

June 2018 Sudden Valley Area Z Remediation

Data Report and Cleanup Plan

Prepared for Wilson Engineering and Sudden Valley Community Association

June 2018 Sudden Valley Area Z Remediation

Data Report and Cleanup Plan

Prepared for

Wilson Engineering 805 Dupont Street, Suite 7 Bellingham, Washington 98225

and:

Sudden Valley Community Association 4 Clubhouse Circle Bellingham, Washington 98229 **Prepared by**Anchor QEA, LLC
1605 Cornwall Avenue
Bellingham, Washington 98225

TABLE OF CONTENTS

1	Intr	oduction	1				
	1.1	Site Background	1				
	1.2	Purpose of the Current Report	2				
2	Inve	estigation Methods	3				
	2.1	Historical Research and Base Map Update	3				
	2.2	Soil Sampling and Analysis	4				
	2.3	Groundwater Sampling and Analysis	5				
3	Findings of Supplemental Testing						
	3.1	Soil Quality in Stockpile Area	6				
	3.2	Soil Quality Near the Community Garden	7				
	3.3	Earthworm Toxicity Evaluation	7				
	3.4	Groundwater Quality in Treated Soil Stockpile Area	7				
	3.5	Groundwater Quality in Former Source Removal Area	7				
4	Rec	ommended Cleanup Action	9				
	4.1	No Additional Work Required in Soil Stockpile Area	9				
	4.2	Additional Monitoring Recommended for Groundwater in Former Soil Removal Area	9				
5	Refe	erences Cited	11				

i

TABLES

Table 1 Soil Chemical Testing Data

Table 2 Earthworm Bioassay Testing Data

Table 3 Groundwater Testing Data

FIGURES

Figure 1 All Field Sampling
Figure 2 Treatment Area
Figure 3 Aerial Photograph: March 27, 1975
Figure 4 Aerial Photograph: August 9, 2001

APPENDICES

Appendix A Previous Field Investigations

Appendix B Historical Aerial Photographs

Appendix C Field Documentation
Appendix D Analytical Results

Appendix E Analysis of Petroleum Chromatograms

ABBREVIATIONS

ARI Analytical Resources, Inc.
AST aboveground storage tank

BTEX benzene, toluene, ethylbenzene, and xylene Ecology Washington State Department of Ecology

mg/kg milligrams per kilogram mg/L milligrams per liter

MTCA Model Toxics Control Act

NWTPH Northwest Total Petroleum Hydrocarbon (analytical method)

NWTPH-d Northwest Total Petroleum Hydrocarbon-diesel range

NWTPH-dx Northwest Total Petroleum Hydrocarbon-diesel range extended

NWTPH-g Northwest Total Petroleum Hydrocarbon-gasoline range

Sudden Valley Sudden Valley Communication Association

UST underground storage tank

WAC Washington Administrative Code

1 Introduction

This report documents the results of soil and groundwater testing conducted by Anchor QEA, LLC, on behalf of Wilson Engineering and the Sudden Valley Community Association (Sudden Valley).

The supplemental soil and groundwater testing was performed to evaluate current environmental conditions within the portion of Sudden Valley known as Area Z. Soil and groundwater contamination in Area Z was discovered in 1999 and reported to the Washington State Department of Ecology (Ecology) in accordance with the Model Toxics Control Act (MTCA; WAC 173-304).

Subsequent cleanup actions have been performed within Area Z, and Sudden Valley has requested review of the cleanup actions under the Voluntary Cleanup Program. Area Z remains listed as a MTCA cleanup site at this time.

1.1 Site Background

Previous investigation and cleanup actions were performed between 1999 and 2014 by Sudden Valley under the direction of GeoEngineers. Figures 1 and 2 summarize locations of previous soil and groundwater testing activities, soil removal areas, and other site features.

Excerpts of previous GeoEngineers reports are attached as Appendix A. These include the following:

- Environmental Drilling and Sampling Results for Area Z (September 1999)
 (GeoEngineers 1999): This report documents the presence of diesel contamination in soil at concentrations of up to 14,100 milligrams per kilogram (mg/kg). Contamination was also detected in groundwater at diesel concentrations up to 19.2 milligrams per liter (mg/L). These concentrations exceeded applicable cleanup levels at the time, and also exceed current applicable cleanup levels (2,000 mg diesel/kg for soils, and 0.5 mg diesel/L for groundwater). The most heavily contaminated area was located in an area near Bear Creek. This area was near a former aboveground storage tank (AST) present within Area Z during 1975 (refer to Section 2.1 and Figure 3).
- February and May 2001 Groundwater Sampling Area Z (GeoEngineers 2000): During 2000, contaminated soils were excavated from Area Z and placed in an on-site stockpile (see 2001 aerial photograph in Figure 4). The soils were treated using biotreatment (i.e., landfarming). Following that remediation work, GeoEngineers installed a monitoring well (MW-4) at the downgradient edge of the soil removal area, just upgradient from Beaver Creek. Diesel concentrations in that well were measured quarterly between August 2000 and May of 2001. Diesel concentrations in that well decreased over time from 16 mg/L in August 2000 to 1.7 mg/L in May 2001. All four measurements exceeded the groundwater cleanup level applicable at that time for diesel hydrocarbons (1.0 mg/L) and also exceeded the current MTCA Method A groundwater cleanup level (0.5 mg/L).

• Report of Environmental Services – Area Z Soil Stockpile Sampling (GeoEngineers 2014):

During 2014, GeoEngineers conducted test pit sampling within the portion of Area Z used to treat the petroleum-contaminated soils. Two locations adjacent to the soil stockpile were also tested.

One of the stockpile samples (TP-4) contained petroleum concentrations of 2,410 mg/kg, slightly in excess of the current MTCA Method A cleanup level (2,000 mg/kg). Two other samples exceeded the ecological screening levels used by Ecology for diesel hydrocarbons (260 mg/kg for soil biota; screening level revised as of August 2017). One of the samples from the adjacent area (diesel/oil concentration of 650 mg/kg) also exceeded this ecological screening level but not the Method A cleanup level. Despite the presence of organic matter (plant roots, etc.) in the soil samples, testing during this study was not performed using silica gel cleanup (used to differentiate between petroleum hydrocarbons and non-petroleum, polar or biogenic compounds).

Results of these studies were reviewed by Ecology under the Voluntary Cleanup Program. Ecology concluded that additional information was required to demonstrate compliance with MTCA requirements (Ecology 2014).

1.2 Purpose of the Current Report

Anchor QEA was retained by Wilson Engineering and Sudden Valley to resolve site data gaps, assess compliance of the site conditions with MTCA requirements, and make recommendations regarding final cleanup of the site. Data gaps addressed with the supplemental sampling included the following:

- **Historical Research:** Historical aerial photographs and environmental reports were reviewed to resolve the source of the petroleum contamination. Results were used to update the site base map.
- Supplemental Soil Stockpile Testing: Supplemental test pits were sampled by Anchor QEA within the soil stockpile and adjacent areas. This testing was performed to assess whether additional biotreatment was required to comply with MTCA Method A cleanup levels. Soils were analyzed for petroleum concentrations. Additional testing was performed to evaluate protectiveness for sensitive terrestrial ecological receptors.
- **Supplemental Groundwater Testing:** Supplemental groundwater testing was performed in two areas. Groundwater testing was performed in the soil stockpile area to verify that soil treatment operations did not impact groundwater quality in this area. Groundwater testing was also performed in the area along Bear Creek, downgradient of the former soil removal area. That testing was performed using both the existing monitoring well (MW-4) and two temporary soil borings located east and west of MW-4.

Methods and results of the supplemental testing conducted by Anchor QEA work are described in Sections 2 and 3 of this report, respectively. These data are then used as the basis for defining a recommended cleanup plan for the site. That cleanup plan is provided in Section 4.

2 Investigation Methods

The work performed by Anchor QEA was intended to document current soil and groundwater quality relative to MTCA cleanup standards. Activities performed by Anchor QEA are described in this section.

2.1 Historical Research and Base Map Update

Historical research was conducted to resolve the source of the petroleum contamination. This included review of prior environmental reports and Ecology files, compilation and review of historical aerial photographs, and completing interviews with current Sudden Valley staff. Significant observations from that research are summarized below:

- 1992 Underground Storage Tank Removal Report: Two underground storage tanks (USTs; reported as two 1,000-gallon gasoline tanks) had been located along the western edge of the 2000 source removal area. The completion report for that tank removal (Pinner 1992) did not indicate the presence of petroleum contamination at the UST removal locations. Testing was performed for gasoline and benzene, toluene, ethylbenzene, and xylene (BTEX) compounds, and no contamination was detected above applicable cleanup levels. Testing was not performed for diesel.
- Subsequent Soil and Groundwater Testing: Diesel fuel contamination was identified during geotechnical studies for a proposed utility project. Subsequent soil testing was performed by GeoEngineers to assess the nature and extent of the diesel contamination and guide soil remediation activities (GeoEngineers 1999). Measured petroleum concentrations near the former UST removal area did not exceed current MTCA Method A cleanup levels. Concentrations were much higher in the central northern portion of the source removal area. The maximum concentration detected there was 14,100 mg/kg.
- Initial Release Report and Subsequent Cleanup: A release report was submitted by GeoEngineers to Ecology (GeoEngineers 2000). That release report referenced the source of the contamination as an AST.
- **Review of Aerial Photographs:** Historical aerial photographs were obtained and reviewed. These photographs are contained in Figures 3 (1975) and 4 (2001) and in Appendix B.
 - 1975 AST: In a photograph from 1975, a large cylindrical AST is visible. The location of the tank is consistent with the areas of highest measured petroleum concentrations in soil. The tank was no longer visible in that location in the next aerial photograph reviewed (1981).
 - UST removal areas: A concrete slab is visible in a photograph from 1988 in approximately the location of the UST removal. The resolution of the photographs is not sufficient to identify pump islands or additional details.
 - Soil treatment stockpile: The soil treatment stockpile area is clearly visible in the photograph from 2001.

• Interviews: Anchor QEA attempted to identify former residents or employees with knowledge of the former UST and AST operations or subsequent cleanup activities. No persons with direct knowledge of these activities were identified.

Figure 1 integrates the findings of the above-listed research, along with the locations of identified utilities, structures, and previous sampling locations.

2.2 Soil Sampling and Analysis

Anchor QEA conducted soil sampling using a small rubber-tired backhoe operated by Sudden Valley staff. Prior to testing, Wilson Engineering confirmed the absence of any regulated wetlands or sensitive areas in the project area.

The locations of previous testing locations were verified by differential GPS. The boundaries of the former stockpile were also confirmed in this manner based on the historical aerial photograph. The historical boundaries were approximately the same as the boundaries of the stockpile observed based on current site topography.

Test pits were then excavated throughout the stockpile area and at one location between the stockpile and the community garden. Test pit locations are shown on Figures 1 and 2.

Each test pit was logged and photographed. Soil samples were screened for the potential presence of volatile organic compounds using a photo-ionization detector. These compounds were not present, consistent with the results of previous testing.

Soil samples were collected for analysis of diesel- and oil-range petroleum hydrocarbons using the Northwest Total Petroleum Hydrocarbon-diesel extended (NWTPH-dx) method. The analysis was performed both with and without silica gel cleanup to assess the influence of non-petroleum hydrocarbons on measured diesel/oil concentrations.

Chemical analyses were performed by Analytical Resources Inc. (ARI, Tukwila). Additional soil samples were archived for contingent earthworm bioassay testing. These samples were sent to the bioassay laboratory (EcoAnalysts, Port Gamble).

Following receipt of soil petroleum testing data, three soil samples were selected for earthworm bioassay testing. Testing was performed by EcoAnalysts consistent with current Ecology guidance. Testing methods are described in Appendix D.

2.3 Groundwater Sampling and Analysis

Groundwater sampling was performed in two steps. First well MW-4 was inspected. Based on silt accumulations in the well, it was redeveloped. Following redevelopment, groundwater samples were collected by low-flow sampling. Groundwater sampling was conducted in August 24, 2017.

Temporary soil borings were then driven by geoprobe to collect groundwater from four additional locations. This second step was performed on September 13, 2017. The four testing locations included the following:

- Locations Near MW-4: Two borings were placed to the east (SB-111) and west (SB-112) of MW-4, along the downgradient edge of the former excavation.
- Locations within Treated Soil Stockpile: Two borings (SB-109 and SB-110) were placed within
 the footprint of the treated soil stockpile. These were located near the soils containing the
 highest measured petroleum concentrations during the 2014 and 2017 soil sampling
 activities.

Groundwater samples were analyzed by ARI for the following constituents:

- Gasoline hydrocarbons (NWTPH-g)
- Diesel/oil hydrocarbons (NWTPH-dx; paired analysis with and without silica gel cleanup)
- BTEX compounds (EPA 8020)

Appendix C contains copies of field logs and associated documentation. Appendix D contains copies of the laboratory testing data.

3 Findings of Supplemental Testing

This section summarizes the preliminary findings of soil and groundwater testing performed by Anchor QEA in 2017. The results are discussed along with the results of prior testing.

3.1 Soil Quality in Stockpile Area

Test pit observations completed in August 2017 verified the location and composition of the treated soil stockpile area. Anchor QEA excavated test pits at each of the locations shown in Figure 1. The boundaries of the stockpile were confirmed visually (based on topography; and based on the presence of plastic liner material in the test pits). Vegetation (saplings, brush, and grasses) was present at each sampling location.

Table 1 summarizes the petroleum concentrations measured in the stockpile soils. The highest concentrations of diesel and oil were measured at TP-102 and TP-103. These locations were near GeoEngineers sampling locations TP-4 and TP-9, the test pits containing the highest petroleum concentrations (petroleum concentrations were measured without the use of silica gel cleanup) during from the 2014 test pit survey.

The Anchor QEA testing included NWTPH-d analyses performed with and without silica gel cleanup. Results of the paired analyses showed that between 40% and 60% of the petroleum contamination consisted of non-petroleum hydrocarbons (polar organic matter such as plant matter or biodegraded petroleum hydrocarbons). Chromatographic analyses of the soil petroleum hydrocarbon data are contained in Appendix E. These analyses confirm the contribution of non-petroleum hydrocarbons to the measured hydrocarbon concentrations in soil.

Consistent with current Ecology guidance for the NWTPH-d analyses, the results of tests performed using silica gel cleanup were used to assess compliance with MTCA Method A cleanup levels:

- None of the petroleum concentrations measured using silica gel cleanup during the 2017 test pit survey exceeded the MTCA Method A cleanup level.
- The 2014 testing results from the GeoEngineers study were evaluated in light of the 2017 results. Only a single sample from the 2014 survey (TP-4; reported TPH concentration of 2,410 mg/kg) had exceeded the MTCA Method A cleanup level. However, when a conservative allowance of 40 percent non-petroleum hydrocarbons is assumed (consistent with the findings of paired analyses performed in 2017 from the same area), the true petroleum concentration estimated for TP-4 is 1,446 mg/kg. A lower concentration would be estimated if the average non-petroleum composition of the 2017 samples were used.

3.2 Soil Quality Near the Community Garden

Test pit sampling was also performed near the community garden, in the location previously sampled by GeoEngineers. No odors, staining, or other indications of contaminated soil were noted. Results of testing at sample TP-100 were well below MTCA Method A cleanup levels.

3.3 Earthworm Toxicity Evaluation

To evaluate potential adverse impacts to sensitive terrestrial ecological receptors, soil toxicity testing was performed using earthworm toxicity bioassays. Results of these bioassays are summarized in Table 2, and laboratory reports are contained in Appendix D.

Testing was performed on soils from TP-102 and TP-103, where the highest petroleum concentrations were measured. Soils from near the community garden (TP-100) were also tested to assess potential background effects.

No toxicity was observed in any of the samples tested. Results demonstrate that existing soil quality is protective of ecological receptors.

3.4 Groundwater Quality in Treated Soil Stockpile Area

Groundwater quality was tested in the treated soil stockpile area. Testing locations are shown in Figure 1 and included two temporary soil borings (SB-109 and SB-110) located near the areas of highest measured petroleum concentrations in soils. No exceedances of groundwater cleanup levels were noted at either of these testing locations.

Results confirm that there were no impacts to groundwater during previous biotreatment of the petroleum-contaminated soils.

3.5 Groundwater Quality in Former Source Removal Area

Groundwater quality was tested in the former source removal area using a combination of the existing groundwater well (MW-4) and two additional temporary soil borings located east and west of that location (see Figure 1).

Prior to the 2000 source removal, three groundwater wells (MW-1, MW-2, and MW-3) had been located at the site. These wells were removed during the cleanup action. MW-4 was then installed following the source removal, at the downgradient edge of the excavation, adjacent to Bear Creek.

Significant siltation was present in MW-4. This was addressed by re-developing the well prior to sampling. Sampling was performed in August 2017 both for MW-4 and for the two nearby soil borings (SB-111 and SB-112).

Diesel- and oil-range petroleum hydrocarbons were well below MTCA Method A cleanup levels in water samples collected from each of the temporary soil borings. Higher concentrations were detected in MW-4.

Results of paired NWTPH-dx analyses were performed on the sample from MW-4 both with and without silica gel cleanup. The paired analyses were used to quantitatively assess the contribution of the non-petroleum hydrocarbons to measured diesel and oil concentrations:

- **Results without silica gel cleanup:** The combined concentration (0.65 mg/L) exceeded the MTCA cleanup level for groundwater (0.5 mg/L). This cleanup level is also considered applicable to surface water (i.e., waters of Beaver Creek) by Ecology.
- **Results with silica gel cleanup:** As with the stockpiled soils, testing with silica gel cleanup showed significantly lower concentrations. In that analysis, concentrations of diesel- and oilrange hydrocarbons were below the method reporting limits (0.10 mg/L and 0.20 mg/L, respectively). Results confirmed that the presence of non-petroleum compounds produces a high bias to the measured concentrations of diesel and oil in MW-4 groundwater.
- Chromatogram Review: Appendix E contains a review of TPH chromatograms for the MW-4 groundwater. Results are not consistent with diesel hydrocarbons. The results of paired analyses (with and without silica gel cleanup) indicate a significant contribution of non-petroleum organic matter to the concentrations of petroleum reported from analyses not utilizing silica gel cleanup.

4 Recommended Cleanup Action

This section provides a concise summary of the environmental conditions at Area C, and recommendations regarding additional actions to complete the cleanup of Area Z soils and groundwater under current MTCA regulations and guidance.

4.1 No Additional Work Required in Soil Stockpile Area

Current environmental conditions within the former soil stockpile area comply with applicable MTCA cleanup levels for both soils and groundwater:

- Soils Comply with MTCA Method A Cleanup Levels: Results of soil testing confirmed that the stockpiled soil has been successfully treated to below applicable cleanup levels for human health and groundwater quality protection (i.e., below MTCA Method A cleanup levels of 2,000 mg/kg) as measured using appropriate testing procedures (NWTPH-dx with silica gel cleanup). Results of paired analyses demonstrate that both the current data collected by Anchor QEA and the data collected by GeoEngineers in 2014 comply with MTCA Method A cleanup levels.
- No Impacts were Observed to Terrestrial Ecological Receptors: The potential for treated soils in the stockpile area to adversely impact the most sensitive terrestrial ecological receptors (in this case earthworms) was directly assessed using soil toxicity bioassays. That testing also included a sample collected near the community garden. No toxicity to earthworms was detected in any of the test samples, confirming that current conditions are protective of ecological receptors.
- **Groundwater Complies with Method A Cleanup Levels:** Groundwater testing was also performed within the soil treatment stockpile area. Results demonstrated that groundwater in that area complies with current MTCA cleanup levels. Testing was performed at two locations representing the highest residual petroleum concentrations, and no impacts were detected.

Based on the foregoing findings, no additional remediation activities are warranted for the soil stockpile area. Neither institutional controls nor future monitoring are required for this area.

4.2 Additional Monitoring Recommended for Groundwater in Former Soil Removal Area

Groundwater testing has shown substantial reductions of petroleum hydrocarbon concentrations in groundwater since completion of source area soil removal near Bear Creek. Results show that conditions have improved substantially over time. These results are consistent with 1) the removal of the source of the contamination; and 2) subsequent attenuation of residual groundwater contamination through natural biodegradation.

Observations from recent testing include the following:

- **Groundwater Analyses Show Decreasing Concentrations at MW-4:** Petroleum concentrations (measured without silica gel cleanup) have decreased dramatically since the source removal was performed in 2000. Reported diesel/oil concentrations have decreased from 19.1 mg/L in 2000, to 1.7 mg/L in 2001 to 0.65 mg/L in 2017. Results are consistent with natural attenuation of residual hydrocarbon concentrations following source removal.
- **Groundwater Near MW-4 Complies with MTCA Cleanup Levels:** The existing monitoring well (MW-4) is located just downgradient of the source removal area. Borings were placed to the east and west of this location. No exceedances of MTCA Method A cleanup levels were detected in groundwater samples collected from either of these borings. This result was consistent both with and without the use of silica gel cleanup.
- Biogenic Compounds Contribute to Reported Petroleum Concentrations at MW-4: Prior to the current study, petroleum testing was performed at Area Z without the use of silica gel cleanup. Results of paired analyses of petroleum performed with and without silica gel cleanup were evaluated quantitatively, showing that silica gel cleanup removed the majority of the measured hydrocarbons. Results in samples analyzed with silica gel cleanup comply with MTCA Method A cleanup levels (at reporting limits of 0.10 mg/L for diesel-range and 0.20 mg/L for oilrange hydrocarbons). Chromatograms were also analyzed for chemical signatures (see Appendix E). Results demonstrated the presence of biogenic organic compounds. These observations are consistent with observations from boring logs that showed organic matter (roots, plant matter) in saturated zone soils. Taken together, these factors indicate that the petroleum concentration measurements performed without silica gel cleanup are biased high and are not representative of true petroleum concentrations in MW-4 groundwater.

At this time, we recommend that four quarters of groundwater monitoring be performed at MW-4 to assess seasonal variability and provide a basis for conclusively assessing compliance with MTCA Method A cleanup levels. The recommended monitoring approach is as follows:

- Collect Four Quarters of Groundwater Data from MW-4: Four quarters of groundwater monitoring data should be collected from location MW-4. Groundwater should be collected using standard low-flow sampling techniques.
- Analyze Petroleum Hydrocarbons with and without Silica Gel Cleanup: Groundwater
 monitoring should be performed using method NWTPH-dx, both with and without silica gel
 cleanup. The larger data set (2017 analyses plus four quarters of additional data) will enable
 the contribution of biogenic hydrocarbons to the observed petroleum concentrations to be
 more conclusively assessed.
- Assess Compliance with Method A Cleanup Levels at Year-End: After four quarters of groundwater monitoring data have been collected, the compliance of the site with MTCA Method A cleanup levels should be re-evaluated.

5 References Cited

- Ecology (Washington State Department of Ecology), 2014. Letter to: Mr. Jeff Schlaak, Sudden Valley Resort. Regarding: Further Action at the Following Site: Sudden Valley Resort. September 2, 2014.
- GeoEngineers, 1999. Memorandum to: Sandy Cameron, Sudden Valley Community Association.

 Regarding: Environmental Drilling and Sampling Results for Area Z. September 14, 1999.
- GeoEngineers, 2000. Report of Remedial Excavation Activities, Area Z, Sudden Valley Community Association, Bellingham, Washington. Prepared for Sudden Valley Community Association. May 23, 2000.
- GeoEngineers, 2014. *Report of Environmental Services, Area Z Soil Stockpile Sampling*. Prepared for Sudden Valley Community Association. May 14, 2014.
- Pinner (John A. Pinner & Associates), 1992. *Sudden Valley, Three Regulated Underground Storage Tank Removals*. Prepared for Mr. Gordy Gerard, Gerard Enterprises. November 6, 1992.

Tables

Table 1 **Soil Chemical Testing Data**

	Location ID	SVCA-TP-100	SVCA-TP-101		SVCA-TP-102		SVCA-TP-103		SVCA-SB-111	SVCA-SB-112
	Sample Date	08/23/2017	08/23/2017	08/23/2017	08/23/2017	08/23/2017	08/23/2017	08/23/2017	09/13/2017	09/13/2017
	Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	Depth Interval	0-4 ft	0-2 ft	2-3.5 ft	0-2 ft	3-4 ft	0-2 ft	3-4 ft	14-16 ft	12.5-14.5 ft
	MTCA Method A									
	Cleanup Levels									
Gasoline Range Hydrocarbons	30	2.98 U	2.91 U		2.61 U		2.93 U		5.79 U	5.95 U
Total Petroleum Hydrocarbons (mg/kg)										
Diesel range hydrocarbons	2000	14.5	30.8	80.8	65.4	42.0	265	754 D	5.48 U	5.51 U
Motor oil range hydrocarbons	2000	130	56	58.5	889	114	315	2300 D	11.0 U	11.0 U
Total diesel and motor oil range hydrocarbons	2000	144.5	86.8	139.3	954.4	156.0	580	3054	8.29 ¹ U	8.26 ¹ U
Total Petroleum Hydrocarbons (with silica gel cleanup) (mg/kg)										
Diesel range hydrocarbons (with silica gel cleanup)	2000	22.2	29.2	70.2	36.4	20.5 U	256	447 D	5.57 U	5.50 U
Motor oil range hydrocarbons (with silica gel cleanup)	2000	174	36.9	42.3	469	42.5	91.2	861 D	11.1 U	11.0 U
Total diesel and motor oil range hydrocarbons (with silica gel cleanup)	2000	196.2	66.1	112.5	505.4	52.8 ¹	347.2	1308	8.33 ¹ U	8.25 ¹ U
Fraction removed by silica gel cleanup					47%	66%	40%	57%		
Results of earthworm toxicity tests (see Table 2)		Pass	Not tested	Not tested	Pass	Not tested	Pass	Not tested	Not tested	Not tested
Volatile Organics (μg/kg)										
Benzene	30	0.42 J	0.2 J		0.95		0.25 J		0.98 U	0.88 U
Ethylbenzene	6000	0.55 U	0.51 U		0.47 U		0.23 J		0.98 U	0.88 U
Toluene	7000	13.4	0.32 J		0.41 J		0.34 J		0.98 U	0.88 U
m,p-Xylene	9000	1.11 U	1.02 U		0.95 U		0.62 J		1.96 U	1.76 U
o-Xylene	9000	0.55 U	0.51 U		0.47 U		0.24 J		0.98 U	0.88 U

Detected concentration is greater than the corresponding MTCA Method A cleanup level.

Bold: Detected result

J: Estimated value

mg/kg: milligrams per kilogram μg/kg: micrograms per kilogram

U: Compound analyzed, but not detected above detection limit

D: Reported value is from a dilution

* : Silica gel cleanup is used to remove biogenic interferences when significant quantities of plant matter or other non-petroleum organic matter is present. In the case of biodegraded petroleum products the Washington State Department of Ecology determines on a case-by-case basis whether silica gel cleanup is appropriate for determining compliance with cleanup levels.

Table 2
Earthworm Bioassay Testing Data

Location ID	Sample Date	Depth Interval	TPH Concentration (Diesel and Oil)	Replicate	Number Initiated	Number Surviving	Number Missing or Dead	Percentage Survival	Mean Percentage Survival	SD
				1	10	10	0	100%	100%	
Control				2	10	10	0	100%		0
				3	10	10	0	100%		
SVCA-TP-	8/23/2017	0-4 ft	144.5 (196.2)	1	10	10	0	100%	100%	
				2	10	10	0	100%		0
100				3	10	10	0	100%		
SVCA-TP-	8/23/2017	0-2 ft	0-2 ft 954.4 (505.4)	1	10	10	0	100%	100%	
				2	10	10	0	100%		0
102				3	10	10	0	100%		
SVCA-TP-		0-2 ft	580 (340.7)	1	10	9	1	90%	97%	
	8/23/2017			2	10	10	0	100%		5.8
103				3	10	10	0	100%		

Notes:

Bold values represent petroleum hydrocarbon concentrations measured without silica gel cleanup. The values in parentheses represent petroleum concentrations measured after silica gel cleanup.

TPH: total petroleum hydrocarbon

SD: standard deviation

Table 3 **Groundwater Testing Data**

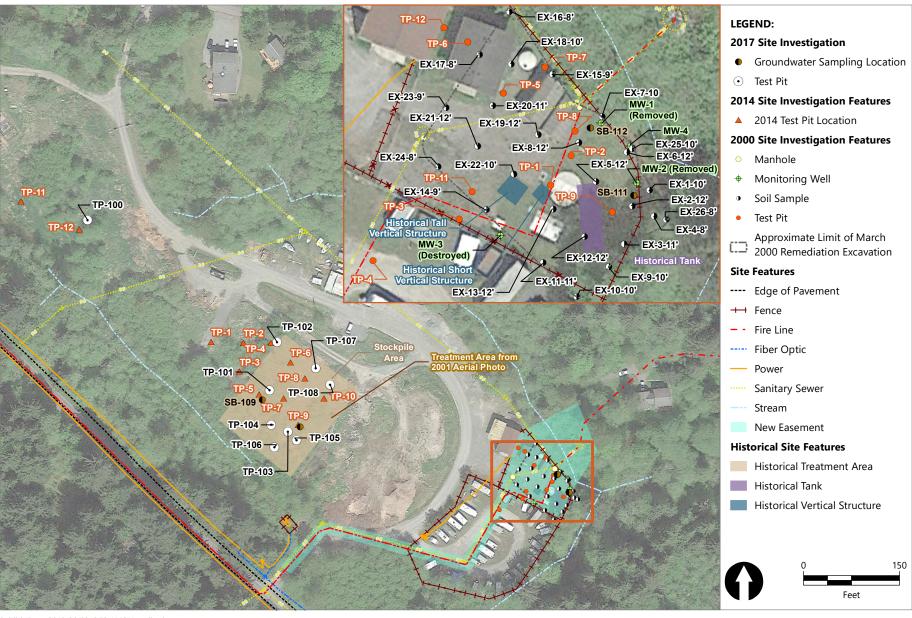
	Location ID Sample Date Sample Matrix MTCA Method A	SVCA-MW-4 08/24/2017 Groundwater	SVCA-MW-4 03/26/2018 Groundwater	SVCA-GW-109 09/13/2017 Groundwater	SVCA-GW-110 09/13/2017 Groundwater	SVCA-GW-111 09/13/2017 Groundwater	SVCA-SB-112 09/13/2017 Groundwater
Gasoline range hydrocarbons (mg/L)	Cleanup Levels 0.8	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Total Petroleum Hydrocarbons (mg/L)	0.0	300	300	30	30	30	300
Diesel range hydrocarbons	0.5	0.37	0.10 U	0.23	0.10 U	0.14	0.10 U
Motor oil range hydrocarbons	0.5	0.28	0.20 U	0.23 U	0.20 U	0.20 U	0.20 U
Total diesel and motor oil range hydrocarbons	0.5	0.65	0.15 U	0.35 ¹	0.15 ^T U	0.23 ¹	0.15 ^T U
Total Petroleum Hydrocarbons (with silica gel cleanup) (mg/L)		•					
Diesel range hydrocarbons (with silica gel cleanup)	0.5	0.05 U	0.12	0.10 U	0.10 U	0.10 U	0.10 U
Motor oil range hydrocarbons (with silica gel cleanup)	0.5	0.10 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Total diesel and motor oil range hydrocarbons (with silica gel cleanup)	0.5	0.15 U	0.12	0.15 ¹ U	0.15 ¹ U	0.15 ¹ U	0.15 ¹ U
Fraction removed by silica gel cleanup							
Volatile Organics (μg/L)	•						
Benzene	5	0.20 U	0.20 U	0.20 U	0.20 U	0.04 J	0.20 U
Ethylbenzene	700	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Toluene	1000	0.04 J	0.20 U	0.20 U	0.20 U	0.05 J	0.20 U
m,p-Xylene	1000	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
o-Xylene	1000	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U

Notes:

Detected concentration is greater than the corresponding MTCA Method A cleanup level.

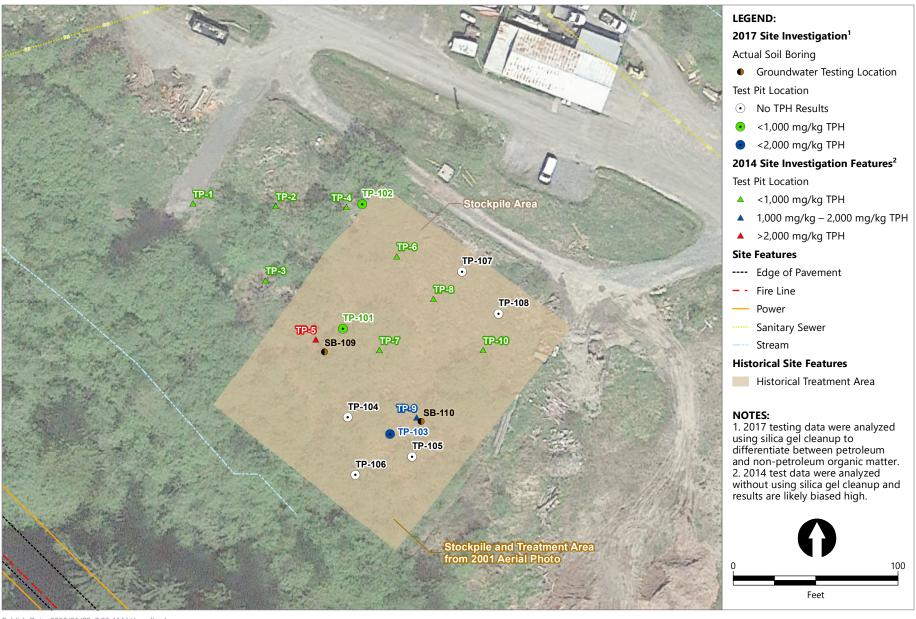
Bold: Detected result

J: Estimated value


U: Compound analyzed, but not detected above detection limit
*: Silica gel cleanup is used to remove biogenic interferences when significant quantities of plant matter or other non-petroleum organic matter are present. In the case of biodegraded petroleum products, the Washington State Department of Ecology determines on a case-by-case basis whether silica gel cleanup is appropriate for determining compliance with cleanup levels.

mg/L: milligrams per liter

μg/L: micrograms per liter


^{1.} When calculating the total concentration of diesel and motor oil range hydrocarbons, non-detect results are assigned a value equal to half of the reporting limit

Figures

Publish Date: 2018/06/08, 6:58 AM | User: Ihudson Filepath: \orcas\gis\Jobs\WilsonEngineering_1240\SuddenValleyCommunityAssoc\Maps\AreaZ_Remediation\Memo_to_Ecology\SVCA_Fig1_AllSampling_SummaryMap.mxd

 $Publish\ Date:\ 2018/06/08,\ 7:02\ AM\ |\ User:\ Ihudson\\ Filepath:\ \cos\gis\obs\WilsonEngineering_1240\Sudden\ValleyCommunity\Assoc\Maps\AreaZ_Remediation\Memo_to_Ecology\SVCA_Fig2_Treatment\AreaMap.mxd$

Appendix A
 Previous Field Investigations

Three Regulated Underground Storage Tank Removals, John A. Pinner & Associates, November 6, 1992

Environmental Drilling and Sampling Results for Area Z, GeoEngineers, September 14, 1999

Report of Remedial Excavation Activities, Area Z, GeoEngineers, May 23, 2000

Report of Environmental Services, Area Z Soil Stockpile Sampling, GeoEngineers, May 14, 2014

Further Action at the Following Site: Sudden Valley Resort, Washington State Department of Ecology, September 2, 2014

SUDDEN VALLEY 2145 LAKE WHATCOM BLVD. BELLINGHAM, WASHINGTON

MULTIPLE UNDERGROUND STORAGE TANK REMOVAL

JOHN A. PINNER & ASSOCIATES 201 GRAND AVENUE BELLINGHAM, WASHINGTON 98225 (206) 733- 4021 FAX (206)676-6170

JOHN A. PINNER & ASSOCIATES

CIVIL, STRUCTURAL & GEOTECHNICAL ENGINEERING AND ENVIRONMENTAL SERVICES

November 6, 1992

Mr. Gordy Gerard Gerard Enterprises 6084 Neevel Road Ferndale, Wa 98248

RE: Sudden Valley
Three Regulated Underground Storage Tank Removals
2145 Lake Whatcom Blvd.
Bellingham, Washington
Site ID#101773
Owner #U0010184

Dear Mr. Gerard,

Enclosed you will find the results of the soil testing performed by our firm on October 6th & 7th, 1992, together with a Field Inspection Report and Laboratory testing results.

TANK #1

Tank #1 was located in the area of the Restaurant and Golf Course in the Sudden Valley Community. This was a 300 galon gasoline tank. The tank was purged of all remaining gasoline and removed using a JCB Sidemaster Excavator operated by Mike Wagner of Cannon Electric. Two soil samples were taken from this location.

Soil Sample #5 was taken from under the fill spout at an approximate depth of 3.5 feet. This sample was tested for WTPH-G/BTEX combination with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, <0.05 mg/kg for Benzene, Toluene, Ethyl Benzene and Xylenes. All of these results are below the D.O.E. action levels.

Soil Sample #6 was taken from the side wall at an approximate depth of 3.5 feet. This sample was tested for WTPH-G with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, which is below the D.O.E. action levels.

TANK #2

Tank #2 was located at the Maintenance Shop for the Sudden Valley Community. This tank held 1000 gallons of gasoline. The tank was purged of all remaining fuel and removed. This tank was fairly new and had no damage to it from the removal.

In this location there was some contaminated soil. The soil was removed and taken to a location within the Sudden Valley Community which is called "Area Z". It was recommended that the soil be placed on Visqueen with hay bales around the perimeter of the soil beds and covered with visqueen during treatment. Further testing of this soil will be done during the treatment process.

Soil Sample #7 & #8 were taken from the side walls of the of the pit. These samples were tested for WTPH-G with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, which are below the D.O.E. action levels.

Soil Sample #9 was taken from the bottom of the pit. This sample was tested for WTPH-G/BTEX combination with the following results; 6.5 mg/kg for Total Petroleum Hydrocarbons, <0.05 mg/kg for Benzene, Toluene and Xylenes and 0.18 mg/kg for Ethyl Benzene. All of these results are below the D.O.E. action levels.

TANK #3 & #4

Tank #3 and #4 were located in the designated Area Z on Lake Louise Road in the Sudden Valley Community. These were each 1000 gallon gasoline tanks and were together in the same pit. Both tanks were purged with remaining fuel and excavated from the pit.

Soil Sample #10 was taken from under the fill spout of tank #3 at an approximate depth of 4.5 feet. This sample was tested for WTPH-G/BTEX combination with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, <0.05 mg/kg for Benzene, Toluene, Ethyl Benzene and Xylenes. All of these results are below the D.O.E. action levels.

Soil Sample #11 was taken from under the fill spout of tank #4 at an approximate depth of 4.5 feet. This sample was tested for WTPH-G with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, which is below the D.O.E. action levels.

Soil Sample #12 was taken from the north wall of the pit at an approximate depth of 6.5 feet. This sample was tested for

WTPH-G with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, which is again below the D.O.E. action levels.

Soil Sample #13 was taken from the south wall of the pit at an approximate depth of 4.0 feet. This sample was tested for WTPH-G with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, which is below the D.O.E. action levels.

Soil Sample #14 was taken from the bottom of the pit. This sample was tested for WTPH-G/BTEX combination with the following results; <1.0 mg/kg for Total Petroleum Hydrocarbons, <0.05 mg/kg for Benzene, Toluene, Ethyl Benzene and Xylenes. All of these results are below the D.O.E. action levels.

It is our conclusion from the laboratory testing results, these sites be considered permanently closed with acceptable levels of contamination.

A follow-up report will be needed when additional testing is done at the "Area Z" treatment location. Please inform our firm when you are ready for additional testing.

EXPIRES

Sincerely,

CC:

John A. Pinner, P.E.

Enc: Field Inspection Report

Sound Analytical Lab results

Vicinity Map Photographs

Site Assessment Checklist

Mr. Joe Hickey, D.O.E., Bellevue, Wa

Underground Storage Tank Section, Olympia, Wa

Sudden Valley Management

TANK #1

VIEW OF EXCAVATED TANK

NEAR RESTAURNT/CLUB HOUSE

VIEW OF GOLF COURSE FROM BANK THAT TANK WAS LOCATED ON

TANK #2

LOADED AND READY FOR TRANSPORT (TANK LOOKS LIKE NEW)

PIT FROM TANK #2 AT MAINTENANCE BUILDING

TANKS #3 & #4

LOCATION OF TANKS 3 & 4 IN "AREA Z" NEAR SHOP BUILDING

SOUND ANALYTICAL SERVICES, INC.

John A. Pinner & Assoc. Project: Gerard Enterprises, Sudden Valley Page 3 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-5

Client ID: #5

WTPH-G with BTEX by Method 8020 Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg < 1.0
(C7-C12)

Benzene, mg/kg < 0.05
Toluene, mg/kg < 0.05
Ethyl Benzene, mg/kg < 0.05
Xylenes, mg/kg < 0.05

SURROGATE RECOVERY, %

Trifluorotoluene 72

Continued

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 7 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-9

Client ID: #6

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, &

Trifluorotoluene

74

Lab No. 27748-10

Client ID: #7

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, %

Trifluorotoluene

66

Continued

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 8 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-11

Client ID: #8

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, %

Trifluorotoluene

74

Lab No. 27748-12

Client ID: #11

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, %

his report is issued solely for the use of the power or company to whom the addressed. The title of

Trifluorotoluene

74

Continued

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 4 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-6

Client ID: #9

WTPH-G with BTEX by Method 8020 Date Extracted: 10-15-92

Date Analyzed: 10-20-92

Gasoline, mg/kg (C7-C12)	6.5	Х2
Benzene, mg/kg Toluene, mg/kg Ethyl Benzene, mg/kg Xylenes, mg/kg	< 0.05 < 0.05 0.18 < 0.05	

SURROGATE RECOVERY, %

Trifluorotoluene 66

Continued

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 5 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-7

Client ID: #10

WTPH-G with BTEX by Method 8020 Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg < 1.0
(C7-C12)

Benzene, mg/kg < 0.05
Toluene, mg/kg < 0.05
Ethyl Benzene, mg/kg < 0.05
Xylenes, mg/kg < 0.05

SURROGATE RECOVERY, %

Trifluorotoluene 70

Continued

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 9 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-13

Client ID: #12

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, %

Trifluorotoluene

63

Lab No. 27748-14

Client ID: #13

WTPH-G

Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg

< 1.0

(C7 - C12)

SURROGATE RECOVERY, %

Trifluorotoluene

65

SOUND ANALYTICAL SERVICES

MARTY FRENCH

John A. Pinner & Assoc.

Project: Gerard Enterprises, Sudden Valley

Page 6 of 9 Lab No. 27748 October 30, 1992

Lab No. 27748-8

Client ID: #14

WTPH-G with BTEX by Method 8020 Date Extracted: 10-15-92 Date Analyzed: 10-20-92

Gasoline, mg/kg (C7-C12)	< 1.0
Benzene, mg/kg	< 0.05
Toluene, mg/kg	< 0.05
Ethyl Benzene, mg/kg	< 0.05
Xylenes, mg/kg	< 0.05

SURROGATE RECOVERY, %

Trifluorotoluene 71

Continued

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

WTPH-G with BTEX by EPA SW-846 Method 8020

Client: John A Pinner & Assoc. Lab No: 27748qcl Matrix: Soil Units: mg/kg

Date:

October 30, 1992

DUPLICATES

Dup No. 27748-14

Parameter	Sample (S)	Duplicate (D)	RPD	FLAGS
Gasoline	< 1.0	< 1.0	0.0	
SURROGATE RECOVERY,% Trifluorotoluene	65	70		

RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2)] \times 100$

METHOD BLANK

Blank No. 92101957

Blank No. 92101957	
Parameter	Blank Value
Gasoline (C ₇ -C ₁₂)	< 1.0
Benzene Toluene Ethyl Benzene Xylenes	< 0.05 < 0.05 < 0.05 < 0.05
SURROGATE RECOVERY, % Trifluorotoluene	88

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

WTPH-D (Diesel Range Organics)

John A Pinner & Assoc.

Client: John A P: Lab No: 27748qc2 Matrix: Soil

Units:

mg/kg

Date:

October 30, 1992

DUPLICATES

Dup No. 27748-4

Parameter	Sample (S)	Duplicate (D)	RPD	Flag
Diesel (>C ₁₂ · C ₂₄)	< 25	< 25	0.0	
SURROGATE RECOVERY, % o-terphenyl	62	51		

RPD = Relative Percent Difference $= [(S - D) / ((S + D) / 2] \times 100$

METHOD BLANK

Parameter	Blank Value
Diesel	< 25
SURROGATE RECOVERY, % o-terphenyl	70

Redmond

TO:

Sandy Cameron, Sudden Valley Community Association

FROM:

Lisa Bona and Chuck Lindsay

DATE:

September 14, 1999

FILE:

7536-002-00

SUBJECT:

Environmental Drilling and Sampling Results for Area Z

INTRODUCTION

GeoEngineers completed eleven shallow test pits in a portion of Area Z in July 1999 to characterize subsurface soil contamination encountered during previous geotechnical investigations at the site. The soil contamination appeared to be caused by releases from pumps and/or piping that extended from a former diesel aboveground storage tank located to the west of the contaminated area. Based on field screening and chemical analytical results for soil samples obtained from the test pits, GeoEngineers estimated the limits of petroleum-related soil contamination, as shown in our memorandum "Subsurface Soil Contamination in Area Z" dated August 13, 1999. In a meeting with the Sudden Valley Community Association (SVCA) on August 13, 1999, GeoEngineers recommended that ground water conditions be evaluated at the site. The ground water sampling results will be used to determine an appropriate remedial option for soil contamination.

RESULTS OF ENVIRONMENTAL DRILLING AND SAMPLING

GENERAL

GeoEngineers subcontracted Gregory Drilling to complete three monitoring wells in the area of known soil contamination on August 27, 1999. The monitoring well borings (MW-1 through MW-3) were completed at depths of approximately 13.5 to 19.0 feet below ground surface (bgs). MW-1 and MW-2 are located north of an existing fence, as close to Beaver Creek as the drill rig was able to work. These wells are located hydraulically downgradient from the soil contamination. MW-3 is located in the vehicle parking area, upgradient of the soil contamination area. The approximate locations of the monitoring wells are shown on the Site Plan, Figure 1. Boring logs are attached. Ground water samples were obtained from the monitoring wells on August 31, 1999.

SOIL

The monitoring well borings encountered fill from the surface to approximately 7.5 feet bgs at the locations of MW-1 and MW-2. The fill generally consisted of silty sand. Native soil beneath the fill generally consisted of sand with silt, sandy silt and sand with occasional silt and with variable gravel to the completion depths of the borings. Boring MW-2 was completed at 13.5 feet because of apparent refusal on a boulder.

Ø 003

Memorandum to Sandy Cameron, Sudden Valley Community Association September 14, 1999 Page 2

Soil samples were obtained from the borings at approximate 2.5-foot depth intervals for field screening using visual, water sheen screening and headspace vapor screening methods. At least one soil sample was selected from each boring for chemical analysis of diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx. Soil samples were selected for chemical analysis based on field screening results and/or proximity to the water table. The soil sample with the highest field screening results (MW-2-11) also was submitted for chemical analysis of benzene, ethylbenzene, toluene and xylenes (BETX) by EPA Method 8021B and gasoline-range hydrocarbons by Ecology Method NWTPH-Gx.

Field screening results indicated the likely presence of soil contamination in boring MW-1 at depths of 5 to 9 feet bgs, and in MW-2 at depths of 7.5 to 11 feet bgs. Samples MW-1-8, MW-2-11 and MW-3-8 were submitted for chemical analysis (Table 1). Diesel-range hydrocarbons were detected in sample MW-1-8 (14,100 milligrams per kilogram [mg/kg]) and MW-2-11 (1,780 mg/kg) at concentrations exceeding the MTCA Method A cleanup level of 200 mg/kg. Gasoline-range hydrocarbons were detected in sample MW-2-11 at a concentration less than the MTCA Method A cleanup level of 100 mg/kg. BETX were not detected in sample MW-2-11. Diesel- and heavy oil-range hydrocarbons were not detected in sample MW-3-8. Sample MW-1-13 was submitted for chemical analysis after receiving preliminary results for the other samples. Diesel- and heavy oil-range hydrocarbons were not detected in sample MW-1-13.

GROUND WATER

Ground water was encountered at depths ranging from 8.5 to 11 feet bgs in the monitoring well borings during drilling. The monitoring wells were completed at depths ranging from 12.5 to 17.5 feet bgs. The monitoring wells were developed on August 27 by removing approximately five well volumes from each well casing by surging and hand bailing.

Depths to ground water on August 31 ranged from 8 to 11 feet bgs. The shallow ground water flow direction is estimated to be to the north, based on the calculated ground water elevations. Ground water samples were obtained from the wells after purging approximately three well volumes from each well casing by hand bailing. The ground water samples were submitted for chemical analysis of BETX, and gasoline-, diesel- and heavy oil-range hydrocarbons. Benzene and toluene were detected at low concentrations in sample MW-2; BETX were not detected in the other samples. Diesel-range hydrocarbons were detected at a concentration less than the MTCA Method A cleanup level in sample MW-1. The sum of gasoline- and diesel-range hydrocarbon concentrations (20.8 milligrams per liter [mg/l]) detected in sample MW-2 exceeded the MTCA Method A cleanup level of 1 mg/l. Petroleum-related compounds were not detected in sample MW-3.

Memorandum to Sandy Cameron, Sudden Valley Community Association September 14, 1999 Page 3

DISCUSSION

Remedial options are discussed in our August 13, 1999 memorandum. As outlined in the memorandum, either MTCA Method A cleanup levels can be used for remediation levels at petroleum-contaminated sites, or a site-specific MTCA Method B cleanup level protective of soil direct contact can be calculated for use as a remediation level at the site. Based on our experience at other sites, the MTCA Method B cleanup level likely would exceed 3,000 mg/kg. Diesel-range hydrocarbons were detected at a concentration exceeding a likely site-specific MTCA Method B cleanup level in the 8-foot sample from MW-1, and less than the anticipated Method B cleanup level in the 11 foot sample from MW-2. Both concentrations exceed the MTCA Method A cleanup level. Based on the results of our sampling from the monitoring well explorations, it is our opinion that the most cost-effective remedial approach for this site is to remediate to a MTCA Method B cleanup level for petroleum hydrocarbons. However, Method A cleanup levels should be achievable in the area that will be excavated by the sewer system contractor.

Petroleum concentrations in the ground water sample from MW-2 are 20 times higher than the MTCA Method A cleanup level. Petroleum concentrations in ground water in MW-2 could be reduced by the removal of petroleum-contaminated soil in the area. Because of the topography adjacent to Beaver Creek, it will be logistically difficult to excavate much closer to the creek than where MW-2 is located. However, a best effort should be attempted to remove as much contaminated soil as possible, minimizing any sediment that might enter the creek. It is unlikely that MTCA Method A cleanup levels will be immediately achieved in ground water adjacent to the creek near MW-2, even after soil remediation. Gradual improvement in ground water quality likely will occur over time after contaminated soil is removed from the area.

The estimated impacted soil volumes and remedial costs are provided in our August 13, 1999 memorandum. However, based on the results of the August 1999 explorations, it is estimated that the volume of petroleum-contaminated soil exceeding the MTCA Method B cleanup level may be 600 yd³, which is approximately 100 yds³ greater than our original estimate. Therefore, our revised cost estimate for a Method B-based cleanup at the site is \$42,000.

TABLE 1 SUMMARY OF SOIL FIELD SCREENING AND CHEMICAL ANALYTICAL DATA

SUDDEN VALLEY COMMUNITY ASSOCIATION AREA Z **BELLINGHAM, WASHINGTON**

Sample Number/ Depth of	Date	Field Screening Headspace Vapors	Results	-		TX² ı/kg)		Gasoline- range Hydrocarbons ³	Diesel- range Hydrocarbons⁴	Heavy Oil- range Hydrocarbons ⁴
Sample ¹	Sampled	(ppm)	Sheen	В	Е	T	Х	(mg/kg)	(mg/kg)	(mg/kg)
MW-1-8	08/27/99	<1.00	MS		-		-	_	14,100	<275
MW-1-13	08/27/99	<1.00	NS	-	-	_	_	_	<10.0	<25.0
MW-2-11	08/27/99	<1.00	HS	<0.100	<0.100	<0.100	<0.200	72.7	1,780	<125
IMW-3-8	08/27/99	<1.00	SS		-	7	-	_	<10.0	<25.0
TCA Method A	Cleanup Level			0.5	20	40	20	100	200	200

Notes: Approximate sample locations are shown in Figure 1 'B = benzene, E= ethylbenzene, T = toluene, X = xylenes. BETX analyzed by EPA Method 8021B. ³Analyzed by Ecology Method NWTPH-Gx. Analyzed by Ecology Method NWTPH-Dx ppm = parts per million mg/kg = milligrams per kilogram -- = not analyzed Shading indicates concentration exceeds the MTCA Method A cleanup level. Chemical analyses conducted by North Creek Analytical of Bothell, Washington:

p:\01\finals\7536002t1.xls

TABLE 2 SUMMARY OF GROUND WATER ELEVATIONS AND CHEMICAL ANALYTICAL DATA

SUDDEN VALLEY COMMUNITY ASSOCIATION AREA Z

BELLINGHAM, WASHINGTON

		Depth to Ground						Gasoline-	Diesel-	Heavy Oil-
		Water from	Ground Water		BE.	BETX ³		range	range	range
Sample	Date	Ground Surface	Elevation ²		Э́Д)	(hg/l)		Hydrocarbons ⁴	Hydrocarbons ⁵	Hydrocarbons ⁵
Number ¹	Sampled	(feet)	(feet)	В	Э	Τ	×	(mg/l)	(mg/l)	(mg/l)
MW-1	08/31/99	10.79	88.25	<0.500	<0.500	<0.500	<0.100	<0.0500	0.515	<0.500
MW-2	08/31/99	7.91	90.87	0.660	<0.500	0.670	<0.100	(.59	19.2	<2.50
MW-3	08/31/99	11.11	92.02	<0.500	<0.500	<0.500	<0.100	<0.0500	<0.250	<0.500
Purge	08/31/99	ΑN	Ą	<0.500	<0.500	<0.500	<0.100	1		
MTCA Method A Cleanup Level	Cleanup Level		~ .	5	Oε	40	20	100	200	200

Notes:

Approximate monitoring well locations are shown in Figure 1.

²Elevations are measured relative to a temporary benchmark with an assumed elevation of 100 00 feet

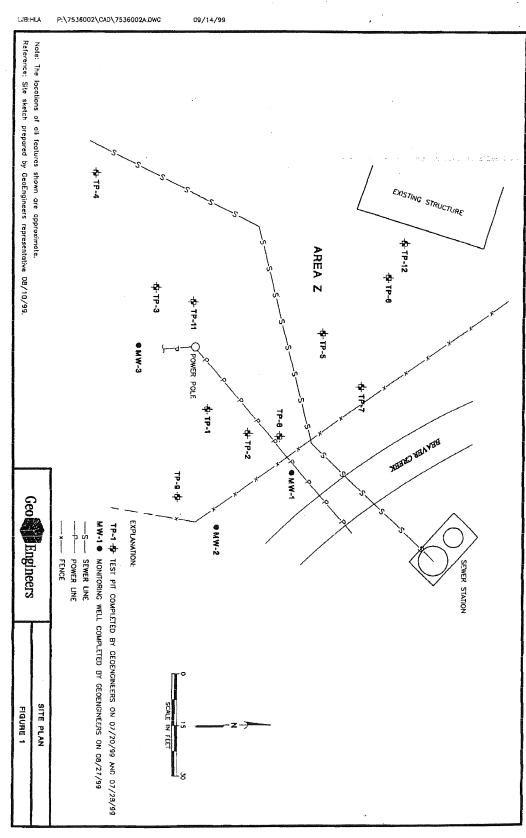
B = benzene, E = ethylbenzene, T = toluene, X = xylenes. BETX analyzed by EPA Method 8021B.

Analyzed by Ecology Method NWTPH-Gx

Analyzed by Ecology Method NWTPH-DX

Purge water sample also analyzed for fats, oit and grease (FOG) by EPA Method 413.2. FOG were detected at a concentration of 5.88 mg/l.

ug/l ≅ micrograms per liter


mg/l = milligrams per liter --= not analyzed

NA = not applicable

Shading indicates a concentration exceeding the MTCA Method A cleanup level.

Chemical analyses conducted by North Creek Analytical of Bothell Washington

p:\01\finals\7536002\12x\s

ATTACHMENT A

SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISION	IS	GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN GRAVEL	gw	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COARSE	GRAVEL	CLEAN GRAVEL	GP	POORLY-GRADED GRAVEL
GRAINED SOILS	More Than 50% of Coarse Fraction Retained	GRAVEL	GM	SILTY GRAVEL
	on No. 4 Sleve	WITH FINES	gc	CLAYEY GRAVEL
	SAND	OLFANI DANID	sw	WELL-GRADED SAND, FINE TO COARSE SAND
More Than 50%	SANU	CLEAN SAND	SP	POORLY-GRADED SAND
Retained on No. 200 Slava	More Than 50% of Coarse Fraction	SAND	SM	SILTY SAND
	Passes No. 4 Sieve	WITH FINES	sc	CLAYEY SAND
- FINE	SILT AND CLAY	(1100 a 1110	- ML	SILT
FINE GRAINED	SILI AND CLAY	INORGANIC	CL	CLAY
SOILS	Liquid Limit Less Then 50	ORGANIC	οL	ORGANIC SILT, ORGANIC CLAY
M . T. TOY			мн	SILT OF HIGH PLASTICITY, ELASTIC SILT
More Than 50% Passes	Silt and Clay	INORGANIC	СН	CLAY OF HIGH PLASTICITY, FAT CLAY
No. 200 Sleve	Liquid Limit 50 or More	ORGANIC	он	ORGANIC CLAY, ORGANIC SILT
	HIGHLY ORGANIC SOILS		PT	PEAT

NOTES:

- Fleid classification is based on visual examination of soil in general accordance with ASTM D2488-90.
- 2. Soil classification using laboratory tests is in general accordance with ASTM D2487-90.
- Descriptions of soil density or consistency are based on interpretation of blow count data, visual appearance of soils, and/or test data.

SOIL MOSTURE MODIFIERS:

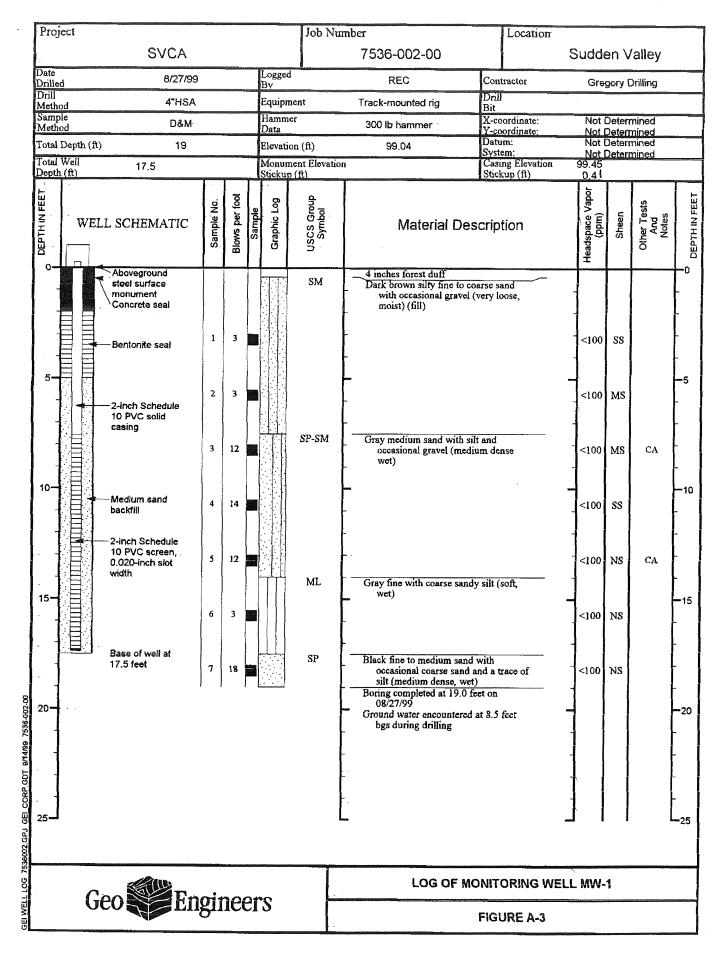
Dry - Absence of moisture, dusty, dry to the touch

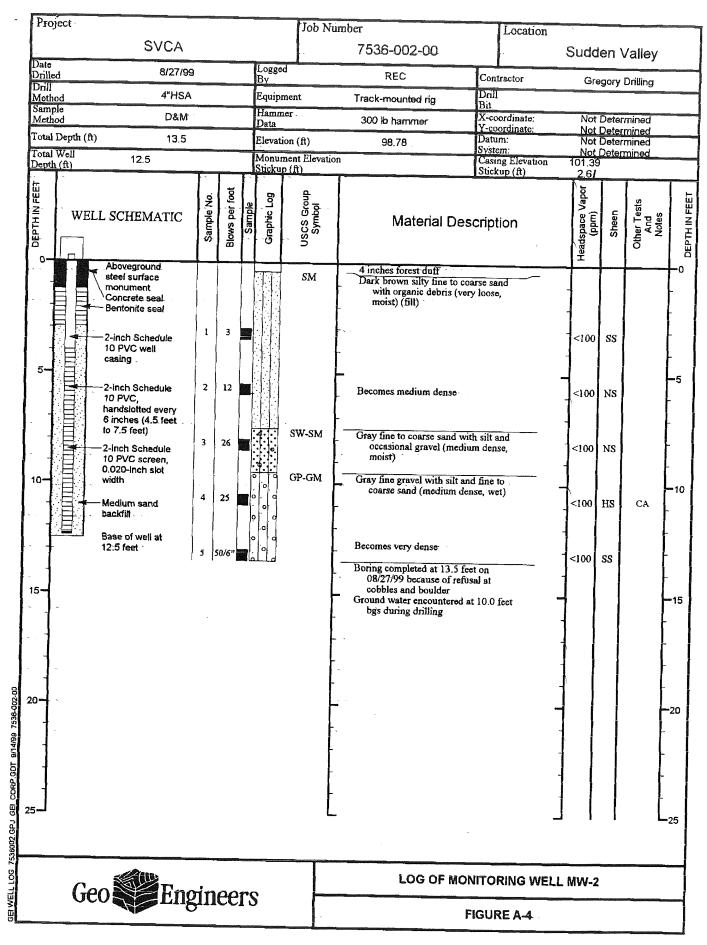
Molet - Damp, but no visible water

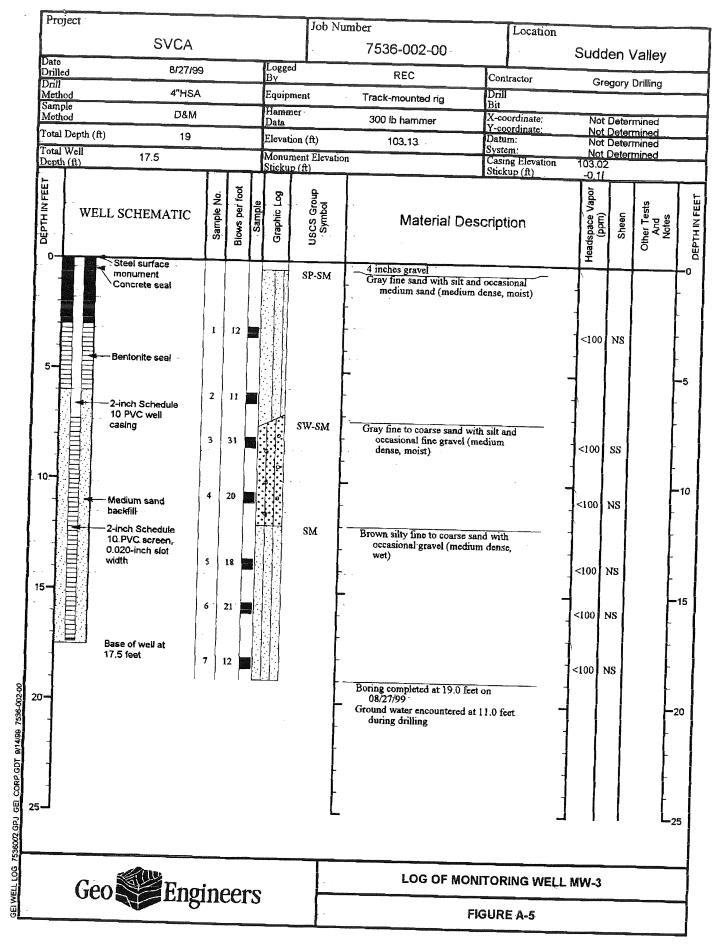
Wet - Visible free water or saturated, usually soil is obtained from below

water table

SOIL CLASSIFICATION SYSTEM


FIGURE A-1


LABORATORY TESTS SOIL GRAPH: CA Chemical Analysis Soil Group Symbol SM **FIELD SCREENING TESTS:** (See Note 2) Headspace vapor concentration data given in parts per million Sheen classification system: Distinct Contact Between Soil Strata NS No Visible Sheen Slight Sheen SS Gradual or Approximate MS Moderate Sheen Location of Change Heavy Sheen HS Between Soil Strata NT Not Tested **BLOW COUNT/SAMPLE DATA:** Water Level **Bottom of Boring** 22 Location of relatively undisturbed sample Blows required to drive a 2.4-inch i.D. 12 \(\) Location of disturbed sample split-barrel sampler 12 inches or other indicated distances using a 17 \ Location of sampling attempt 300-pound hammer falling 30 inches. with no recovery 10 Location of sample obtained Blows required to drive a 1.5-inch I.D. in general accordance with (SPT) split-barrel sampler 12 inches Standard Penetration Test or other indicated distances using a (ASTM D-1586) procedures 140-pound hammer falling 30 inches. Location of SPT sampling attempt with no recovery Location of grab sample "P" indicates sampler pushed with weight of hammer or against weight of drill rig. NOTES: 1. The reader must refer to the discussion in the report text, the Key to Boring Log Symbols and the exploration logs for a proper understanding of subsurface conditions. Soil classification system is summarized in Figure A-1.



KEY TO BORING LOG SYMBOLS

FIGURE A-2

Report of Remedial Excavation Activities,

Area Z

Sudden Valley Community Association Bellingham, Washington

May 23, 2000

For Sudden Valley Community Association

GeoEngineers

File No. 7536-002-01-1150

May 23, 2000

Sudden Valley Community Association 2145 Lake Whatcom Boulevard Bellingham, Washington 98226

Attention: Dave Olson

We are submitting two copies of our "Report of Remedial Excavation Activities, Area Z" for the Sudden Valley Community Association located in Bellingham, Washington. Our services were completed in general accordance with the scope of services provided in our Services Agreement dated February 8, 2000. Our services were authorized by you on February 10, 2000. Soil sampling of the excavation limits was conducted in accordance with Washington Administrative Code (WAC) 173-340. This report serves as a site characterization and independent remedial action report, also in accordance with WAC 173-340.

We appreciate the opportunity to be of service to the Sudden Valley Community Association. Please call if you have questions regarding this report.

Yours very truly,

GeoEngineers, Inc.

Charles S. Lindsay, P.G., P.HG. Associate Hydrogeologist

LJB:CSL:ja p:\01\finals\753600201Rbes.doc

cc: Washington State Dept. of Ecology

Northwest Regional Office 3190 - 160th Avenue S.E. Bellevue, WA 98008

GeoEngineers, Inc.

8410 154th Avenue N.E.

Redmond, WA 98052

Telephone (425) 861-6000

Fax (425) 861-6050

www.geoengineers.com

CONTENTS

	Page No.
INTRODUCTION	1
PURPOSE AND SCOPE	2
REMEDIAL EXCAVATION ACTIVITIESGENERAL SOIL SAMPLING RESULTS	3 3 3
INTERIM TPH POLICY EVALUATION GENERAL BACKFILLING SOIL STOCKPILE ON-SITE LANDFARM OF PETROLEUM-CONTAMINATED SOIL WASTE WATER DISPOSAL	3
CONCLUSIONS	5
RECOMMENDATIONS	6
LIMITATIONS	7
TABLES	Table No.
SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS – MARCH 2000 REMEDIAL EXCAVATION SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS – TEMPORARY STOCKPI SUMMARY OF SOIL FIELD SCREENING AND CHEMICAL ANALYTICAL RESULTS SAMPLE EX-7-10 WASTEWATER DISCHARGE DATA	1 1 2 3 4
FIGURES	Figure No.
VICINITY MAP REMEDIAL EXCAVATION LIMITS AND SAMPLE LOCATIONS	1 2

CONTENTS (Continued)

APPENDICES	Page No.
APPENDIX A – FIELD METHODS	A-1
FIELD SCREENING OF SOIL SAMPLES	A-1
APPENDIX B - CHEMICAL ANALYTICAL PROGRAM	B-1
ANALYTICAL METHODS	B-1
ANALYTICAL DATA REVIEW	B-1
ANALYTICAL DATA REVIEW SUMMARY	B-1
APPENDIX C - USE OF INTERIM TPH POLICY	C-1
INTERIM TPH POLICY METHODS	C-1
TOXICITY	C-1
FATE AND TRANSPORT	C-2
Soil Direct Contact Pathway	C-3
Other Pathways	C-3
APPENDIX C TABLE	Table No.
RESIDENTIAL HAZARD INDEX – SAMPLE EX-7-10' MTCA METHOD B SOIL CLEANUP LEVEL CALCULATION	C-1
BASED ON RESIDENTIAL DIRECT CONTACT	C-2

REPORT OF REMEDIAL EXCAVATION ACTIVITIES, AREA Z SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

INTRODUCTION

This report summarizes GeoEngineers' services during remedial excavation activities at Sudden Valley Community Association's (SVCA) Area Z located in Sudden Valley, Whatcom County, Washington. The site is owned by SVCA and is currently used for the storage of recreation vehicles. The activities described in this report were conducted between March 20 and March 30, 2000. The site is shown relative to surrounding features in the Vicinity Map, Figure 1. Whatcom County Water District No. 10 has proposed construction of a new sewer lift station within a portion of Area Z where petroleum contaminated soil was encountered in 1999. The approximate location of the proposed sewer lift station is shown in Figure 2.

GeoEngineers completed eleven shallow test pits (TP-1 to TP-11) in a portion of Area Z in July 1999 to characterize subsurface soil contamination encountered during previous geotechnical investigations at the site. The test pits were completed to depths ranging from 5 to 12.5 feet below ground surface (bgs). GeoEngineers obtained soil samples from various depths and submitted selected soil samples for chemical analysis for petroleum-related compounds. Chemical analytical results from the selected test pit soil samples ranged from 180 milligrams per kilogram (mg/kg) to 890 mg/kg for gasoline-range hydrocarbons, and 46 mg/kg to 6,200 mg/kg for diesel- and heavy oil-range hydrocarbons. The soil contamination appeared to be caused by releases from fuel pumps and/or piping that extended from a former diesel aboveground storage tank (AST) located to the west of the contaminated area. Based on field screening and chemical analytical results for soil samples obtained from the test pits, GeoEngineers estimated the limits of petroleum-related soil contamination, as discussed in our memorandum "Subsurface Soil Contamination in Area Z" dated August 13, 1999.

Additionally, GeoEngineers observed the completion of three monitoring wells (MW-1 to MW-3) to evaluate ground water conditions at the site, as discussed in our memorandum "Environmental Drilling and Sampling Results for Area Z" dated September 14, 1999. The monitoring well borings (MW-1 through MW-3) were completed at depths of approximately 13.5 to 19.0 feet bgs on August 27, 1999. MW-1 and MW-2 were located north of an existing fence, as close to Beaver Creek as the drill rig was able to work (Figure 2). These wells were located hydraulically downgradient from the soil contamination. MW-3 is located in the vehicle parking area, upgradient of the identified soil contamination area (Figure 2). Diesel-range hydrocarbons were detected in sample MW-1-8 (14,100 mg/kg) and MW-2-11 (1,780 mg/kg) at concentrations exceeding the MTCA Method A cleanup level of 200 mg/kg.

Depths to ground water in the monitoring wells ranged from 8 to 11 feet bgs on August 31, 1999. The shallow ground water flow direction was estimated to be generally to the north

(toward Beaver Creek), based on the calculated ground water elevations. Chemical analytical data for the August 1999 ground water samples indicate benzene, ethylbenzene, toluene and xylenes (BETX) either were not detected or were detected at concentrations less than the MTCA Method A cleanup levels. Diesel-range hydrocarbons were detected at a concentration less than the MTCA Method A cleanup level in sample MW-1 (0.515 milligrams per liter [mg/l]). The sum of gasoline- and diesel-range hydrocarbon concentrations (20.8 mg/l) detected in water sample MW-2 exceeded the MTCA Method A cleanup level of 1 mg/l. Petroleum compounds were not detected in sample MW-3.

PURPOSE AND SCOPE

The purpose of our services was to observe and document remedial activities in the area of known petroleum-related contamination in Area Z. The goal of the remedial activities was to remove all petroleum-hydrocarbon contaminated soil greater than MTCA Method A cleanup levels; however, where removal of soil with concentrations greater than MTCA Method A cleanup levels was not possible, the soil was evaluated with respect to the Washington State Department of Ecology's (Ecology) Interim Interpretive and Policy Statement, Cleanup of Total Petroleum Hydrocarbons (Interim TPH Policy). Our specific scope of services completed for this project is presented below:

- 1. Observed remedial excavation activities.
- 2. Assisted the contractor in segregation of excavated soil into apparently noncontaminated and contaminated soil stockpiles.
- 3. Obtained soil samples from the limits of the excavation.
- 4. Conducted field screening on each soil sample from the excavation and apparently noncontaminated stockpile for evidence of petroleum-related contamination using visual, water sheen and headspace vapor screening methods.
- 5. Submitted 26 soil samples from the limits of the excavations for chemical analysis of total diesel- and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx.
- 6. Submitted one selected sample for chemical analysis of total volatile petroleum hydrocarbons (VPH), BETX, methyl tert butyl ether (MTBE), total extractable petroleum hydrocarbons (EPH) and polycyclic aromatic hydrocarbons (PAHs) by Ecology Interim TPH Policy methods and EPA Methods 8260 and 8270.
- Submitted ten discrete samples from the apparently noncontaminated, overburden excavated soil for chemical analysis of diesel-range hydrocarbons and heavy oil-range hydrocarbons by Ecology Method NWTPH-Dx.
- 8. Obtained a sample from MW-1 to characterize the excavation water for disposal via the sanitary sewer. The water sample was analyzed for flashpoint by EPA Method 1010; and fats, oils and grease (FOG) by EPA Method 1664.
- 9. Calculated a site-specific MTCA Method B Cleanup level for protection of human health by direct contact with soil.

- 10. Observed the preparation and construction of a landfarm cell. Provided recommendations to the contractor as to the location, size and orientation of the landfarm cell.
- 11. Evaluated the compaction of the backfill using a combination of probing with a ½-inch-diameter steel probe rod and in-place density testing with a nuclear density gauge.
- 12. Evaluated the field and laboratory data with respect to current regulatory guidelines.

REMEDIAL EXCAVATION ACTIVITIES

GENERAL

A remedial excavation was completed in the vicinity of the proposed sewer lift station on March 20 to 24 and March 30, 2000 by Ram Construction of Bellingham, Washington. A representative of GeoEngineers observed remedial excavation activities. Soil samples (EX-1-10 through EX-26-8) were obtained from the limits of remedial excavation and submitted to verify that petroleum contamination had been successfully removed. An active, 10-inch-diameter clay tile sanitary sewer line was encountered extending east-west through the northern portion of the excavation. The sanitary sewer line was removed during excavation activities and replaced by Whatcom County Water District No. 10 in clean, imported material. Monitoring wells MW-1 and MW-2 were removed during remedial excavation activities.

Approximate soil sampling locations are shown in Figure 2. A description of our field methods is presented in Appendix A. Summaries of soil and water chemical analytical data are presented in Tables 1 through 4. Chemical analytical data sheets are presented in Appendix B.

SOIL SAMPLING RESULTS

Field screening results indicated that petroleum contamination was removed from the excavation limits with the following exceptions: Soil samples EX-7-10 and EX-25-10 displayed heavy and moderate sheens, respectively.

Petroleum hydrocarbons were not detected at concentrations exceeding the MTCA Method A cleanup levels in the samples from the final limits of the remedial excavation, with the exception of samples EX-7-10 and EX-25-10 (Table 1). The petroleum hydrocarbon concentration detected in sample EX-7-10 was significantly below the site-specific Method B cleanup level (see the following section). The petroleum hydrocarbon concentration detected in soil sample EX-25-10 exceeded the site-specific MTCA Method B cleanup level; however, the additional soil in that area could not be removed because of the close proximity to Beaver Creek. Soil samples that were removed by overexcavation (EX-4-8.0 and EX-6-12.0) are noted as such in Table 1. Petroleum hydrocarbons were detected at concentrations less than MTCA Method A cleanup levels in confirmation soil sample EX-26-8 obtained from the overexcavation area near EX-4-8.0.

INTERIM TPH POLICY EVALUATION

GENERAL

The MTCA Method A cleanup level for diesel-range and heavy oil-range hydrocarbons (200 mg/kg each) in soil cannot be adjusted to account for specific properties of the petroleum

product, such as the possible absence of the more toxic constituents (i.e., volatile and/or carcinogenic fractions of hydrocarbons). The Interim TPH Policy allows for calculation of a site-specific MTCA Method B cleanup level for the petroleum product in soil based on the actual constituents present in the petroleum. GeoEngineers used the Interim TPH Policy methodology to (1) calculate a site-specific MTCA Method B TPH soil cleanup level, and (2) evaluate the risk of remaining petroleum hydrocarbons in soil at the site. The reader is referred to Appendix C of this report and the Interim TPH Policy for background information and assumptions that pertain to the use of the Interim TPH Policy.

EPH and VPH fractions, BETX and non-carcinogenic PAHs were detected in sample EX-7-10 (Table 4). Based on the collected chemical analytical data data, we calculated a site-specific MTCA B cleanup level for TPH of 3,672 mg/kg (Table C-2).

BACKFILLING

The remedial excavation was backfilled to a depth of 2.5 to 3 feet below initial site grade with imported bank run (sand and gravel). The contractor used a dozer and a vibratory drum roller to place the material. The backfill was dumped at the west edge of the excavation, bladed into loose lifts approximately 1-foot thick, and compacted with several passes of the roller. Ground water that flowed into the excavation was pumped out with a sump pump (see the "Wastewater Disposal" section of this report.

A representative from GeoEngineers visited the site daily during backfilling. Compaction was evaluated using observations of contractor practices, surface performance under the compactor, probing with a ½-inch diameter probe rod, and density tests with a nuclear density gage.

The first two days of filling proceeded while leaving an area at the north side of the excavation open. This area was about 10 feet wide and extended from the manhole at the north edge of the excavation to the east edge of the excavation. On the third day of backfilling, additional contaminated soil was removed from the north edge of the remedial excavation and placed in the on-site landfarm. The area then was backfilled in the same manner as the remainder of the remedial excavation. The additional remedial excavation work and backfilling of the bottom 6 feet along the north edge of the excavation were not observed by the representative of GEI. Compaction of overlying backfill was evaluated during subsequent site visits.

SOIL STOCKPILE

Approximately 375 cubic yards of potentially clean overburden were segregated and placed in a stockpile near to the remedial excavation. A total of ten soil stockpile samples (SP-1 to SP-5 and CSP-1 to CSP-5) were submitted for analysis of diesel- and heavy oil-range hydrocarbons (Table 2). Petroleum concentrations in five of the ten samples exceeded the MTCA Method A cleanup levels for diesel- or heavy oil-range hydrocarbons. Therefore, the stockpile was not used as backfill and instead was transferred to the on-site landfarm.

ON-SITE LANDFARM OF PETROLEUM-CONTAMINATED SOIL

A total estimated volume of 2,500 cubic yards of soil with petroleum hydrocarbons at concentrations exceeding MTCA Method A cleanup levels was removed from the remedial excavation and transferred to the on-site landfarm. The 140-foot by 140-foot and 3-foot-high landfarm is located just west of an unpaved parking area on site, to the west of the excavation area. The landfarm cell was constructed using 6-millimeter thick plastic liner at the base of the cell. The cell was surrounded by hay bales. The contaminated soil was covered with 6-millimeter thick plastic and sand bags were used to secure the plastic in place.

WASTE WATER DISPOSAL

A ground water sample was obtained from MW-1 and analyzed for fats, oils and greases (FOG) and flashpoint on March 20, 2000 (Table 4). Based on the results of sample MW-1, the wastewater was approved by Water District No. 10 for discharge into the sanitary sewer. Water entering the excavation was pumped directly into the sanitary sewer manhole located at the north side of the excavation using a sump pump. During discharge the water was monitored for flow rate, sheen, odor and turbidity (Table 4). A total of approximately 19,200 gallons of water were discharged into the sanitary sewer.

CONCLUSIONS

The following is a summary of the remedial activities conducted at the site.

- A site-specific MTCA Method B cleanup level of 3,672 mg/kg that is protective of direct contact of petroleum hydrocarbons was calculated for petroleum-impacted soil.
- Petroleum hydrocarbons in soil were successfully remediated to less than the MTCA Method A cleanup level at the limits of the remedial excavation, with the exception of the area near EX-7-10 and EX-25-10, located at the northern limit of the remedial excavation. Petroleum hydrocarbons were detected significantly less than the site-specific MTCA Method B cleanup level in soil sample EX-7-10. Soil sample EX-25-10, which could not be overexcavated because of the proximity to Beaver Creek, had a petroleum hydrocarbon concentration that exceeds the site-specific MTCA Method B cleanup level.
- It is likely that residual soil contamination near EX-25-10, at the northern limit of the remedial excavation, is in contact with ground water table.
- Approximately 2,500 cubic yards of petroleum-contaminated soil were excavated in March 2000. The petroleum-contaminated soil was placed in an on-site landfarm for future treatment.
- Monitoring wells MW-1 and MW-2 were removed during remedial activities.
- The excavation backfill was generally compacted to at least 95% of the maximum dry density (MDD) in substantial accordance with our recommendations and the plans and specifications.

RECOMMENDATIONS

Two new monitoring wells should be installed to replace monitoring wells MW-1 and MW-2, which were removed during remedial excavation activities. One well should be placed downgradient of EX-25-10, if possible, and the second well in the approximate location of removed MW-2 to evaluate the impact of residual soil contamination on ground water. The monitoring wells should be sampled for four consecutive quarters. Additional ground water sampling should be evaluated after the end of the first year.

The proposed on-site treatment of contaminated soil is landfarming. Landfarming operations should be conducted at the site during periods of drier, warmer weather. The practical landfarming season in the Puget Sound region ranges from about May through September, pending weather conditions. The landfarm cell should be monitored routinely by personnel who are present at the site on a routine basis. Routine monitoring activities will include observation of the runoff drainage system, and integrity of the cover during periods of wet weather.

Landfarming activities should involve tilling the soil on a schedule determined to be most effective. We anticipate that tilling should be conducted approximately every three weeks. Water should be added to the landfarm cell, as needed, to maintain slightly moist conditions.

Testing should be conducted, as tilling proceeds, to determine when petroleum-related contamination in the upper portion of the treatment cell has been reduced to concentrations below MTCA Method A cleanup levels. Soil samples should be collected from depths that are believed to be successfully treated (likely 6 to 12 inches). Approximately four discrete soil samples should be obtained from the landfarm cell during each sampling event. The total number of samples obtained during the soil remediation should depend upon the variability of the analytical results. Each soil sample should be submitted for chemical analysis of diesel- and heavy oil-range hydrocarbons using Ecology Method NWTPH-D extended.

In the event that some of the confirmatory soil samples have analyte concentrations slightly exceeding MTCA Method A cleanup levels, only those portions of the landfarm cell in which the confirmatory soil samples have analyte concentrations less than MTCA Method A cleanup levels should be removed. After removing an entire lift or portions of a lift, tilling will begin on the underlying, untreated soil.

Treated soil removed from the landfarm cell should qualify as Class 1 or Class 2, soil based on Ecology's end use criteria. Soil that is removed from the landfarm cell should be used or spread on site. This end use of the treated soil is in accordance with Ecology guidelines for Class 1 or Class 2 soil.

Depending on weather conditions, we anticipate that all of the soil may be treated at the site during a summer of landfarming activities.

LIMITATIONS

We have prepared this report for use by Sudden Valley Community Association. This report also may be made available to Ecology, other state and local agencies and potential site purchasers. This report is not intended for use by others and the information contained herein is not applicable to other sites.

Our interpretations of subsurface conditions are based on observations and testing data from the explored portions of the site. It is possible that contamination is present in areas of the site that have not been explored or tested.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

We appreciate the opportunity to be of service on this project. Please call if you have questions regarding our report.

Respectfully submitted,

GeoEngineers, Inc.

disaj. Bona

Lisa J. Bona

Senior Geologist

Charles S. Lindsay, P.G., P.HG.

Associate Hydrogeologist

BES:LJB:CSL:ja p:\01\finals\753600201R.doc

TABLE 1 (PAGE 1 OF 2) SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS MARCH 2000 REMEDIAL EXCAVATION

AREA Z, SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

Sample Number/			Field Screen	ing Results ²	Diesel-range	Heavy Oil-range
Depth of Sample	Date	General	Headspace		Hydrocarbons ³	Hydrocarbons ³
(bgs)	Sampled	Location	Vapors (ppm)	Sheen	(mg/kg)	(mg/kg)
EX-1-10.0	03/21/00	Northeast Sidewall	<100	SS	27.0	<50.0
EX-2-12.0	03/21/00	Base	<100	NS	<25.0	<50.0
EX-3-11.0	03/21/00	East Sidewall	<100	NS	<25.0	<50.0
EX-4-8.0	03/21/00	Northeast Sidewall	1,000	HS	13,000	<1,000
EX-5-12.0	03/21/00	Base	<100	NS	<25.0	<50.0
EX-6-12.0	03/21/00	North Sidewall	150	HS	4,300	<500
EX-7-10.0	03/21/00	North Sidewall	1,000	HS	1,900	<100
EX-8-12.0	03/21/00	Base	<100	NS	<25.0	<50.0
EX-9-10.0	03/22/00	East sidewall		NS	<25.0	<50.0
EX-10-10,0	03/22/00	Southeast sidewall		NS	<25.0	<50.0
EX-11-11.0	03/22/00	South Sidewall		NS	<25.0	<50.0
EX-12-12.0	03/22/00	Base		NS	<25.0	<50.0
EX-13-12.0	03/22/00	Base		NS	<25.0	<50.0
EX-14-9.0	03/22/00	South Sidewall		NS	<25.0	<50.0
EX-15-9.0	03/23/00	North Sidewall		NS	140	<50.0
EX-16-8.0	03/23/00	Northwest Sidewall		NS	<25.0	<50.0
EX-17-8.0	03/23/00	West Sidewall	**	NS	<25.0	<50.0
EX-18-10.0	03/23/00	Base		NS	<25.0	<50.0
EX-19-12.0	03/23/00	Base		NS	<25.0	<50.0
EX-20-11.0	03/24/00	Base		NS	<25.0	<50.0
EX-21-12.0	03/24/00	Base	-	NS	<25.0	<50.0
EX-22-10.0	03/24/00	Base	***	NS	<25.0	<50.0
EX-23-9.0	03/24/00	East Sidewall		NS	<25.0	<50.0
EX-24-8.0	03/24/00	Southeast Sidewall		NS	<25.0	<50.0
EX-25-10.0 ⁵	03/30/00	North Sidewall	150	MS	5,900	<500
EX-26-8.0 ⁵	03/30/00	Northwest Sidewall	<100	NS	33	<50.0
MTCA ⁶ Method A Cleanup L	evel				200	200
Site-specific MTCA ⁶ Method	B Cleanup Level				3,6	72
otes annear on hage 2 of 2					0,0	

Notes appear on page 2 of 2

TABLE 1 (PAGE 2 ()F 2)

Notes:	
[†] Approximate soil sample location	are shown in Figure 2.
² NS =no sheen, SS=slight sheen;	/IS=moderate sheen; HS=heavy sheen: Headspace vapor results: were obtained with a TLV combustible gas meter.
Field procedures are summarize	lin Appendix A.
³ Analyzed by Ecology Method NV	TPH DX.
⁴ Depth is given below ground suri	ice on slope; approximately equivalent to 12 feet below surrounding sile grade:
⁵ EX-26-8.0 is confirmation sample	at limit of excavation after overexcavation of EX-4-8; EX-25-10 was obtained at limit of excavation after overexcavation of EX-6-12.
⁶ MTCA = Model Toxics Control A	
bgs ≒ below ground surface	
mg/kg = milligrams per kilogram;	"" = not measured
Shaded results indicates a conce	Iration that exceed MTCA Method B cleanup level.
Shaded sample numbers indicate	hat additional soil was removed from this area and the area was resampled.
Chemical analyses by CCI Analyti	i al Laboratories. Inc. of Everett. Laboratory reports are provided in Appendix B.

p:\02\finals\tables\7536002t1.xls

TABLE 2 SUMMARY OF SOIL CHEMICAL ANALYTICAL RESULTS TEMPORARY STOCKPILE

AREA Z, SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

		Field Screening Results ¹		Diesel-range	Heavy Oil-range
Sample	Date	Headspace		Hydrocarbons ³	Hydrocarbons ³
Number	Sampled	Vapors (ppm)	Sheen	(mg/kg)	(mg/kg)
CSP-1	03/21/00	-	NS	480	160
CSP-2	03/21/00		NS	32.0	180
CSP-3	03/21/00	-	NS	34.0	84.0
CSP-4	03/21/00	-	NS	160	<50.0
CSP-5	03/21/00	.=	NS	240	110.0
SP-1	03/28/00	-		120	290
SP-2	03/28/00		-	430	<50.0
SP-3	03/28/00	-	-	110	190
SP-4	03/28/00	~	_	270	57.0
SP-5	03/28/00	-		67.0	<50.0
MTCA ³ Method A Cleanup Level				200	200

Notes:

¹NS=no sheen, SS=slight sheen, MS=moderate sheen, HS=heavy sheen. Headspace vapor results were obtained with a TLV combustible gas meter. Field procedures are summarized in Appendix A.

mg/kg = milligrams per kilogram; "-" = not measured

Shaded results indicate concentrations that exceed MTCA Method A cleanup level.

Chemical Analyses by CCI Analytical Laboratories, Inc. of Everett, Washington. Laboratory reports are reported in Appendix B.

p:\02\finals\tables\7536002t2.xis

²Analyzed by Ecology Method NWTPH-Dx

³MTCA = Model Toxics Control Act.

TABLE 3 (Page 1 of 2) SUMMARY OF SOIL FIELD SCREENING AND CHEMICAL ANALYTICAL RESULTS

SAMPLE EX-7-10

Area Z, Sudden Valley Community Association Bellingham, Washington

Description	Sample Number EX-7-10 ¹	MTCA Method B Cleanup Level ² (mg/kg)	
Date Sampled	03/21/00		
Depth of Sample (feet bgs)	10.0		
Field Screening Results ³			
Headspace Vapors (ppm)	1,000		
Sheen	HS		
TPH ⁴ (mg/kg)	(A DESCRIPTION AND A STATE OF A		
Diesel-range Hydrocarbons	1,900		
Heavy Oil-range Hydrocarbons	<100		
VPH ⁵ (mg/kg)			
Aliphatics			
EC5-EC6	<5.00	50 TO SECTION OF THE	
EC6-EC8	<5.00	2002年於學為改革的思想於WUL	
EC8-EC10	5.00		
EC10-EC12			
Aromatics			
EC8-EC10	<5.00		
EC10-EC12	_		
EC12-EC13	-		
Other Volatile Petroleum Hydrocarbons ⁵ (mg/kg)			
Benzene	<0.500	34.5	
Ethylbenzene	<0.500	8,000	
Toluene	<0.500	16,000	
Xylenes	<1.00	160,000	
MTBE	<0.500	NE	
EPH ⁶ (mg/kg)			
Aliphatics	GROWN AND		
EC8-EC10			
EC10-EC12	18.0	ELECTRICAL STATE OF THE STATE	
EC12-EC16	200	(1) # 10 mm (1) 1	
EC16-EC21	240		
EC21-EC34	50.0		
Aromatics			
EC8-EC10	-		
EC10-EC12	<5.00	22 00 mm (14 mm) (14	
EC12-EC16	15.0		
EC16-EC21	150	2000年1月1日日日1日日 1000年10日 - 1000日 1	
EC21-EC34	47.0		

Table 3 (Page 2 of 2)

Description	Sample Number EX-7-10 ¹	MTCA Method B Cleanup Level ² (mg/kg)	
PAHs ⁶ (mg/kg)			
Carcinogenic	XIII 95 模型 模		
Benzo(a)anthracene	<0.020	0.137	
Benzo(b)fluoranthene	<0.020	0.137	
Benzo(k)fluoranthene	<0.020	0.137	
Benzo(a)pyrene	<0.020	0.137	
Chrysene	<0.020	0.137	
Dibenzo(a,h)anthracene	<0.020	0.137	
Indeno(1,2,3-cd)pyrene	<0.020	0.137	
Voncarcinogenic			
Acenaphthene	<0.020	4,800	
Acenaphthylene	<0.020	NE	
Anthracene	<0.020	24,000	
Benzo(ghi)perylene	<0.020	NE	
Fluorene	<0.020	3,200	
Fluoranthene	<0.020	3,200	
Naphthalene	<0.020	3,200	
Phenanthrene	<0.020	NE	
Pyrene	<0.0100	2,400	

Notes:

¹The approximate sample location is shown in Figure 2.

⁶EPH = extractable petroleum hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) Ecology Method (June 1997) and EPA Method 8270.

mg/kg = milligrams per kilogram

-= not analyzed or measured

ppm = parts per million

NE = not established

Chemical analyses conducted by CCI Analytical Laboratories, Inc. of Everett. The laboratory report is presented in Appendix B.

² From MTCA Cleanup Levels and Risk Calculations (CLARC II) Update February 1996 Publication #94-145

³ Field screening procedures are described in Appendix A. NS = no sheen, SS = slight sheen, MS = moderate sheen, HS = heavy sheen

TPH = total petroleum hydrocarbons. Gasoline-, diesel- and heavy oil-range hydrocarbons analyzed by Ecology NWTPH series.

⁵VPH = volatile petroleum hydrocarbons, BETX, naphthalene, and methyl tert butylether (MTBE) by Ecology Method (June 1997) and EPA Method 8260.

TABLE 4 WASTEWATER DISCHARGE DATA¹

AREA Z, SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

Date Measured or Sampled	Sample Number	Flashpoint ² (° F)	FOG ³ (mg/l)	Sheen⁴	Odor ⁵	Rate of Discharge ⁶ (gpm)	Total Volume Discharged (gallons)
03/20/00	MW-1	>200	8.0	SS	Moderate		***
03/21/00				NS	None	10	3,300
03/22/00		-		NS	None	10	4,800
03/23/00		-	144	NS	None	10	4,800
03/24/00		SINCE .	-	NS	None	15	3,600
03/30/00			-	NS	None	15	2,700

Notes:

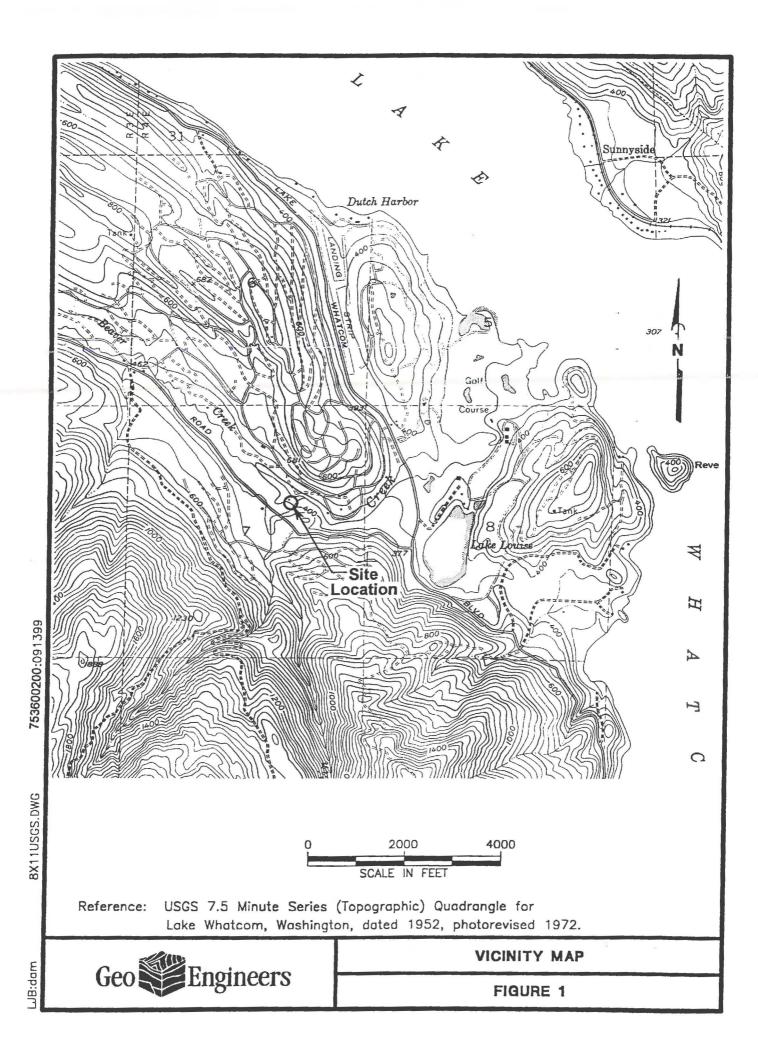
mg/l = milligrams per liter gpm = gallons per minute

Chemical analyses conducted by CCI Analytical Laboratories, Inc. of Everett, Washington. The laboratory report is provided in Appendix B.

p:\02\finals\tables\7536002t4.xls

¹Water from the remedial excavation was pumped into an on-site sanitary sewer line through an existing manhole.

²Analyzed by EPA Method 1010.


³FOG (Fats, Oils and Greases) analyzed by EPA Method 1664.


⁴Sheen was measured by visual observation at water discharge point, with the exception of sample MW-1.

⁵Odor was detected at discharge point, with the exception of sample MW-1.

⁶Discharge was measured by visual estimation.

[°]F = degrees Fahrenheit

APPENDIX A

FIELD METHODS

APPENDIX A

FIELD METHODS

FIELD SCREENING OF SOIL SAMPLES

A GeoEngineers representative field screened soil samples obtained from the excavations, soil stockpile and explorations. Field screening results are used as a general guideline to delineate areas of possible petroleum-related contamination. In addition, screening results are used to aid in the selection of soil samples for chemical analysis. The screening methods used include (1) visual screening, (2) water sheen screening, and/or (3) headspace vapor screening using a Bacharach TLV Sniffer.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons such as motor oil, or when hydrocarbon concentrations are high. Water sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. However, field screening results are site-specific. The effectiveness of field screening results will vary with temperature, moisture content, organic content, soil type and type and age of contaminant. The presence or absence of a sheen or headspace vapors does not necessarily indicate the presence or absence of petroleum hydrocarbons.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

No Sheen (NS)	No visible sheen on water surface.
---------------	------------------------------------

Slight Sheen (SS) Light, colorless, dull sheen; spread is irregular, not rapid; sheen

dissipates rapidly. Natural organic matter in the soil may

produce a slight sheen.

Moderate Sheen (MS) Light to heavy sheen; may have some color/iridescence; spread

is irregular to flowing, may be rapid; few remaining areas of no

sheen on water surface.

Heavy Sheen (HS) Heavy sheen with color/iridescence; spread is rapid; entire water

surface may be covered with sheen.

Headspace vapor screening involves placing a soil sample in a plastic sample bag. Air is captured in the bag, and the bag is shaken to expose the soil to the air trapped in the bag. The probe of a Bacharach TLV Sniffer is inserted in the bag, and the TLV Sniffer measures the concentration of combustible vapors present within the sample bag headspace. Headspace vapor screening targets volatile petroleum hydrocarbon compounds. The TLV Sniffer measures combustible vapor concentrations in ppm (parts per million) and is calibrated to hexane. The TLV Sniffer is designed to quantify combustible gas concentrations from 100 to 10,000 ppm in this application.

APPENDIX B

CHEMICAL ANALYTICAL PROGRAM

ANALYTICAL METHODS

Chain-of-custody procedures were followed during the transport of the field samples to CCI Analytical Laboratories, Inc. of Everett, Washington. The soil samples were held in cold storage pending extraction and/or analysis. The analytical results, analytical methods reference and laboratory quality control records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

ANALYTICAL DATA REVIEW

The laboratories maintain internal quality assurance programs as documented in their laboratory quality assurance manuals. The laboratories use a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the validity of the analytical results. The laboratories also use data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports, where appropriate. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. The data quality exceptions documented by the laboratory in the laboratory reports were reviewed by GeoEngineers.

ANALYTICAL DATA REVIEW SUMMARY

No significant data quality exceptions were noted in the laboratory report or during our review. Based on our data quality review, it is our opinion that the analytical data are of acceptable quality for their intended use.

MAR 2 7 2000

CERTIFICATE OF ANALYSIS

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/21/00

CCIL JOB #:

003073

CCIL SAMPLE #:

1

DATE RECEIVED:

WDOE ACCREDITATION #:

3/20/00 C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

MW-1 3/20/00 1230

	D	ATA RESUL	rs			
ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TOTAL FATS, OILS, GREASES	EPA-1664	8	MG/L		3/21/00	НЈК
FLASH POINT	EPA-1010	>200	DEG F		3/21/00	нјк

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/21/00

CCIL JOB #:

003073

DATE RECEIVED:

3/20/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

QUALITY CONTROL RESULTS

BLANK AND DUPLICATE RESULTS

METHOD

BLK RESULT

ASSOC SMPLS

DUP RESULT

ORIG RESULT

%RDP

ASSOC SMPLS

EPA-1664

ND(<1) 003073-01

N/A

N/A

SAME

SPIKE/ SPIKE DUPLICATE RESULTS

		ASSOCIATED	% SPIKE	% SPIKE DUP	
METHOD	SPIKE ID	SAMPLES	RECOVERY	RECOVERY	REL % DIFF
EPA-1664	MOTOR OIL	003073-01	99	N/A	N/A
EPA-1010	XYLENE	003073-01	100	N/A	N/A

**** %RPD NOT REPORTED FOR VALUES <X5 THE REPORTING LIMIT

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE: 3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

1

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-1-10' 3/21/00

ACTION ANALYSIS ANALYSIS ANALYTE METHOD **RESULTS*** UNITS** LEVEL*** DATE BY TPH-SEMIVOLATILE RANGE **NWTPH-DX** 27 MG/KG 3/22/00 SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

- * "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

GeoEngineers

APR 10 2000

Routing File

CERTIFICATE OF ANALYSIS

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/23/00

CCIL JOB #:

003079

CCIL SAMPLE #:

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-2-12' 3/21/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/22/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

[&]quot; UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/23/00

CCIL JOB #:

003079

CCIL SAMPLE #:

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-3-11' 3/21/00

DATA RESULTS

ANALYSIS

ANALYSIS

ANALYTE

METHOD

UNITS** RESULTS*

LEVEL***

ACTION DATE

BY

TPH-SEMIVOLATILE RANGE

NWTPH-DX

ND

MG/KG

3/22/00

SNC

^{* &}quot;NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE: 3/24/00

8410 154TH AVE. NE

CCIL JOB #: 003079

REDMOND, WA 98052

CCIL SAMPLE #:

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

NOTE:

EX-4-8' 3/21/00

DATA RESULTS

ACTION ANALYSIS ANALYSIS ANALYTE METHOD **RESULTS*** UNITS** LEVEL*** DATE BY TPH-SEMIVOLATILE RANGE **NWTPH-DX** 13000 MG/KG 3/24/00 SNC

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

- * "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 500 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 1000 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/23/00

CCIL JOB #:

003079

CCIL SAMPLE #:

DATE RECEIVED: WDOE ACCREDITATION #:

3/21/00 C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

TPH-SEMIVOLATILE RANGE

EX-5-12' 3/21/00

DATA RESULTS

ACTION

ANALYSIS

ANALYSIS

ANALYTE

METHOD

RESULTS*

UNITS**

LEVEL***

DATE

BY

NWTPH-DX

ND

MG/KG

3/22/00

SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-6-12' 3/21/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	4300	MG/KG		3/24/00	SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 250 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 500 MG/KG

- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

7

DATE RECEIVED:

/

WDOE ACCREDITATION #:

3/21/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-7-10' 3/21/00

DATA RESULTS

ACTION ANALYSIS ANALYSIS ANALYTE METHOD RESULTS* UNITS** LEVEL*** DATE BY TPH-SEMIVOLATILE RANGE **NWTPH-DX** 1900 MG/KG 3/24/00 SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

- * "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 50 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 100 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

4/5/00

CCIL JOB #:

003079

CCIL SAMPLE #:

7

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID: CLIENT SAMPLE ID:

7536-002-02

EX-7-10' 3/21/00

DATA RESULTS

				REPORTING	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LIMIT	DATE
VOLATILE PETROLEUM HYDROCARE	ONS				
C5-C6 ALIPHATICS	WDOE-VPH	U	MG/KG	5	4/1/00
>C6-C8 ALIPHATICS	WDOE-VPH	U	MG/KG	5	4/1/00
>C8-C10 ALIPHATICS	WDOE-VPH	5	MG/KG	-5	4/1/00
>C8-C10 AROMATICS	WDOE-VPH	บ	MG/KG	5	4/1/00
TOTAL ALIPHATICS		10	MG/KG	8	
TOTAL AROMATICS+B-E-X		3	MG/KG	3	
BENZENE	WDOE-VPH	U	MG/KG	0.5	4/1/00
TOLUENE	WDOE-VPH	U	MG/KG	0.5	4/1/00
ETHYLBENZENE	WDOE-VPH	U	MG/KG	0.5	4/1/00
XYLENES	WDOE-VPH	U	MG/KG	1	4/1/00
METHYL TERT BUTYL ETHER (MTBE)	WDOE-VPH	U	MG/KG	0.5	4/1/00

SURROGATES

% RECOVERY

BFB

106

NOTE:

TOTAL ALIPHATICS AND AROMATICS ARE BASED ON EC RANGE "U" RESULTS SUMMED AT 1/2 OF RPT LIMIT

^{* &}quot;U" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT

 $^{^{\}star\star}$ UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: GEOENGINEERS, INC.

DATE:

4/5/00

8410 154TH AVE. NE

CCIL JOB #:

003079

REDMOND, WA 98052

CCIL SAMPLE #: DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-7-10' 3/21/00

	DATA RESULTS										
ANALYTE	METHOD	RESULTS*	UNITS**	REPORTING LIMIT	ANALYSIS DATE						
EXTRACTABLE PETROLEUM	HYDROCARBONS										
>C10-C12 ALIPHATICS >C12-C16 ALIPHATICS >C16-C21 ALIPHATICS >C21-C34 ALIPHATICS >C10-C12 AROMATICS >C12-C16 AROMATICS >C16-C21 AROMATICS >C21-C34 AROMATICS TOTAL ALIPHATICS TOTAL AROMATICS	WDOE-EPH WDOE-EPH WDOE-EPH WDOE-EPH WDOE-EPH WDOE-EPH WDOE-EPH	18 200 240 50 U 15 150 47 510 210	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	5 5 5 5 5 5 5 5 10	4/4/00 4/4/00 4/4/00 4/4/00 4/4/00 4/4/00 4/4/00						
SURROGATES	% RECOVERY										
PENTACOSANE(C25) P-TERPHENYL	99 79										

NOTE: TOTAL ALIPHATICS AND AROMATICS ARE BASED ON EC RANGE "U" RESULTS SUMMED AT 1/2 OF REPORTING LIMIT

^{* &}quot;U" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE: CCIL JOB #: 4/5/00

CCIL JOB #: CCIL SAMPLE #: 003079

DATE RECEIVED:

7

WDOE ACCREDITATION #:

3/21/00 C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID: CLIENT SAMPLE ID:

7536-002-02

EX-7-10' 3/21/00

DATA RESULTS

			ANALYSIS
METHOD	RESULTS*	UNITS**	DATE
EDA 0070 CIM	ND/-200	UCIVO	412/00
			4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
EPA-8270 SIM	ND(<20)	UG/KG	4/3/00
	EPA-8270 SIM	EPA-8270 SIM ND(<20)	EPA-8270 SIM ND(<20) UG/KG

^{* &}quot;U" INDICATES ANALYTE NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/23/00

CCIL JOB #:

003079

CCIL SAMPLE #:

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID: CLIENT SAMPLE ID:

7536-002-02

EX-8-12' 3/21/00

DATA RESULTS

ACTION ANALYSIS ANALYSIS ANALYTE METHOD RESULTS* LINITS** LEVEL*** DATE RY TPH-SEMIVOLATILE RANGE **NWTPH-DX** ND MG/KG 3/22/00 SNC

- * "NO" INDICATES ANALYZE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE:

3/24/00

8410 154TH AVE. NE REDMOND, WA 98052 CCIL JOB #:

003079

CCIL SAMPLE #:

9

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

CSP-1 3/21/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE TPH-OIL RANGE	NWTPH-DX NWTPH-DX	480 160	MG/KG MG/KG		3/23/00 3/23/00	SNC SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;NO" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE O'LL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE:

3/24/00

8410 154TH AVE. NE

CCIL JOB #:

003079

REDMOND, WA 98052

CCIL SAMPLE #:

10

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

CSP-2 3/21/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE TPH-OIL RANGE	NWTPH-DX NWTPH-DX	32 180	MG/KG MG/KG		3/23/00 3/23/00	SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

11

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

CSP-3 3/21/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	ВҮ
TPH-DIESEL RANGE	NWTPH-DX	34 94	MG/KG		3/23/00	SNC
TPH-DIESEL RANGE TPH-OIL RANGE	NWTPH-DX NWTPH-DX	34 84	MG/KG MG/KG		3/23/00 3/23/00	SNO

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE:

3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

12

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

CSP-4 3/21/00

DATA RESULTS

ACTION ANALYSIS ANALYSIS ANALYTE METHOD RESULTS* UNITS** LEVEL*** DATE BY TPH-SEMIVOLATILE RANGE NWTPH-DX 160 MG/KG 3/23/00 SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

W UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003079

CCIL SAMPLE #:

13

DATE RECEIVED:

3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

CSP-5 3/21/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE TPH-OIL RANGE	NWTPH-DX NWTPH-DX	240 110	MG/KG MG/KG		3/23/00 3/23/00	SNC SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC. DATE: 3/24/00 003079

8410 154TH AVE. NE

CCIL JOB #:

REDMOND, WA 98052

DATE RECEIVED: 3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

QUALITY CONTROL RESULTS

SURROGATE RECOVERY								
CCIL SAMPLE ID	ANALYTE	SUR ID	% RECV					
003079-01	NWTPH-DX	C25	100					
003079-02	NWTPH-DX	C25	91					
003079-03	NWTPH-DX	C25	86					
003079-04	NWTPH-DX	C25	*					
003079-05	NWTPH-DX	C25	88					
003079-06	NWTPH-DX	C25	*					
003079-07	NWTPH-DX	C25	142					
003079-08	NWTPH-DX	C25	97					
003079-09	NWTPH-DX	C25	130					
003079-10	NWTPH-DX	C25	114					
003079-11	NWTPH-DX	C25	119					
003079-12	NWTPH-DX	C25	112					
003079-13	NWTPH-DX	C25	122					

CLIENT: GEOENGINEERS, INC.

DATE: 3/24/00

8410 154TH AVE. NE

CCIL JOB #: 003079

REDMOND, WA 98052

DATE RECEIVED: 3/21/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

QUALITY CONTROL RESULTS

BLANK AND DUPLICATE RESULTS

METHOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS
NWTPH-DX(DSL RANGE)	ND(<25)	003079-01 TO 13	ND(<25)	ND(<25)	****	SAME
NWTPH-DX(OIL RANGE)	ND(<50)	003079-01 TO 13	ND(<50)	ND(<50)	***	SAME

**** %RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

GeoEngineers

MAR 2 7 2000

Routing

File

CERTIFICATE OF ANALYSIS

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003084

CCIL SAMPLE #:

1

ATE DECEMEN

1

DATE RECEIVED:

3/22/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-9-10' 3/21/00

DATA RESULTS

ANALYSIS ANALYSIS
ANALYTE METHOD RESULTS* UNITS**

DATE BY

TPH-SEMIVOLATILE RANGE NWTPH-DX ND MG/KG

3/23/00 SNC

- * "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003084

CCIL SAMPLE #:

DATÉ RECEIVED:

3/22/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-10-10' 3/21/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/23/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC. DATE:

3/24/00

8410 154TH AVE. NE

CCIL JOB #:

003084

REDMOND, WA 98052

CCIL SAMPLE #:

3

DATE RECEIVED:

WDOE ACCREDITATION #:

3/22/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-11-11' 3/21/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/23/00	SNC

- * "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003084

CCIL SAMPLE #:

4

DATE RECEIVED:

3/22/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-12-12' 3/21/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/23/00	SNC

^{* &}quot;ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003084

CCIL SAMPLE #:

5

DATE RECEIVED:

3/22/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-13-12' 3/21/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/23/00	SNC

- * "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE:

3/24/00

CCIL JOB #:

003084

DATE RECEIVED: WDOE ACCREDITATION #: 3/22/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

	QUALITY CONTROL RES	ULTS						
SURROGATE RECOVERY								
CCIL SAMPLE ID	ANALYTE	SUR ID			% RECV			
003084-01	NWTPH-DX	C25			130			
003084-02	NWTPH-DX	C25			100			
003084-03	NWTPH-DX	C25			105			
003084-04	NWTPH-DX	C25			104			
003084-05	NWTPH-DX	C25			99			
	BLANK AND DUPLICATE RESULTS							
METHOD	BLK RESULT ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS			
NWTPH-DX(DSL RANGE) NWTPH-DX(OIL RANGE)	ND(<25) 003084-01 TO 05 ND(<50) 003084-01 TO 05	230 99	240 110	5 ****	SAME SAME			

**** %RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

CLIENT: GEOENGINEERS, INC.

DATE:

3/24/00

8410 154TH AVE. NE

CCIL JOB #:

003094

REDMOND, WA 98052 CCIL SAMPLE #:

1

DATE RECEIVED:

2/00

WDOE ACCREDITATION #:

3/23/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-14-9' 3/22/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/24/00	SNC

- "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY:

Page 1

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE:

3/24/00

CCIL JOB #:

003094

CCIL SAMPLE #:

2

DATE RECEIVED:

3/23/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-15-9' 3/23/00

DATA RESULTS

ACTION

ANALYSIS

ANALYSIS

ANALYTE

METHOD

RESULTS*

UNITS**

LEVEL***

DATE

BY

TPH-SEMIVOLATILE RANGE

NWTPH-DX

140

MG/KG

3/24/00

SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

^{* &}quot;NO" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE:

3/24/00

CCIL JOB #:

003094

CCIL SAMPLE #:

3

DATE RECEIVED:

3/23/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-16-8' 3/23/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/24/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/24/00

CCIL JOB #:

003094

CCIL SAMPLE #:

4

DATE RECEIVED:

3/23/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-17-8' 3/23/00

DA		EC	28 1 23	
-		$L_{\mathcal{D}}$	2012	
V. 15 15 15 15 15 15 15 15 15 15 15 15 15	7.7	 7777		

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/24/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

GERTHEICANE OF ANALYSIS

CLIENT: GEOENGINEERS, INC. DATE:

3/24/00

8410 154TH AVE. NE REDMOND, WA 98052 CCIL JOB #:

003094

CCIL SAMPLE #:

5

DATE RECEIVED:

WDOE ACCREDITATION #:

3/23/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-18-10' 3/23/00

DATA RESULTS

ACTION ANALYSIS ANALYSIS ANALYTE METHOD RESULTS* UNITS** LEVEL*** DATE BY TPH-SEMIVOLATILE RANGE NWTPH-DX ND MG/KG 3/24/00 SNC

- * "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE: 3/24/00

CCIL JOB #:

003094

CCIL SAMPLE #:

6

DATE RECEIVED:

3/23/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-19-12' 3/23/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/24/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC. DATE:

3/24/00

8410 154TH AVE. NE

CCIL JOB #:

003094

REDMOND, WA 98052

DATE RECEIVED:

3/23/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

	(QUALITY CONTROL RES	JLTS							
SURROGATE RECOVERY										
CCIL SAMPLE ID	ANALYTE		SUR ID			% RECV				
003094-01	NWTPH-DX		C25			109				
003094-02	NWTPH-DX		C25			114				
003094-03	NWTPH-DX		C25			102				
003094-04	NWTPH-DX		C25			101				
003094-05	NWTPH-DX		C25			110				
003094-06	NWTPH-DX		C25			109				
	BLANK AN	ID DUPLICATE RESULTS								
METHOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS				
NWTPH-DX(DSL RANGE) NWTPH-DX(OIL RANGE)	ND(<25) ND(<50)	003094-01 TO 06 003094-01 TO 06	ND(<25) ND(<50)	ND(<25) ND(<50)	****	SAME SAME				

**** %RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

CLIENT: GEOENGINEERS, INC.

DATE:

3/27/00

8410 154TH AVE. NE REDMOND, WA 98052

CCIL JOB #: CCIL SAMPLE #:

003105

DATE RECEIVED:

3/24/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-20-11' 3/24/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/25/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/27/00

CCIL JOB #:

003105

CCIL SAMPLE #:

2

DATE RECEIVED:

3/24/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-21-12' 3/24/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/25/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/27/00

CCIL JOB #:

003105

CCIL SAMPLE #:

DATE RECEIVED:

3/24/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-22-10' 3/24/00

DATA RESULTS

			ACTION	ANALYSIS	ANALYSIS
METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
NWTPH-DX	ND	MG/KG		3/25/00	SNC
		33-33-33		METHOD RESULTS* UNITS** LEVEL***	METHOD RESULTS* UNITS** LEVEL*** DATE

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE: 3/27

3/27/00

8410 154TH AVE. NE REDMOND, WA 98052

CCIL JOB #:

003105

CCIL SAMPLE #:

4

DATE RECEIVED:

7

WDOE ACCREDITATION #:

3/24/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-23-9' 3/24/00

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/25/00	SNC

- * "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

 DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

 LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE REDMOND, WA 98052 DATE:

3/27/00

CCIL JOB #:

003105

CCIL SAMPLE #:

5

DATE RECEIVED:

3/24/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-24-8' 3/24/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	ND	MG/KG		3/25/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC. DATE:

3/27/00

8410 154TH AVE. NE

CCIL JOB #:

003105

REDMOND, WA 98052

DATE RECEIVED:

3/24/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT: LISA BONA

CLIENT PROJECT ID:

7536-002-02

(O)U/ATE	IY CO	VIROL	RESI	JL15

SURROGATE RECOVERY										
CCIL SAMPLE ID	ANALYTE		SUR ID			% RECV				
003105-01	NWTPH-DX		C25			115				
003105-02	NWTPH-DX		C25			115				
003105-03	NWTPH-DX		C25			114				
003105-04	NWTPH-DX		C25			92				
003105-05	NWTPH-DX		C25			102				
	BLANK AND	D DUPLICATE RESULTS								
METHOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS				

METHOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS
NWTPH-DX(DSL RANGE) NWTPH-DX(OIL RANGE)	ND(<25) ND(<50)	003105-01 TO 05 003105-01 TO 05	ND(<25) ND(<50)	ND(<25) ND(<50)	****	SAME SAME

**** %RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

CLIENT: GEOENGINEERS, INC.

