Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Prepared for

Weyerhaeuser Company P.O. Box 9777 Federal Way, WA 98063

Prepared by FLOYD | SNIDER 601 Union Street Suite 600 Seattle, Washington 98101

April 24, 2012

Table of Contents

1.0	Introd	duction.		1-1
2.0	Upda	ted Con	npliance Monitoring Network	
	2.1	WELL [DECOMMISSIONING	2-1
	2.2	WELL I	NSTALLATION AND DEVELOPMENT	2-1
3.0	Comp	oliance	Monitoring	
	3.1	COMPL	IANCE MONITORING ACTIVITIES	3-1
		3.1.1	Water Level Measurements	3-1
		3.1.2	Groundwater Sampling	3-1
		3.1.3	Data Validation	3-1
	3.2	COMPL	IANCE MONITORING RESULTS	3-2
		3.2.1	Water Level Measurements and Potentiometric Surface	3-2
		3.2.2	Groundwater Results	3-2
4.0	Sumr	nary of	Findings	4-1
5.0	Refer	ences		5-1

List of Tables

Table 2.1	Monitoring Well Information	
Table 2.1	Monitoring Well Information	

- Table 3.1
 Water Level Elevation and Tidal Information
- Table 3.2 Arsenic Analytical Results
- Table 3.3 TPH-Dx Analytical Results

List of Figures

- Figure 1.1 Vicinity Map
- Figure 2.1 Monitoring Well Locations and Groundwater Elevations

List of Appendices

- Appendix A Historic Well Logs
- Appendix B Well Logs
- Appendix C Laboratory Analytical Reports

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
CMP	Weyerhaeuser Everett West Groundwater Compliance Monitoring Plan Addendum
CMR	Compliance Monitoring Report
Consent Decree	Consent Decree No. 94-2-67559-2
CUL	Cleanup level
Ecology	Washington State Department of Ecology
MLLW	Mean Lower Low Water
MTCA	Model Toxics Control Act
NAVD88	North American Vertical Datum of 1988
Site	Weyerhaeuser Everett West Site
TPH-Dx	Total petroleum hydrocarbons—diesel- and oil-range
USEPA	U.S. Environmental Protection Agency
WAC	Washington Administrative Code
Weyerhaeuser	Weyerhaeuser Company

1.0 Introduction

This Compliance Monitoring Report (CMR) for the Weyerhaeuser Everett West Site (Site) has been prepared in accordance with the requirements of the Consent Decree No. 94-2-67559-2 (Consent Decree; State of Washington 1994), between Weyerhaeuser Company (Weyerhaeuser) and Washington State Department of Ecology (Ecology), specifically with the requirements of Washington Administrative Code (WAC) 173-340-410 and WAC 173-340-720. Except where noted, compliance monitoring and reporting is being conducted in accordance with the procedures outlined in the Groundwater Compliance Monitoring Plan for Weyerhaeuser Everett West Site (Emcon 1995) and the Weyerhaeuser Everett West Groundwater Compliance Monitoring Plan Addendum (CMP; Floyd|Snider 2011). The Site is located at 101 East Marine View Drive in Everett, Washington, as shown in Figure 1.1.

Compliance monitoring is designed to meet the monitoring requirements specified in the Consent Decree and the substantive requirements of regulations issued pursuant to the Washington State Model Toxics Control Act (MTCA). The goal of this report is to provide documentation of site groundwater quality relative to the attainment of cleanup requirements. The results of the December 2011 annual groundwater monitoring event for the Site are presented in this report. In addition, activities performed to restore the compliance monitoring network, including the decommissioning of previous monitoring wells and the installation and development of new monitoring wells, are summarized in this report.

2.0 Updated Compliance Monitoring Network

The prior compliance monitoring well network consisted of six shoreline monitoring wells (MW-1201, MW-1202, MW-1203, MW-1301, MW-1302, and MW-1501), and one upgradient monitoring well (MW-1701). The 2011 Compliance Monitoring Plan Addendum included a work plan to update the compliance monitoring well network, which was developed in consultation with Ecology, involved the decommissioning of the six shoreline wells and installation of four new monitoring wells closer to the conditional point of compliance (MW-1202R, MW-1203R, MW-1301R, and MW-1501R).

Locations of the compliance monitoring wells are shown in Figure 2.1. Survey information for the old wells and the newly installed wells can be found in Table 2.1. Refer to the CMP for details regarding the rationale behind the restored compliance monitoring network. Field activities associated with well installation, development, and surveying are described below.

2.1 WELL DECOMMISSIONING

Monitoring Wells MW-1203, MW-1301, MW-1302, and MW-1501 were decommissioned by a Washington state-licensed well driller in accordance with the standards provided in WAC 173-160-381 on November 28, 2011. The screened intervals of the wells were filled with hydrated bentonite chips, and the riser and surface completion were filled with concrete in place.

The survey coordinate locations of former Monitoring Wells MW-1201 and MW-1202 were investigated, and the surrounding areas (10-foot radius) were excavated with a skid-steer excavator to a depth of approximately 1 foot or more. Searching for each of the former wells proceeded for approximately 2 hours, but the two wells were unable to be located. It is likely that the wells were destroyed as part of site operations, and no further effort to find and decommission them will be undertaken. Well logs for the originally installed wells can be found in Appendix A.

2.2 WELL INSTALLATION AND DEVELOPMENT

On November 28 and 29, 2011, four 2-inch diameter monitoring wells (designated MW-1202R, MW-1203R, MW-1301R, and MW-1501R) were installed to replace MW-1202, MW-1203, MW-1301, and MW-1501. Prior to drilling, Washington Utility Notification Center was contacted so that public utilities could be located. Applied Professional Services, Inc. was retained to locate and mark private utilities prior to drilling. Drilling and well installation was performed in accordance with the CMP, using a truck-mounted, hollow-stem auger drill rig. Soil samples were collected using a split-spoon sampler and logged under the direction of a licensed geologist.

Monitoring wells were installed with the same approximate depth and screened interval, and constructed of the same materials, as the wells they replaced. The surface of each well was completed with a flush-mounted steel monument, and the well was secured by a locked gasket cap. A bollard was placed next to each monument to protect and aid in locating the well. No bollard was placed at MW-1203R due to field conditions; this well is in an area that is easy to locate and that is protected from vehicle travel due to its proximity to the bulkhead. To develop the wells, the four newly installed wells were repeatedly surged with a bailer and evacuated

using a submersible pump until 10 well volumes had been removed and stabilization criteria had been achieved. A total of approximately 40 gallons was produced during well development.

Wells were surveyed by professional surveyors (Barghausen, Inc.) on December 14, 2011 relative to the North American Datum 1983 (NAD83) Washington State Plane North High American Accuracy Reference Network (HARN) and North Vertical Datum (NAVD88).Upgradient Well MW-1701 was not surveyed because it was believed to have been destroyed at the time of the well survey. MW-1701 was subsequently located.¹ The previous survey results for this well were referenced to the mean sea level (MSL) datum and were unable to be converted to a sufficiently accurate elevation relative to NAVD88 for use in water level measurements. A new survey of this well is recommended. All well installation details and logs for the newly installed wells can be found in Appendix B.

Investigation-derived waste; including drill cuttings, decontamination water, and well development water; was collected in 55-gallon drums. Drill cuttings and decontamination water was characterized by sampling and analysis on December 19, 2011 for MTCA metals (i.e., arsenic, cadmium, chromium, lead, and mercury) and diesel- and oil-range total petroleum hydrocarbons (TPH-Dx). Well development water was characterized using compliance monitoring analyses (i.e., dissolved arsenic and TPH-Dx for MW-1301R). Characterization results indicate all soil results were less than MTCA Method A Unrestricted Land Use criteria, and all water results were less than MTCA Method A table values (refer to Appendix C). Based on these results, no off-site disposal was determined to be necessary, and the soil and water were spread on the ground surface.

¹ A March 1994 site survey by Clark Leeman Land Surveying attributed well coordinates to MW-1701 that are in the location of a decommissioned well. This led to the incorrect inference that MW-1701 had been destroyed. Subsequent review of site plans indicates that the decommissioned well corresponds to a former well, MW-1, that was installed by Emcon in 1988 and that MW-1701 remains intact (refer to Figure 2.1).

3.0 Compliance Monitoring

3.1 COMPLIANCE MONITORING ACTIVITIES

The first compliance monitoring event with the updated monitoring network was conducted on December 19, 2011. Except where noted, field methods used in compliance monitoring were carried out in accordance with the CMP. Field activities are summarized below.

3.1.1 Water Level Measurements

To provide an accurate indication of the potentiometric surface, water level measurements were collected from MW-1202R, MW-1203R, MW-1301R, and MW-1501R within 30 minutes of each other (between 13:17 and 13:45).

No water level measurement was collected from upgradient Monitoring Well MW-1701 because this well was believed to have been destroyed at the time of water level measurement. Water level measurements were also collected prior to the start of well purging and during low flow sampling.

3.1.2 Groundwater Sampling

Sample collection and handling was conducted in accordance with the CMP. Groundwater samples from MW-1202R, MW-1203R, ME-1301R, and MW-1501 were collected using standard low-flow sampling methods, field filtered, and submitted to Weyerhaeuser Analytical Chemistry under chain of custody for dissolved arsenic analysis. An unfiltered sample from MW-1301R was also submitted for TPH-Dx analysis. Field duplicate samples were collected from MW-1301R and submitted for analysis under a fictitious sample name (MW-2301R-1211).

Groundwater sample collection was consistent with the CMP provisions regarding tidal conditions (refer to Section 3.2.1). Groundwater samples are considered representative of groundwater quality in water discharging to the Snohomish River.

3.1.3 Data Validation

A Tier 1 data quality review was performed on all analytical results for samples collected during the December 2011 compliance monitoring event. Consistent with the CMP, the analytical data were validated in accordance with the following guidelines and standard operating procedures:

- U.S. Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA 1994 and 2004)
- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999 and 2008) as applied to criteria in NWTPH-Dx

The data quality review included evaluation of sample chain-of-custody procedures, sample preservation and analytical holding times, blank contamination, precision (replicate analyses), accuracy (compound recovery), adherence to the target analyte list, detection limits, and data

package completeness. The data are determined to be of acceptable quality for use as reported by the laboratory.

3.2 COMPLIANCE MONITORING RESULTS

The results of the December 2011 monitoring event are presented in this section.

3.2.1 Water Level Measurements and Potentiometric Surface

Water level measurements and tidal information are reported in Table 3.1. Groundwater elevations collected within 30 minutes of each other and prior to sampling are illustrated on Figure 2.1. Because of the lack of an upgradient monitoring well, these results are not sufficient to support accurate potentiometric surface contours, flow direction, or gradient; however, these results indicate a northeasterly groundwater flow direction that is consistent with topography between the uplands and the Snohomish River.

Groundwater samples were collected during the ebb to a lower-low water tide, between 14:35 and 16:22, when the Snohomish River was ebbing from a high of 9.66 feet NAVD88 (12 feet Mean Lower Low Water [MLLW]) at 11:14 a.m. based on published tidal information (NOAA 2011). Groundwater samples were collected when predicted tides ranged from approximately 5.2 and -1.3 feet NAVD88 (approximately 7.5 feet and 1 foot MLLW). Water levels in the wells during this time ranged from 8.05 to 5.5 feet NAVD 88. As shown in Table 3.1, water levels in the wells were approximately 3 or more feet higher than the corresponding water level in the Snohomish River at the time of sampling, which is consistent with the procedure for collecting representative groundwater samples described in the CMP.

3.2.2 Groundwater Results

Analytical results for the December 2011 compliance monitoring event are presented in Tables 3.2 and 3.3. Time concentration plots were not prepared for this report because there is only one monitoring event to date. Laboratory analytical reports for the December 2011 monitoring event are included as Appendix C. The results are summarized and compared with the site cleanup levels (CULs) below.

3.2.2.1 Arsenic Results

Dissolved arsenic was detected in groundwater samples from all four monitoring wells. The highest concentration of arsenic detected was 2.7 μ g/L in MW-1202R, while the lowest concentration was 1.4 μ g/L in MW-1203R.. All concentrations detected were less than the site groundwater arsenic CUL of 5 μ g/L.

3.2.2.2 Total Petroleum Hydrocarbon Results

The concentration of diesel-range hydrocarbons detected in the sample from MW-1301R and its duplicate sample was 45 μ g/L. Oil-range hydrocarbons were not detected in either the sample or the duplicate from MW-1301R greater than the laboratory detection limit of 200 μ g/L. The

total diesel-range and oil-range hydrocarbon concentration for MW-1301R is less than the site groundwater CUL of 1,000 μ g/L for TPH-Dx.

4.0 Summary of Findings

The primary findings of the 2011 Annual CMR are summarized as follows:

- Weyerhaeuser has updated its compliance monitoring network at the Site in accordance with the CMP. Wells that were able to be located from the prior monitoring network were decommissioned and four new point of compliance monitoring wells were installed, developed, and surveyed at the bulkhead.
- The first monitoring event of the updated monitoring network was completed in accordance with the CMP. Sampling was coordinated with a tidal ebb to ensure representative samples of groundwater discharging to the Snohomish River.
- Water level elevations indicate a northeasterly groundwater flow direction.
- Upgradient Well MW-1701 was not surveyed because it was believed to have been destroyed at the time of the well survey but was subsequently located. A new survey of this monitoring well is recommended.
- Dissolved arsenic was detected in all four monitoring wells that were sampled at concentrations less than the site groundwater CUL of 5 μ g/L.
- Diesel-range and oil-range total petroleum hydrocarbons were detected in the sample from MW-1301R (the only well sampled for TPH-Dx) at a concentration less than the site groundwater CUL of 1,000 μg/L.

Weyerhaeuser has notified Ecology that it will increase its monitoring and reporting frequency to quarterly in order to begin establishing a dataset that is suitable for compliance evaluation.

5.0 References

- Emcon. 1994. Draft Report, Phase 1 Site Assessment for Areas 11 through 18, Weyerhaeuser Everett West Site. Prepared for Weyerhaeuser Company. Revised May.
- ———. 1995. Groundwater Compliance Monitoring Plan for Weyerhaeuser Everett West Site, Everett, Washington. Prepared for Weyerhaeuser Company. 2 March.
- Floyd|Snider. 2011. Memorandum to David South: Weyerhaeuser Everett West Groundwater Compliance Monitoring Plan Addendum. November.
- National Oceanic and Atmospheric Administration (NOAA). *NOAA Tides and Currents*. 2011. Everett, WA Station ID 9447659. <u>http://tidesandcurrents.noaa.gov/noaatidepredictions/</u>.
- State of Washington. 1994. Consent Decree No. 94-2-67559-2 and Exhibits. Ecology v. Weyerhaeuser Company. October.
- U.S. Environmental Protection Agency (USEPA). 1994. Office of Emergency and Remedial Response. USEPA Contract Laboratory Program National Function Guidelines for Inorganic Data Review. Washington, D.C. February.
- ———. 1999. Office of Emergency and Remedial Response. USEPA Contract Laboratory *Program National Functional Guidelines for Inorganic Data Review.* Washington, D.C. October.
- ———. 2004. Office of Superfund Remediation and Technology Innovation (OSRTI). USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review Final Draft. Washington, D.C. July.
- ———. 2008. Office of Superfund Remediation and Technology Innovation (OSRTI). USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. Washington, D.C. June.

Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Tables

FLOYD | SNIDER

Table 2.1
Monitoring Well Information

	Casing	Screened		Northing	Facting	Ground Surface	Top of PVC	
	Diameter (inchos)	Interval (foot bos)	Surface	(foot NAD83) ¹		Elevation	Elevation	Notos
Updated Com	liance Mon	itoring Netw	ork	(leet NAD03)				NOLES
MW-1202R	2	3–10	Flush-mounted	373774.03	1308209.99	12.61	12.08	Installed 11/29/11.
MW-1203R	2	6–12	Flush-mounted	373910.15	1307960.38	16.10	15.7	Installed 11/29/11.
MW-1301R	2	3–10	Flush-mounted	374004.04	1307718.03	14.98	14.44	Installed 11/28/11.
MW-1501R	2	3–10	Flush-mounted	373999.28	1306940.85	12.43	11.8	Installed 11/29/11.
Prior Complian	nce Monitor	ing Network	2			•		•
MW-1201	2	5–15	Aboveground Monument	373554.24	1308299.23	NA	NA	Not Found.
MW-1202	2	3–15	Aboveground Monument	373746.61	1308192.58	NA	NA	Not Found.
MW-1203	2	3–10	Flush-mounted	373901.31	1307959.46	NA	NA	Decommissioned 11/28/11.
MW-1301	2	3–10	Flush-mounted	373987.20	1307725.62	NA	NA	Decommissioned 11/28/11.
MW-1302	2	3–10	Flush-mounted	374038.00	1307514.34	NA	NA	Decommissioned 11/28/11.
MW-1501	2	3–10	Flush-mounted	373938.67	1306922.73	NA	NA	Decommissioned 11/28/11.
MW-1701	2	2–8	Flush-mounted	NA ³	NA ³	NA ³	NA ³	Well to be retained for water level measurements. New survey is recommended.

Notes:

1 Coordinate values are reported in feet relative to NAD83 High Accuracy Reference Network State Plane Coordinate System, Washington North Zone.

² Well information from boring logs presented in Draft Report, Phase 1 Site Assessment for Areas 11 through 18, Weyerhaeuser Everett West Site (Emcon 1994). Refer to Appendix A.

3 Prior well coordinates attributed to MW-1701 were found to be in the location of a decommissioned well (MW-1). Subsequent review of site plans indicates that MW-1701 is located further to the west. MW-1701 was not surveyed because it was believed to have been destroyed at the time of the well survey. Elevation of top of PVC well casing from Emcon (1994) based on a conversion from MSL using the National Geodetic Survey from the closest National Geodetic Survey benchmark is not sufficiently accurate for water level measurements.

Abbreviations:

bgs Below ground surface

- MSL Mean sea level
- NA Information is not available

NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988

PVC Polyvinyl chloride

\merry\data\projects\Weyer Everett West\Task 5 Compliance Monitoring\December 2011 Event\Annual Compliance Report April 2012\Tables\ DRAFT Compliance Report March 2012 Tables 042412.xlsx Table 2.1 April 24, 2012

2011 Annual Compliance Monitoring Report Monitoring Well Information Table 2.1

FLOYDISNIDER

Table 3.1Water Level Elevation and Tidal Information

Well ID	TOC Elevation (feet NAVD88)	Date	Time of Measurement	Depth to Water (feet)	Water Level Elevation (feet NAVD88)	Time of Sampling	Approximate Tidal Elevation at Time of Sampling ¹ (feet MLLW)	Approximate Tidal Elevationat Time of Sampling ¹ (feet NAVD88)	Approximate Height of Water Table above Snohomish River (feet)
Potentiometric s	urface measuren	nents		-					
MW-1202R	12.08	12/19/2011	13:25	6.25	5.83	NA	NA	NA	NA
MW-1203R	15.7	12/19/2011	13:17	9.6	6.1	NA	NA	NA	NA
MW-1301R	14.44	12/19/2011	13:36	7.42	7.02	NA	NA	NA	NA
MW-1501R	11.8	12/19/2011	13:45	3.73	8.07	NA	NA	NA	NA
Water levels at ti	me of well purgi	ng							
MW-1202R	12.08	12/19/2011	16:03	6.58	5.5	16:22	1	-1.3	6.8
MW-1203R	15.7	12/19/2011	15:20	9.6	6.1	15:50	1	-1.3	7.4
MW-1301R	14.44	12/19/2011	14:55	7.45	6.99	15:18	1.7	-0.6	7.6
MW-1501R	11.8	12/19/2011	14:09	3.75	8.05	14:35	7.5	5.2	2.9

Note:

1 Information is sourced from the National Oceanic and Atmospheric Administration (NOAA) 2011.

Abbreviations:

MLLW Mean Lower Low Water

NA Information is not available NAVD88 North American Vertical Datum of 1988 TOC Top of casing

Weyerhaeuser Everett West

FLOYD | SNIDER

Table 3.2 Arsenic Analytical Results (µg/L)

Location	MW-1202R	MW-1203R	MW-1	301R	MW-1501R
Sample Date					
12/19/2011	2.7	1.4	1.7	1.8 D	1.6

Qualifier:

D Indicates sample is a field duplicate.

FLOYD | SNIDER

Table 3.3 TPH-Dx Analytical Results (µg/L)

Location	MW-1301R							
Sample Date	Diesel-range	Hydrocarbons	Oil-range Hydrocarbons					
12/19/2011	45	45 D	200 U	200 DU				

Qualifiers:

D Indicates sample is a field duplicate.

U Indicates result is below laboratory detection limit.

Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Figures

F:\projects\Weyer Everett West\GIS\Task 02\Figure 1.1 (Vicinity Map).mxd 4/25/2012

F:\projects\Weyer Everett West\GIS\Task 02\Figure 2.1 (Monitoring Well Locations and Groundwater Elevations).mxd 4/25/2012

and Groundwater Elevations

Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Appendix A Historic Well Logs

EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS

SAMPLE COLUMN

SAMPLE OBTAINED

SAMPLER DRIVEN, NO SAMPLE OBTAINED

WELL DETAILS COLUMN

LITHOLOGIC COLUMN

SM

SW-SM

GW GP GM GC

LOG OF EXPLORATORY BORING

LOCATION DRILLED BY

PROJECT NAME West Site Phase 1 Weyerhaeuser Everett West Site Geo-Boring DRILL METHOD Hollow Stem Auger (6" ID) LOGGED BY Russell Thompson

MW-1201 BORING NO. 2 OF 2 PAGE **REFERENCE ELEV.** 14.93' 15.00' TOTAL DEPTH DATE COMPLETED 06/14/93

Sampling Method And NUMBER	PID (in ppm)	BLOWS PER 9 INCHES	GROUND WATER LEVELS	Depth In Peet	SAMPLES	COLUMN	WELL DETAILS	LITHOLOGIC DESCRIPTION
				25 - 30 - 35 -				 WELL COMPLETION DETAILS: + 3.0 to 5.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC blank riser pipe. 5.0 to 15.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. 0 to 1.5 feet: Concrete. 1.5 to 4.0 feet: Bentonite chips hydrated with potable water. 4.0 to 16.5 feet: 10 - 20 Colorado Silica Sand.
		REMARK: Drilled with a nonument se ppm. * =	S a mobile C acurity can sample su	:ME-75 sing. S ubmitte	561 S= edfc	/4-Inch I split spo or laborat	.D. hollow st oon sampler. ory analysis.	em auger, 300 pound hammer with a 30 inch stroke. Above ground PID = photoionization detector. Background reading = less than

PRC LOC DRII DRII	JECT NA ATION LLED BY	AME We We Ge	L st Site yerhae o-Borin llow St	OG C Phase user Ev g em Aug)FEX 1 verett V ger (6"	ATORY BORING BORING NO. MW-1202 PAGE 2 OF 2 REFERENCE ELEV. 12.46' TOTAL DEPTH 15.00' DATE COMPLETED 06/10/93	
LOG	IGED BY	KU	ssell I n	iompso	n		DATE COMIFLETED 00/10/35
SAMPLING METHOD AND NUMBER	PtD (in ppm)	BLOWS PER 8 INCHES	GROUND WATER LEVELS	DEPTH N FEET SAMPLES	LTTHOLOGIC COLUMN	WELL Details	LITHOLOGIC DESCRIPTION
				25			 WELL COMPLETION DETAILS: + 3 to 3.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC blank riser pipe. 3.0 to 15.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap. 0 to 1.5 feet: Concrete. 1.5 to 2.0 feet: Bentonite chips hydrated with potable water. 2.0 to 16.5 feet: 10 - 20 Colorado Silica Sand.
	I	REMARKS	S				
		Drilled with a nonument se ppm. * =	n mobile C ocurity cae sample su	ME-75 6 sing. SS = Ibmitted f	1/4-inch I split spo or laborat	.D. hollow st oon sampler. ory analysis.	em auger, 300 pound hammer with a 30 inch stroke. Above ground PID = photoionization detector. Background reading = less than

EMCON Northwest, Inc.

