/L	0.190	1.07%
Ni 231.604†	2109.4	0.5597	mg/L	0.00214	0.5597		0.00214	0.38%
Pb 220.353†	30209.3	3.706	mg/L	0.0156	3.706	_	0.0156	0.42%
Sb 206.836†	22.1	0.00449	mg/L	0.002713	0.00449		0.002713	60.40%
Se 196.026†	3389.6	2.415	mg/L	0.0145	2.415	mg/L	0.0145	0.60%
Si 288.158†	39329.8	27.14	mg/L	0.077	27.14	mg/L	0.077	0.28%
Sn 189.927†	-35.0	-0.00278	mg/L	0.000394	-0.00278	mg/L	0.000394	14.19%
Sr 421.552†	598297.7	0.6739		0.00219	0.6739	mg/L	0.00219	0.33%
Ti 334.903†	34371.0	1.772	mg/L	0.0080	1.772	mg/L	0.0080	0.45%
Tl 190.801†	4058.4	2.072		0.0001	2.072	mg/L	0.0001	0.01%
V 292.402†	117551.5	0.8212	mg/L	0.00156	0.8212	mg/L	0.00156	0.19%
Zn 206.200†	187090.0	52.02	mg/L	0.312	52.02	mg/L	0.312	0.60%

X029:00052

Sequence No.: 16 Sample ID: CV 2

Autosampler Location: 7 Date Collected: 12/16/2013 9:55:35 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CV

Back Pressure Flow 210.0 kPa 0.75 L/min Analyte

All 210.0 kPa

lean Data: CV	Mean Corrected		Calib.			Sample		
nalyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
cA 357.253	2722937.1	98.58	ક્ર	0.340				0.349
cR 361.383	268451.1	98.45	ક્ર	0.646				0.669
g 328.068†	232446.5	1.080	mg/L	0.0105	1.080	mg/L	0.0105	0.97
1 308.215†	2432.6	2.074	mg/L	0.0092	2.074	mg/L	0.0092	0.44
s 188.979†	3158.0	2.059	mg/L	0.0135	2.059	mg/L	0.0135	0.66
249.677†	6308.4	1.021	mg/L	0.0052	1.021	mg/L	0.0052	0.51
a 233.527†	4570.7	1.034	mg/L	0.0019	1.034	mg/L	0.0019	0.19
e 313.042†	528543.8	0.9918	mg/L	0.00401	0.9918	mg/L	0.00401	0.40
a 317.933†	18543.9	2.148	mg/L	0.0068	2.148	mg/L	0.0068	0.32
d 228.802†	27955.9	1.034	mg/L	0.0118	1.034	mg/L	0.0118	1.15
o 228.616†	40925.6	1.009	mg/L	0.0113	1.009	mg/L	0.0113	1.12
r 267.716t	6222.4	1.049	mg/L	0.0049	1.049	mg/L	0.0049	0.47
u 324.752†	282410.5	1.024	mq/L	0.0025	1.024	mg/L	0.0025	0.25
e 273.955t	2283.9	2.123	mg/L	0.0011	2.123	mg/L	0.0011	0.05
766.490†	45979.0	20.50		0.064	20.50	mg/L	0.064	0.31
α 279.077†	1794.8	2.053	mg/L	0.0057	2.053		0.0057	0.28
n 257.610†	37743.4	0.9820	mg/L	0.00333	0.9820	mg/L	0.00333	0.34
0 202.031†	17858.5	1.002	mg/L	0.0133	1.002		0.0133	1.33
a 589.592†	700143.5	50.47	mg/L	0.025	50.47	mg/L	0.025	0.05
a 330,237†	1303.8	52.66	mg/L	0.418	52.66	mg/L	0.418	0.79
i 231 604†	3889.2	1.034	mq/L	0.0051	1.034	mg/L	0.0051	0.50
b 220.353†	16572.5	2.032	mg/L	0.0301	2.032	mg/L	0.0301	1.48
b 206.836t	6528.6	2.149	mg/L	0.0142	2.149	mg/L	0.0142	0.66
e 196.026†	2851.2	2.033	mg/L	0.0133	2.033	mg/L	0.0133	0.65
i 288.158†	3108.8	2.150	mg/L	0.0070	2.150	mg/L	0.0070	0.32
n 189.927†	3454.3	1.017		0.0094	1.017	mg/L	0.0094	0.93
r 421.552†	897983.2	1.011	mg/L	0.0012	1.011	mg/L	0.0012	0.12
i 334.903†	19729.5	1.018	mg/L	0.0011	1.018	mg/L	0.0011	0.11
1 190.801†	4146.2	2.106		0.0099	2.106	mg/L	0.0099	0.47
292.402†	145848.9	1.027	_	0.0116	1.027	mg/L	0.0116	1.13
n 206.200†	3683.5	1.024	3 ·	0.0020	1.024		0.0020	0.20

YOUR DARK!

Sequence No.: 18 Sample ID: XQ82 MB TWC Autosampler Location: 312

Date Collected: 12/16/2013 10:03:55 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ82 MB TWC

Back Pressure Analyte

Flow Flow 0.75 L/min All 210.0 kPa

Mean Data: XQ82 MB	TWC						
	Mean Corrected		Calib,			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
ScA 357.253	2780593.6	100.7	용	0.52			0.51%
ScR 361.383	275205.4	100.9	8	0.12			0.12%
Ag 328.068†	-5.3	-0.00002	mg/L	0.000160	-0.00002		0.000160 655.21%
Al 308.215†	-6.2	-0.00537	mg/L	0.003305	-0.00537		0.003305 61.53%
As 188.979†	0.9	0.00059	mg/L	0.002908	0.00059	_	0.002908 492.57%
B 249.677†	2.9	0.00047	mg/L	0.001553	0.00047	-	0.001553 327.05%
Ba 233.527†	0.4	0.00010	mg/L	0.000575	0.00010	_	0.000575 603.77%
Be 313.042†	0.7	0.00000	mg/L	0.000013	0.00000	mg/L	0.000013 >999.9%
Ca 317.933†	16.4	0.00190	mg/L	0.000660	0.00190	_	0.000660 34.81%
Cd 228.802†	2.0	0.00007	mg/L	0.000076	0.00007		0.000076 108.01%
Co 228,616†	-6.7	-0.00017	mg/L	0.000129	-0.00017	-	0.000129 77.76%
Cr 267.716t	5.4	0.00091	mg/L	0.000309	0.00091	-	0.000309 33.84%
Cu 324.752†	53.3	0.00019	mg/L	0.000087	0.00019		0.000087 45.11%
Fe 273.955†	1.2	0.00116	mg/L	0.002517	0.00116	_	0.002517 216.39%
K 766.490†	32.9	0.01465	mg/L	0.009143	0.01465	mg/L	0.009143 62.41%
Mg 279.077†	4.6	0.00521	mg/L	0.001834	0.00521	-	0.001834 35.16%
Mn 257.610†	0.2	0.00000	mg/L	0.000068	0.00000	J .	0.000068 >999.9%
Mo 202.031†	1.2	0.00007	mg/L	0.000080	0.00007	_	0.000080 115.58%
Na 589.592†	161.5	0.01164	mg/L	0.004727	0.01164		0.004727 40.61%
Na 330.237†	2.8	0.1109	mg/L	0.22947	0.1109		0.22947 206.99%
Ni 231,604†	2.9	0.00078	mg/L	0.001487	0.00078	mg/L	0.001487 190.61%
Pb 220.353†	4.2	0.00051	mg/L	0.000392	0.00051	mg/L	0.000392 76.96%
Sb 206.836†	0.7	0.00023	mg/L	0.000719	0.00023	mg/L	0.000719 314.97%
Se 196.026t	1.3	0.00093	mg/L	0.002061	0.00093	mg/L	0.002061 222.53%
Si 288.158†	5.9	0.00409	mg/L	0.004957	0.00409	mg/L	0.004957 121.28%
Sn 189.927t	1.3	0.00038	mg/L	0.000238	0.00038	mg/L	0.000238 62.55%
Sr 421.552†	22.2	0.00002	mg/L	0.000004	0.00002	mg/L	0.000004 14.93%
Ti 334.903†	-2.1	-0.00011	mg/L	0.000524	-0.00011	mg/L	0.000524 473.00%
Tl 190.801†	-4.0	-0.00203	-	0.001678	-0.00203	mg/L	0.001678 82.57%
V 292.402†	-0.9	-0.00000		0.000099	-0.00000	mg/L	0.000099 >999.9%
Zn 206.200†	11.9	0.00331	_	0.000494	0.00331	mg/L	0.000494 14.90%
DII 200.2001	11,5	0.00001				-	

Autosampler Location: 314

Sequence No.: 20 Sample ID: XQ47 ADUP LEN

Date Collected: 12/16/2013 10:12:44 AM

Data Type: Original

Dilution: 5.000000X

Zn 206.200†

Nebulizer Parameters: KQ47 ADUP LEN

Analyte Back Pressure

Flow 209.0 kPa 0.75 L/min

 ta: XQ47 ADUP LEN

 Mean Corrected
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 .253
 2710515.8
 98.13
 0.474
 0.488

 .383
 271036.4
 99.40
 0.893
 0.908

 068†
 -6.3
 0.00022 mg/L
 0.000188
 0.00108 mg/L
 0.00624

 215†
 116.1
 0.1005 mg/L
 0.001700
 0.09053 mg/L
 0.008498
 9.398

 979†
 31.8
 0.01811 mg/L
 0.001700
 0.09053 mg/L
 0.00263
 1.378

 527†
 504.9
 0.1143 mg/L
 0.00068
 0.5717 mg/L
 0.00263
 1.378

 933†
 304374.5
 35.26 mg/L
 0.109
 176.3 mg/L
 0.00039
 0.598

 933†
 304374.5
 35.26 mg/L
 0.109
 176.3 mg/L
 0.000102
 76.388

 802†
 20.4
 0.00065 mg/L
 0.000020
 0.00213 mg/L
 0.000300
 9.168

 616†
 175.0
 0.00430 mg/L
 0.000020
 0.00215 mg/L
 0.000300
 Mean Data: XQ47 ADUP LEN ScA 357.253 ScR 361.383 Ag 328.068† Al 308.215† As 188.979† B 249.677† Ba 233.527† Be 313.042† Ca 317.933† Cd 228.802† Co 228.616† Cr 267.716† Cu 324.752† Fe 273.955† K 766.490† Mg 279.077† Mn 257.610† Mo 202.031† Na 589.592† Na 330.237† 44.4 0.01179 mg/L 0.000600 0.05897 mg/L 0.003002 5.09% Ni 231.604†