DATE: CCIL JOB #:

8410 154TH AVE. NE REDMOND, WA 98052 CCIL JOB #: 003117 CCIL SAMPLE #: 1

DATE RECEIVED: 3/28/00

WDOE ACCREDITATION #:

C142

3/29/00

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

SP-1 3/28/00 1550

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE	NWTPH-DX	120	MG/KG		3/28/00	SNC
TPH-OIL RANGE	NWTPH-DX	290	MG/KG		3/28/00	SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE DIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/29/00

CCIL JOB #:

003117

CCIL SAMPLE #:

2

DATE RECEIVED:

3/28/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

SP-2 3/28/00 1552

DATA RESULTS

ACTION ANALYSIS ANALYSIS LEVEL*** ANALYTE METHOD RESULTS* UNITS** DATE BY TPH-SEMIVOLATILE RANGE **NWTPH-DX** 430 MG/KG 3/28/00 SNC CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL NOTE:

* "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT, REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

*** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

APPROVED BY:

Page 1

CLIENT: GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/29/00

CCIL JOB #:

003117

CCIL SAMPLE #:

3

DATE RECEIVED:

3/28/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

SP-3 3/28/00 1555

DATA RESULTS

ANALYTE	метнор	RESULTS*	UNITS**	ACTION	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE	NWTPH-DX	110	MG/KG		3/28/00	SNC
TPH-OIL RANGE	NWTPH-DX	190	MG/KG		3/28/00	SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 25 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE:

3/29/00

8410 154TH AVE. NE REDMOND, WA 98052

CCIL JOB #:

003117

CCIL SAMPLE #:

4

DATE RECEIVED:

7

WDOE ACCREDITATION #:

3/28/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

SP-4 3/28/00 1558

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION LEVEL***	ANALYSIS DATE	ANALYSIS BY
TPH-DIESEL RANGE TPH-OIL RANGE	NWTPH-DX NWTPH-DX	270 57	MG/KG MG/KG		3/28/00 3/28/00	SNC SNC

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS TWO PRODUCTS WHICH ARE LIKELY DIESEL AND LUBE OIL

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

3/29/00

CCIL JOB #:

003117

CCIL SAMPLE #:

5

DATE RECEIVED:

2

WDOE ACCREDITATION #:

3/28/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

SP-5 3/28/00 1602

DATA RESULTS

ANALYTE	METHOD	RESULTS*	UNITS**	ACTION	ANALYSIS DATE	ANALYSIS BY
TPH-SEMIVOLATILE RANGE	NWTPH-DX	67	MG/KG		3/28/00	SNC

^{* &}quot;ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

^{**} UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

^{***} ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

DATE:

3/29/00

8410 154TH AVE. NE

CCIL JOB #:

003117

REDMOND, WA 98052

DATE RECEIVED:

WDOE ACCREDITATION #:

3/28/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

		QUALITY CONTROL RES	ULTS			
	s	SURROGATE RECOVERY				
CCIL SAMPLE ID	ANALYTE		SUR ID			% RECV
003117-01	NWTPH-DX	(C25			115
003117-02	NWTPH-DX		C25			116
003117-03	NWTPH-DX		C25			111
003117-04	NWTPH-DX	1	C25			116
003117-05	NWTPH-DX		C25			105
	BLANK AN	ID DUPLICATE RESULTS				
метнор	BLK RESULT	ASSOC SMPL5	DUP RESULT	ORIG RESULT	%RDP	ASSOC SMPLS
NWTPH-DX(DSL RANGE) NWTPH-DX(OIL RANGE)	ND(<25) ND(<50)	003117-01 TO 05 003117-01 TO 05	ND(<25) ND(<50)	ND(<25) ND(<50)	****	SAME SAME

**** %RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

CLIENT:

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

4/4/00

CCIL JOB #:

003124

CCIL SAMPLE #:

DATE RECEIVED: wdoe accreditation #: C142
GeoEngineers

3/30/00

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID: CLIENT SAMPLE ID:

7536-002-02

EX-25-10' 3/30/00

APR 1 0 2000

ACTION

ANALYSIS

ANALYSIS

METHOD

RESULTS*

UNITS**

LEVEL***

DATE

BY

TPH-SEMIVOLATILE RANGE

NWTPH-DX

5900

MG/KG

4/3/00

CMH

NOTE:

CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY DIESEL

- * "NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS: DIESEL RANGE REPORTING LIMIT IS 250 MG/KG LUBE OIL RANGE REPORTING LIMIT IS 500 MG/KG
- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: C

GEOENGINEERS, INC.

8410 154TH AVE. NE

REDMOND, WA 98052

DATE:

4/4/00

CCIL JOB #:

003124

CCIL SAMPLE #:

2

DATE RECEIVED:

0/00

WDOE ACCREDITATION #:

3/30/00 C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

CLIENT SAMPLE ID:

EX-26-8' 3/30/00

DATA RESULTS

				ACTION	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS*	UNITS**	LEVEL***	DATE	ВҮ
TPH-SEMIVOLATILE RANGE	NWTPH-DX	33	MG/KG		3/31/00	СМН

* "ND" INDICATES ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES OR AS FOLLOWS:

DIESEL RANGE REPORTING LIMIT IS 25 MG/KG

LUBE OIL RANGE REPORTING LIMIT IS 50 MG/KG

- ** UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS
- *** ACTIONS LEVELS ARE PROVIDED ONLY WHEN PARAMETER DATA IS USED FOR A GENERALLY CONSISTENT APPLICATION. WHEN PROVIDED, THEY SHOULD BE USED AS GUIDELINES ONLY. THE APPROPRIATE REGULATORY DOCUMENT SHOULD BE CONSULTED BEFORE MAKING ANY DECISIONS BASED ON ANALYTICAL DATA

CLIENT: GEOENGINEERS, INC.

4/4/00 DATE:

8410 154TH AVE. NE

CCIL JOB #:

003124

REDMOND, WA 98052

DATE RECEIVED:

3/30/00

WDOE ACCREDITATION #:

C142

CLIENT CONTACT:

LISA BONA

CLIENT PROJECT ID:

7536-002-02

	QUALITY COI	VTROL RESULTS	
	SURROGATE R	ECOVERY	
CCIL SAMPLE ID	ANALYTE	SUR ID	% RECV
003124-01	NWTPH-DX	C25	*
003124-02	NWTPH-DX	C25	112

BLANK AND DUPLICATE RESULTS

METHOD	BLK RESULT	ASSOC SMPLS	DUP RESULT	ORIG RESULT	%RDP	RDP ASSOC SMPLI	
NWTPH-DX(DSL RANGE)	ND(<25)	003124-01 TO 02	ND(<25)	ND(<25)	****	SAME	

^{*} SURROGATE DILUTED OUT OF CALIBRATION RANGE

^{**** %}RPD NOT REPORTED FOR RESULTS < X5 THE REPORTING LIMIT

APPENDIX C

USE OF INTERIM TPH POLICY

APPENDIX C

USE OF INTERIM TPH POLICY

INTERIM TPH POLICY METHODS

The MTCA cleanup regulations require that the evaluation of soil contamination and determination of soil cleanup levels be based on consideration of (1) direct contact, and (2) protection of ground water. Similarly, the Interim TPH Policy requires consideration of both components in evaluating petroleum contamination and arriving at a soil cleanup level. Identification of the hydrocarbon fractions and quantification of their toxicity and transport characteristics (using surrogates) were required to evaluate the level of contamination and calculate a soil cleanup level for the site's petroleum constituents in accordance with the Interim TPH Policy. Considerations of current and future site use also were necessary to apply the appropriate MTCA method. For this site, it was assumed that the highest potential beneficial use of the property is residential; therefore, MTCA Method B was used for evaluation of contamination and in calculating a soil cleanup level.

The MTCA Method B formula for evaluating soil contamination and calculating a human health risk-based soil cleanup based on direct contact, as applied in the Interim TPH Policy, considers only the soil ingestion exposure pathway. This was considered sufficient for contamination evaluation and calculation of a TPH cleanup level in soil. The soil-to-ground water transport of and subsequent ingestion of ground water after remediation was not evaluated in March 2000. The reader is referred to the Interim TPH Policy (Ecology Publication ECY 97-600) for background information and assumptions that pertain to the use of the Interim TPH policy.

TOXICITY

Petroleum products typically are composed of thousands of individual chemicals. Toxicity criteria that relate the intake (dose) of a chemical to a response are available for only a handful of the individual chemicals that may be present in petroleum products. A cleanup level based on toxicity cannot be calculated for individual chemicals (or for petroleum products) unless a toxicity criterion, such as a reference dose for a non-carcinogen or a potency factor for a carcinogen, is available. The Interim TPH Policy uses a surrogate approach to account for compound-specific data that is not yet available. In the surrogate approach, a reference compound is identified as a representative of individual petroleum hydrocarbon fractions. These reference compounds are selected because their toxicity is relatively well characterized in that either a reference dose or potency factor is available, or a dose-response value can be developed from available toxicity data. The toxicity criterion identified for the reference compound is then assumed to represent a surrogate toxicity criterion for the associated hydrocarbon fraction.

For the purpose of identifying surrogate toxicity criteria for hydrocarbon fractions, petroleum hydrocarbons are divided into broad chemical classes. Surrogate toxicity criteria are then identified for each group of compounds using the methods described above. Ecology has selected one compound representing the aliphatic fractions (n-hexane) and one compound representing the aromatic fractions (pyrene) that likely have the most conservative toxicity criteria. Surrogate criteria for other hydrocarbon fractions are likely multiples of these. Until sufficient data are made available for developing surrogate toxicity criteria for the other hydrocarbon fractions, the Ecology Interim TPH Policy requires that (1) all aliphatics be grouped together, (2) all aromatics be grouped together, and (3) the aliphatic and aromatic groups be represented by the toxicity criteria for n-hexane and pyrene, respectively. This surrogate approach was used in our calculation of the Method B cleanup level in soil based on direct contact.

The surrogate method used in the Interim TPH Policy for evaluation of contamination and in calculating petroleum hydrocarbon cleanup levels does not account for the noncarcinogenic toxicity contribution of ethylbenzene, toluene, and xylene. It also does not account for the carcinogenic health effect contribution from benzene and carcinogenic PAHs that may be present in the petroleum product. These compounds are quantified and evaluated separately, and cleanup levels are calculated for each compound using their specific reference dose or potency factors.

Although a reference dose value is not available for benzene for noncarcinogenic health effects, these health effects are accounted for in evaluating the contamination and in calculating the TPH cleanup level by the surrogate approach. The Interim TPH Policy assumes that benzene has noncarcinogenic health effects as well as its carcinogenic health effects and assumes that the reference dose for benzene is equal to the surrogate value for aromatics (0.03 mg/kg/day).

The hydrocarbon fractions and their associated surrogate toxicity criterion values for the Ecology Interim TPH Policy are summarized in Table 4. The hydrocarbon compounds are all considered noncarcinogenic, based on the toxicity information currently available. Therefore, only reference dose (ORfD) values are provided.

FATE AND TRANSPORT

The fate and transport of hydrocarbons in the subsurface is a significant component of the Interim TPH Policy. Similar to the approach discussed above for toxicity, surrogate physical and chemical properties of different hydrocarbon fractions are used to represent and evaluate hydrocarbons movement through and into soil, water and air. Based largely on studies completed by the National TPH Criteria Working Group, the Ecology Interim TPH policy uses six aliphatic fractions, five aromatic fractions, and benzene and toluene in evaluating the fate and transport of petroleum products. The TPH Criteria Working Group grouped the numerous TPH constituents into the aliphatic and aromatic fractions based on the similarity of their chemical properties. Constituent chemical properties such as equivalent carbon number, soil-water sorption coefficient, organic-carbon partition coefficient, octanol-water partition coefficient, and Henry's Law Constant, dictate how they are transported in different media and where used to select the hydrocarbon fractions.

Soil Direct Contact Pathway

The sum of petroleum fractions quantified by EPH and VPH (assuming a concentration of one half the detection limit if a fraction was not detected) in sample EX-7-10 was 735 mg/kg. The concentration of petroleum hydrocarbons detected by the NWTPH-Dx method was 1,900 mg/kg. The concentrations of petroleum hydrocarbons reported by the EPH/VPH and NWTPH-Dx methods have a relative percent difference of 88 percent. This difference likely is caused by sample heterogeneity and the different extraction procedures of the analytical methods. Using NWTPH-Dx data yields conservative results for conditions at the limit of the excavation in the location of EX-7-10.

Using the detected concentrations of VPH and EPH total aliphatic and total aromatic hydrocarbons (sample EX-7-10), we calculated a residential hazard index of 0.20 for the petroleum hydrocarbons in the vicinity of the EX-7-10. The ratio of aliphatic compounds to aromatic compounds in this sample is about 70 percent aliphatics and 30 percent aromatics. The residential hazard index for sample EX-7-10 is presented in Table C-1.

GeoEngineers reviewed the carcinogenic risk by evaluating the cPAHs and benzene in the soil sample. Benzene and cPAHs were not detected in sample EX-7-10. Therefore, there appears to be no cumulative health risk for carcinogenic compounds.

We calculated a site-specific MTCA Method B cleanup level for TPH of 3,672 mg/kg. This concentration is protective of a soil direct contact exposure in the residential exposure scenario, under MTCA Method B. The calculation is based on the residential direct contact exposure, the reference dose values, and the total aliphatic and aromatic compound fractions in Table 3. The cleanup level calculation is presented in Table C-2.

Other Pathways

Although MTCA requires that each potential transport pathway of concern be evaluated, the Interim TPH Policy specifically mentions two transport pathways: (1) soil-to-ground water and (2) soil-to-indoor air confined space. An evaluation of the soil-to-ground water pathway determines what petroleum concentrations in soil may be left in place while being protective of ground water. We did not evaluate the post-remedial soil-to-ground water pathway. We recommend that monitoring wells MW-1 and MW-2 be replaced for ground water evaluation.

Specific methods for evaluating the soil-to-indoor air confined space pathway are not addressed in the Interim TPH Policy; however, this pathway is not of concern to the current or proposed future site use.

TABLE C-1 RESIDENTIAL HAZARD INDEX SAMPLE EX-7-10.0

AREA Z, SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

	Soil Concentration ¹		Residential				
Compound			Factor	Multiplier	HQ		
Total aliphatics	518	0.06	1.25E-05	2.08E-04	1.08E-01		
Total aromatics	217	0.03	See Below	See Below	See Below		
Benzene	0.250	NA	NA	NA	NA		
Ethylbenzene	0.250	0.1	1.25E-05	1.25E-04	3.13E-05		
Toluene	0.250	0.2	1.25E-05	6.25E-05	1.56E-05		
Xylenes	0.500	2	1.25E-05	6.25E-06	3.13E-06		
Total aromatic+B-E-X	216.5	0.03	1.25E-05	4.17E-04	9.02E-02		
Hazard Index					0.20		

Notes:

¹The highest concentration for each compound or fraction detected by VPH or EPH. Values not detected are assumed as 1/2 of the detection limit.

Total TPH (sum of aliphatic and aromatics) =

735

% total aliphatics

70.48%

% total aromatics

29.52%

ORfD = oral reference dose as defined in Interim Policy

Factor = residential factor as defined in Interim Policy

Multiplier = Factor/ORfD

HQ = hazard quotient

Hazard Index = sum of HQs

NA = not applicable

p:\02\finals\tables\7536002tC1.xls

TABLE C-2 MTCA METHOD B SOIL CLEANUP LEVEL CALCULATION¹ BASED ON RESIDENTIAL DIRECT CONTACT

AREA Z, SUDDEN VALLEY COMMUNITY ASSOCIATION BELLINGHAM, WASHINGTON

	Soil		Residential				
Compound	Conc. (mg/kg)	ORfD	Factor	Multiplier	HQ		
Total aliphatic	2,588	0.06	1.25E-05	2.08E-04	5.39E-01		
Total aromatic	1,084	0.03	See Below	See Below	See Below		
Benzene	1.249	NA	NA	NA	NA		
Ethylbenzene	1.249	0.1	1.25E-05	1.25E-04	1.56E-04		
Toluene	1.249	0.2	1.25E-05	6.25E-05	7.81E-05		
Xylenes	2.498	2	1.25E-05	6.25E-06	1.56E-05		
Total aromatic+B-E-X	1,082	0.03	1.25E-05	4.17E-04	4.51E-01		
Hazard Index					0.99		

MTCA Method B Cleanup level for TPH	3,672	

N	ot	e	5
1. 1	v	~	J .,

¹The MTCA Method B cleanup level is the TPH concentration (sum of aliphatics and aromatics) which results in a Hazard Index of 0.99 with same proportions of aliphatics, aromatics, and BETX as the sample tested

Total Hydrocarbon Concentration =	3,672 mg/kg
% Total aliphatic fraction =	70.48 %
% Total aromatic fraction =	29 .52 %
% Total benzene fraction =:	0.03 %
% Total ethylbenzene fraction =	0,03 %
% Total toluene fraction =	0.03 %
% Total xylene fraction =	0,07 %
% Total aromatic+B-E-X fraction =	29,46 %

mg/kg = milligrams per kilogram

ORfD = oral reference dose

Factor = residential factor

Mulitiplier = Factor/ORfD

HQ = hazard quotient (soil concentration [mg/kg]) (factor)/ORfD

TPH = total petroleum hydrocarbons

NA = not applicable

p:\02\finals\tables\7536002tC2.xls

600 Dupont Street Bellingham, Washington 98225 360.647.1510

May 14, 2014

Sudden Valley Community Association 4 Clubhouse Circle Bellingham, Washington 98229

Attention: Jeff Schlaack

Subject: Report of Environmental Services

Area Z Soil Stockpile Sampling

File No. 7536-002-05

INTRODUCTION AND SCOPE OF SERVICES

This report summarizes GeoEngineers' observations and soil sampling results on the "Area Z soil stockpile" in the Sudden Valley Community in Whatcom County. The soil stockpile was generated during removal of petroleum-impacted soil from the location of a sanitary sewer lift station installed in 2000 on Sudden Valley Community Association (SVCA) property. The volume of the soil stockpile was estimated at approximately 2,500 cubic yards during the remediation and placed into a lined area surrounded by hay bales and covered with visqueen. The approximate location of the site relative to surrounding physical features is shown in Vicinity Map, Figure 1. The approximate location of the soil stockpile and sample locations in the stockpile are shown in Area Z Soil Stockpile Test Pit Locations, Figure 2 and Area Z Community Garden Vicinity Test Pit Locations, Figure 3.

This report will be submitted to Washington State Department of Ecology (Ecology) for review under the Voluntary Cleanup Program (VCP) in pursuit of obtaining a no further action (NFA) opinion. We understand that SVCA will prepare and submit the VCP application to Ecology.

Our specific scope of services included the following:

- Reviewed previous reports and file information related to the stockpile environmental conditions in Area Z.
- 2. Worked with SVCA to notify the underground utilities notification center in accordance with state law before conducting exploration activities.
- Observed the completion of 10 shallow test pits in representative locations spatially distributed across the soil stockpile and 2 shallow test pits near the community garden. Test pit explorations were completed with a backhoe provided by SVCA.

- 4. Obtained representative soil samples from each of the test pits at approximately 2-foot-depth intervals. Field screened the soil samples for evidence of petroleum hydrocarbons using visual and water sheen screening methods. Selected samples at representative depths from each exploration for chemical analyses of gasoline-, diesel- and oil-range hydrocarbons by NWTPH-Gx and NWTPH-Dx with sulfuric acid/silica gel cleanup; benzene, ethylbenzene, toluene and total xylenes (BETX) by EPA Method 8021; selected two samples for chemical analyses of carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270DSIM; and MTCA Metals (mercury, arsenic, cadmium, chromium and lead) by EPA Method 6000/7000 series.
- 5. Evaluated the field and laboratory data relative to Washington State Model Toxics Control Act (MTCA) Method A cleanup levels, soil end-use criteria presented in Ecology's Guidance for the Remediation of Petroleum Contaminated Sites dated September 2011, and Ecology's Terrestrial Ecological Evaluation Process.

PREVIOUS REPORTS

We reviewed our report titled "Report of Remedial Excavation Activities, Area Z" dated May 23, 2000. A remedial excavation occurred in the SVCA Area Z property in March 2000 at the location of a proposed sewer lift station. The soil contamination appeared to be caused by releases from fuel pumps and/or piping that extended from a former diesel aboveground storage tank (AST) located to the west of the contaminated area. A total estimated volume of 2,500 cubic yards of soil with petroleum hydrocarbons at concentrations exceeding MTCA Method A cleanup levels was removed from the remedial excavation and placed at the present location of the soil stockpile that was sampled in March 2014. The soil stockpile (referred to as the landfarm cell in March 2000) was constructed using 6-millimeter thick plastic liner at the base of the cell. The cell was surrounded by hay bales. The contaminated soil was covered with 6-millimeter thick plastic and sand bags were used to secure the plastic in place.

The proposed on-site treatment of the contaminated soil stockpile was landfarming. GeoEngineers did not observe landfarming activities. We are not aware of any landfarming activity that has taken place on the contaminated soil stockpile.

SITE CONDITIONS

- The soil stockpile is located on Whatcom County Assessor parcel number 3704073823790000.
- The soil stockpile is located in a maintenance administration area used by SVCA employees. An access road and maintenance shop are located to the north, stockpiles of tree cuttings and unvegetated, straw covered ground to the east, a wooded area and then Lake Louise Road to the south, and stockpiles of tree cuttings and undeveloped area to the west.
- The soil stockpile is a level area approximately ½-acre in size. The surface of the stockpile is vegetated with alder tree saplings and tall grass. It appears that additional soil was placed over the original plastic sheeting covering the landfarm cell/stockpiled soil.
- Beaver Creek is located approximately 220 feet to the northeast of the soil stockpile. Austin Creek is located approximately 400 feet to the southeast of the soil stockpile.

- The site is zoned as "Rural" according to the Whatcom County Title 20 Zoning Designation map dated 2013.
- The nearest drinking water well is located at 2097 Lake Whatcom Boulevard, approximately 1.7 miles northeast from the site according to the Ecology Washington State Well Log Viewer online mapping application.
- We reviewed a U.S. Geologic Survey (USGS) geologic map for the project area, "Geologic Map of Western Whatcom County, Washington" by Don J. Easterbrook, 1976. The site lies within an area mapped as bedrock of the Chuckanut Formation. However, based on our previous exploration and excavation activities, the Area Z has modified ground (fill has been historically placed in this area) over alluvium from the nearby creek activity, glacial deposits and then bedrock.
- We reviewed "Soil Survey of Whatcom County Area, Washington," United States Department of Agriculture Soil Conservation Service (SCS), 1992. The site lies within an area mapped as Sehome loam, described as gravelly loam underlain by dense glacial till at depth. Permeability is moderate in the upper part of the Sehome soil and very slow in the dense glacial till.

2014 SOIL SAMPLING

General

A representative of GeoEngineers obtained soil samples and documented subsurface conditions during excavation of the test pits. During soil sampling activities, our representative also visually observed the soils encountered and performed field screening of soil samples from the test pits. Selected samples obtained from the test pits were submitted for chemical analytical testing. Soil sampling activities were conducted in general accordance with Ecology's "Guidance for Site Checks and Site Assessments for Underground Storage Tanks," dated February 1991 and revised in April 2003. Soil samples were submitted for chemical analyses from test pits TP-10 to characterize the soil in the soil stockpile. Soil samples were submitted for chemical analyses from test pits TP-11 and TP-12 to evaluate the potential for contaminant migration from the soil stockpile impacting soil at the community garden, located approximately 400 feet northwest of the soil stockpile. Soil samples were obtained from approximate 2-foot sample intervals from each test pit for field screening. The test pit locations shown in Figures 2 and 3 were recorded with a hand held GPS. Soil sample field screening and chemical analytical results are summarized in Summary of Soil Field Screening and Chemical Analytical Data, Table 1.

Sample Collection, Handling and Field Screening of Soil Samples

Soil samples were obtained from the test pits using a clean nitrile-gloved hand from the excavator bucket. Each sample was placed in a 4-ounce laboratory-prepared jar filled to minimize headspace. Samples obtained for gasoline-range petroleum hydrocarbons and volatiles analyses were collected using EPA Method 5035A sampling kits. Gloves were changed between samples to prevent cross-contamination. The soil samples were placed in an iced cooler pending transport to the analytical laboratory.

Each soil sample submitted for chemical analysis was identified by a unique sample designation that corresponded to its mapped sample location and depth below ground surface. Chain-of-custody procedures were followed in transporting the samples to the laboratory.

Field screening results were used to aid in the selection of soil samples for chemical analysis. The screening methods used included visual screening and water sheen screening. Visual screening consists of inspecting the soil for stains indicative of petroleum hydrocarbons. Visual screening is generally more effective when hydrocarbons are heavier, such as motor oil, or when hydrocarbon concentrations are high.

Water sheen screening involves placing soil in water and observing the water surface for signs of sheen. Sheen screening may detect both volatile and nonvolatile petroleum hydrocarbons. Sheen classifications are as follows:

- No Sheen (NS): No visible sheen on water surface.
- Slight Sheen (SS): Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
- Moderate Sheen (MS): Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on water surface.
- Heavy Sheen (HS): Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Soil Stockpile Test Pits

Test pits TP-1 through TP-10 were completed at depths ranging from 5 to 10 feet below the surface (bgs). Subsurface conditions encountered in test pits TP-1 through TP-10 consisted of fill soil comprised of brown and gray silty sand with varying gravel content. Buried visqueen, assumed to be from the original landfarm cell construction, was observed at 3 feet bgs. The soils above the visqueen did not exhibit any field screening evidence of petroleum contamination; the gray colored soils below the visqueen intermittently exhibited field screening evidence of petroleum contamination. Occasional wood, concrete rubble, cobbles and asphalt concrete fragments were encountered in several test pits. Significant amounts of asphalt concrete (pavement) fragments were encountered in test pit TP-5 approximately 3 to 5 feet bgs. Shallow perched groundwater seepage was encountered approximately 5 feet and 4 feet bgs in test pits TP-3 and TP-5, respectively. Petroleum sheen was not observed on the groundwater seepage.

Community Garden Area Test Pits

Test pits TP-11 and TP-12 were completed at 4 to 6 feet bgs, respectively. Subsurface conditions encountered in test pit TP-11 consisted of brown silt with sand interpreted to be reworked, native weathered glaciomarine drift. Test pit TP-12 encountered a buried asphalt concrete pavement surface approximately 6 inches bgs underlain by gray silty sand with gravel interpreted to be native undisturbed soil. Shallow perched groundwater seepage was encountered approximately 3 feet bgs in test pit TP-11. Petroleum sheen was not observed on the groundwater seepage.

CHEMICAL ANALYTICAL RESULTS

Soil samples that exhibited the highest field screening evidence of petroleum contamination were submitted to ALS Environmental (ALS) in Everett for chemical analysis as previously described in the scope of this report. In some test pits, no field screening evidence of petroleum was observed. The laboratory report is attached to this report.

Gasoline-range petroleum hydrocarbons and BETX were not detected. Diesel- and or lube oil-range petroleum hydrocarbons either were not detected or were detected at concentrations less than the respective MTCA Method A cleanup levels with the exception of soil sample TP5-4-032514 from test pit TP-5. Soil sample TP5-4-032514 contained asphalt fragments which we were unable to segregate from the soil. This soil sample is the only sample that required dilution by the laboratory during NWTPH-Dx analysis. In our opinion, the elevated concentration of petroleum hydrocarbons in soil sample TP5-4-032514 is the result of the asphalt fragments in the soil sample.

MTCA 5 Metals and cPAHs either were not detected or were detected at concentrations less than the respective MTCA Method A cleanup levels.

TERRESTRIAL ECOLOGICAL EVALUATION

GeoEngineers evaluated whether contaminants detected in soil at the site pose a threat to terrestrial ecological receptors (plants, soil biota and wildlife). The site doesn't appear to qualify for the Terrestrial Ecological Evaluation (TEE) exclusions in WAC 173-340-7491(1). However, the site does qualify for a simplified TEE based on the summary of site conditions (habitat and potential receptors) presented below:

- According to the Whatcom County Critical Areas Ordinance Environmentally and Biologically Sensitive Areas map dated 2005, the site is not mapped in environmentally or biologically sensitive areas such as Category 1 through 4 wetlands, protected habitats and species, stream buffers, or aquifer susceptibility areas.
- The site is not used by wildlife species classified as threatened or endangered based on our review of the Washington Department of Fish & Wildlife (WDFW) Washington State Species of Concern Lists accessed online at http://wdfw.wa.gov/conservation/endangered/All/.
- The site is not used by plants classified as endangered, threatened, or sensitive based on our review of the Washington State Department of Natural Resources (WDNR) Natural Heritage Program List of Known Occurrences of Rare Plants in Washington, March 2014, Whatcom County lists accessed online at http://www1.dnr.wa.gov/nhp/refdesk/lists/plantsxco/whatcom.html.

GeoEngineers compared chemical analytical results from soil samples obtained at the site to MTCA simplified TEE soil concentrations (MTCA Table 749-2). The results of this comparison indicate that diesel and heavy oil-range petroleum hydrocarbons are the only chemicals of ecological concern. Diesel and heavy oil-range petroleum hydrocarbons were detected at concentrations less than the diesel-range organics simplified TEE soil concentration for unrestricted land use of 460 mg/kg in 8 of the 12 soil samples; the exceptions are soil samples obtained from test pits TP-4 (sample depth = 6 feet), TP-5 (sample depth = 4 feet), TP-9 (sample depth = 4 feet) and TP-12 (sample depth = 6 feet). These four samples are in the lower portion of the MTCA default biologically active zone, which ranges from 0 to 6 feet bgs.

The unrestricted land use simplified TEE soil concentration for diesel of 460 mg/kg is based on protection of soil biota. The industrial land use simplified TEE soil concentration for diesel is 15,000 mg/kg and is based on protection of wildlife. Diesel and heavy oil soil concentrations in the 12 soil samples obtained

at the site are less than 15,000 mg/kg. Therefore, we conclude that the diesel and heavy oil soil concentrations at the site do not pose a risk to wildlife.

In our opinion, the diesel-range and heavy oil range petroleum hydrocarbon concentrations detected in site soil are not likely to pose a risk to soil biota for the following reasons:

- Field screening evidence of petroleum hydrocarbons generally was not observed in the upper 5 feet of soil.
- Soil biota are expected to primarily be present in the top few feet of soil and not be significantly exposed to petroleum hydrocarbons in soil at between 4 and 6 feet bgs.
- Visqueen sheeting separates the upper clean soils and the lower petroleum hydrocarbon contaminated soils. The visqueen sheeting is present approximately 3 feet bgs.
- Based on the results of GeoEngineers' "Revised Draft Remedial Investigation/Feasibility Study Report" for the Irondale Iron and Steel Plant, Ecology Facility/Site No. 95275518 prepared for Ecology, dated August 13, 2009, soil biota bioassays at Irondale indicate that total petroleum hydrocarbons (TPH; diesel-range plus heavy oil-range petroleum hydrocarbons) soil cleanup levels protective of soil biota are much higher than the diesel-range simplified TEE soil concentration of 460 mg/kg. The site-specific TPH soil screening level for soil biota at Irondale was 5,200 mg/kg. This finding suggests that a higher TPH concentration limit for soil biota is likely more appropriate than the diesel-range simplified TEE soil concentration.

PETROLEUM HYDROCARBON IMPACTED SOIL REUSE CATEGORIES

Tables 12.1 and 12.2 in Ecology's Guidance for Remediation of Petroleum Contaminated Sites Publication No. 10-09-057 provide guidelines for reuse of petroleum contaminated soil. Based on the detected concentrations of diesel and heavy oil-range petroleum hydrocarbons, the soil generally classifies as soil category 2 (commercial fill above water table). The soil may also be classified as category 3 (paving base material & road construction) or category 4 (landfill daily cover or asphalt manufacturing). The Ecology guidance includes soil reuse limitations pertinent to the petroleum contaminated soil including but not limited to the following:

- The soil should not be placed in or directly adjacent to wetlands or surface water where contact with water is possible.
- If the soil is exposed, stormwater runoff should be contained or treated to prevent entrance to storm drains, surface water or wetlands.
- The soil should not be placed under stormwater infiltration facility or septic drain field.
- For category 3 soils, the soil should be a maximum 2 feet thick to minimize potential for leaching or vapor impacts.

Tables 12.1 and 12.2 are attached to this report. The complete soil reuse guidance can be accessed in Section 12 of the publication, online at https://fortress.wa.gov/ecy/publications/publications/ 1009057.pdf.

CONCLUSIONS

Based on the results of the chemical analytical testing, the following impacts to soil were identified:

MTCA Method A Cleanup Levels

- Gasoline-range petroleum hydrocarbons and BETX were not detected in any of the soil samples.
- Diesel and heavy oil-range petroleum hydrocarbons were detected at concentrations less than the MTCA Method A cleanup levels with the exception of soil sample TP5-4-032514, which contained fragments of asphalt concrete pavement. It is our opinion that the cured asphalt concrete fragments in the soil sample resulted in the high diesel and heavy oil-range concentrations in soil sample TP5-4-032514.
- Mercury, chromium and lead were detected at concentrations less than the corresponding MTCA Method A cleanup levels. Arsenic and cadmium were not detected.
- cPAHs were either not detected or were detected at concentrations less that the MTCA Method A Cleanup level.

Simplified TEE Soil Concentrations

- Mercury, chromium, lead and cPAHs were detected at concentrations less than their corresponding simplified TEE soil concentrations protective of plants, soil biota and wildlife.
- Diesel-range or heavy oil-range petroleum hydrocarbons were detected at concentrations greater than the diesel-range simplified TEE soil concentration in 4 out of 12 soil samples. However, based on the depth of these four soil samples, the expected depth of soil biota at the site, the presence of visqueen sheeting above petroleum-impacted soil, and the conservative nature of the simplified TEE soil concentration for diesel-range petroleum hydrocarbons, the diesel-range and heavy oil-range petroleum hydrocarbons are not expected to pose a risk to ecological receptors at the site.
- The community garden is located in an inferred upgradient location relative to the soil stockpile. Based on subsurface conditions observed in test pits completed in the soil stockpile and in the vicinity of the community garden, and distance between the two site features, it is unlikely that the petroleum hydrocarbons in the soil stockpile have migrated toward the community garden in our opinion. The somewhat elevated concentration of diesel-range petroleum hydrocarbons in soil sample TP12-6-032514 is potentially a result of asphalt fragments that fell into the test pit from asphalt concrete pavement that was encountered during excavation.

Petroleum Hydrocarbon Impacted Soil Status and Reuse Categories

Based on the detected concentrations of diesel and heavy oil-range petroleum hydrocarbons, the soil generally classifies as soil category 2 (commercial fill above water table). The soil may also be classified as category 3 (paving base material and road construction) or category 4 (landfill daily cover or asphalt manufacturing).

We conclude that the soil can remain in place at the site and does not need to be disposed off-site. If SVCA is considering other land uses that would involve moving the stockpiled soil, it should stay within Area Z and be placed above the water table, and capped by a paved surface or compacted gravel. In our opinion, this is a practicable alternative soil reuse activity that would be protective of the environment in accordance with the Ecology guidelines.

LIMITATIONS

We have prepared this report for the exclusive use of Sudden Valley Community Association. This report may be provided to regulatory agencies for review. This report is not intended for use by others and the information contained herein is not applicable to other sites. No other party may rely on the product of our services unless we agree in advance, and in writing, to such reliance. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions.

Our conclusions are based on our site observations, field screening results and chemical analysis of a limited number of soil samples at the site. It is always possible that contaminants remain in areas that were not observed, sampled or tested.

Within the limitations of scope, schedule and budget, our services have been performed in accordance with our confirming agreement dated January 6, 2014, and generally accepted environmental science practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form of this document (email, text, table and/or figure), if provided, and any attachments are only a copy of a master document. The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to the Attachment titled "Report Limitations and Guidelines for Use," for additional information pertaining to use of this report.

Sincerely,

GeoEngineers, Inc.

Ron Bek, LG

Project Geologist

RMB:JRG:tjh

Attachments:

Table 1. Summary of Soil Field Screening and Chemical Analytical Data

Figure 1. Vicinity Map

Figure 2. Area Z Soil Stockpile Test Pit Locations

Figure 3, Area Z Community Garden Vicinity Test Pit Locations

won Br

ALS Environmental Laboratory Report

Ecology Tables 12.1 and 12.2

Attachment A. Report Limitations and Guidelines for Use

One copy submitted electronically. Four hard copies submitted.

J. Robert Gordon, PE Principal

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table 1

Summary of Soil Field Screening and Chemical Analytical Data¹

Area Z, Sudden Valley Whatcom County, Washington

		Sample			ım Hydrocarbo (mg/kg)	ns			TEX ⁵ g/kg)		MTCA Metals ⁶ (mg/kg)				Total cPAHs ⁷ (mg/kg)	
Sample Identification ²	Date Sampled	Depth (feet bgs)	Water Sheen Screening	Gasoline Range ³	Diesel Range ⁴	Heavy Oil Range ⁴	Benzene	Toluene	Ethylbenzene	Total Xylenes	Mercury	Arsenic	Cadmium	Chromium	Lead	TEQ
	<u> </u>	, , ,					Soil Stock	pile Samples					•			•
TP1-3-032514	3/25/2014	3.0	NS	<3.0	<25	260	<0.030	<0.050	<0.050	<0.20	_	_	-	_	_	_
TP2-4-032514	3/25/2014	4.0	NS	<3.0	<25	100	<0.030	<0.050	<0.050	<0.20	-	_		_	_	
TP3-5-032514	3/25/2014	5.0	SS	<3.0	<25	95	<0.030	<0.050	<0.050	<0.20	-	-	-	-	_	
TP4-6-032514	3/25/2014	6.0	MS	<3.0	<25	630	<0.030	<0.050	<0.050	<0.20	<0.020	<5.0	<0.50	17	28	0.004
TP5-4-032514	3/25/2014	4.0	MS	<19	910	1500	<0.030	<0.050	<0.050	<0.20	-	-	-		-	
TP6-6-032514	3/25/2014	6.0	SS	<3.0	<25	110	<0.030	<0.050	<0.050	<0.20	-	-	-	-	_	
TP7-5-032514	3/25/2014	5.0	NS	<3.0	<25	98	<0.030	<0.050	<0.050	<0.20	-	-		-	_	
TP8-4-032514	3/25/2014	4.0	NS	<3.0	<25	76	<0.030	<0.050	<0.050	<0.20	-	-		_	_	
TP9-4-032514	3/25/2014	4.0	MS	<49	1500	120	<0.030	<0.050	<0.050	<0.20	0.040	<5.0	<0.50	32	5.5	<0.020
TP10-4-032514	3/25/2014	4.0	NS	<3.0	<25	130	<0.030	<0.050	<0.050	<0.20	-	-				
							Community Gard	den Area Sample	s							
TP11-3-032514	3/25/2014	3.0	NS	<3.0	<25	92	<0.030	<0.050	<0.050	<0.20	-		-	-	-	-
TP12-6-032514	3/25/2014	6.0	NS	<3.0	<25	650	<0.030	<0.050	<0.050	<0.20	-		-	-		-
MTCA Met	hod A Cleanup Lev	el for Unrestricte	d Land Use	(100)	2,000	2,000	0.03	7	6	9	2	20	2	2000 ⁸	250	0.1
Simplified T	errestrial Ecologic	al Evaluation Con	centrations ⁹	200	460	460 10	NA	NA	NA	NA	9	95	25	42	220	30

Notes:

⁹Vaules from MTCA Table 749-2.

Diesel range organics value from MTCA Table 749-2 used as a surrogate for heavy oil-range petroleum hydrocarbons.

NWTPH-Dx = Northwest Total Petroleum Hydrocarbons - Diesel Extended

NWTPH-Gx = Northwest Total Petroleum Hydrocarbons - Gasoline Extended

bgs = below ground surface

mg/kg = milligrams per kilogram

NA = No soil concentration is presented in MTCA Table 749-2.

MS = moderate sheen, SS = slight sheen, NS = no sheen.

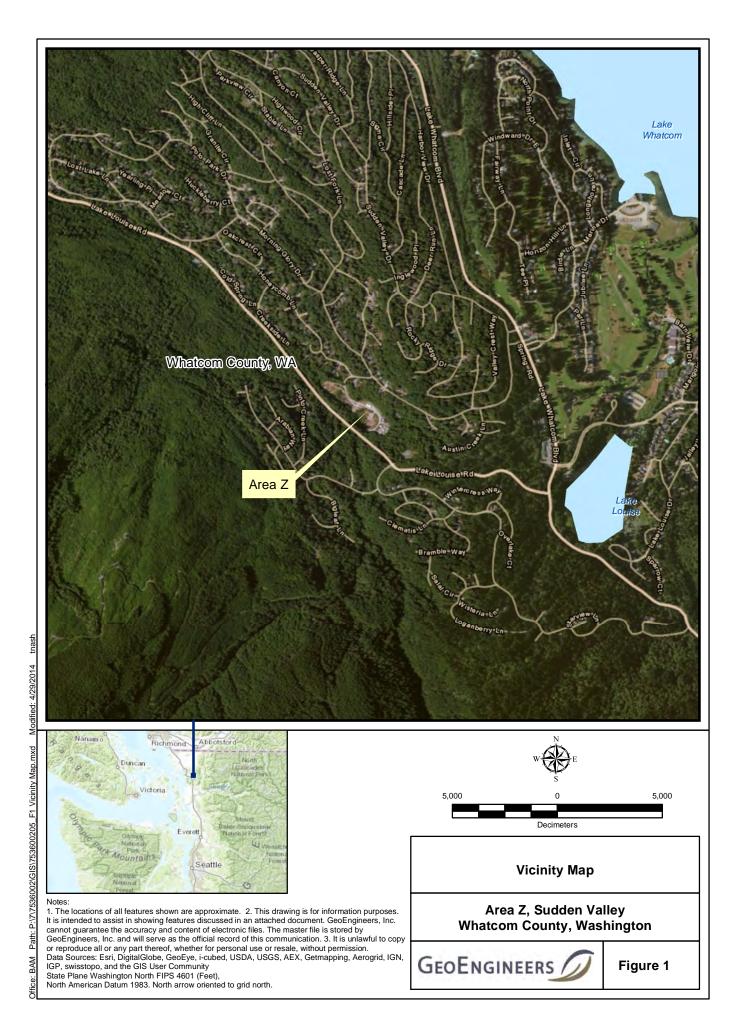
MTCA = Model Toxics Control Act

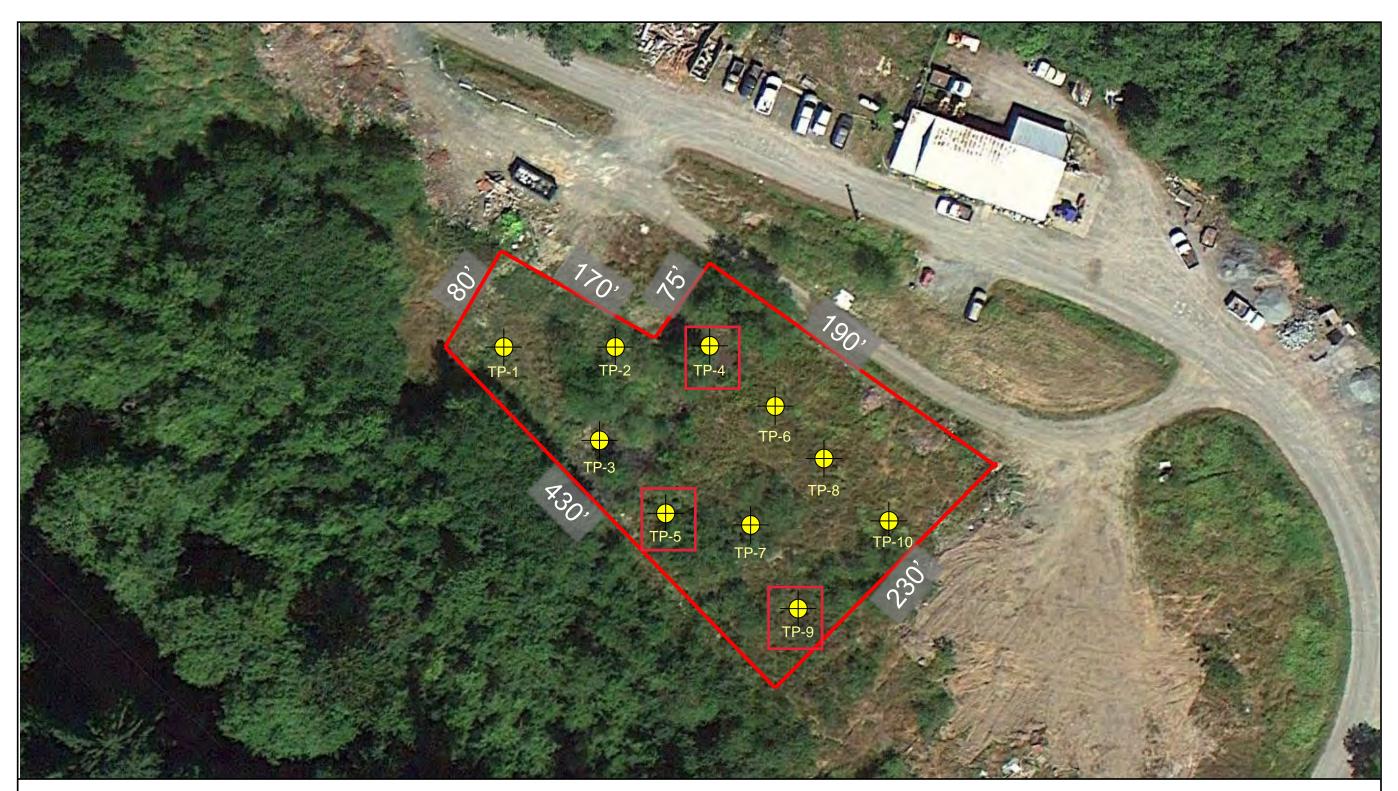
A bolded value indicates an analyte has been detected at the indicated concentration.

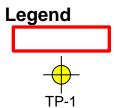
¹Chemical analyses by ALS Environmental, Inc. in Everett, Washington.

 $^{^{2}}$ Approximate sample locations are shown in Figures 2 and 3. Field screening results are described in the report.

³ Gasoline range hydrocarbons analyzed using NWTPH-Gx.


⁴Diesel and heavy oil range hydrocarbons analyzed by petroleum hydrocarbon identification using NWTPH-Dx with silica gel cleanup.


⁵Benzene, toluene, ethylbenzene and total xylenes analysed using EPA Method 8021.


⁶ MTCA metals analyzed by EPA Method 6020 except mercury analysed using EPA Method 7471.

⁷ Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) analyzed by EPA Method 8270D/SIM. Total cPAHs calculated using the toxicity equivalency (TEQ) methodology specified in WAC 173-340-780(8). cPAHs that were not detected were not included for these calculations.

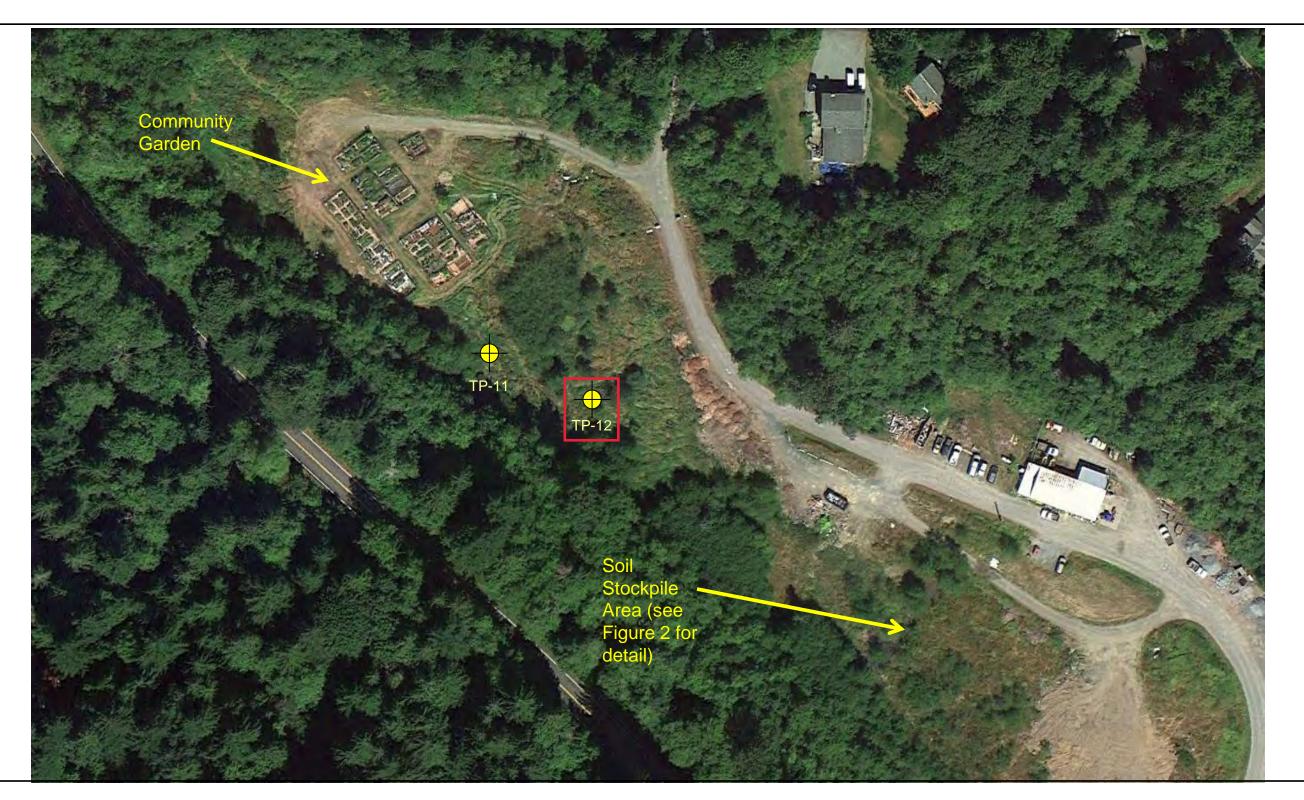
⁸Cleanup level for Chromium III.

Approximate Soil Stockpile / Site Boundary
Approximate Test Pit Location and Test Pit Number

W 🛞

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is only for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc.


Source: Google Earth Aerial Photograph August 2011

Area Z Soil Stockpile Test Pit Locations

Area Z, Sudden Valley Whatcom County, Washington

Figure 2

Legend

Approximate Test Pit Location and Test Pit Number

TP-11

Notes:

- 1. The locations of all features shown are approximate.
- 2. This drawing is only for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. can not guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc.

Source: Google Earth Aerial Photograph August 2011

Area Z Community Garden Vicinity Test Pit Locations

Area Z, Sudden Valley Whatcom County, Washington

Figure 3

April 9, 2014

Mr. Ron Bek Geoengineers, Inc. 600 DuPont St. Bellingham, WA 98225

Dear Mr. Bek,

On March 26th, 14 samples were received by our laboratory and assigned our laboratory project number EV14030179. The project was identified as your 7536-002-05. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan

Laboratory Director

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St. ALS JOB#: EV14030179 Bellingham, WA 98225 ALS SAMPLE#: EV14030179-01

Ron Bek DATE RECEIVED: 03/26/14

CLIENT CONTACT:

CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 8:30:00 AM

CLIENT SAMPLE ID TP1-3-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS BY	
Gasoline	NWTPH-GX	ND	3.0	0.49	1.5	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0096	0.012	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0032	0.009	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0037	0.011	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0096	0.029	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.5	11	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	260	50	6.9	21	1		MG/KG	03/27/14	EBS	1

				LIMITS		SPIKE			ANALYSIS A	ANALYSIS	
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.06	60	140		0.843		106	03/26/14	DLC	i
TFT	SW8021	1.07	60	140		0.843		107	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.27	58	134		4.50		127	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. DATE:

600 DuPont St. ALS JOB#: EV14030179

Bellingham, WA 98225 ALS SAMPLE#: EV14030179-02 Ron Bek DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 8:50:00 AM

CLIENT SAMPLE ID TP2-4-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS BY	
Gasoline	NWTPH-GX	ND	3.0	0.52	1.6	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.010	0.013	1	U	MG/KG	03/26/14	DLC	1
Toluene	SW8021	ND	0.050	0.0034	0.010	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0039	0.012	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.010	0.031	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.0	8.9	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	100	50	5.8	17	1		MG/KG	03/27/14	EBS	- 1

				LIMITS		SPIKE			ANALYSIS A	ANALYSIS	
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.09	60	140		0.895		109	03/26/14	DLC	i
TFT	SW8021	1.10	60	140		0.895		110	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.20	58	134		3.79		120	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

ALS Laboratory Group A Campbell Brothers Limited Company

4/9/2014

CLIENT: Geoengineers, Inc. DATE:

600 DuPont St. ALS JOB#: EV14030179

Bellingham, WA 98225 ALS SAMPLE#: EV14030179-03

Ron Bek CLIENT CONTACT: DATE RECEIVED: 03/26/14 **CLIENT PROJECT:** 7536-002-05 **COLLECTION DATE:** 3/25/2014 9:13:00 AM

CLIENT SAMPLE ID TP3-5-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION		UNITS	ANALYSIS A	ANALYSIS BY	_
Gasoline	NWTPH-GX	ND	3.0	0.39	1.2	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0077	0.009	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0026	0.007	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0030	0.008	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0077	0.023	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.0	9.1	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	95	50	5.9	18	1		MG/KG	03/27/14	EBS	

									NALYSIS ANALYSIS		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY		
TFT	NWTPH-GX	0.924	60	140		0.678	92.4	03/26/14	DLC	i	
TFT	SW8021	0.917	60	140		0.678	91.7	03/26/14	DLC	i	
Pentacosane	NWTPH-DX w/ SGA	1.12	58	134		3.87	112	03/27/14	EBS	1	

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

4/9/2014

CLIENT: Geoengineers, Inc.

600 DuPont St.

Bellingham, WA 98225

CLIENT CONTACT: Ron Bek

CLIENT PROJECT: 7536-002-05

CLIENT SAMPLE ID TP4-6-032514

DATE: 4/9/2014

ALS JOB#: EV14030179

ALS SAMPLE#: E\

EV14030179-04

DATE RECEIVED: 03/26/14

COLLECTION DATE: 3/25/2014 9:30:00 AM

WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

				LIMITS		DILUTION			ANALYSIS		
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY	
Gasoline	NWTPH-GX	ND	3.0	0.37	1.1	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0072	0.008	1	U	MG/KG	03/26/14	DLC	1
Toluene	SW8021	ND	0.050	0.0024	0.007	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0028	0.008	1	U	MG/KG	03/26/14	DLC	1
Total Xylenes	SW8021	ND	0.20	0.0072	0.022	1	U	MG/KG	03/26/14	DLC	1
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	2.8	8.4	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	630	50	5.4	16	1		MG/KG	03/27/14	EBS	1
Benz[a]anthracene	SW8270DSIM	ND	20	1.1	3.2	1	U	UG/KG	04/02/14	LAP	1
Chrysene	SW8270DSIM	ND	20	1.5	4.4	1	U	UG/KG	04/02/14	LAP	1
Benzo(b)fluoranthene	SW8270DSIM	ND	20	1.4	4.3	1	U	UG/KG	04/02/14	LAP	1
Benzo(k)fluoranthene	SW8270DSIM	ND	20	1.2	3.6	1	U	UG/KG	04/02/14	LAP	1
Benzo(a)pyrene	SW8270DSIM	ND	20	1.2	3.5	1	U	UG/KG	04/02/14	LAP	1
Indeno(1,2,3-cd)pyrene	SW8270DSIM	21	20	1.4	4.1	1		UG/KG	04/02/14	LAP	1
Dibenzo(a,h)anthracene	SW8270DSIM	20	20	1.6	4.9	1		UG/KG	04/02/14	LAP	1
Mercury	SW7471	ND	0.020	0.0014	0.004	1	U	MG/KG	04/04/14	RAL	- 1
Arsenic	SW6020	ND	5.0	0.27	0.80	5	U	MG/KG	04/07/14	RAL	- 1
Cadmium	SW6020	ND	0.50	0.082	0.25	5	U	MG/KG	04/07/14	RAL	- 1
Chromium	SW6020	17	0.50	0.14	0.41	5		MG/KG	04/07/14	RAL	- 1
Lead	SW6020	28	0.50	0.088	0.26	5		MG/KG	04/07/14	RAL	I

				LIMITS		SPIKE		ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.09	60	140		0.635	109	03/26/14	DLC	i
TFT	SW8021	1.13	60	140		0.635	113	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.23	58	134		3.55	123	03/27/14	EBS	1
Terphenyl-d14	SW8270DSIM	0.770	28.9	157		982	77.0	04/02/14	LAP	!

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St. ALS JOB#:

Bellingham, WA 98225 ALS SAMPLE#: EV14030179-06

Ron Bek **CLIENT CONTACT:** DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 3/25/2014 10:00:00 AM **COLLECTION DATE:**

CLIENT SAMPLE ID TP5-4-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS BY	
Gasoline	NWTPH-GX	ND	19	0.56	1.7	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.011	0.013	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0036	0.011	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0042	0.013	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.011	0.033	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	910	250	30	89	10		MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	1500	500	57	170	10		MG/KG	03/27/14	EBS	1

						SPIKE			ANALYSIS ANALYSIS		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.02	60	140		0.959		102	03/26/14	DLC	1
TFT	SW8021	1.09	60	140		0.959		109	03/26/14	DLC	1
Pentacosane 10X Dilution	NWTPH-DX w/ SGA	1.31	58	134		3.76	DS2	131	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit.

EV14030179

DS2 - Due to high dilution factor surrogate results should be considered uncontrolled.

Chromatogram indicates that it is likely that sample contains weathered diesel and lube oil.

Gasoline range reporting limit raised due to semivolatile range product overlap.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St. ALS JOB#: EV14030179 Bellingham, WA 98225 ALS SAMPLE#: EV14030179-07

Ron Bek DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 10:30:00 AM

CLIENT SAMPLE ID TP6-6-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS By	
Gasoline	NWTPH-GX	ND	3.0	0.39	1.2	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0076	0.009	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0025	0.007	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0029	0.008	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0076	0.023	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.1	9.3	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon – Oil	NWTPH-DX w/ SGA	110	50	6.0	18	1		MG/KG	03/27/14	EBS	

				LIMITS		SPIKE		ANALYSIS		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.07	60	140		0.666	107	03/26/14	DLC	i
TFT	SW8021	1.20	60	140		0.666	120	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.06	58	134		3.92	106	03/27/14	EBS	

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc.

600 DuPont St.

Bellingham, WA 98225

Ron Bek CLIENT CONTACT:

7536-002-05

CLIENT PROJECT: CLIENT SAMPLE ID TP7-5-032514 DATE: 4/9/2014

ALS JOB#:

EV14030179 EV14030179-08

ALS SAMPLE#:

03/26/14

DATE RECEIVED: 3/25/2014 10:50:00 AM **COLLECTION DATE:**

WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS BY	
Gasoline	NWTPH-GX	ND	3.0	0.32	0.97	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0063	0.007	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0021	0.006	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0024	0.007	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0063	0.019	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.0	9.1	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	98	50	5.9	18	1		MG/KG	03/27/14	EBS	

				LIMITS		SPIKE		ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.03	60	140		0.556	103	03/26/14	DLC	i
TFT	SW8021	1.16	60	140		0.556	116	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.18	58	134		3.84	118	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc. DATE:

600 DuPont St. ALS JOB#:

EV14030179 Bellingham, WA 98225 ALS SAMPLE#: EV14030179-09

Ron Bek CLIENT CONTACT: DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 11:07:00 AM

CLIENT SAMPLE ID TP8-4-032514 WDOE ACCREDITATION: C601

ANALYSIS ANALYSIS **LIMITS DILUTION**

4/9/2014

ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY	
Gasoline	NWTPH-GX	ND	3.0	0.46	1.4	1	U	MG/KG	03/26/14	DLC	ì
Benzene	SW8021	ND	0.030	0.0091	0.011	1	U	MG/KG	03/26/14	DLC	i
Toluene	SW8021	ND	0.050	0.0030	0.009	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0035	0.010	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0091	0.027	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.0	9.1	1	U	MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	76	50	5.9	18	1		MG/KG	03/27/14	EBS	1

SAMPLE DATA RESULTS

				LIMITS		SPIKE		ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	0.843	60	140		0.795	84.3	03/26/14	DLC	i
TFT	SW8021	0.970	60	140		0.795	97.0	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.24	58	134		3.84	124	03/27/14	EBS	

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc.

600 DuPont St.

Bellingham, WA 98225

Ron Bek **CLIENT CONTACT:**

7536-002-05

CLIENT PROJECT: CLIENT SAMPLE ID TP9-4-032514 DATE: 4/9/2014

ALS JOB#: EV14030179

ALS SAMPLE#: EV14030179-10

DATE RECEIVED: 03/26/14

COLLECTION DATE: 3/25/2014 11:30:00 AM

WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

				LIMITS		DILUTION			ANALYSIS		
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY	
Gasoline	NWTPH-GX	ND	49	0.57	1.7	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.011	0.014	1	U	MG/KG	03/26/14	DLC	1
Toluene	SW8021	ND	0.050	0.0037	0.011	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0043	0.013	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.011	0.034	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	1500	25	2.9	8.8	1		MG/KG	03/27/14	EBS	1
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	120	50	5.7	17	1		MG/KG	03/27/14	EBS	1
Benz[a]anthracene	SW8270DSIM	ND	20	1.1	3.2	1	U	UG/KG	04/02/14	LAP	!
Chrysene	SW8270DSIM	ND	20	1.4	4.3	1	U	UG/KG	04/02/14	LAP	!
Benzo(b)fluoranthene	SW8270DSIM	ND	20	1.4	4.2	1	U	UG/KG	04/02/14	LAP	!
Benzo(k)fluoranthene	SW8270DSIM	ND	20	1.2	3.5	1	U	UG/KG	04/02/14	LAP	!
Benzo(a)pyrene	SW8270DSIM	ND	20	1.1	3.4	1	U	UG/KG	04/02/14	LAP	!
Indeno(1,2,3-cd)pyrene	SW8270DSIM	ND	20	1.4	4.1	1	U	UG/KG	04/02/14	LAP	!
Dibenzo(a,h)anthracene	SW8270DSIM	ND	20	1.6	4.8	1	U	UG/KG	04/02/14	LAP	!
Mercury	SW7471	0.040	0.020	0.0014	0.004	1		MG/KG	04/04/14	RAL	1
Arsenic	SW6020	ND	5.0	0.30	0.89	5	U	MG/KG	04/07/14	RAL	1
Cadmium	SW6020	ND	0.50	0.092	0.28	5	U	MG/KG	04/07/14	RAL	1
Chromium	SW6020	32	0.50	0.15	0.45	5		MG/KG	04/07/14	RAL	- 1
Lead	SW6020	5.5	0.50	0.098	0.29	5		MG/KG	04/07/14	RAL	- 1

				LIMITS		SPIKE		ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.05	60	140		0.986	105	03/26/14	DLC	i
TFT	SW8021	1.13	60	140		0.986	113	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.22	58	134		3.72	122	03/27/14	EBS	1
Terphenyl-d14	SW8270DSIM	0.791	28.9	157		963	79.1	04/02/14	LAP	!

U - Analyte analyzed for but not detected at level above reporting limit.

Oil range product results biased high due to diesel range product overlap.

Chromatogram indicates that it is likely that sample contains weathered diesel and lube oil.

Gasoline range reporting limit raised due to semivolatile range product overlap.

CLIENT CONTACT:

CERTIFICATE OF ANALYSIS

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St. ALS JOB#: EV14030179 Bellingham, WA 98225 ALS SAMPLE#: EV14030179-12

Ron Bek DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 11:57:00 AM

SAMPLE DATA RESULTS

CLIENT SAMPLE ID TP10-4-032514 WDOE ACCREDITATION: C601

LIMITS DILUTION ANALYSIS ANALYSIS

ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	ВТ
Gasoline	NWTPH-GX	ND	3.0	0.39	1.2	1	U	MG/KG	03/27/14	DLC
Benzene	SW8021	ND	0.030	0.0075	0.009	1	U	MG/KG	03/27/14	DLC
Toluene	SW8021	ND	0.050	0.0025	0.007	1	U	MG/KG	03/27/14	DLC
Ethylbenzene	SW8021	ND	0.050	0.0029	0.008	1	U	MG/KG	03/27/14	DLC
Total Xylenes	SW8021	ND	0.20	0.0075	0.023	1	U	MG/KG	03/27/14	DLC
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	2.9	8.7	1	U	MG/KG	03/27/14	EBS
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	130	50	5.6	17	1		MG/KG	03/27/14	EBS

				LIMITS		SPIKE			ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.00	60	140		0.661		100	03/27/14	DLC	1
TFT	SW8021	1.07	60	140		0.661		107	03/27/14	DLC	- 1
Pentacosane	NWTPH-DX w/ SGA	1.32	58	134		3.69		132	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc. DATE: 4/9/2014 EV14030179

600 DuPont St. ALS JOB#:

Bellingham, WA 98225 ALS SAMPLE#: EV14030179-13

CLIENT CONTACT: Ron Bek DATE RECEIVED: 03/26/14 CLIENT PROJECT: 7536-002-05 **COLLECTION DATE:** 3/25/2014 1:45:00 PM

CLIENT SAMPLE ID TP11-3-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		UNITS	ANALYSIS A	ANALYSIS BY	
Gasoline	NWTPH-GX	ND	3.0	0.46	1.4	1	U	MG/KG	03/26/14	DLC	i
Benzene	SW8021	ND	0.030	0.0090	0.011	1	U	MG/KG	03/26/14	DLC	ì
Toluene	SW8021	ND	0.050	0.0030	0.009	1	U	MG/KG	03/26/14	DLC	i
Ethylbenzene	SW8021	ND	0.050	0.0035	0.010	1	U	MG/KG	03/26/14	DLC	i
Total Xylenes	SW8021	ND	0.20	0.0090	0.027	1	U	MG/KG	03/26/14	DLC	i
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	25	3.0	8.9	1	U	MG/KG	03/27/14	EBS	ı
Total Petroleum Hydrocarbon – Oil	NWTPH-DX w/ SGA	92	50	5.8	17	1		MG/KG	03/27/14	EBS	1

			SPIKE			ANALYSIS ANALYSIS					
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QL	JAL %	6REC	DATE	BY	
TFT	NWTPH-GX	1.01	60	140		0.791		101	03/26/14	DLC	i
TFT	SW8021	1.12	60	140		0.791		112	03/26/14	DLC	i
Pentacosane	NWTPH-DX w/ SGA	1.24	58	134		3.78		124	03/27/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St.

ALS JOB#: EV14030179 Bellingham, WA 98225 ALS SAMPLE#: EV14030179-14

Ron Bek CLIENT CONTACT: DATE RECEIVED: 03/26/14

CLIENT PROJECT: 7536-002-05 3/25/2014 2:00:00 PM **COLLECTION DATE:**

CLIENT SAMPLE ID TP12-6-032514 WDOE ACCREDITATION: C601

SAMPLE DATA RESULTS

				LIMITS		DILUTION			ANALYSIS A		
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY	
Gasoline	NWTPH-GX	ND	3.0	0.51	1.5	1	U	MG/KG	03/27/14	DLC	1
Benzene	SW8021	ND	0.030	0.010	0.012	1	U	MG/KG	03/27/14	DLC	1
Toluene	SW8021	ND	0.050	0.0034	0.010	1	U	MG/KG	03/27/14	DLC	1
Ethylbenzene	SW8021	ND	0.050	0.0039	0.012	1	U	MG/KG	03/27/14	DLC	1
Total Xylenes	SW8021	ND	0.20	0.010	0.030	1	U	MG/KG	03/27/14	DLC	1
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX w/ SGA	ND	50	5.6	17	2	U	MG/KG	03/28/14	EBS	,
Total Petroleum Hydrocarbon - Oil	NWTPH-DX w/ SGA	650	100	11	33	2		MG/KG	03/28/14	EBS	1

				LIMITS		SPIKE		ANALYSIS A		
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED QUAL	%REC	DATE	BY	
TFT	NWTPH-GX	1.17	60	140		0.882	117	03/27/14	DLC	1
TFT	SW8021	1.26	60	140		0.882	126	03/27/14	DLC	1
Pentacosane 2X Dilution	NWTPH-DX w/ SGA	1.22	58	134		3.59	122	03/28/14	EBS	1

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lube oil.

CLIENT: Geoengineers, Inc.

600 DuPont St.

Bellingham, WA 98225

4/9/2014 DATE: ALS SDG#: EV14030179

WDOE ACCREDITATION: C601

CLIENT CONTACT: CLIENT PROJECT:

Ron Bek 7536-002-05

LABORATORY BLANK RESULTS

MB-032514S - Batch 7742 - Soil by NWTPH-GX Prepared 03/25/14 09:00

ANALYTE	METHOD	RESULTS	RL	LIMITS MDL	PQL	DILUTION FACTOR		. UNITS	ANALYSIS DATE	ANALYSIS BY
Gasoline	NWTPH-GX	ND	3.0	0.49	1.5	1	U	MG/KG-dry	03/25/14	DLC
SURROGATE	METHOD	RESULTS	MIN	LIMITS MAX	RPD	SPIKE ADDED	OLIAI	. %REC	ANALYSIS DATE	ANALYSIS BY
TFT	NWTPH-GX	112	60	140	KI D	0.500	QUAL	112	03/25/14	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

MB-032514S - Batch 7742 - Soil by SW8021 Prepared 03/25/14 09:00

				LIMITS		DILUTION			ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY
Benzene	SW8021	ND	0.030	0.0061	0.018	1	U	MG/KG-dry	03/25/14	DLC
Toluene	SW8021	ND	0.050	0.0067	0.020	1	U	MG/KG-dry	03/25/14	DLC
Ethylbenzene	SW8021	ND	0.050	0.0053	0.016	1	U	MG/KG-dry	03/25/14	DLC
Total Xylenes	SW8021	ND	0.20	0.018	0.053	1	U	MG/KG-dry	03/25/14	DLC
				LIMITS		SPIKE			ANALYSIS	ANALYSIS
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	. %REC	DATE	BY
TFT	SW8021	99.5	60	140		0.500		99.5	03/25/14	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

MB-032714S - Batch 7766 - Soil by NWTPH-DX Prepared 03/27/14 13:14

				LIMITS		DILUTION			ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY
Total Petroleum Hydrocarbon – Diesel	NWTPH-DX	ND	25	3.9	12	1	U	MG/KG	03/28/14	EBS
Total Petroleum Hydrocarbon – Oil	NWTPH-DX	ND	50	7.6	23	1	U	MG/KG	03/28/14	EBS
				LIMITS		SPIKE			ANALYSIS	ANALYSIS
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY
Pentacosane	NWTPH-DX	115	58	134		5.00		115	03/28/14	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-040214S - Batch 7784 - Soil by SW8270DSIM Prepared 04/04/14 17:37

				LIMITS		DILUTION			ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY
Benz[a]anthracene	SW8270DSIM	ND	20	1.1	3.3	1	U	UG/KG	04/04/14	LAP
Chrysene	SW8270DSIM	ND	20	1.5	4.5	1	U	UG/KG	04/04/14	LAP
Benzo(b)fluoranthene	SW8270DSIM	ND	20	1.5	4.4	1	U	UG/KG	04/04/14	LAP
Benzo(k)fluoranthene	SW8270DSIM	ND	20	1.2	3.6	1	U	UG/KG	04/04/14	LAP
Benzo(a)pyrene	SW8270DSIM	ND	20	1.2	3.5	1	U	UG/KG	04/04/14	LAP

Page 14

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626

CLIENT: Geoengineers, Inc. DATE: 4/9/2014

600 DuPont St. ALS SDG#: EV14030179

Bellingham, WA 98225 WDOE ACCREDITATION: C601

Ron Bek **CLIENT CONTACT: CLIENT PROJECT:** 7536-002-05

LABORATORY BLANK RESULTS

MB-040214S - Batch 7784 - Soil by SW8270DSIM Prepared 04/04/14 17:37

Indeno(1,2,3-cd)pyrene	SW8270DSIM	ND .	20	1.4	4.2	1	U	UG/KG	04/04/14	LAP
Dibenzo(a,h)anthracene	SW8270DSIM	ND	20	1.7	5.0	1	U	UG/KG	04/04/14	LAP

				LIMITS		SPIKE			ANALYSIS A	ANALYSIS
SURROGATE	METHOD	RESULTS	MIN	MAX	RPD	ADDED	QUAL	%REC	DATE	BY
Terphenyl-d14	SW8270DSIM	89.5	28.9	157		1000		89.5	04/04/14	LAP

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-231354 - Batch R231354 - Soil by SW7471 Prepared 04/04/14

				LIMITS		DILUTION			ANALYSIS A	ANALYSIS	
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY	
Mercury	SW7471	ND	0.020	0.0014	0.0041	1	U	MG/KG	04/04/14	RAL	

U - Analyte analyzed for but not detected at level above reporting limit.

MB2-040414S - Batch 7783 - Soil by SW6020 Prepared 04/04/14 12:00

				LIMITS		DILUTION			ANALYSIS A	ANALYSIS
ANALYTE	METHOD	RESULTS	RL	MDL	PQL	FACTOR	QUAL	UNITS	DATE	BY
Arsenic	SW6020	ND	1.0	0.049	0.15	1	U	MG/KG	04/04/14	RAL
Cadmium	SW6020	ND	0.10	0.015	0.045	1	U	MG/KG	04/04/14	RAL
Chromium	SW6020	ND	0.10	0.025	0.074	1	U	MG/KG	04/04/14	RAL
Lead	SW6020	ND	0.10	0.016	0.047	1	U	MG/KG	04/04/14	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

CLIENT: Geoengineers, Inc.

600 DuPont St. ALS SDG#: EV14030179

DATE:

4/9/2014

Bellingham, WA 98225 WDOE ACCREDITATION: C601

CLIENT CONTACT: Ron Bek CLIENT PROJECT: 7536-002-05

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 7742 - Soil by NWTPH-GX Prepared 03/25/14 09:00

					SPIKE		LIMITS		ANALYSIS	ANALYSIS
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	ADDED	MIN	MAX	RPD	DATE	BY
Gasoline - BS	NWTPH-GX	18			25.0	59	104		03/25/14	DLC
Gasoline - BSD	NWTPH-GX	18	1		25.0	59	104	15	03/25/14	DLC

					SPIKE		LIMITS		ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC	RPD	QUAL	ADDED	MIN	MAX	RPD	DATE	BY
TFT - BS	NWTPH-GX	129			0.500	60	140		03/25/14	DLC
TFT - BSD	NWTPH-GX	131			0.500	60	140		03/25/14	DLC

ALS Test Batch ID: 7742 - Soil by SW8021 Prepared 03/25/14 09:00

				:	SPIKE		LIMITS		ANALYSIS	ANALYSIS	
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL A	ADDED	MIN	MAX	RPD	DATE	BY	
Benzene - BS	SW8021	0.87			1.00	67.7	124		03/25/14	DLC	
Benzene - BSD	SW8021	0.86	0		1.00	67.7	124	8.5	03/25/14	DLC	
Toluene - BS	SW8021	0.90			1.00	71	123		03/25/14	DLC	
Toluene - BSD	SW8021	0.90	0		1.00	71	123	9.7	03/25/14	DLC	
Ethylbenzene - BS	SW8021	0.89			1.00	69.8	117		03/25/14	DLC	
Ethylbenzene - BSD	SW8021	0.89	0		1.00	69.8	117	10	03/25/14	DLC	
Total Xylenes - BS	SW8021	2.7			3.00	70	119		03/25/14	DLC	
Total Xylenes - BSD	SW8021	2.7	0		3.00	70	119	10	03/25/14	DLC	

					SPIKE		LIMITS		ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC	RPD	QUAL	ADDED	MIN	MAX	RPD	DATE	BY
TFT - BS	SW8021	91.7			0.500	60	140		03/25/14	DLC
TFT - BSD	SW8021	90.9			0.500	60	140		03/25/14	DLC

ALS Test Batch ID: 7766 - Soil by NWTPH-DX Prepared 03/27/14 13:14

SPIKED COMPOUND Total Petroleum Hydrocarbon – Diesel - BS	METHOD NWTPH-DX	%REC 130	RPD	QUAL	SPIKE ADDED 125	MIN 76.2	MAX 112	RPD	ANALYSIS DATE 03/27/14	ANALYSIS BY EBS	
Total Petroleum Hydrocarbon – Diesel - BSD	NWTPH-DX	130	1		125	76.2	112	12	03/27/14	EBS	
SUPPOCATE	METHOD	0/ DEC	BBB	OHAL	SPIKE	MINI	LIMITS	BBB	ANALYSIS	ANALYSIS	

					SPIKE		LIMITS		ANALYSIS	ANALYSIS	
SURROGATE	METHOD	%REC	RPD	QUAL	ADDED	MIN	MAX	RPD	DATE	BY	
Pentacosane - BS	NWTPH-DX	116			5.00	58	134		03/27/14	EBS	
Pentacosane - BSD	NWTPH-DX	115			5.00	58	134		03/27/14	EBS	

CLIENT: Geoengineers, Inc.

600 DuPont St.

Bellingham, WA 98225 WDOE ACCREDITATION: C601

Ron Bek CLIENT CONTACT: **CLIENT PROJECT:** 7536-002-05

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 7784 - Soil by SW8270DSIM Prepared 04/02/14 17:37

				;	SPIKE		LIMITS		ANALYSIS	ANALYSIS
SURROGATE	METHOD	%REC	RPD	QUAL	ADDED	MIN	MAX	RPD	DATE	BY
Terphenyl-d14 - BS	SW8270DSIM	72.2			1000	28.9	157		04/02/14	LAP
Terphenyl-d14 - BSD	SW8270DSIM	73.8			1000	28.9	157		04/02/14	LAP

ALS Test Batch ID: R231354 - Soil by SW7471 Prepared 04/04/14

				SPIKE		LIMITS		ANALYSIS	ANALYSIS
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL ADDED	MIN	MAX	RPD	DATE	BY
Mercury - BS	SW7471	99		100	81.8	117		04/04/14	RAL
Mercury - BSD	SW7471	99	0	100	81.8	117	8.84	04/04/14	RAL

ALS Test Batch ID: 7783 - Soil by SW6020 Prepared 04/04/14 12:00

METHOD	%REC	RPD		SPIKE ADDED	MIN	LIMITS	RPD	DATE	ANALYSIS BY	
SW6020	5.2			5.00	80	120		04/04/14	RAL	
SW6020	5.3	2		5.00	80	120	8.91	04/04/14	RAL	
SW6020	5.1			5.00	80	120		04/04/14	RAL	
SW6020	5.2	3		5.00	80	120	9.2	04/04/14	RAL	
SW6020	5.2			5.00	80	120		04/04/14	RAL	
SW6020	5.3	2		5.00	80	120	9.6	04/04/14	RAL	
SW6020	5.2			5.00	80	120		04/04/14	RAL	
SW6020	5.3	3		5.00	80	120	9.36	04/04/14	RAL	
	SW6020 SW6020 SW6020 SW6020 SW6020 SW6020	SW6020 5.2 SW6020 5.3 SW6020 5.1 SW6020 5.2 SW6020 5.2 SW6020 5.3 SW6020 5.2	SW6020 5.2 SW6020 5.3 2 SW6020 5.1 SW6020 5.2 3 SW6020 5.2 SW6020 5.3 2 SW6020 5.2	SW6020 5.2 SW6020 5.3 2 SW6020 5.1 SW6020 5.2 3 SW6020 5.2 SW6020 5.3 2 SW6020 5.2	METHOD %REC RPD QUAL ADDED SW6020 5.2 5.00 SW6020 5.3 2 5.00 SW6020 5.1 5.00 SW6020 5.2 3 5.00 SW6020 5.2 5.00 SW6020 5.3 2 5.00 SW6020 5.2 5.00	METHOD %REC RPD QUAL ADDED MIN SW6020 5.2 5.00 80 SW6020 5.3 2 5.00 80 SW6020 5.1 5.00 80 SW6020 5.2 3 5.00 80 SW6020 5.2 5.00 80 SW6020 5.3 2 5.00 80 SW6020 5.2 5.00 80 SW6020 5.2 5.00 80	METHOD %REC RPD QUAL ADDED MIN MAX SW6020 5.2 5.00 80 120 SW6020 5.3 2 5.00 80 120 SW6020 5.1 5.00 80 120 SW6020 5.2 3 5.00 80 120 SW6020 5.2 5.00 80 120 SW6020 5.3 2 5.00 80 120 SW6020 5.2 5.00 80 120 SW6020 5.2 5.00 80 120	METHOD %REC RPD QUAL ADDED MIN MAX RPD SW6020 5.2 5.00 80 120 8.91 SW6020 5.3 2 5.00 80 120 8.91 SW6020 5.1 5.00 80 120 9.2 SW6020 5.2 3 5.00 80 120 9.2 SW6020 5.2 5.00 80 120 9.6 SW6020 5.3 2 5.00 80 120 9.6 SW6020 5.2 5.00 80 120 9.6	METHOD %REC RPD QUAL ADDED MIN MAX RPD DATE SW6020 5.2 5.00 80 120 04/04/14 SW6020 5.3 2 5.00 80 120 8.91 04/04/14 SW6020 5.1 5.00 80 120 04/04/14 SW6020 5.2 3 5.00 80 120 9.2 04/04/14 SW6020 5.2 5.00 80 120 04/04/14 SW6020 5.3 2 5.00 80 120 9.6 04/04/14 SW6020 5.2 5.00 80 120 9.6 04/04/14 SW6020 5.2 5.00 80 120 9.6 04/04/14	METHOD %REC RPD QUAL ADDED MIN MAX RPD DATE BY SW6020 5.2 5.00 80 120 04/04/14 RAL SW6020 5.3 2 5.00 80 120 8.91 04/04/14 RAL SW6020 5.1 5.00 80 120 04/04/14 RAL SW6020 5.2 3 5.00 80 120 9.2 04/04/14 RAL SW6020 5.2 5.00 80 120 04/04/14 RAL SW6020 5.3 2 5.00 80 120 9.6 04/04/14 RAL SW6020 5.2 5.00 80 120 9.6 04/04/14 RAL SW6020 5.2 5.00 80 120 9.6 04/04/14 RAL

APPROVED BY

DATE:

ALS SDG#:

4/9/2014

EV14030179

Laboratory Director

ALS

Received By:

ALS Environmental 8620 Holly Drive, Suite 100 Everett, WA 98208 Phone (425) 356-2600 Fax (425) 356-2626

Chain Of Custody/ Laboratory Analysis Request

ALS Job# (Laboratory Use Only)

EV14030179

* Turnaround request less than standard may incur Rush Charges

PROJECTIO: 7536-002-05 REPORT TO GEOENGINES																Date	2	- 4	5.14Page	Of	2	
							REQ	UES	TED	į.								_	OTHER (Spec			
PROJECT Ran Beic					4													S				
ADDRESS 600 DULL + ST					clean				- }	0			Semivolatile Organic Compounds by EPA 8270	by EPA-8270 SIM	382	TAL		☐ Herbs		111		
Bellingham WA	95	8225			7	X		п.		A 8260			y EPA	by EP/	381/80	Pol				111		NOL
PHONE: 3603032819 FAX: 360	647	504	4	1 4	100	76		3260	8260	by EP	ater)		a spun	(PAH)	EPA 8081/8082	☐ Pri Pol ☐ TAL		Nol			O. C.	NO
Bellingham WA PHONE: 3603032819 FAX: 360 PO. #: INVOICE TO	e ge	oengi	rec3	-	31.	RQ		MTBE by EPA-8021 □ EPA-8260	y EPA	Volatile Organic Compounds by EPA	EDB / EDC by EPA 8260 SIM (water)	(jios	ошро	Polycyclic Aromatic Hydrocarbons (PAH)	by l			TCLP-Metals ☐ VOA ☐ Semi-Vol ☐ Pest			NI IMBER OF CONTAINERS	RECEIVED IN GOOD CONDITION?
COMPANY:					~	1	77	21	tilles t	Sompo	8260 8	8260 (anic C	Hydro	sec	RCF	ecify)	□A0	N		O O	800
ATTENTION: 5 A A			_	9	3	2	A-80	PA-80	d Vola	anic (y EPA	y EPA	e Orga	omatic	Pesticides	A-5	er (Spi	s \	4.6	111	G	N
ADDRESS:				NWTPH-HCID	NWTPH-DX	NWTPH-GX	BTEX by EPA-8021	E by E	Halogenated Volatiles	ile Org	EDC b	EDB / EDC by EPA 8260 (soil)	volatil	yelic Ar	-	Metals-MTCA-5X RCRA-8	Metals Other (Specify)	-Metal	СРАНЅ		ABER	EVE
SAMPLE I.D. DATE TI	ME	TYPE	LAB#	NW	TWN	NWT	BTE	MTB	Halo	Volat	EDB/	EDB/	Semi	Polyc	PCB	Meta	Meta	TCLP	9		2	HE S
1. TP1-3-0325 14 3,25,14 83	0	5	1		X	X															7	2,
2 TPZ-4-032514 1 85		1	2		X	X															1	
3.TP3-5-032514 91	3		3		X	X									10							
	30		4		X	X									(D		(8			
5. TP4-7-032314 94	10	.4	5																			
0 13	00		6		X	X									1							
01:	30		2		X	X	4								1	91						
0	5c		8		X	X																
	07		9		X	X																
10. TP9-4-032514 3,25, M 11		5	10		X	X									(D		(3		1	7
SPECIAL INSTRUCTIONS PCTUPA COC			10	n T	-	1		- ^				.1.1	. 1	,	_			$\overline{}$	Samples	60	\h	10
	164	1	SCX	UT	_	10	1		19	(5		- 17	010		107		0 A C	1	Ju maics	101	mo	5+

ALS

ALS Environmental
8620 Holly Drive, Suite 100
Everett, WA 98208
Phone (425) 356-2600
Fax (425) 356-2626
http://www.alsqlobal.com

Chain Of Custody/ Laboratory Analysis Request

ALS Job#

(Laboratory Use Only)

EV14030179

PROJECT ID: 7536-002.	-05				AN	ALY	SIS	REQ	UES	STE)									0TH	pecify)	Of Of		
PROJECT ID: 7536-002. REPORT TO COMPANY: GCOE AS PROJECT MANAGER: Mcm Be ADDRESS: GCD D. Apor Belling brand Phone: 360 303 2819 PO. #: INVOICE TO COMPANY: ATTENTION: ADDRESS:	EMAIL: PO	57 98 36064 ek@7	225 750 ce cons	ly nuo		W/5;	3	BTEX by EPA-8021	MT8E by EPA-8021 ☐ EPA-8260 ☐	Halogenated Volatiles by EPA 8260	Volatile Organic Compounds by EPA 8260	EDB / EDC by EPA 8260 SIM (water)	EDB / EDC by EPA 8260 (sail)	Semivolatile Organic Compounds by EPA 8270	Polycyclic Aromatic Hydrocarbons (PAH) by EPA-8270 SIM	PCB 🖂 Pesticides 🖂 by EPA 8081/8082	Metals-MTCA-5 ☐ RCRA-8 ☐ Pri Pol ☐ TAL ☐	Metals Other (Specify)	TCLP-Metals □ VOA □ Semi-Vol □ Pest □ Herbs □				NLIMBER OF CONTAINERS	RECEIVED IN GOOD CONDITION?
SAMPLE I.D.	DATE	TIME	TYPE	LAB#	NWTPH-HCID	NWTPH-DX	NWTPH-GX	BTEX b	MTBE	Haloge	Volatile	E08 / Et	EDB / EI	Semivo	Polycycl	BO4	Metals-	Metals	TCLP-M				NUMB	RECE
1. TP9-6-032514 2. TP10-4-032514 3. TP11-3-032514 4. TP12-6-032514 5. 6.	3/25/14 3/25/14	1133 1157 1345 1400	5 5	11 12 13 14		×××	X X X							1.0										
9																								

SIGNATURES (Name, Company, Date, Time):

1. Relinquished By: Shulun Robbusu ALS 3/26/14 12:40

2. Relinquished By:

Received By:

Received By:

TURNAROUND REQUESTED in Business Days*
Organic, Metals & Inorganic Analysis OTHER:

10 5 3 2 1 SAME

Specify:

Fuels & Hydrocarbon Analysis

* Turnaround request less than standard may incur Rush Charges

Tak	ole 12.1 Guid	lelines for Reu	se of Petroleum	-Contaminated	l Soil
			Soil Cate	gory (8)(9)(10)	
Parameter	Analytical Method	1 No detectable Petroleum Components (mg/kg)	2 Commercial Fill Above Water Table (mg/kg)	3 Paving Base Material & Road Construction (mg/kg)	4 Landfill Daily Cover or Asphalt Manufacturing (mg/kg)
Total Petroleum Hydro	carbons (1)(2) See	Table 7.1 for petro	oleum products that f	all within these cate	gories.
Gasoline Range Organics	NWTPH-Gx	<5	5 - 30	>30 - 100	>100
Diesel Range Organics	NWTPH-Dx	<25	25 - 200	>200 - 500	>500
Heavy Fuels and Oils*	NWTPH-Dx	<100	100 - 200	>200 – 500	>500
Mineral Oil	NWTPH-Dx	<100	100 - 200	>200 – 500	>500
Volatile Petroleum Con	nponents				
Benzene	SW8260B	< 0.005	0.005 - 0.03	0.03 or less	See Table 12.2
Ethyl benzene	SW8260B	< 0.005	0.005 - 6	6 or less	>6
Toluene	SW8260B	< 0.005	0.005 - 7	7 or less	>7
Xylenes (3)	SW8260B	< 0.015	0.015 - 9	9 or less	>9
Fuel Additives & Blend	ing Components				
(MTBE) Methyl Tert- Butyl Ether	SW8260B	< 0.005	0.005 - 0.1	0.1 or less	>0.1
Lead	SW6010A	<17	17 - 50	>50 - 220	See Table 12.2
Other Petroleum Comp	onents				
Polychlorinated (4) Biphenyls (PCBs)	SW8082	<0.04	< 0.04	<0.04	See Table 12.2
Naphthalenes (5)	SW8260B	< 0.05	0.05 - 5	5 or less	>5
cPAHs (6)	SW8270C	< 0.05	0.05 - 0.1	>0.1 - 2	>2
Other Petroleum Chara	acteristics (Applies	to soils contaminat	ed with any petroleu	m product.)	
Odors	Smell	No detectable odor			
Staining	Visual	No unusual color or staining			
Sheen Test	See Footnote #7	No visible sheen			

IMPORTANT: See Table 12.2 and the footnotes to this Table on the following pages!

Test soil for the parameters specified in Table 7.2.

^{*}Does NOT include waste oil contaminated soils, which should be disposed of in a landfill.

[&]quot;<" means less than; ">" means greater than

Table 12.2 Description and Recommended Best Management Practices for Soil Categories in Table 12.1 (continues on next page) Category **Acceptable Uses** Limitations Category 1 Soils: Soils with no • Can be used anywhere the • These soils may have a slight petroleum odor, depending on the sensitivity of individuals, and this detectable/ quantifiable levels of use is allowed under other should be considered when reusing these soils. petroleum hydrocarbons or regulations. constituents using the analytical • Any use allowed for methods listed in Table 7.3 and Category 2, 3 & 4 soils. are not suspected of being contaminated with any other hazardous substances. Category 2 Soils: Soils with • Any use allowed for • Should be placed above the highest anticipated high water table. If seasonal groundwater elevation residual levels of petroleum Category 3 & 4 soils. information is not available, place at least 10 feet above the current water table. hydrocarbons that could have • Should not be placed within 100 feet of any private drinking water well or within the 10 year • Backfill at cleanup sites adverse impacts on the above the water table. wellhead protection area of a public water supply well. environment in some • Should not be placed in or directly adjacent to wetlands or surface water where contact with water • Fill in commercial or circumstances. industrial areas above the is possible. water table. • Should not be placed under a surface water infiltration facility or septic drain field. • Road and bridge • Any other limitations in state or local regulations. embankment construction in areas above the water table. Category 3 Soils: Soils with • Any use allowed for • Should be placed above the highest anticipated high water table. If seasonal ground water elevation moderate levels of residual information is not available, place at least 10 feet above the water table. Category 4 soils. petroleum contamination that • Use as pavement base • Should be a maximum of 2 feet thick to minimize potential for leaching or vapor impacts. could have adverse impacts on material under public and • Should not be placed within 100 feet of any private drinking water well or within the 10 year the environment unless re-used private paved streets and wellhead protection area of a public water supply well. in carefully controlled roads. situations. • Should not be placed in or directly adjacent to wetlands or surface water. • Use as pavement base • Should not be placed under a surface water infiltration facility or septic drain field. material under commercial • When exposed, runoff from area in use should be contained or treated to prevent entrance to storm and industrial parking lots. drains, surface water or wetlands. • Any other limitations in state or local regulations.

Table 12.2 I	Description and Recommen	nded Best Management Practices for Soil Categories in Table 12.1 (continued)
Category	Acceptable Uses	Limitations
Category 4 Soils: Soils with high levels of petroleum contamination that should not be re-used except in very limited circumstances.	Use in the manufacture of asphalt. Use as daily cover in a lined municipal solid waste or limited purpose landfill provided this is allowed under the landfill operating permit.	Landfill Limitations: The soil should be tested for and pass the following tests: Free liquids test. Soils that contain free liquids cannot be landfilled without treatment. TCLP for lead and benzene. Unless exempt under WAC 173-303-071(3)(t), soils that fail a TCLP for lead or benzene must be disposed of as hazardous waste. Flammability test. Soils that fail this test must be disposed of as hazardous waste. Bioassay test under WAC 173-303-100(5). Soils that fail this test must be disposed of as hazardous waste. PCBs. Soils with a total PCB content of 2 ppm or more must be disposed of as hazardous waste. Soil used for daily cover should be stockpiled within the landfill lined fill area. Soil containing more than 10,000 mg/kg TPH should be buried immediately with other wastes or daily covered to limit potential worker exposure. Any additional limitations specified in the landfill permit or in other state or local regulations. Asphalt Manufacturing Limitations: Soil storage areas should be contained in a bermed area to minimize contact with surface water runoff from adjacent areas. Runoff from storage areas should be considered contaminated until tested to prove otherwise. Soil storage areas should also be lined and covered with a roof or secured tarp to minimize contact with precipitation and potential groundwater contamination. Leachate from storage areas should be considered contaminated until tested to prove otherwise. The soil should be tested for and pass the following tests: TCLP for lead and benzene. Unless exempt under WAC 173-303-071(3)(t), soils that fail a TCLP for lead or benzene must be disposed of as hazardous waste. Flammability test. Soils that fail this test must be disposed of as hazardous waste. Bioassay test under WAC 173-303-100(5). Soils that fail this test must be disposed of as hazardous waste. No detectable levels of PCBs in soil (<0.04 mg/kg). Precautions should be taken to minimize worker exposure to soil storage piles and any dust or vapors from these piles prior to

Notes to Table 12.1:

Contaminated soils can be treated to achieve these concentrations but dilution with clean soil to achieve these concentrations is a violation of Washington State solid and hazardous waste laws.

- (1) See Table 7.1 for a description of what products fall within these general categories. If the product released is unknown, use the limitations for gasoline range organics. If the soil is contaminated from releases from more than one product, use the limitations for both products. For example, if the release is a mixture of gasoline and diesel, the soil should be tested for components of both gas and diesel and the limitations for both fuels and their components used.
- (2) The concentrations for diesel, heavy oil and mineral oil are not additive. Use the TPH product category most closely representing the TPH mixture and apply the limitations for that product to the mixture. The reuse of waste oil contaminated soil is not allowed due to the wide variety of contaminants likely to be present.
- (3) Value is total of m, o, & p xylenes.
- (4) Value is the total of all PCBs. Only heavy oil and mineral oil contaminated soils need to be tested for PCBs. Soil contaminated with a spill from a regulated PCB containing device must be disposed of in a TSCA permitted landfill, regardless of the PCB concentration. Other PCB contaminated soils may be disposed of in a municipal solid waste landfill permitted to receive such materials, provided the concentration does not exceed 2 ppm PCBs (WAC 173-303-9904).
- (5) Value is total of naphthalene, 1-methyl naphthalene and 2-methyl naphthalene. Only diesel and heavy oil contaminated soils need to be tested for naphthalenes.
- (6) The value is the benzo(a)pyrene equivalent concentration of the following seven cPAHs, using the procedures in WAC 173-340-708(8). The seven cPAHs are as follows: benz(a)anthracene; benzo(b)fluoranthene; benzo(k)fluoranthene; benzo(a)pyrene; chrysene; dibenz(a,h)anthracene; and, indeno(1,2,3-cd)pyrene. Only diesel and heavy oil contaminated soils need to be tested for cPAHs. Soils contaminated with more than 1% polycyclic aromatic hydrocarbons, as that term is defined in WAC 173-303-040 (which is more expansive than the above list), must be disposed of as hazardous waste.
- (7) No visible sheen observed on water when approximately one tablespoon of soil placed in approximately $\frac{1}{2}$ liter of water held in a shallow pan (like a gold pan or similar container).
- (8) A soil in a lower category can be used for uses specified in any higher category. This means that:
- A category 1 soil can be used for any use specified in categories 1, 2, 3 and 4.
- A category 2 soil can be used for any use specified in categories 2, 3 and 4.
- A categories 3 soil can be used for any use specified in categories 3 and 4.
- (9) If an environmental site assessment or soil or groundwater analyses indicate contaminants other than common petroleum constituents and naturally occurring levels of metals are likely to be present in the soil of interest at the site (for example, solvents or pesticides), do not reuse the soil. The soil should instead be treated using appropriate technology to address all contaminants or landfilled at a solid waste or hazardous waste facility permitted to receive these materials.
- (10) Soils in categories 2, 3 and 4 should be stockpiled consistent with the soil storage recommendations in Section 11.3 of this guidance.

ATTACHMENT A REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This Attachment provides information to help you manage your risks with respect to the use of this report.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering, geology and environmental science) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Environmental Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of Sudden Valley Community Association and their authorized agents. This report may be provided to regulatory agencies for review. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, an environmental site assessment study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and project site. No one except Sudden Valley Community Association and their authorized agents and regulatory agencies should rely on this environmental report without first conferring with GeoEngineers. This report should not be applied for any purpose or project except the one originally contemplated.

This Environmental Report Is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the Area Z site in Sudden Valley, Whatcom County, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org.

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

Our report was prepared for the exclusive use of Sudden Valley Community Association and their authorized agents and regulatory agencies. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with Sudden Valley Community Association and generally accepted environmental practices in this area at the time this report was prepared.

Environmental Regulations Are Always Evolving

Some substances may be present in the site vicinity in quantities or under conditions that may have led, or may lead, to contamination of the subject site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substance, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain after Completion of Soil Sampling Activities

Soil sampling activities completed in a portion of a site cannot wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely-spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, by new releases of hazardous substances, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying this report to determine if it is still applicable.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other sites or for other on-site uses of the affected media (soil and/or groundwater). Note that hazardous substances may be present in some of the site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the subject site or reuse of the affected media on site to evaluate the potential for associated environmental liabilities. We cannot be responsible for potential environmental liability arising out of the transfer of soil and/or groundwater from the subject site to another location or its reuse on site in instances that we were not aware of or could not control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ – sometimes significantly – from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Geotechnical, Geologic and Geoenvironmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Sudden Valley Community Association desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

Bellingham Field Office • 1440 10th Street, Ste 102 • Bellingham, WA 98225 (360) 715-5200 • FAX (360) 715-5225

September 2, 2014

Mr. Jeff Schlaack Sudden Valley Resort 4 Clubhouse Circle Bellingham, WA 98229

Re: Further Action at the following Site:

Site Name: Sudden Valley Resort

Site Address: 2650 Lake Louise Road, Bellingham, WA 98229

Facility/Site No.: 47652753
VCP Project No.: NW2897
Cleanup Site ID No.: 6154

LUST No.: 3929 - Sudden Valley Area Z

Dear Mr. Schlaack:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Sudden Valley Resort facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and it's implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

(R) contraction (C)

- Gasoline-, diesel- and oil-range petroleum hydrocarbons into the soil.
- Diesel-range petroleum hydrocarbons into the ground water.

Enclosure A includes a diagram that illustrates the approximate location of the Site.

Please note a parcel of real property can be affected by multiple sites. At this time, we are uncertain that the parcel associated with this Site is affected by other sites.

Ecology understands that a Voluntary Cleanup Program opinion was requested for only a portion of the Site (i.e., the soil stockpile). However, Ecology has determined that your characterization of the overall Site is not sufficient to establish cleanup standards and select a cleanup action for the soil stockpile portion of the Site.

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- 1. John A. Pinner & Associates, Sudden Valley 2145 Lake Whatcom Blvd, Bellingham, Washington, Multiple Underground Storage Tank Removal, November 6, 1992.
- 2. John A. Pinner & Associates, Final Report, Treatment Bed Area Z, Sudden Valley, Washington, July 16, 1993.
- 3. GeoEngineers, Memorandum Environmental Drilling and Sampling Results for Area Z, September 14, 1999.
- 4. GeoEngineers, Report of Remedial Excavation Activities, Area Z, Sudden Valley Community Association, Bellingham, Washington, May 23, 2000.
- 5. GeoEngineers, Report of Environmental Services, Monitoring Well Replacement and Ground Water Sampling, Area Z, Bellingham, Washington, December 27, 2000.
- 6. GeoEngineers, February and May 2001 Ground Water Sampling, Area Z, Bellingham, Washington, June 4, 2001.
- 7. GeoEngineers, February 2002 Ground Water Sampling, Sudden Valley Community Association, Area Z, Bellingham, Washington, February 26, 2002.
- 8. GeoEngineers, Report of Environmental Services, Area Z Soil Stockpile Sampling, May 14, 2014.

These documents are kept in the Central Files of the Northwest Regional Office of Ecology (NWRO) for review by appointment only. You can make an appointment by calling the NWRO resource contact at (425) 649-7235 or by emailing nwro_public_request@ecy.wa.gov.

This opinion is void if any of the information contained in those documents is materially false or misleading.

Analysis of the Cleanup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action.

Additional remedial investigation work is necessary to fully characterize the nature and extent of soil contamination, establish points of compliance for the soil Site and to meet the substantive requirements of the MTCA. Based on the following history of potential contaminant sources, the entire soil Site should be characterized.

Four gasoline underground storage tanks (USTs) were removed from the Sudden Valley community Property in 1992:

- 1. One 300-gallon gasoline UST was removed from the area of the restaurant and golf course. There is no report of contaminated soil being removed from this area.
- 2. One 1,000-gallon gasoline UST was removed from the golf course maintenance shop area. An unknown quantity of contaminated soil was transferred to Area Z from this area.
- 3. Two 1,000-gallon gasoline USTs were removed from Area Z. There is no report of contaminated soil being removed from this area.

Petroleum hydrocarbon-contaminated soil above the MTCA Method A soil cleanup levels was encountered during geotechnical work associated with the expansion of a proposed sewer lift station at Area Z in 1999. The aforementioned USTs all contained gasoline but the petroleum hydrocarbon-contaminated soil associated with the sewer lift station remedial excavation was reported in the diesel- and oil-range. The source of this petroleum hydrocarbon-contaminated soil has not been reported.

Approximately 2,500 cubic yards of diesel- and oil-range petroleum hydrocarbon - contaminated soil were excavated as part of the development of the new sewer lift station in 2000. It is not clear if the diesel-range contaminated soil was mixed with the gasoline-range contaminated soil generated from the UST removals in 1992 and stockpiled at Area Z.

In 2014, a total of ten test pits (TP-1 through TP-10) were completed in the soil stockpile and one soil sample was collected from each test pit. Each test pit was completed to a

depth ranging from 5 to 10 feet below the ground surface bgs. Subsurface conditions encountered in each of the test pits consisted of fill soil comprised of brown and gray silty sand with varying gravel content. Buried visqueen, assumed to be from the cover of the original stockpile was observed at approximately 3 feet bgs in some areas – indicating that clean fill may have been placed on the stockpile. The soils above the visqueen did not exhibit evidence of petroleum contamination by field screening. The gray colored soils below the visqueen intermittently exhibited field screening evidence of petroleum contamination. Occasional wood, concrete rubble, cobbles and asphalt concrete fragments were encountered in several test pits. Significant amounts of asphalt concrete fragments were encountered in test pit TP-5 approximately 3 to 5 feet bgs. Shallow perched groundwater seepage was encountered approximately 5 feet and 4 feet bgs in test pits TP-3 and TP-5, respectively. Petroleum sheen was not observed on the groundwater seepage. The bottom of the stockpile and condition of the original visqueen liner was not identified. The sources of the wood, concrete rubble, cobbles and asphalt concrete fragments were not reported.

Oil-range petroleum hydrocarbon contamination was detected in two shallow surface soil samples (TP-11 and TP-12) collected southeast of the community garden area at concentrations below Method A soil cleanup levels in 2014. No potential source for this oil-range petroleum hydrocarbon contamination has been reported or identified.

The Site is defined by the nature and extent, both lateral and vertical, of contamination that resulted from the above-referenced releases. The nature and extent of soil and ground water contamination at the overall Site has not been completely characterized. Ecology recommends that additional soil and ground water sampling and analysis be conducted to characterize the entire Site.

The MTCA 173-340-350(7) WAC provides elements of a remedial investigation necessary to fully characterize a site. An annotated outline of the MTCA remedial investigation requirements are presented in an attachment to this letter. Additional remedial investigation information necessary to characterize the nature and extent of contamination at the Site should include:

- Preparing a narrative or diagram that shows the relationship between the sources of the releases and the current location of impacted soil and groundwater associated with those releases.
- Determining the quantity and fate of contaminated soil excavated from each of the four underground storage tanks (USTs) removed in 1992 (presumably part of the current stockpile) and included with the 2000 remedial excavation stockpile.

- Preparing a cross-section of the 2000 remedial excavation (and possibly the 1992 UST removal excavations) showing soil sample locations and depths, excavation depths and estimated depth to groundwater relative to the bottom of the excavation.
- Preparing a cross-section of the soil stockpile including soil sample locations and depths, stockpile thickness and estimated depth to groundwater beneath the bottom of the stockpile.
- Remediating the soil stockpile in the vicinity of soil sample TP5-4-032515 including collection and analysis of confirmation soil samples in accordance with Ecology's current standards as described in *Guidance for Remediation of Petroleum Contaminated Sites*, Ecology Publication 10-09-057 and *Guidance on Sampling and Data Analysis Methods*, Ecology Publication 94-49).
- Remediating the sewer lift station excavation (i.e., remedial excavation) in the vicinity of sample EX-25-10.0 including the collection and analysis of confirmation soil samples.
- Ground water monitoring well MW-4 should be checked for free product (NAPL) based on the detection of diesel-range petroleum hydrocarbons at 16,000 micrograms per liter (µg/L).
- Completing a minimum of two additional ground water monitoring wells necessary to determine depth to ground water, seasonal ground water variation in water quality and the ground water hydraulic gradient.
- Ground water characterization should consider potential discharge to Beaver Creek and ground water cleanup levels protective of surface water may be needed.

2. Establishment of cleanup standards.

Ecology has determined that the soil cleanup levels you established for the Site do not meet the substantive requirements of the MTCA.

The MTCA Method A soil cleanup levels may be appropriate for the Site. However, Ecology cannot determine if the MTCA Method A cleanup levels are protective of human health and the environment until the soil and ground water at the Site are completely characterized and a subsequent terrestrial ecological evaluation (TEE) is completed or an appropriate TEE exclusion is demonstrated.

No ground water cleanup levels have been established for the Site.

3. Selection of cleanup action.

No cleanup action has been selected for the Site at this time.

It has not been demonstrated that natural attenuation of petroleum contamination in the soil stockpile soil has occurred. One stockpile and one remedial excavation soil sample results are above the MTCA Method A soil cleanup levels. The combined diesel- and oil-range petroleum hydrocarbons detected in stockpile soil sample TP5-4-032515 is 2,410 milligram per kilogram (mg/kg). Diesel-range petroleum hydrocarbons were detected in remedial excavation soil sample EX-25-10.0 at 5,900 mg/kg. It was also reported that sample EX-25-10.0 was located near Beaver Creek and possibly in contact with ground water. The MTCA Method A soil cleanup level for diesel-range petroleum hydrocarbons is 2,000 mg/kg.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP). After you have addressed our concerns, you may request another review of your cleanup. Please do not hesitate to request additional services as your cleanup progresses. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm. If you have any questions about this opinion, please contact me by phone at (360) 715-5213 or e-mail at john.guenther@ecy.wa.gov.

Sincerely,

Jöhn Guenther, LHG

Site Manager

Toxics Cleanup Program

cc:

Ron Bek, GeoEngineers

Sonia Fernandez, VCP Coordinator, Ecology

Enclosures:

A - Description and Diagram of the Site

B – Remedial Investigation Outline

Enclosure A

Description and Diagram of the Site

Site Description

This section provides Ecology's understanding and interpretation of Site conditions, and is the basis for the opinions expressed in the body of the letter.

Site Definition

The Site is defined by the nature and extent of gasoline-, diesel- and oil-range petroleum hydrocarbons into the soil and diesel-range petroleum hydrocarbons into the ground water at 2650 Lake Louise Road, Bellingham, Washington. The Site is located within a Property known as Sudden Valley Resort Area Z.

Area/Property Description

The Property (Area Z) is a developed maintenance and service area consisting of gravel surfaced roads and parking areas, a couple of maintenance shop buildings, boat storage, slash piles and an underground sewer lift station. The Property is identified as Whatcom County Tax Parcel 3704073823790000.

Property History and Current Use

The Property was undeveloped and forested until sometime during the 1970s when it was developed as part of the Sudden Valley residential and recreational community. Current use consists of materials storage, equipment maintenance and an underground sewer lift station. The Property is zoned "Rural" according to the Whatcom County Title 20 Zoning Designation map dated 2013.

Contaminant Source and History

The source of gasoline-range petroleum hydrocarbon contamination in soil is from four gasoline underground storage tanks. The sources of diesel- and oil-range petroleum hydrocarbon contamination in soil and ground water are unknown.

Physiographic Setting

The Site is located within the northern portion of the Puget Sound Lowland Physiographic Province, a north-south trending structural and topographic depression bordered on its west side by the Puget Sound and San Juan Islands and to the east by the Cascade Mountain foothills. The San Juan Islands form the division between the Puget Sound Lowland and the Strait of Georgia in British Columbia. The Puget Sound Lowland is underlain by Tertiary volcanic and sedimentary bedrock, and has been filled to the present day land surface with Pleistocene glacial and non-glacial sediments.

Repeated advances and retreats of the continental glaciers that flowed through the area out of Canada more than 10,000 years ago created the low undulating plains that are characteristic of the Puget Sound Lowland. Current land surfaces reflect the most recent changes that are directly related to glacial events, including the regionally expansive Fraser River Delta, occurring between 13,000 and 20,000 years ago.

Ecological Setting

The ecological setting is forested with two creeks (Beaver and Austin) within relatively close proximity to the Site. Beaver Creek is located approximately 200 feet to the northeast of the soil stockpile. Austin Creek is located approximately 400 feet to the southeast of the soil stockpile. Considerable terrestrial wildlife habitat surrounds the Property.

Geology

According to a U.S. Geologic Survey (USGS) geologic map for the project area, "Geologic Map of Western Whatcom County, Washington" by Don J. Easterbrook, 1976, the Site lies within an area mapped as being underlain by bedrock of the Chuckanut Formation. However, based on our previous exploration and excavation activities, the Area Z has modified ground (fill has been historically placed in this area) over alluvium from the nearby Beaver and Austin Creeks, glacial deposits and then bedrock.

According to the "Soil Survey of Whatcom County Area, Washington," United States Department of Agriculture Soil Conservation Service (SCS), 1992, the Site lies within an area mapped as Sehome loam, described as gravelly loam underlain by dense glacial till at depth. Permeability is moderate in the upper part of the Sehome soil and very slow in the dense glacial till.

Ground Water

The nearest drinking water well is located at 2097 Lake Whatcom Boulevard, approximately 1.7 miles northeast from the site according to Ecology's Washington State Well Log Viewer online mapping application.

Depth to ground water in monitoring well MW-4, the only known ground water monitoring well on the Property, has ranged from 9.16 to 10.05 feet bgs. The ground water hydraulic gradient has not been determined but is presumed to be eastward toward Beaver Creek.

Surface Water

Natural surface water features proximal to the Property include Beaver Creek, Austin Creek, Lake Louise and Lake Whatcom. Beaver Creek is located approximately 200 feet to the northeast, Austin Creek is located approximately 400 feet to the southeast, Lake Louise is located approximately 2,000 feet to the east and Lake Whatcom is located approximately 1 mile east of the Site.

Water Use/Water Supply

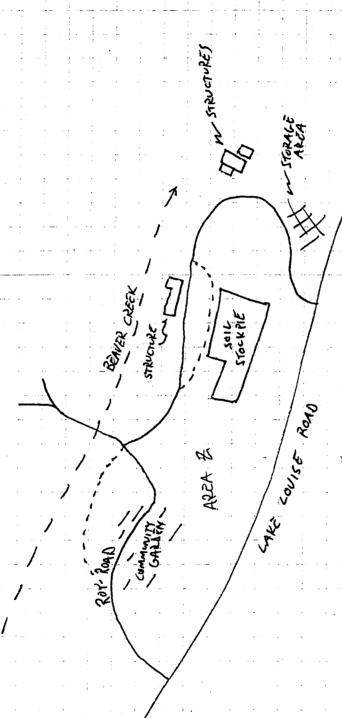
Potable water is supplied to the Sudden Valley Resort and surrounding community via a water intake located in Lake Whatcom that is owned, operated and maintained by the Lake Whatcom Water and Sewer District.

Mr. Jeff Schlaack August 4, 2014 Page 3

Release and Extent of Contamination - Soil

Diesel- and oil-range petroleum hydrocarbon contaminated soil was encountered during geotechnical work associated with the expansion of a proposed sewer lift station at Area Z in 1999. Approximately 2,500 cubic yards of diesel- and oil-range petroleum hydrocarbon contaminated soil were excavated as part of the development of the new sewer lift station in 2000. It is not clear if the 2,500 cubic yards of diesel- and oil-range petroleum hydrocarbon contaminated soil generated as part of the sewer lift station development in 2000 was mixed with gasoline-range petroleum hydrocarbon contaminated soil generated from the removal of the four USTs in 1992 and stockpiled at Area Z.

In 2014, a total of ten test pits (TP-1 through TP-10) were completed in the soil stockpile and one soil sample was collected from each test pit. Each test pit was completed to a depth ranging from 5 to 10 feet below the ground surface bgs. Subsurface conditions encountered in each of the test pits consisted of fill soil comprised of brown and gray silty sand with varying gravel content. Buried visqueen, assumed to be from the cover of the original stockpile, was observed at approximately 3 feet bgs in some areas - indicating that clean fill may have been placed on the stockpile. The soils above the visqueen did not exhibit evidence of petroleum contamination by field screening. The gray-colored soils below the visqueen intermittently exhibited visual field screening evidence of petroleum contamination. Occasional wood, concrete rubble, cobbles and asphalt concrete fragments were encountered in several test pits. Significant amounts of asphalt concrete fragments were encountered in test pit TP-5 at approximately 3 to 5 feet bgs. Shallow perched groundwater seepage was also encountered approximately 5 feet and 4 feet bgs in test pits TP-3 and TP-5, respectively. Petroleum sheen was not observed on the groundwater seepage. The bottom of the stockpile and condition of the visqueen liner below the stockpile was not identified. The sources of the wood, concrete rubble, cobbles and asphalt concrete fragments were not reported.


Oil-range petroleum hydrocarbon contamination was detected in two soil samples (TP-11 and TP-12) collected near the community garden area in 2014. No potential source for this oil-range petroleum hydrocarbon contamination has been reported.

Release and Extent of Contamination - Ground Water

Ground water contamination beneath the Site has not been characterized. Three ground water monitoring wells (MW-1 through MW-3) were completed on the Property in 1999. Monitoring wells MW-1 and MW-2 were removed during remediation activities at a later unknown date. Monitoring well MW-3 was covered or destroyed and has not been re-located. No ground water data from monitoring well's MW-1, MW-2 or MW-3 have been reported. A fourth ground water monitoring well (MW-4) was completed to 20 feet bgs on the Property in 2000. Ground water samples have been collected from monitoring well MW-4 on six occasions in August and November 2000, February, May and August 2001 and in February 2002. Diesel-range petroleum

Mr. Jeff Schlaack August 4, 2014 Page 4

hydrocarbons were detected in each of the MW-4 ground water samples ranging from 1,400 to 16,000 micrograms per liter (μ g/L). The MTCA Method A groundwater cleanup level for diesel-range petroleum hydrocarbons is 500 μ g/L.

1) LUST LOCATIONS UNKNOWN

2) REMEALT EXCHATION LOCATION UNEMOUND

.

DEPARTMENT OF ECOLOGY NORTHWEST REGIONAL OFFICE REMEDIAL INVESTIGATION OUTLINE MTCA VCP SITES

The following annotated outline is a suggested schematic for elements to be included in a Remedial Investigation report. It is not intended to replace MTCA's specific requirements as presented in 173-340-350(7) WAC.

The main purpose of the outline is to facilitate the preparation of a document that is clear, comprehensive, and to the point. A secondary, but important, purpose is to make document preparation and review more efficient.

INTRODUCTION (Concise, bulleted if possible)

- Site name, VCP number, Name, address, and phone number of project consultant, Current owner/operator
- Purpose of document (very brief restatement of what an RI is for, reference the WAC)

SITE IDENTIFICATION AND LOCATION (Focus on defining the site in the context of its location)

- Site discovery and regulatory status (describe how the site was identified and where it is in the MTCA process)
- Site and property location/definition (define actual MTCA site location relative to property or study area)
- Neighborhood setting

Figure — Vicinity Map (preferably with topography) Figure — Property/Site Map (preferably with topography)

Appendix – Legal description of property, present owner and operator, chronological listing of past owners and operators

ENVIRONMENTAL INVESTIGATION/INTERIM ACTION SUMMARY (Concise summary presentation of the investigations that have been done at the site, along with prior remedial actions. Focused mostly on figures and tables. Details of and methods used in former investigations and remediation in appendices)

- Constituents of Concern (brief discussion about which specific compounds were chosen for analysis and why)
- Soil
- Surface water
- Ground water
- Sediment
- Air/soil vapor

- Natural resources/wildlife
- Cultural history/archeology
- Interim actions (brief intro to prior remediation activities)

Figure - Soil investigation data points (show potential source areas)

Figure – Surface water/groundwater investigation data points (show potential source areas)

Figure — Air investigation data points (show potential source areas)

Figure – Prior remediation activities

Table - Exploration Summary

Table — Analytical Schedule per media (include analytical methods and reporting limits, as possible)

Appendix – Previous Investigations (detailed discussion goes here)

Appendix - Exploration and sampling methodology (may combine with Previous Investigations)

Appendix - Boring / Well logs

Appendix - Prior Interim Actions

PROPERTY DEVELOPMENT AND HISTORY (This section focuses on the built environment, both current and historical, and presents the sources of contamination and release mechanisms.)

- Past site uses and facilities
- Current site use and facilities
- Proposed or potential future site uses
- **Zoning** (*if appropriate*)
- Transportation/roads
- Utilities, water supply
- Potential sources of site contamination
- Potential sources of contamination from neighboring properties (discuss nearby sources if known)

Figure — Historical site features (may be combined with Figure 2)

Figure - Potential contaminant sources

Figure – Utilities (may be combined with Figure 2)

Table – Potential Contaminants

NATURAL CONDITIONS

- Physiographic setting/topography
- Geology (focus on interpretation)
 - o Regional Setting (brief)

- Property Geologic Conditions (synthesis, not a copy of boring logs, provide cross sections)
- Physical Properties (unlikely to need this section, but in some cases may be useful to present data on soil adsorptive capacity, organic content, strength, etc.)

Figure – Plan view of geologic unit distribution (if helpful)

Figure - Cross section A-A' (show borings, wells, screened intervals, water levels)

Figure - Cross section B-B' (if necessary)

- Surface Water (brief description of the surface water system)
 - o Property drainage
 - o Area surface water/floodplain issues
 - o Regulatory classifications, if any (e.g. surface water classification)

Figure – Surface water Conditions (only if information not already in a prior figure)

- Ground Water (focus on interpretation, show on cross sections)
 - Occurrence (aquifers, water levels, confinement, geometry, continuity, physical properties)
 - o Movement (directions, gradient if important, seasonal fluctuations, tidal influence)
 - o Discharge
 - o Recharge (if significant for site)
 - o Regulatory classifications, if any (e.g. sole source aquifer)

Figure – Cross section with ground water information (if not already included above)

Figure – Water table/potentiometric surface maps (for various seasons or tidal conditions, show surface water)

Appendix — Ground water elevation data (a table)

- Natural Resources and Ecological Receptors (preparatory to a Terrestrial Ecological Evaluation)
 - o Greenbelts and other natural habitat
 - o Wildlife
 - Other Information required to conduct evaluations under WAC 173-340 7491, -7492, or if necessary -7493

Figure – showing natural areas, as appropriate

CONTAMINANT OCCURRENCE AND MOVEMENT (Very little text, mostly figures and tables, main point is to provide easy-to-understand figures showing the depth and breadth of contamination.)

- Waste Material (sludges, fluids, stockpiles)
- Soil
- Surface Water
- Ground Water
- Sediment
- Air/Soil Vapor

Figures – Cross sections showing soil contamination with depth

Figures – Plan views showing soil contamination across site (relative to releases if known)

Figures – Cross section showing ground water contamination with depth (if appropriate)

Figures – Plan views showing ground water contamination in each aquifer (relative to soil contamination and P-head map)

Figures – XY plots of specific contaminants with time (as appropriate)

Figures – Others as appropriate to show the distribution of surface water, ground water, or air data

Tables – All of the analytical data against final cleanup levels (exceedances highlighted, no need to develop screening levels)

Tables – Summary of exceedances (if helpful)

Appendix - QA report

Appendix - Analytical lab reports

CONCEPTUAL MODEL (Putting the whole story together, graphic illustrations are best.)

- Contaminant release/fate and transport/potential or actual receptors
- Data gaps (is anything missing)

CLEANUP STANDARDS (Developing appropriate cleanup standards based on receptors and pathways.)

- Soil
 - o Reasonable maximum exposure
 - Cleanup levels protective of direct contact, ground water, inhalation, terrestrial species, surface water, sediment
 - o Points of compliance
 - o Regulatory classifications (classification of soil as dangerous or solid waste)

Ground Water

- o Highest beneficial use/reasonable maximum exposure
- o Cleanup levels protective of potable use, inhalation, surface water, sediment
- o Points of compliance

• Other Media as appropriate

- o Cleanup levels protective of
- o Points of compliance

Table — Cleanup Levels (all potentially applicable values with final selected cleanup level noted)

AREAS REQUIRING CLEANUP (The final story detailing where the contamination exceeds an applicable cleanup standard, brief text, mostly tables, figures.)