LOG OF EXPLORATORY BORING

LOCATION DRILLED BY DRILL METHOD LOGGED BY

PROJECT NAME West Site Phase 1 Weyerhaeuser Everett West Site Geo-Boring Hollow Stem Auger (6" ID) Russell Thompson

BORING NO. MW-1301 1 OF 1 PAGE 11.30' **REFERENCE ELEV.** 10.00' TOTAL DEPTH DATE COMPLETED 06/09/93

			I					
SAMPLING METHOD AND NUMBER	PID (in ppm)	BLOWS PER 6 INCHES	OROUND WATER LEVELS	DEPTH IN FEET	SAMPLES	COLUMN	WELL Detalls	LITHOLOGIC DESCRIPTION
		1	1					0 to 0.3 foot: ASPHALT
			-					0.3 to 0.5 foot: CRUSHED ROCK
SS/S-1	0	10-8-9						0.5 to 1.0 foot: SILTY GRAVELLY SAND (SW-SM), 10 to 15 percent silt, 50 percent fine to medium sand, 35 to 40 percent fine to medium gravel, damp, no poticeable odors.
SS/*S-2	0	20-12-7	-			1 161 662		1 0 to 10 0 feet: SAND (SP) tan 95 percent fine
SS/S-3	-	12-12-10		F				to coarse sand, 5 percent fine gravel, medium dense, damp, no noticeable odors. @ 4.5 feet: recovery on second attempt.
			Ē.	5-		:::::		@ 5.0 feet: becomes wet.
SS/S-4		4-3-4		-				@ 8.0 feet: sand becomes black with an
			=					uncharacteristic odor.
			t		ha second			
SS/S-5		4-4-5	-	10-				
			-				CALL REPORT	Boring terminated at 10.0 feet, sampled to
			L	2				11.5 feet.
			-		_			
			-		_			WELL COMPLETION DETAILS:
			-		-			0 to 3.0 feet: 2-inch-diameter, flush-threaded,
			-	4.5	-	1	1	schedule 40 PVC blank riser pipe.
				15	_	1		3.0 to 10.0 feet: 2-inch-diameter, flush-threaded,
					-	-		schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap.
			2			-		0 to 1.5 foot: Concrete.
			i i		-			1.5 to 2.0 feet: Bentonite chips hydrated with
			-		-			2.0 to 11.5 feet: 10 - 20 Colorado Silica Sand.
			t	- 20-	-	1		
		REMARKS	S	20	-			
(AA.		Drilled with a	a mobile C	:ME-75	56	1/4-inch I	.D. hollow st	em auger, 300 pound hammer with a 30 inch stroke. Flush mounted
	J :	security mon * = sample s	ument. S submitted	S = s for lat	plit e pora	spoon sai tory anal [,]	mpler. PID = ysis.	photoionization detector. Background reading = less than 1 ppm.

LOG OF EXPLORATORY BORING

PRO LOC DRII DRII LOG	JECT NA ATION LED BY L METH GED BY	AME We We Geo IOD Hol Rus	est Site oyerhae o-Boring llow Sta ssell Th	Phase user E g em Au ompso	1 verett V ger (6" on	Vest Site ID)	BORING NO. MW-1302 PAGE 1 OF 1 REFERENCE ELEV. 12.03' TOTAL DEPTH 10.00' DATE COMPLETED 06/09/93
Sampling Method And NUMBER	PID (in ppm)	BLOWS PER 6 INCHES	GROUND WATER LEVELS	DEPTH IN FEET SAMPLES		WELL Detals	LITHOLOGIC DESCRIPTION
.SS/S-1	0	9-11-8	-	-	0.00		0 to 0.3 foot: ASPHALT 0.3 to 0.8 foot: SILTY SANDY GRAVEL (GW), tan, 15 to 20 percent silt, 40 percent fine to medium sand, 40 to 45 percent fine to medium gravel, damp, no noticeable odors. (FILL) 0.8 to 5.0 feet: SAND (SP), tan to light tan, 5 percent silt, 90 percent fine to coarse sand
SS/S-3		2-2-2	- - ¥ -	5-			 5 percent fine gravel, medium dense, damp, no noticeable odors. @ 3.0 feet: becomes loose. @ 4.0 feet: becomes moist. 5.0 to 11.0 feet: SAND (SP), black, 95 percent fine to medium sand, 5 percent fine gravel, loose, wet uncharacteristic odor.
SS/S-4		2-2-2	-				
SS/S-5		1-2-2	1				Boring terminated at 10.0 feet, sampled to 11.5 feet.
							 WELL COMPLETION DETAILS: 0 to 3.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC blank riser pipe. 3.0 to 10.0 feet: 2-inch-diameter, flush-threaded, schedule 40 PVC well screen with 0.010-inch machined slots and a 2-inch-diameter threaded end cap.
			-	- 20-			0 to 1.5 feet: Concrete. 1.5 to 2.0 feet: Bentonite chips hydrated with potable water. 2.0 to 11.5 feet: 10 - 20 Colorado Silica Sand.
	Northwest	REMARKS Drilled with a security mone = sample a	S a mobile C ument. S submitted	:ME-75 6 S = split for labor	1/4-inch spoon sa atory anal	I.D. hollow st mpler. PID = ysis.	em auger, 300 pound hammer with a 30 Inch stroke. Flush mounted photoionization detector. Background reading = less than 1 ppm. 0141-037.28 WY037 57/act3 05/12/94 WY037 MW (Mame: BEAD)

Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Appendix B Well Logs

Monitoring Well ID: MW-1202R

Ground Surf Elev. & Datum: 12.61 (NAVD88) Coordinate System: NAD83 Latitude/Northing: 373774.03 Longitude/Easting: 1308209.99 Casing Elevation: 12.08

Logged By: Dean Brame Drilled By: Curtis / Cascade Drilling Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" Split Spoon Boring Diameter: 8-inch Boring Depth (ft bgs): 10.5 ft Groundwater ATD (ft bgs): 5 ft

Client: Weyerhaeuser Project: Weyer-EW Task Number: Site Location: Everett West

Remarks:

BLOW	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	MONITORING WELL
COUNT	RECOVERED) (ft bgs)	SYMBOL		DETAIL

Notes: ft bgs = feet below ground surface

Monitoring Well ID: MW-1203R

Ground Surf Elev. & Datum: 16.10 (NAVD88) Coordinate System: NAD83 Latitude/Northing: 373910.15 Longitude/Easting: 1307960.38 Casing Elevation: 15.7

Logged By: Dean Brame Drilled By: Curtis / Cascade Drilling Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" Split Spoon Boring Diameter: 8-inch Boring Depth (ft bgs): 15 ft Groundwater ATD (ft bgs): 8 ft

Client: Weyerhaeuser Project: Weyer-EW Task Number: Site Location: Everett West

Remarks: Asphalt and gravel from 0-1 ft cored with 12" diameter auger.

BLOW	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	MONITORING WELL
COUNT	RECOVERED) (ft bgs)	SYMBOL		DETAIL

4			GW	Crushed GRAVEL under asphalt.	
13					
35		1			Concrete Seal
28		-			
50		2			
2					
6		3	SP	Light brown, dry medium, SAND with minor small gravel.	2"dia Sch 40 PVC Riser
16			0.		Pipe 0-6 ft
21					Bentonite
25		-			
18		5			
19		-			
23		6			
7		-		Clean moist from 6-7.5 ft	
9		7			
15					
7				Wet at 8 ft	10-20 Silica
9		-			
10		9			2" dia Sch 40
7		-			Screen 6-12 ft
10				Sand coarsens at 10 ft	
10		-			
17					
21		-			
22				Grav from 10 5-14 ft	
10		$\left - \right $			
15					
19		-			10-20 Silica
6		14		Dark gray, wet, and fine with interbedded wood (possible peat) lenses ~1" thick at 14 ft	
9		$\left - \right $			
10					····

Notes: ft bgs = feet below ground surface

Monitoring Well ID: MW-1301R

Ground Surf Elev. & Datum: 14.98 (NAVD88) Coordinate System: NAD83 Latitude/Northing: 374004.04 Longitude/Easting: 1307718.03 Casing Elevation: 14.44

Logged By: Dean Brame Drilled By: Curtis / Cascade Drilling Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" Split Spoon Boring Diameter: 8-inch Boring Depth (ft bgs): 10.5 ft Groundwater ATD (ft bgs): 6.5 ft

Client: Weyerhaeuser Project: Weyer-EW Task Number: Site Location: Everett West

Remarks:

BLOW	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	MONITORING WELL
COUNT	RECOVERED) (ft bgs)	SYMBOL		DETAIL

Monitoring Well ID: MW-1501R

Ground Surf Elev. & Datum: 12.43 (NAVD88) Coordinate System: NAD83 Latitude/Northing: 373999.28 Longitude/Easting: 1306940.85 Casing Elevation: 11.8

Logged By: Dean Brame Drilled By: Curtis / Cascade Drilling Drill Type: 8"-dia Hollow Stem Auger Sample Method: 2"x18" Split Spoon Boring Diameter: 8-inch Boring Depth (ft bgs): 10.5 ft Groundwater ATD (ft bgs): 4.5 ft

Client: Weyerhaeuser Project: Weyer-EW Task Number: Site Location: Everett West

Remarks:

BLOW	DRIVEN /	DEPTH	USCS	SOIL DESCRIPTION AND OBSERVATIONS	MONITORING WELL
COUNT	RECOVERED) (ft bgs)	SYMBOL		DETAIL

		0			
4		0	OL/OH	Dark brown , moist, fine SANDY ORGANIC SOIL with some grass/roots at 0.7 ft and small crushed black gravel.	
26					Concrete Seal
30		1			
6		_	Wood	Dark brown, moist WOOD CHIPS mixed with few 1" black	2"dia Sch 40 PVC Riser Pipe 0-3 ft
4		2	Grips		Bentonite
3		-		Minor fine sand and very moist from 2 to 3 ft.	
50		3			
2		-			
5	-	4		Same as above, bright orange streaks.	
		Y	GP	Dark gray, wet, medium GRAVEL with SAND, 1/4-1/2"	
65/6"	-	5		diameter gravel.	
		-		Concrete at 5.8 ft. Very wet, and gravel diameter increases to	
4	_	6		1-2" (rounded) below. Dark grav/black and wet with 1/16-1/2" diameter rounded	. 10-20 Silica Sand 2-10.5 ft
6		-		gravels at 6 ft.	2" dia Sch 40 0.010-in PVC
7	-	7	SP	Dark grav medium SAND.	Screen 3-10 ft
56/6"	_	_	Wood	2" lense of WOOD CHIPS (~75%) mixed with sand.	
	-	8	SP	Dark gray, wet, and clean with no wood at 7.5 ft.	
		-			
5		9		Dark grou/block and cooree with minor small group at 0.4	
5				שמות פומצישומנת מוום נטמוצפ שונח חווחטו צוזומו פומעפו מנ 9 ונ.	
15	-		Wood	Wet WOOD CHIPS 10 to 10.3 ft	
			. MI		
	7			Dair yiay, suit SILT.	1 1

Notes:

 $ft \ bgs = feet \ below \ ground \ surface$

Weyerhaeuser Everett West

2011 Annual Compliance Monitoring Report

Appendix C Laboratory Analytical Reports

P.O. Box 9777, WTC 2F25 Federal Way, WA 98063-9777 32901 Weyerhaeuser Way South Federal Way, WA 98001 (253) 924-6242 Fax 253 924-6654 Dennis.Catalano@weyerhaeuser.com

January 17, 2012

Brett Beaulieu Floyd/Snider 601 Union St Suite 600 Seattle, WA 98101

Dear Brett:

Attached is the final report for the Weyer-EW Compliance Monitoring samples you requested we analyze for you. This work has been performed under our service request number 11-1738 received on 12/21/2011.

If you have any technical questions concerning this report, please feel free to contact me. at (253) 924-6242. Thank you for the opportunity to be of service to your organization. I hope that we can be of assistance in the future.

Sincerely,

Dennís Catalano

Dennis Catalano, Operations Manager Weyerhaeuser Analytical Chemistry and Microstructure (253) 924-6242 WTC 2F25 Dennis.Catalano@weyerhaeuser.com

Please Note:

• The results in this report relate only to items tested or to the sample(s) as received by the laboratory.

• This report shall not be reproduced, except in full, without the written permission of the laboratory.

Analytical Chemistry and Microstructure

11-1738

Title: Weyer-EW Compliance Monitoring PO: Samples: 23 Tests: 13 Last Samp: 023 Project Number: Order Desc: 2760-Everett West Site-Analy Test WY SAP Order Number: 90-0000-2586 Date Completed: Date Received: 12/21/11 Date Desired: 01/11/12 Location: Phone: 206 292-2078 Submitter: Beaulieu, Brett Location: WTC 2F25 Phone: (253) 924-6242 Reviewer: Catalano, Dennis Copy To: Ref Request: Disposal: **Record Book:** Comments: The As results need to be reported to 0.2ug/L on waters. The salinity is listed on paperwork and may require

Comments: The As results need to be reported to 0.20g/L on waters. The salinity is listed on paperwork and may require CCT technology to get rid of salt issues. These require disk deliverables and analyst will need to add QC samples to SR

Group	Analysis	Test Description	Comp List	Component List Description
ADMIN	DISK-EPA	EPA Disk - assign to each sample		
CHROM	1-AS-TPH	Acid/Silica Gel Cleanup		
CHROM	1-TPHDNW-S	Prep for NWTPH-D in Soil		
CHROM	1-TPHDNW-W	Prep for NWTPH-D in Water		
CHROM	DIESEL-NS	Diesel/Motor Oil in Soil by NWTPH-D		
CHROM	DIESEL-NW	Diesel/Motor Oil in Water by NWTPH-D		
CHROM	SL-OD-1	Solids - 105C in Solid Matrix		
METALS	3-GM-W2008	AM E-200.8M Water Digest for ICPMS		
METALS	3-HG-S	AM E-245 Hg Prep 245.5 - Solid/Soil		
METALS	3-HG-W	AM E-245 Hg Prep 245.1 - Water		
METALS	3-IF-S3050	AM E-3050 Soil Digest for ICP		
METALS	НG	Mercury - AM E-245	SOLID	Total Mercury in a Solid
			WATER	Total Mercury in Water
METALS	ICPMS	ICP-MS Metals - AM E-200.8M	S4ASCDCRPB	S-As,Cd,Cr,Pb
]	W1AS	W-As
			W4ASCDCRP	W-As,Cd,Cr,Pb

Test Schedules being used:

1-DIESELNS 1-DIESELNW

> Printed on: Jan 05, 2012 8:07 AM Data Retrieved: Jan 05, 2012 8:07 AM

Entered by: Catalano, Dennis Entered on: Dec 21, 2011 8:03 AM

Form ServiceRequest Rev. Dec 23, 2008

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

Analytical Chemistry and Microstructure

Title: Weyer-EW Complia	ance Monitoring																	
		Companent List										;		S4ASCDCRPB	Solid	W1AS	W4ASCDCRP	WATER
		Analysis	DISK-EPA	1-AS-TPH	1-TPHDNW-S	1-TPHDNW-W	DIESEL-NS	DIESEL-NW	SL-OD-1	3-GM-W2008	3-HG-S	3-HG-W	3-IF-S3050	ICPMS	НС	ICPMS	ICPMS	Ю
ample ID - Date Sampled ustomer Sample Description / ID	- Status		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11-1738-001 - 12/19/011 1622 MW-1202R-1211	- Available		۷							Ċ						۷		
11-1738-002 - 12/19/011 1550 MW-1203R-1211	- Available		V							C						۷		4
11-1738-003 - 12/19/011 1518 MW-1301R-1211	- Available		V	C		A		C		C						V		
1-1738-004 - 12/19/011 1518 /W-2301R-1211 [M]	- Available		V.	¢		A		C		C						۷		
11-1738-005 - 12/19/011 1435 MW-1501R-1211	- Available		Y						1	C						۷	:	
11-1738-006 - 12/19/011 1700 NATER-1 [M]	- Available		۷	C		A		C		C		C					V	C
11-1738-007 - 12/19/011 1635 GOIL-1 [M]	- Available		۷	C	A		Å		C		C		C	V	C	:		
11-1738-008 - 12/19/011 1645 SOIL-2	- Available		۷	C	Ą		Ą		Ċ		C		C	X	¢			
11-1738-009 - 12/19/011 1655 SOIL-3	- Available		V	C	Ą		A		C		C		Ċ	V	C			
11-1738-010 DBLK_W122111 [BLANK]	Available		v	¢				C			:							
11-1738-011 DLCS_W122111 [LCS]	Available		V	C				C										
11-1738-012 - 12/19/011 1518 MW-2301R-1211 [DUP]	- Available		۷	Ċ				C		Ċ		:				۷		
11-1738-013 - DBLK_S122211 [BLANK]	Available		V	C			A					:						
11-1738-014 - DLCS_S122211 [LCS]	Available		V	C			A											

Form ServiceRequest Rev. Dec 23, 2008 Printed on: Jan 05, 2012 8:07 AM

Data Retrieved: Jan 05, 2012 8:07 AM

Entered by: Catalano, Dennis Entered on: Dec 21, 2011 8:03 AM

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

11-1738

Analytical Chemistry and Microstructure

Printed on: Jan 05, 2012 8:07 AM

Data Retrieved: Jan 05, 2012 8:07 AM

Entered by: Catalano, Dennis Entered on: Dec 21, 2011 8:03 AM

Form ServiceRequest Rev. Dec 23, 2008

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure – Intranet: http://www.weyer.com/at/

Analytical Chemistry and Microstructure

11-1738

Title: Weyer-EW Compliance Monitoring

		Component		No.		Charge	Line
Group	Analysis	List	Test Description	Tests	Mult	Amount	Total
ADMIN	DISK-EPA		EPA Disk - assign to each sample	6	0.00	20.00	0.00
ADMIN	DISK-EPA		EPA Disk - assign to each sample	9	1.00	20.00	180.00

Total charges for ADMIN group (\$) 180.00

		Component		No.		Charge	Line
Group	Analysis	List	Test Description	Tests	Mult	Amount	Total
CHROM	1-AS-TPH		Acid/Silica Gel Cleanup	6	0.00	15.00	0.00
CHROM	1-AS-TPH		Acid/Silica Gel Cleanup	6	1.00	15.00	90.00
CHROM	1-TPHDNW-S		Prep for NWTPH-D in Soil	3	1.00	0.00	0.00
CHROM	1-TPHDNW-W		Prep for NWTPH-D in Water	3	1.00	0.00	0.00
CHROM	DIESEL-NS		Diesel/Motor Oil in Soil by	3	0.00	121.00	0.00
			NWTPH-D				
CHROM	DIESEL-NS		Diesel/Motor Oil in Soil by	3	1.00	121.00	363.00
			NWTPH-D				
CHROM	DIESEL-NW		Diesel/Motor Oil in Water by	3	0.00	121.00	0.00
			NWTPH-D				
CHROM	DIESEL-NW		Diesel/Motor Oil in Water by	3	1.00	121.00	363.00
			NWTPH-D				
CHROM	SL-OD-1		Solids - 105C in Solid Matrix	2	0.00	15.00	0.00
CHROM	SL-OD-1		Solids - 105C in Solid Matrix	3	1.00	15.00	45.00

Total charges for CHROM group (\$) 861.00

Entered by: Catalano, Dennis Entered on: Dec 21, 2011 8:03 AM

		Component		No.		Charge	Line
Group	Analysis	List	Test Description	Tests	Mult	Amount	Total
METALS	3-GM-W2008		AM E-200.8M Water Digest for	6	0.00	46.00	0.00
			ICPMS				
METALS	3-GM-W2008		AM E-200.8M Water Digest for	6	1.00	46.00	276.00
			ICPMS				
METALS	3-HG-S		AM E-245 Hg Prep 245.5 -	4	0.00	53.00	0.00
			Solid/Soil				
METALS	3-HG-5		AM E-245 Hg Prep 245.5 -	3	1.00	53.00	159.00
			Solid/Soil				
METALS	3-HG-W		AM E-245 Hg Prep 245.1 - Water	4	0.00	46.00	0.00
METALS	3-HG-W		AM E-245 Hg Prep 245.1 - Water	1	1.00	46.00	46.00
METALS	3-IF-S3050		AM E-3050 Soil Digest for ICP	4	0.00	53.00	0.00

Printed on: Jan 05, 2012 8:07 AM Data Retrieved: Jan 05, 2012 8:07 AM

Form ServiceRequest Rev. Dec 23, 2008

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

Analytical Chemistry and Microstructure

Thur, the case						11	-1738
Title: Weye	r-EW Complia	ance Monitoring					
METALS	3-1F-S3050		AM E-3050 Soil Digest for ICP	3	1.00	53.00	159.00
METALS	HG	SOLID	Mercury - AM E-245	4	0.00	0.00	0.00
METALS	HG	SOLID	Mercury - AM E-245	3	1.00	0.00	0.00
METALS	НG	WATER	Mercury - AM E-245	4	0.00	0.00	0.00
METALS	нд	WATER	Mercury - AM E-245	1	1.00	0.00	0.00
METALS	ICPMS	S4ASCDCRPB	ICP-MS Metals - AM E-200.8M	4	0.00	40.00	0.00
METALS	ICPMS	S4ASCDCRPB	ICP-MS Metals - AM E-200.8M	3	1.00	40.00	120.00
METALS	ICPMS	W1AS	ICP-MS Metals - AM E-200.8M	2	0.00	10.00	0.00
METALS	ICPMS	W1A5	ICP-MS Metals - AM E-200.8M	5	1.00	10.00	50.00
METALS	ICPMS	W4ASCDCRPB	ICP-MS Metals - AM E-200.8M	4	0.00	40.00	0.00
METALS	ICPMS	W4ASCDCRPB	ICP-MS Metals - AM E-200.8M	1	1.00	40.00	40.00

850.00 Total charges for METALS group (\$)

1,891.00 Total charges for Service Request 11-1738 (\$)

Printed on: Jan 05, 2012 8:07 AM

Entered by: Catalano, Dennis Entered on: Dec 21, 2011 8:03 AM

Data Retrieved: Jan 05, 2012 8:07 AM

Form ServiceRequest Rev. Dec 23, 2008

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

ection Limit Requirements: mples for Dissolved Arsenic were and an internation Date Time Received By Latoratory (Signature)
Herced.

Catalano, Dennis

rom: ∍nt: ₁o: Cc: Subject: Brett Beaulieu [Brett.Beaulieu@floydsnider.com] Tuesday, December 13, 2011 8:15 AM Catalano, Dennis Dean Brame; Chell Black; Holcomb, Jan RE: Everett West project: laboratory info

Dennis,

Thank you very much for your thoughtful response. It sounds like your method for handling the interference will be fine, and preferable to raising the QL above 0.2 ug/L. We are hoping that none of our samples contain enough saline water for this to matter, and if we do, we will let you know on the chain of custody.

Thanks for reviewing the EDD template. There is some flexibility if you cannot provide all of these fields, so just let us know and we'll find a way to make it work. Our database manager, Michelle Black, has been cc'd on these messages, and she is very good at what she does.

Jan,

Can you please include blue ice with the bottle order?

Brett

From: Catalano, Dennis [mailto:dennis.catalano@weyerhaeuser.com]
`ent: Tuesday, December 13, 2011 7:59 AM *s*: Brett Beaulieu
Cc: Dean Brame; Chell Black; Holcomb, Jan
Subject: RE: Everett West project: laboratory info

Our Thermo ICPMS is equipped with Collision Cell Technology (CCT) that uses He and H to remove the interferences that, it seems, the Agilent ICPMS is using the online Hydride generation to remove. Arsenic, Chromium, Iron, Manganese, Selenium, and Vanadium are analyzed in the CCT mode. We would not use the hydride pretreatment as the additional HCI would be problematic to the current conditions of the ICPMS (note that HCl is already added to the samples and heated for method 200.8). The further 2.5X dilution of the sample would increase the QL (using the current parameters the As QL = 0.5 ug/L with an MDL = 0.06 ug/L, yet it seems the expectation is that As QL is 0.2 ug/L?). Not having any data to support the dictated QLs/MDLs using the hydride generation technique would be an issue as well. So...no hydride pretreatment will be used and instead we will use CCT.

To my knowledge we have not run salt water samples on the new ICPMS so I do not know what issues may come up with this project, specifically in meeting the expected detection limits, as dilutions may be necessary and these are already pushed to meet 0.2. The method you sent is an Agilent method and they do not have a CCT cell so they have to do the online hydride.

We do not think the disk format will be a problem but we are looking to confirm we have all the fields described in the EIM document.