 44.4
 0.01179 mg/L
 0.000600
 0.05897 mg/L
 0.003002
 5.09%

 453.7
 0.05557 mg/L
 0.001599
 0.2779 mg/L
 0.00799
 2.88%

 14.7
 0.00467 mg/L
 0.000445
 0.02337 mg/L
 0.002226
 9.53%

 2.6
 -0.00009 mg/L
 0.002325
 -0.00046 mg/L
 0.011627 >999.9%

 1667.5
 1.151 mg/L
 0.0321
 5.754 mg/L
 0.1604
 2.79%

 -45.4
 -0.00837 mg/L
 0.001541
 -0.04184 mg/L
 0.007706
 18.42%

 307099.2
 0.3459 mg/L
 0.00073
 1.730 mg/L
 0.0036
 0.21%

 96.1
 0.00255 mg/L
 0.000803
 0.01275 mg/L
 0.004017
 31.52%

 20.4
 0.01048 mg/L
 0.001428
 0.05239 mg/L
 0.007140
 13.63%

 110.3
 0.00084 mg/L
 0.000178
 0.00419 mg/L
 0.000891
 21.24%

 2407.1
 0.6688 mg/L
 0.00570
 3.344 mg/L
 0.0285
 0.85%

 Pb 220.353† Sb 206.836† Se 196.026† Si 288.158† Sn 189.927† Sr 421.552† Ti 334.903† Tl 190.801† V 292.402†

MOPS: COURS

Sequence No.: 22

Sample ID: XQ47 ASPK LEN

Autosampler Location: 316

Date Collected: 12/16/2013 10:21:19 AM

Data Type: Original

Dilution: 5.000000X

Nebulizer Parameters: XQ47 ASPK LEN

Back Pressure Flow 210.0 kPa 0.75 L/min

Analyte All

_	ASPK LEN Mean Corrected		Calib.			Sample		
malyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
CA 357.253	2683268.5	97.15	8	0.550				0.579
GCR 361.383	270462.1	99.19	8	0.372				0.389
ag 328.068†	45812.3	0.2131	mg/L	0.00124	1.066		0.0062	0.589
1 308.215†	1056.2	0.9120	mg/L	0.00284	4.560	mg/L	0.0142	0.31
s 188.979†	1341.7	0.8599	mg/L	0.00716	4.300	mg/L	0.0358	0.83
3 249.677†	233.7	0.03742	mg/L	0.000564	0.1871	mg/L	0.00282	1.51
a 233.527†	4097.6	0.9270	mg/L	0.00184	4.635	mg/L	0.0092	0.20
e 313.042†	98177.8	0.1842	mg/L	0.00086	0.9211	mg/L	0.00430	0.47
a 317.933†	335226.1	38.83	mg/L	0.067	194.2	mg/L	0.33	0.17
d 228.802†	5970.5	0.2185	mg/L	0.00162	1.092	mg/L	0.0081	0.74
o 228.616†	8409.8	0.2075	mg/L	0.00175	1.038	mg/L	0.0087	0.84
r 267.716†	1232.4	0.2072	mg/L	0.00081	1.036	mg/L	0.0040	0.39
u 324.752†	65489.4	0.2375	mg/L	0.00225	1.188	mg/L	0.0112	0.95
e 273.955†	1611.5	1.501	mg/L	0.0089	7.505	mg/L	0.0444	0.59
766.490†	20330.8	9.066	mg/L	0.0038	45.33	-mg/L	0.019	0.04
lg 279.077†	5685.1	6.478	mg/L	0.0080	32.39	mg/L	0.040	0.12
n 257.610†	29850.5	0.7763	mg/L	0.00186	3.882	mg/L	0.0093	0.24
0 202.031†	78.9	0.00391	mg/L	0.000095	0.01953		0.000477	2.44
a 589.592†	4111587.9	296.4	mg/L	1.39	1482	mg/L	6.97	0.47
a 330.237†	7762.6	313.4	mg/L	0.81	1567	mg/L	4.03	0.26
i 231.604†	801.2	0.2126	mg/L	0.00061	1.063	mg/L	0.0030	0.28
b 220.353t	7257.5	0.8898	mg/L	0.00826	4.449	mg/L	0.0413	0.93
b 206.836t	21.1	0.00479	mg/L	0.001733	0.02395	mg/L	0.008667	36.18
e 196.026†	1193.8	0.8494	mg/L	0.00863	4,247	mg/L	0.0432	1.02
i 288.158†	1711.5	1.183	mg/L	0.0248	5.914	mg/L	0.1239	2.09
n 189,927†	-50.0	-0.00919	mg/L	0.001050	-0.04595	mg/L	0.005249	11.42
r 421.552†	482529.2	0.5435	mg/L	0.00092	2.718	mg/L	0.0046	0.17
i 334.903†	83.3	0.00160	mg/L	0.000370	0.00802	mg/L	0.001850	23.0
1 190.801†	1610.9	0.8196	mg/L	0.00305	4.098	mg/L	0.0152	0.37
292.402†	28842.3	0.2031	-	0.00172	1.016	mg/L	0.0086	0.85
n 206.200†	3072.9	0.8539	_	0.00493	4.270	mg/L	0.0246	0.51

X020:000CO

Sequence No.: 24 Sample ID: XQ82 A TWC Autosampler Location: 318 Date Collected: 12/16/2013 10:29:55 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ82 A TWC

Analyte

Back Pressure Flow 211.0 kPa 0.75 L/min All

Mean Data: XQ82 A	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	-	Std.Dev.	RSD
ScA 357.253	2728002.7	98.77	용	0.106				0.11%
ScR 361.383	270513.9	99.20	윰	0.304				0.31%
Ag 328.068†	-53.9	-0.00015	mg/L	0.000083	-0.00015	mg/L	0.000083	56.16%
Al 308.215†	34.0	0.02935	mg/L	0.005130	0.02935	mg/L	0.005130	17.48%
As 188.979†	14.9	0.00856	mg/L	0.000713	0.00856	mg/L	0.000713	8.33%
B 249.677†	14116.5	2.287	mg/L	0.0142	2.287	mg/L	0.0142	0.62%
Ba 233.527†	10.2	0.00238	mg/L	0.000859	0.00238	mg/L	0.000859	36.10%
Be 313.042†	20.6	0.00004	mg/L	0.000024	0.00004	mg/L	0.000024	63.14%
Ca 317.933†	128263.7	14.86	mg/L	0,056	14.86	mg/L	0.056	0.38%
Cd 228.802†	2.5	0.00004	mg/L	0.000017	0.00004	mg/L	0.000017	38.89%
Co 228.616†	7.5	0.00018	mg/L	0.000035	0.00018	mg/L	0.000035	18.99%
Cr 267.716t	2.1	0.00014	mg/L	0.000325	0.00014	mg/L	0.000325	233.75%
Cu 324.752†	17734.4	0.06429	mg/L	0.000263	0.06429	mg/L	0.000263	0.41%
Fe 273.955†	60.6	0.05646	mg/L	0.002166	0.05646	mg/L	0.002166	3.84%
K 766.490t	18472.3	8.237	mg/L	0.0612	8.237	mg/L	0.0612	0.74%
Ma 279.077†	1626.9	1.853	mq/L	0.0076	1.853	mg/L	0.0076	0.41%
Mn 257.610†	61.0	0.00152	mq/L	0.000082	0.00152	mg/L	0.000082	5.35%
Mo 202,031†	101.5	0.00550	mg/L	0.000562	0.00550	mg/L	0.000562	10.22%
Na 589.592†	1793793.5	129.3	mg/L	0.33	129.3	mg/L	0.33	0.26%
Na 330,237†	3277.0	132.4	mg/L	1.22	132.4	mg/L	1.22	0.92%
Ni 231.604†	5.4	0.00144	mg/L	0.001033	0.00144	mg/L	0.001033	71.93 %
Pb 220,353†	6.3	0.00069	mg/L	0.000519	0.00069	mg/L	0.000519	75.60%
Sb 206.836†	4.9	0.00154	mg/L	0.000398	0.00154	mg/L	0.000398	25.79%
Se 196.026†	2.0	0.00064	mg/L	0.001729	0.00064	mg/L	0.001729	269.85%
Si 288.158†	3040.3	2.098		0.0049	2.098	mg/L	0.0049	0.24%
Sn 189.927†	-22.8	-0.00461		0.001379	-0.00461	mg/L	0.001379	29.89%
Sr 421.552†	173817.0	0.1958	mg/L	0.00064	0.1958	mg/L	0.00064	0.33%
Ti 334.903†	25.7	0.00030	mg/L	0.000246	0.00030	mg/L	0.000246	80.92%
T1 190.801†	4.4	0.00226	_	0.001398	0.00226	mg/L	0.001398	61.92%
V 292.402†	55.6	0.00039		0.000055	0.00039	mg/L	0.000055	14.05%
Zn 206.200†	40.8	0.01143	-	0.000330	0.01143	mg/L	0.000330	2.89%

Y020:00062

Sequence No.: 26

Autosampler Location: 320 Sample ID: XQ82 MBSPK TWC Date Collected: 12/16/2013 10:38:30 AM Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ82 MBSPK TWC