- Constitutuents of Concern (a brief summary of compounds that exceed cleanup levels or "indicator hazardous substances" under MTCA. For most service station sites, the COCs should be the same)
- Soil vertical and lateral
- Ground water vertical and lateral
- Sediment
- Surface Water
- Soil Vapor/air

Figures – Plan view and vertical sections of areas requiring cleanup

REFERENCES

Revised 8/21/14

Appendix B Historical Aerial Photographs

Aerial Photograph: March 24, 1969

Aerial Photograph: March 27, 1975

Aerial Photograph: March 10, 1981

Aerial Photograph: March 18, 1988

Aerial Photograph: March 24, 1992

Aerial Photograph: August 17, 1997

Aerial Photograph: August 9, 2001

Appendix C Field Documentation

Test Pit and Groundwater Monitoring Logs and Photographs, Anchor QEA, August 2017

Soil Boring and Groundwater Monitoring Logs, Anchor QEA, September 2017

Groundwater Monitoring Logs, Anchor QEA, March 2018

eld Log						
eld Log						
Station: SVCA-TP-100						
Date: 8/23/2017						
Time: 0946						
Sample Method: Grab/Composite						
Logged By: JA						
Recovery Depth: 0-4 feet						
1'-4' Loose, dry, brown, sand with rocks (up to 5" in diameter). Some concrete encountered near base of the excavation. No odor, minor sheen.						
946						
040						

• ILVOYYOR	
* ANCHOR	
Soil Excavation Fig.	eld Log
Job: SVCA Area Z Remediation	Station: SVCA-TP-101
Project No: 171240-01.01 Task 2	Date: 8/23/2017
Field Staff: B. Wright, J. Allen	Time: 1059
Contractor: SVCA	Sample Method: Grab/Composite
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA
Northing/Latitude:	Recovery Depth: 0-3.5 feet
Easting/Longitude:	
Excavation Notes: Large rocks encountered up to 2' BSG. Plants incl	uded alders, rush, and reed canary grass.
, , , , , , , , , , , , , , , , , , , ,	, ,
O I Distribution	
Sample Description:	
0-2' Grasses, trees covering loose, dry, light brown sand with rocks (up to	2" in diameter). Some rocks
up to 1' in diameter. No sheen, no odor. Roots extended 1' BSG.	
2-3.5' Grades to sand with cobbles (approximately 8-10" in diameter). Liner	and asphalt encountered
approximately 3.5' BSG.	
Al Tat Bassillas II	
Sheen Test Results: None, none	
BIB B 14a - 40 00 mmm	
PID Results: 4.2 ppm, 3.8 ppm	
O	250 01/24 TD 404 0 0 5 470000 O 4445
Sample Identification and Time: SVCA-TP-101-0-2-170823 @ 10)59, SVCA-1P-101-2-3.5-170823 @ 1115
Sample Containers: 10	
Analyses: NWTPH-D, NWTPH-G, BTEX	
Archive: Bioassay. NWTPH-D	

9.0 <u>2</u> 0.000 01.00							
A X A	NCHOR EA 💳 Soil Excavation						
V -01	FA Soil Excavation	Field Loa					
Joh: SVCA	Area Z Remediation	Station: SVCA-TP-102					
	171240-01.01 Task 2	Date: 8/23/2017					
	B. Wright, J. Allen	Time: 1302					
Contractor:		Sample Method: Grab/Composite					
		Logged By: JA					
Horizontal Datum: NAD83 WA SP North, US feet Logged By: JA Northing/Latitude: Recovery Depth: 0-4 feet							
Easting/Long		Necovery Deptil: 0-4 leet					
Excavation		leaves were on top of the plastic. This plastic was not the					
	stockpile liner.						
Sample Des	scrintion:						
·-	<u> </u>						
		ock (up to 2" in diameter). No odor, no sheen. Some roots in					
	upper 6". Stockpile liner encountered approximately 1' BSG.						
	-3' Loose, dry, brown, sand with rocks (up to 2" in diameter). No sheen, no odor. Asphalt encountered approximately 2.5' BSG.						
	e, moist, grey, fine sand. Woody debris throughout. No sh	geen no odor. No anthronogenic material					
	ge piece of wood was encountered approximately 4' BSG						
7 rang	go piece of mood was official approximately 1 200						
Sheen Test	Results: None, none						
PID Results	: 0.2 ppm, 0.0 ppm						
Sample Iden	tification and Time: SVCA-TP-102-0-2-170823	3 @ 1302, SVCA-TP-102-3-4-170823 @ 1330					
'							
Sample Con	tainers: 10						
Analyses: N	WTPH-D, NWTPH-G, BTEX						
Allalyses. IN	WITH-B, NWITH-G, BIEX						
Archive: Bio	assay, NWTPH-D						
/ violiive. DIU	2000 Y. 1997 II II-D						

A ANGLIOD								
ANCHOR OEA Soil Excavation Fie								
OEA Soil Excavation Fig	eld Loa							
Job: SVCA Area Z Remediation Station: SVCA-TP-103								
Project No: 171240-01.01 Task 2	Date: 8/23/2017							
Field Staff: B. Wright, J. Allen	Time: 1445							
Contractor: SVCA	Sample Method: Grab/Composite							
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA							
Northing/Latitude:	Recovery Depth: 0-6 feet							
Easting/Longitude:								
Excavation Notes:								
Excavation Notes.								
Sample Description:								
0-2.5' Alders, thistles, canary reed grass and blackberries on the surface. R	oots extend approximately 6" BSG. Packed, dry,							
brown, fine sand with gravel (up to 1" in diameter). Some cobbles (up	to 6" in diameter). No odor, some sheen visible.							
Untreated wood encountered 2.2' BSG.								
2.5-4' Loose, dry, grey to dark grey, gravel with coarse sand. Visible asphalt. Strong petroleum odor, minor sheen.								
Trace red brick fragments. Liner visible approximately 3' BSG.								
4-6' Grades to coarse sand, Odor grades to mild, sheen visible.								
Sheen Test Results: Sheen, sheen								
PID Results: 2.7 ppm, 2.8 ppm								
Sample Identification and Time: SVCA-TP-103-0-2-170823 @ 14	45, SVCA-TP-103-3-4-170823 @ 1530							
Sample Containers: 10								
Analyses: NWTPH-D, NWTPH-G, BTEX								
Archive: Bioassay, NWTPH-D								

•						
ANCHOR OEA Soil Excavation						
V QEA Soil Excavation	n Field Loa					
Job: SVCA Area Z Remediation	Station: SVCA-TP-104					
Project No: 171240-01.01 Task 2 Date: 8/24/2017						
Field Staff: B. Wright, J. Allen	Time: 0917					
Contractor: SVCA	Sample Method: N/A					
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA					
Northing/Latitude:	Recovery Depth: 0-4 feet					
Easting/Longitude:	Trecovery Deptil. 0-4 leet					
Excavation Notes: Approximately 15' northeast of TP-103. Vis	aval observations only					
Approximately 13 northeast of 17-103. Vis	sual observations only					
Sample Description:						
0-5' Alders, rush, blackberries. Abandoned debris (steel pipe) enc	ountered 6" BSG					
0.5-4' Loose, dry, grey to dark grey, gravel with coarse sand (consist						
less of this material). Mild petroleum odor, no sheen. No asph						
, .						
Sheen Test Results: None, none						
,						
PID Results: 4.1 ppm, 1.5 ppm						
A PPIN TO PPIN						
Sample Identification and Time:						
Cample Identification and Time.						
Cample Centainers:						
Sample Containers:						
Analysis						
Analyses:						
Archive:						

ANCHOR QEA Soil Excavation	
Soil Excavation	Field Log
Job: SVCA Area Z Remediation	Station: SVCA-TP-105
Project No: 171240-01.01 Task 2	Date: 8/24/2017
Field Staff: B. Wright, J. Allen	Time: 0954
Contractor: SVCA	Sample Method: N/A
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA
Northing/Latitude:	Recovery Depth: 0-3 feet
Easting/Longitude:	
Excavation Notes: Approximately 15' southeast of TP-103. Visua	al observations only
	or modifier, MAJOR modifier, other constituents, odor, sheen,
layering, anoxic layer, debris, plant matter, si	
0-0.7' Alders, pine trees, canary reed grass, blackberries. Roots exter 0.7-3' Loose, dry, brown, fine sand with rocks (average 5-7" in diameter	
no sheen. Liner encountered approximately 3' BSG.	s, up to 1 in diameter). No untillopogenio material. No odor,
below 3' Material immediately above and below the liner is consistent wit	h material at TP-103 encountered 8/23. Mild petroleum odor,
no sheen. Appears to be the extent of contamination (radius of	contamination).
Sheen Test Results: None, none	
PID Results: 1.2 ppm, 1.2 ppm	
Sample Identification and Time:	
Sample Containers:	
Analyses:	
Archive:	

ANCHOR						
QEA Soil Excavation	า Field Log					
Job: SVCA Area Z Remediation	Station: SVCA-TP-106					
Project No: 171240-01.01 Task 2	Date: 8/24/2017					
Field Staff: B. Wright, J. Allen	Time: 1031					
Contractor: SVCA	Sample Method: N/A					
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA					
Northing/Latitude:	Recovery Depth: 0-4.5 feet					
Easting/Longitude:						
Excavation Notes: Approximately 15' east of TP-103. Visual ob	servations only					
Sample Description: surface cover, (density), moisture, color, mir	nor modifier, MAJOR modifier, other constituents, odor, sheen, layering,					
anoxic layer, debris, plant matter, shells, blo						
0-3.5' Alders, wheat grass, canary reed grass, blackberries, moss. Lo						
material). Some woody debris (untreated). Mild petroleum odor						
3.5-4.5' Liner encountered at 3.5' BSG. Minor amounts of material consistend with TP-103 (dark grey, coarse sand, mild petroleum odor). Otherwise, material is same as above (0-3.5'). Some asphalt debris.						
Otherwise, material is same as above (0.0.0). Come aspiral as	30115.					
Sheen Test Results: None, none						
Sheen Test Results: None, none						
DID Decultor 04.4 com 42.0 npm						
PID Results: 21.1 ppm, 13.8 ppm						
0 1 1 0° 0 1 T						
Sample Identification and Time:						
Sample Containers:						
Analyses:						
Archive:						

A X ANCHOR									
QEA Soil Excavation Field Log									
Job: SVCA Area Z Remediation Station: SVCA-TP-107									
Project No: 171240-01.01 Task 2	Date: 8/24/2017								
Field Staff: B. Wright, J. Allen	Time: 1058								
Contractor: SVCA	Sample Method: N/A								
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA								
Northing/Latitude:	Recovery Depth: 0-4.5 feet								
Easting/Longitude:									
Excavation Notes: In front of the maintenance shop. Southwest of the	he concrete pad.								
	nodifier, MAJOR modifier, other constituents, odor, sheen,								
layering, anoxic layer, debris, plant matter, shells 0-2.5' Thistles, rag wort, canary reed grass. Loose, dry, brown, gravelly to									
Minor anthropogenic material (nails, bricks). No sheen, no odor. Lin									
2.5-4.5' Loose, damp, grey, coarse sand with rocks (average is 3" in diamet									
No anthropogenic material. No odor, no sheen.	,								
Sheen Test Results: None, none									
PID Results: 0.7 ppm, 0.9 ppm									
Sample Identification and Time:									
Sample Containers:									
Analyses:									
Archive:									

↑ ⊁ ANCHOR									
QEA Soil Excavation Field Log									
Job: SVCA Area Z Remediation Station: SVCA-TP-108									
Project No: 171240-01.01 Task 2	Date: 8/24/2017								
Field Staff: B. Wright, J. Allen	Time: 1125								
Contractor: SVCA	Sample Method: N/A								
Horizontal Datum: NAD83 WA SP North, US feet	Logged By: JA								
Northing/Latitude:	Recovery Depth: 0-4.5 feet								
Easting/Longitude:									
Excavation Notes: South end of the stockpile area, close to the	e driveway. Nearest TP to pump station.								
surface cover, (density), moisture, color, m	inor modifier, MAJOR modifier, other constituents, odor, sheen,								
layering, anoxic layer, debris, plant matter,	shells, biota								
0-3' Thistles, canary reed grass. Loose, dry, brown, gravel to coar	se sand (0.5" in diameter). Rocks up to 4" in diameter.								
Minor anthropogenic debris (concrete). No odor, do sheen.									
	3-4.5' Loose, dry, brown, sand with rocks (4-6" in diameter). Anthropogenic debris (concrete chunks). Minor amounts of grey								
coarse sand and rock material. Some grey clay chunks. No or	dor, no sheen. Liner encounvtered at approximately 3.8' BSG.								
Sheen Test Results: None, none									
PID Results: 1.7 ppm, 2.7 ppm									
Sample Identification and Time:									
Sample Containers:									
·									
Analyses:									
·,									
Archive:									
r									

FIELD SAMPLING DATA SHEET

										1605 C	Ornsazal	Ι Δυσηι	10		1
ANCHOR OEA OFFicer (200) 722 4211 Form															
Bellingham, WA 98225															
Office: (300) /33-4311 Fax:															
PROJECT NAME: SVCA WELL ID: MW-4															
SITE ADDRESS: Bellingham, WA BLIND ID:															
DUP ID: NA															
WIND FROM: N NE E SE S SW W NW LIGHT MEDIUM HEAVY															
									°C						
HYDROLOGY/LEVEL MEASUREMENTS (Nearest 0.01 ft) [Product Thickness] [Water Column] [Water Column]							ite units! lumn x Gal/ft]								
Da		Time	DT-Bott			roduct	DT-W	Vater	DTP-DTW DTB-DTW				Volu	ne (gal)	
8/2	4 /17	15:50	22.7	2			12-	75			9	. 45	X 1	1	.54
/	/	:											Х 3	4	. 6Z
Gal/ft =	(dia./2) ² :	x 0.163 1" =	0.041	2"=)	0.163	3"=	0.367	4" =	0.653	6" =	1.469	10"=	4.080	12"=	5.875
§ METHO	DS: (A) S	ubmersible Pump (B	eristaltic Pum	ıp (C) Dis	sposable Bai	ler (D) PVC/T	eflon Bailer	E) Dedicat	ed Bailer (F)	Dedicated I	ump (G) Ot	her =			
GROU	JNDW	ATER SAM	PLING E	ATA	(if prod	uct is detec	cted, do N	VOT sam	ple)		Sample	e Depth:	17-1	+	[√ if used]
Bottle	Туре	Date	Time		Method	Amount	& Volu	me mL	Pres	ervative	[circle]	Ice	Filter	pН	√
VOA	Glass	8 124/17	17:0	\ <u>\</u>	В	15	40	ml		HCl		(YES)	(NO)		
Amber	Glass	8/21/17	17:0	0	B	4	250 50	250 500 1L (None) (HCl)		(HCl) (H ₂ SO ₄)	YES	(NO		
White	Poly	1 1	:				250, 50	00, 1L		None		YES	NO	NA	
Yellow	Poly	11	/				250, 50	00, 1L		H ₂ SO ₄		YES	NO.		
Green	Poly	1 - 1	1	fort	7		250, 50	00, 1L	NaOH		YES	NO			
Red Tot	al Poly	1 1					250, 50	00, 1L	HNO ₃		YES	NO			
Red Dis	s. Poly	1 1	:				250, 50	00, 1L	HNO ₃		YES	YES			
		1 1	:				250, 50	00, 1L				YES			
-		Total Bottles	(include du	plicate	count):	9									
	ВС	TTLE TYPE	TYPICAL A	NALYS	IS ALLOV	WED PER B	OTTLE TY	PE (Circl	e applicab	le or write	non-stand	ard analys	is below)		
	VOA - C	Glass	(8021) (8260E	BTE	EX) WWT	PH-Gx)									
ا م چ	AMBER	- Glass	(PAH) (TPH	I-HCID)	OWIPH	-Dx) (TPH-	418.1) (Oi	il &Grease)	(8081A)			0			
\$\frac{1}{2}	WHITE	- Poly	(pH) (Condu	uctivity)	(TDS)	TSS) (BOD)	(Turbidity	y) (Alkali	nity) (HC	O ₃ /CO ₃) (0	CI) (SO ₄)	(NO ₃) (N	NO ₂) (F)		
Analysis Allowed per Bottle Type	YELLO	W - Poly	(COD) (TOC	C) (Tota	al PO ₄) (T	otal Keldahl N	Vitrogen)	(NH ₃) (N	IO ₃ /NO ₂)						
Bot Sis	GREEN	- Poly	(Cyanide)												
haal ber	RED TO	TAL - Poly	(As) (Sb) (Ba)) (Be) (Ca) (Cd) (Co) (Cr) (Cu	(Fe) (Pb)	(Mg) (M	In) (Ni) (A	g) (Se) (T	(V) (Zn)	(Hg) (K)	(Na)		
`	RED DI	SSOLVED - Poly	(As) (Sb) (Ba)) (Be) (Ca) (Cd) (Co) (Cr) (Cu	(Fe) (Pb)	(Mg) (M	In) (Ni) (A	(Se) (Ta	(V) (Zn)	(Hg) (K)	(Na)		
	_														
												-			
Notes	s: <	Bangle	alle	ited	C	17:00	1	800	A-1	hw-	4-1	768	23		
	-	, i o i o y i i						.0							
				_			0	^							
							1	4							

SAMPLER: Bundette Unshipper

(SIGNATURE)

FIELD SAMPLING DATA SHEET

* & ANCHO	* ANCHOR									
V- OFA	OF A Bellingham, WA 98225									
GENT CC				Office:		(360) 73	33-4311		Fax:	
PROJECT NAME:	SVCA	Area Z Remed	iation		WELL ID:	mw	-4			
SITE ADDRESS:	Belling	ham, WA			BLIND ID:	۸ /	Λ.			
PROJECT # 171240-01.01 Task 2 DUP ID:										
• 70										
WATER QUALITY D	DATA	Purge Start Tir	me: (७ : ७८		Method §	- B	[Selec	et A-G]	Pump/Bailer	r Inlet Depth: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Time DTW(4) Pu	irged (gal)	pН	E Cond (μS)	°F Temp °C	DO (mg/l)	ORP	TDS	Salinity	Turbidity	Water Quality
1605	25	50								
	75	6.42	426.1	14.4	1.04	37 4			260	clear, white partorles
7700	-50	6.23	393.0	14.3	044	15.4			7.65	Clear
1619 133 3	3.50	6.25	387.0	14.2	0.37	(0-1			2-16	V
148 13.25	1.50	6.29	384 7	14.1	6.31	4.8			2-14	11
1622 13.25	5-50	6.30	385.2.	14-2	0.29	26			1.84	n
	6.50	6-31	385.2	14.2	0-25	1.2			1.45	4
	150	6-31	385.3	13.8	024	-6.5			1.55	ā ş
	8.50	6-30	384.8	13.8	0-23	-3.1			1-11	Li
	950	6-32	385-7	13.8	0.21	-2.6			0.87	и
1642 13-25	10.50	4-33	385 8	17.0	6-19	-0.2			0.96	4
146 13-25	11.50	6-33	385.4	14.1	019	0 3			0-75	/3
1650 13.25	12.50	634	385 3	14.1	0.18	-0-3			0.77	l)
(654 13.25	13.50	1.37	3861	14-0	0.18	1-0			0 67	41
1658 3.25	14-50	6-33	385.5	14.1	6.17	0-6			0.67	L
[Cun	mulative Totals]			[Circle units]						[Clarity, Color]
Notes:	_ @	250 m	L/m in							
bomohio			7							
	and ed	0 F	1000 I	7:00	SVCA	- MM.	·4-17	0823	4 A	
5am	June		- :- (· ·	was a A	wilstrae	tosf	+ for	top 1	casny
*pTW	men!	swell m	in teb	P min	Linna,	3001	10		. 0	J
SAMPLER. MAGA	dotto	Maino	+		/hn-	-115	1	1/1-		
SAMPLER: Bernedetto Wight [Circle Units] [Ci										

Photo 1 TP-100 (August 23, 2017)

Photo 2 TP-100 (August 23, 2017)

Photo 3 TP-102 (August 23, 2017)

Photo 4 TP-102 (August 23, 2017)

Photo 5 TP-103 (August 23, 2017)

Photo 6 TP-103 (August 23, 2017)

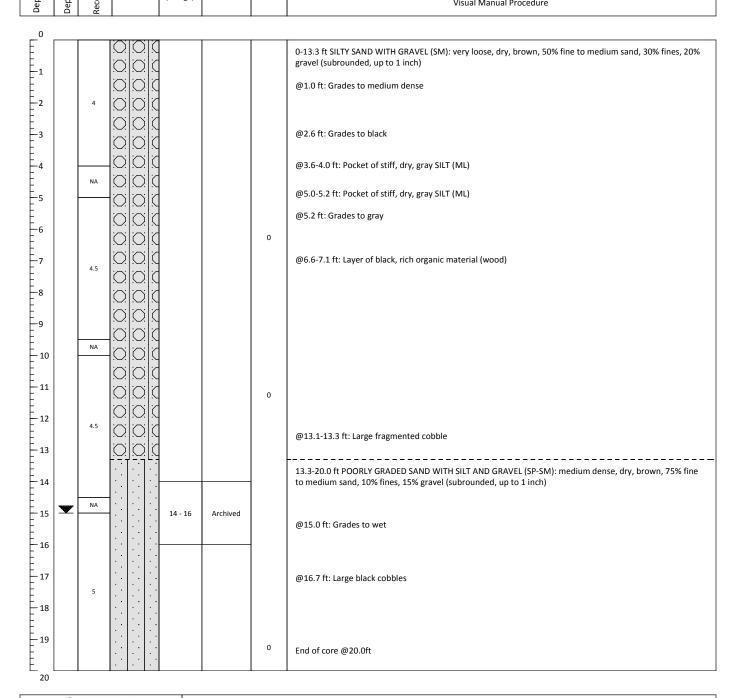
Photo 7
Groundwater Well Redevelopment – All Drums (August 23, 2017)

Photo 8 Drum 1 (August 23, 2017)

Photo 9 Drum 2 (August 23, 2017)

Photo 10 Drum 3 (August 23, 2017)

Photo 11 Drum 4 (August 23, 2017)


Photo 12 Drum 5 (August 23, 2017)

Soil Boring Log

Sheet 1 of 1

							SVCA-SB-109					
Proje	ct: SVC	A Area Z	Remediation	ı		Locatio	on: Bellingham, WA	Project #: 171240-01.01 Task 2				
Client	: SVCA					Contra	ctor: Holocene Drilling	Operator: Mitch McCarey				
Logge	ed By: E	3 Wright,	, E Malczyk			Metho	d/Core Diameter: Direct Push/1.5" ID, 2.25" OD	Drilling Equipment: Geoprobe				
North	ning: 6	28091.07	7	Easting: 12	75905.98	Horizo	ntal Datum: NAD 83 WA State Plane North, US feet	Collection Date: 9/13/2017				
Penet	tration (Depth (fe	eet): 20			Tempo	Temporary Well Screened Interval (ft. bgs): 14-19 Groundwater depth (ft. bgs): 15					
epth (feet)	epth to GW (ft.)	ecovery (ft)	Lithologic Column	Sample Interval (ft. bgs)	Analysis	PID	Samples and Descript Classificat	Description ions are in Recovered Depths. ion Method: USCS lanual Procedure				

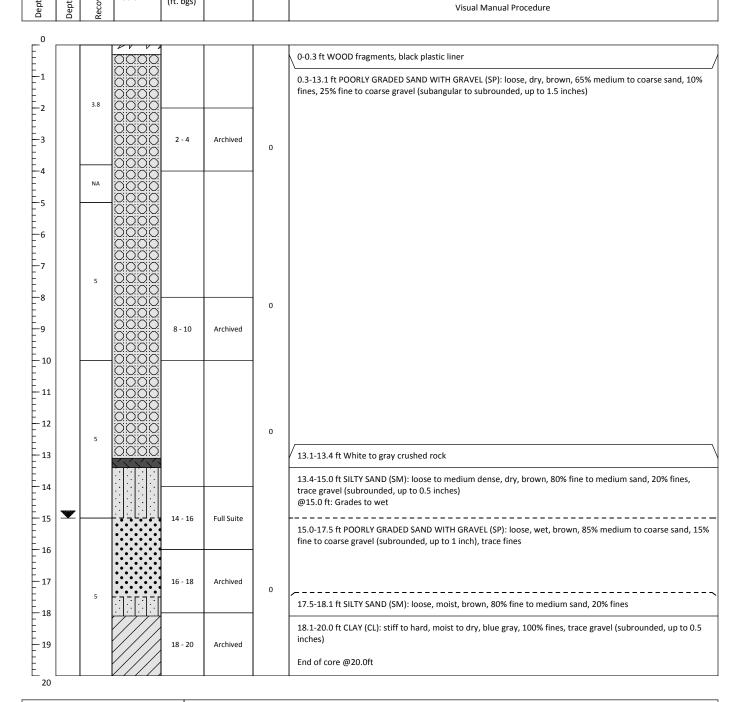
Notes: 1) NA = no recovery. Each geoprobe push was 5 feet (e.g. 0-5 feet, 5-10 feet, 10-15 feet, and 15-20 feet).

Soil Boring Log

Sheet 1 of 1

							SVCA-SB-110				
Projec	t: SVC	A Area Z	Remediation	1		Locatio	n: Bellingham, WA	Project #: 171240-01.01 Task 2			
Client	SVCA					Contra	ctor: Holocene Drilling	Operator: Mitch McCarey			
Logge	d By: E	Wright,	E Malczyk			Metho	d/Core Diameter: Direct Push/1.5" ID, 2.25" OD	Drilling Equipment: Geoprobe			
North	ing: 6	28048.86	5	Easting: 12	75964.7	Horizoi	ntal Datum: NAD 83 WA State Plane North, US feet	Collection Date: 9/13/2017			
Penet	ration [Depth (fe	et): 20			Tempo	rary Well Screened Interval (ft. bgs): 14-19	Groundwater depth (ft. bgs): 15			
Depth (feet)	Depth to GW (ft.)	Recovery (ft)	Lithologic Column	Sample Interval (ft. bgs)	Analysis	PID	Samples and Descript Classificat	Description ions are in Recovered Depths. ion Method: USCS lanual Procedure			

_0			1		Γ.
-1					0-3.2 ft SILTY SAND WITH GRAVEL (SM): loose, dry, brown, 60% fine to medium sand, 25% fines, 15% fine to coarse gravel (subrounded, up to 1 inch)
-2 -3	4			0	@2.4 ft: Grades to brown-black and medium dense
-4					3.2-4.0 ft SANDY SILT (ML): medium stiff, moist, gray, 60% fines, 40% fine to medium sand, trace gravel
_	NA				
-5 -6					5.0-7.3 ft SILTY SAND WITH GRAVEL (SM): medium dense, moist, dark gray to black, 60% fine to medium sand, 25% fines, 15% fine to coarse gravel (subrounded, up to 1 inch)
-7	3.3				@5.8-7.8 ft: Moderate organic material (wood fibers/fragments)
					7.3-15.0 ft POORLY GRADED SAND (SP): loose, dry, gray, 85% fine to medium sand, 10% fines, 5% gravel
-8		_		0	
-9	NA				
- 10					
- 11					
- 12	4.2				
				0	
- 13					
- 14		-		-	
- ₁₅	NA	T 7 7 7 7 7 14 - 16	Archived		
- 16					15.0-16.6 ft SILTY SAND (SM): loose, wet, gray, 70% fine to medium sand, 25% fines, 5% gravel
- 16					@15.0 ft: Grades to wet
- 17	5			0	16.6-20.0 ft POORLY GRADED SAND (SP): medium dense, moist, brown, 85% fine to medium sand, 10% fines, 5% gravel
- 18 - - 19					
_ 19 l	1	•••••			End of core @20.0ft

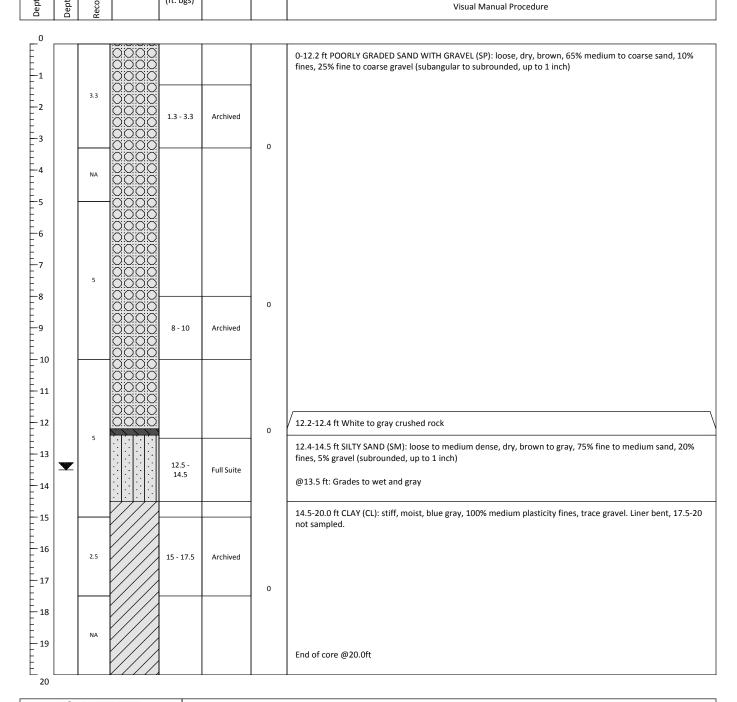


Notes: 1) NA = no recovery. Each geoprobe push was 5 feet (e.g. 0-5 feet, 5-10 feet, 10-15 feet, and 15-20 feet).

Soil Boring Log SVCA-SB-111

Sheet 1 of 1

							SVCA SD III				
Projec	ct: SVC	A Area Z	Remediation	ı		Locatio	n: Bellingham, WA	Project #: 171240-01.01 Task 2			
Client	: SVCA					Contra	ctor: Holocene Drilling	Operator: Mitch McCarey			
Logge	d By: E	Wright,	E Malczyk			Metho	d/Core Diameter: Direct Push/1.5" ID, 2.25" OD	Drilling Equipment: Geoprobe			
North	ing: 6 :	27945.93	3	Easting: 12	76385.22	Horizor	ntal Datum: NAD 83 WA State Plane North, US feet	Collection Date: 9/13/2017			
Penet	ration [Depth (fe	et): 20			Tempo	rary Well Screened Interval (ft. bgs): 14-19	Groundwater depth (ft. bgs): 15			
th (feet)	(tree) (tree)						Samples and Descript	Description ions are in Recovered Depths. ion Method: USCS			


Notes: 1) NA = no recovery. Each geoprobe push was 5 feet (e.g. 0-5 feet, 5-10 feet, 10-15 feet, and 15-20 feet).

2) Full Suite includes NWTPH-Gx, NWTPH-Dx (with and without silica gel cleanup), and BTEX (Method 8260C).

Soil Boring Log SVCA-SB-112

Sheet 1 of 1

							3VCA-3B-112			
Proje	ct: SVC	A Area Z	Remediation	ı		Locatio	n: Bellingham, WA	Project #: 171240-01.01 Task 2		
Client	: SVCA					Contra	ctor: Holocene Drilling	Operator: Mitch McCarey		
Logge	d By: E	3 Wright,	E Malczyk			Metho	d/Core Diameter: Direct Push/1.5" ID, 2.25" OD	Drilling Equipment: Geoprobe		
North	ing: 6	27974.3		Easting: 12	76366.99	Horizoi	ntal Datum: NAD 83 WA State Plane North, US feet	Collection Date: 9/13/2017		
Penet	ration [Depth (fe	et): 20			Tempo	rary Well Screened Interval (ft. bgs): 12.5-17.5	Groundwater depth (ft. bgs): 13.5		
epth (feet)	epth to GW (ft.)	covery (ft)	Lithologic Column	Sample Interval (ft. bgs)	Analysis	PID	Samples and Descript Classificat	Description tions are in Recovered Depths. tion Method: USCS lanual Procedure		

Notes: 1) NA = no recovery. Each geoprobe push was 5 feet (e.g. 0-5 feet, 5-10 feet, 10-15 feet, and 15-20 feet).

2) Full Suite includes NWTPH-Gx, NWTPH-Dx (with and without silica gel cleanup), and BTEX (Method 8260C).

_	O A	NCHOI	2							1605 C	ornwal	l Aven	ue		
1		NCHOI EA ##								Belling	ham, V	VA 982	25		- 1
-		EA						Office:	(360	0) 733-4	311	Fax:			
PROJE	ECT N	AME:	SVCA						WE	ELL ID:	SVC	A-Sî	3-10	7	@111
SITE A			Belling	ham, V	VA										-170913
				<i>i:</i>						UP ID:	3001	15-00	10-1-	-	NA
WI	ND FR	ROM: N	NE	Е	SE	S	SW	W	NW	LIG	HT	MED	DIUM	Н	EAVY
V	VEAT:	HER: SUN	İNY	CLC	UDY	RA	IN		?	TEN	IPERA	TURE:	°F 6	5.	°C
		GY/LEVEL I	AE A CI	IDEME	NITE (N		G)		IProduct '	[hickness]	[Water 6	Columni	Circ	le annronria IWater Co	ate units) olumn x Gal/ft]
Da		Time	DT-B			roduct		Vater		DTW	DTB-		1 1		me (gal)
	1	:											X 1		
1		- : -										٧	X 3		
<u> </u>	(dia./2) ²	x 0.163 1" =	0.041	2"=	0.163	3" =	0.367	4" =	0.653	6"=	1.469	10" =	4.080	12" =	5.875
		Submersible Pump (B		Pump (C) D		ler (D) PVC/I		(E) Dedicat		Dedicated P	ump (G) Ot	ner =			
		ATER SAM										Depth	:		[√if used]
Bottle		Date		me		Amount				ervative	[circle]	Ice	Filter	pН	1
VOA		9/13/17	11	: 10	B	45	40	ml		HCl		YES	NO		
Amber	Glass	9/13/17		10	R	U	250,6	00, 1L	(None)	(HCI) (H₂SO₄)	YES	NO		
White	Poly	11			-62		_	00, 1L		None		YES	NO	NA	
Yellow	Poly	1 1		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green		1 1						00, 1L		NaOH		YES	NO		
Red Tot		1 1		:			250, 5	00, 1L		HNO ₃		YES	NO		
Red Dis		1 1					250, 5	00, 1L		HNO ₃		YES	YES		
		1 1						00, 1L				YES			
		Total Bottles	(include	duplicat	e count):	9									
	ВС	OTTLE TYPE				WED PER B	OTTLE T	YPE (Circl	e applicabl	le or write	non-stand	ard analys	sis below)		
	VOA - C	Glass			EX) (WT		i						,		
آ ۾ ڇا	AMBER	- Glass	(PAH) (трн-нсіб	(NWTPH	-Dx (TPH	-418.1) (C	il &Grease)	(8081A)						
Analysis Allowed per Bottle Type	WHITE	- Poly	(pH) (Co	onductivity)	(TDS) (TSS) (BOD)	(Turbidi	y) (Alkali	nity) (HC	O ₃ /CO ₃) (0	C1) (SO ₄)	(NO ₃) (i	NO ₂) (F)		
[ਊ	YELLO	W - Poly	(COD) (TOC) (To	tal PO ₄) (T	otal Keldahl	Nitrogen)	(NH ₃) (N	1O ₃ /NO ₂)						
ysis Bot	GREEN	- Poly	(Cyanide)												
le la	RED TO	TAL - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) (Co) (Cr) (Cu	(Fe) (Pb) (Mg) (M	n) <i>(Ni)</i> (A	g) (Se) (T) (V) (Zn)	(Hg) (K)	(Na)		
RED DISSOLVED - Poly (As) (Sb) (Ba) (Be) (Ca) (Cd) (Co) (Cr) (Cu) (Fe) (Pb) (Mg) (Mn) (Ni) (Ag) (Se) (Tl) (V) (Zn) (Hg) (K) (Na)															
Notes	s:	S	mple	tim	e 11	10									

SAMPLER:

(PRINTED NAME)

FURN WALCHIE

(SIGNA

Z	ANCHOR OEA Office:												
PROJEC	T NAME	SVCA	Area Z Remed	iation		WELL ID:			179				
SITE AI	DDRESS:	Belling	ham, WA			BLIND ID:		-G-W-1		9-17091	7		
PROJEC	CT #	171240	-01.01 Task 2			DUP ID:			-				
	WATER QUALITY DATA Purge Start Time: : Method § - Select A-G Pump/Bailer Inlet Depth: Time DTW (ft) Purged (gal) PH E Cond (uS) °F Temp °C DO (mg/l) ORP TDS Salinity Turbidity Water Quality												
	DTW (ft)	Purged (gal)		E Cond (μS)	°F Temp °C	DO (mg/l)	ORP	TDS	Salinity	Turbidity	Water Quality		
1040	AU		636	89.0	11.7	2.19	70.1	572	0.04	>Unit	Cloudy borns		
1050		2.6	6.13	છા. ૧	10.9	2.46	83.9	53.3	0.04	502			
1055			613	81.5	11.0	2.56	89.5	53.3	0.04	144	Clearing, Cloudy		
[[00			6.13	80.9	6.01	263	94.7	52.6	0.04	621	nocolar, same cloudiness		
1107		eto.	6.12	80.	10.8	3.27	99.7	52	0.04	27.5	musty clear		
(10)	1	66	612	80. z	10.9	3.42	1023	57	0.04	34.3	· 4		
					2					- 55			
											A ₃₆		
$\overline{}$							ta.						
						10							
						1							
		Cumulativa Totalal			[Circle system]								
Notes:	0.1 L/min Ci034 - Still turbid brown Stirt Sample C1110 Stirt Sample C1110												
SAMPL	PLER: DAN MALLY (SIGNATURE) (SIGNATURE)												

1605 Cornwall Avenue

Bellingham, WA 98225

Office:

(360) 733-4311

ii Griuiri,	7711 70220
-4311	Fax:

									Office:	(30	0) /33-4	211	rax:			
PROJI	ECT N	AME:		SVCA						W	ELL ID:	•	58-11	0		
SITE A	ADDR	RESS:		Belling	ham, V	VA				BLI	ND ID:				9-170	113 @1
										Г	UP ID:					NA
WI	ND FF	ROM:	N	NE	Е	SE	S	SW	W	NW ·	LIC	HT	MEI	DIUM	H	EAVY
V	VEAT.	HER:	SUN	JNY)	CLC	UDY	RA	IN		?	TEN	IPERA	TURE:	°F 7	$\overline{\circ}$	°C
HYDI	ROLO	GY/LEV	VEL N	MEASI	IREME	NTS	earest 0.01	root 0.01 ft\			Thickness]	[Water	r Column]		rle annronri IWater Ci	iate units! olumn x Gal/ft]
Da		Tim		DT-B			roduct	DT-V	Vater		-DTW		DTW	1 1		me (gal)
/	/ / : X1															
1										<u> </u>				X 3		•
Gal/ft =	(dia./2) ²	x 0 163	1" =	0.041	2"=	0.163	3"=	0.367	4"=	0.653	6"=	1.469	10" =	4.080	12" =	5.875
							ler (D) PVC/I							4.000	12 -	3.073
							uct is dete						e Depth			[√if used]
Bottle		Date			me		Amount				ervative	<u> </u>	Ice	Filter	рН	7
VOA		9 /13			57	B	25		ml		HCl	[0]	YES	NO	F	
						B	4			None		H-SOJ)	YES	NO		
	Amber Glass 9 / 13 White Poly /			12:57		ש		250 500 1L 250, 500, 1L		- COLO	None		YES	NO	NA	, nc=,
Yellow	<u> </u>	1	/					250, 500, 1L			H ₂ SO ₄		YES	NO	1421	
Green		1	/					250, 5			NaOH		YES	NO		
Red Tot		1	1					250, 5	<u> </u>	HNO ₃			YES	NO		
Red Dis		/	<i>'</i>					250, 5						YES		
Red Dis	s. rory	/	1					250, 5			HNO ₃		YES	IES		
		/ .	/	/i11-			а	250, 5	00, 1L			11.	YES			
	P.C	TOTAL E		(include			WED PER B	OTTEL E T	VDE (Ct)	1: 1:	1	. 1	1 1			
	VOA - C		E			EX) (NWI		OTTLET	IFE (CIRC	е аррпсав	ie or write	non-stand	ard analys	sis below)		
_	AMBER					CNWTPH		-418.1) (O	il &Grease)	(8081A)						
Analysis Allowed per Bottle Type	WHITE				nductivity)			(Turbidit		<u> </u>	O ₃ /CO ₃) (0	Cl) (SO ₄)	(NO ₃) (I	NO ₂) (F)		
₹	YELLO	W - Poly		(COD) (T	ГОС) (То	tal PO ₄) (T	otal Keldahl	Nitrogen)	(NH ₃) (N	IO ₃ /NO ₂)						
sis	GREEN	- Poly		(Cyanide)												
l al	RED TO	TAL - Poly		(As) (Sb)	(Ba) (Be)	(Ca) (Cd) (Co) (Ct) (Cu	(Fe) (Pb) (Mg) (M	(n) (Ni) (A	g) (Se) (Tl) (V) (Zn)	(Hg) (K)	(Na)		
< "	RED DI	SSOLVED - F	Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) (Co) (Cr) (Cu) (Fe) (P b.) (Mg) (M	(n) <i>(Ni)</i> (A	g) (Se) (Tl) (V) (Zn)	(Hg) (K)	(Na)		
[
Notes	s:	Sa	mp	le ti	me	125	7									
			•													

SAMPLER:

(PRINTED NAME)

(SIGNATURE)

					<u> </u>								
(1)	R ANC P QEA	HOR						1605 Cornw Bellingham,					
×	→ QEA				Office:			33-4311		Fax:			
PROJE	CT NAME	: SVCA	Area Z Remed	iation		WELL ID:	SB-1	110					
SITE A	DDRESS:	Belling	gham, WA			BLIND ID:	Svea- (w-110.	-14-19-	170913	@1257		
PROJE	CT #	171240)-01.01 Task 2			DUP ID:							
WATE	WATER QUALITY DATA Purge Start Time: : Method § - [Select A-G] Pump/Bailer Inlet Depth:												
-	Time DTW (ft) Purged (gal) pH E Cond (μS) °F Temp °C DO (mg/l) ORP TDS Salinity Turbidity Water Quality												
1736	AK		6.69	189.6	12.0	0.29	53.7	122.8	0.09	315	no fint Portlandy		
1243	,	1	6.66	186.9	11.4	0.11	-11.5	121.5	0.09	207	11		
1247			6.65	187,4	11.4	0.11	-27.4	121.6	0.09	70.4	11 clearing		
1247			6.67	198	11.8	0.21	-33.L	122.2	0.07	20.8	mostly dow		
1256	7	QL	6.69	188.5	11.3	0.29	-38.9	122.2	0.09	13.5	11		
- T		1											
		(Cumulative Totale)			[Circle units]		Į.				(Chatter Color)		
Notes:	Dinn	D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10.	P1220, 0.2	5 L/min		1.				[Clarity, Color]		
110163	2 mm	heavy so	diment a	t start.		to co	olium - cci Con	d > 13.	~				
	trov.	anW. W	to get f	ww at s	tert out		· 20 204.		• ,				
	(000	it Sam	ple pr	1220, 0.2 + start. low at s									
	St	W.	,	_			11						
						[1.	1,11						
SAMP			ALLYK			Mu/	WY						
	(PRINT	ED NAME)			(SIGNAT	URE)	1						

	RA	NCHO	R								ornwai				
		EA SEE	-							-	gham, V		25		
								Office:	(36	0) 733-4	311	Fax:			
PROJI	ECT N	AME:	SVCA						W	ELL ID:	SR	-111			
SITE A	ADDR	RESS:	Belling	ham, V	۷A				BLI	ND ID:	SVCA	-MW-	111 -14	-19-17	10913
									E	UP ID:					NA
WI	ND FF	ROM: N	NE	Е	SE	S	sw	W	NW	(LIG	HT	MED	DIUM	H	EAVY
V	VEAT	HER: 801	(NY)	CLC	UDY	RA	IN		?	TEN	IPERA	TURE:	°F 7	δ.	°C
HYDI	ROLO	GY/LEVEL	MEASU	REME	NTS	earest 0.01	l ft)		[Product	Thickness]	[Water	Column]	[Cin	cle annronri [Water C	iate unitsl olumn x Gal/ft]
Da		Time	DT-Bo			roduct	DT-V	Vater	DTP	-DTW		DTW			ıme (gal)
/		:	Ì.		Ì								X 1		
1	1	:											Х3		
Gal/ft =	(dia./2) ²	x 0.163 1" =	0.041	2"=	0.163	3"=	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
§ METHO	DDS: (A) S	Submersible Pump (B) Peristaltic F	ump (C) D	isposable Bai	ler (D) PVC/	Teflon Bailer	(E) Dedicat	ed Bailer (F) Dedicated F	ump (G) Ot	her =			
GROU	JNDW	ATER SAM	IPLING	DATA	(if prod	uct is dete	cted, do I	NOT san	ıple)		Sample	e Depth:			[√ if used]
Bottle	Туре	Date	Tir	ne	Method	Amoun	t & Volu	me mL	Pres	ervative	[circle]	Ice	Filter	pН	1
VOA	Glass	9/13/17	15	45	В	52	40	ml		HCl		YES	NO		-
Amber	Glass	9/3/17	15	45	В	3	250, \$	00) 1L	(None) (HCl) (H ₂ SO ₄)	YES	NO		_
White	Poly	11	3				250, 5	00, 1L		None		YES	NO	NA	
Yellow	Poly	1 1	:				250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	/ /	:				250, 5	00, 1L		NaOH		YES	NO		
Red Tot	al Poly	/ /					250, 5	00, 1L		HNO₃		YES	NO		
Red Dis	s. Poly	1 1	:				250, 5	00, 1L		HNO₃		YES	YES		
		1 1	:				250, 5	00, 1L				YES			
		Total Bottles	(include	duplicat	e count):	ъ									
	ВС	OTTLE TYPE	TYPICAL	ANALY	SIS ALLO	VED PER B	OTTLE T	YPE (Circl	e applicab	le or write	non-stand	ard analys	is below)		
	VOA - C	Glass	(8021) (82	60B) (6T	EX) (WT	PH-Gx)									
ا مج	AMBER	- Glass	(PAH) (1	TPH-HCID	NWTPH	-Dx) (TPH	-418.1) (O	il &Grease)	(8081A)						
Analysis Allowed per Bottle Type	WHITE	- Poly	(pH) (Co	nductivity)	(TDS)	rss) (BOD)	(Turbidit	y) (Alkali	nity) (HC	O ₃ /CO ₃) (O	Cl) (SO ₄)	(NO ₃) (N	IO ₂) (F)		
₽	YELLO	W - Poly	(COD) (1	OC) (To	tal PO ₄) (T	otal Keldahl	Nitrogen)	(NH ₃) (N	1O3/NO2)						
ysis Bot	GREEN	- Poly	(Cyanide)												
nad Ser	RED TO	TAL - Poly	(As) (Sb) ((Ba) (Be)	(Ca) (Cd) (Co) (Cr) (C1	(Fe) (Pb.) (Mg) (M	(n) <i>(Ni)</i> (A	kg) (Se) (Tl	(V) (Zn)	(Hg) (K)	(Na)		
~ ~	RED DI	SSOLVED - Poly	(As) (Sb) ((Ba) (Be)	(Ca) (Cd) (Co) (Cr) (C1	(Fe) (Pb.) (Mg) (M	in) <i>(Ni)</i> (A	g) (Se) (Tl) (V) (Zn)	(Hg) (K)	(Na)		
Notes	s: S	fort !	grup	14	file										
							11	·	VII	77 A	UTU				
		low vol	une i	vevi,	nigh	er Th	N 6100	17.	1	77 .	-				

SAMPLER: PRINTED NAME)

PRINTED NAME)

(SIGNATURE)

	A NCHOR 1605 Cornwall Avenue													
4 >	ANCHOR OEA Office: 1605 Cornwall Avenue Bellingham, WA 98225 Office: (360) 733-4311 Fax:													
X	» QEA				Office:				WA 98225	Fax:				
PROJE	CT NAME	: SVCA	Area Z Remed	iation		WELL ID:	SB-	111						
SITE A	DDRESS:	Bellin	sham, WA			BLIND ID:			14-19-1	70913 6	0 1545			
PROJE	CT #	17124()-01.01 Task 2			DUP ID:								
WATER QUALITY DATA Purge Start Time: : Method § - [Select A-G] Pump/Bailer Inlet Depth: Time DTW (ft) Purged (gal) pH E Cond (uS) of Temp of DO (mg/l) ORP TDS Salinity Turbidity Water Outslitty														
Time	DTW (ft)	Purged (gal)	pН	E Cond (μS)	°F Temp °C	DO (mg/l)	ORP	TDS	Salinity	Turbidity	Water Quality			
1500	NA		6.12	209 7	14.0	1.20	-355	135.2	0.10	213	partly cloudy			
1545										133	10			
Notes:	Pu	[Cumulative Totals]	le trobles g through long air on 1459 es521	Lust line	[Circle units]	replaced	tiling			FW	ul turbiduty: (33			
	الماري	ter comin	3 rough	E 14 35	closely	Brown M	eary (id	wenter o	n Il recha	col				
	@ 14	139 pm	and one	Dunk off	e ingel (n 4 aug	(o. with	Dump of	F	<i>a</i> -				
		pump back	or 1459	0.15 4~	7 500	m any	er pm	of offer	527					
		Somb on	G'S UL	Enaished 7 o	when d	5×40ALL	ory fr	nen filler	d extra 5	some am	K.			
CARCO	LED.	KWG, OIL	1375	411030- CO	a-0, - 0 - 1	1/1	1111							
SAMP		EDNAME)			(SIGNATI	WW ,	/ /W //							
	(1 1/11/11)	EL-INAUME)			(SIGNAT)	UKE)								

14-19

V	R A G Q	NCHO EA ##	R =					Office:	(36		ornwal gham, V		25		
PROJI	FCT N	AMF.	SVCA					Office.	<u> </u>	ELL ID:					
SITE			Belling	-bam I	A7 A									26 1	77 10 10
SILE	ADDIN	ESS:	Delini	main, v	/VA							- WW	-112-l	63-1	75-1707
TA7T1		1014 T			1 00	Ι .		717		UP ID:					NA
	ND FR	-	NE	E	SE	S	SW	W	NW	LIG			DIUM	Н	EAVY
V	VEAT.	HER: SU	NNY /	CLC	DUDY	RA	IN		?	TEN	IPERA	TURE:		>	°C
HYDI	ROLO	GY/LEVEL	MEASU	JREME	NTS (N	earest 0.01	ft)		[Product	Thickness]	[Water	Column]	l Cire	cle appropri [Water Co	iate imitel olumn x Gal/ft]
Da	ite	Time	DT-B	ottom	DT-P	roduct	DT-V	Vater	DTP-	-DTW	DTB-	DTW] [Volu	me (gal)
/	/	:	Ť T		i								X 1		
'	1	:	1									•	X 3		
Gal/ft =	(dia./2) ² :		0.041	2"=	0.163	3"=	0.367	4" =	0.653	6" =	1.469	10" =	4.080	12" =	5.875
		Submersible Pump (I		Pump (C) D		iler (D) PVC/		(E) Dedicat		Dedicated F			1.000		
		ATER SAN										e Depth			[√if used]
Bottle		Date		me		Amoun				ervative		Ice	Filter	рН	1
VOA	VOA Glass 9 /13/17		17-	: 03	B	5.2-		ml		HCl		YES	NO		
Ambei	VOA Glass 9 /13/17 Amber Glass 9 /13/17			03	i3	4	250,(3	0 9 , 1L	(None) (HCl) (H ₂ SO ₄)		YES	NO		~	
White	Poly	//	<u> </u>	:				00, 1L		None		YES	NO	NA	
Yellov	v Poly	1 1		:			250, 5	00, 1L		H ₂ SO ₄		YES	NO		
Green	Poly	1 1	1	:			250, 5	00, 1L		NaOH		YES	NO		
Red To	al Poly	. / /		:			250, 5	00, 1L		HNO ₃		YES	NO		
Red Dis	ss. Poly	1 1					250, 5	00, 1L		HNO ₃		YES	YES		
		1 1		:	1		250, 5	00, 1L				YES			
		Total Bottle	s (include	duplicat	te count):	a									
	ВС	TTLE TYPE	TYPICA	L ANALY	SIS ALLO	WED PER B	OTTLE T	YPE (Circl	e applicab	le or write	non-stand	ard analys	is below)		
	VOA - C	Glass	(8021) (8	260B) (E)	EX) (NWI	TPH-Gx									
ا ہے ا	AMBER	- Glass	(PAH) (TPH-HCID) (WTPH	I-Dx) TPH	(-418.1) (O	il &Grease)	(8081A)						
% &	WHITE	- Poly	(pH) (Co	onductivity)	(TDS) (TSS) (BOD)	(Turbidit	y) (Alkali	nity) (HC	O ₃ /CO ₃) (0	Cl) (SO ₄)	(NO ₃) (1	VO ₂) (F)		
@ \	YELLO	W - Poly	(COD) (TOC) (To	otal PO ₄) (7	Total Keldahl	Nitrogen)	(NH ₃) (N	IO₃/NO₂)						
Analysis Allowed per Bottle Type	GREEN	- Poly	(Cyanide)												
Ser Ja	RED TO	TAL - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) ((Co) (Cr) (Cı	ι) (Fe) <i>(Pb</i>) (Mg) (M	(n) <i>(Ni)</i> (A	g) (Se) (Ti	(V) (Zn)	(Hg) (K)	(Na)		
	RED DI	SSOLVED - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) ((Co) (Cr) (Cı	(Fe) (Pb) (Mg) (M	[n] (Ni) (A	g) (Se) (Ti	(V) (Zn)	(Hg) (K)	(Na)		

Notes:

Sample time 1703

(SIGNATURE) (PRINTED NAME) **SAMPLER:**

4 >	R ANC QEA	HOR						Pallinahan			
X	» QEA				Office:			Bellingham, 33-4311	VVA 98225	Fax:	
PROIE	CT NAME	: SVCA	Area Z Remed	liation		WELL ID:	5B-11			Tusti	
	DDRESS:		ham, WA			BLIND ID:	SUCA	MW II	7-12.5	-17.5-	170913 @ 1703
PROJE	CT #	171240	0-01.01 Task 2			DUP ID:	-500/1				
WATE	R QUALIT	Y DATA	Purge Start Ti	me: :		Method §	_	[Select	t A-G]	Pump/Baile	er Inlet Depth:
Time	DTW (ft)	Purged (gal)	pН	E Cond (μS)	°F Temp °C	DO (mg/l)	ORP	TDS	Salinity	Turbidity	Water Quality
1624	AN									540	
1627	1		7.16	438.6	15.8	093	-87.6	284.7	0.21	294	Cloudy gray
1633			7.16	438.9	15.9	0.47	-1145	285.35	0.21	240	U, cleaning
1633			7.08	428	15.5	0:32	7145.9	278.7	0.21	55,4	Pertly cloudy
1653 1702			7.15	431.3	15.3	0.33	-157.4	280.8	0.24	59.3	
1702			7.09	429.3	15.4	0.37	-160.7	278.5	0.21	15.8	
										15.2	
							,				
NT.4		[Cumulative Totals]			[Circle units]	1					[Clarity, Color]
Notes:	Stert	- brub (3 1610 Cl	oudy, gran	y, reavy se	dimentati	⊘ \∕\				
			0122011	nun -	-						
	CL	era Sampl	e 1703								
	31	4. 24.40					11				
						0 /	1 //				
SAMP	LER:	EVAN' MA	ume			11/1	M				
	(PRINT	ED NAME)			(SIGNAT	URE)					

	0 4	NICITIO	n							1605 C	ornwal	l Aveni	ue		
1 1	K, A	NCHO EA ##	K							Belling	ham. V	VA 982	25		
X	a Q	EA SS						Office:	(36	0) 733-4	,	Fax:	•		
PROJE	CTN	AME:	SVCA	_						ELL ID:		WOY			
SITE A				gham, V	N7 A					ND ID:	V V \	1			
SITE	IUUN	LEGG:	Dennig	Sitaili, V	VΛ					UP ID:	NI.	k			NA
TATER	ND FR	ROM: N	NE	Е	SE	S	SW	W	NW	LIG	HT	MED	MIII	Н	EAVY
	VEAT	_	NNY	_	UDY	RA		VV	?			TURE:		^	° C
														rle annronr	riate unitsl
		GY/LEVEL	_							Thickness]		Columnj	1		column x Gal/ft] ume (gal)
Da		Time		ottom	DT-P	roduct	DT-V		DTP	-DTW		DTW	26.4	VOIL	
312	- 16	0:26	22	.25			11 -	47		•	(0	+6	X 1	1	76
/	/	<u> </u>								•	L		X 3	_5	.27
	(dia./2) ² :		0.041	(2")	0.163	3"=	0.367	4''=	0.653	6''=	1.469	10"=	4.080	12"=	5.875
		Submersible Pump (I								Dedicated F			1	017	[√if used]
GROL	INDW	ATER SAN	IPLINC	DATA					iple)		Sample	e Depth:		H-	[v ir usea]
Bottle	Туре	Date	Ti	me	Method	Amoun	& Volu	me mL	Pres	ervative	[circle]	Ice	Filter	pН	1
VOA	Glass	3 176/16		: 42	S	25	.40.	ml)		HCl)	(YES)	(NO)		
Amber	Glass	3 126/18	(1)	:42	B	4	250, 5	00, 1L	(None	(HCI) (H ₂ SO ₄)	(YES)	(NO)		
White	Poly	1 1		:			250, 5	00, 1L		None		YES	NO.	NA	
Yellow	7 Poly	1		:			250, 5	00, 1L		H₂SO₄		YES	NO		
Green Poly / / 250, 500, 1L NaOH YES NO															
Red Total Poly															
Red Total Poly / 250, 500, 1L HNO3 YES NO Red Diss. Poly / 250, 500, 1L HNO3 YES YES															
		1 1		:			250, 5	00, 1L				YES			
		Total Bottle	s (include	duplicat	e count):	9									
	ВС	OTTLE TYPE	<u> </u>			WED PER B	OTTLE T	YPE (Circl	e applicab	le or write	non-stand	ard analys	is below)		
	VOA - C	Glass	(8021) (8	260B) (BT	EX) (W)	PH-Gx)									
ا ۾ ڇا	AMBER	- Glass	(PAH) ((TPH-HCID	NWIPH	(TPH	-418.1) (O	il &Grease)	(8081A)						
Analysis Allowed per Bottle Type	WHITE	- Poly	(pH) (C	onductivity)	(TDS) (TSS) (BOD)	(Turbidit	y) (Alkal	inity) (HC	O ₃ /CO ₃) (0	(SO ₄)	(NO ₃) (1	NO ₂) (F)		
∰ [a]	YELLO	W - Poly	(COD) (TOC) (To	tal PO ₄) (Total Keldahl	Nitrogen)	(NH ₃) (N	JO ₃ /NO ₂)						
ysis	GREEN	- Poly	(Cyanide)												
nal	RED TO	TAL - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) (Co) (Cr) (C1	(Fe) (Pb) (Mg) (N	In) (Ni) (A	g) (Se) (Tl) (V) (Zn)	(Hg) (K)	(Na)		
~ -	RED DI	SSOLVED - Poly	(As) (Sb)	(Ba) (Be)	(Ca) (Cd) ((Co) (Cr) (C1	(Fe) (Pb) (Mg) (N	In) (Ni) (A	g) (Se) (Tl) (V) (Zn)	(Hg) (K)	(Na)		
			1												
Ļ									\	\ L					
Note	s:	6.5 f	+ {		TOC	- to	me	is W	m 1	my	. = 4	>			
		osf.	1 ~ M	N-4	- 18	0321		alle	etzal	C	114	<i>ο</i>			
		7.DH.	-10 ×	آلہ ا	.tn	2 1/1	nt	sil	ica g	rel	clem	mp			
		(11)	15 /	U	•	•			(J					
															/

SAMPLER: Born datte wight (PRINTED NAME)

(SIGNAPURE)

						OT XIVII			X OIII			
	V	R ANC QEA	HOR						1605 Cornwa Bellingham,			
	The same	# QEA	w			Office:		(360) 73	33-4311		Fax:	
	PROJE	CT NAME	: SVCA	Area Z Remed	iation		WELL ID:	mw-	4			
	SITE A	DDRESS:	Belling	sham, WA			BLIND ID:	NA				
	PROJE	CT#	171240)-01.01 Task 2			DUP ID:	NA				
	WATE	R QUALIT	V DATA :	Durgo Stort Ti	me: (0 : 3	G	Method §	- <i>В</i>	[Selec	t A-G]	Pumn/Raila	er Inlet Depth: /2 /-
	Time	DTW (ft)	Purged (gar)	pH	E Cond (μS/cμ		DO (mg/l)	ORP	TDS	Salinity	Turbidity	Water Quality
	1123	11.5	\\ 25	6.16	246-7	7.6	(1.8)	115.4	160.5	0.12	6.46	
12.0	1176	11.5	11-5	6.16	248.2	7.6	0. 稿子	112.4	151 52	0-12	6.56	5/12/2 yellar
12.73		1 1 1	RIL FS	0 12	244.6	7. 6	0.6	111. 1	15/ 56	0-12	7.72	/1
13.5	A	11.51	12.00	6.12	248 2	7.7	0.6	111-1	151.25	0.12	6.64))
(2.)	1134	11.51	14.25	6.14	244.0	7-6	0-6	106.6	151.86	0.12	4.35	9
		11.51	15.0	6.13	247.1	7.6	0-6	107.4	15 U-6	0.12	9.13	'1
	1140	11.52	15.75	6.13	247.5	7.6	0.6	106)	160.02	0.12	3.91	11
						DA						
					10	_/						
						/						
			[Cumulative Totals]			[Circle units]						[Clarity, Color]
	Notes:	<u>'</u>	-			-						[classy, color]
	110100	pom	min p 7	some/	m							
			,,,,,	-5 [- 1		16132	1-		
		5~	mple	es Nute	m d C 11	42,	SVCA-	MW-4.	- 18020	-0		
		01	+ botton	\sim								
	CANAT	TED. P	0	T (10-2-+	==	0)	1 +	1-0	12	$\overline{}$	z.
	SAIVII	(PRIN	TED NAME)	wym		(SIA) AT	URE)	auc)	/	$\overline{}$	/

Appendix D Analytical Results

Test Pit Analytical Results (17H0298 and 17I0040), Analytical Resources, Inc., September 2017

Soil Boring Analytical Results (17I0171), Analytical Resources, Inc., September 2017

Groundwater Analytical Results (17H0298 and 17I0171), Analytical Resources, Inc., September 2017

Earthworm Toxicity Testing Results, EcoAnalysts, Inc., October 2017

Groundwater Analytical Results (18C0424), Analytical Resources, Inc., April 2018

08 June 2018

Cheronne Oreiro Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: SCVA Area Z Remediation

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

17H0298

N/A

Digitally signed by Amanda Volgardsen DN: c=US, st=Washington, l=Tukwila, o=Analytical Resources, Inc., ou=Project Manager, cn=Amanda Volgardsen,

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amanda Volgardsen, Project Manager

2400HU

Project Name: 300-74-82 Remediation Project Name: 300-712-3 Proj	Chain of custous Record & Laboratory Analysis nequest	y Allalysis iteques		1								
Project Name SVCA Name S	Laboratory: Analytical Resc	ources, Inc.	20			00		est Parameters				
Project Manager Sumifier Allen	Date: 3/7.3											
Project Naneger:	Project Name: SVCA Area Z R	emediation					(t				& ANCHOR	
Project Names:							1					8
Prione Number 380715-2724	Project Manager: Jennifer Allen			S			72.				1	
Field Sample ID	Phone Number: 360-715-2724			ıeı			80					
Field Sample ID	Shipment Method:			nietr			19			2		
Field Sample ID DaterTime Matrix 20 F F K K K K K K K K				_	-)					
Field Sample ID		;		_	-	х	əvir					
Suct A-TP-10x 0.48 1908 25 19 19 19 19 19 19 19 1				-	-	3TE	/rcł			, and	ments/Preservation	
Surfa - TP - 10 1 - 2 - 12 6 2	3	Stalia Mal	1	-	-	X	/ X					
Sur A - TP 1-01 - 2-35 4-6 & 2	, of .	0	Fr.	Market		X	У		A			
SW.A. TRP - 102-2x-2-(746)25 135L 50 4 X <	2		000	-			メ					
Such - TP - 10.2 - 3 - 41.76023 1350 50 1 X X X X <td>505-5-6-20-4-1-622</td> <td>13:2</td> <td>50</td> <td>-</td> <td></td> <td>1</td> <td>×</td> <td></td> <td></td> <td></td> <td>State</td> <td>1</td>	505-5-6-20-4-1-622	13:2	50	-		1	×				State	1
Such - TP - 103 - 2 - 190 BB 1745 \$50 1 X	SUCAL-TP - 102-3-4-17-092	1330	S				X					
SVCA - Try 153.2 - 4 - (120/83 8) 23/17 1:50 Company: Anchor QEA, LLC AXXXX AXXXX AXXXX AXXXX AXXXX AXXXX AXXXX AXXXX AXXXXX AXXXXXX AXXXXXX AXXXXXX AXXXXXX AXXXXXX AXXXXXX AXXXXXX AXXXXXXX AXXXXXXXXX AXXXXXXXXXXXX AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1445	S	2		X	X					
Since Proxy = 4 - (126/2) 126/2	0	525	2	ß			Q					
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details the sample confirmation report to labdata@anchorqea.com Reinquished By: Company: Anchor QEA, LLC Signature/Printed Name Reinquished By: Company: Company: Anchor QEA, LLC Signature/Printed Name DaterTime	GNCA- MW-4-17082.4	25	35			X						
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details the sample confirmation report to labdata@anchorqea.com Reinquished By: Company: Anchor QEA, LLC Signature/Printed Name Company: Comp	KVC 4	1.60		7								
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details The sample confirmation report to labdata@anchorgea.com Reinquished By: Company: Anchor QEA, LLC Signature/Printed Name Company: Company: Anchor QEA, LLC Signature/Printed Name Company: Company: Anchor QEA, LLC Signature/Printed Name Company:												
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details + 5 dong TAT Email sample confirmation report to labdata@anchorqea.com Reinquished By: Company: Anchor QEA, LLC Signature/Printed Name Company: Company: AR (Signature/Printed Name Company: Company: Company: Company: Company: DaterTime Signature/Printed Name Signature/Printed Name Company: Com	11											
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details + 5 dong (AAT) Reinquished By: Company: Anchor QEA, LLC Signature/Printed Name Date/Time Signature/Printed Name	12											
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details The Stray That The Email sample confirmation report to labdata@anchorqea.com Reinquished By: Received By: Received By: Received By: Received By: Received By: Company: Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Date/	13				7	10						
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details + 5 dex, Th T Email sample confirmation report to labdata@anchorqea.com Relinquished By: Company: Anchor QEA, LLC Signature/Printed Name Signature/Printed Name Signature/Printed Name Signature/Printed Name Signature/Printed Name Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Date/Time Signature/Printed Name Date/Time Date/Time	14											
tended analyzed with and without silica gel cleanup. See contract for analysis details + S dry (A) (The standard Company: Anchor QEA, LLC) Company: Anchor QEA, LLC Company: Anchor QEA, LLC Signature/Printed Name Company: Company: Company: Company: Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Date/Time	15											
A Company: Anchor QEA, LLC Company: Anchor QEA, LLC Company: Anchor QEA, LLC Signature/Printed Name Company: Company: Date/Time Signature/Printed Name Date/Time Signature/Printed Name Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time	Notes: NWTPH-D extended analyzed	with and without silica	gel clea	Jup. Se	contra	ct for a	nalysis detail	5	1			
Company: Anchor QEA, LLC Received By: Company: AR (Signature/Printed Name Company: Company: AR (Signature/Printed Name Company: Date/Time Signature/Printed Name Date/Time Date/Time Date/Time	Email sample confirmation report to lab	odata@anchorqea.com							,			
Company: Anchor QEA, LLC Received By: Company: AR (25/17) Signature/Printed Name Company: Company: AR (25/17) Received By: Company: Date/Time Signature/Printed Name Date/Time									2			
Company: Company: Date/Time Signature/Printed Name Company: Company: Signature/Printed Name Date/Time Signature/Printed Name Date/Time	Relinquished By:	Company:	Anchor (ZEA, L	ပု		Receiv	ed By:		ပိ		
Company:	Bulmikh	ternette hing	L	152/3	208	346	W	共	E. E.	Brownhan	8/25/17	
Company: Com	Signature/Printed Name		12	Date/Tin	9		Signati	re/Printed Name			Date/Tillie	
Date/Time Signature/Printed Name	Relinquished By:	Company:				П	Receiv	ed By:		3	mpany:	
Date/Time Signature/Printed Name						16						
	Signature/Printed Name	40		Jate/Tin	е		Signatu	re/Printed Name			Date/Time	

Cooler Receipt Form

Project Name: SVA Aver Z remediation COC No(s):
Assigned ARI Job No:
Were intact, properly signed and dated custody seals attached to the outside of to cooler? Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time: If cooler temperature is out of compliance fill out form 00070F Cooler Accepted by: Date: Date: Date: Date: Date: 1
Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time: If cooler temperature is out of compliance fill out form 00070F Cooler Accepted by: Date: Date: Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler?
Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time: If cooler temperature is out of compliance fill out form 00070F Cooler Accepted by: Date: Date: Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler?
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time:
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry) Time:
If cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: \(\begin{align*} \begin{align*} \text{Temp Gun ID#: \(\begin{align*} \text{D005206} \end{align*} \] Cooler Accepted by: \(\begin{align*} \text{Date: } \\ \begin{align*} \text{D46} \\ \text{Complete custody forms and attach all shipping documents} \end{align*} Log-In Phase: Was a temperature blank included in the cooler?
Cooler Accepted by: Date: 9/25/17 Time: 946 Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler?
Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler?
Complete custody forms and attach all shipping documents Log-In Phase: Was a temperature blank included in the cooler?
Was a temperature blank included in the cooler?
Was a temperature blank included in the cooler?
What kind of packing material was used?
What kind of packing material was used? Bubble Wrap Wet Ice Gel Packs Bangies Foam Block Dance Others
Was sufficient ice used (if appropriate)?
Were all bottles sealed in individual plastic bags?
Did all bottles arrive in good condition (unbroken)?
Were all bottle labels complete and legible? YES NO YES NO
Did the number of containers listed on COC match with the number of containers received?
Did all bottle labels and tags agree with custody papers?
Were all bottles used correct for the requested analyses?
Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs) NA YES NO
Were all VOC vials free of air bubbles?
Was sufficient amount of sample sent in each bottle?
Date VOC Trip Blank was made at ARI
Was Sample Split by ARI: NA YES Date/Time: Equipment: Split by:
P 11
** Notify Project Manager of discrepancies or concerns **
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on Bottle
Sample ID on Bottle Sample ID on COC Sample ID on Bottle Sample ID on COC
Additional Notes, Discrepancies, & Resolutions:
1 (C T A T D 10 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Four vials of SVCA-MW-4-170824 had peabubbles, For vials of SVCA-
TripBlank-170823 had ly bubbles.
By: 13 H Date: 8/25/17
Small Air Bubbles Pesbubbles LARGE Air Bubbles Small → "sm" (<2 mm)
=2mm 2-4 mm > 4 mm Peabubbles → "pb" (2 to < 4 mm)
Large → "lg" (4 to < 6 mm)
Headspace → "hs" (>6 mm)

Analytical Report

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:
Seattle WA, 98101 Project Manager: Cheronne Oreiro 07-Sep-2017 12:30

Case Narrative

Sample receipt

Samples as listed on the preceding page were received August 25, 2017 under ARI workorder 17H0298. For details regarding sample receipt, please refer to the Cooler Receipt Form.

BETX - EPA Method SW8260C

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

There were no target compounds detected in the method blanks.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

There were no target compounds detected in the method blanks.

The LCS/LCSD percent recoveries and RPD were within control limits.

<u>Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx (Ac/Si cleaned and standard without Ac/Si Cleaning)</u>

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

Method blank BFH0600 (waters) has motor oil range organics (C24-C38) detected above the reporting limits. This is likely due to carryover from a previously analyzed sample. The sample is non-detect for RRO and DRO. No corrective action was taken.

The LCS percent recoveries were within control limits.

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:

Seattle, WA 98101 Project Manager: Cheronne Oreiro 09/07/2017 12:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Matrix	Date Sampled	Date Received
SVCA-TP-100-0-4-170823	Solid	08/23/17 09:46	08/25/17 09:46
SVCA-TP-100-0-4-170823	Solid	08/23/17 09:46	08/25/17 09:46
SVCA-TP-101-0-2-170823	Solid	08/23/17 10:59	08/25/17 09:46
SVCA-TP-101-0-2-170823	Solid	08/23/17 10:59	08/25/17 09:46
SVCA-TP-101-2-3.5-170823	Solid	08/23/17 11:15	08/25/17 09:46
SVCA-TP-102-0-2-170823	Solid	08/23/17 13:02	08/25/17 09:46
SVCA-TP-102-0-2-170823	Solid	08/23/17 13:02	08/25/17 09:46
SVCA-TP-102-3-4-170823	Solid	08/23/17 13:30	08/25/17 09:46
SVCA-TP-103-0-2-170823	Solid	08/23/17 14:45	08/25/17 09:46
SVCA-TP-103-0-2-170823	Solid	08/23/17 14:45	08/25/17 09:46
SVCA-TP-103-3-4-170823	Solid	08/23/17 15:30	08/25/17 09:46
SVCA-MW-4-170824	Water	08/24/17 17:00	08/25/17 09:46
SVCA-MW-4-170824	Water	08/24/17 17:00	08/25/17 09:46
SVCA-TripBlank-170823	Water	08/23/17 00:00	08/25/17 09:46
	SVCA-TP-100-0-4-170823 SVCA-TP-100-0-4-170823 SVCA-TP-101-0-2-170823 SVCA-TP-101-0-2-170823 SVCA-TP-101-2-3.5-170823 SVCA-TP-102-0-2-170823 SVCA-TP-102-0-2-170823 SVCA-TP-102-3-4-170823 SVCA-TP-103-0-2-170823 SVCA-TP-103-0-2-170823 SVCA-TP-103-0-2-170823 SVCA-TP-103-3-4-170823 SVCA-TP-103-3-4-170824 SVCA-MW-4-170824	SVCA-TP-100-0-4-170823 Solid SVCA-TP-100-0-4-170823 Solid SVCA-TP-101-0-2-170823 Solid SVCA-TP-101-0-2-170823 Solid SVCA-TP-101-2-3.5-170823 Solid SVCA-TP-102-0-2-170823 Solid SVCA-TP-102-0-2-170823 Solid SVCA-TP-102-3-4-170823 Solid SVCA-TP-103-0-2-170823 Solid SVCA-TP-103-0-2-170823 Solid SVCA-TP-103-3-4-170823 Solid SVCA-TP-103-3-4-170823 Solid SVCA-MW-4-170824 Water SVCA-MW-4-170824 Water	SVCA-TP-100-0-4-170823 Solid 08/23/17 09:46 SVCA-TP-100-0-4-170823 Solid 08/23/17 09:46 SVCA-TP-101-0-2-170823 Solid 08/23/17 10:59 SVCA-TP-101-0-2-170823 Solid 08/23/17 10:59 SVCA-TP-101-2-3.5-170823 Solid 08/23/17 11:15 SVCA-TP-102-0-2-170823 Solid 08/23/17 13:02 SVCA-TP-102-0-2-170823 Solid 08/23/17 13:02 SVCA-TP-102-3-4-170823 Solid 08/23/17 13:30 SVCA-TP-103-0-2-170823 Solid 08/23/17 14:45 SVCA-TP-103-0-2-170823 Solid 08/23/17 14:45 SVCA-TP-103-3-4-170823 Solid 08/23/17 15:30 SVCA-MW-4-170824 Water 08/24/17 17:00 SVCA-MW-4-170824 Water 08/24/17 17:00

QUALIFIERS AND NOTES

Qualifier	Definition
U	This analyte is not detected above the applicable reporting or detection limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
J	Estimated concentration value detected below the reporting limit.
Н	Hold time violation - Hold time was exceeded.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
D1	Surrogate was not detected due to sample extract dilution
D	The reported value is from a dilution
В	This analyte was detected in the method blank.
*	Flagged value is not within established control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

EPA 8260C

Volatile Organic Compounds

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-01</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 09:46</u> Prepared: <u>08/31/17 17:01</u> File ID: <u>NT1508311719.D</u>

% Solids: 91.07 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 08/31/17 18:26

Batch: BFH0747 Sequence: SFI0010 Initial/Final: 9.93 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.42	J	0.16	0.55
108-88-3	Toluene	1	13.4		0.08	0.55
100-41-4	Ethylbenzene	1	0.55	U	0.11	0.55
179601-23-1	m,p-Xylene	1	1.11	U	0.22	1.11
95-47-6	o-Xylene	1	0.55	U	0.12	0.55

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	56.4	113	80 - 149	
Toluene-d8	50.000	50.8	102	77 - 120	
4-Bromofluorobenzene	50.000	46.0	92.0	80 - 120	
1,2-Dichlorobenzene-d4	50.000	48.5	97.0	80 - 120	

EPA 8260C

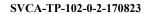
Volatile Organic Compounds

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-03</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 10:59</u> Prepared: <u>08/31/17 17:01</u> File ID: <u>NT1508311720.D</u>

% Solids: 95.13 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 08/31/17 18:51

Batch: BFH0747 Sequence: SFI0010 Initial/Final: 10.28 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.20	J	0.15	0.51
108-88-3	Toluene	1	0.32	J	0.08	0.51
100-41-4	Ethylbenzene	1	0.51	U	0.10	0.51
179601-23-1	m,p-Xylene	1	1.02	U	0.20	1.02
95-47-6	o-Xylene	1	0.51	U	0.11	0.51

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	56.9	114	80 - 149	
Toluene-d8	50.000	50.6	101	77 - 120	
4-Bromofluorobenzene	50.000	48.9	97.9	80 - 120	
1,2-Dichlorobenzene-d4	50.000	51.5	103	80 - 120	

EPA 8260C

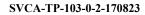
Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-06</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 13:02</u> Prepared: <u>08/31/17 17:01</u> File ID: <u>NT1508311721.D</u>

% Solids: 95.38 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 08/31/17 19:15

 Batch:
 BFH0747
 Sequence:
 SFI0010
 Initial/Final:
 11.06 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.95		0.14	0.47
108-88-3	Toluene	1	0.41	J	0.07	0.47
100-41-4	Ethylbenzene	1	0.47	U	0.10	0.47
179601-23-1	m,p-Xylene	1	0.95	U	0.19	0.95
95-47-6	o-Xylene	1	0.47	U	0.11	0.47

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	56.0	112	80 - 149	
Toluene-d8	50.000	50.6	101	77 - 120	
4-Bromofluorobenzene	50.000	46.9	93.8	80 - 120	
1,2-Dichlorobenzene-d4	50.000	50.1	100	80 - 120	

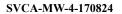
EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-09</u> SDG: <u>17H0298</u>


Sampled: 08/23/17 14:45 Prepared: 08/31/17 17:01 File ID: NT1508311722.D

% Solids: 91.53 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 08/31/17 19:40

 Batch:
 BFH0747
 Sequence:
 SFI0010
 Initial/Final:
 9.01 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.25	J	0.18	0.61
108-88-3	Toluene	1	0.34	J	0.09	0.61
100-41-4	Ethylbenzene	1	0.23	J	0.12	0.61
179601-23-1	m,p-Xylene	1	0.62	J	0.24	1.21
95-47-6	o-Xylene	1	0.24	J	0.14	0.61

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	58.0	116	80 - 149	
Toluene-d8	50.000	50.4	101	77 - 120	
4-Bromofluorobenzene	50.000	48.8	97.6	80 - 120	
1,2-Dichlorobenzene-d4	50.000	51.3	103	80 - 120	

EPA 8260C

Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 17H0298-12 SDG: 17H0298

Sampled: <u>08/24/17 17:00</u> Prepared: <u>08/30/17 09:11</u> File ID: <u>V208301714.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>08/30/17 11:42</u>

Batch: BFH0705 Sequence: SFH0365 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.04	J	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.57	111	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.04	101	80 - 120	
Toluene-d8	5.0000	4.88	97.6	80 - 120	
4-Bromofluorobenzene	5.0000	4.93	98.6	80 - 120	

EPA 8260C

Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Water Laboratory ID: 17H0298-14 SDG: 17H0298

Sampled: <u>08/23/17 00:00</u> Prepared: <u>08/30/17 09:11</u> File ID: <u>V208301710.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>08/30/17 10:21</u>

Batch: BFH0705 Sequence: SFH0365 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.33	107	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.00	99.9	80 - 120	
Toluene-d8	5.0000	4.95	98.9	80 - 120	
4-Bromofluorobenzene	5.0000	5.04	101	80 - 120	

PREPARATION BATCH SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFH0705
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-MW-4-170824	17H0298-12	V208301714.D	08/30/17 09:11	
SVCA-TripBlank-170823	17H0298-14	V208301710.D	08/30/17 09:11	
Blank	BFH0705-BLK2	V208301709.D	08/30/17 07:11	
LCS	BFH0705-BS2	V208301704LCS.D	08/30/17 07:11	
LCS Dup	BFH0705-BSD2	V208301706.D	08/30/17 07:11	

PREPARATION BATCH SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFH0747
 Batch Matrix:
 Solid
 Preparation:
 EPA 5035 (Sodium Bisulfate)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-100-0-4-170823	17H0298-01	NT1508311719.D	08/31/17 17:01	
SVCA-TP-101-0-2-170823	17H0298-03	NT1508311720.D	08/31/17 17:01	
SVCA-TP-102-0-2-170823	17H0298-06	NT1508311721.D	08/31/17 17:01	
SVCA-TP-103-0-2-170823	17H0298-09	NT1508311722.D	08/31/17 17:01	
Blank	BFH0747-BLK1	NT1508311716A.D	08/31/17 07:01	
LCS	BFH0747-BS1	NT1508311709lcsA.D	08/31/17 07:01	
LCS Dup	BFH0747-BSD1	NT1508311714A.D	08/31/17 07:01	

Form I METHOD BLANK DATA SHEET EPA 8260C

Blank

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: <u>Water</u> Laboratory ID: <u>BFH0705-BLK2</u> File ID: <u>V208301709.D</u>

Sampled: <u>N/A</u> Prepared: <u>08/30/17 07:11</u> Analyzed: <u>08/30/17 10:00</u>

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: BFH0705 Sequence: SFH0365 Calibration: AH00024

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.40	108	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	4.99	99.8	80 - 120	
Toluene-d8	5.0000	4.96	99.3	80 - 120	
4-Bromofluorobenzene	5.0000	4.92	98.4	80 - 120	

Form I METHOD BLANK DATA SHEET EPA 8260C

Blank

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFH0747-BLK1 File ID: NT1508311716A.D

Sampled: N/A Prepared: $08/31/17 \ 07:01$ Analyzed: $08/31/17 \ 17:12$

Solids: Preparation: <u>EPA 5035 (Sodium Bisulfate Initial/Final:</u> <u>5 g / 5 mL</u>

Batch: BFH0747 Sequence: SFI0010 Calibration: AI00004

Instrument: NT15 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg wet)	Q	DL	RL
71-43-2	Benzene	1	1.00	U	0.30	1.00
108-88-3	Toluene	1	1.00	U	0.15	1.00
100-41-4	Ethylbenzene	1	1.00	U	0.20	1.00
179601-23-1	m,p-Xylene	1	2.00	U	0.39	2.00
95-47-6	o-Xylene	1	1.00	U	0.22	1.00

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	47.0	94.0	80 - 149	
Toluene-d8	50.000	50.4	101	77 - 120	
4-Bromofluorobenzene	50.000	48.8	97.5	80 - 120	
1,2-Dichlorobenzene-d4	50.000	49.6	99.2	80 - 120	

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 08/30/17 08:18

 Batch:
 BFH0705
 Laboratory ID:
 BFH0705-BS2

Preparation: <u>EPA 5030 (Purge and Trap)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 mL / 10 ml

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	Q	LCS % REC.#	QC LIMITS REC.
Benzene	10.0	9.45		94.5	80 - 120
Toluene	10.0	9.62		96.2	80 - 120
Ethylbenzene	10.0	9.51		95.1	80 - 120
m,p-Xylene	20.0	19.6		98.0	80 - 121
o-Xylene	10.0	9.41		94.1	80 - 121

^{*} Indicates values outside of QC limits

	SPIKE			LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	Q	% REC. #	% RPD#	RPD	REC.
Benzene	10.0	9.95		99.5	5.13	30	80 - 120
Toluene	10.0	9.66		96.6	0.441	30	80 - 120
Ethylbenzene	10.0	10.0		100	5.02	30	80 - 120
m,p-Xylene	20.0	20.7		103	5.23	30	80 - 121
o-Xylene	10.0	9.75		97.5	3.59	30	80 - 121

^{*} Indicates values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 08/31/17 13:45

 Batch:
 BFH0747
 Laboratory ID:
 BFH0747-BS1

Preparation: <u>EPA 5035 (Sodium Bisulfate)</u> Sequence Name: <u>LCS</u>

Initial/Final: 5 g / 5 mL

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	Q	LCS % REC.#	QC LIMITS REC.
Benzene	50.0	51.1		102	80 - 120
Toluene	50.0	48.9		97.8	75 - 120
Ethylbenzene	50.0	53.6		107	80 - 125
m,p-Xylene	100	102		102	76 - 121
o-Xylene	50.0	50.3		101	67 - 132

^{*} Indicates values outside of QC limits

	SPIKE			LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	Q	% REC. #	% RPD#	RPD	REC.
Benzene	50.0	55.1		110	7.54	30	80 - 120
Toluene	50.0	53.0		106	7.95	30	75 - 120
Ethylbenzene	50.0	59.1		118	9.74	30	80 - 125
m,p-Xylene	100	112		112	9.73	30	76 - 121
o-Xylene	50.0	54.2		108	7.52	30	67 - 132

^{*} Indicates values outside of QC limits

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: $\underline{V208071702.D}$ Injection Date: $\underline{08/07/17}$

Instrument ID: NT2 Injection Time: 11:25

Sequence: SFH0101 Lab Sample ID: SFH0101-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	16.7	PASS
75	30 - 80% of 95	45	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.87	PASS
173	Less than 2% of 174	0.603	PASS
174	50 - 120% of 95	64.1	PASS
175	5 - 9% of 174	6.99	PASS
176	95 - 101% of 174	96.7	PASS
177	5 - 9% of 176	6.6	PASS

-				
Client	Lab	Lab File ID	Date	Time
Sample ID	Sample ID	riie id	Analyzed	Analyzed
MS Tune	SFH0101-TUN1	V208071702.D	08/07/2017	11:25
Cal Standard	SFH0101-CAL1	V208071703.D	08/07/2017	12:06
Cal Standard	SFH0101-CAL2	V208071704.D	08/07/2017	12:27
Cal Standard	SFH0101-CAL3	V208071705.D	08/07/2017	12:47
Cal Standard	SFH0101-CAL4	V208071706.D	08/07/2017	13:08
Cal Standard	SFH0101-CAL5	V208071707.D	08/07/2017	13:28
Cal Standard	SFH0101-CAL6	V208071708.D	08/07/2017	13:48
Cal Standard	SFH0101-CAL7	V208071709.D	08/07/2017	14:09
Cal Standard	SFH0101-CAL8	V208071710.D	08/07/2017	14:29
Secondary Cal Check	SFH0101-SCV1	V208071712.D	08/07/2017	15:10

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>V208301702.D</u> Injection Date: <u>08/30/17</u>

Instrument ID: NT2 Injection Time: 07:21

Sequence: SFH0365 Lab Sample ID: SFH0365-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	16.5	PASS
75	30 - 80% of 95	45	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.09	PASS
173	Less than 2% of 174	0.499	PASS
174	50 - 120% of 95	76.2	PASS
175	5 - 9% of 174	7.19	PASS
176	95 - 101% of 174	100	PASS
177	5 - 9% of 176	6.54	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFH0365-TUN1	V208301702.D	08/30/2017	7:21
LCS	BFH0705-BS2	V208301704LCS.D	08/30/2017	8:18
Initial Cal Check	SFH0365-ICV1	V208301704.D	08/30/2017	8:18
LCS Dup	BFH0705-BSD2	V208301706.D	08/30/2017	8:59
Low Cal Check	SFH0365-LCV1	V208301707.D	08/30/2017	9:19
Low Cal Check	SFH0365-LCV2	V208301708.D	08/30/2017	9:39
Blank	BFH0705-BLK2	V208301709.D	08/30/2017	10:00
SVCA-TripBlank-170823	17H0298-14	V208301710.D	08/30/2017	10:21
ZZZZZ	17H0310-05	V208301711.D	08/30/2017	10:41
ZZZZZ	17H0310-06	V208301712.D	08/30/2017	11:02
ZZZZZ	17H0333-03	V208301713.D	08/30/2017	11:22
SVCA-MW-4-170824	17H0298-12	V208301714.D	08/30/2017	11:42
ZZZZZ	17H0310-01	V208301715.D	08/30/2017	12:03
ZZZZZ	17H0310-03	V208301716.D	08/30/2017	12:23
ZZZZZ	17H0333-01	V208301717.D	08/30/2017	12:44
ZZZZZ	17H0351-01	V208301727.D	08/30/2017	16:07
Calibration Check	SFH0365-CCV1	V208301729.D	08/30/2017	16:48

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>NT1508311702.D</u> Injection Date: <u>08/31/17</u>

Instrument ID: NT15 Injection Time: 09:33

Sequence: SFI0010 Lab Sample ID: SFI0010-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	15.7	PASS
75	30 - 80% of 95	44.6	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.71	PASS
173	Less than 2% of 174	0.59	PASS
174	50 - 120% of 95	61.7	PASS
175	5 - 9% of 174	7.34	PASS
176	95 - 101% of 174	96.2	PASS
177	5 - 9% of 176	6.18	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFI0010-TUN1	NT1508311702.D	08/31/2017	9:33
Cal Standard	SFI0010-CAL1	NT1508311705.D	08/31/2017	12:07
Cal Standard	SFI0010-CAL2	NT1508311706.D	08/31/2017	12:31
Cal Standard	SFI0010-CAL3	NT1508311707.D	08/31/2017	12:56
Cal Standard	SFI0010-CAL4	NT1508311708.D	08/31/2017	13:21
LCS	BFH0746-BS1	NT1508311709lcs.D	08/31/2017	13:45
LCS	BFH0747-BS1	NT1508311709lcsA.D	08/31/2017	13:45
Cal Standard	SFI0010-CAL5	NT1508311709.D	08/31/2017	13:45
Initial Cal Check	SFI0010-ICV1	NT1508311709A.D	08/31/2017	13:45
Cal Standard	SFI0010-CAL6	NT1508311710.D	08/31/2017	14:10
Cal Standard	SFI0010-CAL7	NT1508311711.D	08/31/2017	14:35
Cal Standard	SFI0010-CAL8	NT1508311712.D	08/31/2017	14:59
Secondary Cal Check	SFI0010-SCV1	NT1508311713.D	08/31/2017	15:27
LCS Dup	BFH0746-BSD1	NT1508311714.D	08/31/2017	16:01
LCS Dup	BFH0747-BSD1	NT1508311714A.D	08/31/2017	16:01
Blank	BFH0747-BLK1	NT1508311716A.D	08/31/2017	17:12
Blank	BFH0746-BLK1	NT1508311716.D	08/31/2017	17:12
ZZZZZ	17H0327-01	NT1508311717.D	08/31/2017	17:37
ZZZZZ	17H0327-01RE1	NT1508311718.D	08/31/2017	18:01
SVCA-TP-100-0-4-170823	17H0298-01	NT1508311719.D	08/31/2017	18:26
SVCA-TP-101-0-2-170823	17H0298-03	NT1508311720.D	08/31/2017	18:51
SVCA-TP-102-0-2-170823	17H0298-06	NT1508311721.D	08/31/2017	19:15
SVCA-TP-103-0-2-170823	17H0298-09	NT1508311722.D	08/31/2017	19:40
Calibration Check	SFI0010-CCV1	NT1508311723.D	08/31/2017	20:04

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00024 Instrument: NT2

Calibration Date: 08/07/2017 14:35 Column (1): RTX-VMS

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	L	evel 06
Compound		RF		RF		RF		RF		RF		RF
Benzene	0.2	1.578415	0.5	1.595052	1	1.725575	2	1.603797	10	1.483817	20	1.548514
Toluene	0.2	1.015265	0.5	0.9939104	1	1.058589	2	1.002853	10	0.9480534	20	0.985885
Ethylbenzene	0.2	0.6678154	0.5	0.6671431	1	0.6788568	2	0.655998	10	0.6303632	20	0.6531721
m,p-Xylene	0.4	0.7959265	1	0.7955669	2	0.8544915	4	0.8232006	20	0.7742577	40	0.7833273
o-Xylene	0.2	0.8088586	0.5	0.7785149	1	0.8302388	2	0.8023594	10	0.7589353	20	0.7787932
1,2-Dichloroethane-d4	5	0.5187725	5	0.5475693	5	0.5288858	5	0.5406129	5	0.5145082	5	0.517329
1,2-Dichlorobenzene-d4	5	0.9806029	5	0.9801597	5	0.9470243	5	0.976804	5	0.9799771	5	0.9881275
Toluene-d8	5	1.185534	5	1.17883	5	1.174819	5	1.163869	5	1.180543	5	1.193585
4-Bromofluorobenzene	5	0.3703407	5	0.369717	5	0.3741109	5	0.3690632	5	0.3776575	5	0.3769642
Dibromofluoromethane	5	0.4779475	5	0.4620528	5	0.4744173	5	0.4838013	5	0.4863135	5	0.4882249

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00024 Instrument: NT2

Calibration Date: 08/07/2017 14:35 Column (1): RTX-VMS

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	L	evel 12
Compound		RF		RF		RF		RF		RF		RF
Benzene	40	1.374083	80	1.148818								
Toluene	40	0.9045752	80	0.7881622								
Ethylbenzene	40	0.6042336	80	0.5425127								
m,p-Xylene	80	0.679671	160	0.5396864								
o-Xylene	40	0.7207994	80	0.6522896								
1,2-Dichloroethane-d4	5	0.5225286	5	0.4944955								
1,2-Dichlorobenzene-d4	5	0.9625604	5	0.9487159								
Toluene-d8	5	1.191815	5	1.16984								
4-Bromofluorobenzene	5	0.3763317	5	0.3751297								
Dibromofluoromethane	5	0.50152	5	0.4915158								

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00024 Instrument: NT2

Calibration Date: 08/07/2017 14:35 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Benzene	1.507259	11.7			RSD (20)	
Toluene	0.9621617	8.7			RSD (20)	
Ethylbenzene	0.6375119	7.1			RSD (20)	
m,p-Xylene	0.755766	13.3			RSD (20)	
o-Xylene	0.7663486	7.4			RSD (20)	
1,2-Dichloroethane-d4	0.5230877	3.1			RSD (20)	
1,2-Dichlorobenzene-d4	0.9704965	1.6			RSD (20)	
Toluene-d8	1.179854	0.9			RSD (20)	
4-Bromofluorobenzene	0.3736644	0.9			RSD (20)	
Dibromofluoromethane	0.4832241	2.5			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00004 Instrument: NT15

Calibration Date: 08/01/2017 0:35 Column (1): RTX-VMS

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Benzene	1	2.652026	2	2.755095	5	2.680056	10	2.860245	50	2.677686	100	2.565695
Toluene	1	1.694346	2	1.680602	5	1.653995	10	1.760324	50	1.617566	100	1.550766
Ethylbenzene	1	3.026706	2	3.11876	5	3.229321	10	3.373345	50	3.16791	100	3.02061
m,p-Xylene	2	1.115783	4	1.19635	10	1.216083	20	1.277124	100	1.182809	200	1.125096
o-Xylene	1	1.042431	2	1.131162	5	1.141788	10	1.21657	50	1.159526	100	1.121895
4-Bromofluorobenzene											50	0.5530064

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00004 Instrument: NT15

Calibration Date: 08/01/2017 0:35 Column (1): RTX-VMS

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	L	evel 12
Compound		RF		RF		RF		RF		RF		RF
Benzene	150	2.552204	200	2.223105								
Toluene	150	1.62734	200	1.642018								
Ethylbenzene	150	2.425805	200	2.289541								
m,p-Xylene	300	1.144037	400	1.013848								
o-Xylene	150	1.179367	200	1.228152								

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00004 Instrument: NT15

Calibration Date: 08/01/2017 0:35 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q
Benzene	2.620764	7.2			RSD (20)
Toluene	1.65337	3.7			RSD (20)
Ethylbenzene	2.9565	13.1			RSD (20)
m,p-Xylene	1.158891	6.8			RSD (20)
o-Xylene	1.152611	5.1			RSD (20)
4-Bromofluorobenzene	0.5530064	0.0			RSD (20)

INITIAL CALIBRATION CHECK

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT2 Calibration: AH00024

Lab File ID: <u>V208301704.D</u> Calibration Date: <u>08/07/17 14:35</u>

Sequence: SFH0365 Injection Date: 08/30/17

Lab Sample ID: SFH0365-ICV1 Injection Time: 08:18

Sequence Name: <u>VOA 10</u>

		CONC	. (ug/L)	RESI	PONSE FACTO	RESPONSE FACTOR			
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Benzene	A	10.000	9.45	1.5072590	1.4241590		-5.5	20	
Toluene	A	10.000	9.62	0.9621617	0.9253699		-3.8	20	
Ethylbenzene	A	10.000	9.51	0.6375119	0.6060179		-4.9	20	
m,p-Xylene	A	20.000	19.6	0.7557660	0.7409706		-2.0	20	
o-Xylene	A	10.000	9.41	0.7663486	0.7208376		-5.9	20	
Dibromofluoromethane	A	5.0000	5.23	0.4832241	0.5057154		4.7	20	
1,2-Dichloroethane-d4	A	5.0000	5.02	0.5230877	0.5251317		0.4	20	
Toluene-d8	A	5.0000	5.08	1.1798540	1.1987960		1.6	20	
4-Bromofluorobenzene	A	5.0000	5.30	0.3736644	0.3962180		6.0	20	
1,2-Dichlorobenzene-d4	A	5.0000	5.00	0.9704965	0.9697991		-0.08	20	

^{*} Values outside of QC limits

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0010</u> Instrument: <u>NT15</u>

Calibration: AI00004 Calibration Date: 08/31/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
	Lab Eila I	D: NT15083117091	<u> </u>	Analyzed: 08/	
BFH0747-BS1 (Solid)	Lao File i	l	I	<u> </u>	31/1/ 13. 4 3
Dibromofluoromethane		50.000	102	80 - 120	
1,2-Dichloroethane-d4		50.000	101	80 - 149	
Toluene-d8		50.000	100	77 - 120	
4-Bromofluorobenzene		50.000	100	80 - 120	
1,2-Dichlorobenzene-d4		50.000	100	80 - 120	
SFI0010-ICV1 (Solid)	Lab Fi	le ID: NT150831170	09A.D	Analyzed: 08/	31/17 13:45
Dibromofluoromethane		50.000	102	80 - 120	
1,2-Dichloroethane-d4		50.000	101	80 - 120	
Toluene-d8		50.000	100	80 - 120	
4-Bromofluorobenzene		50.000	100	80 - 120	
1,2-Dichlorobenzene-d4		50.000	100	80 - 120	
SFI0010-SCV1 (Solid)	Lab I	File ID: NT1508311	713.D	Analyzed: 08/	31/17 15:27
Dibromofluoromethane		50.000	101	80 - 120	
1,2-Dichloroethane-d4		50.000	96.6	80 - 120	
Toluene-d8		50.000	100	80 - 120	
4-Bromofluorobenzene		50.000	99.0	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.3	80 - 120	
BFH0747-BSD1 (Solid)	Lab Fi	le ID: NT15083117	14A.D	Analyzed: 08/	31/17 16:01
Dibromofluoromethane		50.000	104	80 - 120	
1,2-Dichloroethane-d4		50.000	97.6	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	99.9	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.9	80 - 120	
BFH0747-BLK1 (Solid)	Lab Fi	le ID: NT15083117	16A.D	Analyzed: 08/	31/17 17:12
1,2-Dichloroethane-d4		50.000	94.0	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	97.5	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.2	80 - 120	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0010</u> Instrument: <u>NT15</u>

Calibration: AI00004 Calibration Date: 08/31/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
17H0298-01 (Solid)	Lab I	File ID: NT1508311	719.D	Analyzed: 08/	31/17 18:26
1,2-Dichloroethane-d4		50.000	113	80 - 149	
Toluene-d8		50.000	102	77 - 120	
4-Bromofluorobenzene		50.000	92.0	80 - 120	
1,2-Dichlorobenzene-d4		50.000	97.0	80 - 120	
17H0298-03 (Solid)	Lab I	File ID: NT1508311	720.D	Analyzed: 08/	31/17 18:51
1,2-Dichloroethane-d4		50.000	114	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	97.9	80 - 120	
1,2-Dichlorobenzene-d4		50.000	103	80 - 120	
17H0298-06 (Solid)	Lab I	File ID: NT1508311	721.D	Analyzed: 08/	31/17 19:15
1,2-Dichloroethane-d4		50.000	112	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	93.8	80 - 120	
1,2-Dichlorobenzene-d4		50.000	100	80 - 120	
17H0298-09 (Solid)	Lab I	File ID: NT1508311	722.D	Analyzed: 08/	31/17 19:40
1,2-Dichloroethane-d4		50.000	116	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	97.6	80 - 120	
1,2-Dichlorobenzene-d4		50.000	103	80 - 120	

ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0101</u> Instrument: <u>NT2</u>

Calibration: AH00024

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFH0101-TUN1	V208071702.D	NA	08/07/17 11:25
8260C 0.2	SFH0101-CAL1	V208071703.D	NA	08/07/17 12:06
8260C 0.5	SFH0101-CAL2	V208071704.D	NA	08/07/17 12:27
8260C 1.0	SFH0101-CAL3	V208071705.D	NA	08/07/17 12:47
8260C 2.0	SFH0101-CAL4	V208071706.D	NA	08/07/17 13:08
8260C 10	SFH0101-CAL5	V208071707.D	NA	08/07/17 13:28
8260C 20	SFH0101-CAL6	V208071708.D	NA	08/07/17 13:48
8260C 40	SFH0101-CAL7	V208071709.D	NA	08/07/17 14:09
8260C 80	SFH0101-CAL8	V208071710.D	NA	08/07/17 14:29
8260C SCV 10	SFH0101-SCV1	V208071712.D	NA	08/07/17 15:10

ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0365</u> Instrument: <u>NT2</u>

Calibration: AH00024

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFH0365-TUN1	V208301702.D	NA	08/30/17 07:21
VOA 10	SFH0365-ICV1	V208301704.D	NA	08/30/17 08:18
LCS	BFH0705-BS2	V208301704LCS.D	Water	08/30/17 08:18
LCS Dup	BFH0705-BSD2	V208301706.D	Water	08/30/17 08:59
VOA 1.0	SFH0365-LCV1	V208301707.D	NA	08/30/17 09:19
VOA 0.2	SFH0365-LCV2	V208301708.D	NA	08/30/17 09:39
Blank	BFH0705-BLK2	V208301709.D	Water	08/30/17 10:00
SVCA-TripBlank-170823	17H0298-14	V208301710.D	Water	08/30/17 10:21
ZZZZZ	17H0310-05	V208301711.D	Water	08/30/17 10:41
ZZZZZ	17H0310-06	V208301712.D	Water	08/30/17 11:02
ZZZZZ	17H0333-03	V208301713.D	Water	08/30/17 11:22
SVCA-MW-4-170824	17H0298-12	V208301714.D	Water	08/30/17 11:42
ZZZZZ	17H0310-01	V208301715.D	Water	08/30/17 12:03
ZZZZZ	17H0310-03	V208301716.D	Water	08/30/17 12:23
ZZZZZ	17H0333-01	V208301717.D	Water	08/30/17 12:44
ZZZZZ	17H0351-01	V208301727.D	Water	08/30/17 16:07
CCV	SFH0365-CCV1	V208301729.D	NA	08/30/17 16:48

ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0010 Instrument: NT15

Calibration: AI00004

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0010-TUN1	NT1508311702.D	NA	08/31/17 09:33
8260C 0.2	SFI0010-CAL1	NT1508311705.D	NA	08/31/17 12:07
8260C 0.5	SFI0010-CAL2	NT1508311706.D	NA	08/31/17 12:31
8260C 1.0	SFI0010-CAL3	NT1508311707.D	NA	08/31/17 12:56
8260C 2.0	SFI0010-CAL4	NT1508311708.D	NA	08/31/17 13:21
8260C 10	SFI0010-CAL5	NT1508311709.D	NA	08/31/17 13:45
VOA 10	SFI0010-ICV1	NT1508311709A.D	NA	08/31/17 13:45
ZZZZZ	BFH0746-BS1	NT1508311709lcs.D	Solid	08/31/17 13:45
LCS	BFH0747-BS1	NT1508311709lcsA.D	Solid	08/31/17 13:45
8260C 20	SFI0010-CAL6	NT1508311710.D	NA	08/31/17 14:10
8260C 40	SFI0010-CAL7	NT1508311711.D	NA	08/31/17 14:35
8260C 80	SFI0010-CAL8	NT1508311712.D	NA	08/31/17 14:59
8260C SCV 10	SFI0010-SCV1	NT1508311713.D	NA	08/31/17 15:27
ZZZZZ	BFH0746-BSD1	NT1508311714.D	Solid	08/31/17 16:01
LCS Dup	BFH0747-BSD1	NT1508311714A.D	Solid	08/31/17 16:01
ZZZZZ	BFH0746-BLK1	NT1508311716.D	Solid	08/31/17 17:12
Blank	BFH0747-BLK1	NT1508311716A.D	Solid	08/31/17 17:12
ZZZZZ	17H0327-01	NT1508311717.D	Solid	08/31/17 17:37
ZZZZZ	17H0327-01RE1	NT1508311718.D	Solid	08/31/17 18:01
SVCA-TP-100-0-4-170823	17H0298-01	NT1508311719.D	Solid	08/31/17 18:26
SVCA-TP-101-0-2-170823	17H0298-03	NT1508311720.D	Solid	08/31/17 18:51
SVCA-TP-102-0-2-170823	17H0298-06	NT1508311721.D	Solid	08/31/17 19:15
SVCA-TP-103-0-2-170823	17H0298-09	NT1508311722.D	Solid	08/31/17 19:40
CCV	SFI0010-CCV1	NT1508311723.D	NA	08/31/17 20:04

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0101</u> Instrument: <u>NT2</u>

Calibration: AH00024 Calibration Date: 08/07/2017

Surrogate Compound	Spike Level ug/L			Q	
SFH0101-SCV1 (Water) La	b File ID: V208071	712.D	Analyzed: 08/07/17 15:10		
1,2-Dichloroethane-d4	5.0000	99.6	80 - 120		
1,2-Dichlorobenzene-d4	5.0000	100	80 - 120		
Toluene-d8	5.0000	101	80 - 120		
4-Bromofluorobenzene	5.0000	100	80 - 120		
Dibromofluoromethane	5.0000	103	80 - 120		

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0365</u> Instrument: <u>NT2</u>

Calibration: AH00024 Calibration Date: 08/07/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q		
BFH0705-BS2 (Water)	Lab File ID: V208301704	LCS.D	Analyzed: 08/	Analyzed: 08/30/17 08:18		
1,2-Dichloroethane-d4	5.0000	100	80 - 129			
1,2-Dichlorobenzene-d4	5.0000	99.9	80 - 120			
Toluene-d8	5.0000	102	80 - 120			
4-Bromofluorobenzene	5.0000	106	80 - 120			
Dibromofluoromethane	5.0000	105	80 - 120			
SFH0365-ICV1 (Water)	Lab File ID: V20830	1704.D	Analyzed: 08/	30/17 08:18		
1,2-Dichloroethane-d4	5.0000	100	80 - 120			
1,2-Dichlorobenzene-d4	5.0000	99.9	80 - 120			
Toluene-d8	5.0000	102	80 - 120			
4-Bromofluorobenzene	5.0000	106	80 - 120			
Dibromofluoromethane	5.0000	105	80 - 120			
BFH0705-BSD2 (Water)	Lab File ID: V20830	1706.D	Analyzed: 08/	30/17 08:59		
1,2-Dichloroethane-d4	5.0000	98.7	80 - 129			
1,2-Dichlorobenzene-d4	5.0000	101	80 - 120			
Toluene-d8	5.0000	102	80 - 120			
4-Bromofluorobenzene	5.0000	104	80 - 120			
Dibromofluoromethane	5.0000	101	80 - 120			
SFH0365-LCV1 (Water)	Lab File ID: V20830	1707.D	Analyzed: 08/	30/17 09:19		
1,2-Dichloroethane-d4	5.0000	103	0 - 200			
1,2-Dichlorobenzene-d4	5.0000	101	0 - 200			
Toluene-d8	5.0000	99.3	0 - 200			
4-Bromofluorobenzene	5.0000	102	0 - 200			
Dibromofluoromethane	5.0000	100	0 - 200			
SFH0365-LCV2 (Water)	Lab File ID: V20830	1708.D	Analyzed: 08/	30/17 09:39		
1,2-Dichloroethane-d4	5.0000	105	0 - 200			
1,2-Dichlorobenzene-d4	5.0000	101	0 - 200			
Toluene-d8	5.0000	100	0 - 200			
4-Bromofluorobenzene	5.0000	106	0 - 200			
Dibromofluoromethane	5.0000	101	0 - 200			

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0365</u> Instrument: <u>NT2</u>

Calibration: AH00024 Calibration Date: 08/07/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
BFH0705-BLK2 (Water)	b File ID: V208301	709.D	Analyzed: 08/	30/17 10:00	
1,2-Dichloroethane-d4		5.0000	108	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	99.8	80 - 120	
Toluene-d8		5.0000	99.3	80 - 120	
4-Bromofluorobenzene		5.0000	98.4	80 - 120	
17H0298-14 (Water)	La	b File ID: V208301	710.D	Analyzed: 08/	30/17 10:21
1,2-Dichloroethane-d4		5.0000	107	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	99.9	80 - 120	
Toluene-d8		5.0000	98.9	80 - 120	
4-Bromofluorobenzene		5.0000	101	80 - 120	
17H0298-12 (Water)	La	b File ID: V208301	714.D	Analyzed: 08/	30/17 11:42
1,2-Dichloroethane-d4		5.0000	111	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	101	80 - 120	
Toluene-d8		5.0000	97.6	80 - 120	
4-Bromofluorobenzene		5.0000	98.6	80 - 120	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0010</u> Instrument: <u>NT15</u>

Calibration: AI00004 Calibration Date: 08/31/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
BFH0747-BS1 (Solid)	Lab File l	ID: NT15083117091	csA.D	Analyzed: 08/	31/17 13:45
Dibromofluoromethane		50.000	102	80 - 120	
1,2-Dichloroethane-d4		50.000	101	80 - 149	
Toluene-d8		50.000	100	77 - 120	
4-Bromofluorobenzene		50.000	100	80 - 120	
1,2-Dichlorobenzene-d4		50.000	100	80 - 120	
SFI0010-ICV1 (Solid)	Lab Fi	le ID: NT15083117	09A.D	Analyzed: 08/	31/17 13:45
Dibromofluoromethane		50.000	102	80 - 120	
1,2-Dichloroethane-d4		50.000	101	80 - 120	
Toluene-d8		50.000	100	80 - 120	
4-Bromofluorobenzene		50.000	100	80 - 120	
1,2-Dichlorobenzene-d4		50.000	100	80 - 120	
SFI0010-SCV1 (Solid)	Lab l	File ID: NT1508311	713.D	Analyzed: 08/	31/17 15:27
Dibromofluoromethane		50.000	101	80 - 120	
1,2-Dichloroethane-d4		50.000	96.6	80 - 120	
Toluene-d8		50.000	100	80 - 120	
4-Bromofluorobenzene		50.000	99.0	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.3	80 - 120	
BFH0747-BSD1 (Solid)	Lab Fi	le ID: NT15083117	14A.D	Analyzed: 08/	31/17 16:01
Dibromofluoromethane		50.000	104	80 - 120	
1,2-Dichloroethane-d4		50.000	97.6	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	99.9	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.9	80 - 120	
BFH0747-BLK1 (Solid)	Lab Fi	le ID: NT15083117	16A.D	Analyzed: 08/	31/17 17:12
1,2-Dichloroethane-d4		50.000	94.0	80 - 149	
Toluene-d8		50.000	101	77 - 120	
4-Bromofluorobenzene		50.000	97.5	80 - 120	
1,2-Dichlorobenzene-d4		50.000	99.2	80 - 120	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0010</u> Instrument: <u>NT15</u>

Calibration: AI00004 Calibration Date: 08/31/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q	
17H0298-01 (Solid)	Lab I	File ID: NT1508311	719.D	Analyzed: 08/31/17 18:26		
1,2-Dichloroethane-d4		50.000	113	80 - 149		
Toluene-d8		50.000	102	77 - 120		
4-Bromofluorobenzene		50.000	92.0	80 - 120		
1,2-Dichlorobenzene-d4		50.000	97.0	80 - 120		
17H0298-03 (Solid)	Lab I	File ID: NT1508311	720.D	Analyzed: 08/	31/17 18:51	
1,2-Dichloroethane-d4		50.000	114	80 - 149		
Toluene-d8		50.000	101	77 - 120		
4-Bromofluorobenzene		50.000	97.9	80 - 120		
1,2-Dichlorobenzene-d4		50.000	103	80 - 120		
17H0298-06 (Solid)	Lab I	File ID: NT1508311	721.D	Analyzed: 08/31/17 19:15		
1,2-Dichloroethane-d4		50.000	112	80 - 149		
Toluene-d8		50.000	101	77 - 120		
4-Bromofluorobenzene		50.000	93.8	80 - 120		
1,2-Dichlorobenzene-d4		50.000	100	80 - 120		
17H0298-09 (Solid)	Lab I	File ID: NT1508311	722.D	Analyzed: 08/	31/17 19:40	
1,2-Dichloroethane-d4		50.000	116	80 - 149		
Toluene-d8		50.000	101	77 - 120		
4-Bromofluorobenzene		50.000	97.6	80 - 120		
1,2-Dichlorobenzene-d4		50.000	103	80 - 120		

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0101</u> Instrument: <u>NT2</u>

Calibration: <u>AH00024</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Secondary Cal Check (SFH0101-SC	ndary Cal Check (SFH0101-SCV1) (Water)			Lab File ID: V2	Analyzed:	08/07/17 15	5:10		
Pentafluorobenzene	327126	5.27	324955	5.267	101	50 - 200	-0.0030	+/-0.50	
Chlorobenzene-d5	505542	7.707	498584	7.704	101	50 - 200	-0.0030	+/-0.50	
1,4-Difluorobenzene	575365	5.66	576284	5.657	100	50 - 200	-0.0030	+/-0.50	
1,4-Dichlorobenzene-d4	245669	9.399	240275	9.396	102	50 - 200	-0.0030	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0365</u> Instrument: <u>NT2</u>

Calibration: <u>AH00024</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFH0705-BS2)		(Water)	Lab I	File ID: V20830)1704LCS.D		Analyzed:	08/30/17 08	8:18
Pentafluorobenzene	368041	5.268	324955	5.267	113	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	580963	7.705	498584	7.704	117	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	643534	5.658	576284	5.657	112	50 - 200	-0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	298004	9.397	240275	9.396	124	50 - 200	-0.0010	+/-0.50	
Initial Cal Check (SFH0365-ICV1)		(Water)]	Lab File ID: V2	08301704.D		Analyzed:	08/30/17 08	8:18
Pentafluorobenzene	368041	5.268	324955	5.267	113	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	580963	7.705	498584	7.704	117	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	643534	5.658	576284	5.657	112	50 - 200	-0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	298004	9.397	240275	9.396	124	50 - 200	-0.0010	+/-0.50	
LCS Dup (BFH0705-BSD2)		(Water)]	Lab File ID: V2	08301706.D		Analyzed:	08/30/17 08	8:59
Pentafluorobenzene	369493	5.267	324955	5.267	114	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	571114	7.705	498584	7.704	115	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	636475	5.657	576284	5.657	110	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	290990	9.397	240275	9.396	121	50 - 200	-0.0010	+/-0.50	
Low Cal Check (SFH0365-LCV1)		(Water)]	Lab File ID: V2	08301707.D	Analyzed:	08/30/17 09	9:19	
Pentafluorobenzene	359188	5.266	324955	5.267	111	50 - 200	0.0010	+/-0.50	
Chlorobenzene-d5	569858	7.704	498584	7.704	114	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	631484	5.657	576284	5.657	110	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	282058	9.396	240275	9.396	117	50 - 200	0.0000	+/-0.50	
Low Cal Check (SFH0365-LCV2)		(Water)]	Lab File ID: V2	08301708.D		Analyzed:	08/30/17 09	9:39
Pentafluorobenzene	354057	5.268	324955	5.267	109	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	565847	7.706	498584	7.704	113	50 - 200	-0.0020	+/-0.50	
1,4-Difluorobenzene	626072	5.659	576284	5.657	109	50 - 200	-0.0020	+/-0.50	
1,4-Dichlorobenzene-d4	287750	9.398	240275	9.396	120	50 - 200	-0.0020	+/-0.50	
Blank (BFH0705-BLK2)	ank (BFH0705-BLK2) (Water)]	Lab File ID: V208301709.D			Analyzed: 08/30/17 10:00		
Pentafluorobenzene	351663	5.267	324955	5.267	108	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	573494	7.705	498584	7.704	115	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	626255	5.658	576284	5.657	109	50 - 200	-0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	282845	9.397	240275	9.396	118	50 - 200	-0.0010	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0365</u> Instrument: <u>NT2</u>

Calibration: <u>AH00024</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
SVCA-TripBlank-170823 (17H0298	-14)	(Water)]	Lab File ID: V2	.08301710.D		Analyzed: 08/30/17 10:21		
Pentafluorobenzene	353962	5.268	324955	5.267	109	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	561341	7.705	498584	7.704	113	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	620271	5.658	576284	5.657	108	50 - 200	-0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	277808	9.397	240275	9.396	116	50 - 200	-0.0010	+/-0.50	
SVCA-MW-4-170824 (17H0298-12)		(Water)]	Lab File ID: V208301714.D			Analyzed: 08/30/17 11:42		
Pentafluorobenzene	329300	5.267	324955	5.267	101	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	545654	7.704	498584	7.704	109	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	606279	5.657	576284	5.657	105	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	273422	9.396	240275	9.396	114	50 - 200	0.0000	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFI0010}$ Instrument: $\underline{NT15}$

Calibration: <u>AI00004</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFH0747-BS1)		(Solid)	Lab File	ID: NT15083	11709lcsA.D		Analyzed: 08/31/17 13:45		
Pentafluorobenzene	646933	5.359	646933	5.359	100	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	1707558	8.213	1707558	8.213	100	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1809174	5.792	1809174	5.792	100	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	775484	10.267	775484	10.267	100	50 - 200	0.0000	+/-0.50	
Initial Cal Check (SFI0010-ICV1)		(Solid)	Lab I	File ID: NT150	8311709A.D		Analyzed:	08/31/17 13	3:45
Pentafluorobenzene	646933	5.359	646933	5.359	100	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	1707558	8.213	1707558	8.213	100	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1809174	5.792	1809174	5.792	100	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	775484	10.267	775484	10.267	100	50 - 200	0.0000	+/-0.50	
Secondary Cal Check (SFI0010-SC)	V1)	(Solid)	Lab	File ID: NT15	508311713.D		Analyzed:	08/31/17 15	5:27
Pentafluorobenzene	789982	5.354	646933	5.359	122	50 - 200	0.0050	+/-0.50	
Chlorobenzene-d5	2047773	8.213	1707558	8.213	120	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	2182575	5.787	1809174	5.792	121	50 - 200	0.0050	+/-0.50	
1,4-Dichlorobenzene-d4	921577	10.267	775484	10.267	119	50 - 200	0.0000	+/-0.50	
LCS Dup (BFH0747-BSD1)		(Solid)	Lab I	File ID: NT150	8311714A.D		Analyzed:	08/31/17 16	5:01
Pentafluorobenzene	693196	5.36	646933	5.359	107	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	1823287	8.213	1707558	8.213	107	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1949586	5.798	1809174	5.792	108	50 - 200	-0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	836124	10.273	775484	10.267	108	50 - 200	-0.0060	+/-0.50	
Blank (BFH0747-BLK1)		(Solid)	Lab I	File ID: NT150	8311716A.D		Analyzed:	08/31/17 17	7:12
Pentafluorobenzene	719755	5.359	646933	5.359	111	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	1901817	8.213	1707558	8.213	111	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	2001425	5.798	1809174	5.792	111	50 - 200	-0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	855274	10.267	775484	10.267	110	50 - 200	0.0000	+/-0.50	
SVCA-TP-100-0-4-170823 (17H029	SVCA-TP-100-0-4-170823 (17H0298-01)		Lab	File ID: NT15	508311719.D		Analyzed: 08/31/17 18:26		
Pentafluorobenzene	676671	5.354	646933	5.359	105	50 - 200	0.0050	+/-0.50	
Chlorobenzene-d5	1791950	8.213	1707558	8.213	105	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1918068	5.792	1809174	5.792	106	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	657226	10.268	775484	10.267	85	50 - 200	-0.0010	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFI0010}$ Instrument: $\underline{NT15}$