Our address is: (also on our CofC form)

/eyerhaeuser Technology Center c/o SMO SLM 216 32901 Weyerhaeuser Way S

Federal Way, WA 98001

vom: Brett Beaulieu [mailto:Brett.Beaulieu@floydsnider.com] Jent: Monday, December 12, 2011 4:16 PM To: Catalano, Dennis Cc: Dean Brame; Chell Black Subject: Everett West project: laboratory info

Hi Dennis,

Thanks for calling me back and going over some of the parameters for Everett West. This is kind of a long email, but it will help me to memorialize all of this. There are four things that need your attention:

- 1. I have attached our laboratory electronic data deliverable (EDD) template. We typically request that labs provide data in this format because it assists us with entry into our database and with submittal of data to Washington's Environmental Information Management (EIM) system. We recognize that it will take some effort to conform to our template, so we understand if you cannot do this. Can you please confirm that you can provide an EDD that conforms at least to the EIM fields? I can provide more information if needed. (We think we can do this)
- 2. Can you also please check to see whether you can pre-treat with hydride generation if requested to avoid a salinity interference for arsenic? Here is a summary of this issue: (no - but see above for what we do)

Several metals, especially Arsenic and Selenium, that are routinely analyzed by IPC-MS (Method 200.8) in freshwater can have false positives, elevated detection limits, or highly variable results in seawater samples. This includes groundwater samples at marine waterfront sites if the specific conductance of the water is more than about 10% of seawater. If all of the samples are saline, then samples should be pre-treated using hydride eneration. In our case, the the site is variable – fresh water some places, salt water others, so we would like all samples with specific conductance value of 5,000 uS/cm undergo hydride generation before analysis. We will specifically request this on the chain of custody.

http://www.chem.agilent.com/Library/applications/2hg.pdf

- 3. Can you please send me the address to which the samples should be shipped or delivered?
- 4. We will look for 6 preserved bottles for arsenic in water, two bottles for TPH-D in water, and six jars for MTCA metals and
- TPH-D in soil to us by Friday. (will have them to you by Friday)

Jan, please provide CofC forms; 6 x 16 oz soil jars; 6 x 1L Metals with Nitric; and 3 x 1L ORG. (Brett, take 2x 1L for one of the two samples for TPH in order to do QC). The address is below. Brett, do you want blue ice or will you use regular ice for shipment back? Let Jan know ASAP.

Here is a summary of the other key things we discussed:

- You can meet an As detection limit of 0.2 ug/L (see description above 0.5 is our normal detection limit, but our MDL is 0.06 so meeting 0.2 is not an issue unless dilutions are required)
- You can analyze for TPH-Dx with silica gel cleanup and meet a detection limit of 100 for diesel range and 200 for oil range. ٠ (yes)
- Your carbon ranges for these are approximately C-12 to C-24 for diesel and C-24 to C-38 for motor oil. (those are the ranges • we use - after talking with the analyst)
- You can provide a CD or DVD with the backup information needed for a Level III data validation (yes)
- You can provide labels, and chain of custody forms (yes)
- Your standard turnaround time is about 17 days (might be a bit longer as we discussed due to holidays 3 in the next three weeks)

• You can ship bottles to us, but we need to ship or deliver to the lab (correct we will get you bottles this week but you will need to ship back to us)

ianks again!

Brett Beaulieu, LHG FLOYD SNIDER Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

601 Union Street, Suite 600 Seattle, WA 98101 tel: 206.292.2078 fax: 206.682.7867 brett.beaulieu@floydsnider.com

The information contained in this e-mail may be privileged, confidential, and protected from disclosure. If you are not an intended recipient you must not use, disclose, disseminate, copy or print its contents. If you think you have received this e-mail in error, please notify the sender by reply e-mail and delete the message.

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Matrix: W

Fraction: Dissolved

Customer Sample ID:**MW-1202R-1211** Lab Sample ID : **11-1738-001** Date Sampled : **12/19/11 16:22** Date Received: **12/21/11 07:30**

Component	Result	Flags	Units	Basis	Method	Min PQ		Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0027		mg/L	as recd	AM E-200.8M	0.0002	0.00006	60 1X	01/03/2012	01/05/2012 11:37
Customer Sample ID:M	W-1203R-12	211				Matrix	: W		<u></u>	
Lab Sample ID :	11-1738-00	2			F	raction	: Disso	olved		
Date Sampled :	12/19/11	15:50								
Date Received:	12/21/11 (07:30								
Component	Result	Flags	Units	Basis	Method	Min PQ		Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0014		mg/L	as recd	AM E-200.8M	0.0002	0.00006	60 1X	01/03/2012	01/05/2012 11:40
Customer Sample ID:M	W-1301R-12	211				Matrix	: W			· · · · ·
Lab Sample ID :	11-1738-00	3			F	raction	: Disso	olved		
Date Sampled :	12/19/11	15:18								
Date Received:	12/21/11 (07:30								
Component	Result	Flags	Units	Basis	Method	Min PQ	LMDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0017		mg/L	as recd	AM E-200.8M	0.0002	0.00006	60 1X	01/03/2012	01/05/2012 11:43
Analysis: Diesel										
Diesel Range	0.05		mg/L	as recd	AM U-NW TPH-D	0.040		1X	12/21/2011	12/27/2011 10:19
Motor Oil Range	ND		mg/L	as recd	AM U-NW TPH-D	0.2		1X	12/21/2011	12/27/2011 10:19
o-Terphenyi	81.2		%	as recd	AM U-NW TPH-D	0		1X	12/21/2011	12/27/2011 10:19
Customer Sample ID:M	W-2301R-12	211				Matrix	: W			
Lab Sample ID :	11-1738-00	4			F	raction	: Disso	olved		
Date Sampled :	12/19/11	15:18								
Date Received:	12/21/11 (07:30								
Component	Result	Flags	Units	Basis	Method	Min PQ	LMDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0018		ma/L	as recd	AM E-200.8M	0.0002	0.00006	50 1X	01/03/2012	01/05/2012 11:45

mg/L as recd AM U-NW TPH-D 0.040

0.2

0

mg/L as recd AM U-NW TPH-D

% as recd AM U-NW TPH-D

0.05

ND

78.4

Analysis: Diesel

Diesel Range

o-Terphenyl

Motor Oil Range

12/27/2011 10:34

12/27/2011 10:34

12/27/2011 10:34

1X 12/21/2011

1X 12/21/2011

1X 12/21/2011

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Customer Sample ID:**MW-1501R-1211** Lab Sample ID : **11-1738-005** Date Sampled : **12/19/11 14:35** Date Received: **12/21/11 07:30**

Min PQL MDL Dilution Date Prepared Date Analyzed Units Basis Method Component Result Flags Analysis: Metals 01/05/2012 11:54 0.0016 mg/L as recd AM E-200.8M 0.0002 0.000060 1X 01/03/2012 Aş Customer Sample ID:WATER-1 Matrix: W Fraction: Total Lab Sample ID : 11-1738-006 Date Sampled : 12/19/11 17:00 Date Received: 12/21/11 07:30 Min PQL MDL Dilution Date Prepared Date Analyzed Units Basis Method Result Flags Component **Analysis: Metals** 01/05/2012 11:57 0.0025 AM E-200.8M 0.0002 0.000060 1X 01/03/2012 mg/L as recd As AM E-200.8M 0.0005 0.000020 1X 01/03/2012 01/05/2012 11:57 ND mg/L as recd Cd 0.00020 1X 01/03/2012 01/05/2012 11:57 AM E-200.8M 0.0005 0.0059 mg/L as recd Cr 12/30/2012 11:57 0.030 12/29/2011 uģ/L 1X ND as recd AM E-245 01 Hg Pb 0.000010 1X 01/03/2012 01/05/2012 11:57 0.0005 0.0033 mg/L as recd AM E-200.8M Analysis: Diesel 12/27/2011 11:04 mg/L as recd AM U-NW TPH-D 0.040 1X 12/21/2011 0.05 **Diesel Range** 12/21/2011 12/27/2011 11:04 AM U-NW TPH-D 1X mg/L as recd 0.2 Motor Oil Range ND as recd AM U-NW TPH-D 1X 12/21/2011 12/27/2011 11:04 82 % 0 o-Terphenyl

Customer Sample ID: SOIL-1 Lab Sample ID : 11-1738-007 Date Sampled : 12/19/11 16:35 Date Received: 12/21/11 07:30 Matrix: S

Matrix: W

Fraction: Dissolved

Fraction: Total

Component	Result	Flags	Units	Basis	Method	Min PQL	MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As Cd Cr	7.5 ND 40.4	1	mg/kg mg/kg mg/kg	dry dry dry	AM E-200.8M AM E-200.8M AM E-200.8M	0.5 0.5 0.5	0.056 0.019 0.19	10X 10X 10X	01/03/2012 01/03/2012 12/28/2011	01/05/2012 12:35 01/05/2012 12:35 01/05/2012 12:35
Hg Pb	0.04 9.3		mg/kg mg/kg	dry dry	AM E-245 AM E-200.8M	0.03 0.5	0.0097 0.0093	7 1X 3 10X	12/28/2011 01/03/2012	12/30/2011 12:12 01/05/2012 12:35
Analysis: Solids Solids, total	94.3		Wt%	dry	SM2540G			1X		12/23/2011
Analysis: Diesel Diesel Range Motor Oil Range o-Terphenyl	ND 760 106		mg/kg mg/kg %	dry dry as recd	AM U-NW TPH-D AM U-NW TPH-D AM U-NW TPH-D	23 91 0		1X 1X 1X	12/22/2011 12/22/2011 12/22/2011	12/28/2011 11:27 12/28/2011 11:27 12/28/2011 11:27

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Customer Sample ID:SOIL-2

Lab Sample ID : **11-1738-008** Date Sampled : **12/19/11 16:45** Date Received: 12/21/11 07:30

Component	Result	Flags Units	Basis	Method	Min PQ	MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals									
As	5.6	mg/kg	, dry	AM E-200.8M	0.5	0.057	10X	01/03/2012	01/05/2012 12:45
Cd	ND	mg/kg	dry	AM E-200.8M	0.5	0.019	10X	01/03/2012	01/05/2012 12:45
Cr	25.2	mg/kg	l dry	AM E-200.8M	0.5	0.19	10X	12/28/2011	01/05/2012 12:45
Hg	ND	mg/kg	dry	AM E-245	0.03	0.011	1 X	12/28/2011	12/30/2011 12:26
Pb	4.9	mg/kg	dry	AM E-200.8M	0.5	0.0095	5 10X	01/03/2012	01/05/2012 12:45
Analysis: Solids									
Solids, total	87.4	Wt%	o dry	SM2540G			1 X		12/23/2011
Analysis: Diesel									
Diesel Range	ND	mg/kg	ı dry	AM U-NW TPH-D	23		1 X	12/22/2011	12/28/2011 11:57
Motor Oil Range	ND	mg/kg	ı dry	AM U-NW TPH-D	91		1X	12/22/2011	12/28/2011 11:57
o-Terphenyl	113	%	as recd	AM U-NW TPH-D	0		1X	12/22/2011	12/28/2011 11:57

Customer Sample ID:SOIL-3 Lab Sample ID : 11-1738-009

Date Sampled : 12/19/11 16:55 Date Received: 12/21/11 07:30 Matrix: S

Matrix: S

Fraction: Total

Fraction: Total

Fraction: Total

Component	Result	Flags	Units	Basis	Method	Min PQL	MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	11.0		mg/kg	dry	AM E-200.8M	0.5	0.058	10X	01/03/2012	01/05/2012 12:49
Cd	ND		mg/kg	dry	AM E-200.8M	0.5	0.019	10X	01/03/2012	01/05/2012 12:49
Cr	48.2		mg/kg	dry	AM E-200.8M	0.5	0.19	10X	12/28/2011	01/05/2012 12:49
Hg	0.03		mg/kg	dry	AM E-245	0.03	0.010	1 X	12/28/2011	12/30/2011 12:28
Pb	18.4		mg/kg	dry	AM E-200.8M	0.5	0.0096	5 10X	01/03/2012	01/05/2012 12:49
Analysis: Solids										
Solids, total	69.5		Wt%	dry	SM2540G			1X		12/23/2011
Analysis: Diesel										
Diesel Range	72		mg/kg	dry	AM U-NW TPH-D	32		1X	12/22/2011	12/28/2011 12:12
Motor Oil Range	1000		mg/kg	dry	AM U-NW TPH-D	130		1X	12/22/2011	12/28/2011 12:12
o-Terphenyl	103		%	as recd	AM U-NW TPH-D	0		1X	12/22/2011	12/28/2011 12:12

Customer Sample ID:DBLK_W122111 [BLANK]Matrix:W Lab Sample ID : 11-1738-010 Date Sampled : Date Received:

Component Result Flags Units Basis Method Min PQL MDL Dilution Date Prepared Date Analyzed Analysis: Diesel Diesel Range ND mg/L as recd AM U-NW TPH-D 0.04 1X 12/21/2011 12/27/2011 09:49 Motor Oil Range ND mg/L as recd AM U-NW TPH-D 1X 12/21/2011 0.2 12/27/2011 09:49 o-Terphenyl 83.4 % as recd AM U-NW TPH-D 1X 12/21/2011 0 12/27/2011 09:49

Service Request: 11-1738

Weyerhaeuser Analytical Chemistry and Microstructure 32901 Weyerhaeuser Way Federal Way, WA 98003

Weyer-EW Compliance Monitoring

Customer Sample ID:DLCS_W122111 [LCS] Lab Sample ID : 11-1738-011 Date Sampled : Date Received:

Component	Result	Flags Unit	s Basis	Method	MIN PQL MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Diesel								
Diesel Range Motor Oil Range o-Terphenyl	0.359 0.006 J 79.2	mg mg	/L as recd /L as recd % as recd	AM U-NW TPH-D AM U-NW TPH-D AM U-NW TPH-D	0.20 0	1X 1X 1X	12/21/2011 12/21/2011 12/21/2011	12/27/2011 10:04 12/27/2011 10:04 12/27/2011 10:04

Customer Sample ID:MW-2301R-1211 [DUP] Lab Sample ID: 11-1738-012

Date Sampled : 12/19/11 15:18 Date Received: 12/21/11 07:30

Component	Result	Flags Unit	ts E	Basis	Method	Min PQL	MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals ^{As} Analysis: Diesel	0.0018	mg	/L :	as recd	AM E-200.8M	0.0002	0.0000)60 1X	01/03/2012	01/05/2012 11:48
Diesel Range Motor Oil Range o-Terphenyl	ND ND 87.1	mg mg	/L : /L : % :	as recd as recd as recd	AM U-NW TPH-D AM U-NW TPH-D AM U-NW TPH-D	0.043 0.22 0		1X 1X 1X	12/21/2011 12/21/2011 12/21/2011	12/27/2011 10:49 12/27/2011 10:49 12/27/2011 10:49

Customer Sample ID:DBLK_S122211 [BLANK] Lab Sample ID: 11-1738-013

Matrix: S

Matrix: S

Fraction: Total

Matrix: W

Fraction: Total

Matrix: W

Fraction: Total

Fraction: Total

Date Sampled : Date Received:

Component	Result	Flags	Units	Basis	Method	Min PQL MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Diesel									
Diesel Range	ND		ma/ka	drv	AM U-NW TPH-D	25	1X	12/22/2011	12/28/2011 10:57
Motor Oil Range	ND		ma/ka	drv	AM U-NW TPH-D	99	1X	12/22/2011	12/28/2011 10:57
o-Terphenyl	88.4		%	as recd	AM U-NW TPH-D	0	1X	12/22/2011	12/28/2011 10:57

Customer Sample ID:DLCS_S122211 [LCS] Lab Sample ID : 11-1738-014 Date Sampled :

Date Received:

Component Analysis: Diesel	Result	Flags	Units	Basis	Method	Min PQL MDL	Dilution	Date Prepared	Date Analyzed
Diesel Range Motor Oil Range o-Terphenyl	178 6.8 J 73.4		mg/kg mg/kg %	dry dry as recd	AM U-NW TPH-D AM U-NW TPH-D AM U-NW TPH-D	99 0	1X 1X 1X	12/22/2011 12/22/2011 12/22/2011	12/28/2011 11:12 12/28/2011 11:12 12/28/2011 11:12

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Customer Sample ID:SOIL-1 [DUP] Lab Sample ID : 11-1738-015 Date Sampled : 12/19/11 16:35 Date Received: 12/21/11 07:30

Component	Result	Flags U	nits	Basis	Method	Min PQL	MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	5.7	m	g/kg	dry	AM E-200.8M	0.5	0.057	10 X	01/03/2012	01/05/2012 12:38
Cd	ND	m	g/kg	dry	AM E-200.8M	0.5	0.019	10X	01/03/2012	01/05/2012 12:38
Cr	42.7	m	g/kg	dry	AM E-200.8M	0.5	0.19	10X	01/03/2012	01/05/2012 12:38
Ha	0.04	m	g/kg	dry	AM E-245	0.02	0.0078	1X	01/03/2012	12/30/2011 12:15
Pb	6.5	m	g/kg	dry	AM E-200.8M	0.5	0.0094	10X	01/03/2012	01/05/2012 12:38
Analysis: Solids										
Solids, total	94.3	,	Wt%	dry	SM2540G			1 X		01/03/2012
Analysis: Diesel										
Diesel Range	ND	m	ia/ka	drv	AM U-NW TPH-D	25		1X	12/22/2011	12/28/2011 11:42
Motor Oil Range	890	m	a/ka	drv	AM U-NW TPH-D	98		1X	12/22/2011	12/28/2011 11:42
o-Terphenyl	119		%	as recd	AM U-NW TPH-D	0		1X	12/22/2011	12/28/2011 11:42

Customer Sample ID:MW-2301R-1211 [MS]

Lab Sample ID : **11-1738-016** Date Sampled : **12/19/11 15:18** Date Received: **12/21/11 07:30**

 Component
 Result
 Flags
 Units
 Basis
 Method
 Min PQL MDL
 Dilution
 Date Prepared
 Date Analyzed

 Analysis:
 Method
 Min PQL MDL
 Dilution
 Date Analyzed
 Date Analyzed

 As
 0.0433
 mg/L
 as recd
 AM E-200.8M
 0.0002
 0.000060
 1X
 01/03/2012
 01/05/2012
 11:51

Customer Sample ID: SOIL-1 [MS] Lab Sample ID : 11-1738-017 Date Sampled : 12/19/11 16:35 Date Received: 12/21/11 07:30 Matrix: S

Matrix: W

Fraction: Total

Matrix: S

Fraction: Total

Fraction: Total

Component	Result	Flags	Units	Basis	Method	Min PQ		Dilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	105		mg/kg	dry	AM E-200.8M	1	0.11	20X	01/03/2012	01/05/2012 12:42
Cd	97		mg/kg	dry	AM E-200.8M	1	0.038	20X	01/03/2012	01/05/2012 12:42
Cr	142		mg/kg	dry	AM E-200.8M	1	0.38	20X	01/03/2012	01/05/2012 12:42
Hg	0.57		mg/kg	dry	AM E-245	0.03	0.010	1X	01/03/2012	12/30/2011 12:23
Pb	102		mg/kg	dry	AM E-200.8M	1	0.019	20X	01/03/2012	01/05/2012 12:42

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Customer Sample ID:WATER-1 [DUP]

Lab Sample ID : 11-1738-018 Date Sampled : 12/19/11 17:00 Date Received: 12/21/11 07:30

Component	Result	Flags Un	its Ba	sis	Method	Min PQI	MDL Dil	ution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0022	m	g/L as	recd	AM E-200.8M	0.0002	0.000060	1X	01/03/2012	01/05/2012 12:07
Cd	ND	m	g/L as	recd	AM E-200.8M	0.0005	0.000020	1X	01/03/2012	01/05/2012 12:07
Cr	0.0058	m	g/L as	recd	AM E-200.8M	0.0005	0.00020	1X	01/03/2012	01/05/2012 12:07
Hg	ND	U	g/L as	recd	AM E-245	0.1	0.030	1X	12/29/2011	12/30/2011 11:59
Pb	0.0032	m	g/L as	recd	AM E-200.8M	0.0005	0.000010	1X	01/03/2012	01/05/2012 12:07

Customer Sample ID:WATER-1 [MS] Lab Sample ID : 11-1738-019 Date Sampled : 12/19/11 17:00 Date Received: 12/21/11 07:30

Component	Result	Flags	Units	Basis	Method	Min PQ	LMDL Dilutio	n Date Prepared	Date Analyzed
Analysis: Metals									
As	0.0422		mg/L	as recd	AM E-200.8M	0.0002	0.000060 1X	01/03/2012	01/05/2012 12:11
Cd	0.0372		mg/L	as recd	AM E-200.8M	0.0005	0.000020 1X	01/03/2012	01/05/2012 12:11
Cr	0.0479		mg/L	as recd	AM E-200.8M	0.0005	0.00020 1X	01/03/2012	01/05/2012 12:11
Hg	2.3		ug/L	as recd	AM E-245	0.1	0.030 1X	12/29/2011	12/30/2011 12:01
Pb	0.0401		mg/L	as recd	AM E-200.8M	0.0005	0.000010 1X	01/03/2012	01/05/2012 12:11

Customer Sample ID:PBW [BLANK]

Lab Sample ID : **11-1738-020** Date Sampled : Date Received:

Min PQL MDL Dilution Date Prepared Date Analyzed Result Flags Units Basis Method Component Analysis: Metals 01/05/2012 11:31 ND mg/L as recd AM E-200.8M 0.0002 0.000060 1X 01/03/2012 As AM E-200.8M 0.0005 0.000020 1X 01/03/2012 01/05/2012 11:31 Cd ND mg/L as recd 01/05/2012 11:31 0.0005 0.00020 1X 01/03/2012 AM E-200.8M Cr ND mg/L as recd 12/29/2011 12/30/2011 11:52 AM E-245 0.030 01 1X Hg ND ug/L as recd 0.0005 0.000010 1X 01/03/2012 01/05/2012 11:31 Pb ND mg/L as recd AM E-200.8M

Customer Sample ID:LCSW [LCS]

Lab Sample ID : 11-1738-021 Date Sampled :

Date Received:

Component	Result	Flags Un	its	Basis	Method	Min PQ	MDL D	ilution	Date Prepared	Date Analyzed
Analysis: Metals										
As	0.0408	m	g/L	as recd	AM E-200.8M	0.0002	0.000060	0 1X	01/03/2012	01/05/2012 11:34
Cd	0.0388	m	g/L	as recd	AM E-200.8M	0.0005	0.000020	0 1X	01/03/2012	01/05/2012 11:34
Cr	0.0415	m	g/L	as recd	AM E-200.8M	0.0005	0.00020	1X	01/03/2012	01/05/2012 11:34
Ha	2.0	uç	g/L	as recd	AM E-245	0.1	0.030	1X	12/29/2011	12/30/2011 11:54
Pb	0.0389	m	g/L	as recd	AM E-200.8M	0.0005	0.000010	0 1X	01/03/2012	01/05/2012 11:34

Page 7 of 8 Service Request: 11-1738

Matrix: W

Matrix: W Fraction: Total

Matrix: W

Fraction: Total

Matrix: W

Fraction: Total

Fraction: Total

Service Request: 11-1738

Weyer-EW Compliance Monitoring

Customer Sample ID: PBS [BLANK] Lab Sample ID : 11-1738-022 Date Sampled :

Date Received:

Component	Result	Flags Unit	s Basis	Method	Min PQ		Dilution	Date Prepared	Date Analyzed
Analysis: Metals									
As	ND	mg/k	g dry	AM E-200.8M	0.5	0.060	10X	01/03/2012	01/05/2012 12:28
Cd	ND	mg/k	g dry	AM E-200.8M	0.5	0.020	10X	01/03/2012	01/05/2012 12:28
Cr Hg	ND ND	mg/k mg/k	g ary g dry	AM E-200.8M AM E-245	0.5	0.20	1X	12/29/2011	12/30/2011 12:06
Pb	ND	mg/k	g dry	AM E-200.8M	0.5	0.010	10 X	01/03/2012	01/05/2012 12:28

Customer Sample ID:LCSS [LCS]

Lab Sample ID : 11-1738-023 Date Sampled : Date Received:

Matrix: S

Matrix: S

Fraction: Total

Fraction: Total

Component	Result	Flags Units	Basis	Method	Min PQ	L MDL	Dilution	Date Prepared	Date Analyzed
Analysis: Metals									
Δs	101	ma/ke	a dry	AM E-200.8M	1	0.12	20X	01/03/2012	01/05/2012 12:32
C4	97	ma/k	a drv	AM E-200.8M	1	0.040	20X	01/03/2012	01/05/2012 12:32
Cr	100	ma/k	a dry	AM E-200.8M	1	0.40	20X	01/03/2012	01/05/2012 12:32
Ha	0.82	ma/k	a drv	AM E-245	0.04	0.015	1X	12/29/2011	12/30/2011 12:09
Pb	98	mg/k	g dry	AM E-200.8M	1	0.020	20X	01/03/2012	01/05/2012 12:32