Back Pressure Flow 210.0 kPa 0.75 L/min All

	Mean Corrected	Į.	Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	- Conc.	Units	Std.Dev.	RSD
ScA 357.253	2758115.7	99.86	용	0.589				0.599
ScR 361.383	272076.8	99.78	뭄	0.369				0.379
Ag 328.068†	112328.3	0.5220	mg/L	0.00331	0.5220	mg/L	0.00331	0.639
Al 308.215†	2401.8	2.073	mg/L	0.0192	2.073	mg/L	0.0192	0.929
As 188.979†	3160.6	2.031	mg/L	0.0120	2.031	mg/L	0.0120	0.599
B 249.677†	48.4	0.00679	mg/L	0.000938	0.00679	mg/L	0.000938	13.819
Ba 233.527†	9092.1	2.057	mg/L	0.0207	2.057	mg/L	0.0207	1.019
Be 313.042†	244076.2	0.4580	mg/L	0.00143	0.4580	mg/L	0.00143	0.319
Ca 317.933†	87787.4	10.17	mg/L	0.031	10.17	mg/L	0.031	0.319
Cd 228.802†	13905.5	0.5088	mg/L	0.00227	0.5088	mg/L	0.00227	0.459
Co 228.616†	20046.0	0.4947	mg/L	0.00091	0.4947	mg/L	0.00091	0.189
Cr 267.716†	3102.3	0.5226	mg/L	0.00459	0.5226	mg/L	0.00459	0.889
Cu 324.752†	139839.1	0.5072	mg/L	0.00088	0.5072	mg/L	0.00088	0.179
Fe 273.955†	2241.4	2.086	mg/L	0.0108	2.086	mg/L	0.0108	0.529
K 766.490†	22973.4	10.24	mg/L	0.050	10.24	mg/L	0.050	0.499
Mg 279.077†	9287.9	10.59	mg/L	0.082	10.59	mg/L	0.082	0.789
Mn 257.610†	18738.1	0.4876	mg/L	0.00133	0.4876	mg/L	0.00133	0.279
Mo 202.031†	29.6	0.00150	mg/L	0.000330	0.00150	mg/L	0.000330	21.959
Na 589.592†	140630.3	10.14	mg/L	0.049	10.14	mg/L	0.049	0.489
Na 330.237†	268.7	10.70	mg/L	0.365	10.70	mg/L	0.365	3.418
Ni 231.604†	1934.0	0.5131	mg/L	0.00412	0.5131	mg/L	0.00412	0.809
Pb 220.353†	16503.4	2.024	mg/L	0.0036	2.024	mg/L	0.0036	0.189
Sb 206.836†	16.0	0.00010	mg/L	0.000505	0.00010	mg/L	0.000505	529.629
Se 196.026†	2795.0	1.993	mg/L	0.0094	1.993	mg/L	0.0094	0.479
Si 288.158†	7.5	0.00903	mg/L	0.006773	0.00903	mg/L	0.006773	75.039
Sn 189.927†	-16.2	-0.00325	mg/L	0.000881	-0.00325	mg/L	0.000881	27.109
Sr 421.552†	442496.0	0.4984	mg/L	0.00207	0.4984	mg/L	0.00207	0.429
Ti 334.903†	22.4	0.00036	mg/L	0.000329	0.00036	mg/L	0.000329	91.189
rl 190.801†	3955.4	2.012	_	0.0085	2.012	mg/L	0.0085	0.42
V 292.402†	71830.9	0.5058		0.00090	0.5058	-	0.00090	0.189
Zn 206.200†	1829.9	0.5087		0.00305	0.5087	J.	0.00305	0.60

YOOO: OOOE!

Sequence No.: 28 Sample ID: CB 3

Autosampler Location: 1 Date Collected: 12/16/2013 10:46:36 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte Back Pressure Flow
All 209.0 kPa 0.75 L/min

Mean Data: CB	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
ScA 357.253	2751312.6	99.61	8	0.402				0.409
ScR 361.383	275380.3	101.0	8	0.22				0.229
Ag 328.068†	40.0	0.00019	mg/L	0.000179	0.00019		0.000179	96.369
Al 308.215†	-1.3	-0.00113	mg/L	0.001360	-0.00113	_	0.001360	
As 188.979†	-0.8	-0.00051	mg/L	0.002941	-0.00051		0.002941	
B 249.677†	23.4	0.00379	mg/L	0.000971	0.00379	mg/L	0.000971	25.649
Ba 233.527†	1.5	0.00034	mg/L	0.000508	0.00034	mg/L	0.000508	
Be 313.042†	31.2	0.00006	mg/L	0.000027	0.00006	mg/L	0.000027	45.989
Ca 317.933†	3.5	0.00040	mg/L	0.000270	0.00040	-	0.000270	67.259
Cd 228.802†	5.9	0.00022	mg/L	0.000058	0.00022	mg/L	0.000058	26.219
Co 228.616†	-0.9	-0.00002	mg/L	0.000178	-0.00002		0.000178	
Cr 267.716†	-0.6	-0.00010	mg/L	0.000296	-0.00010	mg/L	0.000296	
Cu 324.752†	33.9	0.00012	mg/L	0.000213	0.00012	mg/L	0.000213	
Fe 273.955†	2.0	0.00187	mg/L	0.000715	0.00187	-	0.000715	38.339
K 766.490†	-0.8	-0.00037	mg/L	0.011949	-0.00037	mg/L	0.011949	
Mg 279.077†	3.1	0.00350	mg/L	0.004659	0.00350	mg/L	0.004659	
Mn 257.610†	0.1	0.00000	mg/L	0.000064	0.00000		0.000064	
Mo 202.031†	1.9	0.00011	mg/L	0.000243	0.00011	mg/L	0.000243	
Na 589.592†	320.6	0.02311	mg/L	0.005549	0.02311	mg/L	0.005549	24.019
Na 330.237†	-8.0	-0.3244	mg/L	0.47312	-0.3244	mg/L	0.47312	
Ni 231.604†	3.8	0.00102	mg/L	0.001629	0.00102	The state of the s	0.001629	
Pb 220.353†	6.4	0.00079	mg/L	0.000320	0.00079	2	0.000320	40.589
Sb 206.836†	10.1	0.00334	mg/L	0.001740	0.00334		0.001740	52.149
Se 196.026†	-0.2	-0.00012	mg/L	0.001838	-0.00012		0.001838	
Si 288.158†	-0.3	-0.00019	mg/L	0.004646	-0.00019		0.004646	
Sn 189.927†	3.3	0.00097		0.000563	0.00097	_	0.000563	58.31
Sr 421.552†	90.1	0.00010	mg/L	0.000033	0.00010	-	0.000033	32.599
Ti 334.903†	11.3	0.00058	mg/L	0.000152	0.00058		0.000152	25.959
rl 190.801†	-0.2	-0.00012	mg/L	0.002846	-0.00012		0.002846	
V 292.402†	-6.7	-0.00005	mg/L	0.000265	-0.00005	mg/L	0.000265	
Zn 206.200†	-1.2	-0.00035	mq/L	0.000130	-0.00035	mg/L	0.000130	37.53

X029:00066

Sequence No.: 30 Sample ID: XQ85 A TWC

Dilution: 1.000000X

Autosampler Location: 322

Date Collected: 12/16/2013 10:55:08 AM

Data Type: Original

Nebulizer Parameters: XQ85 A TWC

Analyte

A11

Back Pressure Flow

209.0 kPa

0.75 L/min

Mean Data: XQ85 A	Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2157093.3	78.10	ક્ષ	0.394				0.51%
ScR 361.383	236446.5	86.71	B	1.236				1.43%
Ag 328.068†	-542.0	0.00043	mg/L	0.000265	0.00043	mg/L	0.000265	62.00%
Al 308.215†	3393.8	2.940	mg/L	0.0250	2.940		0.0250	0.85%
As 188.979†	102.0	0.04217	mg/L	0.002584	0.04217	mg/L	0.002584	6.13%
B 249.677†	16414.4	2.659	mg/L	0.0261	2.659	mg/L	0.0261	0.98%
Ba 233.527†	737.9	0.1690	mg/L	0.00134	0.1690	mg/L	0.00134	0.79%
Be 313.042†	106.6	0.00020	mg/L	0.000024	0.00020	mg/L	0.000024	12.41%
Ca 317.933†	3668679.4	425.0	mg/L	4.45	425.0	mg/L	4.45	1.05%
Cd 228.802†	27.2	0.00063	mg/L	0.000229	0.00063	mg/L	0.000229	36.22%
Co 228.616†	142.5	0.00315	mg/L	0.000140	0.00315	mg/L	0.000140	4.45%
Cr 267.716†	514.1	0.02124	mg/L	0.001067	0.02124	mg/L	0.001067	5.02%
Cu 324.752†	4781.4	0.01147	mg/L	0.000414	0.01147	mg/L	0.000414	3.61%
Fe 273.955†	3566.4	3.325	mg/L	0.0252	3.325	mg/L	0.0252	0.76%
K 766.490†	681153.4	303.7	mq/L	1.43	303.7	mg/L	1.43	0.47%
Mg 279.077†	810798.7	924.5	mg/I	1.45	924.5	mg/L	1.45	0.16%
Mn 257.610†	5905.6	0.1499	mg/L	0.00140	0.1499	mg/L	0.00140	0.94%
Mo 202.031†	395.6	0.01663	mg/L	0.000528	0.01663	mg/L	0.000528	3.18%
Na 589.592†	Saturated3		_					
Na 330.237†	199115.6	(8046	mg/D	22.78	8046	mg/L	22.78	0.28%
Ni 231.6041	37.0	0.00982	mg/L	0.000564	0.00982		0.000564	5.75%
Pb 220.353†	-26.5	-0.00255	mg/L	0.001302	-0.00255	mg/L	0.001302	51.09%
sb 206.836†	32.1	0.00921	mg/L	0.004180	0.00921	mg/L	0.004180	45.36%
Se 196.026†	47.6	0.01086	mg/L	0.005886	0.01086	mg/L	0.005886	54.20%
Si 288.158†	15034.4	10.51	mg/L	0.334	10.51	mg/L	0.334	3.18%
Sn 189.927†	-144.2	0.01762	mg/L	0.003073	0.01762	mg/L	0.003073	17.44%
Sr 421.552†	5166484.4	5.819	mg/L	0.0709	5.819	mg/L	0.0709	1.22%
Ti 334.903†	4078.5	0.1816	mg/L	0.00141	0.1816	mg/L	0.00141	0.77%
Tl 190.801†	34.2	0.01781	mg/L	0.002596	0.01781	mg/L	0.002596	14.57%
V 292.402†	1254.2	0.00886	mg/L	0.000079	0.00886	mg/L	0.000079	0.90%
Zn 206.200†	32.9	0.00332	mg/L	0.000205	0.00332	mg/L	0.000205	6.18%