Calibration: <u>AI00004</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
SVCA-TP-101-0-2-170823 (17H0298-03)		(Solid)	Lat	File ID: NT15	508311720.D		Analyzed: 08/31/17 18:51		
Pentafluorobenzene	670310	5.354	646933	5.359	104	50 - 200	0.0050	+/-0.50	
Chlorobenzene-d5	1808406	8.213	1707558	8.213	106	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1896386	5.792	1809174	5.792	105	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	790368	10.268	775484	10.267	102	50 - 200	-0.0010	+/-0.50	
SVCA-TP-102-0-2-170823 (17H0298-06)		(Solid)	Lab File ID: NT1508311721.D				Analyzed: 08/31/17 19:15		
Pentafluorobenzene	760808	5.354	646933	5.359	118	50 - 200	0.0050	+/-0.50	
Chlorobenzene-d5	1995797	8.214	1707558	8.213	117	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	2146036	5.792	1809174	5.792	119	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	799130	10.268	775484	10.267	103	50 - 200	-0.0010	+/-0.50	
SVCA-TP-103-0-2-170823 (17H029	8-09)	(Solid)	Lal	File ID: NT15	508311722.D		Analyzed:	08/31/17 19	:40
Pentafluorobenzene	712300	5.354	646933	5.359	110	50 - 200	0.0050	+/-0.50	
Chlorobenzene-d5	1919653	8.213	1707558	8.213	112	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	2029932	5.792	1809174	5.792	112	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	814388	10.267	775484	10.267	105	50 - 200	0.0000	+/-0.50	

HOLDING TIME SUMMARY

Analysis: EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-TP-100-0-4-170823 17H0298-01	08/23/17 09:46	08/25/17 09:46	08/31/17 17:01	8	14	08/31/17 18:26	8	14	
SVCA-TP-101-0-2-170823 17H0298-03	08/23/17 10:59	08/25/17 09:46	08/31/17 17:01	8	14	08/31/17 18:51	8	14	
SVCA-TP-102-0-2-170823 17H0298-06	08/23/17 13:02	08/25/17 09:46	08/31/17 17:01	8	14	08/31/17 19:15	8	14	
SVCA-TP-103-0-2-170823 17H0298-09	08/23/17 14:45	08/25/17 09:46	08/31/17 17:01	8	14	08/31/17 19:40	8	14	
SVCA-MW-4-170824 17H0298-12	08/24/17 17:00	08/25/17 09:46	08/30/17 09:11	5	14	08/30/17 11:42	6	14	
SVCA-TripBlank-170823 17H0298-14	08/23/17 00:00	08/25/17 09:46	08/30/17 09:11	7	14	08/30/17 10:21	7	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: NT15

Analyte	MDL	RL	Units
Benzene	0.30	1.00	ug/kg
Toluene	0.15	1.00	ug/kg
Ethylbenzene	0.20	1.00	ug/kg
m,p-Xylene	0.39	2.00	ug/kg
o-Xylene	0.22	1.00	ug/kg

METHOD DETECTION AND REPORTING LIMITS

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: NT2

Analyte	MDL	RL	Units
Benzene	0.03	0.20	ug/L
Toluene	0.04	0.20	ug/L
Ethylbenzene	0.04	0.20	ug/L
m,p-Xylene	0.05	0.40	ug/L
o-Xylene	0.03	0.20	ug/L

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

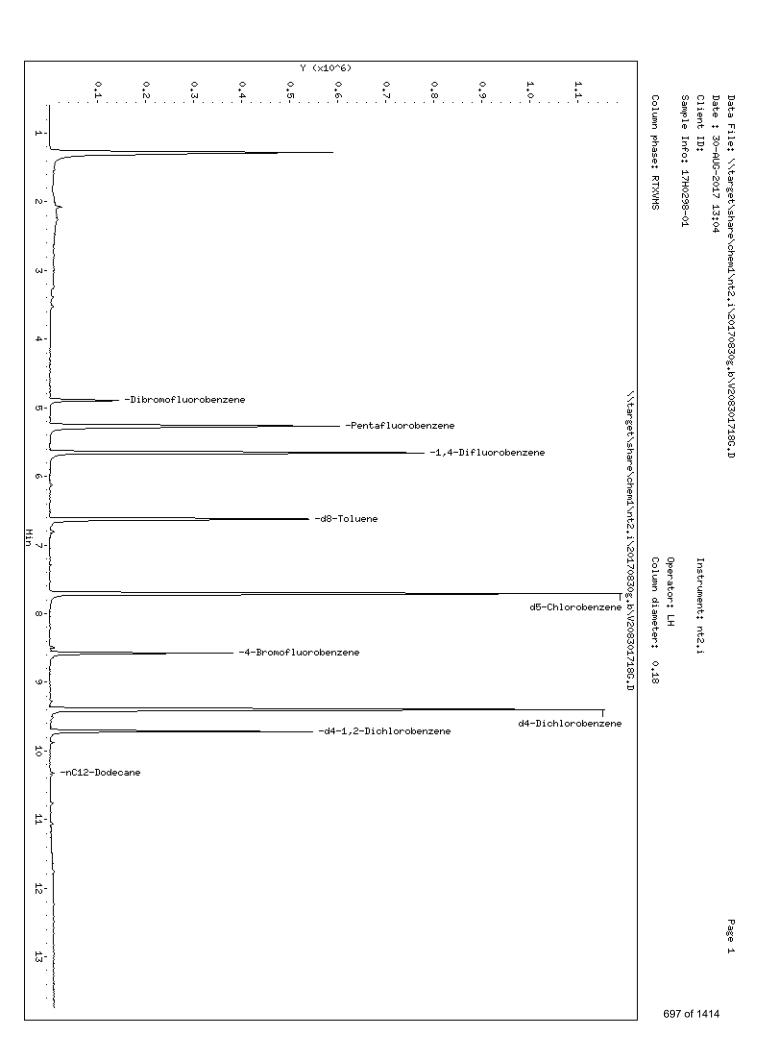
Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-01</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 09:46</u> Prepared: <u>08/30/17 09:18</u> File ID: <u>V208301718G.D</u>


% Solids: 91.07 Preparation: EPA 5035 (Methanol Extract Analyzed: 08/30/17 13:04

Batch: BFH0706 Sequence: SFH0366 Initial/Final: 11.019 g Wet / 5 mL

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	50	2980	U	1490	2980

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.97	99.4	80 - 120	
4-Bromofluorobenzene	5.0000	5.02	100	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

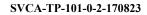
Data file: 20170830g.b/V208301718G.D ARI ID: 17H0298-01

Method: \20170830g.b\GAS061217.m Client ID:

Instrument: nt2.i Matrix: NONE

Gas Ical Date: 12-JUN-2017 Dilution Factor: 1.000 Injection Date: 30-AUG-2017 13:04 Operator: LH

GASOLINE HYDROCARBONS


Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	53757	0.001
8015C 2MP-TMB (2.99 to 9.26)	2222222	21988	0.001
AK101 nC6-nC10 (3.43 to 8.54)	81728088	21987	0.000
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	53757	0.001
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	53758	0.002

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.629	967685	d8-Toluene
8.581	621199	4-Bromofluorobenzene
9.398	1711901	d4-Dichlorobenzene
7.705	1675698	d5-Chlorobenzene
9.717	805929	d4-1,2-Dichlorobenzene

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

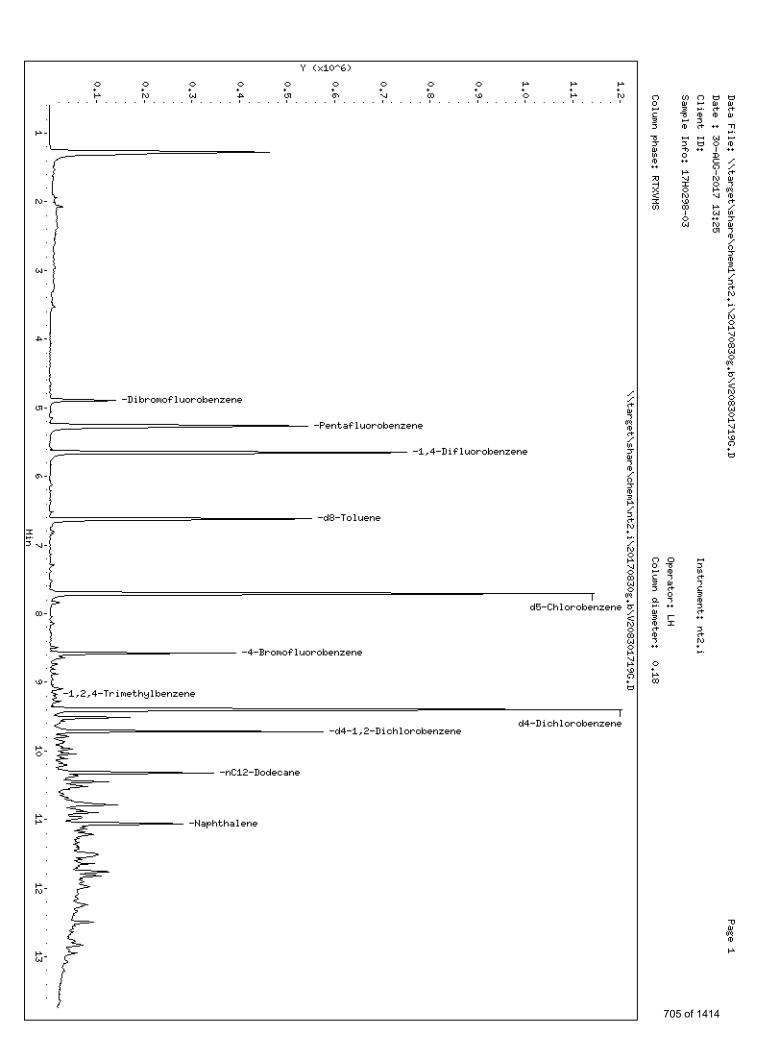
Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-03</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 10:59</u> Prepared: <u>08/30/17 09:18</u> File ID: <u>V208301719G.D</u>


% Solids: <u>95.13</u> Preparation: <u>EPA 5035 (Methanol Extract Analyzed: 08/30/17 13:25</u>

Batch: <u>BFH0706</u> Sequence: <u>SFH0366</u> Initial/Final: <u>9.91 g Wet / 5 mL</u>

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	50	2910	U	1450	2910

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.98	99.6	80 - 120	
4-Bromofluorobenzene	5.0000	5.16	103	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170830g.b/V208301719G.D ARI ID: 17H0298-03

Method: \20170830g.b\GAS061217.m

Instrument: nt2.i

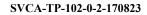
Gas Ical Date: 12-JUN-2017

Injection Date: 30-AUG-2017 13:25

Client ID: Matrix: NONE

Dilution Factor: 1.000

Operator: LH


GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	1890512	0.031 M
8015C 2MP-TMB (2.99 to 9.26)	2222222	356542	0.016 M
AK101 nC6-nC10 (3.43 to 8.54)	81728088	102133	0.001 M
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	4788846	0.075 M
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	1890513	0.085 M

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.617	929039	d8-Toluene
8.581	631239	4-Bromofluorobenzene
9.397	1740241	d4-Dichlorobenzene
7.705	1690153	d5-Chlorobenzene
9.717	892105	d4-1,2-Dichlorobenzene

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

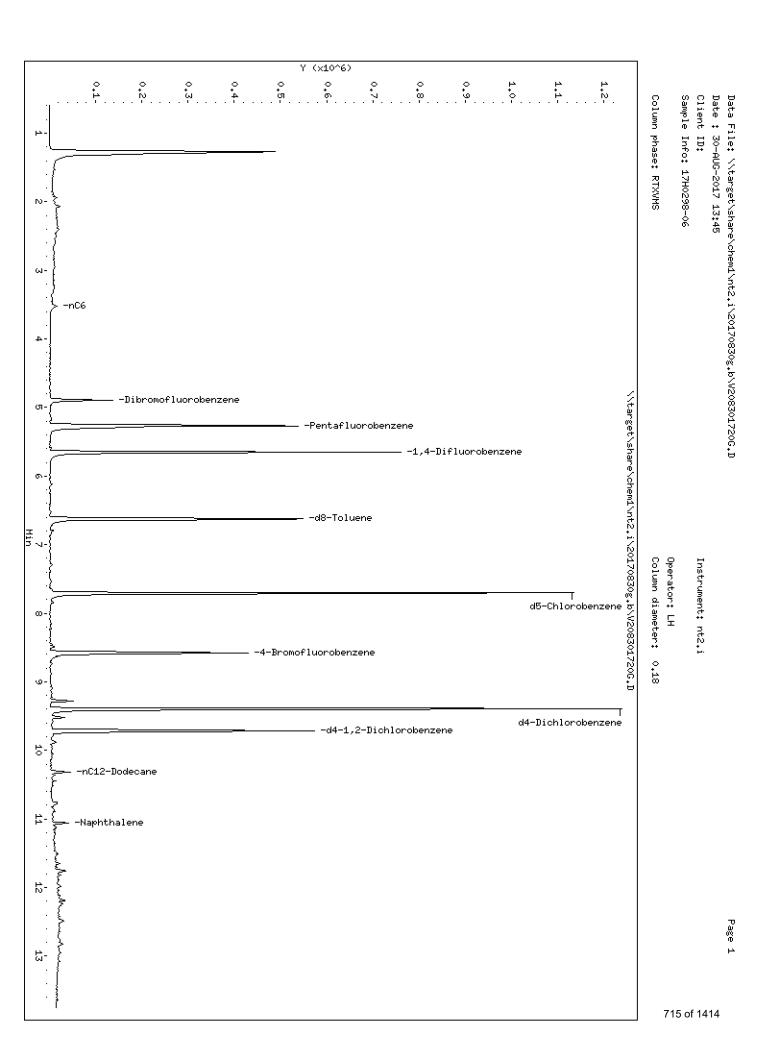
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-06</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 13:02</u> Prepared: <u>08/30/17 09:18</u> File ID: <u>V208301720G.D</u>


% Solids: 95.38 Preparation: EPA 5035 (Methanol Extract Analyzed: 08/30/17 13:45

Batch: BFH0706 Sequence: SFH0366 Initial/Final: 11.085 g Wet / 5 mL

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	50	2610	U	1300	2610

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	5.16	103	80 - 120	
4-Bromofluorobenzene	5.0000	5.23	105	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Client ID:

Matrix: NONE

Data file: 20170830g.b/V208301720G.D ARI ID: 17H0298-06

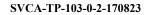
Method: \20170830g.b\GAS061217.m

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 30-AUG-2017 13:45

Dilution Factor: 1.000 Operator: LH


GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	247846	0.004
8015C 2MP-TMB (2.99 to 9.26)	2222222	79556	0.004
AK101 nC6-nC10 (3.43 to 8.54)	81728088	79555	0.001
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	319053	0.005
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	283037	0.013

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.616	962653	d8-Toluene
8.581	672991	4-Bromofluorobenzene
9.397	1719046	d4-Dichlorobenzene
7.705	1686393	d5-Chlorobenzene
9.717	819548	d4-1,2-Dichlorobenzene

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

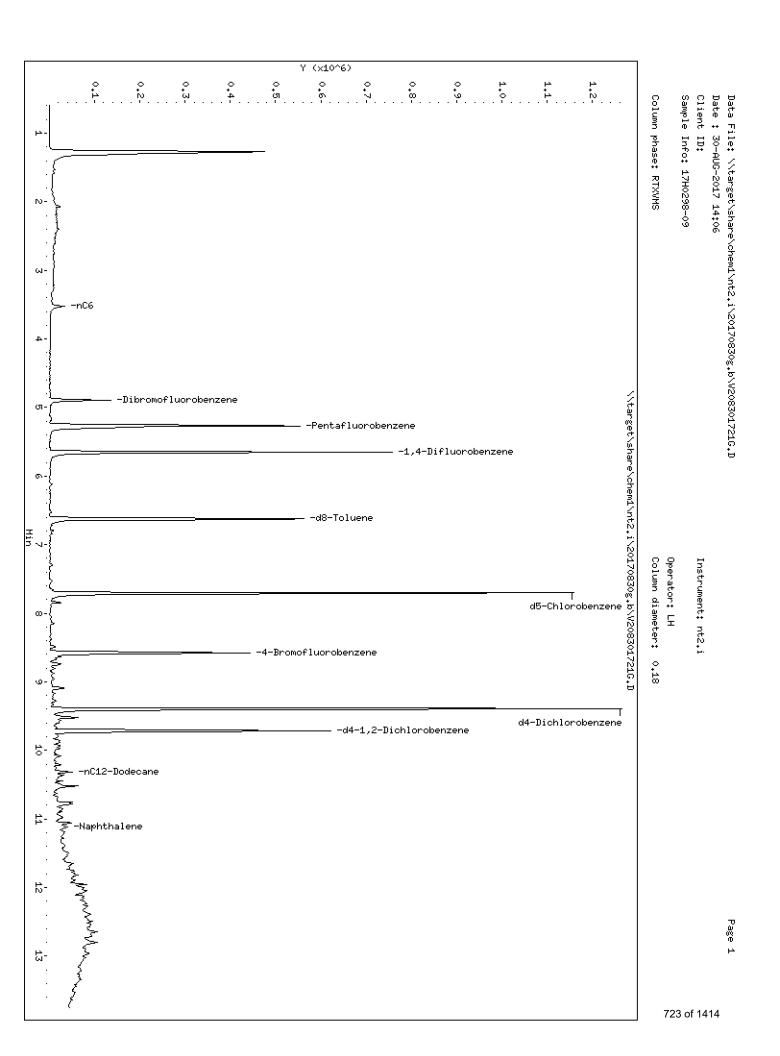
Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-09</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 14:45</u> Prepared: <u>08/30/17 09:18</u> File ID: <u>V208301721G.D</u>


% Solids: 91.53 Preparation: EPA 5035 (Methanol Extract Analyzed: 08/30/17 14:06

Batch: BFH0706 Sequence: SFH0366 Initial/Final: 11.087 g Wet / 5 mL

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

	CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
Ī		Gasoline Range Organics (Tol-Nap)	50	2930	U	1460	2930

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	5.15	103	80 - 120	
4-Bromofluorobenzene	5.0000	5.14	103	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

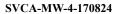
Data file: 20170830g.b/V208301721G.D ARI ID: 17H0298-09

Method: \20170830g.b\GAS061217.m Client ID:

Instrument: nt2.i Matrix: NONE

Gas Ical Date: 12-JUN-2017 Dilution Factor: 1.000

GASOLINE HYDROCARBONS


Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	546873	0.009
8015C 2MP-TMB (2.99 to 9.26)	2222222	230112	0.010
AK101 nC6-nC10 (3.43 to 8.54)	81728088	114136	0.001
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	966090	0.015
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	620405	0.028

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.616	970891	d8-Toluene
8.581	723409	4-Bromofluorobenzene
9.397	1815497	d4-Dichlorobenzene
7.705	1792368	d5-Chlorobenzene
9.717	880340	d4-1,2-Dichlorobenzene

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

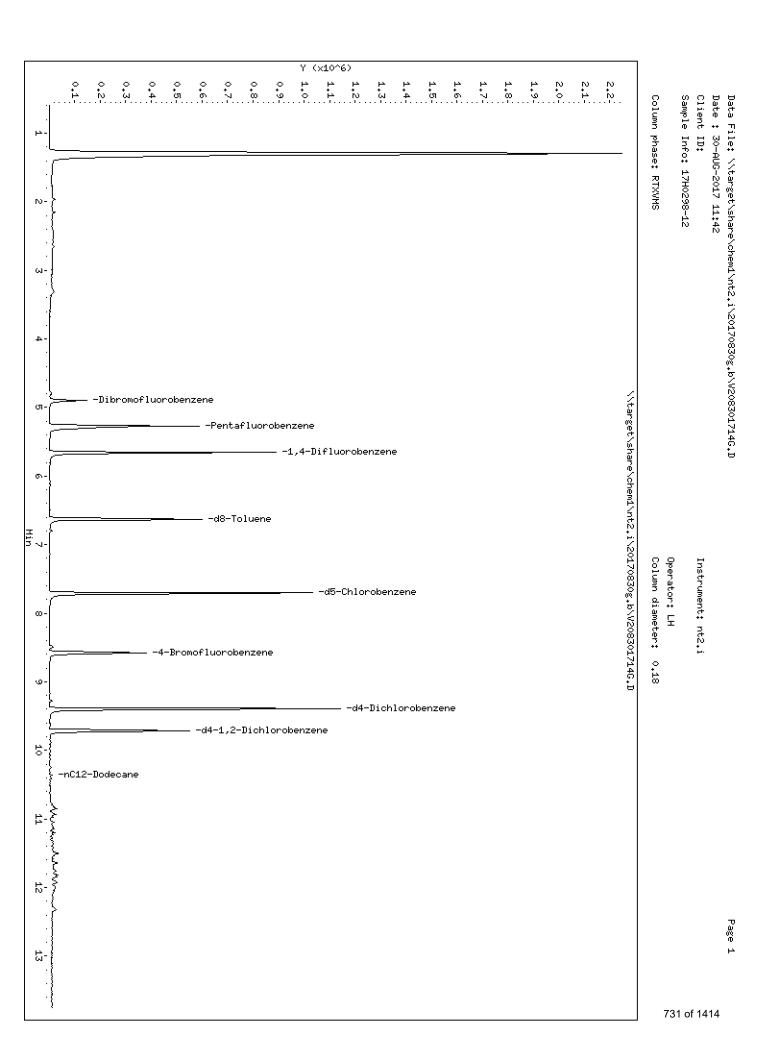
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 17H0298-12 SDG: 17H0298

Sampled: <u>08/24/17 17:00</u> Prepared: <u>08/30/17 09:11</u> File ID: <u>V208301714G.D</u>


% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>08/30/17 11:42</u>

Batch: BFH0705 Sequence: SFH0366 Initial/Final: 10 mL / 10 ml

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.88	97.6	80 - 120	
4-Bromofluorobenzene	5.0000	4.93	98.6	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170830g.b/V208301714G.D ARI ID: 17H0298-12

Method: \20170830q.b\GAS061217.m Client ID:

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 30-AUG-2017 11:42

Matrix: NONE

Dilution Factor: 1.000

Operator: LH

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	75175	0.001
8015C 2MP-TMB (2.99 to 9.26)	2222222	55890	0.003
AK101 nC6-nC10 (3.43 to 8.54)	81728088	55890	0.001
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	282072	0.004
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	93360	0.004

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.628	913249	d8-Toluene
8.580	582027	4-Bromofluorobenzene
9.397	1622053	d4-Dichlorobenzene
7.705	1619111	d5-Chlorobenzene
9.716	786333	d4-1,2-Dichlorobenzene

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

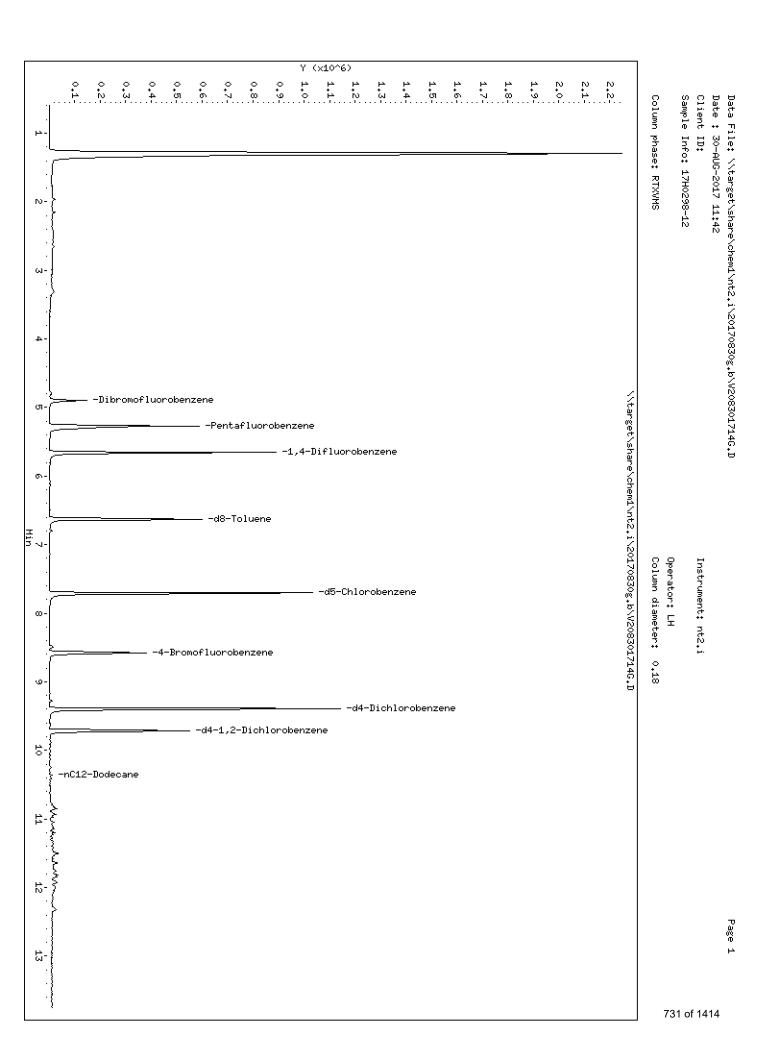
Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Water Laboratory ID: 17H0298-14 SDG: 17H0298

Sampled: <u>08/23/17 00:00</u> Prepared: <u>08/30/17 09:11</u> File ID: <u>V208301710G.D</u>


% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>08/30/17 10:21</u>

Batch: BFH0705 Sequence: SFH0366 Initial/Final: 10 mL / 10 ml

Instrument: NT2 Column: RTX-VMS Calibration: AH00025

CA	S NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
		Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.95	98.9	80 - 120	
4-Bromofluorobenzene	5.0000	5.04	101	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170830g.b/V208301714G.D ARI ID: 17H0298-12

Method: \20170830q.b\GAS061217.m Client ID:

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 30-AUG-2017 11:42

Matrix: NONE

Dilution Factor: 1.000

Operator: LH

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	75175	0.001
8015C 2MP-TMB (2.99 to 9.26)	2222222	55890	0.003
AK101 nC6-nC10 (3.43 to 8.54)	81728088	55890	0.001
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	282072	0.004
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	93360	0.004

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.628	913249	d8-Toluene
8.580	582027	4-Bromofluorobenzene
9.397	1622053	d4-Dichlorobenzene
7.705	1619111	d5-Chlorobenzene
9.716	786333	d4-1,2-Dichlorobenzene

PREPARATION BATCH SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFH0705
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-MW-4-170824	17H0298-12	V208301714G.D	08/30/17 09:11	
SVCA-TripBlank-170823	17H0298-14	V208301710G.D	08/30/17 09:11	
Blank	BFH0705-BLK1	V208301709G.D	08/30/17 07:11	
LCS	BFH0705-BS1	V208301703LCSG.D	08/30/17 07:11	
LCS Dup	BFH0705-BSD1	V208301705G.D	08/30/17 07:11	

PREPARATION BATCH SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: Batch Matrix: Solid Preparation: EPA 5035 (Methanol Extraction)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-100-0-4-170823	17H0298-01	V208301718G.D	08/30/17 09:18	
SVCA-TP-101-0-2-170823	17H0298-03	V208301719G.D	08/30/17 09:18	
SVCA-TP-102-0-2-170823	17H0298-06	V208301720G.D	08/30/17 09:18	
SVCA-TP-103-0-2-170823	17H0298-09	V208301721G.D	08/30/17 09:18	
Blank	BFH0706-BLK1	V208301709MBSG.D	08/30/17 07:18	
LCS	BFH0706-BS1	V208301703LCSSG.D	08/30/17 07:18	
LCS Dup	BFH0706-BSD1	V208301705LCSDSG.D	08/30/17 07:18	

$\label{eq:form_I} \begin{tabular}{ll} Form\ I \\ METHOD\ BLANK\ DATA\ SHEET \\ NWTPHg \\ \end{tabular}$

Blank

17H0298

Laboratory: Analytical Resources, Inc. SDG:

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: <u>Water</u> Laboratory ID: <u>BFH0705-BLK1</u> File ID: <u>V208301709G.D</u>

Sampled: <u>N/A</u> Prepared: <u>08/30/17 07:11</u> Analyzed: <u>08/30/17 10:00</u>

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: BFH0705 Sequence: SFH0366 Calibration: AH00025

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CC	ONC. (ug/L)		Q	DL		RL		
	Gasoline Range Organics (Tol-Nap)	1		100		U	13.6		100		
SURROGATES		ADDED (ug	₅ /L)	CONC (ug	;/L)	%]	REC	Q	OC LIMITS	Q	
Toluene-d8		5.0000		4.96		9:	9.3		80 - 120		
4-Bromofluorobo	enzene	5.0000		4.92		9	3.4		80 - 120		

$\label{eq:form_I} \begin{tabular}{ll} Form\ I \\ METHOD\ BLANK\ DATA\ SHEET \\ NWTPHg \\ \end{tabular}$

Blank

Laboratory: <u>Analytical Resources, Inc.</u>

SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFH0706-BLK1 File ID: V208301709MBSG.D

Sampled: $\underline{N/A}$ Prepared: $\underline{08/30/17\ 07:18}$ Analyzed: $\underline{08/30/17\ 10:00}$

Solids: Preparation: <u>EPA 5035 (Methanol Extract Initial/Final:</u> <u>5 g / 5 mL</u>

Batch: BFH0706 Sequence: SFH0366 Calibration: AH00025

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILLITION	COM	C. (ug/kg wet)		0	DL		RL	
CAS NO.	COMPOUND	DILUTION	CON	C. (ug/kg wei)		Ų	DL		KL	
	Gasoline Range Organics (Tol-Nap)	50		5000		U	2500		5000	
SURROGATES		ADDED (ug	g/L)	CONC (ug	/L)	%]	REC	Ç	OC LIMITS	Q
Toluene-d8		5.0000		4.96		9:	9.3		80 - 120	
4-Bromofluorob	enzene	5.0000		4.92		9	8.4		78 - 123	

LCS / LCS DUPLICATE RECOVERY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 08/30/17 07:57

 Batch:
 BFH0705
 Laboratory ID:
 BFH0705-BS1

Preparation: <u>EPA 5030 (Purge and Trap)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 mL / 10 ml

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(ug/L)	(ug/L)	Q	REC. #	REC.
Gasoline Range Organics (Tol-Nap)	1000	983		98.3	72 - 128

* Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC	LIMITS
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	0	% REC. #	% RPD#	RPD	REC.
Gasoline Range Organics (Tol-Nap)	1000	984		98.4	0.0671	30	72 - 128

^{*} Indicates values outside of QC limits

LCS / LCS DUPLICATE RECOVERY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 08/30/17 07:57

 Batch:
 BFH0706
 Laboratory ID:
 BFH0706-BS1

Preparation: <u>EPA 5035 (Methanol Extraction)</u> Sequence Name: <u>LCS</u>

Initial/Final: 5 g / 5 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(ug/kg wet)	(ug/kg wet)	Q	REC. #	REC.
Gasoline Range Organics (Tol-Nap)	50000	49100		98.3	70 - 121

* Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC	LIMITS
COMPOUND	ADDED	CONCENTRATION	0	% DEC. //	% DDD //	DDD	DEC
COMPOUND	(ug/kg wet)	(ug/kg wet)	Q	REC. #	RPD#	RPD	REC.
Gasoline Range Organics (Tol-Nap)	50000	49200		98.4	0.0671	30	70 - 121

^{*} Indicates values outside of QC limits

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>V217061204G.D</u> Injection Date: <u>06/12/17</u>

Instrument ID: NT2 Injection Time: 09:58

Sequence: SFF0153 Lab Sample ID: SFF0153-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	22.2	PASS
75	30 - 80% of 95	48.8	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.22	PASS
173	Less than 2% of 174	0	PASS
174	50 - 120% of 95	82.5	PASS
175	5 - 9% of 174	7.54	PASS
176	95 - 101% of 174	96.1	PASS
177	5 - 9% of 176	7.06	PASS

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Cal Standard	SFF0153-CAL9	V217061216G.D	06/12/2017	14:26
Cal Standard	SFF0153-CALA	V217061217G.D	06/12/2017	14:45
Cal Standard	SFF0153-CALB	V217061218G.D	06/12/2017	15:05
Cal Standard	SFF0153-CALC	V217061219G.D	06/12/2017	15:25
Cal Standard	SFF0153-CALD	V217061220G.D	06/12/2017	15:45
Cal Standard	SFF0153-CALE	V217061221G.D	06/12/2017	16:05
Secondary Cal Check	SFF0153-SCV1	V217061223G.D	06/12/2017	16:45

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: $\underline{V208071702G.D}$ Injection Date: $\underline{08/07/17}$

Instrument ID: NT2 Injection Time: 11:25

Sequence: SFH0112 Lab Sample ID: SFH0112-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	16.7	PASS
75	30 - 80% of 95	45	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.87	PASS
173	Less than 2% of 174	0.603	PASS
174	50 - 120% of 95	64.1	PASS
175	5 - 9% of 174	6.99	PASS
176	95 - 101% of 174	96.7	PASS
177	5 - 9% of 176	6.6	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFH0112-TUN1	V208071702G.D	08/07/2017	11:25

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: $\underline{V208301702G.D}$ Injection Date: $\underline{08/30/17}$

Instrument ID: NT2 Injection Time: 07:21

Sequence: SFH0366 Lab Sample ID: SFH0366-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	16.5	PASS
75	30 - 80% of 95	45	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.09	PASS
173	Less than 2% of 174	0.499	PASS
174	50 - 120% of 95	76.2	PASS
175	5 - 9% of 174	7.19	PASS
176	95 - 101% of 174	100	PASS
177	5 - 9% of 176	6.54	PASS

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
MS Tune	SFH0366-TUN1	V208301702G.D	08/30/2017	7:21
LCS	BFH0706-BS1	V208301702G.D V208301703LCSSG.D	08/30/2017	
				7:57
LCS	BFH0705-BS1	V208301703LCSG.D	08/30/2017	7:57
Initial Cal Check	SFH0366-ICV1	V208301703G.D	08/30/2017	7:57
LCS Dup	BFH0706-BSD1	V208301705LCSDSG.D	08/30/2017	8:38
LCS Dup	BFH0705-BSD1	V208301705G.D	08/30/2017	8:38
Blank	BFH0706-BLK1	V208301709MBSG.D	08/30/2017	10:00
Blank	BFH0705-BLK1	V208301709G.D	08/30/2017	10:00
SVCA-TripBlank-170823	17H0298-14	V208301710G.D	08/30/2017	10:21
SVCA-MW-4-170824	17H0298-12	V208301714G.D	08/30/2017	11:42
SVCA-TP-100-0-4-170823	17H0298-01	V208301718G.D	08/30/2017	13:04
SVCA-TP-101-0-2-170823	17H0298-03	V208301719G.D	08/30/2017	13:25
SVCA-TP-102-0-2-170823	17H0298-06	V208301720G.D	08/30/2017	13:45
SVCA-TP-103-0-2-170823	17H0298-09	V208301721G.D	08/30/2017	14:06
ZZZZZ	17H0308-01	V208301722G.D	08/30/2017	14:26
ZZZZZ	17H0308-02	V208301723G.D	08/30/2017	14:47
ZZZZZ	17H0308-03	V208301724G.D	08/30/2017	15:07
Calibration Check	SFH0366-CCV1	V208301728G.D	08/30/2017	16:27

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Lo	evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	100	71249.69	250	67843.76			1000	64114.48	2500	59222.56	5000	56772.46

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF								
Toluene-d8	5	1.070644	5	1.045473	5	1.109125	5	1.108631	5	1.112117	5	1.123529
4-Bromofluorobenzene	5	0.3997239	5	0.4200901	5	0.4152498	5	0.4189429	5	0.4204776	5	0.4273876

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	L	evel 13	L	evel 14	L	evel 15	L	evel 16	Lo	evel 17	Lo	evel 18
Compound		RF		RF		RF		RF		RF		RF
Toluene-d8	5	1.166297	5	1.163406								
4-Bromofluorobenzene	5	0.4573217	5	0.4889769								

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Gasoline Range Organics (Tol-Nap)	63840.59	9.3			RSD (20)	
Toluene-d8	1.112403	3.7			RSD (20)	
4-Bromofluorobenzene	0.4310213	6.6			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00025 Instrument: NT2

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Lo	evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	100	71249.69	250	67843.76			1000	64114.48	2500	59222.56	5000	56772.46

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00025 Instrument: NT2

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Toluene-d8	5	1.185534	5	1.17883	5	1.174819	5	1.163869	5	1.180543	5	1.193585
4-Bromofluorobenzene	5	0.3703407	5	0.369717	5	0.3741109	5	0.3690632	5	0.3776575	5	0.3769642

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00025 Instrument: NT2

	L	evel 13	L	evel 14	L	evel 15	L	evel 16	L	evel 17	Le	evel 18
Compound		RF		RF		RF		RF		RF		RF
Toluene-d8	5	1.191815	5	1.16984								
4-Bromofluorobenzene	5	0.3763317	5	0.3751297								

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00025 Instrument: NT2

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Gasoline Range Organics (Tol-Nap)	63840.59	9.3			RSD (20)	
Toluene-d8	1.179854	0.9			RSD (20)	
4-Bromofluorobenzene	0.3736644	0.9			RSD (20)	

INITIAL CALIBRATION CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT2 Calibration: AH00025

Lab File ID: <u>V208301703G.D</u> Calibration Date: <u>08/09/17 09:30</u>

Sequence: $\underline{SFH0366}$ Injection Date: $\underline{08/30/17}$

Lab Sample ID: SFH0366-ICV1 Injection Time: 07:57

Sequence Name: <u>ICV</u>

		CONC. (ug/L)		RESI	PONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Gasoline Range Organics (Tol-Nap)	A	1000.0	983	63840.5900	62747.7200		-1.7	20	
Toluene-d8	A	5.0000	4.97	1.1798540	1.1720310		-0.7		
4-Bromofluorobenzene	A	5.0000	5.08	0.3736644	0.3796228		1.6		

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFF0153</u> Instrument: <u>NT2</u>

Calibration: <u>AF00043</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Gas 0.1	SFF0153-CAL9	V217061216G.D	NA	06/12/17 14:26
Gas 0.25	SFF0153-CALA	V217061217G.D	NA	06/12/17 14:45
Gas 0.5	SFF0153-CALB	V217061218G.D	NA	06/12/17 15:05
Gas 1.0	SFF0153-CALC	V217061219G.D	NA	06/12/17 15:25
Gas 2.5	SFF0153-CALD	V217061220G.D	NA	06/12/17 15:45
Gas 5.0	SFF0153-CALE	V217061221G.D	NA	06/12/17 16:05
GAS SCV	SFF0153-SCV1	V217061223G.D	NA	06/12/17 16:45

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0112</u> Instrument: <u>NT2</u>

Calibration: AH00025

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFH0112-TUN1	V208071702G.D	NA	08/07/17 11:25

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0366</u> Instrument: <u>NT2</u>

Calibration: AH00025

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
BFB	SFH0366-TUN1	V208301702G.D	NA	08/30/17 07:21
ICV	SFH0366-ICV1	V208301703G.D	NA	08/30/17 07:57
LCS	BFH0705-BS1	V208301703LCSG.D	Water	08/30/17 07:57
LCS	BFH0706-BS1	V208301703LCSSG.D	Solid	08/30/17 07:57
LCS Dup	BFH0705-BSD1	V208301705G.D	Water	08/30/17 08:38
LCS Dup	BFH0706-BSD1	V208301705LCSDSG.D	Solid	08/30/17 08:38
Blank	BFH0705-BLK1	V208301709G.D	Water	08/30/17 10:00
Blank	BFH0706-BLK1	V208301709MBSG.D	Solid	08/30/17 10:00
SVCA-TripBlank-170823	17H0298-14	V208301710G.D	Water	08/30/17 10:21
SVCA-MW-4-170824	17H0298-12	V208301714G.D	Water	08/30/17 11:42
SVCA-TP-100-0-4-170823	17H0298-01	V208301718G.D	Solid	08/30/17 13:04
SVCA-TP-101-0-2-170823	17H0298-03	V208301719G.D	Solid	08/30/17 13:25
SVCA-TP-102-0-2-170823	17H0298-06	V208301720G.D	Solid	08/30/17 13:45
SVCA-TP-103-0-2-170823	17H0298-09	V208301721G.D	Solid	08/30/17 14:06
ZZZZZ	17H0308-01	V208301722G.D	Solid	08/30/17 14:26
ZZZZZ	17H0308-02	V208301723G.D	Solid	08/30/17 14:47
ZZZZZ	17H0308-03	V208301724G.D	Solid	08/30/17 15:07
CCV	SFH0366-CCV1	V208301728G.D	NA	08/30/17 16:27

SURROGATE RECOVERY SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0366</u> Instrument: <u>NT2</u>

Calibration: AH00025 Calibration Date: 08/07/2017

<u> </u>					
Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
BFH0705-BS1 (Water)	Lab File	ID: V208301703L0	CSG.D	Analyzed: 08/	30/17 07:57
Toluene-d8		5.0000	99.3	80 - 120	
4-Bromofluorobenzene		5.0000	102	80 - 120	
BFH0706-BS1 (Solid)	Lab File I	D: V208301703LC	SSG.D	Analyzed: 08/	30/17 07:57
Toluene-d8		5.0000	99.3	80 - 120	
4-Bromofluorobenzene		5.0000	102	78 - 123	
SFH0366-ICV1 (Water)	Lab	File ID: V20830170	03G.D	Analyzed: 08/	30/17 07:57
Toluene-d8		5.0000	99.3	0 - 200	
4-Bromofluorobenzene		5.0000	102	0 - 200	
BFH0705-BSD1 (Water)	BFH0705-BSD1 (Water) Lab File ID: V208301705G.D				/30/17 08:38
Toluene-d8		5.0000	100	80 - 120	
4-Bromofluorobenzene		5.0000	100	80 - 120	
BFH0706-BSD1 (Solid)	Lab File ID	: V208301705LCSI	OSG.D	Analyzed: 08/	30/17 08:38
Toluene-d8		5.0000	100	80 - 120	
4-Bromofluorobenzene		5.0000	100	78 - 123	
BFH0705-BLK1 (Water)	Lab	File ID: V20830170	09G.D	Analyzed: 08/30/17 10:	
Toluene-d8		5.0000	99.3	80 - 120	
4-Bromofluorobenzene		5.0000	98.4	80 - 120	
BFH0706-BLK1 (Solid)	Lab File	ID: V208301709ME	BSG.D	Analyzed: 08/	30/17 10:00
Toluene-d8		5.0000	99.3	80 - 120	
4-Bromofluorobenzene		5.0000	98.4	78 - 123	
17H0298-14 (Water)	Lab	File ID: V2083017	10G.D	Analyzed: 08/	30/17 10:21
Toluene-d8		5.0000	98.9	80 - 120	
4-Bromofluorobenzene		5.0000	101	80 - 120	
17H0298-12 (Water)	Analyzed: 08/	/30/17 11:42			
Toluene-d8		5.0000	97.6	80 - 120	
4-Bromofluorobenzene		5.0000	98.6	80 - 120	
17H0298-01 (Solid)	Lab	File ID: V2083017	18G.D	Analyzed: 08/	30/17 13:04
Toluene-d8		5.0000	99.4	80 - 120	
4-Bromofluorobenzene		5.0000	100	78 - 123	

SURROGATE RECOVERY SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0366</u> Instrument: <u>NT2</u>

Calibration: AH00025 Calibration Date: 08/07/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q	
17H0298-03 (Solid) Lab	8-03 (Solid) Lab File ID: V208301719G.D		Analyzed: 08/	30/17 13:25	
Toluene-d8	5.0000	99.6	80 - 120		
4-Bromofluorobenzene	5.0000	103	78 - 123		
17H0298-06 (Solid) Lab	D298-06 (Solid) Lab File ID: V208301720G.D		Analyzed: 08/30/17 13:45		
Toluene-d8	5.0000	103	80 - 120		
4-Bromofluorobenzene	5.0000	105	78 - 123		
17H0298-09 (Solid) Lab	File ID: V20830172	21G.D	Analyzed: 08/	30/17 14:06	
Toluene-d8	5.0000	103	80 - 120		
4-Bromofluorobenzene	5.0000	103	78 - 123		

INTERNAL STANDARD AREA AND RT SUMMARY NWTPHg

Laboratory: <u>Analytical Resources, Inc.</u> SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0366</u> Instrument: <u>NT2</u>

Calibration: <u>AH00025</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFH0705-BS1)		(Water)	Lab Fil	le ID: V208301	703LCSG.D		Analyzed:	08/30/17 07	7:57
Pentafluorobenzene	373419	5.269	342682	5.269	109	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	598826	7.706	537424	7.707	111	50 - 200	0.0010	+/-0.50	
1,4-Difluorobenzene	668607	5.659	602503	5.648	111	50 - 200	-0.0110	+/-0.50	
1,4-Dichlorobenzene-d4	295945	9.399	254574	9.399	116	50 - 200	0.0000	+/-0.50	
LCS (BFH0706-BS1)		(Solid)	Lab File	ID: V2083017	03LCSSG.D		Analyzed:	08/30/17 07	7:57
Pentafluorobenzene	373419	5.269	342682	5.269	109	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	598826	7.706	537424	7.707	111	50 - 200	0.0010	+/-0.50	
1,4-Difluorobenzene	668607	5.659	602503	5.648	111	50 - 200	-0.0110	+/-0.50	
1,4-Dichlorobenzene-d4	295945	9.399	254574	9.399	116	50 - 200	0.0000	+/-0.50	
Initial Cal Check (SFH0366-ICV1)		(Water)	La	b File ID: V20	8301703G.D		Analyzed:	08/30/17 07	7:57
Pentafluorobenzene	373419	5.269	342682	5.269	109	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	598826	7.706	537424	7.707	111	50 - 200	0.0010	+/-0.50	
1,4-Difluorobenzene	668607	5.659	602503	5.648	111	50 - 200	-0.0110	+/-0.50	
1,4-Dichlorobenzene-d4	295945	9.399	254574	9.399	116	50 - 200	0.0000	+/-0.50	
LCS Dup (BFH0705-BSD1)		(Water)	La	b File ID: V20	8301705G.D		Analyzed:	08/30/17 08	3:38
Pentafluorobenzene	365478	5.267	342682	5.269	107	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	583538	7.704	537424	7.707	109	50 - 200	0.0030	+/-0.50	
1,4-Difluorobenzene	644374	5.657	602503	5.648	107	50 - 200	-0.0090	+/-0.50	
1,4-Dichlorobenzene-d4	284913	9.396	254574	9.399	112	50 - 200	0.0030	+/-0.50	
LCS Dup (BFH0706-BSD1)		(Solid)	Lab File II	D: V208301705	SLCSDSG.D		Analyzed:	08/30/17 08	3:38
Pentafluorobenzene	365478	5.267	342682	5.269	107	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	583538	7.704	537424	7.707	109	50 - 200	0.0030	+/-0.50	
1,4-Difluorobenzene	644374	5.657	602503	5.648	107	50 - 200	-0.0090	+/-0.50	
1,4-Dichlorobenzene-d4	284913	9.396	254574	9.399	112	50 - 200	0.0030	+/-0.50	
Blank (BFH0705-BLK1)		(Water)	La	b File ID: V20	8301709G.D		Analyzed:	08/30/17 10	0:00
Pentafluorobenzene	351663	5.267	342682	5.269	103	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	573494	7.705	537424	7.707	107	50 - 200	0.0020	+/-0.50	
1,4-Difluorobenzene	626255	5.658	602503	5.648	104	50 - 200	-0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	282845	9.397	254574	9.399	111	50 - 200	0.0020	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFH0366}$ Instrument: $\underline{NT2}$

Calibration: <u>AH00025</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (BFH0706-BLK1)		(Solid)	Lab File	e ID: V2083017	709MBSG.D		Analyzed:	08/30/17 10	0:00
Pentafluorobenzene	351663	5.267	342682	5.269	103	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	573494	7.705	537424	7.707	107	50 - 200	0.0020	+/-0.50	
1,4-Difluorobenzene	626255	5.658	602503	5.648	104	50 - 200	-0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	282845	9.397	254574	9.399	111	50 - 200	0.0020	+/-0.50	
SVCA-TripBlank-170823 (17H0298-	-14)	(Water)	La	b File ID: V20	8301710G.D		Analyzed:	08/30/17 10):21
Pentafluorobenzene	353962	5.268	342682	5.269	103	50 - 200	0.0010	+/-0.50	
Chlorobenzene-d5	561341	7.705	537424	7.707	104	50 - 200	0.0020	+/-0.50	
1,4-Difluorobenzene	620271	5.658	602503	5.648	103	50 - 200	-0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	277808	9.397	254574	9.399	109	50 - 200	0.0020	+/-0.50	
SVCA-MW-4-170824 (17H0298-12)		(Water)	La	b File ID: V20	8301714G.D		Analyzed:	08/30/17 11	1:42
Pentafluorobenzene	329300	5.267	342682	5.269	96	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	545654	7.704	537424	7.707	102	50 - 200	0.0030	+/-0.50	
1,4-Difluorobenzene	606279	5.657	602503	5.648	101	50 - 200	-0.0090	+/-0.50	
1,4-Dichlorobenzene-d4	273422	9.396	254574	9.399	107	50 - 200	0.0030	+/-0.50	
SVCA-TP-100-0-4-170823 (17H0298	3-01)	(Solid)	La	b File ID: V20	8301718G.D		Analyzed: 08/30/17 13:04		3:04
Pentafluorobenzene	339278	5.267	342682	5.269	99	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	573423	7.705	537424	7.707	107	50 - 200	0.0020	+/-0.50	
1,4-Difluorobenzene	613306	5.658	602503	5.648	102	50 - 200	-0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	286299	9.397	254574	9.399	112	50 - 200	0.0020	+/-0.50	
SVCA-TP-101-0-2-170823 (17H0298	3-03)	(Solid)	La	b File ID: V20	8301719G.D		Analyzed:	08/30/17 13	3:25
Pentafluorobenzene	329690	5.267	342682	5.269	96	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	558114	7.705	537424	7.707	104	50 - 200	0.0020	+/-0.50	
1,4-Difluorobenzene	596869	5.658	602503	5.648	99	50 - 200	-0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	278560	9.397	254574	9.399	109	50 - 200	0.0020	+/-0.50	
SVCA-TP-102-0-2-170823 (17H0298-06) (Solid)			La	b File ID: V20	8301720G.D		Analyzed: 08/30/17 13:45		
Pentafluorobenzene	337022	5.267	342682	5.269	98	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	566468	7.704	537424	7.707	105	50 - 200	0.0030	+/-0.50	
1,4-Difluorobenzene	593858	5.657	602503	5.648	99	50 - 200	-0.0090	+/-0.50	
1,4-Dichlorobenzene-d4	284345	9.397	254574	9.399	112	50 - 200	0.0020	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0366</u> Instrument: <u>NT2</u>

Calibration: <u>AH00025</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
SVCA-TP-103-0-2-170823 (17H029	8-09)	(Solid)	olid) Lab File ID: V208301721G.D				Analyzed: 08/30/17 14:06		
Pentafluorobenzene	340283	5.267	342682	5.269	99	50 - 200	0.0020	+/-0.50	
Chlorobenzene-d5	584718	7.704	537424	7.707	109	50 - 200	0.0030	+/-0.50	
1,4-Difluorobenzene	603265	5.657	602503	5.648	100	50 - 200	-0.0090	+/-0.50	
1,4-Dichlorobenzene-d4	296884	9.397	254574	9.399	117	50 - 200	0.0020	+/-0.50	

HOLDING TIME SUMMARY

Analysis: NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-TP-100-0-4-170823 17H0298-01	08/23/17 09:46	08/25/17 09:46	08/30/17 09:18	6	14	08/30/17 13:04	7	14	
SVCA-TP-101-0-2-170823 17H0298-03	08/23/17 10:59	08/25/17 09:46	08/30/17 09:18	6	14	08/30/17 13:25	7	14	
SVCA-TP-102-0-2-170823 17H0298-06	08/23/17 13:02	08/25/17 09:46	08/30/17 09:18	6	14	08/30/17 13:45	7	14	
SVCA-TP-103-0-2-170823 17H0298-09	08/23/17 14:45	08/25/17 09:46	08/30/17 09:18	6	14	08/30/17 14:06	7	14	
SVCA-MW-4-170824 17H0298-12	08/24/17 17:00	08/25/17 09:46	08/30/17 09:11	5	14	08/30/17 11:42	6	14	
SVCA-TripBlank-170823 17H0298-14	08/23/17 00:00	08/25/17 09:46	08/30/17 09:11	7	14	08/30/17 10:21	7	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: NT2

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	2500	5000	ug/kg

METHOD DETECTION AND REPORTING LIMITS

NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: NT2

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	13.6	100	ug/L

NWTPH-Dx TPH (Extractables)

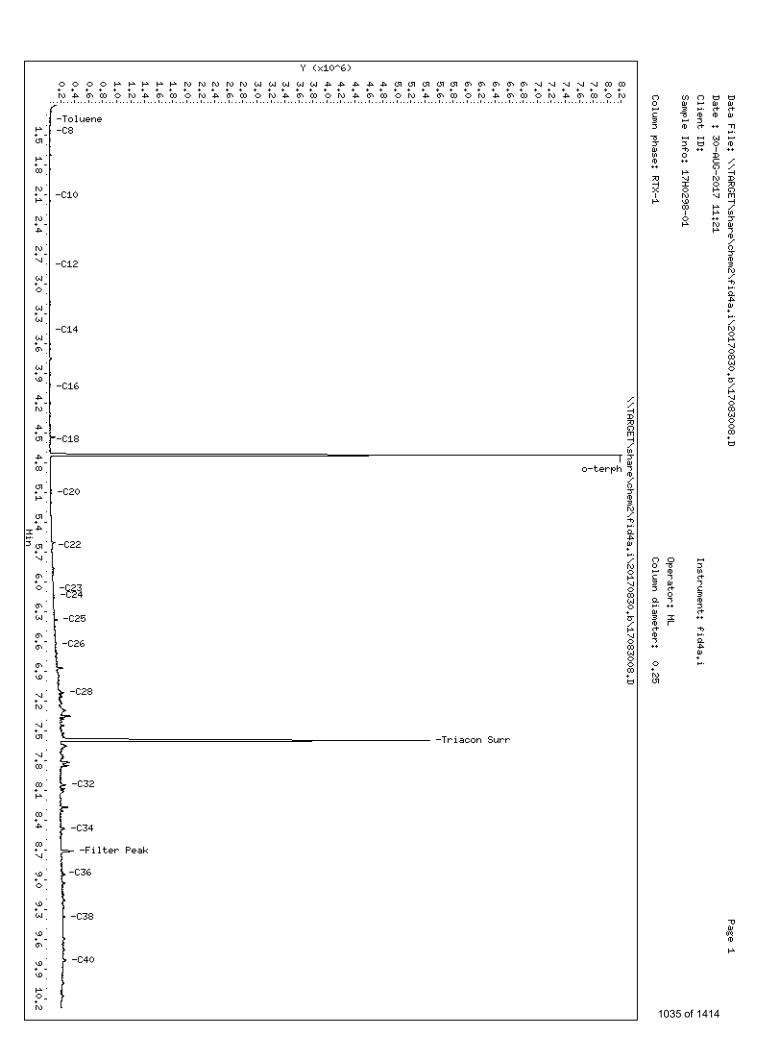
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-01</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 09:46</u> Prepared: <u>08/28/17 10:20</u> File ID: <u>17083008.D</u>


% Solids: <u>91.07</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/30/17 11:21</u>

Batch: BFH0597 Sequence: SFH0356 Initial/Final: 10 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	22.2		2.57	5.49
	Motor Oil Range Organics (C24-C38)	1	174		3.28	11.0

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.706	25.0	101	50 - 150	

Data file: 20170830.b/17083008.D ARI ID: 17H0298-01

Method: 20170830.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 30-AUG-2017 11:21

Report Date: 08/30/2017 Dilution Factor: 1

Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per I	(د
Toluene	1.342	-0.001	11269	9732	 WATPHG	(Tol-C12)	242415	161.6	
C8	1.460	0.009	10541	8870	WATPHD	(C12-C24)	3164811	201.9	
C10	2.112	0.001	2198	2065	WATPHM	(C24-C38)	29375667	1585.4	
C12	2.812	-0.003	1604	1245	AK102	(C10-C25)	3728701	206.0	
C14	3.464	0.006	5705	6034					
C16	4.036	0.002	9843	9062	OR.DIES	(C10-C28)	8869444	487.8	
C18	4.570	-0.000	17529	14062					
C20	5.105	0.001	23132	38016					
C22	5.630	-0.000	42451	34966					
C24	6.138	-0.001	64924	66066					
C25	6.383	-0.003	109459	146721	1				
C26	6.628	-0.003	95557	124701	1				
C28	7.118	0.004	198816	280174					
C32	8.047	-0.001	235562	443673					
C34	8.490	-0.003	215454	358629					
Filter Peak	8.713	0.001	345325	517030					
C36	8.932	-0.004	192971	316650					
C38	9.377	0.001	213790	521864					
C40	9.812	-0.003	227543	577886					
o-terph	4.727	-0.002	8155130	5244543					
Triacon Surr	7.602	-0.004	5259076	4417436	NAS DIES	(C10-C24)	3218533	178.2	

Range Times: NW Diesel(2.815 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)

NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount	
o-Terphenyl	5244543	228.1	M
Triacontane	4417436	172.8	M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

C38 (9.377) 9 9.6 9.6 AND CONTROL OF THE PROPERTY OF 9.3 0 (Z26*8) 9£3 Eilter Peak (8,713) 8.7 (06+48) 45 4 8.1 8. (240+8) ZE3 -8-. 8 (S08,5) raud nobeiaTaans nobetaT-(811,7) 823 7,5 7.5 Processed Integration Manual Integration 7.2 6 6.0 (829'9) 92 (282*9) 923 .0 6,3 (850:3) £ 0.0 9 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (0£9°S) Z (2°102) . 6 . . (727.1) Aqrat yduəş-4 ت (029°4) 8🔁 (025°t) 8(1) (025°t) 8(1) (026°t) 9(1) (026° . 5 2, м Ф ъ. Б 3,6 3,60 .0 3.0 ## (2,112) 2,7 2.4 4. 2:1 2,1 1.5 1,5 (094,1) 83 (1,342) N 0.0 (9~01×) J (9\0\X) \

Injection: 30-AUG-2017 11:21 TPH Manual Integrations Report 20170830.b/17083008.D Lab ID:17H0298-01 Datafile: FID4A,

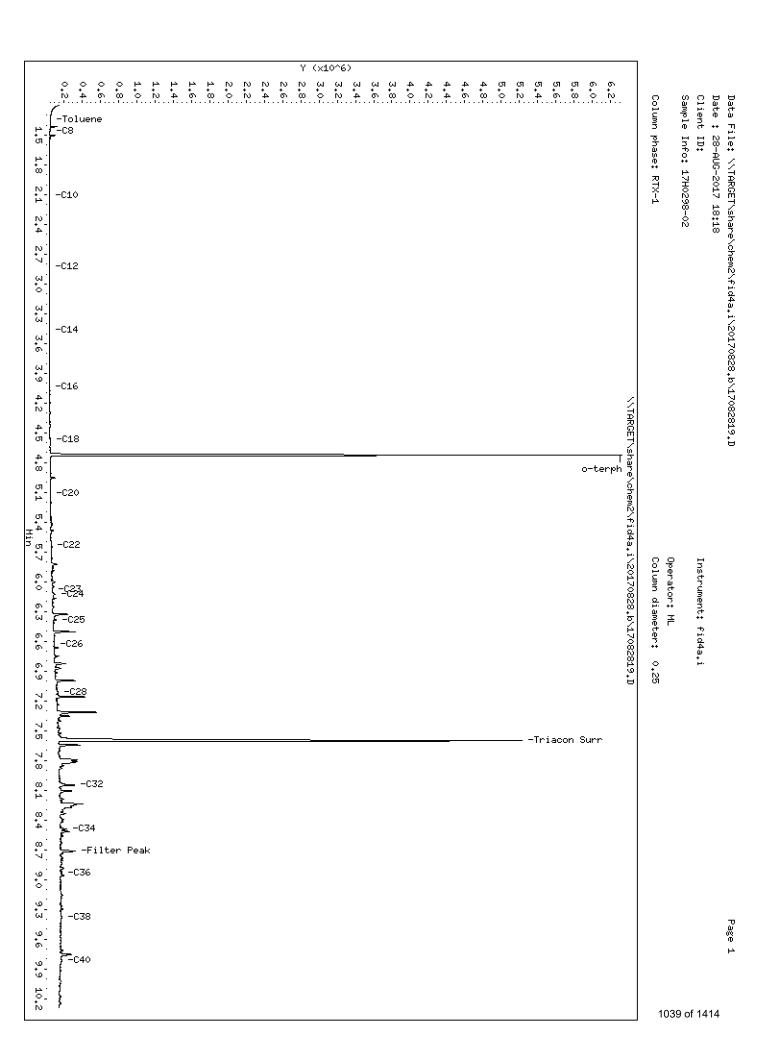
NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-02</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 09:46</u> Prepared: <u>08/28/17 10:15</u> File ID: <u>17082819.D</u>

% Solids: <u>91.07</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/28/17 18:18</u>

Batch: BFH0596 Sequence: SFH0319 Initial/Final: 10.07 g Wet / 1 mL

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	14.5		2.55	5.45
	Motor Oil Range Organics (C24-C38)	1	130		3.26	10.9

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.535	19.5	79.4	50 - 150	

Data file: 20170828.b/17082819.D ARI ID: 17H0298-02

Method: 20170828.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 28-AUG-2017 18:18

Report Date: 08/29/2017 Dilution Factor: 1

Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.342	0.001	13308	 33436	WATPHG	(Tol-C12)	196760	131.2
C8	1.458	0.010	6832	10315	WATPHD	(C12-C24)	2086969	133.2
C10	2.113	0.001	1316	989	WATPHM	(C24-C38)	22165401	1196.3
C12	2.827	0.010	1425	1040	AK102	(C10-C25)	2604052	143.9
C14	3.462	0.004	2422	2278				
C16	4.036	0.002	3795	4035	OR.DIES	(C10-C28)	6275937	345.2
C18	4.570	0.000	11692	11289				
C20	5.113	0.010	15771	32163	1			
C22	5.632	0.001	19458	16272				
C24	6.127	-0.012	67648	75304				
C25	6.387	0.000	77284	91536				
C26	6.630	-0.000	54121	71197	1			
C28	7.117	0.003	98991	151066				
C32	8.049	0.000	276227	560318				
C34	8.492	-0.001	190374	288899				
Filter Peak	8.714	0.000	283299	418782				
C36	8.936	-0.000	132368	97639				
C38	9.380	0.001	139400	253233				
C40	9.815	0.000	141771	328422				
o-terph	4.727	0.000	6280512	4109480	1			
Triacon Surr	7.602	-0.002	5057248	4046671	NAS DIES	G (C10-C24)	2113969	117.1

Range Times: NW Diesel(2.816 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)

NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount	
o-Terphenyl	4109480	178.7	
Triacontane	4046671	158.3	Μ

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 (9,18,0) 9.6 9.0 (082*6) 85 9.3 . . 0 0.6 (926*8) 923 Ased negative (8,714) 8.7 8.7 (264.8) 453 4 œ 4 (8'048) .1 8. -8-. 8 aang dobetal-(SO0,7) rand noseial 7 7.5 (211,5) 82 Processed Integration Manual Integration 7,2 7,2 6.9 6.0 (059,8) 85 (28£°9) SZ .0 (436:3) 123 0.9 9 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (Z£9,8) S (2°113) 4 0 . . (725, 4) Adret yduəş-(025,4) 8 🛅 . 4 . 5 4. ت 2, (920,4) 3<u>5</u> м Ф ъ. Б 3,6 3,6 (3,462)0 .0 3.0 (228,S) S \mathbb{N} ď 2.4 2,1 (2,113) Lab ID:17H0298-02 1,0 1,5 (824.1) (SAZ,1) enewloth οουυυυ44440000 μογ41900900000 μογ41900900000 (9~01×) A (9\0\X) \

Injection: 28-AUG-2017 18:18 TPH Manual Integrations Report 20170828.b/17082819.D Datafile: FID4A,

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

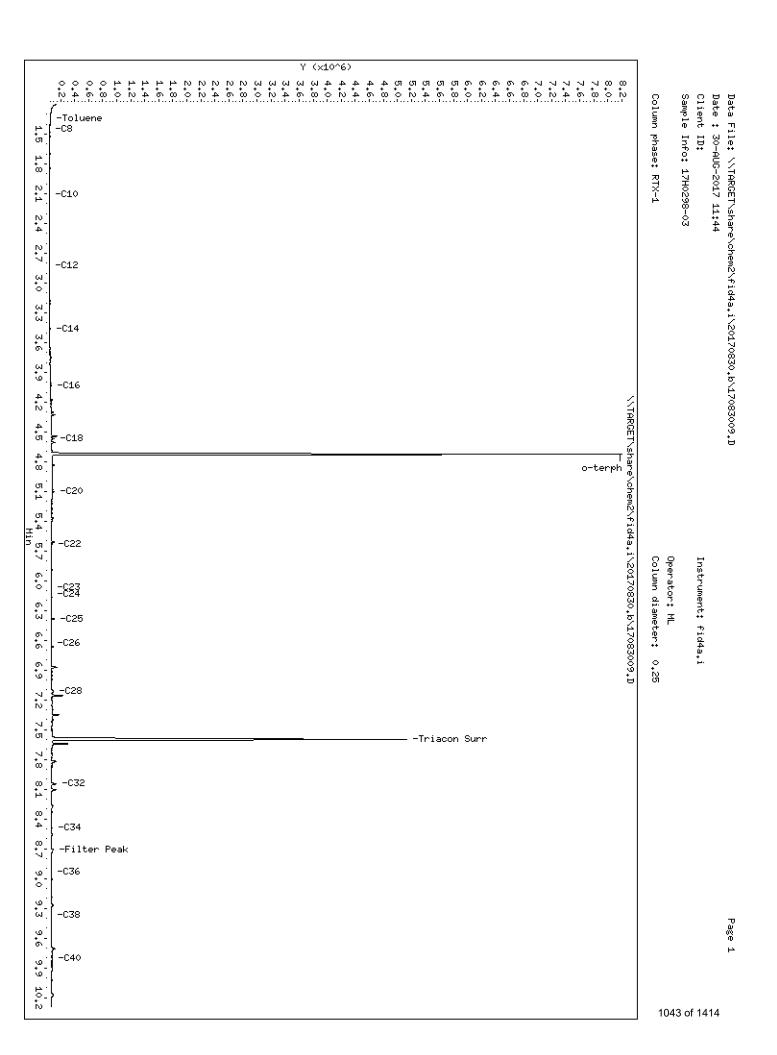
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-03</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 10:59</u> Prepared: <u>08/28/17 10:20</u> File ID: <u>17083009.D</u>


% Solids: <u>95.13</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/30/17 11:44</u>

Batch: BFH0597 Sequence: SFH0356 Initial/Final: 10 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	29.2		2.46	5.26
	Motor Oil Range Organics (C24-C38)	1	36.9		3.14	10.5

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.652	22.3	94.4	50 - 150	

Data file: 20170830.b/17083009.D ARI ID: 17H0298-03

Method: 20170830.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 30-AUG-2017 11:44

Report Date: 08/30/2017 Dilution Factor: 1

Macro: 16-AUG-2017

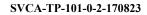
Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.341	-0.002	12669	 14091	WATPHG	(Tol-C12)	196874	131.2
C8	1.455	0.004	6094	9257	WATPHD	(C12-C24)	4352477	277.7
C10	2.112	0.000	2562	2019	WATPHM	(C24-C38)	6503184	351.0
C12	2.825	0.009	4696	3391	AK102	(C10-C25)	4591745	253.7
C14	3.462	0.004	10674	10590				
C16	4.035	0.001	33105	28993	OR.DIES	(C10-C28)	6235441	342.9
C18	4.570	0.000	63946	67888				
C20	5.105	0.000	63937	113262				
C22	5.631	0.001	42382	47052				
C24	6.140	0.001	32717	38209				
C25	6.386	0.000	67360	72890				
C26	6.630	-0.002	33346	51424				
C28	7.114	-0.001	53870	137140				
C32	8.046	-0.002	92507	123192				
C34	8.489	-0.004	36358	101270				
Filter Peak	8.712	-0.001	59512	86694				
C36	8.933	-0.003	31119	37848				
C38	9.376	-0.001	32658	52687				
C40	9.810	-0.006	36476	75669				
o-terph	4.727	-0.002	8121525	4884664				
Triacon Surr	7.600 =====	-0.005 ======	5045030 ======	4392223 ========	NAS DIES	G (C10-C24)	4391298 	243.2

Range Times: NW Diesel(2.815 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)

NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)


Surrogate	Area	Amount	
o-Terphenyl	4884664	212.4	Μ
Triacontane	4392223	171.8	Μ

Analyte	RF	Curve Date
o-Terph Surr	22995.5	16-AUG-2017
Triacon Surr	25564.0	16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

(018.6) 053 9. (9∠Σ⁺6) 8🖼 9 . . 0 0.6 TOTAL CONTROL (226,8) 35 8.7 8.7 11er Peak (8,712) (85,489) 4 œ 4 .1 8. (9+0*8) ZE3 -8aaud nobeiaT-(000,7) yaud nobeiaF 7.5 7.5 Processed Integration Manual Integration 7,2 (ÞII'2) 8Zð 6 6.0 \equiv (029,8) 855 (98Σ°9) SZ⊒ 6,3 (020·9) \$2 0.0 9 Injection: 30-AUG-2017 11:44 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (129'9) 22 (801.8) 05 4 0 8, (725,4) Adret yduəş-c 4 ت (025't) 8 . 5 (d^{*}035) 2, الم 9 ъ. Б φ 9.0 20170830.b/17083009.D m0 .0 3.0 (2,825) 2,7 2.4 4. 2.1 2.1 (Z1112) Lab ID:17H0298-03 1,5 1,5 83 (1+2.1) enaulo Ŋ 0.0 (9~01×) J (9\0\X) \

9

TPH Manual Integrations Report Datafile: FID4A,

ORGANIC ANALYSIS DATA SHEET

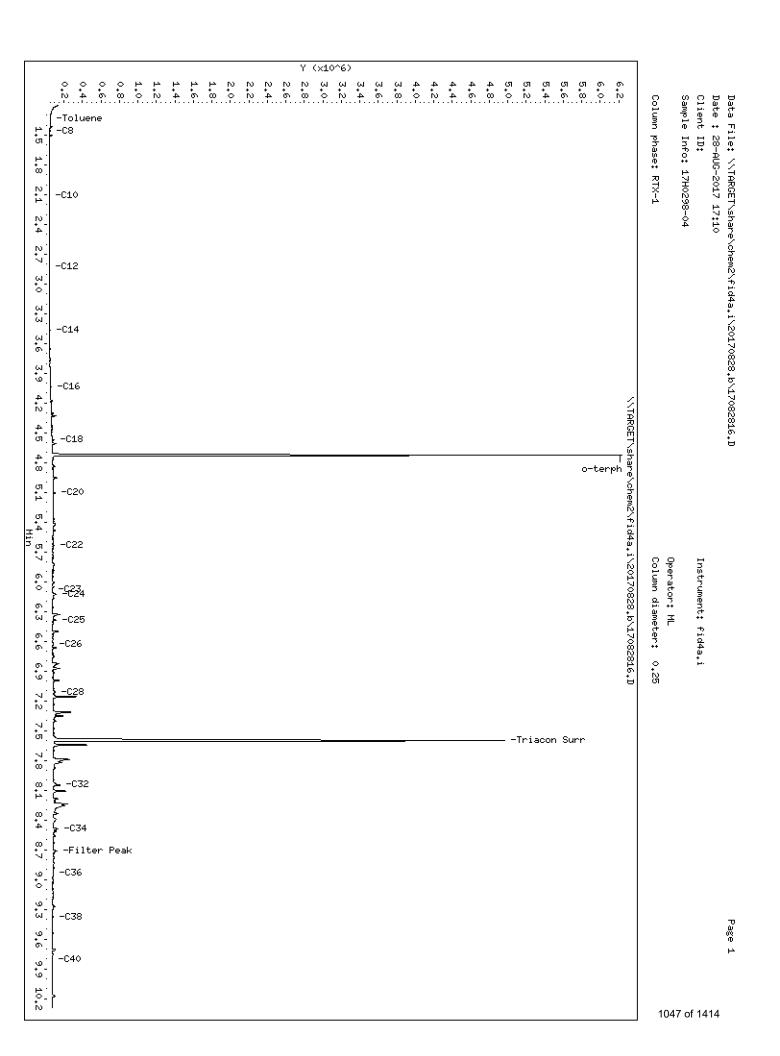
NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-04</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 10:59</u> Prepared: <u>08/28/17 10:15</u> File ID: <u>17082816.D</u>

% Solids: <u>95.13</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/28/17 17:10</u>

Batch: BFH0596 Sequence: SFH0319 Initial/Final: 10.14 g Wet / 1 mL

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	30.8		2.43	5.18
	Motor Oil Range Organics (C24-C38)	1	56.0		3.10	10.4

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.325	17.0	72.7	50 - 150	

Data file: 20170828.b/17082816.D ARI ID: 17H0298-04

Method: 20170828.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 28-AUG-2017 17:10

Report Date: 08/29/2017 Dilution Factor: 1

Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

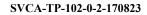
FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.341	0.000	10788	 29126	WATPHG	(Tol-C12)	 129519	86.3
C8	1.458	0.010	6941	9263	WATPHD	(C12-C24)	4653600	296.9
C10	2.112	0.000	1386	897	WATPHM	(C24-C38)	10009546	540.2
C12	2.827	0.010	1895	1771	AK102	(C10-C25)	5097119	281.6
C14	3.464	0.005	7011	7418	1			
C16	4.036	0.002	24364	23152	OR.DIES	(C10-C28)	7395285	406.7
C18	4.571	0.001	54218	90130	1			
C20	5.105	0.001	61886	108487	1			
C22	5.632	0.002	47863	65509	1			
C24	6.128	-0.011	75536	102467	1			
C25	6.387	0.000	71264	87616	1			
C26	6.632	0.001	41607	62897	1			
C28	7.112	-0.002	59382	114753	1			
C32	8.047	-0.001	115803	161312	1			
C34	8.490	-0.003	90776	117721	1			
Filter Peak	8.713	-0.000	81352	123423	1			
C36	8.939	0.003	39116	34776	1			
C38	9.379	0.000	36930	69050	1			
C40	9.808	-0.006	34872	35330	1			
o-terph	4.727	0.000	6158486	3762317	1			
Triacon Surr	7.602	-0.003	4866361	4034108	NAS DIES	G (C10-C24)	4666997	258.4

Range Times: NW Diesel(2.816 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)

NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount	
o-Terphenyl	3762317	163.6	M
Triacontane	4034108	157.8	M


Analyte	RF	Curve Date
o-Terph Surr	22995.5	16-AUG-2017
Triacon Surr	25564.0	16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

COMMITTED COMMITTED CONTROL CO 9. (622,6) 823 9.3 ō (626'8) 90 11ter Peak (8,713) (06+*8) 75 4 œ 4 .1 8. (240,8) SE3 2.8 aang uobetal-(SO0,7) mand moseinl 7 7.5 (211.7) 853 Processed Integration Manual Integration 7,2 6 6.0 (ZΣ9*9) 9Z (282⁺9) SZ3 6,3 (BL'3) ta 0.0 9 Injection: 28-AUG-2017 17:10 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) C20 (2.105) 4 0 . . (727,4) Adrat-o yduəş-(IZG't) 81 4 ت . 5 2, (920'+) 9 100 CO O REPUSTA SERVICE IN COLUMN SERVICE SER м Ф ъ. Б φ 20170828.b/17082816.D 3,6 m (494,5) 4 🛱0 .0 9.0 (5,827) \mathbb{N} ď 2.4 2,1 (21112) Lab ID:17H0298-04 Datafile: FID4A, \equiv 1,0 1,5 1,5 (854.1) (1+241) 0.0 1.2 α α α α α α 4 4 4 ω ω ω ω α α α 4 4 4 0 0 0 0ω ο ν 4 4 α α α α α α ω ο ν 4 4 α α α α α α ω ω ω (9~01×) A (9\0\X) \

σ ģ

(808°6) 0

TPH Manual Integrations Report

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

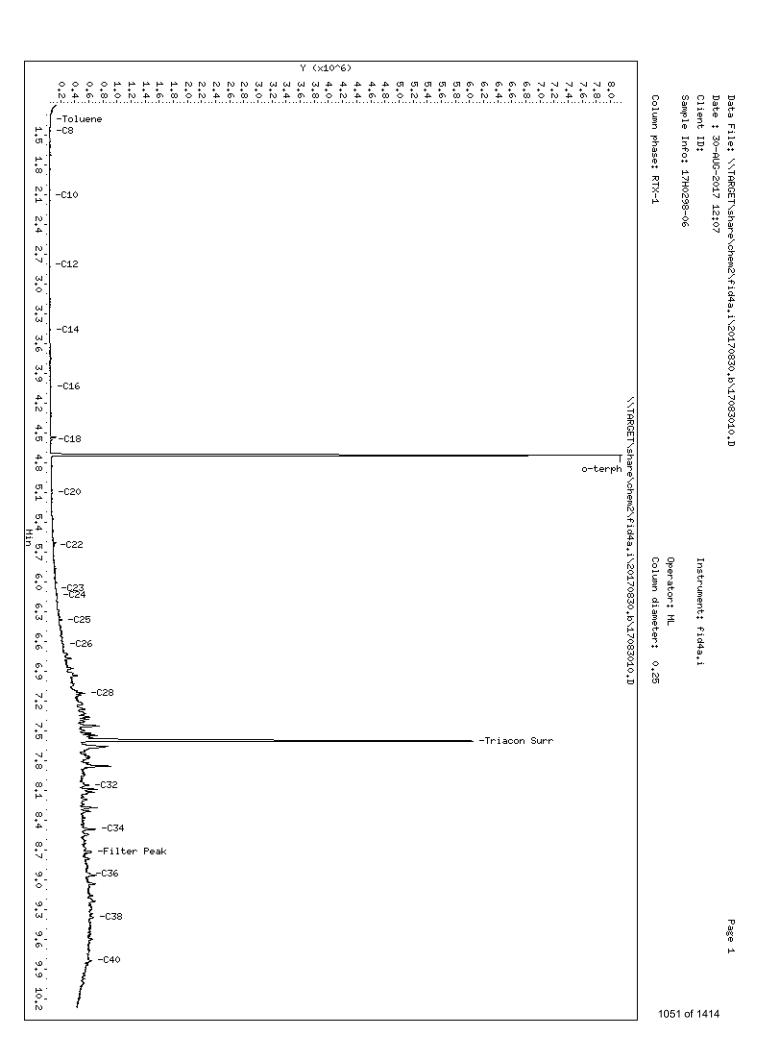
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-06</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 13:02</u> Prepared: <u>08/28/17 10:20</u> File ID: <u>17083010.D</u>


% Solids: <u>95.38</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/30/17 12:07</u>

Batch: BFH0597 Sequence: SFH0356 Initial/Final: 10 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	36.4		2.45	5.24
	Motor Oil Range Organics (C24-C38)	1	469		3.13	10.5

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.590	24.8	105	50 - 150	

Data file: 20170830.b/17083010.D ARI ID: 17H0298-06

Method: 20170830.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 30-AUG-2017 12:07

Report Date: 08/30/2017 Dilution Factor: 1

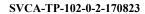
Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg p	per L)
Toluene	1.342	-0.001	17766	 17349	 WATPHG	(Tol-C12)	271075	180.7	
C8	1.460	0.009	12336	11740	WATPHD	(C12-C24)	5437138	346.9	
C10	2.112	0.000	2730	2257	WATPHM	(C24-C38)	82877121	4472.8	
C12	2.807	-0.008	3228	2768	AK102	(C10-C25)	6515390	359.9	
C14	3.462	0.004	15552	14778					
C16	4.035	0.002	25131	23448	OR.DIES	(C10-C28)	18733867	1030.4	
C18	4.570	0.000	36261	30704					
C20	5.104	0.000	44400	70993					
C22	5.630	0.000	62168	63099					
C24	6.139	-0.001	106231	97698					
C25	6.386	0.000	177140	240844					
C26	6.629	-0.002	200761	262774					
C28	7.124	0.009	500577	650625					
C32	8.050	0.002	559946	1127826					
C34	8.493	0.000	654365	1519995					
Filter Peak	8.721	0.008	605913	972140					
C36	8.941	0.005	573824	766660					
C38	9.382	0.005	624351	1018928					
C40	9.820	0.005	595569	997782					
o-terph	4.727	-0.002	8099297	5450889					
Triacon Surr		0.000	5515234	4832318 	NAS DIES	S (C10-C24)	5494027 	304.2	

Range Times: NW Diesel(2.815 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)


NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount	
o-Terphenyl	5450889	237.0	М
Triacontane	4832318	189.0	Μ

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 9 (0Z8*6) 0ta 9.6 9.0 (81382) 9.3 9.3 0 0.6 (146*8) 92 8.7 .0 (155,8) Aba9 ratii yead r (8,493) ₹2€ 4 œ 4 9.1 9.1 (050.8) SE . 00 8 (808,5) mays noseinl aung dobetal-7,5 7.5 Processed Integration Manual Integration 7,2 7,2 (421,7) 82<u>a</u> 6.9 9 (629'9) 923 (982'9) 523 9 (8,139) (6,139) (6,139) (8,139) 9 9 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (0£9°5) Z (401.8) 0<u>s</u> 4 0 8, (025.4) 813 (727.4) Adrat c yduəş-∈ 4. ت 5.5 (929 V) 8EB 2, м Ф ъ. Б E14 (3,462) 3,6 3,60 .0 3.0 (208,2) 213 2,7 (2111.2) 0 [2] 2.4 2,1 (211 2) 0 1,8 1.5 ςį α α ν ν α α α α α α 4 4 4 м м и и и и н н 04 ο α и α 4 ο α и α 4 ο α и α 4 ο α и α .0.0 (9~01×) A (9\0\X) \

Injection: 30-AUG-2017 12:07 TPH Manual Integrations Report 20170830.b/17083010.D Lab ID:17H0298-06 Datafile: FID4A,

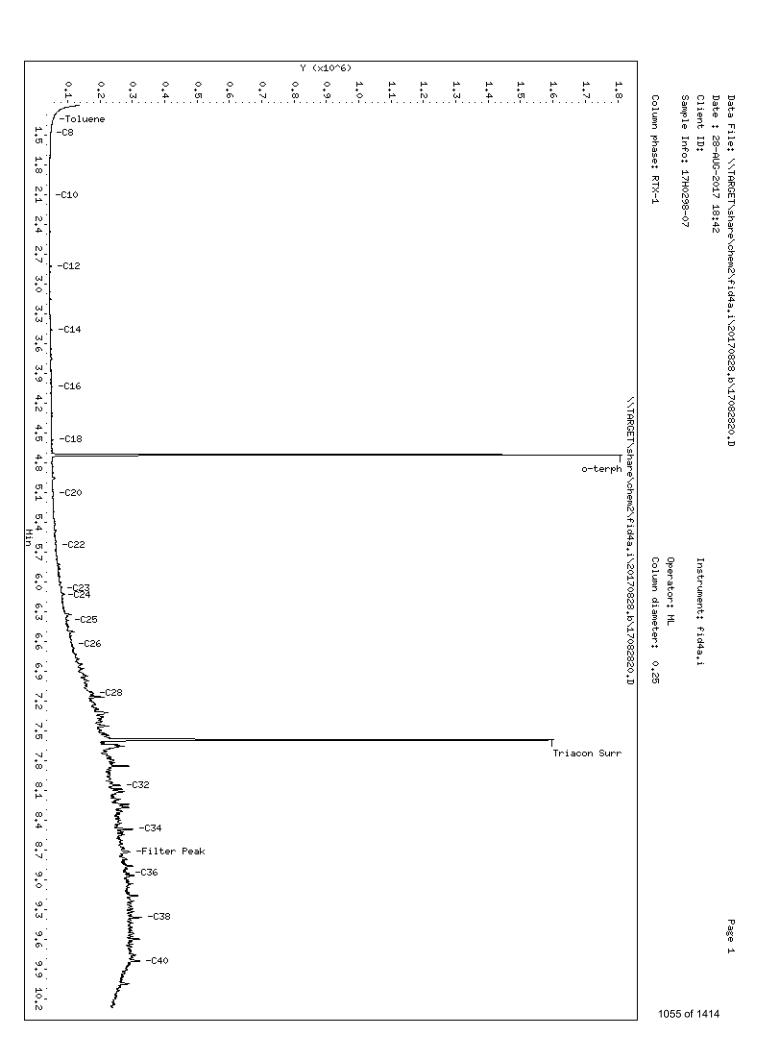
NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-07</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 13:02</u> Prepared: <u>08/28/17 10:15</u> File ID: <u>17082820.D</u>

% Solids: <u>95.38</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/28/17 18:42</u>

 Batch:
 BFH0596
 Sequence:
 SFH0319
 Initial/Final:
 10.21 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	65.4		12.0	25.7
	Motor Oil Range Organics (C24-C38)	1	889		15.4	51.3

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.105	21.8	94.2	50 - 150	

Data file: 20170828.b/17082820.D ARI ID: 17H0298-07

Method: 20170828.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 28-AUG-2017 18:42

Report Date: 08/29/2017 Dilution Factor: 1

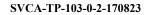
Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.342	0.002	12116	 35214	WATPHG	(Tol-C12)	92245	===== 61.5
C8	1.480	0.032	4400	8626	WATPHD	(C12-C24)	1995049	127.3
C10	2.114	0.002	1111	656	WATPHM	(C24-C38)	32091534	1732.0
C12	2.824	0.008	5755	3428	AK102	(C10-C25)	2455157	135.6
C14	3.463	0.004	7858	8643				
C16	4.036	0.003	7728	9808	OR.DIES	(C10-C28)	6708694	369.0
C18	4.571	0.002	10884	13813				
C20	5.106	0.003	12413	23332	1			
C22	5.632	0.002	20504	19470	1			
C24	6.141	0.002	39908	35193	1			
C25	6.388	0.002	58637	80740	1			
C26	6.633	0.003	70806	55621	1			
C28	7.120	0.006	136384	178704				
C32	8.050	0.002	218552	380906				
C34	8.493	0.000	258855	392337				
Filter Peak	8.720	0.007	248540	626702				
C36	8.939	0.003	247504	393496				
C38	9.381	0.003	283903	441372				
C40	9.820	0.006	279662	560601				
o-terph	4.722	-0.004	1761759	975475				
Triacon Surr	7.594	-0.011	1385541	943771	NAS DIES	G (C10-C24)	2006512	111.1

Range Times: NW Diesel(2.816 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)


NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount
o-Terphenyl Triacontane	975475 943771	42.4 M
TITACONTANE	943//1	30.9 M

Analyte	RF	Curve Date
o-Terph Surr	22995.5	16-AUG-2017
Triacon Surr	25564.0	16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 9 (0Z8.9) 042 9.6 9. . . (182,9) 823 9,3 0 0.6 (626*8) 923 8.7 .0 Īilter Peak (8,720) Peak (8,493) 4 œ 4 9.1 : (090°8) ZS - 2 (468,7) nnu2 noseinT . . . aγγης uo⊃sial 7.5 Processed Integration Manual Integration 7.2 7,2 (021.7) 82 6.9 9 (229.8) 3 9 6,3 (690.6) (690) 9 0.9 5.1 5.4 5.7 Time (Min) 5,1 5,4 5,7 Time (Min) (2°9°S) (2°93S) (901,8) 05 4 ® 4 0 (SS7.1) Adrat-o yduəş-o . เก๋ 4 ت (129°4) 8🖼 (3,463) 4 ω • 9 9.0 3,6 COTO O DETICONA DE COTO O COTO M • . 0 10 3.0 (428.2) S 2,7 2,7 4. 4 8443 TODO OBJECT TO THE PARTY OF THE 2,1 2,1 (4111,5) 0皇 Lab ID:17H0298-07 1.8 1,5 1,5 (084,1) 83 (S⊬2,1) eneulo<u>†</u> 1.6-(9~01×) A (9\0\X) \

Injection: 28-AUG-2017 18:42 TPH Manual Integrations Report 20170828.b/17082820.D Datafile: FID4A,

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

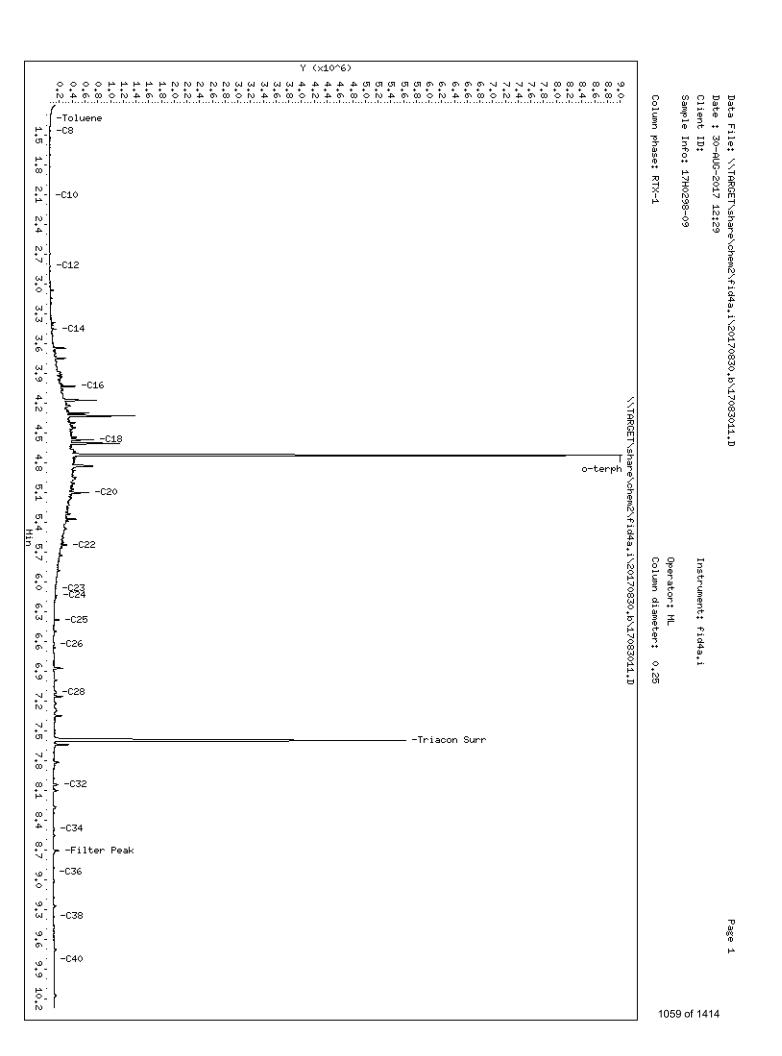
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-09</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 14:45</u> Prepared: <u>08/28/17 10:20</u> File ID: <u>17083011.D</u>


% Solids: 91.53 Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/30/17 12:29</u>

Batch: BFH0597 Sequence: SFH0356 Initial/Final: 10 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	278	Е	2.56	5.46
	Motor Oil Range Organics (C24-C38)	1	82.6		3.27	10.9

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.582	26.3	107	50 - 150	

Data file: 20170830.b/17083011.D ARI ID: 17H0298-09

Method: 20170830.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 30-AUG-2017 12:29

Report Date: 08/30/2017 Dilution Factor: 1

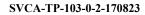
Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.341	-0.002	 19177	 18498	WATPHG	(Tol-C12)	 289334	 192.9
C8	1.458	0.007	9566	12108	WATPHD	(C12-C24)	39821710	2540.8
C10	2.112	-0.000	4467	2349	WATPHM	(C24-C38)	14015566	756.4
C12	2.817	0.002	19520	13618	AK102	(C10-C25)	40565519	2241.1
C14	3.455	-0.003	102522	75248	1			
C16	4.031	-0.003	413727	302540	OR.DIES	(C10-C28)	44467923	2445.7
C18	4.571	0.000	689994	740702	1			
C20	5.103	-0.001	610789	875936	1			
C22	5.630	-0.000	264900	428193	1			
C24	6.139	-0.000	113394	127193	1			
C25	6.385	-0.001	151535	177236	1			
C26	6.629	-0.002	78312	83077	1			
C28	7.117	0.003	109683	213780	1			
C32	8.045	-0.004	128833	205866	1			
C34	8.488	-0.005	76025	110223	1			
Filter Peak	8.711	-0.002	152364	178294	1			
C36	8.929	-0.007	64595	106852	1			
C38	9.375	-0.002	68266	87700	1			
C40	9.809	-0.006	75506	152638	1			
o-terph	4.728	-0.000	8591268	5542856	1			
Triacon Surr	7.602	-0.004	5509980	4844743	NAS DIES	G (C10-C24)	39921529	2210.7

Range Times: NW Diesel(2.815 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)


Range Times: NW Diesel(2.815 - 6.139) ARIU2(2.11 - 6.39) Jet A(2.11 - 4.57) NW M.Oil(6.14 - 9.38) ARIU3(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate	Area	Amount	
o-Terphenyl	5542856	241.0	M
Triacontane	4844743	189.5	M

Analyte	RF	Curve Date
o-Terph Surr	22995.5	16-AUG-2017
Triacon Surr	25564.0	16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

(608'6) 012 9 9. 9.0 (9ZΣ*6) 9.3 0 (626*8) 923 ... 型11ter Peak (8,711) r Beak (88+*8) +2 4 œ 4 .1 8. (8*042) .8 aau2 nobeiaT-(SO0,5) raud nobeiaT-7,5 Processed Integration Manual Integration 7,2 7,2 (211,5) 85 6 9 (629'9) 92 (98£,8) 223 .0 (651:33) \$2 0.0 9 (2.630) 5.1 5.4 5.7 Time (Min) 5,1 5,4 Time (M: CSO (5,103) 4 0 4 0 (827,4) Aqrat-o . 4 Ծ (129°t) 813-4 ت 4 (4,031) 9, ъ Б 3,6 3,6 (95+°2) | 1350 .0 3.0 (21812) 2,7 2.4 4 2.1 (Z111Z) 0Ē (89b-1) 83 1,5 1,5 auanto Ŋ (9~01×) A (9\0\X) \

Injection: 30-AUG-2017 12:29 TPH Manual Integrations Report 20170830.b/17083011.D Lab ID:17H0298-09 Datafile: FID4A,

NWTPH-Dx TPH (Extractables)

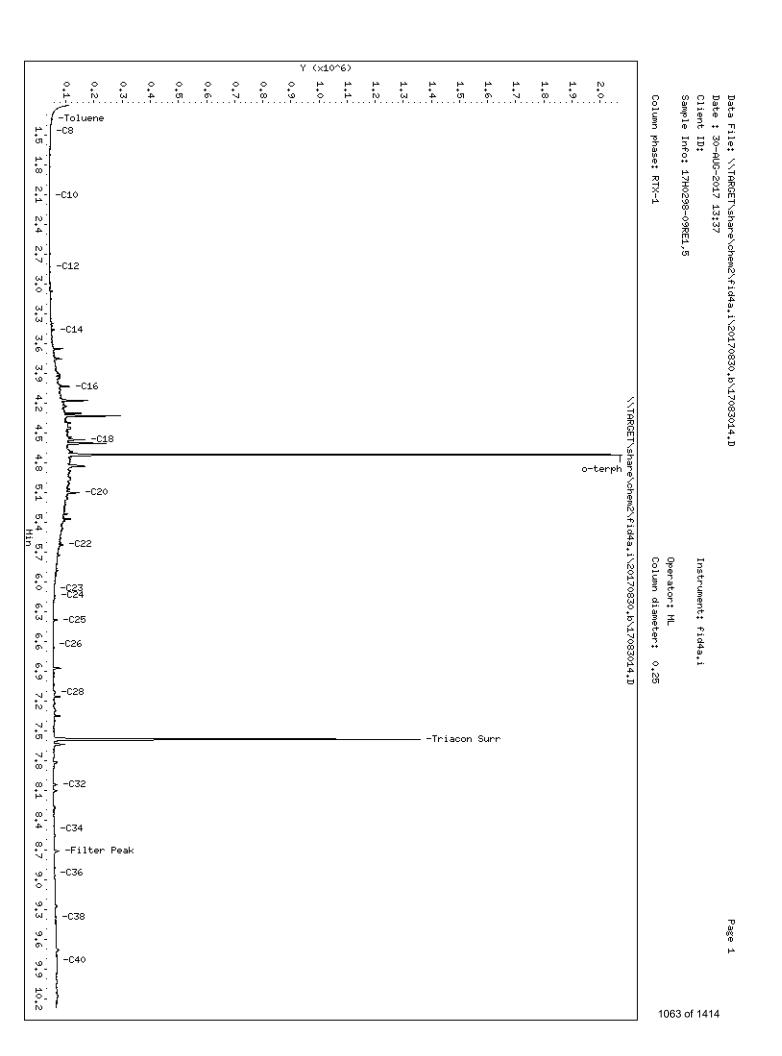
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-09RE1</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 14:45</u> Prepared: <u>08/28/17 10:20</u> File ID: <u>17083014.D</u>


% Solids: 91.53 Preparation: EPA 3546 (Microwave) Analyzed: 08/30/17 13:37

Batch: $\underline{BFH0597}$ Sequence: $\underline{SFH0356}$ Initial/Final: $\underline{10 \text{ g Wet } / 1 \text{ mL}}$

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	5	256	D	12.8	27.3
	Motor Oil Range Organics (C24-C38)	5	91.2	D	16.3	54.6

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.582	24.7	101	50 - 150	

Data file: 20170830.b/17083014.D ARI ID: 17H0298-09RE1

Method: 20170830.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 30-AUG-2017 13:37

Report Date: 08/30/2017 Dilution Factor: 5

Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.340	-0.003	8812	10050	 WATPHG	(Tol-C12)	97645	65.1
C8	1.458	0.007	4431	5225	WATPHD	(C12-C24)	7346491	468.7
C10	2.113	0.001	930	790	WATPHM	(C24-C38)	3092407	166.9
C12	2.825	0.010	3068	2584	AK102	(C10-C25)	7482685	413.4
C14	3.461	0.003	16927	12426	1			
C16	4.033	-0.001	72254	77399	OR.DIES	(C10-C28)	8214435	451.8
C18	4.569	-0.001	126316	129012	1			
C20	5.103	-0.002	107380	179497	1			
C22	5.628	-0.002	49418	77705	1			
C24	6.138	-0.001	20490	26441				
C25	6.384	-0.002	26170	46495				
C26	6.628	-0.004	14958	34510	1			
C28	7.118	0.003	21492	43595				
C32	8.044	-0.004	25660	43445				
C34	8.489	-0.004	18749	45611				
Filter Peak	8.713	-0.000	32930	46621	1			
C36	8.934	-0.002	18453	20618				
C38	9.378	0.001	22345	28978	1			
C40	9.815	-0.000	27167	45452				
o-terph	4.719	-0.009	1964271	1042043	1			
Triacon Surr	7.588	-0.018	1300189	909874	NAS DIES	S (C10-C24)	7361088	407.6

Range Times: NW Diesel(2.815 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57)

NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Area	Amount	
		-
1042043	45.3	Μ
909874	35.6	M
	1042043	1042043 45.3

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 9 (918.9) OF 9. 9.0 (822.6) 85 . . 9.7 0 0.6 (ÞΣ6°8) 9Σ3 8.7 IJfer Peak (8,713) Aea4 ~ (8*48) 4 œ 4 9.1 8. (440,8) SEE . 8 (888,7) may nobein∓ and nobeinT------------7.5 Processed Integration Manual Integration -------------7,2 (811.7) 85 6.9 6.0 (829'9) 92 . 6 (6,384) (851:3) \$ 0.0 9 5.1 5.4 5.7 Time (Min) 5,1 5,4 5,7 Time (Min) (879°S) ZZ3 (2°1703) 4 4 ® (817.1) Aqrat-o yduaş-o . - 4 - ຕໍ 4 ت (699°t) 813 (628.5) SIO 2, ω • 9 9.0 3,6 _W -M . 0 10 3.0 (SZ8.S) S 2,7 4. (S:113) 2,1 2.1 (EII 2) UE 1,8 1,5 1,5 (9~01×) A (9\0\X) \

Injection: 30-AUG-2017 13:37 TPH Manual Integrations Report 20170830.b/17083014.D Lab ID:17H0298-09RE1 Datafile: FID4A,

SVCA-TP-103-0-2-170823

ORGANIC ANALYSIS DATA SHEET

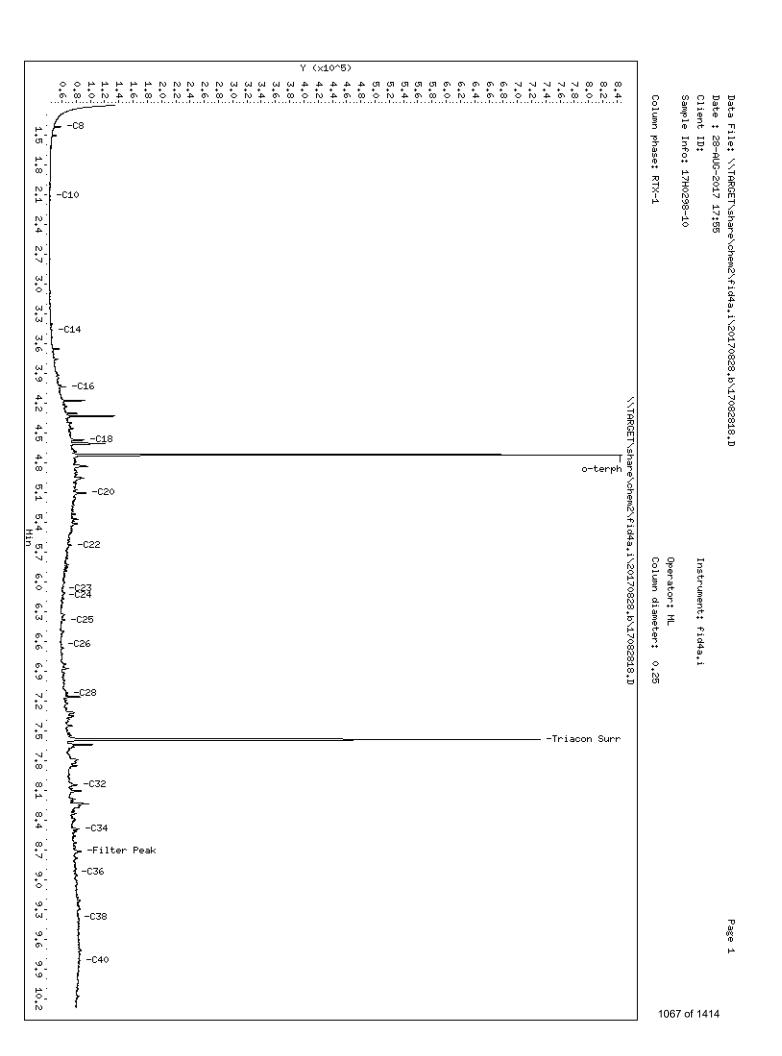
NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: SCVA Area Z Remediation

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-10</u> SDG: <u>17H0298</u>


Sampled: <u>08/23/17 14:45</u> Prepared: <u>08/28/17 10:15</u> File ID: <u>17082818.D</u>

% Solids: <u>91.53</u> Preparation: <u>EPA 3546 (Microw</u> Analyzed: <u>08/28/17 17:55</u>

Batch: BFH0596 Sequence: SFH0319 Initial/Final: 10.26 g Wet / 1 mL

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	10	265	D	24.9	53.2
	Motor Oil Range Organics (C24-C38)	10	315	D	31.8	106

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.959	19.3	80.4	50 - 150	

Data file: 20170828.b/17082818.D ARI ID: 17H0298-10

Method: 20170828.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 28-AUG-2017 17:55

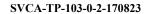
Report Date: 08/29/2017 Dilution Factor: 10

Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene					WATPHG	(Tol-C12)	 53294	35.5
C8	1.417	-0.032	16380	24866	WATPHD	(C12-C24)	3899035	248.8
C10	2.113	0.001	750	642	WATPHM	(C24-C38)	5487968	296.2
C12					AK102	(C10-C25)	4083595	225.6
C14	3.463	0.005	4191	3428				
C16	4.036	0.002	23072	26296	OR.DIES	(C10-C28)	4975993	273.7
C18	4.573	0.003	48352	71276				
C20	5.105	0.001	51698	128677				
C22	5.632	0.001	30945	34172				
C24	6.142	0.002	19517	11391				
C25	6.386	-0.000	21975	40264				
C26	6.632	0.001	16966	27911				
C28	7.122	0.007	26014	32678				
C32	8.048	-0.001	38724	72462				
C34	8.490	-0.003	42505	57226				
Filter Peak	8.716	0.002	45118	114590				
C36	8.924	-0.012	36650	55536				
C38	9.377	-0.002	40917	24234				
C40	9.813	-0.002	42943	56779				
o-terph	4.722	-0.004	769520	416489				
Triacon Surr	7.589	-0.015	660663 =======	453209	NAS DIES	S (C10-C24)	3902482	216.1


Range Times: NW Diesel(2.816 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57) NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)

Surrogate Area Amount
----o-Terphenyl 416489 18.1 M
Triacontane 453209 17.7 M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 9 (518,9) 0 - 6 - 0 ----0 - 0, - 0, - 10, _ e _ tu (∠∠2⁺6) 8∰ ----0 0 ۰ (\$26°8) 9£3 -----------(817.8) Aba9 Yatli yea4 v (8,490) -----4 -- 1 - 0 --₩ (8+0+8) Z£₹ ------ K -------- № (5°28) dung uppetal aang uooețal Processed Integration Manual Integration ---2 -------------(221,7) 852 -------_ 0 _ 0 - 9 9.9 (229*9) 92 ----0 -----(982*9) (e,068) 0.0 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (259.632) (201°S) 0Z3 - 4 - 6 - 4 - 4 - 0 (SS7.1) Aqrat-o yduaş-o _4 _ក: _ 4 _ • _ ល (578 (4,573) - 4 - 4 - 4 - 4 - 4 (920.4) 91 - W - W - O - W - W - O (3,463) - 6 - 6 - 6 - w - w - W - W _ w _•• -2 -7-2,7 869字 019字 _ ′′. _ **4** _____4 927±3 ------2.1 <u>e</u>10 (5,113) 1.8 ----1.5 1,5 0.0-1.2 0.0-1.2 4.0-(GVOIX) X (GVOIX) X

Injection: 28-AUG-2017 17:55 Integrations Report 20170828.b/17082818.D TPH Manual Lab ID:17H0298-10 Datafile: FID4A,

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

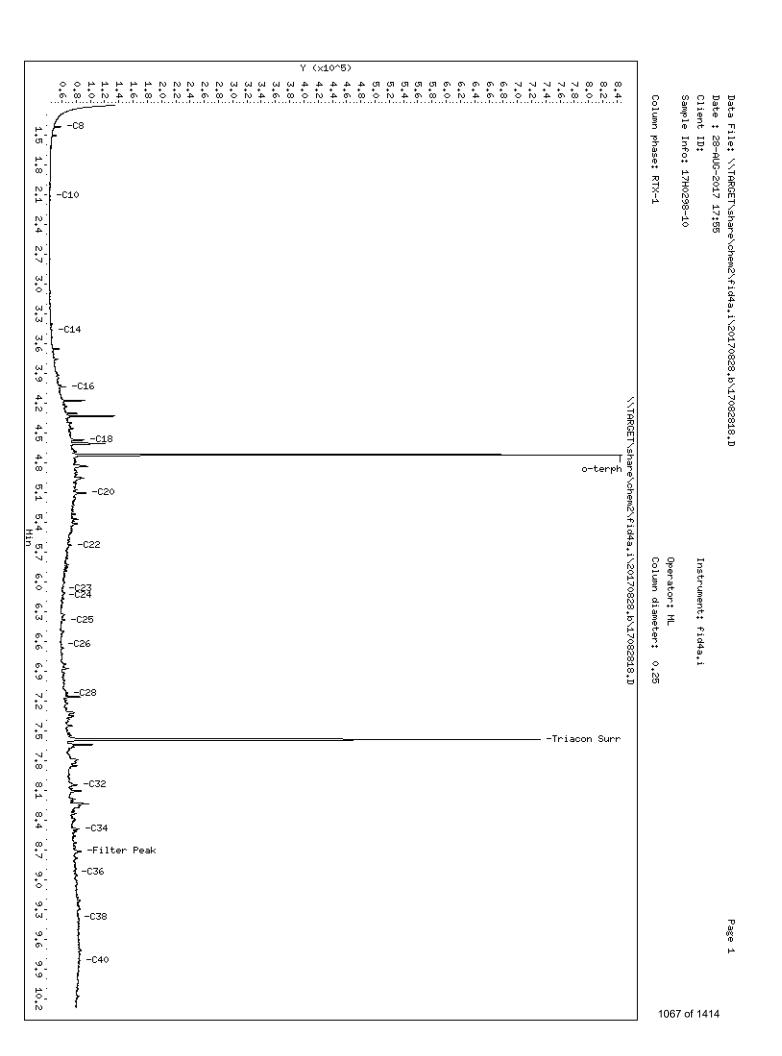
Laboratory: <u>Analytical Resources, Inc.</u>

Client: <u>Anchor QEA, LLC</u>

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>17H0298-10</u> SDG: <u>17H0298</u>

Sampled: <u>08/23/17 14:45</u> Prepared: <u>08/28/17 10:15</u> File ID: <u>17082818.D</u>


% Solids: <u>91.53</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>08/28/17 17:55</u>

 Batch:
 BFH0596
 Sequence:
 SFH0319
 Initial/Final:
 10.26 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AH00054

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	10	265	D	24.9	53.2
	Motor Oil Range Organics (C24-C38)	10	315	D	31.8	106

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.959	19.3	80.4	50 - 150	_

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170828.b/17082818.D ARI ID: 17H0298-10

Method: 20170828.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 28-AUG-2017 17:55

Report Date: 08/29/2017 Dilution Factor: 10

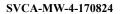
Macro: 16-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:16-AUG-2017 M.Oil:16-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene					WATPHG	(Tol-C12)	 53294	35.5
C8	1.417	-0.032	16380	24866	WATPHD	(C12-C24)	3899035	248.8
C10	2.113	0.001	750	642	WATPHM	(C24-C38)	5487968	296.2
C12					AK102	(C10-C25)	4083595	225.6
C14	3.463	0.005	4191	3428	1			
C16	4.036	0.002	23072	26296	OR.DIES	(C10-C28)	4975993	273.7
C18	4.573	0.003	48352	71276	1			
C20	5.105	0.001	51698	128677	1			
C22	5.632	0.001	30945	34172	1			
C24	6.142	0.002	19517	11391	1			
C25	6.386	-0.000	21975	40264	1			
C26	6.632	0.001	16966	27911	1			
C28	7.122	0.007	26014	32678	1			
C32	8.048	-0.001	38724	72462	1			
C34	8.490	-0.003	42505	57226	1			
Filter Peak	8.716	0.002	45118	114590	1			
C36	8.924	-0.012	36650	55536	1			
C38	9.377	-0.002	40917	24234	1			
C40	9.813	-0.002	42943	56779	1			
o-terph	4.722	-0.004	769520	416489	1			
Triacon Surr	7.589	-0.015	660663 =======	453209 	NAS DIES	G (C10-C24)	3902482	216.1

Range Times: NW Diesel(2.816 - 6.139) AK102(2.11 - 6.39) Jet A(2.11 - 4.57) NW M.Oil(6.14 - 9.38) AK103(6.39 - 8.94) OR Diesel(2.11 - 7.11)


Surrogate Area Amount
----o-Terphenyl 416489 18.1 M
Triacontane 453209 17.7 M

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	22995.5 25564.0	16-AUG-2017 16-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15673.0	16-AUG-2017
Motor Oil	18529.0	16-AUG-2017
AK102	18101.0	16-AUG-2017
OR Diesel	18182.0	16-AUG-2017
NAS Diesel	18058.0	16-AUG-2017

9 9 (518,9) 0 - 6 - 0 ----0 - 0, - 0, - 10, _ e _ tu (∠∠2⁺6) 8∰ ----0 0 ۰ (\$26°8) 9£3 -----------(817.8) Aba9 Yatli yea4 v (8,490) -----4 -- 1 - 0 --₩ (8+0+8) Z£₹ ------ K -------- № (5°28) dung uppetal aang uooețal Processed Integration Manual Integration ------------------(221,7) 852 -------_ 0 _ 0 - 9 9.9 (229*9) 92 ----0 -----(982*9) (e,068) 0.0 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (259.632) (201°S) 0Z3 - 4 - 6 - 4 - 4 - 0 (SS7.1) Aqrat-o yduaş-o _4 _ក: _ 4 _ • _ ល (578 (4,573) - 4 - 4 - 4 - 4 - 4 (920.4) 91 - W - W - O - W - W - O (3,463) - 6 - 6 - 6 - w - w - W - W _ w _•• -2 -7-2,7 869字 019字 _ ′′. _ **4** _____4 927±3 ------2.1 <u>e</u>10 (5,113) 1.8 ----1.5 1,5 0.0-1.2 0.0-1.2 4.0-(GVOIX) X (GVOIX) X

Injection: 28-AUG-2017 17:55 Integrations Report 20170828.b/17082818.D TPH Manual Lab ID:17H0298-10 Datafile: FID4A,

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

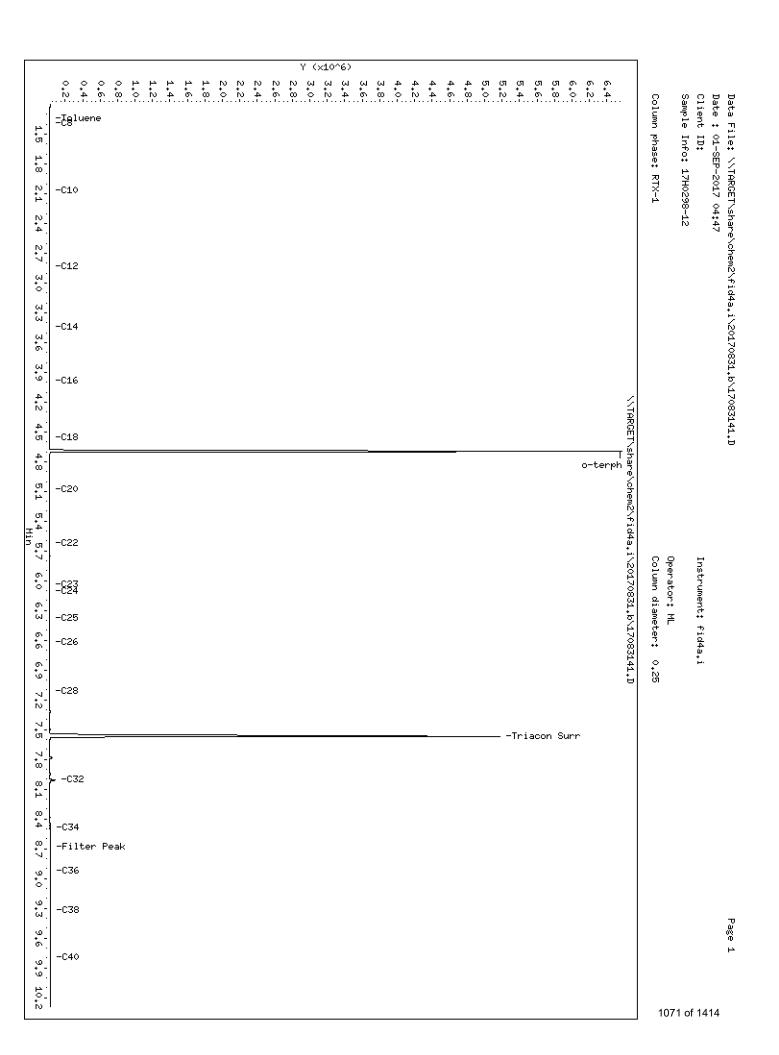
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 17H0298-12 SDG: 17H0298

Sampled: <u>08/24/17 17:00</u> Prepared: <u>08/28/17 10:54</u> File ID: <u>17083141.D</u>

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/01/17 04:47</u>


Batch: BFH0600 Sequence: SFH0381 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00005

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.512	114	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170831.b/17083141.D ARI ID: 17H0298-12

Method: 20170831.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 01-SEP-2017 04:47

Report Date: 09/01/2017 Dilution Factor: 1

Macro: 31-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:31-AUG-2017 M.Oil:31-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.348	0.024	 1925	4084	 WATPHG	(Tol-C12)	47594	31.7
C8	1.395	0.028	2970	3283	WATPHD	(C12-C24)	257048	21.6
C10	2.068	-0.005	781	745	WATPHM	(C24-C38)	584191	39.1
C12	2.834	0.003	1910	2141	AK102	(C10-C25)	288446	20.7
C14	3.448	0.007	1809	1749				
C16	3.987	0.046	1836	1804	OR.DIES	(C10-C28)	349356	24.9
C18	4.558	0.001	1660	1860				
C20	5.080	-0.012	2034	3403	1			
C22	5.620	0.001	1261	548	1			
C24	6.112	-0.016	1500	765				
C25	6.382	0.008	2279	3086				
C26	6.622	0.005	1561	753	1			
C28	7.115	0.016	2176	1499				
C32	8.009	-0.018	64977	67935				
C34	8.492	0.024	5521	1644				
Filter Peak	8.688	-0.001	6235	3044				
C36	8.923	0.016	7090	3493				
C38	9.318	0.006	9073	13336				
C40	9.802	0.021	12542	9269	1			
o-terph	4.698	-0.014	6552366	4407628				
Triacon Surr		-0.017		4953515	NAS DIES	S (C10-C24)	284169	20.5

Range Times: NW Diesel(2.831 - 6.128) AK102(2.07 - 6.37) Jet A(2.07 - 4.56) NW M.Oil(6.13 - 9.31) AK103(6.37 - 8.91) OR Diesel(2.07 - 7.10)

Surrogate	Area	Amount	
o-Terphenyl	4407628	256.1	3.4
Triacontane	4953515	229.2	IΔ

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	17211.9 21612.9	31-AUG-2017 31-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	11886.0	31-AUG-2017
Motor Oil	14933.0	31-AUG-2017
AK102	13946.0	31-AUG-2017
OR Diesel	14030.0	31-AUG-2017
NAS Diesel	13885.0	31-AUG-2017

(6°3338) A B CONTROL OF THE CO 9 ģ 9.6 9.6 9 9.3 0.6 0 ō (£26,8) 3€ 8.7 8.7 1ter Peak (8,688) (8,492) 4 4 8.1 ... (8*00a) 2.8 8. (052,5) maud noseinT 029*2-7.5 ហ CONDUCTION OF CONTROLL OF CONTROL OF Processed Integration Manual Integration 7.2 7,2 (911.7) 829 6 6.0 (ZZ9⁺9) 92 (285,6) 8 6,3 6.3 (SIN:3) £3 0.9 9.0 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (2*950) (080'5) 0 4 0 8, (869*b) yduat-o (899't) 8 . 4 . 5 4 ت 2, (∠86°Σ) 9ॿ σ ъ. Б m φ 3,6 m (3°448) . . . M W .0 .0 3.0 (2,834) 2,7 2,7 4. 4. 2,1 ozy暑 (890'Z) 0百 Lab ID:17H0298-12 1.8 . 8 828 ≒₹ 1 5 1,2 (9~01×) A (9~01×) A

Injection: 01-SEP-2017 04:47 TPH Manual Integrations Report 20170831.b/17083141.D Datafile: FID4A,

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

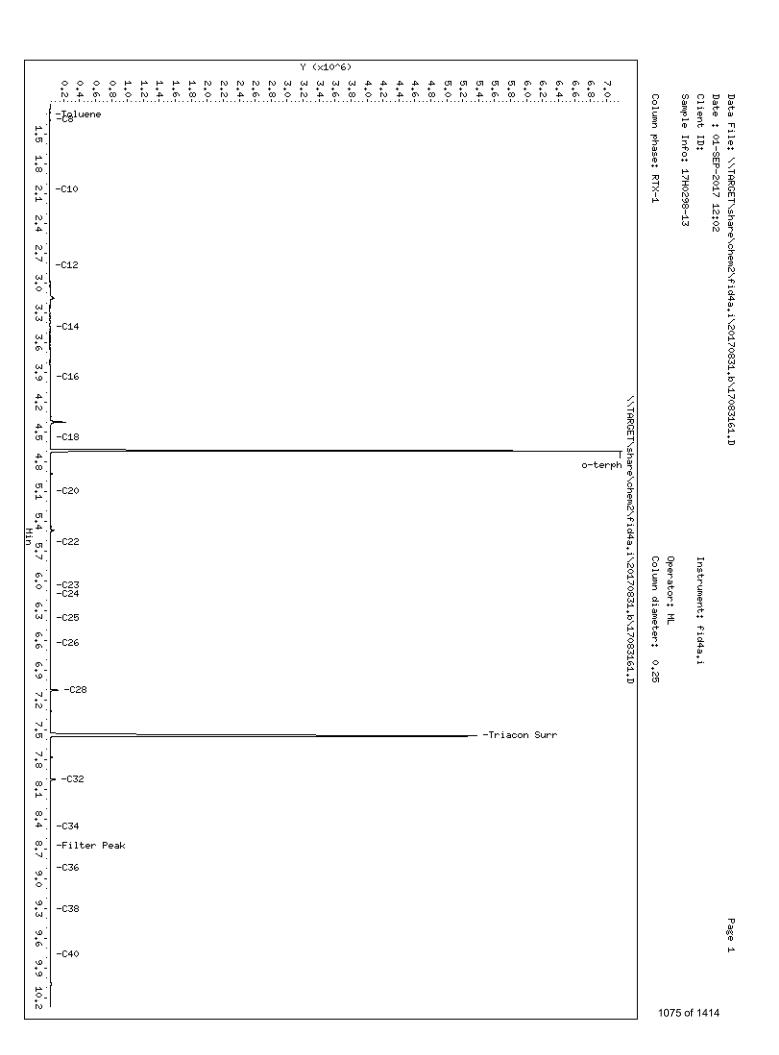
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 17H0298-13 SDG: 17H0298