-= END OF REPORT =-

Approved By: Name:Dennis Catalano Title: Operations Manager Telephone: (253) 924-6242 E-Mail:Dennis.Catalano@weyerhaeuser.com i

Report

Weyer- EW Compliance Monitoring

	Date	Time						
Client ID	Sampled	Sampled	Lab ID	As	Cd	Cr	Hg	Pb
			_			mg/L		
MW-1202R-1211	12/19/11	1622	001	0.0027				
MW-1203R-1211	12/19/11	1550	002	0.0014				
MW-1301R-1211	12/19/11	1518	003	0.0017				
MW-2301R-1211	12/19/11	1518	004	0.0018				
MW-1501R-1211	12/19/11	1435	005	0.0016				
WATER-1	12/19/11	1700	006	0.0025	< 0.0005	0.0059	< 0.0001	0.0033
			QL:	0.0002	0.0005	0.0005	0.0001	0.0005
		Method N	lumber:	E-200.8M	E-200.8M	E-200.8M	E-245	E-200.8M
			Analyst:	DJD	DJD	DJD	CD	DJD
		Analys	is Date:	01/05/12	01/05/12	01/05/12	12/30/11	01/05/12

	Date	Time						
Client ID	Sampled	Sampled	Lab ID	As	Cd	Cr	Hg	Pb
			_		mg/k	g, Oven Dried I	pasis	
SOIL-1	12/19/11	1635	007	7.5	< 0.5	40.4	0.04	9.3
SOIL-2	12/19/11	1645	008	5.6	< 0.5	25.2	< 0.03	4.9
SOIL-3	12/19/11	1655	009	11.0	< 0.5	48.2	0.03	18.4
			QL:	0.5	0.5	0.5	0.04	0.5
		Method N	lumber:	E-3050/ E-200.8M	E-3050/ E-200.8M	E-3050/ E-200.8M	E-245	E-3050/ E-200.8M
		,	Analyst:	DJD	DJD	DJD	CD	DJD
		Analys	is Date:	01/05/12	01/05/12	01/05/12	12/30/11	01/05/12

Approved: Dan Deprez Date: 01/11/12

Telephone: (253) 924-6188

Service Request: 11-1738

Metals QC Report

Weyer- EW Compliance Monitoring

Method Blank Report

	Water Method Blank
Element	Found
	mg/L
As	< 0.0002
Cd	< 0.0005
Cr	< 0.0005
Hg	< 0.0001
Pb	< 0.0005

Method Blank Report

Element	Soil Method Blank Found
	mg/kg
As	< 0.5
Cd	< 0.5
Cr	< 0.5
Hg	< 0.04
Pb	< 0.5

Approved: Dan Deprez Date: 01/11/12 Telephone: (253) 924-6188

Service Request: 11-1738

Service Request 11-1738

Metals QC Report

Weyer- EW Compliance Monitoring

Water Laboratory Control Sample Report

Element	LCSW Found	True Value	Lower Limit	Upper Limit	% Recovery
-		m	g/L		-
As	0.0408	0.0400	0.0340	0.0460	102
Cd	0.0388	0.0400	0.0340	0.0460	97
Cr	0.0415	0.0400	0.0340	0.0460	104
Hg	0.0020	0.0020	0.0017	0.0023	100
Pb	0.0389	0.0400	0.0340	0.0460	97

Soil Laboratory Control Sample Report

Element	LCSS Found	True Value	Lower Limit	Upper Limit	% Recovery
		mç	J/kg		-
As	101	100	85	115	101
Cd	97	100	85	115	97
Cr	100	100	85	115	100
Hg	0.82	0.80	0.68	0.92	103
Pb	98	100	85	115	98

Approved: Dan Deprez Date: 01/11/12 Telephone: (253) 924-6188 ł

Metals QC Report

Weyer- EW Compliance Monitoring

Duplicate Report for Sample 004/012

Element	Sample Found	Duplicate Found	RPD
-	m	g/L	
As	0.0018	0.0018	0.0

Duplicate Report for Sample 006/018

Flowert	Sample	Duplicate	
Element	Found	Found	RPD
		a/l	
		y/L	
As	0.0025	0.0022	12.8
Cd	< 0.0005	< 0.0005	NC
Cr	0.0059	0.0058	1.7
Hg	< 0.0001	< 0.0001	NC
Pb	0.0033	0.0032	3.1

Duplicate Report for Sample 007/015

Element	Sample Found	Duplicate Found	RPD
-	mg/kg, Ove	n Dried basis	
As	7.5	5.7	27.3
Cd	< 0.5	< 0.5	NC
Cr	40.4	42.7	5.5
Hg	0.04	0.04	0.0
Pb	9.3	6.5	35.4

Approved: Dan Deprez Date: 01/11/12 Telephone: (253) 924-6188

Metals QC Report

Weyer- EW Compliance Monitoring

Spike Report for Sample 004/016

Element	Sample Found	Spike Found	Net Spike	Spike Level	% Recovery
		m	g/L		_
As	0.0018	0.0433	0.0415	0.0400	104

Spike Report for Sample 006/019

	Sample	Spike	Net	Spike	%
Element	Found	Found	Spike	Level	Recovery
		mg	g/L		-
Δe	0.0025	0 0422	0.0397	0.0400	99
Cd	< 0.0005	0.0372	0.0372	0.0400	93
Cr	0.0059	0.0479	0.0420	0.0400	105
Hg	< 0.0001	0.0023	0.0023	0.0020	115
Pb	0.0033	0.0401	0.0368	0.0400	92

Spike Report for Sample 007/017

Element	Sample Found	Spike Found	Net Spike	Spike Level	% Recovery
		mg/kg, Over	Dried basis		-
As	7.5	105	97.5	94.0	104
Cd	< 0.5	97	97.0	94.0	103
Cr	40.4	142	101.6	94.0	108
Hg	0.04	0.57	0.53	0.53	100
Pb	9.3	102	92.7	94.0	99

Approved: Dan Deprez Date: 01/11/12 Telephone: (253) 924-6188

Service Request: 11-1738

Page 22 of 143

													Pb	mg/kg	< 0.5	98	9.3	6.5	102	4.9	18.4
Pb	mg/L < 0.0005	0.0389			1	1	ł	1	1	0.0033	0.0032	0.0401	ວັ	mg/kg	< 0.5	100	40.4	42.7	142	25.2	48.2
ບ້	mg/L < 0.0005	0.0415	1	1	1		1	ł	1	0.0059	0.0058	0.0479	Cd	mg/kg	< 0.5	97	< 0.5	< 0.5	97	< 0.5	< 0.5
PO	mg/L < 0 0005	0.0388	ł	-	ł	-	I	-		< 0.0005	< 0.0005	0.0372	As	mg/kg	< 0.5	101	7.5	5.7	105	5.6	11.0
As	mg/L < 0.0002	0.0408	0.0027	0.0014	0.0017	0.0018	0.0018	0.0433	0.0016	0.0025	0.0022	0.0422	Pb	ug/L - raw	< 0.5	49.23	10.03	6.915	54.12	5.138	19.18
Pb	ug/L - raw < 0.5	38.92	1		1	ł	1	1		3.31	3.247	40.06	ບັ	ug/L - raw	< 0.5	49.8	43.67	45.28	75.29	26.52	50.15
ڹ	ug/L - raw < 0.5	41.52	1	ł	I	1	ł	I	I	5.864	5.836	47.88	Q	ug/L - raw	< 0.5	48.59	< 0.5	< 0.5	51.84	< 0.5	< 0.5
Cd ¹	ug/L - raw < 0.5	38.76	ł		ł	ł	ł	1	ţ	< 0.5	< 0.5	37.25	As	ug/L - raw	< 0.5	50.57	8.122	6.002	56.06	5.932	11.49
As	ug/L - raw < 0.5	40.8	2.742	1.435	1.715	1.775	1.792	43.27	1.613	2.523	2.19	42.25		solids code	-	-	SL-OD-1	SL-OD-1	SL-OD-1	SL-OD-1	SL-OD-1
-	prep code 3-GM-W2008	3-GM-W2008		prep code	3-IF-S3050																
	sample 11-1738-020	11-1738-021	11-1738-001	11-1738-002	11-1738-003	11-1738-004	11-1738-012	11-1738-016	11-1738-005	11-1738-006	11-1738-018	11-1738-019		sample	11-1738-022	11-1738-023	11-1738-007	11-1738-015	11-1738-017	11-1738-008	11-1738-009

į

.

Analytical Chemistry and Microstructure

	g g 2.5890 28.7730		Tare n Solids	Sample Mass	Solids Mass	Solids	Moisture	
	g	g	g	g	g	Wt%	Wt%	
11-1738-007	2.5890	28.7730	27.2740	26.1840	24.6850	94.3	5.72	
11-1738-008	2.6000	15.1580	13.5720	12.5580	10.9720	87.4	12.6	
11-1738-009	2.5870	12.5450	9.5120	9.9580	6.9250	69.5	30.4	
11-1738-015	2.5890	28.7730	27.2740	26.1840	24.6850	94.3	5.72	
11-1738-017	2.5890	28.7730	27.2740	26.1840	24.6850	94.3	5.72	

Form AT256 Rev. Dec 28, 2008 Printed on: Jan 3, 2012 1:31 PM

Data Retrieved: Jan 3, 2012 1:31 PM

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

METALS DIGESTION LOG

sr#	-	l	7	<u>3</u>	8	

method # AME-ZOD.8M

	sample numbers		amount a	liquoted grams	sample basis		final volume (mL)		comments
1	11-173	38-020	50	<u> </u>	DDT	HzO	50		PBW
2		21	1			1			LCSW
3		1			as-1	ec'd	1		
4		2				1			
5		3						 	
6		4							•
7		12							DUP
8		16	۰						MS
9		5							
10		6							
11		18							DUP
12	~	. 19						<u> </u>	MS
13	\backslash			_			-		
14							:		
15									
16				<u></u>					
17									
18									
19									
20		17	01-0	3-12					
21									
22		0							
23									
24									
25									

 $\frac{\text{LCSS, LCSW, TCLP LCSW} = \text{spiked blank}}{\text{analyst and start date: } 01-03-12} \text{ original filed with sr # _//-/738}$

Weyerhaeuser Company Analytical & Testing Services	update: djd 10/17/11
ICP spikes	ICPMS spikes
true value = 1 mg/L for all elements, except	true value = 0.04 mg/L for all elements, except
Ca, K, Mg, Na = 41 mg/L	Ca, K, Mg, Na = 20.04 mg/L
P = 40 mg/L	P = 20 mg/L
Si = 40 mg/L for FBAs only	
FINAL VOLUME = 50 mL	FINAL VOLUME = 50 mL
0.5 mL of CL-CAL-2	0.2 mL of INSDPPB
0.5 mL of BBILi100	0.25 mL of WTC-SPK-1
0.5 mL of WTC-SPK-1	
0.2 mL of 10,000 mg/L Si (FBA only)	
CL-CAL-2 = Spex CertiPrep, lot# CL28-06JB, exp. 08/30/12	INSDPPB = prep by D. Deprez, 09/20/11, exp. 08/30/12
100 mg/L Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg,	10 mg/L Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li,
Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn	Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn
in 5% HNO_3 and trace HF	in 1% HNO ₃
	Spex CertiPrep, CL-CAL-2, lot# CL28-06JB, exp. 08/30/12
BBiLi100 = 100 mg/L B, Bi, Li solution in 2% HNO ₃	100 mg/L Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg,
prep by D. Deprez, 10/17/11, exp. 10/17/12	Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn
1. half fill a 50-mL tube with DDI-water	in 5% HNO ₃ and trace HF
2. add 1 mL of conc. HNO ₃ , EMD, lot# 48074	1000 mg/L B, Ultra Scientific, lot# J00705, exp. 09/30/15
3. add 5 mL 1000 mg/L B, Ultra Scientific,	in 2% NH₄OH
lot# J00705, exp. 09/30/15, in 2% NH₄OH	1000 mg/L Bi, Ultra Scientific, lot# L00784, exp. 08/31/17
4. add 5 mL 1000 mg/L Bi, Ultra Scientific,	in 2% HNO ₃
lot# L00784, exp. 08/31/17, in 2% HNO ₃	1000 mg/L Li, Ultra Scientific, lot# J00468, exp. 06/30/15
5. add 5 mL 1000 mg/L Li, Ultra Scientific,	in 2% HNO ₃
lot# J00468, exp. 06/30/15, in 2% HNO ₃	1000 mg/L P, Ultra Scientific, lot# J01102, exp. 12/31/15
6. dilute to a 50-mL final volume with DDI-water and mix	in 2% HNO ₃
WTC-SPK-1 = Inorganic Ventures, lot# D2-MEB359106, exp. 0	2/01/12 = 4000 mg/L Ca, K, Mg, Na, P - in 3% HNO ₃

10,000 mg/L Si = JT Baker, lot# J44N53, exp. 10/31/12 - in 5% HNO₃ and trace HF

Si spike for HF preps (1000 mg/L Si in H₂O, RICCA Chemical Company, lot # 4103284, exp. 02-2013)

Si true value = 50 mg/L

____ 0.25 mL for Final Volume = 5 mL _____ 0.5 mL for Final Volume = 10 mL _____ 1.25 mL for Final Volume = 25 mL

ŧ

•		
analyst and date:	A	01-03-12
	\mathbb{J}	

METALS DIGESTION LOG

sr # /	[-	-/7:	<u>38</u>	3	
method	#	AM	F	•	3050

÷

-

	sample numbers	amount aliquoted mL o grams	sample basis	final volume (mL)	comments
1	11-1738-022	assume 0.59	DDI-HZO	50	PBS
2	1 23	1σ	L	1	LCSS
3	7	0.573	æ-seid		
4	15	0.562			DUP
5	17	0.564			MS
6	8	0.601			•
7	9	0.748	4		
8	\mathbf{i}				
9					
10					
11					
12			÷		
13				•	
14		Ν			
15					
16					
17					
18			2-	12	
19			R01-07		
20					
21					
22			\backslash		
23					
24					
25					

LCSS, LCSW, TCLP LCSW = spiked blank							
analyst and start date:	01-03-12	original filed with sr #_//-/738					

Weyerhaeuser Company Analytical & Testing Services	update: djd 10/17/11
ICP spikes	ICPMS spikes
true value = 1 mg/l_for all elements, except	true value = 0.04 mg/L for all elements, except
Ca K Ma Na = 41 ma/l	Ca. K. Mg. Na = 20.04 mg/L
P = 40 mg/l	P = 20 mg/L
Si = 40 mg/L for FBAs only	
FINAL VOLUME = 50 mL	FINAL VOLUME = 50 mL
0.5 mL of CL-CAL-2	0.2 mL of INSDPPB
0.5 mL of BBILi100	0.25 mL of WTC-SPK-1
0.5 mL of WTC-SPK-1	
0.2 mL of 10,000 mg/L Si (FBA only)	-
CL-CAL-2 = Spex CertiPrep, lot# CL28-06JB, exp. 08/30/12	INSDPPB = prep by D. Deprez, 09/20/11, exp. 08/30/12
100 mg/L Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg,	10 mg/L Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li,
Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn	Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn
in 5% HNO_3 and trace HF	in 1% HNO ₃
	Spex CertiPrep, CL-CAL-2, lot# CL28-06JB, exp. 08/30/12
BBiLi100 = 100 mg/L B, Bi, Li solution in 2% HNO ₃	100 mg/L Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg,
prep by D. Deprez, 10/17/11, exp. 10/17/12	Mn, Mo, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn
1. half fill a 50-mL tube with DDI-water	iħ 5% HNO ₃ and trace HF
2. add 1 mL of conc. HNO ₃ , EMD, lot# 48074	1000 mg/L B, Ultra Scientific, lot# J00705, exp. 09/30/15
3. add 5 mL 1000 mg/L B, Ultra Scientific,	in 2% NH₄OH
lot# J00705, exp. 09/30/15, in 2% NH₄OH	1000 mg/L Bi, Ultra Scientific, lot# L00784, exp. 08/31/17
4. add 5 mL 1000 mg/L Bi, Ultra Scientific,	in 2% HNO ₃
lot# L00784, exp. 08/31/17, in 2% HNO ₃	1000 mg/L Li, Ultra Scientific, lot# J00468, exp. 06/30/15
5. add 5 mL 1000 mg/L Li, Ultra Scientific,	in 2% HNO ₃
lot# J00468, exp. 06/30/15, in 2% HNO ₃	1000 mg/L P, Ultra Scientific, lot# J01102, exp. 12/31/15
6. dilute to a 50-mL final volume with DDI-water and mix	in 2% HNO3
WTC-SPK-1 = Inorganic Ventures, lot# D2-MEB359106, exp.	02/01/12 = 4000 mg/L Ca, K, Mg, Na, P - in 3% HNO ₃

10,000 mg/L Si = JT Baker, lot# J44N53, exp. 10/31/12 $\,$ - in 5% HNO_3 and trace HF

Si spike for HF preps (1000 mg/L Si in H₂O, RICCA Chemical Company, lot # 4103284, exp. 02-2013)

Si true value = 50 mg/L

_____ 0.25 mL for Final Volume = 5 mL _____ 0.5 mL for Final Volume = 10 mL _____ 1.25 mL for Final Volume = 25 mL

.

1

analyst and date:	T	01	-03-	12

 \mathcal{I}

Sample List TE-XII ICPMS \$ 01-05-12 Sr 11-1738

No	Labol	Turne	Wainht	Deals	0	<u> </u>	11-2-64
1	STD1	l ype	weight	каск	KOW	COI	Height
1	STD1	Didilik Fully Oversh Chandrad	1.000	U	1	3	144
2	SIDZ	Fully Quant Standard	1.000	1	1	1	144
2		Fully Quant Standard	1.000	1	1	2	144
4	5104	Fully Quant Standard	1.000	0	1	4	144
2	SIDS	Fully Quant Standard	1.000	1	1	3	144
5		QC Sample	1.000	0	1	4	144
/	ICV4U	QC Sample	1.000	0	1	9	144
8	ICB	QC Sample	1.000	0	1	3	144
9	QLSTD	QC Sample	1.000	1	1	4	144
10	11-1738-020	Unknown	1.000	1	1	5	144
11	11-1738-021	Unknown	1.000	1	1	6	144
12	11-1738-001	Unknown	1.000	1	1	7	144
13	11-1738-002	Unknown	1.000	1	1	8	144
14	11-1738-003	Unknown	1.000	1	1	9	144
15	11-1738-004	Unknown	1.000	1	1	10	144
16	11-1738-012	Unknown	1.000	1	1	11	144
17	11-1738-016	Unknown	1.000	1	1	12	144
18	11-1738-005	Unknown	1.000	1	2	1	144
19	11-1738-006	Unknown	1.000	1	2	2	144
20	CCV	QC Sample	1.000	0	1	4	144
21	CCB	QC Sample	1.000	0	1	3	144
22	11-1738-018	Unknown	1.000	1	2	3	144
23	11-1738-019	Unknown	1.000	1	2	4	144
24	CCV	QC Sample	1.000	0	1	4	144
25	CCB	QC Sample	1.000	0	1	3	144
26	11-1738-022DL10	Unknown	1.000	1	2	5	144
27	11-1738-023DL20	Unknown	1.000	1	2	6	144
28	11-1738-007DL10	Unknown	1.000	1	2	7	144
29	11-1738-015DL10	Unknown	1.000	1	2	8	144
30	11-1738-017DL20	Unknown	1.000	1	2	9	144
31	11-1738-008DL10	Unknown	1.000	1	2	10	144
32	11-1738-009DL10	Unknown	1.000	1	2	11	144
33	QLSTDDL2	Unknown	1.000	1	2	12	144
34	ccv	OC Sample	1.000	0	1	4	144
35	CCB	OC Sample	1.000	0	1	3	144
		2P			-	-	± · ·

DL10 = 0.5 mL /SML

DL20 = 0.25mL /SML

Sample details

Acquired at : 1/5/2012 8:34:04 AM Report name : 1. Xt Y Standard Mode [6/24/2009 7:17:09 PM]

Mass Calibration verification

Acquisition parameters

Sweeps : 30 Dwell : 1.0 mSecs Point spacing : 0.01 amu Peak width measured at 5% of the peak maximum

		Limits	Results		
Апајуте	Max. width	Min. width	Max. error	Peak width	Peak error
7Li	0.85	0.65	0.10	0.72	-0.01
115In	0.85	0.65	0.10	0.77	-0.00
238U	0.85	0.65	0.10	0.77	0.04

1/5/2012 8:35:54 AM

Sample details

Acquired at : 1/5/2012 8:34:04 AM Report name : 1. Xt Y Standard Mode [6/24/2009 7:17:09 PM]

Tune conditions

Major		Minor		Global		Add. Gases		
Extraction	-145.1	Lens 3	-195.3	Standard resolution	125	CCT-He H2	0.00	
Lens 1	-1231	Forward power	1404	High resolution	125	Do Not Use	0.00	
Lens 2	-80.0	Horizontal	60	Analogue Detector	1824	.		
Focus	9.6	Vertical	383	PC Detector	2824			
D1	-40.0	DA	•33.7					
D2	-140	Cool	13.0					
Pole Bias	0.3	Auxiliary	0.90	1				
Hexapole Bias	-7.0	Sampling Depth	100					
Nebuliser	0.83	L	•	•				

Nebuliser 0.83

Sensitivity and stability results

Acquisition parameters

Sweeps: 30

Run	Time	5Bkg	7Li	56Ar O	59Co	137Ba++	138Ba++	101Bkg	115In	137Ba
Dw	vell (mSecs)	100.0	10.0	10.0	10.0	10.0	30.0	100.0	10.0	10.0
	%RSD	-	5.0%	-	•	-	-	1	5.0%	-
Limits	Countrate	-	>25000	•	-	-	-	1	>200000	-
1	8:34:21 AM	0.000	38154.216	229048.27	69260.824	193.335	1294.503	0.000	285106.90	32994.726
2	8:34:38 AM	0.000	40213.186	236986.18	72322.607	233.335	1354.509	0.000	289109.48	33084.934
3	8:34:56 AM	0.333	40330.181	235454.50	70449.951	190.001	1383.400	0.000	287942.94	32881.131
4	8:35:13 AM	0.000	41550.337	234153.37	70131.725	213.335	1331.173	0.000	285453.72	33034.818
5	8:35:30 AM	0.000	41129.121	235227.47	71391.274	186.668	1338.952	0.000	285820.96	33151.755
×	1	0.067	40275.408	234173.96	70711.276	203.335	1340.507	0.000	286686.80	33029.473
σ	1	0.15	1309.64	3038.56	1179.70	19.72	32.56	0.00	1747.39	101.58
%RSD	1	223.607	3.252	1.298	1.668	9.699	2.429	0.000	0.610	0.308

Run	Time	138Ba	140Ce	156Ce O	220Bkg	238U
Dwell (mSecs)		10.0	10.0	30.0	100.0	10.0
	%RSD	-	-	-	-	5.0%
Limits	Countrate	•	-	-	<1	>350000
1	8:34:21 AM	214251.34	262907.15	2961.418	0.000	706655.85
2	8:34:38 AM	220908.24	268462.37	3278.154	0.000	704947.82
3	8:34:56 AM	219852.14	267144.68	2973.643	0.333	704636.34
4	8:35:13 AM	220759.30	265749.01	3134.788	0.000	695753.10
5	8:35:30 AM	221829.02	268234.83	3169.240	0.000	697855.34
X		219520.01	266499.61	3103.449	0.067	701969.69
σ		3027.53	2277.54	134.96	0.15	4835.14
%RSD		1.379	0.855	4.349	223.607	0.689

Ratio results

Run	Time	137Ba++/137Ba	156Ce O/140Ce
	Ratio limits	< 0.0400	< 0.0250
1	8:34:21 AM	0.006	0.011
2	8:34:38 AM	0.007	0.012
3	8:34:56 AM	0.006	0.011
4	8:35:13 AM	0.006	0.012
5	8:35:30 AM	0.006	0.012
x		0.0062	0.0116
σ		0.00	0.00
%RSD		9.6154	3.7950

Result : The performance report passed.

file://D:\Documents and Settings\wawtcmetal\Local Settings\Temp\InstrumentReport\plasmalab.xml 1/5/2012

Sample details

Acquired at : 1/5/2012 8:36:47 AM Report name : 2. Xt Y CCT KED [5/3/2011 9:20:10 AM]

Tune conditions

Major] [Minor		
Extraction	-133.3] [Lens 3	-195.3	[
Lens 1	-1231	Ι	Forward power	1404	
Lens 2	-80.0] [Horizontal	60	Γ
Focus	-10.4] [Vertical	383	
D1	-51.0] [DA	-52.5	_
D2	-140] [Cool	13.0	
Pole Bias	-14.0] [Auxiliary	0.90	
Hexapole Bias	-17.0] [Sampling Depth	100	
Nebuliser	0.83	1.			