X020:00000

Sequence No.: 32 Sample ID: XQ85 C TWC

Dilution: 1.000000X

Autosampler Location: 324

Date Collected: 12/16/2013 11:03:58 AM

Data Type: Original

Nebulizer Parameters: XQ85 C TWC

Back Pressure Flow Analyte All 210.0 kPa 0.75 L/min

Mean Data: XQ85 (C TWC				
-	Mean Corrected	Calib	•	Sample	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev. RSD
ScA 357.253	2327045.7	84.25 %	0.664		0.79%
ScR 361.383	247119.6	90.62 %	0.614		0.68%
Ag 328.068†	-486.9	0.00032 mg/L	0.000135	0.00032 mg/L	0.000135 42.24%
Al 308.215†	4797.5	4.156 mg/L	0.0383	4.156 mg/L	0.0383 0.92%
As 188.979†	91.9	0.04000 mg/L	0.003873	$0.04000~{ m mg/L}$	0.003873 9.68%
B 249.677†	14761.6	2.392 mg/L	0.0312	2.392 mg/L	0.0312 1.30%
Ba 233.527†	4872.0	1.103 mg/L	0.0116	$1.103~{ m mg/L}$	0.0116 1.05%
Be 313.042†	65.0	0.00012 mg/L	0.000029	0.00012 mg/L	0.000029 24.39%
Ca 317.933†	3215354.2	372.4 mg/L	1.27	372.4 mg/L	1.27 0.34%
Cd 228.802†	12.6	0.00008 mg/L	0.000223	0.00008 mg/L	0.000223 274.82%
Co 228.616†	112.8	0.00230 mg/L	0.000082	0.00230 mg/L	0.000082 3.58%
Cr 267.716†	469.8	0.02400 mg/L	0.000831	0.02400 mg/L	0.000831 3.46%
Cu 324.752†	3690.7	0.00866 mg/L	0.000344	0.00866 mg/L	0.000344 3.97%
Fe 273.955†	8314.0	7.750 mg/L	0.1228	7.750 mg/L	0.1228 1.58%
K 766.490†	471398.2	210.2 mg/L	0.97	210.2 mg/L	0.97 0.46%
Mg 279.077†	686030.9	782.2 mg/L	0.67	782.2 mg/L	0.67 0.09%
Mn 257.610†	228923.6	5.951 mg/L	0.0906	5.951 mg/L	0.0906 1.52%
Mo 202.031†	212.7	0.00705 mg/L	0.000526	0.00705 mg/L	0.000526 7.46%
Na 589.592†	Saturated3	-			
Na 330.237†	136953.7	5534 mg/L	86.63	5534 mg/L	86.63 1.57%
Ni 231.604†	49.8	0.01322 mg/L	0.002011	0.01322 mg/L	0.002011 15.21%
Pb 220.353†	-28.4	-0.00269 mg/L	0.000469	-0.00269 mg/L	0.000469 17.44%
Sb 206.836†	12.2	0.00283 mg/L	0.002855	0.00283 mg/L	0.002855 100.85%
Se 196.026†	45.3	0.01209 mg/L	0.001800	0.01209 mg/L	0.001800 14.88%
Si 288.158†	28318.6	19.65 mg/L	0.285	19.65 mg/L	0.285 1.45%
Sn 189,927†	-134.3	0.01312 mg/L	0.000599	0.01312 mg/L	0.000599 4.56%
Sr 421.552†	4835106.5	(5.446 mg/D)	0.0175	5.446 mg/L	0.0175 0.32%
Ti 334.903†	4415.2	0.2026 mg/L	0.00361	0.2026 mg/L	0.00361 1.78%
Tl 190.801†	28.3	0.01533 mg/L	0.002943	0.01533 mg/L	0.002943 19.20%
V 292.402†	1564.3	0.01161 mg/L	0.000120	0.01161 mg/L	0.000120 1.03%
Zn 206.200†	27.9	0.00445 mg/L	0.000947	0.00445 mg/L	0.000947 21.29%

XQ29:00070

Date: 12/16/2013 11:15:56 AM

Sequence No.: 34

Sample ID: XQ85 MBSPK TWC

Autosampler Location: 326 Date Collected: 12/16/2013 11:12:33 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ85 MBSPK TWC

Back Pressure Flow 211.0 kPa 0.75 L/min Analyte All 211.0 kPa

	Mean Corrected		Calib.			Sample		
Analyte	Intensity		Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2892595.4	104.7		0.34				0.339
ScR 361.383	286379.0	105.0	용	0.63				0.609
Ag 328.068†	112592.6	0.5232	mg/L	0.00165	0.5232	mg/L	0.00165	0.319
Al 308.215†	2369.9	2.046	mg/L	0.0246	2.046	mg/L	0.0246	1.209
As 188.979†	3190.7	2.051	mg/L	0.0072	2.051	mg/L	0.0072	0.35
B 249.677†	42.2	0.00578	mg/L	0.000354	0.00578	mg/L	0.000354	6.129
Ba 233.527†	9047.5	2.047	mg/L	0.0188	2.047	mg/L	0.0188	0.929
Be 313.042†	247394.7	0.4642	mg/L	0.00025	0.4642		0.00025	0.059
Ca 317.933†	89589.2	10.38		0.032	10.38	mg/L	0.032	0.31
Cd 228.802†	14007.1	0.5125	mg/L	0.00187	0.5125	mg/L	0.00187	0.36
Co 228.616†	20289.1	0.5007	mg/L	0.00100	0.5007		0.00100	0.20
Cr 267.716†	3133.6	0.5278	mg/L	0.00525	0.5278	mq/L	0.00525	1.009
Cu 324.752†	140331.8	0.5090	mg/L	0.00193	0.5090	mg/L	0.00193	0.38
e 273.955†	2276.4	2.119	mg/L	0.0220	2.119	mg/L	0.0220	1.049
K 766.490†	23558.5	10.51	mg/L	0:090	10.51	mg/L	0.090	0.869
Mg 279.077†	9430.9	10.75		0.122	10.75	mg/L	0.122	1.14
In 257.610†	18897.7	0.4918	mg/L	0.00143	0.4918		0.00143	0.29
40 202.031†	19.4	0.00092	mg/L	0.000007	0.00092		0.000007	0.76
Na 589.592†	163210.4	11.76		0.286	11.76		0.286	2.43
Na 330.237†	295.6	11.79		0.301	11.79		0.301	2.55
Ni 231.604†	1938.2	0.5143		0.00706	0.5143		0.00706	1.37
Pb 220.353†	16694.8	2.047		0.0029	2.047		0.0029	0.149
Sb 206.836†	15.3	-0.00019	mg/L	0.001488	-0.00019			764.099
Se 196.026†	2812.8	2.006		0.0038	2.006		0.0038	0.19
Si 288.158†	159.2	0.1137		0.02379	0.1137		0.02379	20.92
Sn 189.927†	-16.8	-0.00339		0.000491	-0.00339		0.000491	14.49
Sr 421.552†	444961.3	0.5012		0.00091	0.5012		0.00091	0.18
ri 334.903†	28.6	0.00066		0.000184	0.00066	mg/L	0.000184	27.77
1 190.801†	3961.4	2.015		0.0061	2.015		0.0061	0.30
7 292.402†	72755.6	0.5123		0.00190	0.5123		0.00190	0.37
Zn 206.200†	1851.1	0.5147		0.00526	0.5147		0.00526	1.02

YOSS BOATS

Sequence No.: 36

Autosampler Location: 328 Date Collected: 12/16/2013 11:20:35 AM Sample ID: XQ29 MB1SPK WMN

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: XQ29 MB1SPK WMN

Analyte Back Pressure

Flow 0.75 L/min 212.0 kPa All

	9 MB1SPK WMN Mean Corrected		Calib.			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
ScA 357.253	2921276.2	105.8	ક	0.42				0.40%
ScR 361.383	289792.5	106.3	ક	0.74				0.709
Ag 328.068†	114852.1	0.5337	mg/L	0.00545	0.5337	mg/L	0.00545	1.029
1 308.215†	2489.9	2.149	mg/L	0.0083	2.149	mg/L	0.0083	0.389
As 188.979†	3535.6	2.272	mg/L	0.0097	2.272	mg/L	0.0097	0.439
3 249.677†	30.5	0.00382	mg/L	0.000631	0.00382	mg/L	0.000631	16.539
a 233.527†	9477.7	2.144	mg/L	0.0111	2.144	mg/L	0.0111	0.529
Be 313.042†	269648.5	0.5060	mg/L	0.00309	0.5060	mg/L	0.00309	0.619
Ca 317.933†	92248.4	10.69	mg/L	0.051	10.69	mg/L	0.051	0.489
d 228.802†	15297.2	0.5595	mg/L	0.00466	0.5595	mg/L	0.00466	0.839
Co 228.616†	21552.2	0.5319	mg/L	0.00474	0.5319	mg/L	0.00474	0.899
cr 267.716†	3286.5	0.5536	mg/L	0.00229	0.5536	mg/L	0.00229	0.419
Cu 324.752†	143898.5	0.5219	mg/L	0.00441	0.5219	mg/L	0.00441	0.85
e 273.955†	2386.4	2.221	mg/L	0.0145	2.221	mg/L	0.0145	0.65
766.490†	24301.6	10.84	mg/L	0.037	10.84	mg/L	0.037	0.349
fg 279.077†	9714.2	11.08	mg/L	0.082	11.08	mg/L	0.082	0.749
n 257.610†	19658.5	0.5116	mg/L	0.00385	0.5116	mg/L	0.00385	0.75
1o 202.031†	6.6	0.00021	mg/L	0.000104	0.00021	mg/L	0.000104	50.539
Va 589.592†	229802.6	16.56	mg/L	0.042	16.56	mg/L	0.042	0.25
la 330.237†	427.2	17.09	mg/L	0.139	17.09	mg/L	0.139	0.819
li 231.604†	1989.5	0.5278	mg/L	0.00491	0.5278	mg/L	0.00491	0.93
b 220.353†	17722.2	2.173	mg/L	0.0137	2.173	mg/L	0.0137	0.639
sb 206.836†	7.0	-0.00319	mg/L	0.001241	-0.00319	mg/L	0.001241	38.879
Se 196.026†	3526.9	2.515	mg/L	0.0052	2.515	mg/L	0.0052	0.219
Si 288.158†	53.3	0.04093	mg/L	0.002136	0.04093	mg/L	0.002136	5.22
n 189.927†	-17.6	-0.00359	mg/L	0.000117	-0.00359	mg/L	0.000117	3.24
Sr 421.552†	458116.7	0.5160	mg/L	0.00181	0.5160		0.00181	0.35
ri 334.903†	28.9	0.00066	mg/L	0.000309	0.00066	mg/L	0.000309	47.04
1 190.801†	4222.0	2.148	mg/L	0.0172	2.148		0.0172	0.80
7 292.402†	75551.0	0.5320		0.00557	0.5320	mg/L	0.00557	1.05
Zn 206.200†	2007.2	0.5580	ma/L	0.00483	0.5580	mg/L	0.00483	0.86