Sampled: <u>08/24/17 17:00</u> Prepared: <u>08/25/17 13:34</u> File ID: <u>17083161.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/01/17 12:02</u>

Batch: BFH0589 Sequence: SFH0381 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00005

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.374		0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.282		0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.535	119	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170831.b/17083161.D ARI ID: 17H0298-13

Method: 20170831.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 01-SEP-2017 12:02

Report Date: 09/01/2017 Dilution Factor: 1

Macro: 31-AUG-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:31-AUG-2017 M.Oil:31-AUG-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.306	-0.018	4495	8749	WATPHG	(Tol-C12)	 133366	88.9
C8	1.358	-0.009	7329	7407	WATPHD	(C12-C24)	2222238	187.0
C10	2.065	-0.008	1180	919	WATPHM	(C24-C38)	2105143	141.0
C12	2.828	-0.003	4126	4124	AK102	(C10-C25)	2389278	171.3
C14	3.444	0.003	8820	14747	1			
C16	3.945	0.004	9370	12300	OR.DIES	(C10-C28)	2935814	209.3
C18	4.559	0.002	11427	3970				
C20	5.103	0.011	11402	11323	1			
C22	5.616	-0.003	14025	13797	1			
C24	6.137	0.009	13186	15565				
C25	6.375	0.002	14014	26255				
C26	6.632	0.015	15872	24883	1			
C28	7.102	0.002	104169	92345				
C32	8.003	-0.024	76784	90462	1			
C34	8.479	0.011	12619	23906				
Filter Peak	8.674	-0.015	13126	41890				
C36	8.896	-0.012	13773	43308				
C38	9.309	-0.003	13607	6101	1			
C40	9.768	-0.013	16555	14558				
o-terph	4.694	-0.018	7158682	4602199	1			
Triacon Surr	7.565	-0.022	5343586	4986407	NAS DIES	G (C10-C24)	2312106	166.5

Range Times: NW Diesel(2.831 - 6.128) AK102(2.07 - 6.37) Jet A(2.07 - 4.56)

NW M.Oil(6.13 - 9.31) AK103(6.37 - 8.91) OR Diesel(2.07 - 7.10)

Surrogate	Area	Amount	
o-Terphenyl	4602199	267.4	Μ
Triacontane	4986407	230.7	Μ

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	17211.9 21612.9	31-AUG-2017 31-AUG-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	11886.0	31-AUG-2017
Motor Oil	14933.0	31-AUG-2017
AK102	13946.0	31-AUG-2017
OR Diesel	14030.0	31-AUG-2017
NAS Diesel	13885.0	31-AUG-2017

9 CARCOLOR PRODUCT POLITICARRO CARROLO ANTICKATA LARVIDO COMO CARCOLOR PRODUCTO CARCOL 9 (892°6) 0日 9.6 9.0 (902,9) 0.6 ģ (968'8) 953 8.7 .0 (ÞZ9*8) 게eəd uət[댈 Peak (624.8) 4. œ 4 .1 8.1 C2S (8'002) -8-. 8 (201.7) 8235 7.5 7,5 (292,7) mand moosinl dang dobetal-Processed Integration Manual Integration 7,2 7,2 (259.9) 92 6 6.0 (875,8) (8103) (813,8) (8103) (813,8) (8103) .0 9 9 5.1 5.4 5.7 Time (Min) 5,1 5,4 5 Time (Min) 8, 4 0 (699°t) 819 (669*6) yduat-o qduəş-o 4 ت . 5 (3,945) (3,945) 2, ٦. 9 9 φ 3,6 m . . . 9 3.0 (828,S) 2 2,7 2,7 2,4 4 2,1 1,0 ∰161i3281·30e) 1,5 1,5 1,2 1,2 ν α α α α α α α 4 4 4 ω ω υ υ υ υ ι ι ι ι ο ο υ α 4 ο α υ α 4 ο α υ α 4 ο α υ α 4 0.0 (9~01×) A (9\0\X) \

Injection: 01-SEP-2017 12:02 TPH Manual Integrations Report 20170831.b/17083161.D Lab ID:17H0298-13 Datafile: FID4A,

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: <u>BFH0589</u> Batch Matrix: <u>Water</u> Preparation: <u>EPA 3510C SepF</u>

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-MW-4-170824	17H0298-13	17083161.D	08/25/17 13:34	
Blank	BFH0589-BLK1	17083142.D	08/25/17 13:34	
LCS	BFH0589-BS1	17083143.D	08/25/17 13:34	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFH0596
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-100-0-4-170823	17H0298-02	17082819.D	08/28/17 10:15	
SVCA-TP-101-0-2-170823	17H0298-04	17082816.D	08/28/17 10:15	
SVCA-TP-102-0-2-170823	17H0298-07	17082820.D	08/28/17 10:15	
SVCA-TP-103-0-2-170823	17H0298-10	17082818.D	08/28/17 10:15	
Blank	BFH0596-BLK1	17082813.D	08/28/17 10:15	
LCS	BFH0596-BS1	17082814.D	08/28/17 10:15	

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFH0597
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-100-0-4-170823	17H0298-01	17083008.D	08/28/17 10:20	
SVCA-TP-101-0-2-170823	17H0298-03	17083009.D	08/28/17 10:20	
SVCA-TP-102-0-2-170823	17H0298-06	17083010.D	08/28/17 10:20	
SVCA-TP-103-0-2-170823	17H0298-09	17083011.D	08/28/17 10:20	
SVCA-TP-103-0-2-170823	17H0298-09RE1	17083014.D	08/28/17 10:20	Added 8/30/2017 by MDL
Blank	BFH0597-BLK1	17083006.D	08/28/17 10:20	
LCS	BFH0597-BS1	17083007.D	08/28/17 10:20	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: <u>BFH0600</u> Batch Matrix: <u>Water</u> Preparation: <u>EPA 3510C SepF</u>

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-MW-4-170824	17H0298-12	17083141.D	08/28/17 10:54	
Blank	BFH0600-BLK1	17083139.D	08/28/17 10:54	
LCS	BFH0600-BS1	17083140.D	08/28/17 10:54	

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: <u>Water</u> Laboratory ID: <u>BFH0589-BLK1</u> File ID: <u>17083142.D</u>

Sampled: $\underline{N/A}$ Prepared: $\underline{08/25/17\ 13:34}$ Analyzed: $\underline{09/01/17\ 05:08}$

Solids: Preparation: <u>EPA 3510C SepF</u> Initial/Final: <u>500 mL / 1 mL</u>

Batch: <u>BFH0589</u> Sequence: <u>SFH0381</u> Calibration: <u>AI00005</u>

Instrument: FID4 Column: RTX-1

CAS NO.	COMPOUND	DILUTION CONC. (mg/L) Q		Q	DL		RL			
	Diesel Range Organics (C12-C24)	1		0.100		U	0.033		0.100	
	Motor Oil Range Organics (C24-C38)	1		0.200		U	0.056	Ó	0.200	
SURROGATES		ADDED (mg	g/L)	CONC (mg	₅ /L)	%]	REC	Q	C LIMITS	Q
o-Terphenyl		0.45000		0.528		1	17		50 - 150	

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFH0596-BLK1 File ID: 17082813.D

Sampled: $\underline{N/A}$ Prepared: $\underline{08/28/17\ 10:15}$ Analyzed: $\underline{08/28/17\ 16:01}$

Solids: Preparation: <u>EPA 3546 (Microwave)</u> Initial/Final: <u>10 g / 1 mL</u>

Batch: <u>BFH0596</u> Sequence: <u>SFH0319</u> Calibration: <u>AH00054</u>

Instrument: FID4 Column: RTX-1

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg wet)	Ç)	DL		RL	
	Diesel Range Organics (C12-C24)	1	5.00	U	J	2.34		5.00	
	Motor Oil Range Organics (C24-C38)	1	10.0	U	J	2.99		10.0	
SURROGATES		ADDED (mg/kg	wet) CONC (mg/kg	(wet)	%]	REC	Q	C LIMITS	Q

SURROGATES	ADDED (mg/kg wet)	CONC (mg/kg wet)	% REC	QC LIMITS	Q
o-Terphenyl	22.500	18.1	80.4	50 - 150	

Form I METHOD BLANK DATA SHEET **NWTPH-Dx**

Blank

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Anchor QEA, LLC Client: Project: SCVA Area Z Remediation

Matrix: Laboratory ID: BFH0597-BLK1 File ID: 17083006.D Solid

Sampled: N/A Prepared: 08/28/17 10:20 Analyzed: 08/30/17 10:36

Solids: Preparation: EPA 3546 (Microwave) Initial/Final: 10 g / 1 mLBatch: BFH0597 Sequence: SFH0356 Calibration: AH00054

FID4 Column: RTX-1 Silica Gel, Sulfuric Acid Instrument: Cleanups:

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg wet)		Q	DL		RL	
	Diesel Range Organics (C12-C24)	1	5.00		U	2.34		5.00	
	Motor Oil Range Organics (C24-C38)	1	10.0		U	2.99		10.0	
SURROGATES		ADDED (mg/kg	(wet) CONC (mg/kg	wet)	%]	REC	Q	C LIMITS	Q

SURROGATES	ADDED (mg/kg wet)	CONC (mg/kg wet)	% REC	QC LIMITS	Q
o-Terphenyl	22.500	21.0	93.2	50 - 150	

BFH0600

Batch:

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: <u>17H0298</u>

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: <u>Water</u> Laboratory ID: <u>BFH0600-BLK1</u> File ID: <u>17083139.D</u>

Sampled: $\underline{N/A}$ Prepared: $\underline{08/28/17\ 10:54}$ Analyzed: $\underline{09/01/17\ 04:04}$

Solids: Preparation: <u>EPA 3510C SepF</u> Initial/Final: <u>500 mL / 1 mL</u>

Sequence:

Instrument: FID4 Column: RTX-1 Cleanups: Silica Gel, Sulfuric Acid

SFH0381

Calibration:

AI00005

CAS NO. COMPOUND DILUTION CONC. (mg/L) DL RL Q Diesel Range Organics (C12-C24) 0.100 U 0.033 0.100 Motor Oil Range Organics (C24-C38) 0.2880.056 0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.542	121	50 - 150	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/01/17 05:31

 Batch:
 BFH0589
 Laboratory ID:
 BFH0589-BS1

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	3.39		113	56 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 08/28/17 16:23

 Batch:
 BFH0596
 Laboratory ID:
 BFH0596-BS1

Preparation: <u>EPA 3546 (Microwave)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 g / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	114		76.1	63 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 08/30/17 10:59

 Batch:
 BFH0597
 Laboratory ID:
 BFH0597-BS1

Preparation: <u>EPA 3546 (Microwave)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 g / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	130		86.5	63 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/01/17 04:26

 Batch:
 BFH0600
 Laboratory ID:
 BFH0600-BS1

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	3.09		103	56 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFH0146 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-TP-100-0-4-170823	17H0298-01	17083008.D	08/28/2017	
SVCA-TP-103-0-2-170823	17H0298-09RE1	17083014.D	08/28/2017	Added 8/30/2017 by MDL
SVCA-TP-103-0-2-170823	17H0298-09	17083011.D	08/28/2017	
SVCA-TP-102-0-2-170823	17H0298-06	17083010.D	08/28/2017	
SVCA-TP-101-0-2-170823	17H0298-03	17083009.D	08/28/2017	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFH0147 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-TP-103-0-2-170823	17H0298-09	17083011.D	08/28/2017	
SVCA-TP-102-0-2-170823	17H0298-06	17083010.D	08/28/2017	
SVCA-TP-101-0-2-170823	17H0298-03	17083009.D	08/28/2017	
SVCA-TP-100-0-4-170823	17H0298-01	17083008.D	08/28/2017	
SVCA-TP-103-0-2-170823	17H0298-09RE1	17083014.D	08/28/2017	Added 8/30/2017 by MDL

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFH0154 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-MW-4-170824	17H0298-12	17083141.D	08/29/2017	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFH0155 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-MW-4-170824	17H0298-12	17083141.D	08/29/2017	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00054 Instrument: FID4

Calibration Date: 08/16/2017 15:22 Column (1): RTX-1

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Lo	evel 05	Level 06	
Compound		RF		RF		RF		RF		RF		RF
Diesel Range Organics (C12-C24)	50	14230.7	100	14518.03	250	15531.87	500	16646.47	1000	16694.89	2500	16417.42
o-Terphenyl	9	22700.67	18	21007.72	45	22582.38	90	23843.62	180	24004.38	450	23834.4

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00054 Instrument: FID4

Calibration Date: 08/16/2017 15:22 Column (1): RTX-1

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Motor Oil Range Organics (C24-C38)	100	18461.3	250	19398.11	500	18611.88	1000	19384.63	2500	17759.74	5000	17556.58

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00054 Instrument: FID4

Calibration Date: 08/16/2017 15:22 Column (1): RTX-1

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q
Diesel Range Organics (C12-C24)	15673.23	7.0			RSD (20)
Motor Oil Range Organics (C24-C38)	18528.71	4.2			RSD (20)
o-Terphenyl	22995.53	5.0			RSD (20)

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00005 Instrument: FID4

Calibration Date: 08/31/2017 11:56 Column (1): RTX-1

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Lo	Level 05		Level 06	
Compound		RF		RF		RF		RF		RF		RF	
Diesel Range Organics (C12-C24)	50	11789.8	100	11716.53	250	12096.5	500	11722.72	1000	11774.03	2500	12213.49	
o-Terphenyl	9	17254.78	18	17050.5	45	17565.76	90	16664.64	180	16961.66	450	17774.28	

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00005 Instrument: FID4

Calibration Date: 08/31/2017 11:56 Column (1): RTX-1

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	Level 11		Level 12	
Compound		RF		RF		RF		RF		RF		RF
Motor Oil Range Organics (C24-C38)	100	14376.57	250	15212.34	500	15090.76	1000	15001.33	2500	15107.68	5000	14807.66

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00005 Instrument: FID4

Calibration Date: 08/31/2017 11:56 Column (1): RTX-1

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit (Q
Diesel Range Organics (C12-C24)	11885.51	1.8			RSD (20)	
Motor Oil Range Organics (C24-C38)	14932.72	2.0			RSD (20)	
o-Terphenyl	17211.94	2.4			RSD (20)	

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00054 Laboratory ID: SFH0196-SCV1

Sequence: SFH0196 Sequence Name: DIES SCV 500

Standard ID: F006358

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Diesel Range Organics (C12-C24)	500.00	444	-11.3	30.00
o-Terphenyl	90.000	87.9	-2.3	

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AH00054 Laboratory ID: SFH0196-SCV2

Sequence: SFH0196 Sequence Name: Moil SCV 1000

Standard ID: F007427

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Motor Oil Range Organics (C24-C38)	1000.0	934	-6.6	30.00

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00005 Laboratory ID: SFH0381-SCV1

Sequence: SFH0381 Sequence Name: DIES SCV 500

Standard ID: F006358

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Diesel Range Organics (C12-C24)	500.00	472	-5.7	30.00
o-Terphenyl	90.000	91.8	2.0	

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: A100005 Laboratory ID: SFH0381-SCV2

Sequence: SFH0381 Sequence Name: Moil SCV 1000

Standard ID: F007427

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Motor Oil Range Organics (C24-C38)	1000.0	919	-8.2	30.00

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082804.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-ICV1 Injection Time: 12:04

Sequence Name: <u>Diesel ICV</u>

		CONC.	(mg/L)	RESPONSE FACTOR		OR	% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	508	15673.2300	15926.8100		1.6	20
o-Terphenyl	A	90.000	86.6	22995.5300	22117.3100		-3.8	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082805.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-ICV2 Injection Time: 12:26

Sequence Name: <u>MOIL ICV</u>

		CONC.	(mg/L)	RESI	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1030	18528.7100	19144.1800		3.3	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17083003.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-ICV1 Injection Time: 09:28

Sequence Name: <u>Diesel ICV</u>

		CONC.	(mg/L)	RESPONSE FACTOR		OR	% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	551	15673.2300	17267.2200		10.2	20
o-Terphenyl	A	90.000	98.0	22995.5300	25028.4800		8.9	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17083004.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-ICV2 Injection Time: 09:51

Sequence Name: <u>MOIL ICV</u>

		CONC.	(mg/L)	RESI	RESPONSE FACTOR			T/DIFF
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1040	18528.7100	19177.9800		3.5	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082811.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-CCV1 Injection Time: 14:56

Sequence Name: <u>Diesel CCV1</u>

		CONC.	(mg/L)	RESPONSE FACTOR		OR	% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	479	15673.23	14999.34		-4.3	15
o-Terphenyl	A	90.000	83.1	22995.53	21226.99		-7.7	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082812.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-CCV2 Injection Time: 15:19

Sequence Name: MOIL CCV1

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1010	18528.71	18781.05		1.4	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082821.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: $\underline{SFH0319}$ Injection Date: $\underline{08/28/17}$

Lab Sample ID: SFH0319-CCV3 Injection Time: 19:06

Sequence Name: <u>Diesel CCV2</u>

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	514	15673.23	16107.86		2.8	15
o-Terphenyl	A	90.000	92.4	22995.53	23597.08		2.7	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: 17082822.D Calibration Date: 08/16/17 15:22

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-CCV4 Injection Time: 19:30

Sequence Name: <u>MOILCCV2</u>

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1040	18528.71	19243.26		3.9	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17082833.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0319 Injection Date: 08/28/17

Lab Sample ID: SFH0319-CCV5 Injection Time: 23:42

Sequence Name: <u>Diesel CCV3</u>

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	566	15673.23	17753.48		13.3	15
o-Terphenyl	A	90.000	102	22995.53	25922.91		12.8	15

^{*} Values outside of QC limits

00:05

Laboratory: Analytical Resources, Inc. 17H0298 SDG:

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: 08/16/17 15:22 17082834.D Calibration Date:

Sequence: SFH0319 Injection Date: 08/29/17 Lab Sample ID: Injection Time:

Sequence Name: MOIL CCV3

SFH0319-CCV6

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1020	18528.71	18811.51		1.5	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: 17083012.D Calibration Date: 08/16/17 15:22

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-CCV1 Injection Time: 12:52

Sequence Name: <u>Diesel CCV1</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	562	15673.23	17630.13		12.5	15
o-Terphenyl	A	90.000	98.9	22995.53	25274.26		9.9	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17083013.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-CCV2 Injection Time: 13:14

Sequence Name: MOIL CCV1

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1000	18528.71	18614.03		0.5	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: 17083026.D Calibration Date: 08/16/17 15:22

Sequence: $\underline{SFH0356}$ Injection Date: $\underline{08/30/17}$ Lab Sample ID: $\underline{SFH0356\text{-}CCV3}$ Injection Time: $\underline{18:10}$

Sequence Name: <u>Diesel CCV2</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	583	15673.23	18272.04		16.6	15 *
o-Terphenyl	A	90.000	110	22995.53	28002.79		21.8	15 *

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17083027.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-CCV4 Injection Time: 18:34

Sequence Name: MOILCCV2

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	968	18528.71	17940.13		-3.2	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: 17083037.D Calibration Date: 08/16/17 15:22

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-CCV5 Injection Time: 22:20

Sequence Name: <u>Diesel CCV3</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	607	15673.23	19025.47		21.4	15 *
o-Terphenyl	A	90.000	114	22995.53	29073.63		26.4	15 *

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AH00054

Lab File ID: <u>17083038.D</u> Calibration Date: <u>08/16/17 15:22</u>

Sequence: SFH0356 Injection Date: 08/30/17

Lab Sample ID: SFH0356-CCV6 Injection Time: 22:41

Sequence Name: MOIL CCV3

		CONC. (mg/L)		RE	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1000	18528.71	18532.71		0.02	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083131.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: SFH0381 Injection Date: 09/01/17

Lab Sample ID: SFH0381-CCV1 Injection Time: 01:12

Sequence Name: <u>Diesel CCV1</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	491	11885.51	11674.49		-1.8	15
o-Terphenyl	A	90.000	87.5	17211.94	16728.89		-2.8	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: 17083132.D Calibration Date: 08/31/17 11:56

Sequence: SFH0381 Injection Date: 09/01/17

Lab Sample ID: SFH0381-CCV2 Injection Time: 01:33

Sequence Name: MOIL CCV1

		CONC. (mg/L)		RE	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1020	14932.72	15229.82		2.0	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083150.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: $\underline{SFH0381}$ Injection Date: $\underline{09/01/17}$

Lab Sample ID: SFH0381-CCV3 Injection Time: 08:01

Sequence Name: <u>Diesel CCV2</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	556	11885.51	13209.95		11.1	15
o-Terphenyl	A	90.000	104	17211.94	19948.23		15.9	15 *

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083151.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: SFH0381 Injection Date: 09/01/17

Lab Sample ID: SFH0381-CCV4 Injection Time: 08:22

Sequence Name: MOILCCV2

		CONC. (mg/L)		RE	SPONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1060	14932.72	15758.91		5.5	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083163.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: SFH0381 Injection Date: 09/01/17

Lab Sample ID: SFH0381-CCV5 Injection Time: 12:47

Sequence Name: <u>Diesel CCV3</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	566	11885.51	13454.45		13.2	15
o-Terphenyl	A	90.000	98.2	17211.94	18782.76		9.1	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083164.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: SFH0381 Injection Date: 09/01/17

Lab Sample ID: SFH0381-CCV6 Injection Time: 13:08

Sequence Name: MOIL CCV3

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1040	14932.72	15553.69		4.2	15

^{*} Values outside of QC limits

SECOND-SOURCE CONTINUING CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083111.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: $\underline{SFH0381}$ Injection Date: $\underline{08/31/17}$

Lab Sample ID: SFH0381-SCV1 Injection Time: 17:53

Sequence Name: <u>DIES SCV 500</u>

		CONC. (mg/L)		RE	SPONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	472	11885.51	11214.18		-5.7	30
o-Terphenyl	A	90.000	91.8	17211.94	17547.69		2.0	

^{*} Values outside of QC limits

SECOND-SOURCE CONTINUING CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00005

Lab File ID: <u>17083118.D</u> Calibration Date: <u>08/31/17 11:56</u>

Sequence: SFH0381 Injection Date: 08/31/17

Lab Sample ID: SFH0381-SCV2 Injection Time: 20:28

Sequence Name: Moil SCV 1000

		CONC. (mg/L)		RE	SPONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	919	14932.72	13716.33		-8.2	30

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFH0196 Instrument: FID4

Calibration: AH00054

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFH0196-IBL1	17081603.D	NA	08/16/17 11:02
Instrument Blank	SFH0196-IBL2	17081604.D	NA	08/16/17 11:25
Diesel 50	SFH0196-CAL1	17081607.D	NA	08/16/17 14:21
Diesel 100	SFH0196-CAL2	17081608.D	NA	08/16/17 14:42
DIES 250	SFH0196-CAL3	17081609.D	NA	08/16/17 15:06
DIES 500	SFH0196-CAL4	17081610.D	NA	08/16/17 15:27
DIES 1000	SFH0196-CAL5	17081611.D	NA	08/16/17 15:50
DIES 2500	SFH0196-CAL6	17081612.D	NA	08/16/17 16:13
MOIL 100	SFH0196-CAL7	17081613.D	NA	08/16/17 16:35
Moil 250	SFH0196-CAL8	17081614.D	NA	08/16/17 16:59
Moil 500	SFH0196-CAL9	17081615.D	NA	08/16/17 17:20
Moil 1000	SFH0196-CALA	17081616.D	NA	08/16/17 17:43
Moil 2500	SFH0196-CALB	17081617.D	NA	08/16/17 18:07
Moil 5000	SFH0196-CALC	17081618.D	NA	08/16/17 18:28
DIES SCV 500	SFH0196-SCV1	17081619.D	NA	08/16/17 18:52
Moil SCV 1000	SFH0196-SCV2	17081620.D	NA	08/16/17 19:15
ZZZZZ	BFH0158-BLK1	17081621.D	Water	08/16/17 19:38
ZZZZZ	17H0064-01	17081622.D	Water	08/16/17 20:00
ZZZZZ	17H0048-06RE1	17081623.D	Water	08/16/17 20:24
ZZZZZ	17H0048-07RE1	17081624.D	Water	08/16/17 20:47
ZZZZZ	17H0063-01RE1	17081625.D	Water	08/16/17 21:09
Diesel CCV1	SFH0196-CCV1	17081626.D	NA	08/16/17 21:32
MOIL CCV1	SFH0196-CCV2	17081627.D	NA	08/16/17 21:55
ZZZZZ	BFH0301-BLK1	17081628.D	Solid	08/16/17 22:17
ZZZZZ	BFH0301-BS1	17081629.D	Solid	08/16/17 22:40
ZZZZZ	BFH0301-MRL1	17081630.D	Solid	08/16/17 23:02
ZZZZZ	17H0127-01	17081631.D	Solid	08/16/17 23:25
ZZZZZ	17H0127-02	17081632.D	Solid	08/16/17 23:48
Diesel CCV2	SFH0196-CCV3	17081633.D	NA	08/17/17 00:10
MOILCCV2	SFH0196-CCV4	17081634.D	NA	08/17/17 00:33

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFH0319 Instrument: FID4

Calibration: AH00054

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFH0319-IBL1	17082802.D	NA	08/28/17 11:18
Instrument Blank	SFH0319-IBL2	17082803.D	NA	08/28/17 11:41
Diesel ICV	SFH0319-ICV1	17082804.D	NA	08/28/17 12:04
MOIL ICV	SFH0319-ICV2	17082805.D	NA	08/28/17 12:26
ZZZZZ	BFH0489-BLK1	17082806.D	Solid	08/28/17 12:49
ZZZZZ	BFH0489-BS1	17082807.D	Solid	08/28/17 13:13
ZZZZZ	17H0220-01	17082808.D	Solid	08/28/17 13:34
ZZZZZ	17H0220-02	17082809.D	Solid	08/28/17 13:58
ZZZZZ	17H0220-03	17082810.D	Solid	08/28/17 14:21
Diesel CCV1	SFH0319-CCV1	17082811.D	NA	08/28/17 14:56
MOIL CCV1	SFH0319-CCV2	17082812.D	NA	08/28/17 15:19
Blank	BFH0596-BLK1	17082813.D	Solid	08/28/17 16:01
LCS	BFH0596-BS1	17082814.D	Solid	08/28/17 16:23
SVCA-TP-101-0-2-170823	17H0298-04	17082816.D	Solid	08/28/17 17:10
SVCA-TP-103-0-2-170823	17H0298-10	17082818.D	Solid	08/28/17 17:55
SVCA-TP-100-0-4-170823	17H0298-02	17082819.D	Solid	08/28/17 18:18
SVCA-TP-102-0-2-170823	17H0298-07	17082820.D	Solid	08/28/17 18:42
Diesel CCV2	SFH0319-CCV3	17082821.D	NA	08/28/17 19:06
MOILCCV2	SFH0319-CCV4	17082822.D	NA	08/28/17 19:30
ZZZZZ	BFH0488-BLK1	17082823.D	Solid	08/28/17 19:53
ZZZZZ	BFH0488-BS1	17082824.D	Solid	08/28/17 20:15
ZZZZZ	17H0218-01	17082825.D	Solid	08/28/17 20:39
ZZZZZ	17H0218-02	17082826.D	Solid	08/28/17 21:03
ZZZZZ	17H0218-03	17082827.D	Solid	08/28/17 21:25
ZZZZZ	17H0218-04	17082828.D	Solid	08/28/17 21:48
ZZZZZ	17H0218-05	17082831.D	Solid	08/28/17 22:56
ZZZZZ	17H0218-06	17082832.D	Solid	08/28/17 23:20
Diesel CCV3	SFH0319-CCV5	17082833.D	NA	08/28/17 23:42
MOIL CCV3	SFH0319-CCV6	17082834.D	NA	08/29/17 00:05

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0356</u> Instrument: <u>FID4</u>

Calibration: AH00054

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFH0356-IBL1	17083001.D	NA	08/30/17 08:43
Instrument Blank	SFH0356-IBL2	17083002.D	NA	08/30/17 09:06
Diesel ICV	SFH0356-ICV1	17083003.D	NA	08/30/17 09:28
MOIL ICV	SFH0356-ICV2	17083004.D	NA	08/30/17 09:51
Blank	BFH0597-BLK1	17083006.D	Solid	08/30/17 10:36
LCS	BFH0597-BS1	17083007.D	Solid	08/30/17 10:59
SVCA-TP-100-0-4-170823	17H0298-01	17083008.D	Solid	08/30/17 11:21
SVCA-TP-101-0-2-170823	17H0298-03	17083009.D	Solid	08/30/17 11:44
SVCA-TP-102-0-2-170823	17H0298-06	17083010.D	Solid	08/30/17 12:07
SVCA-TP-103-0-2-170823	17H0298-09	17083011.D	Solid	08/30/17 12:29
Diesel CCV1	SFH0356-CCV1	17083012.D	NA	08/30/17 12:52
MOIL CCV1	SFH0356-CCV2	17083013.D	NA	08/30/17 13:14
SVCA-TP-103-0-2-170823	17H0298-09RE1	17083014.D	Solid	08/30/17 13:37
Diesel CCV2	SFH0356-CCV3	17083026.D	NA	08/30/17 18:10
MOILCCV2	SFH0356-CCV4	17083027.D	NA	08/30/17 18:34
Diesel CCV3	SFH0356-CCV5	17083037.D	NA	08/30/17 22:20
MOIL CCV3	SFH0356-CCV6	17083038.D	NA	08/30/17 22:41

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0381</u> Instrument: <u>FID4</u>

Calibration: AI00005

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFH0381-IBL1	17083102.D	NA	08/31/17 14:35
Instrument Blank	SFH0381-IBL2	17083103.D	NA	08/31/17 14:57
Diesel 50	SFH0381-CAL1	17083105.D	NA	08/31/17 15:41
Diesel 100	SFH0381-CAL2	17083106.D	NA	08/31/17 16:04
DIES 250	SFH0381-CAL3	17083107.D	NA	08/31/17 16:25
DIES 500	SFH0381-CAL4	17083108.D	NA	08/31/17 16:48
DIES 1000	SFH0381-CAL5	17083109.D	NA	08/31/17 17:09
DIES 2500	SFH0381-CAL6	17083110.D	NA	08/31/17 17:31
DIES SCV 500	SFH0381-SCV1	17083111.D	NA	08/31/17 17:53
MOIL 100	SFH0381-CAL7	17083112.D	NA	08/31/17 18:15
Moil 250	SFH0381-CAL8	17083113.D	NA	08/31/17 18:38
Moil 500	SFH0381-CAL9	17083114.D	NA	08/31/17 18:59
Moil 1000	SFH0381-CALA	17083115.D	NA	08/31/17 19:22
Moil 2500	SFH0381-CALB	17083116.D	NA	08/31/17 19:43
Moil 5000	SFH0381-CALC	17083117.D	NA	08/31/17 20:07
Moil SCV 1000	SFH0381-SCV2	17083118.D	NA	08/31/17 20:28
ZZZZZ	BFH0643-BLK1	17083120.D	Solid	08/31/17 21:12
ZZZZZ	BFH0643-BS1	17083121.D	Solid	08/31/17 21:34
ZZZZZ	17H0325-01	17083122.D	Solid	08/31/17 21:56
ZZZZZ	17H0325-02	17083123.D	Solid	08/31/17 22:17
ZZZZZ	17H0325-03	17083124.D	Solid	08/31/17 22:40
ZZZZZ	17H0325-04	17083125.D	Solid	08/31/17 23:01
ZZZZZ	17H0325-05	17083126.D	Solid	08/31/17 23:23
ZZZZZ	17H0325-06	17083127.D	Solid	08/31/17 23:45
ZZZZZ	17H0325-07	17083128.D	Solid	09/01/17 00:06
ZZZZZ	17H0325-08	17083129.D	Solid	09/01/17 00:28
ZZZZZ	17H0325-09	17083130.D	Solid	09/01/17 00:51
Diesel CCV1	SFH0381-CCV1	17083131.D	NA	09/01/17 01:12
MOIL CCV1	SFH0381-CCV2	17083132.D	NA	09/01/17 01:33
ZZZZZ	17H0325-10	17083133.D	Solid	09/01/17 01:56

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0381</u> Instrument: <u>FID4</u>

Calibration: AI00005

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
ZZZZZ	BFH0662-BLK1	17083134.D	Solid	09/01/17 02:17
ZZZZZ	BFH0662-BS1	17083135.D	Solid	09/01/17 02:38
ZZZZZ	17H0319-01	17083136.D	Solid	09/01/17 03:01
ZZZZZ	17H0319-02	17083137.D	Solid	09/01/17 03:22
ZZZZZ	17H0327-01	17083138.D	Solid	09/01/17 03:43
Blank	BFH0600-BLK1	17083139.D	Water	09/01/17 04:04
LCS	BFH0600-BS1	17083140.D	Water	09/01/17 04:26
SVCA-MW-4-170824	17H0298-12	17083141.D	Water	09/01/17 04:47
Blank	BFH0589-BLK1	17083142.D	Water	09/01/17 05:08
LCS	BFH0589-BS1	17083143.D	Water	09/01/17 05:31
ZZZZZ	17H0271-02	17083144.D	Water	09/01/17 05:52
ZZZZZ	17H0271-03	17083147.D	Water	09/01/17 06:57
ZZZZZ	17H0271-04	17083148.D	Water	09/01/17 07:17
ZZZZZ	17H0271-05	17083149.D	Water	09/01/17 07:39
Diesel CCV2	SFH0381-CCV3	17083150.D	NA	09/01/17 08:01
MOILCCV2	SFH0381-CCV4	17083151.D	NA	09/01/17 08:22
ZZZZZ	17H0273-01	17083152.D	Water	09/01/17 08:43
ZZZZZ	17H0273-03	17083153.D	Water	09/01/17 09:06
ZZZZZ	17H0273-05	17083154.D	Water	09/01/17 09:27
ZZZZZ	17H0273-07	17083155.D	Water	09/01/17 09:50
ZZZZZ	17H0292-01	17083156.D	Water	09/01/17 10:11
ZZZZZ	17H0292-02	17083157.D	Water	09/01/17 10:33
ZZZZZ	17H0292-03	17083158.D	Water	09/01/17 10:55
ZZZZZ	17H0292-04	17083159.D	Water	09/01/17 11:17
ZZZZZ	17H0292-06	17083160.D	Water	09/01/17 11:39
SVCA-MW-4-170824	17H0298-13	17083161.D	Water	09/01/17 12:02
Diesel CCV3	SFH0381-CCV5	17083163.D	NA	09/01/17 12:47
MOIL CCV3	SFH0381-CCV6	17083164.D	NA	09/01/17 13:08

SURROGATE RECOVERY AND RT SUMMARY

NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFH0196 Instrument: FID4

Calibration: AH00054 Calibration Date: 08/16/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SFH0196-SCV1 (Water)	Lab File ID: 17081619.D Analyzed: 08/16/17 18:52							
o-Terphenyl	90.000	97.7	0 - 200	4.72	4.736667	-0.0167	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFH0319 Instrument: FID4

Calibration: AH00054 Calibration Date: 08/16/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q	
SFH0319-IBL1 (Solid)			Lab File I	D: 17082802.I)	Analyze	d: 08/28/17 11	:18	
o-Terphenyl	225.00	90.3	50 - 150	4.73	4.736667	-0.0067	N/A		
SFH0319-IBL2 (Solid)			Lab File I	D: 17082803.I)	Analyze	d: 08/28/17 11	:41	
o-Terphenyl	225.00	87.0	50 - 150	4.73	4.736667	-0.0067	N/A		
SFH0319-ICV1 (Solid)	Lab File ID: 17082804.D Analyzed: 08/28/1						d: 08/28/17 12	:04	
o-Terphenyl	90.000	96.2	80 - 120	4.72	4.736667	-0.0167	N/A		
BFH0596-BLK1 (Solid)	Lab File ID: 17082813.D						Analyzed: 08/28/17 16:		
o-Terphenyl	22.500	80.4	50 - 150	4.74	4.736667	0.0033	N/A		
BFH0596-BS1 (Solid)	Lab File ID: 17082814.D					Analyzed: 08/28/17 16:23			
o-Terphenyl	22.500	80.4	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-04 (Solid)			Lab File II	D: 17082816.I)	Analyze	d: 08/28/17 17	:10	
o-Terphenyl	23.325	72.7	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-10 (Solid)			Lab File I	D: 17082818.I)	Analyze	d: 08/28/17 17	:55	
o-Terphenyl	23.959	80.4	50 - 150	4.72	4.736667	-0.0167	N/A		
17H0298-02 (Solid)			Lab File I	D: 17082819.I)	Analyze	d: 08/28/17 18	:18	
o-Terphenyl	24.535	79.4	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-07 (Solid)			Lab File I	D: 17082820.I)	Analyze	d: 08/28/17 18	:42	
o-Terphenyl	23.105	94.2	50 - 150	4.72	4.736667	-0.0167	N/A		

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFH0356 Instrument: FID4

Calibration: AH00054 Calibration Date: 08/16/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q	
SFH0356-IBL1 (Solid)			Lab File I	D: 17083001.I	D	Analyze	d: 08/30/17 08	:43	
o-Terphenyl	225.00	130	50 - 150	4.73	4.736667	-0.0067	N/A		
SFH0356-IBL2 (Solid)			Lab File I	D: 17083002.I	D	Analyze	d: 08/30/17 09	:06	
o-Terphenyl	225.00	124	50 - 150	4.73	4.736667	-0.0067	N/A		
SFH0356-ICV1 (Solid)		Lab File ID: 17083003.D Analyzed: 08/30/1							
o-Terphenyl	90.000	109	80 - 120	4.72	4.736667	-0.0167	N/A		
BFH0597-BLK1 (Solid)			Lab File I	D: 17083006.I	D	Analyzed: 08/30/17 10:30			
o-Terphenyl	22.500	93.2	50 - 150	4.73	4.736667	-0.0067	N/A		
BFH0597-BS1 (Solid)	Lab File ID: 17083007.D					Analyze	d: 08/30/17 10	:59	
o-Terphenyl	22.500	99.0	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-01 (Solid)			Lab File I	D: 17083008.I	D	Analyze	d: 08/30/17 11	:21	
o-Terphenyl	24.706	101	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-03 (Solid)			Lab File I	D: 17083009.I	D	Analyze	d: 08/30/17 11	:44	
o-Terphenyl	23.652	94.4	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-06 (Solid)			Lab File I	D: 17083010.I	D	Analyze	d: 08/30/17 12	:07	
o-Terphenyl	23.590	105	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-09 (Solid)	•		Lab File I	D: 17083011.I	D	Analyze	d: 08/30/17 12	:29	
o-Terphenyl	24.582	107	50 - 150	4.73	4.736667	-0.0067	N/A		
17H0298-09RE1 (Solid)			Lab File I	D: 17083014.I	D	Analyze	d: 08/30/17 13	:37	
o-Terphenyl	24.582	101	50 - 150	4.72	4.736667	-0.0167	N/A	T	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFH0381</u> Instrument: <u>FID4</u>

Calibration: AI00005 Calibration Date: 08/31/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q	
SFH0381-IBL1 (Solid)			Lab File I	D: 17083102.I)	Analyze	d: 08/31/17 14	:35	
o-Terphenyl	225.00	109	50 - 150	4.71	4.7	0.0100	N/A		
SFH0381-IBL2 (Solid)			Lab File I	D: 17083103.I)	Analyze	d: 08/31/17 14	:57	
o-Terphenyl	225.00	105	50 - 150	4.7	4.7	0.0000	N/A		
SFH0381-SCV1 (Solid)			Lab File I	D: 17083111.I)	Analyze	d: 08/31/17 17	':53	
o-Terphenyl	90.000	102	0 - 200	4.7	4.7	0.0000	N/A		
BFH0600-BLK1 (Water)		Lab File ID: 17083139.D Analyzed: 09/01							
o-Terphenyl	0.45000	121	50 - 150	4.7	4.7	0.0000	N/A		
BFH0600-BS1 (Water)		Lab File ID: 17083140.D					Analyzed: 09/01/17 04:26		
o-Terphenyl	0.45000	121	50 - 150	4.7	4.7	0.0000	N/A		
17H0298-12 (Water)			Lab File I	D: 17083141.I)	Analyze	d: 09/01/17 04	:47	
o-Terphenyl	0.45000	114	50 - 150	4.7	4.7	0.0000	N/A		
BFH0589-BLK1 (Water)			Lab File II	D: 17083142.I)	Analyze	d: 09/01/17 05	:08	
o-Terphenyl	0.45000	117	50 - 150	4.7	4.7	0.0000	N/A		
BFH0589-BS1 (Water)			Lab File II	D: 17083143.I)	Analyze	d: 09/01/17 05	:31	
o-Terphenyl	0.45000	123	50 - 150	4.7	4.7	0.0000	N/A		
17H0298-13 (Water)			Lab File I	D: 17083161.I)	Analyze	d: 09/01/17 12	:02	
o-Terphenyl	0.45000	119	50 - 150	4.69	4.7	-0.0100	N/A		

HOLDING TIME SUMMARY

Analysis: NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-TP-100-0-4-170823 17H0298-01	08/23/17 09:46	08/25/17 09:46	08/28/17 10:20	5	14	08/30/17 11:21	2	40	
SVCA-TP-100-0-4-170823 17H0298-02	08/23/17 09:46	08/25/17 09:46	08/28/17 10:15	5	14	08/28/17 18:18	0	40	
SVCA-TP-101-0-2-170823 17H0298-03	08/23/17 10:59	08/25/17 09:46	08/28/17 10:20	4	14	08/30/17 11:44	2	40	
SVCA-TP-101-0-2-170823 17H0298-04	08/23/17 10:59	08/25/17 09:46	08/28/17 10:15	4	14	08/28/17 17:10	0	40	
SVCA-TP-102-0-2-170823 17H0298-06	08/23/17 13:02	08/25/17 09:46	08/28/17 10:20	4	14	08/30/17 12:07	2	40	
SVCA-TP-102-0-2-170823 17H0298-07	08/23/17 13:02	08/25/17 09:46	08/28/17 10:15	4	14	08/28/17 18:42	0	40	
SVCA-TP-103-0-2-170823 17H0298-09	08/23/17 14:45	08/25/17 09:46	08/28/17 10:20	4	14	08/30/17 12:29	2	40	
SVCA-TP-103-0-2-170823 17H0298-09RE1	08/23/17 14:45	08/25/17 09:46	08/28/17 10:20	4	14	08/30/17 13:37	2	40	
SVCA-TP-103-0-2-170823 17H0298-10	08/23/17 14:45	08/25/17 09:46	08/28/17 10:15	4	14	08/28/17 17:55	0	40	
SVCA-MW-4-170824 17H0298-12	08/24/17 17:00	08/25/17 09:46	08/28/17 10:54	3	7	09/01/17 04:47	4	40	
SVCA-MW-4-170824 17H0298-13	08/24/17 17:00	08/25/17 09:46	08/25/17 13:34	0	7	09/01/17 12:02	7	40	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	2.34	5.00	mg/kg
Motor Oil Range Organics (C24-C38)	2.99	10.0	mg/kg

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17H0298

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	0.033	0.100	mg/L
Motor Oil Range Organics (C24-C38)	0.056	0.200	mg/L

08 June 2018

Cheronne Oreiro Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: SCVA Area Z Remediation

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

17I0040

N/A

Amanda Volgardsen, email=amanda.volgardsen@arilabs.com Date: 2018.06.08 14:23:04 -07'00'

Digitally signed by Amanda Volgardsen DN: c=US, st=Washington, I=Tukwila, o=Analytical Resources, Inc., ou=Project Manager, cn=Amanda Volgardsen, Date: 2018.06.08 14:23:04 -07'00'

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amanda Volgardsen, Project Manager

ANALYTICAL RESOURCES INCORPORATED	Date:		Rev. 2 02/21/94
Ž	Change order Date:	Change Acknowledged Project Coordinator: Extractions: GC/MS Extractions Lab: GC Lab: Conventionals: Data Section:	
	CHANGE ORDER ARI JOD NO: ACHON ARI JOD NO: ARI JOD NO: ACHON ARI JOD NO: in membered symptes Lin winder word for 10410 Ford alanger will be a samples on seconds) The Solary The		
	Client: Archov Project No:	Submitted by: Committee by:	0004F

Triggering archive samples

17T0040

Tue 9/5/2017 4:01 PM

To: Amanda Volgardsen <amandav@arilabs.com>;

cc.Cheronne Oreiro <coreiro@anchorqea.com>; Jennifer Allen <jallen@anchorqea.com>;

1 attachments (119 KB)

COC_archiverequest.pdf;

Hi Amanda -

Please trigger the following archived samples for NWTPH-D extended, with and without silica gel clean up (also see attached COC for reference):

- SVCA-TP-101-2-3.5-170823
- SVCA-TP-102-3-4-170823
- SVCA-TP-103-3-4-170823

I believe the hold time for this analysis is 14 days, which ends tomorrow, so please make sure the samples get processed within that hold time limit. No need for rush TAT, standard 5-day will be fine.

Let me know if you have any questions.

Thanks!

Bernadette

Bernadette Wright

Geologist

ANCHOR QEA, LLC

bwright@anchorqea.com 720 Olive Way, Suite 1900 Seattle, WA 98101 T 206.287.9130

D 206.971.2686

Please consider the environment before printing this email.

This electronic message transmission contains information that may be confidential and/or privileged work product prepared in anticipation of litigation. The information is intended for the use of the individual or entity named above. If you are not the intended recipient, please be aware that any disclosure, copying distribution or use of the contents of this information is prohibited. If you have received this electronic transmission in error, please notify us by telephone at (206) 287-9130.

ANCHOR OEA !!! 00 Date/Time 8/25/17 Comments/Preservation Company: Brown Lord Fish Company: Test Parameters Signature/Printed Name Signature/Printed Name Received By: Received By: Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details mazeraid) У Атсыче X 6 25/17 69746 Date/Time X **X**3T8 X X X X **G-H9TWN** Company: Anchor QEA, LLC Date/Time D-H9TWN No. of Containers 0 Matrix 2 3 50 0 S 8 B S terrette bright Chain of Custody Record & Laboratory Analysis Request Email sample confirmation report to labdata@anchorqea.com Company: 8/23/17 017L 1302 25 1059 1330 1745 5113 1530 8/23/17 1.600 Collection Date/Time Laboratory: Analytical Resources, Inc. SVCA Area Z Remediation 82713 5 3 Z 3 ۲ 5 Jennifer Allen SVC A-TP -100 -01-11-170623 KNCA-+ + NINBILL- 120683 BUCAL-TP-102-3-4-17-00-13 360-715-2724 5VCA- TP-103-3-4-170823 5xx A-TP-132-0-2-17643 SWC A-TP-103-0-2-17082 Suc A - TP-101-0-Z- (708 28 Sur A-TP-101-2-3.5.1728 BUCA- 1272 -4-(7082 4 Field Sample ID Project Name: Project Manager: Phone Number: Shipment Method: Signature/Printed Name Relinquished By: Relinquished By: 2 6 4 9 7 13 7 15

Analytical Report

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:
Seattle WA, 98101 Project Manager: Cheronne Oreiro 11-Sep-2017 12:30

Case Narrative

Sample receipt

Samples as listed on the preceding page were received August 25, 2017, and removed from archive on September 5, 2017 under ARI workorder 17I0040. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx (Ac/Si cleaned and not Ac/Si cleaned)

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The initial calibration verification (ICV) SFI0079-ICV1 is outside of control limits high for the surrogate o- Terphenyl. All other analytes were within control limits. No corrective action was taken.

The surrogate percent recoveries were within control limits.

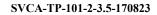
Method blank BFI0079 has Diesel Range Organics C8-C24 detected above the reporting limit. Associated detected results have been flagged with a "B" qualifier. No further corrective action was taken.

The LCS percent recoveries were within control limits.

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:

Seattle, WA 98101 Project Manager: Cheronne Oreiro 09/11/2017 12:30


ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Sample ID	Matrix	Date Sampled	Date Received
Laboratory ID	Запри 10	Matrix	Date Sampled	Date Received
17I0040-01	SVCA-TP-101-2-3.5-170823	Solid	08/23/17 11:15	08/25/17 09:46
17I0040-02	SVCA-TP-101-2-3.5-170823	Solid	08/23/17 11:15	08/25/17 09:46
17I0040-03	SVCA-TP-102-3-4-170823	Solid	08/23/17 13:30	08/25/17 09:46
17I0040-04	SVCA-TP-102-3-4-170823	Solid	08/23/17 13:30	08/25/17 09:46
17I0040-05	SVCA-TP-103-3-4-170823	Solid	08/23/17 15:30	08/25/17 09:46
17I0040-06	SVCA-TP-103-3-4-170823	Solid	08/23/17 15:30	08/25/17 09:46

QUALIFIERS AND NOTES

Qualifier	Definition
U	This analyte is not detected above the applicable reporting or detection limit.
D	The reported value is from a dilution
В	This analyte was detected in the method blank.
*	Flagged value is not within established control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

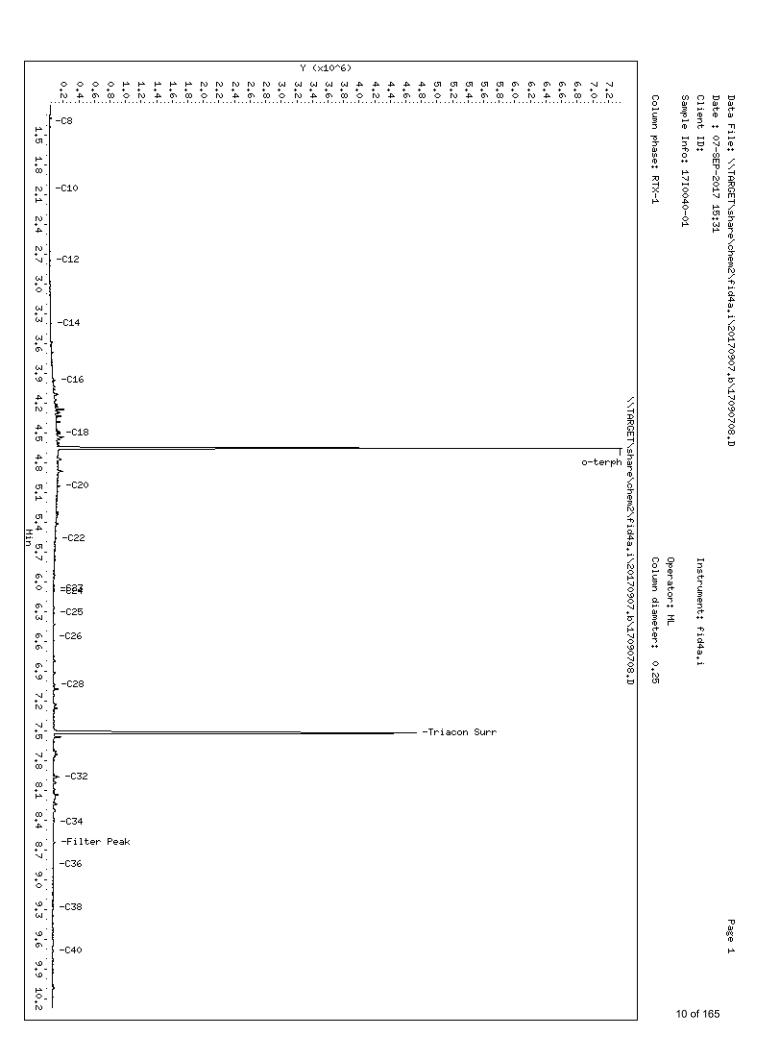
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-01</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 11:15</u> Prepared: <u>09/06/17 10:05</u> File ID: <u>17090708.D</u>


% Solids: <u>91.24</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/07/17 15:31</u>

Batch: <u>BF10078</u> Sequence: <u>SF10079</u> Initial/Final: <u>10.29 g Wet / 1 mL</u>

Instrument: FID4 Column: RTX-1 Calibration: AI00012

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	80.8		2.49	5.33
	Motor Oil Range Organics (C24-C38)	1	58.5		3.18	10.7

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	23.965	24.3	102	50 - 150	

Data file: 20170907.b/17090708.D ARI ID: 1710040-01

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 15:31

Report Date: 09/08/2017 Dilution Factor: 1

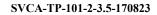
Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.251	-0.001	10876	 14129	 WATPHG	(Tol-C12)	149333	99.6
C8	1.365	0.001	4219	3649	WATPHD	(C12-C24)	12140276	759.0
C10	2.041	-0.000	2075	1522	WATPHM	(C24-C38)	9967386	549.3
C12	2.763	0.010	6741	10961	AK102	(C10-C25)	12599339	676.2
C14	3.397	-0.001	23804	40739				
C16	3.971	-0.005	74932	81121	OR.DIES	(C10-C28)	15065886	797.4
C18	4.505	-0.005	136703	124587				
C20	5.036	-0.005	135643	200441	1			
C22	5.562	-0.004	90565	147842	1			
C24	6.096	-0.005	57543	123026				
C25	6.314	-0.005	64072	68261				
C26	6.557	-0.005	51868	58499				
C28	7.037	-0.005	76390	99979				
C32	7.965	-0.005	117406	153767				
C34	8.421	0.009	66853	123693				
Filter Peak	8.627	-0.005	69289	117994				
C36	8.847	-0.002	47373	46210				
C38	9.286	-0.002	45705	68133	1			
C40	9.718	-0.003	48570	115056				
o-terph	4.657	-0.005	7241373	4422486	1			
Triacon Surr	7.525	-0.005	4656838	4285084	NAS DIES	G (C10-C24)	12214725	656.9

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)


NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount	
o-Terphenyl	4422486	228.4	Μ
Triacontane	4285084	177.5	Μ

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	19364.3 24141.7	04-SEP-2017 04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

9 (817,9) 042 9.6 9.0 9 9.3 (982*6) 853 We have the second of the seco 0 0.6 (248.8) 9 Ν ω 1116r Peak (8,627) 4. (124,8) 421 8.1 (996*2) 723 -8-7.5 (GSC,7) mand mobetalanu2 nobeiaT-Processed Integration Manual Integration 7,2 7,2 (250,5) 85 6 6.0 9,9 (299, 9297) 6,3 6,3 (412,8) es (828°9) **£**23 9 0.9 .1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (Z9G*G) ZZ CS C+TA CARGOLOGO CONTROLLOGO (920*9) 02 ď 4 0 8, (S0S.4) 813 (299.1) Adast 4 ت . 5 4,2 (179,5) 81 ъ Б σ φ 3,6 m (262°2) *1 9 3.0 2,7 (Σ92°Z) Z 2,4 4 2,1 2.1 (140,5) 041) Lab ID:17I0040-01 1,8 1.8 89 1,5 1,5 (1,365) たいのののででも 4 4 といいいに 15-0t 4620 0 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 4 0 0 2 8 4 0 0 2 1,2 (9~01×) J (9~01×) A

Injection: 07-SEP-2017 15:31 TPH Manual Integrations Report 20170907.b/17090708.D Datafile: FID4A,

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

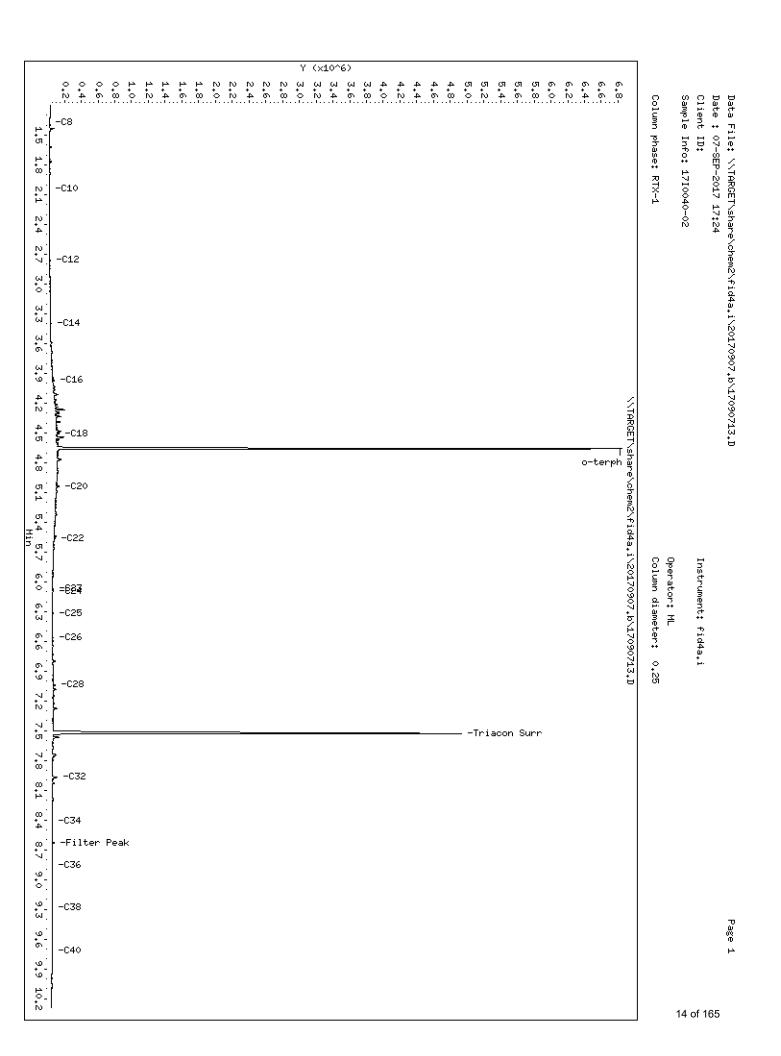
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-02</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 11:15</u> Prepared: <u>09/06/17 10:10</u> File ID: <u>17090713.D</u>

% Solids: <u>91.24</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/07/17 17:24</u>


Batch: <u>BF10079</u> Sequence: <u>SF10079</u> Initial/Final: <u>10.02 g Wet / 1 mL</u>

Instrument: FID4 Column: RTX-1 Calibration: AI00012

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	70.2	В	2.56	5.47
	Motor Oil Range Organics (C24-C38)	1	42.3		3.27	10.9

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.611	24.2	98.4	50 - 150	

Data file: 20170907.b/17090713.D ARI ID: 1710040-02

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 17:24

Report Date: 09/08/2017 Dilution Factor: 1

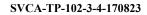
Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.251	-0.001	11092	 19736	WATPHG	(Tol-C12)	266184	177.5
C8	1.370	0.007	5281	7334	WATPHD	(C12-C24)	10261774	641.5
C10	2.041	0.000	2331	1518	WATPHM	(C24-C38)	7014446	386.6
C12	2.762	0.009	7664	17102	AK102	(C10-C25)	10560059	566.8
C14	3.398	0.000	20163	27511				
C16	3.973	-0.002	59651	66680	OR.DIES	(C10-C28)	12592108	666.5
C18	4.507	-0.002	119997	179600				
C20	5.039	-0.002	110625	168124				
C22	5.564	-0.001	69088	102035				
C24	6.096	-0.005	43852	86243				
C25	6.317	-0.001	51190	70964				
C26	6.560	-0.001	41392	62476				
C28	7.040	-0.001	66619	82594				
C32	7.968	-0.002	90674	126274				
C34	8.410	-0.002	36741	71551				
Filter Peak	8.630	-0.001	57784	121594				
C36	8.857	0.008	33665	62327				
C38	9.286	-0.001	31101	39267				
C40	9.716	-0.005	32793	57757				
o-terph	4.660	-0.003	6725558	4290127	1			
Triacon Surr	7.528	-0.002	4865007	4168039	NAS DIES	S (C10-C24)	10338961	556.0

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)


NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount	
o-Terphenyl	4290127	221.5	Μ
Triacontane	4168039	172.6	M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	19364.3 24141.7	04-SEP-2017 04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

(912.6) 063 9 9 9.6 9.0 9 9.3 (982*6) 8 0.6 0 ō (ZS8'8) 9🞞 A COMPANY OF THE PROPERTY OF T .0 Ν ω Titer Peak (8,630) 4. œ 4 (014,8) 420) 9.1 8.1 (896°Z) ZEI .8 . 8 7,5 7.5 (852,7) mynd nobeinl aans nobeiaT-Processed Integration Manual Integration 7,2 7,2 (0+0*Z) 8Z 6 6.0 9,9 (095'9) 92 .0 (ZIE,8) 8<u>\$</u> (550;8) F<u>s3</u> 9 0.9 .1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (5,039) ď . 6 4 0 (099*) ydua1-0 yduat-o (Z0S°t) 813 . 5 4,2 (226'2) 91 ъ. Б σ (862,8) 414 φ 9.0 m м м .0 .0 3.0 2,7 (S97,S) S<u>ro</u> \mathbb{N} ď \equiv 4. 4 ď 2,1 (1,40,5) OE Lab ID:17I0040-02 1.5 1.5 Ø (9~01×) A (9~01×) A

Injection: 07-SEP-2017 17:24 TPH Manual Integrations Report 20170907.b/17090713.D Datafile: FID4A,

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

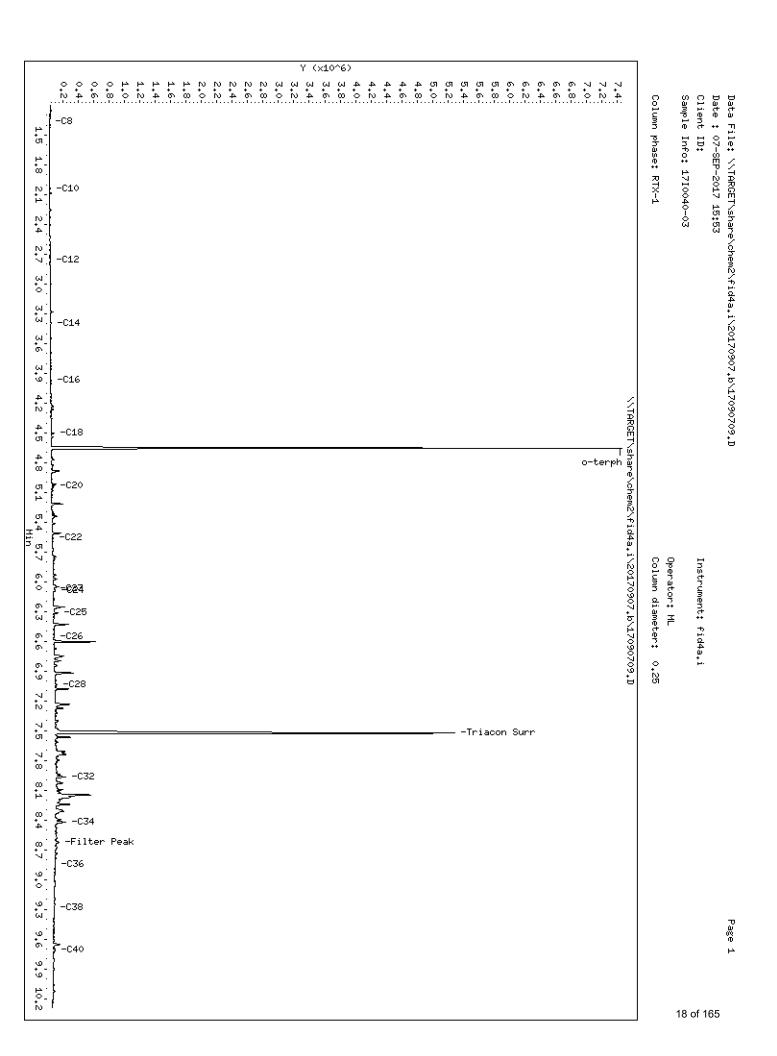
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-03</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 13:30</u> Prepared: <u>09/06/17 10:05</u> File ID: <u>17090709.D</u>


% Solids: <u>84.31</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/07/17 15:53</u>

Batch: <u>BF10078</u> Sequence: <u>SF10079</u> Initial/Final: <u>10.08 g Wet / 1 mL</u>

Instrument: FID4 Column: RTX-1 Calibration: AI00012

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	42.0		2.75	5.88
	Motor Oil Range Organics (C24-C38)	1	114		3.52	11.8

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	26.475	29.2	110	50 - 150	

Data file: 20170907.b/17090709.D ARI ID: 1710040-03

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 15:53

Report Date: 09/08/2017 Dilution Factor: 1

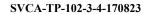
Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area 	Method	Range	Total Area	Conc(mg per L)
Toluene	1.250	-0.002	26537	 28862	 WATPHG	(Tol-C12)	373738	249.2
C8	1.363	-0.001	3901	2187	WATPHD	(C12-C24)	5709260	356.9
C10	2.039	-0.002	8317	4988	WATPHM	(C24-C38)	17530698	966.1
C12	2.756	0.003	13769	23321	AK102	(C10-C25)	6509301	349.4
C14	3.396	-0.002	21999	37372				
C16	3.972	-0.003	28802	29234	OR.DIES	(C10-C28)	10627872	562.5
C18	4.504	-0.006	62454	45983				
C20	5.035	-0.006	67263	56879				
C22	5.559	-0.006	48798	55380				
C24	6.087	-0.014	77270	155381				
C25	6.314	-0.005	109581	114531				
C26	6.557	-0.004	64938	102523				
C28	7.037	-0.005	95898	146696				
C32	7.967	-0.003	209422	267435				
C34	8.423	0.011	215366	378232				
Filter Peak	8.627	-0.004	129273	250164				
C36	8.851	0.002	73841	72278				
C38	9.289	0.001	63210	105407				
C40	9.709	-0.012	79114	127968				
o-terph	4.657	-0.006	7408506	4808499				
Triacon Surr	7.526	-0.004	5171353	4497964	NAS DIES	G (C10-C24)	5936236	319.3

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)


ange Times: NW Diesel(2.753 - 6.101) ARIO2(2.04 - 6.32) Jet A(2.04 - 4.51) NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount	
	4000400		
o-Terphenyl	4808499	248.3	Μ
Triacontane	4497964	186.3	Μ

Analyte	RF	Curve Date
o-Terph Surr	19364.3	04-SEP-2017
Triacon Surr	24141.7	04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

9 **∰**[o (602°6) 012 ģ 9.6 9.0 A COLOR OF THE COL (682*6) 9 ō (IG8'8) 9gg ω (8,627) **⊈**ilter Peak (8,627) 4. (8,423) (296*2) ZES 9.1 . 00 7.5 (858,5) mand modeistamu2 nobeiaT-Processed Integration Manual Integration 7,2 7,2 (250,5) 85 6.9 6.0 (299'9) 923 .0 6,3 CS2 (0°314) (690°9) tza 9 0.9 .1 5.4 5.7 Time (Min) 5,1 5,4 5,7 Time (Min) (699°S) 259 ß (850,8) 03 4 0 8, (291) yduai-0 yduaş-o 4 ت . 5 (4°204) 4,2 (379,5) 81 ъ. Б σ m 3,6 3,6 (3,396)0 .0 (992,2) 2 2,7 2,4 4 2,1 (950,S) 0<u>1</u> 1,8 1,5 1,5 1,2 (9~01×) X (9~01×) A

Injection: 07-SEP-2017 15:53 TPH Manual Integrations Report 20170907.b/17090709.D Lab ID:17I0040-03 Datafile: FID4A,

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

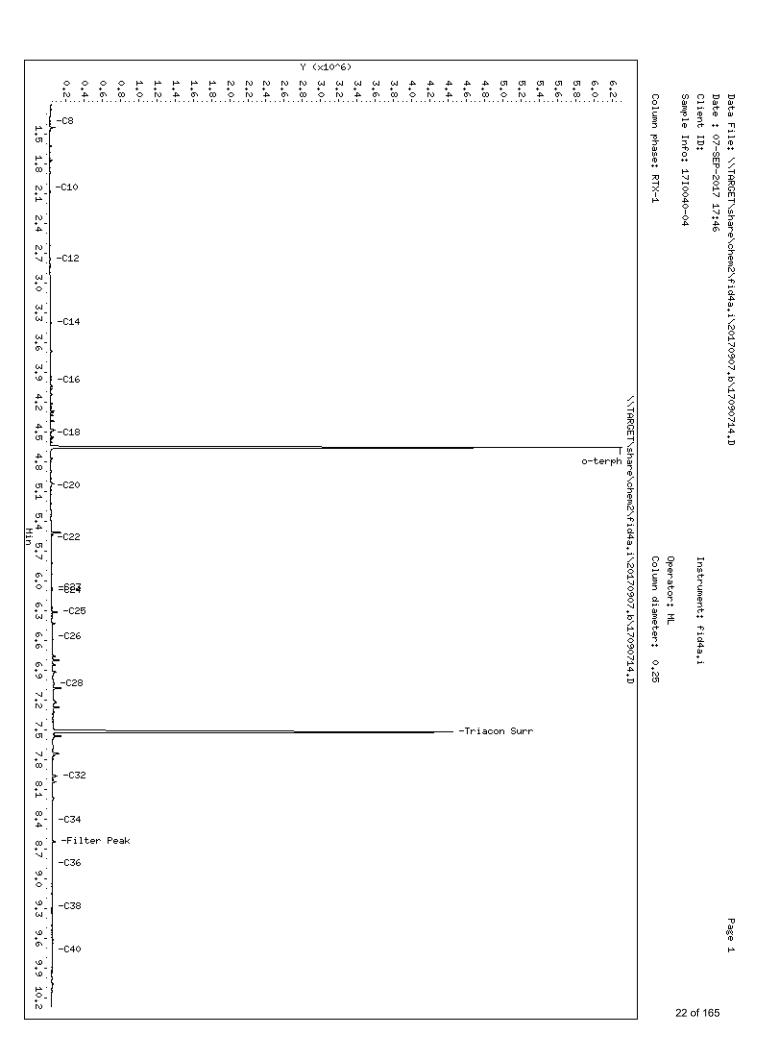
Client: <u>Anchor QEA, LLC</u>

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-04</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 13:30</u> Prepared: <u>09/06/17 10:10</u> File ID: <u>17090714.D</u>

% Solids: 84.31 Preparation: EPA 3546 (Microwave) Analyzed: 09/07/17 17:46


 Batch:
 BFI0079
 Sequence:
 SFI0079
 Initial/Final:
 10.06 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00012

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	20.5	В	2.76	5.90
	Motor Oil Range Organics (C24-C38)	1	42.5		3.53	11.8

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	26.528	24.1	90.9	50 - 150	

Data file: 20170907.b/17090714.D ARI ID: 1710040-04

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 17:46

Report Date: 09/08/2017 Dilution Factor: 1

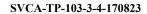
Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.252	0.001	 17756	 17676	WATPHG	(Tol-C12)	320741	213.8
C8	1.371	0.007	5366	6832	WATPHD	(C12-C24)	2783101	174.0
C10	2.041	-0.000	3166	2098	WATPHM	(C24-C38)	6538458	360.3
C12	2.761	0.008	12209	17442	AK102	(C10-C25)	3060458	164.3
C14	3.402	0.005	17806	22545	1			
C16	3.976	0.001	19789	19693	OR.DIES	(C10-C28)	4844807	256.4
C18	4.507	-0.002	25637	19856	1			
C20	5.041	-0.000	23244	25276	1			
C22	5.563	-0.002	25053	37550	1			
C24	6.097	-0.003	29819	52789	1			
C25	6.317	-0.002	80326	74551	1			
C26	6.560	-0.001	35877	73113	1			
C28	7.039	-0.003	57574	90042	1			
C32	7.968	-0.002	84523	108923	1			
C34	8.412	-0.000	34845	58469	1			
Filter Peak	8.629	-0.002	66603	95264	1			
C36	8.851	0.001	31401	44520	1			
C38	9.282	-0.006	29107	35430	1			
C40	9.717	-0.004	30433	66525	1			
o-terph	4.659	-0.004	6271883	3960059	1			
Triacon Surr	7.526	-0.004	4387463	3841508 ======	NAS DIES	G (C10-C24)	2884663 =========	155.1

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)


NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount	
o-Terphenyl	3960059	204.5	Μ
Triacontane	3841508	159.1	M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	19364.3 24141.7	04-SEP-2017 04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

9 A CONTROL OF THE PROPERTY OF T (212°6) 0| 9.6 9 . . (282'6) 8 0,6 ō (198,8) 35 .0 ω #11ter Peak (8,629) œ 4 4. (8,412) 9:1 8.1 (896*2) 253 .8 8. (5:039) 7,5 5 (858,5) mand modeinT- amu2 nobeiaT-Processed Integration Manual Integration 7.2 7,2 6.9 6.0 9,9 (095,8) 955 9.3 6,3 (212°9) SZ (é60[:]9) **t**æ 9 9.0 (5,563) (5,563) .1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (1+0.5) (5 ß 8, 4 0 (699*) yduai-o yduəş-o _4 เก . 5 (ZOS't) 81 (30+(2) 210) (30+(2) 410) σ ъ. Б m φ 9.0 m0 .0 3.0 2,7 (192°Z) Z 2,4 4 2,1 2.1 (1+0,S) 0<u>9</u> 1,5 1,5 Ø (9~01×) A (9~01×) A

Injection: 07-SEP-2017 17:46 TPH Manual Integrations Report 20170907.b/17090714.D Lab ID:17I0040-04 Datafile: FID4A,

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

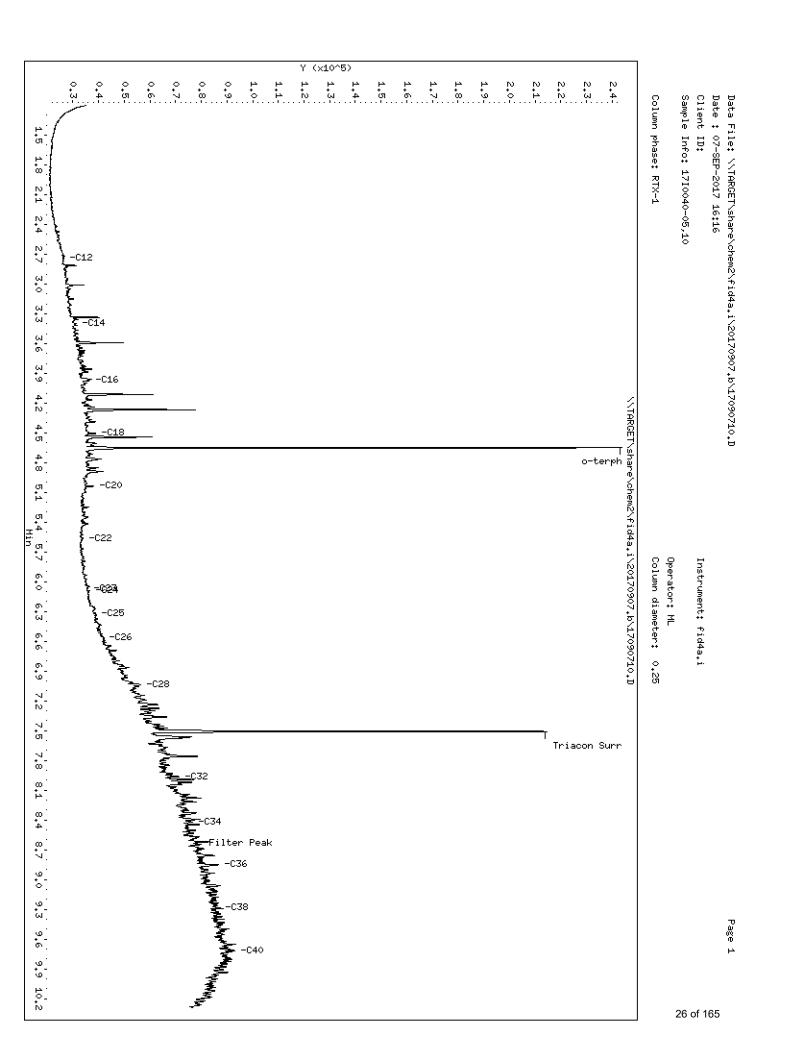
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-05</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 15:30</u> Prepared: <u>09/06/17 10:05</u> File ID: <u>17090710.D</u>


% Solids: 90.99 Preparation: EPA 3546 (Microwave) Analyzed: 09/07/17 16:16

 Batch:
 BF10078
 Sequence:
 SF10079
 Initial/Final:
 10.25 g Wet / 5 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00012

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	10	754	D	125	268
	Motor Oil Range Organics (C24-C38)	10	2300	D	160	536

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.125	30.0	124	50 - 150	

Data file: 20170907.b/17090710.D ARI ID: 1710040-05

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 16:16

Report Date: 09/08/2017 Dilution Factor: 10

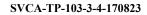
Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene					WATPHG	(Tol-C12)	 68782	45 . 9
C8					WATPHD	(C12-C24)	2250632	140.7
C10					WATPHM	(C24-C38)	7785319	429.1
C12	2.736	-0.017	5482	3460	AK102	(C10-C25)	2407671	129.2
C14	3.398	0.000	10357	10599				
C16	3.974	-0.001	15546	14155	OR.DIES	(C10-C28)	3460693	183.2
C18	4.507	-0.003	18102	28795				
C20	5.037	-0.004	17152	18396				
C22	5.563	-0.002	13211	34283				
C24	6.094	-0.007	15524	17436				
C25	6.317	-0.001	17864	19108				
C26	6.560	-0.001	21097	16616				
C28	7.036	-0.006	35545	49052				
C32	7.964	-0.006	50429	62507				
C34	8.424	0.012	55592	75869				
Filter Peak	8.636	0.005	57493	28477				
C36	8.852	0.003	65811	109109				
C38	9.286	-0.002	66288	48737				
C40	9.715	-0.006	71993	52566				
o-terph	4.651	-0.012	207814	107853				
Triacon Surr			152561 	111199	NAS DIES	(C10-C24)	2319415	124.7

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)


NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount	
			_
o-Terphenyl	107853	5.6	Μ
Triacontane	111199	4.6	Μ

Analyte	RF	Curve Date
o-Terph Surr	19364.3	04-SEP-2017
Triacon Surr	24141.7	04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

_ 0 0 9 (917,0) 04 - 6 - 0 ----0 _ ພ - ພ - 0, - 6, (982*6) 82 0.0 ----(ZS8'8) 9£33 ---------到1ter Peak (8,636) Peak -----(b2b.8) p2雪 - 1. --₩ (496°Z) ZE - K ------------_ -5-(806.5) nnu2 noosinT 809* / Processed Integration Integration ---------------5 (920°Z) 82**基** _ @ _ 6 _ 6 Manual 9.9 ----9 (095°9) 9**2** . 6 _ - 6 - 75 (ZIE'9) S尋 (t69°9) ta 0.0 0.9 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (299'9) 223 (Z20°G) 0Z3 - 4 - 4 - • 4 0, (199.1) Aqrot-o uduaş - o _ 4. - ີ. - ເບ 4 ت Z+G*+ (4.507) - 4 - 4 - 4 - ∠1 Z9Z*₽ ΣΙΙ't - w - • - o (t/26°Σ) 913 _ w _ o - 9 - 8 (862°2) + 🗐 - ₩ - ₩ - ₩ - W - W ------------_ w _•• (357.2) 21 2-7 2,7 _ ′′. _ **4** _____4 2.1 - K 1.0 1,5 1.5 (GVOIX) X (GVOIX) X

Injection: 07-SEP-2017 16:16 Report Integrations 20170907.b/17090710.D Lab ID:17I0040-05 Datafile: FID4A,

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

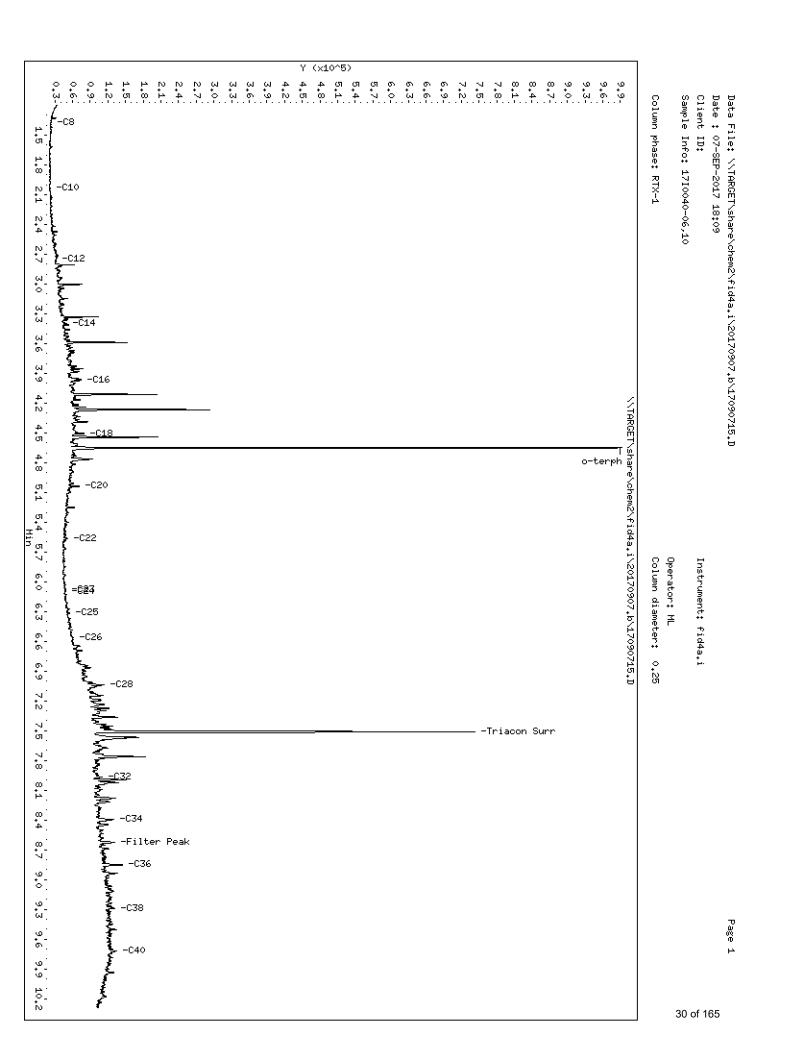
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>Solid</u> Laboratory ID: <u>1710040-06</u> SDG: <u>1710040</u>

Sampled: <u>08/23/17 15:30</u> Prepared: <u>09/06/17 10:10</u> File ID: <u>17090715.D</u>

% Solids: 90.99 Preparation: EPA 3546 (Microwave) Analyzed: 09/07/17 18:09


Batch: BFI0079 Sequence: SFI0079 Initial/Final: 10.17 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00012

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
Diesel Range Organics (C12-C24)		10	447	D, B	25.3	54.0
	Motor Oil Range Organics (C24-C38)	10	861	D	32.3	108

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.315	27.6	113	50 - 150	

Data file: 20170907.b/17090715.D ARI ID: 1710040-06

Method: 20170907.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 07-SEP-2017 18:09

Report Date: 09/08/2017 Dilution Factor: 10

Macro: 04-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:04-SEP-2017 M.Oil:04-SEP-2017

FID:4A RESULTS

Compound			Height	Area Method Range Total Area	Conc(mg per L)
Toluene	1.249	-0.003	 7828	8129 WATPHG (Tol-C12) 299260	199.5
C8	1.370	0.007	3469	4072 WATPHD (C12-C24) 6609866	413.2
C10	2.036	-0.005	1367	1747 WATPHM (C24-C38) 14451318	796.4
C12	2.752	-0.001	11342	15444 AK102 (C10-C25) 7038182	377.7
C14	3.396	-0.002	28520	29646	
C16	3.972	-0.003	53516	59935 OR.DIES (C10-C28) 9371658	496.0
C18	4.507	-0.002	59191	72716	
C20	5.038	-0.003	50299	72370	
C22	5.564	-0.001	31113	43896	
C24	6.095	-0.006	27591	39365	
C25	6.316	-0.002	33792	43065	
C26	6.561	0.000	40961	53942	
C28	7.039	-0.002	93230	104525	
C32	7.967	-0.003	89170	129312	
C34	8.395	-0.017	108725	251316	
Filter Peak	8.624	-0.007	111444	207099	
C36	8.852	0.003	123590	192048	
C38	9.290	0.003	110749	183911	
C40	9.720	-0.001	113989	179261	
o-terph	4.651	-0.012	931014	494245	
Triacon Surr	7.512	-0.018	632993	447523 NAS DIES (C10-C24) 6848395	368.3

Range Times: NW Diesel(2.753 - 6.101) AK102(2.04 - 6.32) Jet A(2.04 - 4.51)

NW M.Oil(6.10 - 9.29) AK103(6.32 - 8.85) OR Diesel(2.04 - 7.04)

Surrogate	Area	Amount
o-Terphenyl	494245	25.5 M
Triacontane	447523	18.5 M

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	19364.3 24141.7	04-SEP-2017 04-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	15996.0	04-SEP-2017
Motor Oil	18145.0	04-SEP-2017
AK102	18632.0	04-SEP-2017
OR Diesel	18894.0	04-SEP-2017
NAS Diesel	18594.0	04-SEP-2017

9 9 (0ZZ*6) 0b 9.6 9. . . 9.3 (062*6) 823 0 0 ō ģ .0 Ν ω Filter Peak (8,624) Ase9 re 4. œ 4 (8,395) 9.1 8. (296°2) ZEE - 8-2.8 7.5 ιū (S18,5) may noseinT 218,7-_√ Processed Integration Manual Integration 7.2 _ _ _ _ _ _ _ _ (650,7) 853<u>3</u> 6 σ ŵ (I9S'9) 9**a** 9 6,3 (912°9) 92 (920'9) tg3 9 0.9 (+99°G) ZZ3 1,1 5,4 5,7 Time (Min) 5,1 5,4 5,7 Time (Min) ល់ (8£0,45) 0≤3€ 4.00 4 0 (188.1) Aqret-o uduaş c 4 . ت 4 ت Z+9*+ (209 7) 8135 2, 992*5 ΣII°t (ZZ6'Σ) 913<u>2</u> м Ф 9 3,6 3,6 689*2 (962.5) 4 📑 0 10 3.0 2,7 (S27,S) S 2.4 4 2.1 C10 (2,036) 1.8 1.5 1.5 (0/5,1) 0.0 0.0-ου α α γ γ α α α α α 4 4 μ μ 4354 1462- ο η ο α ο α ο α ο α ο α ο α ο α ο α ο α (GVOIX) X (GVOIX) X

Injection: 07-SEP-2017 18:09 TPH Manual Integrations Report 20170907.b/17090715.D Lab ID:17I0040-06 Datafile: FID4A,

PREPARATION BATCH SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0078
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-101-2-3.5-170823	17I0040-01	17090708.D	09/06/17 10:05	
SVCA-TP-102-3-4-170823	17I0040-03	17090709.D	09/06/17 10:05	
SVCA-TP-103-3-4-170823	17I0040-05	17090710.D	09/06/17 10:05	
Blank	BFI0078-BLK1	17090706.D	09/06/17 10:05	
LCS	BFI0078-BS1	17090707.D	09/06/17 10:05	

PREPARATION BATCH SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0079
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-TP-101-2-3.5-170823	17I0040-02	17090713.D	09/06/17 10:10	
SVCA-TP-102-3-4-170823	17I0040-04	17090714.D	09/06/17 10:10	
SVCA-TP-103-3-4-170823	17I0040-06	17090715.D	09/06/17 10:10	
Blank	BFI0079-BLK1	17090711.D	09/06/17 10:10	
LCS	BFI0079-BS1	17090712.D	09/06/17 10:10	

Solids:

Form I METHOD BLANK DATA SHEET **NWTPH-Dx**

Blank

<u>17I0040</u>

10 g / 1 mL

Initial/Final:

Laboratory: Analytical Resources, Inc. SDG:

Preparation:

Anchor QEA, LLC Client: Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFI0078-BLK1 File ID: 17090706.D

Sampled: N/A Prepared: 09/06/17 10:05 Analyzed: 09/07/17 14:47

Batch: BFI0078 Sequence: SFI0079 Calibration: AI00012

FID4 Column: RTX-1 Instrument:

	CAS NO.	COMPOUND	DILUTION	CONG	C. (mg/kg wet)		Q	DL		RL		
		Diesel Range Organics (C12-C24)	1 5.00			U 2.34			5.00			
		Motor Oil Range Organics (C24-C38)	1		10.0		U	2.99		10.0		
	SURROGATES		ADDED (mg/kg	wet)	CONC (mg/kg	wet)	%]	REC	Q	C LIMITS	Q	
1	·				·							

EPA 3546 (Microwave)

SURROGATES	ADDED (mg/kg wet)	CONC (mg/kg wet)	% REC	QC LIMITS	Q
o-Terphenyl	22.500	26.0	116	50 - 150	

Solids:

o-Terphenyl

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

<u>10 g / 1 mL</u>

50 - 150

Initial/Final:

106

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

EPA 3546 (Microwave)

23.9

Matrix: Solid Laboratory ID: BFI0079-BLK1 File ID: 17090711.D

Sampled: $\underline{N/A}$ Prepared: $\underline{09/06/17\ 10:10}$ Analyzed: $\underline{09/07/17\ 16:39}$

Batch: BFI0079 Sequence: SFI0079 Calibration: AI00012

Preparation:

Instrument: FID4 Column: RTX-1 Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg wet)		Q	DL		RL	
	Diesel Range Organics (C12-C24)	1	6.11			2.34		5.00	
	Motor Oil Range Organics (C24-C38)	1	10.0		U	2.99		10.0	
SURROGATES		ADDED (mg/kg	(wet) CONC (mg/kg	wet)	%]	REC	QC	LIMITS	Q

22.500

LCS / LCS DUPLICATE RECOVERY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/07/17 15:08

 Batch:
 BFI0078
 Laboratory ID:
 BFI0078-BS1

Preparation: <u>EPA 3546 (Microwave)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 g / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	138		92.2	63 - 120

^{*} Indicates values outside of QC limits

LCS / LCS DUPLICATE RECOVERY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/07/17 17:01

 Batch:
 BFI0079
 Laboratory ID:
 BFI0079-BS1

Preparation: <u>EPA 3546 (Microwave)</u> Sequence Name: <u>LCS</u>

Initial/Final: $\underline{10 \text{ g} / 1 \text{ mL}}$

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	130	В	86.8	63 - 120

^{*} Indicates values outside of QC limits

CLEANUP BATCH SUMMARY

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0026 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-TP-101-2-3.5-170823	17I0040-02	17090713.D	09/07/2017	
SVCA-TP-102-3-4-170823	17I0040-04	17090714.D	09/07/2017	
SVCA-TP-103-3-4-170823	1710040-06	17090715.D	09/07/2017	

CLEANUP BATCH SUMMARY

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0027 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-TP-101-2-3.5-170823	17I0040-02	17090713.D	09/07/2017	
SVCA-TP-102-3-4-170823	17I0040-04	17090714.D	09/07/2017	
SVCA-TP-103-3-4-170823	17I0040-06	17090715.D	09/07/2017	

INITIAL CALIBRATION DATA NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00012 Instrument: FID4

Calibration Date: 09/04/2017 9:23 Column (1): RTX-1

	Level 01		Level 02		Level 03		Level 04		Level 05		Level 06	
Compound		RF										
Diesel Range Organics (C12-C24)	50	20132.42	100	16908.25	250	15273.05	500	15056.87	1000	14605.19	2500	14002.66
o-Terphenyl	9	17813.89	18	18392.45	45	19219.69	90	20287.08	180	20342.84	450	20129.63

INITIAL CALIBRATION DATA NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00012 Instrument: FID4

Calibration Date: 09/04/2017 9:23 Column (1): RTX-1

	Level 07		Level 08		Level 09		Level 10		Level 11		Level 12	
Compound		RF										
Motor Oil Range Organics (C24-C38)	100	18834.71	250	20008.62	500	18590.04	1000	17203.71	2500	17206.08	5000	17029.57

INITIAL CALIBRATION DATA NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00012 Instrument: FID4

Calibration Date: 09/04/2017 9:23 Column (1): RTX-1

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q
Diesel Range Organics (C12-C24)	15996.41	14.0			RSD (20)
Motor Oil Range Organics (C24-C38)	18145.46	6.6			RSD (20)
o-Terphenyl	19364.26	5.5			RSD (20)

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00012 Laboratory ID: SFI0017-SCV1

Sequence: SFI0017 Sequence Name: DIES SCV 500

Standard ID: F006358

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Diesel Range Organics (C12-C24)	500.00	472	-5.6	30.00
o-Terphenyl	90.000	100	11.2	

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00012 Laboratory ID: SFI0017-SCV2

Sequence: SFI0017 Sequence Name: Moil SCV 1000

Standard ID: F007427

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Motor Oil Range Organics (C24-C38)	1000.0	1010	0.6	30.00

^{*} Indicates values outside of QC limits

INITIAL CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00012

Lab File ID: <u>17090704.D</u> Calibration Date: <u>09/04/17 09:23</u>

Sequence: SFI0079 Injection Date: 09/07/17

Lab Sample ID: SFI0079-ICV1 Injection Time: 12:56

Sequence Name: <u>Diesel ICV</u>

		CONC.	(mg/L)	RESI	PONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	555	15996.4100	17767.8300		11.1	20
o-Terphenyl	A	90.000	110	19364.2600	23716.2100		22.4	20 *

^{*} Values outside of QC limits

INITIAL CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00012

Lab File ID: <u>17090705.D</u> Calibration Date: <u>09/04/17 09:23</u>

Sequence: SFI0079 Injection Date: 09/07/17

Lab Sample ID: SFI0079-ICV2 Injection Time: 13:19

Sequence Name: <u>MOIL ICV</u>

		CONC.	(mg/L)	RESI	PONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	958	18145.4600	17383.3900		-4.2	20

^{*} Values outside of QC limits

CONTINUING CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00012

Lab File ID: 17090716.D Calibration Date: 09/04/17 09:23

Sequence: SFI0079 Injection Date: 09/07/17

Lab Sample ID: SFI0079-CCV1 Injection Time: 18:31

Sequence Name: <u>Diesel CCV1</u>

		CONC.	(mg/L)	RE	SPONSE FACTO	OR	% DRIF	T/DIFF
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	510	15996.41	16326.77		2.1	15
o-Terphenyl	A	90.000	96.6	19364.26	20782.68		7.3	15

^{*} Values outside of QC limits

CONTINUING CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00012

Lab File ID: <u>17090717.D</u> Calibration Date: <u>09/04/17 09:23</u>

Sequence: SFI0079 Injection Date: 09/07/17

Lab Sample ID: SFI0079-CCV2 Injection Time: 18:54

Sequence Name: MOIL CCV1

		CONC.	(mg/L)	RE	SPONSE FACTO	OR	% DRIF	T/DIFF
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1020	18145.46	18468.3		1.8	15

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0017</u> Instrument: <u>FID4</u>

Calibration: <u>AI00012</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFI0017-IBL1	17090409.D	NA	09/04/17 12:58
Instrument Blank	SFI0017-IBL2	17090410.D	NA	09/04/17 13:19
Diesel 50	SFI0017-CAL1	17090413.D	NA	09/04/17 14:46
Diesel 100	SFI0017-CAL2	17090414.D	NA	09/04/17 15:07
DIES 250	SFI0017-CAL3	17090415.D	NA	09/04/17 15:30
DIES 500	SFI0017-CAL4	17090416.D	NA	09/04/17 15:51
DIES 1000	SFI0017-CAL5	17090417.D	NA	09/04/17 16:15
DIES 2500	SFI0017-CAL6	17090418.D	NA	09/04/17 16:36
DIES SCV 500	SFI0017-SCV1	17090419.D	NA	09/04/17 16:58
MOIL 100	SFI0017-CAL7	17090420.D	NA	09/04/17 17:21
Moil 250	SFI0017-CAL8	17090421.D	NA	09/04/17 17:43
Moil 500	SFI0017-CAL9	17090422.D	NA	09/04/17 18:05
Moil 1000	SFI0017-CALA	17090423.D	NA	09/04/17 18:29
Moil 2500	SFI0017-CALB	17090424.D	NA	09/04/17 18:50
Moil 5000	SFI0017-CALC	17090425.D	NA	09/04/17 19:14
Moil SCV 1000	SFI0017-SCV2	17090426.D	NA	09/04/17 19:35
ZZZZZ	17H0273-01RE1	17090427.D	Water	09/04/17 19:59
ZZZZZ	17H0273-03RE1	17090428.D	Water	09/04/17 20:20
ZZZZZ	17H0273-05RE1	17090429.D	Water	09/04/17 20:43
ZZZZZ	BFH0584-BLK1	17090430.D	Solid	09/04/17 21:05
ZZZZZ	BFH0584-BS1	17090431.D	Solid	09/04/17 21:28
ZZZZZ	17H0291-01	17090434.D	Solid	09/04/17 22:36
ZZZZZ	17H0291-02	17090435.D	Solid	09/04/17 22:58
ZZZZZ	17H0291-03	17090436.D	Solid	09/04/17 23:21
ZZZZZ	17H0291-04	17090437.D	Solid	09/04/17 23:42
Diesel CCV1	SFI0017-CCV1	17090438.D	NA	09/05/17 00:06
MOIL CCV1	SFI0017-CCV2	17090439.D	NA	09/05/17 00:27

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0079</u> Instrument: <u>FID4</u>

Calibration: AI00012

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFI0079-IBL1	17090702.D	NA	09/07/17 12:03
Instrument Blank	SFI0079-IBL2	17090703.D	NA	09/07/17 12:27
Diesel ICV	SFI0079-ICV1	17090704.D	NA	09/07/17 12:56
MOIL ICV	SFI0079-ICV2	17090705.D	NA	09/07/17 13:19
Blank	BFI0078-BLK1	17090706.D	Solid	09/07/17 14:47
LCS	BFI0078-BS1	17090707.D	Solid	09/07/17 15:08
SVCA-TP-101-2-3.5-170823	17I0040-01	17090708.D	Solid	09/07/17 15:31
SVCA-TP-102-3-4-170823	17I0040-03	17090709.D	Solid	09/07/17 15:53
SVCA-TP-103-3-4-170823	17I0040-05	17090710.D	Solid	09/07/17 16:16
Blank	BFI0079-BLK1	17090711.D	Solid	09/07/17 16:39
LCS	BFI0079-BS1	17090712.D	Solid	09/07/17 17:01
SVCA-TP-101-2-3.5-170823	17I0040-02	17090713.D	Solid	09/07/17 17:24
SVCA-TP-102-3-4-170823	17I0040-04	17090714.D	Solid	09/07/17 17:46
SVCA-TP-103-3-4-170823	17I0040-06	17090715.D	Solid	09/07/17 18:09
Diesel CCV1	SFI0079-CCV1	17090716.D	NA	09/07/17 18:31
MOIL CCV1	SFI0079-CCV2	17090717.D	NA	09/07/17 18:54

SURROGATE RECOVERY AND RT SUMMARY

NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0017</u> Instrument: <u>FID4</u>

Calibration: AI00012 Calibration Date: 09/04/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SFI0017-SCV1 (Water)			Lab File II	D: 17090419.I)	Analyze	d: 09/04/17 16:	58
o-Terphenyl	90.000	111	0 - 200	4.68	4.683333	-0.0033	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0079</u> Instrument: <u>FID4</u>

Calibration: AI00012 Calibration Date: 09/04/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SFI0079-IBL1 (Solid)			Lab File II	D: 17090702.I	D	Analyze	d: 09/07/17 12	:03
o-Terphenyl	225.00	122	50 - 150	4.66	4.683333	-0.0233	N/A	
SFI0079-IBL2 (Solid)			Lab File II	D: 17090703.I	D	Analyze	d: 09/07/17 12	:27
o-Terphenyl	225.00	124	50 - 150	4.66	4.683333	-0.0233	N/A	
SFI0079-ICV1 (Solid)			Lab File I	D: 17090704.I)	Analyze	d: 09/07/17 12	:56
o-Terphenyl	90.000	122	80 - 120	4.66	4.683333	-0.0233	N/A	*
BFI0078-BLK1 (Solid)			Lab File I	D: 17090706.I)	Analyze	d: 09/07/17 14	:47
o-Terphenyl	22.500	116	50 - 150	4.67	4.683333	-0.0133	N/A	
BFI0078-BS1 (Solid)			Lab File I	D: 17090707.I)	Analyze	ed: 09/07/17 15	:08
o-Terphenyl	22.500	117	50 - 150	4.66	4.683333	-0.0233	N/A	
17I0040-01 (Solid)			Lab File II	D: 17090708.I)	Analyze	d: 09/07/17 15	:31
o-Terphenyl	23.965	102	50 - 150	4.66	4.683333	-0.0233	N/A	
17I0040-03 (Solid)			Lab File II	D: 17090709.I	D	Analyze	d: 09/07/17 15	:53
o-Terphenyl	26.475	110	50 - 150	4.66	4.683333	-0.0233	N/A	
17I0040-05 (Solid)			Lab File II	D: 17090710.I	D	Analyze	d: 09/07/17 16	:16
o-Terphenyl	24.125	124	50 - 150	4.65	4.683333	-0.0333	N/A	
BFI0079-BLK1 (Solid)			Lab File I	D: 17090711.I	D	Analyze	d: 09/07/17 16	:39
o-Terphenyl	22.500	106	50 - 150	4.66	4.683333	-0.0233	N/A	
BFI0079-BS1 (Solid)			Lab File II	D: 17090712.I	D	Analyze	d: 09/07/17 17	:01
o-Terphenyl	22.500	114	50 - 150	4.657	4.683333	-0.0263	N/A	
17I0040-02 (Solid)			Lab File I	D: 17090713.I)	Analyze	d: 09/07/17 17	:24
o-Terphenyl	24.611	98.4	50 - 150	4.66	4.683333	-0.0233	N/A	
17I0040-04 (Solid)			Lab File I	D: 17090714.I		Analyze	d: 09/07/17 17	:46
o-Terphenyl	26.528	90.9	50 - 150	4.66	4.683333	-0.0233	N/A	
17I0040-06 (Solid)			Lab File II	D: 17090715.I		Analyze	d: 09/07/17 18	:09
o-Terphenyl	24.315	113	50 - 150	4.65	4.683333	-0.0333	N/A	

HOLDING TIME SUMMARY

Analysis: NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-TP-101-2-3.5-170823 17I0040-01	08/23/17 11:15	08/25/17 09:46	09/06/17 10:05	13	14	09/07/17 15:31	1	40	
SVCA-TP-101-2-3.5-170823 17I0040-02	08/23/17 11:15	08/25/17 09:46	09/06/17 10:10	13	14	09/07/17 17:24	1	40	
SVCA-TP-102-3-4-170823 17I0040-03	08/23/17 13:30	08/25/17 09:46	09/06/17 10:05	13	14	09/07/17 15:53	1	40	
SVCA-TP-102-3-4-170823 1710040-04	08/23/17 13:30	08/25/17 09:46	09/06/17 10:10	13	14	09/07/17 17:46	1	40	
SVCA-TP-103-3-4-170823 1710040-05	08/23/17 15:30	08/25/17 09:46	09/06/17 10:05	13	14	09/07/17 16:16	1	40	
SVCA-TP-103-3-4-170823 1710040-06	08/23/17 15:30	08/25/17 09:46	09/06/17 10:10	13	14	09/07/17 18:09	1	40	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	2.34	5.00	mg/kg
Motor Oil Range Organics (C24-C38)	2.99	10.0	mg/kg

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710040

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	0.033	0.100	mg/L
Motor Oil Range Organics (C24-C38)	0.056	0.200	mg/L

08 June 2018

Cheronne Oreiro Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: SCVA Area Z Remediation

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

17I0171

N/A

Digitally signed by Amanda Volgardsen DN: c=US, st=Washington, l=Tukwila, o=Analytical Resources, Inc., ou=Project Manager, cn=Amanda Volgardsen,

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amanda Volgardsen, Project Manager

トフエの)フ) (Chain of Custody Record & Laboratory Analysis Request

Laboratory: Analytical Resources, Inc.	oul account					Toot Doromotore		
	Jui ces, IIIc.				I	lest Parameters		
Date: SVCA Area Z Remediation	emediation	П					%	* ANCHOR
Project Manager: Jennifer Allen							7	JEA 111
Phone Number: 360-715-2724		Jeui			8		24	
Shipmen Metrod.	(6)	Etuc		(
Line Field Sample ID	Collection Date/Time	Matrix No. of Co	D-H4TWN	о-натwи	ХЭТВ	Archive	Comments/Preservation	vation
1 SNCA-56-19-14-16-190913	4/13/17 toys	50				×		
2 SUCA-58-110-14-12-170913	3611	50 1						
3 Suct. 58-14-8-5-170913	00 61	1 05						
4 Suct-58-111-8-17-913	1410	50				×		The second secon
5 SVCA-58-14-14-14-170713	1430		K B	X	X		take IS from	TPH-0 12N
6 SUCA-SB-14-16-18-170713	1440	50				×		7
7 Such-58-111-16-20-170913	1450	So		(5)		X		(25)
8 SVCA-512-112-3-5-170913	eSS1	So				×		
9 SXCA-513-112-8-10-170113	1600	100			2.0	X		
10 SVCA-5B-112-125-145-17 0913	13 1610	Sc 7	X	X	X			
11 SVC A 58-112-14.5-18.5-17071	213 1220	2				×		
12 BUCA-5B-110W-1709 13	1730	S				X		
13 8VCA-GW-109-14-19-17-0913		どり	X	X	8			
14 SUCA-GW- 110-14-14-170913	4521	500	X	X	X			
15 SUCA-GW-111-14-19-170913	S ISYS tepto	WG &	×	X	×		School Marsh Manne	151411-12
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details	with and without silica	gel cleanu	p. See	contrac	for ar	ilysis details		
Email sample confirmation report to labdata@anchorqea.com	data@anchorqea.com					15		
\$ SVCA-GOW 111-14-19-17-0	70913 km h	hough +	Lybidity	られて		due to clay purticulates		
Relinguished By:	Company: Anchor QEA, LLC	Anchor Q	EA, LL	()	Г	Received By:	Company:	
2. Min Mind K. L.	7	1110	4	(M) 88		A THE	13. a. 17. 1 9	9/10/17 85B
Name /	2000		Date/Time	0/0	П	Signature/Printed Name		Time
Relinquished By:	Company:			П	П	Received By:	Company:	
					til.			
Signature/Printed Name		De	Date/Time		П	Signature/Printed Name		Date/Time

ILIOTLI

Line Field Sample ID Field Sample ID Field Sample ID Field Sample ID SWCA-GW-112-12-12-14-9412 413 14 A 113 14 A 113 14 WC) Laboratory: Analytical Resources, Inc. Date: SNCA-GW-112-12-724 A 113 14 WC) A 113 14 A 113 14 A 113 14 A 113 14	No. of Containers	G-H9TWN X NWTPH-D	9virionA	Test Parameters			NO NO	A ANCHOR
Project Names: SVCA Area Z Remediation Project Manager: Jennifer Allen Phone Number: 360-715-2724 Shipment Method: Collection Field Sample ID Date/Time Matrix SVCA-CNO-112-12-5-12-9412 413/14 TELP BLANK AIS1-7 (4-6-3-12)	- No. of Containers		вуіл'я В телітор				N N N N N N N N N N N N N N N N N N N	NCHOR EA {{{
Project Manager: Jennifer Allen Phone Number: 360-715-2724 Shipment Method: Collection Field Sample ID Date/Time Matrix SVCA-Cyv - 112 · [2.5 - [7-5 -]70413 12 12 12 12 12 12 12	antainers DNo. of Containers		еміноче — — — — — — — — — — — — — — — — — — —				7	EA EE
Project Manager: Jennifer Allen Phone Number: 360-715-2724 Shipment Method:	2 No. of Containers		Archive					
Collection Collection Collection Date/Time Matrix	- No. of Contain		avirionA					
Collection Collection Swc4-Gw-112-12-5-17-6413 Alish WC7 Collection Date/Time Matrix Swc4-Gw-112-12-5-17-6413 Alish Alis	- 5 No. of Co		Archive					
SUCA-CIW-112-12-5-17-6913 918/17 WG) +PEIP BLANK 9/13/17 WG							Comments/Preservation	ation
TELP BLANK 4/13/17	-							
TRIP BLANK 4/13/17	-							
4						4		
2								
9					+			
8								
6		78.0						
10					3			
11								
12								
13								
14								
15								
Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details Email sample confirmation report to labdata@anchorqea.com	anup. See o	ontract for	analysis details					
Company: Anchor C	OEA, LLC	1	Received By:	By:	1.	7	Company:	-
Signature/Printed Name	7// 4/17 Date/Time	270	Signature	Signature/Printed Name	77	15 restain	1 1.5K YIM	117 896 Date/Time
Relinquished By: Company:			Received By:	By:			Company:	
	John Time		Sistematics	Signatura/Drinted Name				Date/Time
Signature/Printed Name	Date/ I II le		Oignature	מו וווופת ואמווופ				

Cooler Receipt Form

ARI Client: Anchor	Project Name: SVCA	Arra	7. 17.	emedic
COC No(s): NA	Delivered by: Fed-Ex UPS Cour			A MARKET
Assigned ARI Job No: 17 I 0 17	Tracking No:		-	(NA)
Preliminary Examination Phase:	y adding the	X - 304, ASS - 304 - 1		(NA)
Were intact, properly signed and dated custody seals attached to	the outside of to cooler?		YES	(NO)
Were custody papers included with the cooler?			_	
Were custody papers properly filled out (ink, signed, etc.)			YES	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chen	nistry) #1 #2		YES	NO
Time: 8.58	4.6 3.7			3
If cooler temperature is out of compliance fill out form 00070F		Temp Gun I	D#:DOO	520Le
Cooler Accepted by: 5 (Bit)		_8:5	8	
Complete custody forms a	and attach all shipping documents			
Log-In Phase:				
Was a temperature blank included in the cooler?			YES	(NO)
What kind of packing material was used? Bubble Wrap	Wet Ice Gel Packs Baggies Foam I	Block Paper	Other:	CNO
Was sufficient ice used (if appropriate)?	***************************************	NA	YES	NO
Were all bottles sealed in individual plastic bags?		1204120	YES	NO
Did all bottles arrive in good condition (unbroken)?			YES	NO
Were all bottle labels complete and legible?			(YES)	NO
Did the number of containers listed on COC match with the number			YES	NO
Did all bottle labels and tags agree with custody papers?	2		YES	(NO)
Were all bottles used correct for the requested analyses?			(YES)	NO
Do any of the analyses (bottles) require preservation? (attach pres		(NA)	YES	NO
Were all VOC vials free of air bubbles?		NA	YES	(NO)
Was sufficient amount of sample sent in each bottle?			YES	NO
Date VOC Trip Blank was made at ARI		NA	8/18	240 PETES
Was Sample Split by ARI : NA YES Date/Time:			Split by:_	5/1/
5 000 4-4-0-000			opiit by	
Samples Logged by:BDate:		12:3	9	
** Notify Project Manager	of discrepancies or concerns **		9	
CHARLES THE STATE OF THE STATE				
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	San	ple ID on CO	OC
SVCA-MW-111-14-19-170913 LD SVCA-	GW-111-14-19-1709	13		
	SVCA-GW-112-12-5		70913	
9		17-2	10 (1)	
* 1 2		271 300 31 2 21		į.
Additional Notes, Discrepancies, & Resolutions: Trip blank had la bubble,	** A = 75.		2	
Trip blank had lg bubble.		18		
	s :			-3
- R 1) - al lis				
By: B - H Date: 9/15/17		1000 N	8	П
2000	Small → "sm" (<2 mm)			
	Peabubbles > "pb" (2 to < 4 mm)		# N	8
	Large → "lg" (4 to < 6 mm)	10		
	Headspace → "hs" (>6 mm)			10

Analytical Report

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:
Seattle WA, 98101 Project Manager: Cheronne Oreiro 27-Sep-2017 17:30

Case Narrative

Sample receipt

Samples as listed on the preceding page were received September 14, 2017 under ARI workorder 17I0171. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

There were no target compounds detected in the method blank.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

There were no target compounds detected in the method blank.

The LCS/LCSD percent recoveries and RPD were within control limits.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx (Ac/Si cleaned and not Ac/Si cleaned)

The samples were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

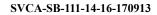
There were no target compounds detected in the method blanks.

The LCS percent recoveries were within control limits.