Global	Add. Gases	
Standard resolution	125	CCT-He H2 3.61
High resolution	125	Do Not Use 0.00
Analogue Detector	1824	
PC Detector	2824	

Sensitivity and stability results

Acquisition parameters

Sweeps: 100

Run	Time	78Se	115In	140Ce	156Ce 0
Dwell (mSecs)		10.0	10.0	10.0	10.0
Limite	%RSD	-	5.0%	-	-
LIMICS	Countrate	<50	>50000	•	•
1	8:36:48 AM	16.000	150115.59	210247.84	2669.249
2	8:36:55 AM	15.000	149414.30	208065.24	2642.244
3	8:37:02 AM	16.000	150885.64	210946.02	2673.250
4	8:37:09 AM	19.000	154234.12	213562.47	2713.258
5	8:37:16 AM	30.000	156971.69	216537.76	2753.265
x		19.200	152324.27	211871.87	2690.253
σ		6.22	3188.33	3263.96	43.40
%RSD		32.401	2.093	1.541	1.613

Ratio results

Run	Time	156Ce 0/140Ce
	Ratio limits	< 0.0250
1	8:36:48 AM	0.013
2	8:36:55 AM	0.013
3	8:37:02 AM	0.013
4	8:37:09 AM	0.013
5	8:37:16 AM	0.013
X		0.0127
σ		0.00
%RSD		0.1232

Result : The performance report passed.

Experiment Details

Description PlasmaLab Template BlankExperiment Template Filename C:\Program Files\Thermo Electron\PlasmaLab\data\scan.tee Created By User wawtcmetal Analyte Database EPA_CCT.tea Creation Timestamp 2/2/2006 10:13:19 AM Last Edited By wawtcmetai Last Edit Timestamp 1/5/2012 11:04:28 AM Instrument Detector Simultaneous Database Version 3.51 Acquisition Mode Unknown

Numerical Results report key (text indicates meaning)

Blue text indicates that cell is a statistic.

Underlining indicates that a data warning flag is set. Result cells Column headings

No flag
Semi Quant
Standard Addition
Multi Element

Data warning flags I - Invalid calibration Internal Standard T - Tripped Excluded F - Interference correction failed QC Warning M - Result over max V - Valley integration failed QC Failure D - Different method used Transient TRA only: Peak Not Found

Setup

Survey Scan Setup

-	
Sweeps	5
Dwell Time	600
Channels Per Mass	10
Acquisition Duration	6620

Main Run Setup

Main Run	Peak Jumping
Sweeps	30
Dwell Time	10000
Channels Per Mass	1
Acquisition Duration	17743
Channel Spacing	0.02

Survey Scan Regions

Start AMU	End AMU	Channels	Dweil ms	Resolution
4.59	11.50	69	600	Standard
22.59	28.41	58	600	
30.59	31.50	9	600	
33.50	34.50	10	600	
38.50	39.41	9	600	
42.59	55.50	129	600	Standard
56.50	79.50	230	600	Standard
80.50	245.50	1650	600	Standard

Manually Edited Merged Peak

Peak Jump Regions

Analyte	Channels	Dwell ms	Resolution
45Sc	1	10000	Standard
52Cr	1	20000	Standard
53CI O	1	20000	Standard
63Cu	1	10000	Standard
67Zn	1	10000	Standard
68Zn	1	10000	Standard
75As	1	10000	Standard
83Kr	1	20000	Standard
91Zr	1	10000	Standard

Service Request: 11-1738

Page	2 o	f 8
------	-----	-----

95Mo	1	10000	Standard
97Mo	1	10000	Standard
98Mo	1	10000	Standard
99Ru	1	10000	Standard
103Rh	1	10000	Standard
103Rh H2	1	10000	Standard
111Cd	1	10000	Standard
120Sn	1	10000	Standard
125Te	1	10000	Standard
137Ba	1	10000	Standard
159Tb	1	10000	Standard
206Pb	1	10000	Standard
207Pb	1	10000	Standard
208Pb	1	10000	Standard

Fully Quant Calibration

ł

Intercept CPS=345.415568 Intercept Conc=0.182052 Sensitivity=1897.346009 Correlation Coeff=0.999966

Label	Defined	Measured	Error	Mean CPS	% Erro
STD1	0.000	0.000	0.000	345.42	0.00
STD2	1.000	1.022	0.022	2285.24	2.24
STD3	10.000	10.031	0.031	19377.69	0.31
STD4	50.000	50.664	0.664	96473.22	1.33
STD5	100.000	99.665	0.335	189443.46	0.34

Intercept CPS=41.082660 Intercept Conc=0.135196 Sensitivity=303.874652 Correlation Coeff=0.999845

Label	Defined	Measured	Error	Mean CPS	% Error
STD1	0.000	0.000	0.000	41.08	0.00
STD2	1.000	0.984	0.016	340.13	1.59
STD3	10.000	9.927	0.073	3057.69	0.73
STD4	50.000	51.392	1.392	15657.75	2.78
STD5	100.000	99.312	0.688	30219.34	0.69

Intercept CPS=761.203883	3 Intercept Conc=0.023739
Sensitivity=32064.933525	Correlation Coeff=0.999964

Label	Defined	Measured	Error	Mean CPS	% Error
STD1	0.000	-0.000	0.000	761.20	0.00
STD2	1.000	0.988	0.012	32438.38	1.21
STD3	10.000	10.011	0.011	321774.90	0.11
STD4	50.000	50.675	0.675	1625666.35	1.35
STD5	100.000	99.661	0.339	3196392.76	0.34

Dilution Corrected Concentrations

STD1 1/5/2012 11:05:52 AM

User Pre-dilution: 1.000										
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:06:01	95.5%	-0.019	-159.700	-0.047	96.6%	99.5%	-0.002	97.8%	0.000
2	11:06:10	101.6%	-0.005	-282.700	0.040	101.7%	100.0%	-0.000	100.6%	-0.001
3	11:06:19	102.9%	0.023	442.500	0.007	101.7%	100.5%	0.002	101.6%	0.001
x		100.0%	0.000	-0.000	0.000	100.0%	100.0%	-0.000	100.0%	-0.000
%RSD		4.0	0.000	0.000	0.000	2.9	0.5	0.000	2.0	0.000

STD2 1/5/2012 11:08:41 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:08:50	102.0%	1.052	1826.000	0.976	102.8%	102.6%	1.047	102.1%	0.989
2	11:08:59	106.3%	0.980	1486.000	0.950	104.0%	102.1%	0.978	104.0%	0.972
3	11:09:08	105.8%	1.035	2179.000	1.026	105.8%	103.0%	0.975	103.8%	1.002
x		104.7%	1.022	1830.000	0.984	104.2%	102.6%	1.000	103.3%	0.988
%RSD		2.3	3.723	18.920	3.922	1.4	0.4	4.083	1.0	1.520

STD3 1/5/2012 11:11:16 AM

User Pre	User Pre-dilution: 1.000											
Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb		
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb		
1	11:11:25	104.3%	10.080	2225.000	10.280	105.8%	102.9%	9.785	104.4%	10.010		
2	11:11:34	107.5%	10.030	1126.000	9.532	106.8%	104.1%	10.110	106.6%	9.914		
3	11:11:44	109.2%	9.978	2298.000	9.968	107.2%	104.0%	10.120	105.3%	10.110		
X		107.0%	10.030	1883.000	9.927	106.6%	103.7%	10.000	105.4%	10.010		
%RSD		2.3	0.523	34.870	3.791	0.6	0.6	1.904	1.0	0.958		

STD4 1/5/2012 11:14:04 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:14:13	106.8%	50.390	4018.000	50.620	106.7%	104.7%	50.220	104.8%	50.900
2	11:14:22	111.4%	50.010	4806.000	51.070	110.9%	105.9%	50.060	109.1%	50.530
3	11:14:31	110.5%	51.590	5113.000	52.490	109.7%	104.0%	50.530	108.2%	50.600
x		109.6%	50.660	4645.000	51.390	109.1%	104.9%	50.270	107.4%	50.680
%RSD		2.2	1.624	12.160	1.903	2.0	0.9	0.479	2.1	0.383

STD5 1/5/2012 11:17:12 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:17:21	107.9%	98.580	4049.000	97.170	107.0%	106.5%	м 100.400	107.4%	99.480
2	11:17:30	111.8%	100.400	5547.000	<u>м 100.400</u>	111.0%	104.6%	<u>м 100.800</u>	110.3%	99.800
3	11:17:39	114.8%	100.100	4858.000	<u>м 100.400</u>	111.5%	105.7%	98.370	111.1%	99.700
X		111.5%	99.660	4818.000	<u>м 99.310</u>	109.8%	105.6%	<u>м 99.860</u>	109.6%	99.660
%RSD		3.1	0.957	15.560	м 1.868	2.2	0.9	<u>м 1.309</u>	1.8	0.164

CCV 1/5/2012 11:19:54 AM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:20:03	103.9%	49.470	3270.000	50.860	104.2%	105.1%	49.520	103.5%	50.140
2	11:20:12	109.1%	50.220	2656.000	50.260	107.1%	105.3%	49.880	106.1%	50.900
3	11:20:21	109.8%	50.430	3873.000	50.950	107.6%	105.1%	49.560	106.8%	50.590
x		107.6%	50.040	3267.000	50.690	106.3%	105.1%	49.650	105.5%	50.550
%RSD		3.0	1.006	18.630	0.744	1.7	0.1	0.396	1.7	0.756
ICV40 1/5/2012 11:22:48 AM

22:48 AM QC Status: PASS (Initial: PASS)

User Pre-	Jser Pre-dilution: 1.000										
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	11:22:57	102.2%	39.620	1866.000	38.510	102.8%	101.9%	39.120	102.9%	39.480	
2	11:23:06	108.1%	38.710	2297.000	39.630	105.6%	105.0%	39.730	106.2%	39.300	
3	11:23:15	109.2%	39.010	1706.000	39.480	107.2%	105.0%	38.820	106.2%	39.400	
х		106.5%	39.120	1957.000	39.200	105.2%	104.0%	39.220	105.1%	39.390	
%RSD		3.6	1.183	15.630	1.554	2.1	1.7	1.185	1.8	0.225	

ICB 1/5/2012 11:26:09 AM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

ł

QC Status, FASS (Initial, FASS)

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
	_	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:26:18	101.9%	0.023	436.600	-0.037	102.1%	100.9%	0.004	101.9%	-0.002
2	11:26:27	107.6%	0.027	928.900	0.099	105.5%	98.4%	0.001	103.2%	-0.004
3	11:26:36	109.0%	0.039	1262.000	-0.049	104.7%	101.5%	0.008	103.7%	-0.007
x		106.2%	0.030	876.000	0.004	104.1%	100.3%	0.004	102.9%	-0.004
%RSD		3.5	27.180	47.420	1941.000	1.7	1.6	74.810	0.9	58.620

QLSTD 1/5/2012 11:28:45 AM

User Pre-dilution: 1.000

AM QC Status: PASS (Initial: PASS)

5) ref # 22.4

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:28:54	101.5%	0.511	311.200	0.529	102.2%	102.3%	0.462	100.9%	0.488
2	11:29:03	107.5%	0.547	501.900	0.428	105.6%	101.3%	0.531	104.4%	0.496
3	11:29:12	106.5%	0.486	623.600	0.577	104.4%	103.2%	0.515	104.3%	0.489
X		105.2%	0.515	478.900	0.511	104.1%	102.3%	0.502	103.2%	0.491
%RSD		3.1	5.966	32.880	14.900	1.7	0.9	7.189	2.0	0.938

11-1738-020 1/5/2012 11:31:23 AM PBW + all w/in I PQL

D										
Kun I III	Run	Time 45Sc	: 52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 11:31:	1	11:31:32 101.8%	0.025	1081.000	0.015	101.5%	102.2%	-0.004	100.9%	-0.016
2 11:31:4	2	11:31:41 107.6%	0.062	1699.000	0.059	104.9%	101.7%	-0.000	104.5%	-0.015
3 11:31:	3	11:31:50 108.6%	0.064	886.100	0.002	105.5%	103.8%	-0.007	104.5%	-0.014
x	х	106.0%	0.050	1222.000	0.025	104.0%	102.6%	-0.004	103.3%	-0.015
%RSD	%RSD	3.4	43.660	34.750	117.300	2.1	1.1	87.230	2.0	6.738
I IIII 1 11:31: 2 11:31: 3 11:31: × %RSD	Run 1 3 3 	Time 45Sc ppb 11:31:32 101.8% 11:31:41 107.6% 11:31:50 11:31:50 108.6% 106.0%	52Cr ppb 0.025 0.062 0.050 43.660	53Cl O ppb 1081.000 1699.000 886.100 1222.000 34.750	75As ppb 0.015 0.059 0.002 0.025 117.300	103Rh ppb 101.5% 104.9% 105.5% 104.0% 2.1	103Rh H2 ppb 102.2% 101.7% 103.8% 102.6% 1.1	111Cd ppb -0.004 -0.007 -0.004 87.230	159Tb ppb 100.9% 104.5% 104.5% 103.3% 2.0	-0 -0 -0 -0 6

11-1738-021 1/5/2012 11:34:05 AM User Pre-dilution: 1,000 LCSW = all w/in ± 152 of the true value

Run									
	Time 4	45Sc 52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:34:14 111	11.5% 41.730	-3093.000	40.300	108.9%	108.2%	39.450	109.2%	38.930
2	11:34:23 117	17.5% 41.000	-4102.000	39.570	113.4%	111.0%	38.840	112.4%	39.020
3	11:34:32 120	20.1% 41.820	-3640.000	42.520	116.2%	108.7%	38.000	114.8%	38.810
х	116	16.4% 41.520	-3612.000	40.800	112.8%	109.3%	38.760	112.2%	38.920
%RSD		3.8 1.089	13.990	3.774	3.3	1.3	1.869	2.5	0.279
1 2 3 x %RSD	11:34:14 111 11:34:23 117 11:34:32 120 116 116	ppb ppb 11.5% 41.730 17.5% 41.000 20.1% 41.820 16.4% 41.520 3.8 1.089	ppb -3093.000 -4102.000 -3640.000 -3612.000 13.990	ppb 40.300 39.570 42.520 40.800 3.774	ppb 108.9% 113.4% 116.2% 112.8% 3.3	ppb 108.2% 111.0% 108.7% 109.3% 1.3	ppb 39.450 38.840 38.000 38.760 1.869	ppb 109.2% 112.4% 114.8% 112.2% 2.5	38.93 39.02 38.83 38.92 38.92 0.22

11-1738-001 1/5/2012 11:37:00 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:37:09	107.6%	1.643	-3974.000	2.559	89.3%	93.2%	0.001	96.4%	0.012
2	11:37:18	111.9%	1.556	-3637.000	2.619	91.8%	95.2%	-0.002	99.7%	0.010
3	11:37:27	117.1%	1.651	-3642.000	3.048	94.3%	95.1%	-0.004	100.9%	0.008
×		112.2%	1.617	-3751.000	2.742	91.8%	94.5%	-0.002	99.0%	0.010
%RSD]	4.3	3.267	5.147	9.722	2.7	1.2	180.200	2.3	18.180

11-1738-002 1/5/2012 11:40:20 AM

	**	1,20		1/5/20
User	Pre	-dilutic	on: 1.000	

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:40:29	119.0%	0.070	-7063.000	1.308	103.5%	99.6%	0.009	108.3%	-0.003
2	11:40:38	121.3%	0.077	-7258.000	1.518	106.3%	100.2%	0.014	110.3%	-0.004
3	11:40:47	123.8%	0.073	-6746.000	1.480	108.4%	100.5%	0.024	110.7%	-0.004
X		121.4%	0.073	-7022.000	1.435	106.1%	100.1%	0.016	109.7%	-0.004
%RSD]	2.0	4.366	3.681	7.816	2.4	0.5	48.820	1.2	12.010

11-1738-003 1/5/2012 11:43:08 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	11:43:17	114.2%	0.101	-7508.000	1.780	108.0%	100.2%	0.000	110.9%	0.008	
2	11:43:26	118.4%	0.136	-8035.000	1.576	109.6%	101.9%	0.000	112.7%	0.010	
3	11:43:35	119.5%	0.135	-8003.000	1.789	110.5%	102.0%	-0.022	112.9%	0.009	
X		117.4%	0.124	-7849.000	1.715	109.4%	101.4%	-0.007	112.2%	0.009	
%RSD	j	2.4	15.990	3.763	7.030	1.1	1.0	184.100	1.0	12.900	

11-1738-004 1/5/2012 11:45:52 AM

LICOR	Dro-di	lution	1 000
USEL	PIE-U	юнюнь.	1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:46:01	109.8%	0.075	-7964.000	2.005	103.8%	98.4%	-0.009	108.0%	0.002
2	11:46:10	113.7%	0.145	-8198.000	1.736	107.4%	100.8%	0.007	110.4%	0.002
3	11:46:19	117.0%	0.093	-8204.000	1.584	107.7%	103.4%	-0.012	112.5%	0.005
×		113.5%	0.104	-8122.000	1.775	106.3%	100.9%	-0.005	110.3%	0.003
%RSD		3.2	34.590	1.688	12.020	2.0	2.5	213.600	2.0	62.230

)U	P
)U

User Pre-	dilution: 1.00	00		VL	17					
Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:48:56	109.9%	0.078	-8168.000	1.928	106.1%	100.5%	-0.001	107.9%	0.004
2	11:49:06	115.8%	0.077	-8200.000	1.972	108.1%	101.0%	-0.012	110.8%	0.003
3	11:49:15	116.6%	0.103	-7889.000	1.475	108.7%	102.2%	-0.012	111.5%	0.002
x		114.1%	0.086	-8085.000	1.792	107.7%	101.2%	-0.008	110.0%	0.003
%RSD		3.2	16.960	2.117	15.340	1.3	0.8	76.300	1.7	34.900

11-1738-016 1/5/2012 11:51:31 AM User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb		
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb		
1	11:51:40	109.3%	41.410	-6137.000	43.570	103.7%	101.2%	37.890	108.0%	38.300		
2	11:51:49	112.2%	41.860	-5793.000	43.620	105.7%	102.4%	38.220	109.2%	38.640		
3	11:51:58	116.1%	42.020	-5694.000	42.630	106.8%	102.2%	38.690	111.1%	38.700		
X		112.5%	41.770	-5875.000	43.270	105.4%	101.9%	38.270	109.4%	38.540		
%RSD		3.0	0.754	3.959	1.293	1.5	0.6	1.052	1.4	0.553		

11-1738-005 1/5/2012 11:54:32 AM

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:54:41	94.5%	1.384	1427.000	1.587	72.6%	79.0%	0.013	80.3%	0.002
2	11:54:50	99.3%	1.394	2445.000	1.659	74.4%	79.5%	0.009	82.0%	0.002
3	11:54:59	102.6%	1.395	2131.000	1.591	75.6%	79.4%	0.014	83.9%	0.001
X		98.8%	1.391	2001.000	1.613	74.2%	79.3%	0.012	82.1%	0.002
%RSD		4.1	0.457	26.060	2.523	2.0	0.3	25.360	2.2	31.590

11-1738-006 1/5/2012 11:57:52 AM

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	11:58:01	122.3%	5.962	-7109.000	2.442	98.7%	84.7%	0.025	101.3%	3.336
2	11:58:10	126.6%	5.868	-6543.000	2.650	101.6%	85.1%	-0.008	103.6%	3.293
3	11:58:19	130.6%	5.763	-6212.000	2.477	104.5%	85.3%	0.016	105.9%	3.301
х		126.5%	5.864	-6622.000	2.523	101.6%	85.0%	0.011	103.6%	3.310
%RSD		3.3	1.699	6.853	4.417	2.9	0.3	154.900	2.3	0.690

CCV 1/5/2012 12:01:13 PM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

1

Run	Time	45Sc	52Cr	53Cl O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:01:22	112.3%	49.050	-1837.000	49.430	107.2%	87.3%	49.370	103.7%	49.640
2	12:01:31	119.1%	49.360	-1876.000	50.320	111.6%	87.7%	49.660	106.0%	49.600
3	12:01:40	119.7%	49.280	-2406.000	49.110	112.4%	88.3%	49.050	107.0%	49.580
x		117.0%	49.230	-2040.000	49.620	110.4%	87.8%	49.360	105.6%	49.610
%RSD		3.5	0.334	15.580	1.258	2.5	0.6	0.624	1.6	0.059

ССВ 1/5/2012 12:04:35 PM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:04:44	110.5%	0.024	-4872.000	0.058	105.3%	85.3%	0.006	100.8%	-0.002
2	12:04:54	115.2%	0.038	-5005.000	0.217	108.3%	84.1%	0.003	102.0%	-0.003
3	12:05:02	117.3%	0.031	-4750.000	0.059	110.5%	84.9%	0.003	104.6%	-0.004
x		114.3%	0.031	-4875.000	0.111	108.0%	84.8%	0.004	102.4%	-0.003
%RSD		3.0	23.300	2.615	82.590	2.4	0.7	41.090	1.9	19.900

11-1738-018 1/5/2012 12:07:57 PM

DUP

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:08:06	117.9%	6.019	-8629.000	2.135	96.4%	82.6%	0.011	100.7%	3.269
2	12:08:15	124.5%	5.734	-8713.000	2.406	100.2%	83.7%	0.022	103.5%	3.226
3	12:08:24	127.6%	5.754	-8230.000	2.028	100.4%	83.7%	0.002	105.1%	3.246
х		123.4%	5.836	-8524.000	2.190	99.0%	83.4%	0.012	103.1%	3.247
%RSD		4.0	2.724	3.030	8.904	2.3	0.7	84.610	2.1	0.672

11-1738-019 1/5/2012 12:11:17 PM MS User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:11:26	115.0%	48.110	-7656.000	43.030	95.3%	80.9%	36.930	99.0%	40.360
2	12:11:35	121.3%	47.830	-7355.000	42.020	97.0%	82.2%	37.440	102.8%	39.840
3	12:11:44	122.7%	47.700	-7272.000	41.690	98.7%	82.7%	37.370	103.6%	39.960
X		119.7%	47.880	-7428.000	42.250	97.0%	81.9%	37.250	101.8%	40.060
%RSD		3.4	0.440	2.720	1.646	1.7	1.2	0.738	2.5	0.680

CCV 1/5/2012 12:14:38 PM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

Ru	n Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	1 12:14:47	111.0%	50.750	-4040.000	51.830	106.8%	83.2%	50.020	103.3%	50.480
	2 12:14:56	113.8%	49.710	-3569.000	51.520	110.2%	84.2%	50.760	105.4%	50.100
	3 12:15:05	114.8%	50.080	-3267.000	49.330	110.0%	85.4%	50.810	106.0%	50.580
	x	113.2%	50.180	-3625.000	50.890	109.0%	84.3%	50.530	104.9%	50.390
%RS	5D	1.7	1.050	10.740	2.677	1.7	1.3	0.872	1.4	0.507

CCB 1/5/2012 12:17:59 PM QC Status: PASS (Initial: PASS)

User Pre-dilution:	1.000

1

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:18:09	106.1%	0.018	-6580.000	-0.002	102.4%	82.3%	0.004	98.7%	-0.002
2	12:18:18	112.6%	0.007	-7008.000	0.066	106.8%	81.6%	0.005	102.8%	-0.004
3	12:18:27	114.0%	-0.013	-7009.000	-0.002	108.5%	82.1%	0.007	102.4%	-0.002
X		110.9%	0.004	-6866.000	0.021	105.9%	82.0%	0.005	101.3%	-0.002
%RSD]	3.8	387.800	3.606	187.300	3.0	0.4	28.350	2.2	50.330

run stopped, added samples, analysis continued.