X029:00074

Sequence No.: 38 Sample ID: CB

Autosampler Location: 1

Date Collected: 12/16/2013 11:28:40 AM

Data Type: Original

Dilution: 1.000000X

Nebulizer Parameters: CB

Analyte

Back Pressure Flow 212.0 kPa 0.75 L/min All

Mean Data: CB	Mana Carrented		Calib.			C1-		
1	Mean Corrected			044 5	C	Sample	Std.Dev.	RSD
Analyte	Intensity	103.8	Units	Std.Dev. 1.04	cone.	Units	Std.Dev.	1.00
ScA 357.253	2867534.1	103.8		1.36				1.30
ScR 361.383	283725.4			0.000284	0 00003	/T	0.000284	
Ag 328.068†	7.0	0.00003			0.00003			64.91
Al 308.215†	-8.3	-0.00719		0.004668	-0.00719	-	0.004668	
As 188.979†	-2.2	-0.00141		0.000980	-0.00141		0.000980	69.61
3 249.677†	23.6	0.00383		0.000535	0.00383	_	0.000535	13.99
3a 233.527†	-2.6	-0.00059		0.000272	-0.00059	-	0.000272	46.47
Be 313.042†	-18.6	-0.00003		0.000010	-0.00003		0.000010	28.74
Ca 317.933†	11.1	0.00129	-	0.001393	0.00129		0.001393	
Cd 228.802†	-4.9	-0.00017		0.000102	-0.00017	-	0.000102	58.53
Co 228.616†	7.0	0.00017		0.000077	0.00017		0.000077	44.46
Cr 267.716†	3.0	0.00051		0.000014	0.00051		0.000014	2.70
Cu 324.752†	43.0	0.00016	mg/L	0.000137	0.00016	mg/L	0.000137	87.52
e 273.955†	1.9	0.00179	mg/L	0.002764	0.00179		0.002764	154.26
766.490†	150.7	0.06719	mg/L	0.020926	0.06719	mg/L	0.020926	31.14
1g 279.077†	5.8	0.00661	mg/L	0.007386	0.00661	mg/L	0.007386	111.78
In 257.610†	-6.5	-0.00017	mg/L	0.000046	-0.00017	mg/L	0.000046	27.14
4o 202.031†	-4.0	-0.00022	mg/L	0.000149	-0.00022	mg/L	0.000149	66.20
Na 589.592†	6413.6	0.4623	mq/L	0.00317	0.4623	mg/L	0.00317	0.69
Na 330.237†	7.6	0.3068	mg/L	0.20049	0.3068	mg/L	0.20049	65.34
Ni 231.604†	2.7	0.00072	mg/L	0.001105	0.00072	mg/L	0.001105	153.13
2b 220.353†	6.8	0.00083	mg/L	0.000450	0.00083	mg/L	0.000450	53.95
3b 206.836†	2.6	0.00086	mg/L	0.000301	0.00086	mg/L	0.000301	35.15
Se 196.026†	2.5	0.00178	_	0,002593	0.00178	mg/L	0.002593	145.87
Si 288.158†	17.4	0.01203		0.004842	0.01203	-	0.004842	40.24
Sn 189.927†	2.1	0.00061		0.000755	0.00061		0.000755	124.76
3r 421.552†	54.8	0.00006		0.000020	0.00006		0.000020	32.32
ri 334.903†	-3.2	-0.00017		0.000233	-0.00017	-	0.000233	
11 190.801†	-2.0	-0.00101		0.001079	-0.00101	-	0.001079	
7 292.402†	-11.7	-0.00008	-	0.000205	-0.00008	-	0.000205	
In 206.200†	-11.7 -1.3	-0.00036	_	0.000203	-0.00036		0.000203	

Y029: 00076

SAMPLE RESULTS-CONVENTIONALS XQ29-Newfields Northwest

Matrix: Sediment

Data Release Authorized:

Reported: 12/13/13

Project: AT/YS

Event: NA

Date Sampled: 12/04/13 Date Received: 12/05/13

Client ID: WETSED 1 ARI ID: 13-26636 XQ29A

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/06/13 120613#1	SM2540G	Percent	0.01	46.92
Acid Volatile Sulfide	12/11/13 121113#1	EPA 1991	mg/kg	104	1,570
Total Organic Carbon	12/11/13 121113#1	Plumb, 1981	Percent	0.020	5.15
RL Analytical reporting Undetected at report		ı limit			

SAMPLE RESULTS-CONVENTIONALS XQ29-Newfields Northwest

Matrix: Sediment

Data Release Authorized:

Reported: 12/13/13

Project: AT/YS

Event: NA

Date Sampled: 12/04/13 Date Received: 12/05/13

Client ID: WETSED 3 ARI ID: 13-26638 XQ29C

Analyte	Date	Method	Units	RL	Sample
Total Solids	12/06/13 120613#1	SM2540G	Percent	0.01	38.67
Acid Volatile Sulfide	12/11/13 121113#1	EPA 1991	mg/kg	25.9	231
Total Organic Carbon	12/11/13 121113#1	Plumb,1981	Percent	0.020	4.37

RLAnalytical reporting limit

vood anaen

U Undetected at reported detection limit

REPLICATE RESULTS-CONVENTIONALS XQ29-Newfields Northwest

Matrix: Sediment

Data Release Authorized:

Project: AT/YS

Event: NA
Date Sampled: 12/04/13
Date Received: 12/05/13

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: XQ29A Clien	t ID: WETSED 1			N -	
Total Solids	12/06/13	Percent	46.92	47.05 45.32	2.1%
Acid Volatile Sulfide	12/11/13	mg/kg	1,570	1,780	12.5%
Total Organic Carbon	12/11/13	Percent	5.15	4.70 5.60	8.7%

Soil Replicate Report-XQ29

XQ29:00092

METHOD BLANK RESULTS-CONVENTIONALS XQ29-Newfields Northwest

Matrix: Sediment

Data Release Authorized: Reported: 12/13/13

Project: AT/YS Event: NA Date Sampled: NA Date Received: NA

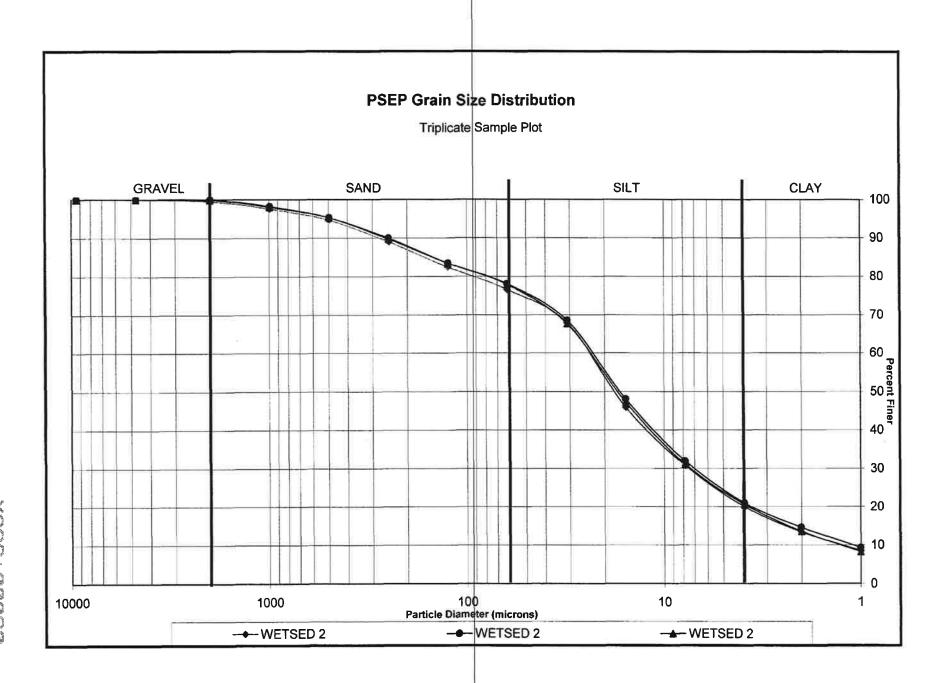
Analyte	Date	Units	Blank	QC ID	
Total Solids	12/06/13	Percent	< 0.01 U	ICB	
Acid Volatile Sulfide	12/11/13	mg/kg	< 0.05 U	PREP	
Total Organic Carbon	12/11/13	Percent	< 0.020 U	ICB	

X029:00084

Geotechnical Analysis Report and Summary QC Forms

ARI Job ID: XQ29

XQ29:00086


Newfields Northwest AT/YS

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		Total Fines
Phi Size	< -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	> 10	> 4
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7,8	7.8-3,9	3.9-2.0	2.0-1.0	<1.0	<230 (<62)
	0.5	1.9	3.0	5.6	6.6	5.8	8.7	22.0	15.2	10.8	6.7	4.8	8.5	76.6
WETSED 2	0.1	1.8	2.9	5.4	6.5	5.4	9.6	20.4	16.1	11.0	6.4	5.2	9.2	78.0
	0.1	1.8	2.8	5.6	6.3	5.6	10.2	20.5	16.1	10.5	7.0	5.3	8.2	77.8
WETSED 1	1.8	3.8	10.8	20.3	15.5	6.1	4.6	8.8	8.1	6.8	5.0	3.4	5.0	41.8
WETSED 3	0.1	2.9	1.3	1.9	3.0	2.6	7.1	23.3	18.4	14.8	9.3	6.3	9.1	88.2

Notes to the Testing:

^{1.} Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Total Solids

ARI Job ID: XQ29

VO29: AAA92

	(dry at 104 (12-24 hr) t	hen combust a	t 550 (30 min))				_				ANALYST:		6/13 (C) - RR 10:28
nstrumentation			ying Ovens:		1			•	Analytic	al Balance:	1	123230597	
		Muf	fle Furnace:		N/	<u> </u>							
	tch drying time		TS (%) calcula						TVS (mg/kg di	y wt) calculate	ed as:		
record tin	nes as mm/dd/yy hh:mr	n	Final dry wt (g)		-		Final ash wt (g) = (min ash wt - tare wt)						
2/6/2013 10:28	date/time in oven	KE	TS = (Final Di	ry Wt)/ (grams	Sample-Ta	re)					vt)/ (dry weight)] *1,000,000	
2/7/2013 11:00	date/time out	RR					8		if ash wt > dry				
elapsed hrs ≃	24.5	>24hr	L								(1/dry wt)*1,00	0,000	
	Cal Weight ID	CV-02	CV-02	CV-02	CV-02		4		CV-02	CV-02			
		12/6/13 8:02 K	12/6/13 7:40 KE	12/7/13 11:15 RF	?		4						
Cal Wt (g)	10.0000	10,0000	10,0000	10.0000				ĺ					
reco	rd weights to 4 places	Cal OK!	Cal OK!	Cal OK!	Kista /		1	<u> </u>	0.5-51	. 144 15			
SAMPLE	DISH	SAMPLE	TARE WT	DRY	WT 104C (grams)	dry Wt	TS	ASH	WT 550C (gr	rams)	Ash Wt	TVS
ID	#	(grams)	(grams)	1			(g)	(%)	1	2		(g)	(mg/kg) (%
Blank			1.1840	1.1838		Mary Land	0.00						
Q29 A3		7.3470	1.1313	4.0479			2.92	46.92%			145	41	7-1
Q29 A3 dup		7.4381	1.1111	4.0880			2.98	47.05%			De de la version		
			,			r	RPD =	0.27%	-			RPD =	NA
Q29 A3 trp		7.7302	1.1286	4.1204		TARREST P	2.99	45.32%	4		10/12/03	N	
					,		RSD =	2.08%				RSD =	NA NA
(Q29 B2		8.0765	1.1516	4.4235			3.27	47.25%					
(Q29 C2		6.6620	1.1178	3.2617			2.14	38.67%					
(Q28 M6		8.1643	1.1593	6.4566			5.30	75.62%					
Q28 N6		8.8053	1.1372	6.1660		0.00	5.03	65.58%				3/	
Q28 O6		6.8210	1.1064	3.9186		1 6 6	2.81	49.21%					2 - 70
Q28 P6		9.4070	1.1242	7.8712		1000	6.75	81.46%					The state of
Q28 Q6		6.3501	1.1208	5.2709	<u> </u>	- E.	4.15	79.36%				6 -0.4 (F. H.	William Tank
Q28 R6		8.1509	1.1071	6.7539			5.65	80.17%			Lall Cal		
)						The second secon			1		- Fr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Rev: 6/29/2009

TOTAL SOLID SOLIDS	S/VOLATILE SO			CHSHEET							DATE:		6/13 (C)
Instrumentation	(dry at 104 (12-24 hr)		ying Ovens:		1				Analysti		ANALYST:		RR 10:28
nso umena bon	•		fle Furnace:	_	N/			-	Anaiyud	al Balance:	1	123230597	
Ba	atch drying time		TS (%) calcul	ated as:					TVS (mg/kg di	ry wt) calculate	ed as:		
record to	imes as mm/dd/yy hh:mi	π	Final dry wt (g)	= (Dry Wt -	Tare Wt)					g) = (min ash w			
12/6/2013 10:28	date/time in oven	KE	TS = (Final Di	y Wt)/ (grams	Sample-Ta	rre)				[(Dry wt-Ash v		1*1.000.000	
12/7/2013 11:00	date/time out	RR								wt, "Chk for Er		, .,,	
elapsed hrs =	24.5	>24hr				if dry wt-ash wt < 0.001 g, "< (1/dry wt)*1,000,000					0,000		
	Cal Weight ID	CV-02	CV-02	CV-02	CV-02				CV-02	CV-02			
	Date & Time	12/6/13 8:02 KB	12/6/13 7:40 KE	2/7/13 11:15 RF	₹			1			= =		
Cal Wt (g)	10.0000	10.0000	10,0000	10.0000									Į.
rec	ord weights to 4 places	Cal OKI	Cal OKI	Cal OK!		(多) 上。							
SAMPLE	DISH	SAMPLE	TARE WT	DRY	WT 104C	(grams)	dry Wt	TS	ASH	WT 550C (gr	ams)	Ash Wt	TVS
ID	#	(grams)	(grams)	1			(g)	(%)	1	2		(g)	(mg/kg) (%)
Blank			1.1840	1.1838		à.	0.00				ur tillige og fil		
(Q29 A3		7.3470	1.1313	4.0479			2.92	46.92%					66 14 14171
KQ29 A3 dup		7.4381	1.1111	4.0880		* **	2.98	47.05%					
							RPD =	0.27%				RPD =	NA
(Q29 A3 trp		7.7302	1.1286	4.1204		S	2,99	45.32%			A VALUE DE LIE		Harris A. T.
							RSD =	2.08%			E	RSD ≈	NA
(Q29 B2		8.0765	1,1516	4.4235		1944	3.27	47.25%					
(Q29 C2		6.6620	1.1178	3.2617		J. A	2.14	38.67%				2000	
(Q28 M6		8.1643	1.1593	6.4566			5.30	75.62%				b	
(Q28 N6		8.8053	1.1372	6.1660		STATE OF THE	5.03	65.58%					
(Q28 O6		6.8210	1.1064	3.9186		44	2.81	49.21%					
Q28 P6		9.4070	1.1242	7.8712		THE STATE OF	6:75	81.46%					门的 学员等主张
Q28 Q6		6.3501	1.1208	5.2709		19 mar 10 1	4.15	79.36%			TITY MARKEL		
Q28 R6		8.1509	1.1071	6.7539			5.65	80.17%					
X						100						CALLED S	

いののののの

TOC S	olids	Prep Log					DATE:	12/6/2013
		ove IC and dryin	g at 70°C for	TOC analysis	s		ANALYST:	KE 10:28 (C)
		arding prep met				sed)		
							HCL 10% ID:	
Balance ID) :	Mettler Toledo	(XS205 DU)	SN 12323059	37		HCL ID:	
						make no entry to	shaded cells, th	ey are calculated
	Sampl		IC Test					Sample description & notes
AR	l #	Client	+/-	Tare Wt.	Wet wt.	70°C dry wt	Solids	(homogeneity and exclusions)
Blank				12.9201		12.9203	0.2 mg	
XQ29	A2			12.9686	21.0084	16.8089	47.77%	
XQ29	A2 dup		•	13.2330	21.1975	17.0142	47.48%	RPD = 0.61%
XQ29	A2 trip		•	12.9280	20.7182	16.7306	48.81%	RSD = 1.46%
XQ29	B2			13.0108	20.8481	16.9390	50.12%	
XQ29	C2		-	12.9462	21.1884	16.3297	41.05%	
XQ28	M6		-	13.0137	21.7936	19.8318	77.66%	
XQ28	N6		- 1	12.9509	19.2232	17.1341	66.69%	
XQ28	O6		-	13.3254	19.5459	16.7582	55.19%	
XQ28	P6			12.9647	21.0039	20.0241	87.81%	
XQ28	Q6			13.3376	20.7565	19.8558	87.86%	
XQ28	R6			13.3610	21.1279	20.2196	88.31%	

TOC, Solids	s Data Ar	nalysis				DATE:		12/11/201	13	
Instrument:		•			AN	NALYST:		KE 6:08	3	1
Mode		Inlet:	Boat							
Spike Std =		ppm C			Ba	alance ID:				1
Calibration D										
		Curve ID:		11/20/20		- ::	Conc:	5,000	• -	
Calibra	ation Curve S	Standard:		00139-	03	_ Cur	ve Date:	11/20/13		
	CalFact:	1.550E	+05	intercept:	502	459	r2:	0.9	9452	
	ange (ppm) ့	200	to	2,500	• 2					
Curve Rai	nge (µgC):	8	to	100	40 μL injec	tions of des	signated sta	ndard		
Verification S	tandard		Source:	ERA# 0408-13-02			Conc:	5,000	ppm	
		dilution :	10	mL to	50			1,000	ppm	
Standard Ref	erence Mai	terial	Source:	NIST	8704		Conc:	33,510	ррт	
	Source				1941B		29,900	ppm		
										1
Silica Blanks	CENTER OF THE PROPERTY OF THE		Market 1					Boo	***	Į.
		Rep	nicate d	eterminati I	ons	т	Mean	RSD	condition	1
Sample Data	1		L	L		<u> </u>	a de la companya de l	NATIONAL AND AND AND AND AND AND AND AND AND AND	289	ł
"C corr" (with dilut	tion) = ("C ob:	s" - (Mean :	silica Bla	nk * %Silica	al) * Dilution	Factor				
(,,,,,,	Dilution Data Combustion Data						i			
Sample ID	Sample wt.	Final wt.	Silica	Dilution	Spike	Burn wt.	C obs	C corr		
	(mg)	(mg)	(%)	Factor	(µL Std)	(mg)	(ppm C)	(ppm C)	comments	
CV			1000	1.00		40.0	903	903	90.30%	
Blank			150	1.00		40.0	-78.03	-78	Blank OK	
VIST 1941B			$W \neq 24$	1.00		1.2	28591	28,591	95.62%	
(Q29 A2				4.00		4.0	58803	58,803	Range OK!	
KQ29 A2				1.00		0.8	50555	50,555	Range OK!	
KQ29 A2 dup			100	1.00		0.7	46157	46,157	RPD=9.1%	
KQ29 A2 trp				1.00		0.9	55011	55,011	RSD=8.8%	İ
KQ29 A2 ms			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.00	20	0.8	65427	65,427	Range OKI	
Spike =	0.05	mg C to	0.8	mg samp=	CREAT STREET, STREET	ppm		24%		1
XQ29 A2 ms			No Tri	4.00	20	1.1	54898	54,898	Range OK!	
Spike =	0.05	mg C to	1.1	mg samp=	SECOND CO.	ррт		40%		
XQ29 B2				1.00		0.9	35700	CARL CONTRACTOR OF THE PARTY OF	Range OKI	1
XQ29 C2			170	1.00		0.9	41161	41,161	Range OKI	
KP31 M7	1		Ball	1.00		3.1	10809	10,809	Range OKI	1
CCV			(0.67 <u>5</u>)	1.00		40.0	945	945	94.50%	
Blank	 		chi telefa	1.00				-62	SOME STATES	
Samples XP31	E7 Had 409	/ O Phon	phoric	A STATE OF THE PARTY OF THE PAR	d to	40.0	-62.32	A CONTRACTOR OF THE PARTY OF TH	Blank OK	1
Amount (how							noat buoi	to combu	uon,	
XP31 E7	1	,		1.00	1	1.6	16973	16,973	Range OKI	7 Drope 4
			1000	1.00		1.0	10010	10,010	I tange on	1. pioha w