Anchor QEA, LLC Project: SCVA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:

Seattle, WA 98101 Project Manager: Cheronne Oreiro 09/27/2017 17:30


ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Sample ID	Matrix	Date Sampled	Date Received
17I0171-01	SVCA-SB-109-14-16-170913	Solid	09/13/17 10:45	09/14/17 08:58
17I0171-02	SVCA-SB-110-14-16-170913	Solid	09/13/17 11:48	09/14/17 08:58
17I0171-03	SVCA-SB-111-3-5-170913	Solid	09/13/17 14:00	09/14/17 08:58
17I0171-04	SVCA-SB-111-8-10-170913	Solid	09/13/17 14:10	09/14/17 08:58
17I0171-05	SVCA-SB-111-14-16-170913	Solid	09/13/17 14:30	09/14/17 08:58
17I0171-06	SVCA-SB-111-14-16-170913	Solid	09/13/17 14:30	09/14/17 08:58
17I0171-07	SVCA-SB-111-16-18-170913	Solid	09/13/17 14:40	09/14/17 08:58
17I0171-08	SVCA-SB-111-18-20-170913	Solid	09/13/17 14:50	09/14/17 08:58
17I0171-09	SVCA-SB-112-3-5-170913	Solid	09/13/17 15:50	09/14/17 08:58
17I0171-10	SVCA-SB-112-8-10-170913	Solid	09/13/17 16:00	09/14/17 08:58
17I0171-11	SVCA-SB-112-12.5-14.5-170913	Solid	09/13/17 16:10	09/14/17 08:58
17I0171-12	SVCA-SB-112-12.5-14.5-170913	Solid	09/13/17 16:10	09/14/17 08:58
17I0171-13	SVCA-SB-112-14.5-18.5-170913	Solid	09/13/17 16:20	09/14/17 08:58
17I0171-14	SVCA-SB-IDW-170913	Solid	09/13/17 17:30	09/14/17 08:58
17I0171-15	SVCA-GW-109-14-19-170913	Water	09/13/17 11:10	09/14/17 08:58
17I0171-16	SVCA-GW-109-14-19-170913	Water	09/13/17 11:10	09/14/17 08:58
17I0171-17	SVCA-GW-110-14-19-170913	Water	09/13/17 12:57	09/14/17 08:58
17I0171-18	SVCA-GW-110-14-19-170913	Water	09/13/17 12:57	09/14/17 08:58
17I0171-19	SVCA-GW-111-14-19-170913	Water	09/13/17 15:45	09/14/17 08:58
17I0171-20	SVCA-GW-111-14-19-170913	Water	09/13/17 15:45	09/14/17 08:58
17I0171-21	SVCA-GW-112-12.5-17.5-170913	Water	09/13/17 17:03	09/14/17 08:58
17I0171-22	SVCA-GW-112-12.5-17.5-170913	Water	09/13/17 17:03	09/14/17 08:58
17I0171-23	TRIP BLANK	Water	09/13/17 00:00	09/14/17 08:58

QUALIFIERS AND NOTES

Qualifier	Definition
U	This analyte is not detected above the applicable reporting or detection limit.
Q	Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20% RSD, <20% drift or minimum RRF)
J	Estimated concentration value detected below the reporting limit.
D	The reported value is from a dilution
В	This analyte was detected in the method blank.
*	Flagged value is not within established control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

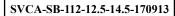
EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-05</u> SDG: <u>1710171</u>


Sampled: <u>09/13/17 14:30</u> Prepared: <u>09/18/17 15:57</u> File ID: <u>NT509181725.D</u>

% Solids: 89.53 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 09/18/17 23:41

Batch: BFI0373 Sequence: SFI0222 Initial/Final: 5.71 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.98	U	0.29	0.98
108-88-3	Toluene	1	0.98	U	0.15	0.98
100-41-4	Ethylbenzene	1	0.98	U	0.20	0.98
179601-23-1	m,p-Xylene	1	1.96	U	0.38	1.96
95-47-6	o-Xylene	1	0.98	U	0.22	0.98

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	68.7	137	80 - 149	
Toluene-d8	50.000	50.0	100	77 - 120	
4-Bromofluorobenzene	50.000	48.9	97.9	80 - 120	
1,2-Dichlorobenzene-d4	50.000	53.6	107	80 - 120	

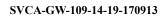
EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: <u>Anchor QEA, LLC</u>

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-11</u> SDG: <u>1710171</u>


Sampled: <u>09/13/17 16:10</u> Prepared: <u>09/18/17 15:57</u> File ID: <u>NT509181726.D</u>

% Solids: 89.96 Preparation: EPA 5035 (Sodium Bisulfate Analyzed: 09/19/17 00:03

Batch: BFI0373 Sequence: SFI0222 Initial/Final: 6.33 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
71-43-2	Benzene	1	0.88	U	0.26	0.88
108-88-3	Toluene	1	0.88	U	0.13	0.88
100-41-4	Ethylbenzene	1	0.88	U	0.18	0.88
179601-23-1	m,p-Xylene	1	1.76	U	0.34	1.76
95-47-6	o-Xylene	1	0.88	U	0.20	0.88

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	69.1	138	80 - 149	
Toluene-d8	50.000	50.1	100	77 - 120	
4-Bromofluorobenzene	50.000	48.7	97.3	80 - 120	
1,2-Dichlorobenzene-d4	50.000	52.9	106	80 - 120	

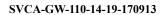
EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-15 SDG: 1710171


Sampled: <u>09/13/17 11:10</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201712.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:07</u>

Batch: BFI0454 Sequence: SFI0240 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.50	90.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.11	102	80 - 120	
Toluene-d8	5.0000	4.66	93.2	80 - 120	
4-Bromofluorobenzene	5.0000	4.78	95.5	80 - 120	

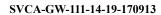
EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: <u>Anchor QEA, LLC</u>

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-17 SDG: 1710171


Sampled: <u>09/13/17 12:57</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201713.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:28</u>

Batch: BFI0454 Sequence: SFI0240 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.63	92.6	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.05	101	80 - 120	
Toluene-d8	5.0000	4.75	94.9	80 - 120	
4-Bromofluorobenzene	5.0000	4.67	93.4	80 - 120	

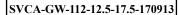
EPA 8260C Volatile Organic Compounds

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-19 SDG: 1710171


Sampled: <u>09/13/17 15:45</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201714.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:48</u>

Batch: BFI0454 Sequence: SFI0240 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.04	J	0.03	0.20
108-88-3	Toluene	1	0.05	J	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.70	94.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.06	101	80 - 120	
Toluene-d8	5.0000	4.78	95.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.83	96.7	80 - 120	

EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-21 SDG: 1710171

Sampled: <u>09/13/17 17:03</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201715.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 15:08</u>

Batch: BFI0454 Sequence: SFI0240 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.83	96.6	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	4.96	99.2	80 - 120	
Toluene-d8	5.0000	4.88	97.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.79	95.7	80 - 120	-

EPA 8260C

Volatile Organic Compounds

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Water Laboratory ID: 1710171-23 SDG: 1710171

Sampled: <u>09/13/17 00:00</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201710.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 13:27</u>

Batch: BFI0454 Sequence: SFI0240 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.45	89.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	4.96	99.2	80 - 120	
Toluene-d8	5.0000	4.80	96.0	80 - 120	
4-Bromofluorobenzene	5.0000	4.89	97.8	80 - 120	

PREPARATION BATCH SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17I0171

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0373
 Batch Matrix:
 Solid
 Preparation:
 EPA 5035 (Sodium Bisulfate)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-SB-111-14-16-170913	17I0171-05	NT509181725.D	09/18/17 15:57	
SVCA-SB-112-12.5-14.5-170913	17I0171-11	NT509181726.D	09/18/17 15:57	
Blank	BFI0373-BLK1	NT509181704.D	09/18/17 07:57	
LCS	BFI0373-BS1	NT509181702A.D	09/18/17 07:57	
LCS Dup	BFI0373-BSD1	NT509181703.D	09/18/17 07:57	

PREPARATION BATCH SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 1710171

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0454
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-GW-109-14-19-170913	17I0171-15	V209201712.D	09/20/17 12:51	
SVCA-GW-110-14-19-170913	17I0171-17	V209201713.D	09/20/17 12:51	
SVCA-GW-111-14-19-170913	17I0171-19	V209201714.D	09/20/17 12:51	
SVCA-GW-112-12.5-17.5-170913	17I0171-21	V209201715.D	09/20/17 12:51	
TRIP BLANK	17I0171-23	V209201710.D	09/20/17 12:51	
Blank	BFI0454-BLK2	V209201709.D	09/20/17 10:51	
LCS	BFI0454-BS2	V209201705LCS.D	09/20/17 10:51	
LCS Dup	BFI0454-BSD2	V209201706.D	09/20/17 10:51	

Form I METHOD BLANK DATA SHEET EPA 8260C

Blank

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BF10373-BLK1 File ID: NT509181704.D

Sampled: <u>N/A</u> Prepared: <u>09/18/17 07:57</u> Analyzed: <u>09/18/17 15:22</u>

Solids: Preparation: <u>EPA 5035 (Sodium Bisulfate Initial/Final:</u> <u>5 g / 5 mL</u>

Batch: <u>BFI0373</u> Sequence: <u>SFI0222</u> Calibration: <u>AI00044</u>

Instrument: NT5 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg wet)	Q	DL	RL
71-43-2	Benzene	1	1.00	U	0.30	1.00
108-88-3	Toluene	1	1.00	U	0.15	1.00
100-41-4	Ethylbenzene	1	1.00	U	0.20	1.00
179601-23-1	m,p-Xylene	1	2.00	U	0.39	2.00
95-47-6	o-Xylene	1	1.00	U	0.22	1.00

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	50.000	60.2	120	80 - 149	
Toluene-d8	50.000	49.7	99.4	77 - 120	
4-Bromofluorobenzene	50.000	47.5	95.1	80 - 120	
1,2-Dichlorobenzene-d4	50.000	51.6	103	80 - 120	

Form I METHOD BLANK DATA SHEET EPA 8260C

Blank

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Laboratory ID: BFI0454-BLK2 File ID: V209201709.D

Sampled: <u>N/A</u> Prepared: <u>09/20/17 10:51</u> Analyzed: <u>09/20/17 13:05</u>

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: <u>BFI0454</u> Sequence: <u>SFI0240</u> Calibration: <u>AI00047</u>

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	4.41	88.3	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	4.91	98.2	80 - 120	
Toluene-d8	5.0000	4.74	94.9	80 - 120	
4-Bromofluorobenzene	5.0000	5.02	100	80 - 120	

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/18/17 14:05

 Batch:
 BFI0373
 Laboratory ID:
 BFI0373-BS1

Preparation: <u>EPA 5035 (Sodium Bisulfate)</u> Sequence Name: <u>LCS</u>

Initial/Final: 5 g / 5 mL

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	Q	LCS % REC.#	QC LIMITS REC.
Benzene	50.0	47.8		95.6	80 - 120
Toluene	50.0	48.2		96.3	75 - 120
Ethylbenzene	50.0	49.6		99.1	80 - 125
m,p-Xylene	100	99.4		99.4	76 - 121
o-Xylene	50.0	48.9		97.7	67 - 132

^{*} Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	Q	% REC. #	% RPD#	RPD	REC.
Benzene	50.0	46.0		92.1	3.75	30	80 - 120
Toluene	50.0	47.5		94.9	1.49	30	75 - 120
Ethylbenzene	50.0	49.9		99.8	0.669	30	80 - 125
m,p-Xylene	100	102		102	2.92	30	76 - 121
o-Xylene	50.0	49.5		99.0	1.32	30	67 - 132

^{*} Indicates values outside of QC limits

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/20/17 11:38

 Batch:
 BFI0454
 Laboratory ID:
 BFI0454-BS2

Preparation: <u>EPA 5030 (Purge and Trap)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 mL / 10 ml

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	Q	LCS % REC.#	QC LIMITS REC.
Benzene	10.0	9.95		99.5	80 - 120
Toluene	10.0	9.93		99.3	80 - 120
Ethylbenzene	10.0	10.5		105	80 - 120
m,p-Xylene	20.0	22.8		114	80 - 121
o-Xylene	10.0	11.4		114	80 - 121

^{*} Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	Q	% REC. #	% RPD#	RPD	REC.
Benzene	10.0	9.63		96.3	3.29	30	80 - 120
Toluene	10.0	9.63		96.3	3.09	30	80 - 120
Ethylbenzene	10.0	10.1		101	3.94	30	80 - 120
m,p-Xylene	20.0	21.9		110	3.78	30	80 - 121
o-Xylene	10.0	10.9		109	3.70	30	80 - 121

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>NT509151703.D</u> Injection Date: <u>09/15/17</u>

Instrument ID: NT5 Injection Time: 11:15

Sequence: SFI0182 Lab Sample ID: SFI0182-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	20.8	PASS
75	30 - 80% of 95	48.3	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.6	PASS
173	Less than 2% of 174	0.309	PASS
174	50 - 120% of 95	65.5	PASS
175	5 - 9% of 174	7.83	PASS
176	95 - 101% of 174	95.2	PASS
177	5 - 9% of 176	6.17	PASS

5 370 01 170			0.1	
Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFI0182-TUN1	NT509151703.D	09/15/2017	11:15
Cal Standard	SFI0182-CAL1	NT509151705.D	09/15/2017	12:22
Cal Standard	SFI0182-CAL2	NT509151706.D	09/15/2017	12:45
Cal Standard	SFI0182-CAL3	NT509151707.D	09/15/2017	13:08
Cal Standard	SFI0182-CAL4	NT509151708.D	09/15/2017	13:30
Cal Standard	SFI0182-CAL5	NT509151709.D	09/15/2017	13:52
Cal Standard	SFI0182-CAL6	NT509151710.D	09/15/2017	14:15
Cal Standard	SFI0182-CAL7	NT509151711.D	09/15/2017	14:38
Cal Standard	SFI0182-CAL8	NT509151712.D	09/15/2017	15:00
Secondary Cal Check	SFI0182-SCV1	NT509151713.D	09/15/2017	15:54
Initial Cal Check	SFI0182-ICV1	NT509151714.D	09/15/2017	16:50
LCS	BFI0337-BS1	NT509151715.D	09/15/2017	17:12
LCS Dup	BFI0337-BSD1	NT509151716.D	09/15/2017	17:34
Blank	BFI0337-BLK1	NT509151717.D	09/15/2017	17:56
ZZZZZ	17I0121-02	NT509151718.D	09/15/2017	18:34
ZZZZZ	17I0121-03	NT509151719.D	09/15/2017	18:57
ZZZZZ	17I0121-05	NT509151720.D	09/15/2017	19:19
ZZZZZ	17I0121-07	NT509151721.D	09/15/2017	19:42
ZZZZZ	17I0121-09	NT509151722.D	09/15/2017	20:04
ZZZZZ	17I0121-10	NT509151723.D	09/15/2017	20:26
ZZZZZ	17I0125-08	NT509151724.D	09/15/2017	20:48
ZZZZZ	17I0125-10	NT509151725.D	09/15/2017	21:10
ZZZZZ	17I0125-12	NT509151726.D	09/15/2017	21:32
ZZZZZ	17I0125-14	NT509151727.D	09/15/2017	21:54
Calibration Check	SFI0182-CCV1	NT509151730.D	09/15/2017	23:00
Low Cal Check	SFI0182-LCV1	NT509151731.D	09/15/2017	23:22

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>V209151702.D</u> Injection Date: <u>09/15/17</u>

Instrument ID: NT2 Injection Time: 09:35

Sequence: SFI0188 Lab Sample ID: SFI0188-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	19.1	PASS
75	30 - 80% of 95	49.4	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.79	PASS
173	Less than 2% of 174	0.443	PASS
174	50 - 120% of 95	69.6	PASS
175	5 - 9% of 174	7.29	PASS
176	95 - 101% of 174	97.1	PASS
177	5 - 9% of 176	6.64	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFI0188-TUN1	V209151702.D	09/15/2017	9:35
Cal Standard	SFI0188-CAL1	V209151704.D	09/15/2017	10:44
Cal Standard	SFI0188-CAL2	V209151705.D	09/15/2017	11:04
Cal Standard	SFI0188-CAL3	V209151706.D	09/15/2017	11:25
Cal Standard	SFI0188-CAL4	V209151707.D	09/15/2017	11:45
Cal Standard	SFI0188-CAL5	V209151708.D	09/15/2017	12:06
Initial Cal Check	SFI0188-ICV1	V209151708a.D	09/15/2017	12:06
Cal Standard	SFI0188-CAL6	V209151709.D	09/15/2017	12:26
Cal Standard	SFI0188-CAL7	V209151710.D	09/15/2017	12:47
Cal Standard	SFI0188-CAL8	V209151711.D	09/15/2017	13:07
Secondary Cal Check	SFI0188-SCV1	V209151713.D	09/15/2017	14:11
LCS	BFI0331-BS1	V209151716.D	09/15/2017	15:13
LCS Dup	BFI0331-BSD1	V209151717.D	09/15/2017	15:34
Blank	BFI0331-BLK1	V209151718.D	09/15/2017	15:54
ZZZZZ	17I0121-25	V209151719.D	09/15/2017	16:14
ZZZZZ	17I0125-20	V209151720.D	09/15/2017	16:34
Calibration Check	SFI0188-CCV1	V209151737.D	09/15/2017	22:15

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>NT509181701.D</u> Injection Date: <u>09/18/17</u>

Instrument ID: NT5 Injection Time: 12:36

Sequence: SFI0222 Lab Sample ID: SFI0222-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	20.4	PASS
75	30 - 80% of 95	50	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.8	PASS
173	Less than 2% of 174	0.766	PASS
174	50 - 120% of 95	67.5	PASS
175	5 - 9% of 174	7.37	PASS
176	95 - 101% of 174	96.6	PASS
177	5 - 9% of 176	7.92	PASS

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
MS Tune	SFI0222-TUN1	NT509181701.D	09/18/2017	12:36
LCS	BFI0373-BS1	NT509181702A.D	09/18/2017	14:05
Initial Cal Check	SFI0222-ICV1	NT509181702.D	09/18/2017	14:05
LCS Dup	BFI0373-BSD1	NT509181703.D	09/18/2017	15:01
Blank	BFI0373-BLK1	NT509181704.D	09/18/2017	15:22
ZZZZZ	17I0125-09	NT509181706.D	09/18/2017	16:48
ZZZZZ	17I0125-15	NT509181707.D	09/18/2017	17:09
ZZZZZ	17I0146-01	NT509181708.D	09/18/2017	17:31
ZZZZZ	17I0146-03	NT509181709.D	09/18/2017	17:53
ZZZZZ	17I0146-04	NT509181710.D	09/18/2017	18:14
ZZZZZ	17I0146-07	NT509181711.D	09/18/2017	18:36
ZZZZZ	17I0146-08	NT509181712.D	09/18/2017	18:58
ZZZZZ	17I0146-09	NT509181713.D	09/18/2017	19:19
ZZZZZ	17I0146-12	NT509181715.D	09/18/2017	20:03
VCA-SB-111-14-16-17091	17I0171-05	NT509181725.D	09/18/2017	23:41
CA-SB-112-12.5-14.5-1709	17I0171-11	NT509181726.D	09/19/2017	0:03
Calibration Check	SFI0222-CCV1	NT509181727.D	09/19/2017	0:25
Low Cal Check	SFI0222-LCV1	NT509181728.D	09/19/2017	0:47

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: $\underline{\text{V209201702.D}}$ Injection Date: $\underline{\text{09/20/17}}$

Instrument ID: NT2 Injection Time: 10:15

Sequence: SFI0240 Lab Sample ID: SFI0240-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	17.8	PASS
75	30 - 80% of 95	46.9	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.84	PASS
173	Less than 2% of 174	0.321	PASS
174	50 - 120% of 95	72.1	PASS
175	5 - 9% of 174	7.08	PASS
176	95 - 101% of 174	97.1	PASS
177	5 - 9% of 176	6.33	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFI0240-TUN1	V209201702.D	09/20/2017	10:15
LCS	BFI0454-BS2	V209201705LCS.D	09/20/2017	11:38
Initial Cal Check	SFI0240-ICV1	V209201705.D	09/20/2017	11:38
LCS Dup	BFI0454-BSD2	V209201706.D	09/20/2017	11:58
Low Cal Check	SFI0240-LCV1	V209201707.D	09/20/2017	12:24
Low Cal Check	SFI0240-LCV2	V209201708.D	09/20/2017	12:44
Blank	BFI0454-BLK2	V209201709.D	09/20/2017	13:05
TRIP BLANK	17I0171-23	V209201710.D	09/20/2017	13:27
ZZZZZ	17I0182-05	V209201711.D	09/20/2017	13:47
VCA-GW-109-14-19-17091	17I0171-15	V209201712.D	09/20/2017	14:07
VCA-GW-110-14-19-17091	17I0171-17	V209201713.D	09/20/2017	14:28
VCA-GW-111-14-19-17091	17I0171-19	V209201714.D	09/20/2017	14:48
CA-GW-112-12.5-17.5-170	17I0171-21	V209201715.D	09/20/2017	15:08
ZZZZZ	17I0182-01	V209201716.D	09/20/2017	15:28
ZZZZZ	17I0182-02	V209201717.D	09/20/2017	15:51
ZZZZZ	17I0182-03	V209201718.D	09/20/2017	16:12
ZZZZZ	17I0182-04	V209201719.D	09/20/2017	16:32
Calibration Check	SFI0240-CCV1	V209201729.D	09/20/2017	19:55

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00044 Instrument: NT5

Calibration Date: 09/15/2017 7:48 Column (1): RTX-VMS

	L	evel 01	L	Level 02		Level 03		Level 04		evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Benzene	1	1.018925	2	0.9185812	5	0.9438549	10	0.9639813	50	0.7027687	100	0.7169388
Toluene	1	0.5792259	2	0.5914292	5	0.5660767	10	0.5979069	50	0.4453508	100	0.4636371
Ethylbenzene	1	1.301858	2	1.255718	5	1.300198	10	1.344558	50	0.9601686	100	1.0043
m,p-Xylene	2	0.4877095	4	0.4631044	10	0.4789072	20	0.4960158	100	0.3681509	200	0.367703
o-Xylene	1	0.4490664	2	0.4333709	5	0.463731	10	0.4698833	50	0.36439	100	0.3806638
Dibromofluoromethane	50	0.3472964	50	0.3656006	50	0.3794206	50	0.3754919	50	0.3777647	50	0.3697016
1,2-Dichloroethane-d4	50	0.4798618	50	0.4971974	50	0.5138378	50	0.528464	50	0.5309572	50	0.5218459
Toluene-d8	50	1.225093	50	1.232733	50	1.236449	50	1.264329	50	1.250331	50	1.240977
4-Bromofluorobenzene	50	0.3738188	50	0.3714357	50	0.362441	50	0.3706623	50	0.36609	50	0.3673601
1,2-Dichlorobenzene-d4	50	0.8940389	50	0.9053069	50	0.9114415	50	0.9095485	50	0.9263553	50	0.9328296

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00044 Instrument: NT5

Calibration Date: 09/15/2017 7:48 Column (1): RTX-VMS

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Benzene	150	0.8703779	200	0.9210598								
Toluene	150	0.5512618	200	0.5909873								
Ethylbenzene	150	1.196587	200	1.268543								
m,p-Xylene	300	0.4353243	400	0.4501726								
o-Xylene	150	0.4592644	200	0.4867316								
Dibromofluoromethane	50	0.4021021	50	0.379145								
1,2-Dichloroethane-d4	50	0.5480244	50	0.5249759								
Toluene-d8	50	1.241503	50	1.25424								
4-Bromofluorobenzene	50	0.3717458	50	0.370917								
1,2-Dichlorobenzene-d4	50	0.9325445	50	0.9157219								

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00044 Instrument: NT5

Calibration Date: 09/15/2017 7:48 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Benzene	0.8820609	13.0			RSD (20)	
Toluene	0.5482345	10.9			RSD (20)	
Ethylbenzene	1.203991	11.9			RSD (20)	
m,p-Xylene	0.443386	11.4			RSD (20)	
o-Xylene	0.4383877	10.0			RSD (20)	
Dibromofluoromethane	0.3745654	4.1			RSD (20)	
1,2-Dichloroethane-d4	0.5181456	4.1			RSD (20)	
Toluene-d8	1.243207	1.0			RSD (20)	
4-Bromofluorobenzene	0.3693088	1.0			RSD (20)	
1,2-Dichlorobenzene-d4	0.9159734	1.5			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00047 Instrument: NT2

Calibration Date: 09/15/2017 8:20 Column (1): RTX-VMS

	L	evel 01	L	evel 02	L	evel 03	Level 04		L	evel 05	L	evel 06
Compound		RF		RF		RF		RF		RF		RF
Benzene	0.2	1.444879	0.5	1.607331	1	1.687637	2	1.627295	10	1.585004	20	1.642497
Toluene	0.2	0.9328447	0.5	0.9696614	1	0.9813036	2	0.9751219	10	0.9657501	20	1.038763
Ethylbenzene	0.2	0.5388003	0.5	0.6103128	1	0.6173489	2	0.6202384	10	0.6502201	20	0.664503
m,p-Xylene	0.4	0.6193096	1	0.6659757	2	0.7228447	4	0.7596048	20	0.7981989	40	0.8005963
o-Xylene	0.2	0.5612702	0.5	0.6057281	1	0.6445858	2	0.6738848	10	0.7581366	20	0.7865931
1,2-Dichloroethane-d4	5	0.6677408	5	0.6738775	5	0.7156822	5	0.7006539	5	0.6481359	5	0.6696135
1,2-Dichlorobenzene-d4	5	0.9735369	5	0.9435335	5	0.9835784	5	0.9815935	5	0.977751	5	0.9804789
Toluene-d8	5	1.145872	5	1.168241	5	1.186762	5	1.194053	5	1.206906	5	1.226348
4-Bromofluorobenzene	5	0.3237353	5	0.3304114	5	0.3515908	5	0.3522024	5	0.3628115	5	0.3633586
Dibromofluoromethane	5	0.5682088	5	0.5419423	5	0.5640578	5	0.5450814	5	0.5507838	5	0.5658229

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00047 Instrument: NT2

Calibration Date: 09/15/2017 8:20 Column (1): RTX-VMS

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	L	evel 12
Compound		RF		RF		RF		RF		RF		RF
Benzene	40	1.524811	80	1.286574								
Toluene	40	1.002463	80	0.9189422								
Ethylbenzene	40	0.6531787	80	0.6081053								
m,p-Xylene	80	0.7579271	160	0.6068033								
o-Xylene	40	0.7727704	80	0.7140973								
1,2-Dichloroethane-d4	5	0.6613816	5	0.6280056								
1,2-Dichlorobenzene-d4	5	0.9669531	5	0.966631								
Toluene-d8	5	1.228283	5	1.24493								
4-Bromofluorobenzene	5	0.3659569	5	0.3581294								
Dibromofluoromethane	5	0.5525164	5	0.5707711								

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00047 Instrument: NT2

Calibration Date: 09/15/2017 8:20 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Benzene	1.550754	8.4			RSD (20)	
Toluene	0.9731062	3.9			RSD (20)	
Ethylbenzene	0.6203384	6.3			RSD (20)	
m,p-Xylene	0.7164076	10.7			RSD (20)	
o-Xylene	0.6896333	11.9			RSD (20)	
1,2-Dichloroethane-d4	0.6706364	4.1			RSD (20)	
1,2-Dichlorobenzene-d4	0.971757	1.3			RSD (20)	
Toluene-d8	1.200174	2.8			RSD (20)	
4-Bromofluorobenzene	0.3510245	4.5			RSD (20)	
Dibromofluoromethane	0.5573981	2.0			RSD (20)	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT5 Calibration: AI00044

Lab File ID: <u>NT509151714.D</u> Calibration Date: <u>09/15/17 07:48</u>

Sequence: SFI0182 Injection Date: 09/15/17

Lab Sample ID: SFI0182-ICV1 Injection Time: 16:50

		CONC	. (ug/L)	RESI	PONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Benzene	A	50.000	45.3	0.8820609	0.7985376		-9.5	20	
Toluene	A	50.000	45.7	0.5482345	0.5013119		-8.6	20	
Ethylbenzene	A	50.000	48.3	1.2039910	1.1636650		-3.4	20	
m,p-Xylene	A	100.00	97.5	0.4433860	0.4321797		-2.5	20	
o-Xylene	A	50.000	48.8	0.4383877	0.4277163		-2.4	20	
Dibromofluoromethane	A	50.000	56.6	0.3745654	0.4243776		13.3	20	
1,2-Dichloroethane-d4	A	50.000	53.2	0.5181456	0.5514721		6.4	20	
Toluene-d8	A	50.000	49.6	1.2432070	1.2325870		-0.9	20	
4-Bromofluorobenzene	A	50.000	49.3	0.3693088	0.3637823		-1.5	20	
1,2-Dichlorobenzene-d4	A	50.000	49.1	0.9159734	0.9002994		-1.7	20	

^{*} Values outside of QC limits

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT2 Calibration: AI00047

Lab File ID: <u>V209151708a.D</u> Calibration Date: <u>09/15/17 08:20</u>

Sequence: SFI0188 Injection Date: 09/15/17

Lab Sample ID: SFI0188-ICV1 Injection Time: 12:06

		CONC	CONC. (ug/L)		RESPONSE FACTOR		% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Benzene	A	10.000	10.2	1.5507540	1.5850040		2.2	20
Toluene	A	10.000	9.92	0.9731062	0.9657501		-0.8	20
Ethylbenzene	A	10.000	10.5	0.6203384	0.6502201		4.8	20
m,p-Xylene	A	20.000	22.3	0.7164076	0.7981989		11.4	20
o-Xylene	A	10.000	11.0	0.6896333	0.7581366		9.9	20
Dibromofluoromethane	A	5.0000	4.94	0.5573981	0.5507838		-1.2	20
1,2-Dichloroethane-d4	A	5.0000	4.83	0.6706364	0.6481359		-3.4	20
Toluene-d8	A	5.0000	5.03	1.2001740	1.2069060		0.6	20
4-Bromofluorobenzene	A	5.0000	5.17	0.3510245	0.3628115		3.4	20
1,2-Dichlorobenzene-d4	A	5.0000	5.03	0.9717570	0.9777510		0.6	20

^{*} Values outside of QC limits

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT5 Calibration: AI00044

Lab File ID: <u>NT509181702.D</u> Calibration Date: <u>09/15/17 07:48</u>

Sequence: SFI0222 Injection Date: 09/18/17

Lab Sample ID: SFI0222-ICV1 Injection Time: 14:05

		CONC	CONC. (ug/L)		RESPONSE FACTOR		% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Benzene	A	50.000	47.8	0.8820609	0.8429519		-4.4	20
Toluene	A	50.000	48.2	0.5482345	0.5280765		-3.7	20
Ethylbenzene	A	50.000	49.6	1.2039910	1.1935420		-0.9	20
m,p-Xylene	A	100.00	99.4	0.4433860	0.4408141		-0.6	20
o-Xylene	A	50.000	48.9	0.4383877	0.4283580		-2.3	20
Dibromofluoromethane	A	50.000	69.3	0.3745654	0.5188239		38.5	20 *
1,2-Dichloroethane-d4	A	50.000	58.1	0.5181456	0.6016729		16.1	20
Toluene-d8	A	50.000	51.7	1.2432070	1.2862550		3.5	20
4-Bromofluorobenzene	A	50.000	48.3	0.3693088	0.3569501		-3.3	20
1,2-Dichlorobenzene-d4	A	50.000	51.0	0.9159734	0.9339002		2.0	20

^{*} Values outside of QC limits

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT2 Calibration: AI00047

Lab File ID: <u>V209201705.D</u> Calibration Date: <u>09/15/17 08:20</u>

Sequence: SFI0240 Injection Date: 09/20/17

Lab Sample ID: SFI0240-ICV1 Injection Time: 11:38

		CONC	CONC. (ug/L)		RESPONSE FACTOR		% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Benzene	A	10.000	9.95	1.5507540	1.5429230		-0.5	20
Toluene	A	10.000	9.93	0.9731062	0.9662560		-0.7	20
Ethylbenzene	A	10.000	10.5	0.6203384	0.6527170		5.2	20
m,p-Xylene	A	20.000	22.8	0.7164076	0.8157955		13.9	20
o-Xylene	A	10.000	11.4	0.6896333	0.7833798		13.6	20
Dibromofluoromethane	A	5.0000	4.53	0.5573981	0.5045671		-9.5	20
1,2-Dichloroethane-d4	A	5.0000	4.12	0.6706364	0.5519080		-17.7	20
Toluene-d8	A	5.0000	4.96	1.2001740	1.1906700		-0.8	20
4-Bromofluorobenzene	A	5.0000	5.43	0.3510245	0.3812281		8.6	20
1,2-Dichlorobenzene-d4	A	5.0000	4.79	0.9717570	0.9299321		-4.3	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFI0182}$ Instrument: $\underline{NT5}$

Calibration: <u>AI00044</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0182-TUN1	NT509151703.D	NA	09/15/17 11:15
8260C 1	SFI0182-CAL1	NT509151705.D	NA	09/15/17 12:22
8260C 2	SFI0182-CAL2	NT509151706.D	NA	09/15/17 12:45
8260C 5	SFI0182-CAL3	NT509151707.D	NA	09/15/17 13:08
8260C 10	SFI0182-CAL4	NT509151708.D	NA	09/15/17 13:30
8260C 50	SFI0182-CAL5	NT509151709.D	NA	09/15/17 13:52
8260C 100	SFI0182-CAL6	NT509151710.D	NA	09/15/17 14:15
8260C 150	SFI0182-CAL7	NT509151711.D	NA	09/15/17 14:38
8260C 200	SFI0182-CAL8	NT509151712.D	NA	09/15/17 15:00
8260C SCV 50	SFI0182-SCV1	NT509151713.D	NA	09/15/17 15:54
VOA 10	SFI0182-ICV1	NT509151714.D	NA	09/15/17 16:50
ZZZZZ	BFI0337-BS1	NT509151715.D	Solid	09/15/17 17:12
ZZZZZ	BFI0337-BSD1	NT509151716.D	Solid	09/15/17 17:34
ZZZZZ	BFI0337-BLK1	NT509151717.D	Solid	09/15/17 17:56
ZZZZZ	17I0121-02	NT509151718.D	Solid	09/15/17 18:34
ZZZZZ	17I0121-03	NT509151719.D	Solid	09/15/17 18:57
ZZZZZ	17I0121-05	NT509151720.D	Solid	09/15/17 19:19
ZZZZZ	17I0121-07	NT509151721.D	Solid	09/15/17 19:42
ZZZZZ	17I0121-09	NT509151722.D	Solid	09/15/17 20:04
ZZZZZ	17I0121-10	NT509151723.D	Solid	09/15/17 20:26
ZZZZZ	17I0125-08	NT509151724.D	Solid	09/15/17 20:48
ZZZZZ	17I0125-10	NT509151725.D	Solid	09/15/17 21:10
ZZZZZ	17I0125-12	NT509151726.D	Solid	09/15/17 21:32
ZZZZZ	17I0125-14	NT509151727.D	Solid	09/15/17 21:54
CCV	SFI0182-CCV1	NT509151730.D	NA	09/15/17 23:00
VOA 0.2	SFI0182-LCV1	NT509151731.D	NA	09/15/17 23:22

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0188</u> Instrument: <u>NT2</u>

Calibration: <u>AI00047</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0188-TUN1	V209151702.D	NA	09/15/17 09:35
8260C 0.2	SFI0188-CAL1	V209151704.D	NA	09/15/17 10:44
8260C 0.5	SFI0188-CAL2	V209151705.D	NA	09/15/17 11:04
8260C 1.0	SFI0188-CAL3	V209151706.D	NA	09/15/17 11:25
8260C 2.0	SFI0188-CAL4	V209151707.D	NA	09/15/17 11:45
8260C 10	SFI0188-CAL5	V209151708.D	NA	09/15/17 12:06
VOA 10	SFI0188-ICV1	V209151708a.D	NA	09/15/17 12:06
8260C 20	SFI0188-CAL6	V209151709.D	NA	09/15/17 12:26
8260C 40	SFI0188-CAL7	V209151710.D	NA	09/15/17 12:47
8260C 80	SFI0188-CAL8	V209151711.D	NA	09/15/17 13:07
8260C SCV 10	SFI0188-SCV1	V209151713.D	NA	09/15/17 14:11
ZZZZZ	BFI0331-BS1	V209151716.D	Water	09/15/17 15:13
ZZZZZ	BFI0331-BSD1	V209151717.D	Water	09/15/17 15:34
ZZZZZ	BFI0331-BLK1	V209151718.D	Water	09/15/17 15:54
ZZZZZ	17I0121-25	V209151719.D	Water	09/15/17 16:14
ZZZZZ	17I0125-20	V209151720.D	Water	09/15/17 16:34
CCV	SFI0188-CCV1	V209151737.D	NA	09/15/17 22:15

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0222</u> Instrument: <u>NT5</u>

Calibration: AI00044

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0222-TUN1	NT509181701.D	NA	09/18/17 12:36
VOA 10	SFI0222-ICV1	NT509181702.D	NA	09/18/17 14:05
LCS	BFI0373-BS1	NT509181702A.D	Solid	09/18/17 14:05
LCS Dup	BFI0373-BSD1	NT509181703.D	Solid	09/18/17 15:01
Blank	BFI0373-BLK1	NT509181704.D	Solid	09/18/17 15:22
ZZZZZ	17I0125-09	NT509181706.D	Solid	09/18/17 16:48
ZZZZZ	17I0125-15	NT509181707.D	Solid	09/18/17 17:09
ZZZZZ	17I0146-01	NT509181708.D	Solid	09/18/17 17:31
ZZZZZ	17I0146-03	NT509181709.D	Solid	09/18/17 17:53
ZZZZZ	17I0146-04	NT509181710.D	Solid	09/18/17 18:14
ZZZZZ	17I0146-07	NT509181711.D	Solid	09/18/17 18:36
ZZZZZ	17I0146-08	NT509181712.D	Solid	09/18/17 18:58
ZZZZZ	17I0146-09	NT509181713.D	Solid	09/18/17 19:19
ZZZZZ	17I0146-12	NT509181715.D	Solid	09/18/17 20:03
SVCA-SB-111-14-16-170913	17I0171-05	NT509181725.D	Solid	09/18/17 23:41
SVCA-SB-112-12.5-14.5-170913	17I0171-11	NT509181726.D	Solid	09/19/17 00:03
CCV	SFI0222-CCV1	NT509181727.D	NA	09/19/17 00:25
VOA 0.2	SFI0222-LCV1	NT509181728.D	NA	09/19/17 00:47

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0240</u> Instrument: <u>NT2</u>

Calibration: AI00047

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0240-TUN1	V209201702.D	NA	09/20/17 10:15
VOA 10	SFI0240-ICV1	V209201705.D	NA	09/20/17 11:38
LCS	BFI0454-BS2	V209201705LCS.D	Water	09/20/17 11:38
LCS Dup	BFI0454-BSD2	V209201706.D	Water	09/20/17 11:58
VOA 0.2	SFI0240-LCV1	V209201707.D	NA	09/20/17 12:24
VOA 1.0	SFI0240-LCV2	V209201708.D	NA	09/20/17 12:44
Blank	BFI0454-BLK2	V209201709.D	Water	09/20/17 13:05
TRIP BLANK	17I0171-23	V209201710.D	Water	09/20/17 13:27
ZZZZZ	17I0182-05	V209201711.D	Water	09/20/17 13:47
SVCA-GW-109-14-19-170913	17I0171-15	V209201712.D	Water	09/20/17 14:07
SVCA-GW-110-14-19-170913	17I0171-17	V209201713.D	Water	09/20/17 14:28
SVCA-GW-111-14-19-170913	17I0171-19	V209201714.D	Water	09/20/17 14:48
SVCA-GW-112-12.5-17.5-170913	17I0171-21	V209201715.D	Water	09/20/17 15:08
ZZZZZ	17I0182-01	V209201716.D	Water	09/20/17 15:28
ZZZZZ	17I0182-02	V209201717.D	Water	09/20/17 15:51
ZZZZZ	17I0182-03	V209201718.D	Water	09/20/17 16:12
ZZZZZ	17I0182-04	V209201719.D	Water	09/20/17 16:32
CCV	SFI0240-CCV1	V209201729.D	NA	09/20/17 19:55

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0182</u> Instrument: <u>NT5</u>

Calibration: AI00044 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
SFI0182-SCV1 (Solid) La	b File ID: NT509151	713.D	Analyzed: 09/	15/17 15:54
Dibromofluoromethane	50.000	132	80 - 120	
1,2-Dichloroethane-d4	50.000	105	80 - 120	
Toluene-d8	50.000	98.4	80 - 120	
4-Bromofluorobenzene	50.000	99.6	80 - 120	
1,2-Dichlorobenzene-d4	50.000	100	80 - 120	
SFI0182-ICV1 (Solid)	b File ID: NT509151	714.D	Analyzed: 09/	15/17 16:50
Dibromofluoromethane	50.000	113	80 - 120	
1,2-Dichloroethane-d4	50.000	106	80 - 120	
Toluene-d8	50.000	99.1	80 - 120	
4-Bromofluorobenzene	50.000	98.5	80 - 120	
1,2-Dichlorobenzene-d4	50.000	98.3	80 - 120	
SFI0182-LCV1 (Solid) La	b File ID: NT509151	731.D	Analyzed: 09/	15/17 23:22
Dibromofluoromethane	50.000	143	0 - 200	
1,2-Dichloroethane-d4	50.000	121	0 - 200	
Toluene-d8	50.000	107	0 - 200	_
4-Bromofluorobenzene	50.000	92.3	0 - 200	
1,2-Dichlorobenzene-d4	50.000	103	0 - 200	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0188</u> Instrument: <u>NT2</u>

Calibration: AI00047 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
SFI0188-ICV1 (Water)	ab File ID: V2091517	708a.D	Analyzed: 09/	15/17 12:06
1,2-Dichloroethane-d4	5.0000	96.6	80 - 120	
1,2-Dichlorobenzene-d4	5.0000	101	80 - 120	
Toluene-d8	5.0000	101	80 - 120	
4-Bromofluorobenzene	5.0000	103	80 - 120	
Dibromofluoromethane	5.0000	98.8	80 - 120	
SFI0188-SCV1 (Water)	Lab File ID: V209151	713.D	Analyzed: 09/	15/17 14:11
1,2-Dichloroethane-d4	5.0000	92.3	80 - 120	
1,2-Dichlorobenzene-d4	5.0000	99.4	80 - 120	
Toluene-d8	5.0000	101	80 - 120	
4-Bromofluorobenzene	5.0000	104	80 - 120	
Dibromofluoromethane	5.0000	99.2	80 - 120	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0222</u> Instrument: <u>NT5</u>

Calibration: AI00044 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
BFI0373-BS1 (Solid) Lab	File ID: NT5091817	02A.D	Analyzed: 09/	18/17 14:05
Dibromofluoromethane	50.000	139	80 - 120	
1,2-Dichloroethane-d4	50.000	116	80 - 149	
Toluene-d8	50.000	103	77 - 120	
4-Bromofluorobenzene	50.000	96.7	80 - 120	
1,2-Dichlorobenzene-d4	50.000	102	80 - 120	
SFI0222-ICV1 (Solid) La	ab File ID: NT509181	702.D	Analyzed: 09/	18/17 14:05
Dibromofluoromethane	50.000	139	80 - 120	*
1,2-Dichloroethane-d4	50.000	116	80 - 120	
Toluene-d8	50.000	103	80 - 120	
4-Bromofluorobenzene	50.000	96.7	80 - 120	
1,2-Dichlorobenzene-d4	50.000	102	80 - 120	
BFI0373-BSD1 (Solid) La	ab File ID: NT509181	703.D	Analyzed: 09/	18/17 15:01
Dibromofluoromethane	50.000	136	80 - 120	
1,2-Dichloroethane-d4	50.000	114	80 - 149	
Toluene-d8	50.000	101	77 - 120	
4-Bromofluorobenzene	50.000	96.1	80 - 120	
1,2-Dichlorobenzene-d4	50.000	102	80 - 120	
BFI0373-BLK1 (Solid) La	ab File ID: NT509181	704.D	Analyzed: 09/	18/17 15:22
1,2-Dichloroethane-d4	50.000	120	80 - 149	
Toluene-d8	50.000	99.4	77 - 120	
4-Bromofluorobenzene	50.000	95.1	80 - 120	
1,2-Dichlorobenzene-d4	50.000	103	80 - 120	
17I0171-05 (Solid) La	ab File ID: NT509181	725.D	Analyzed: 09/	18/17 23:41
1,2-Dichloroethane-d4	50.000	137	80 - 149	
Toluene-d8	50.000	100	77 - 120	
4-Bromofluorobenzene	50.000	97.9	80 - 120	
1,2-Dichlorobenzene-d4	50.000	107	80 - 120	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0222</u> Instrument: <u>NT5</u>

Calibration: AI00044 Calibration Date: 09/15/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
17I0171-11 (Solid)	Lab	File ID: NT509181	726.D	Analyzed: 09/	19/17 00:03
1,2-Dichloroethane-d4		50.000	138	80 - 149	
Toluene-d8		50.000	100	77 - 120	
4-Bromofluorobenzene		50.000	97.3	80 - 120	
1,2-Dichlorobenzene-d4		50.000	106	80 - 120	
SFI0222-LCV1 (Solid)	Lab	File ID: NT509181	728.D	Analyzed: 09/	19/17 00:47
Dibromofluoromethane		50.000	151	0 - 200	
1,2-Dichloroethane-d4		50.000	124	0 - 200	
Toluene-d8		50.000	99.4	0 - 200	
4-Bromofluorobenzene		50.000	96.7	0 - 200	
1,2-Dichlorobenzene-d4		50.000	106	0 - 200	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0240</u> Instrument: <u>NT2</u>

Calibration: AI00047 Calibration Date: 09/15/2017

		1	1	1
Surrogate	Spike Level	%	Recovery Limits	Q
Compound	ug/L	Recovery	Limits	Ų
BFI0454-BS2 (Water)	Lab File ID: V209201705	SLCS.D	Analyzed: 09/	/20/17 11:38
1,2-Dichloroethane-d4	5.0000	82.3	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	95.7	80 - 120	
Toluene-d8	5.0000	99.2	80 - 120	
4-Bromofluorobenzene	5.0000	109	80 - 120	
Dibromofluoromethane	5.0000	90.5	80 - 120	
SFI0240-ICV1 (Water)	Lab File ID: V20920	1705.D	Analyzed: 09/	/20/17 11:38
1,2-Dichloroethane-d4	5.0000	82.3	80 - 120	
1,2-Dichlorobenzene-d4	5.0000	95.7	80 - 120	
Toluene-d8	5.0000	99.2	80 - 120	
4-Bromofluorobenzene	5.0000	109	80 - 120	
Dibromofluoromethane	5.0000	90.5	80 - 120	
BFI0454-BSD2 (Water)	Lab File ID: V20920	1706.D	Analyzed: 09/	/20/17 11:58
1,2-Dichloroethane-d4	5.0000	84.9	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	99.7	80 - 120	
Toluene-d8	5.0000	98.8	80 - 120	
4-Bromofluorobenzene	5.0000	108	80 - 120	
Dibromofluoromethane	5.0000	90.6	80 - 120	
SFI0240-LCV1 (Water)	Lab File ID: V20920	1707.D	Analyzed: 09/	20/17 12:24
1,2-Dichloroethane-d4	5.0000	88.2	0 - 200	
1,2-Dichlorobenzene-d4	5.0000	100	0 - 200	
Toluene-d8	5.0000	96.3	0 - 200	
4-Bromofluorobenzene	5.0000	101	0 - 200	
Dibromofluoromethane	5.0000	87.4	0 - 200	
SFI0240-LCV2 (Water)	Lab File ID: V20920	1708.D	Analyzed: 09/	20/17 12:44
1,2-Dichloroethane-d4	5.0000	88.5	0 - 200	
1,2-Dichlorobenzene-d4	5.0000	100	0 - 200	
Toluene-d8	5.0000	96.8	0 - 200	
4-Bromofluorobenzene	5.0000	98.8	0 - 200	
Dibromofluoromethane	5.0000	87.7	0 - 200	

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0240</u> Instrument: <u>NT2</u>

Calibration: AI00047 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
BFI0454-BLK2 (Water)	Lab File ID: V209201	1709.D	Analyzed: 09/	20/17 13:05
1,2-Dichloroethane-d4	5.0000	88.3	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	98.2	80 - 120	
Toluene-d8	5.0000	94.9	80 - 120	
4-Bromofluorobenzene	5.0000	100	80 - 120	
17I0171-23 (Water)	Lab File ID: V209201	1710.D	Analyzed: 09/	20/17 13:27
1,2-Dichloroethane-d4	5.0000	89.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	99.2	80 - 120	
Toluene-d8	5.0000	96.0	80 - 120	
4-Bromofluorobenzene	5.0000	97.8	80 - 120	
17I0171-15 (Water)	Lab File ID: V209201	1712.D	Analyzed: 09/	20/17 14:07
1,2-Dichloroethane-d4	5.0000	90.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	102	80 - 120	
Toluene-d8	5.0000	93.2	80 - 120	
4-Bromofluorobenzene	5.0000	95.5	80 - 120	
17I0171-17 (Water)	Lab File ID: V209201	1713.D	Analyzed: 09/	20/17 14:28
1,2-Dichloroethane-d4	5.0000	92.6	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	101	80 - 120	
Toluene-d8	5.0000	94.9	80 - 120	
4-Bromofluorobenzene	5.0000	93.4	80 - 120	
17I0171-19 (Water)	Lab File ID: V209201	1714.D	Analyzed: 09/	20/17 14:48
1,2-Dichloroethane-d4	5.0000	94.0	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	101	80 - 120	
Toluene-d8	5.0000	95.7	80 - 120	
4-Bromofluorobenzene	5.0000	96.7	80 - 120	
17I0171-21 (Water)	Lab File ID: V209201	1715.D	Analyzed: 09/	20/17 15:08
1,2-Dichloroethane-d4	5.0000	96.6	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	99.2	80 - 120	
Toluene-d8	5.0000	97.7	80 - 120	
4-Bromofluorobenzene	5.0000	95.7	80 - 120	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0182</u> Instrument: <u>NT5</u>

Calibration: <u>AI00044</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Secondary Cal Check (SFI0182-SCV1)		(Solid)	La	ıb File ID: NT5	Analyzed:	09/15/17 15	5:54		
Pentafluorobenzene	727808	4.961	772584	4.967	94	50 - 200	0.0060	+/-0.50	
Chlorobenzene-d5	1106325	7.875	1102950	7.881	100	50 - 200	0.0060	+/-0.50	
1,4-Difluorobenzene	1320200	5.405	1264803	5.411	104	50 - 200	0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	548799	9.968	553292	9.968	99	50 - 200	0.0000	+/-0.50	
Initial Cal Check (SFI0182-ICV1)	heck (SFI0182-ICV1) (Solid) Lab I				509151714.D	Analyzed: 09/15/17 16:50			
Pentafluorobenzene	736389	4.961	772584	4.967	95	50 - 200	0.0060	+/-0.50	
Chlorobenzene-d5	1085729	7.875	1102950	7.881	98	50 - 200	0.0060	+/-0.50	
1,4-Difluorobenzene	1303861	5.405	1264803	5.411	103	50 - 200	0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	537008	9.968	553292	9.968	97	50 - 200	0.0000	+/-0.50	
Low Cal Check (SFI0182-LCV1)		(Solid)	La	ıb File ID: NT5	509151731.D		Analyzed:	09/15/17 23	3:22
Pentafluorobenzene	555526	4.967	772584	4.967	72	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	934017	7.881	1102950	7.881	85	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	1002324	5.411	1264803	5.411	79	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	433866	9.968	553292	9.968	78	50 - 200	0.0000	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0188 Instrument: NT2

Calibration: <u>AI00047</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (SFI0188-ICV1)		(Water)	L	ab File ID: V20)9151708a.D		Analyzed:	09/15/17 12	2:06
Pentafluorobenzene	319541	5.267	319541	5.267	100	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	518892	7.705	518892	7.705	100	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	590046	5.658	590046	5.658	100	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	268551	9.397	268551	9.397	100	50 - 200	0.0000	+/-0.50	
Secondary Cal Check (SFI0188-SCV	V1)	(Water)	Lab File ID: V209151713.			ı	Analyzed:	09/15/17 14	l :11
Pentafluorobenzene	372129	5.269	319541	5.267	116	50 - 200	-0.0020	+/-0.50	
Chlorobenzene-d5	587135	7.707	518892	7.705	113	50 - 200	-0.0020	+/-0.50	
1,4-Difluorobenzene	680137	5.648	590046	5.658	115	50 - 200	0.0100	+/-0.50	
1,4-Dichlorobenzene-d4	293798	9.399	268551	9.397	109	50 - 200	-0.0020	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0222</u> Instrument: <u>NT5</u>

Calibration: <u>AI00044</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFI0373-BS1)	Ī	(Solid)	Lab	File ID: NT50	9181702A.D		Analyzed: 09/18/17		1:05
Pentafluorobenzene	763365	4.973	772584	4.967	99	50 - 200	-0.0060	+/-0.50	
Chlorobenzene-d5	1208564	7.887	1102950	7.881	110	50 - 200	-0.0060	+/-0.50	
1,4-Difluorobenzene	1378450	5.417	1264803	5.411	109	50 - 200	-0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	571696	9.974	553292	9.968	103	50 - 200	-0.0060	+/-0.50	
Initial Cal Check (SFI0222-ICV1)		(Solid)	La	ıb File ID: NT5	09181702.D		Analyzed:	09/18/17 14	4:05
Pentafluorobenzene	763365	4.973	772584	4.967	99	50 - 200	-0.0060	+/-0.50	
Chlorobenzene-d5	1208564	7.887	1102950	7.881	110	50 - 200	-0.0060	+/-0.50	
1,4-Difluorobenzene	1378450	5.417	1264803	5.411	109	50 - 200	-0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	571696	9.974	553292	9.968	103	50 - 200	-0.0060	+/-0.50	
LCS Dup (BFI0373-BSD1)		(Solid)	La	b File ID: NT5	09181703.D		Analyzed: 09/18/17 15:01		
Pentafluorobenzene	740830	4.973	772584	4.967	96	50 - 200	-0.0060	+/-0.50	
Chlorobenzene-d5	1152276	7.887	1102950	7.881	104	50 - 200	-0.0060	+/-0.50	
1,4-Difluorobenzene	1369349	5.417	1264803	5.411	108	50 - 200	-0.0060	+/-0.50	
1,4-Dichlorobenzene-d4	545784	9.974	553292	9.968	99	50 - 200	-0.0060	+/-0.50	
Blank (BFI0373-BLK1)		(Solid)	Lab File ID: NT5091		09181704.D		Analyzed:	09/18/17 15	5:22
Pentafluorobenzene	700652	4.985	772584	4.967	91	50 - 200	-0.0180	+/-0.50	
Chlorobenzene-d5	1168289	7.887	1102950	7.881	106	50 - 200	-0.0060	+/-0.50	
1,4-Difluorobenzene	1373643	5.423	1264803	5.411	109	50 - 200	-0.0120	+/-0.50	
1,4-Dichlorobenzene-d4	548160	9.974	553292	9.968	99	50 - 200	-0.0060	+/-0.50	
SVCA-SB-111-14-16-170913 (17I017	71-05)	(Solid)	La	ıb File ID: NT5	09181725.D		Analyzed:	09/18/17 23	3:41
Pentafluorobenzene	800898	4.985	772584	4.967	104	50 - 200	-0.0180	+/-0.50	
Chlorobenzene-d5	1445602	7.893	1102950	7.881	131	50 - 200	-0.0120	+/-0.50	
1,4-Difluorobenzene	1609953	5.429	1264803	5.411	127	50 - 200	-0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	690105	9.974	553292	9.968	125	50 - 200	-0.0060	+/-0.50	
SVCA-SB-112-12.5-14.5-170913 (17)	10171-11)	(Solid)	La	ıb File ID: NT5	09181726.D		Analyzed:	09/19/17 00	0:03
Pentafluorobenzene	785285	4.979	772584	4.967	102	50 - 200	-0.0120	+/-0.50	
Chlorobenzene-d5	1411208	7.893	1102950	7.881	128	50 - 200	-0.0120	+/-0.50	
1,4-Difluorobenzene	1580486	5.423	1264803	5.411	125	50 - 200	-0.0120	+/-0.50	
1,4-Dichlorobenzene-d4	671163	9.974	553292	9.968	121	50 - 200	-0.0060	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0222</u> Instrument: <u>NT5</u>

Calibration: <u>AI00044</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Low Cal Check (SFI0222-LCV1)		(Solid)	Lab File ID: NT509181728.D Analyzed: 09/19/17 00:):47
Pentafluorobenzene	768961	4.985	772584	4.967	100	50 - 200	-0.0180	+/-0.50	
Chlorobenzene-d5	1338747	7.893	1102950	7.881	121	50 - 200	-0.0120	+/-0.50	
1,4-Difluorobenzene	1549041	5.429	1264803	5.411	122	50 - 200	-0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	614254	9.974	553292	9.968	111	50 - 200	-0.0060	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFI0240}$ Instrument: $\underline{NT2}$

Calibration: <u>AI00047</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFI0454-BS2)		(Water)	Lab I	File ID: V20920)1705LCS.D		Analyzed: 09/20/17 11:38		
Pentafluorobenzene	380770	5.268	319541	5.267	119	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	568211	7.706	518892	7.705	110	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	667201	5.658	590046	5.658	113	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	290675	9.398	268551	9.397	108	50 - 200	-0.0010	+/-0.50	
Initial Cal Check (SFI0240-ICV1)		(Water)]	Lab File ID: V2	09201705.D		Analyzed:	09/20/17 11	1:38
Pentafluorobenzene	380770	5.268	319541	5.267	119	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	568211	7.706	518892	7.705	110	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	667201	5.658	590046	5.658	113	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	290675	9.398	268551	9.397	108	50 - 200	-0.0010	+/-0.50	
LCS Dup (BFI0454-BSD2)		(Water)]	Lab File ID: V2	09201706.D		Analyzed: 09/20/17 11:58		
Pentafluorobenzene	387653	5.267	319541	5.267	121	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	583196	7.705	518892	7.705	112	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	678421	5.658	590046	5.658	115	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	289016	9.397	268551	9.397	108	50 - 200	0.0000	+/-0.50	
Low Cal Check (SFI0240-LCV1)		(Water)	Lab File ID: V209201707.D				Analyzed: 09/20/17 12:24		
Pentafluorobenzene	383113	5.268	319541	5.267	120	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	593389	7.706	518892	7.705	114	50 - 200	-0.0010	+/-0.50	
1,4-Difluorobenzene	665710	5.659	590046	5.658	113	50 - 200	-0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	281808	9.398	268551	9.397	105	50 - 200	-0.0010	+/-0.50	
Low Cal Check (SFI0240-LCV2)		(Water)]	Lab File ID: V2	09201708.D		Analyzed:	09/20/17 12	2:44
Pentafluorobenzene	373760	5.267	319541	5.267	117	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	595988	7.704	518892	7.705	115	50 - 200	0.0010	+/-0.50	
1,4-Difluorobenzene	648245	5.657	590046	5.658	110	50 - 200	0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	273282	9.396	268551	9.397	102	50 - 200	0.0010	+/-0.50	
Blank (BFI0454-BLK2)		(Water)]	Lab File ID: V2	09201709.D		Analyzed: 09/20/17 13:05		
Pentafluorobenzene	345233	5.267	319541	5.267	108	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	534665	7.705	518892	7.705	103	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	612911	5.658	590046	5.658	104	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	255547	9.397	268551	9.397	95	50 - 200	0.0000	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: $\underline{SFI0240}$ Instrument: $\underline{NT2}$

Calibration: <u>AI00047</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
TRIP BLANK (17I0171-23)		(Water)]	Lab File ID: V2	209201710.D		Analyzed: 09/20/17 13:27		
Pentafluorobenzene	369697	5.267	319541	5.267	116	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	577112	7.705	518892	7.705	111	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	658338	5.658	590046	5.658	112	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	272381	9.397	268551	9.397	101	50 - 200	0.0000	+/-0.50	
SVCA-GW-109-14-19-170913 (1710	171-15)	(Water)]	Lab File ID: V2	209201712.D		Analyzed:	09/20/17 14	1:07
Pentafluorobenzene	339172	5.268	319541	5.267	106	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	539792	7.705	518892	7.705	104	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	617134	5.658	590046	5.658	105	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	248962	9.397	268551	9.397	93	50 - 200	0.0000	+/-0.50	
SVCA-GW-110-14-19-170913 (17I0171-17)		(Water)	Lab File ID: V209201713.D				Analyzed: 09/20/17 14:28		
Pentafluorobenzene	331710	5.267	319541	5.267	104	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	527200	7.716	518892	7.705	102	50 - 200	-0.0110	+/-0.50	
1,4-Difluorobenzene	589173	5.657	590046	5.658	100	50 - 200	0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	246499	9.396	268551	9.397	92	50 - 200	0.0010	+/-0.50	
SVCA-GW-111-14-19-170913 (17I0)	171-19)	(Water)]	Lab File ID: V2	209201714.D		Analyzed: 09/20/17 14:48		
Pentafluorobenzene	331223	5.267	319541	5.267	104	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	516876	7.717	518892	7.705	100	50 - 200	-0.0120	+/-0.50	
1,4-Difluorobenzene	591191	5.658	590046	5.658	100	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	244756	9.397	268551	9.397	91	50 - 200	0.0000	+/-0.50	
SVCA-GW-112-12.5-17.5-170913 (1	710171-21)	(Water)]	Lab File ID: V2	209201715.D		Analyzed:	09/20/17 15	5:08
Pentafluorobenzene	328464	5.27	319541	5.267	103	50 - 200	-0.0030	+/-0.50	
Chlorobenzene-d5	532216	7.708	518892	7.705	103	50 - 200	-0.0030	+/-0.50	
1,4-Difluorobenzene	589362	5.661	590046	5.658	100	50 - 200	-0.0030	+/-0.50	
1,4-Dichlorobenzene-d4	250884	9.4	268551	9.397	93	50 - 200	-0.0030	+/-0.50	

HOLDING TIME SUMMARY

Analysis: EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-SB-111-14-16-170913 1710171-05	09/13/17 14:30	09/14/17 08:58	09/18/17 15:57	5	14	09/18/17 23:41	5	14	
SVCA-SB-112-12.5-14.5-170913 17I0171-11	09/13/17 16:10	09/14/17 08:58	09/18/17 15:57	4	14	09/19/17 00:03	5	14	
SVCA-GW-109-14-19-170913 17I0171-15	09/13/17 11:10	09/14/17 08:58	09/20/17 12:51	7	14	09/20/17 14:07	7	14	
SVCA-GW-110-14-19-170913 17I0171-17	09/13/17 12:57	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 14:28	7	14	
SVCA-GW-111-14-19-170913 17I0171-19	09/13/17 15:45	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 14:48	7	14	
SVCA-GW-112-12.5-17.5-170913 17I0171-21	09/13/17 17:03	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 15:08	7	14	
TRIP BLANK 17I0171-23	09/13/17 00:00	09/14/17 08:58	09/20/17 12:51	7	14	09/20/17 13:27	8	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

EPA 8260C

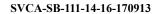
Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: NT5

Analyte	MDL	RL	Units
Benzene	0.30	1.00	ug/kg
Toluene	0.15	1.00	ug/kg
Ethylbenzene	0.20	1.00	ug/kg
m,p-Xylene	0.39	2.00	ug/kg
o-Xylene	0.22	1.00	ug/kg

METHOD DETECTION AND REPORTING LIMITS


EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: NT2

Analyte	MDL	RL	Units
Benzene	0.03	0.20	ug/L
Toluene	0.04	0.20	ug/L
Ethylbenzene	0.04	0.20	ug/L
m,p-Xylene	0.05	0.40	ug/L
o-Xylene	0.03	0.20	ug/L

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

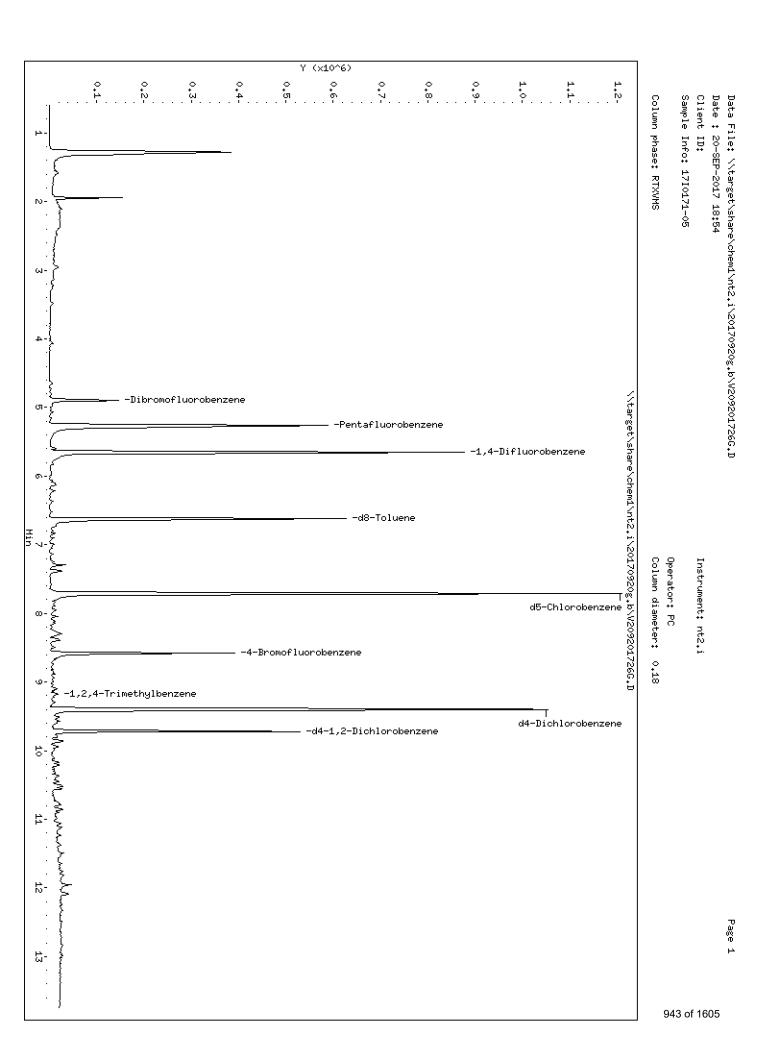
Gasoline Range Organics (GC/MS)

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-05</u> SDG: <u>1710171</u>


Sampled: 09/13/17 14:30 Prepared: 09/20/17 13:03 File ID: V209201726G.D

% Solids: 89.53 Preparation: EPA 5035 (Methanol Extract Analyzed: 09/20/17 18:54

Batch: BFI0456 Sequence: SFI0241 Initial/Final: 5.365 g Wet / 5 mL

CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	50	5790	U	2890	5790

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.90	97.9	80 - 120	
4-Bromofluorobenzene	5.0000	5.40	108	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201726G.D ARI ID: 17I0171-05

Method: \20170920q.b\GAS061217.m Client ID:

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 20-SEP-2017 18:54

Matrix: NONE

Dilution Factor: 1.000

Operator: PC

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	573316	0.009
8015C 2MP-TMB (2.99 to 9.26)	2222222	478640	0.022
AK101 nC6-nC10 (3.43 to 8.54)	81728088	397833	0.005
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	768892	0.012
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	676625	0.030

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.620	1020294	d8-Toluene
8.585	724811	4-Bromofluorobenzene
9.401	1814320	d4-Dichlorobenzene
7.709	1846076	d5-Chlorobenzene
9.721	869099	d4-1,2-Dichlorobenzene

Form I

SVCA-SB-112-12.5-14.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPHg

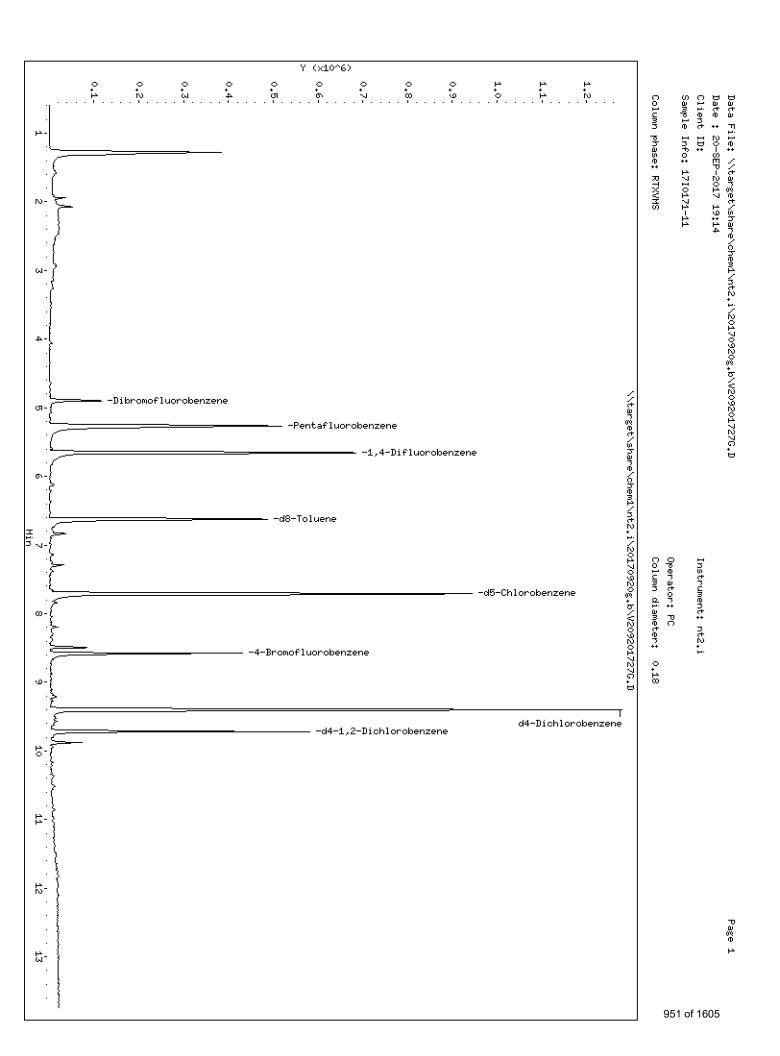
Gasoline Range Organics (GC/MS)

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-11</u> SDG: <u>1710171</u>


Sampled: 09/13/17 16:10 Prepared: 09/20/17 13:03 File ID: V209201727G.D

% Solids: 89.96 Preparation: EPA 5035 (Methanol Extract Analyzed: 09/20/17 19:14

Batch: <u>BFI0456</u> Sequence: <u>SFI0241</u> Initial/Final: <u>5.156 g Wet / 5 mL</u>

	CAS NO.	COMPOUND	DILUTION	CONC. (ug/kg dry)	Q	DL	RL
Ī		Gasoline Range Organics (Tol-Nap)	50	5950	U	2970	5950

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.97	99.4	80 - 120	
4-Bromofluorobenzene	5.0000	5.50	110	78 - 123	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201727G.D ARI ID: 17I0171-11

Method: \20170920q.b\GAS061217.m Client ID: Matrix: NONE

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 20-SEP-2017 19:14

Dilution Factor: 1.000

Operator: PC

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	475779	0.008
8015C 2MP-TMB (2.99 to 9.26)	2222222	329819	0.015
AK101 nC6-nC10 (3.43 to 8.54)	81728088	329819	0.004
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	501272	0.008
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	475780	0.021

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.629	964451	d8-Toluene
8.581	670482	4-Bromofluorobenzene
9.398	1772065	d4-Dichlorobenzene
7.705	1748597	d5-Chlorobenzene
9.717	385739	d4-1,2-Dichlorobenzene

Form I

SVCA-GW-109-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPHg

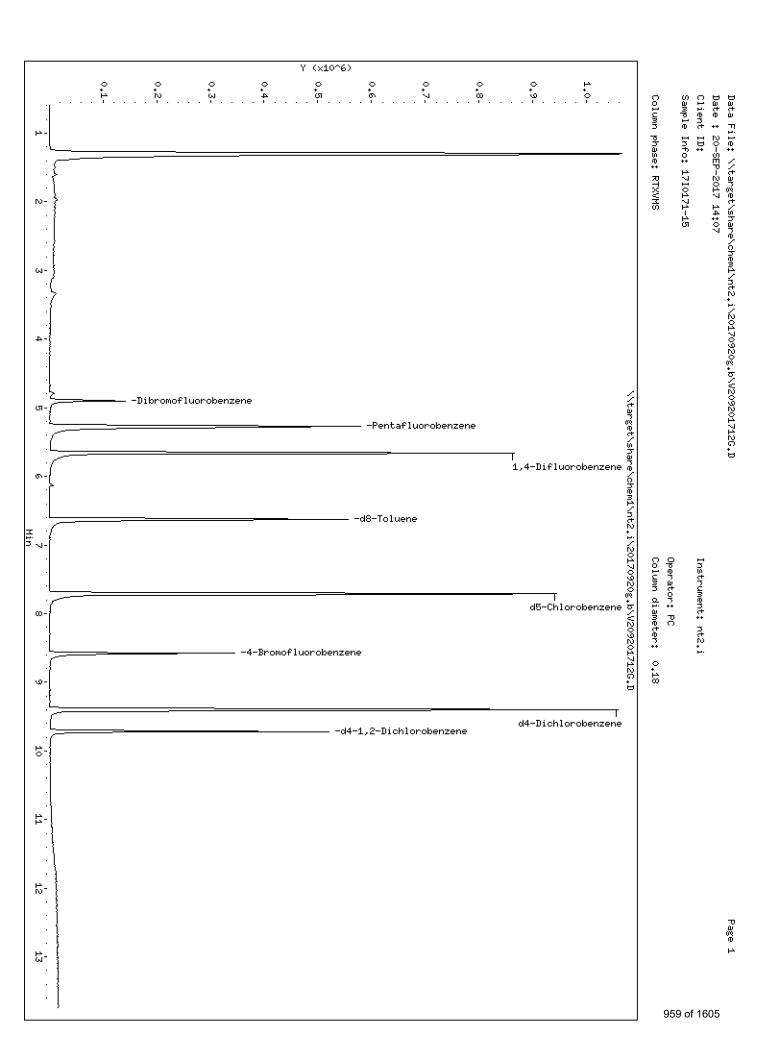
Gasoline Range Organics (GC/MS)

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-15 SDG: 1710171


Sampled: 09/13/17 11:10 Prepared: 09/20/17 12:51 File ID: V209201712G.D

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:07</u>

Batch: BFI0454 Sequence: SFI0241 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.66	93.2	80 - 120	
4-Bromofluorobenzene	5.0000	4.78	95.5	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201712G.D ARI ID: 17I0171-15

Method: \20170920q.b\GAS061217.m Client ID:

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 20-SEP-2017 14:07

Matrix: NONE

Dilution Factor: 1.000

Operator: PC

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	2	0.000
8015C 2MP-TMB (2.99 to 9.26)	2222222	49632	0.002
AK101 nC6-nC10 (3.43 to 8.54)	81728088	30188	0.000
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	2	0.000
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	30190	0.001

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.629	906666	d8-Toluene
8.582	548707	4-Bromofluorobenzene
9.398	1545990	d4-Dichlorobenzene
7.706	1637444	d5-Chlorobenzene
9.717	743838	d4-1,2-Dichlorobenzene

Form I

SVCA-GW-110-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPHg

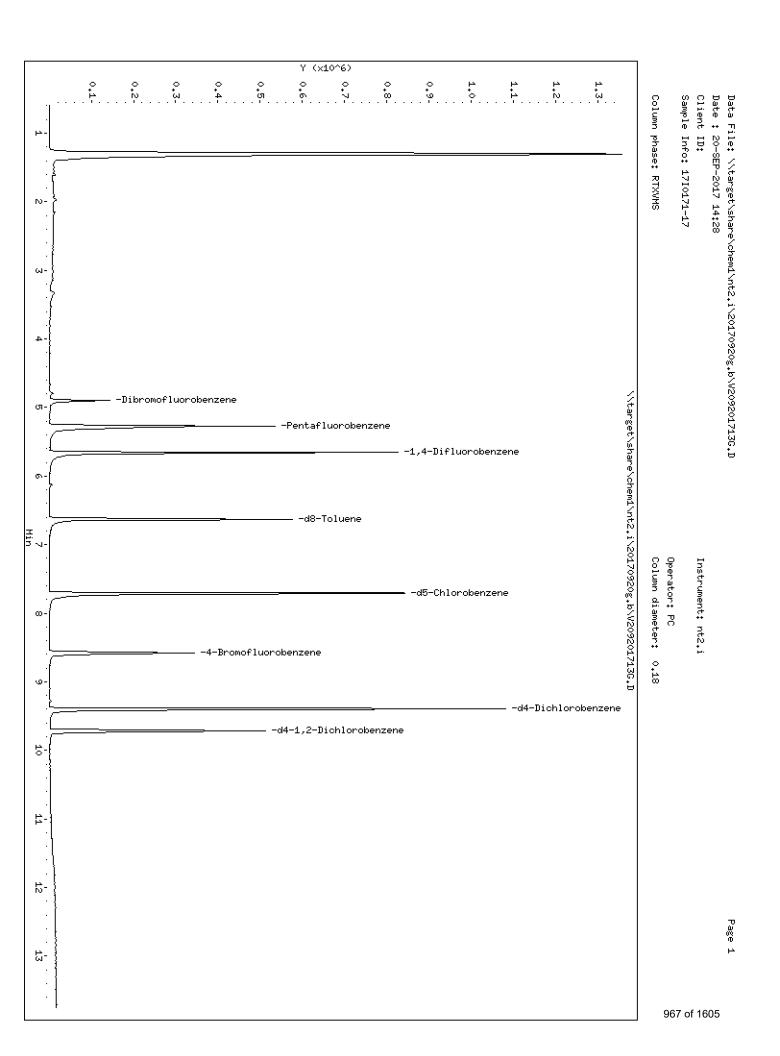
Gasoline Range Organics (GC/MS)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-17 SDG: 1710171


Sampled: 09/13/17 12:57 Prepared: 09/20/17 12:51 File ID: V209201713G.D

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:28</u>

Batch: BFI0454 Sequence: SFI0241 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.75	94.9	80 - 120	
4-Bromofluorobenzene	5.0000	4.67	93.4	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201713G.D ARI ID: 17I0171-17

Method: \20170920q.b\GAS061217.m

Instrument: nt2.i

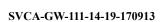
Gas Ical Date: 12-JUN-2017

Injection Date: 20-SEP-2017 14:28

Client ID: Matrix: NONE

Dilution Factor: 1.000

Operator: PC


GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	3	0.000
8015C 2MP-TMB (2.99 to 9.26)	2222222	43814	0.002
AK101 nC6-nC10 (3.43 to 8.54)	81728088	24709	0.000
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	3	0.000
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	24711	0.001

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.628	895596	d8-Toluene
8.580	535638	4-Bromofluorobenzene
9.397	1533814	d4-Dichlorobenzene
7.717	1602348	d5-Chlorobenzene
9.716	734337	d4-1,2-Dichlorobenzene

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

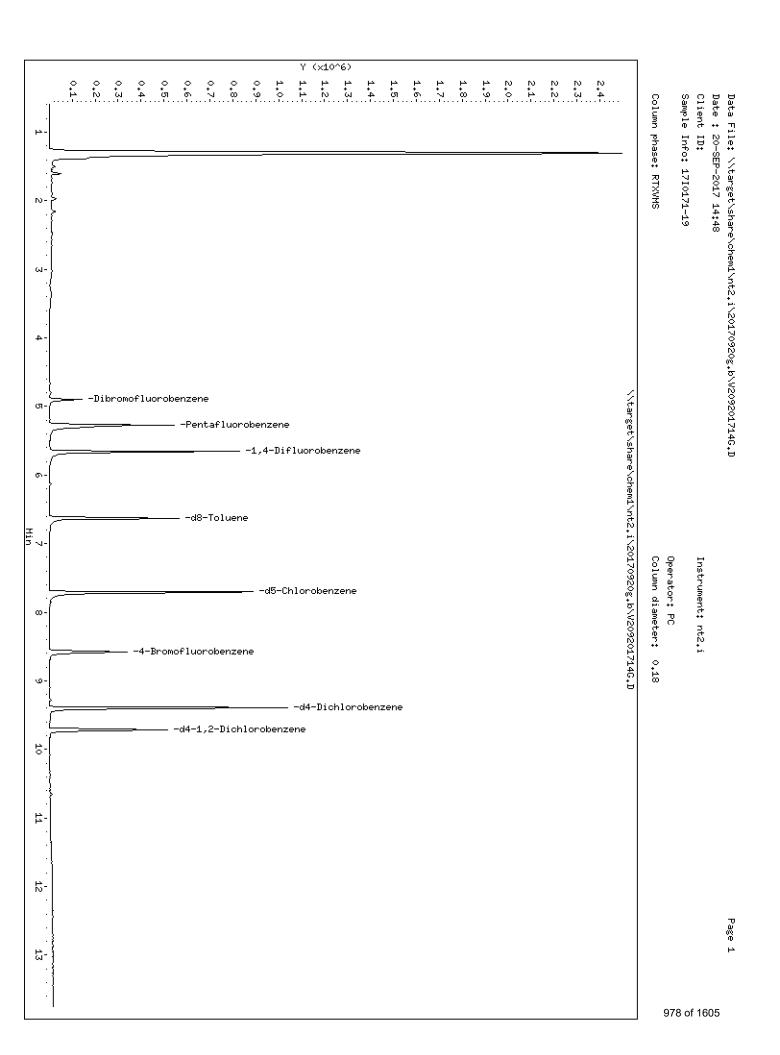
Gasoline Range Organics (GC/MS)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-19 SDG: 1710171


Sampled: 09/13/17 15:45 Prepared: 09/20/17 12:51 File ID: V209201714G.D

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 14:48</u>

Batch: BFI0454 Sequence: SFI0241 Initial/Final: 10 mL / 10 ml

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.78	95.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.83	96.7	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201714G.D ARI ID: 17I0171-19

Method: \20170920g.b\GAS061217.m Client ID:

Instrument: nt2.i Matrix: NONE

Gas Ical Date: 12-JUN-2017 Dilution Factor: 1.000 Injection Date: 20-SEP-2017 14:48 Operator: PC

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	3	0.000
8015C 2MP-TMB (2.99 to 9.26)	2222222	10038	0.000
AK101 nC6-nC10 (3.43 to 8.54)	81728088	10037	0.000
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	17911	0.000
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	10039	0.000

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.629	913602	d8-Toluene
8.581	541162	4-Bromofluorobenzene
9.397	1524997	d4-Dichlorobenzene
7.705	1609917	d5-Chlorobenzene
9.717	737240	d4-1,2-Dichlorobenzene

Form I

SVCA-GW-112-12.5-17.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPHg

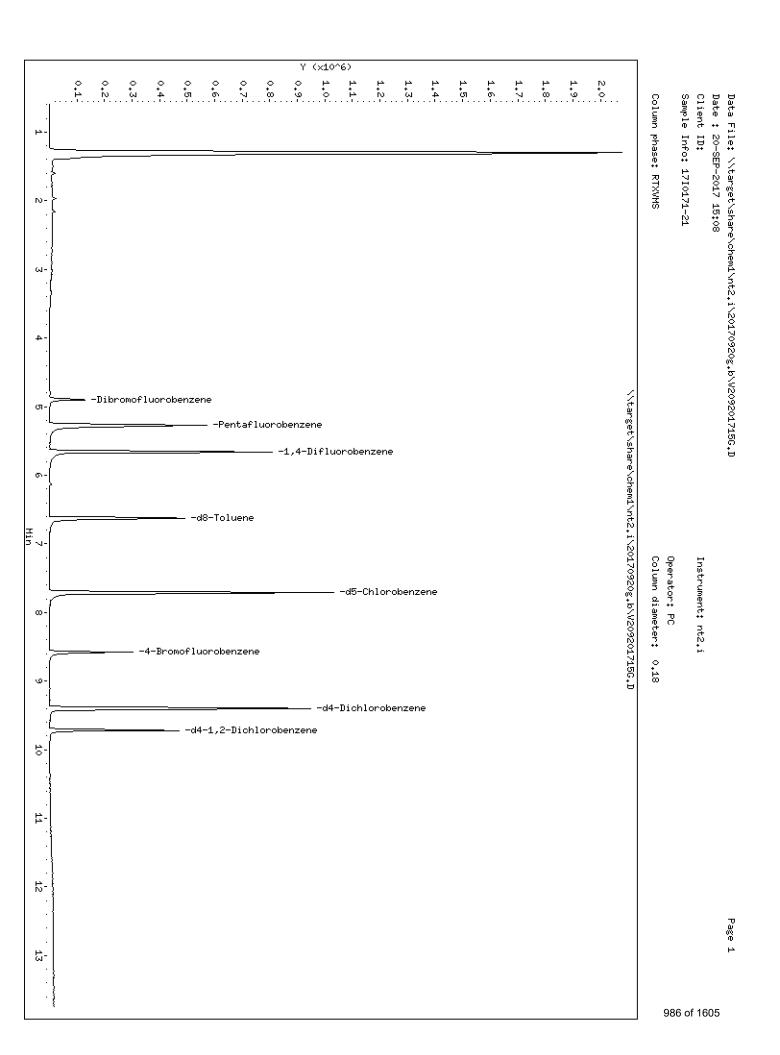
Gasoline Range Organics (GC/MS)

Laboratory: Analytical Resources, Inc.

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-21 SDG: 1710171


Sampled: <u>09/13/17 17:03</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201715G.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 15:08</u>

Batch: BFI0454 Sequence: SFI0241 Initial/Final: 10 mL / 10 ml

CA	S NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
		Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.88	97.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.79	95.7	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201715G.D ARI ID: 1710171-21

Method: \20170920g.b\GAS061217.m Client ID:

Instrument: nt2.i Matrix: NONE

Gas Ical Date: 12-JUN-2017 Dilution Factor: 1.000

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	2	0.000
8015C 2MP-TMB (2.99 to 9.26)	2222222	3	0.000
AK101 nC6-nC10 (3.43 to 8.54)	81728088	3	0.000
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	2	0.000
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	3	0.000

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.632	898314	d8-Toluene
8.584	544609	4-Bromofluorobenzene
9.400	1554447	d4-Dichlorobenzene
7.708	1627486	d5-Chlorobenzene
9.720	749840	d4-1,2-Dichlorobenzene

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

Laboratory: Analytical Resources, Inc.

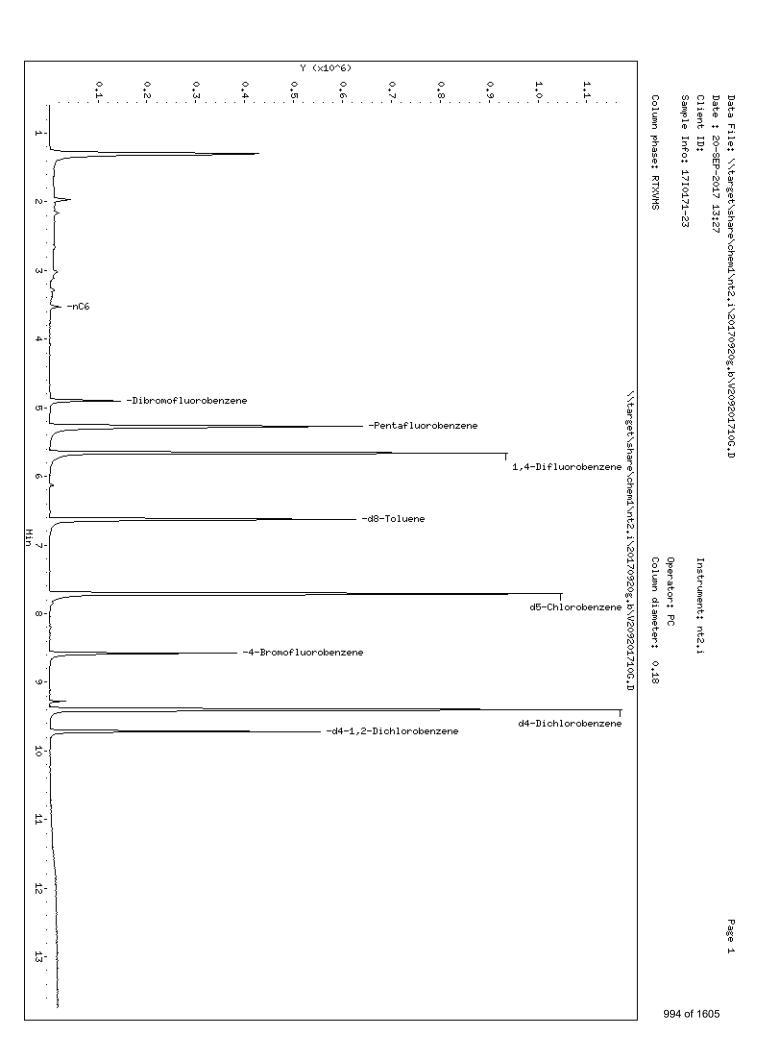
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Water Laboratory ID: 1710171-23 SDG: 1710171

Sampled: <u>09/13/17 00:00</u> Prepared: <u>09/20/17 12:51</u> File ID: <u>V209201710G.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>09/20/17 13:27</u>


Batch: BFI0454 Sequence: SFI0241 Initial/Final: 10 mL / 10 ml

Instrument: NT2 Column: RTX-VMS Calibration: AI00052

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L) CONC (ug/L)		% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.80	96.0	80 - 120	
4-Bromofluorobenzene	5.0000	4.89	97.8	80 - 120	

TRIP BLANK

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20170920g.b/V209201710G.D ARI ID: 17I0171-23

Method: \20170920q.b\GAS061217.m

Instrument: nt2.i

Gas Ical Date: 12-JUN-2017

Injection Date: 20-SEP-2017 13:27

Client ID: Matrix: NONE

Dilution Factor: 1.000

Operator: PC

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.56 to 10.42)	61968270	40471	0.001
8015C 2MP-TMB (2.99 to 9.26)	2222222	109969	0.005
AK101 nC6-nC10 (3.43 to 8.54)	81728088	54450	0.001
NWTPHG Tol-Nap (6.56 to 11.21)	63840589	40471	0.001
mod8015 nC6-nC12 (3.43 to 10.42)	2222222	94920	0.004

* Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

6.629	1000195	d8-Toluene
8.581	606783	4-Bromofluorobenzene
9.397	1694057	d4-Dichlorobenzene
7.705	1780889	d5-Chlorobenzene
9.717	799236	d4-1,2-Dichlorobenzene

PREPARATION BATCH SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0454
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	E LAB SAMPLE ID LAB FILE ID		DATE PREPARED	OBSERVATIONS
SVCA-GW-109-14-19-170913	17I0171-15 V209201712G.D		09/20/17 12:51	
SVCA-GW-110-14-19-170913	17I0171-17	V209201713G.D	09/20/17 12:51	
SVCA-GW-111-14-19-170913	1-14-19-170913 17I0171-19 V209201714G.D		09/20/17 12:51	
SVCA-GW-112-12.5-17.5-170913	W-112-12.5-17.5-170913 17I0171-21 V209201715G.D		09/20/17 12:51	
TRIP BLANK	17I0171-23	V209201710G.D	09/20/17 12:51	
Blank	BFI0454-BLK1	V209201709G.D	09/20/17 10:51	
LCS	BFI0454-BS1	V209201703LCSG.D	09/20/17 10:51	
LCS Dup	BFI0454-BSD1	V209201704G.D	09/20/17 10:51	

PREPARATION BATCH SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: Batch Matrix: Solid Preparation: EPA 5035 (Methanol Extraction)

SAMPLE NAME	MPLE NAME LAB SAMPLE ID		DATE PREPARED	OBSERVATIONS
SVCA-SB-111-14-16-170913	16-170913 17I0171-05 V209201726G.D		09/20/17 13:03	
SVCA-SB-112-12.5-14.5-170913	CA-SB-112-12.5-14.5-170913 17I0171-11 V209201727G		09/20/17 13:03	
Blank BFI0456-BLK1		V209201709MBSG.D	09/20/17 10:03	
LCS BFI0456-BS1 V20920		V209201703LCSSG.D	09/20/17 10:03	
LCS Dup	BFI0456-BSD1	V209201704LCSDSG.D	09/20/17 10:03	

$\label{eq:form_I} \begin{tabular}{ll} Form\ I \\ METHOD\ BLANK\ DATA\ SHEET \\ NWTPHg \\ \end{tabular}$

Blank

17I0171

Laboratory: Analytical Resources, Inc. SDG:

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Laboratory ID: BFI0454-BLK1 File ID: V209201709G.D

Sampled: <u>N/A</u> Prepared: <u>09/20/17 10:51</u> Analyzed: <u>09/20/17 13:05</u>

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: <u>BFI0454</u> Sequence: <u>SFI0241</u> Calibration: <u>AI00052</u>

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CC	CONC. (ug/L)		ONC. (ug/L)		(8)		CONC. (ug/L)		CONC. (ug/L)		ONC. (ug/L)		Q			RL	
	Gasoline Range Organics (Tol-Nap)	1 100		U 13.6			100													
SURROGATES		ADDED (ug	:/L)	CONC (ug	;/L)	%]	REC	Q	C LIMITS	Q										
Toluene-d8	-d8			4.74		94.9			80 - 120											
4-Bromofluorobe	enzene	5.0000		5.02		1	00		80 - 120											

$\label{eq:form_I} \begin{tabular}{ll} Form\ I \\ METHOD\ BLANK\ DATA\ SHEET \\ NWTPHg \\ \end{tabular}$

Blank

17I0171

Laboratory: Analytical Resources, Inc. SDG:

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFI0456-BLK1 File ID: V209201709MBSG.D

Sampled: $\underline{N/A}$ Prepared: $\underline{09/20/17\ 10:03}$ Analyzed: $\underline{09/20/17\ 13:05}$

Solids: Preparation: <u>EPA 5035 (Methanol Extract Initial/Final:</u> <u>5 g / 5 mL</u>

Batch: <u>BF10456</u> Sequence: <u>SF10241</u> Calibration: <u>A100052</u>

Instrument: NT2 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION CONC. (ug/kg wet)		C. (ug/kg wet) Q		JTION CONC. (ug/kg wet)		Q	DL		RL		
	Gasoline Range Organics (Tol-Nap)	50 5000		5000 U 2500 5000		U 250		5000					
SURROGATES		ADDED (ug	g/L)	CONC (ug	/L)	%]	REC	Q	C LIMITS	Q			
Toluene-d8		5.0000		4.74		9,	4.9		80 - 120				
4-Bromofluorobe	enzene	5.0000		5.02		1	00		78 - 123				

LCS / LCS DUPLICATE RECOVERY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/20/17 10:57

 Batch:
 BFI0454
 Laboratory ID:
 BFI0454-BS1

Preparation: <u>EPA 5030 (Purge and Trap)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 mL / 10 ml

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(ug/L)	(ug/L)	Q	REC. #	REC.
Gasoline Range Organics (Tol-Nap)	1000	1100		110	72 - 128

* Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC	LIMITS
	ADDED	CONCENTRATION		%	%		
COMPOUND	(ug/L)	(ug/L)	Q	REC. #	RPD#	RPD	REC.
Gasoline Range Organics (Tol-Nap)	1000	1130		113	2.32	30	72 - 128

^{*} Indicates values outside of QC limits

LCS / LCS DUPLICATE RECOVERY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/20/17 10:57

 Batch:
 BFI0456
 Laboratory ID:
 BFI0456-BS1

Preparation: <u>EPA 5035 (Methanol Extraction)</u> Sequence Name: <u>LCS</u>

Initial/Final: 5 g / 5 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(ug/L)	(ug/L)	Q	REC. #	REC.
Gasoline Range Organics (Tol-Nap)	50000	55200		110	70 - 121

* Indicates values outside of QC limits

	SPIKE	LCSD		LCSD		QC LIMITS	
GOL MOLTA ID	ADDED	CONCENTRATION	0	% DEG #	%	DDD	PEG
COMPOUND	(ug/L)	(ug/L)	Q	REC. #	RPD#	RPD	REC.
Gasoline Range Organics (Tol-Nap)	50000	56500		113	2.32	30	70 - 121

^{*} Indicates values outside of QC limits

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>V217061204G.D</u> Injection Date: <u>06/12/17</u>

Instrument ID: NT2 Injection Time: 09:58

Sequence: SFF0153 Lab Sample ID: SFF0153-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	22.2	PASS
75	30 - 80% of 95	48.8	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.22	PASS
173	Less than 2% of 174	0	PASS
174	50 - 120% of 95	82.5	PASS
175	5 - 9% of 174	7.54	PASS
176	95 - 101% of 174	96.1	PASS
177	5 - 9% of 176	7.06	PASS

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Cal Standard	SFF0153-CAL9	V217061216G.D	06/12/2017	14:26
Cal Standard	SFF0153-CALA	V217061217G.D	06/12/2017	14:45
Cal Standard	SFF0153-CALB	V217061218G.D	06/12/2017	15:05
Cal Standard	SFF0153-CALC	V217061219G.D	06/12/2017	15:25
Cal Standard	SFF0153-CALD	V217061220G.D	06/12/2017	15:45
Cal Standard	SFF0153-CALE	V217061221G.D	06/12/2017	16:05
Secondary Cal Check	SFF0153-SCV1	V217061223G.D	06/12/2017	16:45

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: <u>V209151702G.D</u> Injection Date: <u>09/15/17</u>

Instrument ID: NT2 Injection Time: 09:35

Sequence: SFI0189 Lab Sample ID: SFI0189-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	19.1	PASS
75	30 - 80% of 95	49.4	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.79	PASS
173	Less than 2% of 174	0.443	PASS
174	50 - 120% of 95	69.6	PASS
175	5 - 9% of 174	7.29	PASS
176	95 - 101% of 174	97.1	PASS
177	5 - 9% of 176	6.64	PASS

Cli	.ent	Lab	Lab	Date	Time
Samp	le ID	Sample ID	File ID	Analyzed	Analyzed
MS	Tune	SFI0189-TUN1	V209151702G.D	09/15/2017	9:35
Initial C	al Check	SFI0189-ICV1	V209151714G.D	09/15/2017	14:32
Calibrati	on Check	SFI0189-CCV1	V209151736G.D	09/15/2017	21:55

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Lab File ID: $\underline{V209201702G.D}$ Injection Date: $\underline{09/20/17}$

Instrument ID: <u>NT2</u> Injection Time: <u>10:15</u>

Sequence: SFI0241 Lab Sample ID: SFI0241-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	17.8	PASS
75	30 - 80% of 95	46.9	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.84	PASS
173	Less than 2% of 174	0.321	PASS
174	50 - 120% of 95	72.1	PASS
175	5 - 9% of 174	7.08	PASS
176	95 - 101% of 174	97.1	PASS
177	5 - 9% of 176	6.33	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SFI0241-TUN1	V209201702G.D	09/20/2017	10:15
LCS	BFI0456-BS1	V209201703LCSSG.D	09/20/2017	10:57
LCS	BFI0454-BS1	V209201703LCSG.D	09/20/2017	10:57
Initial Cal Check	SFI0241-ICV1	V209201703G.D	09/20/2017	10:57
LCS Dup	BFI0454-BSD1	V209201704G.D	09/20/2017	11:17
LCS Dup	BFI0456-BSD1	V209201704LCSDSG.D	09/20/2017	11:17
Blank	BFI0456-BLK1	V209201709MBSG.D	09/20/2017	13:05
Blank	BFI0454-BLK1	V209201709G.D	09/20/2017	13:05
TRIP BLANK	17I0171-23	V209201710G.D	09/20/2017	13:27
VCA-GW-109-14-19-17091	17I0171-15	V209201712G.D	09/20/2017	14:07
VCA-GW-110-14-19-17091	17I0171-17	V209201713G.D	09/20/2017	14:28
VCA-GW-111-14-19-17091	17I0171-19	V209201714G.D	09/20/2017	14:48
CA-GW-112-12.5-17.5-170	17I0171-21	V209201715G.D	09/20/2017	15:08
ZZZZZ	17I0185-02RE1	V209201724G.D	09/20/2017	18:13
ZZZZZ	17I0116-06RE1	V209201725G.D	09/20/2017	18:34
VCA-SB-111-14-16-17091	17I0171-05	V209201726G.D	09/20/2017	18:54
CA-SB-112-12.5-14.5-1709	17I0171-11	V209201727G.D	09/20/2017	19:14
Calibration Check	SFI0241-CCV1	V209201728G.D	09/20/2017	19:34

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	Level 01		Level 02		Level 03		Level 04		Level 05		Level 06	
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	100	71249.69	250	67843.76			1000	64114.48	2500	59222.56	5000	56772.46

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	Level 07		Level 08		Level 09		Level 10		Level 11		Level 12	
Compound		RF										
Toluene-d8	5	1.070644	5	1.045473	5	1.109125	5	1.108631	5	1.112117	5	1.123529
4-Bromofluorobenzene	5	0.3997239	5	0.4200901	5	0.4152498	5	0.4189429	5	0.4204776	5	0.4273876

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

	Level 13		Level 14		Level 15		Level 16		Level 17		Level 18	
Compound		RF		RF		RF		RF		RF		RF
Toluene-d8	5	1.166297	5	1.163406								
4-Bromofluorobenzene	5	0.4573217	5	0.4889769								

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AF00043 Instrument: NT2

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Gasoline Range Organics (Tol-Nap)	63840.59	9.3			RSD (20)	
Toluene-d8	1.112403	3.7			RSD (20)	
4-Bromofluorobenzene	0.4310213	6.6			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00052 Instrument: NT2

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	Lo	evel 06
Compound		RF		RF								
Toluene-d8	5	1.145872	5	1.168241	5	1.186762	5	1.194053	5	1.206906	5	1.226348
4-Bromofluorobenzene	5	0.3237353	5	0.3304114	5	0.3515908	5	0.3522024	5	0.3628115	5	0.3633586

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00052 Instrument: NT2

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	Lo	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)					100	71249.69	250	67843.76			1000	64114.48
Toluene-d8	5	1.228283	5	1.24493								
4-Bromofluorobenzene	5	0.3659569	5	0.3581294								

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00052 Instrument: NT2

	L	evel 13	L	evel 14	L	evel 15	L	evel 16	Le	evel 17	Lo	evel 18
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	2500	59222.56	5000	56772.46								

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00052 Instrument: NT2

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q
Gasoline Range Organics (Tol-Nap)	63840.59	9.3			RSD (20)
Toluene-d8	1.200174	2.8			RSD (20)
4-Bromofluorobenzene	0.3510245	4.5			RSD (20)

INITIAL CALIBRATION CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: <u>NT2</u> Calibration: <u>AI00052</u>

Lab File ID: <u>V209151714G.D</u> Calibration Date: <u>09/15/17 14:07</u>

Sequence: SFI0189 Injection Date: 09/15/17

Lab Sample ID: SFI0189-ICV1 Injection Time: 14:32

Sequence Name: <u>ICV</u>

		CONC. (ug/L)		RESI	PONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Gasoline Range Organics (Tol-Nap)	A	1000.0	1090	63840.5900	69801.2800		9.3	20
Toluene-d8	A	5.0000	4.98	1.2001740	1.1955970		-0.4	
4-Bromofluorobenzene	A	5.0000	5.02	0.3510245	0.3522882		0.4	

^{*} Values outside of QC limits

INITIAL CALIBRATION CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: NT2 Calibration: AI00052

Lab File ID: <u>V209201703G.D</u> Calibration Date: <u>09/15/17 14:07</u>

Sequence: SFI0241 Injection Date: 09/20/17

Lab Sample ID: SFI0241-ICV1 Injection Time: 10:57

Sequence Name: <u>ICV</u>

		CONC. (ug/L)		RESI	PONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Gasoline Range Organics (Tol-Nap)	A	1000.0	1100	63840.5900	70479.6500		10.4	20
Toluene-d8	A	5.0000	4.69	1.2001740	1.1264190		-6.1	
4-Bromofluorobenzene	A	5.0000	5.19	0.3510245	0.3644238		3.8	

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFF0153</u> Instrument: <u>NT2</u>

Calibration: <u>AF00043</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Gas 0.1	SFF0153-CAL9	V217061216G.D	NA	06/12/17 14:26
Gas 0.25	SFF0153-CALA	V217061217G.D	NA	06/12/17 14:45
Gas 0.5	SFF0153-CALB	V217061218G.D	NA	06/12/17 15:05
Gas 1.0	SFF0153-CALC	V217061219G.D	NA	06/12/17 15:25
Gas 2.5	SFF0153-CALD	V217061220G.D	NA	06/12/17 15:45
Gas 5.0	SFF0153-CALE	V217061221G.D	NA	06/12/17 16:05
GAS SCV	SFF0153-SCV1	V217061223G.D	NA	06/12/17 16:45

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0189 Instrument: NT2

Calibration: AI00052

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFI0189-TUN1	V209151702G.D	NA	09/15/17 09:35
ICV	SFI0189-ICV1	V209151714G.D	NA	09/15/17 14:32
CCV	SFI0189-CCV1	V209151736G.D	NA	09/15/17 21:55

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0241</u> Instrument: <u>NT2</u>

Calibration: AI00052

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
BFB	SFI0241-TUN1	V209201702G.D	NA	09/20/17 10:15
ICV	SFI0241-ICV1	V209201703G.D	NA	09/20/17 10:57
LCS	BFI0454-BS1	V209201703LCSG.D	Water	09/20/17 10:57
LCS	BFI0456-BS1	V209201703LCSSG.D	Solid	09/20/17 10:57
LCS Dup	BFI0454-BSD1	V209201704G.D	Water	09/20/17 11:17
LCS Dup	BFI0456-BSD1	V209201704LCSDSG.D	Solid	09/20/17 11:17
Blank	BFI0454-BLK1	V209201709G.D	Water	09/20/17 13:05
Blank	BFI0456-BLK1	V209201709MBSG.D	Solid	09/20/17 13:05
TRIP BLANK	17I0171-23	V209201710G.D	Water	09/20/17 13:27
SVCA-GW-109-14-19-170913	17I0171-15	V209201712G.D	Water	09/20/17 14:07
SVCA-GW-110-14-19-170913	17I0171-17	V209201713G.D	Water	09/20/17 14:28
SVCA-GW-111-14-19-170913	17I0171-19	V209201714G.D	Water	09/20/17 14:48
SVCA-GW-112-12.5-17.5-170913	17I0171-21	V209201715G.D	Water	09/20/17 15:08
ZZZZZ	17I0185-02RE1	V209201724G.D	Solid	09/20/17 18:13
ZZZZZ	17I0116-06RE1	V209201725G.D	Solid	09/20/17 18:34
SVCA-SB-111-14-16-170913	17I0171-05	V209201726G.D	Solid	09/20/17 18:54
SVCA-SB-112-12.5-14.5-170913	17I0171-11	V209201727G.D	Solid	09/20/17 19:14
CCV	SFI0241-CCV1	V209201728G.D	NA	09/20/17 19:34

SURROGATE RECOVERY SUMMARY

NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0189</u> Instrument: <u>NT2</u>

Calibration: AI00052 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q		
SFI0189-ICV1 (Water) Lab	Lab File ID: V209151714G.D			Analyzed: 09/15/17 14:32		
Toluene-d8	5.0000	99.6	0 - 200			
4-Bromofluorobenzene	5.0000	100	0 - 200			

SURROGATE RECOVERY SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0241</u> Instrument: <u>NT2</u>

Calibration: AI00052 Calibration Date: 09/15/2017

<u>A100052</u>		Calibrati	/15/2017		
Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
BFI0454-BS1 (Water)	Lab File	ID: V209201703L0	CSG.D	Analyzed: 09/	20/17 10:57
Toluene-d8		5.0000	93.9	80 - 120	
4-Bromofluorobenzene		5.0000	104	80 - 120	
BFI0456-BS1 (Solid)	Lab File I	D: V209201703LC	SSG.D	Analyzed: 09/	20/17 10:57
Toluene-d8		5.0000	93.9	80 - 120	
4-Bromofluorobenzene		5.0000	104	78 - 123	
SFI0241-ICV1 (Water)	Lab	File ID: V2092017	03G.D	Analyzed: 09/	20/17 10:57
Toluene-d8		5.0000	93.9	0 - 200	
4-Bromofluorobenzene		5.0000	104	0 - 200	
BFI0454-BSD1 (Water)	Lab	File ID: V20920170	04G.D	Analyzed: 09/	20/17 11:17
Toluene-d8		5.0000	97.3	80 - 120	
4-Bromofluorobenzene		5.0000	103	80 - 120	
BFI0456-BSD1 (Solid)	Lab File ID	: V209201704LCSI	OSG.D	Analyzed: 09/	20/17 11:17
Toluene-d8		5.0000	97.3	80 - 120	
4-Bromofluorobenzene		5.0000	103	78 - 123	
BFI0454-BLK1 (Water)	Lab	File ID: V2092017	09G.D	Analyzed: 09/	20/17 13:05
Toluene-d8		5.0000	94.9	80 - 120	
4-Bromofluorobenzene		5.0000	100	80 - 120	
BFI0456-BLK1 (Solid)	Lab File	ID: V209201709ME	BSG.D	Analyzed: 09/	20/17 13:05
Toluene-d8		5.0000	94.9	80 - 120	
4-Bromofluorobenzene		5.0000	100	78 - 123	
17I0171-23 (Water)	Lab	File ID: V2092017	10G.D	Analyzed: 09/	20/17 13:27
Toluene-d8		5.0000	96.0	80 - 120	
4-Bromofluorobenzene		5.0000	97.8	80 - 120	
17I0171-15 (Water)	Lab	File ID: V2092017	12G.D	Analyzed: 09/	20/17 14:07
Toluene-d8		5.0000	93.2	80 - 120	
4-Bromofluorobenzene		5.0000	95.5	80 - 120	
17I0171-17 (Water)	Lab	File ID: V2092017	13G.D	Analyzed: 09/	20/17 14:28
Toluene-d8		5.0000	94.9	80 - 120	
4-Bromofluorobenzene		5.0000	93.4	80 - 120	

SURROGATE RECOVERY SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0241 Instrument: NT2

Calibration: AI00052 Calibration Date: 09/15/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q		
17I0171-19 (Water) La	File ID: V2092017	14G.D	Analyzed: 09/	Analyzed: 09/20/17 14:48		
Toluene-d8	5.0000	95.7	80 - 120			
4-Bromofluorobenzene	5.0000	96.7	80 - 120			
17I0171-21 (Water) La	File ID: V2092017	15G.D	Analyzed: 09/	20/17 15:08		
Toluene-d8	5.0000	97.7	80 - 120			
4-Bromofluorobenzene	5.0000	95.7	80 - 120			
17I0171-05 (Solid) Lai	File ID: V20920172	26G.D	Analyzed: 09/	20/17 18:54		
Toluene-d8	5.0000	97.9	80 - 120			
4-Bromofluorobenzene	5.0000	108	78 - 123			
17I0171-11 (Solid) Lai	File ID: V20920172	27G.D	Analyzed: 09/	20/17 19:14		
Toluene-d8	5.0000	99.4	80 - 120			
4-Bromofluorobenzene	5.0000	110	78 - 123			

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0189</u> Instrument: <u>NT2</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (SFI0189-ICV1)		(Water)	La	b File ID: V20	9151714G.D		Analyzed:	09/15/17 14	1:32
Pentafluorobenzene	337779	5.267	319541	5.267	106	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	555494	7.704	518892	7.705	107	50 - 200	0.0010	+/-0.50	
1,4-Difluorobenzene	613451	5.657	590046	5.658	104	50 - 200	0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	264394	9.396	268551	9.397	98	50 - 200	0.0010	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0241</u> Instrument: <u>NT2</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BFI0454-BS1)		(Water)	Lab Fil	e ID: V209201	703LCSG.D		Analyzed:	09/20/17 10):57
Pentafluorobenzene	416627	5.267	319541	5.267	130	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	640282	7.705	518892	7.705	123	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	733061	5.658	590046	5.658	124	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	305952	9.397	268551	9.397	114	50 - 200	0.0000	+/-0.50	
LCS (BFI0456-BS1)		(Solid)	Lab File	ID: V2092017	03LCSSG.D		Analyzed:	09/20/17 10):57
Pentafluorobenzene	416627	5.267	319541	5.267	130	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	640282	7.705	518892	7.705	123	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	733061	5.658	590046	5.658	124	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	305952	9.397	268551	9.397	114	50 - 200	0.0000	+/-0.50	
Initial Cal Check (SFI0241-ICV1)		(Water)	La	b File ID: V20	9201703G.D		Analyzed:	09/20/17 10):57
Pentafluorobenzene	416627	5.267	319541	5.267	130	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	640282	7.705	518892	7.705	123	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	733061	5.658	590046	5.658	124	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	305952	9.397	268551	9.397	114	50 - 200	0.0000	+/-0.50	
LCS Dup (BFI0454-BSD1)		(Water)	Lab File ID: V209201704G.D			Analyzed: 09/20/17 11:17			
Pentafluorobenzene	392573	5.267	319541	5.267	123	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	608122	7.705	518892	7.705	117	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	681723	5.658	590046	5.658	116	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	290725	9.397	268551	9.397	108	50 - 200	0.0000	+/-0.50	
LCS Dup (BFI0456-BSD1)		(Solid)	Lab File II	D: V209201704	4LCSDSG.D		Analyzed:	09/20/17 11	1:17
Pentafluorobenzene	392573	5.267	319541	5.267	123	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	608122	7.705	518892	7.705	117	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	681723	5.658	590046	5.658	116	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	290725	9.397	268551	9.397	108	50 - 200	0.0000	+/-0.50	
Blank (BFI0454-BLK1)		(Water)	La	b File ID: V20	9201709G.D		Analyzed:	09/20/17 13	3:05
Pentafluorobenzene	345233	5.267	319541	5.267	108	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	534665	7.705	518892	7.705	103	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	612911	5.658	590046	5.658	104	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	255547	9.397	268551	9.397	95	50 - 200	0.0000	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0241</u> Instrument: <u>NT2</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (BFI0456-BLK1)		(Solid)	Lab File	e ID: V2092017	709MBSG.D		Analyzed:	09/20/17 13	3:05
Pentafluorobenzene	345233	5.267	319541	5.267	108	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	534665	7.705	518892	7.705	103	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	612911	5.658	590046	5.658	104	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	255547	9.397	268551	9.397	95	50 - 200	0.0000	+/-0.50	
TRIP BLANK (17I0171-23)		(Water)	La	b File ID: V20	9201710G.D		Analyzed:	09/20/17 13	3:27
Pentafluorobenzene	369697	5.267	319541	5.267	116	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	577112	7.705	518892	7.705	111	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	658338	5.658	590046	5.658	112	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	272381	9.397	268551	9.397	101	50 - 200	0.0000	+/-0.50	
SVCA-GW-109-14-19-170913 (17I0	171-15)	(Water)	La	b File ID: V20	9201712G.D		Analyzed:	09/20/17 14	1:07
Pentafluorobenzene	339172	5.268	319541	5.267	106	50 - 200	-0.0010	+/-0.50	
Chlorobenzene-d5	539792	7.705	518892	7.705	104	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	617134	5.658	590046	5.658	105	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	248962	9.397	268551	9.397	93	50 - 200	0.0000	+/-0.50	
SVCA-GW-110-14-19-170913 (17I0	171-17)	(Water)	Lab File ID: V209201713G.D			Analyzed:	09/20/17 14	1:28	
Pentafluorobenzene	331710	5.267	319541	5.267	104	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	527200	7.716	518892	7.705	102	50 - 200	-0.0110	+/-0.50	
1,4-Difluorobenzene	589173	5.657	590046	5.658	100	50 - 200	0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	246499	9.396	268551	9.397	92	50 - 200	0.0010	+/-0.50	
SVCA-GW-111-14-19-170913 (1710)	171-19)	(Water)	La	b File ID: V20	9201714G.D		Analyzed:	09/20/17 14	1:48
Pentafluorobenzene	331223	5.267	319541	5.267	104	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	516876	7.717	518892	7.705	100	50 - 200	-0.0120	+/-0.50	
1,4-Difluorobenzene	591191	5.658	590046	5.658	100	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	244756	9.397	268551	9.397	91	50 - 200	0.0000	+/-0.50	
SVCA-GW-112-12.5-17.5-170913 (17I0171-21)		(Water)	La	b File ID: V20	9201715G.D		Analyzed: 09/20/17 15:08		
Pentafluorobenzene	328464	5.27	319541	5.267	103	50 - 200	-0.0030	+/-0.50	
Chlorobenzene-d5	532216	7.708	518892	7.705	103	50 - 200	-0.0030	+/-0.50	
1,4-Difluorobenzene	589362	5.661	590046	5.658	100	50 - 200	-0.0030	+/-0.50	
1,4-Dichlorobenzene-d4	250884	9.4	268551	9.397	93	50 - 200	-0.0030	+/-0.50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0241</u> Instrument: <u>NT2</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
SVCA-SB-111-14-16-170913 (17I017	71-05)	(Solid)	La	b File ID: V20	9201726G.D		Analyzed: 09/20/17 18:54		
Pentafluorobenzene	370164	5.259	319541	5.267	116	50 - 200	0.0080	+/-0.50	
Chlorobenzene-d5	609865	7.708	518892	7.705	118	50 - 200	-0.0030	+/-0.50	
1,4-Difluorobenzene	650028	5.65	590046	5.658	110	50 - 200	0.0080	+/-0.50	
1,4-Dichlorobenzene-d4	290739	9.401	268551	9.397	108	50 - 200	-0.0040	+/-0.50	
SVCA-SB-112-12.5-14.5-170913 (17	I0171-11)	(Solid)	La	b File ID: V20	9201727G.D		Analyzed:	09/20/17 19):14
Pentafluorobenzene	333160	5.267	319541	5.267	104	50 - 200	0.0000	+/-0.50	
Chlorobenzene-d5	566538	7.705	518892	7.705	109	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	595422	5.658	590046	5.658	101	50 - 200	0.0000	+/-0.50	
1,4-Dichlorobenzene-d4	288455	9.397	268551	9.397	107	50 - 200	0.0000	+/-0.50	

HOLDING TIME SUMMARY

Analysis: NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-SB-111-14-16-170913 1710171-05	09/13/17 14:30	09/14/17 08:58	09/20/17 13:03	6	14	09/20/17 18:54	7	14	
SVCA-SB-112-12.5-14.5-170913 17I0171-11	09/13/17 16:10	09/14/17 08:58	09/20/17 13:03	6	14	09/20/17 19:14	7	14	
SVCA-GW-109-14-19-170913 17I0171-15	09/13/17 11:10	09/14/17 08:58	09/20/17 12:51	7	14	09/20/17 14:07	7	14	
SVCA-GW-110-14-19-170913 17I0171-17	09/13/17 12:57	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 14:28	7	14	
SVCA-GW-111-14-19-170913 17I0171-19	09/13/17 15:45	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 14:48	7	14	
SVCA-GW-112-12.5-17.5-170913 17I0171-21	09/13/17 17:03	09/14/17 08:58	09/20/17 12:51	6	14	09/20/17 15:08	7	14	
TRIP BLANK 17I0171-23	09/13/17 00:00	09/14/17 08:58	09/20/17 12:51	7	14	09/20/17 13:27	8	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

NWTPHg

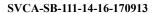
Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: NT2

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	2500	5000	ug/kg

METHOD DETECTION AND REPORTING LIMITS


NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: NT2

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	13.6	100	ug/L

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

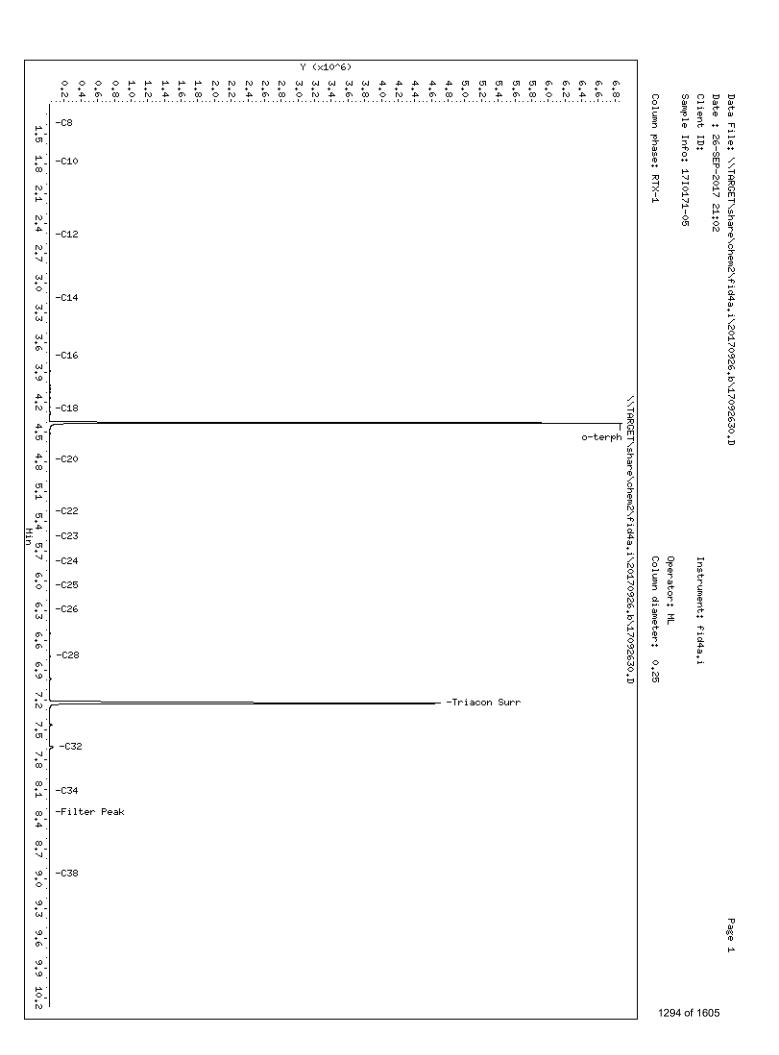
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-05</u> SDG: <u>1710171</u>

Sampled: <u>09/13/17 14:30</u> Prepared: <u>09/18/17 13:50</u> File ID: <u>17092630.D</u>

% Solids: <u>89.53</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/26/17 21:02</u>


Batch: BFI0365 Sequence: SFI0326 Initial/Final: 10.03 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00084

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	5.57	U	2.61	5.57
	Motor Oil Range Organics (C24-C38)	1	11.1	U	3.33	11.1

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	25.056	19.2	76.4	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170926.b/17092630.D ARI ID: 1710171-05

Method: 20170926.b\FID4TPH.m Client ID:

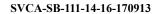
Instrument: fid4a.i, ML Injection: 26-SEP-2017 21:02

Report Date: 09/27/2017 Dilution Factor: 1

Macro: 26-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS


Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.284	-0.011	1332	1203	 WATPHG	(Tol-C12)	23590	15.7
C8	1.392	0.002	4683	2915	WATPHD	(C12-C24)	251838	14.2
C10	1.779	0.002	4167	1999	WATPHM	(C24-C38)	208498	11.9
C12	2.512	0.003	1648	1318	AK102	(C10-C25)	266812	12.5
C14	3.161	0.001	2811	4068				
C16	3.742	0.000	3950	4441				
C18	4.269	-0.000	5292	5574				
C20	4.786	0.000	4241	6423				
C22	5.302	0.000	2795	3672				
C24	5.808	0.000	3359	4277				
C25	6.053	0.000	4579	5166				
C26	6.292	0.001	4287	6278	1			
C28	6.760	-0.000	7158	8595				
C32	7.676	-0.000	44657	50448				
C34	8.117	0.000	2584	3808				
Filter Peak	8.331	-0.007	3928	8707	BUNKERC	(C10-C38)	473413	71.8
C36								
C38	8.956	-0.014	2979	2329				
C40								
o-terph	4.412	-0.003	6861089	4334736				
Triacon Surr		-0.003	4689488 =======	4284959	NAS DIES	S (C10-C24)	264915	12.5

Range Times: NW Diesel(2.510 - 5.808) AK102(1.78 - 6.05) Jet A(1.78 - 4.27) NW M.Oil(5.81 - 8.97) AK103(6.05 - 8.54) OR Diesel(1.78 - 6.76)

Surrogate	Area	Amount
o-Terphenyl	4334736	172.0
Triacontane	4284959	165.6

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017
Bunker C	6591.0	26-SEP-2017

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

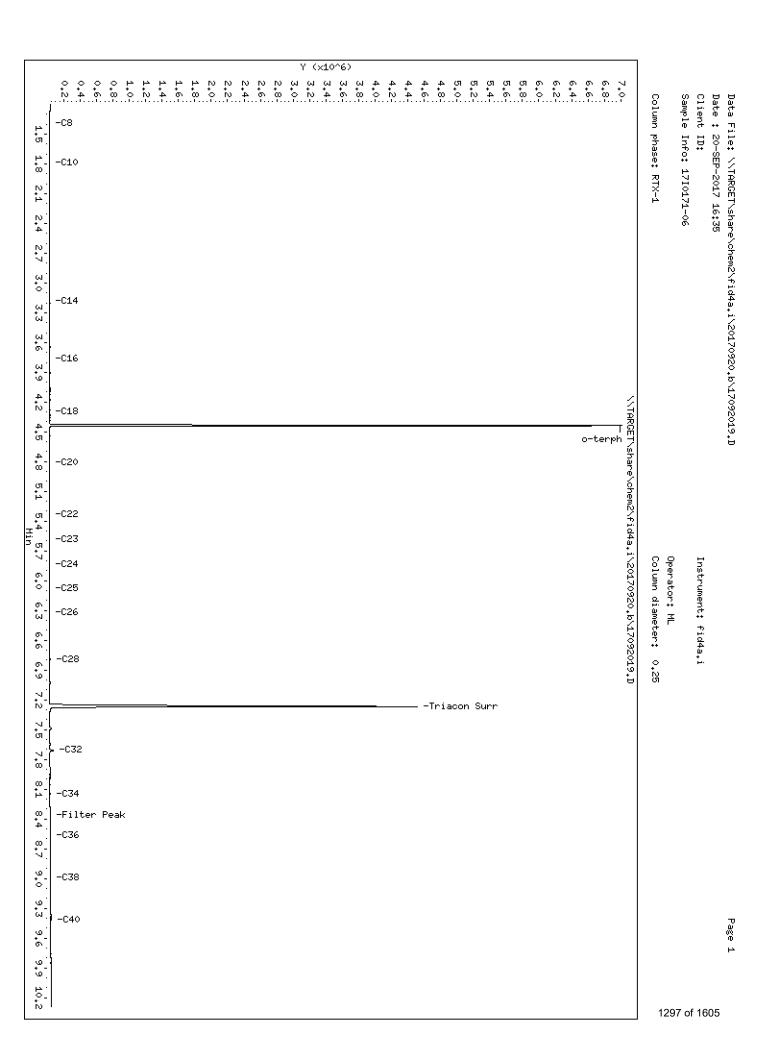
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-06</u> SDG: <u>1710171</u>

Sampled: <u>09/13/17 14:30</u> Prepared: <u>09/19/17 10:20</u> File ID: <u>17092019.D</u>


% Solids: <u>89.53</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/20/17 16:35</u>

Batch: BFI0364 Sequence: SFI0211 Initial/Final: 10.19 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	5.48	U	2.56	5.48
	Motor Oil Range Organics (C24-C38)	1	11.0	U	3.28	11.0

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.663	17.7	72.0	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170920.b/17092019.D ARI ID: 17I0171-06

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 20-SEP-2017 16:35

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT		_	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.234	-0.028	7154	6832	WATPHG	(Tol-C12)	35493	23.7
C8	1.399	-0.003	4178	7109	WATPHD	(C12-C24)	236218	13.3
C10	1.792	-0.002	2158	2030	WATPHM	(C24-C38)	571278	32.5
C12					AK102	(C10-C25)	247021	11.6
C14	3.182	0.001	2097	1772	1			
C16	3.765	0.002	2205	2232	OR.DIES	(C10-C28)	306729	14.3
C18	4.295	0.001	3160	3645	1			
C20	4.812	0.002	3425	4383	1			
C22	5.330	0.002	2742	2889	1			
C24	5.839	0.003	2853	3322	1			
C25	6.084	0.003	4038	3911	1			
C26	6.325	0.005	3910	4770	1			
C28	6.792	0.002	6278	8374	1			
C32	7.710	0.002	47978	55542	1			
C34	8.148	0.002	6222	9989	1			
Filter Peak	8.365	0.004	7146	16236	1			
C36	8.569	-0.005	6985	5747	1			
C38	8.990	-0.010	9014	9276	1			
C40	9.416	-0.010	18021	36290	1			
o-terph	4.438	-0.002	6990017	4079123	1			
Triacon Surr		-0.001	4492258 =======	3982086 ======	NAS DIES	(C10-C24)	244967	11.5

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount		
o-Terphenyl	4079123	161.9		
Triacontane	3982086	153.9		

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr	25203.0	18-SEP-2017
Triacon Surr	25873.7	18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-SB-112-12.5-14.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