Dilution Corrected Concentrations

1

11 User Pre-	-1738-0220 -dilution: 1.00	L10 1/	5/2012 12	:28:55 PM	PE	35 =	all u	>/in	± PQ	L
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:29:04	112.9%	-0.035	-8649.000	-0.043	111.8%	83.1%	-0.007	104.3%	0.009
2	12:29:14	118.5%	-0.070	-8519.000	-0.071	117.5%	85.7%	-0.005	108.6%	0.009
3	12:29:22	120.2%	-0.046	-8608.000	-0.045	118.3%	85.2%	-0.007	108.0%	0.006
x		117.2%	-0.050	-8592.000	-0.053	115.8%	84.7%	-0.006	106.9%	0.008
%RSD		3.3	35.690	0.776	29.750	3.1	1.6	18.160	2.2	24.000

11-1738-023DL20 1/5/2012 12:32:15 PM LCSS - all w/in I 15% of true value User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53Cl 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb		
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb		
1	12:32:24	121.2%	50.440	-6339.000	49.910	117.9%	86.2%	48.390	110.1%	49.120		
2	12:32:33	125.0%	49.710	-6834.000	50.670	120.4%	86.9%	48.760	111.3%	49.290		
3	12:32:42	126.8%	49.260	-6525.000	51.140	120.7%	88.0%	48.610	111.2%	49.290		
х		124.3%	49.800	-6566.000	50.570	119.6%	87.0%	48.590	110.8%	49.230		
%RSD		2.3	1.196	3.807	1.225	1.3	1.1	0.375	0.6	0.202		

11-1738-007DL10 1/5/2012 12:35:35 PM

Design and the second second
r Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53Cl O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:35:44	150.5%	43.850	-6505.000	8.531	111.9%	88.5%	0.148	110.3%	10.040
2	12:35:53	157.3%	43.100	-6583.000	7.874	115.6%	89.6%	0.177	113.4%	10.040
3	12:36:02	161.2%	44.070	-5582.000	7.960	116.7%	89.2%	0.173	114.7%	10.010
X		156.3%	43.670	-6223.000	8.122	114.7%	89.1%	0.166	112.8%	10.030
%RSD		3.5	1.162	8.949	4.398	2.2	0.6	9.683	2.0	0.178

11-1738-015DL10 1/5/2012 12:38:55 PM DUP

User Pre-	-dilution: 1.00	00			PUT					
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:39:04	144.0%	45.670	-5760.000	6.007	112.4%	87.9%	0.134	109.2%	6.875
2	12:39:13	151.0%	45.320	-7078.000	6.040	116.8%	88.7%	0.165	112.6%	6.940
3	12:39:22	154.6%	44.860	-5914.000	5.960	116.1%	90.0%	0.137	114.3%	6.928
x		149.8%	45.280	-6251.000	6.002	115.1%	88.8%	0.145	112.0%	6.915
%RSD		3.6	0.893	11.530	0.663	2.0	1.2	12.000	2.3	0.507

11-1738-017DL20 1/5/2012 12:42:17 PM

User Pre-	-dilution: 1.00	00	5/2012 12	. 4 2.17 FM	ms					
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:42:27	130.1%	75.290	-4381.000	56.210	113.3%	85.8%	50.880	107.9%	54.100
2	12:42:36	134.6%	74.810	-4771.000	55.540	113.1%	86.7%	53.210	110.0%	54.330
3	12:42:45	137.8%	75.760	-4709.000	56.420	114.8%	85.3%	51.450	110.7%	53.950
x		134.2%	75.290	-4620.000	56.060	113.7%	85.9%	51.840	109.5%	54.120
%RSD		2.9	0.635	4.529	0.819	0.8	0.8	2.342	1.3	0.348

11-1738-008DL10 1/5/2012 12:45:38 PM

|--|

User Pre-	-dilution: 1.00	00								
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:45:47	139.9%	26.920	-7628.000	5.601	114.5%	88.9%	0.070	110.7%	5.124
2	12:45:56	148.8%	26.570	-6200.000	6.433	117.2%	89.0%	0.075	113.3%	5.139
3	12:46:06	150.3%	26.050	-7104.000	5.762	118.9%	92.6%	0.067	114.1%	5.151
x		146.3%	26.520	-6977.000	5.932	116.9%	90.2%	0.070	112.7%	5.138
%RSD		3.8	1.652	10.360	7.442	1.9	2.3	6.303	1.6	0.262

11-1738-009DL10 1/5/2012 12:49:00 PM

User Pre-dilution: 1.000

ł

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:49:09	137.3%	50.360	-7420.000	11.070	112.4%	88.2%	0.192	110.5%	19.110
2	12:49:18	143.2%	50.000	-7232.000	11.470	115.8%	90.2%	0.246	112.6%	19.150
3	12:49:27	143.7%	50.080	-6414.000	11.920	117.2%	88.7%	0.192	112.7%	19.270
x		141.4%	50.150	-7022.000	11.490	115.1%	89.0%	0.210	112.0%	19.180
%RSD	1	2.5	0.374	7.615	3.688	2.2	1.2	14.780	1.1	0.437

QLSTDDL2 1/5/2012 12:52:21 PM User Pre-dilution: 1.000 +rue rule = 0, 25 mg/L												
Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb		
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb		
1	12:52:31	113.5%	0.244	-8523.000	0.318	111.5%	84.7%	0.223	103.6%	0.226		
2	12:52:41	117.1%	0.185	-8505.000	0.274	112.4%	85.8%	0.263	106.2%	0.238		
3	12:52:50	118.4%	0.228	-8094.000	0.223	112.9%	85.6%	0.250	106.4%	0.228		
x		116.3%	0.219	-8374.000	0.272 *	112.2%	85.4%	0.245	105.4%	0.231		
%RSD		2.2	14.100	2.896	17.430	0.6	0.7	8.240	1,5	2.771		

CCV 1/5/2012 12:55:44 PM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI 0	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:55:53	116.6%	49.160	-5448.000	50.170	114.6%	88.9%	49.390	106.8%	49.410
2	12:56:02	121.8%	49.550	-5360.000	50.050	116.0%	89.3%	49.890	109.8%	49.470
3	12:56:11	122.4%	49.240	-5922.000	50.120	116.2%	89.1%	50.550	109.8%	49.700
х		120.3%	49.320	-5577.000	50.110	115.6%	89.1%	49.940	108.8%	49.530
%RSD		2.7	0.415	5.423	0.112	0.8	0.2	1.164	1.6	0.308

ССВ 1/5/2012 12:59:06 PM QC Status: PASS (Initial: PASS)

User Pre-dilution: 1.000

Run	Time	45Sc	52Cr	53CI O	75As	103Rh	103Rh H2	111Cd	159Tb	208Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	12:59:15	113.6%	0.005	-8262.000	0.057	109.6%	85.6%	-0.003	103.4%	-0.003
2	12:59:24	117.7%	-0.001	-8040.000	0.020	114.3%	84.9%	0.005	105.5%	-0.003
3	12:59:33	121.3%	0.016	-8717.000	0.017	115.0%	86.4%	0.005	106.3%	-0.003
x		117.6%	0.007	-8340.000	0.031	113.0%	85.6%	0.002	105.1%	-0.003
%RSD		3.3	132.300	4.135	71.160	2.6	0.9	195.700	1.4	11.790

end of run for-05-12

Weyerhaeuser Company Analytical & Testing Services

updated: djd 12/29/2010

Hg DIGESTION LOG - method AM E-245

sr# 11-1684; 11-1738

analysis instrument: Hg by CVAAS (CETAC QuickTrace M-7500)

hotblock temperature (°C): 95 Co

	sample number	amount aliquoted	aliquot basis	digestion method number	comments
1	11-1738-020	40	as rec'd	245.1	PBW
2	11-1738-021				LCS-W
3	-006				006 7 12-29-11
4	-018				006D
5	-019				006 MS
6	11-1684 -001			J.	
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					

comments: MS = add 0.2 mL of 0.4 mg/L Hg to produce a 2 ug/L spike (except TCLPs have own spike form).

analyst and start date: CO 12-29-11

Service Request: 11-1738

original filed with sr # 11-1738

Page 43 of 143

Weyerhaeuser Company Analytical & Testing Services

Hg DIGESTION LOG - method AM E-245

<u>sr# 11-1738</u>

analysis instrument: Hg by CVAAS (CETAC QuickTrace M-7500)

hotblock temperature (°C): 95 0

	sample number	amount aliquoted mL or grams	aliquot basis	digestion method number	comments
1	11-1738-022	assume o.1g.	1 as rec'd	245.5	PBS
2	-023	L'I			LCS-S
3	-007	0.164			007
4	-015	0.204			007 D
5	-017	0.159			007 MS
6	-008	0.158			
7	-009	0.214	J		
8					
9			- · · · · · · · · · · · · · · · · · · ·		
10					
11					
12	<u></u>		.		
13					
14					
15					
16					
17					
18					
19					
20					
21					
22				· · · · · · · · · · · · · · · · · · ·	
23					
24					
25					

comments: MS = add 0.2 mL of 0.4 mg/L Hg to produce a 2 ug/L spike (except TCLPs have own spike form).

analyst and start date:

12-29-11

Service Request: 11-1738

original filed with sr # 11-1738

Page 44 of 143

Hg standards prep

sr# 11 - 1684 ; 11 - 1738

Hg intermediate solution prep:

0.4 mg/L Hg in 1% HNO₃ (used for ICV, LCS spiking and sample spiking):

1. half fill a 50-mL tube with DDI-water

2. add 0.5 mL of conc. HNO₃ and mix

3. add 2 mL of 10 mg/L Hg purchased stock solution (Spex, lot# 16-180HG, exp. 02/15/12)

4. dilute to a 50-mL final volume with DDI-water and mix

0.08 mg/L Hg in 1% HNO₃ (used for Calibration Standards, QLSTD, CCVs, and sample spiking):

1. half fill a 50-mL tube with DDI-water

2. add 0.5 mL of conc. HNO_3 and mix

3. add 0.2 mL of 20 mg/L Hg purchased stock solution (Ultra Scientific, lot# J00178A, exp. 02/28/12)

4. dilute to a 50-mL final volume with DDI-water and mix

J/9023 HNO₂ = JT Baker. lot#

intermediate solutions prep analyst and date: CO 12-29-11

Hg Calibration and QC Standards Prep:

1. in labeled 50-mL tubes add the following volumes of DDI-water and Hg intermediate solution:

solution	<u>mL of DDI-H₂O</u>	mL of Hg intermediate solution
s0.0 ug/L, ICB, CCB	40	none
s0.1 ug/L & QLSTD	40	0.05 mL of 0.08 mg/L Hg int. soln.
s1.0 ug/L	39.5	0.5 mL of 0.08 mg/L Hg int. soln.
s5.0 ug/L & CCV	37.5	2.5 mL of 0.08 mg/L Hg int. soln.
s10.0 ug/L	35	5 mL of 0.08 mg/L Hg int. soln.
ICV (2.0 ug/L, range = 1.8 - 2.2)	39.8	0.2 mL of 0.4 mg/L Hg int. soln.

note: The number of CCVs and CCBs varies with the number of samples being analyzed.

2. add 2 mL of conc. H₂SO₄ to each tube and mix

3. add 1 mL of conc. HNO_3 to each tube and mix

4. add 6 mL of 5% KMnO₄ to each tube and mix

5. add 3.2 mL of 5% K₂S₂O₈ to each tube and mix

6. standards are now ready for analysis

calibration and QC standards prep analyst and date: CO 12-30-11

Hg Prep Control Samples :

LCSW/LCSS = 2.0 ug/L spiked blank, range (± 15 %) = 1.7 - 2.3 ug/L add 0.2 mL of 0.40 mg/L Hg to 39.8 mL of DDI-water

TV= 0.8 mg/kg range= 0.68 - 0.92

TCLP LCSW = 0.0020 mg/L spiked blank, range (± 20 %) = 0.0016 - 0.0024 mg/L

add 0.2 mL of 0.40 mg/L Hg to 10 mL of TCLP Blank and 29.8 mL of DDI-water

Weyerhaeuser Analytical Chemistry and Microstructure

Report Generated By CETAC QuickTrace Analyst: wawtcmetal Worksheet file: C:\Program Files\QuickTrace\Worksheets\hg12302011.wsz Date Started: 12/30/2011 11:16:18 AM CO (20) (2) (3) / (1) Comment:

Results

Sample Name	Туре	Date/Time	Conc (ug/L)	%RSD Flags
Calibration Blank Replicates 59062.3	STD	12/30/11 11:27:47 am	0.000	0.00
Standard #1(0.1 ug/L) Replicates 218112.0	STD	12/30/11 11:29:50 am	0.100	0.00
Standard #2 (1.0 ug/L) Replicates 1536400.1	STD	12/30/11 11:31:53 am	1.000	0.00
Standard #3 (5.0 ug/L) Replicates 7300061.0	STD	12/30/11 11:34:39 am	5.000	0.00
Standard #4(10.0 ug/L) Replicates 14548242.0	STD	12/30/11 11:37:58 am	10.000	0.00
Calibration Equation: A = 71794.020 + 1447386.000C R2: 1.00000 ✓ SEE: 13452.0000 Flags:	uAbsorbance	15,000,000 10,000,000 5,000,000 0 2 C	4 e	
CCV Replicates 7360040.0 % Recovery 100.71	OPR	12/30/11 11:41:40 am	5.040	0.00 S
ICV Replicates 2926063.8 % Recovery 98.60	ICV	12/30/11 11:44:50 am	1.970	0.00 S

12/30/2011 1:05:23 PM

hg12302011.wsz

Sample Name		Туре	Date/Time	Conc (ug/L)	%RSD F	lags
ICB Replicates	58898.4	ICB	12/30/11 11:47:51 am	-0.009	0.00	4
QLSTD Replicates % Recovery	219057.2 101.74 🗸	CRDL	12/30/11 11:49:58 am	0.102	0.00	
11-1738-020 Replicates	83812.8	UNK	12/30/11 11:52:01 am	0.008	0.00	<
11-1738-021 K Replicates	25 - 10 2% 3027174.5	UNK	12/30/11 11:54:03 am	2.040	0.00 S	
11-1738-006 Replicates	102759.7	UNK	12/30/11 11:57:06 am	0.021	0.00	<
11-1738-018 Replicates	108440.7	UNK	12/30/11 11:59:10 am	0.025	0.00	< rpd=NC
11-1738-019 MS Replicates	90 Re Coverg - 11596 3389518.0	UNK	12/30/11 12:01:13 pm	2.290	0.00 S	5
11-1684-001 Replicates	156052.9	UNK	12/30/11 12:04:22 pm	0.058	0.00	4
11-1738-022 Replicates	79567.7	UNK	12/30/11 12:06:27 pm	0.005	0.00	۷
11-1738-023 ՀԸ Replicates	5 = 10390 ^{3048502.5} V	UNK	12/30/11 12:09:25 pm	2.060	0.00 \$)
11-1738-007 Replicates	315802.1	UNK	12/30/11 12:12:22 pm	0.169	0.00	= 0.0442ng/ kg
11-1738-015 Replicates	348886.8	UNK	12/30/11 12:15:03 pm	0.191	0.00	-0.04 mg/kg 9%
					part	

12/30/2011 1:05:23 PM

:

Sample Name	Туре	Date/Time	Conc (ug/L)	%RSD Flags
CCV Replicates 7263195.5 % Recovery 99.37	CCV	12/30/11 12:17:43 pm	4.970	0.00 S
CCB Replicates 57003.2	ССВ	12/30/11 12:21:07 pm	-0.010	0.00 <
11-1738-017 ms % Reacyerg - 99% Replicates 3178381.8	UNK	12/30/11 12:23:12 pm	2.150	0.00 S
11-1738-008 Replicates 169153.4	UNK	12/30/11 12:26:14 pm	0.067	0.00 <
11-1738-009 Replicates 238663.5	UNK	12/30/11 12:28:16 pm	0.115	0.00 = 0.02 mg/kg
CCV Replicates 7240240.0 % Recovery 99.05	CCV	12/30/11 12:30:21 pm	4.950	0.00 S
CCB Replicates 57561.1	ССВ	12/30/11 12:33:48 pm	-0.010	0.00

Notes

hg12302011.wsz

Analysis Parameters

Instrument M-7500 Mercury Analyzer

Conditions

:

4

Gas flow (mL/min)	Sample Uptake (s)	Rinse (s)	Read delay (s)	Replicates (#)	Replicate time (s)	Pump speed (%)	Wavelength (nm)
100	35.00	80.00	67.00	1	6.00	50	253.65
Instrumental Z	ero						
Zero before first sa	mple: No						
Zero periodically:	Yes						
Before each	calibration.						
Baseline Corre	ection						
#1 Start time (s)	#1 End time (s) #2	Start time (s) #2 End time	(s)			
30.00	34.00						
Standby Mode							
Enabled: Yes							
Standby Options:	pump slow						
Autodilution							
Enabled: No							
Condition:							
Tube # range:							
If no autodilution to	ubes remaining						

Calibration

Settings

Algorithm	Through blank	Weighted	fit Cal. Type	e Racalibration rate	Reslope rate	Reslope standard	<u>.</u>
Linear	No	No	Normal	0	0	N/A	
Limits							
Calibratio	n slope	Resl	ope	Coeff. of			
Lower (%)	Upper (%)	Lower (%)	Upper (%)	Determination			
20	150	75	125	0.99500			
Error action:	Flag and continue						

QC

GLP Override: Yes

QC Tests

ссв

Concentration (ug/L) 0.1000

Failure flag: Q Error action for manually inserted QC: Flag and continue

ICB

Concentration (ug/L) 0.1000

Failure flag: Z Error action for manually inserted QC: Flag and continue

CCV

Concentration	Low Limit	High Limit
(ug/L)	%	%
5.0000	90.0000	110.0000

Failure flag: Q

Error action for manually inserted QC: Flag and continue

ICV

Concentration	Low Limit	High Limit
(ug/L)	%	%
2.0000	90.0000	110.0000

Failure flag: Q

Error action for manually inserted QC: Flag and continue

CRDL

Concentration	Low Limit	High Limit
(ug/L)	%	%
0.1000	70.0000	130.0000

Failure flag: Y

Error action for manually inserted QC: Flag and continue

OPR

Concentration	Low Limit	High Limit
(ug/L)	%	%
5.0000	95.0000	105.0000

Failure flag: Q

Error action for manually inserted QC: Flag and continue

Page 5

	ample Prep Code	olids Code	lg - ug/L (raw)	19 - ug/L	lg - mg/kg
	Ś	S	ug/L	ug/L	mg/kg
11-1738-006	3-HG-W		< 0.1	< 0.1	
11-1738-007	3-HG-S	SL-OD-1	0.169		0.04
11-1738-008	3-HG-S	SL-OD-1	< 0.1		< 0.03
11-1738-009	3-HG-S	SL-OD-1	0.115		0.03
11-1738-015	3-HG-S	SL-OD-1	0.191		0.04
11-1738-017	3-HG-S	SL-OD-1	2.15		0.57
11-1738-018	3-HG-W		< 0.1	< 0.1	
11-1738-019	3-HG-W		2.29	2.3	
11-1738-020	3-HG-W		< 0.1	< 0.1	
11-1738-021	3-HG-W		2.04	2.0	
11-1738-022	3-HG-S	1	< 0.1		< 0.04
11-1738-023	3-HG-S	1	2.06		0.82

Form AT256 Rev. Dec 28, 2008 Printed on: Jan 5, 2012 2:44 PM

Data Retrieved: Jan 5, 2012 2:44 PM

Weyerhaeuser NR Company, Technology, Analytical Chemistry and Microstructure -- Intranet: http://www.weyer.com/at/

Weyerhaeuser Analytical & Testing Services 32901 Weyerhaeuser Way South Federal Way, WA 98003

÷

-- +

Report Weyer-EW Compliance Monitoring Unit in mg/L Method - NWTPH-D

					Diesel Fuel	Motor Oil	o-terphenyl		
	Samp	ole	Lab		Range	Range	Surrogate	Da	ate
Client ID	Date	Time	ID		624-92-0	74-93-1	% Rec	Extracted	Analyzed
MW-1301R-1211	12/19/11	15:18	003		0.045	<0.20	81%	12/21/11	12/27/11
MW-2301R-1211	12/19/11	15:18	004		0.045	<0.20	78%	12/21/11	12/27/11
MW-2301R-1211	12/19/11	15:18	012	Dup	<0.043	<0.22	87%	12/21/11	12/27/11
WATER-1	12/19/11	17:00	006		0.052	<0.20	82%	12/21/11	12/27/11
Method Blank		í	BLANK	<	<0.040	<0.20	83%	12/21/11	12/27/11
Lab Control Spike			LCS		90%	NA	79%	12/21/11	12/27/11

Unit in mg/kg Method - NWTPH-D

					Diesel Fuel	Motor Oil	o-terphenyl		
	Samp	ole	Lab		Range	Range	Surrogate	Da	ate
Client ID	Date	Time	ID		624-92-0	74-93-1	% Rec	Extracted	Analyzed
SOIL-1	12/19/11	16:35	007		<23	760	106%	12/22/11	12/28/11
SOIL-1	12/19/11	16:35	015	Dup	<25	890	119%	12/22/11	12/28/11
SOIL-2	12/19/11	16:45	008		<23	<91	113%	12/22/11	12/28/11
SOIL-3	12/19/11	16:55	009		72	1000	103%	12/22/11	12/28/11
Method Blank		I	BLANK	<	<25	<99	88%	12/22/11	12/28/11
Lab Control Spike			LCS		89%	NA	73%	12/22/11	12/28/11

Approved: Randy Eatherton WHWW Telephone: (253) 924-6431

Date: 12/28/11

ł

.,

Lab Process Checklist **Organic Chromatography**

Service Request Number(s)	Client/Project		
11-1738	Everett		
Sample Number(s)			
Date Initiated	Initiated By		
12/28/11	2 Juna		
Process Checklist	Comments	Check	Review
Extraction log filled out and witnessed			
Moisture log filled out and witnessed			
Sample pH recorded			
Refrigerator log entry completed			
Tinstrument run log completed (HPLC column log)			
Standard log (reference to source)			
Sample data included			
Initial calibration data included (forms and data)			
Continuing calibration data included (forms and data)			
Quantitation report initialed			
C C chart updated			
Approved	Whether	Date 12 29 11	
very well - orginal ran	gel lacid cleanup, but this before cleanup & met	ðiðrit us g. (+*	or K

File name: WATS Yellow Sheet (29 August, 2006) E Form XXXX (2/06) labprocesschecklist.doc Form developed by Forms Management. Macros removed to deactivate the interactive components and to use this as a worksheet. Page 3 is the **Reference Sheet-RCRA Limits** and may or may not be printed, depending on need.