12-11-13W

			Apollo 900) U	Tago	100
Set-Up Paramet	ers MODE:	NPOC		INLET:	Boat Sample	(21)
Standards:		ırce	Conc (Analyst:	(h)
Calibration:	ARI-00/3	9-03	500		Date:	12-11-13
Verification:	ERA-0408	3-12-02	5000 to 100	0 for CVS	Time:	6:08
SRM:	NBS 4 1941	or 8704	Method: PSEP 1986-M	IOD	Balance ID	B146454145
Sample Sequence:						T
Sample ID	Dilution	Data (mg)	Burn Wt	Matrix Sp		Comments
Sample ID	Sample	+ Silica Gel	mg	mg/L	µL added	
100			40			
100			40			
NBS 1941 B			1.2			
XD29 Az			1.0			top Not A') Run
AZ	-		0.8			
NAZ			0.7			
YPA2			00 09	2.600	200	
ms.4.2			0.8	2500	2.0	
ms.Ac			1.1	7500	20	
B2			0.9	19)		
NI de			0.9			
V U	-	 	3.1	·····		
			40			
cev	-		40		120	
CCB	-	" U 1.1		×		Acchy in Bog
(p3) 22	Dwb	5 10% Ach	1.6			Freedy in 1
X088 A2					-	
A AZ			1.4			
YPA2			1.5			
IMBA Z			1.2	2,500	<i>I</i> D	
<u>B2</u>			1.4			
V CZ	-		6.2	1		
XQUI A			0.7		ļ:	
XP58 A1			2.6		4	
W B1			02.22	1		
cer			40			
CUR			40			
CUPO XPS8 DI V ET			2.6 02.22 40 40 2.9 2.7			
ε7 Ε			2.7			
	7			*		
K Z	,		2.7			
6 H	1		40	19		
1 7	,	-	12 0			

6155F TOC Solids Run Log -Apollo Page 00951

Revision 001 9/25/08

Y020:00102

Detailed Analysis Report Print Date/Time: 2013/12/11 13:21:44

Sample ID: ICV/CCV BOAT Mode: Method: Boat Sampler Cal. Curve: 112013 BOAT CAL 12110352 Filename: Timestamp: 2013/12/11 03:57 Operator ID: KE Sample Type: Cal. Verification Beginning Ending Baseline Baseline Rep # ppm C ug C Raw Data Integration Time 903.0636 36.1225 6102406 123.225 124.225

Sample ID: ICB/CCB BOAT Mode: Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Method: Filename: Timestamp: 2013/12/11 04:11 Operator ID: KE Sample Type: Cal. Verification

Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline -78,0344 -3.1214 18564 123.159 123.242 120

12110408

Last Message: Low Sample Detected

Sample ID: NBS 1941B Mode: Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Filename: 12110419 Timestamp: 2013/12/11 04:26

Operator ID: KE Sample Type: Cal. Verification

Ending Rep # ppm C ug C Raw Data Beginning Integration Baseline Baseline Time 28591.1445 34.3094 5821317 123.240 124.235 232

Mode: Sample ID: XQ29 A2 Boat Sampler 12110445 Method: Filename: Cal. Curve: 112013 BOAT CAL YEAR SON Timestamp: 2013/12/11 04:49 Operator ID: KE Sample Type: Sample

ppm C Rep # Raw Data Beginning Ending Integration Baseline Time Baseline 1 58802.9141 58.8029/ 9116002 123.230 124.223 182

Sample ID: XQ29 A2
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL
Operator ID: KE Mode: TOC Filename: 12110502 Timestamp: 2013/12/11 05:05 Sample Type: Sample

Beginning Ending Baseline Baseline 123,313 124,315 Rep # ppm C ug C Raw Data Integration Time 1 50555.0195 40.4440 6269889 123.313 124.312

Mode: TOC

Sample ID: XQ29 A2 DQ
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL
Operator ID: KE 12110512 Filename: Timestamp: 2013/12/11 05:16 Sample Type: Sample

Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Time Baseline 1 46157.1016 32.3100 5008897 124.510

Sample ID: XQ29 A2W Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Operator ID: KE Mode: TOC Filename: 12110523 Timestamp: 2013/12/11 05:26 Sample Type: Sample

Beginning Ending Integration Baseline Baseline Time Rep # ppm C ug C Raw Data

Baseline 1 -62.3212 -2.4928 116002 132.410 133.407 Sample ID: XP31 E7 (Acid in Boat 7 Drops) Mode:
Method: Boat Sampler Filena
Cal. Curve: 112013 BOAT CAL Timest Filename: 12110746 Timestamp: 2013/12/11 07:52 Sample Type: Sample Operator ID: KE ppm C Beginning Ending ug C Raw Data Integration Baseline 135.020 Baseline 1 16973.4766 27.1576 4210138 133.085 Last Message: Max Integration Time Reached Sample ID: XQ88 A2
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Mode: Filename: 12110756 Timestamp: 2013/12/11 08:06 Operator ID: KE Sample Type: Sample ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline Time 134.827 155 1 25677.5254 38.5163 5971040 133.836 Sample ID: XQ88 A2 \\ Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12110809 Timestamp: 2013/12/11 08:12 Operator ID: KE Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 134.317 135.316 142 Rep # ppm C ug C Raw Data 1 23503.4121 32.9048 5101108 Sample ID: XQ88 A2 TRIP Mode: TOC Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Filename: 12110821 Timestamp: 2013/12/11 08:25 Operator ID: KE Sample Type: Sample Rep # ppm C ug C Raw Data Beginning Integration Baseline Baseline 134.677 135.674 Baseline 1 25216.7773 37.8252 5863898 Sample ID: XQ88 A2 MS Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12110829 Timestamp: 2013/12/11 08:33 Operator ID: KE Sample Type: Sample Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Time Baseline 49.7082 7706087 1 41423.5312 136.096 Sample ID: XQ88 B2 Mode: TOC Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Filename: 12110839 Timestamp: 2013/12/11 08:43 Operator ID: KE Sample Type: Sample Rep # ppm C ug C Raw Data Beginning Ending Baseline Baseline Baseline Time 135.583 136.582 154 1 20893.6172 29.2511 4534686 Sample ID: XQ88 C2 Mode: TOC Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Filename: 12110856 Timestamp: 2013/12/11 09:02

Printed: 12/11/2013 1:21:44 PM PM

Sample Type: Sample

Operator ID: KE

Cal. Curve: 112013 BOAT CAL Timestamp: 2013/12/11 11:34 Operator ID: KE Sample Type: Sample

Beginning Ending Baseline Baseline 139.10 ppm C ug C Raw Data Integration Baseline Time 1 17207.2480 46.4596 7202458 139.103

Sample ID: XP58 F7
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL
Operator ID: KE Mode: TOC Mode: TOC Filename: 12111143 Timestamp: 2013/12/11 11:47

Sample Type: Sample

Rep # ppm C ug C Raw Data Beginning Ending Baseline Baseline 137.087 138.077 Ending Integration Time 1 8610.7373 18.0825 2803272 121

Sample ID: XP58 (Method: Boat Sampler Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12111149
Timestamp: 2013/12/11 11:54 Operator ID: KE Sample Type: Sample

Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline 136.496 137.491 Time 1 1902.8452 5.1377 796476

Sample ID: XP58 H7
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12111159
Timestamp: 2013/12/11 12:02

Operator ID: KE

Sample Type: Sample

Beginning
Baseline
63.4862 9842039 136 ug C Raw Data Ending Baseline 137.181 ppm C Integration 15115.7695

Sample ID: XP58 H7
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12111213 Timestamp: 2013/12/11 12:17 Operator ID: KE Sample Type: Sample

Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline Time 1 9393.8955 27.2423 4223274 135.758 136.757

Mode: TOC

Sample ID: XP58 J7
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12111226 Timestamp: 2013/12/11 12:29 Operator ID: KE Sample Type: Sample

Beginning Ending Integration Baseline Baseline Time 136.072 137.065 104 Rep # ppm C ug C Raw Data 1 2025.5780 8.3049 1287474

Sample ID: XP58 K7
Method: Boat Sampler
Cal. Curve: 112013 BOAT CAL Mode: TOC Filename: 12111233 Timestamp: 2013/12/11 12:37

Operator ID: KE Sample Type: Sample

ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline 136.631 137.625 Time 1 10364.4580 59.0774 9158556

Sample ID: XP58 L7 Method: Boat Samm Boat Sampler Filename: 12111241 Cal. Curve: 112013 BOAT CAL Timestamp: 2013/12/11 12:44 Calibration Report Print Date/Time: 2013/11/20 7:12:11

Cal. Curve ID: 112013 BOAT CAL
Created: 2013/11/20 07:12
Calibration Factor (m): 1.550e+05
Y Intercept (b): 502459
r-squared: 0.99452

Standard ID	Y Raw Data	X Expected uq C	Measured ug C	Message	Date & Time
DI Water	57228	0.000	-2.872	Low Sample De	2013/11/20 03:45
200 ppm	1537968	8.000	6.680	·	2013/11/20 04:09
500 ppm	3906464	20.000	21.958	Max Integrati	2013/11/20 04:56
2500 ppm	15700260	100.000	98.034		2013/11/20 06:10
1000 ppm	7354804	40.000	44.201		2013/11/20 07:08