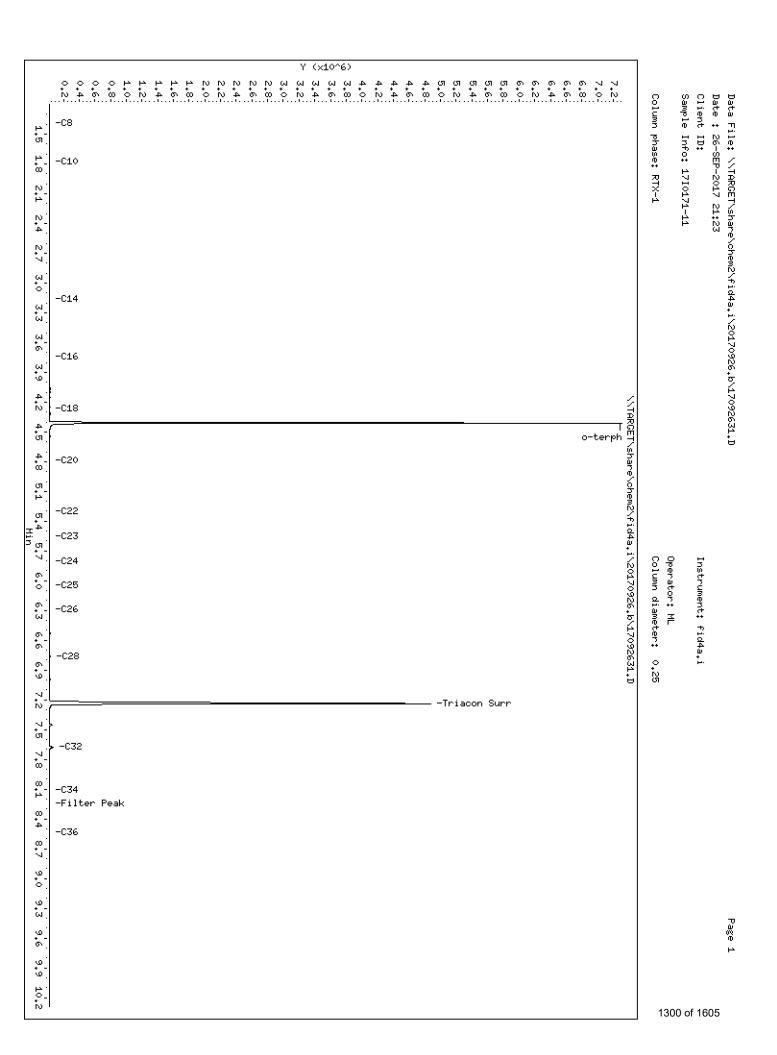
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-11</u> SDG: <u>1710171</u>

Sampled: <u>09/13/17 16:10</u> Prepared: <u>09/18/17 13:50</u> File ID: <u>17092631.D</u>

% Solids: <u>89.96</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/26/17 21:23</u>


 Batch:
 BFI0365
 Sequence:
 SFI0326
 Initial/Final:
 10.11 g Wet / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00084

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	5.50	U	2.57	5.50
	Motor Oil Range Organics (C24-C38)	1	11.0	U	3.29	11.0

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.739	19.5	79.0	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170926.b/17092631.D ARI ID: 1710171-11

Method: 20170926.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 26-SEP-2017 21:23

Report Date: 09/27/2017 Dilution Factor: 1

Macro: 26-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.285	-0.011	 1196	1181	======= WATPHG	(Tol-C12)	 20731	===== 13.8
C8	1.392	0.003	2118	2130	WATPHD	(C12-C24)	153257	8.6
C10	1.780	0.003	2004	1237	WATPHM	(C24-C38)	173270	9.9
C12					AK102	(C10-C25)	160377	7.5
C14	3.162	0.002	1788	1847				
C16	3.743	0.002	2264	2105				
C18	4.270	0.000	3151	2826				
C20	4.787	0.002	2265	2334				
C22	5.304	0.002	1443	1909				
C24	5.810	0.002	1990	2346				
C25	6.055	0.002	3492	3680				
C26	6.294	0.003	2673	3359				
C28	6.762	0.002	6354	7646				
C32	7.677	0.001	48563	52789				
C34	8.117	-0.001	1857	1926				
Filter Peak	8.243	-0.095	1613	1138	BUNKERC	(C10-C38)	333647	50.6
C36	8.541	-0.001	1879	2477				
C38								
C40								
o-terph	4.413	-0.002	7288290	4477425				
Triacon Surr	7.238	-0.001	4851673 ======	4674505	NAS DIES	(C10-C24)	160377	7.5 ====

Range Times: NW Diesel(2.510 - 5.808) AK102(1.78 - 6.05) Jet A(1.78 - 4.27) NW M.Oil(5.81 - 8.97) AK103(6.05 - 8.54) OR Diesel(1.78 - 6.76)

Surrogate	Area	Amount
o-Terphenyl	4477425	177.7
Triacontane	4674505	180.7

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017
Bunker C	6591.0	26-SEP-2017

Form I

SVCA-SB-112-12.5-14.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

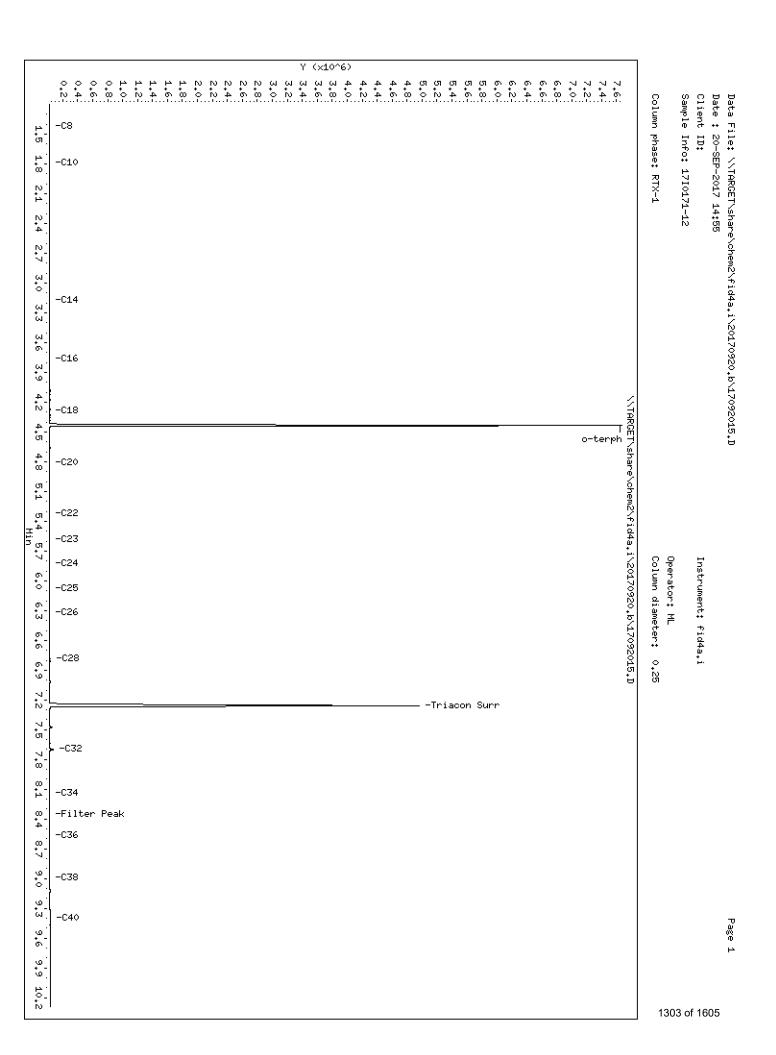
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: <u>SO</u> Laboratory ID: <u>1710171-12</u> SDG: <u>1710171</u>

Sampled: <u>09/13/17 16:10</u> Prepared: <u>09/19/17 10:20</u> File ID: <u>17092015.D</u>


% Solids: <u>89.96</u> Preparation: <u>EPA 3546 (Microwave)</u> Analyzed: <u>09/20/17 14:55</u>

Batch: <u>BF10364</u> Sequence: <u>SF10211</u> Initial/Final: <u>10.08 g Wet / 1 mL</u>

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg dry)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	5.51	U	2.58	5.51
	Motor Oil Range Organics (C24-C38)	1	11.0	U	3.30	11.0

SURROGATES	ADDED (mg/kg dry)	CONC (mg/kg dry)	% REC	QC LIMITS	Q
o-Terphenyl	24.813	20.7	83.6	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170920.b/17092015.D ARI ID: 17I0171-12

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 20-SEP-2017 14:55

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.250	-0.012	1341	1039	WATPHG	(Tol-C12)	7017	4.7
C8	1.419	0.016	1192	1385	WATPHD	(C12-C24)	166573	9.4
C10	1.793	-0.001	1119	831	WATPHM	(C24-C38)	352662	20.1
C12					AK102	(C10-C25)	169650	8.0
C14	3.179	-0.002	1154	999				
C16	3.762	-0.002	1217	763	OR.DIES	(C10-C28)	217607	10.2
C18	4.290	-0.004	2401	1905				
C20	4.808	-0.003	2623	4030				
C22	5.326	-0.003	2209	3310				
C24	5.831	-0.004	2531	3157				
C25	6.075	-0.005	3661	3626				
C26	6.316	-0.004	3683	4887				
C28	6.784	-0.006	6661	8540				
C32	7.699	-0.008	56694	58872				
C34	8.140	-0.006	4513	8332				
Filter Peak	8.355	-0.006	4277	7096				
C36	8.562	-0.012	5633	11961				
C38	8.993	-0.008	5723	4503				
C40	9.395	-0.031	7851	19349				
o-terph	4.436	-0.004	7647842	4739441				
Triacon Surr	7.260	-0.009	4941940	4634687	NAS DIES	(C10-C24)	169650	8.0

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

Range Times: NW Diesel(2.530 - 5.836) AKIU2(1.79 - 6.08) Jet A(1.79 - 4.29) NW M.Oil(5.84 - 9.00) AKIU3(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	4739441	188.1
Triacontane	4634687	179.1

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil	25203.0 25873.7 1500.0 17783.0 17571.0	18-SEP-2017 18-SEP-2017 XX-XXX-XXXX 18-SEP-2017
AK102 OR Diesel	21299.0 21383.0	18-SEP-2017 18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-109-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-15 SDG: 1710171

Sampled: <u>09/13/17 11:10</u> Prepared: <u>09/18/17 15:27</u> File ID: <u>17092043.D</u>

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 01:32</u>

Batch: BFI0366 Sequence: SFI0211 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.386	85.9	50 - 150	_

Analytical Resources Inc. TPH Quantitation Report

Data file: 20170920.b/17092043.D ARI ID: 1710171-15

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 01:32

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.239	-0.023	1541	 1629	WATPHG	(Tol-C12)	9364	===== 6.2
C8	1.318	-0.084	1239	758	WATPHD	(C12-C24)	7083	0.4
C10	1.796	0.002	732	894	WATPHM	(C24-C38)	168197	9.6
C12					AK102	(C10-C25)	8849	0.4
C14								
C16					OR.DIES	(C10-C28)	17119	0.8
C18								
C20	4.818	0.008	699	899				
C22								
C24								
C25	6.110	0.029	1141	1120				
C26								
C28	6.799	0.009	4151	4303				
C32	7.718	0.011	58221	57515				
C34	8.148	0.002	2614	2165				
Filter Peak	8.293	-0.068	2806	2022				
C36	8.584	0.010	3525	5266				
C38	9.012	0.011	4519	7105				
C40	9.422	-0.005	6201	13988				
o-terph	4.444	0.004	7787419	4869286				
Triacon Surr	7.280	0.011	5199898	4977793	NAS DIES	G (C10-C24)	8849	0.4

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29) NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	4869286	193.2
Triacontane	4977793	192.4

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-109-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

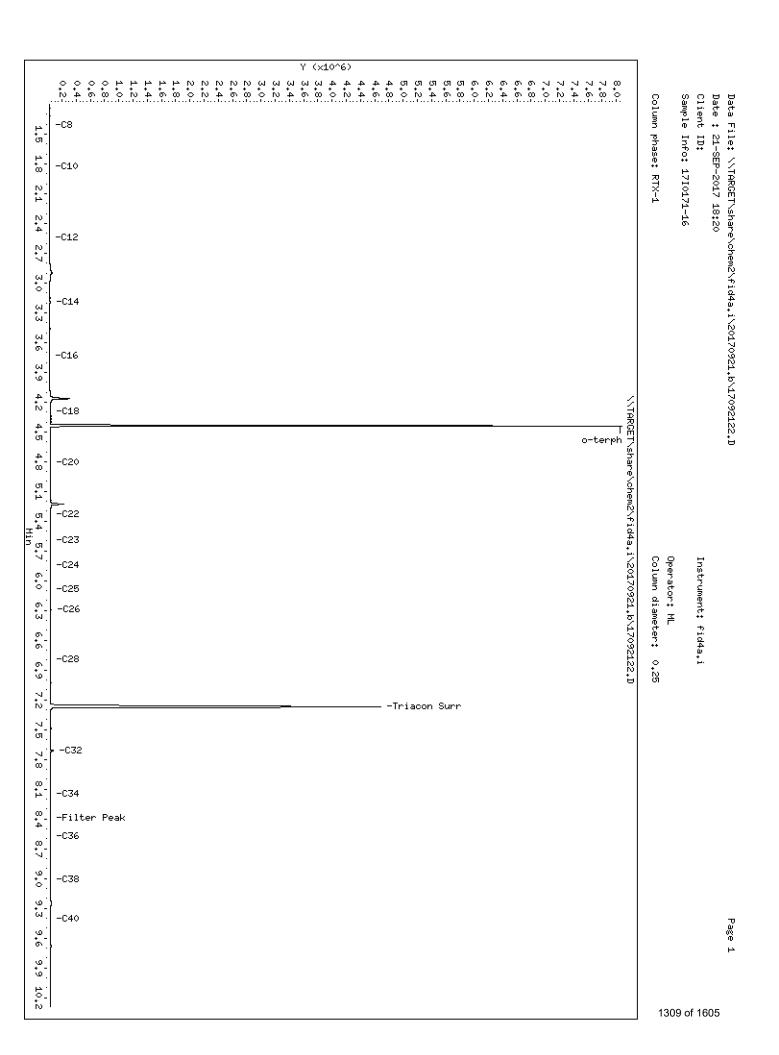
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-16 SDG: 1710171

Sampled: <u>09/13/17 11:10</u> Prepared: <u>09/18/17 12:07</u> File ID: <u>17092122.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 18:20</u>

Batch: BFI0345 Sequence: SFI0239 Initial/Final: 430 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.225		0.038	0.116
	Motor Oil Range Organics (C24-C38)	1	0.233	U	0.065	0.233

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.52326	0.475	90.8	50 - 150	

Data file: 20170921.b/17092122.D ARI ID: 1710171-16

Method: 20170921.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 18:20

Report Date: 09/22/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.237	-0.024	10157	 6830	WATPHG	(Tol-C12)	 48821	===== 32 . 5
C8	1.411	0.009	3668	2912	WATPHD	(C12-C24)	1723040	96.9
C10	1.831	0.037	1201	796	WATPHM	(C24-C38)	1329231	75.6
C12	2.547	0.018	1284	1394	AK102	(C10-C25)	1803108	84.7
C14	3.197	0.015	8953	18099				
C16	3.739	-0.025	2931	3700	OR.DIES	(C10-C28)	2190159	102.4
C18	4.296	0.002	10990	15996				
C20	4.813	0.003	7553	12812				
C22	5.332	0.004	15536	38267				
C24	5.845	0.009	12526	8666				
C25	6.085	0.004	12730	7576				
C26	6.291	-0.029	23275	74237				
C28	6.794	0.004	15730	23836				
C32	7.711	0.004	57823	92889				
C34	8.151	0.004	12389	18737				
Filter Peak	8.390	0.029	12403	17892				
C36	8.576	0.002	15063	51733				
C38	9.007	0.007	14016	15249				
C40	9.412	-0.015	18699	56406				
o-terph	4.442	0.003	8055488	5152511				
Triacon Surr	7.271	0.002 =====	4660160 =====	4331479 =======	NAS DIES	G (C10-C24)	1744884 	82.1 ====

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	5152511	204.4
Triacontane	4331479	167.4

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

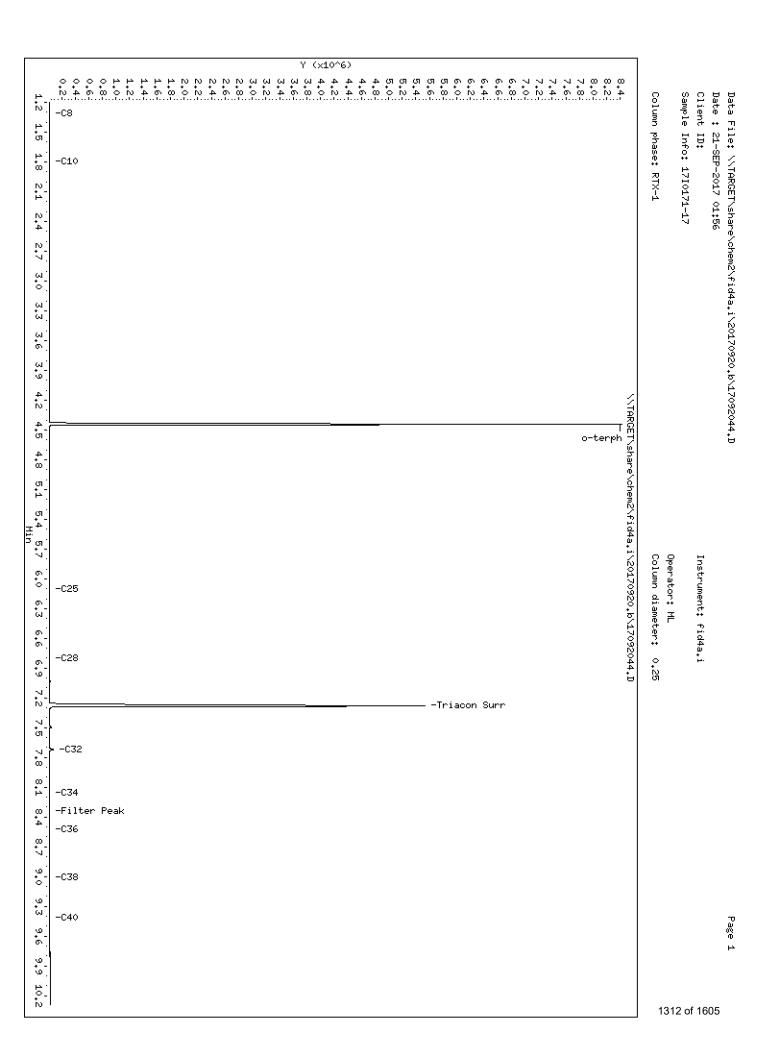
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-17 SDG: 1710171

Sampled: <u>09/13/17 12:57</u> Prepared: <u>09/18/17 15:27</u> File ID: <u>17092044.D</u>

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 01:56</u>


Batch: $\underline{BF10366}$ Sequence: $\underline{SF10211}$ Initial/Final: $\underline{500~mL/1~mL}$

Instrument: FID4 Column: RTX-1 Calibration: AI00051

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.424	94.2	50 - 150	

Data file: 20170920.b/17092044.D ARI ID: 17I0171-17

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 01:56

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.239	-0.023	======== 2609	======================================	======= WATPHG	======================================	======================================	==== 14.5
C8	1.321	-0.081	1989	2079	WATPHD	(C12-C24)	3273	0.2
C10	1.797	0.003	3853	2060	WATPHM	(C24-C38)	155817	8.9
C12					AK102	(C10-C25)	10326	0.5
C14								
C16					OR.DIES	(C10-C28)	17419	0.8
C18								
C20					1			
C22								
C24								
C25	6.110	0.029	876	1120				
C26								
C28	6.802	0.012	4466	4117				
C32	7.721	0.014	60116	58519				
C34	8.159	0.013	2415	2970	1			
Filter Peak	8.345	-0.016	2500	3374				
C36	8.530	-0.044	3266	6383				
C38	9.014	0.014	4125	2811	1			
C40	9.421	-0.006	5788	5947	1			
o-terph	4.445	0.005	8401261	5341858	1			
Triacon Surr	7.282	0.013	5510122	5226559	NAS DIES	G (C10-C24)	10326	0.5

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	5341858	212.0
Triacontane	5226559	202.0

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-110-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

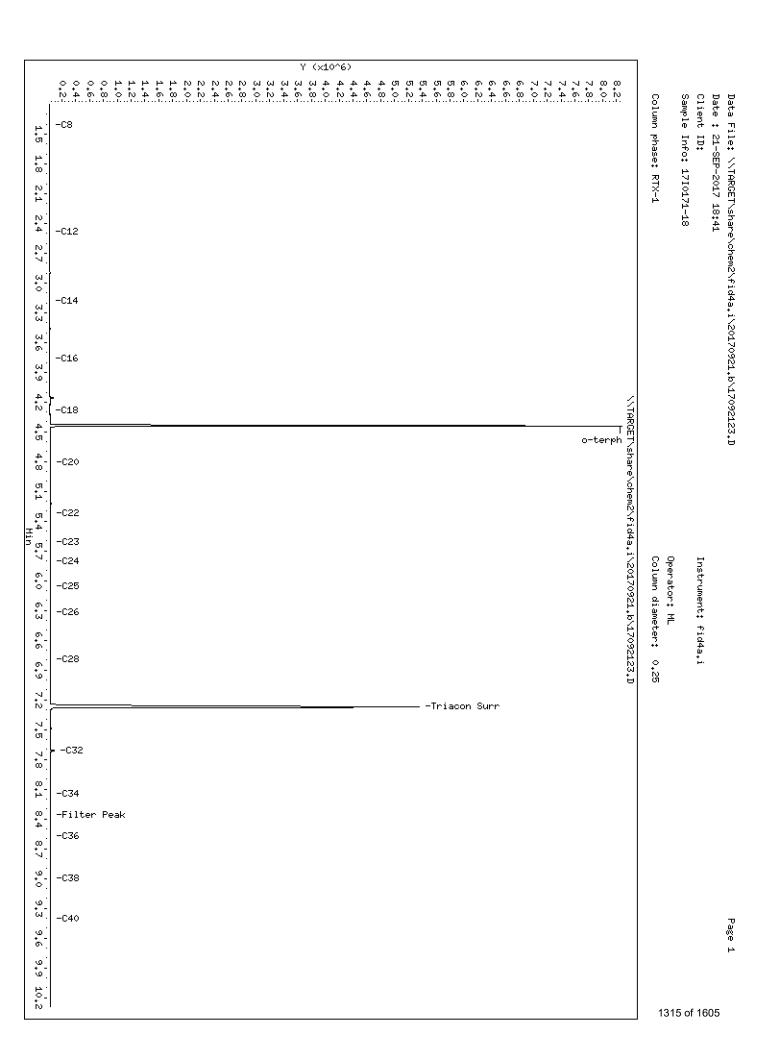
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-18 SDG: 1710171

Sampled: <u>09/13/17 12:57</u> Prepared: <u>09/18/17 12:07</u> File ID: <u>17092123.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 18:41</u>

Batch: BFI0345 Sequence: SFI0239 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.422	93.9	50 - 150	

Data file: 20170921.b/17092123.D ARI ID: 17I0171-18

Method: 20170921.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 18:41

Report Date: 09/22/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound			Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene			3676	3591	WATPHG	(Tol-C12)	18949	12.6
C8	1.413	0.011	3489	2686	WATPHD	(C12-C24)	801013	45.0
C10							983437	56.0
C12	2.488	-0.041	1459	1067	AK102	(C10-C25)	871733	40.9
C14	3.182	0.001	2240					
C16	3.766	0.002	2525	2356 0	R.DIES	(C10-C28)	1192573	55.8
C18	4.292	-0.002	6717	5937				
C20	4.813	0.003	8503	11515				
C22	5.329	0.000	11223	7746				
C24	5.812	-0.023	12286	14876				
C25	6.062	-0.018	12013	4773				
C26	6.326	0.006	11731	20629				
C28	6.794	0.004	13839	17421				
C32	7.712	0.004	63651	88633				
C34	8.152	0.006	8995	20216				
Filter Peak	8.367	0.006	9304	21755				
C36	8.579	0.005	9894	21556				
C38	9.006	0.005	9957	11227				
C40	9.411	-0.016	12779	35745				
o-terph	4.442	0.002	8255645	5323748				
Triacon Surr	7.272	0.003	5333773	5146947 N	AS DIES	(C10-C24)	803986	37.8

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	5323748	211.2
Triacontane	5146947	198.9

Analyte	RF	Curve Date
o-Terph Surr	25203.0	18-SEP-2017
Triacon Surr	25873.7	18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-111-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

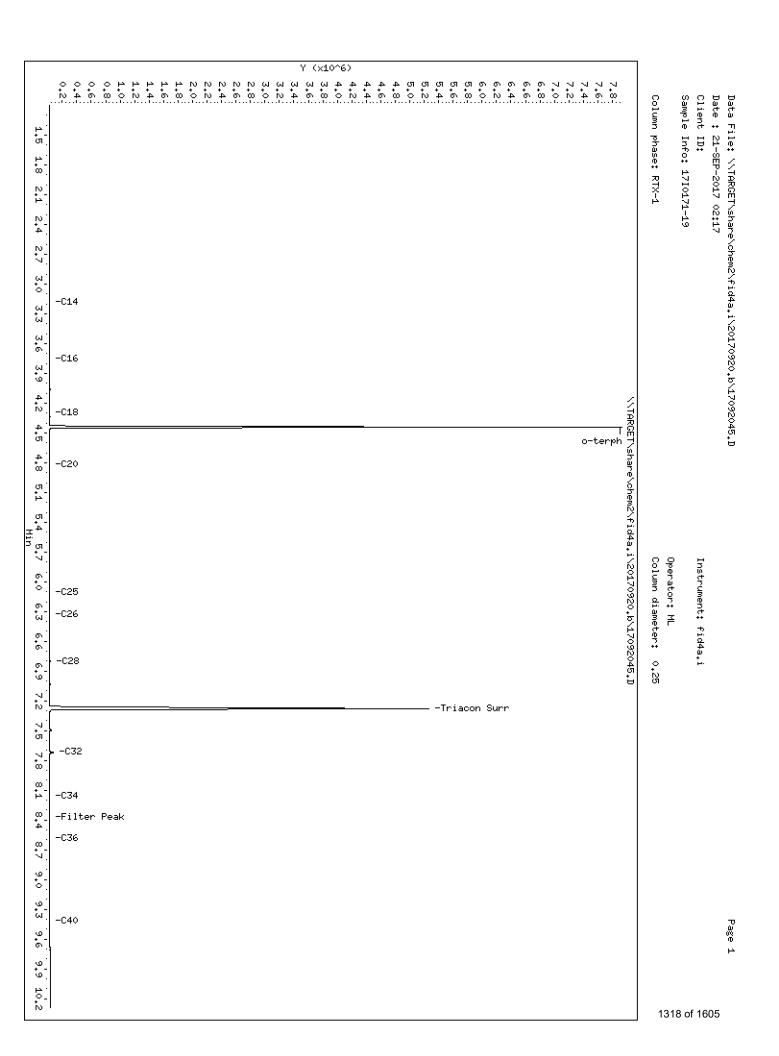
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-19 SDG: 1710171

Sampled: <u>09/13/17 15:45</u> Prepared: <u>09/18/17 15:27</u> File ID: <u>17092045.D</u>

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 02:17</u>


Batch: $\underline{BF10366}$ Sequence: $\underline{SF10211}$ Initial/Final: $\underline{500~mL/1~mL}$

Instrument: FID4 Column: RTX-1 Calibration: AI00051

Cleanups: Silica Gel, Sulfuric Acid

	CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
Γ		Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
		Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.399	88.6	50 - 150	_

Data file: 20170920.b/17092045.D ARI ID: 17I0171-19

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 02:17

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.279	0.017	968	 1288	WATPHG	(Tol-C12)	9210	===== 6.1
C8					WATPHD	(C12-C24)	133279	7.5
C10					WATPHM	(C24-C38)	182397	10.4
C12					AK102	(C10-C25)	135048	6.3
C14	3.187	0.006	1127	1287	1			
C16	3.753	-0.011	2333	3607	OR.DIES	(C10-C28)	152213	7.1
C18	4.298	0.004	2421	2278	1			
C20	4.817	0.007	2087	2604	1			
C22					1			
C24								
C25	6.110	0.029	948	939	1			
C26	6.329	0.009	853	814	1			
C28	6.800	0.011	10556	9499				
C32	7.719	0.012	56913	56005				
C34	8.160	0.014	2758	5032				
Filter Peak	8.370	0.009	2699	1956				
C36	8.587	0.013	3628	6183				
C38								
C40	9.420	-0.006	5681	6665	1			
o-terph	4.445	0.005	7909843	5023419	1			
Triacon Surr	7.280	0.011	5238429	5007035	NAS DIES	G (C10-C24)	135048	6.4

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29) NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	5023419	199.3
Triacontane	5007035	193.5

Analyte	RF	Curve Date
o-Terph Surr	25203.0	18-SEP-2017
Triacon Surr	25873.7	18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-111-14-19-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

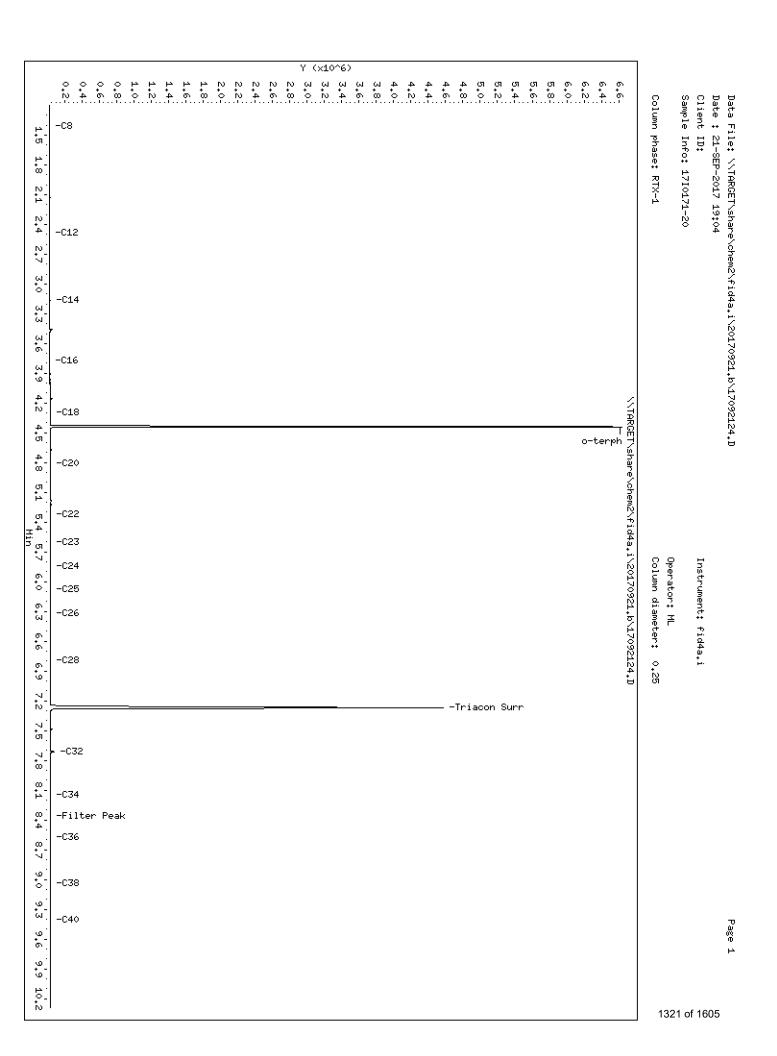
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-20 SDG: 1710171

Sampled: <u>09/13/17 15:45</u> Prepared: <u>09/18/17 12:07</u> File ID: <u>17092124.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 19:04</u>

Batch: BFI0345 Sequence: SFI0239 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.138		0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.306	68.0	50 - 150	

Data file: 20170921.b/17092124.D ARI ID: 1710171-20

Method: 20170921.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 19:04

Report Date: 09/22/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.238	-0.024	1462	 1259	WATPHG	(Tol-C12)	 29672	19.8
C8	1.413	0.011	3833	2586	WATPHD	(C12-C24)	1226053	68.9
C10					WATPHM	(C24-C38)	712577	40.6
C12	2.487	-0.042	1174	1059	AK102	(C10-C25)	1275473	59.9
C14	3.164	-0.017	6958	6989				
C16	3.775	0.011	4224	1243	OR.DIES	(C10-C28)	1518031	71.0
C18	4.295	0.001	8775	9785				
C20	4.812	0.002	11669	15321				
C22	5.329	0.000	12231	18257				
C24	5.846	0.011	11289	6632				
C25	6.085	0.004	10354	13182				
C26	6.326	0.006	9523	13436				
C28	6.795	0.005	10410	14531				
C32	7.714	0.007	50594	67678				
C34	8.155	0.008	7576	23664				
Filter Peak	8.366	0.005	7455	12395				
C36	8.580	0.006	8195	20661				
C38	9.044	0.043	8257	3670				
C40	9.415	-0.012	10565	28165				
o-terph	4.440	0.000	6603024	3859374				
Triacon Surr	7.272	0.003	4548808	4152676	NAS DIES	S (C10-C24)	1241677	58.4

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

 $\frac{1}{1}$ NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount	
o-Terphenyl	3859374	153.1	Μ
Triacontane	4152676	160.5	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

656 16 _ e σ ģ 搁事 9.6 ِ ص Ö 798.5 998.5 (GI4.9) OF . . . 1882 621.6 ō 0 (440.6) 82 0 ō ō #68 : 8 #62 : 1 8.7 Ν 67.198 6.11467 ω (089.8) 2 4 4 F11ter Peak (8,366) œ σ (8,155) 9.1 ώ 866美 \equiv 00 2.8 269 2 698 2 198 2 (b17,7) SE32 7.5 5 Processed Integration ₹S7S.7) aau2 nobeia∓ c 7,2 aang dobetaT-7,2 THE STATE OF THE PROPERTY OF T Manual Integrat 6.9 6.0 \equiv (962*9) 823 9,6 9,9 6.3 .0 (922.3) 9 (980°9) 925 0 9 ؈ؘ (9+8·G) ta 5.1 5.4 5.7 Time (Min) 5.1 5.4 5. Time (Min) (Z09°G) Σ (6Z2'S) Z (S18,4) 05 . 6 .4 5.5 4 ت (044.440) yduaj o (962.4) 8 Ŋ 4 الم 9 9 φ 9.0 m м м (3,164) 9 3.0 2,7 2,7 (285,287) 396 65 NO 396 00 4. 4. ď 2,1 1,8 698 ≒ − ∞ 8£8\$ £69£ 83 1,5 IO. (1,413) (9~01×) A (9~01×) A

Injection: 21-SEP-2017 19:04 Integrations Report 20170921.b/17092124.D TPH Manual Lab ID:17I0171-20 Datafile: FID4A,

Form I

SVCA-GW-112-12.5-17.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

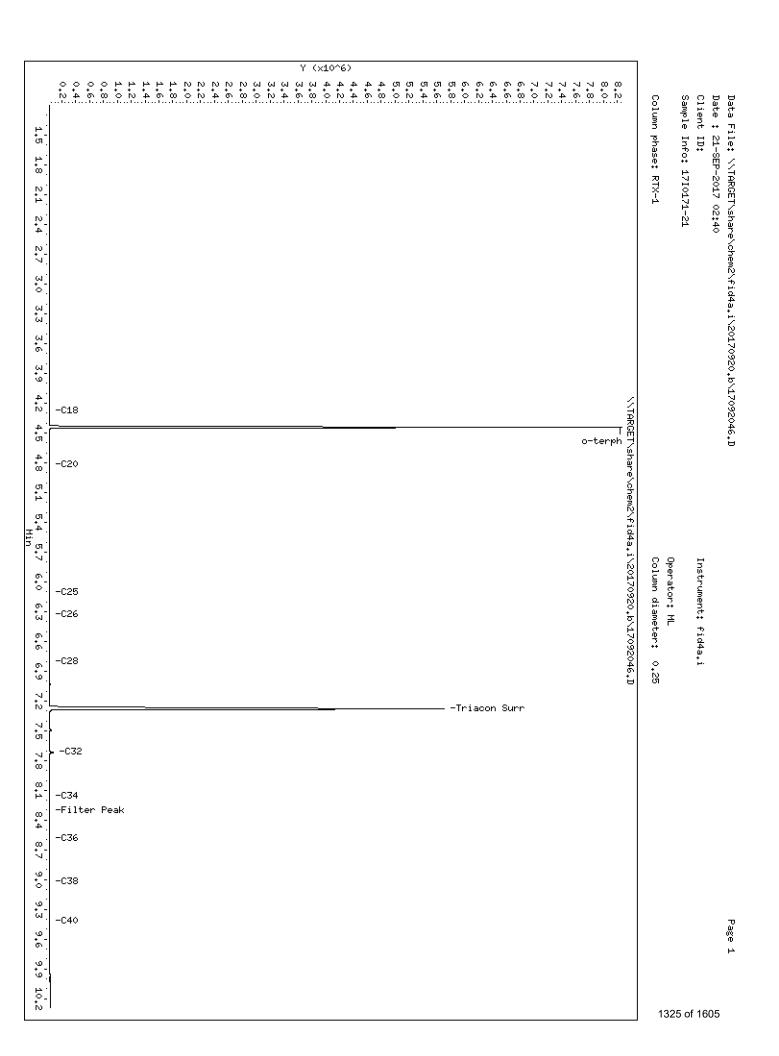
Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-21 SDG: 1710171

Sampled: <u>09/13/17 17:03</u> Prepared: <u>09/18/17 15:27</u> File ID: <u>17092046.D</u>

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 02:40</u>


Batch: BFI0366 Sequence: SFI0211 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.418	92.8	50 - 150	

Data file: 20170920.b/17092046.D ARI ID: 1710171-21

Method: 20170920.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 02:40

Report Date: 09/21/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene					WATPHG	(Tol-C12)	4065	 2.7
C8					WATPHD	(C12-C24)	7548	0.4
C10					WATPHM	(C24-C38)	174678	9.9
C12					AK102	(C10-C25)	8656	0.4
C14					1			
C16					OR.DIES	(C10-C28)	24539	1.1
C18	4.280	-0.014	568	992	1			
C20	4.819	0.009	867	803	1			
C22					1			
C24					1			
C25	6.110	0.029	6510	5012	1			
C26	6.332	0.012	788	879	1			
C28	6.801	0.011	4580	5184	1			
C32	7.719	0.012	58257	57238	1			
C34	8.157	0.010	2265	1587	1			
Filter Peak	8.301	-0.060	2425	3475	1			
C36	8.588	0.014	3058	7655	1			
C38	9.023	0.023	3841	4849	1			
C40	9.419	-0.007	5504	5461	1			
o-terph	4.445	0.005	8242680	5263680	1			
Triacon Surr	7.281	0.012	5684254	5292718 	NAS DIES	S (C10-C24)	8656 ========	0.4

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29) NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount	
o-Terphenyl	5263680	208.9	
Triacontane	5292718	204.6	

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr	25203.0 25873.7	18-SEP-2017 18-SEP-2017
Gas	1500.0	XX-XXX-XXXX
Diesel	17783.0	18-SEP-2017
Motor Oil	17571.0	18-SEP-2017
AK102	21299.0	18-SEP-2017
OR Diesel	21383.0	18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Form I

SVCA-GW-112-12.5-17.5-170913

ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

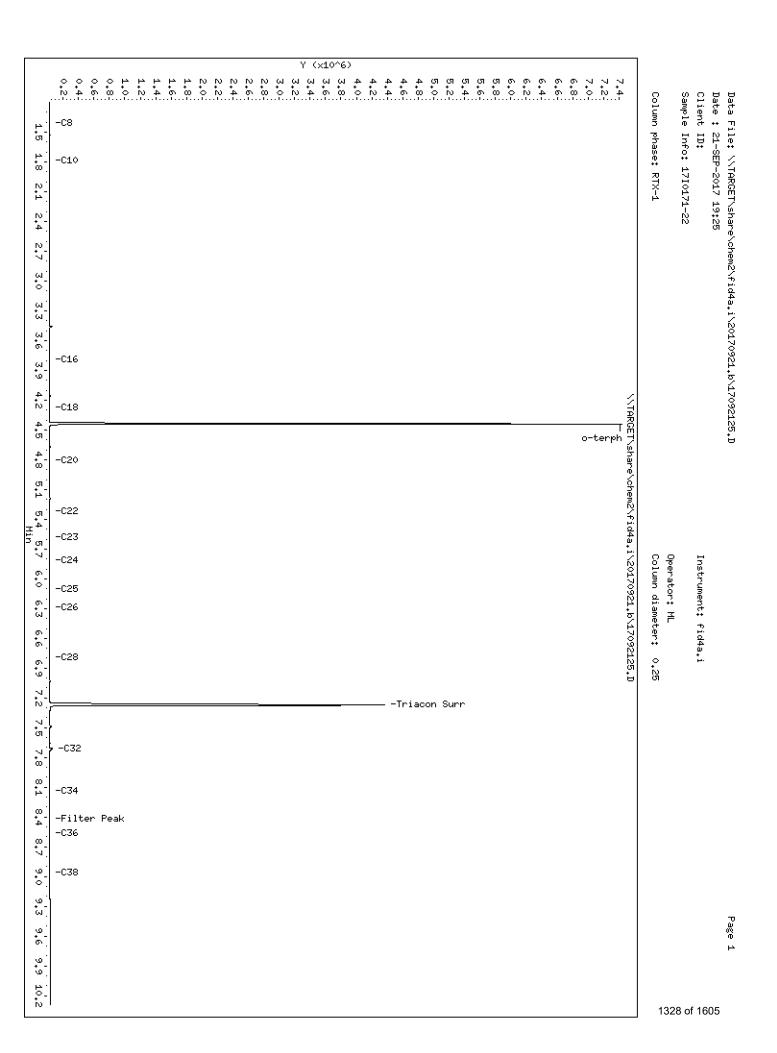
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: <u>SCVA Area Z Remediation</u>

Matrix: Ground Water Laboratory ID: 1710171-22 SDG: 1710171

Sampled: <u>09/13/17 17:03</u> Prepared: <u>09/18/17 12:07</u> File ID: <u>17092125.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>09/21/17 19:25</u>

Batch: BFI0345 Sequence: SFI0239 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: AI00051

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.367	81.6	50 - 150	

Data file: 20170921.b/17092125.D ARI ID: 17I0171-22

Method: 20170921.b\FID4TPH.m Client ID:

Instrument: fid4a.i, ML Injection: 21-SEP-2017 19:25

Report Date: 09/22/2017 Dilution Factor: 1

Macro: 18-SEP-2017

Calibration Dates: Gas:XX-XXX-XXXX Diesel:18-SEP-2017 M.Oil:18-SEP-2017

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg per L)
Toluene	1.240	-0.022	4952	6086	WATPHG	(Tol-C12)	49096	32.7
C8	1.415	0.013	5521	7699	WATPHD	(C12-C24)	213253	12.0
C10	1.795	0.001	877	863	WATPHM	(C24-C38)	266007	15.1
C12					AK102	(C10-C25)	222228	10.4
C14								
C16	3.794	0.030	1468	1576	OR.DIES	(C10-C28)	288682	13.5
C18	4.277	-0.017	2240	2632				
C20	4.813	0.002	2995	4145				
C22	5.322	-0.007	3228	3842				
C24	5.816	-0.019	3594	3292				
C25	6.105	0.024	4056	7754				
C26	6.291	-0.028	3799	6275				
C28	6.795	0.006	5507	7388				
C32	7.714	0.007	43187	53736				
C34	8.145	-0.002	3737	2190				
Filter Peak	8.423	0.062	4085	2197				
C36	8.569	-0.005	4317	4933				
C38	8.960	-0.041	5019	3700				
C40								
o-terph	4.441	0.002	7415614	4630016				
Triacon Surr	7.272	0.003	4347393	3785011	NAS DIES	S (C10-C24)	218296	10.3

Range Times: NW Diesel(2.530 - 5.836) AK102(1.79 - 6.08) Jet A(1.79 - 4.29)

NW M.Oil(5.84 - 9.00) AK103(6.08 - 8.57) OR Diesel(1.79 - 6.79)

Surrogate	Area	Amount
o-Terphenyl	4630016	183.7
Triacontane	3785011	146.3

Analyte	RF	Curve Date
o-Terph Surr Triacon Surr Gas Diesel Motor Oil AK102 OR Diesel	25203.0 25873.7 1500.0 17783.0 17571.0 21299.0 21383.0	18-SEP-2017 18-SEP-2017 XX-XXX-XXXX 18-SEP-2017 18-SEP-2017 18-SEP-2017
NAS Diesel	21261.0	18-SEP-2017

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: BFI0345 Batch Matrix: Water Preparation: EPA 3510C SepF

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-GW-109-14-19-170913	17I0171-16	17092122.D	09/18/17 12:07	
SVCA-GW-110-14-19-170913	17I0171-18	17092123.D	09/18/17 12:07	
SVCA-GW-111-14-19-170913	17I0171-20	17092124.D	09/18/17 12:07	
SVCA-GW-112-12.5-17.5-170913	17I0171-22	17092125.D	09/18/17 12:07	
Blank	BFI0345-BLK1	17092112.D	09/18/17 12:07	
LCS	BFI0345-BS1	17092113.D	09/18/17 12:07	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0364
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-SB-111-14-16-170913	17I0171-06	17092019.D	09/19/17 10:20	
SVCA-SB-112-12.5-14.5-170913	17I0171-12	17092015.D	09/19/17 10:20	
Blank	BFI0364-BLK1	17092010.D	09/19/17 10:20	
LCS	BFI0364-BS1	17092011.D	09/19/17 10:20	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

 Client:
 Anchor QEA, LLC
 Project:
 SCVA Area Z Remediation

 Batch:
 BFI0365
 Batch Matrix:
 Solid
 Preparation:
 EPA 3546 (Microwave)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-SB-111-14-16-170913	17I0171-05	17092630.D	09/18/17 13:50	
SVCA-SB-112-12.5-14.5-170913	17I0171-11	17092631.D	09/18/17 13:50	
Blank	BFI0365-BLK1	17092628.D	09/18/17 13:50	
LCS	BFI0365-BS1	17092629.D	09/18/17 13:50	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Batch: BFI0366 Batch Matrix: Water Preparation: EPA 3510C SepF

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
SVCA-GW-109-14-19-170913	17I0171-15	17092043.D	09/18/17 15:27	
SVCA-GW-110-14-19-170913	17I0171-17	17092044.D	09/18/17 15:27	
SVCA-GW-111-14-19-170913	17I0171-19	17092045.D	09/18/17 15:27	
SVCA-GW-112-12.5-17.5-170913	17I0171-21	17092046.D	09/18/17 15:27	
Blank	BFI0366-BLK1	17092041.D	09/18/17 15:27	
LCS	BFI0366-BS1	17092042.D	09/18/17 15:27	

BFI0345

Batch:

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

SFI0239

Calibration:

AI00051

Matrix: Water Laboratory ID: BFI0345-BLK1 File ID: 17092112.D

Sampled: $\underline{N/A}$ Prepared: $\underline{09/18/17\ 12:07}$ Analyzed: $\underline{09/21/17\ 14:38}$

Solids: Preparation: <u>EPA 3510C SepF</u> Initial/Final: <u>500 mL / 1 mL</u>

Instrument: FID4 Column: RTX-1

Sequence:

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.334	74.3	50 - 150	

Solids:

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

17I0171

10 g / 1 mL

Initial/Final:

Laboratory: Analytical Resources, Inc. SDG:

Preparation:

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFI0364-BLK1 File ID: 17092010.D

Sampled: $\underline{N/A}$ Prepared: $\underline{09/19/17\ 10:20}$ Analyzed: $\underline{09/20/17\ 13:02}$

Batch: BFI0364 Sequence: SFI0211 Calibration: AI00051

Instrument: FID4 Column: RTX-1

CAS NO.	COMPOUND	DILUTION	CONC. (mg/kg	wet)	Q	DL	RL	
	Diesel Range Organics (C12-C24)	1	5.00		U	2.34	5.00	
	Motor Oil Range Organics (C24-C38)	1	10.0		U	2.99	10.0	
SURROGATES		ADDED (mg/kg	wet) CONC (n	ng/kg wet)	%]	REC	QC LIMITS	Q
o-Terphenyl		22.500	20).7	92	2.0	50 - 150	

EPA 3546 (Microwave)

Solids:

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

10 g / 1 mL

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Laboratory ID: BFI0365-BLK1 File ID: 17092628.D

Sampled: $\underline{N/A}$ Prepared: $\underline{09/18/17\ 13:50}$ Analyzed: $\underline{09/26/17\ 20:17}$

Batch: BFI0365 Sequence: SFI0326 Calibration: AI00084

Preparation:

Instrument: FID4 Column: RTX-1 Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CON	C. (mg/kg wet)		Q	DL		RL	
	Diesel Range Organics (C12-C24)	1		5.00		U	2.34		5.00	
	Motor Oil Range Organics (C24-C38)	1		10.0		U	2.99		10.0	
SURROGATES		ADDED (mg/kg	wet)	CONC (mg/kg	wet)	%]	REC	Ç	C LIMITS	Q
o-Terphenyl		22.500		17.3		70	6.9		50 - 150	

EPA 3546 (Microwave)

Initial/Final:

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Laboratory ID:
 BFI0366-BLK1
 File ID:
 17092041.D

 Sampled:
 N/A
 Prepared:
 09/18/17 15:27
 Analyzed:
 09/21/17 00:48

Solids: Preparation: <u>EPA 3510C SepF</u> Initial/Final: <u>500 mL / 1 mL</u>

Batch: <u>BFI0366</u> Sequence: <u>SFI0211</u> Calibration: <u>AI00051</u>

Instrument: FID4 Column: RTX-1 Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CC	ONC. (mg/L)		Q	DL		RL		
	Diesel Range Organics (C12-C24)	1		0.100		U	0.033		0.100		
	Motor Oil Range Organics (C24-C38)	1		0.200		U	0.056		0.200		
SURROGATES		ADDED (mg	g/L)	CONC (mg	₅ /L)	%]	REC	Q	C LIMITS	Q)
o-Terphenyl		0.45000		0.394		8'	7.6		50 - 150		

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/21/17 15:01

 Batch:
 BFI0345
 Laboratory ID:
 BFI0345-BS1

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	2.49		82.9	56 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/20/17 13:24

 Batch:
 BFI0364
 Laboratory ID:
 BFI0364-BS1

Preparation: <u>EPA 3546 (Microwave)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 g / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	126		84.0	63 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Solid
 Analyzed:
 09/26/17 20:39

 Batch:
 BFI0365
 Laboratory ID:
 BFI0365-BS1

Preparation: EPA 3546 (Microwave) Sequence Name: LCS

Initial/Final: 10 g / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/kg wet)	(mg/kg wet)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	150	124		82.8	63 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 09/21/17 01:11

 Batch:
 BFI0366
 Laboratory ID:
 BFI0366-BS1

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	2.69		89.7	56 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0090 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-GW-109-14-19-170913	17I0171-15	17092043.D	09/19/2017	
SVCA-GW-112-12.5-17.5-170913	17I0171-21	17092046.D	09/19/2017	
SVCA-GW-111-14-19-170913	17I0171-19	17092045.D	09/19/2017	
SVCA-GW-110-14-19-170913	17I0171-17	17092044.D	09/19/2017	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0091 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-GW-112-12.5-17.5-170913	17I0171-21	17092046.D	09/19/2017	
SVCA-GW-111-14-19-170913	17I0171-19	17092045.D	09/19/2017	
SVCA-GW-110-14-19-170913	17I0171-17	17092044.D	09/19/2017	
SVCA-GW-109-14-19-170913	17I0171-15	17092043.D	09/19/2017	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0120 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-SB-111-14-16-170913	17I0171-05	17092630.D	09/26/2017	
SVCA-SB-112-12.5-14.5-170913	17I0171-11	17092631.D	09/26/2017	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Cleanup Batch: CFI0121 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
SVCA-SB-111-14-16-170913	17I0171-05	17092630.D	09/26/2017	
SVCA-SB-112-12.5-14.5-170913	17I0171-11	17092631.D	09/26/2017	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Instrument: FID4

	L	evel 01	L	evel 02	L	evel 03	Level 04		Lo	evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Diesel Range Organics (C12-C24)	50	17442.66	100	17695.96	250	17995.68	500	17994.26	1000	17817.35	2500	17750.95
o-Terphenyl	9	26040.89	18	25639.95	45	24951.49	90	25082.38	180	24776.26	450	24726.96

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Instrument: FID4

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Motor Oil Range Organics (C24-C38)	100	15002.1	250	18819.81	500	18007.26	1000	18079.94	2500	17744.16	5000	17774.91

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Instrument: FID4

	Level 13		Level 14		Level 15		Level 16		Level 17		Level 18	
Compound		RF										

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Instrument: FID4

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Diesel Range Organics (C12-C24)	17782.81	1.2			RSD (20)	
Motor Oil Range Organics (C24-C38)	17571.36	7.5			RSD (20)	
o-Terphenyl	25202.99	2.1			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00084 Instrument: FID4

	Level 01		Level 02		Level 03		Level 04		Level 05		Level 06	
Compound		RF										

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00084 Instrument: FID4

	L	evel 07	L	evel 08	L	evel 09	Level 10		Level 11		Level 12	
Compound		RF		RF		RF		RF		RF		RF
Diesel Range Organics (C12-C24)	50	17442.66	100	17695.96	250	17995.68	500	17994.26	1000	17817.35	2500	17750.95
o-Terphenyl	9	26040.89	18	25639.95	45	24951.49	90	25082.38	180	24776.26	450	24726.96

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00084 Instrument: FID4

	L	evel 13	L	evel 14	L	evel 15	L	evel 16	Lo	evel 17	Le	evel 18
Compound		RF		RF		RF		RF		RF		RF
Motor Oil Range Organics (C24-C38)	100	15002.1	250	18819.81	500	18007.26	1000	18079.94	2500	17744.16	5000	17774.91

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00084 Instrument: FID4

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q)
Diesel Range Organics (C12-C24)	17782.81	1.2			RSD (20)	
Motor Oil Range Organics (C24-C38)	17571.36	7.5			RSD (20)	
o-Terphenyl	25202.99	2.1			RSD (20)	

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Laboratory ID: SFI0194-SCV1

Sequence: SFI0194 Sequence Name: DIES SCV 500

Standard ID: F006358

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Diesel Range Organics (C12-C24)	500.00	588	17.5	30.00
o-Terphenyl	90.000	112	24.3	

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Calibration: AI00051 Laboratory ID: SFI0194-SCV2

Sequence: SFI0194 Sequence Name: Moil SCV 1000

Standard ID: F007427

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Motor Oil Range Organics (C24-C38)	1000.0	968	-3.2	30.00

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092003.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/20/17

Lab Sample ID: SFI0211-ICV1 Injection Time: 10:25

Sequence Name: <u>Diesel ICV</u>

		CONC.	(mg/L)	RESI	PONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Diesel Range Organics (C12-C24)	A	500.00	512	17782.8100	18207.3500		2.4	20	
o-Terphenyl	A	90.000	92.6	25202.9900	25920.1800		2.9	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092004.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/20/17

Lab Sample ID: SFI0211-ICV2 Injection Time: 10:47

Sequence Name: <u>MOIL ICV</u>

		CONC.	(mg/L)	RESI	PONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1050	17571.3600	18362.5000		4.5	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092103.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0239 Injection Date: 09/21/17

Lab Sample ID: SFI0239-ICV1 Injection Time: 11:15

Sequence Name: <u>Diesel ICV</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	503	17782.8100	17874.2900		0.5	20
o-Terphenyl	A	90.000	90.4	25202.9900	25309.1300		0.4	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092104.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0239 Injection Date: 09/21/17

Lab Sample ID: SFI0239-ICV2 Injection Time: 11:38

Sequence Name: <u>MOIL ICV</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1050	17571.3600	18429.0800		4.9	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092510.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0294 Injection Date: 09/25/17

Lab Sample ID: SFI0294-ICV1 Injection Time: 15:01

Sequence Name: <u>Diesel ICV</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	500	17782.8100	17797.6900		0.08	20
o-Terphenyl	A	90.000	91.7	25202.9900	25674.8600		1.9	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092511.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0294 Injection Date: 09/25/17

Lab Sample ID: SFI0294-ICV2 Injection Time: 15:23

Sequence Name: <u>MOIL ICV</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1030	17571.3600	18035.2300		2.6	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00084

Lab File ID: <u>17092611.D</u> Calibration Date: <u>09/27/17 14:47</u>

Sequence: SFI0326 Injection Date: 09/26/17

Lab Sample ID: SFI0326-ICV1 Injection Time: 13:43

Sequence Name: <u>Diesel ICV</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	472	17782.8100	16775.8700		-5.7	20
o-Terphenyl	A	90.000	85.8	25202.9900	24037.9400		-4.7	20

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00084

Lab File ID: <u>17092612.D</u> Calibration Date: <u>09/27/17 14:47</u>

Sequence: SFI0326 Injection Date: 09/26/17

Lab Sample ID: SFI0326-ICV2 Injection Time: 14:06

Sequence Name: <u>MOIL ICV</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1030	17571.3600	18035.8000		2.7	20	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092013.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/20/17 Lab Sample ID: SFI0211-CCV1 Injection Time: 14:10

Sequence Name: <u>Diesel CCV1</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	529	17782.81	18825.08		5.9	15
o-Terphenyl	A	90.000	94.3	25202.99	26420.89		4.8	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092014.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/20/17

Lab Sample ID: SFI0211-CCV2 Injection Time: 14:32

Sequence Name: MOIL CCV1

		CONC. (mg/L)		RE	SPONSE FACTO	FACTOR % DRIFT/DI		T/DIFF
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1040	17571.36	18358.1		4.5	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: 17092025.D Calibration Date: 09/18/17 13:20

Sequence: SFI0211 Injection Date: 09/20/17

Lab Sample ID: SFI0211-CCV3 Injection Time: 18:54

Sequence Name: <u>Diesel CCV2</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	508	17782.81	18083.1		1.7	15
o-Terphenyl	A	90.000	90.9	25202.99	25447.11		1.0	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: 17092026.D Calibration Date: 09/18/17 13:20

Sequence: SFI0211 Injection Date: 09/20/17

Lab Sample ID: SFI0211-CCV4 Injection Time: 19:17

Sequence Name: MOILCCV2

		CONC. (mg/L)		RE	ESPONSE FACTOR		% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1090	17571.36	19213.06		9.4	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: 17092039.D Calibration Date: 09/18/17 13:20

Sequence: SFI0211 Injection Date: 09/21/17 Lab Sample ID: SFI0211-CCV5 Injection Time: 00:04

Sequence Name: <u>Diesel CCV3</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	475	17782.81	16877.41		-5.1	15
o-Terphenyl	A	90.000	86.4	25202.99	24181.69		-4.0	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092040.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/21/17

Lab Sample ID: SFI0211-CCV6 Injection Time: 00:27

Sequence Name: MOIL CCV3

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1000	17571.36	17648.24		0.4	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: 17092050.D Calibration Date: 09/18/17 13:20

Sequence: SFI0211 Injection Date: 09/21/17

Lab Sample ID: <u>SFI0211-CCV7</u> Injection Time: <u>04:07</u>

Sequence Name: <u>Diesel CCV4</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Diesel Range Organics (C12-C24)	A	500.00	470	17782.81	16708.52		-6.0	15	
o-Terphenyl	A	90.000	85.7	25202.99	23994.1		-4.8	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092051.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0211 Injection Date: 09/21/17 Lab Sample ID: SFI0211-CCV8 Injection Time: 04:30

Sequence Name: Moil CCV4

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	980	17571.36	17210.86		-2.1	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: 17092119.D Calibration Date: 09/18/17 13:20

Sequence: SFI0239 Injection Date: 09/21/17

Lab Sample ID: SFI0239-CCV1 Injection Time: 17:13

Sequence Name: <u>Diesel CCV1</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Diesel Range Organics (C12-C24)	A	500.00	545	17782.81	19397.28		9.1	15	
o-Terphenyl	A	90.000	96.7	25202.99	27079.7		7.4	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092120.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0239 Injection Date: 09/21/17

Lab Sample ID: SFI0239-CCV2 Injection Time: 17:36

Sequence Name: MOIL CCV1

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1000	17571.36	17651.11		0.5	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092132.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: $\underline{SFI0239}$ Injection Date: $\underline{09/21/17}$

Lab Sample ID: SFI0239-CCV3 Injection Time: 22:00

Sequence Name: <u>Diesel CCV2</u>

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	526	17782.81	18719.61		5.3	15
o-Terphenyl	A	90.000	93.9	25202.99	26303.1		4.3	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092133.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0239 Injection Date: 09/21/17

Lab Sample ID: SFI0239-CCV4 Injection Time: 22:21

Sequence Name: MOILCCV2

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1080	17571.36	18959.11		7.9	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092144.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: SFI0239 Injection Date: 09/22/17

Lab Sample ID: SFI0239-CCV5 Injection Time: 02:23

Sequence Name: <u>Diesel CCV3</u>

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	559	17782.81	19879.58		11.8	15
o-Terphenyl	A	90.000	96.1	25202.99	26921.77		6.8	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00051

Lab File ID: <u>17092145.D</u> Calibration Date: <u>09/18/17 13:20</u>

Sequence: $\underline{SFI0239}$ Injection Date: $\underline{09/22/17}$

Lab Sample ID: SFI0239-CCV6 Injection Time: 02:46

Sequence Name: MOIL CCV3

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1100	17571.36	19332.03		10.0	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00084

Lab File ID: <u>17092632.D</u> Calibration Date: <u>09/27/17 14:47</u>

Sequence: SFI0326 Injection Date: 09/26/17

Lab Sample ID: SFI0326-CCV1 Injection Time: 21:47

Sequence Name: <u>Diesel CCV1</u>

		CONC.	CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Diesel Range Organics (C12-C24)	A	500.00	466	17782.81	16561.44		-6.9	15	
o-Terphenyl	A	90.000	85.0	25202.99	23808.28		-5.6	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Instrument ID: FID4 Calibration: AI00084

Lab File ID: <u>17092633.D</u> Calibration Date: <u>09/27/17 14:47</u>

Sequence: SFI0326 Injection Date: 09/26/17

Lab Sample ID: SFI0326-CCV2 Injection Time: 22:08

Sequence Name: MOIL CCV1

		CONC.	(mg/L)	RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1010	17571.36	17794.04		1.3	15

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0194 Instrument: FID4

Calibration: AI00051

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFI0194-IBL1	17091802.D	NA	09/18/17 14:32
Instrument Blank	SFI0194-IBL2	17091803.D	NA	09/18/17 14:53
Diesel 50	SFI0194-CAL1	17091804.D	NA	09/18/17 15:16
Diesel 100	SFI0194-CAL2	17091805.D	NA	09/18/17 15:37
DIES 250	SFI0194-CAL3	17091806.D	NA	09/18/17 16:01
DIES 500	SFI0194-CAL4	17091807.D	NA	09/18/17 16:22
DIES 1000	SFI0194-CAL5	17091808.D	NA	09/18/17 16:45
DIES 2500	SFI0194-CAL6	17091809.D	NA	09/18/17 17:06
MOIL 100	SFI0194-CAL7	17091810.D	NA	09/18/17 17:30
Moil 250	SFI0194-CAL8	17091811.D	NA	09/18/17 17:51
Moil 500	SFI0194-CAL9	17091812.D	NA	09/18/17 18:14
Moil 1000	SFI0194-CALA	17091813.D	NA	09/18/17 18:35
Moil 2500	SFI0194-CALB	17091814.D	NA	09/18/17 18:58
Moil 5000	SFI0194-CALC	17091815.D	NA	09/18/17 19:20
DIES SCV 500	SFI0194-SCV1	17091816.D	NA	09/18/17 19:42
ZZZZZ	BFI0232-BLK1	17091818.D	Water	09/18/17 20:26
ZZZZZ	BFI0232-BS1	17091819.D	Water	09/18/17 20:48
ZZZZZ	BFI0232-MRL1	17091820.D	Water	09/18/17 21:10
ZZZZZ	17I0113-01	17091823.D	Water	09/18/17 22:18
ZZZZZ	17I0117-04	17091824.D	Water	09/18/17 22:39
ZZZZZ	17I0117-05	17091825.D	Water	09/18/17 23:02
ZZZZZ	17I0117-07	17091826.D	Water	09/18/17 23:24
ZZZZZ	17I0117-08	17091827.D	Water	09/18/17 23:47
ZZZZZ	17I0117-11	17091828.D	Water	09/19/17 00:08
ZZZZZ	17I0117-12	17091829.D	Water	09/19/17 00:31
ZZZZZ	17I0117-13	17091830.D	Water	09/19/17 00:52
ZZZZZ	17I0117-14	17091831.D	Water	09/19/17 01:15
Diesel CCV1	SFI0194-CCV1	17091832.D	NA	09/19/17 01:37
MOIL CCV1	SFI0194-CCV2	17091833.D	NA	09/19/17 02:00
ZZZZZ	17I0117-15	17091834.D	Water	09/19/17 02:21

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0194 Instrument: FID4

Calibration: AI00051

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
ZZZZZ	17I0117-16	17091835.D	Water	09/19/17 02:44
ZZZZZ	17I0117-17	17091836.D	Water	09/19/17 03:06
ZZZZZ	17I0117-18	17091837.D	Water	09/19/17 03:29
ZZZZZ	17I0117-19	17091838.D	Water	09/19/17 03:51
ZZZZZ	17I0117-20	17091839.D	Water	09/19/17 04:13
ZZZZZ	17I0117-21	17091840.D	Water	09/19/17 04:37
ZZZZZ	17I0117-22	17091841.D	Water	09/19/17 04:58
ZZZZZ	BFI0231-BLK1	17091842.D	Water	09/19/17 05:21
ZZZZZ	BFI0231-BS1	17091843.D	Water	09/19/17 05:42
ZZZZZ	17I0117-28	17091844.D	Water	09/19/17 06:06
ZZZZZ	17I0117-29	17091845.D	Water	09/19/17 06:27
Diesel CCV2	SFI0194-CCV3	17091846.D	NA	09/19/17 06:51
MOILCCV2	SFI0194-CCV4	17091847.D	NA	09/19/17 07:14
Moil SCV 1000	SFI0194-SCV2	17091906.D	NA	09/19/17 12:27

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0211</u> Instrument: <u>FID4</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFI0211-IBL1	17092001.D	NA	09/20/17 09:40
Instrument Blank	SFI0211-IBL2	17092002.D	NA	09/20/17 10:01
Diesel ICV	SFI0211-ICV1	17092003.D	NA	09/20/17 10:25
MOIL ICV	SFI0211-ICV2	17092004.D	NA	09/20/17 10:47
ZZZZZ	BFI0386-BLK1	17092005.D	Water	09/20/17 11:09
ZZZZZ	BFI0386-BS1	17092006.D	Water	09/20/17 11:33
ZZZZZ	17I0202-01	17092007.D	Water	09/20/17 11:54
ZZZZZ	17I0202-02	17092008.D	Water	09/20/17 12:17
ZZZZZ	17I0202-03	17092009.D	Water	09/20/17 12:39
Blank	BFI0364-BLK1	17092010.D	Solid	09/20/17 13:02
LCS	BFI0364-BS1	17092011.D	Solid	09/20/17 13:24
ZZZZZ	17I0125-09	17092012.D	Solid	09/20/17 13:47
Diesel CCV1	SFI0211-CCV1	17092013.D	NA	09/20/17 14:10
MOIL CCV1	SFI0211-CCV2	17092014.D	NA	09/20/17 14:32
SVCA-SB-112-12.5-14.5-170913	17I0171-12	17092015.D	Solid	09/20/17 14:55
ZZZZZ	17I0184-01	17092016.D	Solid	09/20/17 15:18
ZZZZZ	17I0184-02	17092017.D	Solid	09/20/17 15:40
ZZZZZ	17I0184-03	17092018.D	Solid	09/20/17 16:03
SVCA-SB-111-14-16-170913	17I0171-06	17092019.D	Solid	09/20/17 16:35
ZZZZZ	17I0185-01	17092022.D	Solid	09/20/17 17:49
ZZZZZ	17I0185-02	17092023.D	Solid	09/20/17 18:11
ZZZZZ	17I0185-03	17092024.D	Solid	09/20/17 18:33
Diesel CCV2	SFI0211-CCV3	17092025.D	NA	09/20/17 18:54
MOILCCV2	SFI0211-CCV4	17092026.D	NA	09/20/17 19:17
ZZZZZ	BFI0312-BLK1	17092027.D	Solid	09/20/17 19:38
ZZZZZ	BFI0312-BS1	17092028.D	Solid	09/20/17 20:02
ZZZZZ	17I0146-01	17092031.D	Solid	09/20/17 21:07
ZZZZZ	17I0146-03	17092032.D	Solid	09/20/17 21:30
ZZZZZ	17I0146-04	17092033.D	Solid	09/20/17 21:52
ZZZZZ	17I0146-07	17092034.D	Solid	09/20/17 22:13

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0211 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
ZZZZZ	17I0146-08	17092035.D	Solid	09/20/17 22:36
ZZZZZ	17I0146-09	17092036.D	Solid	09/20/17 22:58
ZZZZZ	17I0146-11	17092037.D	Solid	09/20/17 23:21
ZZZZZ	17I0146-12	17092038.D	Solid	09/20/17 23:42
Diesel CCV3	SFI0211-CCV5	17092039.D	NA	09/21/17 00:04
MOIL CCV3	SFI0211-CCV6	17092040.D	NA	09/21/17 00:27
Blank	BFI0366-BLK1	17092041.D	Water	09/21/17 00:48
LCS	BFI0366-BS1	17092042.D	Water	09/21/17 01:11
SVCA-GW-109-14-19-170913	17I0171-15	17092043.D	Water	09/21/17 01:32
SVCA-GW-110-14-19-170913	17I0171-17	17092044.D	Water	09/21/17 01:56
SVCA-GW-111-14-19-170913	17I0171-19	17092045.D	Water	09/21/17 02:17
SVCA-GW-112-12.5-17.5-170913	17I0171-21	17092046.D	Water	09/21/17 02:40
ZZZZZ	17I0194-01	17092047.D	Water	09/21/17 03:01
ZZZZZ	17I0194-03	17092048.D	Water	09/21/17 03:25
ZZZZZ	17I0194-05	17092049.D	Water	09/21/17 03:46
Diesel CCV4	SFI0211-CCV7	17092050.D	NA	09/21/17 04:07
Moil CCV4	SFI0211-CCV8	17092051.D	NA	09/21/17 04:30

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0239 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SFI0239-IBL1	17092101.D	NA	09/21/17 10:31
Instrument Blank	SFI0239-IBL2	17092102.D	NA	09/21/17 10:53
Diesel ICV	SFI0239-ICV1	17092103.D	NA	09/21/17 11:15
MOIL ICV	SFI0239-ICV2	17092104.D	NA	09/21/17 11:38
ZZZZZ	BFI0164-BLK1	17092107.D	Water	09/21/17 12:47
ZZZZZ	BFI0164-BS1	17092108.D	Water	09/21/17 13:08
ZZZZZ	17I0077-02	17092109.D	Water	09/21/17 13:32
ZZZZZ	17I0077-04	17092110.D	Water	09/21/17 13:53
ZZZZZ	17I0077-06	17092111.D	Water	09/21/17 14:17
Blank	BFI0345-BLK1	17092112.D	Water	09/21/17 14:38
LCS	BFI0345-BS1	17092113.D	Water	09/21/17 15:01
ZZZZZ	17I0126-01	17092114.D	Water	09/21/17 15:22
ZZZZZ	17I0126-04	17092115.D	Water	09/21/17 15:45
ZZZZZ	17I0126-05	17092116.D	Water	09/21/17 16:07
ZZZZZ	17I0130-01	17092117.D	Water	09/21/17 16:30
ZZZZZ	17I0130-02	17092118.D	Water	09/21/17 16:51
Diesel CCV1	SFI0239-CCV1	17092119.D	NA	09/21/17 17:13
MOIL CCV1	SFI0239-CCV2	17092120.D	NA	09/21/17 17:36
ZZZZZ	17I0137-02	17092121.D	Water	09/21/17 17:57
SVCA-GW-109-14-19-170913	17I0171-16	17092122.D	Water	09/21/17 18:20
SVCA-GW-110-14-19-170913	17I0171-18	17092123.D	Water	09/21/17 18:41
SVCA-GW-111-14-19-170913	17I0171-20	17092124.D	Water	09/21/17 19:04
SVCA-GW-112-12.5-17.5-170913	17I0171-22	17092125.D	Water	09/21/17 19:25
ZZZZZ	17I0182-01	17092126.D	Water	09/21/17 19:47
ZZZZZ	17I0182-02	17092127.D	Water	09/21/17 20:10
ZZZZZ	17I0182-03	17092128.D	Water	09/21/17 20:31
ZZZZZ	17I0182-04	17092131.D	Water	09/21/17 21:37
Diesel CCV2	SFI0239-CCV3	17092132.D	NA	09/21/17 22:00
MOILCCV2	SFI0239-CCV4	17092133.D	NA	09/21/17 22:21
ZZZZZ	BFI0459-BLK1	17092134.D	Water	09/21/17 22:44

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0239 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
ZZZZZ	BFI0459-BS1	17092135.D	Water	09/21/17 23:06
ZZZZZ	17I0237-01	17092136.D	Water	09/21/17 23:27
ZZZZZ	17I0240-01	17092137.D	Water	09/21/17 23:50
ZZZZZ	17I0255-01	17092138.D	Water	09/22/17 00:11
ZZZZZ	17I0077-02RE1	17092139.D	Water	09/22/17 00:33
ZZZZZ	17I0077-04RE1	17092140.D	Water	09/22/17 00:56
ZZZZZ	17I0126-01RE1	17092141.D	Water	09/22/17 01:17
ZZZZZ	17I0126-04RE1	17092142.D	Water	09/22/17 01:40
ZZZZZ	17I0137-02RE1	17092143.D	Water	09/22/17 02:02
Diesel CCV3	SFI0239-CCV5	17092144.D	NA	09/22/17 02:23
MOIL CCV3	SFI0239-CCV6	17092145.D	NA	09/22/17 02:46

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: <u>SFI0294</u> Instrument: <u>FID4</u>

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Instrument Blank	SFI0294-IBL1	17092502.D	NA	09/25/17 12:00
Instrument Blank	SFI0294-IBL2	17092503.D	NA	09/25/17 12:21
Diesel ICV	SFI0294-ICV1	17092510.D	NA	09/25/17 15:01
MOIL ICV	SFI0294-ICV2	17092511.D	NA	09/25/17 15:23
ZZZZZ	BFI0281-BLK1	17092512.D	Water	09/25/17 15:46
ZZZZZ	BFI0281-BS1	17092513.D	Water	09/25/17 16:09
ZZZZZ	17I0122-01	17092514.D	Water	09/25/17 16:32
ZZZZZ	17I0122-02	17092515.D	Water	09/25/17 16:55
ZZZZZ	17I0122-03	17092516.D	Water	09/25/17 17:17
ZZZZZ	17I0122-04	17092517.D	Water	09/25/17 17:41
ZZZZZ	17I0122-05	17092518.D	Water	09/25/17 18:03
ZZZZZ	17I0122-06	17092519.D	Water	09/25/17 18:26
ZZZZZ	17I0122-07	17092520.D	Water	09/25/17 18:49
ZZZZZ	17I0122-08	17092521.D	Water	09/25/17 19:11
ZZZZZ	17I0122-09	17092522.D	Water	09/25/17 19:34
ZZZZZ	17I0122-10	17092523.D	Water	09/25/17 19:56
Diesel CCV1	SFI0294-CCV1	17092524.D	NA	09/25/17 20:19
MOIL CCV1	SFI0294-CCV2	17092525.D	NA	09/25/17 20:42
Bunker C CCV1	SFI0294-CCV3	17092526.D	NA	09/25/17 21:04
ZZZZZ	BFI0577-BLK1	17092534.D	Solid	09/26/17 00:05
ZZZZZ	BFI0577-BS1	17092535.D	Solid	09/26/17 00:26
ZZZZZ	17I0328-01	17092536.D	Solid	09/26/17 00:48
ZZZZZ	17I0328-02	17092537.D	Solid	09/26/17 01:11
Diesel CCV2	SFI0294-CCV4	17092538.D	NA	09/26/17 01:32
MOIL CCV2	SFI0294-CCV5	17092539.D	NA	09/26/17 01:55
Bunker C CCV2	SFI0294-CCV6	17092540.D	NA	09/26/17 02:18

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0326 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Standard	SFI0326-IBL1	17092609.D	NA	09/26/17 12:56
Instrument Blank	SFI0326-IBL2	17092610.D	NA	09/26/17 13:20
Diesel ICV	SFI0326-ICV1	17092611.D	NA	09/26/17 13:43
MOIL ICV	SFI0326-ICV2	17092612.D	NA	09/26/17 14:06
Blank	BFI0365-BLK1	17092628.D	Solid	09/26/17 20:17
LCS	BFI0365-BS1	17092629.D	Solid	09/26/17 20:39
SVCA-SB-111-14-16-170913	17I0171-05	17092630.D	Solid	09/26/17 21:02
SVCA-SB-112-12.5-14.5-170913	17I0171-11	17092631.D	Solid	09/26/17 21:23
Diesel CCV1	SFI0326-CCV1	17092632.D	NA	09/26/17 21:47
MOIL CCV1	SFI0326-CCV2	17092633.D	NA	09/26/17 22:08

SURROGATE RECOVERY AND RT SUMMARY

NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0194 Instrument: FID4

Calibration: AI00051 Calibration Date: 09/25/2017

Surrogate Compound					Calibration Mean RT	RT Diff	RT Diff Limit	Q
SFI0194-SCV1 (Water)	Lab File ID: 17091816.D Analyzed: 09/18/17 19:42							
o-Terphenyl	90.000	124	0 - 200	4.44	4.44	0.0000	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0211 Instrument: FID4

Calibration: AI00051 Calibration Date: 09/25/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SFI0211-IBL1 (Water)			Lab File II	D: 17092001.I	D	Analyzed: 09/20/17 09:40		
o-Terphenyl	225.00	98.8	50 - 150	4.44	4.44	0.0000	N/A	
SFI0211-IBL2 (Water)			Lab File II	D: 17092002.I	D	Analyze	d: 09/20/17 10	0:01
o-Terphenyl	225.00	106	50 - 150	4.44	4.44	0.0000	N/A	
SFI0211-ICV1 (Water)			Analyze	d: 09/20/17 10):25			
o-Terphenyl	90.000	103	80 - 120	4.43	4.44	-0.0100	N/A	
BFI0364-BLK1 (Solid)	·		Lab File II	D: 17092010.I)	Analyze	d: 09/20/17 13	:02
o-Terphenyl	22.500	92.0	50 - 150	4.44	4.44	0.0000	N/A	
BFI0364-BS1 (Solid)		Analyze	d: 09/20/17 13	:24				
o-Terphenyl	22.500	87.1	50 - 150	4.44	4.44	0.0000	N/A	
17I0171-12 (Solid)			Lab File II	D: 17092015.I	D	Analyze	d: 09/20/17 14	:55
o-Terphenyl	24.813	83.6	50 - 150	4.44	4.44	0.0000	N/A	
17I0171-06 (Solid)			Lab File II	D: 17092019.I	D	Analyze	d: 09/20/17 16	:35
o-Terphenyl	24.663	72.0	50 - 150	4.44	4.44	0.0000	N/A	
BFI0366-BLK1 (Water)			Lab File II	ID: 17092041.D Analyzed: 09/21/17 00				
o-Terphenyl	0.45000	87.6	50 - 150	4.44	4.44	0.0000	N/A	
BFI0366-BS1 (Water)			Lab File II	D: 17092042.I	D	Analyze	d: 09/21/17 01	:11
o-Terphenyl	0.45000	95.5	50 - 150	4.44	4.44	0.0000	N/A	
17I0171-15 (Water)			Lab File II	D: 17092043.I	D	Analyze	d: 09/21/17 01	:32
o-Terphenyl	0.45000	85.9	50 - 150	4.44	4.44	0.0000	N/A	
17I0171-17 (Water)			Lab File II	D: 17092044.I)	Analyze	d: 09/21/17 01	:56
o-Terphenyl	0.45000	94.2	50 - 150	4.45	4.44	0.0100	N/A	
17I0171-19 (Water)			Lab File II	D: 17092045.I		Analyze	d: 09/21/17 02	::17
o-Terphenyl	0.45000	88.6	50 - 150	4.44	4.44	0.0000	N/A	
17I0171-21 (Water)			Lab File II	D: 17092046.I)	Analyze	d: 09/21/17 02	:40
o-Terphenyl	0.45000	92.8	50 - 150	4.45	4.44	0.0100	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0239 Instrument: FID4

Calibration: AI00051 Calibration Date: 09/25/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q	
SFI0239-IBL1 (Water)			Lab File II	D: 17092101.I	D	Analyzed: 09/21/17 10:31			
o-Terphenyl	225.00	97.6 50 - 150 4.45 4.44					0.0100 N/A		
SFI0239-IBL2 (Water)			Lab File I	D: 17092102.I	D	Analyze	d: 09/21/17 10	:53	
o-Terphenyl	225.00	103	50 - 150	4.44	4.44	0.0000	N/A		
SFI0239-ICV1 (Water)		Lab File ID: 17092103.D Analyzed: 09/21/17							
o-Terphenyl	90.000	100	80 - 120	4.44	4.44	0.0000	N/A		
BFI0345-BLK1 (Water)	Lab File ID: 17092112.D Analyzed: 09/21/17 14:								
o-Terphenyl	0.45000	74.3	50 - 150	4.44	4.44	0.0000	N/A		
BFI0345-BS1 (Water)			Lab File I	D: 17092113.I	D	Analyzed: 09/21/17 15:01			
o-Terphenyl	0.45000	89.2	50 - 150	4.44	4.44	0.0000	N/A		
17I0171-16 (Water)			Lab File I	D: 17092122.I	D	Analyze	d: 09/21/17 18	:20	
o-Terphenyl	0.52326	90.8	50 - 150	4.44	4.44	0.0000	N/A		
17I0171-18 (Water)			Lab File II	D: 17092123.I	D	Analyze	d: 09/21/17 18	:41	
o-Terphenyl	0.45000	93.9	50 - 150	4.44	4.44	0.0000	N/A		
17I0171-20 (Water)			Lab File I	D: 17092124.I	D	Analyze	d: 09/21/17 19	:04	
o-Terphenyl	0.45000	68.0	50 - 150	4.44	4.44	0.0000	N/A		
17I0171-22 (Water)			Lab File II	D: 17092125.I	D	Analyze	d: 09/21/17 19	:25	
o-Terphenyl	0.45000	81.6	50 - 150	4.44	4.44	0.0000	N/A		

SURROGATE RECOVERY AND RT SUMMARY

NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0294 Instrument: FID4

Calibration: AI00051 Calibration Date: 09/18/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Calibration Limits RT Mean RT RT I		RT Diff	RT Diff Limit	Q	
SFI0294-ICV1 (Water)	Lab File ID: 17092510.D Analyzed: 09/25/17 15:01							01
o-Terphenyl	90.000	102	80 - 120	4.41	4.44	-0.0300	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sequence: SFI0326 Instrument: FID4

Calibration: AI00084 Calibration Date: 09/26/2017

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q	
SFI0326-IBL1 (Solid)			Lab File II	D: 17092609.I)	Analyzed: 09/26/17 12:56			
o-Terphenyl	225.00	105	50 - 150	4.42	4.44	-0.0200	N/A		
SFI0326-IBL2 (Solid)		Analyze	d: 09/26/17 13	:20					
o-Terphenyl	225.00	104	50 - 150	4.41	4.44	-0.0300	N/A		
SFI0326-ICV1 (Solid)	Lab File ID: 17092611.D						Analyzed: 09/26/17 13:43		
o-Terphenyl	90.000	95.3	80 - 120	4.41	4.44	-0.0300	N/A		
BFI0365-BLK1 (Solid)			Lab File II	D: 17092628.I)	Analyzed: 09/26/17 20:17			
o-Terphenyl	22.500	76.9	50 - 150	4.41	4.44	-0.0300	N/A		
BFI0365-BS1 (Solid)			Lab File II	D: 17092629.I)	Analyze	d: 09/26/17 20	:39	
o-Terphenyl	22.500	93.6	50 - 150	4.42	4.44	-0.0200	N/A		
17I0171-05 (Solid)			Lab File II	D: 17092630.I)	Analyze	d: 09/26/17 21	:02	
o-Terphenyl	25.056	76.4	50 - 150	4.41	4.44	-0.0300	N/A		
17I0171-11 (Solid)			Lab File II	D: 17092631.I)	Analyze	d: 09/26/17 21	:23	
o-Terphenyl	24.739	79.0	50 - 150	4.41	4.44	-0.0300	N/A		

HOLDING TIME SUMMARY

Analysis: NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 17I0171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
SVCA-SB-111-14-16-170913 17I0171-05	09/13/17 14:30	09/14/17 08:58	09/18/17 13:50	4	14	09/26/17 21:02	8	40	
SVCA-SB-111-14-16-170913 17I0171-06	09/13/17 14:30	09/14/17 08:58	09/19/17 10:20	5	14	09/20/17 16:35	1	40	
SVCA-SB-112-12.5-14.5-170913 17I0171-11	09/13/17 16:10	09/14/17 08:58	09/18/17 13:50	4	14	09/26/17 21:23	8	40	
SVCA-SB-112-12.5-14.5-170913 17I0171-12	09/13/17 16:10	09/14/17 08:58	09/19/17 10:20	5	14	09/20/17 14:55	1	40	
SVCA-GW-109-14-19-170913 17I0171-15	09/13/17 11:10	09/14/17 08:58	09/18/17 15:27	5	7	09/21/17 01:32	2	40	
SVCA-GW-109-14-19-170913 17I0171-16	09/13/17 11:10	09/14/17 08:58	09/18/17 12:07	5	7	09/21/17 18:20	3	40	
SVCA-GW-110-14-19-170913 17I0171-17	09/13/17 12:57	09/14/17 08:58	09/18/17 15:27	5	7	09/21/17 01:56	2	40	
SVCA-GW-110-14-19-170913 17I0171-18	09/13/17 12:57	09/14/17 08:58	09/18/17 12:07	4	7	09/21/17 18:41	3	40	
SVCA-GW-111-14-19-170913 17I0171-19	09/13/17 15:45	09/14/17 08:58	09/18/17 15:27	4	7	09/21/17 02:17	2	40	
SVCA-GW-111-14-19-170913 17I0171-20	09/13/17 15:45	09/14/17 08:58	09/18/17 12:07	4	7	09/21/17 19:04	3	40	
SVCA-GW-112-12.5-17.5-170913 17I0171-21	09/13/17 17:03	09/14/17 08:58	09/18/17 15:27	4	7	09/21/17 02:40	2	40	
SVCA-GW-112-12.5-17.5-170913 17I0171-22	09/13/17 17:03	09/14/17 08:58	09/18/17 12:07	4	7	09/21/17 19:25	3	40	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Solid Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	2.34	5.00	mg/kg
Motor Oil Range Organics (C24-C38)	2.99	10.0	mg/kg

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 1710171

Client: Anchor QEA, LLC Project: SCVA Area Z Remediation

Matrix: Water Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	0.033	0.100	mg/L
Motor Oil Range Organics (C24-C38)	0.056	0.200	mg/L

EARTHWORM TOXICITY TESTING RESULTS

SVCA AREA Z REMEDIATION BELLINGHAM, WA

Prepared for

Anchor QEA, LLC Seattle, WA

On behalf of:

Sudden Valley Community Association Bellingham, WA

Prepared by

EcoAnalysts, Inc. 4770 NE View Drive PO Box 216 Port Gamble, WA 98364

Client Contract Reference:

Port Gamble Earthworm Bioaccumulation Tests 2015. 130388-01.03

Report ID

101017.01

Submittal Date

October 11, 2017

All testing reported herein was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and EcoAnalysts is not responsible for use of less than the complete report. The test results summarized in this report apply only to the sample(s) evaluated.

PREPARED BY

Brian Hester

Brian Hester

Laboratory Director

Authors:

Brian Hester

Report ID: 101017.01 i EcoAnalysts, Inc.

CONTENTS

1.	INTRODUCTION	1
2.	METHODS	1
2.1	Sample and Test Biota Receipt	1
2.2	Earthworm Bioaccumulation	1
2.3	Data Management and Analysis	2
3.	RESULTS	3
3.1	Earthworm Bioassay	3
4.	CONCLUSION	5
5.	REFERENCES	ϵ
TABLE	s	
Table 2	-1. Sample Identification	1
	-1. Earthworm Bioaccumulation Survival Results	
	-2. Test Condition Summary for the 14-Day Eisenia foetida Bioaccumulation Test	
Table 4	-1. Statistical Comparison for Eisenia foetida 14 Day Survival	5

APPENDICES

Appendix A: Laboratory Documents and Organism Receipt Logs

Appendix B: Chain of Custody Logs

ACRONYMS AND ABBREVIATIONS

cm: Centimeter

°C: Degrees Celsius

G: Gramsin: InchL: Liter

μm: micrometer

mg/L: milligrams per liter

mL: Milliliter mm: millimeter

NELAP: National Environmental Laboratory Accreditation Program

SOP: Standard operation procedure

WA: Washington State

WDOE: Washington Department of Ecology

1. INTRODUCTION

Anchor QEA, Inc. (Anchor) requested EcoAnalysts to evaluate soil samples in support of an environmental remediation program being conducted for the Sudden Valley Community Association (SVCA) Site in Bellingham, Washington. EcoAnalysts was requested to perform a 14-day earthworm soil toxicity test in support of the Washington Department of Ecology's (WDOE) terrestrial risk evaluation process. Soils samples evaluated were from a site identified as Area Z.

2. METHODS

This section summarizes the test methods that were followed for this biological characterization. Soils were evaluated using a 14-day earthworm toxicity test. Test method followed guidance provided by the Washington Department of Ecology Publication No. 96-327 (Earthworm Bioassay Protocol for Soil Toxicity Screening) and the project specific scope of services (Anchor QEA 2017).

2.1 Sample and Test Biota Receipt

Three test soils were collected by Anchor QEA personnel on August 23, 2017. The soil samples were delivered by courier from Analytical Resources, Inc (ARI) and received on September 1 and 5, 2017. The three samples include one sample (SVCA-TP-100-0-4-170823) that was identified as project reference samples to which the responses of the other two treatments would be compared to. A fabricated soil matrix was prepared following ASTM guidance to be used as control material. Sample descriptions and nomenclature are summarized in Table 2-1.

Sample ID	Matrix	Туре
SVCA-TP-102-0-2-170823	Terrestrial Soil	Project (Test) Soil
SVCA-TP-103-0-2-170823	Terrestrial Soil	Project (Test) Soil
SVCA-TP-100-0-4-170823	Terrestrial Soil	Project (Reference) Soil
Control	Fabricated Soil Matrix	Control

The earthworms *Eisenia foetida* were supplied by Aquatic Research Organisms in Hampton, New Hampshire and were held in moist peat moss at 22°C prior to test initiation.

2.2 Earthworm Toxicity Test

The 14-day earthworm toxicity test was performed on three soil samples collected from the project site.

Test exposures were prepared with approximately 200 grams (g) of soil placed inside of a 470 milliliter (mL) glass beaker. Three replicate chambers were prepared for each test treatment. The laboratory control soil was a fabricated (artificial) soil prepared following procedures detailed in the WDOE guidance document (WDOE 1996). All soils were hydrated with deionized laboratory water to approximately 35-45 percent moisture prior to organism addition.

Test chambers were placed in randomly assigned positions in a temperature controlled environmental space at 22°C under continuous lighting. The soil pH was measured on each treatment prior to test initiation and at test termination. Soil pH was measured by combining 20mL of soil with 20mL of deionized laboratory water and mixing thoroughly. Measurements were taken immediately upon mixing and again after approximately 30 minutes. Temperature of the environmental space was monitored daily until test termination.

Report ID: 101017.01 1 of 6 EcoAnalysts, Inc.

The tests were initiated by randomly allocating ten (10) *Eisenia foetida* worms into each test chamber, ensuring that each of the worms successfully buried into the soil. Worms that did not bury within approximately one hour were replaced with healthy animals. The 14-day bioassay was not fed during the exposure period.

At test termination, soil from each test chamber was wet-sieved through a 0.5-mm screen and all recovered animals transferred to a Petri dish. The number of surviving and dead worms was determined.

2.3 Data Management and Analysis

Endpoint data were calculated for each replicate and the mean value and standard deviation were determined for each test treatment. All hand-entered data were reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors.

Experiment-wide survival data was analyzed using one-way analysis of variance (ANOVA). When ANOVA showed a significant difference, multiple comparison t-tests then compared survival in each of the control and test sediments against survival in the reference sediments. Prior to analyses, normality and homogeneity of variance was assessed. When necessary to satisfy these assumptions, proportional survival data were arcsine square-root transformed. Solid-phase analyses were performed with GraphPad Prism, Version 7.03. Statistical analyses of all dose-response tests were performed using CETIS Comprehensive Toxicity Data Analysis and Database Software version 1.9.2.6. Comparisons between the lab control and each test concentration were performed following recommended USEPA decision matrices (USEPA 2002).

Report ID: 101017.01 2 of 6 EcoAnalysts, Inc.

3. RESULTS

The results of the bioassay, including summaries of test results and observations are presented in this section. Laboratory documents and organism receipt logs are provided in Appendix A and chain of custody logs are provided in Appendix B.

3.1 Earthworm Bioassay

The soil toxicity test with *E. foetida* was initiated on September 6, 2017 and was validated by 100% survival in the laboratory control. These values met the desired acceptability benchmark of ≥90% survival. Mean survival results for all samples were greater than 90% and are summarized in Table 3-1. The test conditions are summarized in Table 3-2.

Temperature and soil pH values were within the acceptable limits throughout the duration of the test.

Table 3-1. Earthworm Bioaccumulation Survival Results

Sample ID	Rep	Initial #	Final #	% Survival	Mean % Survival
	1	10	10	100	
Control	2	10	10	100	100
	3	10	10	100	
	1	10	10	100	
SVCA-TP-100-0-4-170823 (Reference)	2	10	10	100	100
(Nererence)	3	10	10	100	
	1	10	10	100	
SVCA-TP-102-0-2-170823	2	10	10	100	100
	3	10	10	100	
	1	10	9	90	
SVCA-TP-103-0-2-170823	2	10	10	100	96.7
	3	10	10	100	

Report ID: 101017.01 3 of 6 EcoAnalysts, Inc.

Table 3-2. Test Condition Summary for the 14-Day Eisenia foetida Bioaccumulation Test.

Test Duration / Type	14-Day; Static					
Date sampled	August	23, 2017				
Date received	Septembe	r 1, 5, 2017				
Sample storage conditions	4°C,	dark				
Test dates	September	6 – 20, 2017				
Species	Eisenia	foetida				
Supplier	Aquatic Research Organisms	s, Hampton, New Hampshire				
Date acquired	Septemb	er 6, 2017				
Age at test initiation	Ad	lult				
Test Procedures	WDOE Publicat	tion No. 96-327				
Test location	EcoAnalysts, Po	ort Gamble, WA				
Control soil	Artific	ial Soil				
Test lighting	24-hour light; 400 lux					
Test chamber	470 mL Beaker					
Exposure volume	200 g soil					
Replicates/treatment	3					
Organisms/replicate	1	0				
Feeding	No	one				
Test renewal	No	one				
Test Observations						
Test temperature	Targeted: 22 ± 2°C	Actual: 21.2 – 23.6 °C				
Test soil pH	Recommended: 5 – 9	Actual: 5.5 – 7.9				
Quality Assurance						
Control performance standard (Fabricated Control)	Recommended: ≥ 90% survival	Actual: 100%, Pass				
Reference Toxicant Date	September 21, 2017					
Reference Toxicant LC50	11.7 mg 2-chloroacetamide / kg					
Laboratory Mean LC50	13.3 mg 2-chloroacetamide / kg					
Acceptable Range LC50 (± sd)	7.8 – 18.7 mg 2-chloroace	tamide / kg (Within Range)				
Deviations from Test Protocol	No	one				

Report ID: 101017.01 4 of 6 EcoAnalysts, Inc.

4. **CONCLUSION**

The 14-day earthworm toxicity test summarized in this report resulted in greater than 90% survival amongst all soils evaluated. This finding suggests that the organisms used in this study were healthy and capable of surviving for the 14 day exposure period. This also indicates that the project soils were capable of supporting adequate worm survival within the acceptability criterion established for a valid test control. Statistically significant reduction in survival was not detected in the two project sediments when compared to the reference soil (SVCA-TP-100-0-4-170823). These results are summarized in the table below. Temperature and soil pH was measured within the acceptable ranges during the course of the test. No significant deviations were observed.

Table 4-1. Statistical Comparison for *Eisenia foetida* 14 Day Survival.

Sample ID	Mean Survival (%)	Compared To:	Statistically Different than Reference? (P=0.05)
Control	100		
SVCA-TP-100-0-4-170823 (Reference)	100		
SVCA-TP-102-0-2-170823	100	SVCA-TP-100-0-4-170823 (Reference)	No
SVCA-TP-103-0-2-170823	96.7	SVCA-TP-100-0-4-170823 (Reference)	No

5. REFERENCES

- WDOE 1996. Earthworm Bioassay Protocol for Soil Toxicity Screening. Washington State Department of Ecology (WDOE) Environmental Investigation and Laboratory Services Program Publication No. 96-327. 1996
- Anchor QEA 2017. Scope of Services for Sudden Valley Community Association Area Z Remediation (Revision 1). Anchor QEA, LLC. Prepared for: Wilson Engineering, LLC. May 4, 2017
- ASTM E1676-12, Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm *Eisenia Fetida* (sic) and the Enchytraeid Potworm *Enchytraeus albidus*, ASTM International, West Conshohocken, PA, 2012, www.astm.org

Report ID: 101017.01 6 of 6 EcoAnalysts, Inc.

APPENDIX

APPENDIX A. Test Data, Statistical Analyses, and Reference Toxicant Test Results

- 1. Eisensia foetida 14-Day Soil Toxicity Test
 - 1.1 Eisensia foetida Test Data
 - 1.2 Eisensia foetida Statistical Results
 - 1.3 Eisensia foetida Reference Toxicant Test Results

APPENDIX B. Chain-of-Custody Log and Pre-Test Documents

APPENDIX A. TEST DATA, STATISTICAL ANALYSES, AND REFERENCE TOXICANT TEST RESULTS

1. Eisensia foetida 14-Day Soil Toxicity Test

1.1 Eisensia foetida Test Data

14-DAY SOIL TOXICITY TEST OBSERVATION DATA SHEET 3

CLIENT		PROJ	ECT			JOB NO.		PROJECT MAN	AGER	LABOR	ATORY		PROTOCOL		SPECI	S.		
Anchor QEA			SVCA	Area Z Reme	ediation	PG	1094		B. Hester		Test Ro	om	w	OOE 96-327		Eisi	nia foetida	
Observation	Key		T			<u> </u>			ENDPOIN	T DATA & OF	SERVATIONS	3						
#S= Number on the Surface (surface of soit) #M#A Number of Mortality (Dead on surface) #A # Avoidance (Avoiding soil, on sides or top i chamber) N=Normal	INIT ORG	TAL # OF	DATE / TECHN.	Sh t/ft/b	700	9/4 WB	9/10/Nr	1 the 9 min	9/12	9113	9114	9/15	9/16	9/17 Na	9/18 Hz	9/19 A	9/20 MK	Remaining
CLIENT ID	REP	INITIAL # IF DIFF	Jar# Day		2	3	4	5	6	7	8	9	10	11	12	13	14	Number R
Control	1			N	2	N	N	Ν	Ņ	N	N	N	Ŋ	N	N	N	7	10
Control	2			1														10
Control	3										A CONTRACTOR OF THE CONTRACTOR					A Company of the Comp		10
VCA-TP-100-0-4-170823	1										And the Control of th	2		7	7	1	1	10
VCA-TP-100-0-4-170823	2				State of the state							(1)	0	(1)	$\hat{\mathcal{O}}$	(1)	0	10
VCA-TP-100-0-4-170823	3								1	U	1	(t)		(1		10
VCA-TP-102-0-2-170823	1								(1),	(1)	(1)	(1)	(i)					10
VCA-TP-102-0-2-170823	2								N	N		1			THE COLUMN TWO IS NOT			10
SVCA-TP-102-0-2-170823	3								0	(i)		0	0				7	10
SVCA-TP-103-0-2-170823	1								0	(0	(1)		\bigvee	1	1 M m surf	nu 9
OIL SVCA-TP-103-04-170823 2 BM	2								N.*	7	h	N	2	N	N	N	N	10
5VCA-TP-103-0-/170823 2 BM	3				1 1	1 V	V	V	(1)	(1)	(1)	U	(1)	(i)	(1)	(i)	0)	lD

Initial 10 worms = 4.8 g

(1) small plant sprouted in Sar, UB 9/12

End time: 1410 9/20/17 Start time: 1455

CLIENT	PROJECT	SPECIES 1	LABORATORY	PROTOCOL
Anchor QEA	SVCA Area Z Remediation	Eisinia foetida	Port Gamble Test Room	WDOE 96-327
JOB NUMBER	PROJECT MANAGER		TEST START DATE	TEST END DATE
PG1094	B. Hester		6-Sep-2017	20-Sep-2017

TEST CONDITI	ONS		рН	H TEMP (°C)					
	,		5 - 9			22±2			
			рН		TEMP				
CLIENT ID	DAY	meter	T ^{0min}	T ^{30min}	meter	°C	Tech	Date	Comments
Control / .	0	d	7.8	7.B	Therm.	21.2	HE	9/06/17	To=1330
Control / .	1					23.2	us	9/7/17	-
Control / .	2					23.3	J	408/17	
Control / .	3					23.2	WS	9/9/12	
Control / .	4					23.1	1/2	9110/17	
Control / .	5					23.6	He	9/11/17	
Control / .	6					23.1	W	9/12/17	
Control / .	7				777	27.9	the	9/13/17	
Control /	8					23.3	10	9/14/17	
Control / .	9					23.3	JU	9/15/17	
Control / .	10					23.1	B	9/16/17	
Control / .	11					13.3	the	91,7114	
Control / .	12					23.1	H.	9/18/17	
Control / .	13					23.4	1/2	9/19/17	4
Control / .	14	9	7.9	7.7	7	23.2	MK	9/20/17	To = 1455

CLIENT	PROJECT	SPECIES 1	LABORATORY	PROTOCOL
Anchor QEA	SVCA Area Z Remediation	Eisinia foetida	Port Gamble Test Room	WDOE 96-327
JOB NUMBER	PROJECT MANAGER		TEST START DATE	TEST END DATE
PG1094	B. Hester		6-Sep-2017	20-Sep-2017

TEST CONDITIONS			рН		T	EMP (°C)				
		5 - 9			22±2					
	DAY	рН			TEMP					
CLIENT ID		meter	T ^{0min}	T ^{30min}	meter	°C	Tech	Date	Comments	
SVCA-TP-100-0-4-170823 /	0	9	5.8	8.2			HE	9/06/17	To= 1418	
SVCA-TP-100-0-4-170823 /	1						us	917		
SVCA-TP-100-0-4-170823 /	2									
SVCA-TP-100-0-4-170823 /	3	=								
SVCA-TP-100-0-4-170823 /	4									
SVCA-TP-100-0-4-170823 /	5									
SVCA-TP-100-0-4-170823 /	6									
SVCA-TP-100-0-4-170823 /	7					4				
SVCA-TP-100-0-4-170823 /	8									
SVCA-TP-100-0-4-170823 /	9			1945 T. S.	an and a second					
SVCA-TP-100-0-4-170823 /	10					and the same of th				
SVCA-TP-100-0-4-170823 /	11									
SVCA-TP-100-0-4-170823 /	12									
SVCA-TP-100-0-4-170823 /	13		198							
SVCA-TP-100-0-4-170823 /	14	9	5.7	5.8			MK	9/20/17	To = 1455	

CLIENT	PROJECT	SPECIES 1	LABORATORY	PROTOCOL
Anchor QEA	SVCA Area Z Remediation	Eisinia foetida	Port Gamble Test Room	WDOE 96-327
JOB NUMBER	PROJECT MANAGER		TEST START DATE	TEST END DATE
PG1094	B. Hester		6-Sep-2017	20-Sep-2017
	eou.	OLIALITY DATA		

TEST CONDITIONS			рН		Т	EMP (°C)					
		5 - 9			22±2						
		рН			TEMP						
CLIENT ID	DAY	meter	T ^{0min}	T ^{30min}	meter	°C	Tech	Date	Comments		
SVCA-TP-102-0-2-170823 /	0	9	6.3	6.1			HE	9/06/17	To= 1402		
SVCA-TP-102-0-2-170823 /	1						W	917	<u></u>		
SVCA-TP-102-0-2-170823 /	2			and the				V			
SVCA-TP-102-0-2-170823 /	3										
SVCA-TP-102-0-2-170823 /	4	100									
SVCA-TP-102-0-2-170823 /	5										
SVCA-TP-102-0-2-170823 /	6										
SVCA-TP-102-0-2-170823 /	7										
SVCA-TP-102-0-2-170823 /	8										
SVCA-TP-102-0-2-170823 /	9										
SVCA-TP-102-0-2-170823 /	10										
SVCA-TP-102-0-2-170823 /	11										
SVCA-TP-102-0-2-170823 /	12					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
SVCA-TP-102-0-2-170823 /	13			III. Salata							
SVCA-TP-102-0-2-170823 /	14	9	6 -0	6.1			MK	9/20/17	To = 1500		

CLIENT	PROJECT	SPECIES 1	LABORATORY	PROTOCOL
Anchor QEA	SVCA Area Z Remediation	Eisinia foetida	Port Gamble Test Room	WDOE 96-327
JOB NUMBER	PROJECT MANAGER		TEST START DATE	TEST END DATE
PG1094	B. Hester		6-Sep-2017	20-Sep-2017

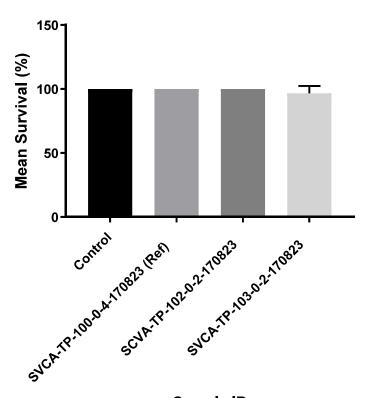
TEST CONDITION	рН			TEMP (°C)					
		5 - 9			22±2				
		На		TEMP					
CLIENT ID	DAY	meter	T ^{0min}	T ^{30min}	meter	°C	Tech	Date	Comments
SVCA-TP-103-0-B-170823 /	0	9	5.8	5.7			HÉ	9(06/17	To = 1413
SVCA-TP-103-0-8-170823 /	1						W	917	
SVCA-TP-103-0-8-170823 /	2								
SVCA-TP-103-0-3-170823 /	3								
SVCA-TP-103-0-3-170823 /	4			*					
SVCA-TP-103-0-3-170823 /	5			Section 19					
SVCA-TP-103-0-3-170823 /	6			11 E					
SVCA-TP-103-0-3-170823 /	7								
SVCA-TP-103-0-3-170823 /	8								
SVCA-TP-103-0-3-170823 /	9								
SVCA-TP-103-0-3-170823 /	10								
SVCA-TP-103-0-3-170823 /	11								
SVCA-TP-103-0-3-170823 /	12								
SVCA-TP-103-0-3-170823 /	13			- 1					
SVCA-TP-103-0-3-170823 /	14	9	ζ.ς	5.6			MK	9/20/17	To = 1500

ORGANISM RECEIPT LOG

Date:		Tin	ne:		1	Batch No. 58				
9/6/1	7	1	230			AR074670				
Organism:	Organism:									
Eisenia Foetida										
Source / Supplier:										
ARO										
No. Ordered	d:	No	. Receive	d:		urce Batch: llection date, hat	ch date, etc.):			
	00		500 -			90517	ź F			
Condition o	-					ize or Age: life stage, size c	lass, etc.):			
	God	29		790 day B of L (Tracking No.)						
Shipper:										
Fed	rex			7876 2467 7458						
Condition of	of Contain	er:		Received By:						
	good			H						
Container	D.O. (mg/L)	Temp. (°C)	Cond Sal (Inclu Unit	ide	pH (Units)	# Dead	% Dead*	Tech. (Initials)		
10		70.0						K		
*if >10% contac	*if >10% contact lab manager									
Notes: DIE Ha 916 (2) Ship pld dry NO W9 He 916										

Aquatic Research Organisms

DATA SHEET


1.	Organism I	listory
	Species:	EISENIA foetida
	Source:	Lab reared Field collected
		Hatch date mixed age Adults Receipt date
		Lot number <u>090517 EF</u> Strain
		Brood Origination
II.	Water Qua	lity NOT applicable
		Temperature°C Salinity ppt DO
		pH ppm
III.	Culture Co	onditions
		System: Topsoil/peatmass
		Diet: Flake Food Phytoplankton Trout Chow
		Brine Shrimp Rotifers Other
		Prophylactic Treatments:
		Comments: KERP WORMS MOLST, NOT WET
		Keep Coul, Place feed on Top of Soil
IV.	Shipping I	nformation
		Client: Eco AraLysts # of Organisms: 500+
		Carrier: FED. EX Date Shipped: 09/05/17
Ric	ologist:	Ston Sin tober

1 - 800 - 927 - 1650

1.2 Eisensia foetida Statistical Results

Constant	Value
Experiment Date	9/6/2017
Client	Anchor QEA
Project	SVCA Area Z Remediation
Project Number	PG1094
Species	Survival
Test Type	14-Day Survival

E. foetida Mean Survival

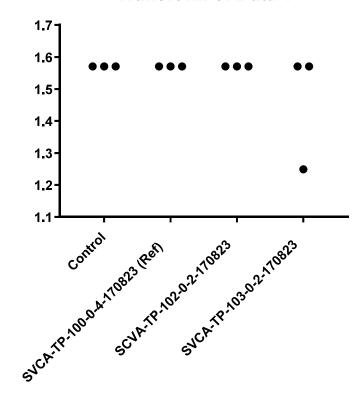
Sample ID

	1way ANOVA Multiple comparisons				
- 2					
1	Number of families	1			
2	Number of comparisons per family	3			
3	Alpha	0.05			
4					
5	Holm-Sidak's multiple comparisons test	Mean Diff.	Significant?	Summary	Adjusted P Value
6					
7	SVCA-TP-100-0-4-170823 (Ref) vs. Cc	0	No	ns	>0.9999
8	SVCA-TP-100-0-4-170823 (Ref) vs. SC	0	No	ns	>0.9999
9	SVCA-TP-100-0-4-170823 (Ref) vs. SV	0.1073	No	ns	0.4784
10					
11					
12	Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.
13					
14	SVCA-TP-100-0-4-170823 (Ref) vs. Cc	1.571	1.571	0	0.07584
15	SVCA-TP-100-0-4-170823 (Ref) vs. SC	1.571	1.571	0	0.07584
16	SVCA-TP-100-0-4-170823 (Ref) vs. SV	1.571	1.464	0.1073	0.07584

- 4				
1				
2				
3				
4				
5	B-?			
6				
7	А	Control		
8	С	SCVA-TP-102-0-2-170823		
9	D	SVCA-TP-103-0-2-170823		
10				
11				
12	n1	n2	t	DF
13				
14	3	3	0	8
15	3	3	0	8
16	3	3	1.414	8

	1way ANOVA					
D	escriptive Statistics	Control	SVCA-TP-100-0-4-170823 (Ref	f SCVA-TP-102-0-2-170823SVCA-TP-103-0-2		
- 4	1					
1	Number of values	3	3	3	3	
2						
3	Minimum	1.571	1.571	1.571	1.249	
4	25% Percentile	1.571	1.571	1.571	1.249	
5	Median	1.571	1.571	1.571	1.571	
6	75% Percentile	1.571	1.571	1.571	1.571	
7	Maximum	1.571	1.571	1.571	1.571	
8						
9	Mean	1.571	1.571	1.571	1.464	
10	Std. Deviation	0	0	0	0.1858	
11	Std. Error of Mean	0	0	0	0.1073	
12						
13	Lower 95% CI	1.571	1.571	1.571	1.002	
14	Upper 95% CI	1.571	1.571	1.571	1.925	

	Group A	Group B	Group C	Group D
	Control	SVCA-TP-100-0-4-170823 (Ref)	SCVA-TP-102-0-2-170823	SVCA-TP-103-0-2-170823
4	Υ	Υ	Y	Υ
1	100	100	100	90
2	100	100	100	100
3	100	100	100	100


Tuesseferm	Α	В	С	D
Transform -	Control	SVCA-TP-100-0-4-170823 (Ref)	SCVA-TP-102-0-2-170823	SVCA-TP-103-0-2-170823
A	Υ	Υ	Y	Υ
1	1.571	1.571	1.571	1.249
2	1.571	1.571	1.571	1.571
3	1.571	1.571	1.571	1.571

	1way ANOVA ANOVA	
	4	
1	Table Analyzed	Transform of Data 1
2	Data sets analyzed	A : Control
3		
4	ANOVA summary	
5	F	1
6	P value	0.4411
7	P value summary	ns
8	Significant diff. among means (P < 0.05)?	No
9	R square	0.2727
10		
11	Brown-Forsythe test	
12	F (DFn, DFd)	1 (3, 8)
13	P value	0.4411
14	P value summary	ns
15	Are SDs significantly different (P < 0.05)?	No
16		
17	Bartlett's test	
18	Bartlett's statistic (corrected)	
19	P value	
20	P value summary	
21	Are SDs significantly different (P < 0.05)?	
22		
23	ANOVA table	SS
24	Treatment (between columns)	0.02588
25	Residual (within columns)	0.06902
26	Total	0.0949
27		
28	Data summary	
29	Number of treatments (columns)	4
30	Number of values (total)	12

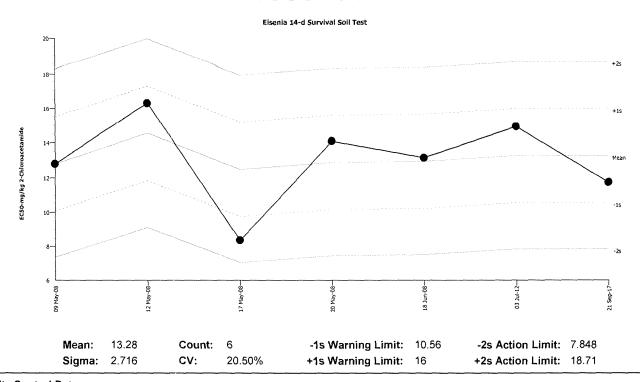
2			
1			
2	B : SVCA-TP-100-0-4-170823 (Ref)	C : SCVA-TP-102-0-2-170823	D : SVCA-TP-103-0-2-170823
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23	DF	MS	F (DFn, DFd)
24	3	0.008627	F (3, 8) = 1
25	8	0.008627	
26	11		
27			
28			
29			
30			

2	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	P value
24	P=0.4411
25	
26	
27	
28	
29	
30	
	1

Eisensia foetida Reference Toxicant Test Results 1.3

Report Date:

10 Oct-17 10:56 (1 of 1)


Eisenia 14-d Survival Soil Test

Test Type: Survival

Organism: Eisenia fetida (Red worm)

Material: 2-Chloroacetamide

Protocol: WDOE 1996 Endpoint: Proportion Survived Source: Reference Toxicant-REF

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
ł	2008	May	9	0:00	12.8	-0.4808	-0.177			03-7045-3312	08-0293-7348	NewFields
2			12	0:00	16.3	3.024	1.113	(+)		06-6813-2369	06-8879-9526	NewFields
3			17	0:00	8.375	-4.905	-1.806	(-)		04-0646-2279	11-4335-9796	NewFields
4			20	0:00	14.1	0.8227	0.3029			02-7999-0777	20-6103-4174	NewFields
5		Jun	18	0:00	13.16	-0.123	-0.04528			15-7464-3863	11-8764-3791	NewFields
3	2012	Jul	3	16:30	14.94	1.661	0.6115			13-0900-8909	14-6931-2807	NewFields
,	2017	Sep	21	14:30	11.74	-1.539	-0.5667			16-6998-9740	06-6437-4456	EcoAnalysts

Analyst: QA: BA

005-055-007-2 CETIS™ v1.9.2.6

Report Date: Test Code: 10 Oct-17 10:58 (p 1 of 2) 638A056C | 16-6998-9740

Eisenia 14-d Surv	rival Soil Tes	st								Ec	oAnalysts
				Proportion Surv	ived		CETI	S Version:	CETISv1.	9.2	
Analyzed: 10	Oct-17 10:5										
Batch ID: 16-							Analy	/st: Bria	in Hester		
	•		WDOE 1996			Dilue	nt: Dei	onized Wate	r		
-	ng Date: 05 Oct-17 13:00 Species: Eisenia fetida				Brine	e: Not	Applicable				
Duration: 130	d 22h	Sou	ırce:	Aquatic Resear	ch Organism	s, NH	Age:				······································
•	2561-5541	Co		1F5441B5			Clien		rnal Lab		
Sample Date: 18				2-Chloroacetan			Proje	ect: Ref	erence Toxic	ant	
Receipt Date: 18				Reference Toxio	cant						
Sample Age: 313		Sta	tion:	P170911.01							
Data Transform		Alt Hyp						on Result			PMSD
Angular (Corrected	d) 	C > T					10mg/kg p	assed prop	ortion surviv	ed 	59.72%
Bonferroni Adj t	Test										
Control vs	Conc-mg	g/kg	Test S			P-Type	P-Value	Decision			
Negative Control	10		1.767 ————	2.132	0.684 4	CDF	0.0760	Non-Sign	ificant Effect		
Auxiliary Tests											
Attribute	Test			· · · · · · · · · · · · · · · · · · ·	Test Stat	Critical	P-Value	Decision			
Extreme Value	Grubbs E	Extreme Va	ue Test		1.799	1.887	0.1214	No Outlie	rs Detected		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	e Decision(α:5%)			
Between	0.481667		0.4816	67	1	3.121	0.1520	Non-Sign	ificant Effect		
Error	0.617308		0.1543	127	4						
Total	1.09897		···	· · · · · · · · · · · · · · · · · · ·	5						
Distributional Te	sts										
Attribute	Test				Test Stat	Critical	P-Value	Decision	·		
Variances		quality of V			10.66	21.2	0.0309	Equal Va			
Variances		ne Equality		ice Test	0.6662	98.5	0.5001	Equal Va			
Variances		Ratio F Tes			33.86	199	0.0574	Equal Va	riances Distribution		
Distribution Distribution					0.2281	0.3704 0.43	0.5364 0.1924		Distribution		
····		Vilk W Norr	namy res	it	0.8609	0.43	0.1924	Normai L	/ISUNDULION		
Proportion Survi		•									
		C						BACH	Std Err	CV%	%Effect
Conc-mg/kg	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max			
0	N	3	0.9667	7 0.8232	1.0000	1.0000	0.9000	1.0000	0.0333	5.97%	0.00%
0 10		3 3	0.9667 0.5333	7 0.8232 3 0.0000	1.0000 1.0000	1.0000 0.8000	0.9000 0.0000	1.0000 0.8000	0.2667	5.97% 86.60%	44.83%
0 10 15		3 3 3	0.9667 0.5333 0.0000	7 0.8232 3 0.0000 0 0.0000	1.0000 1.0000 0.0000	1.0000 0.8000 0.0000	0.9000 0.0000 0.0000	1.0000 0.8000 0.0000	0.2667 0.0000		44.83% 100.00%
0 10 15 20		3 3 3 3	0.9667 0.5333 0.0000 0.0000	7 0.8232 3 0.0000 0 0.0000 0 0.0000	1.0000 1.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000	0.9000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000	0.2667 0.0000 0.0000		44.83% 100.00% 100.00%
0 10 15 20 30		3 3 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000	1.0000 1.0000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000	0.9000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000	0.2667 0.0000 0.0000 0.0000		44.83% 100.00% 100.00% 100.00%
0 10 15 20 30 40	N	3 3 3 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000	1.0000 1.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000	0.9000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000	0.2667 0.0000 0.0000		44.83% 100.00% 100.00%
0 10 15 20 30 40 Angular (Correct	N red) Transfo	3 3 3 3 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000 0.0000	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000	0.2667 0.0000 0.0000 0.0000 0.0000	86.60%	44.83% 100.00% 100.00% 100.00% 100.00%
0 10 15 20 30 40 Angular (Correct	N ed) Transfor Code	3 3 3 3 3 3 3 rmed Sumi	0.9667 0.5333 0.0000 0.0000 0.0000 0.0000 mary	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err	86.60% CV%	44.83% 100.00% 100.00% 100.00% 100.00%
0 10 15 20 30 40 Angular (Correct Conc-mg/kg	N red) Transfo	3 3 3 3 3 3 rmed Sumr Count 3	0.9667 0.5333 0.0000 0.0000 0.0000 mary Mean 1.358	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL 1.124	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 95% UCL	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Median	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 Min	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Max 1.412	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err 0.05432	86.60% CV% 6.93%	44.83% 100.00% 100.00% 100.00% *Effect 0.00%
0 10 15 20 30 40 Angular (Correct Conc-mg/kg 0 10	N ed) Transfor Code	3 3 3 3 3 3 3 rmed Sum Count 3 3	0.9667 0.5333 0.0000 0.0000 0.0000 mary Mean 1.358 0.791	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL 1.124 -0.5691	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 95% UCL 1.591 2.151	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Median 1.412 1.107	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 Min 1.249 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Max 1.412 1.107	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err 0.05432 0.3161	CV% 6.93% 69.22%	44.83% 100.00% 100.00% 100.00% 100.00% %Effect 0.00% 41.74%
0 10 15 20 30 40 Angular (Correct Conc-mg/kg 0 10	N ed) Transfor Code	3 3 3 3 3 3 7med Sumi Count 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000 mary Mean 1.358 0.791 0.158	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL 1.124 -0.5691 8 0.1588	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 95% UCL 1.591 2.151 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Median 1.412 1.107 0.1588	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 Min 1.249 0.1588 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Max 1.412 1.107 0.1588	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err 0.05432 0.3161 0	CV% 6.93% 69.22% 0.00%	44.83% 100.00% 100.00% 100.00% 100.00% %Effect 0.00% 41.74% 88.31%
0 10 15 20 30 40 Angular (Correct Conc-mg/kg 0 10 15 20	N ed) Transfor Code	3 3 3 3 3 3 rmed Sumi Count 3 3 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000 mary Mean 1.358 0.791 0.1586 0.1586	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL 1.124 -0.5691 8 0.1588 8 0.1588	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 95% UCL 1.591 2.151 0.1588 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 0.0000 Median 1.412 1.107 0.1588 0.1588	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 Min 1.249 0.1588 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Max 1.412 1.107 0.1588 0.1588	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err 0.05432 0.3161 0	CV% 6.93% 69.22% 0.00% 0.00%	44.83% 100.00% 100.00% 100.00% 100.00% %Effect 0.00% 41.74% 88.31% 88.31%
0 10 15 20 30 40 Angular (Correct Conc-mg/kg 0 10	N ed) Transfor Code	3 3 3 3 3 3 7med Sumi Count 3 3 3	0.9667 0.5333 0.0000 0.0000 0.0000 mary Mean 1.358 0.791 0.158	7 0.8232 3 0.0000 0 0.0000 0 0.0000 0 0.0000 95% LCL 1.124 -0.5691 8 0.1588 8 0.1588	1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 95% UCL 1.591 2.151 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Median 1.412 1.107 0.1588	0.9000 0.0000 0.0000 0.0000 0.0000 0.0000 Min 1.249 0.1588 0.1588	1.0000 0.8000 0.0000 0.0000 0.0000 0.0000 Max 1.412 1.107 0.1588	0.2667 0.0000 0.0000 0.0000 0.0000 Std Err 0.05432 0.3161 0	CV% 6.93% 69.22% 0.00%	44.83% 100.00% 100.00% 100.00% 100.00% %Effect 0.00% 41.74% 88.31%

Analys

QA: BY

Eisenia 14-d Survival Soil Test

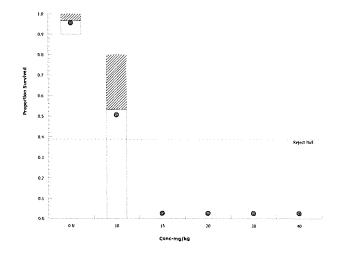
Report Date: Test Code: 10 Oct-17 10:58 (p 2 of 2) 638A056C | 16-6998-9740

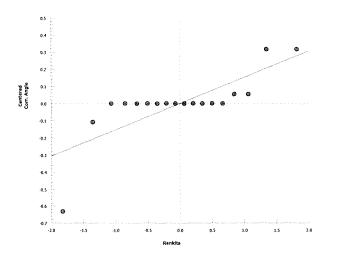
EcoAnalysts

Analysis ID:	09-2205-6810	Endpoint:	Proportion Survived	CETIS Version:	CETISv1.9.2
Analyzed:	10 Oct-17 10:53	Analysis:	Parametric-Multiple Comparison	Official Results:	Yes

Proportion Survived Detail

Conc-mg/kg	Code	Rep 1	Rep 2	Rep 3
0	N	1.0000	1.0000	0.9000
10		0.0000	0.8000	0.8000
15		0.0000	0.0000	0.0000
20		0.0000	0.0000	0.0000
30		0.0000	0.0000	0.0000
40		0.0000	0.0000	0.0000


Angular (Corrected) Transformed Detail


Conc-mg/kg	Code	Rep 1	Rep 2	Rep 3
0	N	1.412	1.412	1.249
10		0.1588	1.107	1.107
15		0.1588	0.1588	0.1588
20		0.1588	0.1588	0.1588
30		0.1588	0.1588	0.1588
40		0.1588	0.1588	0.1588

Proportion Survived Binomials

Conc-mg/kg	Code	Rep 1	Rep 2	Rep 3
0	N	10/10	10/10	9/10
10		0/10	8/10	8/10
15		0/10	0/10	0/10
20		0/10	0/10	0/10
30		0/10	0/10	0/10
40		0/10	0/10	0/10

Graphics

Analyst: BN QA: BI

Report Date: Test Code:

10 Oct-17 10:58 (p 1 of 2) 638A056C | 16-6998-9740

							1031	Code.	00.	<i>37</i> 10000	1 10-0550-574	
Eisenia 14-d S	Survival Soil	Test									EcoAnalysts	
Analysis ID:	06-6437-445	56 End	dpoint:	Proportion Sur			CET	S Version:	CETISv1	.9.2		
Analyzed:	10 Oct-17 1	0:53 A na	alysis:	Trimmed Spea	rman-Kärbe	er	Offic	ial Results:	Yes			
Batch ID:	16-0369-553	4 Tes	t Type:	Survival			Anal	yst: Briar	n Hester			
Start Date:	21 Sep-17 14	4:30 Pro	tocol:	WDOE 1996			Dilue	ent: Deio	nized Wate	r		
Ending Date:	05 Oct-17 13	:00 Sp e	ecies:	Eisenia fetida			Brin	Brine: Not Applicable				
Duration:	13d 22h	Sou	urce:	Aquatic Resea	rch Organis	ims, NH	Age:					
Sample ID:	05-2561-554	1 Co	de:	1F5441B5			Clier	nt: Inter	nal Lab			
Sample Date:	18 Feb-09 14	1:19 M a	terial:	2-Chloroaceta	mide		Proje	ect: Refe	rence Toxic	cant		
Receipt Date:	18 Feb-09 14	1:19 So i	urce:	Reference Tox	cicant							
Sample Age:	3137d 0h	Sta	tion:	P170911.01								
Trimmed Spe	arman-Kärbe	r Estimates							· · · · · · · · · · · · · · · · · · ·			
Threshold Op	otion	Threshold	Trim	Mu	Sigma		EC50	95% LCL	95% UCL			
Control Threshold 0.03333		0.03333	17.24	% 1.07	0.01086		11.74	11.17	12.34			
Proportion S	urvived Sumr	mary			Calc	ulated Varia	ate(A/B)					
Conc-mg/kg	Code	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В	
0	N	3	0.966	7 0.9000	1.0000	0.0333	0.0577	5.97%	0.0%	29	30	
10		2	0.800	0.8000	0.8000	0.0000	0.0000	0.00%	17.24%	16	20	
15		3	0.000		0.0000	0.0000	0.0000		100.0%	0	30	
20		3	0.000		0.0000	0.0000	0.0000		100.0%	0	30	
30		3	0.000		0.0000	0.0000	0.0000		100.0%	0	30	
40		3	0.000	0.0000	0.0000	0.0000	0.0000		100.0%	0	30	
Proportion S	urvived Detai	l										
Conc-mg/kg	Code	Rep 1	Rep 2	Rep 3								
0	N	1.0000	1.000	0.9000								
10		Outlier	0.800	0.8000								
15		0.0000	0.000	0.0000								
20		0.0000	0.000	0.0000								
30		0.0000	0.000	0.0000								
40		0.0000	0.000	0.0000								
Proportion S	urvived Bino	mials	·							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Conc-mg/kg	Code	Rep 1	Rep 2	Rep 3								
0	N	10/10	10/10	9/10								
10		0/10	8/10	8/10								

0/10

0/10

0/10

0/10

0/10

0/10

0/10

0/10

0/10

0/10

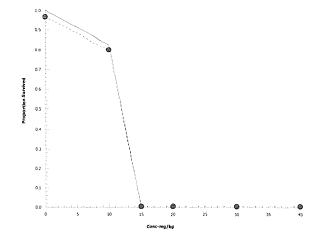
0/10

0/10

15

20

30


40

Report Date: Test Code: 10 Oct-17 10:58 (p 2 of 2) 638A056C | 16-6998-9740

Eisenia 14-d Survival Soil Test EcoAnalysts

Analysis ID:06-6437-4456Endpoint:Proportion SurvivedCETIS Version:CETISv1.9.2Analyzed:10 Oct-17 10:53Analysis:Trimmed Spearman-KärberOfficial Results:Yes

Graphics

Analyst: BN

OA. BR

CETIS Test Data Worksheet

21 Sep-17 14:30

Eisenia 14-d Survival Soil Test

Start Date:

End Date:

Report Date: Test Code/ID: 10 Oct-17 10:57 (p 1 of 1)

est Code/ID: 16-6998-9740/638A056C

EcoAnalysts

Sample Code: 1F5441B5

05 Oct-17 13:00 Protocol: WDOE 1996 Sample Source: Reference Toxicant

Sample Date: 18 Feb-09 14:19 Material: 2-Chloroacetamide Sample Station: P170911.01

Species: Eisenia fetida

Sample Date	: 18 F	eb-09	14:19	Material: 2-Chloroacetamide	•	Sample Station: P1/0911.01
Conc-mg/kg	Code	Rep	Pos	#Exposed	#Survived	Notes
0	N	1	5	10	10	
0	N	2	15	10	10	
0	N	3	11	10	9	
10		1	18	10	0	
10		2	1	10	8	
10		3	6	10	8	
15		1	14	10	0	
15		2	10	10	0	
15		3	17	10	0	
20		1	2	10	0	
20		2	8	10	0	
20		3	16	10	0	
30		1	7	10	0	
30		2	13	10	0	
30		3	12	10	0	
40		1	4	10	0	
40	1	2	9	10	0	
40		3	3	10	0	

Analyst:

QA:

Eisinia foetida Reference Toxicant Test

Test ID: 170911.01	Replicates:	8	Study Direc	tor:	Location: Test Room		
Dry Weight of Soil 600g (200g/rep		atch:	Associated		No. of Organisms: 10		
Toxicant: 2-Chloroacetami	Lot Number:		Date Dilution Prepared: 4		Initials:		
Stock Preparation 4.5g of 2-Chloro	: acetamide / 200mL	ol -) 2	me DI	,			
Target Concentration:	Quantity of Artificial Soil:	Tai	of Stock rget: 7 mL	Quantity of Diluent (DI) Target: (270 mL – Stock Soln.) 269.73 mL			
10 mg/kg	Actual: 600.0	Actual: 0.		Actual:	269.7 ML		
Target Concentration:	Quantity of Artificial Soil:	Quantity	of Stock rget:	Quantity of Diluent (DI) Target: (270 mL – Stock Soln.)			
15 mg/kg	600 g		0 mL		269.60 mL		
	Actual: 600.0	Actual: (),	40ml		269.6 ml		
Target	Quantity of Artificial Soil:		of Stock rget:	Quantity of Diluent (DI) Target: (270 mL – Stock Soln.) 269.47 mL			
Concentration: 20 mg/kg	600 g	0.5	3 mL				
	Actual: (00 , 0	Actual: 0	.53 mc	Actual: 269.5 ML			
Target	Quantity of Artificial Soil:		of Stock rget:		ntity of Diluent (DI) Target: mL – Stock Soln.)		
Concentration: 30 mg/kg	600 g	0.8	0 mL	(270	269.20 mL		
oo mg/kg	Actual: (000, 0	Actual: 0,	BomL	Actual:	269,2 mc		
Target	Quantity of Artificial Soil:	Quantity	of Stock rget:		ntity of Diluent (DI) Target: mL – Stock Soln.)		
Concentration: 40 mg/kg	600 g	1.0	7 mL	(= .	268.93 mL		
mg/kg	Actual: 600, 6	Actual: (Actual: 1.07 MC		268.9 MC		

Activity:	Date:	Time:	Technician:
Test Initiation:	9/21/17	1430	JU/UB
Test Termination:	10/5/17	1300	WS

pH Measurement: 5 – 9; (6.5 – 7.5 Ideal) 50% soil/DI slurry	C	Control	Highest Concentration (40mg/kg)				
Initial (Day 0)	To: 7.8	T: 7.6	To: 7.9	T: 7.7			
Final (Day 14)	To: 7.4	十. 7.3	To: 8.3	T:8.3			

Initial Worm Wet Weight (subsample of 10)	4
Mean Wet Weight: Recommended (3 – 6 g)	3.5 a

Eco Analysts

Eisinia foetida

3 surface dry, disintigrated worms on surface, unable to determine # dead, us a/27

(1) wang date 9/28 UB

(5) one worm crawling on jar, out of sed **Reference Toxicant Test**

Observations	Day							(P)_				_	2	<u>«</u>	14 (# Alive)	10 X 10
Treatment	Rep		2	8	73517	9/26	1 \		9/29	930	101· 5	10/02	10/3	10/4	# T	10
Control	1	45	55	45	45	35	55	35	35	35	N	7	N	Ņ	10	
Control	2	55	35	35	25	1)	N	N	7-	1)	N	12	N		10	
Control	3	65	55	35	N	15	25	N	1	12	25	N	15		9	
10 mg/kg	1	75	75	55	25	45	25	45	1	55	35	<i>5</i> ′5	35	35	0	
10 mg/kg	2	75	65	55	65	53	45	45	2	55	45	35	2	45	8	
10 mg/kg	3	53	65	89	35	45	65	35	35	35	25	25	2	35	8	
15 mg/kg	1	85	95	95	35	55	②	2	(2)	0	(2)	(3)	(2)	3	\Diamond	
15 mg/kg	2	१८	85	105	25	2						1	(ι)	(2)	S	
15 mg/kg	3	105	65	95, IM	15	15							(3)	(3)	0	
20 mg/kg	1	105	105	105	25	55							(2)	(2)	0	
20 mg/kg	2	105	105	105	45	2							(2)		0	
20mg/kg	3	105	105	105	35	(2)							2		0	
30mg/kg	1	105	105	105	25	15,0							(2)		0	
30mg/kg	2	105	10%	105	35	3 Q							(2)		O	
30mg/kg	3	105	105	105	35	(2)	7	V	4	J	7	>	(j)	b	0	
40mg/kg	1	105	105	15 3m	25	(Ž)	(3)	(3)	(3)	(3)	(-3)	(3)	3	(Z)	0	
40mg/kg	2	105	105	65	25	2	3						(3)		0	
40mg/kg	3	105	105	45)	35	7	3	\rightarrow	1	1	1	U	3	V	Ô	
Initials		M	B	14	BN	UB	ИĎ	UB	MA	UB	Ha	H	is	W	LVS	
		Obse	rvation I	Key: #S :	# on sur	face, #M	: # morta	ality on s	urface, E	: worms	balled or	n surface				

(2) writing surface w/ testing disint quite yours on surface, unable to determine

APPENDIX B. CHAIN-OF-CUSTODY LOG AND PRE-TEST DOCUMENTS

Chain of C Gody Record	d & Labo	ratory A	nalysis i	Request	_ (
ARI Assigned Number:	Turn-around	Requested:			Page:		of				Analytical Resources, Incorporated Analytical Chemists and Consultan			
ARI Client Company: ANCMY QEA	310	Phone: () -715.	 27,24		Date: Ice Present?					V	Tukwila	outh 134th Place, Suite 100 a, WA 98168 5-6200 206-695-6201 (fax)		
Client Contact: LINNIFEY ALLE		<u> </u>			No. of Cooler Coolers: Temps:							rilabs.com		
Client Project Name: SVCA AVEG Z KOT							1	Analysis	Requested			Notes/Comments		
Client Project #:	Samplers:	CYI			3									
Sample ID	Date	Time	Matrix	No. Containers	Bloossay									
SV(A-TP-102-0-2-170893	8 3 A	1302	80	.,2	X							4.4°C		
SYCH-TR-103-0-2-170823	1 .	1445	30	2	X							L		
Comments/Special Instructions LiWai (RoSUHS + EDD	Relinquished by r (Signature)	He		Received by: (Signature)	moa	wn		Relinquisher (Signature)			Received by (Signature)			
to labdata@anchorgea.	Printed Name:	Paul	Mork	Printed Name	ulia Raun Printed Name:				ie:		Printed Name: Company:			
	Company:	ARI		Company:	coAno	ulia Baun CoAnalys 15 Printed Name: Company:								
	Date & Time:	131/2017	14:35	Date & Time:	10117 1500 Date & Time:			Date & T						

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of C 'ody Record	d & Labo	ratory A	nalysis l	Request	_ ((
ARI Assigned Number:	Turn-around	Requested:			Page:		of] 4		Analyti	ical Resources, Incorporated
ARI Client Company: ANCHOV OEA		Phone:			Date:		Ice Pres	ent?				Tukwila	outh 134th Place, Suite 100 a, WA 98168 05-6200 206-695-6201 (fax)
Client Contact:					No. of Coolers:	-	Cool Temp	er os:					rilabs.com
Client Project Name: SVCA AYPA Z K	emodic	1410N						Analysis	Requested	1		I	Notes/Comments
Client Project #:	Samplers:				Sau								
Sample ID	Date	Time	Matrix	No. Containers	Bicassau								
91/10/ SVCD-TR-100-1-9023													
SVM-TP-100-0-4-170893	8/23/14	946	SO	2	X								
·													
													
Comments/Special Instructions	Relinquished by:	LBA		Received by:	2/1	2-5		Relinquished	i by:	<u> </u>		Received by	b. Bauna
DOHA + 109111 90 +U labdaha@ananargea, com	Printed Name:	Billen	<u></u>	(Signature) Printed Name: VAR) / 7	======================================	Work	(Signature) Printed Nam		ISANE	L RR 10	(Signature) Printed Nam	Jubaum Juwbaum EcoAnalysts
com I	Company:	<i>x</i> , <i>n</i> , <i>x</i> , <i>y</i>		Company:	#73	36	, , , , , , , , , , , , , , , , , , ,	Company:	#7	36	au i cu	Company:	EcoAnalysts
	Date & Time	7 7	10	Date & Time:	112	7:1	OAM	Date & Time	00/15	291	38 AM	Date & Time	05/17 0938

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

08 June 2018

Jennifer Allen Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101

RE: SVCA Area Z Remediation

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

18C0424

N/A

Amanda Volgardsen email=amanda.volgardsen@arilabs.