Page 1 of 3

2E LIQUID WTPH SURROGATE RECOVERY

Contract: Lab Name: WEYERHAEUSER SAS No.: 1613 SDG No.: 11-1738-001 Lab Code: WEYCO Case No.: GC Column(1): DB5MS ID: 0.25 (mm)

	EPA SAMPLE NO.	S1 %REC #	S2 %REC #	S3 S %REC #	54 S5 # %REC	5 S6 # %REC	TOT C # %RI	EC #	OUT
			======	======		======	======	===	
01	MW-1301R-121	81						0	
02	MW-2301R-121	78						0	
03	WATER-1	82						0	
04	DBLK1 W122111	83						0	
05	DLCS1 W122111	79						0	
06	MW-2301R-121DUP	87						0	
07									
80									
09									
10									
11									
12									
13		. <u> </u>							
14									
10								—	
17									
10	l								
19		<u></u>							
20								'	
$\frac{20}{21}$			·····						
$\frac{1}{22}$									
23									
24	······································								
25									
26							·		-
27									
28									
29									
30			l				l		

ADVISORY QC LIMITS

= o-Terphenyl S1

(63-129) 66-125

27 12/28/11

Column to be used to flag recovery values
* Values outside of QC limits

- D Surrogate diluted out

3

2FSOLID WTPH SURROGATE RECOVERY

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001

GC Column(1): DB5MS ID: 0.25 (mm)

ł

	EPA SAMPLE NO.	S1 %REC #	S2 %REC #	S3 S %REC	S4 S # %REC	5 S6 # \%RE	TOT	EC #	lorr
		=======	======	======	1======	======		I	1001
01	SOTL-1	106						0	
02	SOTL-2	113							
03	SOTL-3	103							
ñ4	DBLK1 S122211	88							
05	DLCS1_S122211	73		-			<u> </u>		
06		119						0	
07		117						Ŭ	
08				-					
09				-			I		
10				-					
11^{-1}				-					
12^{-12}			<u> </u>	-					
13				-					
14				·					
15				·					
16	· · · · · · · · · · · · · · · · · · ·		·	-					
17				-					
18				-					
19				-					
20	·			-					
21				-					
22	· · · · · · · · · · · · · · · · · · ·			- [
23									
24				-					
25	arriente de l'estadore de la companya			-					
26							·		
27	·····			-					
28									
29									
30				·					
	······································		·	• •	·	·	·		

ADVISORY QC LIMITS

S1= o-Terphenyl

77-128 (72 - 126)

27 12/18/11

- # Column to be used to flag recovery values
 * Values outside of QC limits
- D Surrogate diluted out

3E

LIQUID PESTICIDE LAB CONTROL SAMPLE

Contract: Lab Name: WEYERHAEUSER SAS No.: 1613 SDG No.: 11-1738-001 Lab Code: WEYCO Case No.: Matrix Spike - EPA Sample No.: File Name: 020911DF25.d Extraction Date: 12/21/11 Lab ID: 111738011

Instrument ID (1): hpdos4_2.i GC Column(1): DB5MS ID: 0.25 (mm)

COMPOUND	SPIKE ADDED (mg/L)	AMOUNT RECOVERED (mg/L)	LCS % REC #	QC. LIMITS REC.	
Diesel Range	0.400	0.359	89.8	35-140	76-139
					2. 9.12/28/11

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 1 outside limits COMMENTS:

3F

SOLID PESTICIDE LAB CONTROL SAMPLE

Lab Name: WEYERHAEUSER Contract: SAS No.: 1613 SDG No.: 11-1738-001 Lab Code: WEYCO Case No.: Matrix Spike - EPA Sample No.: Extraction Date: 12/22/11 File Name: 020911DF66.d Lab ID: 111738014

Instrument ID (1): hpdos4 2.i GC Column(1): DB5MS ID: 0.25 (mm)

COMPOUND	SPIKE ADDED (mg/Kg)	AMOUNT RECOVERED (mg/Kg)	LCS % REC #	QC. LIMITS REC.	
Diesel Range	200.000	177.550	88.8	35-148	72-12

72-126

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 1 outside limits COMMENTS:

Lab Name: WEYERHAEUSER	DBLK1_S122211
Lab Code: WEYCO Case No.:	SAS No.: 1613 SDG No.: 11-1738-001
Lab Sample ID: 111738013	Lab File ID: 020911DF65
Matrix (soil/water) SOLID	Extraction: (SepF/Cont/Sonc) SEPF
Sulfur Cleanup (Y/N) N	Date Extracted: 12/22/11
Date Analyzed (1): 12/28/11	Date Analyzed (2):
Time Analyzed (1): 1057	Time Analyzed (2):
Instrument ID (1): HPDOS4_2	Instrument ID (2):
GC Column (1): DB5MS ID: 0.25(m	m) GC Column (2): ID:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	=========================	=======================================	========	==========
01	DLCS1 S122211	111738014	12/28/11	
02	SOIL-1	111738007	12/28/11	
03	SOIL-1 [DUP]	111738015	12/28/11	
04	SOIL-2	111738008	12/28/11	
05	SOIL-3	111738009	12/28/11	
06			, ,	
07				
08				
09	· · · ·		••••••••••••	
10				
11				
12				
13				
14				
15				
16		· <u> </u>		
17		· <u> </u>		
18	· · · · · ·			
19				
20				
21				
22				
23				
24				
25				
26			•·	

COMMENTS:

÷

page 1 of 1

	DBLK1 W122111
Lab Name: WEYERHAEUSER	Contract:
Lab Code: WEYCO Case No.:	SAS No.: 1613 SDG No.: 11-1738-001
Lab Sample ID: 111738010	Lab File ID: 020911DF24
Matrix (soil/water) LIQUID	Extraction: (SepF/Cont/Sonc) SEPF
Sulfur Cleanup (Y/N) N	Date Extracted: 12/21/11
Date Analyzed (1): 12/27/11	Date Analyzed (2):
Time Analyzed (1): 0949	Time Analyzed (2):
Instrument ID (1): HPDOS4_2	Instrument ID (2):
GC Column (1): DB5MS ID: 0.25(mr	n) GC Column (2): ID:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

1	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	===============================	=================	=========	==========
01	DLCS1 W122111	111738011	12/27/11	
02	MW-1301R-121	111738003	12/27/11	
03	MW-2301R-121	111738004	12/27/11	
04	MW-2301R-121DUP	111738012	12/27/11	
05	WATER-1	111738006	12/27/11	
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17			·	
18				
19				
20				
21				
22				
23				
24				
25				
-26	1			l

COMMENTS:

page 1 of 1

1D

WTPH ORGANICS ANALYSIS DATA SHEET

1

--+

_		MW-1301R-121
Lab Name: WEYERHAEUSE	R Contract:	
Lab Code: WEYCO SR 1	No.: 11-1738 Meth	od: DIESEL-NW SDG No.: 11-1738-001
Matrix: (soil/water)	LIQUID	Lab Sample ID: 111738003
Sample wt/vol:	500 (g/mL) mL	Lab File ID: 020911DF26
% Moisture:	decanted: (Y/N)	Date Received: 12/21/11
Extraction: (SepF/Con	nt/Sonc) SEPF	Date Extracted:12/21/11
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 12/27/11
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) 1	N pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) mg/L Q

Diesel Range	0.045	U
--------------	-------	---

÷

Weyerhaeuser DB5MS Column

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	5.983			935	19	PVT		
30	6.015			856333	11386			
31	6.020			391	7	VVT		
32	6.288			838	11	PVT		
33	6.386			475	7	VVT		
34	6.484			513	8	VVT		
35	6.512			241	8	VVT		
36	6.546			176	5	VVT		
37	6.609			468	7	VVT		
38	6.702			418	7	VVT		
39	6.898			159	2	PVT		
40	6.985			38	2	VVT		
41	7.070			189	4	PVT		
42	7.316			779	5	PVT		
43	7.397			333	6	PVT		
44	7.529			692	5	VVT		
45	7.587			47	3	PVT		

12/28/2011 13:26

ł

+

020911DF26.d

WTPH- 9

1D WTPH ORGANICS ANALYSIS DATA SHEET

3

MW-2301R-121 Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO SR No.: 11-1738 Method: DIESEL-NW SDG No.: 11-1738-001 Matrix: (soil/water) LIQUID Lab Sample ID: 111738004 500 (g/mL) mL Sample wt/vol: Lab File ID: 020911DF27 % Moisture: decanted: (Y/N) Date Received: 12/21/11 Extraction: (SepF/Cont/Sonc) SEPF Date Extracted:12/21/11 Concentrated Extract Volume: 1000(uL) Date Analyzed: 12/27/11 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 Sulfur Cleanup: (Y/N) N CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) mg/L Q

Motor Oil Range 0.20 U	Diesel Range	0.045 0.20	- _
------------------------	--------------	---------------	----------------

020911DF27.d

WTPH-11

WTPH ORGANICS ANALYSIS DATA SHEET

		WATER-1
Lab Name: WEYERHAEUSE	ER Contract:	
Lab Code: WEYCO SR	No.: 11-1738 Metho	d: DIESEL-NW SDG No.: 11-1738-00
Matrix: (soil/water)	LIQUID	Lab Sample ID: 111738006
Sample wt/vol:	500 (g/mL) mL	Lab File ID: 020911DF29
% Moisture:	decanted: (Y/N)	Date Received: 12/21/11
Extraction: (SepF/Co	ont/Sonc) SEPF	Date Extracted:12/21/11
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 12/27/11
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO.	COMPOUND (CONCENTRATION UNITS: ug/L or ug/Kg) mg/L Q

Diesel Range	0.052 0.20	<u> </u>
		·

Weyerhaeuser DB5MS Column

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	5.810			5947	92	BVT		
30	5.933			5653	55	PVT		
31	6.015			1331212	18139			
32	6.018			5302	112	VVT		
33	6.261			970	19	PVT		
34	6.303			323	12	VVT		
35	6.614			91	4	PVT		
36	6.710			458	9	PVT		
37	6.811			1342	17	VVT		
38	7.041			159	6	PVT		
39	7.072			237	6	PVT		
40	7.207			435	6	VVT		
41	7,262			153	5	VVT		
42	7.383			521	11	PVT		
43	7.535			1213	13	VVT		
44	7.562			322	12	VVT		
45	7.598			496	13	VVT		
46	7.689			996	11	VVT		
47	7.715			188	10	VVT		
48	7.755			330	7	VVT		
49	7.798			81	2	VVT		

12/28/2011 13:26

÷

020911DF29.d

WTPH-14

WTPH ORGANICS ANALYSIS DATA SHEET

SOIL-1 Lab Name: WEYERHAEUSER Contract: SR No.: 11-1738 Method: DIESEL-NS Lab Code: WEYCO SDG No.: 11-1738-001 Matrix: (soil/water) SOLID Lab Sample ID: 111738007 11.5 (g/mL) g Sample wt/vol: Lab File ID: 020911DF67 % Moisture: 6 decanted: (Y/N) N Date Received: 12/21/11 Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 12/22/11 Concentrated Extract Volume: 10000(ul) Date Analyzed: 12/28/11 Injection Volume: 1.0(uL) Dilution Factor: 1.0 Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: (ug/L or ug/Kg) mg/Kg CAS NO. COMPOUND Q

Diesel Range	23 760	υ
5		

FORM I PEST

12/28/2011 13:26

020911DF67.d

WTPH-16

1D

WTPH ORGANICS ANALYSIS DATA SHEET

SOIL-2 Contract: Lab Name: WEYERHAEUSER Lab Code: WEYCO SR No.: 11-1738 Method: DIESEL-NS SDG No.: 11-1738-001 Lab Sample ID: 111738008 Matrix: (soil/water) SOLID Lab File ID: 020911DF69 Sample wt/vol: 12.4 (g/mL) g % Moisture: 13 decanted: (Y/N) N Date Received: 12/21/11 Date Extracted:12/22/11 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 12/28/11 Concentrated Extract Volume: 10000(ul) Dilution Factor: 1.0 Injection Volume: 1.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: (ug/L or ug/Kg) mg/Kg Q CAS NO. COMPOUND - ı

Diesel Range	23	U
Motor Oil Range	91	U

Weyerhaeuser DB5MS Column

RT Exp.RT Diff	Area	Peak Heigh	t Code	ug injected	Component Name
7.367	12327	114	HHS		
7.535	19392	113	HHS		
7.631	12113	105	HHS		
7.778	2154	39	HBS		
	RT Exp.RT Diff 7.367 7.535 7.631 7.778	RT Exp.RT Diff Area 7.367 12327 7.535 19392 7.631 12113 7.778 2154	RT Exp.RT Diff Area Peak Heigh 7.367 12327 114 7.535 19392 113 7.631 12113 105 7.778 2154 39	RT Exp.RT Diff Area Peak Height Code 7.367 12327 114 HHS 7.535 19392 113 HHS 7.631 12113 105 HHS 7.778 2154 39 HBS	RT Exp.RT Diff Area Peak Height Code ug injected 7.367 12327 114 HHS 7.535 19392 113 HHS 7.631 12113 105 HHS 7.778 2154 39 HBS

12/28/2011 13:26

ł

020911DF69.d

WTPH-19
1D WTPH ORGANICS ANALYSIS DATA SHEET

3

Lab Name: WEYERHAEUSE	R Contract:	SOIL-3
Lab Code: WEYCO SR 1	No.: 11-1738 Method: D	IESEL-NS SDG No.: 11-1738-001
Matrix: (soil/water)	SOLID	Lab Sample ID: 111738009
Sample wt/vol:	11.2 (g/mL) g	Lab File ID: 020911DF70
% Moisture: 30	decanted: (Y/N) N	Date Received: 12/21/11
Extraction: (SepF/Co	nt/Sonc) SEPF	Date Extracted:12/22/11
Concentrated Extract	Volume: 10000(ul)	Date Analyzed: 12/28/11
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO.	CONCEN COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) mg/Kg Q

Diesel Range	72 1000	

FORM I PEST

12/28/2011 13:26

020911DF70.d

		MW-2301R	-121DUP
Lab Name: WEYERHAEUSER	Contract:		
Lab Code: WEYCO SR No	o.: 11-1738 Metho	d: DIESEL-NW SDG No.: 11-	1738-001
Matrix: (soil/water) L	IQUID	Lab Sample ID: 1117380	12
Sample wt/vol:	460 (g/mL) mL	Lab File ID: 020911D	F28
% Moisture: de	ecanted: (Y/N)	Date Received: 12/21/1	.1
Extraction: (SepF/Cont	t/Sonc) SEPF	Date Extracted:12/21/1	.1
Concentrated Extract Vo	olume: 1000(uL)	Date Analyzed: 12/27/1	.1
Injection Volume:	1.0(uL)	Dilution Factor: 1.0	
GPC Cleanup: (Y/N) N	рН: 7.0	Sulfur Cleanup: (Y/N)	Ν
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) mg/L	Q

Diesel Range	0.043	บ บ
	/ /	

12/28/2011 13:26

020911DF28.d

SOIL-1 [DUP]

Lab Name: WEYERHAEUSER Contract: SDG No.: 11-1738-001 Lab Code: WEYCO SR No.: 11-1738 Method: DIESEL-NS Lab Sample ID: 111738015 Matrix: (soil/water) SOLID Lab File ID: 020911DF68 Sample wt/vol: 10.7 (g/mL) g % Moisture: 6 decanted: (Y/N) N Date Received: 12/21/11 Date Extracted:12/22/11 Extraction: (SepF/Cont/Sonc) SEPF Date Analyzed: 12/28/11 Concentrated Extract Volume: 10000(ul) Dilution Factor: 1.0 Injection Volume: 1.0(uL) Sulfur Cleanup: (Y/N) N GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: (ug/L or ug/Kg) mg/Kg Q COMPOUND CAS NO.

Diesel Range	25 890	υ
Motor Oil Range	890	

12/28/2011 13:26

020911DF68.d

FORM 6 WTPH INITIAL CALIBRATION DATA

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 Instrument ID: HPDOS4_2 Calibration Date(s): 02/07/11 02/07/11 Column: DB5MS ID: 0.25 (mm) Calibration Time(s): 1116 1515 LAB FILE ID: RF200: 020711D011 RF400: 020711D012 RF800: 020711D013 RF0: 020711D014 RF0: 020711D015

COMPOUND	RF200	RF400	RF800	RF0	RF0 ========
Diesel Range Motor Oil Range	41040600 48436480	39615100 46644150	42067950 46422860	41318150 45786968	41307195 47160647
o-Terphenyl	=====================================	======= 70653922	======== 69661951	71408113	70987879

FORM VI WTPH

FORM 6 WTPH INITIAL CALIBRATION DATA

	Lab Name: WEYER	HAEUSER	Contract:			
	Lab Code: WEYCO	Case No.:	SAS No.:	1613	SDG No.:	11-1738-001
	Instrument ID:	HPDOS4_2	Calibration	Date(s):	02/07/11	02/07/11
	Column: DB5MS	ID: 0.25 (mm)	Calibration	Time(s):	1116	1515
Ŀ	AB FILE ID:	RF0: 020711D016	RF0: 020711D0	17		

COMPOUND	RF0	RF0
Diesel Range Motor Oil Range	46679268	43205776 45986136
o-Terphenyl	======== 70757849	======== 72418100

FORM VI WTPH

FORM 6 WTPH INITIAL CALIBRATION DATA

Lab Name:	WEYERHAEU	JSER		Contract:			
Lab Code:	WEYCO	Case No.	:	SAS No.:	1613	SDG No.:	11-1738-001
Instrument	ID: HPD	DS4_2		Calibration	Date(s):	02/07/11	02/07/11
Column: DB	B5MS	ID: 0.25	(mm)	Calibration	Time(s):	1116	1515

		COEFF.	%RSD		
COMPOUND	CURVE	A0	Al	OR R^2	
	=====	=================	=========	=======================================	
Diesel Range	LINR	0.00279049	2.311e-08	1.000	<-
Motor Oil Range	LINR	-0.0050919	2.1719e-08	1.000	
	=====	===============	==========	==========	1
o-Terphenyl	LINR	0.00020350	1.384e-08	1.000	

FORM VI WTPH

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 Instrument ID: HPDOS4_2 Calibration Date: 12/27/11 Time: 0933 Lab File ID: 020911DF23 Init. Calib. Date(s): 02/07/11 02/07/11 Init. Calib. Times: 1116 1246

COMPOUND	SAMPLE AMOUNT	CALO AMOUNT	CURVE	%D	MAX %d
======================================	0.105	====== 0.100	===== LINR	====== 5.0	==== 20.0
	0.011	0.010	===== LINR	10.0	20.0
				·	l <u> </u>

FORM VII SV-1

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 Instrument ID: HPDOS4_2 Calibration Date: 12/27/11 Time: 1134 Lab File ID: 020911DF31 Init. Calib. Date(s): 02/07/11 02/07/11 Init. Calib. Times: 1116 1246

	SAMPLE	CAL0			MAX
COMPOUND	AMOUNT	AMOUNT	CURVE	%D	%d
=======================================	======	=====	=====	=====	====
Diesel Range	0.106	0.100	LINR	6.0	20.0
	======	=====	====	======	====
o-terphenyl	0.011	0.010	LINR	10.0	20.0
_					

FORM VII SV-1

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 Instrument ID: HPDOS4_2 Calibration Date: 12/28/11 Time: 1027 Lab File ID: 020911DF64 Init. Calib. Date(s): 02/07/11 02/07/11 Init. Calib. Times: 1116 1246

	SAMPLE	CAL0		_	MAX
COMPOUND	AMOUNT	AMOUNT	CURVE	%D	%d
	=====	=====	=====	======	====
Diesel Range	0.113	0.100	LINR	13.0	20.0
	======	======	=====	======	====
o-terphenyl	0.012	0.010	LINR	20.0	20.0

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 Instrument ID: HPDOS4_2 Calibration Date: 12/28/11 Time: 1313 Lab File ID: 020911DF73 Init. Calib. Date(s): 02/07/11 02/07/11 Init. Calib. Times: 1116 1246

COMPOUND	SAMPLE AMOUNT	CALO AMOUNT	CURVE	۶D	MAX %d
Diesel Range	0.111	====== 0.100	===== LINR	=======================================	==== 20.0
o-terphenyl	0.011	====== 0.010	===== LINR	10.0	==== 20.0

FORM VII SV-1

8D

PESTICIDE ANALYTICAL SEQUENCE

Contract: Lab Name: WEYERHAEUSER SDG No.: 11-1738-001 Lab Code: WEYCO Case No.: SAS No.: 1613 ID: 0.25 (mm) Init. Calib. Date(s): 02/07/11 02/07/11 GC Column: DB5MS Instrument ID: HPDOS4 2

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	GATE RT FROM INIT	TAL CALIBRAT	TON			
	S1 : 3.32						
	I	LAB	DATE	TIMÉ	S1		
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT	#
~ 1			=======================================	1116	========		===
01	DIESEL LEVELI	DIESELLI	02/07/11	1121	2.34		
02			02/07/11	1146	3.31		
03				1201	3.52		
04		DIEGETIE	02/07/11	1216	3 32		
05	DIESEL LEVELS	DIESELLS		1210	3 32		
00				1231	3.32		
07	MOTEDOTI IEVET 1	OTLI	02/07/11	1316	5.55		
00	MOTEROIL LEVEL2	OTLL2	02/07/11	1331			
10	MOTEROIL LEVELS	OTLIS	02/07/11	1346			
11	MOTEROIL LEVELA	OTLL4	02/07/11	1430			
12	MOTEROIL LEVELS	OTLLS	02/07/11	1445			
12	MOTEROIL LEVEL6	OTLLG	02/07/11	1500			
14	OTLL7	OILL7	02/07/11	1515			
15	ТВІ К68	IBLK68	12/27/11	0918	3.33		
16	DIESELCC68	DIESELCC68	12/27/11	0933	3.33		
17	DBLK1 W122111	111738010	12/27/11	0949	3.33		
18	DLCS1 W122111	111738011	12/27/11	1004	3.34		
19	MW-1301R-121	111738003	12/27/11	1019	3.34		
20	MW-2301R-121	111738004	12/27/11	1034	3.34		
21	MW-2301R-121DUP	111738012	12/27/11	1049	3.34		
22	WATER-1	111738006	12/27/11	1104	3.34		
23	IBLK69	IBLK69	12/27/11	1119	3.34		
24	DIESELCC69	DIESELCC69	12/27/11	1134	3.33		
25	IBLK73	IBLK73	12/28/11	1011	3.34		
26	DIESELCC73	DIESELCC73	12/28/11	1027	3.33		
27	DBLK1_S122211	111738013	12/28/11	1057	3.34		
28	DLCS1_S122211	111738014	12/28/11	1112	3.34		
29	SOIL-1	111738007	12/28/11	1127	3.34		
30	SOIL-1 [DUP]	111738015			3.34	<u> </u>	
31	SOIL-2	111738008		1010	3.34		
32	SOIL-3	111738009	12/28/11		3.34	<u> </u>	

QC LIMITS

S1 = o-terphenyl

(+/- 0.10 MINUTES)

Column used to flag retention time values with an asterisk. * Values outside of QC limits.

page 1 of 2

I

FORM VIII PEST

8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name: WEYERHAEUSER Contract: Lab Code: WEYCO Case No.: SAS No.: 1613 SDG No.: 11-1738-001 GC Column: DB5MS ID: 0.25 (mm) Init. Calib. Date(s): 02/07/11 02/07/11 Instrument ID: HPDOS4_2

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

MEAN SURROGATE RT FROM INITIAL CALIBRATION S1 : 3.32 TIME S1 LAB DATE # RT# RT ANALYZED ANALYZED SAMPLE ID SAMPLE NO. ======= ======== =========+====== _____ ========== 12/28/11 1258 3.35 IBLK74 IBLK74 01 12/28/11 1313 3.33 DIESELCC74 02 DIESELCC74 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

QC LIMITS (+/- 0.10 MINUTES)

S1 = o-terphenyl

Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

page 2 of 2

FORM VIII PEST

	RT	Exp.RT	Diff	Area	Peak Height	Code	Ng injected	Component Name
21	3.741			114	152	HHC		
22	3.888			264	241	HHC		
23	3.945	3.946	0.001	70103	123756	HHC	23.31	C24
CALC:	[(1/3007.2) * 70100] = 23.3	31 ug/mL				
24	4,115			215	210	HHC		
25	4.133			413	366	HHC		
26	4.165	4.167	0.002	70594	118192	HHC	23.08	C26
CALC:	[(1/3058.8)* 70590] = 23.0	08 ug/mL				
27	4.370	4.372	0.002	71257	117256	HVC	22.92	C28
CALC:	[(1/3109.3)* 71260	= 22.3	92 ug/mL				
28	4.465			222	277	VHC		
29	4.562	4.562	0.000	72865	121745	HVC	22.75	C30
CALC:	[(1/3202.7)* 72870)] = 22.	75 ug/mL				
30	4.651			230	245	vv		
31	4.742	4.743	0.001	72181	115548	HHC	22.93	C32
CALC:	[(1/3147.7)* 72180)] = 22.	93 ug/mL				
32	4.776			111	127	HHC		
33	4.825			300	331	HVC		
34	4.884			132	181	VHC		
35	4.912	4.915	0.003	74320	115466	HHC	23.20	C34
CALC:	[(1/3203.9) * 74320)] = 23.	20 ug/mL				
36	4.993			473	551	HHC		
37	5.093	5.089	0.003	70836	80072	HHC	23.46	C36
CALC:	[(1/3018.9)* 70840	= 23.	46 ug/mL				
38	5.143			156	141	HHC		
39	5.197			101	96	HHC		
40	5.232			353	342	HHC		
41	5.256			151	124	HHC		
42	5.330	5.328	0.002	65865	57446	HHC	25.28	C38
CALC:	[(1/2605.0)* 65860	0] = 25.	28 ug/mL				
43	5.406			167	110	HVC		
44	5.474			137	87	vv		
45	5.654	5.654	0.000	58954	32895	VHC	27.56	C40
CALC:	[(1/2139.0	0) * 58 <u>95</u>	0] = 27.	56 ug/mL				
46	5.742			1235	624	HVC		
47	5.842			103	53	vv		