11 10 B

Sample ID: DI Water Mode: TOC	::21
Sample ID: Di Water Mode: Toc	tion
Sample Type: ToC Standard Sample Type: ToC Standard	tion
Sample Type: ToC Standard Sample Type: ToC Standard	tion
73881 148.851 149.848 59 3 40.82 148.907 149.904 42 < <statistics>>> Mean: 605.5 Std Dev: 17704 RSD: 29.23 ample ID: DI Water</statistics>	3:45
73881 148.851 149.848 59 40.82 148.907 149.904 42 < <statistics>>> Mean: 605.5 Std Dev: 17704 RSD: 29.23 **Comple ID: DI Water</statistics>	3:45
73881 148.851 149.848 59 40.82 148.907 149.904 42	3:45
73881 148.851 149.848 59 40.82 148.907 149.904 42 < <statistics>>> Mean: 605.5 Std Dev: 17704 RSD: 29.23 **Comple ID: DI Water</statistics>	3:45
3	3:45 ation
<pre></pre>	3:45 ation
ample ID: DI Water	3:45 ation
### ### #### ##### ###################	ation
Sample ID: Date Sampler Filename: 11200328	ation
Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: ToC Standard	ation
Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: TOC Standard Sample Type: ToC Standard	ation
Sample ID: 200 ppm Mode: TOC Filename: 11200347 Cal. Curve: 112013 BOAT CAL Sample Type: TOC Standard Decay # DDM C ug C Raw Data Beginning Ending Integre	3
Sample ID: 200 ppm Mode: TOC Filename: 11200347 Cal. Curve: 112013 BOAT CAL Sample Type: TOC Standard Decay # DDM C ug C Raw Data Beginning Ending Integre	
Sample ID: 200 ppm Mode: TOC Filename: 11200347 Cal. Curve: 112013 BOAT CAL Sample Type: TOC Standard Decay # DDM C ug C Raw Data Beginning Ending Integre	
Sample ID: 200 ppm Mode: TOC Filename: 11200347 Cal. Curve: 112013 BOAT CAL Sample Type: TOC Standard Decay # DDM C ug C Raw Data Beginning Ending Integre	
Asst Message: Low Sample Detected < <statistics>>> Mean: 57228 Std Dev: 10252 RSD: 17.91 Sample ID: 200 ppm Mode: TOC Hethod: Boat Sampler Filename: 11200347 Cal. Curve: 112013 BOAT CAL Deperator ID: KE Sample Type: TOC Standard Rep. # ppm C ug C Raw Data Beginning Ending Integral</statistics>	
Sample ID: 200 ppm Mode: TOC Method: Boat Sampler Filename: 11200347 Cal. Curve: 112013 BOAT CAL Timestamp: 2013/11/20 04 Operator ID: KE Sample Type: TOC Standard	
Hethod: Boat Sampler Filename: 11200347 Hethod: Boat Sampler Filename: 11200347 Hethod: Boat Sampler Filename: 1200347 Timestamp: 2013/11/20 04 Sample Type: TOC Standard Hen # nom C ug C Raw Data Beginning Ending Integral	2 III 99 III #
Method: Boat Sampler Filename: 11200347 Cal. Curve: 112013 BOAT CAL Timestamp: 2013/11/20 04 Operator ID: KE Sample Type: TOC Standard	
Cal. Curve: 112013 BOAT CAL Timestamp: 2013/11/20 04 Operator ID: KE Sample Type: TOC Standard Rep. # now C ug C Raw Data Beginning Ending Integral	
perator ID: KE Sample Type: TOC Standard	4:09
Rep # ppm C ug C Raw Data Beginning Ending Integral Baseline Baseline Time	
	e
1599522 149.325 150.324 112 3 1485071 149.798 150.794 92	
<> <statistics>>> Mean: 1537968 Std Dev: 57715 RSD: 3.75</statistics>	TO THE PARTY OF TH
Sample ID: 500 ppm Mode: TOC	
Sample ID: 500 ppm Mode: TOC Method: Boat Sampler Filename: 11200412	
Cal. Curve: 112013 BOAT CAL Timestamp: 2013/11/20 0	4:56
Operator ID: KE Sample Type: TOC Standard	1
Rep # ppm C ug C Raw Data Beginning Ending Integr	
Baseline Baseline Tim 3563746 150.330 151.329 170	
1 100 100 100 100 100 100	
2 3613394 152.138 153.135 213 3 4542252 154.193 158.302 300	
Last Message: Max Integration Time Reached	
<< <statistics>>> Mean: 3906464 Std Dev: 551168 RSD: 14.11</statistics>	
. /	
Sample ID: 1000 ppm Mode: TOC Method: Boat Sampler Filename: 11200459	
Method, boat bampata	05:3
Cal. Curve: 112013 BOAT CAL Operator ID: KE Timestamp: 2013/11/20 C Sample Type: TOC Standard	
Rep # ppm C ug C Raw Data Beginning Ending Integ	
1 8123309 160.143 165.653 30	rati
7574211 168.982 171.911 30	rati me
	rati me 1
3 8539931 176.210 182.469 30	rati me 1
7 175 010 100 150 20	rati me 1

Printed: 11/20/2013 7:13:02 AM AM

Page 1 of 2

SULFIDE BEN				c, EPA 37			e Time		Analyst
Soils, sedimer	nts and s	olid phase	samples		Distillation	12/11/	13 14:35		APD
					Finish		13 14:16		APD
distilled, specify P	rocedure:	AVS			ZnOAc:	10398C	Balance:	19350128	
1. Standardizati	on of soc	lum thiosulfa	ate titrant			Buret us	ed for titrations:		S2
Thiosulfate ID:	101	187C							
Bi-iodate ID:	100)96C			_	Titration o	f bi-lodate with ti	niosulfate	<u>-1</u> 1
Stock bi-lodate =	0.8116	grams to	1000 /	πL	mL bi-iodate = [3.00	3.00	3.00	3
Normality = [0.025]			mL thiosulfate =	3.07	3.07	3.07	nthio
		lormality thiosul	fate = (mL bi-iod	date*normbio) / mL thiosulfate =	0.024	0.024	0.024	0.024
2. Normality of	lodine					Titration	of lodine with thi	osulfate	-
lodine ID:	101	151C			mL lodine =	3.00	3.00	3.00	1
-					mL thiosulfate =	3.10	3.10	3.11	ni ni
		Norma	ality lodine = (mi	L thiosulfate	nthio) / mL iodine=	0.025	0.025	0.025	0.025
3. Standardizati	on of Soc	lium Sulfide	Stock			Titration o	f standard with ti	niosulfate	
Stock ID =	001	44-10			mL Standard =	1.00	1.00	1.00	7
Approx conc in 1	00ml				mL lodine =	3.00	3.00	3.00	1
g Na2S =	0.7351	mg/mL=	0.981		mL thiosulfate =	1.56	1.53	1.56	stkconc (mg/mL
·	Sulfide	(mg/mL) = {[(mL	lodine*ni)-(mL l	hio *nthio)]*1	16) / mL standard =	0.603	0.614	0.603	0.607
ntermediate Sta	ndard					mL	required for for 0	.025 mg/mL	10.3
Add	10.3	mL stk to	250	mL 0.2	N ZnOAc =	0.025	mg/mL		
4. Callbration	Standar	d Curve			spectropho	tometer used		SPEC	¥1
Inter Std	Final	Calc						Regressio	nData
Volume	Volume	Conc	Absorbance	@650 nm	AVG		1	_	
(mL)	(mL)	(mg S/L)		2	ABS	mg/L	intercept =	-0.002	į.
0.00	50	0.000	0.000		0.000	0.004	slope =	0.595	
0.10	50	0.050	0.025		0.025	0.046	r=	1.0000	
0.25	50	0.125	0.071		0.071	0.123	19	2.27 P. 1.2.2	
0.50	50	0.250	0.149		0.149	0.254	Comment:	Calibration	OK!
1.00	50	0.500	0.294		0.294	0.498	200	77	
2.00	50	1.000	0.593		0.593	1.000	mexabs =	0.593	
Calib Ve	erif Std =	1.0	ml INT to	50	ml ZnOAc=	0.500	mg/l		
Di-4111-41	on Std =	1.0	ml stk to	100	=	6.07	mg/l		

SAMPLE DATA

enter dilution as mL final/mL sample

	Dis	tillation Da	ata		Spectrophoto	metric Dat	a	SAMPLE	DATA
SAMPLE ID	SAMPLE SIZE	% Solids	TRAP VOLUME	Dilution Factor	Abs @ 6	50 nm	regressed Conc	CORR	
			(ml)		0	Bkg	(mg S/L)	(ppm)	
ICB		па	na	1.00	0.000		0.004	< 0.05	OKI
ICV		na	na	1.00	0.286		0.484	0.484	96.89%
Distilled sam	ples								
Dist Blk	100	100%	100	1.00	-0.012		-0.016	< 0.05	OKI
Diet Chk	100	100%	100	20.00	0.181		0.308	6.157	101.50%
Soil Samples	(grams)	% Solids	(mL)		Sample	Bkg	(mg/L)	mg/kg	
XQ29 A1	5.134	46.92%	100	50.00	0.449		0.758	1573.587	Tales
XQ29 A1 dup	5.088	46.92%	100	50.00	0.503		0.849	1777.842	RPD=12.19%
XQ29 A1 ms	5.054	46.92%	100	50.00	0.557		0.940	1981.110	159.32%
		Spike at	1.00	ml stock to	2.371	g dry wt =		255.783	mg/kg
XQ29 B1	5.056	47.25%	100	20.00	0.207		0.352	294.304	100
XQ29 C1	5.001	38.67%	100	10.00	0.264		0.447	231.304	Called the Live
XQ88 A1	5.009	32.63%	100	20.00	0.322		0.545	666.628	
XQ88 B1	5.176	48.87%	100	20.00	0.311		0.526	416.096	企员工工
XQ88 C1	5.214	74.86%	100	10.00	0.196		0.333	85.327	
CCB		па	па	1.00	-0.002		0.000	< 0.05	OKI
CCV		na	na	1.00	0.289		0.489	0.489	97.90%
Dist Chk	100	100%	100	10.00	0.344		0.582	5.817	95.90%
ССВ		na	na	1.00	-0.004		-0.003	< 0.05	OKI
CCV		na	na	1.00	0.294		0.498	0.498	99.58%

TEST SETUP GENESYS 10 v2.021 2G2G048006

Standard Curve	14:16 12Dec13
Test Name	SULFIDE[Saved]
Date Standards Measured	12Dec13
Wavelength	650nm
Wavelength	n Off
Ref. Wavelength Correctio	Linear
Curve Fit	Linca
Number of Standards	- 4
Units	mg/L
ID# (O=OFF)	0ff
	0.050/1.000
Low/High Limits	0,030/1.000 Off
Statistics	
Auto Print	On
0.652 1	

Curve Fit Slope Intercept Std Dev		9.	Linear 0.595 -0.0022 0.002 1.000
Corr Coeff			1.500
	741.2		

Conc. mg/L		Abs 650nm	* E
. 3	0.000	0.000	
4	0.050 0.125 0.250 0.500 1.000	0.025 0.071 0.149 0.294 0.593	ARD

TEST SETUP GENESYS 10 v2.021 2G2G048006

Advanced A-XT-C Test Name Measurement Mode Wavelength Ref. Wavelength Correction Delay Time (min:sec) ID# (O=OFF) ** Low/High Limits Statistics	0:00 1 0.000/0.800 Off
Auto Print	0n

ID#	Abs 650nm
1	0.000

2 0.286

14 0.289

miss prep.

0.344

17 -0.004

Corrective Actions Inorganic Analyses

Criteria Flagged:	ARI Job No.: XQ 29				
Unacceptable Blank:	Date of Event: 12/12/13				
Unacceptable Duplicate:	Client ID: New fields				
Unacceptable Spike:	Method/Element: 5				
Unacceptable Reference:	Prep Code: AVS - SEM				
Details of Problem/Recommended Corrective Action: Matrix Spike recovery unnamptable due to Spikelevel too low relative to sample.					
Samples Affected: <u>XRZ9 A1.</u>					
Corrective Action Taken: Nonc					
Analyst Initials: APD Date: 12/13/13	Supervisor: W				
14/7/3	Date: 12-17-17				

5049F

Revision 007 6/11/10

X020:00116