Digitally signed by Amanda Volgardsen DN: c=US, st=Washington, I=Tukwila, o=Analytical Resources, Inc., ou=Project Manager,

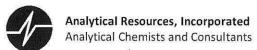
Date: 2018.06.08 14:43:15 -07'00'

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Amanda Volgardsen, Project Manager

18(00127

	Kocolircos Inc		_					Doct Do	ramete	orc.						
Date:	al nesodices, ilic.			-	ŀ	-		ו באר המוחופופוא	ומוובונ	2		ŀ	ŀ			
Project Name: SVCA Area Z Remediation	ea Z Remediation		_	0		-							_	9	ANCHOR	
								5180			- Alex				TO TO TO	
Project Manager: Jennifer Allen Phone Number: 360-715-2724 Shipment Method:	Allen 2724		ainers											}	OEA (
	Collection	50 Sept.	o. of Conta	D-H9TN G-H9TN	TEX	evido.										
Line Field Sample ID	Date/Time	Matrix ✓ ∾ I	_	-		-			+	-		+	+	Comments/Preservation	servation	
		>		,	,				+			T	+	1001		
1 6			-	-	-	_			+			T	+			
4					_				-			-	H			
5						L			-				e			
9							V									
7			_	_												
8			100					2								
6			_											-		
10			8	Н	-								-			
11					_											
12				-												
13			_	-	_				_							
14				+	-	_						1				
15 Notes: NWTPH-D extended analyzed with and without silica gel cleanup. See contract for analysis details	alyzed with and without silica	a gel clea	- Se	- se cont	ract fo	- analy	sis deta	<u>s</u>	-	-			_			
Email sample confirmation report to labdata@anchorqea.com	t to labdata@anchorqea.cor						-									
									1	8						
Relinquished By	Company: Anchor QEA, LLC	Anchor	ZEA, I			П	Recei	Received By:	1	V	0	1	11/2	Company: 4/	4	2.5
Signature/Perited Name	simolite m	mint	3/23/18 Date/Time		2.27		Signat	Signature/Printed Name	V V	7	960%	banc	\tilde{f}_{j}	03/27/10	Y 0837 Date/Time	1
Relinquished Bv.	Company					` 	Recei	Received By:						Company		
			180	8		T						11		- Sand		
Signatura/Drinted Name			Total			Т	0	Omold Potois Olomoto	owold b	İ			l		Ė	

Cooler Receipt Form

1 /			
ARI Client: An Cheer	Project Name:		
COC No(s): NA	Delivered by: Fed-Ex UPS Cour		
Assigned ARI Job No: 18(04) 4	Tracking No:		NA
Preliminary Examination Phase:	Tradking No.		18/5
Were intact, properly signed and dated custody seals attached to	o the outside of to cooler?	YES	(NO)
Were custody papers included with the cooler?		MES	NO
Were custody papers properly filled out (ink, signed, etc.)		yES)	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for che Time:			
If cooler temperature is out of compliance fill out form 00070F	-1 13	Temp Gun ID#: DOOS	206
Cooler Accepted by:	Date: 03/27/(8 Time	0827	
NOTE TO SEE THE PROPERTY OF TH	and attach all shipping documents	2	
Log-In Phase:			-
Was a temporature blank included in the cooler?		V/=2	6
What kind of packing material was used?	p Wet Ice Gel Packs Baggies Foam I	YES	MO
What kind of packing material was used? Bubble Wra Was sufficient ice used (if appropriate)?		TOTAL OF THE PARTY	NO.
		NA YES	NO
Were all bottles sealed in individual plastic bags?		YES ((NO)
Did all bottles arrive in good condition (unbroken)?		YES	NO
Were all bottle labels complete and legible?		YES	NO
Did the number of containers listed on COC match with the number		JJW OXES	NO
Did all bottle labels and tags agree with custody papers?		2/1/VES	(NO)
Were all bottles used correct for the requested analyses?		YES	NO
Do any of the analyses (bottles) require preservation? (attach pre	eservation sheet, excluding VOCs)	NA YES	NO
Were all VOC vials free of air bubbles?		NA YES	NO
Was sufficient amount of sample sent in each bottle?		YES	NO
Date VOC Trip Blank was made at ARI		NA 3/2/1/	8
Was Sample Split by ARI : NA YES Date/Time:	Equipment:	Split by:	
Samples Logged by:Date	e: <u>63/27/18</u> Time:	0835	
** Notify Project Manage	er of discrepancies or concerns **		
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Sample ID on COC	3
Additional Notes Discrepancies & Resolutions:		1 111	
Additional Notes, Discrepancies, & Resolutions:	oother vots have a	insubbles	
Tripostanic is not an COL.			
By: 38W Date: 03/07/18			
Small Air Bubbles Peabubbles' LARGE Air Bubbles	Small → "sm" (<2 mm)		
~2mm 2-4 mm > 4 mm	Peabubbles → "pb" (2 to < 4 mm)		
	Large > "lg" (4 to < 6 mm)	13	
	Headspace → "hs" (>6 mm)		

Analytical Report

Anchor QEA, LLC Project: SVCA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:
Seattle WA, 98101 Project Manager: Jennifer Allen 08-Jun-2018 14:27

Case Narrative

Sample receipt

Samples as listed on the preceding page were received March 27, 2018 under ARI work order 18C0424. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Volatiles - EPA Method SW8260C

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Gasoline by NWTPH-g (GC/MS)

The samples were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank was clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Diesel/Heavy Oil Range Organics - WA-Ecology Method NW-TPHDx (with and without Ac/Si cleaned)

The samples were extracted and analyzed within the recommended holding times.

Batch BGC0819 is in association with the acid silica cleaned portion of the analysis for sample 18C0424-02.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blanks were clean at the reporting limits.

The LCS percent recoveries were within control limits.

Anchor QEA, LLC Project: SVCA Area Z Remediation

720 Olive Way, Suite 1900 Project Number: [none] Reported:

Seattle, WA 98101 Project Manager: Jennifer Allen 06/08/2018 14:27

ANALYTICAL REPORT FOR SAMPLES

Laboratory ID	Sample ID	Matrix	Date Sampled	Date Received
18C0424-01	MW-4-180326	Water	03/26/18 11:42	03/27/18 08:27
18C0424-02	MW-4-180326	Water	03/26/18 11:42	03/27/18 08:27
18C0424-03	Trip Blank	Water	03/26/18 11:42	03/27/18 08:27

QUALIFIERS AND NOTES

Qualifier	Definition
U	This analyte is not detected above the applicable reporting or detection limit.
J	Estimated concentration value detected below the reporting limit.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
D	The reported value is from a dilution
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Form I ORGANIC ANALYSIS DATA SHEET

EPA 8260C Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: SVCA Area Z Remediation

Matrix: Groundwater Laboratory ID: 18C0424-01 SDG: 18C0424

Sampled: 03/26/18 11:42 Prepared: 03/27/18 10:48 File ID: <u>V303271823.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>03/27/18 17:41</u>

Batch: BGC0717 Sequence: SGC0407 Initial/Final: 10 mL / 10 ml

Instrument: NT3 Column: RTX-VMS Calibration: AK00023

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.23	105	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.08	102	80 - 120	
Toluene-d8	5.0000	4.96	99.2	80 - 120	
4-Bromofluorobenzene	5.0000	4.87	97.5	80 - 120	

Form I
ORGANIC ANALYSIS DATA SHEET

Trip Blank

EPA 8260C

Volatile Organic Compounds

Laboratory: <u>Analytical Resources, Inc.</u>

Client: <u>Anchor QEA, LLC</u>

Project: SVCA Area Z Remediation

Matrix: Water Laboratory ID: 18C0424-03 SDG: 18C0424

Sampled: <u>03/26/18 11:42</u> Prepared: <u>03/27/18 10:48</u> File ID: <u>V303271822.D</u>

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>03/27/18 17:15</u>

Batch: BGC0717 Sequence: SGC0407 Initial/Final: 10 mL / 10 ml

Instrument: NT3 Column: RTX-VMS Calibration: AK00023

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.19	104	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	4.97	99.5	80 - 120	
Toluene-d8	5.0000	4.88	97.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.72	94.4	80 - 120	

PREPARATION BATCH SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

 Client:
 Anchor QEA, LLC
 Project:
 SVCA Area Z Remediation

 Batch:
 BGC0717
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
MW-4-180326	18C0424-01	V303271823.D	03/27/18 10:48	
Trip Blank	18C0424-03	V303271822.D	03/27/18 10:48	РВ
Blank	BGC0717-BLK1	V303271808.D	03/27/18 11:22	
LCS	BGC0717-BS1	V303271803LCS.D	03/27/18 09:15	
LCS Dup	BGC0717-BSD1	V303271804.D	03/27/18 09:40	

Form I METHOD BLANK DATA SHEET EPA 8260C

Blank

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: <u>Water</u> Laboratory ID: <u>BGC0717-BLK1</u> File ID: <u>V303271808.D</u>

Sampled: <u>N/A</u> Prepared: <u>03/27/18 11:22</u> Analyzed: <u>03/27/18 11:22</u>

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: BGC0717 Sequence: SGC0407 Calibration: AK00023

Instrument: NT3 Column: RTX-VMS

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
71-43-2	Benzene	1	0.20	U	0.03	0.20
108-88-3	Toluene	1	0.20	U	0.04	0.20
100-41-4	Ethylbenzene	1	0.20	U	0.04	0.20
179601-23-1	m,p-Xylene	1	0.40	U	0.05	0.40
95-47-6	o-Xylene	1	0.20	U	0.03	0.20

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
1,2-Dichloroethane-d4	5.0000	5.15	103	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	5.14	103	80 - 120	
Toluene-d8	5.0000	4.86	97.1	80 - 120	
4-Bromofluorobenzene	5.0000	4.81	96.2	80 - 120	

LCS / LCS DUPLICATE RECOVERY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 03/27/18 09:15

Batch: BGC0717 Laboratory ID: BGC0717-BS1

Preparation: <u>EPA 5030 (Purge and Trap)</u> Sequence Name: <u>LCS</u>

Initial/Final: 10 mL / 10 ml

COMPOUND	SPIKE ADDED (ug/L)	LCS CONCENTRATION (ug/L)	Q	LCS % REC.#	QC LIMITS REC.
Benzene	10.0	10.4		104	80 - 120
Toluene	10.0	10.1		101	80 - 120
Ethylbenzene	10.0	9.90		99.0	80 - 120
m,p-Xylene	20.0	20.3		102	80 - 121
o-Xylene	10.0	9.86		98.6	80 - 121

^{*} Indicates values outside of QC limits

	SPIKE			LCSD		QC LIMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	Q	% REC. #	% RPD#	RPD	REC.
Benzene	10.0	9.97		99.7	4.43	30	80 - 120
Toluene	10.0	9.73		97.3	4.12	30	80 - 120
Ethylbenzene	10.0	9.68		96.8	2.25	30	80 - 120
m,p-Xylene	20.0	19.2		96.0	5.73	30	80 - 121
o-Xylene	10.0	9.62		96.2	2.41	30	80 - 121

^{*} Indicates values outside of QC limits

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Lab File ID: $\underline{V311071702.D}$ Injection Date: $\underline{11/07/17}$

Instrument ID: NT3 Injection Time: 08:48

Sequence: SFK0116 Lab Sample ID: SFK0116-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	28.7	PASS
75	30 - 80% of 95	49.3	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.56	PASS
173	Less than 2% of 174	0.378	PASS
174	50 - 120% of 95	84	PASS
175	5 - 9% of 174	7.52	PASS
176	95 - 101% of 174	100	PASS
177	5 - 9% of 176	6.66	PASS

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
MS Tune	SFK0116-TUN1	V311071702.D	11/07/2017	8:48
Cal Standard	SFK0116-CAL1	V311071707.D	11/07/2017	11:33
Cal Standard	SFK0116-CAL2	V311071708.D	11/07/2017	11:58
Cal Standard	SFK0116-CAL3	V311071709.D	11/07/2017	12:24
Cal Standard	SFK0116-CAL4	V311071710.D	11/07/2017	12:49
Cal Standard	SFK0116-CAL5	V311071711.D	11/07/2017	13:14
Cal Standard	SFK0116-CAL6	V311071712.D	11/07/2017	13:40
Cal Standard	SFK0116-CAL7	V311071713.D	11/07/2017	14:05
Cal Standard	SFK0116-CAL8	V311071714.D	11/07/2017	14:30
Secondary Cal Check	SFK0116-SCV1	V311071716.D	11/07/2017	15:21

MASS SPECTROMETER INSTRUMENT PERFORMANCE CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Lab File ID: $\underline{V303271802.D}$ Injection Date: $\underline{03/27/18}$

Instrument ID: NT3 Injection Time: 08:39

Sequence: SGC0407 Lab Sample ID: SGC0407-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15 - 40% of 95	29.9	PASS	
75	30 - 80% of 95	49.6	PASS	
95	Base peak, 100% relative abundance	100	PASS	
96	5 - 9% of 95	7.15	PASS	
173	Less than 2% of 174	0.497	PASS	
174	50 - 120% of 95	93.9	PASS	
175	5 - 9% of 174	6.32	PASS	
176	95 - 101% of 174	95.3	PASS	
177	5 - 9% of 176	7.15	PASS	

·				
Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SGC0407-TUN1	V303271802.D	03/27/2018	8:39
LCS	BGC0717-BS1	V303271803LCS.D	03/27/2018	9:15
Initial Cal Check	SGC0407-ICV1	V303271803.D	03/27/2018	9:15
LCS Dup	BGC0717-BSD1	V303271804.D	03/27/2018	9:40
Blank	BGC0717-BLK1	V303271808.D	03/27/2018	11:22
ZZZZZ	18C0313-01	V303271809.D	03/27/2018	11:47
ZZZZZ	18C0346-13	V303271810.D	03/27/2018	12:12
ZZZZZ	18C0346-01	V303271814.D	03/27/2018	13:53
ZZZZZ	18C0346-03	V303271815.D	03/27/2018	14:19
ZZZZZ	18C0346-05	V303271816.D	03/27/2018	14:44
ZZZZZ	18C0346-07	V303271817.D	03/27/2018	15:09
ZZZZZ	18C0346-09	V303271818.D	03/27/2018	15:34
ZZZZZ	18C0346-11	V303271819.D	03/27/2018	16:00
ZZZZZ	18C0415-01	V303271820.D	03/27/2018	16:25
Trip Blank	18C0424-03	V303271822.D	03/27/2018	17:15
MW-4-180326	18C0424-01	V303271823.D	03/27/2018	17:41
ZZZZZ	18C0439-01	V303271826.D	03/27/2018	18:56
Calibration Check	SGC0407-CCV1	V303271828.D	03/27/2018	19:47

INITIAL CALIBRATION DATA EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00023 Instrument: NT3

Calibration Date: 11/07/2017 8:29 Column (1): RTX-VMS

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	L	evel 05	L	evel 06
Compound		RF		RF		RF		RF		RF		RF
Benzene	0.2	1.534118	0.5	1.691154	1	1.73921	2	1.723779	10	1.67823	20	1.656835
Toluene	0.2	1.107448	0.5	1.100914	1	1.05754	2	1.099855	10	1.078923	20	1.083634
Ethylbenzene	0.2	0.7165266	0.5	0.7547535	1	0.7192388	2	0.7576026	10	0.7497727	20	0.7432643
m,p-Xylene	0.4	0.8603468	1	0.9181545	2	0.9118829	4	0.9404862	20	0.9283311	40	0.9101724
o-Xylene	0.2	0.875278	0.5	0.889669	1	0.8721321	2	0.9119626	10	0.9162476	20	0.8938697
1,2-Dichloroethane-d4	5	0.4997185	5	0.548195	5	0.5338033	5	0.5334251	5	0.503194	5	0.5068851
1,2-Dichlorobenzene-d4	5	0.9267921	5	0.9197239	5	0.9385696	5	0.9198744	5	0.9470961	5	0.9427683
Toluene-d8	5	1.173696	5	1.169665	5	1.14211	5	1.178434	5	1.171955	5	1.190068
4-Bromofluorobenzene	5	0.4090535	5	0.4122882	5	0.4304876	5	0.417143	5	0.4223918	5	0.4200208
Dibromofluoromethane	5	0.4280672	5	0.4384611	5	0.4351639	5	0.4385926	5	0.4288546	5	0.4232471

INITIAL CALIBRATION DATA EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00023 Instrument: NT3

Calibration Date: 11/07/2017 8:29 Column (1): RTX-VMS

	L	evel 07	L	evel 08	Level 09		L	evel 10	L	evel 11	Level 12	
Compound		RF		RF		RF		RF		RF		RF
Benzene	40	1.623229	80	1.552999								
Toluene	40	1.069762	80	1.038459								
Ethylbenzene	40	0.7546636	80	0.7367876								
m,p-Xylene	80	0.9274587	160	0.8765513								
o-Xylene	40	0.9189333	80	0.9016569								
1,2-Dichloroethane-d4	5	0.5071411	5	0.5234326								
1,2-Dichlorobenzene-d4	5	0.9161146	5	0.9481817								
Toluene-d8	5	1.179228	5	1.174522								
4-Bromofluorobenzene	5	0.4216929	5	0.4314252								
Dibromofluoromethane	5	0.4365348	5	0.4471342								

INITIAL CALIBRATION DATA EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00023 Instrument: NT3

Calibration Date: 11/07/2017 8:29 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Benzene	1.649944	4.6			RSD (15)	
Toluene	1.079567	1.079567 2.2			RSD (15)	
Ethylbenzene	0.7415762 2.2				RSD (15)	
m,p-Xylene	0.909173	0.909173 3.0			RSD (15)	
o-Xylene	0.8974687	2.0			RSD (15)	
1,2-Dichloroethane-d4	0.5194743	3.4			RSD (15)	
1,2-Dichlorobenzene-d4	0.9323901	1.4			RSD (15)	
Toluene-d8	1.17246	1.2			RSD (15)	
4-Bromofluorobenzene	0.4205629	1.9			RSD (15)	
Dibromofluoromethane	e 0.4345069 1		_		RSD (15)	

INITIAL CALIBRATION CHECK EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: NT3 Calibration: AK00023

Lab File ID: <u>V303271803.D</u> Calibration Date: <u>11/07/17 08:29</u>

Sequence: SGC0407 Injection Date: 03/27/18

Lab Sample ID: SGC0407-ICV1 Injection Time: 09:15

Sequence Name: <u>VOA 10</u>

		CONC	. (ug/L)	RESI	PONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT	
Benzene	A	10.000	10.4	1.6499440	1.7201760		4.3	20	
Toluene	A	10.000	10.1	1.0795670	1.0947970		1.4	20	
Ethylbenzene	A	10.000	9.90	0.7415762	0.7338350		-1.0	20	
m,p-Xylene	A	20.000	20.3	0.9091730	0.9242612		1.7	20	
o-Xylene	A	10.000	9.86	0.8974687	0.8847421		-1.4	20	
Dibromofluoromethane	A	5.0000	4.92	0.4345069	0.4273920		-1.6	20	
1,2-Dichloroethane-d4	A	5.0000	4.80	0.5194743	0.4988433		-4.0	20	
Toluene-d8	A	5.0000	5.03	1.1724600	1.1785070		0.5	20	
4-Bromofluorobenzene	A	5.0000	5.06	0.4205629	0.4256859		1.2	20	
1,2-Dichlorobenzene-d4	A	5.0000	4.96	0.9323901	0.9255097		-0.7	20	

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SFK0116</u> Instrument: <u>NT3</u>

Calibration: AK00023

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SFK0116-TUN1	V311071702.D	NA	11/07/17 08:48
8260C 0.2	SFK0116-CAL1	V311071707.D	NA	11/07/17 11:33
8260C 0.5	SFK0116-CAL2	V311071708.D	NA	11/07/17 11:58
8260C 1.0	SFK0116-CAL3	V311071709.D	NA	11/07/17 12:24
8260C 2.0	SFK0116-CAL4	V311071710.D	NA	11/07/17 12:49
8260C 10	SFK0116-CAL5	V311071711.D	NA	11/07/17 13:14
8260C 20	SFK0116-CAL6	V311071712.D	NA	11/07/17 13:40
8260C 40	SFK0116-CAL7	V311071713.D	NA	11/07/17 14:05
8260C 80	SFK0116-CAL8	V311071714.D	NA	11/07/17 14:30
8260C SCV 10	SFK0116-SCV1	V311071716.D	NA	11/07/17 15:21

ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGC0407 Instrument: NT3

Calibration: AK00023

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SGC0407-TUN1	V303271802.D	NA	03/27/18 08:39
VOA 10	SGC0407-ICV1	V303271803.D	NA	03/27/18 09:15
LCS	BGC0717-BS1	V303271803LCS.D	Water	03/27/18 09:15
LCS Dup	BGC0717-BSD1	V303271804.D	Water	03/27/18 09:40
Blank	BGC0717-BLK1	V303271808.D	Water	03/27/18 11:22
ZZZZZ	18C0313-01	V303271809.D	Water	03/27/18 11:47
ZZZZZ	18C0346-13	V303271810.D	Water	03/27/18 12:12
ZZZZZ	18C0346-01	V303271814.D	Water	03/27/18 13:53
ZZZZZ	18C0346-03	V303271815.D	Water	03/27/18 14:19
ZZZZZ	18C0346-05	V303271816.D	Water	03/27/18 14:44
ZZZZZ	18C0346-07	V303271817.D	Water	03/27/18 15:09
ZZZZZ	18C0346-09	V303271818.D	Water	03/27/18 15:34
ZZZZZ	18C0346-11	V303271819.D	Water	03/27/18 16:00
ZZZZZ	18C0415-01	V303271820.D	Water	03/27/18 16:25
Trip Blank	18C0424-03	V303271822.D	Water	03/27/18 17:15
MW-4-180326	18C0424-01	V303271823.D	Water	03/27/18 17:41
ZZZZZ	18C0439-01	V303271826.D	Water	03/27/18 18:56
CCV	SGC0407-CCV1	V303271828.D	NA	03/27/18 19:47

SURROGATE RECOVERY SUMMARY

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SFK0116</u> Instrument: <u>NT3</u>

Calibration: AK00023 Calibration Date: 11/07/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
SFK0116-SCV1 (Water)	ab File ID: V311071	716.D	Analyzed: 11/	07/17 15:21
1,2-Dichloroethane-d4	5.0000	100	80 - 120	
1,2-Dichlorobenzene-d4	5.0000	100	80 - 120	
Toluene-d8	5.0000	98.8	80 - 120	
4-Bromofluorobenzene	5.0000	102	80 - 120	
Dibromofluoromethane	5.0000	103	80 - 120	

SURROGATE RECOVERY SUMMARY

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGC0407</u> Instrument: <u>NT3</u>

Calibration: AK00023 Calibration Date: 11/07/2017

Surrogate Compound		Spike Level ug/L	% Recovery	Recovery Limits	Q
BGC0717-BS1 (Water)	Lab File	e ID: V303271803	LCS.D	Analyzed: 03/	27/18 09:15
1,2-Dichloroethane-d4		5.0000	96.0	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	99.3	80 - 120	
Toluene-d8		5.0000	101	80 - 120	
4-Bromofluorobenzene		5.0000	101	80 - 120	
Dibromofluoromethane		5.0000	98.4	80 - 120	
SGC0407-ICV1 (Water)	Lal	b File ID: V303271	803.D	Analyzed: 03/	27/18 09:15
1,2-Dichloroethane-d4		5.0000	96.0	80 - 120	
1,2-Dichlorobenzene-d4		5.0000	99.3	80 - 120	
Toluene-d8		5.0000	101	80 - 120	
4-Bromofluorobenzene		5.0000	101	80 - 120	
Dibromofluoromethane		5.0000	98.4	80 - 120	
BGC0717-BSD1 (Water)		b File ID: V303271	804.D	Analyzed: 03/	27/18 09:40
1,2-Dichloroethane-d4		5.0000	97.6	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	99.6	80 - 120	
Toluene-d8		5.0000	102	80 - 120	
4-Bromofluorobenzene		5.0000	103	80 - 120	
Dibromofluoromethane		5.0000	99.9	80 - 120	
BGC0717-BLK1 (Water)	Lal	b File ID: V303271	808.D	Analyzed: 03/	27/18 11:22
1,2-Dichloroethane-d4		5.0000	103	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	103	80 - 120	
Toluene-d8		5.0000	97.1	80 - 120	
4-Bromofluorobenzene		5.0000	96.2	80 - 120	
18C0424-03 (Water)	Lal	b File ID: V303271	822.D	Analyzed: 03/	27/18 17:15
1,2-Dichloroethane-d4		5.0000	104	80 - 129	
1,2-Dichlorobenzene-d4		5.0000	99.5	80 - 120	
Toluene-d8		5.0000	97.7	80 - 120	
4-Bromofluorobenzene		5.0000	94.4	80 - 120	

SURROGATE RECOVERY SUMMARY

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGC0407</u> Instrument: <u>NT3</u>

Calibration: AK00023 Calibration Date: 11/07/2017

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
18C0424-01 (Water) La	b File ID: V303271	823.D	Analyzed: 03/	27/18 17:41
1,2-Dichloroethane-d4	5.0000	105	80 - 129	
1,2-Dichlorobenzene-d4	5.0000	102	80 - 120	
Toluene-d8	5.0000	99.2	80 - 120	
4-Bromofluorobenzene	5.0000	97.5	80 - 120	

INTERNAL STANDARD AREA AND RT SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SFK0116</u> Instrument: <u>NT3</u>

Calibration: <u>AK00023</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Secondary Cal Check (SFK0116-SC	CV1)	(Water)]	Lab File ID: V3	11071716.D		Analyzed:	11/07/17 15	5:21
Pentafluorobenzene	212374	5.414	208826	5.415	102	50 - 200	0.0010	+/-0.50	
Chlorobenzene-d5	291732	7.833	290356	7.833	100	50 - 200	0.0000	+/-0.50	
1,4-Difluorobenzene	332609	5.797	319374	5.798	104	50 - 200	0.0010	+/-0.50	
1,4-Dichlorobenzene-d4	153105	9.523	151501	9.524	101	50 - 200	0.0010	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: $\underline{SGC0407}$ Instrument: $\underline{NT3}$

Calibration: <u>AK00023</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BGC0717-BS1)		(Water)	Lab I	File ID: V30327	71803LCS.D		Analyzed:	03/27/18 09	9:15
Pentafluorobenzene	223481	5.399	208826	5.415	107	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	303233	7.822	290356	7.833	104	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	325422	5.781	319374	5.798	102	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	171190	9.513	151501	9.524	113	50 - 200	0.0110	+/-0.50	
Initial Cal Check (SGC0407-ICV1)		(Water)]	Lab File ID: V3	03271803.D		Analyzed:	03/27/18 09	9:15
Pentafluorobenzene	223481	5.399	208826	5.415	107	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	303233	7.822	290356	7.833	104	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	325422	5.781	319374	5.798	102	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	171190	9.513	151501	9.524	113	50 - 200	0.0110	+/-0.50	
LCS Dup (BGC0717-BSD1)		(Water)]	Lab File ID: V3	03271804.D		Analyzed:	03/27/18 09	9:40
Pentafluorobenzene	221778	5.398	208826	5.415	106	50 - 200	0.0170	+/-0.50	
Chlorobenzene-d5	307072	7.827	290356	7.833	106	50 - 200	0.0060	+/-0.50	
1,4-Difluorobenzene	326250	5.781	319374	5.798	102	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	169932	9.518	151501	9.524	112	50 - 200	0.0060	+/-0.50	
Blank (BGC0717-BLK1)		(Water)]	Lab File ID: V3	03271808.D	Analyzed:	03/27/18 11	1:22	
Pentafluorobenzene	206539	5.398	208826	5.415	99	50 - 200	0.0170	+/-0.50	
Chlorobenzene-d5	289501	7.822	290356	7.833	100	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	307456	5.78	319374	5.798	96	50 - 200	0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	152124	9.512	151501	9.524	100	50 - 200	0.0120	+/-0.50	
Trip Blank (18C0424-03)		(Water)]	Lab File ID: V3	03271822.D		Analyzed:	03/27/18 17	7:15
Pentafluorobenzene	179337	5.398	208826	5.415	86	50 - 200	0.0170	+/-0.50	
Chlorobenzene-d5	256546	7.822	290356	7.833	88	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	271958	5.78	319374	5.798	85	50 - 200	0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	133490	9.517	151501	9.524	88	50 - 200	0.0070	+/-0.50	
MW-4-180326 (18C0424-01)		(Water)]	Lab File ID: V3	03271823.D		Analyzed:	03/27/18 17	7:41
Pentafluorobenzene	182756	5.399	208826	5.415	88	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	253318	7.823	290356	7.833	87	50 - 200	0.0100	+/-0.50	
1,4-Difluorobenzene	267350	5.781	319374	5.798	84	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	135680	9.513	151501	9.524	90	50 - 200	0.0110	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGC0407</u> Instrument: <u>NT3</u>

Calibration: <u>AK00023</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (SGC0407-CCV)	1)	(Water)]	Lab File ID: V3	03271828.D)	Analyzed:	03/27/18 19):47
Pentafluorobenzene	192265	5.399	208826	5.415	92	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	273936	7.823	290356	7.833	94	50 - 200	0.0100	+/-0.50	
1,4-Difluorobenzene	283980	5.781	319374	5.798	89	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	154593	9.513	151501	9.524	102	50 - 200	0.0110	+/-0.50	

HOLDING TIME SUMMARY

Analysis: EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
MW-4-180326 18C0424-01	03/26/18 11:42	03/27/18 08:27	03/27/18 10:48	0	14	03/27/18 17:41	1	14	
Trip Blank 18C0424-03	03/26/18 11:42	03/27/18 08:27	03/27/18 10:48	0	14	03/27/18 17:15	1	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

EPA 8260C

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: Water Instrument: NT3

Analyte	MDL	RL	Units
Benzene	0.03	0.20	ug/L
Toluene	0.04	0.20	ug/L
Ethylbenzene	0.04	0.20	ug/L
m,p-Xylene	0.05	0.40	ug/L
o-Xylene	0.03	0.20	ug/L

Form I ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

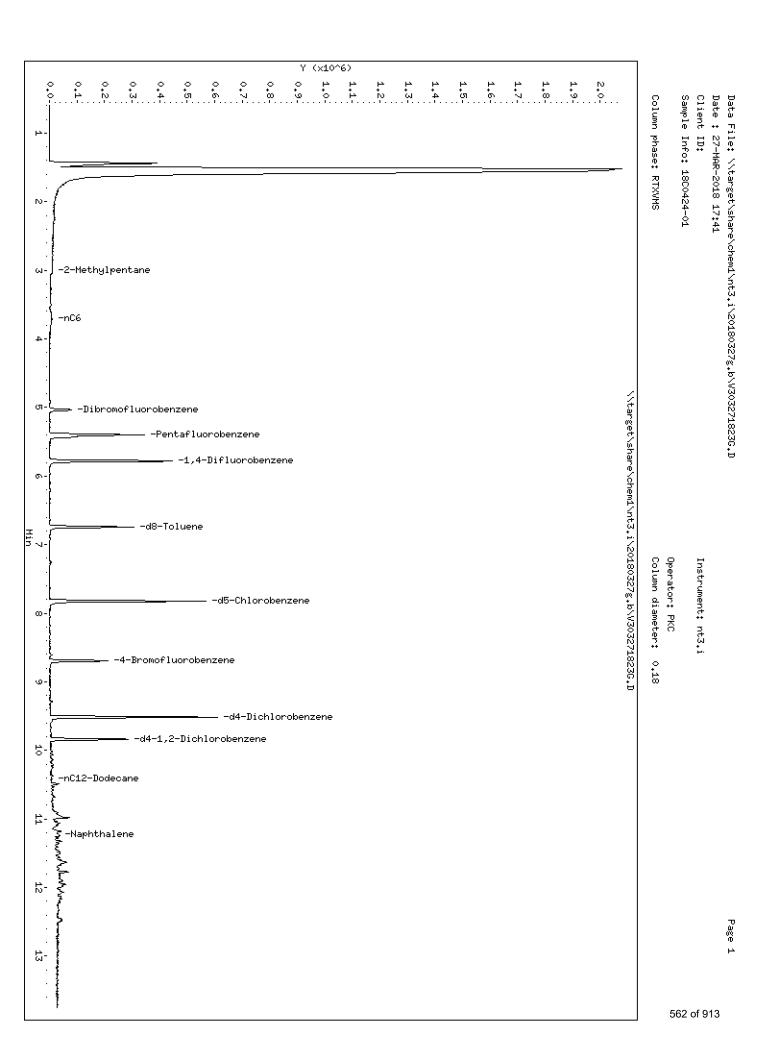
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: SVCA Area Z Remediation

Matrix: Groundwater Laboratory ID: 18C0424-01 SDG: 18C0424

Sampled: 03/26/18 11:42 Prepared: 03/27/18 10:48 File ID: V303271823G.D


% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>03/27/18 17:41</u>

Batch: BGC0717 Sequence: SGC0408 Initial/Final: 10 mL / 10 ml

Instrument: NT3 Column: RTX-VMS Calibration: BA00063

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.96	99.2	80 - 120	
4-Bromofluorobenzene	5.0000	4.87	97.5	80 - 120	

Analytical Resources Inc. GC/MS Gas Quantitation Report

Data file: 20180327g.b/V303271823G.D ARI ID: 18C0424-01

Method: \20180327g.b\NWTPHG.m

Instrument: nt3.i

Gas Ical Date: 27-JAN-2018

Injection Date: 27-MAR-2018 17:41

Matrix: WATER

Dilution Factor: 1.000

Operator: PKC

Client ID:

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.68 to 10.55)	31991220	215361	0.007
8015C 2MP-TMB (2.88 to 9.51)	70557112	121284	0.002
AK101 nC6-nC10 (3.63 to 8.66)	48812322	65885	0.001
NWTPHG Tol-Nap (6.68 to 11.34)	34228300	623655	0.018
mod8015 nC7-nC12 (5.20 to 10.55)	52022420	232531	0.004

- M Indicates manual integration within range
- * Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

7.823	849761	d5-Chlorobenzene
6.744	469495	d8-Toluene
9.513	880909	d4-Dichlorobenzene
8.695	317633	4-Bromofluorobenzene
9.838	416354	d4-1,2-Dichlorobenzene

Form I

ORGANIC ANALYSIS DATA SHEET

NWTPHg

Gasoline Range Organics (GC/MS)

Laboratory: <u>Analytical Resources, Inc.</u>

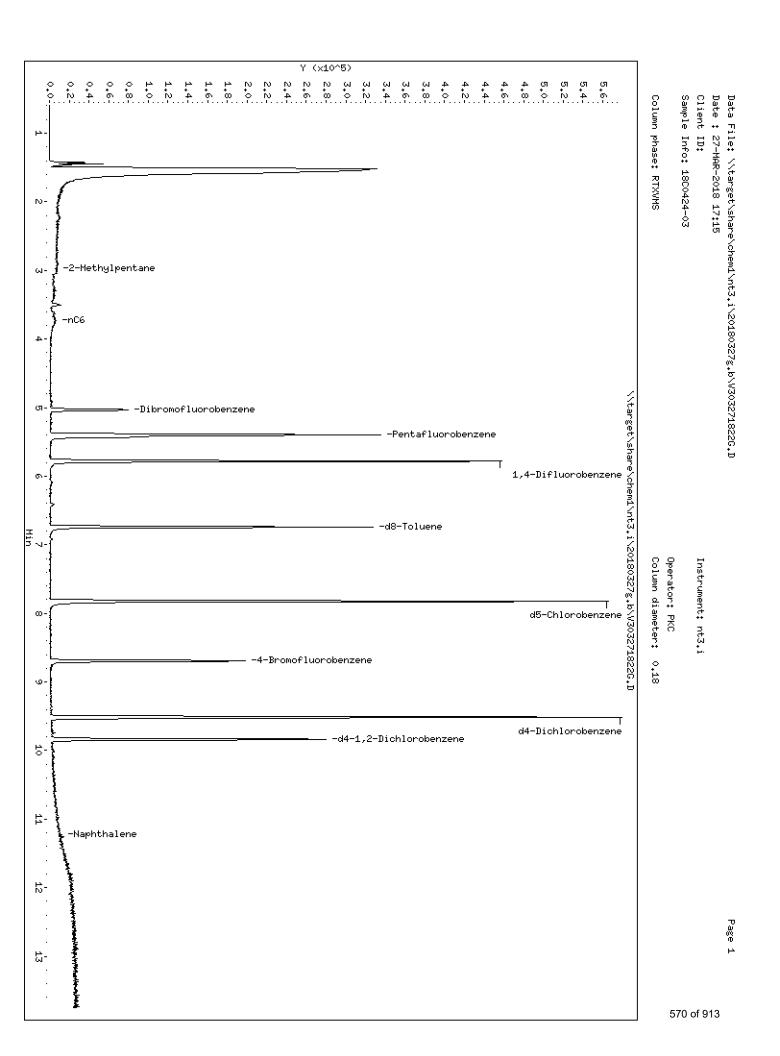
Client: Anchor QEA, LLC

Project: SVCA Area Z Remediation

Matrix: Water Laboratory ID: 18C0424-03 SDG: 18C0424

Sampled: 03/26/18 11:42 Prepared: 03/27/18 10:48 File ID: V303271822G.D

% Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Analyzed: <u>03/27/18 17:15</u>


Batch: BGC0717 Sequence: SGC0408 Initial/Final: 10 mL / 10 ml

Instrument: NT3 Column: RTX-VMS Calibration: BA00063

CAS NO.	COMPOUND	DILUTION	CONC. (ug/L)	Q	DL	RL
	Gasoline Range Organics (Tol-Nap)	1	100	U	13.6	100

SURROGATES	ADDED (ug/L)	CONC (ug/L)	% REC	QC LIMITS	Q
Toluene-d8	5.0000	4.88	97.7	80 - 120	
4-Bromofluorobenzene	5.0000	4.72	94.4	80 - 120	

Trip Blank

Analytical Resources Inc. GC/MS Gas Quantitation Report

Client ID:

Matrix: WATER

Data file: 20180327g.b/V303271822G.D ARI ID: 18C0424-03

Method: \20180327q.b\NWTPHG.m

Instrument: nt3.i

Gas Ical Date: 27-JAN-2018

Dilution Factor: 1.000 Injection Date: 27-MAR-2018 17:15

Operator: PKC _____

GASOLINE HYDROCARBONS

Range	RF	Total Area*	Amount (ug/mL)
WAGas Tol-C12 (6.68 to 10.55)	31991220	10515	0.000
8015C 2MP-TMB (2.88 to 9.51)	70557112	51358	0.001
AK101 nC6-nC10 (3.63 to 8.66)	48812322	16873	0.000
NWTPHG Tol-Nap (6.68 to 11.34)	34228300	22282	0.001
mod8015 nC7-nC12 (5.20 to 10.55)	52022420	17316	0.000

- M Indicates manual integration within range
- Surrogate areas are subtracted from Total Area

NW Gas Range Subtracted Peaks

OF140F dE Chlarab

7.822	851485	d5-Chlorobenzene
6.743	468561	d8-Toluene
9.518	866523	d4-Dichlorobenzene
8.694	309398	4-Bromofluorobenzene
9.837	411092	d4-1,2-Dichlorobenzene

PREPARATION BATCH SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

 Client:
 Anchor QEA, LLC
 Project:
 SVCA Area Z Remediation

 Batch:
 BGC0717
 Batch Matrix:
 Water
 Preparation:
 EPA 5030 (Purge and Trap)

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
MW-4-180326	18C0424-01	V303271823G.D	03/27/18 10:48	
Trip Blank	18C0424-03	V303271822G.D	03/27/18 10:48	РВ
Blank	BGC0717-BLK2	V303271808G.D	03/27/18 11:22	
LCS	BGC0717-BS2	V303271805LCSG.D	03/27/18 10:05	
LCS Dup	BGC0717-BSD2	V303271806G.D	03/27/18 10:31	

$\label{eq:form_I} \begin{tabular}{ll} Form\ I \\ METHOD\ BLANK\ DATA\ SHEET \\ NWTPHg \\ \end{tabular}$

Blank

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: Water Laboratory ID: BGC0717-BLK2 File ID: V303271808G.D

Sampled: N/A Prepared: 03/27/18 11:22 Analyzed: 03/27/18 11:22

Solids: Preparation: <u>EPA 5030 (Purge and Trap)</u> Initial/Final: <u>10 mL / 10 ml</u>

Batch: BGC0717 Sequence: SGC0408 Calibration: BA00063

Instrument: NT3 Column: RTX-VMS

	•									ı	
CAS NO.	COMPOUND	DILUTION CONC. (ug/L)		Q		DL		RL			
	Gasoline Range Organics (Tol-Nap)	1		100		U	13.6		100		
SURROGATES		ADDED (ug	₅ /L)	CONC (ug	/L)	%]	REC	Q	C LIMITS	Q	
Toluene-d8		5.0000		4.86		9′	7.1		80 - 120		
4-Bromofluorob	enzene	5.0000		4.81		90	6.2		80 - 120		

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Lab File ID: $\underline{V301271802G.D}$ Injection Date: $\underline{01/27/18}$

Instrument ID: NT3 Injection Time: 11:09

Sequence: SGA0305 Lab Sample ID: SGA0305-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE					
50	15 - 40% of 95	30	PASS				
75	30 - 80% of 95	50.3	PASS				
95	Base peak, 100% relative abundance	100	PASS				
96	5 - 9% of 95	6.81	PASS				
173	Less than 2% of 174	0.644	PASS				
174	50 - 120% of 95	90.1	PASS				
175	5 - 9% of 174	8.28	PASS				
176	95 - 101% of 174	98.7	PASS				
177	5 - 9% of 176	6.37	PASS				

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
MS Tune	SGA0305-TUN1	V301271802G.D	01/27/2018	11:09
Cal Standard	SGA0305-CAL1	V301271803G.D	01/27/2018	11:59
Cal Standard	SGA0305-CAL2	V301271804G.D	01/27/2018	12:24
Cal Standard	SGA0305-CAL3	V301271805G.D	01/27/2018	12:49
Cal Standard	SGA0305-CAL4	V301271806G.D	01/27/2018	13:15
Cal Standard	SGA0305-CAL5	V301271807G.D	01/27/2018	13:40
Cal Standard	SGA0305-CAL6	V301271808G.D	01/27/2018	14:05
Secondary Cal Check	SGA0305-SCV1	V301271810G.D	01/27/2018	14:55

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

 Lab File ID:
 V311071702G.D
 Injection Date:
 11/07/17

Instrument ID: NT3 Injection Time: 08:48

Sequence: SFK0117 Lab Sample ID: SFK0117-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	28.7	PASS
75	30 - 80% of 95	49.3	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.56	PASS
173	Less than 2% of 174	0.378	PASS
174	50 - 120% of 95	84	PASS
175	5 - 9% of 174	7.52	PASS
176	95 - 101% of 174	100	PASS
177	5 - 9% of 176	6.66	PASS

Client	Lab	Lab File ID	Date	Time Analyzed
Sample ID	Sample ID	rite in	Analyzed	Analyzed
Cal Standard	SFK0117-CAL9	V311071717G.D	11/07/2017	15:46
Cal Standard	SFK0117-CALA	V311071718G.D	11/07/2017	16:11
Cal Standard	SFK0117-CALB	V311071719G.D	11/07/2017	16:36
Cal Standard	SFK0117-CALC	V311071720G.D	11/07/2017	17:02
Cal Standard	SFK0117-CALD	V311071721G.D	11/07/2017	17:27
Cal Standard	SFK0117-CALE	V311071722G.D	11/07/2017	17:53
Secondary Cal Check	SFK0117-SCV2	V311071724G.D	11/07/2017	18:43

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Lab File ID: $\underline{V301271802G.D}$ Injection Date: $\underline{01/27/18}$

Instrument ID: NT3 Injection Time: 11:09

Sequence: SGA0305 Lab Sample ID: SGA0305-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	30	PASS
75	30 - 80% of 95	50.3	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	6.81	PASS
173	Less than 2% of 174	0.644	PASS
174	50 - 120% of 95	90.1	PASS
175	5 - 9% of 174	8.28	PASS
176	95 - 101% of 174	98.7	PASS
177	5 - 9% of 176	6.37	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SGA0305-TUN1	V301271802G.D	01/27/2018	11:09
Cal Standard	SGA0305-CAL1	V301271803G.D	01/27/2018	11:59
Cal Standard	SGA0305-CAL2	V301271804G.D	01/27/2018	12:24
Cal Standard	SGA0305-CAL3	V301271805G.D	01/27/2018	12:49
Cal Standard	SGA0305-CAL4	V301271806G.D	01/27/2018	13:15
Cal Standard	SGA0305-CAL5	V301271807G.D	01/27/2018	13:40
Cal Standard	SGA0305-CAL6	V301271808G.D	01/27/2018	14:05
Secondary Cal Check	SGA0305-SCV1	V301271810G.D	01/27/2018	14:55

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Lab File ID: $\underline{V303271802G.D}$ Injection Date: $\underline{03/27/18}$

Instrument ID: NT3 Injection Time: 08:39

Sequence: SGC0408 Lab Sample ID: SGC0408-TUN1

m/z	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15 - 40% of 95	29.9	PASS
75	30 - 80% of 95	49.6	PASS
95	Base peak, 100% relative abundance	100	PASS
96	5 - 9% of 95	7.15	PASS
173	Less than 2% of 174	0.497	PASS
174	50 - 120% of 95	93.9	PASS
175	5 - 9% of 174	6.32	PASS
176	95 - 101% of 174	95.3	PASS
177	5 - 9% of 176	7.15	PASS

Client	Lab	Lab	Date	Time
Sample ID	Sample ID	File ID	Analyzed	Analyzed
MS Tune	SGC0408-TUN1	V303271802G.D	03/27/2018	8:39
Initial Cal Check	SGC0408-ICV1	V303271805G.D	03/27/2018	10:05
LCS	BGC0717-BS2	V303271805LCSG.D	03/27/2018	10:05
LCS	BGC0716-BS1	V303271805LCSSG.D	03/27/2018	10:05
LCS Dup	BGC0717-BSD2	V303271806G.D	03/27/2018	10:31
LCS Dup	BGC0716-BSD1	V303271806LCSDSG.D	03/27/2018	10:31
Blank	BGC0717-BLK2	V303271808G.D	03/27/2018	11:22
Blank	BGC0716-BLK1	V303271808MBSG.D	03/27/2018	11:22
ZZZZZ	18C0314-01	V303271811G.D	03/27/2018	12:37
ZZZZZ	18C0314-02	V303271812G.D	03/27/2018	13:03
ZZZZZ	18C0335-03	V303271813G.D	03/27/2018	13:28
Trip Blank	18C0424-03	V303271822G.D	03/27/2018	17:15
MW-4-180326	18C0424-01	V303271823G.D	03/27/2018	17:41
Calibration Check	SGC0408-CCV1	V303271827G.D	03/27/2018	19:21

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00026 Instrument: NT3

Calibration Date: 11/07/2017 10:33 Column (1): RTX-VMS

	Level 07		Level 08 Level 09		Level 10		Level 11		Level 12			
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)					100	33307.65	250	32174.58	500	34838.34	1000	30276.92
Toluene-d8	5	1.179228	5	1.174522								
4-Bromofluorobenzene	5	0.4216929	5	0.4314252								

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00026 Instrument: NT3

Calibration Date: 11/07/2017 10:33 Column (1): RTX-VMS

	Level 13		Level 13 Level 14 Level 15		Level 16		Level 17		Level 18		
Compound		RF		RF	RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	2500	32684.44	5000	45085.22							

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: AK00026 Instrument: NT3

Calibration Date: 11/07/2017 10:33 Column (1): RTX-VMS

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Gasoline Range Organics (Tol-Nap)	34727.86	15.2			RSD (20)	
Toluene-d8	1.176875	0.3			RSD (20)	
4-Bromofluorobenzene	0.4265591	1.6			RSD (20)	

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BA00063 Instrument: NT3

]		Level 01		evel 02	L	evel 03	L	evel 04	Lo	evel 05	L	evel 06
Compound		RF		RF		RF		RF		RF		RF
Gasoline Range Organics (Tol-Nap)	100	40450.82	250	29216.08	500	30043.32	1000	33925.44	2500	37505.86		

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BA00063 Instrument: NT3

	Level 07		Level 08		Level 09		Level 10		Level 11		Level 12	
Compound		RF		RF		RF		RF		RF		RF

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BA00063 Instrument: NT3

	Level 13		Level 14 Level 1		evel 15	Level 16		Level 17		Level 18		
Compound		RF		RF		RF		RF		RF		RF
Toluene-d8	5	1.179228	5	1.174522								
4-Bromofluorobenzene	5	0.4216929	5	0.4314252								

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BA00063 Instrument: NT3

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit	Q
Gasoline Range Organics (Tol-Nap)	34228.3	14.0			RSD (15)	
Toluene-d8	1.176875	0.3			RSD (15)	
4-Bromofluorobenzene	0.4265591	1.6			RSD (15)	

INITIAL CALIBRATION CHECK NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: NT3 Calibration: BA00063

Lab File ID: <u>V303271805G.D</u> Calibration Date: <u>01/27/18 14:18</u>

Sequence: SGC0408 Injection Date: 03/27/18

Lab Sample ID: SGC0408-ICV1 Injection Time: 10:05

Sequence Name: <u>ICV</u>

		CONC. (ug/L)		RESI	PONSE FACTO	% DRIFT/DIFF		
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Gasoline Range Organics (Tol-Nap)	A	1000.0	1020	34228.3000	34995.7300		2.2	20
Toluene-d8	A	5.0000	5.02	1.1768750	1.1776410		0.4	
4-Bromofluorobenzene	A	5.0000	5.08	0.4265591	0.4273406		1.6	

^{*} Values outside of QC limits

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SFK0117</u> Instrument: <u>NT3</u>

Calibration: AK00026

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Gas 0.1	SFK0117-CAL9	V311071717G.D	NA	11/07/17 15:46
Gas 0.25	SFK0117-CALA	V311071718G.D	NA	11/07/17 16:11
Gas 0.5	SFK0117-CALB	V311071719G.D	NA	11/07/17 16:36
Gas 1.0	SFK0117-CALC	V311071720G.D	NA	11/07/17 17:02
Gas 2.5	SFK0117-CALD	V311071721G.D	NA	11/07/17 17:27
Gas 5.0	SFK0117-CALE	V311071722G.D	NA	11/07/17 17:53
Gas SCV 1	SFK0117-SCV2	V311071724G.D	NA	11/07/17 18:43

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGA0305</u> Instrument: <u>NT3</u>

Calibration: BA00063

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
MS Tune	SGA0305-TUN1	V301271802G.D	NA	01/27/18 11:09
Gas 0.1	SGA0305-CAL1	V301271803G.D	NA	01/27/18 11:59
Gas 0.25	SGA0305-CAL2	V301271804G.D	NA	01/27/18 12:24
Gas 0.5	SGA0305-CAL3	V301271805G.D	NA	01/27/18 12:49
Gas 1.0	SGA0305-CAL4	V301271806G.D	NA	01/27/18 13:15
Gas 2.5	SGA0305-CAL5	V301271807G.D	NA	01/27/18 13:40
Gas 5.0	SGA0305-CAL6	V301271808G.D	NA	01/27/18 14:05
Gas SCV 1	SGA0305-SCV1	V301271810G.D	NA	01/27/18 14:55

ANALYSIS BATCH (SEQUENCE) SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGC0408 Instrument: NT3

Calibration: BA00063

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
BFB	SGC0408-TUN1	V303271802G.D	NA	03/27/18 08:39
ICV	SGC0408-ICV1	V303271805G.D	NA	03/27/18 10:05
LCS	BGC0717-BS2	V303271805LCSG.D	Water	03/27/18 10:05
ZZZZZ	BGC0716-BS1	V303271805LCSSG.D	Solid	03/27/18 10:05
LCS Dup	BGC0717-BSD2	V303271806G.D	Water	03/27/18 10:31
ZZZZZ	BGC0716-BSD1	V303271806LCSDSG.D	Solid	03/27/18 10:31
Blank	BGC0717-BLK2	V303271808G.D	Water	03/27/18 11:22
ZZZZZ	BGC0716-BLK1	V303271808MBSG.D	Solid	03/27/18 11:22
ZZZZZ	18C0314-01	V303271811G.D	Solid	03/27/18 12:37
ZZZZZ	18C0314-02	V303271812G.D	Solid	03/27/18 13:03
ZZZZZ	18C0335-03	V303271813G.D	Solid	03/27/18 13:28
Trip Blank	18C0424-03	V303271822G.D	Water	03/27/18 17:15
MW-4-180326	18C0424-01	V303271823G.D	Water	03/27/18 17:41
CCV	SGC0408-CCV1	V303271827G.D	NA	03/27/18 19:21

SURROGATE RECOVERY SUMMARY

NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGA0305</u> Instrument: <u>NT3</u>

Calibration: BA00063 Calibration Date: 01/27/2018

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q
SGA0305-SCV1 (Solid) Lab	File ID: V30127181	Analyzed: 01/27/18 14:55		
Toluene-d8	5.0000	99.5	0 - 200	
4-Bromofluorobenzene	5.0000	112	0 - 200	

SURROGATE RECOVERY SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGC0408 Instrument: NT3

Calibration: BA00063 Calibration Date: 01/27/2018

Surrogate Compound	Spike Level ug/L	% Recovery	Recovery Limits	Q	
BGC0717-BS2 (Water) La	b File ID: V303271805	Analyzed: 03/27/18 10:05			
Toluene-d8	5.0000	100	80 - 120		
4-Bromofluorobenzene	5.0000	102	80 - 120		
SGC0408-ICV1 (Water)	Lab File ID: V30327	1805G.D	Analyzed: 03/	27/18 10:05	
Toluene-d8	5.0000	100	0 - 200		
4-Bromofluorobenzene	5.0000	102	0 - 200		
BGC0717-BSD2 (Water)	Lab File ID: V30327	1806G.D	Analyzed: 03/	27/18 10:31	
Toluene-d8	5.0000	101	80 - 120		
4-Bromofluorobenzene	5.0000	102	80 - 120		
BGC0717-BLK2 (Water)	Lab File ID: V30327	1808G.D	Analyzed: 03/27/18 11:22		
Toluene-d8	5.0000	97.1	80 - 120		
4-Bromofluorobenzene	5.0000	96.2	80 - 120		
18C0424-03 (Water)	Lab File ID: V30327	1822G.D	Analyzed: 03/	27/18 17:15	
Toluene-d8	5.0000	97.7	80 - 120		
4-Bromofluorobenzene	5.0000	94.4	80 - 120		
18C0424-01 (Water)	Lab File ID: V30327	1823G.D	Analyzed: 03/	27/18 17:41	
Toluene-d8	5.0000	99.2	80 - 120		
4-Bromofluorobenzene	5.0000	97.5	80 - 120		

INTERNAL STANDARD AREA AND RT SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGA0305</u> Instrument: <u>NT3</u>

Calibration: <u>BA00063</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Secondary Cal Check (SGA0305-SCV1) (Solid)			La	b File ID: V30	1271810G.D		Analyzed:	01/27/18 14	:55
Pentafluorobenzene	212081	5.404	208826	5.415	102	50 - 200	0.0110	+/-0.50	
Chlorobenzene-d5	287301	7.828	290356	7.833	99	50 - 200	0.0050	+/-0.50	
1,4-Difluorobenzene	319095	5.786	319374	5.798	100	50 - 200	0.0120	+/-0.50	
1,4-Dichlorobenzene-d4	155942	9.518	151501	9.524	103	50 - 200	0.0060	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: $\underline{SGC0408}$ Instrument: $\underline{NT3}$

Calibration: <u>BA00063</u>

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
LCS (BGC0717-BS2)		(Water)	Lab Fi	e ID: V303271	805LCSG.D		Analyzed:	03/27/18 10):05
Pentafluorobenzene	224624	5.399	208826	5.415	108	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	315107	7.823	290356	7.833	109	50 - 200	0.0100	+/-0.50	
1,4-Difluorobenzene	336860	5.782	319374	5.798	105	50 - 200	0.0160	+/-0.50	
1,4-Dichlorobenzene-d4	169123	9.513	151501	9.524	112	50 - 200	0.0110	+/-0.50	
Initial Cal Check (SGC0408-ICV1)		(Water)	La	b File ID: V30	3271805G.D		Analyzed:	03/27/18 10):05
Pentafluorobenzene	224624	5.399	208826	5.415	108	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	315107	7.823	290356	7.833	109	50 - 200	0.0100	+/-0.50	
1,4-Difluorobenzene	336860	5.782	319374	5.798	105	50 - 200	0.0160	+/-0.50	
1,4-Dichlorobenzene-d4	169123	9.513	151501	9.524	112	50 - 200	0.0110	+/-0.50	
LCS Dup (BGC0717-BSD2)		(Water)	La	b File ID: V30	3271806G.D		Analyzed:	03/27/18 10):31
Pentafluorobenzene	221035	5.399	208826	5.415	106	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	307909	7.822	290356	7.833	106	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	330844	5.781	319374	5.798	104	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	167231	9.513	151501	9.524	110	50 - 200	0.0110	+/-0.50	
Blank (BGC0717-BLK2)		(Water)	La	b File ID: V30	3271808G.D		Analyzed:	03/27/18 11	1:22
Pentafluorobenzene	206539	5.398	208826	5.415	99	50 - 200	0.0170	+/-0.50	
Chlorobenzene-d5	289501	7.822	290356	7.833	100	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	307456	5.78	319374	5.798	96	50 - 200	0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	152124	9.512	151501	9.524	100	50 - 200	0.0120	+/-0.50	
Trip Blank (18C0424-03)		(Water)	La	b File ID: V30	3271822G.D		Analyzed:	03/27/18 17	7:15
Pentafluorobenzene	179337	5.398	208826	5.415	86	50 - 200	0.0170	+/-0.50	
Chlorobenzene-d5	256546	7.822	290356	7.833	88	50 - 200	0.0110	+/-0.50	
1,4-Difluorobenzene	271958	5.78	319374	5.798	85	50 - 200	0.0180	+/-0.50	
1,4-Dichlorobenzene-d4	133490	9.517	151501	9.524	88	50 - 200	0.0070	+/-0.50	
MW-4-180326 (18C0424-01)		(Water)	La	b File ID: V30	3271823G.D		Analyzed:	03/27/18 17	7:41
Pentafluorobenzene	182756	5.399	208826	5.415	88	50 - 200	0.0160	+/-0.50	
Chlorobenzene-d5	253318	7.823	290356	7.833	87	50 - 200	0.0100	+/-0.50	
1,4-Difluorobenzene	267350	5.781	319374	5.798	84	50 - 200	0.0170	+/-0.50	
1,4-Dichlorobenzene-d4	135680	9.513	151501	9.524	90	50 - 200	0.0110	+/-0.50	

HOLDING TIME SUMMARY

Analysis: NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
MW-4-180326 18C0424-01	03/26/18 11:42	03/27/18 08:27	03/27/18 10:48	0	14	03/27/18 17:41	1	14	
Trip Blank 18C0424-03	03/26/18 11:42	03/27/18 08:27	03/27/18 10:48	0	14	03/27/18 17:15	1	14	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS

NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: Solid Instrument: NT3

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	2500	5000	ug/kg

METHOD DETECTION AND REPORTING LIMITS

NWTPHg

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: Water Instrument: NT3

Analyte	MDL	RL	Units
Gasoline Range Organics (Tol-Nap)	13.6	100	ug/L

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

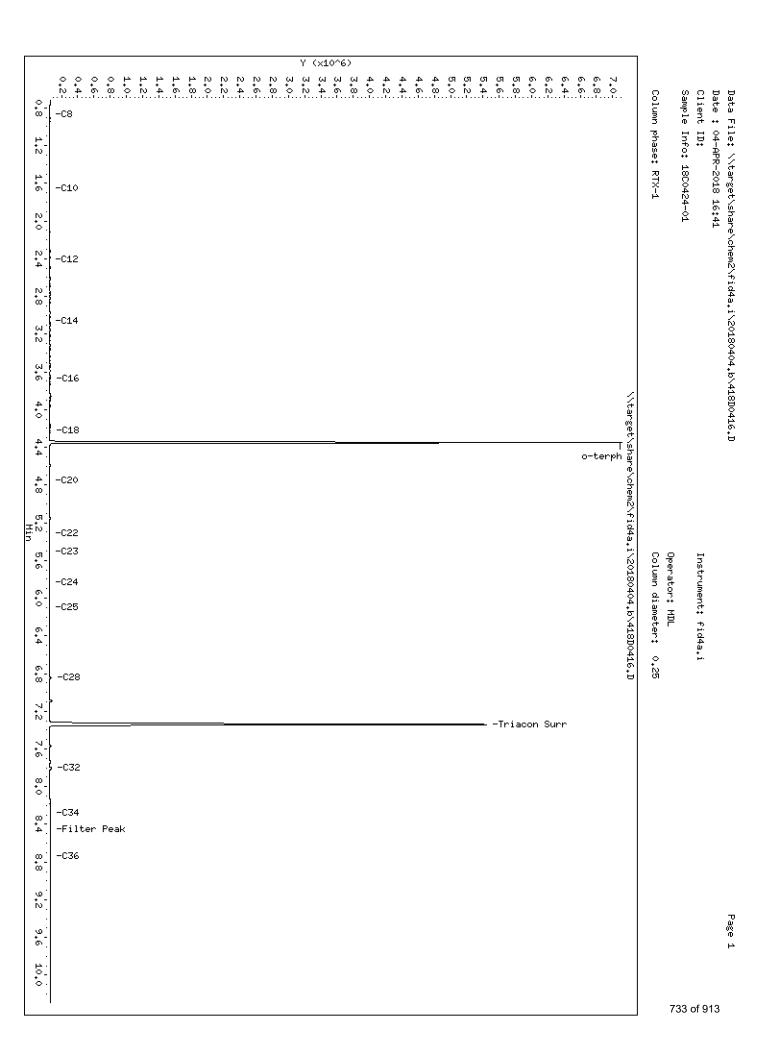
Laboratory: <u>Analytical Resources, Inc.</u>

Client: Anchor QEA, LLC

Project: SVCA Area Z Remediation

Matrix: Groundwater Laboratory ID: 18C0424-01 SDG: 18C0424

Sampled: <u>03/26/18 11:42</u> Prepared: <u>04/02/18 10:12</u> File ID: <u>418D0416.D</u>


% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>04/04/18 16:41</u>

Batch: BGC0815 Sequence: SGD0044 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: BC00067

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.100	U	0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.392	87.2	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20180404.b/418D0416.D ARI ID: 18C0424-01

Method: 20180404.b\FID4TPH.m Client ID:

Instrument: fid4a.i, MDL Injection: 04-APR-2018 16:41

Report Date: 04/05/2018 Dilution Factor: 1

Macro: 27-MAR-2018

Calibration Dates: Gas:XX-XXXX Diesel:27-MAR-2018 M.Oil:27-MAR-2018

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg/L)
C8	0.868	-0.015	5139	 7886	WATPHD	(C12-C24)	830416	49.0
C10	1.655	0.002	2436	2088	WATPHM	(C24-C38)	234576	12.0
C12	2.415	0.013	3822	4138	AK102	(C10-C25)	923619	46.4
C14	3.063	-0.004	5430	7304	AK103	(C25-C36)	225629	13.7
C16	3.671	0.008	9009	10125	OR.DIES	(C10-C28)	967355	48.5
C18	4.229	0.016	6336	6369	1			
C20	4.757	-0.012	4621	8134				
C22	5.316	-0.001	4222	3035				
C24	5.838	-0.006	3192	5730				
C25	6.098	0.003	5824	8326				
C26								
C28	6.843	-0.002	20187	21300				
C32	7.804	-0.002	25284	37827				
C34	8.283	0.020	6627	4887				
Filter Peak	8.452	-0.042	7371	2906	BUNKERC	(C10-C38)	1154384	205.3
C36	8.743	0.021	9147	5424				
C38								
C40								
o-terph	4.350	-0.002	7060997	4934742	1			
Triacon Surr		-0.003	5389628		•	S (C10-C24)	919807	46.3

Range Times: NW Diesel(2.402 - 5.843) AK102(1.65 - 6.10) Jet A(1.65 - 4.21) NW M.Oil(5.84 - 9.18) AK103(6.10 - 8.72) OR Diesel(1.65 - 6.84)

Surrogate	Area	Amount	
o-Terphenyl	4934742	196.1 M	
Triacontane	5575848	188.1	

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr	25166.0	27-MAR-2018
Triacon Surr	29646.7	27-MAR-2018
Gas	15000.0	XX-XXX-XXXX
Diesel	16949.0	27-MAR-2018
Motor Oil	19499.0	27-MAR-2018
AK102	19895.0	27-MAR-2018
AK103	16514.0	27-MAR-2018
OR Diesel	19953.0	27-MAR-2018
NAS Diesel	19874.0	27-MAR-2018
Bunker C	5623.4	30-MAR-2018

9.6 9.0 282 **€**533 **€**533 _ . w 0.6 900*6 #11ter Peak 라테라 라마 라마 라마 8.7 8.7 (Σt/2*8) 923 4 4 Filter Peak (8,452) ω (8,283) 9:1 9.1 (408,7) SEC 7.5 7.5 åi⊅ε.ς) naw2 no∋sinT Processed Integration aang uopetal-7.2 7,2 Manual Integrat: 880°Z 6 ؈ؘ (C28 (6,843) 823 9,9 368 1 鲱罩 6,3 6,3 (860'9) 52 0.9 9 Injection: 04-APR-2018 16:41 (828°S) þ 5.1 5.4 5.7 Time (Min) 5.1 5.4 5.7 Time (Min) (8,316) (8,316) 4 ® 6. (292'+) 023 4. ت (088,4) Aqrat-o yduəl o (4,229) м Ф ъ. Б (1Z9°Σ) 9<u>च</u> φ 9.0 20180404.b/418D0416.D m M M (£90°£) *## 9 3.0 2,7 2,7 2,4 4 (21415) (314.2) 219 (1.655) 219 2,1 Lab ID:18C0424-01 Datafile: FID4A, 1.8 1,5 1,5 1,2 1,2 4. 0.0 (9~01×) A (9~01×) A

9

9

TPH Manual Integrations Report

Form I ORGANIC ANALYSIS DATA SHEET

NWTPH-Dx TPH (Extractables)

Laboratory: <u>Analytical Resources, Inc.</u>

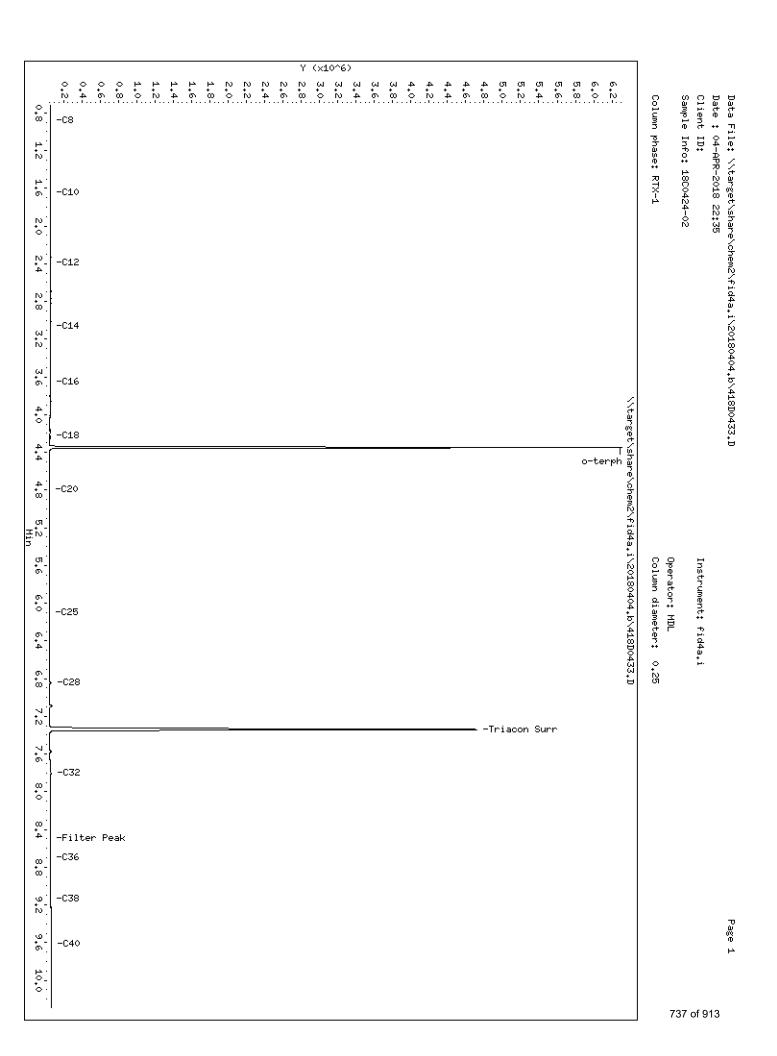
Client: Anchor QEA, LLC

Project: SVCA Area Z Remediation

Matrix: Groundwater Laboratory ID: 18C0424-02 SDG: 18C0424

Sampled: 03/26/18 11:42 Prepared: 04/02/18 11:55 File ID: 418D0433.D

% Solids: Preparation: <u>EPA 3510C SepF</u> Analyzed: <u>04/04/18 22:35</u>


Batch: BGC0819 Sequence: SGD0044 Initial/Final: 500 mL / 1 mL

Instrument: FID4 Column: RTX-1 Calibration: BC00067

Cleanups: Silica Gel, Sulfuric Acid

CAS NO.	COMPOUND	DILUTION	CONC. (mg/L)	Q	DL	RL
	Diesel Range Organics (C12-C24)	1	0.119		0.033	0.100
	Motor Oil Range Organics (C24-C38)	1	0.200	U	0.056	0.200

SURROGATES	ADDED (mg/L)	CONC (mg/L)	% REC	QC LIMITS	Q
o-Terphenyl	0.45000	0.346	76.8	50 - 150	

Analytical Resources Inc. TPH Quantitation Report

Data file: 20180404.b/418D0433.D ARI ID: 18C0424-02

Method: 20180404.b\FID4TPH.m Client ID:

Instrument: fid4a.i, MDL Injection: 04-APR-2018 22:35

Report Date: 04/05/2018 Dilution Factor: 1

Macro: 27-MAR-2018

Calibration Dates: Gas:XX-XXXX-XXXX Diesel:27-MAR-2018 M.Oil:27-MAR-2018

FID:4A RESULTS

Compound	RT	Shift	Height	Area	Method	Range	Total Area	Conc(mg/L
C8	0.881	-0.002	8747	13943	WATPHD	(C12-C24)	 1007777	59 . 5
C10	1.645	-0.008	9003	6672	WATPHM	(C24-C38)	268741	13.8
C12	2.388	-0.013	15092	16733	AK102	(C10-C25)	1363700	68.5
C14	3.062	-0.005	10848	10998	AK103	(C25-C36)	232260	14.1
C16	3.655	-0.007	9419	10114	OR.DIES	(C10-C28)	1391649	69.7
C18	4.228	0.014	5649	5273	1			
C20	4.794	0.026	2241	1387				
C22								
C24								
C25	6.099	0.003	867	1066	1			
C26								
C28	6.843	-0.002	17300	24014				
C32	7.808	0.002	25510	48130				
C34					1			
Filter Peak	8.496	0.003	11398	10102	BUNKERC	(C10-C38)	1632441	290.3
C36	8.702	-0.021	12405	8021				
C38	9.141	-0.037	15173	14331				
C40	9.620	-0.014	17976	7172	1			
o-terph	4.350	-0.002	6264063	4350448	1			
Triacon Surr	7.339	-0.005	4679413	4949635		G (C10-C24)	1363700	68.6

Range Times: NW Diesel(2.402 - 5.843) AK102(1.65 - 6.10) Jet A(1.65 - 4.21) NW M.Oil(5.84 - 9.18) AK103(6.10 - 8.72) OR Diesel(1.65 - 6.84)

Surrogate	Area	Amount
o-Terphenyl	4350448	172.9
Triacontane	4949635	167.0

M Indicates the peak was manually integrated

Analyte	RF	Curve Date
o-Terph Surr	25166.0	27-MAR-2018
Triacon Surr	29646.7	27-MAR-2018
Gas	15000.0	XX-XXX-XXXX
Diesel	16949.0	27-MAR-2018
Motor Oil	19499.0	27-MAR-2018
AK102	19895.0	27-MAR-2018
AK103	16514.0	27-MAR-2018
OR Diesel	19953.0	27-MAR-2018
NAS Diesel	19874.0	27-MAR-2018
Bunker C	5623.4	30-MAR-2018

PREPARATION BATCH SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Batch: BGC0815 Batch Matrix: Water Preparation: EPA 3510C SepF

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
MW-4-180326	18C0424-01	418D0416.D	04/02/18 10:12	
Blank	BGC0815-BLK1	418D0414.D	04/02/18 10:12	
LCS	BGC0815-BS1	418D0415.D	04/02/18 10:12	

PREPARATION BATCH SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Batch: BGC0819 Batch Matrix: Water Preparation: EPA 3510C SepF

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARED	OBSERVATIONS
MW-4-180326	18C0424-02	418D0433.D	04/02/18 11:55	
Blank	BGC0819-BLK1	418D0431.D	04/02/18 11:55	
LCS	BGC0819-BS1	418D0432.D	04/02/18 11:55	

CLEANUP BATCH SUMMARY

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Cleanup Batch: CGD0028 Cleanup Type: Sulfuric Acid

Cleanup Method: EPA 3665A Sulfuric Acid Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
MW-4-180326	18C0424-02	418D0433.D	04/04/2018	

CLEANUP BATCH SUMMARY

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Cleanup Batch: CGD0029 Cleanup Type: Silica Gel

Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: NWTPH-Dx

SAMPLE NAME	LAB SAMPLE ID	LAB FILE ID	DATE PREPARE	OBSERVATIONS
MW-4-180326	18C0424-02	418D0433.D	04/04/2018	

Form I METHOD BLANK DATA SHEET NWTPH-Dx

Blank

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

 Matrix:
 Water
 Laboratory ID:
 BGC0815-BLK1
 File ID:
 418D0414.D

 Sampled:
 N/A
 Prepared:
 04/02/18 10:12
 Analyzed:
 04/04/18 15:58

Solids: Preparation: <u>EPA 3510C SepF</u> Initial/Final: <u>500 mL / 1 mL</u>

Batch: BGC0815 Sequence: SGD0044 Calibration: BC00067

Instrument: FID4 Column: RTX-1

CAS NO.	COMPOUND	DILUTION	COl	NC. (mg/L)		Q	DL		RL		
	Diesel Range Organics (C12-C24)	1		0.100		U	0.033		0.100		
	Motor Oil Range Organics (C24-C38)	1		0.200		U	0.056		0.200		
SURROGATES		ADDED (mg	g/L)	CONC (mg	₅ /L)	% I	REC	Q	C LIMITS	(Q
o-Terphenyl		0.45000		0.365		8	1.2		50 - 150		

Solids:

Form I METHOD BLANK DATA SHEET **NWTPH-Dx**

Blank

500 mL / 1 mL

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Anchor QEA, LLC Client: Project: SVCA Area Z Remediation

Matrix: Laboratory ID: BGC0819-BLK1 File ID: Water 418D0431.D

Sampled: N/A Prepared: 04/02/18 11:55 Analyzed: 04/04/18 21:52

Batch: BGC0819 Sequence: SGD0044 Calibration: BC00067

Preparation:

FID4 Column: RTX-1 Cleanups: Silica Gel, Sulfuric Acid Instrument:

CAS NO.	COMPOUND	DILUTION	CON	NC. (mg/L)		Q	DL		RL	
	Diesel Range Organics (C12-C24)	1		0.100		U	0.033		0.100	
	Motor Oil Range Organics (C24-C38)	1		0.200		U	0.056)	0.200	
SURROGATES		ADDED (mg	g/L)	CONC (mg	₅ /L)	%]	REC	Q	C LIMITS	Q
o-Terphenyl		0.45000		0.368		8	1.8		50 - 150	

EPA 3510C SepF

Initial/Final:

LCS / LCS DUPLICATE RECOVERY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 04/04/18 16:20

 Batch:
 BGC0815
 Laboratory ID:
 BGC0815-BS1

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	2.82		94.1	56 - 120

^{*} Indicates values outside of QC limits

BGC0819

LCS / LCS DUPLICATE RECOVERY NWTPH-Dx

Laboratory ID:

BGC0819-BS1

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

 Matrix:
 Water
 Analyzed:
 04/04/18 22:14

Preparation: <u>EPA 3510C SepF</u> Sequence Name: <u>LCS</u>

Initial/Final: 500 mL / 1 mL

Batch:

	SPIKE	LCS		LCS	QC
	ADDED	CONCENTRATION		%	LIMITS
COMPOUND	(mg/L)	(mg/L)	Q	REC. #	REC.
Diesel Range Organics (C12-C24)	3.00	2.31		76.9	56 - 120

^{*} Indicates values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Instrument: FID4

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Lo	evel 05	Lo	evel 06
Compound		RF		RF		RF		RF		RF		RF
Diesel Range Organics (C12-C24)	50	21089.68	100	15492.66	250	14177.5	500	17224.78	1000	16364.48	2500	17347.12
o-Terphenyl	9	29967.67	18	25280.11	45	23405.67	90	25034.7	180	23200.24	450	24107.67

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Instrument: FID4

	L	evel 07	L	evel 08	L	evel 09	L	evel 10	L	evel 11	Lo	evel 12
Compound		RF		RF		RF		RF		RF		RF
Motor Oil Range Organics (C24-C38)	100	13260.15	250	24375.63	500	20067.88	1000	18850.14	2500	20941.59	5000	19499.82

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Instrument: FID4

	L	evel 13	L	evel 14	L	evel 15	L	evel 16	Le	evel 17	Lo	evel 18
Compound		RF		RF		RF		RF		RF		RF

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Instrument: FID4

COMPOUND	Mean RF	RF RSD	Linear COD	Quad COD	Limit Type & Limit Q
Diesel Range Organics (C12-C24)	16949.37	13.8			RSD (20)
Motor Oil Range Organics (C24-C38)	19499.2	18.6			RSD (20)
o-Terphenyl	25166.01	9.9			RSD (20)

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Laboratory ID: SGC0396-SCV1

Sequence: SGC0396 Sequence Name: DIES SCV 500

Standard ID: F011649

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Diesel Range Organics (C12-C24)	500.00	522	4.5	30.00
o-Terphenyl	90.000	90.3	0.3	

^{*} Indicates values outside of QC limits

SECOND-SOURCE CALIBRATION VERIFICATION NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Calibration: BC00067 Laboratory ID: SGC0396-SCV2

Sequence: SGC0396 Sequence Name: Moil SCV 1000

Standard ID: G002331

ANALYTE	EXPECTED (mg/L)	FOUND (mg/L)	% DRIFT	QC LIMIT
Motor Oil Range Organics (C24-C38)	1000.0	1160	16.1	30.00

^{*} Indicates values outside of QC limits

INITIAL CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: <u>418D0404.D</u> Calibration Date: <u>03/27/18 15:31</u>

Sequence: $\underline{SGD0044}$ Injection Date: $\underline{04/04/18}$

Lab Sample ID: SGD0044-ICV1 Injection Time: 12:21

Sequence Name: <u>Diesel CCV1</u>

		CONC.	(mg/L)	RESI	PONSE FACTO	OR	% DRIFT/DIFF	
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	556	16949.3700	18855.4000		11.2	15
o-Terphenyl	A	90.000	90.0	25166.0100	25162.2900		0.0	15

^{*} Values outside of QC limits

INITIAL CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: <u>418D0405.D</u> Calibration Date: <u>03/27/18 15:31</u>

Sequence: $\underline{SGD0044}$ Injection Date: $\underline{04/04/18}$

Lab Sample ID: SGD0044-ICV2 Injection Time: 12:41

Sequence Name: <u>MOIL CCV2</u>

		CONC.	(mg/L)	RESI	RESPONSE FACTOR			T/DIFF
COMPOUND	TYPE	STD	ICV	ICAL	ICV	MIN	ICV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1020	19499.2000	19969.0300		2.4	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: 418D0412.D Calibration Date: 03/27/18 15:31

Sequence: SGD0044 Injection Date: 04/04/18

Lab Sample ID: SGD0044-CCV1 Injection Time: 15:17

Sequence Name: <u>Diesel CCV1</u>

		CONC.	(mg/L)	RE	SPONSE FACTO	OR	% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	557	16949.37	18882.9		11.4	15
o-Terphenyl	A	90.000	88.8	25166.01	24830.78		-1.3	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: 418D0413.D Calibration Date: 03/27/18 15:31

Sequence: SGD0044 Injection Date: 04/04/18

Lab Sample ID: SGD0044-CCV2 Injection Time: 15:38

Sequence Name: MOIL CCV2

		CONC.	(mg/L)	RE	SPONSE FACTO	OR	% DRIFT/DIFF		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1060	19499.2	20743.9		6.4	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: 418D0428.D Calibration Date: 03/27/18 15:31

Sequence: SGD0044 Injection Date: 04/04/18

Lab Sample ID: SGD0044-CCV3 Injection Time: 20:51

Sequence Name: <u>Diesel CCV3</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	518	16949.37	17569.39		3.7	15
o-Terphenyl	A	90.000	89.7	25166.01	25070.1		-0.3	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: 418D0429.D Calibration Date: 03/27/18 15:31

Sequence: SGD0044 Injection Date: 04/04/18

Lab Sample ID: SGD0044-CCV4 Injection Time: 21:11

Sequence Name: MOIL CCV4

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Motor Oil Range Organics (C24-C38)	A	1000.0	1070	19499.2	20828.1		6.8	15

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: 418D0441.D Calibration Date: 03/27/18 15:31

Sequence: SGD0044 Injection Date: 04/05/18

Lab Sample ID: SGD0044-CCV5 Injection Time: 01:22

Sequence Name: <u>Diesel CCV5</u>

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF	
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT
Diesel Range Organics (C12-C24)	A	500.00	559	16949.37	18960.85		11.9	15
o-Terphenyl	A	90.000	92.1	25166.01	25754.99		2.3	15

^{*} Values outside of QC limits

CONTINUING CALIBRATION CHECK NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Instrument ID: FID4 Calibration: BC00067

Lab File ID: <u>418D0442.D</u> Calibration Date: <u>03/27/18 15:31</u>

Sequence: SGD0044 Injection Date: 04/05/18

Lab Sample ID: SGD0044-CCV6 Injection Time: 01:42

Sequence Name: MOIL CCV6

		CONC. (mg/L)		RESPONSE FACTOR			% DRIFT/DIFF		
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN	CCV	LIMIT	
Motor Oil Range Organics (C24-C38)	A	1000.0	1040	19499.2	20213.55		3.7	15	

^{*} Values outside of QC limits

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGC0396 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SGC0396-IBL1	418C2714.D	NA	03/27/18 14:59
Instrument Blank	SGC0396-IBL2	418C2715.D	NA	03/27/18 15:20
Diesel 50	SGC0396-CAL1	418C2718.D	NA	03/27/18 17:18
Diesel 100	SGC0396-CAL2	418C2719.D	NA	03/27/18 17:39
Diesel 250	SGC0396-CAL3	418C2720.D	NA	03/27/18 18:00
Diesel 500	SGC0396-CAL4	418C2721.D	NA	03/27/18 18:21
Diesel 1000	SGC0396-CAL5	418C2722.D	NA	03/27/18 18:42
Diesel 2500	SGC0396-CAL6	418C2723.D	NA	03/27/18 19:03
MOIL 100	SGC0396-CAL7	418C2724.D	NA	03/27/18 19:23
Moil 250	SGC0396-CAL8	418C2725.D	NA	03/27/18 19:44
Moil 500	SGC0396-CAL9	418C2726.D	NA	03/27/18 20:04
Moil 1000	SGC0396-CALA	418C2727.D	NA	03/27/18 20:25
Moil 2500	SGC0396-CALB	418C2728.D	NA	03/27/18 20:47
Moil 5000	SGC0396-CALC	418C2729.D	NA	03/27/18 21:07
DIES SCV 500	SGC0396-SCV1	418C2730.D	NA	03/27/18 21:28
Moil SCV 1000	SGC0396-SCV2	418C2731.D	NA	03/27/18 21:48

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGC0447 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SGC0447-IBL1	418C3001.D	NA	03/30/18 11:49
Instrument Blank	SGC0447-IBL2	418C3002.D	NA	03/30/18 12:09

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGD0044 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
Retention Time Std	SGD0044-IBL1	418D0402.D	NA	04/04/18 11:39
Instrument Blank	SGD0044-IBL2	418D0403.D	NA	04/04/18 12:01
Diesel CCV1	SGD0044-ICV1	418D0404.D	NA	04/04/18 12:21
MOIL CCV2	SGD0044-ICV2	418D0405.D	NA	04/04/18 12:41
ZZZZZ	18C0363-03RE1	418D0406.D	Water	04/04/18 13:02
ZZZZZ	18C0363-04RE1	418D0407.D	Water	04/04/18 13:23
ZZZZZ	BGD0036-BLK1	418D0408.D	Solid	04/04/18 13:45
ZZZZZ	BGD0036-BS1	418D0409.D	Solid	04/04/18 14:05
ZZZZZ	18C0403-01	418D0410.D	Solid	04/04/18 14:26
ZZZZZ	18C0403-02	418D0411.D	Solid	04/04/18 14:46
Diesel CCV1	SGD0044-CCV1	418D0412.D	NA	04/04/18 15:17
MOIL CCV2	SGD0044-CCV2	418D0413.D	NA	04/04/18 15:38
Blank	BGC0815-BLK1	418D0414.D	Water	04/04/18 15:58
LCS	BGC0815-BS1	418D0415.D	Water	04/04/18 16:20
MW-4-180326	18C0424-01	418D0416.D	Water	04/04/18 16:41
ZZZZZ	18C0445-01	418D0417.D	Water	04/04/18 17:01
ZZZZZ	18C0445-02	418D0418.D	Water	04/04/18 17:22
ZZZZZ	18C0457-01	418D0419.D	Water	04/04/18 17:43
ZZZZZ	18C0457-02	418D0420.D	Water	04/04/18 18:05
ZZZZZ	18C0457-03	418D0421.D	Water	04/04/18 18:25
ZZZZZ	18C0457-04	418D0422.D	Water	04/04/18 18:46
ZZZZZ	18C0457-05	418D0425.D	Water	04/04/18 19:47
ZZZZZ	18C0457-06	418D0426.D	Water	04/04/18 20:10
ZZZZZ	18C0457-07	418D0427.D	Water	04/04/18 20:30
Diesel CCV3	SGD0044-CCV3	418D0428.D	NA	04/04/18 20:51
MOIL CCV4	SGD0044-CCV4	418D0429.D	NA	04/04/18 21:11
ZZZZZ	18C0474-01	418D0430.D	Water	04/04/18 21:32
Blank	BGC0819-BLK1	418D0431.D	Water	04/04/18 21:52
LCS	BGC0819-BS1	418D0432.D	Water	04/04/18 22:14
MW-4-180326	18C0424-02	418D0433.D	Water	04/04/18 22:35

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGD0044 Instrument: FID4

Sample Name	Lab Sample ID	Lab File ID	Matrix	Analysis Date/Time
ZZZZZ	BGD0040-BLK1	418D0434.D	Water	04/04/18 22:56
ZZZZZ	BGD0040-BS1	418D0435.D	Water	04/04/18 23:16
ZZZZZ	18D0001-01	418D0436.D	Water	04/04/18 23:37
ZZZZZ	18D0001-02	418D0437.D	Water	04/04/18 23:57
ZZZZZ	18D0001-03	418D0438.D	Water	04/05/18 00:19
ZZZZZ	18D0027-01	418D0440.D	Water	04/05/18 01:01
Diesel CCV5	SGD0044-CCV5	418D0441.D	NA	04/05/18 01:22
MOIL CCV6	SGD0044-CCV6	418D0442.D	NA	04/05/18 01:42

SURROGATE RECOVERY AND RT SUMMARY

NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: <u>SGC0396</u> Instrument: <u>FID4</u>

Calibration: BC00067 Calibration Date: 03/30/2018

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SGC0396-SCV1 (Water)	r) Lab File ID: 418C2730.D Analyzed: 03/27/18						d: 03/27/18 21:	28
o-Terphenyl	90.000	100	0 - 200	4.35	4.353333	-0.0033	N/A	

SURROGATE RECOVERY AND RT SUMMARY NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG/WO: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sequence: SGD0044 Instrument: FID4

Calibration: BC00067 Calibration Date: 03/30/2018

Surrogate Compound	Spike Level mg/L	% Recovery	Recovery Limits	RT	Calibration Mean RT	RT Diff	RT Diff Limit	Q
SGD0044-IBL1 (Water)	Lab File ID: 418D0402.D					Analyzed: 04/04/18 11:3		
o-Terphenyl	225.00	105	50 - 150	4.35	4.353333	-0.0033	N/A	
SGD0044-IBL2 (Water)			Lab File II	D: 418D0403.I	D	Analyze	d: 04/04/18 12	:01
o-Terphenyl	225.00	99.6	50 - 150	4.35	4.353333	-0.0033	N/A	
SGD0044-ICV1 (Water)			Lab File II	D: 418D0404.I	D	Analyze	d: 04/04/18 12	:21
o-Terphenyl	90.000	100	85 - 115	4.35	4.353333	-0.0033	N/A	
BGC0815-BLK1 (Water)			Lab File II	D: 418D0414.I	D	Analyze	d: 04/04/18 15	:58
o-Terphenyl	0.45000	81.2	50 - 150	4.35	4.353333	-0.0033	N/A	
BGC0815-BS1 (Water)			Lab File II	D: 418D0415.I	D	Analyze	d: 04/04/18 16	:20
o-Terphenyl	0.45000	91.2	50 - 150	4.35	4.353333	-0.0033	N/A	
18C0424-01 (Water)			Lab File II	D: 418D0416.I	D	Analyze	d: 04/04/18 16	:41
o-Terphenyl	0.45000	87.2	50 - 150	4.35	4.353333	-0.0033	N/A	
BGC0819-BLK1 (Water)			Lab File II	D: 418D0431.I	D	Analyze	d: 04/04/18 21	:52
o-Terphenyl	0.45000	81.8	50 - 150	4.35	4.353333	-0.0033	N/A	
BGC0819-BS1 (Water)			Lab File II	D: 418D0432.1		Analyze	d: 04/04/18 22	:14
o-Terphenyl	0.45000	73.2	50 - 150	4.35	4.353333	-0.0033	N/A	
18C0424-02 (Water)			Lab File II	D: 418D0433.I	D	Analyze	d: 04/04/18 22	:35
o-Terphenyl	0.45000	76.8	50 - 150	4.35	4.353333	-0.0033	N/A	

HOLDING TIME SUMMARY

Analysis: NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Sample Name	Date Collected	Date Received	Date Prepared	Days to Prep	Max Days to Prep	Date Analyzed	Days to Analysis	Max Days to Analysis	Q
MW-4-180326 18C0424-01	03/26/18 11:42	03/27/18 08:27	04/02/18 10:12	6	7	04/04/18 16:41	2	40	
MW-4-180326 18C0424-02	03/26/18 11:42	03/27/18 08:27	04/02/18 11:55	7	7	04/04/18 22:35	2	40	

^{*} Indicates hold time exceedance.

METHOD DETECTION AND REPORTING LIMITS NWTPH-Dx

Laboratory: Analytical Resources, Inc. SDG: 18C0424

Client: Anchor QEA, LLC Project: SVCA Area Z Remediation

Matrix: Water Instrument: FID4

Analyte	MDL	RL	Units
Diesel Range Organics (C12-C24)	0.033	0.100	mg/L
Motor Oil Range Organics (C24-C38)	0.056	0.200	mg/L

Appendix E Analysis of Petroleum Chromatograms

June 2018 Sudden Valley Area Z Remediation

Appendix E Analysis of Petroleum Chromatograms

Prepared for Wilson Engineering, LLC And Sudden Valley Community Association June 2018 Sudden Valley Area Z Remediation

Appendix E Analysis of Petroleum Chromatograms

Prepared for

Wilson Engineering, LLC 805 Dupont Street, Suite 7 Bellingham, Washington 98225

and:

Sudden Valley Community Association 4 Clubhouse Circle Bellingham, Washington 98229 **Prepared by**Anchor QEA, LLC
1605 Cornwall Avenue
Bellingham, Washington 98225

TABLE OF CONTENTS

1	Introduction	on	1
2	Soil Chron	natogram Review	2
3	Groundwa	ter Chromatogram Review	5
4	Discussion		7
5	References	5	8
FIG	URES		
Figu	ure 1	GC-FID Spectra of Mixed Diesel and Motor Oil Standards	1
Figu	ure 2	GC-FID Chromatograms Without (top) and With (bottom) Silica Gel Cleanup for Soil Sample SVCA-TP-103-3-4-170823	2
Figu	ure 3	GC-FID Chromatogram of Unidentified Plant Organic Matter	3
Figu	ure 4	GC-FID Chromatogram of Diesel and Oil Contaminated Soil (top) and Organic Rich (peat) Diesel and Oil Contaminated Soil	4
Figu	ure 5	Comparison of GC-FID Chromatograms for Soil (TP-103 3-4 ft) and MW-4 Groundwater (analyzed without silica gel cleanup)	
Fiau	ıre 6	Water Soluble Fraction of Gasoline and Diesel	6

i

ABBREVIATIONS

Ecology Washington State Department of Ecology

GC-FID Gas Chromatography – Flame Ionization Detector

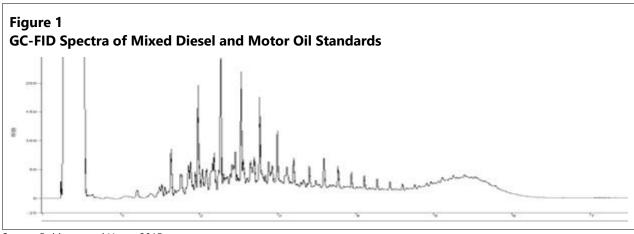
mg/kg milligrams per kilogram

mg/L milligrams per liter

NWTPH-d Northwest Total Petroleum Hydrocarbon-diesel range

NWTPH-dx Northwest Total Petroleum Hydrocarbon-diesel range extended

TPH total petroleum hydrocarbon UCM unresolved complex mixture

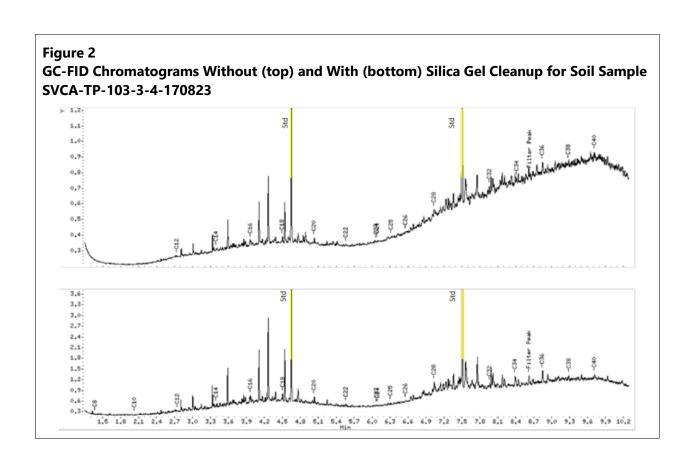

Introduction 1

This report evaluates the composition of petroleum hydrocarbons detected within soils and groundwater of Area Z. That contamination consists of diesel fuel released from a historical aboveground storage tank.

Characterization of total petroleum hydrocarbons (TPH) within Area Z has included testing for gasoline-, diesel-, and motor oil-range hydrocarbons. Gasoline-range hydrocarbons have not been detected during recent sampling.

Analyses of diesel- and oil-range hydrocarbons have been performed with and without silica gel cleanup to evaluate the contribution of non-petroleum hydrocarbons to reported diesel- and oilrange hydrocarbon concentrations. Chromatogram review as described in this report is used along with quantitative information to assess the relative makeup of petroleum and non-petroleum constituents.

The characteristic chromatogram of a diesel and motor oil standard analyzed by method NWTPH-dx is shown in Figure 1.

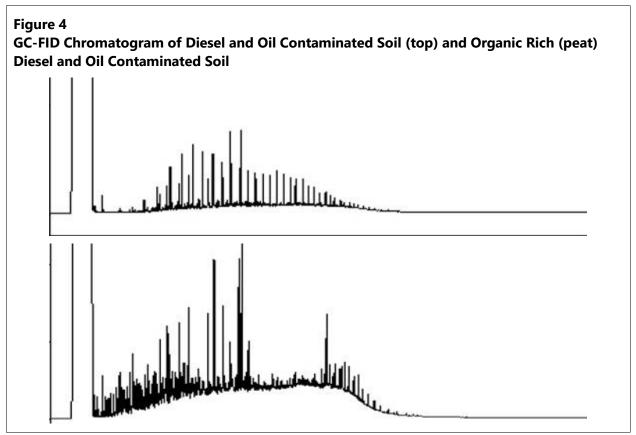

Source: Robinson and Heron 2015

2 Soil Chromatogram Review

The soil Gas Chromatography – Flame Ionization Detector (GC-FID) spectra from petroleum testing performed within the treated soil stockpile area (Figure 2; TP-103, 3-4 ft) are dominated by an unresolved complex mixture (UCM) located in the motor oil range of the chromatogram. The greatest hydrocarbon concentrations are present at the heavy end of the motor oil range (diesel-range concentration of 754 milligrams per kilogram [mg/kg]; motor oil range concentration of 2,300 mg/kg).

The spectra do contain some amount of diesel. This is evident when comparing the chromatograms for the diesel range with and without silica gel cleanup. However, there is extensive noise in this chromatogram that is not consistent with the expected pattern for diesel or motor oil.

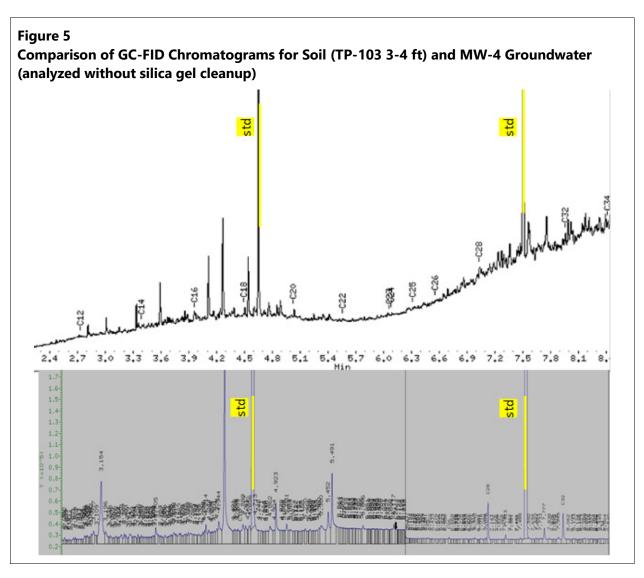
After silica gel cleanup (lower chromatogram in Figure 2), the extensive UCM hump in the motor oil range is decreased. Though the sample is still dominated by motor oil-range hydrocarbons, their concentration has been reduced 63 percent (from 2,300 mg/kg to 861 mg/kg) by the silica gel cleanup step. Diesel concentrations were reduced less, only 41 percent (from 754 to 447 mg/kg).



Silica gel cleanup is recommended by the Washington State Department of Ecology (Ecology) for application to soils containing elevated organic debris (Ecology TPH guidance). This is based on the contribution of non-petroleum plant matter to estimated hydrocarbons in the TPH range (Figures 3 and 4).

The very strong motor oil-range UCM for the peat soil in Figure 4 is consistent with the UCM observed in the stockpile soil samples analyzed without silica gel cleanup.

Source: Zemo et al. 1995



Source: Wang et al. 2012

3 Groundwater Chromatogram Review

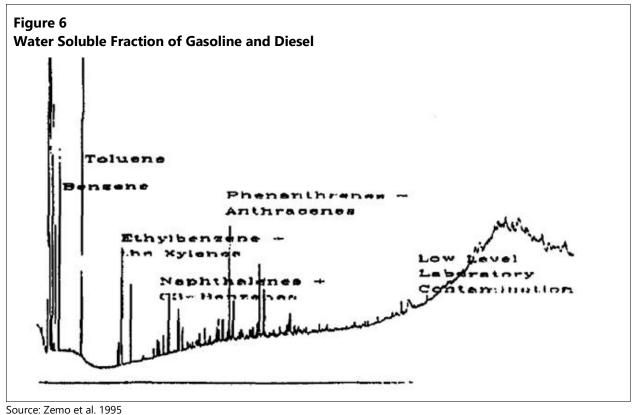

Low levels of diesel-range and oil-range hydrocarbons were present in groundwater samples collected from MW-4 and analyzed without silica gel cleanup. Groundwater diesel-range and oil-range petroleum concentrations decreased from 0.65 milligrams per liter (mg/L) to below method detection limits when silica gel cleanup was included in the analysis.

Figure 5 compares the chromatogram of soils from the treated soil stockpile to a chromatogram of the groundwater from MW-4. Both chromatograms are from analyses performed without silica gel cleanup. The observed peaks in the MW-4 groundwater are not consistent with those observed in soil. Neither is the GC-FID chromatogram consistent with dissolved diesel spectra.

Boring logs wells and temporary soil borings placed near MW-4 noted the presence of organic matter (roots, etc.) in the saturated zone. Leaching of organic matter may contribute to the measured petroleum concentrations in test samples analyzed without silica gel.

In contrast to what was observed in the Area Z samples, dissolution of diesel into groundwater normally generates a similar peak pattern as the diesel in corresponding contaminated soils (Figure 6). The lack of corresponding peak patterns in the Area Z groundwater and soil samples further suggests the contribution of natural organic matter to the reported petroleum concentrations in samples analyzed without silica gel cleanup.

4 Discussion

Ecology guidance for performance of the NWTPH-d analysis recommends the use of silica gel cleanup when natural organic matter or other non-petroleum hydrocarbons may produce a high bias in the analysis. The silica gel cleanup removes polar (non-petroleum) hydrocarbons from the extract, removing the bias from the test results.

Based on the results of paired analyses performed with and without silica gel cleanup, a significant fraction of the reported diesel and oil concentrations is due to the presence of non-petroleum hydrocarbons in the samples:

- Introducing the silica gel cleanup step reduced reported TPH concentrations by between 40 and 60 percent.
- Introducing the silica gel cleanup step into the analysis of MW-4 groundwater reduced reported petroleum concentrations from 0.65 mg/L to below method reporting limits.

In both cases, chromatogram review indicated the presence of non-petroleum organic matter in the samples. This observation corresponds to the presence of extensive organic matter (saplings, roots, grasses) in the treated soil stockpile, and to the presence of natural organic matter in saturated zone boring logs near MW-4.

Based on the above-described observations, soil analyses for diesel- and oil-range petroleum should utilize silica gel cleanup as part of the NWTPH-d analysis. This is recommended also for analysis of groundwater samples.

5 References

- Robinson, P., and A. Heron, 2015. *TPH Reference Chromatograms*. Hill Laboratories (Hamilton, New Zealand); November 3, 2015.
- Wang, Z., C. Yang, Z. Yang, B. Hollebone, C.E. Brown, M. Landriault, J. Sun, S.M. Mudge, F. Kelly-Hooper, and D.G. Dixon, 2012. "Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples." *Journal of Environmental Monitoring* 14(9):2367-2381.
- Zemo, D.A., J.E. Bruya, and T.E. Graf, 1995. "The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation." *Groundwater Monitoring and Remediation* 15(2):147-156.