12/28/2011 13:34

020711D002.d

Exp.RT Diff Area

RT

Peak Height Code ug injected Component Name

12/28/2011 13:26

020711D003.d

1

+

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	5.912			43204	184	vv		
30	6.139			17316	163	vv		
31	6.243			32549	176	vv		
32	6.411			27178	170	vv		
33	6.642			61151	177	vv		
34	6.843			22718	173	vv		
35	7.141			81282	183	vv		
36	7.310			19980	184	vv		
37	7.514			46201	184	vv		
38	7.623			27158	185	vv		
39	7.763			36935	191	VB		

12/28/2011 13:26

020711D004.d

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	5.916			29978	112	VVT		
30	6.042			10764	78	VVT		
31	6.093			3998	76	VVT		
32	6.253			13857	73	VVT		
33	6.531			17392	59	VVT		
34	6.652			7919	58	VVT		
35	6.831			10574	44	VVT		
36	6.889			4380	38	VVT		
37	7.391			13384	23	vvr		
38	7.435			2338	23	VVT		
39	7.607			1748	12	VVT		
40	7.794			1617	7	VVT		

12/28/2011 13:26

020711D005.d

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component	Name
29	5.513			2801	72	VVT			
30	5,650			18571	153	VVT			
31	5.768			7760	68	VVT			
32	5,915			14344	97	VVT			
33	6.012			6933	56	VVT			
34	6.095			4659	50	VVT			
35	6.239			8125	56	VVT			
36	6.654			14043	33	VVT			
37	6.758			2522	21	VVT			
38	6.862			1759	17	VVT			
39	7.008			976	6	VVT			
40	7.034			29	2	VVT			
41	7.764			362	5	BV			
42	7.792			178	4	VB			

12/28/2011 13:26

020711D006.d

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Nam	ıe
29	6.069			3565	58	VVT			
30	6.150			5002	54	VVT			
31	6.250			5219	54	VVT			
32	6.316			5188	44	VVT			
33	6.492			6204	37	VVT			
34	6.649			6968	39	VVT			
35	6.691			1431	36	VVT			
36	6.719			1299	35	VVT			
37	6.912			6753	27	VVT			
38	6.952			1022	25	VVT			
39	7.221			6536	16	VVT			
40	7.513			3050	9	VVT			
41	7.598			631	10	VVT			

12/28/2011 13:26

:

• •

020711D007.d

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	5.654			25173	145	PVT		
30	5.732			13227	127	VVT		
31	5.789			6593	120	VVT		
32	5.917			16649	110	VVT		
33	6.062			16811	92	VVT		
34	6.110			4523	85	VVT		
35	6.169			10375	76	VVT		
36	6.286			3447	61	VVT		
37	6.316			4381	57	VVT		
38	6.452			5793	45	VVT		
39	6.478			1083	43	VVT		
40	6.670			9841	32	VVT		
41	6.898			3720	12	VVT		
42	6.956			148	7	VVT		
43	7.529			296	3	вV		

12/28/2011 13:26

020711D008.d

ł

:

-

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	6.008			3663	27	VVT		
30	6.073			980	25	VVT		
31	6.136			2467	24	VVT		
32	6.242			2553	27	VVT		
33	6.296			977	16	VVT		
34	6.331			635	13	VVT		
35	6.657			3911	14	VVT		
36	6.743			880	9	VVT		
37	6.809			398	8	VVT		
38	7.069			1479	6	VVT		
39	7.177			763	7	VVT		
40	7.247			257	5	VVT		
41	7.511			395	5	PVT		

12/28/2011 13:26

020711D009.d

12/28/2011 13:26

020711D011.d

12/28/2011 13:26

020711D012.d

020711D013.d

12/28/2011 13:26

020711D014.d

12/28/2011 13:26

020711D015.d

020711D016.d

020711D017.d

1

	RT	Exp.RT	Diff	Area	Peak Heig	ght	Code	ug i	njected	Componen	t Name
29	6.709			2482	12		VVT				
30	6.801			358	8		VVT				
31	7.071			1124	8		VVT				
32	7.393			2069	9		VVT				
33	7.465			194	4		PVT				
34	7.504			173	4		VVT				

12/28/2011 13:26

020911DF23.d

i

-1

	RT	Exp.RT	Diff	Area	Peak Height	Code	ug injected	Component Name
29	6.091			15598	92	VVT		
30	6.321			21383	88	VVT		
31	6.385			4887	78	VVT		
32	6.466			11018	73	VVT		
33	6.588			9114	64	vvr		
34	6.745			7652	60	VVT		
35	6.768			2123	57	VVT		
36	6.813			4536	51	VVT		
37	7.038			9406	41	VVT		
38	7.263			9594	35	VVT		
39	7.296			2128	33	VVT		
40	7.428			3483	21	VVT		
41	7.572			1770	14	VVT		
42	7.662			1284	10	VVT		

12/28/2011 13:26

020911DF31.d

	RT	Exp.RT	Diff	Area	Peak Heigh	t Code	ug	injected	Compone	ent Name
17	2 075	3 075	0 000	94680	2170	VVT		0.1000	Diesel	Range
	[/4691000	/ 432710	0.000	00279051 =	0.1112 mg/mL	%D=	10.1			
10	2 075	3 075	0 000	20876	621	PVT		0.1000	Diesel	Range
	I (4691000	/ 432710	0.000	.00279051 =	0.1112 mg/mL	%D=	10.1			
10	3 075	3 075	0 000	12383	533	VVT		0.1000	Diesel	Range
CNLC	[(4691000	/ 432710	00) +0	.00279051 =	0.1112 mg/mL	*D=	10.1			
20	3 075	3.075	0.000	48467	1289	VVT		0.1000	Diesel	Range
CALCO	((4691000	/ 432710	00) +0	.0027905] =	0.1112 mg/mL	*D=	10.1			
21	3 075	3.075	0.000	10639	374	VVT		0.1000	Diesel	Range
CALC	[(4691000	/ 432710	00) +0	.0027905] =	0.1112 mg/mL	%D≖	10.1			
22	3.075	3.075	0.000	27727	611	PVT		0.1000	Diesel	Range
CALC:	[(4691000	/ 432710	000) +0	.0027905] =	0.1112 mg/mL	%D=	10.1			
23	4.073			25829	296	VVT				
24	4.138			5587	104	PVT				
25	4.183			4165	121	VVT				
26	4.289			4383	68	PVT				
27	4.392			444	20	PVT				
28	4.426			507	28	VVT				
29	4.555			410	25	PVT				
30	4.678			587	21	PVT				
31	5.412			53159	151	BV				
32	5.637			3473	34	vv				
33	5.713			2962	27	vv				
34	5.890			576	10	vv				
35	6.124			9426	38	vv				
36	6.463			13988	51	vv				
37	6.833			15279	49	vv				
38	7.053			1238	21	vv				
39	7.208			3142	27	vv				
40	7.238			1030	23	vv				
41	7.279			3510	28	vv				
42	7.501			168	6	vv				
43	7.710			1702	12	PV				
44	7.752			1000	12	VB				

12/28/2011 13:26

020911DF73.d

EPA SAMPLE NO.

1D WTPH ORGANICS ANALYSIS DATA SHEET

					DBLK1	S122211	
Lab Name: WEYERHAEUSI	ER Con	stract:					_
Lab Code: WEYCO SR	No.:	Metho	d:	SDG N	o.: 02	0911df_ra	.cernw
Matrix: (soil/water)	SOLID		Lab Sa	mple ID:	11173	8013	
Sample wt/vol:	10.0 (g/	'mL) g	Lab Fi	le ID:	02091	1DF65	
% Moisture: 0	decanted:	(Y/N) N	Date R	Received:			
Extraction: (SepF/Co	ont/Sonc)	SEPF	Date E	Extracted	1:12/22	2/11	
Concentrated Extract	Volume:	10000(ul)	Date A	Analyzed:	12/28	3/11	
Injection Volume:	1.0(uL)		Diluti	ion Facto	or: 1.0)	
GPC Cleanup: (Y/N)	N	рН: 7.0	Sulfur	c Cleanup): (Y/1	1) N	
CAS NO.	COMPOUI	C ND (ONCENTRATIO	ON UNITS: /Kg) mg/K	ď	Q	

------Diesel Range 25 U -----Motor Oil Range 99 U

	RT Exp.RT Di	iff Area	Peak Height	Code	ug injected	Component Name
31	6.420	7836	63	VVT		
32	6.474	2017	56	VVT		
33	6.508	1142	54	VVT		
34	6.562	3504	51	VVT		
35	6.602	2441	48	VVT		
36	6.670	2079	40	VVT		
37	6.705	1503	39	VVT		
38	6.747	1698	34	VVT		
39	6.807	1952	34	VVT		
40	6.867	1669	32	VVT		
41	6.900	4232	29	VVT		
42	7.078	421	22	VVT		
43	7.117	764	21	VVT		
44	7.197	1380	22	VVT		
45	7.275	548	14	VVT		
46	7.317	525	15	VVT		
47	7.422	522	11	VVT		
48	7.537	41	7	VVT		
49	7.621	297	8	VVT		
50	7.763	373	3	VVT		

12/28/2011 13:26

020911DF65.d

1D

WTPH ORGANICS ANALYSIS DATA SHEET

		DBLK1_W122111	
Lab Name: WEYERHAEUSH	ER Contract:		_
Lab Code: WEYCO SR	No.: Metho	od: SDG No.: 020911df_ra	.cernw
Matrix: (soil/water)	LIQUID	Lab Sample ID: 111738010	
Sample wt/vol:	500 (g/mL) mL	Lab File ID: 020911DF24	
% Moisture:	decanted: (Y/N)	Date Received:	
Extraction: (SepF/Co	ont/Sonc) SEPF	Date Extracted:12/21/11	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 12/27/11	
Injection Volume:	1.0(uL)	Dilution Factor: 1.0	
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanup: (Y/N) N	
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) mg/L Q	

Diesel Range	0.040	บ
Motor Oil Range	0.20	บ
		1

4

020911DF24.d

-1

1D

WTPH ORGANICS ANALYSIS DATA SHEET

			DLCS1_S122211
Lab Name: WEYERHAEUSE	R Contract:		
Lab Code: WEYCO SR	No.: Meth	Nod: SDG N	Io.: 020911df_racernw
Matrix: (soil/water)	SOLID	Lab Sample ID:	111738014
Sample wt/vol:	10.0 (g/mL) g	Lab File ID:	020911DF66
% Moisture: 0	decanted: (Y/N) N	Date Received:	
Extraction: (SepF/Co	nt/Sonc) SEPF	Date Extracted	1:12/22/11
Concentrated Extract	Volume: 10000(ul)	Date Analyzed:	12/28/11
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanur	D: (Y/N) N
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) mg/H	: Kg Q

Diesel Range	180 6.8	J

020911DF66.d

WTPH ORGANICS ANALYSIS DATA SHEET

					DLCS1	W122111	
Lab Name: WEYERHAEUSI	ER Con	tract:					
Lab Code: WEYCO SR	No.:	Metho	d:	SDG N	ío.: 02	0911df_ra	cernw
Matrix: (soil/water)	LIQUID		Lab Sa	mple ID:	11173	8011	
Sample wt/vol:	500 (g/	'mL) mL	Lab Fi	le ID:	02091	1DF25	
% Moisture:	decanted:	(Y/N)	Date R	Received:			
Extraction: (SepF/Co	ont/Sonc)	SEPF	Date E	xtracted	l:12/21	/11	
Concentrated Extract	Volume:	1000 (uL)	Date A	analyzed:	12/27	/11	
Injection Volume:	1.0(uL)		Diluti	ion Facto	or: 1.0)	
GPC Cleanup: (Y/N)	N	рН: 7.0	Sulfur	Cleanur	b: (Y/N	1) N	
CAS NO.	COMPOUL	۲D (ONCENTRATIC ug/L or ug/	ON UNITS: /Kg) mg/I		Q1	
					1	1	

Diesel Range	0.36 0.0060	J
		l

020911DF25.d

12/28/2011 13:26

020911DF72.d

1D

WTPH ORGANICS ANALYSIS DATA SHEET

		IBLK73
Lab Name: WEYERHAEUS	ER Contract:	
Lab Code: WEYCO SR	No.: Method:	SDG No.: 020911df_racernw
Matrix: (soil/water)	LIQUID	Lab Sample ID: IBLK73
Sample wt/vol:	500 (g/mL) mL	Lab File ID: 020911DF63
% Moisture:	decanted: (Y/N)	Date Received:
Extraction: (SepF/C	ont/Sonc)	Date Extracted:12/21/11
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 12/28/11
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO.	CONCE COMPOUND (ug/I	NTRATION UNITS: or ug/Kg) mg/L Q

Diesel Range	0.040 0.20	บ บ
		1 1

020911DF63.d

1D WTPH ORGANICS ANALYSIS DATA SHEET

		IBLK69
Lab Name: WEYERHAEUS	ER Contract:	
Lab Code: WEYCO SR	No.: Method	d: SDG No.: 020911df_racernw
Matrix: (soil/water)	LIQUID	Lab Sample ID: IBLK69
Sample wt/vol:	500 (g/mL) mL	Lab File ID: 020911DF30
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Received:
Extraction: (SepF/C	ont/Sonc)	Date Extracted:12/21/11
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 12/27/11
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH: 7.0	Sulfur Cleanup: (Y/N) N
CAS NO.	COMPOUND (ONCENTRATION UNITS: ug/L or ug/Kg) mg/L Q
	Diesel Range	0.040 U 0.20 U

12/28/2011 13:26

020911DF30.d

		IBLK68	
Lab Name: WEYERHAEUSER	Contract:		
Lab Code: WEYCO SR No.:	Method:	SDG No.: 020911df_racern	w.
Matrix: (soil/water) SOLI	D	Lab Sample ID: IBLK68	
Sample wt/vol: 10.	0 (g/mL) g	Lab File ID: 020911DF22	
% Moisture: 0 deca	nted: (Y/N) N	Date Received:	
Extraction: (SepF/Cont/S	onc)	Date Extracted:11/15/11	
Concentrated Extract Volu	me: 10000(ul)	Date Analyzed: 12/27/11	
Injection Volume: 1.0	(uL)	Dilution Factor: 1.0	
GPC Cleanup: (Y/N) N	pH: 7.0	Sulfur Cleanup: (Y/N) N	
CAS NO. CC	CONCE MPOUND (ug/L	NTRATION UNITS: or ug/Kg) mg/Kg Q	

Diesel Range	25 99	ប ប

12/28/2011 13:26

020911DF22.d

PERCENT MOISTURE NOTEBOOK

Weyerhaeuser Company

	r		- 1					 	 	 	 	 		·		
															/	
															28-1	
	Н					 				 		· · · · · ·			12	-
11	ш					 			 		 				Date	•
DATE 12-12	% MOISTUR	5.72	12.6	30.4												
	KY SAMP	74	- 7	4		 										
	PAN+DF	272	13.5	9,5												
# <u>PI-1738</u>	PAN+SAMPLE	28,777	15.158	<u>ויי א</u> ל)											
R	н Н		Q	с т				 		 						
	PAN W	1	2.6	2.5									111	[]]]	6	2
	PAN #	2 ,599+													11/	
	SAMPLE#	72807	ဇန	39	_										Witness	

NAME

FUELS NOTEBOOK

WEYERHAEUSER ANALYTICAL GC RUN LOG for ROVER(hpdos4_2)

1

-4

Vial	file name	Lab ID	Client ID	Acquisition Date Fraction
01 01_2 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17	020711D001 020711D001 020711D002 020711D003 020711D004 020711D005 020711D005 020711D006 020711D007 020711D007 020711D009 020711D010 020711D011 020711D012 020711D013 020711D014 020711D015 020711D016	IBLKXX 2 IBLKXX RT;50_70118 DIESELL1;50_L4 DIESELL2;100_L4 DIESELL3;100_L5 DIESELL4;100_L7 DIESELL5;200_L7 DIESELL6;500_L7 DIESELL6;500_L7 DIESELL7;110202 IBLKXX OILL1;20_L7 OILL2;40_L7 OILL2;40_L7 OILL3;100_L7 OILL3;100_L7 OILL4;10_100103 OILL5;15_100103 OILL5;50_100103	IBLKXX IBLKXX RT DIESEL_level1 DIESEL_level2 DIESEL_level3 DIESEL_level3 DIESEL_level4 DIESEL_level5 DIESEL_level6 DIESEL7 IBLKXX MoterOi1_leve MoterOi1_leve MoterOi1_leve MoterOi1_leve MoterOi1_leve MoterOi1_leve	07-FEB-2011 10:30 WTPH 07-FEB-2011 10:46 WTPH 07-FEB-2011 11:01 WTPH 07-FEB-2011 11:16 WTPH 07-FEB-2011 11:31 WTPH 07-FEB-2011 11:46 WTPH 07-FEB-2011 12:01 WTPH 07-FEB-2011 12:16 WTPH 07-FEB-2011 12:31 WTPH 07-FEB-2011 12:46 WTPH 07-FEB-2011 13:01 WTPH 107-FEB-2011 13:16 WTPH 12 07-FEB-2011 13:16 WTPH 13 07-FEB-2011 13:31 WTPH 14 07-FEB-2011 13:46 WTPH 15 07-FEB-2011 14:30 WTPH 16 07-FEB-2011 15:00 WTPH 07-FEB-2011 15:15 WTPH
18	020711D018	IBLKXX -	IBLKXX	07-FEB-2011 15:31 WTPH

Witness: 22 Date: 02/22/2011 Page 137 of 143

WEYERHAEUSER ANALYTICAL GC RUN LOG for ROVER(hpdos4_2)

Vial	file name	Lab ID	Clie	ent ID	Acquisition Date Fraction
 01	020911DF01	IBLK64		IBLK64	15-NOV-2011 15:07 WTPH
02	020911DF02	DIESELCC64:L4		DIESELCC64	15-NOV-2011 14:21 WTPH
03	0209110F03	DBLK1 S111511		DBLK1 S111511	15-NOV-2011 14:54 WTPH
04	020911DF04	DLCS1_S111511		DLCS1_S111511	15-NOV-2011 15:09 WTPH
05	020911DF05	11156 <u>1</u> 001DI-10		Diesel 7DL	15-NOV-2011 15:24 WTPH
05	020911DF06	111561002DL10		Diesel 8DL	15-NOV-2011 15:39 WTPH
07	020911DF07	111561002DDL10		Diesel 8DUPDL	15-NOV-2011 15:54 WTPH
08	020911DF08	111561002		Diesel 8	15-NOV-2011 16:09 WTPH
09	020911DF09	111561002DUP		Diesel 8DUP	15-NOV-2011 16:24 WTPH
10	020911DF10	111561001		Diesel 7	15-NOV-2011 16:38 WTPH
11	020911DF11	IBLK65		IBLK65	15-NOV-2011 16:53 WTPH
11 2	020911DF11	2 IBLK65		IBLK65	15-NOV-2011 17:08 WTPH
12	020911DF12	DIESELCC65;L4		DIESELCC65	15-NOV-2011 17:23 WTPH
22	020911DF22	IBLK68		IBLK68	27-DEC-2011 09:18 WTPH
23	020911DF23	DIESELCC68;L4		DIESELCC68	27-DEC-2011 09:33 WTPH
24	020911DF24	111738010 •		DBLK1_W122111	27-DEC-2011 09:49 WTPH
25	020911DF25	111738011		DLCS1_W122111	27-DEC-2011 10:04 WTPH
26	020911DF26	111738003	1./	MW-1301R-121	27-DEC-2011 10:19 WTPH
27	020911DF27	111738004		MW-2301R-121	27-DEC-2011 10:34 WTPH
28	020911DF28	111738012	\backslash	MW-2301R-121D	JP 27-DEC-2011 10:49 WTPH
29	020911DF29	111738006)	WATER-1	27-DEC-2011 11:04 WTPH
30	020911DF30	IBLK69	-	IBLK69	27-DEC-2011 11:19 WIPH
31	020911DF31	DIESELCC69;L4		DIESELCC69	27-DEC-2011 11:34 WIPH
33	020911DF33	DBLK1_W122111		DBLK1_W122111	27-DEC-2011 12:42 WIPH
34	020911DF34	DLCS1_W122111		DLCSI WIZZIII	27-DEC-2011 12:57 WIPH
35	020911DF35	111738003		MW-1301R-121	27-DEC-2011 13:12 WIPH
36	020911DF36	111738004		MW-2301R-121	27-DEC-2011 13:27 WIPH
37	020911DF37	111738004DUP			27-DEC-2011 13.42 WIFII 27-DEC-2011 13.57 WTPH
38	020911DF38	111720002		WAIER-1 MUI 12010 121	27-DEC-2011 13.37 WITH 27-DEC-2011 14.13 WTPH
39	020911DF39	111720004		MW = 1301R = 121 MW = 2201R = 121	27 DEC 2011 11.13 WTPH
40	020911DF40			MW = 2301R = 121Di	1D = 27 - DEC - 2011 - 14.43 WTPH
41	020911DF41	111730004D0P			27 DEC 2011 11.13 WTPH
42	0209110F42	111730000 M122111		DLCS1 W122111	27-DEC-2011 15:13 WTPH
43	0209110F43			TBLK70	27-DEC-2011 15:28 WTPH
44	0209110F44			DIESELCC70	27-DEC-2011 15:43 WTPH
45	020911DF45	DILGLECTO, LA		DBLK1 S122211	27-DEC-2011 15:58 WTPH
40	020911DF40	DLCS1 S122211		DLCS1 S122211	27-DEC-2011 16:13 WTPH
48	020911DF48	111738007		SOIL-1	27-DEC-2011 16:28 WTPH
49	020911DF49	111738007DUP		SOIL-1DUP	27-DEC-2011 16:43 WTPH
50	020911DF50	111738008		SOIL-2	27-DEC-2011 16:58 WTPH
51	020911DF51	111738009		SOIL-3	27-DEC-2011 17:13 WTPH
52	020911DF52	IBLK71		IBLK71	27-DEC-2011 17:28 WTPH
53	020911DF53	DIESELCC71;L4		DIESELCC71	27-DEC-2011 17:43 WTPH
54	020911DF54	IBLK72		IBLK72	28-DEC-2011 07:39 WTPH
55	020911DF55	DIESELCC72;L4		DIESELCC72	28-DEC-2011 07:54 WTPH
56	020911DF56	DBLK1 W122111		DBLK1_W122111	28-DEC-2011 08:09 WTPH
57	020911DF57	DLCS1_W122111		DLCS1_W122111	28-DEC-2011 08:24 WTPH
58	020911DF58	11173 <mark>8</mark> 003		MW-1301R-121	28-DEC-2011 08:39 WTPH
59	020911DF59	111738004		MW-2301R-121	28-DEC-2011 09:10 WTPH
60	020911DF60	111738004DUP		MW-2301R-121D	UP 28-DEC-2011 09:25 WTPH
61	020911DF61	111738006		WATER-1	28-DEC-2011 09:40 WTPH
63	020911DF63	IBLK73		1BLK73	28-DEC-2011 10:11 WIPH
64	020911DF64	DIESELCC73;L4		DIESELCC73	28-DEC-ZUII IU:Z/ WIPH
65	020911DF65			DRUKT SIZZZIT	20-DEC-2011 10:3/ WIPH 20-DEC 2011 11.12 MIPH
66	020911DF66	111738014			20-DEC-2011 11:12 WIFT 28-DEC-2011 11:12 WIFT
67	0203TIDF.0.	TTT/3800/		2010-1	ZO-DEC-ZOII II.Z/ WIFII

Witness: 22 Date: 12/28/2011 Page 138 of 143

WEYERHAEUSER ANALYTICAL GC RUN LOG for ROVER(hpdos4_2)

Vial	file name	Lab ID	Clie	ent ID	Acquisition Date	• Fraction
68	020911DF68	111738015		SOIL-1 [DUP]	28-DEC-2011	11:42 WTPH
69	020911DF69	111738008		SOIL-2	28-DEC-2011	11:57 WTPH
70	020911DF70	111738009)	l .	SOIL-3	28-DEC-2011	12:12 WTPH
71	020911DF71	IBLKXX		IBLKXX	28-DEC-2011	12:42 WTPH
72	020911DF72	IBLK74		IBLK74	28-DEC-2011	12:58 WTPH
73	020911DF73	DIESELCC74;L4		DIESELCC74	28-DEC-2011	13:13 WTPH

Service Request: 11-1738

--+

WTPHD LCS Control Chart - Soil

